
121

A p p e n d i x D

Derivatives and Series Expansion for the New Form of ∆T

The new form of ∆T in GHA-QM is
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The following shows the useful equations for its practical implementation.

D.1 Derivatives of the New Form
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D.2 Series Expansion for the New Form
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When S → 1, s1 → s2 and R12 → 0, we have
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