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Chapter 5

Gaussion Hartree Approximated Quantum Mechanics for
Large-Scale Nonadiabatic Electron Dynamics

5.1 Introduction

Many chemical events, those where the nuclei move on a single potential energy
surface (PES), can be simulated by quantum chemistry approaches with the as-
sumption that electrons adjust instantaneously to the slower nuclear motion. With
this assumption, which is called the Born-Oppenheimer (BO) approximation, the
electronic component and the nuclear component of the wavefunction of the system
can be decoupled mathematically. This forms the basis of the standard quantum

chemistry methods.

However, there are also a large number of important processes in nature, such as pho-
tochemical and electrochemical reactions, that the PESs are close in energy and the
nuclei transit between different PESs. During the transition, the motion of electrons
and nuclei are strongly coupled, and the BO approximation breaks down. Such a
transition is called a nonadiabatic transition, the theory for which was first proposed
independently by Landau (/) and Zener (2) in 1932. A number of other approaches
have been developed since then, including two mixed quantum-classical methods
that are most widely adopted for nonadiabatic dynamics simulations, Ehrenfest dy-
namics (3-6) and surface hopping (7, §). Ehrenfest dynamics uses a mean-field
approach in which the nuclei move on a single PES that averages over all quantum
states, while the surface hopping method allows stochastic electronic transitions be-
tween states with the transition probability calculated using quantum mechanical or
semiclassical methods. A number of variants of these methods have been developed,
but they are still computationally demanding due to the use of advanced quantum
chemistry methods to combine with these schemes, such as combining Ehrenfest
dynamics with time-dependent Hartree Fock (TDHF) (9) or time-dependent density
functional theory (TDDFT) (/0), and the use of ab initio methods or TDDFT to
compute the PESs for surface hopping. As many nonadiabatic phenomena happen
in large systems, such as photosynthesis, etching of silicon, and insulator-to-metal
transition of dense deuterium liquid, it is necessary to develop new methods to

enable nonadiabatic dynamics simulations in large scale.
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Aiming at solving this problem, Su et al. from our group have developed the
electron force field (eFF)(//) framework for simulating large-scale nonadiabatic
dynamics in condensed matter. In the eFF framework, the particles follow wave
packet dynamics, with the nuclei represented by classical point charges propagated
classically and electrons represented by wave packets. The use of wave packets
relates to the perspective that, in systems that are highly excited with a high density
of quasi-degenerate electronic states, there are continuous nonadiabatic transitions
and large fluctuations of electronic states, which should be described by wave packets

dynamics of electrons.(/2)

Unlike the ab initio excited state dynamics methods which can only be realistic
for hundreds of electrons on picosecond timescale, the eFF method expects to
simulate hundreds of thousands of electrons on nanosecond timescale in a reasonable
amount of time. It has been applied to studying problems including the shock
Hugoniot curves of various materials,(//, 13, 14) Auger-induced chemistry,(/5)
Coulomb explosion in silicon and carbon,(/6) and brittle fracture of silicon.(/7)
However, it bears certain shortcomings that inspired us to develop the Gaussion
Hartree Approximated Quantum Mechanics (GHA-QM) method (/8) based on its
framework. A brief review of the eFF formulation and a discussion on the exploration

and new improvements in GHA-QM are in the next sections.

5.2 The Electron Force Field (eFF) Framework

The eFF method relates to Fermion molecular dynamics (FMD),(/9) wave packet
molecular dynamics (WPMD),(20) and floating spherical Gaussian orbital (FSGO)
methods.(217) In eFF, the electrons { j } are represented by floating spherical Gaussian
(FSG) wave packets with the Cartesian coordinates of the center of the FSG 17; and
the FSG width (size) s; as variables. The total wavefunction is a Hartree product of

single-electron wave packets:

W(r7) o l_[eXp [— (l - 2p,sj %) (7; B I?J)')Z

exp[l?ﬁ-f;] . (5.1)

J

The normalized wavefunction of each electron is

> 3 > _R)2
¢j(71’.):(i) ex _(E)S—ZJ) _

(5.2)
Vs j

The use of Hartree product instead of antisymmetric wavefunctions reduces the

O(N*) scaling of pairwise electrostatic energy evaluations to O(N?), which is
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desirable. To account for the energy contribution from antisymmetrization, we
include a Pauli potential in the total energy expression. The total energy E is
thus the sum of Hartree product electronic kinetic energy Ey., Hartree product

electrostatic energies Enyc-nucs Enuc-elecs Eelec-elec, and Pauli energy Epyyi:

E = Eke + Enuc-nuc + Enuc-elec + Eelec-elec + EPauli» (5 3)
where
1 } 31
Be = Y0il-5Vi0=25>
J J J
ZnZ ZZ
Enuc—nuc = R = R
m<n M m<n ~ 1N
Zu . [ V2R
Enucelec = <]| - _n|]> = - E f(
N U 1 V2R;;
Eclec-clec = Z<1]|f|1]> = FEI‘f Y
iy i i<y i 57 + Sjg
Epai = ). EQDij+ ) E(1L) (5:4)
Ti=0; Ti#0;

in which Z, represents the charge of the nucleus 7, o; represents the spin of electron

Jj,and
2 2
E ii = ]_ — lJ_ 7’; .
pS>
EQy = 17 ATy, (5.5)
i
where p = —0.2.
The overlap integral of electrons i and j is
25:8: 3/2 R?
Sij = ljy=[-—5] exp|-555). 5.6

and the change of electronic kinetic energy upon antisymmetrization of the wave-
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function is

1 1 1 1
AT;j = (Psiaerl - VZ——V FWstater) = (WPHatree| = VZ——VZWHma
S
ij
= 1_—§(tii+fjj—21ij/5ij)
ij
St 31 L 6 4R},
= L= +2—=- + L1, (5.7)
1-8% (257 22 s+ 52 (524 52)2
ij j l J 1 J
where
1
Wstater = (¢t¢1 ¢j¢i) (5.8)
J2 - ZS
VYHartree = ¢i¢j- (5.9

While S;; and AT;; are functions of s; and R;;, we define S ; and AT, ; as functions
of §; = ays; and Rij = agrR;j, where a; = 0.9 and ag = 1.125. The parameters
p, s, ag are universal parameters that were adjusted to reproduce the geometries for

a range of structures.(22)

By substituting the wave packet into the time-dependent Schrodinger equation, one

could derive the Hamilton equation of motion:

: 0E
= - _v., . __oL
PR = VRJE’ Ps; ds;j
= 3m, .
?R—; = melech, ij = Tesj’ (510)

where m, is the mass of the electron. The nuclear motion is governed by

P = -VoF (5.11)
P = m,Ro, (5.12)

where m,, is the mass of the nucleus.

This equation of motion shows the average position of the wave packet follows a
classical trajectory, consistent with Ehrenfest’s theorem. It extends the Ehrenfest’s

theorem in that the size of the wave packet also follows a classical trajectory.

The above summarizes the eFF formulation. Two assumptions were made to de-

velop the Pauli potential in Equation 5.5: 1) the Pauli energy can be approximated
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by the sum of pair-wise interaction energies of elections, and 2) the kinetic en-
ergy component dominates the energy change caused by antisymmetrization of the

wavefunction (the Pauli energy). The functional form comes from mixing
— 1 V2 1 V2 ! VZ ! V2
E, = <lPSlater| - 5 i 5 j|\PSIater> - <\PHatree| - 5 i 5 jl\PHartree>

and a correlation energy

1 1 1 1
Eg = (Pval = 5V} = 5Vj1%vB) = (Pharcel = 577 = 3V} Phartec):

where .
WYvg = ———=(¢i¢; + ¢;i). (5.13)
h+z%
Klakow (23) used E(TT) = E, and E(T]) = 0 in kinetic-energy-based Pauli poten-
tials. To reduce the likelihood of coalescence for both same spin and opposite spin

electrons, eFF chose

ECT)
ECTD

Eu - (1 - p)Eg
—pE,. (5.14)

This is discussed in detail in (22) by Su.

5.3 The Gaussion Hartree Approximated Quantum Mechanics Framework

Recently, Xiao (/8) questioned the justification of the above two assumptions in eFF
Pauli potential. This led to the early development of the GHA-QM formulation of
the Pauli potential in 2014. He suggested that the electron-electron and electron-
nucleus Coulomb components of the energy change upon antisymmetrization are
not negligible. Also, the Pauli potential considering only pair-wise interactions does

not scale correctly with the number of electrons, and a scaling factor is introduced.

The total energy change upon antisymmetrization in GHA-QM is written as

Epaii = ) FADGERS Dy + > FOLExsi 11 (5.15)

G'iZO'j O'iio'j

where F(17);; and F(T]);; are the scaling factors,
Epist (1)ij = AT + ACeeij + ) ACue; (5.16)
n

and P1 P3 P4
poSl.j + ple.j: 5
_1 + Spé + SPS <P (517)
D5 ij P71 ij sij

Epis (1) =
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in which AT;; is defined the same as Equation 5.7, §;; is defined the same as

Equation 5.6, and
$iS;

Sij = —.
§2 + §2
VUi T

(T))ij accounts for electron correlation and the form is inspired by the Wigner

(5.18)

base
EPauh

correlation functional, and pg, k = 0, ...9 are parameters fitted to singlet H, bonding
curve calculated using B3LYP/FSG.

ACp,j and ACy,;; come from the electron-electron and electron-nucleus Coulomb

terms in the total Hamiltonian of an electron pair

H —Vi4+— - (5.19)
kzlz = Zn: Z Fak’
Similar to the derivation of AT}, in Equation 5.7,
1 1
ACee,12 = <\PSIater|_|lPSIater> - (‘PHatree|_|lI"Hartree>
r2 ri2
= On(Ji2 - K12/Sp), (5.20)
where
Sh
On=—12-, (521)
1- S12
1 2R
Jip = <12| |12> = 2 Er rf V2R , (5.22)
12 52 + 53
and the exchange energy
1[ + S2
K = (12|—|21) = 2 (5.23)
For the nucleus-electron Coulomb interaction contribution,
Z, Z, Z, Z,
ACne,lZ = <\PSlater| - _I\PSlater> - <‘PHatree| - = _llPHartree>
rnl rn2 I'nl In2
= Onin +jo —2j12/Sh): (5.24)
where
S Erf (j—fRnk)
Jrk =kl — =1k = — (k=1,2) (5.25)
Ynk Rk
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R? R? R

Ii 1 2 12
I‘f(\/ SZ + Sré - 2452
Z, 1 2 1+53

Jiz=(l-—[2)=-— S12. (5.26)

nl S12 R2, R, R,
2T e
s s ST

>
The full forms of the scaling factors in Equation 5.15 are
F(MDij = F(Mijsym (AT, ACee, ACne) F (T1)ijasym (AT, ACee, ACye)  (5.27)
and
F(T)ij = F(T)ijsymF (TV)ij,asym- (5.28)
Define

s = 3 (Z Sik+ ) Sik,) (5.29)
k kr

Sso= % (Z 2+ Szk) (5.30)
k ks

For same spin electrons that each has exactly the same environment, the scaling
factors for AT and AC,,, can be derived based on D3, quartet H3 or 7; quintet Hy to
give
1+S;;
F(TT)ij,sym(ATa ACye) = E—
I1+>S8
Therefore, we separate the scaling factor into two terms multiplying each other,

(5.31)

Fyym and Fy,,, which account for the "symmetric" environment and "asymmetric"

environment, respectively.

The forms of the other components of the same spin electron scaling factors are

~ Pse
Dset + Sij N 2.Sij — Sij ) ’
Psel + ZSij pseISij + ZSij
=3 Pse
Pse3 T Slzj ZSZZJ - Slzj )
= = (5.32)
Dse3 T ZS,'J' pseSSij + ZS,'J'
where the parameters ps.r, k = 0, ..., 4 are fitted with the exact quantum mechanics

[unrestricted Hartree Fock (UHF)/FSG] results of Dsj, quartet Hz and T; quintet Hy
symmetric stretching, and

F(TT)ij,sym(ACee) = pr(

+(1 - PseO) (

F(Mijasm(OT ACues ACu) = 14 puo (S ). S = )57
— — 2
+Pal (SijZSij - ZS,ZJ)
— — 3
wpa (S 8- ) SE) . (539
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where pax, k = 0, 1,2 are parameters whose values depend on whether it is for AT,
AC,. or ACy., and fitted with D3, to C;, transition of quartet Hsz and 7, to Cs,
transition of quintet Hy.

For opposite spin scaling factors, the forms are

1+ poslSij Pos2 I+ pos3Si2j Pt
F(Ti)ij,sym =Pos0| —————=—— + (1 - posO) ——2 P (534)
1 +p0slzsij 1 +p0s3ZSij

where the parameters p,g, k = 0,...,4 are fitted with Do doublet H3 and Dy

singlet Hy symmetric stretching, and
S %Sij - ES,ZJ
F(Tl)ij,asym = 1+ poao = —=w
S,'jZS,’j + ZSij

Sij2Sij = 25
tPoagl | ——=———— )
Sij 2Sij + LS;;

— — \3

Sij%Sij = 1S,

tpo2 | —=————=— 5] (535)
S,'jZS,‘j + ZSij

where the parameters p,qx, kK = 0, 1, 2 are fitted with Do, doublet H3 and D4y, singlet

H4 asymmetric stretching.

In summary, the total Pauli potential for same spin electron pairs is

EPauli(TT)ij = F(TT)ij,sym(AT)F(TT)ij,asym(AT)ATij
+F(ID)ijsym(ACee) F (TT)ijasym (ACee) A,
+ZF(TT)ij,sym(ACne)F(TT)ij,asym(ACne)ACne,ij (536)

and the total Pauli potential for opposite spin pairs is

Epaii(T)ij = F(TDijsymF (Tl)ij,asymEgngi(Tl)ij- (5.37)

The above has been discussed in more detail in (/8).

5.4 Improvements on GHA-QM

The GHA-QM framework in the previous section produces QM quality bonding
curve for singlet and triplet Hy, and gives good results for symmetric and asymmetric
stretching of H3 and Hs molecules in mild conditions. However, when we tested
the system more substantially and tried to simulate hydrogen systems with more
electrons in high density, we found certain problems. This section discusses several

strategies that were taken to fix these problems.
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New Opposite Spin Pauli Potential

We found that the size of the electron in the center of linear H3 sometimes goes to
zero. This is because in Equation 5.17 where p4 is negative and all other parameters
are positive, one electron having zero size (§ going to zero) means Ellggfffi(Tl) becomes

negative infinite and energetically favored. To avoid this problem, we introduced a

positive shift pjg of electron size in Equation 5.17. The new form is

P1 P3 (=
poS;; + p2S;; (5ij + pio)™
P8 P9
Sl.j Si;

(5.38)

Ebase‘ = -
Pauh(T*L) J 1+ s S56 +py
We refitted the parameters against the exact QM results of singlet H, bonding
curve.(24) The new parameters are pg = 0.439387, p; = 2.914263, p, = 8.180823, p3 =
6.100496, ps = —18.088005, p5s = 0.698750, ps = 3.305666, p7 = 2.031224, pg =
7.359878, pg = 5.552337, p1o = 8.345865. The resulting GHA-QM H; bonding

curve is nearly exact in the bonding regions, and performs better than B3LYP/6-

311++G** atintermediate bond lengths (Figure 5.1). Because the base energy of the

125
75

TED 25 ——-QM (Exact)

‘=8 -=-B3LYP/6-311++G**

=3 0 3 GHA

w -25 ~<eFF

-75

-125

H-H Distance (A)

Figure 5.1: Performance of GHA-QM on single H,.

opposite spin Pauli potential has changed, we refitted the parameters in the opposite
spin scaling factors too. We used genetic algorithm to train the parameters for both
symmetric and asymmetric scaling factors at the same time. The best parameters
are poso = 0.968658, pos1 = 1.021811, pys2 = 2.720616, pos3 = 15.859202, pysa =
20.201212 and pya0 = 2.376509, poa1 = 18.590298, p,ao = 13.245066. These pa-

rameters give much improved energy for Hz reaction path (Figure 5.2), and overall
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a more accurate H3 potential energy surface (Figure 5.4) than eFF (Figure 5.5)

comparing to ab initio Hz potential energy surface (Figure 5.5).(25)

20
16 . Fix r, and relax r,
14
§12 sam(Cl)
= 10 . ® B3LYP/6-311++G**
£ e, GHA
w 8 ‘ : % eFF
*
6 - "
o > Transition state geometry:
4 ey ‘3 QM:r, =1,=0.930 A
g * o B3LYP:r,=r,=0.931 A
2 LN E T T GHA:r, =1,=0.975 A
0 ol eFF:r,=r,=1.035 A
0.8 1 1.2 1.4 1.6 1.8 2
r, (A)

Figure 5.2: Performance of GHA-QM on Hj reaction path. The QM configuration
interaction (CI) data is from (26).

Preventing Same Spin Electron Coalescence

When we tried to simulate the equation of state (EOS) of a dense H; liquid (Wigner
radius rg = 2.2 bohr), we find the same spin electrons are energetically favorable to
diffuse and cluster at some configurations. The following paragraphs are devoted to

attempts at solving this problem.

A New Form of AT We’d like to shift the numerator in Equation 5.7 by a small

amount dd so that AT goes to infinity when S — 1. For convenience, the subscripts
of AT, S, O are omitted.

The new form is

Sz(lll + 1y — 2t12/S) + dd

AT
1- 82
231,31 _ 6 4R1,
§ 252 t3 55 st4sy 0 (s7+s3)? +dd
B 1-82
dd

I
Q
~
+

(5.39)
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Figure 5.4: GHA-QM Hj3 potential energy surface. r; and r; are defined in Fig-
ure 5.3.
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Figure 5.5: eFF H3 potential energy surface. r and r, are defined in Figure 5.3.

where )
6 4R12

2 2, 2\
+55 (s1+s2)

T

| W

+

[\SRRON)

1 1
2 2
ST S

We chose dd = 1.0 x 1074,
To avoid numerical instability when S — 1, s; — s, and R;p — 0, we did series

expansion of AT at this condition (Appendix D). In its practical implementation,
when 1 — 2 < 0.001, instead of the form in Equation 5.39, we take

1 R? R} 1 R RS
AT:( S e A )+dd(w+—+ 12 2 ). (5.40)

5152 28252 126383 R, 2 1251 72083

Although this scheme can prevent the same spin electrons to have the same coordi-
nates, it does not prevent same spin electrons of similar sizes to become unphysically
close (overlap S — 1). As can be seen in Figure 5.6, the energy penalty from the
new form of AT is not big enough for most configurations the dynamics simulation
can reach. Nevertheless, we kept this form because it does prevent the same spin

electrons to have the same coordinates and enforce the Pauli exclusion principle.

New Same Spin Scaling Factors The form of Equation 5.33 may cause serious

issues during simulation because it is unbounded. In addition, the sign of the
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Figure 5.6: Comparison of AT values from the old and new forms for diffused
electrons of the same size and spin.

function may change due to the odd powers and the possibility for (S; jES,- = ES?J.)
to become negative in some cases. To make the function bounded, we adopt the

following form instead:

F(M)ijasym(AT, ACee, ACye) = 1+ paoDij + pa1 D} + paa D), (5.41)
8ij 28ij -2}, 6 :
where D;; = | —=-—=5"|- The small constant d = 1.0 x 107 is to prevent
SijZSij"'ZSij"'d

the denominator from going to zero when all the overlap S — 0. In fact, this
shift has been added to the opposite spin asymmetric scaling factor too so that now
same spin and opposite spin asymmetric scaling factors adopt the same form, with
different parameters. The parameters for same spin asymmetric scaling factors are

summarized in Table 5.1.

For the fitting to cover the whole range of S values from O to 1, we fitted against
(C,, quartet Hz, with one H-H distance fixed at 0.1 bohr and 1.7 bohr. The size of
the electrons were kept to 1.5 bohr. Figures 5.7 shows that the whole range of S
has been covered, especially for large S values that were not considered in previous

fitting.
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AT AC,, ACh,

Pao | 1.31546298328185 | 0.727335080043498 | 0.468486643682531
Pa1 | 3.39853157886649 | 1.311794439120800 | 13.20277753109270
Pa2 | 2.33306859558464 | 0.584459359077299 | 12.98429088741020

Table 5.1: New parameters for same spin asymmetric scaling factors F(TT
)ij,asym(AT, ACee’ ACne)-

3
C,, Quartet H,
1.4 7
__r
1.2 . 1 )
E’T 1.0 ui_‘h » d12 = 01 bOhr
£ 08 o L—_——
£ os posas * UHF/FSG AT
5 04 % HeFF (GHA unscaled) AT
[
i 02 GHA FynAT
0.0
0.0 0.5 1.0 “GHA FsymFasymAT

Sis

Figure 5.7: Performance of GHA-QM for C,, quartet H3 with one H-H distance
fixed at 0.1 bohr.

Figure 5.8 shows the GHA-QM same spin symmetric scaling factor does not work
for C,,, quartet H3; when one H-H distance is fixed at 1.7 bohr and the other H-H
distances are much smaller than 1.7 bohr. This suggests that the symmetric scaling
factor is not likely able to deal with linear Hz. Since the same spin symmetric
scaling factor for AT is exact for D3, Hs, we hypothesized that the scaling factors
are highly symmetry-dependent and the F(17)sym derived from D3, H3 cannot be
universally applied to all molecules with other symmetry. Interestingly, eFF seems
to go to the correct limit as the system approaches being linear. To further explore
this issue, we developed a scaling factor F'(TT)jinear to replace F(TT)sym in linear

molecules:

F(M)ijtinear = 1 + prov + pnv? + piv?, (5.42)
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Figure 5.8: Performance of GHA-QM for C,, quartet H3 with one H-H distance
fixed at 1.7 bohr.

Symmetric stretching of linear quartet H3

¢ UHF/FSG AT

@ eFF (GHA unscaled) AT
5 GHA FoynAT
- XGHA FyyoFaoymT

0 = GHA FlinearFasymAT

Energy (hartree)

d,; (bohr)

Figure 5.9: Comparison of the effect of different scaling factors in the performance
of symmetric stretching of linear quartet H3.

where

S > S — X 82)?
vz( (Sij X.8ij = 25;;) ) (5.43)

(Pi3Sij X Sij — X Sizj)z +d,
we chose d; = 1.0x1077 and fitted the parameters p;o = 0.0098195829828946, p;1 =
0.0758036465880992, p;» = 0.440549994711866, p;3 = 0.999965221776706.

Intuitively, when the H-H distances become very small, linear H3 and D3, H3 energy

should go to the same limit. However, this is not the case as seen from Figure 5.9.
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This confirms that the scaling factors should be symmetry-dependent or geometry-
dependent. However, in practice it is likely impossible to implement. Since our goal
is to simulate condensed matters, there will be too many electrons in the system for

the program to classify the configuration to determine suitable scaling factors.

Removing the Same Spin Scaling Factors The analysis in the previous subsection
suggests it might be a good idea to remove the same spin scaling factors completely
(i.e. make them take the value of 1). In addition, minimization of the dense H, liquid
(rs = 1.76 bohr or denser) shows that same spin scaling factors for AT and AC),, can
scale these positive energy contributions down to ~ % times the base values while
maintaining the negative energy contribution from AC,, similar to the base value.
This energetically favors the same spin electrons to cluster, even when we keep the
electron sizes fixed at 1.55 bohr (the electron size in H, optimized by GHA-QM).
The different behaviors of the scaling factors for different energy components may
be due to the empirical nature of some of the functional forms of the scaling factors,

and may also be due to the symmetry issue discussed in the previous subsection.

To see how much removing same spin scaling factors could affect molecular interac-
tions, we calculated the H,-H» association curve with GHA-QM without same spin
scaling factors. The results look reasonable as they are close to QM results (27) in

Figure 5.10. They are also an improvement on eFF.

Iy
D,, H,-H, A iati -
on H-H, Association
r
400 2
N
300 CJ \)
= 200 r,=0.74 A
o
£ 100
]
£ 0 QM
W _100 0 2 4 6 8 10 GHA
-200 eFF
-300
ry (A)

Figure 5.10: D;;, Hy-H; association without same spin scaling factors. The energy
values are E(H4) — 4E(H). The QM data is from (27).
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Therefore, with the same spin scaling factors turned off, we went on to calculate the
liquid H, EOS and compared it to QM results. A cubic box of 108 H, molecules has
been used with minimum image on each side of the box as the periodic boundary
condition. We took m, = mpy so that we can use a relatively large time step
0.02 femtosecond. A total of 2 ps dynamics was carried out for each temperature,
and the first 0.5 ps was discarded when calculating the average pressure. During
the dynamics, for each time step we optimized the electron sizes based on the
X, y, z coordinates of the electrons and nuclei. For simplicity, we approximated the
optimization procedure by carrying out only the first step of the Newton-Raphson
method and considering the second derivative of only the electronic kinetic energy.
Figure 5.11 shows both GHA-QM and eFF are quite close to QM results, with both
eFF and GHA-QM having a tendency to underestimate the pressure at low density.
At high density, GHA-QM has a tendency to underestimate the pressure, while eFF
tends to overestimate the pressure. In terms of the energy-volume relationship,

GHA-QM is clearly an improvement upon eFF (Figure 5.12).

450 Sexp. 0K
B GHA 0K
350 =
. GHA at 300K
S 250
o X GHA at 2000K
o -
150 GHA at 3700K
50 - eFF OK
5025 7.5 C 12.5 | QM corrected at 300 K+ZP

V (A3) I molecule

Figure 5.11: Pressure-volume diagram of Hj liquid. The experimental values and
QM extrapolation are from (28).

5.5 Conclusions and Future Work

We have overcome a few technical obstacles including but not limited to those
discussed in the above section to enable large-scale simulations of warm dense
hydrogen EOS using GHA-QM. Our next step is to simulate the shock hugoniot.
We would like to see whether the new GHA-QM can correctly predict the pressure
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Figure 5.12: Energy-volume diagram of H; liquid. The QM data is generated by
PBE-D3 calculation and provided by Saber Naserifar (unpublished).

and temperature where the hydrogen insulator-to-metal transition occurs. We may
need to include the angular momentum projected effective core potential (AMPERE)
extension,(/8) which is not discussed here, to account for the cusp condition at the
nuclei for more accurate predictions. When we move up in the periodic table,
AMPERE will be necessary to obtain correct bond energy and nodal structures.
In the future, we hope GHA-QM along with AMPERE will be able to simulate

processes such as silicon etching that no existing method could simulate well.
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