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C h a p t e r 5

Gaussion Hartree Approximated Quantum Mechanics for
Large-Scale Nonadiabatic Electron Dynamics

5.1 Introduction
Many chemical events, those where the nuclei move on a single potential energy
surface (PES), can be simulated by quantum chemistry approaches with the as-
sumption that electrons adjust instantaneously to the slower nuclear motion. With
this assumption, which is called the Born-Oppenheimer (BO) approximation, the
electronic component and the nuclear component of the wavefunction of the system
can be decoupled mathematically. This forms the basis of the standard quantum
chemistry methods.

However, there are also a large number of important processes in nature, such as pho-
tochemical and electrochemical reactions, that the PESs are close in energy and the
nuclei transit between different PESs. During the transition, the motion of electrons
and nuclei are strongly coupled, and the BO approximation breaks down. Such a
transition is called a nonadiabatic transition, the theory for which was first proposed
independently by Landau (1) and Zener (2) in 1932. A number of other approaches
have been developed since then, including two mixed quantum-classical methods
that are most widely adopted for nonadiabatic dynamics simulations, Ehrenfest dy-
namics (3–6) and surface hopping (7, 8). Ehrenfest dynamics uses a mean-field
approach in which the nuclei move on a single PES that averages over all quantum
states, while the surface hopping method allows stochastic electronic transitions be-
tween states with the transition probability calculated using quantum mechanical or
semiclassical methods. A number of variants of these methods have been developed,
but they are still computationally demanding due to the use of advanced quantum
chemistry methods to combine with these schemes, such as combining Ehrenfest
dynamics with time-dependent Hartree Fock (TDHF) (9) or time-dependent density
functional theory (TDDFT) (10), and the use of ab initio methods or TDDFT to
compute the PESs for surface hopping. As many nonadiabatic phenomena happen
in large systems, such as photosynthesis, etching of silicon, and insulator-to-metal
transition of dense deuterium liquid, it is necessary to develop new methods to
enable nonadiabatic dynamics simulations in large scale.
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Aiming at solving this problem, Su et al. from our group have developed the
electron force field (eFF)(11) framework for simulating large-scale nonadiabatic
dynamics in condensed matter. In the eFF framework, the particles follow wave
packet dynamics, with the nuclei represented by classical point charges propagated
classically and electrons represented by wave packets. The use of wave packets
relates to the perspective that, in systems that are highly excited with a high density
of quasi-degenerate electronic states, there are continuous nonadiabatic transitions
and large fluctuations of electronic states, which should be described bywave packets
dynamics of electrons.(12)

Unlike the ab initio excited state dynamics methods which can only be realistic
for hundreds of electrons on picosecond timescale, the eFF method expects to
simulate hundreds of thousands of electrons on nanosecond timescale in a reasonable
amount of time. It has been applied to studying problems including the shock
Hugoniot curves of various materials,(11, 13, 14) Auger-induced chemistry,(15)
Coulomb explosion in silicon and carbon,(16) and brittle fracture of silicon.(17)
However, it bears certain shortcomings that inspired us to develop the Gaussion
Hartree Approximated Quantum Mechanics (GHA-QM) method (18) based on its
framework. Abrief reviewof the eFF formulation and a discussion on the exploration
and new improvements in GHA-QM are in the next sections.

5.2 The Electron Force Field (eFF) Framework
The eFF method relates to Fermion molecular dynamics (FMD),(19) wave packet
molecular dynamics (WPMD),(20) and floating spherical Gaussian orbital (FSGO)
methods.(21) In eFF, the electrons { j} are represented by floating spherical Gaussian
(FSG) wave packets with the Cartesian coordinates of the center of the FSG −→R j and
the FSG width (size) s j as variables. The total wavefunction is a Hartree product of
single-electron wave packets:
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The normalized wavefunction of each electron is
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The use of Hartree product instead of antisymmetric wavefunctions reduces the
O(N4) scaling of pairwise electrostatic energy evaluations to O(N2), which is
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desirable. To account for the energy contribution from antisymmetrization, we
include a Pauli potential in the total energy expression. The total energy E is
thus the sum of Hartree product electronic kinetic energy Eke, Hartree product
electrostatic energies Enuc-nuc, Enuc-elec, Eelec-elec, and Pauli energy EPauli:

E = Eke + Enuc-nuc + Enuc-elec + Eelec-elec + EPauli, (5.3)
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in which Zn represents the charge of the nucleus n, σ j represents the spin of electron
j, and
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where ρ = −0.2.

The overlap integral of electrons i and j is
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and the change of electronic kinetic energy upon antisymmetrization of the wave-
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function is
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where

ΨSlater =
1√

2 − 2S2
i j

(φiφ j − φ jφi) (5.8)

ΨHartree = φiφ j . (5.9)

While Si j and ∆Ti j are functions of si and Ri j , we define S̄i j and ∆T̄i j as functions
of s̄i = assi and R̄i j = aRRi j , where as = 0.9 and aR = 1.125. The parameters
ρ, as, aR are universal parameters that were adjusted to reproduce the geometries for
a range of structures.(22)

By substituting the wave packet into the time-dependent Schrödinger equation, one
could derive the Hamilton equation of motion:
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where me is the mass of the electron. The nuclear motion is governed by
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E, (5.11)
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−̇→
Rn, (5.12)

where mn is the mass of the nucleus.

This equation of motion shows the average position of the wave packet follows a
classical trajectory, consistent with Ehrenfest’s theorem. It extends the Ehrenfest’s
theorem in that the size of the wave packet also follows a classical trajectory.

The above summarizes the eFF formulation. Two assumptions were made to de-
velop the Pauli potential in Equation 5.5: 1) the Pauli energy can be approximated
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by the sum of pair-wise interaction energies of elections, and 2) the kinetic en-
ergy component dominates the energy change caused by antisymmetrization of the
wavefunction (the Pauli energy). The functional form comes from mixing
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Klakow (23) used E(↑↑) = Eu and E(↑↓) = 0 in kinetic-energy-based Pauli poten-
tials. To reduce the likelihood of coalescence for both same spin and opposite spin
electrons, eFF chose

E(↑↑) = Eu − (1 − ρ)Eg

E(↑↓) = −ρEg . (5.14)

This is discussed in detail in (22) by Su.

5.3 The Gaussion Hartree Approximated Quantum Mechanics Framework
Recently, Xiao (18) questioned the justification of the above two assumptions in eFF
Pauli potential. This led to the early development of the GHA-QM formulation of
the Pauli potential in 2014. He suggested that the electron-electron and electron-
nucleus Coulomb components of the energy change upon antisymmetrization are
not negligible. Also, the Pauli potential considering only pair-wise interactions does
not scale correctly with the number of electrons, and a scaling factor is introduced.

The total energy change upon antisymmetrization in GHA-QM is written as
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where F (↑↑)i j and F (↑↓)i j are the scaling factors,
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in which ∆Ti j is defined the same as Equation 5.7, Si j is defined the same as
Equation 5.6, and

s̄i j =
sis j√
s2

i + s2
j

. (5.18)

Ebase
Pauli(↑↓)i j accounts for electron correlation and the form is inspired by the Wigner

correlation functional, and pk, k = 0, ...9 are parameters fitted to singlet H2 bonding
curve calculated using B3LYP/FSG.

∆Cee,i j and ∆Cne,i j come from the electron-electron and electron-nucleus Coulomb
terms in the total Hamiltonian of an electron pair
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Similar to the derivation of ∆T12 in Equation 5.7,
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and the exchange energy
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For the nucleus-electron Coulomb interaction contribution,
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The full forms of the scaling factors in Equation 5.15 are

F (↑↑)i j = F (↑↑)i j,sym(∆T,∆Cee,∆Cne)F (↑↑)i j,asym(∆T,∆Cee,∆Cne) (5.27)

and
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For same spin electrons that each has exactly the same environment, the scaling
factors for ∆T and ∆Cne can be derived based on D3h quartet H3 or Td quintet H4 to
give
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S
. (5.31)

Therefore, we separate the scaling factor into two terms multiplying each other,
Fsym and Fasym, which account for the "symmetric" environment and "asymmetric"
environment, respectively.

The forms of the other components of the same spin electron scaling factors are
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where the parameters psek, k = 0, ..., 4 are fitted with the exact quantum mechanics
[unrestricted Hartree Fock (UHF)/FSG] results of D3h quartet H3 and Td quintet H4

symmetric stretching, and
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where pak, k = 0, 1, 2 are parameters whose values depend on whether it is for ∆T ,
∆Cee or ∆Cne, and fitted with D3h to C2v transition of quartet H3 and Td to C3v

transition of quintet H4.

For opposite spin scaling factors, the forms are
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where the parameters posk, k = 0, ..., 4 are fitted with D∞h doublet H3 and D4h

singlet H4 symmetric stretching, and
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where the parameters poak, k = 0, 1, 2 are fitted with D∞h doublet H3 and D4h singlet
H4 asymmetric stretching.

In summary, the total Pauli potential for same spin electron pairs is

EPauli(↑↑)i j = F (↑↑)i j,sym(∆T )F (↑↑)i j,asym(∆T )∆Ti j

+F (↑↑)i j,sym(∆Cee)F (↑↑)i j,asym(∆Cee)∆Cee,i j

+
∑

n

F (↑↑)i j,sym(∆Cne)F (↑↑)i j,asym(∆Cne)∆Cne,i j (5.36)

and the total Pauli potential for opposite spin pairs is

EPauli(↑↓)i j = F (↑↓)i j,symF (↑↓)i j,asymEbase
Pauli(↑↓)i j . (5.37)

The above has been discussed in more detail in (18).

5.4 Improvements on GHA-QM
The GHA-QM framework in the previous section produces QM quality bonding
curve for singlet and triplet H2, and gives good results for symmetric and asymmetric
stretching of H3 and H4 molecules in mild conditions. However, when we tested
the system more substantially and tried to simulate hydrogen systems with more
electrons in high density, we found certain problems. This section discusses several
strategies that were taken to fix these problems.
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New Opposite Spin Pauli Potential
We found that the size of the electron in the center of linear H3 sometimes goes to
zero. This is because in Equation 5.17 where p4 is negative and all other parameters
are positive, one electron having zero size (s̄ going to zero)means Ebase

Pauli(↑↓) becomes
negative infinite and energetically favored. To avoid this problem, we introduced a
positive shift p10 of electron size in Equation 5.17. The new form is

Ebase
Pauli(↑↓)i j = −

p0Sp1
i j + p2Sp3

i j (s̄i j + p10)p4

1 + p5Sp6
i j + p7Sp8

i j s̄p9
i j

. (5.38)

We refitted the parameters against the exact QM results of singlet H2 bonding
curve.(24) The newparameters are p0 = 0.439387, p1 = 2.914263, p2 = 8.180823, p3 =

6.100496, p4 = −18.088005, p5 = 0.698750, p6 = 3.305666, p7 = 2.031224, p8 =

7.359878, p9 = 5.552337, p10 = 8.345865. The resulting GHA-QM H2 bonding
curve is nearly exact in the bonding regions, and performs better than B3LYP/6-
311++G** at intermediate bond lengths (Figure 5.1). Because the base energy of the
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Figure 5.1: Performance of GHA-QM on single H2.

opposite spin Pauli potential has changed, we refitted the parameters in the opposite
spin scaling factors too. We used genetic algorithm to train the parameters for both
symmetric and asymmetric scaling factors at the same time. The best parameters
are pos0 = 0.968658, pos1 = 1.021811, pos2 = 2.720616, pos3 = 15.859202, pos4 =

20.201212 and poa0 = 2.376509, poa1 = 18.590298, poa2 = 13.245066. These pa-
rameters give much improved energy for H3 reaction path (Figure 5.2), and overall
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a more accurate H3 potential energy surface (Figure 5.4) than eFF (Figure 5.5)
comparing to ab initio H3 potential energy surface (Figure 5.5).(25)

Transition state geometry: 
QM: r1 = r2 = 0.930 Å 
B3LYP: r1 = r2 = 0.931 Å 
GHA: r1 = r2 = 0.975 Å 
eFF: r1 = r2 = 1.035 Å 
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Figure 5.2: Performance of GHA-QM on H3 reaction path. The QM configuration
interaction (CI) data is from (26).

Preventing Same Spin Electron Coalescence
When we tried to simulate the equation of state (EOS) of a dense H2 liquid (Wigner
radius rs = 2.2 bohr), we find the same spin electrons are energetically favorable to
diffuse and cluster at some configurations. The following paragraphs are devoted to
attempts at solving this problem.

A New Form of ∆T We’d like to shift the numerator in Equation 5.7 by a small
amount dd so that ∆T goes to infinity when S → 1. For convenience, the subscripts
of ∆T, S,O are omitted.

The new form is
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Figure 5.3: Analytical H3 potential energy surface. The data is from (25).
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Figure 5.4: GHA-QM H3 potential energy surface. r1 and r2 are defined in Fig-
ure 5.3.



83

eFF E (kcal/mol) 

r 2
 (Å

) 

r1 (Å) 

Figure 5.5: eFF H3 potential energy surface. r1 and r2 are defined in Figure 5.3.
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We chose dd = 1.0 × 10−4.

To avoid numerical instability when S → 1, s1 → s2 and R12 → 0, we did series
expansion of ∆T at this condition (Appendix D). In its practical implementation,
when 1 − S2 ≤ 0.001, instead of the form in Equation 5.39, we take
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. (5.40)

Although this scheme can prevent the same spin electrons to have the same coordi-
nates, it does not prevent same spin electrons of similar sizes to become unphysically
close (overlap S → 1). As can be seen in Figure 5.6, the energy penalty from the
new form of ∆T is not big enough for most configurations the dynamics simulation
can reach. Nevertheless, we kept this form because it does prevent the same spin
electrons to have the same coordinates and enforce the Pauli exclusion principle.

New Same Spin Scaling Factors The form of Equation 5.33 may cause serious
issues during simulation because it is unbounded. In addition, the sign of the
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function may change due to the odd powers and the possibility for (Si j
∑

Si j −
∑

S2
i j )

to become negative in some cases. To make the function bounded, we adopt the
following form instead:

F (↑↑)i j,asym(∆T,∆Cee,∆Cne) = 1 + pa0Di j + pa1D2
i j + pa2D3

i j, (5.41)

where Di j =

(
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∑
Si j−

∑
S2
i j

Si j
∑

Si j+
∑

S2
i j+d

)
. The small constant d = 1.0 × 10−6 is to prevent

the denominator from going to zero when all the overlap S → 0. In fact, this
shift has been added to the opposite spin asymmetric scaling factor too so that now
same spin and opposite spin asymmetric scaling factors adopt the same form, with
different parameters. The parameters for same spin asymmetric scaling factors are
summarized in Table 5.1.

For the fitting to cover the whole range of S values from 0 to 1, we fitted against
C2v quartet H3, with one H-H distance fixed at 0.1 bohr and 1.7 bohr. The size of
the electrons were kept to 1.5 bohr. Figures 5.7 shows that the whole range of S

has been covered, especially for large S values that were not considered in previous
fitting.
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∆T ∆Cee ∆Cne
pa0 1.31546298328185 0.727335080043498 0.468486643682531
pa1 3.39853157886649 1.311794439120800 13.20277753109270
pa2 2.33306859558464 0.584459359077299 12.98429088741020

Table 5.1: New parameters for same spin asymmetric scaling factors F (↑↑
)i j,asym(∆T,∆Cee,∆Cne).
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Figure 5.7: Performance of GHA-QM for C2v quartet H3 with one H-H distance
fixed at 0.1 bohr.

Figure 5.8 shows the GHA-QM same spin symmetric scaling factor does not work
for C2v quartet H3 when one H-H distance is fixed at 1.7 bohr and the other H-H
distances are much smaller than 1.7 bohr. This suggests that the symmetric scaling
factor is not likely able to deal with linear H3. Since the same spin symmetric
scaling factor for ∆T is exact for D3h H3, we hypothesized that the scaling factors
are highly symmetry-dependent and the F (↑↑)sym derived from D3h H3 cannot be
universally applied to all molecules with other symmetry. Interestingly, eFF seems
to go to the correct limit as the system approaches being linear. To further explore
this issue, we developed a scaling factor F (↑↑)linear to replace F (↑↑)sym in linear
molecules:

F (↑↑)i j,linear = 1 + pl0v + pl1v
2 + pl2v

3, (5.42)
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where

v = *
,

(Si j
∑

Si j −
∑

S2
i j )

2

(pl3Si j
∑

Si j −
∑

S2
i j )

2 + dl

+
-
, (5.43)

we chose dl = 1.0×10−7 andfitted the parameters pl0 = 0.0098195829828946, pl1 =

0.0758036465880992, pl2 = 0.440549994711866, pl3 = 0.999965221776706.

Intuitively, when the H-H distances become very small, linear H3 and D3h H3 energy
should go to the same limit. However, this is not the case as seen from Figure 5.9.
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This confirms that the scaling factors should be symmetry-dependent or geometry-
dependent. However, in practice it is likely impossible to implement. Since our goal
is to simulate condensed matters, there will be too many electrons in the system for
the program to classify the configuration to determine suitable scaling factors.

Removing the SameSpin ScalingFactors The analysis in the previous subsection
suggests it might be a good idea to remove the same spin scaling factors completely
(i.e. make them take the value of 1). In addition, minimization of the dense H2 liquid
(rs = 1.76 bohr or denser) shows that same spin scaling factors for ∆T and ∆Cne can
scale these positive energy contributions down to ∼ 1

10 times the base values while
maintaining the negative energy contribution from ∆Cee similar to the base value.
This energetically favors the same spin electrons to cluster, even when we keep the
electron sizes fixed at 1.55 bohr (the electron size in H2 optimized by GHA-QM).
The different behaviors of the scaling factors for different energy components may
be due to the empirical nature of some of the functional forms of the scaling factors,
and may also be due to the symmetry issue discussed in the previous subsection.

To see howmuch removing same spin scaling factors could affect molecular interac-
tions, we calculated the H2-H2 association curve with GHA-QM without same spin
scaling factors. The results look reasonable as they are close to QM results (27) in
Figure 5.10. They are also an improvement on eFF.
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Figure 5.10: D2h H2-H2 association without same spin scaling factors. The energy
values are E(H4) − 4E(H). The QM data is from (27).
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Therefore, with the same spin scaling factors turned off, we went on to calculate the
liquid H2 EOS and compared it to QM results. A cubic box of 108 H2 molecules has
been used with minimum image on each side of the box as the periodic boundary
condition. We took me = mH so that we can use a relatively large time step
0.02 femtosecond. A total of 2 ps dynamics was carried out for each temperature,
and the first 0.5 ps was discarded when calculating the average pressure. During
the dynamics, for each time step we optimized the electron sizes based on the
x, y, z coordinates of the electrons and nuclei. For simplicity, we approximated the
optimization procedure by carrying out only the first step of the Newton-Raphson
method and considering the second derivative of only the electronic kinetic energy.
Figure 5.11 shows both GHA-QM and eFF are quite close to QM results, with both
eFF and GHA-QM having a tendency to underestimate the pressure at low density.
At high density, GHA-QM has a tendency to underestimate the pressure, while eFF
tends to overestimate the pressure. In terms of the energy-volume relationship,
GHA-QM is clearly an improvement upon eFF (Figure 5.12).
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Figure 5.11: Pressure-volume diagram of H2 liquid. The experimental values and
QM extrapolation are from (28).

5.5 Conclusions and Future Work
We have overcome a few technical obstacles including but not limited to those
discussed in the above section to enable large-scale simulations of warm dense
hydrogen EOS using GHA-QM. Our next step is to simulate the shock hugoniot.
We would like to see whether the new GHA-QM can correctly predict the pressure
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Figure 5.12: Energy-volume diagram of H2 liquid. The QM data is generated by
PBE-D3 calculation and provided by Saber Naserifar (unpublished).

and temperature where the hydrogen insulator-to-metal transition occurs. We may
need to include the angularmomentumprojected effective core potential (AMPERE)
extension,(18) which is not discussed here, to account for the cusp condition at the
nuclei for more accurate predictions. When we move up in the periodic table,
AMPERE will be necessary to obtain correct bond energy and nodal structures.
In the future, we hope GHA-QM along with AMPERE will be able to simulate
processes such as silicon etching that no existing method could simulate well.
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