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ABSTRACT

While the price of solar energy has dropped dramatically in the last few years, costs
must be further reduced to reach wide-scale adoption. One strategy to decrease cost
is toincrease efficiency. Photovoltaic energy conversion is most efficient for a narrow
frequency range. Lack of absorption of low energy photons and thermalization of
high-energy photons leads lead to a loss of over 40% of incident solar power on a
silicon cell. Current-matching and lattice-matching restrictions limit the efficiency
of traditional monolithic multijunction solar cells. In order to avoid these limitations
and realize ultrahigh efficiency (close to 50%), this thesis explores use of optical
elements to split broadband sunlight into multiple spectral bands that can each be

sent to physically separated solar cells tuned to best convert that band.

Design of a holographic diffraction grating based spectrum-splitting system resulted
in a simulated module efficiency of 37%, meeting the efficiency of state-of-the-art
modules. One of four holographic grating stacks is experimentally characterized.
Next, a design incorporating dichroic filters, seven subcells with bandgaps spanning
the solar spectrum, and concentrators with efficiency potential exceeding 45% mod-
ule efficiency is presented. While prototyping this design, we also used on-going
cost-modeling to ensure that our design was on-track to be a high-volume technology

with low lifetime energy cost.

Finally, high-contrast gratings are used as resonant, dielectric spectrally selective
mirrors in a tandem luminescent solar concentrator and as alternatives to Bragg re-
flectors. Gratings can have omnidirectional, high reflectivity by appropriately offset-
ting grating resonances in nano-patterned subwavelength thickness high-refractive
index material. Subwavelength feature sizes suppress diffraction, and the high-
refractive index of the grating layer leads to relatively angle-insensitive reflectance.
Gratings can be fabricated by nanoimprint lithography, making them a scalable and
economical option for photovoltaic applications. Simulations show hemispherically
average reflectivity near 90% possible from a single subwavelength thickness layer.
These properties are well suited for a variety of applications including multiple

spectrum-splitting device architectures.
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NOMENCLATURE

Cost per peak power rating of a photovoltaic system. E.g. If a silicon module
costs $200 and has a maximum power of 200 W, its $/W),, cost is $1/W,,.

Electrochemical potential.

azimuthal angle. Longitude angle.

B270.

A common variety of glass.

bankability. Ability to obtain financing..

BFO.
BOS.

Bismuth ferrite.

Balance of System - all non-module costs of an installed photovoltaic system.

bypass diode. In strings of solar cells if any one unit fails, the whole unit’s energy

chirp.

CNC.

CPC.
CPV.
DBR.
DCG.
DNI.

production can be lost as the failed unit starts acting as a resistor. A bypass
diode is triggered by such a situation to put such cells either shadowed during
part of the day or damaged into open circuit to prevent this.

To modify the period of a grating as a function of position in one or more
spatial dimension such that the final structure is quasi-periodic structure.

Computer numerical control, as in CNC machine tools, which are automated
rather than manually controlled.

Compound parabolic concentrator.
Concentrating photovoltaics.
Distributed Bragg reflector.
Dichromated gelatin.

Direct normal incidence, includes both light directly from the sun and cir-
cumsolar irradiance, which is the halo around the sun caused by atmospheric
scattering.

ebeam. Electron beam.

EQE.

ERE.

External quantum efficiency.

External radiative efficiency.

escape cone. The cone of angles not trapped by total internal reflection in a higher

refractive index material at its interface with a lower refractive index material
defined by the critical angle given by Snell’s law.
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HCG. High-contrast grating.
HCPV. High concentration photovoltaics.
HIT cell. Silicon Heterojunction with Intrinsic Thin layer solar cell device design.
HOE. Holographic optical element.
HSS. Holographic spectrum splitter.
IQE. Internal quantum efficiency.
IRE. Internal radiative efficiency.
k. Boltzmann constant.
LCOE. Levelized cost of electricity.
LSC. Luminescent solar concentrator.

module. Discrete power producing unit of a photovoltaic system. In CPV, modules
are sometimes grouped to be installed on a single tracker.

negative resist. Polymerizes where exposed.
NPV. Net present value.
NREL. National Renewable Energy Laboratory.

packing fraction. In photovoltaics, this is the land area covered by solar collectors
when the sun is straight ahead.

PDMS. Polydimethyl siloxane.

polar angle. Angle measured from the grating normal, latitude angle.
positive resist. Dissolves where exposed.

PSR. Polyhedral Specular Reflector.

PV. Photovoltaic.

RCWA. Rigorous coupled wave analysis.

rms. Root mean squared.

runner. The pathway for plastic in an injection mold between the auger where it is
melted and the mold cavity. The runners have pinch points at the interface
with the part from which they can be easily separated. This process leaves a
small nub..

TIR. Total internal reflection.
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TMCS. Trimethylchlorosilane.
UV. Ultraviolet.

VPH. Volume phase hologram.



Chapter 1

INTRODUCTION

1.1 Motivation for photovoltaics

Solar energy is a clean, abundantly available power source. As threats of climate
change grow more urgent, a carbon neutral power supply is critical. Solar energy
is additionally a distributed resource, which makes it a useful power source in areas
without reliable grid connection, such as in developing countries or war zones. A
variety of factors prevent wide-scale adoption of PV. The cost is nearing and in some
cases has hit levels that have been cited as targets for ‘grid parity’. However, solar
energy is not a dispatchable energy source. This creates some natural limits for how
much of the power generation mix can come from solar. Older, inadequate grid
technology also prevents effective transportation of power across the United States
to balance supply and demand. The more favorable cost metrics can be, the more
pressure there will be to innovate and tackle these other challenges head-on. In the
past few years, the cost of silicon modules has plummeted. In fact, goals set by
the Department of Energy Sunshot program of <$/W module cost and <$0.06/kWh
for 2020 have been met early. However, remaining system costs, referred to as
Balance of System costs, including mounting and electrical hardware, permitting,
and installation have not gone down as fast. Increasing the efficiency of a solar

module better leverages these fixed costs, decreasing overall solar energy cost.

1.2 Spectrum-splitting photovoltaics

Single-junction photovoltaics have a theoretical detailed-balance efficiency limit of
about 33%. [1] A great deal of research and development have led to crystalline
silicon and GaAs cells which approach this thermodynamic limit with record effi-
ciencies of 25.6% and 28.8%, respectively. [2] To increase photovoltaic conversion
efficiency beyond this, we turn to multijunction solar cells, which address losses due
to lack of absorption of photons with energy below the solar cell material bandgap
energy and also address losses due to thermalization of carriers generated by photons
with energy greater than the bandgap energy. Together these two losses add up to
over 40% of total incident solar power. [3] The higher bandgap cells must generate
a higher collection voltage for the spectrum splitting to be worthwhile. For high-

quality semiconductor materials the Vi of the solar cell is almost linearly related to
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the bandgap of the semiconductor material. [4] Thus using higher bandgap materials
to collect higher energy photons returns more electrical energy upon absorption and
collection. This motivates incorporation of many, high quality absorber materials
into a photovoltaic conversion system. The III-V compound semiconductor system
provides direct bandgap materials of high material quality with bandgap tunability
over much of the target range of interest for solar applications, so we focus on this

material system.

Many methods have been explored for incorporating multiple absorbers into pho-
tovoltaic devices. In the past decade, epitaxially grown, monolithic tandem cells
(typically 2-4 absorbers) have been the focus of research and development. This
kind of cell has the advantage of intrinsic splitting of the solar spectrum into different
frequency bands. Each cell acts as a long-pass filter allowing lower energy, unab-
sorbed photons to pass through to the next cell. However, this device architecture
has a series of limitations. First of all, high-quality material requires low defect
density in the single crystal material. One way to accomplish this is for all layers to
be lattice-matched, which restricts choice in the bandgap of each subcell. Alterna-
tively, incorporating subcells which are not lattice matched imposes a requirement
for metamorphic buffer layers [5] which adds complexity. Secondly, since mono-
lithic tandem cells are electrically in series, each junction is limited by the current
generated by the cell in the stack which generates the least current. These cells are
designed so that this current-matching condition maximizes current for a particular
solar spectrum. As the solar input varies over the course of a day or year or with
changing location, the current match may no longer hold, decreasing efficiency.
Finally, for each additional subcell a tunnel junction must also be designed which
allows the series electrical connection between each pair of subcells. These three
factors limit the number of subcells one can incorporate into monolithic tandem
cells. These factors lead to low marginal return on incorporating additional sub-
cells. [6] In a spectrum-splitting architecture, optics external to the cells separate
solar light into bands which are directed to an appropriate receiver made up of a
cell of tuned bandgap and possibly a concentrating optic. By incorporating many
high quality, independently connected subcells of different bandgaps along with
high concentration, this approach could lead to higher efficiencies than have been
demonstrated by today’s monolithic multijunction devices. This spectral-splitting
optic also allows each cell to act electrically independently, enhancing annual energy

production. [6]
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DARPA’s Very High Efficiency Solar Cells program set a goal of 50% cell effi-

ciency and funded the current spectrum splitting efficiency record holder which
incorporated two multijunction solar cells for a total of five subcells giving 38.5%
submodule efficiency. [7] Their spectrum splitting optical element was a Bragg
reflector. A full module made with this design was demonstrated to have 36.7%
efficiency. [8] The current module efficiency record of 38.9% is held by a four-
junction tandem concentrating photovoltaic module. [9] Other recent efforts have
used diffraction [10], refraction [11], specular reflection [12], and diffuse reflection
[13] to split the solar spectrum. Imenes and Mills [14] reviewed spectrum splitting
technologies in 2004 and in 2013 Mojiri et al. provided an update. [15] and also
provided a more recent update to their original review. Groups have also worked on
holographic approaches. [16],[17] The efficiencies of lateral multijunction devices,

however, still lag behind those of traditional multijunction cells and devices.

1.3 Full Spectrum Photovoltaics Project

The Caltech Full Spectrum Photovoltaics Project sought to take advantage of the
efficiency benefits of spectrum-splitting to make a 50% module efficiency photo-
voltaic system. We begin with an internal design competition among three designs.
The Polyhedral Specular Reflector (PSR), Holographic Spectrum Splitter (HSS) and
the Light Trapping Filtered Concentrator (LTFC). I discuss the HSS in Chapter 2.
Work on the LTFC was undertaken by Emily Kosten and John Lloyd. Both the HSS
and LTFC had lower optimized simulated efficiency than the Polyhedral Specular
Reflector so the latter was chosen as the winner of our internal design competi-
tion. We made four functioning optoelectronic submodule prototypes of the PSR as
well as intermediate partial prototypes. Ongoing prototyping efforts are underway
at the time of this writing. Chapter 3 gives a brief review of design generations
and prototype fabrication and performance of the PSR. In more detail, Chapter 4
discusses production of concentrators for prototyping. Chapter 5 explores commer-
cial prospects of the technology. Finally, Chapter 6 covers work on high-contrast
grating filters. These near-subwavelength scale optical elements display relatively
angle-independent reflectivity with a single subwavelength thickness layer of high
refractive index material. This makes them promising in a number of applications,
including a variety of spectrum-splitting architectures. In this thesis, they are ex-
plored by simulation as an alternative to Bragg mirrors in the PSR as well as for a

tandem luminescent solar concentrator.
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Figure 1.1: Example of a J-V Curve.

1.4 Photovoltaic energy conversation

Photovoltaics are devices that collect the energy imparted to a material by inci-
dent light promoting an electron from lower energy state to a higher energy state.
Generally speaking this is done in a semiconductor material with the electron pro-
moted from the valence band (the highest energy occupied band) to the conduction
band (the lowest energy unoccupied band), leaving an electron vacancy or ‘hole’.
Rather than decaying back to the ground state by emitting a photon (radiative re-
combination) or losing energy as heat to the atoms in the material (non-radiative
recombination), the excited electron can be collected and run through an external

circuit to do useful work. The power P collected by a solar cell is equal to
P:VOPXJOP:VOCXJSCXFF, (11)

where V,, is the voltage and J,, the current density produced by the cell when
operating at its maximum power point, Vp¢ the voltage of the device at open circuit,
Jsc is the current that flows in the device at zero bias, and the fill fraction FF the
ratio of V,,, X J,, and Vpoc X Jsc. Fill fraction is a metric for the squareness of the
J-V curve, or in other words, of how close the operating performance reaches the

potential of that device, as illustrated in Figure 1.1.

The current in the solar cell is determined by how many above-bandgap energy,
incident photon are absorbed in the material and collected. The voltage is determined
by the quasi-Fermi level separation of electrons and holes in the material. The Fermi
energy is the energy level at which the probability of electron occupation is 1/2. At

absolute zero, the probably of electron occupation of ground states is 1 while the
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probability of occupation of excited states is zero, and the Fermi level lies half-way
between the highest energy occupied state and the lowest energy unoccupied state
in an undoped semiconductor. At finite temperatures, the probability of occupation
changes more gradually from high to low, but as long as the material is at equilibrium
the Fermi energy stays the same. When an external energy source is introduced,
such as solar illumination, the electrochemical potential of electrons in the material
is no longer zero. The quasi-Fermi level splitting indicates the potential difference
between excited electrons in the conduction band and excited holes in the valence
band. As the charge carrier density goes up, the voltage of the cell goes up, increasing
the efficiency of collection. Thus, solar cells illuminated by concentrated sunlight

have higher efficiency.

In fact, any effects which increase the ratio of photogenerated current to dark current
in the solar cell confer this voltage advantage. Thus if an equal number of photons
can be captured by a thinner layer of semiconductor material, there is also a voltage
advantage. This can be accomplished by thinning the cell and adding a metallic
reflector to the back side. This always a cell to be half as thick as it otherwise would
be. Such a back-reflector is added to the single-junction solar cells in our design, but
including a sacrificial layer between the active cell layers and semiconductor growth
substrate. This layer can be selectively etched away leaving a couple of micron thick
free standing solar cell which can have a metallic back reflector deposited on it.
Silicon solar cells must be much thicker than III-V solar cells as it absorbs weakly
since it has an indirect bandgap. For silicon, rather than a back reflector, the front
face of the cell is roughened, significantly increasing the path length of light in the
cell (far beyond the factor of two imparted by a back-reflector). [18]

1.5 Relevant optical concepts

Some optical concepts are relevant to work presented in multiple chapters, so I will
quickly summarize them here. Light at an interface refracts according to Snell’s
law,

ni sin 91 =ny sin 92 (12)

where n; is the refractive index of medium i and 6; is the direction of propagation
measured from the interface normal. Any time light passes through an interface
between two materials with dissimilar refractive index there is some reflection given

by the Fresnel equations,

2
npcosf; —nycos by

Ry (1.3)

" |ny cos @ + nycos O



for s or transverse electric (TE) polarization, and

2
ny cos 6y — ny cos 01

= 1.4
P " ny cos @y + ny cos 0 (1.4

for p or transverse magnetic (TM) polarization. The polarizations are defined relative
to the plane defined by the direction of propagation of light and interface normal.
The TE polarization has its electric field vector normal to this plane while for the
TM polarization the electric field vector lies in this plane. The behavior of totally
unpolarized light can be obtained by averaging the behavior of the two orthogonal

polarizations. At Brewster’s angle given by

g = arctan (2) , (1.5)
n

R, goes to zero and the reflected light is only s-polarized. For non-scattering
media, the conservation of energy requires R + T + A = 1 where R is reflection,
T is transmission and A absorption. These reflections coupled with interference
effects are exploited in the design of antireflection coatings. The reflectivity of an
interface can be decreased using a single thin-film with refractive index n = \njny
and thickness i—g where Ay is the free-space wavelength, n is the refractive index of
the antireflection layer and n; and n; are the refractive indices of the materials on
either side of the interface. This occurs because the reflection off the first thin-film
interface is of similar amplitude but completely out of phase with the reflection
off the back interface causing destructive interference. In contrast, to design a
Bragg reflector, one creates a series of interfaces from which the reflected waves
constructively interfere. The weak resonances that occur within a thin film due to

these interfacial reflections are called Fabry-Perot resonances.

Compound parabolic concentrator

A compound parabolic concentrator (CPC) or Winston cone (named for Roland
Winston, who wrote the book [19] and the seminal paper [20] on CPC) is a type
of concentrating optical element that is thermodynamically ideal. That is, nearly
all light within a certain acceptance angle range 6;, is transmitted to the output
face, and light outside that acceptance range of angles is not propagated as shows
in the blue trace in Figure 1.3. It provides the maximum amount of concentration
possible given the angular spread of incident light to be concentrated. It is only
possible to concentrate light that has less than maximal directional entropy. In

effect, concentrating light is trading off spatial entropy for angular entropy. You



Foci of Parabolas

Figure 1.2: Construction of compound parabolic concentrator profile.

can concentrate perfectly collimated light to a diffraction limited spot but cannot
concentrate the light of a Lambertian source at all. This principle, often called the
brightness theorem or conservation of etendue, is the ultimate limit of the degree of

concentration of an optical element,

G = "0 0o, (16)
N, Sin 6;,,

where C,,,, is the maximum degree of concentration, n,,,, the refractive index of the
output medium, n;, the refractive index of the incident medium, 6,,, the maximum
angular spread of the concentrated light, and 6;,, the maximum angular spread of the
incident light. The degree of concentration C is the increase in optical power per unit
area of the source relative to the output and is either or in the context of photovoltaics
expressed as a number of ‘Suns’, e.g. silicon cells on SunPower’s C7 concentrator
receive 7 Suns. By pointing a concentrator directly at the sun and restricting 6;,, to
just the solid angle subtended by the sun itself, the maximum possible concentration
is around 54,000X. More typically, in concentrating photovoltaics the maximum
concentration used is around 1000X with an input angle of 1° to allow for errors in
point accuracy of a solar tracker, displacements due to environmental factors such
as wind, and to collect circumsolar irradiance (light that is mildly scattered by the

atmosphere).



The profile of a CPC is given by

(r COS Opax + 2 SIN Opar)® + 2a"(1 + sin O ey )*r—

2d’ 08 Opmax(2 + Sin Opax)>z — a’>(1 + Sin gy )3 + 8in Opay) = 0, (1.7)

where 2a’ is the width of the output aperture, 6,,,, is the acceptance angle of the
CPC, and z is the concentrator height and is zero at the center of the output face, and
at z = 0, with » = 0 as the centerline of the concentrator, r = a’. For a circular CPC,
this profile is revolved (r> = x% + y?). For a trough CPC, the profile is extruded
in the directional orthogonal to the r — z plane. A square or rectangular CPC is
defined by the intersection of two orthogonal trough CPC. Revolved and extruded
CPC profiles have fewer aberrations from ideal concentrator behavior than other
shapes (see Figure 1.3). Circular cross-section CPC are also much easier to produce
due to their rotational symmetry than square cross-section parts, but tiling circular
primary CPC would only fill 90.6% of the module input leading to a large aperture
area efficiency loss. One arrives at this equation for the profile in the following way:
take two identical parabolas with their foci horizontally offset from one another by
2a’, and tilt each away from the other by angle 6,,,, from the vertical axis. The left
side of the parabola on the right and the right side of the parabola on the left, the
inside legs, define the CPC curvature as illustrated in Figure 1.2. The straight line
between the two foci is the output face. Selecting an acceptance angle and an output
area determines the input area and thus the height of the structure as well assuming
maximal output angular spread of 8,,, = 90°. However, for practical photovoltaic
systems, the concentrator-cell interface will experience too much Fresnel reflection
to have a full hemispherical range of output angles. By adding a conic section at the
bottom of the ideal CPC, output angular spread can be decreased at the expense of

slightly increased height.

As suggested by Equation 1.7, the medium of the CPC can be air or some other
material. If the medium is air, the profile is made by reflective sides, for example,
curved silver mirrors. Alternatively, with a solid dielectric material, the reflection
comes from total internal reflection (TIR) due to grazing incident angles. As long
as the surface quality is high, the reflectivity of total internal reflection is higher
than the reflectivity of an air-metal interface with experiences some absorption.
There is also a boost in the degree of concentration by a factor of ncpc for a trough
concentrator or of n% pc for a square or circular CPC. The downsides of the solid

optic include greater weight and volume of material for a comparable size CPC
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Figure 1.3: Transmission efficiency as a function of incident angle for circular (blue),
hexagonal (red) and square (green) cross-section compound parabolic concentrators.

and greater need for high surface quality and cleanliness to ensure that light is not

scattered out but successfully reflected by TIR and retained in the concentrator.

While the full height of the gives the highest efficiency of transmission from input to
output face for the whole acceptance angle range, truncating a CPC from the top even
down to a significant fraction of its intended height decreases efficiency in a nonlinear
way. Even down to half the intended profile, much of the intended concentration
is retained. Ray tracing simulations of CPC for the Holographic Spectrum Splitter
design in Section 2.3 explore the efficiency drop-oftf. CPC fabrication is described
in Chapter 4.



