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ABSTRACT 

Formal dipolar cycloadditions of cyclopropanes and aziridines are useful methods for 

the formation of carbo- and heterocycles.  Given our group’s previous interest in this 

area, we sought to expand the scope of strained ring cycloadditions by employing 

heterocumulenes as dipolarophiles.  This thesis describes our development of Lewis acid 

catalyzed formal (3 + 2) cycloadditions between donor–acceptor cyclopropanes and 

isocyanates, isothiocyanates, and carbodiimides to furnish various five-membered 

heterocycles.  Enantioenriched cycloadducts can be accessed through a stereospecific 

reaction if enantiopure substrates are employed.  We also present a method to access 

more highly nitrogenated heterocycles by replacing donor–acceptor cyclopropanes with 

activated aziridines.  These aziridines react smoothly with isothiocyanates and 

carbodiimides in the presence of zinc Lewis acids to afford iminothiazolidine and 

iminoimidazolidine products in good yields.  Our efforts to apply a cyclopropane 

cycloaddition toward the total synthesis of the indole alkaloid calophyline A are also 

described 

In addition, a method for the activation of sterically hindered allylic C–H bonds is 

presented.  Despite numerous recent advances in the functionalization of allylic C–H 

bonds and the general utility of these transformations, reactions of sterically hindered 

substrates remain challenging.  In this thesis we describe the development of a novel 

system for the palladium(II)-catalyzed allylic C–H acetoxylation of α-allyl lactams.  We 

believe the lactam moiety may act as a directing group to aid in the palladation of these 

generally unreactive substrates.  During optimization, we also discovered enal products 

were formed if water was added.  These conditions represent the first example of a 

transition metal catalyzed C–H oxidation system with tunable selectivity over the extent 

of oxidation. 
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CHAPTER 1† 

Synthetic Applications and Methodological Developments of Donor–Acceptor 

Cyclopropanes and Related Compounds in the Stoltz Laboratory 

 

 

1.1  INTRODUCTION 

Donor–acceptor cyclopropanes (1, Scheme 1.1), or those possessing one or more 

electron-donating groups and electron-withdrawing groups on adjacent carbons, are 

useful building blocks in organic synthesis.1  Due to the presence of these vicinal charge-

stabilizing groups and the strain inherent to the cyclopropane core, ring opening can 

occur under mild conditions.  Typically, treatment with a Lewis acid at room temperature 

is sufficient to induce carbon–carbon bond cleavage, leading to an all-carbon 1,3-dipole 

(2).  These dipoles are quite versatile, having been shown to undergo nucleophilic 

trapping, electrophilic trapping, or dipolar cycloadditions to form a wide array of 

products (3–6, Scheme 1.1). 

                                                
† Portions of this chapter have been adapted with permission from O’Connor, N. R.; Wood, J. L.; 

Stoltz, B. M. Isr. J. Chem. 2016, 56, 431–444.  Copyright 2016 WILEY-VCH. 
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Scheme 1.1  Basic reactivity modes of donor–acceptor cyclopropanes 

  
 

The acceptor groups are often carbonyl derivatives (with esters, ketones, and 

nitriles most common), although other electron-withdrawing groups, including 

sulfonyl, sulfinyl, and phosphoryl, are occasionally used.  Traditional donor groups 

are alkoxy, silyloxy, and amino substituents.  Over the past decade, however, the 

use of aryl donor groups has become widespread, pioneered by the work of Kerr2 

and Johnson.3  Aryl-substituted cyclopropanes are readily available in one or two 

steps from styrenes or benzaldehydes using straightforward methods.1a  These 

compounds are typically more stable than cyclopropanes with heteroatom-based 

donors, and in some circumstances are capable of undergoing stereospecific 

reactions.4 

The Stoltz laboratory’s interest in donor–acceptor cyclopropanes was sparked 

during Brian M. Stoltz’s use of cyclopropane fragmentations (classified as 

electrophilic trapping in Scheme 1.1) as a method of ring expansion in the synthesis 

of K252a and the welwitindolinone C isothiocyanate core during his graduate 

studies in the John L. Wood research laboratory at Yale University.  This chapter 

describes Stoltz and Wood’s work in more detail below, and proceeds to examine 
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the independent Stoltz laboratory’s continued use of donor–acceptor cyclopropane 

fragmentations and cycloadditions toward the total synthesis of natural products.  

Our endeavours in natural products synthesis have also resulted in the development 

of several novel synthetic methodologies involving strained ring intermediates.  

Two examples of such methods are summarized in this chapter, and two others are 

described in detail in the following chapters of this thesis. 

 

1.2   USE OF DONOR–ACCEPTOR CYCLOPROPANES AS 

INTERMEDIATES IN NATURAL PRODUCTS SYNTHESIS 

The following sections describe the use of donor–acceptor cyclopropanes as 

intermediates in natural products synthesis from the Wood research laboratory in the 

1990s and the Stoltz research laboratory over the past 16 years.  The donor–acceptor 

cyclopropanes featured in the examples below include both isolable intermediates and 

transient, highly reactive transient species. 

 

1.2.1   TOTAL SYNTHESIS OF K252a 

Our interest in the use of donor–acceptor cyclopropanes as intermediates in natural 

products total synthesis began with the synthesis of K252a (7, Scheme 1.2) by Brian M. 

Stoltz while a graduate student in the Wood laboratory at Yale.5  Isolated in 1985 by 

Sezaki and co-workers from a culture of the soil bacterium Actinomadura sp. SF-2370,6 

(+)-K252a was found to possess nanomolar inhibitory activity against protein kinase C.7  

Subsequent studies showed that structurally related compounds possess similar activity, 
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and suggested these indolocarbazole alkaloids may have potential in the treatment of 

cancers8 and neurodegenerative diseases.9 

Stoltz, Wood, and co-workers envisioned accessing K252a (7) by late stage 

glycosylation of an indolocarbazole precursor 8, itself constructed by coupling of 

diazolactam 1010 and 2,2’-biindole11  (11, Scheme 1.2).  Rationale for this 

disconnection was provided by several reports of indole C3-functionalization 

through reactions with carbenes or metal carbenoids.12  These functionalizations 

were proposed to occur by cyclopropanation of the indole C2–C3 bond and 

subsequent cyclopropane fragmentation. 

 

Scheme 1.2  Retrosynthetic analysis of K252a 

 

Extensive experimentation revealed that treatment of a mixture of 10 and 11 

with 1 mol % rhodium(II) acetate in pinacolone at 120 °C furnished the desired 

indolocarbazole 8 in 62% yield.13  Although no intermediates could be observed by 

TLC or NMR, the reaction is presumed to proceed via the transient donor–acceptor 

cyclopropane 12, produced by cyclopropanation of the rhodium carbenoid onto an 

indole C2–C3 bond (Scheme 1.3).  This cyclopropane is expected to rapidly 

fragment to form the more stable enol biindole 13, which can undergo a 6π 

electrocyclic ring closure, followed by dehydrative aromatization to form 8. Small 
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amounts of hemiaminal 15 were also obtained in the reaction, and subjection of this 

material to xylenes at reflux or CSA resulted in quantitative conversion to 8.  It was 

postulated that this byproduct was formed from adduct 13, supporting the proposed 

mechanism outlined in Scheme 1.3. 

 

Scheme 1.3  Total synthesis of K252a 

 

Indolocarbazole 8 was advanced to K252a by coupling with furanose 9 

(synthesized in four steps from methyl diazoacetoacetate) using conditions inspired 
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linear sequence of seven steps. 
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1.2.2   SYNTHESIS OF THE WELWITINDOLINONE CARBON SKELETON 

Stoltz, Wood, and co-workers continued to pursue their interest in donor–acceptor 

cyclopropane intermediates in their efforts toward the carbon skeleton of the 

welwitindolinone alkaloids.15  Isolated in the 1990s from various cyanobacteria, some 

welwitindolinone alkaloids act as P-glycoprotein P-170 inhibitors with multidrug-

resistance reversing activity.16  Stoltz and Wood planned to form the carbon skeleton of 

the most potent member of the family, N-methylwelwitindolinone C isothiocyanate (17, 

Scheme 1.4) by elaboration of oxindole 18, itself formed by ring opening and further 

functionalization of a donor–acceptor cyclopropane derived from compound 19. Diazo 19 

was to be synthesized from isatin (20). 

 

Scheme 1.4  Retrosynthetic analysis of N-methylwelwitindolinone C isothiocyanate 

 

In the forward direction, Wittig homologation of isatin (20) and 

cyclopropanation of the resulting olefin using a phosphorus ylide, followed by N-

methylation produced stable cyclopropane 21, containing one aryl donor group and 

two vicinal carbonyl acceptor groups (Scheme 1.5).  The ethyl ester was converted 

to α-diazo ketone 22, which upon treatment with rhodium(II) trifluoroacetate and 

Montmorillonite K-10 clay underwent an aryl C–H insertion step to afford tetracycle 

23 in good yield. 
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Scheme 1.5  Synthesis of the carbon skeleton of N-methylwelwitindolinone C isothiocyanate 

 

 Benzylic oxidation, tosylhydrazone formation, and elimination selectively formed 

the desired α-diazo ketone (19).  Exposure of the corresponding rhodium carbenoid to 

allyl alcohol furnished cycloheptenone 25 in nearly quantitative yield.  This reaction 

proceeds by initial insertion of the rhodium carbenoid into the O–H bond of allyl alcohol 

to form transient cyclopropane 24, which features a strong enol donor substituent at one 

position and a carbonyl acceptor group at a vicinal position.  This unstable intermediate 

undergoes fragmentation to produce cycloheptenone 25.  Addition of ethynylmagnesium 

bromide and Claisen rearrangement gave enyne 26, which was advanced to the 

welwitindolinone carbon skeleton (18) by Lindlar hydrogenation and ring closing 

metathesis. 
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1.2.3   APPROACH TOWARD THE SYNTHESIS OF BIELSCHOWSKYSIN 

The independent Stoltz laboratory continued to investigate the strategy of 

cyclopropane fragmentation en route to larger carbocyclic rings in their approach 

toward the total synthesis of bielschowskysin (27, Scheme 1.6A).17  Isolated in 2004 

from a Caribbean coral, 27 was found to possesses potent anticancer activity.18  The 

simplified scaffold of 28 was chosen as a model system. 

Stoltz and co-workers planned to construct the highly functionalized core 

cyclobutane ring of 28 from donor–acceptor cyclopropane 30 by a ring opening-

Michael addition cascade sequence proceeding through intermediate 29 (Scheme 

1.6B).  Cyclopropane 30 would be synthesized from diazoacetoacetate 31, which in 

turn would be accessed from simple aryl bromide (32)19 and enone (33)20 building 

blocks. 
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Scheme 1.6  A) Bielschowskysin and a simplified scaffold and B) Retrosynthetic analysis of 

bielschowskysin 

 

In the forward direction, alcohol 34 was synthesized from 32 using a three-step 

sequence consisting of borylation,21 Suzuki cross-coupling with vinyl iodide 33,22 

and diastereoselective Luche reduction (Scheme 1.7).  At this stage, optically pure 

material could be optained by the oxidative kinetic resolution protocol previously 

developed in the Stoltz laboratory.23  Advancement to diazoacetoacetate 31 was 

achieved through another three step sequence.24  The key donor–acceptor 

cyclopropane 37 was obtained in moderate yield upon heating 30 with Cu(TBS)2 

(38) in toluene or DCE. 
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Scheme 1.7  Synthesis of donor–acceptor cyclopropane 37 

 

At this point, it was envisioned that acetate cleavage and oxidation of the 

resulting hydroxyl group would afford cyclopropane 30, which would undergo the 

fragmentation-Michael addition cascade upon exposure to a Lewis acid.  

Unfortunately, acetate cleavage, oxidation, and treatment with lanthanum triflate in 
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cation (40).  Addition of one equivalent of methanol provides presumed 

intermediate 41, which proceeds through two transesterifications and hemiketal 

formation to provide the observed cyclopentanol (42).  Unfortunately, all attempts 

to avoid this undesired translactonization were unsuccessful, and synthetic efforts 

concluded at this point.  This effort highlights the tenuous nature of such reactive, 

strained, and sterically constrained donor–acceptor cyclopropane systems. 
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Scheme 1.8  Cyclopropane fragmentation 

 

 

1.2.4   SYNTHESIS OF THE CORE OF THE GAGUNIN DITERPENOIDS 

Stoltz and co-workers again chose to investigate a donor–acceptor cyclopropane 

fragmentation strategy in their construction of the carbocyclic core structure of the 
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Scheme 1.9  Retrosynthetic analysis of gagunin E 

 

In the forward direction (Scheme 1.10), compound 46 was synthesized from 

diallyl succinate in two steps as a mixture of diastereomers.27a  Subjection of this 

material to a double enantioselective decarboxylative allylic alkylation reaction28 

using conditions developed in the Stoltz laboratory gave bis-allylated cyclohexane-

1,4-dione 47 in excellent yield, good diastereoselectivity, and excellent 

enantioselectivity.  Enol triflate formation afforded 45, which was converted to 

tetraene 48 over four steps.  Ring-closing metathesis produced 49, containing the 

seven-membered ring of the gagunin core.  A four-step sequence consisting of 

enone carbonate protection and allyl functional group interconversions delivered α-

diazo ketone 50. 

 Treatment of 50 with rhodium(II) acetate in dichloromethane gave 
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Scheme 1.10  Synthesis of the gagunin core 
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56, which could arise from cyclopentane 57 by nitro reduction, lactam ring closure, 

allylation, and diastereoselective ring-closing metathesis.33  This cyclopentane could 

be formed by a palladium-catalyzed formal (3 + 2) cycloaddition between donor–

acceptor cyclopropane 58 and nitroolefin 59.34 

 

Scheme 1.11  Retrosynthetic analysis of scandine 

 

Unfortunately, despite significant effort, the synthesis of divinyl cyclopropane 

58 proved elusive.35  A revised retrosynthesis was developed, beginning with a 
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Amine protection and ring-closing metathesis furnished tetracycle 65 in good yield.  

Although 65 does not contain the vinyl group present in the natural product, Stoltz’s 

route assembled four out of the five rings in only six steps from commercial sources. 

 

Scheme 1.12  Synthesis of the ABCD ring system of scandine 
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1.3.1   SYNTHESIS OF FUSED CARBOCYCLES BY A TANDEM WOLFF–

COPE REARRANGEMENT 

Natural products containing fused 5–7 and 6–7 ring systems are of considerable 

interest to the synthetic community due to their biological potential.37  Inspired by 

complex seven-membered-ring-containing natural products like guanacastepene A 

(66, Scheme 1.13),38 Stoltz and co-workers devised a novel approach to the fused 

cycloheptadienone scaffold 67, which could be viewed as a synthetic intermediate 

en route to these targets.  This scaffold could conceivably arise through a ketene-

Cope rearrangement of a divinyl cyclopropane such as 68.  While compounds like 

68 do not fit the typical structural motif of a donor–acceptor cyclopropane, they are 

nevertheless quite reactive.  For any asynchronous reactions of these compounds, it 

is possible to envision the transition state featuring vicinal positive and negative 

charge stabilization, as is the case for most reactions of traditional donor–acceptor 

cyclopropanes.  If the ketene moiety of 87 were to be accessed from an α-diazo 

ketone (69), it may be possible to form the desired cycloheptadienones in a single 

pot through a tandem Wolff–Cope rearrangement.39 

 

Scheme 1.13  Synthetic inspiration for the tandem Wolff–Cope rearrangement 
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rearrangements.  Extensive optimization revealed that the use of silver benzoate and 

triethylamine with sonication in THF at 45 °C resulted in nearly quantitative yield 

of the desired fused cycloheptadienone product 75 as a single diastereomer (Scheme 

1.14). 

 

Scheme 1.14  Selected scope of the tandem Wolff–Cope rearrangement 
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 The substrate scope of the reaction is shown in Scheme 1.14.  A range of 

hydroxyl protecting groups were tolerated (72–74).  Compounds containing a 1,1-

disubstituted olefin (78) or a monosubstituted olefin (80 and 84) were also 

competent substrates.  Finally, a tricyclic product (83) and a 6–7 ring system (85) 

could be formed in excellent yields.  Interestingly, photochemical conditions were 

necessary to achieve high yields with the substrates containing monosubstituted 

olefins (80 and 84). 

Treatment of substrate 72 with the photochemical conditions shown in Scheme 

1.15 resulted in the isolation of the fused cyclopentenone product 88 in good yield 

after a prolonged reaction time.  This product is proposed to arise from a Norrish 

type I fragmentation of cycloheptadienone 75, followed by intramolecular radical 

recombination, resulting in a net 1,3-acyl migration process.40 
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Scheme 1.15  Selected scope of the tandem Wolff–Cope–1,3-acyl shift reaction 

 

The substrate scope of the tandem Wolff–Cope–1,3-acyl shift process is shown in 

Scheme 1.15.  As with the simpler Wolff–Cope rearrangement, this reaction is successful 

on substrates incorporating a variety of hydroxyl protecting groups (72–74) and olefin 

substitutions (91 and 93).  This method is able to deliver α-quaternary cyclopentenone 92 

in excellent diastereoselectivity.  Finally, access to  both the 5–5 (88–90, 92) and 5–6 

(94) fused ring systems is possible in good yields and diastereoselectivities. 

 

1.3.2   THE ACYL-ALKYLATION OF ARYNES WITH β-KETOESTERS 

During efforts directed toward the arylation of enolates with benzyne to form 

all-carbon quaternary stereocenters (e.g. 97), we found that treatment of β-ketoester 

96 with benzyne (99, generated in situ from 95 and fluoride) unexpectedly resulted 

H

O
N2

93

MeO

O

H

OMe

94

71a–c

O

H

R1O

Me

92

MeO

H

O
N2

91

O

H

MeO

Me Me

Conditions

hν (254 nm), THF, 23 °C

OR1

H

O
N2

86

OR1

H

O
N2

Me

87

n

Conditions Product Yield (%)SubstrateEntry

721

804

575

692
753

72 R= Me
73 R= MOM
74 R=  PMB

R3

R2

O

H

R1O

R3

R2

hν (254 nm), THF, 40 °C

AgOBz, Et3N
THF, 45 °C

88
89
90



Chapter 1 – Applications of Donor–Acceptor Cyclopropanes in the Stoltz Laboratory 20 

in the formation of disubstituted arene 98 in moderate yield (Scheme 1.16).41  This 

represented the first mild and direct example of the insertion of benzyne into a β-

ketoester carbon–carbon bond,42 and is likely produced by fragmentation of 

transiently generated donor–acceptor cyclobutane 102. 

 

Scheme 1.16  Unexpected aryne C–C insertion and mechanistic proposal 
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hypothesis has been invoked by  numerous groups in recent disclosures of aryne insertion 

reactions.44 

 

Scheme 1.17  Scope of the acyl-alkylation of arynes 
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This chapter has described the Stoltz laboratory’s use of donor–acceptor 

cyclopropanes and related compounds in both natural products synthesis and 

methodological developments over the past 15 years with inspiration dating into the 

early 1990s.  As is the case in many laboratories, endeavors in total synthesis often 

inspire the development of new methods.45  In this case, application of a donor–

acceptor cyclopropane (3 + 2) cycloaddition toward the synthesis of scandine 

initiated further investigations into related reactivity, culminating the development 

of novel cycloadditions of cyclopropanes and aziridines described in Chapters 2 and 

3 of this thesis.  Additionally, the laboratory’s interest in cyclopropane 

cycloadditions inspired the initial approach to the total synthesis of calophyline A, 

which is described in Chapter 4. 
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CHAPTER 2† 

Lewis Acid Mediated (3 + 2) Cycloadditions of 

Donor–Acceptor Cyclopropanes with Heterocumulenes 

 

 

2.1  INTRODUCTION 

Donor–acceptor cyclopropanes (1), or those possessing one or more electron-donating 

groups and electron-withdrawing groups on vicinal carbons, have found utility in organic 

synthesis due to their ease of construction and unique reactivity profiles.1  Upon 

treatment with a Lewis acid, these cyclopropanes are converted to reactive 1,3-dipoles 

(2), which can undergo nucleophilic trapping, electrophilic trapping, or dipolar 

cycloadditions to give a wide array of useful products (3–6, Scheme 2.1).  Dipolar 

cycloadditions of donor–acceptor cyclopropanes (i.e. 1→6) are a particularly powerful 

                                                
† This work was performed in collaboration with Dr. Alexander F. G. Goldberg and Dr. Robert A. 

Craig, II, alumni of the Stoltz group.  This work has been published, with portions of this chapter adapted 
with permission from Goldberg, A. F. G.; O’Connor, N. R.; Craig, R. A., II; Stoltz, B. M. Org. 
Lett. 2012, 14, 5314–5317.  Copyright 2012 American Chemical Society. 
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method for the construction of five- and six-membered rings, and this approach has been 

used in several recent total syntheses of natural products.2 

Scheme 2.1  Basic reactivity modes of donor–acceptor cyclopropanes 

 

The first reports of dipolar cycloadditions of donor–acceptor cyclopropanes were 

limited to cyclopropanes with alkoxy and silyloxy donor groups.  In recent years, 

however, several groups have been investigating the use of aryl donor groups.  Work by 

Kerr, Johnson, and others have shown that aryl-substituted cyclopropane 1,1-diesters are 

capable of undergoing formal cycloadditions with a variety of dipolarophiles, including 

nitrones,3 aldehydes,4 imines,5 and silyl enol ethers.6 Unlike with alkoxy and silyloxy 

donor groups, cyclopropanes with aryl donor groups can undergo enantiospecific 

reactions with proper choice of Lewis acid.  It is believed that a correctly tuned Lewis 

acid can activate these aryl-substituted cyclopropanes (131, Scheme 2.2) toward 

nucleophilic attack by a dipolarophile without complete cleavage of the carbon–carbon 

bond, allowing the stereochemical information of the starting material to be transferred to 

the product through an SN2-like nucleophilic attack of the dipolarophile upon activated 

intermediate 132.  The resulting zwitterion (133) then undergoes ring closure to give the 

cyclic product 134 (Scheme 2.2).4c 
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Scheme 2.2  Mechanistic rationale for the stereospecific cycloadditions of donor–acceptor 

cyclopropanes with aryl donor groups 

 

Our research group has had a longstanding interest in the application of donor–

acceptor cyclopropanes toward the construction of complex natural products.7  Our recent 

use of a cyclopropane-olefin cycloaddition in the construction of the core of the 

Melodinus alkaloids furthered our interest in this area.2e  We were interested in extending 

Kerr and Johnson’s methodolgies for the cycloadditions of aryl-substituted donor–

acceptor cyclopropanes to include heterocumulene dipolarophiles.  Specifically, we 

hoped to use isocyanates as electrophiles to access 5-aryl γ-lactam derivatives (135, 

Scheme 2.3), as they form part of the core of many natural products such as trolline 

(136),8 crispine A (137),9 and many of the Erythrina alkaloids (138).10  Although 

isocyanates and isothiocyanates have been shown to undergo (3 + 2) cycloadditions with 

alkoxy-substituted donor–acceptor cyclopropanes, yields were low and the reaction 

stereochemistry was controlled by existing stereocenters in the reactants, rather than 

through an enantioselective or enantiospecific mechanism.11 
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Scheme 2.3  A) Proposed reactions of donor–acceptor cyclopropanes with heterocumulenes and B) 

Potential synthetic targets containing the 5-aryl γ-lactam motif 

 

 

2.2  INITIAL EFFORTS: REACTIONS OF DONOR–ACCEPTOR 

CYCLOPROPANES WITH ISOCYANATES 

We chose to focus our initial efforts on the reactions of donor–acceptor 

cyclopropanes with isocyanates, as the product lactams could be most directly 

applied toward the synthesis of alkaloids such as those shown in Scheme 2.3. 

 

2.2.1  CYCLOADDITIONS OF DONOR–ACCEPTOR CYCLOPROPANES 

WITH POTASSIUM CYANATE AND TRIMETHYLSILYL ISOCYANATE 

We began our studies by investigating the reactivity of potassium cyanate with aryl-

substituted donor–acceptor cyclopropane 139 (Scheme 2.4).  Although the reactivity of 

inorganic cyanates with cyclopropanes was not known, the analogous reactivity with 

epoxides had been demonstrated by Swern in 1968.12  We hoped to apply Swern’s 

CO2Me

CO2Me

R1

131

R2
N

C
X

Lewis acid
X = NR, O, S

N

R1

R2
X

CO2Me
CO2Me

135

N

HO

HO O
H

N

MeO

MeO O
H

N
R X

R

Trolline
136

Crispine A
137

Erythrina Alkaloids
138

A)

B)



Chapter 2 – (3 + 2) Cycloadditions of Cyclopropanes with Heterocumulenes  35 

methodology to the synthesis of secondary γ-lactams, and use of an inorganic cyanate 

would allow for direct and economical access to the desired heterocycles. 

Scheme 2.4  Initial screening of cyclopropane reactivity with potassium cyanate 

 

We screened for reactivity of cyclopropane 139 with potassium cyanate in DMF, 

THF, and dichloromethane, at temperatures ranging from 50 to 140 °C, but detected no 

product by LCMS analysis (Scheme 2.4).  Use of additives such as tetra(n-

butyl)ammonium bromide and 18-crown-6 also failed to produce the desired reactivity.  

In all cases, the results were either a lack of reactivity or isomerization of the starting 

material to styrene 143 (see Scheme 2.5).  In order to increase the reactivity of the 

cyclopropane, we attempted the use of a stronger donating group (140), but this was also 

unsuccessful.  We hypothesized that a Lewis acid might assist in the reaction by further 

activating the cyclopropane, but addition of tin(II) triflate and zinc(II) triflate made no 

difference, possibly due to cyanate coordination to and deactivation of the Lewis acids. 

We investigated the use of trimethylsilyl isocyanate as an alternative that may be 

less likely to coordinate to and deactivate the Lewis acid, and we were able to observe the 

desired lactam product in 10% yield when 20 mol % tin(II) triflate was used in 

dichloromethane (Scheme 2.5).  A screen of various Lewis acids, solvents, and relative 

stoichiometries was unable to identify conditions to reliably afford the lactam product in 

high yield.  We then proceeded to investigate the reactivity of other isocyanates in the 
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reaction, but phenyl and tosyl isocyanate were not successful, and isopropyl isocyanate 

gave only a trace of the desired product. 

 

Scheme 2.5  Initial observation of desired reactivity with trimethylsilylisocyanate 

 

 

2.2.2  CYCLOADDITIONS OF DONOR–ACCEPTOR CYCLOPROPANES 

WITH ALKYL ISOCYANATES 

After our lack of success with potassium cyanate, trimethylsilyl isocyanate, tosyl 

isocyanate, and phenyl isocyanate, we proceeded to study more robust and reactive 

alkyl isocyanates, such as benzyl- and isopropyl isocyanate.  These alkyl 

dipolarophiles displayed sluggish reactivity with tin(II) triflate, but a study of 

stronger Lewis acids and a reinvestigation of the other reaction parameters found 

that the tertiary lactam products could be obtained in good to moderate yields using 

stoichiometric iron(III) chloride in dichloromethane.  The scope of the reaction is 

shown in Scheme 2.6.  Lactams arising from cyclopropanes with both electron-rich 

(145) and electron-poor (146) donor groups are easily accessed, as is the product 

arising from use of the sterically bulky dipolarophile isopropyl isocyanate (144).  
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Notably, secondary lactam 149 can be accessed if trimethylsilyl isocyanate is used, 

with the trimethylsilyl group being lost during reaction workup. 

 

Scheme 2.6  Scope of the iron-mediated cycloadditions of donor–acceptor cyclopropanes with 

isocyanates 

 

 

2.3  REACTIONS OF DONOR–ACCEPTOR CYCLOPROPANES WITH 

ISOTHIOCYANATES 

Having established the desired reactivity with isocyanate dipolarophiles, we 
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analogous thioamide products. 
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2.3.1  INITIAL REACTIVITY AND STRUCTURAL REASSIGNMENT 

When cyclopropane 140 was subjected to an excess of allyl isothiocyanate in the 

presence of 30 mol % tin(II) triflate in wet ethyl acetate, we isolated 18% yield of a 

product with the formula and mass of our expected thioamide product (Scheme 2.7).  

Upon closer examination of the 13C NMR and infrared spectra, we were surprised to find 

that our isolated product was in fact thioimidate 150, rather than thioamide 151. 

 

Scheme 2.7  Initial observation of desired reactivity with allyl isothiocyanate 

 

During this time, Li and coworkers reported an iron(III) chloride mediated (3 + 2) 

cycloaddition of aryl-substituted donor–acceptor cyclopropanes and aryl isothiocyanates 

giving thioamide products (Scheme 2.8A).13  We suspected Li’s products may have been 

misassigned due to the close similarities between the proton NMR spectra of the two 

compounds and Li’s lack of inclusion of IR spectra in their characterization data.  We 

treated cyclopropane 152 with phenyl isothiocyanate under Li’s conditions with slight 

modifications (Scheme 2.8B), and obtained a product with identical proton and 13C NMR 

spectra as those reported by Li for compound 153.  The 13C NMR showed a peak 

consistent with a thioimidate carbon (approximately 160 ppm), rather than a thioamide 

(approximately 200 ppm).  Additionally, the IR spectrum showed a C=N stretch 

(approximately 1640 cm-1), rather than a C=S stretch (approximately 1160 cm-1).14  We 
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believe these data, in combination with a crystal structure of one of our other thioimidate 

products (155, Scheme 2.8C) provide sufficient support for our reassignment of Li’s 

products as thioimidates rather than thioamides. 

 

Scheme 2.8  Structural reassignment of Li’s products15 
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dichloromethane gave the best yields.  Furthermore, the products slowly decompose 

under the reaction conditions so prompt workup and purification was necessary.  The 

substrate scope of the reaction is displayed in Scheme 2.9.  Cyclopropanes bearing 

electron-rich aryl rings were the most reactive, whereas those with electron-withdrawing 

or ortho substituents were less reactive.  A vinyl group could replace the aryl group as a 

donor, giving vinyl thioimidate 165 in quantitative yield.  Finally, cyclohexyl 

isothiocyanate also worked well in the reaction.  Crystallographic analysis of compound 

155 confirmed our assignments of these products as thioimidates (other products assigned 

by analogy). 
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Scheme 2.9  Scope of the tin-mediated cycloadditions of donor–acceptor cyclopropanes with 

isothiocyanates 
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used in dry dichloromethane.  The scope of the reaction is shown in Scheme 2.10.  In 

general, these reactions were faster than the reactions with isothiocyanates, forming the 

amidine products in as little as 10 minutes.  The primary amidines 174 and 175 could be 

formed in good yields using bis(trimethylsilyl)carbodiimide.  Highly substituted amidine 

176 could be prepared in moderate yield, and an aryl carbodiimide also underwent the 

reaction to give amidine 177 in good yield. 

 

Scheme 2.10  Scope of the tin-mediated cycloadditions of donor–acceptor cyclopropanes with 

carbodiimides 
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products.  Although treatment of enantioenriched cyclopropane (S)-152 with an 

isocyanate in the presence of iron(III) chloride resulted in complete racemization of the 

benzylic stereocenter (Scheme 2.11A),16 we observed transfer of chirality in the case of 

the tin(II) triflate mediated cycloadditions (Scheme 2.11B,C).  Notably, substrates that 

required longer reaction times resulted in increased erosion of enantiomeric excess.17  The 

absolute configuration of an amidine product was confirmed by crystallographic analysis 

of the hydrobromide salt (Figure 2.1), which revealed an inversion of configuration at the 

benzylic position during the course of the reaction. 

 

Scheme 2.11  Stereochemical investigations of the reaction of enantioenriched cyclopropane (S)-

152 with A) isocyanates, B) isothiocyanates, and C) carbodiimides 
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Figure 2.1  Absolute configuration of an amidine product determined by X-ray crystallography18 

 

 

2.6  PROPOSED MECHANISM 

We propose the mechanism of the isothiocyanate and carbodiimide reactions 

involves coordination of the Lewis acid to the cyclopropane to weaken the polarized C–C 

bond, forming intermediate 178.  Attack of the nucleophilic dipolarophile in an SN2-like 

fashion followed by ring closure affords heterocyclic product 180 (Scheme 2.12).  This 

mechanism is supported by our observations of the reaction stereochemistry and the 
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nitrones, respectively.3d,4c,19  We propose a similar mechanism for the reactions of 

isocyanates, however the stronger Lewis acid iron(III) chloride likely promotes the 
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information from the starting material to the product in these reactions. 
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Scheme 2.12  Proposed mechanism of reactions of donor–acceptor cyclopropanes with 

isothiocyanates and carbodiimides 

 

 

2.7  CONCLUSIONS AND FUTURE DIRECTIONS 

In conclusion, we have developed a novel method for the formation of five-

membered heterocycles from simple and readily accessible precursors.  Our studies 

suggest that carbodiimides are more reactive than isothiocyanates, which in turn are more 

reactive than isocyanates.  Furthermore, with tin(II) triflate as a Lewis acid, a highly 

stereselective reaction is possible, allowing for the synthesis of enantioenriched 

heterocycles from enantioenriched cyclopropanes.  Investigations to apply this 

methodology toward the total synthesis of natural products are described in Appendix 2. 
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reagents were used as received with the exception of tin(II) triflate and iron(III) chloride, 

which were stored in a nitrogen-filled glovebox.  A separate bottle of iron(III) chloride 

was stored in a calcium sulfate desiccator on the benchtop.  Thin-layer chromatography 

(TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and 

visualized by UV fluorescence quenching, potassium permanganate, or p-anisaldehyde 

staining.  SiliaFlash P60 Academic Silica gel (particle size 0.040–0.063 mm) was used 

for flash chromatography.  1H and 13C NMR spectra were recorded on a Varian 400 (at 

400 MHz and 100 MHz, respectively) or on a Varian Mercury 500 (at 500 MHz and 126 

MHz, respectively) and are reported relative to CHCl3 (δ 7.26 & 77.16 ppm, respectively) 

or tetramethylsilane (0.00 ppm).  Data for 1H NMR spectra are reported as follows: 

chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration).  Abbreviations 

are used as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, hept = 

heptet, m = complex multiplet, app = apparent br = broad.  IR spectra were recorded on a 

Perkin Elmer Paragon 1000 Spectrometer and are reported in frequency of absorption 

(cm–1).  HRMS were acquired using an Agilent 6200 Series TOF with an Agilent 

G1978A Multimode source in electrospray ionization (ESI), atmospheric pressure 

chemical ionization (APCI) or mixed (MM) ionization mode; HRMS were also acquired 

using a JEOL JMS-600H with fast atom bombardment (FAB).  Optical rotations were 

recorded on a JASCO P-2000 Polarimeter.  Enantiomeric excesses were determined by 

chiral HPLC (Agilent 1100 Series) or chiral SFC (Thar). 
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2.8.2   GENERAL AND MISCELLANEOUS EXPERIMENTAL PROCEDURES 

 

General Procedure A. Knoevenagel condensation. 

A round-bottom flask was charged with the appropriate aldehyde (181, 14.4 mmol), 

followed by benzene (85 mL), dimethyl malonate (15.8 mmol), piperidine (1.44 mmol), 

and acetic acid (1.44 mmol).  The flask was equipped with a Dean-Stark trap and 

condenser and the solution heated to reflux.  Upon completion (as determined by TLC 

analysis), evaporation of the solvent gave the crude product, which was purified by silica 

gel column chromatography. 

 

 

General Procedure B. Corey–Chaykovsky cyclopropanation. 
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magnesium sulfate, filtered, and concentrated in vacuo to give the crude product, which 

was purified by silica gel column chromatography. 

 

 

General Procedure C. Styrene cyclopropanation. 

Rh2(esp)2 (0.3 mg) was added to a flame-dried round-bottom flask, which was then 

evacuated and backfilled with nitrogen three times. The appropriate styrene (183, 5.0 

mmol) and anhydrous dichloromethane (5 mL) were then added and the solution was 

stirred under nitrogen and cooled in an ice bath.  A solution of diazodimethylmalonate 

(6.0 mmol) in anhydrous dichloromethane (5 mL) was added dropwise over 20 minutes.  

The reaction solution was then allowed to warm to ambient temperature.  Upon 

completion (as determined by TLC analysis), the crude product was adsorbed onto silica 

gel and purified by column chromatography. When traces of the rhodium catalyst 

remained after chromatography (as determined by a blue discoloration), the product was 

dissolved in anhydrous benzene (1.5 mL) in a flame-dried round-bottom flask.  A 

solution of tetrakis(hydroxymethyl)phosphonium hydroxide (10 mL, 1 M in isopropanol) 

was added,22 and the mixture was stirred at 60 °C for 12 hours.  The solution was then 

cooled to room temperature, diluted with diethyl ether (20 mL), washed once with water 

and once with brine, dried over magnesium sulfate, filtered, and concentrated to give the 

purified product. 

 

R

CO2MeMeO2C

N2 (1.2 equiv)

Rh(esp)2 (cat.)
CH2Cl2, 0 °C → 22 °C183 131

R
CO2Me

CO2Me
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General Procedure D. Isocyanate (3 + 2) reaction with D-A cyclopropanes, Method A. 

To a flame-dried 10 mL flask equipped with a magnetic stir bar was added iron(III) 

chloride (0.44 mmol) in an inert atmosphere glovebox. The flask was sealed with a 

Teflon septum, removed from the glovebox, and placed under a nitrogen atmosphere. To 

an oven-dried 1 dram vial were added the appropriate cyclopropane (131, 0.4 mmol) and 

isocyanate (1.2 mmol). The vial was sealed with a screw cap fitted with a Teflon septum, 

and this mixture was transferred to the reaction flask as a solution in anhydrous 

dichloromethane (1 mL + 0.33 mL rinse). The solution was then allowed to stir at 

ambient temperature under nitrogen.  Upon consumption of the cyclopropane (as 

determined by TLC analysis), the reaction solution was diluted with dichloromethane, 

adsorbed onto Celite, and purified by silica gel column chromatography. 

 

General Procedure E. Isocyanate (3 + 2) reaction with D-A cyclopropanes, Method B. 

To an oven-dried 1 dram vial equipped with a magnetic stir bar was added iron (III) 

chloride (0.44 mmol) and oven-dried 4Å molecular sieves (50 mg). The vial was sealed 

with a screw cap fitted with a rubber septum, and was placed under a nitrogen 

atmosphere. To a second oven-dried 1 dram vial was added the appropriate cyclopropane 

(131, 0.4 mmol) and isocyanate (1.2 mmol). The vial was sealed with a screw cap fitted 

with a Teflon septum and this mixture was transferred to the first vial as a solution in 

anhydrous dichloromethane (1 mL + 0.33 mL rinse). The mixture was then allowed to 

stir at ambient temperature under nitrogen.  Upon consumption of the cyclopropane (as 

FeCl3 (1.1 equiv)
CH2Cl2 , 23°C

CO2Me

CO2Me

R1

N

R1

O
R2

CO2Me
CO2Me

131 135

R2–NCO (3.0 equiv)
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determined by TLC analysis), the reaction mixture was partitioned between 

dichloromethane and saturated aqueous sodium bicarbonate. The layers were separated 

and the aqueous phase was washed twice with dichloromethane. The combined organic 

layers were washed with brine, dried over magnesium sulfate, filtered, and concentrated 

in vacuo. The crude product was purified by silica gel column chromatography. 

 

 

General Procedure F. Isothiocyanate (3 + 2) reaction with D-A cyclopropanes. 

To an oven-dried 1 dram vial equipped with a magnetic stir bar was added tin(II) 

trifluoromethanesulfonate (0.44 mmol) in an inert atmosphere glovebox. The vial was 

sealed with a screw cap fitted with a Teflon® septum, removed from the glovebox, and 

placed under a nitrogen atmosphere. To a separate, oven-dried 1 dram vial were added 

the appropriate cyclopropane (131, 0.4 mmol) and isothiocyanate (0.8 mmol). The vial 

was sealed with a screw cap fitted with a Teflon® septum, and the mixture was transferred 

to the first vial as a solution in anhydrous dichloromethane (1 mL + 0.33 mL rinse). The 

heterogeneous reaction mixture was then allowed to stir at ambient temperature under 

nitrogen.  Upon consumption of the cyclopropane (as determined by TLC analysis), the 

reaction solution was diluted with dichloromethane (3 mL) and methanol (1 mL), 

adsorbed onto Celite, and purified by silica gel column chromatography. The products of 

this reaction were often found to be unstable during prolonged storage (~1 week) at 

ambient temperature; the decomposition products have not been identified. 

 

Sn(OTf)2 (1.1 equiv)
CH2Cl2 , 23°C

CO2Me

CO2Me

R1

S

R1

N

CO2Me
CO2Me

131 156

R2–NCS (2.0 equiv)

R2
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General Procedure G. Carbodiimide (3 + 2) reaction with D-A cyclopropanes. 

To an oven-dried 1 dram vial equipped with a magnetic stir bar was added tin(II) 

trifluoromethanesulfonate (0.44 mmol) in an inert atmosphere glovebox. The vial was 

sealed with a screw cap fitted with a Teflon® septum, removed from the glovebox and 

placed under a nitrogen atmosphere. To a separate, oven-dried 1 dram vial were added 

the appropriate cyclopropane (131, 0.4 mmol) and carbodiimide (0.44 mmol). The vial 

was sealed with a screw cap fitted with a Teflon® septum, and the mixture was transferred 

to the first vial as a solution in anhydrous dichloromethane (1 mL + 0.33 mL rinse). The 

heterogeneous reaction mixture was then allowed to stir at ambient temperature under 

nitrogen.  Upon consumption of the cyclopropane (as determined by TLC analysis), the 

reaction solution was diluted with dichloromethane (3 mL) and methanol (1 mL), 

adsorbed onto Celite, and purified by silica gel column chromatography. The product 

obtained after column chromatography is an amidinium salt, which is dissolved in DCM, 

and washed with aqueous sodium hydroxide (0.1 M) and brine, then dried over sodium 

sulfate, filtered, and concentrated in vacuo to yield the free amidine base. 

 

 

 

Sn(OTf)2 (1.1 equiv)
CH2Cl2 , 23°C

CO2Me

CO2Me

R1

N

R1

N

CO2Me
CO2Me

131 169

R2–NCN–R2 (1.1 equiv) R2
R2

CO2Me

CO2Me

MeO

140

MeO

143

MeO2C
CO2Me

Sn(OTf)2 (20 mol %)

CHCl3, 19 °C
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Preparation of Styrene 143. 

A 1 dram vial, equipped with a magnetic stir bar, was charged with tin(II) triflate 

(16.7 mg, 0.04 mmol, 0.2 equiv), then cyclopropane 140 (54.1 mg, 0.2 mmol, 1 equiv) 

was added as a solution in chloroform (1 mL). Stirring was initiated and a heterogeneous 

mixture with a yellow supernatant resulted.  Consumption of starting material was 

observed by LCMS after 35 minutes.  The reaction mixture was dry-loaded onto SiO2 (~1 

mL) and purified by silica gel column chromatography (3:1 hexanes:EtOAc) to afford 

styrene 143 as a colorless solid.  Characterization data match those reported in the 

literature.23 

 

2.8.3   CYCLOPROPANE CHARACTERIZATION DATA 

 

dimethyl 2-(p-tolyl)cyclopropane-1,1-dicarboxylate (139): 

Benzylidene dimethylmalonate 185 was prepared according to General Method A:  

30% yield. Rf = 0.19 (3:1 Heaxanes:EtOAc eluent). Characterization data matches those 

reported in the literature.24 Cyclopropane 139 was prepared according to General Method 

B:  77% yield. Rf = 0.60 (3:1 Hexanes:EtOAc). Characterization data match those 

reported in the literature.25 

 

O

H

Me
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CO2Me

CO2Me

Me
184

CO2Me

CO2Me
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dimethyl 2-(4-methoxyphenyl)cyclopropane-1,1-dicarboxylate (140): 

Benzylidene dimethylmalonate 187 was prepared according to General Method A: 

92% yield. Rf = 0.27 (3:1 Hexanes:EtOAc eluent). Characterization data match those 

reported in the literature.26 Cyclopropane 140 was prepared according to General Method 

B: 95% yield. Rf = 0.40 (3:1 Hexanes:EtOAc eluent). Characterization data match those 

reported in the literature.27 

 

 

dimethyl 2-phenylcyclopropane-1,1-dicarboxylate (152): 

Benzylidene dimethylmalonate 189 was prepared according to General Method A: 

99% yield. Rf = 0.60 (3:1 Hexanes:EtOAc eluent). Characterization data match those 

reported in the literature.28 Cyclopropane 152 was prepared according to General Method 

B: 66% yield. Rf = 0.60 (3:1 Hexanes:EtOAc eluent). Characterization data match those 

reported in the literature.29 

 

 

(S)-dimethyl 2-phenylcyclopropane-1,1-dicarboxylate ((S)-152): 

MeO

O

H

186 187

CO2Me

CO2Me

MeO
140

CO2Me

CO2Me

MeO
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CO2Me

CO2MeO

H
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CO2Me

CO2Me
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Cyclopropane (S)-152 was prepared according to literature methods.30 [α]D
25.0 –

133.17° (c 0.99, CHCl3, >98% ee). 

 

 

dimethyl 2-([1,1'-biphenyl]-4-yl)cyclopropane-1,1-dicarboxylate (191): 

Cyclopropane 191 was prepared according to General Method C: 99% yield. Rf = 

0.48 (3:1 Hexanes:EtOAc eluent). Characterization data match those reported in the 

literature.31 

 

 

dimethyl 2-(4-chlorophenyl)cyclopropane-1,1-dicarboxylate (193): 

Cyclopropane 193 was prepared according to General Method C:  99% yield. Rf = 

0.53 (3:1 Hexanes:EtOAc eluent). Characterization data match those reported in the 

literature.26 

 

 

dimethyl 2-(2-chlorophenyl)cyclopropane-1,1-dicarboxylate (195): 

Ph

190 191

CO2Me

CO2Me

Ph

Cl

192 193

CO2Me

CO2Me

Cl

Cl

194 195

CO2Me

CO2Me
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Cyclopropane 195 was prepared according to General Method C: 60% yield. Rf = 

0.50 (3:1 Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 7.39–7.33 (m, 1H), 

7.22–7.15 (m, 2H), 7.11–7.07 (m, 1H), 3.81 (s, 3H), 3.36 (s, 4H), 2.26 (dd, J = 8.3, 5.2 

Hz, 1H), 1.79 (dd, J = 9.1, 5.2 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 170.0, 167.1, 

136.6, 132.8, 129.3, 129.0, 128.9, 126.5, 53.0, 52.4, 36.5, 31.3, 19.0; IR (Neat Film, 

NaCl) 3001, 2953, 1732, 1483, 1435, 1377, 1331, 1288, 1219, 1131, 1055, 894, 785, 754 

cm-1; HRMS (ESI) m/z calc’d for C13H14
35ClO4 [M+H]+: 269.0575, found 269.0573.  

 

 

dimethyl 2-mesitylcyclopropane-1,1-dicarboxylate (197): 

Cyclopropane 197 was prepared according to General Method C:  71% yield. Rf = 

0.40 (3:1 Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 6.81 (s, 2H), 3.83 (s, 

3H), 3.34 (s, 3H), 3.10–3.02 (app t, J = 9.3 Hz, 1H), 2.42–2.36 (dd, J = 8.9, 4.9 Hz, 1H), 

2.32 (s, 6H), 2.22 (s, 3H), 1.97–1.89 (dd, J = 9.6, 4.9 Hz, 1H); 13C NMR (126 MHz, 

CDCl3) δ 170.8, 168.0, 136.6, 129.2, 128.5, 52.9, 52.2, 35.3, 32.0, 24.0, 21.0; IR (Neat 

Film, NaCl) 2953, 2921, 1728, 1612, 1437, 1372, 1328, 1287, 1224, 1196, 1128, 1096, 

1032, 1015, 992, 894, 852, 782, 718 cm-1; HRMS (Low Voltage MM: ESI-APCI) m/z 

calc’d for C16H21O4 [M+H]+: 277.1434, found 277.1420.  
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Me

Me Me
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Br
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dimethyl 2-vinylcyclopropane-1,1-dicarboxylate (199): 

Cyclopropane 199 was prepared according to the method of Johnson and coworkers.32 

 

 

dimethyl 2-(4-(tert-butyl)phenyl)cyclopropane-1,1-dicarboxylate (201): 

Cyclopropane 201 was prepared according to General Method C:  89% yield. Rf = 

0.50 (3:1 Hexanes:EtOAc eluent). Characterization data match those reported in the 

literature.33 

 

 

dimethyl 2-(4-acetoxyphenyl)cyclopropane-1,1-dicarboxylate (203): 

Cyclopropane 203 was prepared according to General Method C: 67% yield. Rf = 

0.30 (3:1 Hexanes:EtOAc eluent). Characterization data match those reported in the 

literature.4c  

 

 

dimethyl 2-methyl-2-phenylcyclopropane-1,1-dicarboxylate (205): 

t-Bu

200 201

CO2Me

CO2Me
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Cyclopropane 205 was prepared according to General Method C: 41% yield. Rf = 

0.53 (3:1 Hexanes:EtOAc eluent). Characterization data match those reported in the 

literature.34 

 

 

dimethyl 2-(1-tosyl-1H-indol-3-yl)cyclopropane-1,1-dicarboxylate (209): 

N-Tosylindole-3-carboxaldehyde (207) was prepared according to literature methods 

from indole-3-carbodaldehyde (206).35  Benzylidene dimethylmalonate 208 was prepared 

according to General Method A: 75% yield. Rf = 0.20 (3:1 Hexanes:EtOAc eluent). 

Characterization data match those reported in the literature.36  Cyclopropane 209 was 

prepared according to General Method B:  95% yield. Rf = 0.30 (3:1 Hexanes:EtOAc 

eluent).  Characterization data match those reported in the literature.35  

 

2.8.4   LACTAM CHARACTERIZATION DATA  

 

 

dimethyl 1-isopropyl-2-oxo-5-phenylpyrrolidine-3,3-dicarboxylate (144):  

Prepared according to General Method F. 72% yield. Rf = 0.46 (1:1 Hexanes:EtOAc 

eluent); 1H NMR (500 MHz, CDCl3) δ 7.39–7.26 (m, 5H), 4.64 (t, J = 7.3 Hz, 1H), 3.83 

(s, 3H), 3.81 (s, 3H), 3.80–3.71 (m, 1H), 3.02 (dd, J = 13.8, 7.7 Hz, 1H), 2.59 (dd, J = 

209

CO2Me

CO2Me

N
Ts

208

N
Ts

CO2Me
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207

N
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O
H
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13.8, 6.9 Hz, 1H), 1.25 (d, J = 6.9 Hz, 3H), 1.01 (d, J = 6.8 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 168.3, 168.1, 167.2, 141.0, 129.0, 128.6, 127.2, 63.4, 59.7, 53.7, 53.5, 

47.1, 38.4, 19.8, 19.7; IR (Neat Film, NaCl) 2954, 1735, 1703, 1495, 1457, 1434, 1367, 

1342, 1259, 1218, 1130, 1090, 1065, 998, 966, 919, 894, 774 cm-1; HRMS (MM: ESI-

APCI) m/z calc’d for C17H22NO5 [M+H]+: 320.1492, found 320.1490. 

 

 

dimethyl 1-butyl-2-oxo-5-(4-methoxyphenyl)pyrrolidine-3,3-dicarboxylate (145): 

Prepared according to General Method F. 62% yield. Rf = 0.39 (1:1 Hexanes:EtOAc 

eluent); 1H NMR (500 MHz, CDCl3) δ 7.30–7.23 (m, 3H), 7.08–7.02 (m, 4H), 6.94–6.87 

(m, 2H), 5.11 (d, J = 14.5 Hz, 1H), 4.31 (t, J = 7.6 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 

3.81 (s, 3H), 3.46 (d, J = 14.6 Hz, 1H), 2.94 (dd, J = 13.8, 7.2 Hz, 1H), 2.65 (dd, J = 13.8, 

8.1 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 168.1, 167.9, 167.1, 160.0, 135.5, 130.4, 

128.8, 128.7, 128.6, 127.9, 114.6, 63.4, 58.3, 55.5, 53.7, 53.6, 45.2, 38.1; IR (Neat Film, 

NaCl) 2953, 1735, 1705, 1513, 1434, 1281, 1247 cm-1; HRMS (MM: ESI-APCI) m/z 

calc’d for C22H24NO6 [M+H]+: 398.1598, found 398.1581. 

 

 

dimethyl 1-butyl-2-oxo-5-(4-chlorophenyl)pyrrolidine-3,3-dicarboxylate (146): 
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Prepared according to General Method F. 78% yield. Rf = 0.41 (1:1 Hexanes:EtOAc 

eluent); 1H NMR (500 MHz, CDCl3) δ 7.39–7.33 (m, 2H), 7.29–7.24 (m, 3H), 7.10–7.05 

(m, 2H), 7.04–7.00 (m, 2H), 5.13 (d, J = 14.6 Hz, 1H), 4.33 (t, J = 7.6 Hz, 1H), 3.87 (s, 

3H), 3.83 (s, 3H), 3.46 (d, J = 14.6 Hz, 1H), 2.97 (dd, J = 13.9, 7.4 Hz, 1H), 2.60 (dd, J = 

13.9, 7.8 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 167.9, 167.7, 167.2, 137.3, 135.1, 

134.7, 129.5, 128.8, 128.7, 128.6, 128.0, 63.2, 58.1, 53.8, 53.7, 45.3, 37.9; IR (Neat Film, 

NaCl) 2953, 1736, 1708, 1435, 1242, 1204, 1090 cm-1; HRMS (MM: ESI-APCI) m/z 

calc’d for C21H21
35ClNO5 [M+H]+: 402.1103, found 402.1084. 

 

 

dimethyl 1-allyl-2-oxo-5-phenylpyrrolidine-3,3-dicarboxylate (147): 

Prepared according to General Method G. 42% yield. Rf = 0.52 (1:1 Hexanes:EtOAc 

eluent);1H NMR (500 MHz, CDCl3) δ 7.42–7.29 (m, 3H), 7.24–7.18 (m, 2H), 5.71–5.52 

(m, 1H), 5.12 (ddt, J = 10.1, 1.3, 0.7 Hz, 1H), 4.99–4.91 (m, 1H), 4.64 (t, J = 7.5 Hz, 

1H), 4.40 (m, 1H), 3.90–3.84 (m, 3H), 3.82 (d, J = 0.9 Hz, 3H), 3.15–3.02 (m, 2H), 2.62 

(dd, J = 13.8, 7.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 168.0, 167.9, 166.8, 138.9, 

131.0, 129.2, 128.8, 127.3, 118.9, 63.1, 59.1, 53.8, 53.6, 44.1, 38.0; IR (Neat Film, NaCl) 

2953, 1735, 1707, 1433, 1245, 1214, 1070 cm-1; HRMS (FAB+) m/z calc’d for 

C17H20NO5 [M+H]+: 318.1341, found 318.1356. 
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dimethyl 1-butyl-2-oxo-5-phenylpyrrolidine-3,3-dicarboxylate (148): 

Prepared according to General Method G. 58% yield. Rf = 0.10  (4:1 Hexanes:EtOAc 

eluent); 1H NMR (500 MHz, CDCl3) δ 7.40–7.31 (m, 3H), 7.25–7.20 (m, 2H), 4.63 (t, J = 

7.5 Hz, 1H), 3.84 (s, 3H), 3.81 (s, 3H), 3.70 (dt, J = 13.7, 7.9 Hz, 1H), 3.06 (dd, J = 13.7, 

7.3 Hz, 1H), 2.57–2.53 (m, 2H), 1.43–1.30 (m, 2H), 1.29–1.10 (m, 2H), 0.82 (t, J = 7.3 

Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 168.1, 168.0, 166.9, 139.1, 129.2, 128.7, 127.1, 

63.2, 59.5, 53.7, 53.6, 41.1, 38.3, 28.6, 19.8, 13.7; IR (Neat Film, NaCl) 2957, 2873, 

1732, 1708, 1495, 1456, 1435, 1370, 1278, 1242, 1202, 1108, 1090, 1070, 893, 771 cm-1; 

HRMS (FAB+) m/z calc’d for C18H24NO5 [M+H]+: 334.1654, found 334.1646.  

 

 

dimethyl 2-oxo-5-phenylpyrrolidine-3,3-dicarboxylate (149): 

Prepared according to General Method G. 49% yield. Rf = 0.48 (1:1 Hexanes:EtOAc 

eluent); 1H NMR (500 MHz, CDCl3) δ 7.40–7.33 (m, 2H), 7.33–7.28 (m, 3H), 6.93–6.69 

(br s, 1H), 4.75 (t, J = 7.4 Hz, 1H), 3.85 (d, J = 1.6 Hz, 3H), 3.77 (dd, J = 2.1, 0.9 Hz, 

3H), 3.18 (ddt, J = 13.6, 7.2, 0.8 Hz, 1H), 2.63 (ddd, J = 13.5, 7.8, 1.8 Hz, 1H); 13C NMR 

(126 MHz, CDCl3) δ 169.5, 167.5, 167.4, 140.3, 129.0, 128.4, 126.0, 63.2, 55.4, 53.7, 

53.6, 40.4; IR (Neat Film, NaCl) 3251, 2955, 1729, 1435, 1250, 1208, 1060 cm-1; HRMS 

(FAB+) m/z calc’d for C14H16NO5 [M+H]+: 278.1028, found 278.1042. 
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2.8.5   THIOIMIDATE CHARACTERIZATION DATA 

Unless stated otherwise, all thioimidates were prepared according to General Method 

F. 

 

 

(Z)-dimethyl 2-(allylimino)-5-phenyldihydrothiophene-3,3(2H)-dicarboxylate (158): 

92% yield. Rf = 0.45 (7:3 Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 7.46–

7.40 (m, 2H), 7.39–7.34 (m, 2H), 7.33–7.29 (m, 1H), 5.99 (ddt, J = 17.1, 10.4, 5.2 Hz, 

1H), 5.26 (dq, J = 17.2, 1.8 Hz, 1H), 5.13 (dq, J = 10.4, 1.7 Hz, 1H), 4.73 (dd, J = 11.7, 

4.9 Hz, 1H), 4.00 (dtd, J = 5.5, 1.8, 0.7 Hz, 2H), 3.88 (s, 3H), 3.81 (s, 3H), 3.12 (dd, J = 

13.0, 4.9 Hz, 1H), 2.90 (dd, J = 13.0, 11.7 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 168.4, 

168.1, 166.0, 138.2, 134.0, 129.0, 128.5, 127.8, 116.0, 71.0, 59.8, 53.8, 53.6, 50.9, 44.3; 

IR (Neat Film, NaCl) 3010, 2952, 1738, 1652, 1495, 1435, 1269, 1227, 1169, 1098, 

1064, 977, 921, 862, 842, 799, 765 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for 

C17H20NO4S [M+H]+: 334.1108, found 334.1113.  

 

 

(R,Z)-dimethyl 2-(allylimino)-5-phenyldihydrothiophene-3,3(2H)-dicarboxylate ((R)-

158):  
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Characterization data are same as above; [α]D
25.0 +8.8° (c 0.445, CHCl3, 95% ee). 

 

 

dimethyl 1-allyl-5-(4-methoxyphenyl)-2-thioxopyrrolidine-3,3-dicarboxylate (150): 

98% yield. Rf = 0.49 (7:3 Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 7.38–

7.32 (m, 2H), 6.90–6.85 (m, 2H), 6.03–5.92 (m, 1H), 5.24 (dq, J = 17.2, 1.8 Hz, 1H), 

5.12 (dq, J = 10.4, 1.7 Hz, 1H), 4.71 (dd, J = 11.8, 4.8 Hz, 1H), 3.99 (dt, J = 5.2, 1.8 Hz, 

2H), 3.87 (s, 3H), 3.81 (s, 3H), 3.80 (s, 3H), 3.07 (dd, J = 13.0, 4.9 Hz, 1H), 2.87 (dd, J = 

13.0, 11.8 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 168.4, 168.1, 166.5, 159.7, 134.0, 

130.0, 129.0, 116.0, 114.3, 71.1, 59.7, 55.5, 53.8, 53.6, 50.6, 44.5; IR (Neat Film, NaCl) 

3003, 2953, 2837, 1736, 1638, 1610, 1513, 1435, 1305, 1250, 1175, 1098, 1070, 1032, 

922, 831, 792 cm-1; HRMS (Low Voltage MM: ESI-APCI) m/z calc’d for C18H22NO5S 

[M+H]+: 364.1213, found 364.1193.  

 

 

(Z)-dimethyl 5-([1,1'-biphenyl]-4-yl)-2-(allylimino)dihydrothiophene-3,3(2H)-

dicarboxylate (159):  

80% yield. Rf = 0.53 (7:3 Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 7.62–

7.56 (m, 4H), 7.53–7.49 (m, 2H), 7.48–7.42 (m, 2H), 7.39–7.33 (m, 1H), 6.00 (ddt, J = 

MeO
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17.2, 10.4, 5.2 Hz, 1H), 5.27 (dq, J = 17.1, 1.8 Hz, 1H), 5.14 (dq, J = 10.3, 1.7 Hz, 1H), 

4.79 (dd, J = 11.7, 4.9 Hz, 1H), 4.02 (dt, J = 5.2, 1.8 Hz, 2H), 3.89 (s, 3H), 3.83 (s, 3H), 

3.16 (dd, J = 13.0, 4.9 Hz, 1H), 2.94 (dd, J = 13.0, 11.7 Hz, 1H); 13C NMR (126 MHz, 

CDCl3) δ 168.3, 168.0, 166.2, 141.4, 140.4, 137.0, 133.8, 128.9, 128.2, 127.6, 127.1, 

116.0, 71.0, 59.6, 53.7, 53.5, 50.6, 44.2; IR (Neat Film, NaCl) 3029, 2952, 1736, 1651, 

1639, 1487, 1435, 1412, 1279, 1263, 1226, 1168, 1099, 1070, 1008, 977, 920, 836, 799, 

767, 738 cm-1; HRMS (Low Voltage MM: ESI-APCI) m/z calc’d for C23H24NO4S 

[M+H]+: 410.1421, found 410.1408.  

 

 

(Z)-dimethyl 2-(allylimino)-5-(4-chlorophenyl)dihydrothiophene-3,3(2H)-

dicarboxylate (160):  

66% yield. Rf = 0.49 (7:3 Hexanes:EtOAc eluent); 1H NMR (400 MHz, CDCl3) δ 7.42 – 

7.19 (m, 4H), 5.97 (ddt, J = 17.1, 10.4, 5.1 Hz, 1H), 5.23 (dq, J = 17.2, 1.9 Hz, 1H), 5.12 

(dq, J = 10.4, 1.7 Hz, 1H), 4.69 (dd, J = 11.6, 4.9 Hz, 1H), 3.98 (dt, J = 5.1, 1.8 Hz, 2H), 

3.86 (s, 3H), 3.79 (s, 3H), 3.09 (dd, J = 13.0, 5.0 Hz, 1H), 2.82 (dd, J = 13.0, 11.6 Hz, 

1H).; 13C NMR (101 MHz, CDCl3) δ 168.1, 167.8, 165.3, 136.7, 134.2, 133.8, 129.0, 

129.0, 115.9, 70.8, 59.7, 53.7, 53.4, 50.0, 44.1; IR (Neat Film, NaCl) 2953, 1733, 1652, 

1637, 1491, 1434, 1266, 1221, 1167, 1090, 1068, 1011 cm-1; HRMS (MM: ESI-APCI) 

m/z calc’d for C17H19
35ClNO4S [M+H]+: 368.0718, found 368.0729.  
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(Z)-dimethyl 2-(allylimino)-5-(p-tolyl)dihydrothiophene-3,3(2H)-dicarboxylate (161): 

99% yield. Rf = 0.47 (7:3 Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 7.33–

7.29 (m, 2H), 7.19–7.15 (m, 2H), 5.98 (ddt, J = 17.2, 10.4, 5.2 Hz, 1H), 5.25 (dq, J = 

17.2, 1.8 Hz, 1H), 5.14 (dq, J = 10.4, 1.7 Hz, 1H), 4.72 (dd, J = 11.8, 4.8 Hz, 1H), 4.01 

(dt, J = 5.2, 1.8 Hz, 2H), 3.88 (s, 3H), 3.82 (s, 3H), 3.10 (dd, J = 13.1, 4.9 Hz, 1H), 2.88 

(dd, J = 13.0, 11.8 Hz, 1H), 2.35 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 168.2, 168.0, 

138.5, 134.9, 133.7, 129.7, 127.7, 116.3, 71.1, 59.5, 53.9, 53.7, 51.1, 44.5, 21.3; IR (Neat 

Film, NaCl) 3011, 2952, 1737, 1652, 1639, 1515, 1435, 1278, 1269, 1257, 1228, 1169, 

1071, 1018, 978, 921, 864, 848, 818, 790 cm-1; HRMS (Low Voltage MM: ESI-APCI) 

m/z calc’d for C18H22NO4S [M+H]+: 348.1264, found 348.1254.  

 

 

(Z)-dimethyl 2-(allylimino)-5-(4-(tert-butyl)phenyl)dihydrothiophene-3,3(2H)-

dicarboxylate (162): 

41% yield. Rf = 0.30 (3:1 Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 7.41–

7.32 (m, 4H), 5.98 (ddt, J = 17.1, 10.4, 5.2 Hz, 1H), 5.25 (dq, J = 17.2, 1.8 Hz, 1H), 5.13 

(dq, J = 10.4, 1.7 Hz, 1H), 4.71 (dd, J = 11.8, 4.9 Hz, 1H), 3.99 (dt, J = 5.1, 1.7 Hz, 2H), 

3.88 (s, 3H), 3.81 (s, 3H), 3.07 (dd, J = 13.0, 4.9 Hz, 1H), 2.90 (dd, J = 13.0, 11.8 Hz, 
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1H) 1.31 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 168.5, 168.2, 166.3, 151.6, 135.1, 134.1, 

127.5, 125.9, 116.0, 71.1, 59.8, 53.8, 53.6, 50.7, 44.3, 34.8, 31.4; IR (Neat Film, NaCl) 

2955, 2904, 2868, 1737, 1652, 1639, 1509, 1435, 1363, 1280, 1267, 1227, 1168, 1111, 

1070, 1016, 978, 920, 828 cm-1; HRMS (Low Voltage MM: ESI-APCI) m/z calc’d for 

C21H28NO4S [M+H]+: 390.1734, found 390.1726.  

 

 

(Z)-dimethyl 5-(4-acetoxyphenyl)-2-(allylimino)dihydrothiophene-3,3(2H)-

dicarboxylate (163):  

84% yield. Rf = 0.20 (3:1 Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 7.49–

7.41 (m, 2H), 7.12–7.05 (m, 2H), 5.97 (ddt, J = 17.2, 10.3, 5.2 Hz, 1H), 5.25 (dq, J = 

17.2, 1.8 Hz, 1H), 5.13 (dq, J = 10.4, 1.7 Hz, 1H), 4.72 (dd, J = 11.6, 4.9 Hz, 1H), 3.99 

(ddd, J = 7.0, 1.7, 1.0 Hz, 2H), 3.87 (s, 3H), 3.80 (s, 3H), 3.11 (dd, J = 13.1, 4.9 Hz, 1H), 

2.85 (dd, J = 13.1, 11.6 Hz, 1H), 2.30 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 169.5, 

168.4, 168.0, 165.8, 150.6, 135.8, 134.0, 129.0, 122.2, 116.0, 71.0, 59.8, 53.8, 53.6, 50.3, 

44.5, 21.3; IR (Neat Film, NaCl) 2953, 1736, 1649, 1639, 1507, 1436, 1370, 1280, 1257, 

1194, 1167, 1099, 1016, 911, 851 cm-1; HRMS (Low Voltage MM: ESI-APCI) m/z calc’d 

for C19H22NO6S [M+H]+: 392.1162, found 392.1159.  
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(Z)-dimethyl 2-(allylimino)-5-mesityldihydrothiophene-3,3(2H)-dicarboxylate (155): 

85% yield. White, translucent crystals were obtained by slow diffusion of 1% benzene in 

heptane into a solution of thioimidate 155 in EtOAc, M.P.: 89–91 °C; Rf = 0.52 (7:3 

Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 6.87–6.84 (m, 2H), 5.99 (ddt, J = 

17.2, 10.4, 5.2 Hz, 1H), 5.32 (dd, J = 12.5, 5.3 Hz, 1H), 5.24 (dq, J = 17.2, 1.8 Hz, 1H), 

5.13 (dq, J = 10.4, 1.7 Hz, 1H), 4.02 (dtd, J = 5.2, 1.8, 0.8 Hz, 2H), 3.90 (s, 3H), 3.84 (s, 

3H), 3.24 (dd, J = 13.3, 12.5 Hz, 1H), 2.93 (dd, J = 13.3, 5.3 Hz, 1H), 2.46 (s, 6H), 2.25 

(s, 3H); 13C NMR (126 MHz, CDCl3) δ 168.5, 168.3, 166.8, 137.9, 134.0, 130.9, 129.2, 

116.0, 71.1, 59.8, 53.8, 53.6, 46.2, 40.0, 21.3, 20.9; IR (Neat Film, NaCl) 3010, 2952, 

2918, 1737, 1649, 1638, 1611, 1435, 1267, 1230, 1203, 1167, 1097, 1073, 1015, 976, 

921, 954, 822, 799, 774, 739 cm-1; HRMS (Low Voltage MM: ESI-APCI) m/z calc’d for 

C20H26NO4S [M+H]+: 376.1577, found 376.1563.  

 

 

(Z)-dimethyl 2-(allylimino)-5-(2-chlorophenyl)dihydrothiophene-3,3(2H)-

dicarboxylate (164):  

84% yield. Rf = 0.48 (7:3 Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 7.65 

(dd, J = 7.8, 1.7 Hz, 1H), 7.38 (dd, J = 7.9, 1.4 Hz, 1H), 7.31 (td, J = 7.6, 1.4 Hz, 1H), 
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7.23 (td, J = 7.6, 1.7, 1H), 5.98 (ddt, J = 17.2, 10.4, 5.2 Hz, 1H), 5.30–5.22 (m, 2H), 5.14 

(dq, J = 10.4, 1.7 Hz, 1H), 4.03 (td, J = 4.4, 2.0 Hz, 2H), 3.88 (s, 3H), 3.77 (s, 3H), 3.19 

(dd, J = 13.0, 5.1 Hz, 1H), 2.84 (dd, J = 13.0, 11.0 Hz, 1H); 13C NMR (126 MHz, CDCl3) 

δ 168.1, 168.0, 165.7, 135.8, 134.0, 133.9, 130.0, 129.5, 128.5, 127.5, 116.1, 70.6, 59.7, 

53.8, 53.6, 47.0, 42.6; IR (Neat Film, NaCl) 3011, 2953, 1737, 1651, 1639, 1435, 1279, 

1256, 1228, 1171, 1130, 1100, 1069, 1051, 1038, 977, 921, 760 cm-1; HRMS (Low 

Voltage MM: ESI-APCI) m/z calc’d for C17H19
35ClNO4S [M+H]+: 368.0718, found 

368.0700.  

 

 

(Z)-dimethyl 2-(allylimino)-5-vinyldihydrothiophene-3,3(2H)-dicarboxylate (165): 

99% yield. Rf = 0.45 (7:3 Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 5.95 

(ddt, J = 17.2, 10.4, 5.2 Hz, 1H), 5.80 (ddd, J = 16.9, 10.0, 8.4 Hz, 1H), 5.33 (dq, J = 

16.9, 0.8 Hz, 1H), 5.23 (ddd, J = 17.3, 1.8, 0.6 Hz, 1H), 5.19 (d, J = 10.1. 1H), 5.13 (ddd, 

J = 10.4, 1.7, 0.7 Hz, 1H), 4.22 (m, 1H), 3.98 (dd, J = 5.2, 2.0 Hz, 2H), 3.84 (s, 3H), 3.81 

(d, J = 0.6 Hz, 3H), 2.97 (ddd, J = 13.1, 5.1, 0.8 Hz, 1H), 2.61 (dd, J = 13.1, 10.6 Hz, 

1H); 13C NMR (126 MHz, CDCl3) δ 168.1, 168.0, 135.7, 133.6, 118.9, 116.3, 70.5, 59.4, 

53.8, 53.7, 50.3, 42.2; IR (Neat Film, NaCl) 2952, 1735, 1649, 1638, 1434, 1328, 1272, 

1254, 1169, 1139, 1097, 1068, 987, 923, 859, 787, 728 cm-1; HRMS (Low Voltage MM: 

ESI-APCI) m/z calc’d for C13H18NO4S [M+H]+: 284.0951, found 284.0962.  
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(Z)-dimethyl 2-(cyclohexylimino)-5-phenyldihydrothiophene-3,3(2H)-dicarboxylate 

(166):  

91% yield. Rf = 0.40 (3:1 Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 7.46–

7.42 (m, 2H), 7.36 (ddd, J = 8.2, 7.1, 0.9 Hz, 2H), 7.30 (m, 1H), 4.69 (dd, J = 11.7, 4.9 

Hz, 1H), 3.87 (s, 3H), 3.78 (s, 3H), 3.08 (dd, J = 13.0, 4.9 Hz, 1H), 2.98 (tt, J = 10.1, 3.6 

Hz, 1H), 2.85 (dd, J = 13.0, 11.7 Hz, 1H), 1.85–1.72 (m, 4H), 1.65–1.57 (m, 1H), 1.57–

1.44 (m, 2H), 1.37–1.20 (m, 4H); 13C NMR (126 MHz, CDCl3) δ 168.6, 168.3, 161.5, 

138.6, 128.9, 128.4, 127.8, 70.8, 67.1, 53.7, 53.4, 50.6, 44.0, 32.8, 31.7, 25.8, 24.7, 24.6; 

IR (Neat Film, NaCl) 2930, 2854, 1738, 1651, 1435, 1168, 1067, 973, 912, 764 cm-1; 

HRMS (ESI) m/z calc’d for C20H26NO4S [M+H]+: 376.1577, found 356.1589. 

 

 

(Z)-dimethyl 2-(cyclohexylimino)-5-(p-tolyl)dihydrothiophene-3,3(2H)-dicarboxylate 

(167): 

99% yield. Rf = 0.63 (2:1 Hexanes: EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 7.35–

7.29 (m, 2H), 7.18–7.14 (m, 2H), 4.67 (dd, J = 11.8, 4.8 Hz, 1H), 3.86 (s, 3H), 3.78 (s, 

3H), 3.05 (dd, J = 13.0, 4.9 Hz, 1H), 2.98 (tt, J = 10.1, 3.6 Hz, 1H), 2.83 (dd, J = 13.0, 

11.8 Hz, 1H), 2.35 (s, 3H), 1.83–1.72 (m, 4H), 1.65–1.57 (m, 1H), 1.56–1.44 (m, 2H), 
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1.38–1.21 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 168.7, 168.3, 161.5, 138.2, 135.5, 

129.6, 127.6, 70.9, 67.0, 53.6, 53.4, 50.4, 44.0, 32.8, 31.7, 25.8, 24.7, 24.5, 21.2; IR (Neat 

Film, NaCl) 2929, 2853, 1735, 1648, 1434, 1255, 1167, 1071, 973, 818 cm-1; HRMS 

(APCI) m/z calc’d for C21H28NO4S [M+H]+: 390.1734, found 390.1738. 

 

 

(Z)-dimethyl 2-(allylimino)-5-(1-tosyl-1H-indol-3-yl)dihydrothiophene-3,3(2H)-

dicarboxylate (168):  

77% yield. Rf = 0.80 (1:1 Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 168.1, 

167.9, 166.2, 145.4, 135.5, 135.1, 133.6, 130.2, 128.9, 127.1, 125.5, 123.9, 123.5, 119.9, 

116.3, 114.0, 77.4, 70.5, 59.7, 53.9, 53.7, 42.7, 41.7, 21.7; 13C NMR (126 MHz, CDCl3) δ 

168.1, 167.9, 166.2, 145.4, 135.5, 135.1, 133.6, 130.2, 128.9, 127.1, 125.5, 123.9, 123.5, 

119.9, 116.3, 114.0, 77.4, 70.5, 59.7, 53.9, 53.7, 42.7, 41.7, 21.7; IR (Neat Film, NaCl) 

2953, 1738, 1639, 1447, 1372, 1275, 1175, 1126, 1095, 974, 912, 733 cm-1; HRMS (ESI) 

m/z calc’d for C26H27N2O6S2 [M+H]+: 527.1305, found 527.1298. 

 

 

(Z)-dimethyl 5-phenyl-2-(phenylimino)dihydrothiophene-3,3(2H)-dicarboxylate 

(154):  
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Prepared using General Procedure D, using phenylisothiocyanate. 89% yield. Rf = 

0.60 (3:1 Hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 7.41–7.37 (m, 2H), 

7.36–7.31 (m, 4H), 7.30–7.27 (m, 1H), 7.16–7.11 (m, 1H), 7.05–7.01 (m, 2H), 4.76 (dd, J 

= 11.7, 4.9 Hz, 1H), 3.97 (s, 3H), 3.87 (s, 3H), 3.19 (dd, J = 13.1, 4.9 Hz, 1H), 2.99 (dd, J 

= 13.1, 11.7 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 168.3, 167.9, 167.8, 151.0, 137.8, 

129.1, 129.0, 128.5, 127.8, 125.3, 120.2, 71.4, 54.0, 53.8, 51.2, 43.9; IR (Neat Film, 

NaCl) 3030, 2952, 1735, 1638, 1593, 1486, 1434, 1268, 1224, 1170, 1063, 973, 763 cm-1; 

HRMS (ESI) m/z calc’d for C20H20NO4S [M+H]+: 370.1108, found 370.1098. 

 

2.8.6   AMIDINE CHARACTERIZATION DATA 

All amidines were synthesized according to General Method E. 

 

 

(E)-dimethyl 1-isopropyl-2-(isopropylimino)-5-phenylpyrrolidine-3,3-dicarboxylate 

(170):  

98% yield. Rf = 0.39 (9:1 CH2Cl2:MeOH eluent); 1H NMR (400 MHz, CDCl3) δ 7.37–

7.18 (m, 5H), 4.52 (t, J = 7.1 Hz, 1H), 3.99 (p, J = 6.8 Hz, 1H), 3.79 (s, 3H), 3.70 (s, 3H), 

3.50 (hept, J = 6.0 Hz, 1H), 2.95 (dd, J = 12.8, 7.0 Hz, 1H), 2.33 (dd, J = 12.8, 7.2 Hz, 

1H), 1.15 (d, J = 6.8 Hz, 3H), 1.11 (d, J = 6.0 Hz, 3H), 1.05 (d, J = 5.9 Hz, 3H), 0.88 (d, 

J = 6.9 Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ 169.7, 169.2, 151.3, 143.8, 128.5, 127.8, 

127.0, 60.5, 59.8, 53.1, 52.9, 51.4, 47.3, 43.4, 24.7, 24.3, 19.6, 19.2; IR (Neat Film, 
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NaCl) 2963, 1731, 1659, 1436, 1261, 1212, 1063, 969 cm-1; HRMS (MM: ESI-APCI) m/z 

calc’d for C20H29N2O4 [M+H]+: 361.2122, found 361.2018. 

 

 

(R,E)-dimethyl 1-isopropyl-2-(isopropylimino)-5-phenylpyrrolidine-3,3-

dicarboxylate ((R)-170•HBr):   

Acetyl bromide (22 mL, 0.3 mmol) was dissolved in dichloromethane (3 mL) in a 10 

mL round bottom flask. Methanol (41 mL, 1 mmol) was added to the solution and this 

mixture was transferred into a second flask containing a solution of amidine (R)-170 (72 

mg, 0.2 mmol). The mixture was concentrated in vacuo and crystallized by vapor 

diffusion of diethyl ether into dichloromethane to produce fine colorless needles suitable 

for X-ray crystallography. [α]D
25.0 +8.8° (c 0.445, CHCl3, >98% ee). 

 

 

(E)-dimethyl 1-isopropyl-2-(isopropylimino)-5-(4-methoxyphenyl)pyrrolidine-3,3-

dicarboxylate (171):  

98% yield. Rf = 0.42 (9:1 CH2Cl2:MeOH eluent); 1H NMR (400 MHz, CDCl3) δ 7.25–

7.16 (m, 2H), 6.89–6.79 (m, 2H), 4.50 (br t, J = 6.9 Hz, 1H), 4.07–3.95 (br m, 1H), 3.79 

(s, 3H), 3.77 (s, 3H), 3.72 (s, 3H), 3.49 (p, J = 6.0 Hz, 1H), 2.93 (br dd, J = 12.8, 6.9 Hz, 

1H), 2.30 (br dd, J = 12.9, 7.3 Hz, 1H), 1.14 (br d, J = 6.9 Hz, 4H), 1.11 (d, J = 4.3 Hz, 
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2H), 1.05 (d, J = 6.0 Hz, 3H), 0.87 (d, J = 6.9 Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ 

169.5, 169.0, 159.3, 151.6, 135.2, 128.2, 113.9, 60.7, 59.6, 55.3, 53.2, 53.0, 51.4, 47.4, 

43.4, 24.5, 24.1, 19.7, 19.2.; IR (Neat Film, NaCl) 2963, 2928, 1736, 1654, 1612, 1513, 

1249, 1214, 1172, 1081 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C21H31N2O5 

[M+H]+: 391.2227, found 391.2208. 

 

 

(E)-dimethyl 5-([1,1'-biphenyl]-4-yl)-1-isopropyl-2-(isopropylimino)pyrrolidine-3,3-

dicarboxylate (172):  

92% yield. Rf = 0.42 (9:1 CH2Cl2:MeOH eluent); 1H NMR (500 MHz, CDCl3) δ 7.63–

7.53 (m, 4H), 7.47–7.38 (m, 4H), 7.37–7.32 (m, 1H), 4.59 (t, J = 7.1 Hz, 1H), 4.04 (hept, 

J = 6.9 Hz, 1H), 3.83 (s, 3H), 3.74 (s, 3H), 3.53 (hept, J = 5.9 Hz, 1H), 3.00 (dd, J = 12.8, 

7.0 Hz, 1H), 2.37 (dd, J = 12.8, 7.3 Hz, 1H), 1.20 (d, J = 6.8 Hz, 3H), 1.15 (d, J = 6.0 Hz, 

3H), 1.08 (d, J = 5.9 Hz, 3H), 0.95 (d, J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 

169.7, 169.2, 151.4, 142.9, 140.8, 140.7, 128.9, 127.5, 127.4, 127.2, 127.1, 60.6, 59.6, 

53.2, 53.0, 51.5, 47.4, 43.4, 24.7, 24.4, 19.8, 19.2; IR (Neat Film, NaCl) 2964, 1733, 

1658, 1486, 1435, 1375, 1358, 1264, 1216, 1165, 1126, 1076, 1008, 973, 841, 767, 733 

cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C26H33N2O4 [M+H]+: 437.2435, found 

437.2411.  
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(E)-dimethyl 5-(4-chlorophenyl)-1-isopropyl-2-(isopropylimino)pyrrolidine-3,3-

dicarboxylate (173):  

78% yield. Rf = 0.40 (9:1 CH2Cl2:MeOH eluent); 1H NMR (500 MHz, CDCl3) δ 7.30–

7.23 (m, 4H), 4.50 (t, J = 7.1 Hz, 1H), 4.00 (hept, J = 6.9 Hz, 1H), 3.80 (s, 3H), 3.71 (s, 

3H), 3.48 (hept, J = 5.9 Hz, 1H), 2.95 (dd, J = 12.8, 7.1 Hz, 1H), 2.27 (dd, J = 12.9, 7.1 

Hz, 1H), 1.13 (d, J = 6.7 Hz, 3H), 1.09 (d, J = 6.0 Hz, 3H), 1.04 (d, J = 5.9 Hz, 3H), 0.86 

(d, J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 169.6, 169.1, 151.2, 142.6, 133.4, 

128.7, 128.3, 60.4, 59.1, 53.2, 53.0, 51.5, 47.3, 43.3, 24.7, 24.3, 19.9, 19.1; IR (Neat 

Film, NaCl) 2965, 1733, 1658, 1489, 1435, 1376, 1359, 1269, 1214, 1165, 1126, 1088, 

1014, 974, 831 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C20H28
35ClN2O4 [M+H]+: 

395.1732, found 395.1755.  

 

 

dimethyl 2-imino-5-phenylpyrrolidine-3,3-dicarboxylate (174):  

78% yield. Rf = 0.45 (9:1 CH2Cl2:MeOH eluent); 1H NMR (500 MHz, CDCl3) δ7.34–

7.27 (m, 3H), 7.25–7.21 (m, 2H), 4.99 (dd, J = 8.2, 6.9 Hz, 1H), 3.83 (s, 3H), 3.77 (s, 

3H), 3.10 (dd, J = 13.6, 7.0 Hz, 1H), 2.37 (dd, J = 13.6, 8.1 Hz, 1H); 13C NMR (126 

MHz, CDCl3) δ 168.9, 168.3, 160.2, 144.2, 128.6, 127.1, 126.4, 68.4, 67.4, 53.6, 53.4, 

42.8; IR (Neat Film, NaCl) 3449, 3028, 1729, 1665, 1600, 1435, 1386, 1354, 1279, 1243, 
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1201, 1154, 1114, 1075, 765 cm-1; HRMS (FAB+) m/z calc’d for C14H17N2O4 [M+H]+: 

277.1188, found 277.1176. 

 

 

dimethyl 2-imino-5-(4-methoxyphenyl)pyrrolidine-3,3-dicarboxylate (175):  

68% yield. Rf = 0.47 (9:1 CH2Cl2:MeOH eluent); 1H NMR (500 MHz, CDCl3) δ 7.23–

7.16 (m, 2H), 6.84 (dd, J = 6.8, 1.9 Hz, 2H), 4.97–4.88 (m, 1H), 3.82 (s, 3H), 3.78 (s, 

3H), 3.76 (s, 3H), 3.06 (dd, J = 13.6, 6.9 Hz, 1H) 2.34 (dd, J = 13.6, 8.1 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ 168.9, 168.3, 160.1, 158.7, 136.3, 127.5, 113.9, 113.9, 67.8, 

67.4, 55.4, 53.6, 53.4, 42.9; IR (Neat Film, NaCl) 3464, 3374, 3102, 2955, 2838, 1738, 

1662, 1612, 1514, 1439, 1351, 1247, 1213, 1175, 1105, 1077, 1034, 831, 733 cm-1; 

HRMS (FAB+) m/z calc’d for C15H19N2O5 [M+H]+: 307.1294, found 307.1287.  

 

 

(E)-dimethyl 1-isopropyl-2-(isopropylimino)-5-methyl-5-phenylpyrrolidine-3,3-

dicarboxylate (176):  

58% yield. Rf =0.35 (10:1 CHCl3:MeOH eluent); 1H NMR (500 MHz, CDCl3) δ 7.48–

7.44 (m, 2H), 7.38–7.33 (m, 2H), 7.29–7.24 (m, 1H), 3.85 (s, 3H), 3.71 (s, 3H), 3.44 (dt, 

J = 11.8, 5.9 Hz, 1H), 3.09–2.99 (hept, J = 6.7 Hz, 1H), 2.83–2.72 (m, 2H), 1.61 (s, 3H), 

1.35 (dd, J = 17.2, 6.7 Hz, 6H), 1.10 (dd, J = 18.8, 5.9 Hz, 6H); 13C NMR (126 MHz, 
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CDCl3) δ 170.5, 170.2, 148.5, 146.8, 128.3, 127.2, 126.7, 64.8, 60.3, 53.2, 53.1, 51.4, 

50.5, 47.1, 24.9, 24.8, 24.5, 19.9, 19.1; IR (Neat Film, NaCl) 2963, 1731, 1654, 1375, 

1251, 1217, 1090 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C21H31N2O4 [M+H]+: 

375.2278, found 375.2297. 

 

 

(E)-dimethyl 1,5-diphenyl-2-(phenylimino)pyrrolidine-3,3-dicarboxylate (177):   

79% yield. Rf =0.32 (10:1 CH2Cl2:MeOH eluent); 1H NMR (400 MHz, DMSO-d6, 80 °C) 

δ 7.34–7.16 (m, 8H), 7.10 (dt, J = 15.2, 7.6 Hz, 5H), 6.95 (t, J = 7.4 Hz, 1H), 6.80 (t, J = 

7.3 Hz, 1H), 6.71 (d, J = 7.7 Hz, 2H), 5.28 (t, J = 7.0 Hz, 1H), 3.66 (s, 3H) 3.45 (s, 3H), 

3.17 (dd, J = 13.0, 7.2 Hz, 1H), 3.05 (s, 1H), 2.71 (dd, J = 13.0, 6.9 Hz, 1H); 13C NMR 

(101 MHz, DMSO-d6, 100 °C) δ 168.5, 168.2, 152.0, 148.4, 148.3, 140.9, 129.6, 129.5, 

129.4, 129.3, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.2, 128.2, 128.1, 128.0, 127.7, 

127.5, 127.4, 127.3, 127.2, 126.6, 125.9, 124.6, 122.0, 121.9, 120.9, 64.1, 63.1, 62.7, 

55.3, 54.5, 54.3, 53.4, 52.6, 52.4, 51.9, 43.0; IR (Neat Film, NaCl) 3062, 3027, 2948, 

1730, 1661, 1592, 1493, 1372, 1263, 1051 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for 

C26H25N2O4 [M+H]+: 429.1809, found 429.1825. 
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(R,E)-dimethyl 1,5-diphenyl-2-(phenylimino)pyrrolidine-3,3-dicarboxylate ((R)-177): 

Characterization data same as above; [α]D
25.0 +36.7° (c 0.805, CHCl3, 88% ee). 
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APPENDIX 1† 

Supplementary Synthetic Information for Chapter 2 

 

 

A1.1  INTRODUCTION 

This appendix discusses cyclopropanes and heterocumulenes that did not successfully 

react to form the desired heterocycles.  Efforts to use a tin-phenanthroline complex as the 

catalyst are also presented.  Finally, two attempts at product derivitization are included. 

 

A1.2  UNREACTIVE CYCLOPROPANES 

During our investigations of the substrate scope of these reactions, we 

encountered a number of cyclopropanes that did not undergo the desired reactivity 

(Figure A1.1).  Cyclopropanes with aryl substitutents incorporating coordinating 

groups such as pyridine rings (210 and 211) failed to produce the desired 

heterocycles even in the presence of additional sacrificial Lewis acid to coordinate 

to the pyridine nitrogen atom.  Attempts to replace the aryl or vinyl donor groups of 

successful substrates with alkyl groups (212 and 213) were also unsuccessful.  An 
                                                      

† This work was performed in collaboration with Dr. Alexander F. G. Goldberg and Dr. Robert A. 
Craig, II, alumni of the Stoltz group.  
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examination of the acceptor groups revealed both ester functionalities to be critical, 

as cyclopropanes with one (214) or zero (215) carboxylate groups were completely 

unreactive under our conditions.  Finally, highly functionalized cyclopropane 216 

did not react under our carbodiimide conditions, likely due to its lack of a clearly 

polarized C–C bond. 

 

Figure A1.1  Unreactive cyclopropanes 

 

 

 

 

A1.3  PROBLEMATIC HETEROCUMULENES 

A variety of heterocumulenes were also found to lack the desired reactivity.  

Treatment of cyclopropanes with tosylisocyanate (217) or phenylisocyanate (218) 

resulted in no formation of the desired lactams (Figure A1.2).  Aryl isothiocyanates (219) 

were also unreactive under our tin-mediated conditions, although we were able to obtain 

reactivity using conditions similar to those reported by Li (see Scheme 2.8).1  Finally, the 

use of a mixed carbodiimide (220) afforded an inseparable mixture of isomeric products. 
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Figure A1.2  Problematic heterocumulenes 

 

 

A1.4  TESTING FOR PRODUCT INHIBITION 

The requirement for stoichiometric Lewis acid in all reactions, regardless of 

dipolarophile identity is a practical drawback for which a solution has not yet been 

discovered.  Product inhibition of the catalyst does not appear to play a role, as 

experiments showed the reaction to proceed smoothly in the presence of a slight excess of 

an amidine product (Scheme A1.1).  Attempts to catalyze the reaction with 

phenanthroline-ligated tin complexes were also unsuccessful. 

 

Scheme A1.1  Testing for product inhibition 

 

 

A1.5  PRODUCT DERIVATIZATIONS 

To demonstrate the utility of the thioimidate products produced by our method, we 

attempted several derivatizations.  Decarboxylation using Krapcho’s protocol2 was 

successful, delivering monocarboxylate 221 in good yield as a single diastereomer 

(Scheme A1.2A).  Interestingly, while a single decarboxylation could be carried out 
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easily at room temperature, heating to achieve a double decarboxylation gave a complex 

mixture.  Unfortunately, an attempt to form a thiolactam from lactam 148 using 

Lawesson’s reagent was unsuccessful (Scheme A1.2B), as were several attempts to 

hydrolyze thioimidates or amidines to thioester or lactam products (Scheme A1.2C).  

 

Scheme A1.2  Derivatization of the cycloadducts 

 

 

A1.6  EXPERIMENTAL SECTION 

A1.6.1  MATERIALS AND METHODS 

Unless stated otherwise, reactions were performed in flame-dried or oven-dried 

glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents 

(distilled or passed over a column of activated alumina).3  Diazodimethylmalonate was 

prepared according to the method of Davies and coworkers.4  Cyclopropylbenzene, 
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potassium cyanate, and all organic heterocumulenes except phenylisopropylcarbodiimide 

were obtained from commercial suppliers.  Cyclopropane 233 was obtained upon request 

from the research laboratories of Professor John L. Wood at Colorado State University 

(currently at Baylor University).  Commercially obtained reagents were used as received 

with the exception of tin(II) triflate and iron(III) chloride, which were stored in a 

nitrogen-filled glovebox.  A separate bottle of iron(III) chloride was stored in a calcium 

sulfate desiccator on the benchtop.  Thin-layer chromatography (TLC) was performed 

using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized by UV 

fluorescence quenching, potassium permanganate, or p-anisaldehyde staining.  SiliaFlash 

P60 Academic Silica gel (particle size 0.040-–0.063 mm) was used for flash 

chromatography.  1H and 13C NMR spectra were recorded on a Varian 400 (at 400 MHz 

and 100 MHz, respectively) or on a Varian Mercury 500 (at 500 MHz and 126 MHz, 

respectively) and are reported relative to CHCl3 (δ 7.26 & 77.16 ppm, respectively) or 

tetramethylsilane (0.00 ppm).  Data for 1H NMR spectra are reported as follows: 

chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration).  Abbreviations 

are used as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, hept = 

heptet, m = complex multiplet, app = apparent.  IR spectra were recorded on a Perkin 

Elmer Paragon 1000 Spectrometer and are reported in frequency of absorption (cm–1).  

HRMS were acquired using an Agilent 6200 Series TOF with an Agilent G1978A 

Multimode source in electrospray ionization (ESI), atmospheric pressure chemical 

ionization (APCI), or mixed (MM) ionization mode. 
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A1.6.2  SYNTHESIS OF UNREACTIVE CYCLOPROPANES 

 

dimethyl 2-(pyridin-2-yl)cyclopropane-1,1-dicarboxylate (210): 

Benzylidene dimethylmalonate 226 was prepared according to the method described 

in General Procedure A, Experimental Section, Chapter 2: 97% yield. Rf = 0.81 (3:1 

Hexanes:EtOAc eluent). Characterization data match those reported in the literature.5  

Cyclopropane 210 was prepared according to the method described in General Procedure 

B, Experimental Section, Chapter 2 using saturated aqueous ammonium chloride in the 

workup instead of 2 M HCl:  95% yield.  Rf = 0.30 (3:1 Hexanes:EtOAc eluent); 1H NMR 

(500 MHz, CDCl3) δ 8.45–8.34 (ddd, J = 4.8, 1.9, 1.0 Hz, 1H), 7.62–7.53 (tdd, J = 7.3, 

4.9, 1.1 Hz, 1H), 7.29–7.26 (dt, J = 7.9, 1.1 Hz, 1H), 7.12–7.05 (ddt, J = 7.3, 4.9, 1.1 Hz, 

1H), 3.82–3.68 (m, 3H), 3.53–3.43 (m, 3H), 3.12–3.06 (ddd, J = 8.8, 7.4, 1.1 Hz, 1H), 

2.36–2.31 (ddd, J = 7.4, 4.5, 1.1 Hz, 1H), 1.84–1.78 (ddd, J = 9.0, 4.5, 1.1 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ 170.3, 167.3, 155.4, 149.0, 136.3, 124.0, 122.0, 53.0, 52.4, 

38.0, 33.0, 20.5; IR (Neat Film, NaCl) 3011, 2952, 1734, 1593, 1570, 1477, 1437, 1379, 

1334, 1301, 1275, 1210, 1132, 1085, 998, 970, 924, 878, 807, 759, 749 cm-1; HRMS 

(MM: ESI-APCI) m/z calc’d for C12H14NO4 [M+H]+: 236.0917, found 236.0911. 
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dimethyl 2-(pyridin-2-yl)cyclopropane-1,1-dicarboxylate (211): 

Benzylidene dimethylmalonate 228 was prepared according to the method described 

in General Procedure A, Experimental Section, Chapter 2: 76% yield.  Rf = 0.58 (1:1 

Hexanes:EtOAc eluent); 1H NMR (400 MHz, CDCl3) δ 8.72–8.60 (m, 2H), 7.68 (s, 1H), 

7.29–7.21 (m, 2H), 3.87 (s, 3H), 3.83 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 166.0, 

163.8, 150.7, 140.4, 140.0, 129.9, 122.8, 53.2, 53.1; IR (Neat Film, NaCl) 2954, 1732, 

1638, 1596, 1437, 1374, 1269, 1225, 1067, 813 cm-1; HRMS (MM: ESI-APCI) m/z calc’d 

for C11H12NO4 [M+H]+: 222.0761, found 222.0750.  Cyclopropane 211 was prepared 

according to the method described in General Procedure B, Experimental Section, 

Chapter 2:  81% yield.  Rf = 0.13 (3:1 Hexanes:EtOAc eluent); 1H NMR (500 MHz, 

CDCl3) δ 8.42 (d, J = 5.6 Hz, 2H), 7.02 (dd, J = 4.4, 1.7 Hz, 2H), 3.73 (s, 3H), 3.35 (s, 

3H), 3.07 (dd, J = 9.1, 7.9, 1H), 2.11 (dd, J = 8.0, 5.4 Hz, 1H), 1.71 (dd, J = 9.1, 5.4 Hz, 

1H); 13C NMR (126 MHz, CDCl3) δ 169.5, 166.4, 149.6, 144.1, 123.3, 53.0, 52.5, 37.7, 

30.9, 18.7; IR (Neat Film, NaCl) 3029, 2954, 1732, 1601, 1437, 1335, 1282, 1212, 1133, 

991, 836 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C12H14NO4 [M+H]+: 236.0917, 

found 236.0908. 

 

 

dimethyl spiro[2.5]octane-1,1-dicarboxylate (212): 

Cyclopropane 212 was prepared according to the method described in General 

Procedure C, Experimental Section, Chapter 2:  40% yield.  Rf = 0.20 (9:1 

Hexanes:EtOAc eluent).  Characterization data match those reported in the literature.6 
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dimethyl 2-isopropylcyclopropane-1,1-dicarboxylate (213): 

Isopropylidene dimethylmalonate 231 was prepared according to the method 

described in General Procedure A, Experimental Section, Chapter 2: 94% yield.  Rf = 

0.30 (9:1 Hexanes:EtOAc eluent).  Characterization data match those reported in the 

literature.7  Cyclopropane 213 was prepared according to the method described in 

General Procedure B, Experimental Section, Chapter 2: Rf = 0.40 (9:1 Hexanes:EtOAc 

eluent).  Characterization data match those reported in the literature.8 

 

 

methyl 2-phenylcyclopropanecarboxylate (214): 

Cyclopropane 214 was prepared according to the method described in General 

Procedure B, Experimental Section, Chapter 2: 24% yield.  Rf = 0.60 (3:1 

Hexanes:EtOAc eluent).  Characterization data match those reported in the literature.9 
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To a flame-dried round-bottomed flask equipped with a magnetic stir bar were added 

carboxylic acid 233 (200 mg, 0.77 mmol) and potassium carbonate (131 mg, 0.95 mmol).  

Acetone (8.75 mL) and dimethylsulfate (90 μL) were added and the heterogeneous 

mixture was stirred at ambient temperature for 1 hour.  The mixture was poured into 

water (20 mL) and ether (20 mL).  The ether layer was separated, dried over magnesium 

sulfate, and filtered and concentrated in vacuo to give the crude product, which was 

purified by silica gel column chromatography (3:1 hexanes:EtOAc) to afford 

cyclopropane 216 as a colorless oil (179 mg, 84% yield).  Rf = 0.60 (3:1 Hexanes:EtOAc 

eluent).  1H NMR (500 MHz, CDCl3) δ 7.64 (ddd, J = 7.7, 1.2, 0.6 Hz, 1H), 7.30 (td, J = 

7.7, 1.2 Hz, 1H), 7.06 (td, J = 7.7, 1.1 Hz, 1H), 6.90 (ddd, J = 7.8, 1.2, 0.5 Hz, 1H), 3.67 

(s, 3H), 3.27 (s, 3H), 2.79 (s, 1H), 1.61 (s, 3H), 1.60 (s, 3H).  13C NMR (126 MHz, CDCl-

3) δ 173.8, 169.3, 144.3, 127.1, 125.6, 125.0, 121.6, 107.9, 51.7, 41.9, 40.8, 35.0, 26.6, 

20.6, 17.0. 

 

A1.6.3  SYNTHESIS OF MIXED CARBODIIMIDE 220 

 

Thiourea 235.  Prepared according to the method of Zhou and coworkers.10  To a 

flame-dried round-bottom flask, equipped with a magnetic stir bar and fitted with a 

rubber septum was added phenyl isothiocyanate (1.2 mL, 10 mmol, 1 equiv) and 

anhydrous THF (32 mL) under an inert atmosphere.  To the stirring solution was added 

isopropylamine (1.64 mL, 20 mmol, 2 equiv) dropwise.  The rubber septum was quickly 
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replaced with a reflux condenser fitted with a hose adapter, connected to an inert 

atmosphere manifold.  The resulting solution was heated to reflux with stirring for 40 

minutes.  The reaction mixture was then cooled to ambient temperature and the solvent 

was removed in vacuo.  The residue was dissolved in ethyl acetate (60 mL) and washed 

with aqueous hydrochloric acid (10 mL, 1 N) and brine (10 mL), and the organic phase 

was dried over sodium sulfate, filtered, and concentrated in vacuo to afford crude 

thiourea 235 (1.89 g, 97%) as a white solid which was carried forward directly to the next 

step in the synthesis. 

Carbodiimide 220.  Prepared according to the method of Fell and Coppola.11  To a 

flame-dried, round-bottom flask, equipped with a magnetic stir bar was added crude 

thiourea 235 (971 mg, 5 mmol, 1 equiv).  The flask was sealed with a rubber septum and 

placed under an inert atmosphere.  To the flask was added dry dichloromethane (50 mL, 

0.1 M) and freshly distilled triethylamine (2.1 mL, 15 mmol, 3 equiv), followed by a 

dropwise addition of mesyl chloride (0.78 mL, 10 mmol, 2 equiv).  Complete 

consumption of starting material was observed within 5 minutes, as determined by TLC.  

The volatiles were removed in vacuo, and a precipitate was observed.  The mixture was 

filtered twice through silica gel (100 mL), eluting with dichloromethane, then purified by 

silica gel column chromatography (10:1 hexanes:EtOAc) to afford carbodiimide 220 

(332.2 mg, 41% yield) as a yellow oil: Rf = 0.81 (3:1 Hexanes:EtOAc eluent); 1H NMR 

(300 MHz, CDCl3) δ 7.38–7.20 (m, 2H), 7.21–7.02 (m, 3H), 3.80 (hept, J = 6.4 Hz, 1H), 

1.35 (d, J = 6.5 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 140.9, 136.6, 129.4, 124.7, 123.4, 

50.3, 24.9; IR (Neat Film, NaCl) 3419, 3067, 2973, 2129, 1637, 1592, 1501, 1454, 1367, 

1320 cm-1; HRMS (ESI) m/z calc’d for C10H13N2 [M+H]+: 161.1073, found 161.1077. 
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A1.6.4  INVESTIGATION OF PRODUCT INHIBITION 

 

 

To an oven-dried 1 dram vial equipped with a magnetic stir bar was added tin(II) 

trifluoromethanesulfonate (0.44 mmol) in an inert atmosphere glovebox.  The vial was 

sealed with a screw cap fitted with a Teflon® septum, removed from the glovebox, and 

placed under a nitrogen atmosphere. To a separate, oven-dried 1 dram vial were added 

cyclopropane 140 (106 mg, 0.4 mmol), carbodiimide (68 µL, 0.44 mmol), and amidine 

171 (195 mg, 0.5 mmol).  The vial was sealed with a screw cap fitted with a Teflon® 

septum, and the mixture was transferred to the first vial as a solution in anhydrous 

dichloromethane (1 mL + 0.33 mL rinse). The heterogeneous reaction mixture was then 

allowed to stir at ambient temperature under nitrogen for 10 minutes.  TLC and LCMS 

analysis showed complete conversion of the starting material and an increase in 

concentration of product amidine 171. 

 

A1.6.5  PRODUCT DERIVATIZATIONS 
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Krapcho decarboxylation.  To a 1 dram vial equipped with a magnetic stir bar were 

added thioimidate 166 (100 mg, 0.27 mmol) and sodium cyanide (132 mg, 2.7 mmol).  

DMSO (2.3 mL) and water (2 drops) were added, the vial was capped, and the mixture 

was stirred vigorously at ambient temperature for 48 hours.  The reaction mixture was 

partitioned between ether (5 mL) and water (5 mL), and the aqueous layer was extracted 

with ether (3 x 10 mL).  The organic layers were combined and washed with water (3 x 

10 mL), brine (1 x 10 mL), dried over magnesium sulfate, and filtered and concentrated 

in vacuo to give the crude product, which was purified by silica gel column 

chromatography (95:5 hexanes:EtOAc) to afford thioimidate 221 as a colorless oil (65 

mg, 95% yield).  1H NMR (500 MHz, CDCl3) δ 8.14 (s, 1H), 7.48–7.40 (m, 2H), 7.37–

7.31 (m, 2H), 7.31 (m, 1H), 4.84 (t, J = 8.1 Hz, 1H), 3.69 (s, 3H), 3.39 (dd, J = 13.9, 8.5 

Hz, 1H), 3.20 (dp, J = 9.3, 5.1 Hz, 1H), 3.14 (dd, J = 14.0, 7.7 Hz, 1H), 2.01 (m, 2H), 

1.83–1.70 (m, 2H), 1.69–1.54 (m, 2H), 1.41–1.28 (m, 3H), 1.28–1.17 (m, 1H).  13C NMR 

(126 MHz, CDCl3) δ 167.0, 165.2, 141.7, 128.7, 127.7, 127.2, 86.5, 56.6, 51.6, 50.2, 

40.8, 34.1, 33.9, 25.3, 24.6, 24.6. 

 

 

Attempted synthesis of a thiolactam.  To an oven-dried 1 dram vial equipped with a 

magnetic stir bar were added lactam 140 (12 mg, 0.035 mmol), Lawesson’s reagent (56 

mg, 0.140 mmol), and dichloromethane (70 μL).  The mixture was stirred at room 

temperature for 15 hours, but TLC, LCMS, and 1H NMR analysis showed no conversion. 
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APPENDIX 2† 

Application of Cyclopropane Cycloadditions toward the Synthesis 

of Tetrahydroisoquinoline Alkaloids and Discovery of a 

Novel Route to Isoindolones 

 

 

A2.1  INTRODUCTION AND INITIAL RETROSYNTHETIC ANALYSIS 

The tetrahydroisoquinoline (THIQ) alkaloids are a large class of natural products 

which have attracted attention from the synthetic community due to their potentially 

useful biological activities and structural diversity.1  Our research laboratory has 

completed total syntheses of the antitumor bis-THIQ alkaloids lemonomycin (236)2 and 

quinocarcin (237)3 using Pictet–Spengler and aryne annulation strategies, respectively 

(Figure A2.1A).  Simpler THIQ alkaloids, such as those shown in Figure A2.1B,4 also 

possess notable bioactivities, and our ability to rapidly access 5-aryl γ-lactams by 

cycloadditions of donor–acceptor cyclopropanes and isocyanates inspired us to work 

toward a concise route to these targets. 

 
                                                      

† This work was performed in collaboration with Dr. Alexander F. G. Goldberg and Moriam Masha, 
alumni of the Stoltz group.  
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Figure A2.1  A) Tetrahydroisoquioline alkaloids previously synthesized in our laboratory.  B) 

Tetrahydroisoquinoline alkaloids targeted for application of a cyclopropane-isocyanate 

cycloaddition. 

 

We envisioned these alkaloids could be accessed from common intermediate 239 by 

double Krapcho decarboxylation and either demethylation (to afford trolline and 

oleracein E) or lactam reduction (to afford crispine A).  Lactam 239 was to be 

constructed using an intramolecular cycloaddition of isocyanate 240, which in turn would 

be accessed from acid 241.  This carboxylic acid would be assembled by a cross coupling 

between aryl halide (242) and cyclopropylmetal (243) components (Scheme A2.1). 
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Scheme A2.1  Retrosynthetic analysis of 136, 238, and 137 

 

 

A2.2  TOWARD THE SYNTHESIS OF AN INTRAMOLECULAR 

CYCLOADDITION SUBSTRATE 

In the forward direction, aryl halides 244–247 were synthesized according to reported 

methods or standard procedures.  Cyclopropylboronate ester 248 was synthesized using 

the method developed by Gevorgyan.5  Although the enantioenriched product is known, 

we chose to probe initial reactivity using the racemic compound, which would also allow 

access to both trolline and oleracein E through a divergent synthesis.  Unfortunately, 

various attempts to hydrolyze the boronate ester of 248 were unsuccessful, leaving us 

unable to evaluate the presumably more reactive boronic acid in the coupling reaction.  

However, we were able to synthesize cyclopropylstannane 249 using conditions reported 

by Gevorgyan,6 which allowed for an alternative organometallic coupling partner to be 

studied.   
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Figure A2.2  Cross-coupling partners prepared 

 

Unfortunately, despite extensive screening of conditions using the coupling partners 

shown above, we were unable to achieve the desired transformation, with all attempts 

displaying either significant protodehalogenation or a total lack of reactivity.  However, 

we were able to couple bromide 246 with vinyltributylstannane to afford styrene 250 in 

moderate yield.  Although not pursued due to concerns about step count, a conceivable 

route forward would involve styrene cyclopropanation, cleavage of the tert-butyl ester 

group, formation of the isocyanate by Curtius rearrangement, and subsequent 

cycloaddition to afford the desired lactam 239. 

 

Scheme A2.2  Successful cross-coupling of aryl bromide 246 with vinyltributylstannane 

 

 

A2.3  REVISED RETROSYNTHETIC ANALYSIS 

Given our inability to construct cyclopropane 241 in a concise fashion, we turned our 

attention to the use of an intermolecular cycloaddition, which would allow for the joining 

of simpler fragments.  Specifically, the targeted alkaloids would still be accessed from 
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common intermediate 239, but this tricycle would be formed by an intramolecular 

Friedel–Crafts alkylation of lactam 251.  The Friedel–Crafts substrate would be 

constructed by an intermolecular cycloaddition between known cyclopropane 2527 and 

commercially available isocyanate 253. 

 

Scheme A2.3  Revised retrosynthetic analysis 

 

 

A2.4  ATTEMPTED INTERMOLECULAR CYCLOADDITION 

Cyclopropane 252 was prepared using known methods and exposed to isocyanate 253 

in the presence of either iron(III) chloride or tin(II) triflate.  Unfortunately both cases 

resulted in decoposition (Scheme A2.4A).  In order to determine the problematic 

component, we conducted control reactions between isocyanate 253 and a cyclopropane 

known to be competent in cycloadditions with isocyanates (195).  These experiments 

resulted in decomposition, suggesting 253 is not compatible with the reaction conditions 
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(tert-butyldimethysiloxy)ethylisocyanate, and trimethylsilylisocyanate (planning future 

lactam N-alkylation) were also unsuccessful, we suspected the cyclopropane partner 

(252) may also be problematic. 

 

Scheme A2.4  A) Unsuccessful intramolecular cycloadditions.  B) A control experiment with a 

competent cyclopropane. 

 

 

To investigate the viability of cyclopropane 252 in cycloadditions with dipolarophiles 

known to be competent (Scheme A2.5).  Reaction of 252 with allyl isothiocyanate 

afforded only decomposition products, but cycloaddition with diisopropylcarbodiimide 

smoothly provided amidine 256.  The use of benzyl isocyanate gave rise to a mixture of 

expected lactam 257 in 47% yield as well as isoindolone 258 in 40% yield.  These results 

suggested cyclopropane 252 is a problematic substrate in the desired cycloaddition 

reaction, which combined with the uncooperative reactivity of isocyanate 253 

significantly limits the feasibility of our revised synthetic plan. 
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Scheme A2.5  Control experiments with competent dipolarophiles 

 

 

A2.5  INVESTIGATION OF THE ISOINDOLONE FORMATION  

We did not observe the formation of isoindolone products or byproducts during our 

previous studies of cyclopropane cycloadditions with isocyanates (see Chapter 2).  

However, we believe this can be accounted for by considering the mechanisms by which 

the 5-aryl lactam and isoindolone products are formed, which are shown in Scheme A2.6.  
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the electrophilic carbon (and subsequent rearomatization) furnishes isoindolone 258 

(pathway b, blue).  The requirement for a highly electron-rich aryl ring accounts for the 

lack of isoindolone formation in our earlier studies, as only less electron-rich substrates 

were used.  Indeed, similar reactivity between cyclopropanes and olefins9 and alkynes,10 

as well as dimerization7,11 and intramolecular rearrangement12 reactions all require very 

electron-rich aryl groups. 

 

Scheme A2.6  Proposed mechanism for the formation of 5-aryl γ-lactam 257 and isoindolone 258 

 

Despite the similar methods mentioned above,7–10 isocyanates (or any other 

heteroatom-containg dipolarophiles) were not reported to undergo such reactions.  Given 

the prevalence of isoindolones in biologically active compounds13 and our discovery of a 

novel method for their synthesis, we attempted to optimize conditions for their formation.  

Unfortunately, screening a number of Lewis acids, solvents, and isocyanate equivalents 

provided no useful insights, with only low conversion or decomposition being observed. 

We next investigated the influence of the aryl donor group on the cyclopropane, 

reasoning that a more strongly electron-donating group would allow the aryl group to 
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better compete with the malonate moiety in attacking the electrophilic carbon atom.  

While the use of heteroaryl donor groups such as furyl (261) and indolyl (209) 

cyclopropanes resulted in only decomposition, use of a 3,4,5-trimethoxyphenyl donor 

group (264) afforded the isoindolone product as the exclusive product in moderate yield. 

 

Scheme A2.7  Attempts at isoindolone formation from cyclopropanes with strongly electron-

donating groups 

 

Similarly, more strongly electron-withdrawing acceptor groups on the cyclopropane 

should shift the product distribution to favor the isoindolones.  Unfortunately attempts to 

synthesize cyclopropanes with acceptor groups derived from Meldrum’s acid or 1,3-

dimethylbarbituric acid were not successful.14 
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A2.6  FUTURE DIRECTIONS 

A2.6.1  THIQ ALKALOID SYNTHESIS 

Although the use of an intermolecular cyclopropane-isocyanate cycloaddition in the 

THIQ alkaloid synthesis does not appear promising, the success of a carbodiimide 

dipolarophile in the cycloaddition reaction (Scheme A2.5B) suggests a different approach 

may be feasible.  Utilization of bis(2-chloroethyl)carbodiimide (or a more stable 

analogue) would enable the synthesis of amidine 266, which could undergo a sequence of 

Fridel–Crafts alkylation and amidine hydrolysis15 to afford lactam 239 (Scheme A2.8).  

This common intermediate could be advanced to the target molecules as described above. 

 

Scheme A2.8  Proposed synthetic route utilizing a cyclopropane-carbodiimide cycloaddition 

 

 

A2.6.2  SYNTHESIS OF ISOINDOLONES 

Our newly discovered route to isoindolones requires further optimization, but the 

demonstrated ability of a 3,4,5-trimethoxyphenyl donor group to suppress formation of 
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slightly increasing the electron-withdrawing ability of the acceptor groups (268–270, 

MeO

MeO

252

CO2Me

CO2Me

Lewis acid

MeO

MeO N
N

MeO2C
CO2Me

266

N
C
N

Cl

Cl

Cl

Cl
Friedel–Crafts alkylation

amidine hydrolysis

MeO

MeO

267

N
N

CO2Me
CO2Me

Cl Scheme A2.1

MeO

MeO

239

N
O

CO2Me
CO2Me

Trolline
Oleracein E
Crispine A



Appendix 2 – Application of Cyclopropane Cycloadditions to Alkaloid Synthesis  

 

107 

Figure A2.3) and re-screening of Lewis acids and solvents with the 3,4,5-

trimethoxyphenyl cyclopropane substrate. 

 

Figure A2.3  Cyclopropanes bearing slighly more electron-withdrawing acceptor groups 

 

 

A2.7  EXPERIMENTAL SECTION 

A2.7.1  MATERIALS AND METHODS 

Unless stated otherwise, reactions were performed in flame-dried or oven-dried 

glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents 

(distilled or passed over a column of activated alumina).16  All heterocumulenes were 

obtained from commercial suppliers.  Commercially obtained reagents were used as 

received with the exception of tetrakis(triphenylphospine)palladium(0), tin(II) triflate, 

and iron(III) chloride, which were stored in a nitrogen-filled glovebox.  

Diazodimethylmalonate was prepared according to the method of Davies and 

coworkers.17  Cyclopropanes 195 and 209 were prepared as described in Chapter 2.  Thin-

layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated 

plates (0.25 mm) and visualized by UV fluorescence quenching, potassium 

permanganate, or p-anisaldehyde staining.  SiliaFlash P60 Academic Silica gel (particle 

size 0.040–0.063 mm) was used for flash chromatography.  1H and 13C NMR spectra 
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were recorded on a Varian 400 (at 400 MHz and 100 MHz, respectively) or on a Varian 

Mercury 500 (at 500 MHz and 126 MHz, respectively) and are reported relative to CHCl3 

(δ 7.26 & 77.16 ppm, respectively) or tetramethylsilane (0.00 ppm).  Data for 1H NMR 

spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant 

(Hz), integration).  Abbreviations are used as follows: s = singlet, d = doublet, t = triplet, 

q = quartet, hept = heptet, m = complex multiplet, app = apparent. 

 

A2.7.2  PREPARATION OF ARYL HALIDES AND CYCLOPROPANES 

 

3-(2-bromo-3,4-dimethoxyphenyl)propionic acid (244): 

Prepared according to the method of Lebel and coworkers18 with minor 

modifications: pre-cooling the acetic acid solution in an ice-water bath resulted in a 

frozen mixture; therefore, the solution was cooled until it began to freeze, and bromine 

was added thereafter, with continued cooling in the ice-water bath.  The characterization 

data matched those reported by Lebel and coworkers.17 

  

 

3-(2-iodo-3,4-dimethoxyphenyl)propionic acid (245):   

Carboxylic acid 271 (1.08 g, 5.14 mmol, 1 equiv) was dissolved in acetic acid (6 mL) 

in a round-bottom flask.  Iodine monochloride (1.1370 g, 6.94 mmol, 1.35 equiv) was 
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added in portions at ambient temperature to afford an orange solution.  After at least 20 

minutes, a precipitate was observed.  After 85 minutes, the suspension was poured over 

water (10 mL) and a saturated solution of aqueous sodium thiosulfate was slowly added 

until the orange color disappeared.  The suspension was filtered, washed with water, and 

air-dried to afford iodide 245 (1.5503 g, 90% yield) as a white amorphous solid: 1H NMR 

(300 MHz, CDCl3) δ 7.21 (s, 1H), 6.80 (s, 1H), 3.85 (s, 6H), 3.00 (t, J = 7.8 Hz, 2H), 

2.66 (t, J = 7.8 Hz, 2H). 

 

 

tert-butyl 3-(2-bromo-4,5-dimethoxyphenyl)propanoate (246): 

According to the procedure of Takeda and coworkers.19  To a suspension of acid 244 

(1.00 g, 3.4 mmol, 1 equiv) and di-tert-butyl dicarbonate (2.2544 g, 10.4 mmol, 3 equiv) 

in tert-butanol (8.5 mL, 0.4 M) was added 4-(N,N-dimethylamino)pyridine (127 mg, 1.02 

mmol, 0.3 equiv). Vigorous bubbling was observed and the solution became yellow.  

After one hour, the reaction mixture was dry-loaded directly onto SiO2 (~10 mL) and 

purified by silica gel column chromatography (20:1 → 10:1 hexanes:EtOAc) to afford 

tert-butyl ester 246 (581.6 mg, 49% yield): 1H NMR (300 MHz, CDCl3) δ 6.99 (s, 1H), 

6.77 (s, 1H), 3.85 (s, 6H), 2.95 (t, J = 7.7 Hz,  2H), 2.52 (t, J = 7.7 Hz, 2H), 1.43 (s, 9H). 

 

 

4-methoxybenzyl 3-(2-bromo-4,5-dimethoxyphenyl)propanoate (247): 
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To a flame-dried round bottom flask equipped with a magnetic stir bar were added 

aryl bromide 244 (500 mg, 1.73 mmol), sodium bicarbonate (291 mg, 3.46 mmol), para-

methoxybenzyl chloride (258 μL, 1.90 mmol), and DMF (1 mL).  The mixture was 

stirred under nitrogen at 45 °C for 29 hours.  Upon completion (as determined by TLC 

analysis), the mixture was cooled to room temperature, diluted with ethyl acetate (5 mL), 

washed with water (2 x 10 mL) and brine (1 x 10 mL), dried over sodium sulfate, and 

filtered and evaporated to give the crude product as a yellow oil.  The oil was purified by 

silica gel column chromatography (9:1 hexanes:EtOAc) to give ester 247 (594 mg, 91% 

yield).  1H NMR (300 MHz, CDCl3) δ 7.29–7.18 (m, 2H), 6.96 (s, 1H), 6.88–6.80 (m, 

2H), 6.71 (s, 1H), 5.03 (s, 2H), 3.80 (s, 3H), 3.76 (s, 3H), 3.76 (s, 3H), 2.98 (t, J = 8.2, 

2H), 2.63 (t, J = 8.2, 2H). 

 

 

dimethyl 2-(trimethylsilyl)cycloprop-2-ene-1,1-dicarboxylate (274):   

Prepared by an improved procedure based on that reported by Gevorgyan and 

coworkers.5 To a flame-dried round-bottom flask equipped with a magnetic stir bar was 

added bis[rhodium(α,α,α’,α’-tetramethyl-1,3-benzenedipropionic acid)] (0.7 mg, 0.9 

µmol, 0.016 mol %) and trimethylsilylacetylene (272, 0.82 mL, 5.75 mmol, 1 equiv).  

The flask was sealed with a rubber septum, then evacuated and backfilled with argon 

three times.  Dichloromethane was then added (10 mL, 0.6 M) and the flask was cooled 

in an ice-water bath with stirring.  Diazodimethylmalonate (0.9982 g, 6.3 mmol, 1.1 

equiv) was added dropwise, then the flask was removed from the bath and allowed to 
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warm to ambient temperature, stirring overnight (13 h).  Complete consumption of the 

starting material was observed (TLC), and the solvent was evaporated in vacuo.  The 

residue was purified by silica gel column chromatography (20:1 → 6:1 hexanes:EtOAc) 

to afford cyclopropene 273 as a blue oil which was carried forward directly to the next 

stage.  Cyclopropene 273 was dissolved in tetrahydrofuran (30 mL) in a round-bottom 

flask, and the solution was cooled in an ice-water bath.  To this solution was added 

K2CO3 (10 mL, 10% in water) with stirring.  After 10 minutes, TLC indicated complete 

consumption of starting material (Rf: 3:1 hexanes:EtOAc, SM = 0.62, prod = 0.21).  The 

phases were separated and the organic phase was concentrated to an approximate volume 

of 5 mL.  The aqueous and organic phases were recombined and diluted with water (10 

mL) and diethyl ether (25 mL).  The phases were separated and the aqueous layer was 

extracted with additional diethyl ether (25 mL).  The  combined organics were dried over 

sodium sulfate, filtered, and concentrated in vacuo.  The residue was purified by silica gel 

column chromatography (9:1 hexanes:EtOAc) to afford cyclopropene 274 (634.1 mg, 

70% yield) as an amorphous white solid.  The characterization data matched those 

reported by Gevorgyan and coworkers.5  

 

 

dimethyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopropane-1,1-

dicarboxylate (248): 

In a nitrogen filled glove-box, an oven-dried scintillation vial was charged with 

bis(1,5-cyclooctadiene)rhodium(I) tetrafluoroborate (5.2 mg, 0.013 mmol, 0.02 equiv) 
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and dppb (6.0 mg, 0.014 mmol, 0.022 equiv), and the solids were dissolved in 

dichloromethane, affording an orange solution.  A separate one dram vial was charged 

with cyclopropene 274 (99.5 mg, 0.64 mmol, 1 equiv) and pinacolborane (100 μL, 0.7 

mmol, 1.1 equiv).  The mixture was dissolved in dichloromethane (0.5 mL) and 

transferred into the first vial; the second vial was then washed with additional 

dichloromethane (0.3 mL) and transferred into the first vial.  The reaction was stirred for 

17 hours and complete conversion of the starting material was observed (TLC: 3:1 

hexanes:EtOAc, Rf: SM = 0.21, product: 0.46).  The reaction mixture was dry-loaded 

onto SiO2 (~1 mL) and purified by silica gel column chromatography (8:1 

hexanes:EtOAc) to afford cyclopropane 248 (160.7 mg, 89% yield).  The characterization 

data matched those reported by Gevorgyan.5 

 

 

dimethyl 2-(tributylstannyl)cyclopropane-1,1-dicarboxylate (249): 

Prepared by a procedure reported by Gevorgyan and coworkers.6  In a nitrogen filled 

glove-box, an oven-dried scintillation vial was charged with 

tetrakis(triphenylphosphine)palladium(0) (10 mg, 0.002 mmol).  The vial was capped 

with a screw cap fitted with a Teflon septum and removed from the glovebox.  THF (1.55 

mL) was added and the mixture was stirred until the catalyst dissolved.  The solution was 

then cooled to –78 °C under nitrogen and tributyltin hydride (460 μL, 0.34 mmol) was 

added.  Finally, a solution of the starting material (274, 250 mg, 0.31 mmol) in THF (0.5 

mL) was added and the reaction was stirred at –78 °C for five minutes.  Upon completion 
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(as determined by TLC analysis), the mixture was concentrated and purified by silica gel 

column chromatography (hexanes) to afford cyclopropylstannane 249  (510 mg, 72% 

yield).  The characterization data match those reported by Gevorgyan.6 

 

 

dimethyl 2-(3,4-dimethoxyphenyl)cyclopropane-1,1-dicarboxylate (252): 

Cyclopropane 252 was synthesized following our standard procedures.  See General 

Proceedures A and B, Experimental Section, Chapter 2.  The characterization data match 

those reported by Müller.20 

 

 

dimethyl 2-(furan-3-yl)cyclopropane-1,1-dicarboxylate (261) 

Cyclopropane 261 was synthesized following our standard procedures.  See General 

Proceedures A and B, Experimental Section, Chapter 2.  The characterization data match 

those reported by Skvorcova.21 
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Cyclopropane 264 was synthesized following our standard procedures.  See General 

Proceedures A and B, Experimental Section, Chapter 2.  The characterization data match 

those reported by Melnikov.7 

 

A2.7.3  SYNTHESIS OF STYRENE 250 VIA STILLE COUPLING 

 

 

tert-butyl 3-(4,5-dimethoxy-2-vinylphenyl)propanoate (250):   

In a nitrogen-filled glovebox, a flame-dried Schlenk bomb was charged with 

tetrakis(triphenylphosphine)palladium(0) (30 mg, 0.03 mmol, 0.02 equiv).  The bomb 

was sealed, removed from the glovebox, and placed under an atmosphere of argon.  To a 

vial containing bromide 246 (455.1 mg, 1.30 mmol, 1 equiv) was added dry toluene, 

which was then removed in vacuo; this procedure was repeated twice to remove traces of 

water from the substrate.  Under an atmosphere of argon, the bromide was dissolved in 

toluene (3 mL) and transferred to the Schlenk bomb under a high flow of argon.  Finally, 

vinyl tributyltin (0.4 mL, 1.37 mmol, 1.05 equiv) was added as a neat oil to the Schlenk 

bomb under a high flow of argon.  The bomb was sealed and lowered into an oil bath 

which was preheated to 100 °C.  After 17 hours, the bomb was cooled to ambient 

temperature, and a crude product was obtained by a workup procedure that was not 

properly recorded. The crude product was purified by column chromatography to afford 

styrene 250 as a yellow solid (253.1 mg, 66% yield).  1H NMR of the crude material 

showed complete consumption of the starting material and clean signals corresponding to 
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the vinyl group: 5.87 (dd, J = 17.2, 10.5 Hz, 1H), 5.09 (d, J = 10.5 Hz, 1H), 5.04 (d, J = 

17.2 Hz, 1 H). 1H NMR of the purified product was poorly shimmed or had paramagnetic 

impurities. 

 

A2.7.4  PROCEDURE FOR ATTEMPTED REACTIONS WITH 2-

(CHLOROETHYL)ISOCYANATE 

 
These reactions were carried out using our standard procedure.  See General 

Procedure D, Experimental Section, Chapter 2.  In no case did analysis of the reaction 

mixture and crude product by TLC, LCMS, and NMR show anything other than 

decomposition products. 
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A2.7.5  CONTROL REACTIONS WITH CYCLOPROPANE 252 

 

The reaction of cyclopropane 252 with allyl isothiocyanate was carried out using our 

standard procedure.  See General Proceedure F, Experimental Section, Chapter 2.  

Analysis of the reaction mixture and crude product by TLC, LCMS, and NMR showed 

only decomposition. 

 

 

dimethyl (E)-5-(3,4-dimethoxyphenyl)-1-isopropyl-2-(isopropylimino)pyrrolidine-

3,3-dicarboxylate (256): 

The reaction of cyclopropane 252 with diisopropylcarbodiimide was carried out using 

our standard procedure.  See General Proceedure G, Experimental Section, Chapter 2.  

Analysis of the reaction mixture and crude product by TLC, LCMS, and NMR showed 

only decomposition.  1H NMR analysis (300 MHz, CDCl3) of the crude product (256) 

showed signals correponsing to the 5-arylamidine ring: δ 5.19 (dd, J = 8.4, 3.7, 1H), 3.23 

(dd, J = 13.7, 8.5, 1H), 2.69 (dd, J = 13.7, 3.7, 1H).  Further purification was not 

attempted. 

 

MeO

MeO

252

CO2Me

CO2Me N
C

S

Sn(OTf)2
CH2Cl2, 23 °C

MeO

MeO S
N

MeO2C CO2Me

255

MeO

MeO

252

CO2Me

CO2Me

Sn(OTf)2
CH2Cl2, 23 °C

MeO

MeO N
N

MeO2C CO2Me

256

N
Ci-Pr

N
i-Pr

i-Pr

i-Pr



Appendix 2 – Application of Cyclopropane Cycloadditions to Alkaloid Synthesis  

 

117 

 

The reaction of cyclopropane 252 with benzyl isocyanate was carried out using our 

standard procedure.  See General Proceedure D, Experimental Section, Chapter 2.  A 

mixture of 257 and 258 was obtained, and the following characterization data was 

collected.  257 (47% yield): 1H NMR (300 MHz, CDCl3) δ 7.31–7.27 (m, 3H), 7.10–7.06 

(m, 2H), 6.87 (d, J = 8.2, 1H), 6.72 (dd, J = 8.2, 2.1, 1H), 6.63 (d, J = 2.1, 1H), 5.11 (d, J 

= 14.5, 1H), 4.33 (t, J = 7.6, 1H), 3.93 (s, 3H), 3.89 (s, 3H), 3.85 (s, 3H), 3.84 (s, 3H), 

3.55 (d, J = 14.6, 1H), 2.97 (dd, J = 13.9, 7.3, 1H), 2.69 (dd, J = 13.9, 7.9, 1H).  13C NMR 

(126 MHz, CDCl3) δ 167.9, 167.8, 167.0, 149.6, 149.2, 135.5, 130.7, 128.7, 128.5, 127.8, 

120.1, 111.1, 109.7, 63.3, 58.6, 56.0, 55.9, 53.6, 53.5, 45.2, 37.8.  258 (40% yield): 1H 

NMR (300 MHz, CDCl3) δ 7.37 (s, 1H), 7.35–7.24 (m, 5H), 6.80 (d, J = 0.6, 1H), 5.33 

(d, J = 15.3, 1H), 4.42 (dd, J = 4.2, 3.3, 1H), 4.09 (d, J = 15.3, 1H), 3.98 (s, 3H), 3.94 (s, 

3H), 3.72 (s, 3H), 3.49 (s, 3H), 2.88 (dd, J = 6.9, 6.3, 1H), 2.77 (ddd, J = 15.1, 7.0, 4.4, 

1H), 2.60 (ddd, J = 15.0, 6.2, 3.2, 1H).  13C NMR (126 MHz, CDCl3) δ 169.5, 169.5, 

169.0, 152.7, 150.0, 137.0, 136.6, 128.8, 128.1, 127.6, 125.0, 105.4, 104.9, 56.4, 56.3, 

56.3, 53.0, 52.6, 45.5, 43.8, 29.0. 
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A2.7.6  REACTION OF CYCLOPROPANE 264 WITH BENZYL ISOCYANATE 

 

The reaction of cyclopropane 264 with benzyl isocyanate was carried out using our 

standard procedure.  See General Proceedure D, Experimental Section, Chapter 2.  

Isoindolone 265 was obtained in approximately 49% yield, although purification was 

difficult.  1H NMR analysis (300 MHz, CDCl3) of showed signals corresponding to the 5-

malonyl-containing side chain off the isoindoline ring: δ 3.03–2.94 (m, 1H), 2.83–2.70 

(m, 1H), 2.54 (dd, J = 9.9, 7.0, 1H).  Further purification was not attempted. 
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Figure A3.3 13C NMR (126 MHz, CDCl3) of compound 195. 

Figure A3.2 Infrared spectrum (thin film/NaCl) of compound 195. 
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Figure A3.6 13C NMR (126 MHz, CDCl3) of compound 197. 
 

Figure A3.5 Infrared spectrum (thin film/NaCl) of compound 197. 
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Figure A3.9 13C NMR (126 MHz, CDCl3) of compound 144. 
 

Figure A3.8 Infrared spectrum (thin film/NaCl) of compound 144. 
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Figure A3.11 Infrared spectrum (thin film/NaCl) of compound 145. 
 

Figure A3.12 13C NMR (126 MHz, CDCl3) of compound 145. 
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Figure A3.15 13C NMR (126 MHz, CDCl3) of compound 146. 
 

Figure A3.14 Infrared spectrum (thin film/NaCl) of compound 146. 
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Figure A3.18. 13C NMR (126 MHz, CDCl3) of compound 147. 
 

Figure A3.17 Infrared spectrum (thin film/NaCl) of compound 147. 
 



Appendix 3 – Spectra Relevant to Chapter 2   

 

136 

Fi
gu

re
 A

3.
19

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3
) o

f c
om

po
un

d 
14

8.
 

  

n-
Bu

N

O

CO
2M
e

CO
2M
e

14
8



Appendix 3 – Spectra Relevant to Chapter 2   

 

137 

Figure A3.21 13C NMR (126 MHz, CDCl3) of compound 148. 
 

Figure A3.20 Infrared spectrum (thin film/NaCl) of compound 148. 
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Figure A3.24 13C NMR (126 MHz, CDCl3) of compound 149. 
 

Figure A3.23 Infrared spectrum (thin film/NaCl) of compound 149. 
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Figure A3.27 13C NMR (126 MHz, CDCl3) of compound 158. 
 

Figure A3.26 Infrared spectrum (thin film/NaCl) of compound 158. 
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Figure A3.30 13C NMR (126 MHz, CDCl3) of compound 150. 
 

Figure A3.29 Infrared spectrum (thin film/NaCl) of compound 150. 
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Figure A3.33 13C NMR (126 MHz, CDCl3) of compound 159. 
 

Figure A3.32 Infrared spectrum (thin film/NaCl) of compound 159. 
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Figure A3.36 13C NMR (126 MHz, CDCl3) of compound 160. 
 

Figure A3.35 Infrared spectrum (thin film/NaCl) of compound 160. 
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Figure A3.39 13C NMR (126 MHz, CDCl3) of compound 161. 
 

Figure A3.38 Infrared spectrum (thin film/NaCl) of compound 161. 
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Figure A3.42 13C NMR (126 MHz, CDCl3) of compound 162. 
 

Figure A3.41 Infrared spectrum (thin film/NaCl) of compound 162. 
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Figure A3.45 13C NMR (126 MHz, CDCl3) of compound 163. 
 

Figure A3.44 Infrared spectrum (thin film/NaCl) of compound 163. 
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Figure A3.48 13C NMR (126 MHz, CDCl3) of compound 155. 
 

Figure A3.47 Infrared spectrum (thin film/NaCl) of compound 155. 
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Figure A3.51 13C NMR (126 MHz, CDCl3) of compound 164. 
 

Figure A3.50 Infrared spectrum (thin film/NaCl) of compound 164. 
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Figure A3.54 13C NMR (126 MHz, CDCl3) of compound 165. 
 

Figure A3.53 Infrared spectrum (thin film/NaCl) of compound 165. 
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Figure A3.57 13C NMR (126 MHz, CDCl3) of compound 166. 
 

Figure A3.56 Infrared spectrum (thin film/NaCl) of compound 166. 
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Figure A3.60 13C NMR (126 MHz, CDCl3) of compound 167. 
 

Figure A3.59 Infrared spectrum (thin film/NaCl) of compound 167. 
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Figure A3.63 13C NMR (126 MHz, CDCl3) of compound 168. 
 

Figure A3.62 Infrared spectrum (thin film/NaCl) of compound 168. 
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Figure A3.66 13C NMR (126 MHz, CDCl3) of compound 154. 
 

Figure A3.65 Infrared spectrum (thin film/NaCl) of compound 154. 
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Figure A3.69 13C NMR (101 MHz, CDCl3) of compound 170. 
 

Figure A3.68 Infrared spectrum (thin film/NaCl) of compound 170. 
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Figure A3.72 13C NMR (101 MHz, CDCl3) of compound 171. 

Figure A3.71 Infrared spectrum (thin film/NaCl) of compound 171. 
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Figure A3.75 13C NMR (126 MHz, CDCl3) of compound 172. 
 

Figure A3.74 Infrared spectrum (thin film/NaCl) of compound 172. 
 



Appendix 3 – Spectra Relevant to Chapter 2   

 

174 

  

Fi
gu

re
 A

3.
76

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3
) o

f c
om

po
un

d 
17

3.
 

  

N

N

CO
2M
e

CO
2M
e

Cl

i-P
r 17
3

i-P
r



Appendix 3 – Spectra Relevant to Chapter 2   

 

175 

  

Figure A3.78 13C NMR (126 MHz, CDCl3) of compound 173. 
 

Figure A3.77 Infrared spectrum (thin film/NaCl) of compound 173. 
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Figure A3.81 13C NMR (126 MHz, CDCl3) of compound 174. 
 

Figure A3.80 Infrared spectrum (thin film/NaCl) of compound 174. 
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Figure A3.84 13C NMR (126 MHz, CDCl3) of compound 175. 
 

Figure A3.83 Infrared spectrum (thin film/NaCl) of compound 175. 
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Figure A3.87 13C NMR (126 MHz, CDCl3) of compound 176. 
 

Figure A3.86 Infrared spectrum (thin film/NaCl) of compound 176. 
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Figure A3.90 13C NMR (101 MHz, DMSO-d6, 100 °C) of compound 177. 

Figure A3.89 Infrared spectrum (thin film/NaCl) of compound 177. 
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A4.1   X-RAY CRYSTAL STRUCTURE ANALYSIS OF THIOIMIDATE 155 

 

Contents 

Table A4.1.1 Crystal Data 

Table A4.1.2 Atomic Coordinates  

Table A4.1.3 Full Bond Distances and Angles 

Table A4.1.4 Anisotropic Displacement Parameters 

Table A4.1.5 Hydrogen Atomic Coordinates 

 

Figure A4.1.1     X-ray crystal structure of thioimidate 155 
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Table A4.1.1 Crystal data and structure refinement for thioimidate 155 

Caltech Identification Number rac13 

CCDC Deposition Number 911991 

Empirical formula  C20 H25 N O4 S 

Formula weight  375.47 

Crystallization solvent  Benzene/Heptane/Ethyl Acetate  

Crystal color  colourless  

Crystal size 0.08 x 0.19 x 0.46 mm 

  

 Data Collection  

Preliminary photograph(s)  rotation  

Type of diffractometer  Bruker KAPPA APEX II 

Wavelength  0.71073 ≈ MO K 

Data collection temperature  100.15 K 

Theta range for 5787 reflections used 
in lattice determination  2.521 to 31.600° 

Unit cell dimensions a = 14.5982(10) ≈ α= 90° 
 b = 16.1620(12) ≈ β= 92.145(4)° 
 c = 8.2014(6) ≈ γ = 90° 

Volume 1933.7(2) ≈3 

Z 4 

Crystal system  monoclinic 

Space group  P 1 21/c 1   (# 14) 

Density (calculated) 1.290 g/cm3 

F(000) 800 

Theta range for data collection 1.4 to 37.4∞ 

Completeness to theta = 25.00° 100.0%  

Index ranges –24 ≤ h ≤ 24, 0 ≤ k ≤ 27, 0 ≤ l ≤ 13 

Data collection scan type  narrow and scans 

Reflections collected 15085 
Independent reflections 15085 [Rint= 0.0000] 

Reflections > 2s(I) 10418  

Average s(I)/(net I) 0.0676 

Absorption coefficient 0.19 mm–1 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9848 and 0.9170 
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Table A4.1.1 (cont’d) 

Reflections monitored for decay  0 

Decay of standards  0%  

 

 Structure Solution and Refinement  

Primary solution method  direct 

Secondary solution method  difmap 

Hydrogen placement  geom 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 15085 / 0 / 241 

Treatment of hydrogen atoms  constr 

Goodness-of-fit on F2 1.06 

Final R indices [I>2s(I), 10418 reflections] R1 = 0.0592, wR2 = 0.1221 

R indices (all data) R1 = 0.1034, wR2 = 0.1431 

Type of weighting scheme used calc 

Weighting scheme used calc w=1/[^2^(Fo^2^)+(0.0645P)^2^+0.3700P] where 

P=(Fo^2^+2Fc^2^)/3 

Max shift/error  0.001 

Average shift/error  0.000 

Largest diff. peak and hole 0.49 and -0.37 e∑≈-3 

  

 Programs Used  

Cell refinement   SAINT V8.18C (Bruker-AXS, 2007) 

Data collection   APEX2 2012.2-0 (Bruker-AXS, 2007) 

Data reduction   SAINT V8.18C (Bruker-AXS, 2007) 

Structure solution   SHELXS-97 (Sheldrick, 1990) 

Structure refinement   SHELXL-97 (Sheldrick, 1997) 

Graphics  DIAMOND 3 (Crystal Impact, 1999) 
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Table A4.1.2 Atomic coordinates (x 104) and equivalent  isotropic displacement parameters (Å2x 

103) for thioimidate 155.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

______________________________________________________________________ 

 x y z Ueq 
________________________________________________________________________ 
S(1) 7001(1) 6892(1) 2895(1) 22(1) 

O(1) 8360(1) 6282(1) 6404(1) 27(1) 

O(2) 7480(1) 5212(1) 7100(1) 22(1) 

O(3) 7866(1) 4219(1) 2706(1) 26(1) 

O(4) 8857(1) 4560(1) 4768(1) 22(1) 

N(1) 8660(1) 6157(1) 2476(1) 20(1) 

C(1) 6183(1) 6259(1) 4018(2) 18(1) 

C(2) 6567(1) 5375(1) 4014(2) 18(1) 

C(3) 7607(1) 5456(1) 4275(2) 17(1) 

C(4) 7894(1) 6152(1) 3131(2) 18(1) 

C(5) 5192(1) 6358(1) 3430(1) 15(1) 

C(6) 4890(1) 6274(1) 1789(1) 18(1) 

C(7) 3969(1) 6418(1) 1363(2) 20(1) 

C(8) 3336(1) 6643(1) 2493(2) 20(1) 

C(9) 3634(1) 6687(1) 4121(2) 19(1) 

C(10) 4541(1) 6543(1) 4608(1) 17(1) 

C(11) 5514(1) 6056(1) 420(2) 26(1) 

C(12) 2354(1) 6831(1) 1995(2) 29(1) 

C(13) 4795(1) 6554(1) 6414(1) 24(1) 

C(14) 7874(1) 5710(1) 6034(2) 18(1) 

C(15) 7719(1) 5383(1) 8800(2) 26(1) 

C(16) 8111(1) 4667(1) 3805(2) 18(1) 

C(17) 9433(1) 3862(1) 4390(2) 29(1) 

C(18) 8876(1) 6851(1) 1424(2) 23(1) 

C(19) 9690(1) 6694(1) 428(2) 27(1) 

C(20) 10218(1) 6036(1) 521(2) 31(1) 
________________________________________________________________________
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Table A4.1.3      Bond lengths [Å] and angles [°] for thioimidate 155 

______________________________________________________________________  
S(1)-C(1)  1.8457(13) 

S(1)-C(4)  1.7750(12) 

O(1)-C(14)  1.1975(14) 

O(2)-C(14)  1.3343(15) 

O(2)-C(15)  1.4511(15) 

O(3)-C(16)  1.1997(14) 

O(4)-C(16)  1.3320(15) 

O(4)-C(17)  1.4486(16) 

N(1)-C(4)  1.2587(17) 

N(1)-C(18)  1.4571(16) 

C(1)-H(1)  1.0000 

C(1)-C(2)  1.5343(16) 

C(1)-C(5)  1.5167(17) 

C(2)-H(2A)  0.9900 

C(2)-H(2B)  0.9900 

C(2)-C(3)  1.5308(17) 

C(3)-C(4)  1.5333(17) 

C(3)-C(14)  1.5361(17) 

C(3)-C(16)  1.5297(16) 

C(5)-C(6)  1.4066(16) 

C(5)-C(10)  1.4121(18) 

C(6)-C(7)  1.3959(18) 

C(6)-C(11)  1.5136(19) 

C(7)-H(7)  0.9500 

C(7)-C(8)  1.3812(19) 

C(8)-C(9)  1.3904(17) 

C(8)-C(12)  1.5075(18) 

C(9)-H(9)  0.9500 

C(9)-C(10)  1.3892(17) 

C(10)-C(13)  1.5126(16) 

C(11)-H(11A)  0.9800 

C(11)-H(11B)  0.9800 

C(11)-H(11C)  0.9800 
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Table A4.1.3 (cont’d) 

C(12)-H(12A)  0.9800 

C(12)-H(12B)  0.9800 

C(12)-H(12C)  0.9800 

C(13)-H(13A)  0.9800 

C(13)-H(13B)  0.9800 

C(13)-H(13C)  0.9800 

C(15)-H(15A)  0.9800 

C(15)-H(15B)  0.9800 

C(15)-H(15C)  0.9800 

C(17)-H(17A)  0.9800 

C(17)-H(17B)  0.9800 

C(17)-H(17C)  0.9800 

C(18)-H(18A)  0.9900 

C(18)-H(18B)  0.9900 

C(18)-C(19)  1.489(2) 

C(19)-H(19)  0.9500 

C(19)-C(20)  1.313(2) 

C(20)-H(20A)  0.9500 

C(20)-H(20B)  0.9500 

  

C(4)-S(1)-C(1) 93.31(6) 

C(14)-O(2)-C(15) 114.91(10) 

C(16)-O(4)-C(17) 116.24(10) 

C(4)-N(1)-C(18) 118.20(11) 

S(1)-C(1)-H(1) 106.7 

C(2)-C(1)-S(1) 105.80(9) 

C(2)-C(1)-H(1) 106.7 

C(5)-C(1)-S(1) 114.20(8) 

C(5)-C(1)-H(1) 106.7 

C(5)-C(1)-C(2) 116.22(10) 

C(1)-C(2)-H(2A) 110.5 

C(1)-C(2)-H(2B) 110.5 

H(2A)-C(2)-H(2B) 108.7 

C(3)-C(2)-C(1) 106.28(9) 
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Table A4.1.3 (cont’d) 

C(3)-C(2)-H(2A) 110.5 

C(3)-C(2)-H(2B) 110.5 

C(2)-C(3)-C(4) 105.66(9) 

C(2)-C(3)-C(14) 111.69(10) 

C(4)-C(3)-C(14) 108.25(9) 

C(16)-C(3)-C(2) 112.20(10) 

C(16)-C(3)-C(4) 108.18(10) 

C(16)-C(3)-C(14) 110.60(9) 

N(1)-C(4)-S(1) 127.60(9) 

N(1)-C(4)-C(3) 122.25(10) 

C(3)-C(4)-S(1) 110.15(9) 

C(6)-C(5)-C(1) 123.69(11) 

C(6)-C(5)-C(10) 118.76(11) 

C(10)-C(5)-C(1) 117.55(10) 

C(5)-C(6)-C(11) 123.86(11) 

C(7)-C(6)-C(5) 119.14(11) 

C(7)-C(6)-C(11) 116.99(11) 

C(6)-C(7)-H(7) 118.7 

C(8)-C(7)-C(6) 122.59(11) 

C(8)-C(7)-H(7) 118.7 

C(7)-C(8)-C(9) 117.69(11) 

C(7)-C(8)-C(12) 121.68(12) 

C(9)-C(8)-C(12) 120.63(12) 

C(8)-C(9)-H(9) 119.1 

C(10)-C(9)-C(8) 121.88(11) 

C(10)-C(9)-H(9) 119.1 

C(5)-C(10)-C(13) 121.74(11) 

C(9)-C(10)-C(5) 119.79(11) 

C(9)-C(10)-C(13) 118.41(11) 

C(6)-C(11)-H(11A) 109.5 

C(6)-C(11)-H(11B) 109.5 

C(6)-C(11)-H(11C) 109.5 

H(11A)-C(11)-H(11B) 109.5 

H(11A)-C(11)-H(11C) 109.5 
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Table A4.1.3 (cont’d) 

H(11B)-C(11)-H(11C) 109.5 

C(8)-C(12)-H(12A) 109.5 

C(8)-C(12)-H(12B) 109.5 

C(8)-C(12)-H(12C) 109.5 

H(12A)-C(12)-H(12B) 109.5 

H(12A)-C(12)-H(12C) 109.5 

H(12B)-C(12)-H(12C) 109.5 

C(10)-C(13)-H(13A) 109.5 

C(10)-C(13)-H(13B) 109.5 

C(10)-C(13)-H(13C) 109.5 

H(13A)-C(13)-H(13B) 109.5 

H(13A)-C(13)-H(13C) 109.5 

H(13B)-C(13)-H(13C) 109.5 

O(1)-C(14)-O(2) 124.42(11) 

O(1)-C(14)-C(3) 124.85(12) 

O(2)-C(14)-C(3) 110.72(10) 

O(2)-C(15)-H(15A) 109.5 

O(2)-C(15)-H(15B) 109.5 

O(2)-C(15)-H(15C) 109.5 

H(15A)-C(15)-H(15B) 109.5 

H(15A)-C(15)-H(15C) 109.5 

H(15B)-C(15)-H(15C) 109.5 

O(3)-C(16)-O(4) 125.53(11) 

O(3)-C(16)-C(3) 124.03(11) 

O(4)-C(16)-C(3) 110.43(10) 

O(4)-C(17)-H(17A) 109.5 

O(4)-C(17)-H(17B) 109.5 

O(4)-C(17)-H(17C) 109.5 

H(17A)-C(17)-H(17B) 109.5 

H(17A)-C(17)-H(17C) 109.5 

H(17B)-C(17)-H(17C) 109.5 

N(1)-C(18)-H(18A) 109.0 

N(1)-C(18)-H(18B) 109.0 

N(1)-C(18)-C(19) 112.84(11) 
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Table A4.1.3. (cont’d) 

H(18A)-C(18)-H(18B) 107.8 

C(19)-C(18)-H(18A) 109.0 

C(19)-C(18)-H(18B) 109.0 

C(18)-C(19)-H(19) 117.1 

C(20)-C(19)-C(18) 125.79(13) 

C(20)-C(19)-H(19) 117.1 

C(19)-C(20)-H(20A) 120.0 

C(19)-C(20)-H(20B) 120.0 

H(20A)-C(20)-H(20B) 120.0 
________________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
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Table A4.1.4 Anisotropic displacement parameters  (Å2x103) for thioimidate 155.  The 

anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11  + ... + 2hka*b*U12]. 

________________________________________________________________________  
 U11 U22  U33 U23 U13 U12 
________________________________________________________________________  
S(1) 146(1)  147(1) 372(2)  67(1) -20(1)  19(1) 

O(1) 275(6)  192(4) 326(5)  -16(4) -66(4)  -65(4) 

O(2) 204(5)  218(4) 232(4)  -6(3) -28(3)  -45(3) 

O(3) 261(5)  201(4) 313(5)  -57(4) -71(4)  32(4) 

O(4) 175(5)  176(4) 300(5)  -10(3) -55(3)  60(3) 

N(1) 170(5)  157(4) 275(5)  8(4) -34(4)  -1(4) 

C(1) 140(6)  152(5) 228(5)  21(4) -52(4)  -1(4) 

C(2) 142(6)  134(5) 259(6)  23(4) -55(4)  -3(4) 

C(3) 136(6)  125(5) 245(5)  10(4) -47(4)  5(4) 

C(4) 160(6)  127(5) 256(6)  6(4) -50(5)  11(4) 

C(5) 138(5)  139(5) 181(5)  20(4) -28(4)  4(4) 

C(6) 174(6)  184(5) 173(5)  13(4) -19(4)  7(4) 

C(7) 185(6)  211(6) 210(5)  35(4) -70(5)  -12(5) 

C(8) 145(6)  157(5) 286(6)  54(4) -41(5)  -6(4) 

C(9) 177(6)  168(5) 237(5)  19(4) 25(5)  20(4) 

C(10) 192(6)  127(5) 180(5)  16(4) -14(4)  13(4) 

C(11) 258(7)  331(7) 186(5)  -2(5) 10(5)  35(6) 

C(12) 152(6)  289(7) 436(8)  87(6) -65(6)  12(5) 

C(13) 311(8)  249(6) 171(5)  -12(5) -13(5)  31(5) 

C(14) 130(6)  132(5) 272(6)  0(4) -39(4)  27(4) 

C(15) 236(7)  302(7) 241(6)  -38(5) -11(5)  -12(5) 

C(16) 158(6)  137(5) 248(6)  31(4) -22(5)  14(4) 

C(17) 232(7)  237(7) 401(8)  -37(6) -48(6)  116(5) 

C(18) 207(7)  182(5) 301(6)  22(5) -30(5)  -21(5) 

C(19) 219(7)  292(7) 309(7)  32(5) -34(5)  -87(5) 

C(20) 211(7)  391(8) 323(7)  -5(6) 2(6)  -20(6) 

________________________________________________________________________
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Table A4.1.5      Hydrogen coordinates (x103) and isotropic  displacement parameters (Å2x103)  

for thioimidate 155 
________________________________________________________________________  
 x  y  z  Uiso 
________________________________________________________________________  
  
H(1) 622 645 518 21 

H(2A) 631 504 490 22 

H(2B) 641 510 296 22 

H(7) 377 636 25 24 

H(9) 320 682 492 23 

H(11A) 516 576 -44 39 

H(11B) 601 570 84 39 

H(11C) 578 656 -2 39 

H(12A) 227 677 81 44 

H(12B) 221 740 230 44 

H(12C) 195 645 255 44 

H(13A) 424 663 704 37 

H(13B) 522 701 665 37 

H(13C) 509 603 672 37 

H(15A) 839 538 896 39 

H(15B) 745 496 949 39 

H(15C) 748 593 910 39 

H(17A) 907 335 441 44 

H(17B) 994 382 520 44 

H(17C) 968 394 330 44 

H(18A) 899 735 211 28 

H(18B) 834 697 68 28 

H(19) 984 711 -34 33 

H(20A) 1009 561 128 37 

H(20B) 1072 599 -17 37 
________________________________________________________________________  
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A4.2   X-RAY CRYSTAL STRUCTURE ANALYSIS OF AMIDINE (R)-170•HBr 

 

Contents 

Table A4.2.1 Crystal Data 

Table A4.2.2 Atomic Coordinates  

Table A4.2.3 Full Bond Distances and Angles 

Table A4.2.4 Anisotropic Displacement Parameters 

Table A4.2.5 Hydrogen Atomic Coordinates 

 

Figure A4.2.1    X-ray crystal structure of amidine (R)-170•HBr 
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Table A4.2.1 Crystal data and structure refinement for amidine (R)-170•HBr 

Caltech Identification Number afg04 

CCDC Deposition Number 911990 

Empirical formula  C20 H31 Br N2 O5 

Formula weight  459.38 

Crystallization solvent  diethyl ether / dichloromethane  

Crystal shape  prism 

Crystal color  colourless  

Crystal size 0.17 x 0.18 x 0.47 mm 
 

 Data Collection  

Preliminary photograph(s)  rotation  

Type of diffractometer  Bruker KAPPA APEX II 

Wavelength  0.71073 ≈ MO K 

Data collection temperature  100.15 K 

Theta range for 9397 reflections used 
in lattice determination  2.620 to 31.334∞ 
Unit cell dimensions a = 8.0748(6) ≈ α= 98.815(5)∞ 
 b = 15.1323(12) ≈ β= 92.189(5)∞ 
 c = 29.190(2) ≈ γ = 105.250(4)∞ 
Volume 3388.9(5) ≈3 

Z 6 

Crystal system  triclinic 

Space group  P 1   (# 1) 

Density (calculated) 1.351 g/cm3 

F(000) 1440 

Theta range for data collection 1.7 to 35.3∞ 

Completeness to theta = 25.00∞ 99.7%  

Index ranges –12 ≤ h ≤ 12, –24 ≤ k ≤ 24, –46 ≤ l ≤ 45 

Data collection scan type  narrow and scans 

Reflections collected 161414 
Independent reflections 54469 [Rint= 0.0430] 

Reflections > 2σ(I) 44420  

Average σ(I)/(net I) 0.0781 

Absorption coefficient 1.85 mm-1 

Absorption correction Semi-empirical from equivalents 
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Table A4.2.1 (cont’d) 

Max. and min. transmission 1.0000 and 0.8047 

Reflections monitored for decay  0 

Decay of standards  0%  

 
 Structure Solution and Refinement  

Primary solution method  direct 

Secondary solution method  difmap 

Hydrogen placement  geom 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 54469 / 21 / 1585 

Treatment of hydrogen atoms  mixed 

Goodness-of-fit on F2 1.65 

Final R indices [I>2σ(I), 44420 reflections] R1 = 0.0568, wR2 = 0.1138 

R indices (all data) R1 = 0.0743, wR2 = 0.1159 

Type of weighting scheme used calc 

Weighting scheme used calc w=1/[^2^(Fo^2^)+(0.0000P)^2^+0.0000P] where 

P=(Fo^2^+2Fc^2^)/3 

Max shift/error  0.001 

Average shift/error  0.000 

Absolute structure parameter 0.029(3) 

Largest diff. peak and hole 3.05 and -1.34 e∑≈-3 
 

 Programs Used  

Cell refinement   SAINT V8.18C (Bruker-AXS, 2007) 

Data collection   APEX2_2011.2-3 (Bruker-AXS, 2007) 

Data reduction   SAINT V8.18C (Bruker-AXS, 2007) 

Structure solution   SHELXS-97 (Sheldrick, 1990) 

Structure refinement     

Graphics    
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Table A4.2.2 Atomic coordinates (x 104) and equivalent  isotropic displacement parameters (Å2x 

103) for amidine (R)-170•HBr.  U(eq) is defined as one third of the trace of the orthogonalized Uij 

tensor.  

_______________________________________________________________________________  

 x y z Ueq 
________________________________________________________________________________   
O(1A) 5205(3) 3297(1) 8553(1) 18(1) 

O(2A) 8042(3) 3464(1) 8523(1) 23(1) 

O(3A) 7013(3) 1830(2) 9013(1) 23(1) 

O(4A) 6394(3) 573(1) 8452(1) 19(1) 

N(1A) 4511(3) 1542(2) 7520(1) 13(1) 

N(2A) 2967(3) 1288(2) 8164(1) 14(1) 

C(1A) 6285(4) 1836(2) 7379(1) 14(1) 

C(2A) 7391(4) 1877(2) 7827(1) 14(1) 

C(3A) 6203(4) 1976(2) 8227(1) 12(1) 

C(4A) 4428(4) 1573(2) 7975(1) 14(1) 

C(5A) 2951(4) 1256(2) 7188(1) 16(1) 

C(6A) 3358(5) 925(2) 6694(1) 24(1) 

C(7A) 2076(4) 2039(2) 7207(1) 23(1) 

C(8A) 6672(4) 2728(2) 7175(1) 15(1) 

C(9A) 7542(4) 2761(2) 6775(1) 18(1) 

C(10A) 8003(4) 3575(2) 6590(1) 21(1) 

C(11A) 7600(4) 4364(2) 6807(1) 23(1) 

C(12A) 6731(4) 4340(2) 7206(1) 22(1) 

C(13A) 6259(4) 3527(2) 7390(1) 18(1) 

C(14A) 6408(4) 2992(2) 8455(1) 14(1) 

C(15A) 8393(5) 4430(2) 8746(1) 34(1) 

C(16A) 6583(4) 1461(2) 8621(1) 14(1) 

C(17A) 6827(5) 27(2) 8784(1) 25(1) 

C(18A) 2705(4) 1332(2) 8666(1) 18(1) 

C(19A) 1333(5) 1853(2) 8773(1) 26(1) 

C(20A) 2143(4) 350(2) 8781(1) 23(1) 

O(1B) 2761(3) 3136(1) 5141(1) 17(1) 

O(2B) 5580(3) 3478(1) 5045(1) 21(1) 

O(3B) 5020(3) 2039(1) 5691(1) 20(1) 
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Table A4.2.2 (cont’d) 

O(4B) 4388(3) 642(1) 5224(1) 15(1) 

N(1B) 2497(3) 1144(2) 4168(1) 13(1) 

N(2B) 861(3) 1029(2) 4810(1) 13(1) 

C(1B) 4227(4) 1579(2) 4036(1) 12(1) 

C(2B) 5323(4) 1771(2) 4507(1) 14(1) 

C(3B) 4061(4) 1890(2) 4879(1) 11(1) 

C(4B) 2345(4) 1315(2) 4624(1) 10(1) 

C(5B) 1134(4) 495(2) 3828(1) 16(1) 

C(6B) 1108(6) -489(2) 3872(1) 34(1) 

C(7B) 1377(5) 664(2) 3331(1) 25(1) 

C(8B) 4279(4) 2426(2) 3819(1) 16(1) 

C(9B) 5329(4) 2597(2) 3455(1) 20(1) 

C(10B) 5427(5) 3384(2) 3252(1) 27(1) 

C(11B) 4507(5) 4012(2) 3411(1) 27(1) 

C(12B) 3444(5) 3838(2) 3769(1) 29(1) 

C(13B) 3321(4) 3048(2) 3970(1) 21(1) 

C(14B) 4016(4) 2910(2) 5039(1) 14(1) 

C(15B) 5731(5) 4454(2) 5218(1) 35(1) 

C(16B) 4545(4) 1538(2) 5321(1) 11(1) 

C(17B) 4834(4) 217(2) 5610(1) 19(1) 

C(18B) 562(4) 1128(2) 5308(1) 16(1) 

C(19B) -769(4) 1662(2) 5395(1) 24(1) 

C(20B) 24(5) 159(2) 5438(1) 23(1) 

O(1C) 7414(3) 3248(1) 1843(1) 18(1) 

O(2C) 10170(3) 3462(1) 1676(1) 20(1) 

O(3C) 9486(3) 1908(1) 2270(1) 18(1) 

O(4C) 8375(3) 559(1) 1779(1) 17(1) 

N(1C) 6577(3) 1420(2) 803(1) 12(1) 

N(2C) 5107(3) 1248(2) 1469(1) 14(1) 

C(1C) 8322(4) 1713(2) 645(1) 14(1) 

C(2C) 9463(4) 1764(2) 1090(1) 14(1) 

C(3C) 8351(4) 1926(2) 1498(1) 12(1) 

C(4C) 6541(4) 1503(2) 1260(1) 12(1) 

C(5C) 4995(4) 1095(2) 474(1) 16(1) 
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Table A4.2.2 (cont’d) 

C(6C) 5401(5) 735(2) -8(1) 25(1) 

C(7C) 4090(4) 1873(2) 480(1) 23(1) 

C(8C) 8674(4) 2610(2) 448(1) 14(1) 

C(9C) 9607(4) 2662(2) 57(1) 17(1) 

C(10C) 10051(4) 3492(2) -124(1) 22(1) 

C(11C) 9592(4) 4260(2) 85(1) 21(1) 

C(12C) 8658(4) 4211(2) 475(1) 19(1) 

C(13C) 8190(4) 3389(2) 650(1) 17(1) 

C(14C) 8566(4) 2959(2) 1696(1) 15(1) 

C(15C) 10528(5) 4459(2) 1838(1) 28(1) 

C(16C) 8817(4) 1481(2) 1902(1) 13(1) 

C(17C) 8809(5) 56(2) 2138(1) 24(1) 

C(18C) 4905(4) 1339(2) 1975(1) 15(1) 

C(19C) 3653(5) 1915(2) 2094(1) 24(1) 

C(20C) 4316(4) 374(2) 2103(1) 20(1) 

O(1D) 1240(3) 5108(1) 6240(1) 20(1) 

O(2D) 3700(3) 4743(1) 6402(1) 20(1) 

O(3D) 4660(3) 6149(1) 5724(1) 18(1) 

O(4D) 5282(3) 7583(1) 6158(1) 16(1) 

N(1D) 3160(3) 7177(2) 7194(1) 15(1) 

N(2D) 1547(3) 7222(2) 6524(1) 14(1) 

C(1D) 4426(4) 6735(2) 7354(1) 16(1) 

C(2D) 5261(4) 6488(2) 6909(1) 15(1) 

C(3D) 3823(4) 6343(2) 6516(1) 13(1) 

C(4D) 2718(4) 6949(2) 6737(1) 12(1) 

C(5D) 2529(5) 7876(2) 7495(1) 21(1) 

C(6D) 3492(7) 8846(2) 7419(1) 44(1) 

C(7D) 2737(6) 7782(3) 8001(1) 40(1) 

C(8D) 3631(4) 5924(2) 7600(1) 16(1) 

C(9D) 4577(4) 5780(2) 7978(1) 19(1) 

C(10D) 3931(5) 5037(2) 8204(1) 24(1) 

C(11D) 2319(5) 4419(2) 8048(1) 24(1) 

C(12D) 1365(4) 4564(2) 7676(1) 24(1) 

C(13D) 2023(4) 5321(2) 7453(1) 19(1) 
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Table A4.2.2 (cont’d) 

C(14D) 2742(4) 5328(2) 6366(1) 14(1) 

C(15D) 2805(5) 3759(2) 6283(1) 26(1) 

C(16D) 4603(4) 6663(2) 6069(1) 18(1) 

C(17D) 6055(4) 7985(2) 5766(1) 20(1) 

C(18D) 1059(4) 7056(2) 6019(1) 16(1) 

C(19D) -850(4) 6519(2) 5928(1) 22(1) 

C(20D) 1460(5) 7990(2) 5849(1) 23(1) 

O(1E) 8189(3) 5002(1) 2884(1) 17(1) 

O(2E) 10789(3) 4812(1) 3084(1) 20(1) 

O(3E) 11510(3) 6349(1) 2459(1) 19(1) 

O(4E) 11784(3) 7706(1) 2936(1) 16(1) 

N(1E) 9306(3) 6863(2) 3901(1) 14(1) 

N(2E) 7912(3) 7004(2) 3214(1) 13(1) 

C(1E) 10840(4) 6612(2) 4078(1) 15(1) 

C(2E) 11850(4) 6544(2) 3643(1) 16(1) 

C(3E) 10485(4) 6346(2) 3224(1) 13(1) 

C(4E) 9125(4) 6767(2) 3441(1) 12(1) 

C(5E) 8093(4) 7202(2) 4207(1) 17(1) 

C(6E) 8924(5) 7597(2) 4695(1) 24(1) 

C(7E) 6434(4) 6429(2) 4205(1) 25(1) 

C(8E) 10401(4) 5743(2) 4298(1) 14(1) 

C(9E) 11448(4) 5716(2) 4684(1) 18(1) 

C(10E) 11196(5) 4923(2) 4890(1) 24(1) 

C(11E) 9887(4) 4130(2) 4696(1) 25(1) 

C(12E) 8829(4) 4150(2) 4313(1) 22(1) 

C(13E) 9087(4) 4951(2) 4113(1) 20(1) 

C(14E) 9677(4) 5308(2) 3044(1) 13(1) 

C(15E) 10098(5) 3806(2) 2945(1) 28(1) 

C(16E) 11305(4) 6788(2) 2820(1) 13(1) 

C(17E) 12685(5) 8211(2) 2588(1) 22(1) 

C(18E) 7528(4) 6881(2) 2704(1) 14(1) 

C(19E) 5668(4) 6298(2) 2585(1) 19(1) 

C(20E) 7882(4) 7829(2) 2556(1) 20(1) 

O(1F) 3235(3) 5134(1) -412(1) 19(1) 
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Table A4.2.2 (cont’d) 

O(2F) 5671(3) 4755(1) -225(1) 18(1) 

O(3F) 6672(3) 6143(1) -899(1) 18(1) 

O(4F) 7152(3) 7587(1) -500(1) 16(1) 

N(1F) 5150(3) 7135(2) 573(1) 13(1) 

N(2F) 3519(3) 7236(2) -81(1) 12(1) 

C(1F) 6479(4) 6698(2) 719(1) 14(1) 

C(2F) 7291(4) 6503(2) 261(1) 14(1) 

C(3F) 5819(4) 6356(2) -119(1) 12(1) 

C(4F) 4727(4) 6948(2) 117(1) 12(1) 

C(5F) 4508(5) 7803(2) 905(1) 21(1) 

C(6F) 5459(6) 8792(2) 852(1) 36(1) 

C(7F) 4692(5) 7654(2) 1401(1) 27(1) 

C(8F) 5722(4) 5850(2) 939(1) 16(1) 

C(9F) 6733(5) 5676(2) 1296(1) 21(1) 

C(10F) 6146(5) 4885(2) 1498(1) 26(1) 

C(11F) 4527(5) 4264(2) 1334(1) 32(1) 

C(12F) 3517(5) 4448(2) 988(1) 30(1) 

C(13F) 4112(4) 5250(2) 793(1) 22(1) 

C(14F) 4735(4) 5344(2) -269(1) 14(1) 

C(15F) 4757(5) 3776(2) -342(1) 23(1) 

C(16F) 6572(4) 6673(2) -552(1) 11(1) 

C(17F) 7860(4) 7967(2) -903(1) 20(1) 

C(18F) 3033(4) 7127(2) -582(1) 15(1) 

C(19F) 1129(4) 6619(2) -683(1) 21(1) 

C(20F) 3407(5) 8094(2) -714(1) 23(1) 

Br(1A) 8079(1) 123(1) 6649(1) 21(1) 

Br(1B) 6474(1) 134(1) 3290(1) 18(1) 

Br(1C) 137(1) -30(1) -14(1) 21(1) 

Br(1D) 8418(1) 8234(1) 7949(1) 23(1) 

Br(1E) 4521(1) 8396(1) 4618(1) 20(1) 

Br(1F) 358(1) 8210(1) 1391(1) 21(1) 

O(5A) 9657(3) 349(1) 7734(1) 19(1) 

O(5B) 7574(3) 112(2) 4381(1) 21(1) 

O(5C) 1767(3) 255(2) 1077(1) 20(1) 
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Table A4.2.2 (cont’d) 

O(5D) 9265(3) 8257(2) 6859(1) 25(1) 

O(5E) 5655(3) 8046(1) 3544(1) 18(1) 

O(5F) 1187(3) 8178(2) 296(1) 24(1) 
________________________________________________________________________________ 
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Table A4.2.3      Bond lengths [Å] and angles [°] for amidine (R)-170•HBr 

___________________________________________________________________________________  

O(1A)-C(14A)  1.207(4) 

O(2A)-C(14A)  1.316(4) 

O(2A)-C(15A)  1.456(3) 

O(3A)-C(16A)  1.189(3) 

O(4A)-C(16A)  1.326(3) 

O(4A)-C(17A)  1.454(4) 

N(1A)-C(1A)  1.479(4) 

N(1A)-C(4A)  1.327(3) 

N(1A)-C(5A)  1.483(4) 

N(2A)-H(2A)  0.8800 

N(2A)-C(4A)  1.319(4) 

N(2A)-C(18A)  1.482(4) 

C(1A)-H(1A)  1.0000 

C(1A)-C(2A)  1.539(4) 

C(1A)-C(8A)  1.521(4) 

C(2A)-H(2AA)  0.9900 

C(2A)-H(2AB)  0.9900 

C(2A)-C(3A)  1.555(4) 

C(3A)-C(4A)  1.513(4) 

C(3A)-C(14A)  1.541(4) 

C(3A)-C(16A)  1.548(4) 

C(5A)-H(5A)  1.0000 

C(5A)-C(6A)  1.531(4) 

C(5A)-C(7A)  1.527(4) 

C(6A)-H(6AA)  0.9800 

C(6A)-H(6AB)  0.9800 

C(6A)-H(6AC)  0.9800 

C(7A)-H(7AA)  0.9800 

C(7A)-H(7AB)  0.9800 

C(7A)-H(7AC)  0.9800 

C(8A)-C(9A)  1.386(4) 

C(8A)-C(13A)  1.401(4) 

C(9A)-H(9A)  0.9500 
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Table A4.2.3 (cont’d) 

C(9A)-C(10A)  1.388(4) 

C(10A)-H(10A)  0.9500 

C(10A)-C(11A)  1.386(5) 

C(11A)-H(11A)  0.9500 

C(11A)-C(12A)  1.382(4) 

C(12A)-H(12A)  0.9500 

C(12A)-C(13A)  1.385(4) 

C(13A)-H(13A)  0.9500 

C(15A)-H(15G)  0.9800 

C(15A)-H(15H)  0.9800 

C(15A)-H(15I)  0.9800 

C(17A)-H(17G)  0.9800 

C(17A)-H(17H)  0.9800 

C(17A)-H(17I)  0.9800 

C(18A)-H(18A)  1.0000 

C(18A)-C(19A)  1.535(5) 

C(18A)-C(20A)  1.529(4) 

C(19A)-H(19G)  0.9800 

C(19A)-H(19H)  0.9800 

C(19A)-H(19I)  0.9800 

C(20A)-H(20G)  0.9800 

C(20A)-H(20H)  0.9800 

C(20A)-H(20I)  0.9800 

O(1B)-C(14B)  1.186(4) 

O(2B)-C(14B)  1.325(3) 

O(2B)-C(15B)  1.456(4) 

O(3B)-C(16B)  1.204(3) 

O(4B)-C(16B)  1.314(3) 

O(4B)-C(17B)  1.458(3) 

N(1B)-C(1B)  1.473(4) 

N(1B)-C(4B)  1.332(3) 

N(1B)-C(5B)  1.485(3) 

N(2B)-H(2B)  0.8800 

N(2B)-C(4B)  1.330(4) 
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Table A4.2.3 (cont’d) 

N(2B)-C(18B)  1.473(3) 

C(1B)-H(1B)  1.0000 

C(1B)-C(2B)  1.552(4) 

C(1B)-C(8B)  1.505(4) 

C(2B)-H(2BA)  0.9900 

C(2B)-H(2BB)  0.9900 

C(2B)-C(3B)  1.540(4) 

C(3B)-C(4B)  1.524(4) 

C(3B)-C(14B)  1.552(4) 

C(3B)-C(16B)  1.544(4) 

C(5B)-H(5B)  1.0000 

C(5B)-C(6B)  1.509(5) 

C(5B)-C(7B)  1.523(4) 

C(6B)-H(6BA)  0.9800 

C(6B)-H(6BB)  0.9800 

C(6B)-H(6BC)  0.9800 

C(7B)-H(7BA)  0.9800 

C(7B)-H(7BB)  0.9800 

C(7B)-H(7BC)  0.9800 

C(8B)-C(9B)  1.398(4) 

C(8B)-C(13B)  1.401(4) 

C(9B)-H(9B)  0.9500 

C(9B)-C(10B)  1.395(4) 

C(10B)-H(10B)  0.9500 

C(10B)-C(11B)  1.391(5) 

C(11B)-H(11B)  0.9500 

C(11B)-C(12B)  1.391(5) 

C(12B)-H(12B)  0.9500 

C(12B)-C(13B)  1.393(4) 

C(13B)-H(13B)  0.9500 

C(15B)-H(15D)  0.9800 

C(15B)-H(15E)  0.9800 

C(15B)-H(15F)  0.9800 

C(17B)-H(17D)  0.9800 
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Table A4.2.3 (cont’d) 

C(17B)-H(17E)  0.9800 

C(17B)-H(17F)  0.9800 

C(18B)-H(18B)  1.0000 

C(18B)-C(19B)  1.513(5) 

C(18B)-C(20B)  1.527(4) 

C(19B)-H(19D)  0.9800 

C(19B)-H(19E)  0.9800 

C(19B)-H(19F)  0.9800 

C(20B)-H(20D)  0.9800 

C(20B)-H(20E)  0.9800 

C(20B)-H(20F)  0.9800 

O(1C)-C(14C)  1.194(4) 

O(2C)-C(14C)  1.327(4) 

O(2C)-C(15C)  1.457(3) 

O(3C)-C(16C)  1.192(3) 

O(4C)-C(16C)  1.334(3) 

O(4C)-C(17C)  1.470(4) 

N(1C)-C(1C)  1.476(4) 

N(1C)-C(4C)  1.322(3) 

N(1C)-C(5C)  1.492(4) 

N(2C)-H(2C)  0.8800 

N(2C)-C(4C)  1.324(4) 

N(2C)-C(18C)  1.481(3) 

C(1C)-H(1C)  1.0000 

C(1C)-C(2C)  1.544(4) 

C(1C)-C(8C)  1.517(4) 

C(2C)-H(2CA)  0.9900 

C(2C)-H(2CB)  0.9900 

C(2C)-C(3C)  1.546(4) 

C(3C)-C(4C)  1.524(4) 

C(3C)-C(14C)  1.544(4) 

C(3C)-C(16C)  1.525(4) 

C(5C)-H(5C)  1.0000 

C(5C)-C(6C)  1.510(4) 
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Table A4.2.3 (cont’d) 

C(5C)-C(7C)  1.539(4) 

C(6C)-H(6CA)  0.9800 

C(6C)-H(6CB)  0.9800 

C(6C)-H(6CC)  0.9800 

C(7C)-H(7CA)  0.9800 

C(7C)-H(7CB)  0.9800 

C(7C)-H(7CC)  0.9800 

C(8C)-C(9C)  1.392(4) 

C(8C)-C(13C)  1.391(4) 

C(9C)-H(9C)  0.9500 

C(9C)-C(10C)  1.403(4) 

C(10C)-H(10C)  0.9500 

C(10C)-C(11C)  1.373(5) 

C(11C)-H(11C)  0.9500 

C(11C)-C(12C)  1.390(4) 

C(12C)-H(12C)  0.9500 

C(12C)-C(13C)  1.383(4) 

C(13C)-H(13C)  0.9500 

C(15C)-H(15A)  0.9800 

C(15C)-H(15B)  0.9800 

C(15C)-H(15C)  0.9800 

C(17C)-H(17A)  0.9800 

C(17C)-H(17B)  0.9800 

C(17C)-H(17C)  0.9800 

C(18C)-H(18C)  1.0000 

C(18C)-C(19C)  1.516(5) 

C(18C)-C(20C)  1.522(4) 

C(19C)-H(19A)  0.9800 

C(19C)-H(19B)  0.9800 

C(19C)-H(19C)  0.9800 

C(20C)-H(20A)  0.9800 

C(20C)-H(20B)  0.9800 

C(20C)-H(20C)  0.9800 

O(1D)-C(14D)  1.197(4) 
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Table A4.2.3 (cont’d) 

O(2D)-C(14D)  1.333(4) 

O(2D)-C(15D)  1.454(3) 

O(3D)-C(16D)  1.184(4) 

O(4D)-C(16D)  1.335(3) 

O(4D)-C(17D)  1.462(3) 

N(1D)-C(1D)  1.460(4) 

N(1D)-C(4D)  1.335(3) 

N(1D)-C(5D)  1.478(4) 

N(2D)-H(2D)  0.8800 

N(2D)-C(4D)  1.300(4) 

N(2D)-C(18D)  1.477(4) 

C(1D)-H(1D)  1.0000 

C(1D)-C(2D)  1.529(4) 

C(1D)-C(8D)  1.525(4) 

C(2D)-H(2DA)  0.9900 

C(2D)-H(2DB)  0.9900 

C(2D)-C(3D)  1.549(4) 

C(3D)-C(4D)  1.531(4) 

C(3D)-C(14D)  1.541(4) 

C(3D)-C(16D)  1.559(4) 

C(5D)-H(5D)  1.0000 

C(5D)-C(6D)  1.523(5) 

C(5D)-C(7D)  1.514(4) 

C(6D)-H(6DA)  0.9800 

C(6D)-H(6DB)  0.9800 

C(6D)-H(6DC)  0.9800 

C(7D)-H(7DA)  0.9800 

C(7D)-H(7DB)  0.9800 

C(7D)-H(7DC)  0.9800 

C(8D)-C(9D)  1.394(4) 

C(8D)-C(13D)  1.384(4) 

C(9D)-H(9D)  0.9500 

C(9D)-C(10D)  1.385(4) 

C(10D)-H(10D)  0.9500 
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Table A4.2.3 (cont’d) 

C(10D)-C(11D)  1.400(5) 

C(11D)-H(11D)  0.9500 

C(11D)-C(12D)  1.384(5) 

C(12D)-H(12D)  0.9500 

C(12D)-C(13D)  1.397(4) 

C(13D)-H(13D)  0.9500 

C(15D)-H(15P)  0.9800 

C(15D)-H(15Q)  0.9800 

C(15D)-H(15R)  0.9800 

C(17D)-H(17P)  0.9800 

C(17D)-H(17Q)  0.9800 

C(17D)-H(17R)  0.9800 

C(18D)-H(18D)  1.0000 

C(18D)-C(19D)  1.533(4) 

C(18D)-C(20D)  1.527(4) 

C(19D)-H(19P)  0.9800 

C(19D)-H(19Q)  0.9800 

C(19D)-H(19R)  0.9800 

C(20D)-H(20P)  0.9800 

C(20D)-H(20Q)  0.9800 

C(20D)-H(20R)  0.9800 

O(1E)-C(14E)  1.215(4) 

O(2E)-C(14E)  1.325(4) 

O(2E)-C(15E)  1.462(3) 

O(3E)-C(16E)  1.200(3) 

O(4E)-C(16E)  1.325(3) 

O(4E)-C(17E)  1.465(3) 

N(1E)-C(1E)  1.485(4) 

N(1E)-C(4E)  1.327(3) 

N(1E)-C(5E)  1.486(4) 

N(2E)-H(2E)  0.8800 

N(2E)-C(4E)  1.317(4) 

N(2E)-C(18E)  1.481(4) 

C(1E)-H(1E)  1.0000 
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Table A4.2.3 (cont’d) 

C(1E)-C(2E)  1.541(4) 

C(1E)-C(8E)  1.515(4) 

C(2E)-H(2EA)  0.9900 

C(2E)-H(2EB)  0.9900 

C(2E)-C(3E)  1.553(4) 

C(3E)-C(4E)  1.520(4) 

C(3E)-C(14E)  1.533(4) 

C(3E)-C(16E)  1.532(4) 

C(5E)-H(5E)  1.0000 

C(5E)-C(6E)  1.514(4) 

C(5E)-C(7E)  1.528(4) 

C(6E)-H(6EA)  0.9800 

C(6E)-H(6EB)  0.9800 

C(6E)-H(6EC)  0.9800 

C(7E)-H(7EA)  0.9800 

C(7E)-H(7EB)  0.9800 

C(7E)-H(7EC)  0.9800 

C(8E)-C(9E)  1.394(4) 

C(8E)-C(13E)  1.394(4) 

C(9E)-H(9E)  0.9500 

C(9E)-C(10E)  1.396(4) 

C(10E)-H(10E)  0.9500 

C(10E)-C(11E)  1.398(5) 

C(11E)-H(11E)  0.9500 

C(11E)-C(12E)  1.390(5) 

C(12E)-H(12E)  0.9500 

C(12E)-C(13E)  1.396(4) 

C(13E)-H(13E)  0.9500 

C(15E)-H(15M)  0.9800 

C(15E)-H(15N)  0.9800 

C(15E)-H(15O)  0.9800 

C(17E)-H(17M)  0.9800 

C(17E)-H(17N)  0.9800 

C(17E)-H(17O)  0.9800 
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Table A4.2.3 (cont’d) 

C(18E)-H(18E)  1.0000 

C(18E)-C(19E)  1.525(4) 

C(18E)-C(20E)  1.520(4) 

C(19E)-H(19M)  0.9800 

C(19E)-H(19N)  0.9800 

C(19E)-H(19O)  0.9800 

C(20E)-H(20M)  0.9800 

C(20E)-H(20N)  0.9800 

C(20E)-H(20O)  0.9800 

O(1F)-C(14F)  1.209(4) 

O(2F)-C(14F)  1.328(4) 

O(2F)-C(15F)  1.451(3) 

O(3F)-C(16F)  1.212(3) 

O(4F)-C(16F)  1.321(3) 

O(4F)-C(17F)  1.459(3) 

N(1F)-C(1F)  1.481(4) 

N(1F)-C(4F)  1.329(3) 

N(1F)-C(5F)  1.497(4) 

N(2F)-H(2F)  0.8800 

N(2F)-C(4F)  1.316(4) 

N(2F)-C(18F)  1.473(3) 

C(1F)-H(1F)  1.0000 

C(1F)-C(2F)  1.533(4) 

C(1F)-C(8F)  1.517(4) 

C(2F)-H(2FA)  0.9900 

C(2F)-H(2FB)  0.9900 

C(2F)-C(3F)  1.542(4) 

C(3F)-C(4F)  1.526(4) 

C(3F)-C(14F)  1.537(4) 

C(3F)-C(16F)  1.513(4) 

C(5F)-H(5F)  1.0000 

C(5F)-C(6F)  1.526(5) 

C(5F)-C(7F)  1.506(4) 

C(6F)-H(6FA)  0.9800 
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Table A4.2.3 (cont’d) 

C(6F)-H(6FB)  0.9800 

C(6F)-H(6FC)  0.9800 

C(7F)-H(7FA)  0.9800 

C(7F)-H(7FB)  0.9800 

C(7F)-H(7FC)  0.9800 

C(8F)-C(9F)  1.398(4) 

C(8F)-C(13F)  1.383(4) 

C(9F)-H(9F)  0.9500 

C(9F)-C(10F)  1.394(4) 

C(10F)-H(10F)  0.9500 

C(10F)-C(11F)  1.410(5) 

C(11F)-H(11F)  0.9500 

C(11F)-C(12F)  1.381(6) 

C(12F)-H(12F)  0.9500 

C(12F)-C(13F)  1.397(4) 

C(13F)-H(13F)  0.9500 

C(15F)-H(15J)  0.9800 

C(15F)-H(15K)  0.9800 

C(15F)-H(15L)  0.9800 

C(17F)-H(17J)  0.9800 

C(17F)-H(17K)  0.9800 

C(17F)-H(17L)  0.9800 

C(18F)-H(18F)  1.0000 

C(18F)-C(19F)  1.521(4) 

C(18F)-C(20F)  1.527(4) 

C(19F)-H(19J)  0.9800 

C(19F)-H(19K)  0.9800 

C(19F)-H(19L)  0.9800 

C(20F)-H(20J)  0.9800 

C(20F)-H(20K)  0.9800 

C(20F)-H(20L)  0.9800 

O(5A)-H(5AA)  0.846(17) 

O(5A)-H(5AB)  0.830(17) 

O(5B)-H(5BA)  0.863(17) 
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Table A4.2.3 (cont’d) 

O(5B)-H(5BB)  0.845(17) 

O(5C)-H(5CA)  0.882(17) 

O(5C)-H(5CB)  0.850(17) 

O(5D)-H(5DA)  0.874(18) 

O(5D)-H(5DB)  0.895(17) 

O(5E)-H(5EA)  0.857(17) 

O(5E)-H(5EB)  0.891(17) 

O(5F)-H(5FA)  0.866(19) 

O(5F)-H(5FB)  0.896(18) 

 

C(14A)-O(2A)-C(15A) 115.9(3) 

C(16A)-O(4A)-C(17A) 115.2(2) 

C(1A)-N(1A)-C(5A) 123.7(2) 

C(4A)-N(1A)-C(1A) 113.8(2) 

C(4A)-N(1A)-C(5A) 122.5(2) 

C(4A)-N(2A)-H(2A) 116.3 

C(4A)-N(2A)-C(18A) 127.4(3) 

C(18A)-N(2A)-H(2A) 116.3 

N(1A)-C(1A)-H(1A) 108.2 

N(1A)-C(1A)-C(2A) 102.6(2) 

N(1A)-C(1A)-C(8A) 113.9(2) 

C(2A)-C(1A)-H(1A) 108.2 

C(8A)-C(1A)-H(1A) 108.2 

C(8A)-C(1A)-C(2A) 115.3(2) 

C(1A)-C(2A)-H(2AA) 110.7 

C(1A)-C(2A)-H(2AB) 110.7 

C(1A)-C(2A)-C(3A) 105.2(2) 

H(2AA)-C(2A)-H(2AB) 108.8 

C(3A)-C(2A)-H(2AA) 110.7 

C(3A)-C(2A)-H(2AB) 110.7 

C(4A)-C(3A)-C(2A) 101.9(2) 

C(4A)-C(3A)-C(14A) 109.6(2) 

C(4A)-C(3A)-C(16A) 114.3(2) 

C(14A)-C(3A)-C(2A) 113.6(2) 
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Table A4.2.3 (cont’d) 

C(14A)-C(3A)-C(16A) 106.5(2) 

C(16A)-C(3A)-C(2A) 111.1(2) 

N(1A)-C(4A)-C(3A) 110.6(2) 

N(2A)-C(4A)-N(1A) 122.7(3) 

N(2A)-C(4A)-C(3A) 126.8(2) 

N(1A)-C(5A)-H(5A) 107.5 

N(1A)-C(5A)-C(6A) 111.8(3) 

N(1A)-C(5A)-C(7A) 110.5(2) 

C(6A)-C(5A)-H(5A) 107.5 

C(7A)-C(5A)-H(5A) 107.5 

C(7A)-C(5A)-C(6A) 111.9(3) 

C(5A)-C(6A)-H(6AA) 109.5 

C(5A)-C(6A)-H(6AB) 109.5 

C(5A)-C(6A)-H(6AC) 109.5 

H(6AA)-C(6A)-H(6AB) 109.5 

H(6AA)-C(6A)-H(6AC) 109.5 

H(6AB)-C(6A)-H(6AC) 109.5 

C(5A)-C(7A)-H(7AA) 109.5 

C(5A)-C(7A)-H(7AB) 109.5 

C(5A)-C(7A)-H(7AC) 109.5 

H(7AA)-C(7A)-H(7AB) 109.5 

H(7AA)-C(7A)-H(7AC) 109.5 

H(7AB)-C(7A)-H(7AC) 109.5 

C(9A)-C(8A)-C(1A) 118.4(3) 

C(9A)-C(8A)-C(13A) 119.2(3) 

C(13A)-C(8A)-C(1A) 122.3(3) 

C(8A)-C(9A)-H(9A) 119.8 

C(8A)-C(9A)-C(10A) 120.4(3) 

C(10A)-C(9A)-H(9A) 119.8 

C(9A)-C(10A)-H(10A) 120.0 

C(11A)-C(10A)-C(9A) 120.0(3) 

C(11A)-C(10A)-H(10A) 120.0 

C(10A)-C(11A)-H(11A) 119.9 

C(12A)-C(11A)-C(10A) 120.1(3) 
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Table A4.2.3 (cont’d) 

C(12A)-C(11A)-H(11A) 119.9 

C(11A)-C(12A)-H(12A) 119.9 

C(11A)-C(12A)-C(13A) 120.1(3) 

C(13A)-C(12A)-H(12A) 119.9 

C(8A)-C(13A)-H(13A) 119.9 

C(12A)-C(13A)-C(8A) 120.1(3) 

C(12A)-C(13A)-H(13A) 119.9 

O(1A)-C(14A)-O(2A) 125.7(3) 

O(1A)-C(14A)-C(3A) 123.3(3) 

O(2A)-C(14A)-C(3A) 111.1(2) 

O(2A)-C(15A)-H(15G) 109.5 

O(2A)-C(15A)-H(15H) 109.5 

O(2A)-C(15A)-H(15I) 109.5 

H(15G)-C(15A)-H(15H) 109.5 

H(15G)-C(15A)-H(15I) 109.5 

H(15H)-C(15A)-H(15I) 109.5 

O(3A)-C(16A)-O(4A) 126.2(3) 

O(3A)-C(16A)-C(3A) 123.8(2) 

O(4A)-C(16A)-C(3A) 110.0(2) 

O(4A)-C(17A)-H(17G) 109.5 

O(4A)-C(17A)-H(17H) 109.5 

O(4A)-C(17A)-H(17I) 109.5 

H(17G)-C(17A)-H(17H) 109.5 

H(17G)-C(17A)-H(17I) 109.5 

H(17H)-C(17A)-H(17I) 109.5 

N(2A)-C(18A)-H(18A) 109.3 

N(2A)-C(18A)-C(19A) 107.7(3) 

N(2A)-C(18A)-C(20A) 109.9(2) 

C(19A)-C(18A)-H(18A) 109.3 

C(20A)-C(18A)-H(18A) 109.3 

C(20A)-C(18A)-C(19A) 111.3(3) 

C(18A)-C(19A)-H(19G) 109.5 

C(18A)-C(19A)-H(19H) 109.5 

C(18A)-C(19A)-H(19I) 109.5 
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Table A4.2.3 (cont’d) 

H(19G)-C(19A)-H(19H) 109.5 

H(19G)-C(19A)-H(19I) 109.5 

H(19H)-C(19A)-H(19I) 109.5 

C(18A)-C(20A)-H(20G) 109.5 

C(18A)-C(20A)-H(20H) 109.5 

C(18A)-C(20A)-H(20I) 109.5 

H(20G)-C(20A)-H(20H) 109.5 

H(20G)-C(20A)-H(20I) 109.5 

H(20H)-C(20A)-H(20I) 109.5 

C(14B)-O(2B)-C(15B) 115.1(3) 

C(16B)-O(4B)-C(17B) 115.6(2) 

C(1B)-N(1B)-C(5B) 122.4(2) 

C(4B)-N(1B)-C(1B) 113.4(2) 

C(4B)-N(1B)-C(5B) 123.9(2) 

C(4B)-N(2B)-H(2B) 116.3 

C(4B)-N(2B)-C(18B) 127.4(2) 

C(18B)-N(2B)-H(2B) 116.3 

N(1B)-C(1B)-H(1B) 109.3 

N(1B)-C(1B)-C(2B) 101.5(2) 

N(1B)-C(1B)-C(8B) 112.3(2) 

C(2B)-C(1B)-H(1B) 109.3 

C(8B)-C(1B)-H(1B) 109.3 

C(8B)-C(1B)-C(2B) 114.9(2) 

C(1B)-C(2B)-H(2BA) 110.8 

C(1B)-C(2B)-H(2BB) 110.8 

H(2BA)-C(2B)-H(2BB) 108.9 

C(3B)-C(2B)-C(1B) 104.9(2) 

C(3B)-C(2B)-H(2BA) 110.8 

C(3B)-C(2B)-H(2BB) 110.8 

C(2B)-C(3B)-C(14B) 114.4(2) 

C(2B)-C(3B)-C(16B) 110.6(2) 

C(4B)-C(3B)-C(2B) 101.5(2) 

C(4B)-C(3B)-C(14B) 110.4(2) 

C(4B)-C(3B)-C(16B) 113.9(2) 
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Table A4.2.3 (cont’d) 

C(16B)-C(3B)-C(14B) 106.2(2) 

N(1B)-C(4B)-C(3B) 110.4(2) 

N(2B)-C(4B)-N(1B) 122.7(2) 

N(2B)-C(4B)-C(3B) 126.9(2) 

N(1B)-C(5B)-H(5B) 108.1 

N(1B)-C(5B)-C(6B) 108.7(3) 

N(1B)-C(5B)-C(7B) 112.4(2) 

C(6B)-C(5B)-H(5B) 108.1 

C(6B)-C(5B)-C(7B) 111.1(3) 

C(7B)-C(5B)-H(5B) 108.1 

C(5B)-C(6B)-H(6BA) 109.5 

C(5B)-C(6B)-H(6BB) 109.5 

C(5B)-C(6B)-H(6BC) 109.5 

H(6BA)-C(6B)-H(6BB) 109.5 

H(6BA)-C(6B)-H(6BC) 109.5 

H(6BB)-C(6B)-H(6BC) 109.5 

C(5B)-C(7B)-H(7BA) 109.5 

C(5B)-C(7B)-H(7BB) 109.5 

C(5B)-C(7B)-H(7BC) 109.5 

H(7BA)-C(7B)-H(7BB) 109.5 

H(7BA)-C(7B)-H(7BC) 109.5 

H(7BB)-C(7B)-H(7BC) 109.5 

C(9B)-C(8B)-C(1B) 118.6(3) 

C(9B)-C(8B)-C(13B) 118.9(3) 

C(13B)-C(8B)-C(1B) 122.4(3) 

C(8B)-C(9B)-H(9B) 120.0 

C(10B)-C(9B)-C(8B) 120.0(3) 

C(10B)-C(9B)-H(9B) 120.0 

C(9B)-C(10B)-H(10B) 119.6 

C(11B)-C(10B)-C(9B) 120.8(3) 

C(11B)-C(10B)-H(10B) 119.6 

C(10B)-C(11B)-H(11B) 120.3 

C(10B)-C(11B)-C(12B) 119.3(3) 

C(12B)-C(11B)-H(11B) 120.3 
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Table A4.2.3 (cont’d) 

C(11B)-C(12B)-H(12B) 119.9 

C(11B)-C(12B)-C(13B) 120.2(3) 

C(13B)-C(12B)-H(12B) 119.9 

C(8B)-C(13B)-H(13B) 119.7 

C(12B)-C(13B)-C(8B) 120.6(3) 

C(12B)-C(13B)-H(13B) 119.7 

O(1B)-C(14B)-O(2B) 125.7(3) 

O(1B)-C(14B)-C(3B) 124.5(2) 

O(2B)-C(14B)-C(3B) 109.8(2) 

O(2B)-C(15B)-H(15D) 109.5 

O(2B)-C(15B)-H(15E) 109.5 

O(2B)-C(15B)-H(15F) 109.5 

H(15D)-C(15B)-H(15E) 109.5 

H(15D)-C(15B)-H(15F) 109.5 

H(15E)-C(15B)-H(15F) 109.5 

O(3B)-C(16B)-O(4B) 127.1(3) 

O(3B)-C(16B)-C(3B) 123.2(2) 

O(4B)-C(16B)-C(3B) 109.7(2) 

O(4B)-C(17B)-H(17D) 109.5 

O(4B)-C(17B)-H(17E) 109.5 

O(4B)-C(17B)-H(17F) 109.5 

H(17D)-C(17B)-H(17E) 109.5 

H(17D)-C(17B)-H(17F) 109.5 

H(17E)-C(17B)-H(17F) 109.5 

N(2B)-C(18B)-H(18B) 108.8 

N(2B)-C(18B)-C(19B) 108.8(3) 

N(2B)-C(18B)-C(20B) 108.3(2) 

C(19B)-C(18B)-H(18B) 108.8 

C(19B)-C(18B)-C(20B) 113.3(3) 

C(20B)-C(18B)-H(18B) 108.8 

C(18B)-C(19B)-H(19D) 109.5 

C(18B)-C(19B)-H(19E) 109.5 

C(18B)-C(19B)-H(19F) 109.5 

H(19D)-C(19B)-H(19E) 109.5 
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Table A4.2.3 (cont’d) 

H(19D)-C(19B)-H(19F) 109.5 

H(19E)-C(19B)-H(19F) 109.5 

C(18B)-C(20B)-H(20D) 109.5 

C(18B)-C(20B)-H(20E) 109.5 

C(18B)-C(20B)-H(20F) 109.5 

H(20D)-C(20B)-H(20E) 109.5 

H(20D)-C(20B)-H(20F) 109.5 

H(20E)-C(20B)-H(20F) 109.5 

C(14C)-O(2C)-C(15C) 116.4(2) 

C(16C)-O(4C)-C(17C) 114.6(2) 

C(1C)-N(1C)-C(5C) 122.5(2) 

C(4C)-N(1C)-C(1C) 114.1(2) 

C(4C)-N(1C)-C(5C) 123.3(2) 

C(4C)-N(2C)-H(2C) 116.0 

C(4C)-N(2C)-C(18C) 128.0(2) 

C(18C)-N(2C)-H(2C) 116.0 

N(1C)-C(1C)-H(1C) 108.9 

N(1C)-C(1C)-C(2C) 101.6(2) 

N(1C)-C(1C)-C(8C) 113.8(2) 

C(2C)-C(1C)-H(1C) 108.9 

C(8C)-C(1C)-H(1C) 108.9 

C(8C)-C(1C)-C(2C) 114.5(2) 

C(1C)-C(2C)-H(2CA) 110.6 

C(1C)-C(2C)-H(2CB) 110.6 

C(1C)-C(2C)-C(3C) 105.5(2) 

H(2CA)-C(2C)-H(2CB) 108.8 

C(3C)-C(2C)-H(2CA) 110.6 

C(3C)-C(2C)-H(2CB) 110.6 

C(4C)-C(3C)-C(2C) 101.2(2) 

C(4C)-C(3C)-C(14C) 109.0(2) 

C(4C)-C(3C)-C(16C) 115.9(2) 

C(14C)-C(3C)-C(2C) 114.2(2) 

C(16C)-C(3C)-C(2C) 110.4(2) 

C(16C)-C(3C)-C(14C) 106.4(2) 
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Table A4.2.3 (cont’d) 

N(1C)-C(4C)-N(2C) 123.3(3) 

N(1C)-C(4C)-C(3C) 110.4(2) 

N(2C)-C(4C)-C(3C) 126.3(2) 

N(1C)-C(5C)-H(5C) 107.5 

N(1C)-C(5C)-C(6C) 111.3(3) 

N(1C)-C(5C)-C(7C) 110.1(2) 

C(6C)-C(5C)-H(5C) 107.5 

C(6C)-C(5C)-C(7C) 112.6(3) 

C(7C)-C(5C)-H(5C) 107.5 

C(5C)-C(6C)-H(6CA) 109.5 

C(5C)-C(6C)-H(6CB) 109.5 

C(5C)-C(6C)-H(6CC) 109.5 

H(6CA)-C(6C)-H(6CB) 109.5 

H(6CA)-C(6C)-H(6CC) 109.5 

H(6CB)-C(6C)-H(6CC) 109.5 

C(5C)-C(7C)-H(7CA) 109.5 

C(5C)-C(7C)-H(7CB) 109.5 

C(5C)-C(7C)-H(7CC) 109.5 

H(7CA)-C(7C)-H(7CB) 109.5 

H(7CA)-C(7C)-H(7CC) 109.5 

H(7CB)-C(7C)-H(7CC) 109.5 

C(9C)-C(8C)-C(1C) 117.5(2) 

C(13C)-C(8C)-C(1C) 123.6(2) 

C(13C)-C(8C)-C(9C) 118.8(3) 

C(8C)-C(9C)-H(9C) 120.0 

C(8C)-C(9C)-C(10C) 119.9(3) 

C(10C)-C(9C)-H(9C) 120.0 

C(9C)-C(10C)-H(10C) 119.8 

C(11C)-C(10C)-C(9C) 120.4(3) 

C(11C)-C(10C)-H(10C) 119.8 

C(10C)-C(11C)-H(11C) 120.0 

C(10C)-C(11C)-C(12C) 119.9(3) 

C(12C)-C(11C)-H(11C) 120.0 

C(11C)-C(12C)-H(12C) 120.1 
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Table A4.2.3 (cont’d) 

C(13C)-C(12C)-C(11C) 119.8(3) 

C(13C)-C(12C)-H(12C) 120.1 

C(8C)-C(13C)-H(13C) 119.4 

C(12C)-C(13C)-C(8C) 121.1(3) 

C(12C)-C(13C)-H(13C) 119.4 

O(1C)-C(14C)-O(2C) 125.9(3) 

O(1C)-C(14C)-C(3C) 123.2(3) 

O(2C)-C(14C)-C(3C) 110.9(2) 

O(2C)-C(15C)-H(15A) 109.5 

O(2C)-C(15C)-H(15B) 109.5 

O(2C)-C(15C)-H(15C) 109.5 

H(15A)-C(15C)-H(15B) 109.5 

H(15A)-C(15C)-H(15C) 109.5 

H(15B)-C(15C)-H(15C) 109.5 

O(3C)-C(16C)-O(4C) 126.0(3) 

O(3C)-C(16C)-C(3C) 124.1(2) 

O(4C)-C(16C)-C(3C) 109.9(2) 

O(4C)-C(17C)-H(17A) 109.5 

O(4C)-C(17C)-H(17B) 109.5 

O(4C)-C(17C)-H(17C) 109.5 

H(17A)-C(17C)-H(17B) 109.5 

H(17A)-C(17C)-H(17C) 109.5 

H(17B)-C(17C)-H(17C) 109.5 

N(2C)-C(18C)-H(18C) 108.7 

N(2C)-C(18C)-C(19C) 109.0(2) 

N(2C)-C(18C)-C(20C) 109.0(2) 

C(19C)-C(18C)-H(18C) 108.7 

C(19C)-C(18C)-C(20C) 112.7(3) 

C(20C)-C(18C)-H(18C) 108.7 

C(18C)-C(19C)-H(19A) 109.5 

C(18C)-C(19C)-H(19B) 109.5 

C(18C)-C(19C)-H(19C) 109.5 

H(19A)-C(19C)-H(19B) 109.5 

H(19A)-C(19C)-H(19C) 109.5 
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Table A4.2.3 (cont’d) 

H(19B)-C(19C)-H(19C) 109.5 

C(18C)-C(20C)-H(20A) 109.5 

C(18C)-C(20C)-H(20B) 109.5 

C(18C)-C(20C)-H(20C) 109.5 

H(20A)-C(20C)-H(20B) 109.5 

H(20A)-C(20C)-H(20C) 109.5 

H(20B)-C(20C)-H(20C) 109.5 

C(14D)-O(2D)-C(15D) 115.9(3) 

C(16D)-O(4D)-C(17D) 114.6(2) 

C(1D)-N(1D)-C(5D) 123.8(2) 

C(4D)-N(1D)-C(1D) 113.7(2) 

C(4D)-N(1D)-C(5D) 122.3(2) 

C(4D)-N(2D)-H(2D) 116.2 

C(4D)-N(2D)-C(18D) 127.6(3) 

C(18D)-N(2D)-H(2D) 116.2 

N(1D)-C(1D)-H(1D) 108.5 

N(1D)-C(1D)-C(2D) 102.4(2) 

N(1D)-C(1D)-C(8D) 112.9(2) 

C(2D)-C(1D)-H(1D) 108.5 

C(8D)-C(1D)-H(1D) 108.5 

C(8D)-C(1D)-C(2D) 115.6(2) 

C(1D)-C(2D)-H(2DA) 110.9 

C(1D)-C(2D)-H(2DB) 110.9 

C(1D)-C(2D)-C(3D) 104.1(2) 

H(2DA)-C(2D)-H(2DB) 109.0 

C(3D)-C(2D)-H(2DA) 110.9 

C(3D)-C(2D)-H(2DB) 110.9 

C(2D)-C(3D)-C(16D) 110.7(2) 

C(4D)-C(3D)-C(2D) 102.1(2) 

C(4D)-C(3D)-C(14D) 111.0(2) 

C(4D)-C(3D)-C(16D) 112.7(2) 

C(14D)-C(3D)-C(2D) 114.5(2) 

C(14D)-C(3D)-C(16D) 106.1(2) 

N(1D)-C(4D)-C(3D) 109.1(2) 
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Table A4.2.3 (cont’d) 

N(2D)-C(4D)-N(1D) 124.0(3) 

N(2D)-C(4D)-C(3D) 126.9(2) 

N(1D)-C(5D)-H(5D) 108.5 

N(1D)-C(5D)-C(6D) 109.5(3) 

N(1D)-C(5D)-C(7D) 111.0(3) 

C(6D)-C(5D)-H(5D) 108.5 

C(7D)-C(5D)-H(5D) 108.5 

C(7D)-C(5D)-C(6D) 110.9(3) 

C(5D)-C(6D)-H(6DA) 109.5 

C(5D)-C(6D)-H(6DB) 109.5 

C(5D)-C(6D)-H(6DC) 109.5 

H(6DA)-C(6D)-H(6DB) 109.5 

H(6DA)-C(6D)-H(6DC) 109.5 

H(6DB)-C(6D)-H(6DC) 109.5 

C(5D)-C(7D)-H(7DA) 109.5 

C(5D)-C(7D)-H(7DB) 109.5 

C(5D)-C(7D)-H(7DC) 109.5 

H(7DA)-C(7D)-H(7DB) 109.5 

H(7DA)-C(7D)-H(7DC) 109.5 

H(7DB)-C(7D)-H(7DC) 109.5 

C(9D)-C(8D)-C(1D) 118.6(3) 

C(13D)-C(8D)-C(1D) 121.9(3) 

C(13D)-C(8D)-C(9D) 119.5(3) 

C(8D)-C(9D)-H(9D) 119.7 

C(10D)-C(9D)-C(8D) 120.7(3) 

C(10D)-C(9D)-H(9D) 119.7 

C(9D)-C(10D)-H(10D) 120.3 

C(9D)-C(10D)-C(11D) 119.5(3) 

C(11D)-C(10D)-H(10D) 120.3 

C(10D)-C(11D)-H(11D) 119.9 

C(12D)-C(11D)-C(10D) 120.1(3) 

C(12D)-C(11D)-H(11D) 119.9 

C(11D)-C(12D)-H(12D) 120.1 

C(11D)-C(12D)-C(13D) 119.9(3) 
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Table A4.2.3 (cont’d) 

C(13D)-C(12D)-H(12D) 120.1 

C(8D)-C(13D)-C(12D) 120.3(3) 

C(8D)-C(13D)-H(13D) 119.9 

C(12D)-C(13D)-H(13D) 119.9 

O(1D)-C(14D)-O(2D) 125.5(3) 

O(1D)-C(14D)-C(3D) 123.7(3) 

O(2D)-C(14D)-C(3D) 110.8(2) 

O(2D)-C(15D)-H(15P) 109.5 

O(2D)-C(15D)-H(15Q) 109.5 

O(2D)-C(15D)-H(15R) 109.5 

H(15P)-C(15D)-H(15Q) 109.5 

H(15P)-C(15D)-H(15R) 109.5 

H(15Q)-C(15D)-H(15R) 109.5 

O(3D)-C(16D)-O(4D) 127.4(3) 

O(3D)-C(16D)-C(3D) 124.0(3) 

O(4D)-C(16D)-C(3D) 108.5(2) 

O(4D)-C(17D)-H(17P) 109.5 

O(4D)-C(17D)-H(17Q) 109.5 

O(4D)-C(17D)-H(17R) 109.5 

H(17P)-C(17D)-H(17Q) 109.5 

H(17P)-C(17D)-H(17R) 109.5 

H(17Q)-C(17D)-H(17R) 109.5 

N(2D)-C(18D)-H(18D) 108.8 

N(2D)-C(18D)-C(19D) 108.8(2) 

N(2D)-C(18D)-C(20D) 108.8(2) 

C(19D)-C(18D)-H(18D) 108.8 

C(20D)-C(18D)-H(18D) 108.8 

C(20D)-C(18D)-C(19D) 112.7(3) 

C(18D)-C(19D)-H(19P) 109.5 

C(18D)-C(19D)-H(19Q) 109.5 

C(18D)-C(19D)-H(19R) 109.5 

H(19P)-C(19D)-H(19Q) 109.5 

H(19P)-C(19D)-H(19R) 109.5 

H(19Q)-C(19D)-H(19R) 109.5 
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Table A4.2.3 (cont’d) 

C(18D)-C(20D)-H(20P) 109.5 

C(18D)-C(20D)-H(20Q) 109.5 

C(18D)-C(20D)-H(20R) 109.5 

H(20P)-C(20D)-H(20Q) 109.5 

H(20P)-C(20D)-H(20R) 109.5 

H(20Q)-C(20D)-H(20R) 109.5 

C(14E)-O(2E)-C(15E) 115.7(2) 

C(16E)-O(4E)-C(17E) 115.6(2) 

C(1E)-N(1E)-C(5E) 123.7(2) 

C(4E)-N(1E)-C(1E) 113.6(2) 

C(4E)-N(1E)-C(5E) 122.7(3) 

C(4E)-N(2E)-H(2E) 116.0 

C(4E)-N(2E)-C(18E) 128.1(3) 

C(18E)-N(2E)-H(2E) 116.0 

N(1E)-C(1E)-H(1E) 108.6 

N(1E)-C(1E)-C(2E) 102.3(2) 

N(1E)-C(1E)-C(8E) 113.7(2) 

C(2E)-C(1E)-H(1E) 108.6 

C(8E)-C(1E)-H(1E) 108.6 

C(8E)-C(1E)-C(2E) 114.8(2) 

C(1E)-C(2E)-H(2EA) 110.7 

C(1E)-C(2E)-H(2EB) 110.7 

C(1E)-C(2E)-C(3E) 105.2(2) 

H(2EA)-C(2E)-H(2EB) 108.8 

C(3E)-C(2E)-H(2EA) 110.7 

C(3E)-C(2E)-H(2EB) 110.7 

C(4E)-C(3E)-C(2E) 101.4(2) 

C(4E)-C(3E)-C(14E) 109.2(2) 

C(4E)-C(3E)-C(16E) 114.9(2) 

C(14E)-C(3E)-C(2E) 113.6(2) 

C(16E)-C(3E)-C(2E) 109.9(2) 

C(16E)-C(3E)-C(14E) 107.9(2) 

N(1E)-C(4E)-C(3E) 110.5(2) 

N(2E)-C(4E)-N(1E) 123.4(3) 
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Table A4.2.3 (cont’d) 

N(2E)-C(4E)-C(3E) 126.1(2) 

N(1E)-C(5E)-H(5E) 107.7 

N(1E)-C(5E)-C(6E) 111.4(3) 

N(1E)-C(5E)-C(7E) 110.5(2) 

C(6E)-C(5E)-H(5E) 107.7 

C(6E)-C(5E)-C(7E) 111.8(3) 

C(7E)-C(5E)-H(5E) 107.7 

C(5E)-C(6E)-H(6EA) 109.5 

C(5E)-C(6E)-H(6EB) 109.5 

C(5E)-C(6E)-H(6EC) 109.5 

H(6EA)-C(6E)-H(6EB) 109.5 

H(6EA)-C(6E)-H(6EC) 109.5 

H(6EB)-C(6E)-H(6EC) 109.5 

C(5E)-C(7E)-H(7EA) 109.5 

C(5E)-C(7E)-H(7EB) 109.5 

C(5E)-C(7E)-H(7EC) 109.5 

H(7EA)-C(7E)-H(7EB) 109.5 

H(7EA)-C(7E)-H(7EC) 109.5 

H(7EB)-C(7E)-H(7EC) 109.5 

C(9E)-C(8E)-C(1E) 117.9(2) 

C(13E)-C(8E)-C(1E) 123.2(3) 

C(13E)-C(8E)-C(9E) 118.8(3) 

C(8E)-C(9E)-H(9E) 119.2 

C(8E)-C(9E)-C(10E) 121.6(3) 

C(10E)-C(9E)-H(9E) 119.2 

C(9E)-C(10E)-H(10E) 120.6 

C(9E)-C(10E)-C(11E) 118.8(3) 

C(11E)-C(10E)-H(10E) 120.6 

C(10E)-C(11E)-H(11E) 120.0 

C(12E)-C(11E)-C(10E) 120.0(3) 

C(12E)-C(11E)-H(11E) 120.0 

C(11E)-C(12E)-H(12E) 119.8 

C(11E)-C(12E)-C(13E) 120.5(3) 

C(13E)-C(12E)-H(12E) 119.8 
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Table A4.2.3 (cont’d) 

C(8E)-C(13E)-C(12E) 120.2(3) 

C(8E)-C(13E)-H(13E) 119.9 

C(12E)-C(13E)-H(13E) 119.9 

O(1E)-C(14E)-O(2E) 125.6(2) 

O(1E)-C(14E)-C(3E) 122.3(3) 

O(2E)-C(14E)-C(3E) 112.1(2) 

O(2E)-C(15E)-H(15M) 109.5 

O(2E)-C(15E)-H(15N) 109.5 

O(2E)-C(15E)-H(15O) 109.5 

H(15M)-C(15E)-H(15N) 109.5 

H(15M)-C(15E)-H(15O) 109.5 

H(15N)-C(15E)-H(15O) 109.5 

O(3E)-C(16E)-O(4E) 126.0(3) 

O(3E)-C(16E)-C(3E) 123.6(2) 

O(4E)-C(16E)-C(3E) 110.3(2) 

O(4E)-C(17E)-H(17M) 109.5 

O(4E)-C(17E)-H(17N) 109.5 

O(4E)-C(17E)-H(17O) 109.5 

H(17M)-C(17E)-H(17N) 109.5 

H(17M)-C(17E)-H(17O) 109.5 

H(17N)-C(17E)-H(17O) 109.5 

N(2E)-C(18E)-H(18E) 108.7 

N(2E)-C(18E)-C(19E) 108.1(2) 

N(2E)-C(18E)-C(20E) 109.4(2) 

C(19E)-C(18E)-H(18E) 108.7 

C(20E)-C(18E)-H(18E) 108.7 

C(20E)-C(18E)-C(19E) 113.2(3) 

C(18E)-C(19E)-H(19M) 109.5 

C(18E)-C(19E)-H(19N) 109.5 

C(18E)-C(19E)-H(19O) 109.5 

H(19M)-C(19E)-H(19N) 109.5 

H(19M)-C(19E)-H(19O) 109.5 

H(19N)-C(19E)-H(19O) 109.5 

C(18E)-C(20E)-H(20M) 109.5 
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Table A4.2.3 (cont’d) 

C(18E)-C(20E)-H(20N) 109.5 

C(18E)-C(20E)-H(20O) 109.5 

H(20M)-C(20E)-H(20N) 109.5 

H(20M)-C(20E)-H(20O) 109.5 

H(20N)-C(20E)-H(20O) 109.5 

C(14F)-O(2F)-C(15F) 115.7(2) 

C(16F)-O(4F)-C(17F) 116.4(2) 

C(1F)-N(1F)-C(5F) 122.3(2) 

C(4F)-N(1F)-C(1F) 113.4(2) 

C(4F)-N(1F)-C(5F) 123.9(2) 

C(4F)-N(2F)-H(2F) 116.3 

C(4F)-N(2F)-C(18F) 127.5(2) 

C(18F)-N(2F)-H(2F) 116.3 

N(1F)-C(1F)-H(1F) 109.2 

N(1F)-C(1F)-C(2F) 101.6(2) 

N(1F)-C(1F)-C(8F) 112.3(2) 

C(2F)-C(1F)-H(1F) 109.2 

C(8F)-C(1F)-H(1F) 109.2 

C(8F)-C(1F)-C(2F) 115.1(2) 

C(1F)-C(2F)-H(2FA) 110.9 

C(1F)-C(2F)-H(2FB) 110.9 

C(1F)-C(2F)-C(3F) 104.4(2) 

H(2FA)-C(2F)-H(2FB) 108.9 

C(3F)-C(2F)-H(2FA) 110.9 

C(3F)-C(2F)-H(2FB) 110.9 

C(4F)-C(3F)-C(2F) 101.8(2) 

C(4F)-C(3F)-C(14F) 110.5(2) 

C(14F)-C(3F)-C(2F) 115.0(2) 

C(16F)-C(3F)-C(2F) 109.2(2) 

C(16F)-C(3F)-C(4F) 114.2(2) 

C(16F)-C(3F)-C(14F) 106.4(2) 

N(1F)-C(4F)-C(3F) 109.5(2) 

N(2F)-C(4F)-N(1F) 123.0(3) 

N(2F)-C(4F)-C(3F) 127.5(2) 
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Table A4.2.3 (cont’d) 

N(1F)-C(5F)-H(5F) 108.0 

N(1F)-C(5F)-C(6F) 108.8(3) 

N(1F)-C(5F)-C(7F) 112.4(3) 

C(6F)-C(5F)-H(5F) 108.0 

C(7F)-C(5F)-H(5F) 108.0 

C(7F)-C(5F)-C(6F) 111.4(3) 

C(5F)-C(6F)-H(6FA) 109.5 

C(5F)-C(6F)-H(6FB) 109.5 

C(5F)-C(6F)-H(6FC) 109.5 

H(6FA)-C(6F)-H(6FB) 109.5 

H(6FA)-C(6F)-H(6FC) 109.5 

H(6FB)-C(6F)-H(6FC) 109.5 

C(5F)-C(7F)-H(7FA) 109.5 

C(5F)-C(7F)-H(7FB) 109.5 

C(5F)-C(7F)-H(7FC) 109.5 

H(7FA)-C(7F)-H(7FB) 109.5 

H(7FA)-C(7F)-H(7FC) 109.5 

H(7FB)-C(7F)-H(7FC) 109.5 

C(9F)-C(8F)-C(1F) 117.4(3) 

C(13F)-C(8F)-C(1F) 122.6(3) 

C(13F)-C(8F)-C(9F) 120.0(3) 

C(8F)-C(9F)-H(9F) 119.9 

C(10F)-C(9F)-C(8F) 120.3(3) 

C(10F)-C(9F)-H(9F) 119.9 

C(9F)-C(10F)-H(10F) 120.5 

C(9F)-C(10F)-C(11F) 119.0(3) 

C(11F)-C(10F)-H(10F) 120.5 

C(10F)-C(11F)-H(11F) 119.7 

C(12F)-C(11F)-C(10F) 120.6(3) 

C(12F)-C(11F)-H(11F) 119.7 

C(11F)-C(12F)-H(12F) 120.1 

C(11F)-C(12F)-C(13F) 119.8(3) 

C(13F)-C(12F)-H(12F) 120.1 

C(8F)-C(13F)-C(12F) 120.3(3) 
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Table A4.2.3 (cont’d) 

C(8F)-C(13F)-H(13F) 119.8 

C(12F)-C(13F)-H(13F) 119.8 

O(1F)-C(14F)-O(2F) 125.8(2) 

O(1F)-C(14F)-C(3F) 123.1(3) 

O(2F)-C(14F)-C(3F) 111.1(2) 

O(2F)-C(15F)-H(15J) 109.5 

O(2F)-C(15F)-H(15K) 109.5 

O(2F)-C(15F)-H(15L) 109.5 

H(15J)-C(15F)-H(15K) 109.5 

H(15J)-C(15F)-H(15L) 109.5 

H(15K)-C(15F)-H(15L) 109.5 

O(3F)-C(16F)-O(4F) 124.5(2) 

O(3F)-C(16F)-C(3F) 123.4(2) 

O(4F)-C(16F)-C(3F) 112.0(2) 

O(4F)-C(17F)-H(17J) 109.5 

O(4F)-C(17F)-H(17K) 109.5 

O(4F)-C(17F)-H(17L) 109.5 

H(17J)-C(17F)-H(17K) 109.5 

H(17J)-C(17F)-H(17L) 109.5 

H(17K)-C(17F)-H(17L) 109.5 

N(2F)-C(18F)-H(18F) 109.5 

N(2F)-C(18F)-C(19F) 109.5(2) 

N(2F)-C(18F)-C(20F) 108.1(2) 

C(19F)-C(18F)-H(18F) 109.5 

C(19F)-C(18F)-C(20F) 110.7(3) 

C(20F)-C(18F)-H(18F) 109.5 

C(18F)-C(19F)-H(19J) 109.5 

C(18F)-C(19F)-H(19K) 109.5 

C(18F)-C(19F)-H(19L) 109.5 

H(19J)-C(19F)-H(19K) 109.5 

H(19J)-C(19F)-H(19L) 109.5 

H(19K)-C(19F)-H(19L) 109.5 

C(18F)-C(20F)-H(20J) 109.5 

C(18F)-C(20F)-H(20K) 109.5 
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Table A4.2.3 (cont’d) 

C(18F)-C(20F)-H(20L) 109.5 

H(20J)-C(20F)-H(20K) 109.5 

H(20J)-C(20F)-H(20L) 109.5 

H(20K)-C(20F)-H(20L) 109.5 

H(5AA)-O(5A)-H(5AB) 117(3) 

H(5BA)-O(5B)-H(5BB) 113(3) 

H(5CA)-O(5C)-H(5CB) 109(2) 

H(5DA)-O(5D)-H(5DB) 105(2) 

H(5EA)-O(5E)-H(5EB) 107(2) 

H(5FA)-O(5F)-H(5FB) 107(4) 
________________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
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Table A4.2.4 Anisotropic displacement parameters  (Å2x103) for amidine (R)-170•HBr.  The 

anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11  + ... + 2hka*b*U12]. 

______________________________________________________________________________  
 U11 U22  U33 U23 U13 U12 
______________________________________________________________________________  

O(1A) 246(12)  132(9) 182(10)  11(8) 35(9)  80(8) 

O(2A) 202(12)  132(9) 284(12)  -45(8) -6(10)  -9(8) 

O(3A) 331(14)  195(10) 173(11)  39(8) -26(9)  90(9) 

O(4A) 285(12)  137(9) 176(10)  71(8) 42(9)  65(8) 

N(1A) 177(13)  123(10) 105(10)  40(8) 46(9)  41(9) 

N(2A) 155(12)  152(11) 102(10)  1(8) 21(9)  42(9) 

C(1A) 149(14)  90(11) 175(13)  15(9) 50(11)  44(10) 

C(2A) 140(14)  140(12) 166(13)  42(10) 68(11)  49(10) 

C(3A) 147(14)  99(11) 127(12)  30(9) 28(10)  48(9) 

C(4A) 192(15)  94(11) 134(12)  6(9) 48(11)  67(10) 

C(5A) 163(15)  194(13) 128(13)  75(10) 35(11)  34(11) 

C(6A) 268(18)  294(16) 135(14)  33(12) 30(13)  16(14) 

C(7A) 220(17)  257(16) 255(16)  115(13) -14(13)  95(13) 

C(8A) 149(14)  127(12) 145(13)  25(10) 14(11)  4(10) 

C(9A) 168(15)  212(14) 163(13)  51(11) 30(11)  29(11) 

C(10A) 199(16)  235(15) 212(15)  95(12) 31(12)  45(12) 

C(11A) 228(17)  202(14) 290(17)  162(12) 62(14)  43(12) 

C(12A) 259(17)  168(13) 260(16)  73(11) 35(13)  94(12) 

C(13A) 190(16)  203(13) 187(14)  96(11) 63(12)  100(11) 

C(14A) 140(14)  141(12) 161(13)  67(10) 21(11)  28(10) 

C(15A) 360(20)  110(13) 450(20)  -96(14) 49(18)  -22(13) 

C(16A) 117(14)  129(12) 180(13)  69(10) 40(11)  3(10) 

C(17A) 302(19)  203(14) 296(17)  153(13) 75(14)  93(13) 

C(18A) 193(16)  232(14) 115(13)  25(11) 59(11)  65(12) 

C(19A) 259(18)  254(16) 277(17)  30(13) 97(14)  104(14) 

C(20A) 185(16)  288(16) 213(16)  120(12) 7(13)  4(13) 

O(1B) 177(11)  139(9) 201(11)  -4(8) 21(9)  82(8) 

O(2B) 154(11)  78(8) 366(13)  -25(8) 34(10)  -8(7) 

O(3B) 257(12)  180(10) 138(10)  -21(8) -66(9)  43(9) 

O(4B) 246(12)  108(8) 107(9)  31(7) -2(8)  55(8) 

N(1B) 116(12)  124(10) 121(10)  30(8) 7(9)  -3(8) 
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Table A4.2.4 (cont’d) 

N(2B) 113(12)  158(11) 100(10)  4(8) 13(9)  1(9) 

C(1B) 119(13)  108(11) 130(12)  20(9) 38(10)  4(9) 

C(2B) 114(13)  121(11) 168(13)  28(10) 7(11)  21(10) 

C(3B) 104(13)  107(11) 104(11)  5(9) -30(10)  13(9) 

C(4B) 115(13)  72(10) 113(12)  21(9) 9(10)  35(9) 

C(5B) 144(14)  199(13) 96(12)  -27(10) 6(10)  -10(11) 

C(6B) 490(20)  151(14) 245(17)  -70(12) -74(17)  -43(15) 

C(7B) 207(17)  349(18) 140(14)  29(12) 38(12)  -12(14) 

C(8B) 162(15)  128(12) 167(13)  19(10) -22(11)  -9(10) 

C(9B) 205(16)  190(14) 179(14)  59(11) 19(12)  -31(12) 

C(10B) 277(19)  219(15) 241(16)  117(12) 7(14)  -80(13) 

C(11B) 350(20)  161(14) 267(17)  92(12) -67(15)  -32(13) 

C(12B) 400(20)  211(15) 274(18)  68(13) -41(15)  112(14) 

C(13B) 270(18)  165(13) 208(15)  52(11) 16(13)  69(12) 

C(14B) 155(14)  87(11) 158(13)  29(9) 11(11)  16(10) 

C(15B) 340(20)  73(13) 550(20)  -81(14) 87(18)  -24(13) 

C(16B) 122(13)  81(11) 116(12)  1(9) 15(10)  -4(9) 

C(17B) 277(17)  193(13) 122(13)  67(10) 20(12)  100(12) 

C(18B) 198(16)  172(13) 74(12)  -18(10) 23(11)  7(11) 

C(19B) 122(15)  279(16) 282(17)  -48(13) 56(13)  44(12) 

C(20B) 232(17)  285(16) 180(15)  103(12) 63(13)  32(13) 

O(1C) 224(12)  106(9) 222(11)  35(8) 32(9)  54(8) 

O(2C) 191(12)  114(9) 264(11)  14(8) 58(9)  -16(8) 

O(3C) 211(12)  148(9) 152(10)  8(7) -45(8)  31(8) 

O(4C) 276(12)  117(9) 126(9)  37(7) 7(8)  61(8) 

N(1C) 160(12)  110(10) 107(10)  28(8) 49(9)  39(9) 

N(2C) 150(12)  162(11) 83(10)  17(8) 14(9)  30(9) 

C(1C) 205(15)  133(12) 116(12)  57(10) 76(11)  71(11) 

C(2C) 175(15)  139(12) 130(12)  40(9) 53(11)  63(10) 

C(3C) 117(13)  100(11) 131(12)  9(9) 13(10)  27(9) 

C(4C) 156(14)  80(11) 120(12)  33(9) 20(10)  37(10) 

C(5C) 183(15)  176(13) 95(12)  27(10) 4(11)  27(11) 

C(6C) 291(19)  258(16) 136(14)  -22(12) 0(13)  3(13) 

C(7C) 197(17)  208(14) 280(17)  79(12) -25(13)  51(12) 
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Table A4.2.4 (cont’d) 

C(8C) 176(15)  122(12) 119(12)  32(9) 19(11)  39(10) 

C(9C) 222(16)  183(13) 124(13)  54(10) 83(11)  51(11) 

C(10C) 269(18)  221(14) 201(15)  137(12) 107(13)  49(13) 

C(11C) 280(18)  154(13) 213(15)  108(11) 56(13)  43(12) 

C(12C) 275(17)  124(12) 199(14)  51(10) 31(12)  73(11) 

C(13C) 246(17)  155(13) 161(13)  49(10) 98(12)  102(11) 

C(14C) 205(15)  111(12) 96(12)  29(9) 1(11)  -5(10) 

C(15C) 320(20)  139(13) 348(19)  12(12) 154(16)  -19(13) 

C(16C) 98(14)  131(12) 192(14)  64(10) 31(11)  54(10) 

C(17C) 350(20)  200(14) 228(15)  150(12) 56(14)  115(13) 

C(18C) 160(15)  214(13) 83(12)  53(10) 0(10)  29(11) 

C(19C) 311(19)  283(16) 89(13)  -87(11) 12(12)  92(14) 

C(20C) 206(16)  223(15) 157(14)  76(11) 13(12)  10(12) 

O(1D) 206(12)  167(10) 223(11)  30(8) 2(9)  26(8) 

O(2D) 223(12)  110(9) 280(12)  53(8) 49(9)  69(8) 

O(3D) 225(12)  131(9) 181(10)  15(8) 12(9)  35(8) 

O(4D) 216(11)  87(8) 170(10)  36(7) 16(8)  4(8) 

N(1D) 224(14)  153(11) 80(10)  19(8) -16(9)  79(9) 

N(2D) 181(13)  132(10) 105(10)  19(8) 5(9)  63(9) 

C(1D) 184(15)  166(13) 128(13)  35(10) -17(11)  64(11) 

C(2D) 134(14)  177(13) 175(13)  64(10) -15(11)  77(11) 

C(3D) 118(13)  113(11) 148(13)  17(9) 2(10)  22(10) 

C(4D) 167(14)  70(10) 127(12)  23(9) -21(10)  26(10) 

C(5D) 310(18)  229(14) 132(13)  -30(11) -18(12)  167(13) 

C(6D) 750(30)  164(15) 360(20)  -54(14) 0(20)  124(18) 

C(7D) 780(30)  490(20) 120(15)  39(14) 63(17)  510(20) 

C(8D) 174(15)  148(12) 171(13)  43(10) -12(11)  77(11) 

C(9D) 209(16)  158(13) 192(14)  28(11) -26(12)  59(11) 

C(10D) 312(19)  235(15) 202(15)  74(12) -17(14)  108(13) 

C(11D) 308(19)  221(15) 211(15)  116(12) 57(14)  76(13) 

C(12D) 223(17)  249(15) 206(15)  93(12) -12(13)  -12(13) 

C(13D) 159(15)  240(14) 152(14)  86(11) -33(11)  2(12) 

C(14D) 174(15)  132(12) 115(12)  57(9) 36(11)  20(10) 

C(15D) 330(20)  115(13) 308(18)  33(12) 31(15)  43(12) 
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Table A4.2.4 (cont’d) 

C(16D) 137(15)  141(13) 296(17)  48(12) 79(13)  57(11) 

C(17D) 227(17)  170(13) 199(15)  86(11) 30(12)  31(12) 

C(18D) 166(15)  187(13) 120(13)  29(10) -25(11)  64(11) 

C(19D) 229(17)  246(15) 180(15)  49(12) -67(13)  67(13) 

C(20D) 274(18)  202(14) 207(15)  74(12) -23(13)  51(12) 

O(1E) 127(11)  105(9) 242(11)  17(8) -31(9)  -22(7) 

O(2E) 186(11)  130(9) 271(12)  11(8) -32(9)  54(8) 

O(3E) 205(12)  141(9) 192(10)  5(8) 50(9)  13(8) 

O(4E) 206(11)  121(9) 142(9)  41(7) -18(8)  -3(8) 

N(1E) 182(13)  111(10) 108(11)  17(8) -20(9)  32(9) 

N(2E) 147(12)  147(11) 117(11)  22(8) 4(9)  62(9) 

C(1E) 146(14)  134(12) 139(13)  24(10) -37(11)  -6(10) 

C(2E) 113(14)  146(12) 192(14)  63(10) -21(11)  -20(10) 

C(3E) 118(13)  97(11) 149(12)  26(9) -8(10)  -6(9) 

C(4E) 113(13)  91(11) 131(12)  15(9) -13(10)  -22(9) 

C(5E) 233(16)  159(13) 131(13)  39(10) 28(11)  78(11) 

C(6E) 330(20)  286(16) 104(13)  37(11) -32(13)  89(14) 

C(7E) 231(18)  286(17) 260(17)  79(13) 89(14)  70(13) 

C(8E) 150(14)  136(12) 139(12)  34(10) -17(10)  33(10) 

C(9E) 159(15)  203(13) 176(14)  60(11) -20(11)  35(11) 

C(10E) 284(19)  223(15) 235(16)  93(12) -43(13)  83(13) 

C(11E) 278(18)  203(14) 275(17)  115(12) -25(14)  54(13) 

C(12E) 209(17)  175(13) 258(16)  114(12) -28(13)  -8(12) 

C(13E) 185(16)  198(14) 208(15)  85(11) -32(12)  43(12) 

C(14E) 168(14)  113(11) 108(12)  32(9) 3(10)  30(10) 

C(15E) 330(20)  83(12) 420(20)  14(12) -59(16)  79(12) 

C(16E) 115(13)  116(11) 167(13)  44(10) 15(11)  15(10) 

C(17E) 259(18)  179(14) 194(15)  105(11) 14(13)  -8(12) 

C(18E) 173(15)  177(13) 87(12)  35(10) -15(10)  75(11) 

C(19E) 150(15)  196(14) 222(15)  -15(11) -45(12)  65(11) 

C(20E) 226(17)  224(14) 194(15)  100(12) 23(12)  93(12) 

O(1F) 190(12)  151(10) 243(11)  61(8) 13(9)  47(8) 

O(2F) 231(12)  101(9) 213(11)  20(8) 15(9)  35(8) 

O(3F) 243(12)  163(9) 150(10)  -4(8) 55(9)  67(8) 
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Table A4.2.4 (cont’d) 

O(4F) 257(12)  107(8) 99(9)  34(7) 29(8)  12(8) 

N(1F) 168(13)  136(10) 110(10)  33(8) -17(9)  80(9) 

N(2F) 141(12)  133(10) 98(10)  20(8) -12(9)  52(9) 

C(1F) 147(14)  163(12) 135(12)  46(10) 1(11)  71(10) 

C(2F) 167(14)  134(12) 121(12)  35(9) 7(11)  39(10) 

C(3F) 126(13)  91(11) 132(12)  27(9) -2(10)  16(9) 

C(4F) 140(14)  81(11) 132(12)  26(9) 10(10)  17(9) 

C(5F) 326(18)  192(14) 160(14)  0(11) 9(13)  160(13) 

C(6F) 630(30)  219(16) 240(17)  2(13) 13(18)  172(17) 

C(7F) 380(20)  330(17) 125(14)  -28(12) -34(14)  192(15) 

C(8F) 225(16)  146(12) 131(13)  35(10) 39(11)  85(11) 

C(9F) 310(18)  229(15) 174(14)  68(11) 42(13)  174(13) 

C(10F) 430(20)  278(16) 180(15)  111(12) 94(14)  237(15) 

C(11F) 550(30)  199(15) 261(17)  104(13) 208(17)  145(15) 

C(12F) 430(20)  203(15) 258(17)  91(13) 153(16)  59(15) 

C(13F) 246(18)  229(15) 183(15)  69(12) 45(13)  60(13) 

C(14F) 157(14)  123(12) 128(12)  21(9) 13(11)  24(10) 

C(15F) 350(20)  72(11) 238(15)  8(10) 62(14)  23(12) 

C(16F) 132(14)  155(12) 50(11)  17(9) -21(10)  62(10) 

C(17F) 238(17)  216(14) 155(14)  107(11) 27(12)  22(12) 

C(18F) 177(15)  168(12) 99(12)  22(10) -28(11)  61(11) 

C(19F) 215(17)  139(13) 200(15)  -5(11) -47(13)  -39(11) 

C(20F) 351(19)  240(15) 129(13)  76(11) -9(13)  130(13) 

Br(1A) 265(2)  205(1) 172(1)  6(1) -6(1)  118(1) 

Br(1B) 212(2)  209(1) 143(1)  38(1) 18(1)  89(1) 

Br(1C) 286(2)  173(1) 186(2)  -11(1) -24(1)  92(1) 

Br(1D) 242(2)  223(2) 175(2)  45(1) 22(1)  -12(1) 

Br(1E) 225(2)  166(1) 142(1)  0(1) 31(1)  -40(1) 

Br(1F) 212(2)  228(2) 157(1)  45(1) -2(1)  10(1) 

O(5A) 202(12)  160(10) 207(11)  8(8) 11(9)  47(8) 

O(5B) 155(11)  210(10) 200(11)  29(8) -5(9)  -74(9) 

O(5C) 189(12)  159(10) 246(12)  43(8) 21(9)  55(9) 

O(5D) 342(15)  272(12) 219(12)  50(9) 23(10)  202(11) 

O(5E) 200(12)  176(10) 162(10)  29(8) 54(9)  63(8) 
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Table A4.2.4 (cont’d) 

O(5F) 253(13)  291(12) 214(12)  35(9) 37(10)  159(10) 

______________________________________________________________________________ 
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Table A4.2.5     Hydrogen coordinates (x103) and isotropic  displacement parameters (Å2x103)  

for amidine (R)-170•HBr 
________________________________________________________________________________  
 x  y  z  Uiso 
________________________________________________________________________________  
  
H(2A) 204 104 797 17 

H(1A) 646 133 714 16 

H(2AA) 842 242 787 17 

H(2AB) 776 130 782 17 

H(5A) 213 72 729 19 

H(6AA) 404 146 657 37 

H(6AB) 228 64 650 37 

H(6AC) 402 47 670 37 

H(7AA) 186 224 753 35 

H(7AB) 98 182 702 35 

H(7AC) 282 256 709 35 

H(9A) 782 222 663 22 

H(10A) 859 359 632 25 

H(11A) 792 492 668 27 

H(12A) 646 488 735 26 

H(13A) 565 351 766 21 

H(15G) 784 477 855 51 

H(15H) 964 472 878 51 

H(15I) 794 446 905 51 

H(17G) 691 -57 862 37 

H(17H) 593 -8 900 37 

H(17I) 793 36 896 37 

H(18A) 381 168 885 21 

H(19G) 173 248 870 38 

H(19H) 114 190 910 38 

H(19I) 25 151 859 38 

H(20G) 99 3 863 35 

H(20H) 211 38 912 35 

H(20I) 296 1 867 35 

H(2B) -4 75 461 16 

H(1B) 460 112 381 15 
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Table A4.2.5 (cont’d) 

H(2BA) 580 124 454 16 

H(2BB) 628 234 453 16 

H(5B) 0 59 391 20 

H(6BA) 226 -58 383 50 

H(6BB) 27 -92 363 50 

H(6BC) 78 -61 418 50 

H(7BA) 134 130 331 37 

H(7BB) 45 22 312 37 

H(7BC) 249 58 324 37 

H(9B) 598 218 334 25 

H(10B) 613 349 300 32 

H(11B) 460 456 328 33 

H(12B) 280 426 388 35 

H(13B) 258 293 421 25 

H(15D) 494 467 503 53 

H(15E) 692 482 520 53 

H(15F) 543 453 554 53 

H(17D) 488 -42 549 28 

H(17E) 396 20 584 28 

H(17F) 596 58 576 28 

H(18B) 166 149 549 19 

H(19D) -33 229 532 36 

H(19E) -101 171 572 36 

H(19F) -183 134 520 36 

H(20D) -108 -19 527 35 

H(20E) -10 21 577 35 

H(20F) 90 -16 536 35 

H(2C) 416 99 128 16 

H(1C) 849 121 40 17 

H(2CA) 1052 228 112 17 

H(2CB) 979 118 109 17 

H(5C) 419 57 59 19 

H(6CA) 606 125 -15 37 

H(6CB) 432 43 -20 37 
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Table A4.2.5 (cont’d) 

H(6CC) 608 29 1 37 

H(7CA) 386 208 80 34 

H(7CB) 300 164 28 34 

H(7CC) 483 240 36 34 

H(9C) 994 214 -9 21 

H(10C) 1067 352 -39 26 

H(11C) 991 482 -4 25 

H(12C) 834 474 62 23 

H(13C) 753 336 91 21 

H(15A) 1026 476 158 42 

H(15B) 1175 471 195 42 

H(15C) 982 457 209 42 

H(17A) 855 -61 201 36 

H(17B) 813 14 240 36 

H(17C) 1004 30 224 36 

H(18C) 605 167 215 18 

H(19A) 412 254 202 36 

H(19B) 349 197 243 36 

H(19C) 254 161 192 36 

H(20A) 317 5 195 30 

H(20B) 427 43 244 30 

H(20C) 513 2 200 30 

H(2D) 98 754 670 16 

H(1D) 531 721 758 19 

H(2DA) 563 591 691 18 

H(2DB) 628 700 687 18 

H(5D) 128 777 740 26 

H(6DA) 471 898 753 65 

H(6DB) 300 931 760 65 

H(6DC) 339 888 709 65 

H(7DA) 236 712 803 60 

H(7DB) 204 812 818 60 

H(7DC) 395 804 812 60 

H(9D) 568 620 808 22 
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Table A4.2.5 (cont’d) 

H(10D) 458 495 846 29 

H(11D) 188 390 820 28 

H(12D) 26 415 757 28 

H(13D) 136 542 720 23 

H(15P) 229 362 596 38 

H(15Q) 190 360 649 38 

H(15R) 363 339 631 38 

H(17P) 515 793 552 30 

H(17Q) 688 765 564 30 

H(17R) 665 864 587 30 

H(18D) 176 667 586 19 

H(19P) -101 589 600 33 

H(19Q) -123 649 560 33 

H(19R) -153 684 613 33 

H(20P) 67 834 598 34 

H(20Q) 132 788 551 34 

H(20R) 265 834 596 34 

H(2E) 725 727 339 16 

H(1E) 1153 714 432 18 

H(2EA) 1241 603 363 19 

H(2EB) 1274 713 364 19 

H(5E) 778 772 408 20 

H(6EA) 909 709 485 36 

H(6EB) 818 791 487 36 

H(6EC) 1004 804 468 36 

H(7EA) 600 615 388 38 

H(7EB) 557 669 436 38 

H(7EC) 667 595 437 38 

H(9E) 1236 625 481 22 

H(10E) 1190 492 516 29 

H(11E) 972 358 483 30 

H(12E) 792 362 419 26 

H(13E) 836 496 385 23 

H(15M) 935 367 266 42 
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Table A4.2.5 (cont’d) 

H(15N) 943 355 319 42 

H(15O) 1105 352 290 42 

H(17M) 1192 808 230 32 

H(17N) 1372 801 252 32 

H(17O) 1302 888 271 32 

H(18E) 830 654 255 17 

H(19M) 557 566 263 29 

H(19N) 533 629 226 29 

H(19O) 491 656 279 29 

H(20M) 708 816 269 30 

H(20N) 772 775 222 30 

H(20O) 907 819 266 30 

H(2F) 294 753 11 15 

H(1F) 736 716 95 17 

H(2FA) 771 594 25 17 

H(2FB) 827 704 23 17 

H(5F) 326 770 82 25 

H(6FA) 669 891 94 54 

H(6FB) 499 923 105 54 

H(6FC) 530 887 53 54 

H(7FA) 413 700 142 40 

H(7FB) 415 806 160 40 

H(7FC) 592 780 150 40 

H(9F) 782 610 140 26 

H(10F) 683 477 174 31 

H(11F) 413 372 146 38 

H(12F) 242 403 88 35 

H(13F) 341 538 56 26 

H(15J) 426 364 -66 34 

H(15K) 383 363 -14 34 

H(15L) 556 340 -30 34 

H(17J) 696 780 -116 30 

H(17K) 882 771 -100 30 

H(17L) 828 864 -82 30 
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Table A4.2.5 (cont’d) 

H(18F) 373 676 -76 18 

H(19J) 93 599 -62 31 

H(19K) 78 660 -101 31 

H(19L) 45 695 -49 31 

H(20J) 267 844 -55 34 

H(20K) 318 804 -105 34 

H(20L) 462 843 -62 34 

H(5AA) 998(5) -14(2) 771(1) 29 

H(5AB) 915(5) 48(2) 797(1) 29 

H(5BA) 681(4) -35(2) 445(1) 32 

H(5BB) 758(5) 62(1) 454(1) 32 

H(5CA) 145(5) -29(1) 117(1) 29 

H(5CB) 114(4) 59(2) 119(1) 29 

H(5DA) 897(5) 875(2) 681(1) 38 

H(5DB) 901(5) 820(2) 715(1) 38 

H(5EA) 601(5) 860(2) 349(1) 26 

H(5EB) 528(5) 808(2) 383(1) 26 

H(5FA) 230(2) 832(3) 35(1) 35 

H(5FB) 75(5) 820(3) 57(1) 35 
________________________________________________________________________________  
 
 



Chapter 3 – (3+2) Cycloadditions of Aziridines with Heterocumulenes  246 

 

 

 

 

CHAPTER 3† 

Stereoselective Lewis Acid Mediated (3 + 2) Cycloadditions of  

N-H- and N-Sulfonylaziridines with Heterocumulenes 

 

 

3.1   INTRODUCTION 

Having studied the cycloadditions of donor–acceptor cyclopropanes with 

heterocumulenes, we sought to expand the reactivity by replacing cyclopropanes with 

activated aziridines in order to access more highly nitrogenated heterocycles.  Aziridines 

are versatile intermediates and reaction partners for the preparation of a structurally 

diverse assortment of nitrogen-containing architectures. 1   These heterocycles are 

characterized by a unique reactivity profile, in part due to the large strain energy (27 kcal 

mol–1) contained within their three-membered rings,2  rendering them susceptible to 

nucleophilic ring opening,3 carbonylation,4 and ring expansion.5  Previous work has 

shown the utility of 2-arylaziridines in transition-metal-mediated and -catalyzed (3 + 2) 

cycloadditions with heterocumulenes for the formation of imidazolines, 6 a–e 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
† This work was performed in collaboration with Dr. Robert A. Craig, II, and Dr. Alexander F. G. 

Goldberg, alumni of the Stoltz group.  This work has been published, with portions of this chapter adapted 
with permission from Craig, R. A., II; O’Connor, N. R.; Goldberg, A. F. G.; Stoltz, B. M. Chem. Eur. J. 
2014, 20, 4806–4813.  Copyright 2015 WILEY–VCH. 
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oxazolidines,6d–e iminoazolidinones,6f–i iminothiazolidines,6i–k and iminoimidazolidines.6f,l  

Iminothiazolidines and iminoimidazolidines have seen use as effective organic catalysts 

in asymmetric transformations including Strecker reactions,7a O- and N-acylations,7b–c and 

Michael additions,7d and as highly active pharmacophores for the treatment of a wide 

range of medical conditions including obesity, diabetes, cancer, and arthritis.8 

The critical limitation of the majority of existing (3 + 2) cycloaddition manifolds is 

the requirement that the aziridine starting materials bear either alkyl or aryl N-

substitution.  The harsh conditions necessary for the removal of such robust groups 

severely limits the potential for derivatization and, thus, the utility of the products.  

Despite this, the use of N-sulfonyl-protected aziridines in (3 + 2) cycloadditions has been 

explored minimally.6a–e,k  Prior to our studies, the work of Nadir and co-workers stood as 

the only previous study of (3 + 2) cycloadditions of N-sulfonyl-2-arylaziridines with 

heterocumulenes.6k,9  Their reaction system has a narrow scope and is only able to 

accommodate aryl isocyanates and aryl isothiocyanates, resulting in similarly limited 

product derivatization options.  This transformation depends on the use of an alkali metal 

iodide as a noninnocent reaction partner; Nadir and co-workers explicitly demonstrate the 

formation of the ring-opened iodide intermediate prior to product formation. 

Additionally, only a single example of the synthesis of enantioenriched 

iminothiazolidines by a stereoselective (3 + 2) cycloaddition is known6i despite readily 

available enantiopure aziridine starting materials.1,2,6h  This method, however, has an 

extremely narrow substrate scope, requiring the use of N-alkyl- or N-arylaziridines and 

aryl heterocumulenes.  There are no examples of this transformation with N-sulfonyl-

protected aziridines or more synthetically versatile heterocumulenes. 
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3.2  DEVELOPMENT OF THE RACEMIC (3 + 2) CYCLOADDITION 

From this foundation, we sought to develop the first stereoselective Lewis acid 

mediated (3 + 2) cycloaddition reaction of N-sulfonyl-2-substituted aziridines and alkyl 

heterocumulenes.  The Lewis acid mediated conditions would likely enable the use of a 

broad variety of heterocumulenes and consequently furnish readily derivatizable, highly 

enantioenriched heterocyclic building blocks. 

 

3.2.1  OPTIMIZATION OF THE REACTION CONDITIONS 

Initial reaction development focused on the cycloaddition of N-tosyl-2-

phenylaziridine (291) with allyl isothiocyanate (Scheme 3.1).  In contrast to our previous 

work on (3 + 2) cycloadditions of donor–acceptor cyclopropanes with heterocumulenes,10 

tin(II) triflate was found to be an ineffective Lewis acid mediator for the desired 

transformation (entry 1).  Alternatively, zinc(II) salts proved competent for the formation 

of iminothiazolidine 292. While zinc(II) triflate furnished the product in good yield, the 

reaction times were greatly reduced when zinc(II) halides were employed (entries 2–5).  

Lithium bromide mediated reaction conditions resulted in low conversion (entry 6).  

Attempts to develop a catalytic system with zinc(II) bromide proved unsuccessful, even 

in the presence of an additional bromide ion (entry 7).  Ultimately, the use of 1.25 

equivalents of zinc(II) bromide and 2.00 equivalents of allyl isothiocyanate in 

dichloromethane at ambient temperature proved optimal (entry 5).11 
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Scheme 3.1 Optimization of the reaction conditions 

 

 

3.2.2  EXPLORATION OF 2-AZIRIDINE AND HETEROCUMULENE 

SUBSTITUTION 

With optimized conditions identified, we examined the substrate scope of the 

reaction.  We found that a variety of N-tosyl-2-aryl-substituted aziridines participated 

effectively in the zinc(II) bromide mediated (3 + 2) cycloaddition with allyl 

isothiocyanate to yield the corresponding iminothiazolidine products with complete 

chemo- and regioselectivity (Scheme 3.2).12,13  Altering the C-aryl substitution from 

phenyl to mesityl allowed for the formation of the corresponding heterocycle (296) in a 

shorter reaction time despite the increased steric bulk.14  Similarly, (p-tolyl)thiazolidine 

297 was successfully furnished with a slightly decreased yield.  Acetoxy substitution was 

compatible with the reaction conditions as well, generating 298 in excellent yield.  

Compared to the p-chlorophenyl- or o-chlorophenylthiazolidines (299 and 301, 

respectively), the more electronically deactivated m-chlorophenylthiazolidine 302 was 

produced more slowly, albeit without any significant reduction in yield.15  The highly 

electron-deficient p-nitrophenyl-thiazolidine 300 was formed in modest yield, with a 

Conditions: aziridine 291 (0.40 mmol), isothiocyanate (0.80 mmol), Lewis 
acid (0.50 mmol), CH2Cl2 (0.80 mL).  a Isolated yield. b 1.00 mmol of LiBr.        
c Starting material was not fully consumed. d 0.12 mmol of ZnBr2 with 0.40 
mmol of tetra(n-buty)lammonium bromide additive.

Entry Lewis Acid t (h) Yield (%)a

2
1

6

3

5
4

7

(2.00 equiv)

Lewis acid (1.25 equiv)
CH2Cl2, 23 °C

Ts
N

Ph

S
NTs

Ph

N

292291

Sn(OTf)2

ZnCl2

ZnBr2

ZnI2

ZnBr2d

Zn(OTf)2

LiBr2b

1.0

6.0

1.3
3.0

72.0c

60.0

72.0c

0

95

99
95

4

79

7

NCS
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significant portion of starting material lost to nucleophilic ring opening of the aziridine 

by the bromide counterion.16  Substrates bearing coordinating C-aryl! substituents served 

to slow the rate of reaction (e.g. 298 and 300) or require additional ZnBr2 to drive the 

reaction to completion (303).  Styrenyl thiazolidine 304 could also be synthesized in 

approximately the same reaction time as phenyl product 292.  Additionally, primary and 

secondary alkyl isothiocyanates were found to be highly compatible under the reaction 

conditions as were electron-neutral, -rich, and -deficient aryl isothiocyanates, all 

furnishing the desired iminothiazolidines in excellent yields (305–309, respectively). 

 

Scheme 3.2 Substrate scope of the isothiocyanate (3 + 2) cycloaddition 

 

In contrast to the C-aryl-substituted aziridines, C-alkyl-substituted aziridine 310 

reacted with allyl isothiocyanate under the reaction conditions to furnish two isomeric    

Conditions: aziridine 293 (0.40 mmol), isothiocyanate (0.80 mmol), ZnBr2 (0.50 mmol), CH2Cl2 (0.80 mL). a Isolated yield.      
b The product of nucleophilic ring opening of the starting material by a bromide ion was isolated in 35% yield. c 0.90 mmol 
of ZnBr2 were used.
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(3 + 2) adducts (Scheme 3.3).  Formation of 5-alkyl-substituted iminothiazolidine 311 

was accomplished in only 18% yield, whereas 4-alkyl-substituted product 312 was 

furnished in 56% yield.  While C-alkyl-substituted aziridines are suitable reaction 

partners in the (3 + 2) cycloaddition and the heterocyclic products are formed with 

complete chemoselectivity, they are not formed with the regiofidelity exhibited by 

aziridines substituted at carbon with aryl groups or other conjugated systems. 

 

Scheme 3.3 (3 + 2) cycloaddition with 2-alkylaziridine 310 

 

 

3.2.3   EFFECT OF AZIRIDINE N-SUBSTITUTION 

As an extension of the substrate scope, we investigated the effect of N-substitution on 

the aziridine (Scheme 3.4).  Aziridines protected with N-sulfonyl groups provided the 

desired iminothiazolidines (292, 315–317) in excellent yields, generally showing reaction 

times that were slightly shorter for electron-deficient sulfonyl groups (entry 2) and 

slightly longer for more electron-rich sulfonyl groups (entries 3–4) in comparison to the 

N-tosyl-substituted substrate (entry 1).  

 

S
NTs

n-Bu

N

S
NTs

N

n-Bu

Ts
N

n-Bu
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ZnBr2
CH2Cl2, 23 °C, 30 h

NCS
+
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(18% yield)
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Scheme 3.4 Scope of N-substitution in the isothiocyanate (3 + 2) cycloaddition reaction 

 

Interestingly, unprotected 2-phenylaziridine showed an improved reaction time yet a 

partially decreased yield of the heterocyclic product 318, whereas N-(n-decyl)-substituted 

aziridine was unreactive under the reaction conditions (entries 5–6).  N-Acyl aziridines 

also failed to furnish any of the desired heterocycles 320 and 321 (entries 7–8). 

 

3.2.4  EXTENSION OF HETEROCUMULENE SCOPE 

Subsequently, we turned our attention to broadening the scope of competent 

heterocumulenes.  We found that isocyanates gave only trace yields of the (3 + 2) 

cycloaddition adducts, 17  but carbodiimides were compatible with the conditions, 

furnishing iminoimidazolidines (Scheme 3.5).18  Unlike previously known systems,6,9 our 

unique zinc-mediated conditions enabled the (3 + 2) cycloadditions of N-

sulfonylaziridines with dialkyl- and disilylcarbodiimides systems, allowing access to 

diisopropyliminoimidazolidine 323 and secondary imidazolidine 324.  In accordance with 

our observations of the isothiocyanate (3 + 2) cycloadditions, a variety of 2-arylaziridines 

were suitable reaction partners with diphenylcarbodiimide (325–327). 

 

Conditions: aziridine 313 (0.40 mmol), isothiocyanate (0.80 mmol), ZnBr2 
(0.50 mmol), CH2Cl2 (0.80 mL). a Isolated yield. b Starting material was not 
fully consumed.
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Scheme 3.5 Substrate scope of carbodiimide (3 + 2) cycloaddition 

 

 

3.2.5  CYCLOADDITION OF DISUBSTITUTED N-SULFONYLAZIRIDINES 

During our investigation of the substrate scope of the (3 + 2) cycloaddition of N-

sulfonylaziridines with isothiocyanates, we discovered that trans-2,3-disubstituted 

aziridine 328 was an acceptable reaction partner, furnishing cis-thiazolidine 329 in high 

yield and with the shortest reaction time observed for any N-tosyl-substituted substrate 

(Scheme 3.6).  Iminothiazolidine 329 was formed as a single diastereomer, and the 

relative stereochemistry was confirmed by single-crystal X-ray diffraction.  The cis 

configuration of 329 led to the hypothesis that the mechanism of the reaction involves 

inversion at the benzylic position of the aziridine starting material.19 

 

Conditions: aziridine 293 (0.40 mmol), carbodiimide (0.41 mmol), ZnBr2 (0.50 mmol), 
CH2Cl2 (0.80 mL). a Isolated yield. b Bis(trimethylsilyl)carbodiimide was used.
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Scheme 3.6 Diastereoselective (3 + 2) cycloaddition with aziridine 328 

 

To confirm that the chemo-, regio-, and diastereoselective formation of cis-

thiazolidine 329 was not substrate dependent, we exposed trans-2,3-disubstituted 

acroylaziridine 330 to identical reaction conditions and were pleased to find that cis-

acroylthiazolidine 331 was formed as the sole product and as a single diastereomer 

(Scheme 3.7). 

 

Scheme 3.7 Diastereoselective (3 + 2) cycloaddition with aziridine 330  

 

In contrast, the (3 + 2) cycloaddition of allyl isothiocyanate with cis-2,3-disubstituted 

aziridine 333 resulted in the nondiastereoselective formation of both trans-thiazolidine 

334 and the cis isomer 335 (Scheme 3.8A).  Interestingly, exposure of cis-aziridine 333 

to the reaction conditions in the absence of heterocumulene resulted in the rapid 

formation of pyrrolines 336 and 337 (Scheme 3.8B).20  Finally, we found that geminally 

disubstituted N-tosyl-2-methyl-2-phenylaziridine failed to provide any (3 + 2) 

cycloaddition product.21 
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Scheme 3.8 (3 + 2) Cycloaddition with aziridine 333 

 

 

3.3  DEVELOPMENT OF THE STEREOSELECTIVE (3 + 2) 

CYCLOADDITION 

The formation of cis-thiazolidines 329 and 331 with excellent chemo-, regio-, and 

diastereoselectivity intimated the potential to develop a stereoselective reaction manifold. 

 

3.3.1  DEVELOPMENT OF A STERESELECTIVE (3 + 2) CYCLOADDITION 

Initial development focused on the (3 + 2) cycloaddition of (R)-N-tosyl-2-

phenylaziridine ((R)-291) with allyl isothiocyanate (Scheme 3.9). 22   The optimized 

zinc(II) bromide mediated reaction conditions furnished (S)-292 in excellent yield and 

with 42% enantiomeric excess (ee) (entry 1).  Other zinc(II) halide salts furnished the 

desired product in similar yield, with zinc(II) chloride giving the best ee (entries 2–3). 

Zinc(II) triflate provided no improvement in the ee of (S)-292 (entry 4).  Lithium 

bromide mediated and catalytic zinc(II) bromide conditions both exhibited incomplete 

conversion of (R)-291 (entries 5–6).  Interestingly, while the lithium bromide conditions 

furnished the opposite enantiomer (R)-292, the catalytic zinc(II) bromide conditions 

produced (S)-292 with an improved 69% ee.  Inspired by this result, we were pleased to 
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find that increasing the equivalents of isothiocyanate in the presence of stoichiometric 

zinc(II) bromide could provide a similar boost in ee while maintaining full conversion of 

the starting material (entry 7).  Ultimately, the use of 1.25 equivalents of zinc(II) chloride 

and 10.0 equivalents of allyl isothiocyanate in dichloromethane at ambient temperature 

proved optimal, furnishing (S)-292 in 99% yield and with 94% ee (entry 8). 

 

Scheme 3.9 Optimization of the stereoselective reaction conditions 

 

 

3.3.2  EXPLORATION OF ISOTHIOCYANATE SUBSTITUTION 

With optimal conditions identified, we examined the scope of heterocumulene 

substitution in the reaction.23  We found that, along with allyl isothiocyanate, primary and 

secondary alkyl isothiocyanates were all highly compatible under the reaction conditions, 

furnishing desired enantioenriched iminothiazolidines (S)-292, (S)-305, and (S)-306 in 

uniformly excellent yields and ee (Scheme 3.10).13  The use of a tertiary isothiocyanate, 

however, extended the reaction time and provided thiazolidine (S)-338 in decreased yield 

and ee.  Additionally, aryl isothiocyanates were competent cycloaddition reaction 

Conditions: aziridine (R)-291 (0.40 mmol, 99% ee), isothiocyanate (0.80 
mmol), Lewis acid (0.50 mmol), CH2Cl2 (0.80 mL). a Isolated yield. b 
Determined by analytical chiral SFC. c Starting material was not fully 
consumed. d 0.12 mmol of ZnBr2. e 6.00 equiv allyl isothiocyanate. f 10.0 
equiv allyl isothiocyanate.
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partners under the zinc(II) chloride mediated conditions, providing thiazolidine products 

(S)-307, (S)-308, and (S)-309 in excellent yields.  While phenyliminothiazolidine (S)-307 

was isolated with good ee, the use of a more electron-rich isothiocyanate resulted in the 

formation of a thiazolidine product ((S)-308) with an excellent 90% ee, whereas the use 

of a more electron-deficient isothiocyanate provided a product with a significantly lower 

ee ((S)-309). 

 

Scheme 3.10 Substrate scope of stereoselective isothiocyanate (3 + 2) cycloaddition 

 

 

 

 

Conditions: aziridine (R)-293 (0.40 mmol, 99% ee), isothiocyanate (4.00 
mmol), ZnCl2 (0.50 mmol), CH2Cl2 (0.80 mL). a Isolated yield. b Determined 
by analytical chiral SFC.
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3.3.3  EFFECT OF AZIRIDINE N-SUBSTITUTION ON THE TRANSFER OF 

CHIRAL INFORMATION 

We subsequently investigated the effect of N-substitution on the aziridine in the 

stereoselective (3 + 2) cycloaddition.  Aziridines with N-sulfonyl substitutions were 

extremely well tolerated under the reaction conditions, furnishing the desired 

thiazolidines ((S)-292, (S)-315–(S)-317) in excellent yields and with uniformly high ee’s, 

and reaction times that increased slightly when moving from more electron-deficient 

(Scheme 3.11, entry 2) to more electron-rich (entry 4) sulfonyl groups.  While 

unprotected 2-phenylaziridine showed an improved reaction time, unfortunately both the 

yield and ee of thiazolidine (S)-318 were reduced (entry 5). 

 

Scheme 3.11 Scope of N-substitution in the stereoselective isothiocyanate (3 + 2) 

 

 

3.3.4  PROPOSED MECHANISM OF STEREOSELECTIVE (3 + 2) 

CYCLOADDITION 

We hypothesize that the mechanism of the (3 + 2) cycloadditions presented herein 

proceeds through a stereoselective intimate-ion-pair mechanism similar to that invoked in 

Conditions: aziridine (R)-313 (0.40 mmol, 99% ee), isothiocyanate (4.00 
mmol), ZnCl2 (0.50 mmol), CH2Cl2 (0.80 mL). a Isolated yield. b Determined 
by analytical chiral SFC.
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our previous work10 and by Johnson24 and Kerr25 in related work on the cycloadditions of 

donor–acceptor cyclopropanes (Scheme 3.12).  Our observations including lack of 

reactivity in the absence of Lewis acid,11,26 inversion at the benzylic position, greater 

reactivity of aziridines with electron-rich aryl substituents, and shorter reaction times of 

N-substituted aziridines with more electron-withdrawing groups are all consistent with 

this mechanistic hypothesis.  The formation of (R)-292 under lithium bromide mediated 

conditions strongly suggests we have developed a Lewis acid mediated process in 

contrast to the related alkali metal halide mediated system reported by Nadir and co-

workers,6k,9 who observe overall stereoretention as a result of a double inversion pathway, 

which proceeds through an iodinated intermediate.  It also suggests a distinct mechanism 

from the palladium(II)-catalyzed reaction reported Alper and co-workers,6i who observe 

the stereoretentive product as the major enantiomer.  Our hypothesis accounts for the 

observed nondiastereoselective formation of thiazolidines 334 and 335 and pyrrolines 

336 and 337, considering the fully separated ion-pair intermediate that likely results from 

destabilization of the polarized C–N bond by the steric interaction between the cis 

substituents on aziridine 333 (see Scheme 3.8). 

 

Scheme 3.12 Proposed general reaction mechanism for the stereoselective (3 + 2) cycloaddition 
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3.4  CYCLOADDITION OF AN AZIRIDINE DICARBOXYLATE 

Noting the apparent mechanistic similarities with our previous work,10 we synthesized 

aziridine dicarboxylate 342 to assess the potential for selective activation of the C–C or 

C–N bond under either our tin(II)- or zinc(II)-mediated conditions, respectively. 27  

Unfortunately, Sn(OTf)2 failed to provide any cycloaddition product.28 Alternatively, use 

of ZnBr2 provided thiolactam 343 as the sole (3 + 2) adduct (Scheme 3.13A).  

 

Scheme 3.13 (3 + 2) Cycloaddition with aziridine dicarboxylate 342 

 

This is the only thiolactam (3 + 2) cycloaddition product observed during our 

studies.13  The ability of the malonate group to stabilize the negative charge and the 

nitrogen to further stabilize the benzylic positive charge allows for the formation of 

zwitterion 345, likely resulting in the observed divergent reactivity (Scheme 3.13B).29 
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318 could be accessed rapidly in an excellent 91% yield without any loss of enantiomeric 

excess through detosylation of thiazolidine (S)-292 (Scheme 3.14A).30  Alternatively, (S)-

318 could be reached by the desulfonylation of p-nosyl-protected thiazolidine (S)-315 

(Scheme 3.41B), furnishing thiazolidine (S)-318 in 87% yield and with 94% ee over two 

steps from (R)-N-(p-nitrobenzenesulfonyl)-2-phenylaziridine.31 

 

Scheme 3.14 Desulfonylation and deallylation of iminothiazolidine products 

 

Alternatively, cleavage of the allyl imine C–N bond of heterocycle (S)-292 in the 

presence of palladium(0) enabled access to secondary iminothiazolidine (S)-344 with 

some loss of enantiomeric excess (Scheme 3.14C).  While the deallylation of various 

nitrogen groups, including amines32 and amides,33 is known, this is the first example of 

imino N-allyl bond cleavage. 

Iminothiazolidines (S)-318 and (S)-344 are extremely versatile heterocycles. 

Derivatization and synthetic manipulations of the imine, allyl group, and secondary 
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oxothiazolidines, thiazoles, and a variety of polycyclic scaffolds.34  Critically, access to 

the enantioenriched secondary thiazolidine and imidazolidine products enabled by our   

(3 + 2) cycloaddition allows for their use as asymmetric organic catalysts, as the free 

secondary nitrogen functions as a necessary hydrogen bond donor for the majority of 

these applications.7a–d 

 

3.6  CONCLUSIONS 

We have disclosed the first stereoselective Lewis acid mediated (3 + 2) cycloaddition 

of N-H- and N-sulfonylaziridines with alkyl heterocumulenes. These zinc(II)-mediated 

conditions offer broad tolerance of alkyl, silyl, and aryl heterocumulenes, as well as 

aziridine substitution, enabling the formation of iminoimidazolidines and enantioenriched 

iminothiazolidines in overall excellent yields from enantioenriched aziridines, which are 

easily accessible from their amino acid precursors.  Combined with the exhibited ability 

to simply and orthogonally remove the sulfonyl and allyl protecting groups, this reaction 

system enables the installation of a broad number of functional group handles for further 

derivatization of these biologically and catalytically important heterocyclic scaffolds. 

 

3.7  EXPERIMENTAL SECTION 

3.7.1   MATERIALS AND METHODS 

Unless stated otherwise, reactions were performed at ambient temperature (23 °C) in 

flame-dried or oven-dried glassware under an argon or nitrogen atmosphere using dry, 

deoxygenated solvents (distilled or passed over a column of activated alumina).35  

Commercially obtained reagents were used as received with the exception of tetra(n-
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butyl)ammonium bromide (TBAB), zinc(II) chloride, zinc(II) bromide, zinc(II) iodide, 

zinc(II) triflate, tin(II) triflate, lithium bromide, tetrakis(acetonitrile)copper(I) 

hexafluorophosphate, and tetrakis(triphenylphosphine)palladium(0), which were stored in 

a nitrogen-filled glovebox.  Triethylamine and pyridine were distilled from calcium 

hydride immediately prior to use.  Methanol was distilled from magnesium methoxide 

immediately prior to use.  Iodosobenzene36 and diphenylcarbodiimide37were prepared by 

known methods.  Reactions requiring external heat were modulated to the specified 

temperatures using an IKAmag temperature controller.  Reaction progress was monitored 

by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-LCMS.  TLC was 

performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized 

by UV fluorescence quenching, potassium permanganate, or p-anisaldehyde staining.  

SiliaFlash P60 Academic Silica gel (particle size 0.040-0.063 mm) was used for flash 

chromatography.  1H and 13C NMR spectra were recorded on a Varian Inova 500 

spectrometer (500 MHz and 126 MHz, respectively) and are reported in terms of 

chemical shift relative to residual CHCl3 (δ 7.26 and δ 77.16 ppm, respectively), 

D3CS(O)CHD2 (δ 2.50 and δ 39.52 ppm, respectively), or CHDCl2 (δ 5.32 and δ 53.84 

ppm, respectively).  Data for 1H NMR spectra are reported as follows: chemical shift (δ 

ppm) (multiplicity, coupling constant (Hz), integration).  Abbreviations are used as 

follows: s = singlet, d = doublet, t = triplet, q = quartet, m = complex multiplet, bs = 

broad singlet.  Infrared (IR) spectra were recorded on a Perkin Elmer Paragon 1000 

spectrometer and are reported in frequency of absorption (cm–1).  High-resolution mass 

spectra (HRMS) were obtained from the Caltech Mass Spectral Facility using a JEOL 

JMS-600H High Resolution Mass Spectrometer with fast atom bombardment (FAB+) 
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ionization mode or were acquired using an Agilent 6200 Series TOF with an Agilent 

G1978A Multimode source in atmospheric pressure chemical ionization (APCI+), 

electrospray ionization (ESI+), or mixed (MultiMode: ESI-APCI) ionization mode. 

Optical rotations were measured on a JASCO P-2000 polarimeter using a 100 mm path 

length cell at 589 nm.  Analytical supercritical fluid chromatography (SFC) was 

performed with a Mettler SFC supercritical CO2 analytical chromatography system 

utilizing Chiralpak (AD-H or AS-H) or Chiralcel (OB-H or OD-H) columns (4.6 mm x 

25 cm) obtained from Daicel Chemical Industries, Ltd. 

 

3.7.2   GENERAL EXPERIMENTAL PROCEDURES 

 

General Procedure A. Direct aziridination of olefins.38 

To a flame-dried round-bottom flask with a stir bar were added p-toluenesulfonamide 

(5.60 mmol, 1.40 equiv), tetrakis(acetonitrile)copper(I) hexafluorophosphate (0.40 mmol, 

0.10 equiv), the appropriate olefin (183, 4.00 mmol, 1.00 equiv), activated 3 Å molecular 

sieves (2.40 g, 600 mg/mmol olefin), and acetonitrile (10 mL).  The stirred suspension 

was cooled to 0 °C (ice/H2O bath), and iodosobenzene (5.60 mmol, 1.40 equiv) was 

added as a solid in one portion.  The bath was immediately removed and the reaction 

mixture was allowed to warm to ambient temperature.  Upon consumption of starting 

material (determined by TLC or LCMS analysis, ca. 12–48 h), the mixture was filtered 

R
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through Celite, washing with acetonitrile (50 mL) and ethyl acetate (50 mL).  The filtrate 

was concentrated in vacuo to give the crude product, which was purified by silica gel 

column chromatography (EtOAc in hexanes eluent). 

 

 

General Procedure B.  Ring closure of amino alcohols.39 

A flame-dried round-bottom flask with a stir bar was charged with 2-phenylglycinol 

(345, 0.73 mmol, 1.00 equiv), which was then suspended in CH2Cl2 (500 µL) and 

pyridine (250 µL).  The stirred suspension was cooled to 0 °C (ice/H2O bath) at which 

time the appropriate sulfonyl chloride (2.19 mmol, 3.00 equiv) was added in one portion.  

The bath was immediately removed and the reaction mixture was allowed to warm to 

ambient temperature.  Upon completion (determined by TLC or LCMS analysis, ca. 1–5 

h), the mixture was diluted with CH2Cl2 (12 mL), and washed with aqueous 2 N HCl (3 x 

4 mL).  The combined acidic aqueous layers were extracted with CH2Cl2 (1 x 4 mL).  

The organic layers were combined and carefully washed with aqueous 2 N KOH (6 x 8 

mL).  The combined basic aqueous layers were then extracted with CH2Cl2 (1 x 12 mL) 

and the combined organic layers were dried over sodium sulfate, filtered, and 

concentrated in vacuo.  The crude residue was purified by silica gel column 

chromatography (EtOAc in hexanes eluent). 
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General Procedure C. Isothiocyanate (3 + 2) cycloaddition with 2-subsituted aziridines.  

To an oven-dried 1-dram vial equipped with a magnetic stir bar was added zinc(II) 

bromide (113 mg, 0.50 mmol, 1.25 equiv), freshly powdered with a mortar and pestle, in 

an inert atmosphere glovebox.  The vial was sealed with a screw cap fitted with a Teflon 

septum, removed from the glovebox, and placed under an inert atmosphere. To a 

separate, oven-dried 1-dram vial was added the appropriate aziridine (346, 0.40 mmol, 

1.00 equiv). The vial was sealed with a screw cap fitted with a Teflon septum and 

anhydrous CH2Cl2 (0.60 mL) and isothiocyanate (0.80 mmol, 2.00 equiv) were added. 

The mixture was transferred to the first vial with a rinse of anhydrous CH2Cl2 (0.20 mL).  

The heterogeneous reaction mixture was then allowed to stir at ambient temperature.  

Upon consumption of the aziridine (determined by TLC or LCMS analysis), the reaction 

solution was diluted with CH2Cl2 (3 mL) and CH3OH (1 mL), adsorbed onto Celite, and 

purified by silica gel column chromatography (acetone in hexanes eluent). 

 

 

 

General Procedure D. Carbodiimide (3 + 2) cycloaddition with 2-subsituted aziridines.  

To an oven-dried 1-dram vial equipped with a magnetic stir bar was added zinc(II) 

bromide (113 mg, 0.50 mmol, 1.25 equiv), freshly powdered with a mortar and pestle, in 
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an inert atmosphere glovebox.  The vial was sealed with a screw cap fitted with a Teflon 

septum, removed from the glovebox, and placed under an inert atmosphere. To a 

separate, oven-dried 1-dram vial was added the appropriate aziridine (346, 0.40 mmol, 

1.00 equiv). The vial was sealed with a screw cap fitted with a Teflon septum and 

anhydrous CH2Cl2 (0.60 mL) and carbodiimide (0.41 mmol, 1.02 equiv) were added. The 

mixture was transferred to the first vial with a rinse of anhydrous CH2Cl2 (0.20 mL). The 

heterogeneous reaction mixture was then allowed to stir at ambient temperature.  Upon 

consumption of the aziridine (determined by TLC or LCMS analysis), the reaction 

solution was diluted with CH2Cl2 (3 mL) and CH3OH (1 mL), adsorbed onto Celite, and 

purified by silica gel column chromatography (acetone in hexanes or CH3OH in CH2Cl2 

eluent). 

 

 

General Procedure E. Stereoselective Isothiocyanate (3 + 2) cycloaddition with 2-

subsituted aziridines.  

To an oven-dried 1-dram vial equipped with a magnetic stir bar was added powdered 

zinc(II) chloride (68 mg, 0.50 mmol, 1.25 equiv) in an inert atmosphere glovebox.  The 

vial was sealed with a screw cap fitted with a Teflon septum, removed from the 

glovebox, and placed under an inert atmosphere. To a separate, oven-dried 1-dram vial 

was added the appropriate aziridine ((R)-346, 0.40 mmol, 1.00 equiv). The vial was 

sealed with a screw cap fitted with a Teflon septum and anhydrous CH2Cl2 (0.60 mL) and 

isothiocyanate (4.00 mmol, 10.0 equiv) were added. The mixture was transferred to the 
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first vial with a rinse of anhydrous CH2Cl2 (0.20 mL). The heterogeneous reaction 

mixture was then allowed to stir at ambient temperature.  Upon consumption of the 

aziridine (determined by TLC or LCMS analysis), the reaction solution was diluted with 

CH2Cl2 (3 mL) and CH3OH (1 mL), adsorbed onto Celite, and purified by silica gel 

column chromatography (acetone in hexanes). 

 

3.7.3   AZIRIDINE SYNTHESIS AND CHARACTERIZATION DATA 

 

 

N-tosyl-2-phenylaziridine (291): 

Aziridine 291 was prepared according to General Procedure B from 2-phenylglycinol 

(345): 85% yield; Rf = 0.25 (1:4 Acetone:Hexanes eluent); characterization data match 

those reported in the literature.40 

 

 

(R)-N-tosyl-2-phenylaziridine ((R)-291): 

Aziridine (R)-291 was prepared according to a procedure modified from literature 

methods.41 A flame-dried round-bottom flask with a stir bar was charged with (R)-(–)-2-
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phenylglycinol ((R)-345, 5.00 g, 36.4 mmol, 1.00 equiv), p-toluenesulfonyl chloride 

(17.4 g, 91.1 mmol, 2.50 equiv), and 4-(dimethylamino)pyridine (DMAP, 445 mg, 3.64 

mmol, 0.10 equiv).  The solids were suspended in dichloromethane under nitrogen, and 

the flask was cooled in an ice-water bath.  Triethylamine (Et3N, 15.2 mL, 109 mmol, 3.00 

equiv) was added dropwise, and the reaction mixture became clear and colorless.  The 

flask was allowed to warm to room temperature and stir under nitrogen.  Upon 

completion (as determined by LCMS analysis, ca. 8 h), the reaction was quenched by 

addition of saturated aqueous NH4Cl (80 mL).  The organic layer was removed and the 

aqueous layer extracted with dichloromethane (3 x 60 mL).  The combined organic layers 

were dried over sodium sulfate, filtered, and concentrated in vacuo.  The crude solid was 

purified by silica gel column chromatography (10% EtOAc in hexanes eluent) to give 

aziridine (R)-291 (6.34 g, 64% yield) as a fluffy white solid: characterization data are the 

same as above; [α]D 
25.0 –108.6° (c 0.950, CHCl3); enantiomeric excess was determined 

by analytical SFC (Chiralcel OB-H column, 10% isopropyl alcohol in CO2, 2.5 mL/min, 

λ = 254 nm, major retention time: 7.5 minutes, minor retention time: 10.2 minutes, >99% 

ee). 

 

 

N-tosyl-2-mesitylaziridine (349): 
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Aziridine 349 was prepared according to General Procedure A: 40% yield; Rf = 0.29 (1:9 

EtOAc:Hexanes eluent); characterization data match those reported in the literature.42 

 

 

N-tosyl-2-(p-tolyl)aziridine (351): 

Aziridine 351 was prepared according to General Procedure A: 75% yield; Rf = 0.34 (1:4 

Acetone:Hexanes eluent); characterization data match those reported in the literature.42 

 

 

N-tosyl-2-(p-acetoxyphenyl)aziridine (352): 

Aziridine 352 was prepared according to General Procedure A: 76% yield; Rf = 0.32 (3:7 

EtOAc:Hexanes eluent); characterization data for 1H NMR, 13C NMR, and IR spectra 

match those reported in the literature;42a HRMS (ESI+) m/z calc’d for C17H18NO4S 

[M+H]+: 332.0951, found 332.0958. 
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N-tosyl-2-(p-chlorophenyl)aziridine (353): 

Aziridine 353 was prepared according to General Procedure A: 82% yield; Rf = 0.30 

(3:17 EtOAc:Hexanes eluent); characterization data match those reported in the 

literature.42 

 

 

N-tosyl-2-(p-nitrophenyl)aziridine (355): 

Aziridine 355 was prepared according to General Procedure A: 31% yield; Rf = 0.27 (1:4 

Acetone:Hexanes eluent); characterization data match those reported in the literature.42b 

 

 

 

N-tosyl-2-(o-chlorophenyl)aziridine (356):43 
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Aziridine 356 was prepared according to General Procedure A: 90% yield; Rf = 0.45 (1:3 

EtOAc:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.93–7.87 (m, 2H), 7.37–7.34 (m, 

2H), 7.34–7.31 (m, 1H), 7.23–7.14 (m, 3H), 4.04 (dd, J = 7.2, 4.4 Hz, 1H), 3.03 (d, J = 

7.2 Hz, 1H), 2.45 (s, 3H), 2.29 (d, J = 4.4 Hz, 1H); 13C NMR (CDCl3, 126 MHz) δ 145.0, 

134.8, 133.9, 133.2, 129.9, 129.4, 129.3, 128.2, 127.6, 127.1, 39.1, 35.8, 21.8; IR (Neat 

Film, NaCl) 3065, 1596, 1444, 1328, 1163, 1093, 913, 815, 759, 732 cm–1; HRMS 

(FAB+) m/z calc’d for C15H15
35ClNO2S [M+H]+: 308.0512, found 308.0520. 

 

 

N-tosyl-2-(m-chlorophenyl)aziridine (358):43 

Aziridine 358 was prepared according to General Procedure A: 97% yield; Rf = 0.46 (1:3 

EtOAc:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.89–7.84 (m, 2H), 7.37–7.32 (m, 

2H), 7.26–7.17 (m, 3H), 7.12 (dtd, J = 7.1, 1.5, 0.5 Hz, 1H), 3.73 (dd, J = 7.1, 4.4 Hz, 

1H), 2.97 (d, J = 7.2 Hz, 1H), 2.44 (s, 3H), 2.35 (d, J = 4.4 Hz, 1H); 13C NMR (CDCl3, 

126 MHz) δ 145.0, 137.4, 134.9, 134.7, 130.0, 129.9, 128.6, 128.1, 126.7, 125.0, 40.2, 

36.3, 21.8; IR (Neat Film, NaCl) 3062, 1597, 1451, 1326, 1161, 1092, 919, 786, 723   

cm–1; HRMS (FAB+) m/z calc’d for C15H15
35ClNO2S [M+H]+: 308.0512, found 

308.0515. 
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N-tosyl-2-(o-pyridyl)aziridine (360):44 

Aziridine 360 was prepared according to General Procedure A: 68% yield; Rf = 0.34 (1:1 

EtOAc:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 8.52 (ddd, J = 4.8, 1.8, 0.9 Hz, 

1H), 7.89–7.83 (m, 2H), 7.62 (td, J = 7.7, 1.8 Hz, 1H), 7.34–7.30 (m, 2H), 7.26 (dt, J = 

7.8, 1.1 Hz, 1H), 7.19 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 3.90 (dd, J = 7.2, 4.4 Hz, 1H), 2.97 

(d, J = 7.2 Hz, 1H), 2.65 (d, J = 4.4 Hz, 1H), 2.42 (s, 3H); 13C NMR (CDCl3, 126 MHz) 

δ 154.4, 149.7, 144.9, 136.9, 134.6, 129.9, 128.2, 123.4, 121.9, 41.4, 35.1, 21.8; IR (Neat 

Film, NaCl) 3064, 1594, 1477, 1437, 1326, 1204, 1161, 1092, 915, 804, 715 cm–1; 

HRMS (ESI+) m/z calc’d for C14H15N2O2S [M+H]+: 275.0849, found 275.0835. 

 

 

N-tosyl-2-((E)-styryl)aziridine (362): 

Aziridine 362 was prepared according to General Procedure A: 11% yield; Rf = 0.18 (1:9 

EtOAc:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.90–7.82 (m, 2H), 7.36–7.23 (m, 

7H), 6.73 (d, J = 15.9 Hz, 1H), 5.84 (dd, J = 15.9, 7.9 Hz, 1H), 3.46 (dddd, J = 7.8, 7.1, 

4.5, 0.7 Hz, 1H), 2.87 (d, J = 7.1 Hz, 1H), 2.44 (s, 3H), 2.32 (d, J = 4.5 Hz, 1H); 13C 
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NMR (CDCl3, 126 MHz) δ 144.8, 135.9, 135.2, 129.9, 128.8, 128.4, 128.0, 126.6, 126.6, 

124.2, 41.4, 34.8, 21.8; IR (Neat Film, NaCl) 3287, 3028, 2924, 1597, 1494, 1450, 1323, 

1160, 1090, 964, 939, 884, 815, 753, 714 cm–1; HRMS (MM: ESI-APCI) m/z calc’d for 

C17H18NO2S [M+H]+:300.1053, found 300.1057. 

 

 

N-tosyl-2-(n-butyl)aziridine (310): 

Aziridine 310 was prepared according to General Procedure A: 32% yield; Rf = 0.44 (1:3 

EtOAc:Hexanes eluent); characterization data match those reported in the literature.42b 

 

 

N-mesyl-2-phenylaziridine (364): 

Aziridine 364 was prepared according to General Procedure B from 2-phenylglycinol 

(345); 88% yield; Rf = 0.29 (3:7 Acetone:Hexanes eluent); characterization data match 

those reported in the literature.45 
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(R)-N-mesyl-2-phenylaziridine ((R)-364): 

Aziridine (R)-364 was prepared according to General Procedure B from (R)-(–)-2-

phenylglycinol ((R)-345): characterization data are the same as above; [α]D 
25.0 –194.5° (c 

0.500, CHCl3); enantiomeric excess was determined by analytical SFC (Chiralpak AS-H 

column, 10% isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, major retention time: 

3.0 minutes, minor retention time: 3.3 minutes, 99% ee). 

 

 

N-(p-methoxybenzenesulfonyl)-2-phenylaziridine (365): 

Aziridine 365 was prepared according to General Procedure B from 2-phenylglycinol 

(345): 81% yield; Rf = 0.39 (3:7 Acetone:Hexanes eluent); characterization data match 

those reported in the literature.40  

 

 

(R)-N-(p-methoxybenzenesulfonyl)-2-phenylaziridine ((R)-365): 

Aziridine (R)-365 was prepared according to General Procedure B from (R)-(–)-2-

phenylglycinol ((R)-345): characterization data are the same as above; [α]D 
25.0 –78.0° (c 
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0.850, CHCl3); enantiomeric excess was determined by analytical SFC (Chiralpak AS-H 

column, 10% isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, major retention time: 

10.0 minutes, minor retention time: 11.3 minutes, >99% ee). 

 

 

N-(p-nitrobenzenesulfonyl)-2-phenylaziridine (366): 

Aziridine 366 was prepared according to General Procedure B from 2-phenylglycinol 

(345): 76% yield; Rf = 0.24 (1:4 Acetone:Hexanes eluent); characterization data match 

those reported in the literature.40 

 

 

(R)-N-(p-nitrobenzenesulfonyl)-2-phenylaziridine ((R)-366): 

Aziridine (R)-366 was prepared according to General Procedure B from (R)-(–)-2-

phenylglycinol ((R)-345): characterization data are the same as above; [α]D 
25.0 –58.4° (c 

0.600, CHCl3); enantiomeric excess was determined by analytical SFC (Chiralcel OD-H 

column, 10% isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, major retention time: 

8.9 minutes, minor retention time: 9.8 minutes, >99% ee). 
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2-phenylaziridine (367): 

Aziridine 367 was prepared according to literature methods from N-tosyl-2-

phenylaziridine (291).30 To a suspension of magnesium metal shavings (474 mg, 19.5 

mmol, 5.33 equiv) in CH3OH (37 mL) was added a solution of aziridine 291 (1.00 g, 3.66 

mmol, 1.00 equiv) in CH3OH (24 mL) quickly dropwise.  The reaction mixture was then 

sonicated at ambient temperature until consumption of the starting material was complete 

(determined by TLC analysis, ca. 30 min).  The resulting white suspension was poured 

over brine (200 mL) and extracted with CH2Cl2 (4 x 150 mL).  The combined organic 

layers were dried over MgSO4, filtered, and concentrated in vacuo to generate a white 

solid.  The crude residue was purified by column chromatography (85% EtOAc and 3% 

Et3N in hexanes→3%Et3N in EtOAc eluent) to afford aziridine 367 (342 mg, 78% yield) 

as a clear, colorless oil: Rf = 0.42 (EtOAc eluent); characterization data match those 

reported in the literature.30  
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Aziridine (R)-367 was prepared according to literature methods from (R)-N-tosyl-2-

phenylaziridine ((R)-291) as described above: characterization data are the same as 

above; [α]D 
25.0 –59.4° (c 0.750, CHCl3); enantiomeric excess was determined by 

analytical SFC (Chiralcel OD-H column, 10% isopropyl alcohol in CO2, 2.5 mL/min, λ = 

254 nm, major retention time: 7.8 minutes, minor retention time: 4.4 minutes, >99% ee). 

 

 

 

N-(n-decyl)-2-phenylaziridine (368): 

Aziridine 368 was prepared according to a procedure modified from literature methods.5c 

To an oven-dried vial with a stir bar were added aziridine 367 (113 mg, 0.95 mmol, 1.20 

equiv) and acetonitrile (1.2 mL).  Potassium carbonate (130 mg, 0.95 mmol, 1.20 equiv) 

and decyl iodide (170 µL, 0.79 mmol, 1.00 equiv) were then added, and the vial was 

sealed and heated to 55 °C.  Upon consumption of starting material (determined by 

LCMS analysis, ca. 17 h), the reaction mixture was allowed to cool to room temperature, 

concentrated in vacuo, and the residue partitioned between diethyl ether and brine.  The 

organic layer was separated and concentrated in vacuo to afford a gold oil.  The crude 

residue was purified by column chromatography (5% EtOAc in hexanes eluent) to furnish 

alkylated aziridine 368 (138 mg, 67% yield) as a clear, colorless oil: Rf = 0.33 (1:19 

EtOAc:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.33–7.18 (m, 5H), 2.52–2.44 (m, 

1H), 2.36–2.26 (m, 2H), 1.89 (dd, J = 3.4, 0.7 Hz, 1H), 1.65 (dd, J = 6.5, 0.7 Hz, 1H), 

1.64–1.56 (m, 2H), 1.41–1.18 (m, 14H), 0.88 (t, J = 7.0 Hz, 3H); 13C NMR (CDCl3, 126 
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MHz) δ 140.7, 128.4, 126.9, 126.3, 62.1, 41.4, 37.9, 32.1, 30.0, 29.8, 29.7, 29.7, 29.5, 

27.6, 22.8, 14.3; IR (Neat Film, NaCl) 3036, 2925, 2853, 1606, 1495, 1467, 1377, 1207, 

1084, 746 cm–1; HRMS (MM: ESI-APCI) m/z calc’d for C18H30N [M+H]+: 260.2373, 

found 260.2378. 

 

 

N-pivoyl-2-phenylaziridine (369): 

To a stirred solution of 2-phenylaziridine (367, 568 mg, 4.77 mmol, 1.00 equiv) in 

CH2Cl2 (12 mL) were added triethylamine (Et3N, 0.39 mL, 5.25 mmol, 1.10 equiv) and 

trimethylacetyl chloride (1.17 mL, 9.54 mmol, 2.00 equiv) dropwise. The reaction 

mixture was cooled to 0 °C (ice/H2O bath) at which time 4-(dimethylamino)pyridine 

(DMAP, 59 mg, 0.49 mmol, 0.10 equiv) was added as a solid in one portion. The bath 

was immediately removed and the reaction mixture was allowed to warm to ambient 

temperature. Upon consumption of starting material (determined by TLC analysis, ca. 1 

h), the reaction mixture was concentrated in vacuo to afford a gold oil. The crude residue 

was purified by column chromatography (20% EtOAc in hexanes eluent) to afford 

aziridine 369 (204 mg, 21% yield) as a clear, colorless oil: Rf = 0.31 (1:4 EtOAc:Hexanes 

eluent); 1H NMR (CDCl3, 500 MHz) δ 7.38–7.33 (m, 2H), 7.32–7.28 (m, 1H), 7.27–7.24 

(m, 2H), 5.44 (dd, J = 10.3, 7.8 Hz, 1H), 4.24 (dd, J = 14.2, 10.3 Hz, 1H), 3.74 (dd, J = 

14.2, 7.8 Hz, 1H), 1.30 (s, 9H); 13C NMR (CDCl3, 126 MHz) δ 174.2, 141.8, 128.8, 

128.1, 125.6, 80.7, 63.0, 33.4, 27.9; IR (Neat Film, NaCl) 2971, 2873, 1661, 1480, 1455, 
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1265, 1132, 988, 954, 759 cm–1; HRMS (FAB+) m/z calc’d for C13H18NO [M+H]+: 

204.1388, found 204.1385. 

 

 

N-benzoyl-2-phenylaziridine (370): 

To a stirred solution of 2-phenylaziridine (367, 119 mg, 1.00 mmol, 1.00 equiv) in 

CH2Cl2 (2.5 mL) were added triethylamine (Et3N, 0.16 mL, 1.10 mmol, 1.10 equiv) and 

benzoyl chloride (0.23 mL, 2.00 mmol, 2.00 equiv) dropwise. The reaction mixture was 

cooled to 0 °C (ice/H2O bath) at which time 4-(dimethylamino)pyridine (12 mg, 0.10 

mmol, 0.10 equiv) was added as a solid in one portion. The bath was immediately 

removed and the reaction mixture was allowed to warm to ambient temperature. Upon 

consumption of starting material (determined by TLC analysis, ca. 1 h), the reaction 

mixture was concentrated in vacuo to afford a gold oil. The crude residue was purified by 

column chromatography (10% EtOAc with 1% Et3N in hexanes eluent) to afford 

aziridine 370 (222 mg, 99% yield) as a white amorphous solid: Rf = 0.40 (1:9 

EtOAc:Hexanes eluent); characterization data match those reported in the literature.46 

 

 

trans-methyl N-tosyl-3-phenylaziridine-2-carboxylate (328): 
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Aziridine 328 was prepared according to General Procedure A: 52% yield; Rf = 0.29 (3:7 

Acetone:Hexanes eluent); characterization data match those reported in the literature.42  

 

 

trans-N-tosyl-2-((E)-2-(methoxycarbonyl)ethenyl)-3-phenylaziridine (330) and cis-

methyl N-tosyl-3-((E)-styryl)aziridine-2-carboxylate (333): 

Aziridines 330 and 333 were prepared according to General Procedure A:  

 

trans-N-tosyl-2-((E)-2-(methoxycarbonyl)ethenyl)-3-phenylaziridine (330): 

20% yield; Rf = 0.42 (3:7 EtOAc:Hexanes eluent); characterization data for 1H and 13C 

NMR  spectra match those reported in the literature;47 IR (Neat Film, NaCl) 3032, 2952, 

2256, 1722, 1651, 1597, 1495, 1435, 1407, 1329, 1268, 1162, 1089, 1034, 980, 900, 865, 

815, 766, 733 cm–1; HRMS (ESI+) m/z calc’d for C19H20NO4S [M+H]+: 358.1108, found 

358.1108. 

cis-methyl N-tosyl-3-((E)-styryl)aziridine-2-carboxylate (333): 

30% yield; Rf = 0.45 (3:7 EtOAc:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ  7.90–

7.83 (m, 2H), 7.37–7.24 (m, 7H), 6.81 (d, J = 16.0 Hz, 1H), 6.06 (dd, J = 16.0, 8.5 Hz, 

1H), 3.74 (s, 3H), 3.72 (ddd, J = 8.5, 7.4, 0.6 Hz, 1H), 3.62 (d, J = 7.3 Hz, 1H), 2.44 (s, 

3H); 13C NMR (CDCl3, 126 MHz) δ 166.0, 145.3, 137.8, 135.7, 134.3, 130.1, 128.8, 

128.7, 128.2, 126.8, 119.8, 52.9, 46.0, 42.0, 21.9; IR (Neat Film, NaCl) 3029, 2955, 
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2256, 1747, 1597, 1445, 1329, 1207, 1161, 1090, 1035, 969, 915, 802, 761, 734 cm–1; 

HRMS (MM: ESI-APCI) m/z calc’d for C19H20NO4S [M+H]+: 358.1108, found 

358.1110. 

 

 

dimethyl N-tosyl-3-phenylaziridine-2,2-dicarboxylate (342): 

Aziridine 342 was prepared according to literature methods from benzaldehyde over two 

steps. Procedure for the condensation of p-toluenesulfonamide onto benzaldehyde (188) 

was followed from the literature.48 A stirred suspension of benzaldehyde (188, 1.02 mL, 

10.0 mmol, 1.00 equiv), p-toluenesulfonamide (1.71 g, 10.0 mmol, 1.00 equiv), and 

montmorillonite K 10 (900 mg) in toluene (50 mL) was heated to reflux under a Dean-

Stark apparatus. After 2.5 h, the consumption of starting material was complete (as 

determined by TLC analysis) and the reaction mixture was allowed to cool and filtered 

through Celite rinsing with toluene eluent (30 mL). The filtrate was concentrated in 

vacuo and the crude solids were purified by silica gel column chromatography (40% Et2O 

in hexanes eluent), ensuring the product was eluted quickly,49 to furnish imine 372 (2.13 

g, 82% yield) as a white solid: Rf = 0.32 (2:3 Et2O:Hexanes eluent); characterization data 

matches those reported in the literature.50 

Procedure for the oxidative cycloaddition of dimethyl malonate with imine 372 was 

followed from the literature.51 To a stirred solution of imine 372 (648 mg, 2.50 mmol, 
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1.00 equiv) and dimethyl malonate (0.32 mL, 2.75 mmol, 1.10 equiv) in acetonitrile (5 

mL) were added iodosobenzene (1.10 g, 5.00 mmol, 2.00 equiv) and potassium iodide 

(85 mg, 0.50 mmol, 0.20 equiv) as solids, each in a single portion. After 10 minutes, the 

consumption of starting material was complete (as determined by TLC analysis) and the 

reaction mixture was diluted with dichloromethane (20 mL), dry loaded onto Celite (2.5 

g), and purified by silica gel column chromatography (25% EtOAc in hexanes eluent) to 

afford aziridine 342 (658 mg, 68% yield) as a viscous clear, colorless oil; Rf = 0.17 (1:4 

EtOAc:Hexanes eluent); characterization data for 1H and 13C NMR and HRMS spectra 

match those reported in the literature;52 IR (Neat Film, NaCl) 3281, 2956, 1749, 1435, 

1344, 1234, 1165, 1092, 816. 

 

 

N-tosyl-2-methyl-2-phenylaziridine (373): 

Aziridine 373 was prepared according to General Procedure A: 32% yield; Rf = 0.44 (1:3 

EtOAc:Hexanes eluent); characterization data match those reported in the literature.42  

 

3.7.4   IMINOTHIAZOLIDINE SYNTHESIS AND CHARACTERIZATION 

DATA 

Unless otherwise stated, all iminothiazolidines were prepared according to General 

Procedure C and were isolated as amorphous white solids. 

 

N
SO O

Me

Me
373

Me

204



Chapter 3 – (3+2) Cycloadditions of Aziridines with Heterocumulenes  284 

 

(Z)-5-phenyl-3-tosyl-2-(allylimino)thiazolidine (292): 

99% yield; Rf = 0.28 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.94–

7.89 (m, 2H), 7.40–7.32 (m, 5H), 7.32–7.28 (m, 2H), 5.84 (ddt, J = 17.1, 10.3, 5.1 Hz, 

1H), 5.12–4.98 (m, 2H), 4.80 (dd, J = 8.4, 6.3 Hz, 1H), 4.50 (dd, J = 10.3, 6.3 Hz, 1H), 

3.94 (dd, J = 10.3, 8.5 Hz, 1H), 3.86 (ddt, J = 15.9, 5.1, 1.8 Hz, 1H), 3.77 (ddt, J = 15.9, 

5.2, 1.8 Hz, 1H), 2.44 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 151.2, 144.6, 136.8, 135.0, 

134.9, 129.2, 129.1, 129.0, 128.8, 127.6, 115.3, 58.0, 56.6, 47.1, 21.8; IR (Neat Film, 

NaCl) 2923, 1653, 1596, 1355, 1168, 1108, 810, 764 cm–1; HRMS (APCI+) m/z calc’d 

for C19H21N2O2S2 [M+H]+: 373.1039, found 373.1049. 

 

 

(S,Z)-5-phenyl-3-tosyl-2-(allylimino)thiazolidine ((S)-292): 

Thiazolidine (S)-292 was prepared according to General Procedure E: 99% yield; Rf = 

0.28 (1:4 Acetone:Hexanes eluent); characterization data match those above; [α]D 
25.0      

–13.1° (c 1.600, CHCl3); enantiomeric excess was determined by analytical SFC 

(Chiralpak AD-H, 30% isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, major 

retention time: 5.4 minutes, minor retention time: 3.8 minutes, 94% ee). 
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(Z)-5-mesityl-3-tosyl-2-(allylimino)thiazolidine (296): 

97% yield; Rf = 0.23 (1:4 Et2O:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.99–7.91 

(m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.85 (s, 2H), 5.83 (ddt, J = 17.2, 10.3, 5.1 Hz, 1H), 

5.43 (dd, J = 11.0, 7.6 Hz, 1H), 5.11–4.97 (m, 2H), 4.41 (dd, J = 10.4, 7.6 Hz, 1H), 4.14 

(t, J = 10.7 Hz, 1H), 3.85 (ddt, J = 16.0, 5.1, 1.8 Hz, 1H), 3.73 (ddt, J = 16.0, 5.2, 1.7 Hz, 

1H), 2.45 (s, 3H), 2.40 (s, 6H), 2.25 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 151.9, 144.6, 

138.4, 138.0, 135.4, 135.2, 131.0, 129.3, 129.1, 127.3, 115.2, 58.0, 52.3, 42.4, 21.8, 21.6, 

20.9; IR (Neat Film, NaCl) 2920, 1656, 1637, 1450, 1357, 1170, 1106, 1090, 858, 789 

cm–1; HRMS (APCI+) m/z calc’d for C22H27N2O2S2 [M+H]+: 415.1508, found 415.1519. 

 

 

(Z)-5-(p-tolyl)-3-tosyl-2-(allylimino)thiazolidine (297): 

92% yield; Rf = 0.38 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.95–

7.89 (m, 2H), 7.32–7.28 (m, 2H), 7.28–7.24 (m, 2H), 7.19–7.13 (m, 2H), 5.84 (ddt, J = 

17.1, 10.3, 5.1 Hz, 1H), 5.06 (dq, J = 17.2, 1.9 Hz, 1H), 5.02 (dq, J = 10.3, 1.7 Hz, 1H), 
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4.77 (dd, J = 8.6, 6.3 Hz, 1H), 4.48 (dd, J = 10.3, 6.3 Hz, 1H), 3.91 (dd, J = 10.3, 8.7 Hz, 

1H), 3.85 (ddt, J = 15.9, 5.1, 1.8 Hz, 1H), 3.76 (ddt, J = 15.9, 5.2, 1.8 Hz, 1H), 2.44 (s, 

3H), 2.35 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 151.4, 144.6, 138.7, 135.1, 135.0, 

133.7, 129.8, 129.2, 129.1, 127.5, 115.2, 58.0, 56.6, 47.0, 21.8, 21.2; IR (Neat Film, 

NaCl) 3007, 2922, 1657, 1639, 1597, 1514, 1358, 1170, 1110, 915, 814, 774, 732 cm–1; 

HRMS (APCI+) m/z calc’d for C20H23N2O2S2 [M+H]+: 387.1195, found 387.1202. 

 

 

(Z)-5-(p-acetoxyphenyl)-3-tosyl-2-(allylimino)thiazolidine (298): 

95% yield; Rf = 0.37 (3:7 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.93–

7.87 (m, 2H), 7.42–7.34 (m, 2H), 7.32–7.27 (m, 2H), 7.10–7.04 (m, 2H), 5.83 (ddt, J = 

17.1, 10.3, 5.1 Hz, 1H), 5.12–4.97 (m, 2H), 4.78 (dd, J = 8.3, 6.3 Hz, 1H), 4.47 (dd, J = 

10.3, 6.3 Hz, 1H), 3.91 (dd, J = 10.3, 8.3 Hz, 1H), 3.84 (ddt, J = 15.9, 5.1, 1.8 Hz, 1H), 

3.76 (ddt, J = 15.9, 5.2, 1.8 Hz, 1H), 2.43 (s, 3H), 2.30 (s, 3H); 13C NMR (CDCl3, 126 

MHz) δ 169.4, 151.0, 150.8, 144.7, 135.0, 134.9, 134.5, 129.2, 129.1, 128.8, 122.3, 

115.3, 58.0, 56.6, 46.5, 21.8, 21.2; IR (Neat Film, NaCl) 2922, 1760, 1657, 1505, 1360, 

1202, 1169, 1107, 912, 811 cm–1; HRMS (APCI+) m/z calc’d for C21H23N2O4S2 [M+H]+: 

431.1094, found 431.1113. 
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(Z)-5-(p-chlorophenyl)-3-tosyl-2-(allylimino)thiazolidine (299): 

93% yield; Rf = 0.29 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.92–

7.87 (m, 2H), 7.32–7.27 (m, 6H), 5.83 (ddt, J = 17.1, 10.3, 5.1 Hz, 1H), 5.10–4.99 (m, 

2H), 4.75 (dd, J = 7.8, 6.3 Hz, 1H), 4.45 (dd, J = 10.3, 6.3 Hz, 1H), 3.93 (dd, J = 10.3, 

7.8 Hz, 1H), 3.84 (ddt, J = 15.9, 5.1, 1.8 Hz, 1H), 3.77 (ddt, J = 15.9, 5.2, 1.8 Hz, 1H), 

2.44 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 150.7, 144.7, 135.7, 135.0, 134.9, 134.7, 

129.3, 129.2, 129.1, 129.0, 115.4, 58.1, 56.4, 46.4, 21.8; IR (Neat Film, NaCl) 2924, 

1651, 1597, 1493, 1354, 1168, 1090, 1014, 917, 809, 731 cm–1; HRMS (APCI+) m/z 

calc’d for C19H20
35ClN2O2S2 [M+H]+: 407.0649, found 407.0665. 

 

 

(Z)-5-(p-nitrophenyl)-3-tosyl-2-(allylimino)thiazolidine (300): 

59% yield; Rf = 0.20 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 8.25–

8.19 (m, 2H), 7.93–7.87 (m, 2H), 7.59–7.53 (m, 2H), 7.34–7.28 (m, 2H), 5.84 (ddt, J = 

17.1, 10.3, 5.1 Hz, 1H), 5.12–5.01 (m, 2H), 4.84 (t, J = 6.5 Hz, 1H), 4.47 (dd, J = 10.5, 

6.3 Hz, 1H), 4.06 (dd, J = 10.5, 6.7 Hz, 1H), 3.88–3.77 (m, 2H), 2.45 (d, J = 0.8 Hz, 3H); 
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13C NMR (CDCl3, 126 MHz) δ 149.8, 148.1, 145.0, 134.8, 134.7, 129.4, 129.1, 128.6, 

124.4, 115.6, 58.3, 55.9, 46.0, 21.8; IR (Neat Film, NaCl) 1656, 1597, 1521, 1347, 1169, 

1107, 857, 813 cm–1; HRMS (MM: ESI-APCI) m/z calc’d for C19H20N3O4S2 [M+H]+: 

418.0890, found 418.0907. 

 

 

(Z)-5-(o-chlorophenyl)-3-tosyl-2-(allylimino)thiazolidine (301): 

91% yield; Rf = 0.35 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.92–

7.87 (m, 2H), 7.60–7.56 (m, 1H), 7.43–7.38 (m, 1H), 7.31–7.26 (m, 4H), 5.83 (ddt, J = 

17.1, 10.3, 5.1 Hz, 1H), 5.19 (dd, J = 6.3, 5.2 Hz, 1H), 5.09–5.00 (m, 2H), 4.39 (dd, J = 

10.5, 6.3 Hz, 1H), 4.20 (dd, J = 10.5, 5.2 Hz, 1H), 3.85 (ddt, J = 15.9, 5.1, 1.8 Hz, 1H), 

3.79 (ddt, J = 15.9, 5.2, 1.8 Hz, 1H), 2.44 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 150.8, 

144.7, 135.6, 135.0, 134.9, 133.6, 130.0, 129.7, 129.3, 129.1, 128.1, 127.7, 115.3, 58.1, 

54.9, 42.8, 21.8; IR (Neat Film, NaCl) 3067, 2881, 1657, 1597, 1470, 1444, 1361, 1284, 

1171, 1109, 919, 811, 750 cm–1; HRMS (APCI+) m/z calc’d for C19H20
35ClN2O2S2 

[M+H]+: 407.0649, found 407.0665. 
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(Z)-5-(m-chlorophenyl)-3-tosyl-2-(allylimino)thiazolidine (302): 

90% yield; Rf = 0.35 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.92–

7.86 (m, 2H), 7.37–7.34 (m, 1H), 7.33–7.25 (m, 5H), 5.83 (ddt, J = 17.1, 10.3, 5.1 Hz, 

1H), 5.09–5.00 (m, 2H), 4.74 (dd, J = 7.8, 6.3 Hz, 1H), 4.48 (dd, J = 10.4, 6.3 Hz, 1H), 

3.94 (dd, J = 10.4, 7.8 Hz, 1H), 3.85 (ddt, J = 15.9, 5.1, 1.8 Hz, 1H), 3.77 (ddt, J = 15.9, 

5.2, 1.8 Hz, 1H), 2.44 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 150.6, 144.8, 139.3, 135.0, 

134.9, 134.8, 130.5, 129.3, 129.1, 129.0, 127.8, 125.9, 115.4, 58.1, 56.4, 46.4, 21.8; IR 

(Neat Film, NaCl) 2923, 1656, 1596, 1479, 1360, 1169, 1110, 917, 812 cm–1; HRMS 

(MM: ESI-APCI) m/z calc’d for C19H20
35ClN2O2S2 [M+H]+: 407.0649, found 407.0669. 

 

 

(Z)-5-(o-pyridyl)-3-tosyl-2-(allylimino)thiazolidine (303): 

General Procedure C followed using 2.25 equivalents of zinc(II) bromide: 42% yield; Rf 

= 0.28 (1:1 EtOAc:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 8.58 (ddd, J = 4.8, 

1.8, 0.9 Hz, 1H), 7.86–7.79 (m, 2H), 7.64 (td, J = 7.7, 1.8 Hz, 1H), 7.38 (dq, J = 7.9, 0.9 

Hz, 1H), 7.26–7.21 (m, 3H), 5.98–5.93 (m, 1H), 5.85 (ddt, J = 17.2, 10.3, 5.1 Hz, 1H), 

5.10 (dq, J = 17.1, 1.8 Hz, 1H), 5.03 (dq, J = 10.3, 1.7 Hz, 1H), 3.88 (ddt, J = 15.9, 5.2, 

1.8 Hz, 1H), 3.77 (ddt, J = 15.9, 5.1, 1.8 Hz, 1H), 3.69 (dd, J = 11.0, 7.2 Hz, 1H), 3.53 

(dd, J = 11.0, 1.3 Hz, 1H), 2.43 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 158.5, 152.2, 

149.6, 144.6, 137.0, 136.1, 135.1, 129.2, 129.1, 123.1, 121.1, 115.3, 64.5, 58.4, 34.6, 
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21.8; IR (Neat Film, NaCl) 2921, 1655, 1638, 1590, 1352, 1169, 1110, 1088, 792 cm–1; 

HRMS (APCI+) m/z calc’d for C18H20N3O2S2 [M+H]+: 374.0991, found 374.1006. 

 

 

(Z)-5-((E)-styryl)-3-tosyl-2-(allylimino)thiazolidine (304): 

47% yield; Rf = 0.34 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.94–

7.90 (m, 2H), 7.38–7.26 (m, 7H), 6.64 (dd, J = 15.6, 0.8 Hz, 1H), 6.13 (dd, J = 15.6, 8.9 

Hz, 1H), 5.82 (ddt, J = 17.1, 10.3, 5.1 Hz, 1H), 5.09–4.97 (m, 2H), 4.42 (dddd, J = 8.9, 

7.4, 6.0, 0.8 Hz, 1H), 4.34 (dd, J = 10.2, 6.0 Hz, 1H), 3.87 (dd, J = 10.2, 7.5 Hz, 1H), 

3.82 (ddt, J = 15.8, 5.1, 1.8 Hz, 1H), 3.75 (ddt, J = 15.9, 5.2, 1.8 Hz, 1H), 2.44 (s, 3H); 

13C NMR (CDCl3, 126 MHz) δ 151.2, 144.7, 135.6, 135.0, 134.9, 134.4, 129.3, 129.1, 

128.9, 128.6, 126.8, 124.6, 115.3, 58.1, 54.9, 46.2, 21.8; IR (Neat Film, NaCl) 2925, 

2254, 1645, 1452, 1353, 1259, 1168, 1090, 1019, 915, 811, 753 cm–1; HRMS (APCI+) 

m/z calc’d for C21H23N2O2S2 [M+H]+: 399.1195, found 399.1201. 
 

 

(Z)-5-phenyl-3-tosyl-2-((n-butyl)imino)thiazolidine (305): 
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>99% yield; Rf = 0.36 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 

7.92–7.87 (m, 2H), 7.40–7.32 (m, 5H), 7.31–7.27 (m, 2H), 4.78 (dd, J = 8.4, 6.3 Hz, 1H), 

4.48 (dd, J = 10.2, 6.3 Hz, 1H), 3.91 (dd, J = 10.2, 8.4 Hz, 1H), 3.20 (dt, J = 12.6, 6.7 Hz, 

1H), 3.08 (dt, J = 12.7, 6.8 Hz, 1H), 2.44 (s, 3H), 1.50 (dddd, J = 13.5, 8.7, 6.7, 2.2 Hz, 

2H), 1.23–1.13 (m, 2H), 0.86 (t, J = 7.4 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 149.4, 

144.5, 137.1, 135.1, 129.1, 129.1, 129.1, 128.8, 127.7, 56.4, 56.1, 47.0, 32.9, 21.8, 20.5, 

14.0; IR (Neat Film, NaCl) 2955, 2928, 2870, 1658, 1455, 1357, 1170, 1096, 811, 765 

cm–1; HRMS (MM: ESI-APCI) m/z calc’d for C20H25N2O2S2 [M+H]+: 389.1352, found 

389.1368. 

 

 

(S,Z)-5-phenyl-3-tosyl-2-(n-butylimino)thiazolidine ((S)-305): 

Thiazolidine (S)-305 was prepared according to General Procedure E: 94% yield; Rf = 

0.36 (1:4 Acetone:Hexanes eluent); characterization data match those above; [α]D 
25.0      

–6.45° (c 2.800, CHCl3); enantiomeric excess was determined by analytical SFC 

(Chiralpak AD-H column, 30% isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, 

major retention time: 4.7 minutes, minor retention time: 3.6 minutes, 95% ee). 
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(Z)-5-phenyl-3-tosyl-2-(cyclohexylimino)thiazolidine (306): 

94% yield; Rf = 0.41 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.95–

7.89 (m, 2H), 7.41–7.31 (m, 5H), 7.31–7.27 (m, 2H), 4.76 (dd, J = 8.5, 6.3 Hz, 1H), 4.46 

(dd, J = 10.3, 6.3 Hz, 1H), 3.87 (dd, J = 10.2, 8.5 Hz, 1H), 2.77 (tt, J = 9.5, 3.9 Hz, 1H), 

2.44 (s, 3H), 1.79–1.62 (m, 3H), 1.58 (dddd, J = 12.8, 5.9, 3.6, 1.7 Hz, 2H), 1.40 (ddtd, J 

= 22.7, 16.6, 9.5, 4.6 Hz, 2H), 1.33–1.18 (m, 3H); 13C NMR (CDCl3, 126 MHz) δ 147.2, 

144.4, 137.2, 135.0, 129.3, 129.1, 129.0, 128.7, 127.6, 65.5, 56.1, 47.0, 33.6, 33.4, 25.8, 

24.5, 24.5, 21.8; IR (Neat Film, NaCl) 2928, 2853, 1652, 1450, 1362, 1171, 1100, 812, 

760 cm–1; HRMS (APCI+) m/z calc’d for C22H27N2O2S2 [M+H]+: 415.1508, found 

415.1493. 

 

 

(S,Z)-5-phenyl-3-tosyl-2-(cyclohexylimino)thiazolidine ((S)-306): 

Thiazolidine (S)-306 was prepared according to General Procedure E: 98% yield; Rf = 

0.41 (1:4 Acetone:Hexanes eluent); characterization data match those above; [α]D 
25.0 

0.72° (c 4.200, CHCl3); enantiomeric excess was determined by analytical SFC 

S
N

N
S

O

O

Me

306

S
N

N
S

O

O

Me

(S)-306



Chapter 3 – (3+2) Cycloadditions of Aziridines with Heterocumulenes  293 

(Chiralpak AS-H column, 30% isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, major 

retention time: 5.1 minutes, minor retention time: 4.0 minutes, 92% ee). 

 

 

(Z)-5-phenyl-3-tosyl-2-(phenylimino)thiazolidine (307): 

95% yield; Rf = 0.23 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 8.03–

7.96 (m, 2H), 7.41–7.29 (m, 7H), 7.30–7.22 (m, 2H), 7.12–7.03 (m, 1H), 6.83–6.75 (m, 

2H), 4.80 (dd, J = 8.5, 6.4 Hz, 1H), 4.60 (dd, J = 10.4, 6.4 Hz, 1H), 4.06 (dd, J = 10.4, 

8.5 Hz, 1H), 2.49 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 152.3, 150.1, 145.0, 136.6, 

134.7, 129.3, 129.2, 129.1, 129.0, 128.9, 127.6, 124.4, 120.9, 56.9, 47.1, 21.9; IR (Neat 

Film, NaCl) 3030, 1640, 1591, 1487, 1360, 1171, 1135, 1100, 763 cm–1; HRMS (APCI+) 

m/z calc’d for C22H21N2O2S2 [M+H]+: 409.1039, found 409.1051. 

 

 

(S,Z)-5-phenyl-3-tosyl-2-(phenylimino)thiazolidine ((S)-307): 

Thiazolidine (S)-307 was prepared according to General Procedure E: >99% yield; Rf = 

0.23 (1:4 Acetone:Hexanes eluent); characterization data match those above; [α]D 
25.0 

49.9° (c 3.400, CHCl3); enantiomeric excess was determined by analytical SFC 
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(Chiralpak AS-H column, 30% isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, major 

retention time: 7.3 minutes, minor retention time: 5.7 minutes, 77% ee). 

 

 

(Z)-5-phenyl-3-tosyl-2-((p-methoxyphenyl)imino)thiazolidine (308): 

98% yield; Rf = 0.31 (3:7 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 8.03–

7.94 (m, 2H), 7.39–7.28 (m, 7H), 6.85–6.79 (m, 2H), 6.79–6.73 (m, 2H), 4.79 (dd, J = 

8.4, 6.4 Hz, 1H), 4.59 (dd, J = 10.4, 6.4 Hz, 1H), 4.05 (dd, J = 10.4, 8.5 Hz, 1H), 3.76 (s, 

3H), 2.48 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 156.6, 151.9, 144.9, 143.4, 136.7, 

134.8, 129.3, 129.2, 129.1, 128.8, 127.6, 121.9, 114.2, 56.7, 55.5, 47.0, 21.8; IR (Neat 

Film, NaCl) 2949, 1640, 1505, 1455, 1360, 1290, 1242, 1168, 1101, 1033, 910, 832, 811, 

768, 733 cm–1; HRMS (APCI+) m/z calc’d for C23H23N2O3S2 [M+H]+: 439.1145, found 

439.1161. 

 

 

(S,Z)-5-phenyl-3-tosyl-2-(p-methoxyphenylimino)thiazolidine ((S)-308): 

Thiazolidine (S)-308 was prepared according to General Procedure E: 97% yield; Rf = 

0.31 (3:7 Acetone:Hexanes eluent); characterization data match those above; [α]D 
25.0 
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61.6° (c 2.800, CHCl3); enantiomeric excess was determined by analytical SFC 

(Chiralpak AS-H column, 30% isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, major 

retention time: 9.1 minutes, minor retention time: 6.9 minutes, 90% ee). 

 

 

(Z)-5-phenyl-3-tosyl-2-((p-chlorophenyl)imino)thiazolidine (309): 

92% yield; Rf = 0.29 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 8.01–

7.93 (m, 2H), 7.39–7.30 (m, 7H), 7.25–7.18 (m, 2H), 6.76–6.70 (m, 2H), 4.81 (dd, J = 

8.4, 6.4 Hz, 1H), 4.60 (dd, J = 10.4, 6.5 Hz, 1H), 4.07 (dd, J = 10.4, 8.5 Hz, 1H), 2.48 (s, 

3H); 13C NMR (CDCl3, 126 MHz) δ 153.0, 148.5, 145.2, 136.4, 134.6, 129.7, 129.4, 

129.2, 129.2, 129.1, 129.0, 127.6, 122.3, 56.9, 47.2, 21.9; IR (Neat Film, NaCl) 2924, 

1634, 1588, 1486, 1360, 1172, 1139, 1088, 833, 812 cm–1; HRMS (APCI+) m/z calc’d 

for C22H20
35ClN2O2S2 [M+H]+: 443.0649, found 443.0664. 

 

 

(S,Z)-5-phenyl-3-tosyl-2-(p-chlorophenylimino)thiazolidine ((S)-309): 

Thiazolidine (S)-309 was prepared according to General Procedure E: 99% yield; Rf = 

0.29 (1:4 Acetone:Hexanes eluent); characterization data match those above; [α]D 
25.0 
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44.7° (c 4.950, CHCl3); enantiomeric excess was determined by analytical SFC 

(Chiralpak AS-H column, 30% isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, major 

retention time: 7.7 minutes, minor retention time: 6.1 minutes, 60% ee). 

 

 

(S,Z)-5-phenyl-3-tosyl-2-(t-butylimino)thiazolidine ((S)-338): 

39% yield; Rf = 0.38 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.88–

7.83 (m, 2H), 7.42–7.31 (m, 5H), 7.30–7.26 (m, 2H), 4.79 (dd, J = 8.4, 6.2 Hz, 

1H), 4.47 (dd, J = 10.3, 6.2 Hz, 1H), 3.88 (dd, J = 10.3, 8.4 Hz, 1H), 2.44 (s, 3H), 

1.17 (s, 9H); 13C NMR (CDCl3, 126 MHz) δ 144.2, 142.9, 137.3, 135.7, 129.4, 129.1, 

128.8, 128.7, 127.7, 55.0, 54.7, 48.3, 28.9, 21.8; IR (Neat Film, NaCl) 2971, 1653, 1600, 

1496, 1454, 1360, 1167, 1092, 810, 771, 701 cm–1; HRMS (APCI+) m/z calc’d for 

C20H25N2O2S2 [M+H]+: 389.1352, found 389.1362; [α]D 
25.0 3.33° (c 1.900, CHCl3); 

enantiomeric excess was determined by analytical SFC (Chiralpak IC-3 column, 30% 

isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, major retention time: 6.2 minutes, 

minor retention time: 7.0 minutes, 75% ee). 
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(Z)-5-(n-butyl)-3-tosyl-2-(allylimino)thiazolidine (311):53 

18% yield; Rf = 0.44 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.94–

7.86 (m, 2H), 7.30–7.26 (m, 2H), 5.80 (ddt, J = 17.1, 10.3, 5.1 Hz, 1H), 5.04–4.96 (m, 

2H), 4.21 (dd, J = 10.0, 5.9 Hz, 1H), 3.81–3.73 (m, 2H), 3.70 (dd, J = 10.0, 7.1 Hz, 1H), 

3.59 (ddt, J = 8.4, 7.0, 6.0 Hz, 1H), 2.42 (s, 3H), 1.82–1.70 (m, 1H), 1.71–1.60 (m, 1H), 

1.42–1.27 (m, 4H), 0.90 (td, J = 7.4, 3.7 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 151.6, 

144.5, 135.2, 130.0, 129.2, 129.0, 115.1, 58.0, 55.0, 44.0, 33.9, 30.1, 22.5, 21.8, 14.0; IR 

(Neat Film, NaCl) 2957, 2928, 2871, 1652, 1598, 1456, 1357, 1170, 1106, 918, 812 cm–1; 

HRMS (APCI+) m/z calc’d for C17H25N2O2S2 [M+H]+: 353.1352, found 353.1364. 

 

 

(Z)-4-(n-butyl)-3-tosyl-2-(allylimino)thiazolidine (312):53  

56% yield; Rf = 0.44 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.95–

7.85 (m, 2H), 7.29–7.24 (m, 2H), 5.80 (ddt, J = 17.1, 10.3, 5.2 Hz, 1H), 5.03 (dq, J = 

17.2, 1.9 Hz, 1H), 4.99 (dq, J = 10.3, 1.8 Hz, 1H), 4.82–4.74 (m, 1H), 3.81 (ddt, J = 15.9, 

5.2, 1.8 Hz, 1H), 3.70 (ddt, J = 15.9, 5.1, 1.8 Hz, 1H), 3.33 (dd, J = 11.0, 6.8 Hz, 1H), 

2.94 (dd, J = 11.1, 0.8 Hz, 1H), 2.41 (s, 3H), 1.88–1.73 (m, 2H), 1.47–1.27 (m, 4H), 0.91 

(t, J = 7.0 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 151.8, 144.2, 136.8, 135.1, 129.2, 

128.9, 115.1, 61.2, 58.2, 33.1, 32.3, 28.7, 22.5, 21.7, 14.1; IR (Neat Film, NaCl) 2957, 

2928, 2860, 1651, 1598, 1455, 1351, 1164, 1117, 1088, 918, 813 cm–1; HRMS (APCI+) 

m/z calc’d for C17H25N2O2S2 [M+H]+: 353.1352, found 353.1358. 

S
N

N
S

O

O

Me

312

n-Bu



Chapter 3 – (3+2) Cycloadditions of Aziridines with Heterocumulenes  298 

 

 

(Z)-5-phenyl-3-(p-nitrobenzenesulfonyl)-2-(allylimino)thiazolidine (315): 

94% yield; Rf = 0.28 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 8.37–

8.28 (m, 2H), 8.26–8.16 (m, 2H), 7.42–7.31 (m, 5H), 5.82 (ddt, J = 17.1, 10.4, 5.2 Hz, 

1H), 5.11–5.03 (m, 2H), 4.86 (dd, J = 8.3, 6.3 Hz, 1H), 4.54 (dd, J = 10.3, 6.3 Hz, 1H), 

3.98 (dd, J = 10.3, 8.4 Hz, 1H), 3.83 (ddt, J = 15.9, 5.2, 1.8 Hz, 1H), 3.75 (ddt, J = 15.8, 

5.3, 1.7 Hz, 1H); 13C NMR (CDCl3, 126 MHz) δ 151.1, 150.6, 143.6, 136.3, 134.6, 130.4, 

129.2, 129.1, 127.6, 123.7, 115.7, 57.9, 56.5, 47.5; IR (Neat Film, NaCl) 3106, 1656, 

1530, 1349, 1314, 1175, 1109, 854, 740 cm–1; HRMS (APCI+) m/z calc’d for 

C18H18N3O4S2 [M+H]+: 404.0733, found 404.0742. 

 

 

(S,Z)-5-phenyl-3-(p-nitrobenzenesulfonyl)-2-(allylimino)thiazolidine ((S)-315): 

Thiazolidine (S)-315 was prepared according to General Procedure E and was isolated as 

a white crystalline solid: 95% yield; Rf = 0.28 (1:4 Acetone:Hexanes eluent); 

characterization data match those above; colorless, translucent X-ray quality crystals 

were obtained by slow diffusion of 1% benzene in heptane into a solution of 
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iminothiazolidine (S)-315 in ethyl acetate, mp: 70–72 °C; [α]D 
25.0 1.7° (c 2.250, CHCl3); 

enantiomeric excess was determined by analytical SFC (Chiralcel OD-H column, 30% 

isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, major retention time: 6.6 minutes, 

minor retention time: 5.5 minutes, 95% ee). 

 

 

(Z)-5-phenyl-3-mesyl-2-(allylimino)thiazolidine (316): 

Thiazolidine 316 was isolated as a clear, colorless oil: 91% yield; Rf = 0.40 (3:7 

Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.46–7.31 (m, 5H), 5.97 (ddt, J 

= 17.1, 10.3, 5.2 Hz, 1H), 5.27 (dq, J = 17.1, 1.8 Hz, 1H), 5.13 (dq, J = 10.3, 1.7 Hz, 1H), 

4.84 (dd, J = 8.6, 6.3 Hz, 1H), 4.41 (dd, J = 10.4, 6.3 Hz, 1H), 3.99–3.90 (m, 3H), 3.38 

(s, 3H); 13C NMR (CDCl3, 126 MHz) δ 153.0, 136.6, 134.9, 129.2, 129.0, 127.7, 115.8, 

58.1, 55.6, 47.6, 40.5; IR (Neat Film, NaCl) 3011, 1656, 1651, 1346, 1163, 1113, 964, 

764 cm–1; HRMS (APCI+) m/z calc’d for C13H17N2O2S2 [M+H]+: 297.0726, found 

297.0739. 

 

 

(S,Z)-5-phenyl-3-mesyl-2-(allylimino)thiazolidine ((S)-316): 
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Thiazolidine (S)-316 was prepared according to General Procedure E and was isolated as 

a clear, colorless oil: 95% yield; Rf = 0.40 (3:7 Acetone:Hexanes eluent); characterization 

data match those reported above; [α]D 
25.0 –55.5° (c 2.200, CHCl3); enantiomeric excess 

was determined by analytical SFC (Chiralpak AD-H column, 7% isopropyl alcohol in 

CO2, 2.5 mL/min, λ = 254 nm, major retention time: 12.6 minutes, minor retention time: 

11.3 minutes, 90% ee). 

 

 

(Z)-5-phenyl-3-(p-methoxybenzenesulfonyl)-2-(allylimino)thiazolidine (317): 

90% yield; Rf = 0.40 (3:7 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 8.01–

7.93 (m, 2H), 7.42–7.29 (m, 5H), 6.98–6.93 (m, 2H), 5.85 (ddt, J = 17.1, 10.3, 5.2 Hz, 

1H), 5.08 (dq, J = 17.1, 1.8 Hz, 1H), 5.03 (dq, J = 10.3, 1.7 Hz, 1H), 4.79 (dd, J = 8.4, 

6.3 Hz, 1H), 4.49 (dd, J = 10.3, 6.3 Hz, 1H), 3.92 (dd, J = 10.3, 8.4 Hz, 1H), 3.88 (s, 3H), 

3.88–3.83 (m, 1H), 3.77 (ddt, J = 15.9, 5.2, 1.8 Hz, 1H); 13C NMR (CDCl3, 126 MHz) 

δ 163.8, 151.3, 136.9, 135.1, 131.4, 129.5, 129.2, 128.8, 127.7, 115.3, 113.8, 58.1, 56.6, 

55.8, 47.1; IR (Neat Film, NaCl) 2927, 1655, 1595, 1497, 1356, 1262, 1162, 1110, 1090, 

1025, 833, 810 cm–1; HRMS (APCI+) m/z calc’d for C19H21N2O3S2 [M+H]+: 389.0988, 

found 389.1004. 
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(S,Z)-5-phenyl-3-(p-methoxybenzenesulfonyl)-2-(allylimino)thiazolidine ((S)-317): 

Thiazolidine (S)-317 was prepared according to General Procedure E: 94% yield; Rf = 

0.40 (3:7 Acetone:Hexanes eluent); characterization data match those reported above; 

[α]D 
25.0 –6.6° (c 2.000, CHCl3); enantiomeric excess was determined by analytical SFC 

(Chiralpak AD-H column, 30% isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, 

major retention time: 4.4 minutes, minor retention time: 6.6 minutes, 91% ee). 

 

  

(Z)-5-phenyl-2-(allylimino)thiazolidine (318): 

75% yield; Rf = 0.19 (3:7 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.40–

7.36 (m, 2H), 7.35–7.30 (m, 2H), 7.29–7.26 (m, 1H), 5.94 (ddt, J = 17.2, 10.2, 5.5 Hz, 

1H), 5.27 (dq, J = 17.1, 1.6 Hz, 1H), 5.18 (dq, J = 10.3, 1.4 Hz, 1H), 5.02 (dd, J = 7.8, 

6.3 Hz, 1H), 4.34 (dd, J = 13.4, 7.8 Hz, 1H), 4.10 (dd, J = 13.4, 6.3 Hz, 1H), 3.97 (dt, J = 

5.5, 1.6 Hz, 2H); 13C NMR (CDCl3, 126 MHz) δ 160.7, 141.3, 134.5, 128.9, 127.9, 127.4, 

116.6, 68.4, 56.7, 47.3; IR (Neat Film, NaCl) 2924, 2853, 1612, 1454, 1260, 1023, 802, 

758 cm–1; HRMS (APCI+) m/z calc’d for C12H15N2S [M+H]+: 219.0950, found 219.0950. 
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(S,Z)-5-phenyl-2-(allylimino)thiazolidine ((S)-318): 

Thiazolidine (S)-318 was prepared according to General Procedure E: 31% yield; Rf = 

0.19 (3:7 Acetone:Hexanes eluent); characterization data match those reported above; 

[α]D 
25.0 26.4° (c 0.200, CHCl3); enantiomeric excess was determined by analytical SFC 

(Chiralcel OB-H column, 10% methanol in CO2, 2.5 mL/min, λ = 254 nm, major 

retention time: 3.9 minutes, minor retention time: 8.4 minutes, 34% ee). 

 

 

cis-methyl (Z)-5-phenyl-3-tosyl-2-(allylimino)thiazolidine-4-carboxylate (329): 

Thiazolidine 329 was isolated as a white crystalline solid and colorless, translucent X-ray 

quality crystals were obtained by slow diffusion of 1% benzene in heptane into a solution 

of iminothiazolidine 329 in ethyl acetate, mp: 107–109 °C: 88% yield; Rf = 0.32 (3:7 

Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.96–7.90 (m, 2H), 7.38–7.31 

(m, 5H), 7.30–7.25 (m, 2H), 5.86 (ddt, J = 17.1, 10.3, 4.9 Hz, 1H), 5.33 (d, J = 8.0 Hz, 

1H), 5.26 (d, J = 8.0 Hz, 1H), 5.07 (dq, J = 17.1, 1.9 Hz, 1H), 5.03 (dq, J = 10.4, 1.8 Hz, 

1H), 3.91 (ddt, J = 16.1, 4.9, 1.8 Hz, 1H), 3.83 (ddt, J = 16.1, 4.8, 1.9 Hz, 1H), 3.25 (s, 

3H), 2.42 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 168.0, 150.2, 144.7, 135.4, 134.8, 
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132.9, 129.7, 129.3, 128.9, 128.8, 128.4, 115.1, 65.7, 57.9, 52.1, 49.8, 21.8; IR (Neat 

Film, NaCl) 2952, 2253, 1748, 1660, 1595, 1444, 1353, 1166, 1107, 915, 811 cm–1; 

HRMS (APCI+) m/z calc’d for C21H23N2O4S2 [M+H]+: 431.1094, found 431.1114. 

 

 

 

cis-(Z)-4-((E)-2-(methoxycarbonyl)ethenyl)-5-phenyl-3-tosyl-2-

(allylimino)thiazolidine (331): 

62% yield; Rf = 0.43 (3:7 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.93–

7.87 (m, 2H), 7.36–7.27 (m, 5H), 7.26–7.23 (m, 2H), 6.60 (dd, J = 15.6, 7.4 Hz, 1H), 

5.88 (ddt, J = 17.1, 10.2, 5.0 Hz, 1H), 5.80 (dd, J = 15.7, 1.1 Hz, 1H), 5.42 (ddd, J = 7.5, 

6.5, 1.1 Hz, 1H), 5.22 (d, J = 6.5 Hz, 1H), 5.11 (dq, J = 17.1, 1.9 Hz, 1H), 5.06 (dq, J = 

10.3, 1.7 Hz, 1H), 3.90 (ddt, J = 16.0, 4.9, 1.8 Hz, 1H), 3.84 (ddt, J = 16.0, 5.1, 1.8 Hz, 

1H), 3.66 (s, 3H), 2.42 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 165.6, 149.6, 144.7, 

140.3, 135.9, 134.9, 132.2, 129.6, 129.2, 129.1, 129.0, 128.7, 125.8, 115.4, 65.3, 58.1, 

52.8, 51.9, 21.8; IR (Neat Film, NaCl) 2951, 1726, 1659, 1436, 1360, 1276, 1168, 1109, 

917, 812 cm–1; HRMS (APCI+) m/z calc’d for C23H25N2O4S2 [M+H]+: 457.1250, found 

457.1268. 
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trans-methyl (Z)-5-((E)-styryl)-3-tosyl-2-(allylimino)thiazolidine-4-carboxylate 

(334):54 

42% yield; Rf = 0.39 (3:7 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.98–

7.93 (m, 2H), 7.34 (m, 4H), 7.32–7.27 (m, 1H), 7.25–7.20 (m, 2H), 6.62 (dd, J = 15.7, 

0.9 Hz, 1H), 6.22 (dd, J = 15.6, 8.5 Hz, 1H), 5.84 (ddt, J = 17.1, 10.1, 4.9 Hz, 1H), 5.20 

(d, J = 1.7 Hz, 1H), 5.07–4.99 (m, 2H), 4.57 (ddd, J = 8.5, 1.8, 1.0 Hz, 1H), 3.82 (ddd, J 

= 5.1, 3.5, 1.8 Hz, 2H), 3.80 (s, 3H), 2.41 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 169.4, 

149.2, 144.6, 135.7, 135.5, 134.8, 133.2, 129.7, 128.9, 128.8, 128.6, 126.9, 125.9, 115.2, 

66.9, 58.0, 53.4, 48.3, 21.8; IR (Neat Film, NaCl) 2954, 1756, 1661, 1597, 1495, 1435, 

1354, 1167, 1113, 1089, 916, 813, 781, 754 cm–1; HRMS (APCI+) m/z calc’d for 

C23H25N2O4S2 [M+H]+: 457.1250, found 457.1252. 

 

 

cis-methyl (Z)-5-((E)-styryl)-3-tosyl-2-(allylimino)thiazolidine-4-carboxylate (335):54  
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31% yield; Rf = 0.39 (3:7 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.97–

7.92 (m, 2H), 7.36–7.27 (m, 7H), 6.66 (dd, J = 15.6, 0.9 Hz, 1H), 6.00 (dd, J = 15.5, 9.1 

Hz, 1H), 5.84 (ddt, J = 17.1, 10.3, 4.9 Hz, 1H), 5.27 (d, J = 7.6 Hz, 1H), 5.09–4.98 (m, 

2H), 4.80 (ddd, J = 9.1, 7.6, 0.9 Hz, 1H), 3.85 (ddt, J = 16.1, 4.9, 1.9 Hz, 1H), 3.80 (ddt, 

J = 16.1, 4.8, 1.9 Hz, 1H), 3.68 (s, 3H), 2.43 (s, 3H); 13C NMR (CDCl3, 126 MHz) 

δ 168.2, 150.2, 144.7, 135.7, 135.5, 135.5, 134.8, 129.7, 129.0, 128.9, 128.8, 126.9, 

121.2, 115.2, 64.5, 58.0, 52.6, 48.3, 21.8; IR (Neat Film, NaCl) 2952, 1750, 1661, 1597, 

1495, 1450, 1354, 1206, 1169, 1121, 1089, 966, 916, 841, 813, 751 cm–1; HRMS 

(APCI+) m/z calc’d for C23H25N2O4S2 [M+H]+: 457.1250, found 457.1253. 

 

3.7.5   IMINOIMIDAZOLIDINE SYNTHESIS AND CHARACTERIZATION 

DATA 

Unless otherwise stated, all iminothiazolidines were prepared according to General 

Procedure D and were isolated as amorphous white solids. 

 

 

(E)-3-isopropyl-4-phenyl-1-tosyl-2-(isopropylimino)imidazolidine (323): 

Product was initially prepared according to General Procedure D, isolating the product as 

a salt after column chromatography (2%→5% CH3OH in CH2Cl2eluent). The resulting 

white foam was dissolved in 20 mL CH2Cl2 and washed with aqueous 0.1 N NaOH (3 x 
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10 mL).  The organic layer was dried over sodium sulfate, filtered, and concentrated in 

vacuo to give imidazolidine 323 (88 mg, 55% yield) as a colorless oil. 

 

 

For the purpose of characterization, to a portion of iminoimidazolidine 323 (ca. 0.20 

mmol) as a neat oil was added 4 N HCl in dioxane (3 mL) immediately followed by Et2O 

(40 mL) causing a white precipitate to form. The supernatant was decanted and the 

residual white solid was washed with Et2O (3 x 10 mL) and dried in vacuo furnishing 

iminoimidazolidinium hydrochloride 323•HCl as a white solid: Rf = 0.39 (1:9 

CH3OH:CH2Cl2 eluent); 1H NMR (CDCl3, 500 MHz) δ 10.95 (bs, 1H), 7.69–7.59 (m, 

2H), 7.30–7.24 (m, 3H), 7.18 (dd, J = 8.2, 6.9 Hz, 2H), 6.96–6.85 (m, 2H), 5.52–5.32 (m, 

1H), 4.82–4.75 (m, 1H), 4.48–4.26 (m, 2H), 4.03 (dd, J = 12.0, 3.0 Hz, 1H), 2.46 (s, 3H), 

1.70 (d, J = 6.4 Hz, 3H), 1.51 (d, J = 6.4 Hz, 3H), 1.28–1.21 (m, 3H), 0.95 (d, J = 6.5 Hz, 

3H); 13C NMR (CDCl3, 126 MHz) δ 154.7, 146.9, 137.9, 133.7, 130.8, 129.3, 128.8, 

127.7, 125.9, 57.0, 56.1, 54.0, 51.3, 24.3, 22.2, 21.9, 21.3, 20.8; IR (Neat Film, NaCl) 

2972, 1636, 1457, 1435, 1367, 1260, 1172, 1088, 1036, 907, 814, 729 cm–1; HRMS 

(MM: ESI-APCI) m/z calc’d for C22H30N3O2S [M–Cl]+: 400.2053, found 400.2067 
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4-phenyl-1-tosyl-2-iminoimidazolidine (324): 

Prepared according to General Procedure D followed by purification by column 

chromatography using deactivated silica gel (1% Me2NEt and 1% MeOH in CH2Cl2 

eluent): 61% yield; Rf = 0.41 (1:9 CH3OH:CH2Cl2 eluent); 1H NMR (DMSO-d6, 500 

MHz) δ 7.86–7.79 (m, 2H), 7.46 (dd, J = 8.4, 0.9 Hz, 2H), 7.21–7.16 (m, 3H), 6.92 (dd, J 

= 6.7, 2.9 Hz, 2H), 4.77 (dd, J = 9.2, 6.5 Hz, 1H), 4.14 (t, J = 9.6 Hz, 1H), 3.35 (bs, 2H), 

3.26 (dd, J = 9.9, 6.5 Hz, 1H), 2.43 (s, 3H); 13C NMR (DMSO-d6, 126 MHz) δ 151.2, 

145.0, 143.6, 132.9, 130.1, 128.2, 127.5, 126.9, 125.9, 61.4, 55.2, 21.1; IR (Neat Film, 

NaCl) 3445, 2920, 1683, 1397, 1350, 1161, 1091, 1002 cm–1; HRMS (APCI+) m/z calc’d 

for C16H18N3O2S [M+H]+: 316.1114, found 316.1126. 

 

 

(E)-3,4-diphenyl-1-tosyl-2-(phenylimino)imidazolidine (325): 

96% yield; Rf = 0.22 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 8.03–

7.96 (m, 2H), 7.37–7.28 (m, 5H), 7.24–7.15 (m, 2H), 6.82–6.73 (m, 5H), 6.60–6.48 (m, 

3H), 6.42–6.34 (m, 2H), 4.77 (dd, J = 8.2, 5.7 Hz, 1H), 4.45 (dd, J = 9.9, 8.2 Hz, 1H), 

3.94 (dd, J = 9.9, 5.8 Hz, 1H), 2.49 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 146.6, 144.6, 
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143.4, 139.9, 139.8, 135.0, 129.4, 129.3, 129.2, 128.8, 128.3, 127.8, 126.9, 125.8, 125.6, 

121.9, 121.4, 64.9, 52.5, 21.9; IR (Neat Film, NaCl) 3027, 2924, 1667, 1593, 1488, 1354, 

1166, 1089, 813, 759 cm–1; HRMS (APCI+) m/z calc’d for C28H26N3O2S [M+H]+: 

468.1740, found 468.1755. 

 

 

(E)-4-(p-acetoxyphenyl)-3-phenyl-1-tosyl-2-(phenylimino)imidazolidine (326): 

99% yield; Rf = 0.28 (3:7 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 8.03–

7.96 (m, 2H), 7.37–7.29 (m, 2H), 7.22–7.18 (m, 2H), 7.08–7.02 (m, 2H), 6.82–6.75 (m, 

5H), 6.61–6.55 (m, 1H), 6.55–6.52 (m, 2H), 6.41–6.36 (m, 2H), 4.80 (dd, J = 8.1, 5.7 Hz, 

1H), 4.44 (dd, J = 9.9, 8.1 Hz, 1H), 3.92 (dd, J = 9.9, 5.7 Hz, 1H), 2.48 (s, 3H), 2.30 (s, 

3H); 13C NMR (CDCl3, 126 MHz) δ 169.4, 150.9, 146.1, 144.8, 143.5, 139.6, 137.2, 

134.7, 129.4, 129.3, 128.4, 128.0, 127.9, 126.0, 125.7, 122.5, 122.0, 121.6, 64.4, 52.4, 

21.9, 21.3; IR (Neat Film, NaCl) 3057, 2928, 1760, 1670, 1591, 1495, 1367, 1211, 1167, 

1113, 1090, 1017, 911, 813, 763, 734 cm–1; HRMS (APCI+) m/z calc’d for C30H28N3O4S 

[M+H]+: 526.1795, found 526.1800. 
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(E)-4-(p-chlorophenyl)-3-phenyl-1-tosyl-2-(phenylimino)imidazolidine (327): 

87% yield; Rf = 0.19 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 8.03–

7.95 (m, 2H), 7.35–7.31 (m, 2H), 7.30–7.27 (m, 2H), 7.16–7.12 (m, 2H), 6.83–6.75 (m, 

5H), 6.61–6.56 (m, 1H), 6.53 (dd, J = 6.8, 2.9 Hz, 2H), 6.42–6.35 (m, 2H), 4.79 (dd, J = 

8.1, 5.6 Hz, 1H), 4.44 (dd, J = 9.9, 8.1 Hz, 1H), 3.90 (dd, J = 9.9, 5.6 Hz, 1H), 2.49 (s, 

3H); 13C NMR (CDCl3, 126 MHz) δ 146.0, 144.8, 143.4, 139.4, 138.2, 134.7, 134.6, 

129.4, 129.4, 129.2, 128.4, 128.3, 127.9, 126.1, 125.7, 122.0, 121.7, 64.3, 52.3, 21.9; IR 

(Neat Film, NaCl) 3062, 1668, 1591, 1492, 1360, 1213, 1167, 1090, 1014, 910, 813, 761, 

734 cm–1; HRMS (APCI+) m/z calc’d for C28H25
35ClN3O2S [M+H]+: 502.1351, found 

502.1355. 

 

 

(E)-3-isopropyl-4-mesityl-1-tosyl-2-(isopropylimino)imidazolidine (374): 

Product was initially prepared according to General Procedure D, isolating the product as 

the H(ZnBr3•MeOH) salt after column chromatography (2%→5% MeOH in CH2Cl2 

eluent). A portion of this resulting white foam was crystallized, forming colorless, 
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translucent X-ray quality crystals after slow evaporation from a solution of 374 in MeOH, 

mp: 118–120 °C. 

 

 

The remaining portion of the white foam was dissolved in 20 mL CH2Cl2 and washed 

with aqueous 0.1 N NaOH (3 x 10 mL).  The organic layer was dried over sodium sulfate, 

filtered, and concentrated in vacuo to give iminoimidazolidine 374 as a colorless oil. 

To neat 374 was then added 4 N HCl in dioxane (3 mL) immediately followed by 

Et2O (40 mL). The organics were then concentrated in vacuo to furnish 

iminoimidazolidinium hydrochloride 374•HCl as a white foam: Rf = 0.41 (1:9 

MeOH:CH2Cl2 eluent); 1H NMR (CDCl3, 500 MHz) δ  10.98 (bs, 1H), 7.88 (d, J = 7.2 

Hz, 2H), 7.52 (d, J = 7.1 Hz, 2H), 6.83 (s, 1H), 6.79 (s, 1H), 5.16 (bs, 1H), 4.56 (bs, 2H), 

4.28 (bs, 1H), 3.92–3.81 (m, 1H), 2.52 (s, 3H), 2.23 (s, 3H), 2.20 (s, 3H), 2.03 (s, 3H), 

1.72 (d, J = 6.0 Hz, 3H), 1.54 (d, J = 6.0 Hz, 3H), 0.94–0.80 (m, 6H); 13C NMR (CDCl3, 

126 MHz) δ 155.1, 147.5, 139.7, 136.7, 136.2, 133.4, 132.6, 131.1, 130.5, 128.2, 127.8, 

56.0, 54.9, 51.9, 50.9, 24.7, 22.0, 21.8, 20.9, 20.5, 20.5, 20.4, 19.7; IR (Neat Film, NaCl) 

2925, 1640, 1441, 1366, 1276, 1171, 1089, 815 cm–1; HRMS (APCI+) m/z calc’d for 

C25H36N3O2S [M–Cl]+: 442.2523, found 442.2514. 
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3.7.6   PREPARATION OF THIOXOIMIDAZOLIDINE 343 

 

Imidazolidine 343 was prepared from diester aziridine 342 according to two procedures: 

Initially, imidazolidine 343 was prepared according to General Procedure C. The 

reaction mixture was an intensely neon orange-red color throughout the duration of the 

reaction (ca. 11 h). Upon purification of the reaction mixture by silica gel column 

chromatography (20% acetone in hexanes eluent), imidazolidine 343 (70 mg, 36% yield) 

and cis-oxazolidine 375 (48 mg, 24% yield) were both isolated as white crystalline solids. 

Suspecting the formation of cis-oxazolidine 375 was a result of partial hydrolysis of 

the ion-paired intermediate during the course of the reaction, imidazolidine 343 was 

subsequently prepared according to General Procedure C in the anhydrous environment 

of an inert atmosphere glovebox. The reaction mixture was an intensely neon orange-red 

color throughout the duration of the reaction (ca. 12 h) under these conditions as well. 

Upon purification of the reaction mixture by silica gel column chromatography (20% 

acetone in hexanes eluent), imidazolidine 343 (116 mg, 60% yield) was isolated in the 

absence of an isolable portion of cis-oxazolidine 375. 
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dimethyl 3-allyl-2-phenyl-4-thioxo-1-tosyl-imidazolidine-5,5-dicarboxylate (343): 

Colorless, translucent X-ray quality crystals of imidazolidine 343 were obtained by slow 

diffusion of 1% benzene in heptane into a solution of imidazolidine 343 in ethyl acetate, 

mp: 147–150 °C: Rf = 0.41 (3:7 Acetone:Hexanes eluent); 1H NMR (CDCl3, 300 MHz) δ 

7.42–7.15 (m, 5H), 7.05–6.95 (m, 2H), 6.94–6.86 (m, 2H), 6.39 (s, 1H), 5.63 (dddd, J = 

17.4, 10.3, 7.3, 4.3 Hz, 1H), 5.24 (ddt, J = 10.3, 1.8, 1.0 Hz, 1H), 5.10 (ddt, J = 17.2, 2.1, 

1.2 Hz, 1H), 4.87–4.70 (m, 1H), 3.96 (s, 3H), 3.86 (s, 3H), 3.25 (ddt, J = 15.4, 7.4, 1.1 

Hz, 1H), 2.28 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 186.5, 164.9, 164.3, 143.9, 136.7, 

133.3, 130.6, 129.5, 129.0, 128.8, 128.3, 127.8, 120.1, 82.4, 82.3, 54.1, 53.9, 47.6, 21.6; 

IR (Neat Film, NaCl) 2952, 1794, 1771, 1489, 1354, 1257, 1162, 1090, 1061, 913, 850, 

810, 777, 731 cm–1; HRMS (MM: ESI-APCI) m/z calc’d for C23H25N2O6S2 [M+H]+: 

489.1149, found 489.1164. 

 

 

cis-dimethyl 2,5-diphenyl-3-tosyloxazolidine-4,4-dicarboxylate (375): 

Colorless, translucent X-ray quality crystals of cis-oxazolidine 375 were obtained by 

slow evaporation of a solution of cis-oxazolidine 375 in ethyl acetate, mp: 145–147 °C: 

Rf = 0.50 (3:7 Acetone:Hexanes eluent); characterization data match those reported in the 

literature.55 
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3.7.7   STEREOSELECTIVE (3 + 2) CYCLOADDITION WITH 

DIPHENYLCARBODIIMIDE 

 

(S,E)-3,4-diphenyl-1-tosyl-2-(phenylimino)imidazolidine ((S)-325):56 

Imidazolidine (S)-325 was prepared according to General Procedure E using 

diphenylcarbodiimide (79 mg, 0.41 mmol, 1.02 equiv) in place of isothiocyanate:57 96% 

yield; Rf = 0.22 (1:4 Acetone:Hexanes eluent); characterization data match those reported 

above; [α]D 
25.0 46.6° (c 0.550, CHCl3); enantiomeric excess was determined by 

analytical SFC (Chiralpak AS-H column, 30% isopropyl alcohol in CO2, 2.5 mL/min, λ = 

254 nm, major retention time: 9.6 minutes, minor retention time: 7.0 minutes, 10% ee). 

 

3.7.8  CHARACTERIZATION OF (3 + 2) CYCLOADDITION 

BYPRODUCTS 

 

4-methyl-N-(2-phenylprop-1-en-1-yl)benzenesulfonamide (376): 

Sulfonamide 376 was prepared by General Procedure C from aziridine 373: 65% 

combined yield as a 2:1 Z:E ratio of products as an amorphous white solid; Rf = 0.15 (1:4 

Acetone:Hexanes eluent); 1H and 13C NMR spectra match those reported in the 

literature;58 IR (Neat Film, NaCl) 3357, 3260, 1721, 1683, 1598, 1448, 1337, 1301, 1269, 
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1161, 1096, 904, 817, 761 cm–1; HRMS (ESI+) m/z calc’d for C16H18NO2S [M+H]+: 

288.1053, found 288.1044. 

 

 

1-bromo-1-(4-nitrophenyl)-2-(p-toluenesulfonamido)ethane (377):59 

Bromide 377 was isolated as a byproduct of the reaction of aziridine 355 under the 

reaction conditions specified in General Procedure C: 35% yield as an amorphous white 

solid; Rf = 0.15 (1:4 Acetone:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 8.24–8.14 

(m, 2H), 7.75–7.67 (m, 2H), 7.53–7.46 (m, 2H), 7.35–7.29 (m, 2H), 5.02 (t, J = 7.1 Hz, 

1H), 4.83 (dd, J = 7.4, 5.9 Hz, 1H), 3.64–3.50 (m, 2H), 2.45 (s, 3H); 13C NMR (CDCl3, 

126 MHz) δ 148.1, 145.3, 144.3, 136.8, 130.1, 129.0, 127.1, 124.3, 50.5, 50.1, 21.7; IR 

(Neat Film, NaCl) 3278, 1598, 1522, 1423, 1346, 1157, 1092, 855, 814 cm–1; HRMS 

(FAB+) m/z calc’d for C15H14
81BrN2O4S [(M–H2)+H]+: 398.9837, found 398.9834. 

 

3.7.9   DEPROTECTION OF IMINOTHIAZOLIDINES (S)-292 and (S)-315 

!

Procedure for the desulfonylation of thiazolidine (S)-292 was adapted from the 

literature.30 Iminothiazolidine (S)-292 (50 mg, 0.13 mmol, 1.00 equiv) was suspended in 

freshly distilled CH3OH (2.2 mL) in an oven-dried vial with a stir bar and heated to 70 °C 
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until a homogeneous solution was formed.  Magnesium turnings (49 mg, 2.01 mmol, 15 

equiv) were then added and the vial was sealed.  The reaction mixture was stirred at 70 

°C. Upon consumption of starting material (determined by LCMS analysis, ca. 30 min), 

the reaction mixture was allowed to cool to room temperature and filtered through Celite, 

washing with CH2Cl2 (20 mL) and CH3OH (20 mL).  The filtrate was adsorbed onto 

Celite and purified by silica gel column chromatography (30% acetone and 1% Et3N in 

hexanes) to give iminothiazolidine (S)-318 (26 mg, 91% yield) as a white amorphous 

solid; characterization data match those reported above; [α]D 
25.0 –61.2° (c 0.23, CHCl3); 

enantiomeric excess was determined by analytical SFC (Chiralcel OB-H column, 10% 

methanol in CO2, 2.5 mL/min, λ = 254 nm, major retention time: 3.9 minutes, minor 

retention time: 8.4 minutes, 94% ee). 

 

 

Procedure for the desulfonylation of thiazolidine (S)-315 was adapted from the 

literature.31a  To a solution of iminothiazolidine (S)-315 (120 mg, 0.30 mmol, 1.00 equiv, 

95% ee) and p-methoxythiophenol (110 µL, 0.89 mmol, 3.00 equiv) in acetonitrile (1.96 

mL) was added DMSO (40 µL), followed by potassium carbonate (164 mg, 1.18 mmol, 

4.00 equiv).  The vial was loosely capped and the heterogeneous mixture was stirred at 

room temperature until the reaction was complete (determined by TLC analysis, ca. 3 h).  

The reaction mixture was concentrated and the residue partitioned between ethyl acetate 

and water.  The organic layer was separated, washed with brine, dried over sodium 
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sulfate, filtered, and concentrated in vacuo.  The crude residue was purified by silica gel 

column chromatography (30% acetone and 1% Et3N in hexanes eluent) to give 

iminothiazolidine (S)-318 (60 mg, 93% yield) as a white amorphous solid; 

characterization data match those reported above; [α]D 
25.0 –61.2° (c 0.23, CHCl3); 

enantiomeric excess was determined by analytical SFC (Chiralcel OB-H column, 10% 

methanol in CO2, 2.5 mL/min, λ = 254 nm, major retention time: 3.9 minutes, minor 

retention time: 8.4 minutes, 94% ee). 

 

 

Procedure for the deallylation of thiazolidine (S)-292 was adapted from the 

literature.60 To a solution of iminothiazolidine (S)-292 (25 mg, 0.067 mmol, 1.00 equiv) 

in dichloroethane (750 µL) in an oven dried vial with a stir bar were added 

tetrakis(triphenylphosphine)palladium(0) (39 mg, 0.034 mmol, 0.50 equiv) and 1,3-

dimethylbarbituric acid (157 mg, 1.01 mmol, 15.0 equiv).  The vial was sealed and stirred 

at 70 °C until the reaction was complete (determined by LCMS analysis, ca. 1.5 h).  The 

reaction mixture was diluted with CH2Cl2, adsorbed onto Celite, and purified by silica gel 

column chromatography (10% acetone and 1% Et3N in hexanes) to give 

iminothiazolidine (S)-344 (20 mg, 89% yield) as a white amorphous solid; Rf = 0.30 (3:7 

Acetone:Hexanes eluent); 1H NMR (CD2Cl2, 500 MHz) δ 7.83–7.78 (m, 2H), 7.38–7.34 

(m, 2H), 7.34–7.31 (m, 5H), 4.77 (t, J = 7.0 Hz, 1H), 4.46 (dd, J = 10.5, 6.4 Hz, 1H), 4.01 

S
N

N
S

O

O

Me

(S)-292 (S)-344

(Ph3P)4Pd

DCE, 70 °C

S
N

HN
S

O

O

Me

N

N

O

O

Me

Me
O



Chapter 3 – (3+2) Cycloadditions of Aziridines with Heterocumulenes  317 

(dd, J = 10.5, 7.6 Hz, 1H), 2.46 (s, 3H); 13C NMR (CD2Cl2, 126 MHz) δ 160.3, 145.9, 

137.3, 130.4, 129.8, 129.4, 129.0, 128.1, 127.8, 58.8, 21.8; IR (Neat Film, NaCl) 3311, 

3031, 2922, 1622, 1597, 1494, 1454, 1358, 1168, 1089, 1054, 814 cm–1; HRMS (MM: 

ESI-APCI) m/z calc’d for C16H17N2O2S2 [M+H]+: 333.0726, found 333.0736; [α]D 
25.0 –

10.0° (c 0.1, CHCl3); enantiomeric excess was determined by analytical SFC (Chiralpak 

AD-H column, 30% isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, major retention 

time: 7.3 minutes, minor retention time: 8.4 minutes, 39% ee). 

 

3.7.10  EXPERIMENTAL PROCEDURES FOR CONTROL REACTIONS61 

3.7.10.1 Reaction in the Absence of Lewis Acid 

 

To an oven-dried 1-dram vial equipped with a magnetic stir bar were added (R)-N-tosyl-

2-phenylaziridine ((R)-291, 109 mg, 0.40 mmol, 1.00 equiv, >99% ee) and allyl 

isothiocyanate (79 µL, 0.80 mmol, 2.00 equiv). The vial was sealed with a screw cap 

fitted with a Teflon septum, placed under an inert atmosphere, and dissolved in 

anhydrous dichloromethane (0.80 mL). The heterogeneous reaction mixture was then 

allowed to stir at ambient temperature. Over the course of 96 hours, no formation of 

thiazolidine (S)-292 was observed. At 96 hours, the enantiomeric excess of the remaining 

aziridine (R)-291 was determined by analytical SFC (Chiralcel OB-H column, 10% 

isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 nm, major retention time: 7.5 minutes, 

minor retention time: 10.2 minutes, >99% ee). 
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3.7.10.2  Isomerization of Disubstituted Aziridine 333 

 

To an oven-dried 1-dram vial equipped with a magnetic stir bar was added zinc(II) 

bromide (25 mg, 0.113 mmol, 1.25 equiv), freshly powdered with a mortar and pestle, in 

an inert atmosphere glovebox. The vial was sealed with a screw cap fitted with a Teflon 

septum, removed from the glovebox and placed under an inert atmosphere. To a separate, 

oven-dried 1-dram vial was added cis-aziridine 333 (32 mg, 0.090 mmol, 1.00 equiv). 

The vial was sealed with a screw cap fitted with a Teflon septum, and the mixture was 

transferred to the first vial as a solution in anhydrous dichloromethane (0.15 mL + 0.05 

mL rinse). The heterogeneous reaction mixture was then allowed to stir at ambient 

temperature. Upon consumption of starting material (determined by LCMS, ca. 30 min), 

the reaction mixture directly purified by silica gel column chromatography (20% acetone 

in hexanes eluent) to furnish trans-pyrroline 336 (12 mg, 38% yield) and cis-pyrroline 

337 (2 mg, 6% yield) as white amorphous solids.  
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Rf = 0.38 (3:7 EtOAc:Hexanes eluent); 1H NMR (CDCl3, 500 MHz) δ 7.21–7.16 (m, 1H), 

7.12–7.05 (m, 4H), 7.00–6.96 (m, 2H), 6.95–6.90 (m, 2H), 5.87 (dt, J = 6.2, 1.6 Hz, 1H), 

5.84 (dt, J = 6.2, 1.8 Hz, 1H), 5.76 (dt, J = 6.2, 1.6 Hz, 1H), 5.18 (dt, J = 5.7, 1.7 Hz, 

1H), 3.86 (s, 3H), 2.30 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 171.2, 142.6, 137.9, 

136.9, 134.7, 129.0, 128.9, 128.4, 128.3, 126.8, 124.0, 70.5, 69.3, 53.0, 21.5; IR (Neat 

Film, NaCl) 2953, 1747, 1598, 1456, 1343, 1262, 1200, 1158, 1100, 1018, 813, 763 cm–1; 

HRMS (MM: ESI-APCI) m/z calc’d for C19H20NO4S [M+H]+: 358.1108, found 

358.1106. 

 

 

methyl cis-5-phenyl-1-tosyl-3-pyrroline-2-carboxylate (337): 

Rf = 0.47 (3:7 EtOAc:Hexanes eluent); characterization data match those reported in the 

literature.62 

 

3.7.10.3 Isomerization of Disubstituted Aziridine 330 

 

To an oven-dried 1-dram vial equipped with a magnetic stir bar was added zinc(II) 

bromide (17 mg, 0.074 mmol, 1.25 equiv), freshly powdered with a mortar and pestle, in 
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an inert atmosphere glovebox. The vial was sealed with a screw cap fitted with a Teflon 

septum, removed from the glovebox and placed under an inert atmosphere. To a separate, 

oven-dried 1-dram vial was added trans-aziridine 330 (21 mg, 0.059 mmol, 1.00 equiv). 

The vial was sealed with a screw cap fitted with a Teflon septum, and the mixture was 

transferred to the first vial as a solution in anhydrous dichloromethane (0.15 mL + 0.05 

mL rinse). The heterogeneous reaction mixture was then allowed to stir at ambient 

temperature. The slow decomposition of aziridine 330 was complete after 96 h 

(determined by LCMS) and was characterized by the formation of no major products 

including neither trans-pyrroline 336 nor cis-pyrroline 337.63 

 

3.7.10.4 Racemization of Aziridine Starting Material (R)-291 

 

To an oven-dried 1-dram vial equipped with a magnetic stir bar was added zinc(II) 

bromide (113 mg, 0.50 mmol, 1.25 equiv), freshly powdered with a mortar and pestle, in 

an inert atmosphere glovebox. The vial was sealed with a screw cap fitted with a Teflon 

septum, removed from the glovebox and placed under an inert atmosphere. To a separate, 

oven-dried 1-dram vial was added N-tosyl-2-phenylaziridine ((R)-291, 109 mg, 0.40 

mmol, 1.00 equiv). The vial was sealed with a screw cap fitted with a Teflon septum, and 

the mixture was transferred to the first vial as a solution in anhydrous dichloromethane 

(0.60 mL + 0.20 mL rinse). The heterogeneous reaction mixture was then allowed to stir 

at ambient temperature. Racemization of the aziridine was complete after 10 minutes as 

determined by analytical SFC (Chiralcel OB-H column, 10% isopropyl alcohol in CO2, 
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2.5 mL/min, λ = 254 nm, major retention time: 7.5 minutes, minor retention time: 10.2 

minutes). 

 

3.7.10.5 Racemization of Product (S)-292 

 

To an oven-dried 1-dram vial equipped with a magnetic stir bar was added zinc(II) 

bromide (31 mg, 0.14 mmol, 1.25 equiv), freshly powdered with a mortar and pestle, in 

an inert atmosphere glovebox. The vial was sealed with a screw cap fitted with a Teflon 

septum, removed from the glovebox and placed under an inert atmosphere. To a separate, 

oven-dried 1-dram vial were added the iminothiazolidine (S)-292 (40 mg, 0.11 mmol, 

1.00 equiv, 94% ee) and allyl isothiocyanate (22 µL, 0.22 mmol, 2.00 equiv). The vial 

was sealed with a screw cap fitted with a Teflon septum, and the mixture was transferred 

to the first vial as a solution in anhydrous dichloromethane (0.15 mL + 0.10 mL rinse). 

The heterogeneous reaction mixture was then allowed to stir at ambient temperature. 

After 96 hours, the enantiomeric excess of thiazolidine (S)-292 was determined by 

analytical SFC (Chiralpak AD-H, 30% isopropyl alcohol in CO2, 2.5 mL/min, λ = 254 

nm, major retention time: 5.4 minutes, minor retention time: 3.8 minutes, 94% ee).  
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3.7.10.6 Isomerization of trans-Disubstituted Thiazolidine 334 

 

To an oven-dried 1-dram vial equipped with a magnetic stir bar was added zinc(II) 

bromide (10 mg, 0.044 mmol, 1.25 equiv), freshly powdered with a mortar and pestle, in 

an inert atmosphere glovebox. The vial was sealed with a screw cap fitted with a Teflon 

septum, removed from the glovebox and placed under an inert atmosphere. To a separate, 

oven-dried 1-dram vial were added the trans-iminothiazolidine 334 (16 mg, 0.035 mmol, 

1.00 equiv) and allyl isothiocyanate (7 µL, 0.070 mmol, 2.00 equiv). The vial was sealed 

with a screw cap fitted with a Teflon septum, and the mixture was transferred to the first 

vial as a solution in anhydrous dichloromethane (0.10 mL + 0.05 mL rinse). The 

heterogeneous reaction mixture was then allowed to stir at ambient temperature. Over the 

course of 96 hours, no decomposition of trans-iminothiazolidine 334 or isomerization of 

trans-iminothiazolidine 334 to cis-iminothiazolidine 335 was observed (determined by 

LCMS). 

 

3.7.10.7 Isomerization of cis-Disubstituted Thiazolidine 335 
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To an oven-dried 1-dram vial equipped with a magnetic stir bar was added zinc(II) 

bromide (10 mg, 0.044 mmol, 1.25 equiv), freshly powdered with a mortar and pestle, in 

an inert atmosphere glovebox. The vial was sealed with a screw cap fitted with a Teflon 

septum, removed from the glovebox and placed under an inert atmosphere. To a separate, 

oven-dried 1-dram vial were added the cis-iminothiazolidine 335 (16 mg, 0.035 mmol, 

1.00 equiv) and allyl isothiocyanate (7 µL, 0.070 mmol, 2.00 equiv). The vial was sealed 

with a screw cap fitted with a Teflon septum, and the mixture was transferred to the first 

vial as a solution in anhydrous dichloromethane (0.10 mL + 0.05 mL rinse). The 

heterogeneous reaction mixture was then allowed to stir at ambient temperature. Over the 

course of 96 hours, no decomposition of cis-iminothiazolidine 335 or isomerization of 

cis-iminothiazolidine 335 to trans-iminothiazolidine 334 was observed (determined by 

LCMS). 
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Spectra Relevant to Chapter 3: 

Stereoselective Lewis Acid Mediated (3 + 2) Cycloadditions of  

N-H- and N-Sulfonylaziridines with Heterocumulenes 
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Figure A5.2 Infrared spectrum (thin film/NaCl) of compound 356. 
 

Figure A5.3 13C NMR (126 MHz, CDCl3) of compound 356. 
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Figure A5.5 Infrared spectrum (thin film/NaCl) of compound 358. 
 

Figure A5.6 13C NMR (126 MHz, CDCl3) of compound 358. 
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Figure A5.8 Infrared spectrum (thin film/NaCl) of compound 360. 
 

Figure A5.9 13C NMR (126 MHz, CDCl3) of compound 360. 
 



Appendix 5 – Spectra Relevant to Chapter 3   

 

343 

�
�

�
�

�
�

�
�

	



�
�

�
�
�

 
 
   

Fi
gu

re
 A

5.
10

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3
) o

f c
om

po
un

d 
36

2.
 

  

 

36
2

NS
O

O

M
e



Appendix 5 – Spectra Relevant to Chapter 3   

 

344 

���������������������������
���

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A5.11 Infrared spectrum (thin film/NaCl) of compound 362. 
 

Figure A5.12 13C NMR (126 MHz, CDCl3) of compound 362. 
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Figure A5.14 Infrared spectrum (thin film/NaCl) of compound 368. 
 

Figure A5.15 13C NMR (126 MHz, CDCl3) of compound 368. 
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Figure A5.17 Infrared spectrum (thin film/NaCl) of compound 369. 
 

Figure A5.18 13C NMR (126 MHz, CDCl3) of compound 369. 
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Figure A5.19 Infrared spectrum (thin film/NaCl) of compound 330. 
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Figure A5.21 Infrared spectrum (thin film/NaCl) of compound 333. 
 

Figure A5.22 13C NMR (126 MHz, CDCl3) of compound 333. 
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Figure A5.23 Infrared spectrum (thin film/NaCl) of compound 342. 
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Figure A5.25 Infrared spectrum (thin film/NaCl) of compound 292. 
 

Figure A5.26 13C NMR (126 MHz, CDCl3) of compound 292. 
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Figure A5.28 Infrared spectrum (thin film/NaCl) of compound 296. 
 

Figure A5.29 13C NMR (126 MHz, CDCl3) of compound 296. 
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Figure A5.31 Infrared spectrum (thin film/NaCl) of compound 297. 
 

Figure A5.32 13C NMR (126 MHz, CDCl3) of compound 297. 
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Figure A5.34 Infrared spectrum (thin film/NaCl) of compound 298. 
 

Figure A5.35 13C NMR (126 MHz, CDCl3) of compound 298. 
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Figure A5.37 Infrared spectrum (thin film/NaCl) of compound 299. 
 

Figure A5.38 13C NMR (126 MHz, CDCl3) of compound 299. 
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Figure A5.40 Infrared spectrum (thin film/NaCl) of compound 300. 
 

Figure A5.41 13C NMR (126 MHz, CDCl3) of compound 300. 
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Figure A5.43 Infrared spectrum (thin film/NaCl) of compound 301. 
 

Figure A5.44 13C NMR (126 MHz, CDCl3) of compound 301. 
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Figure A5.46 Infrared spectrum (thin film/NaCl) of compound 302. 
 

Figure A5.47 13C NMR (126 MHz, CDCl3) of compound 302. 
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Figure A5.49 Infrared spectrum (thin film/NaCl) of compound 303. 
 

Figure A5.50 13C NMR (126 MHz, CDCl3) of compound 303. 
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Figure A5.52 Infrared spectrum (thin film/NaCl) of compound 304. 
 

Figure A5.53 13C NMR (126 MHz, CDCl3) of compound 304. 
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Figure A5.55 Infrared spectrum (thin film/NaCl) of compound 305. 
 

Figure A5.56 13C NMR (126 MHz, CDCl3) of compound 305. 
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Figure A5.58 Infrared spectrum (thin film/NaCl) of compound 306. 
 

Figure A5.59 13C NMR (126 MHz, CDCl3) of compound 306. 
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Figure A5.61 Infrared spectrum (thin film/NaCl) of compound 307. 
 

Figure A5.62 13C NMR (126 MHz, CDCl3) of compound 307. 
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Figure A5.64 Infrared spectrum (thin film/NaCl) of compound 308. 
 

Figure A5.65 13C NMR (126 MHz, CDCl3) of compound 308. 
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Figure A5.67 Infrared spectrum (thin film/NaCl) of compound 309. 
 

Figure A5.68 13C NMR (126 MHz, CDCl3) of compound 309. 
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 Figure A5.70 Infrared spectrum (Thin Film, NaCl) of compound (S)-338. 
 

 Figure A5.71 13C NMR (126 MHz, CDCl3) of compound (S)-338. 
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Figure A5.73 Infrared spectrum (thin film/NaCl) of compound 311. 
 

Figure A5.74 13C NMR (126 MHz, CDCl3) of compound 311. 
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Figure A5.76 Infrared spectrum (thin film/NaCl) of compound 312. 
 

Figure A5.77 13C NMR (126 MHz, CDCl3) of compound 312. 
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Figure A5.79 Infrared spectrum (thin film/NaCl) of compound 315. 
 

Figure A5.80 13C NMR (126 MHz, CDCl3) of compound 315. 
 



Appendix 5 – Spectra Relevant to Chapter 3   

 

391 

�
�

�
�

�
�

�
�

	



�
�

�
�
�

 
   

Fi
gu

re
 A

5.
81

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3
) o

f c
om

po
un

d 
31

6.
 

  

 

S
N

N
S
M
e

O

O

31
6



Appendix 5 – Spectra Relevant to Chapter 3   

 

392 

���������������������������
���

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A5.82 Infrared spectrum (thin film/NaCl) of compound 316. 
 

Figure A5.83 13C NMR (126 MHz, CDCl3) of compound 316. 
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Figure A5.85 Infrared spectrum (thin film/NaCl) of compound 317. 
 

Figure A5.86 13C NMR (126 MHz, CDCl3) of compound 317. 
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Figure A5.88 Infrared spectrum (thin film/NaCl) of compound 318. 
 

Figure A5.89 13C NMR (126 MHz, CDCl3) of compound 318. 
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Figure A5.91 Infrared spectrum (Thin Film, NaCl) of compound 323•HCl. 
 

 Figure A5.92 13C NMR (126 MHz, CDCl3) of compound 323•HCl. 
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Figure A5.94 Infrared spectrum (thin film/NaCl) of compound 324. 
 

Figure A5.95 13C NMR (126 MHz, CDCl3) of compound 324. 
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Figure A5.97 Infrared spectrum (thin film/NaCl) of compound 325. 
 

Figure A5.98 13C NMR (126 MHz, CDCl3) of compound 325. 
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Figure A5.100 Infrared spectrum (thin film/NaCl) of compound 326. 
 

Figure A5.101 13C NMR (126 MHz, CDCl3) of compound 326. 
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Figure A5.103 Infrared spectrum (thin film/NaCl) of compound 327. 
 

Figure A5.104 13C NMR (126 MHz, CDCl3) of compound 327. 
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Figure A5.106 Infrared spectrum (thin film/NaCl) of compound 329. 
 

Figure A5.107 13C NMR (126 MHz, CDCl3) of compound 329. 
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Figure A5.109 Infrared spectrum (thin film/NaCl) of compound 331. 
 

Figure A5.110 13C NMR (126 MHz, CDCl3) of compound 331. 
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Figure A5.112 Infrared spectrum (thin film/NaCl) of compound 334. 
 

Figure A5.113 13C NMR (126 MHz, CDCl3) of compound 334. 
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Figure A5.115 Infrared spectrum (thin film/NaCl) of compound 335. 
 

Figure A5.116 13C NMR (126 MHz, CDCl3) of compound 335. 
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Figure A5.118 Infrared spectrum (thin film/NaCl) of compound 336. 
 

Figure A5.119 13C NMR (126 MHz, CDCl3) of compound 336. 
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 Figure A5.121 Infrared spectrum (Thin Film, NaCl) of compound 374•HCl. 
 

 Figure A5.122 13C NMR (126 MHz, CDCl3) of compound 374•HCl. 
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Figure A5.124 Infrared spectrum (thin film/NaCl) of compound 343. 
 

Figure A5.125 13C NMR (126 MHz, CDCl3) of compound 343. 
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Figure A5.126 Infrared spectrum (thin film/NaCl) of compound 376. 
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Figure A5.128 Infrared spectrum (thin film/NaCl) of compound 377. 
 

Figure A5.129 13C NMR (126 MHz, CDCl3) of compound 377. 
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 Figure A5.131 Infrared spectrum (Thin Film, NaCl) of compound (S)-344. 
 

 Figure A.5.132 13C NMR (126 MHz, CDCl3) of compound (S)-344. 
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A6.1   X-RAY CRYSTAL STRUCTURE ANALYSIS OF THIAZOLIDINE (S)-

315 

S
N

N
S

O

O

NO2

(S)-315  

Contents 

Table A6.1.1 Experimental Details 

Table A6.1.2 Crystal Data 

Table A6.1.3 Atomic Coordinates  

Table A6.1.4 Full Bond Distances and Angles 

Table A6.1.5 Anisotropic Displacement Parameters 

Table A6.1.6 Hydrogen Atomic Coordinates 

 

Figure A6.1.1     X-ray crystal structure of thiazolidine (S)-315  
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Table A6.1.1. Experimental details for X-ray structure determination of thiazolidine (S)-315 

Low-temperature diffraction data (and scans) were collected on a Bruker Kappa 

diffractometer coupled to a Apex II CCD detector with graphite monochromated Mo K 

radiation ( = 0.71073 Å) for the structure of  thiazolidine (S)-315.  The structure was 

solved by direct methods using SHELXS and refined against F2 on all data by full-matrix 

least squares with SHELXL-2013 refinement using established techniques.  All non-

hydrogen atoms were refined anisotropically.  All hydrogen atoms were included into the 

model at geometrically calculated positions and refined using a riding model.  The 

isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U 

value of the atoms they are linked to (1.5 times for methyl groups).  All disordered atoms 

were refined with the help of similarity restraints on the 1,2- and 1,3- distances and 

displacement parameters as well as rigid bond restraints for anisotropic displacement 

parameters.   

 

Table A6.1.2 Crystal data and structure refinement for thiazolidine (S)-315 

Caltech Identification code  a13024 

CCDC Deposition Number 973929 

Empirical formula  C18 H17 N3 O4 S2 

Formula weight  433.95 

Crystallization solvent  Ethyl Acetate/Heptane/Benzene  

Crystal shape  blade 

Crystal color  colourless  

Crystal size 0.04 x 0.11 x 0.40 mm 

Preliminary photograph(s)  rotation  

Type of diffractometer  Bruker APEX-II CCD 

Wavelength  0.71073 Å MoK 
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Table A6.1.2 (cont’d) 

Data collection temperature  100 K 

Theta range for 9894 reflections used 
in lattice determination  2.34 to 26.36° 

Unit cell dimensions a = 29.071(2) Å α= 90° 
 b = 6.0386(5) Å β= 94.233(3)° 
 c = 23.0477(19) Å γ = 90° 

Volume 4034.9(6) Å3 

Z 8 

Crystal system  monoclinic 

Space group  C 1 2 1   (# 5) 

Density (calculated) 1.429 g/cm3 

F(000) 1802 

Theta range for data collection 1.6 to 33.0° 

Completeness to theta = 25.000° 99.9%  

Index ranges –42 ≤ h ≤ 44, –8 ≤ k ≤ 9, –35 ≤ l ≤ 35 

Reflections collected 71248 

Independent reflections 12862 [Rint= 0.0785] 

Reflections > 2s(I) 8839  

Average s(I)/(net I) 0.0814 

Absorption coefficient 0.30 mm–1 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.0000 and 0.8747   

Primary solution method  dual 

Hydrogen placement  geom 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 12862 / 57 / 594 

Treatment of hydrogen atoms  constr 

Goodness-of-fit on F2 1.01 

Final R indices [I>2s(I), 8839 reflections] R1 = 0.0523, wR2 = 0.1051 

R indices (all data) R1 = 0.0985, wR2 = 0.1215 

Type of weighting scheme used calc 

Weighting scheme used w=1/[^2^(Fo^2^)+(0.0559P)^2^+1.2322P] where    

P=(Fo^2^+2Fc^2^)/3 

Max shift/error  0.001 
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Table A6.1.2 (cont’d) 

Average shift/error  0.000 

Absolute structure parameter 0.08(3) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.63 and -0.45 e·Å–3 

 

Programs Used  

Cell refinement   SAINT V8.32B (Bruker-AXS, 2007) 

Data collection   APEX2 2013.6-2 (Bruker-AXS, 2007) 

Data reduction   SAINT V8.32B (Bruker-AXS, 2007) 

Structure solution   SHELXT (Sheldrick, 2012) 

Structure refinement   SHELXL-2013/2 (Sheldrick, 2013) 

Graphics  DIAMOND 3 (Crystal Impact, 1999)  

  
 
Table A6.1.3.      Atomic coordinates (x 104) and equivalent  isotropic displacement parameters (Å2x 

103) for thiazolidine (S)-315.  U(eq) is defined as one third of the trace of the orthogonalized Uij 

tensor.  
________________________________________________________________________________  
 x y z Ueq 
________________________________________________________________________________   
S(1) 8262(1) -810(2) 7758(1) 19(1) 

S(2) 7657(1) 76(2) 9340(1) 21(1) 

O(1) 8012(1) 158(4) 7260(1) 22(1) 

O(2) 8329(1) -3134(4) 7794(1) 25(1) 

O(3) 10067(1) 5822(5) 8110(1) 40(1) 

O(4) 10425(1) 2713(5) 8234(1) 44(1) 

N(1) 7986(1) 23(5) 8320(1) 20(1) 

N(2) 10073(1) 3806(6) 8126(1) 28(1) 

N(3) 8456(1) -1870(5) 9026(1) 26(1) 

C(1) 8809(1) 482(6) 7843(1) 20(1) 

C(2) 8859(1) 2557(6) 7599(1) 20(1) 

C(3) 9278(1) 3659(6) 7690(1) 24(1) 

C(4) 9634(1) 2609(6) 8012(1) 23(1) 

C(5) 9595(1) 498(6) 8237(1) 26(1) 

C(6) 9177(1) -574(6) 8158(1) 24(1) 
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Table A6.1.3 (cont’d) 

C(7) 8098(1) -772(6) 8892(1) 21(1) 

C(8) 7276(1) 855(5) 8701(1) 18(1) 

C(9) 7616(1) 1693(6) 8273(1) 20(1) 

C(10) 8540(1) -2675(7) 9616(1) 35(1) 

C(11) 8739(1) -4949(7) 9632(1) 26(1) 

C(12) 8780(1) -6214(7) 9179(2) 38(1) 

C(13) 6914(1) 2514(6) 8844(1) 19(1) 

C(14) 6448(1) 1979(6) 8723(1) 24(1) 

C(15) 6108(1) 3500(6) 8831(1) 27(1) 

C(16) 6225(1) 5531(6) 9070(1) 26(1) 

C(17) 6686(1) 6055(6) 9207(1) 22(1) 

C(18) 7027(1) 4541(5) 9093(1) 22(1) 

S(1A) 1850(1) 2774(2) 7236(1) 24(1) 

S(2A) 2370(2) 1779(14) 5621(2) 32(1) 

S(2AA) 2253(3) 897(17) 5560(2) 29(1) 

O(1A) 2091(1) 1685(4) 7716(1) 27(1) 

O(2A) 1813(1) 5115(5) 7229(1) 31(1) 

O(3A) -335(1) -199(6) 6712(2) 52(1) 

O(4A) -13(1) -3389(5) 6842(1) 46(1) 

N(1A) 2107(1) 1906(5) 6660(1) 25(1) 

N(2A) 0(1) -1372(6) 6830(1) 33(1) 

N(3A) 1711(1) 4307(6) 5995(1) 32(1) 

C(1A) 1291(1) 1635(6) 7142(1) 22(1) 

C(2A) 1220(1) -452(6) 7371(1) 26(1) 

C(3A) 792(1) -1444(6) 7274(2) 28(1) 

C(4A) 450(1) -287(7) 6954(2) 28(1) 

C(5A) 509(1) 1817(7) 6744(2) 31(1) 

C(6A) 940(1) 2785(7) 6830(1) 28(1) 

C(7A) 1997(1) 2800(7) 6099(1) 25(1) 

C(8A) 2550(1) -700(8) 6107(2) 39(1) 

C(9A) 2328(4) -430(20) 6676(4) 32(2) 

C(9AA) 2448(5) 360(20) 6736(6) 18(3) 

C(10A) 1625(1) 5058(8) 5392(1) 38(1) 

C(11A) 1359(2) 7136(9) 5353(2) 55(1) 
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Table A6.1.3 (cont’d) 

C(12A) 1227(2) 8304(9) 5780(2) 66(2) 

C(13A) 3068(1) -809(7) 6117(1) 23(1) 

C(14A) 3272(1) -2798(6) 5960(1) 28(1) 

C(15A) 3756(1) -2909(9) 5974(2) 43(1) 

C(16A) 4014(1) -1147(10) 6144(2) 51(1) 

C(17A) 3809(2) 801(9) 6298(2) 55(1) 

C(18A) 3343(2) 954(7) 6286(2) 39(1) 

C(19) 50(20) 8890(100) 4820(20) 234(16) 

C(20) -10(17) 6960(100) 5284(17) 235(14) 

C(21) -90(18) 5080(100) 4796(17) 219(12) 

C(22) 168(14) 3320(90) 5179(15) 209(12) 

C(23) 33(10) 1280(80) 4797(11) 170(10) 

C(24) 9986(11) 1970(170) 10141(12) 340(30) 

C(25) 10106(12) 3650(130) 9638(15) 360(30) 

C(26) 10000 5830(130) 10000 360(30) 

C(27) 9890(13) 7930(120) 9647(18) 370(30) 

C(28) 9970(16) 9370(170) 10187(16) 340(30) 
________________________________________________________________________________ 
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Table A6.1.4      Bond lengths [Å] and angles [°] for thiazolidine (S)-315 
___________________________________________________________________________________  

S(1)-O(1)  1.437(2) 

S(1)-O(2)  1.418(3) 

S(1)-N(1)  1.653(3) 

S(1)-C(1)  1.767(3) 

S(2)-C(7)  1.780(3) 

S(2)-C(8)  1.839(3) 

O(3)-N(2)  1.218(4) 

O(4)-N(2)  1.228(4) 

N(1)-C(7)  1.416(4) 

N(1)-C(9)  1.473(4) 

N(2)-C(4)  1.472(4) 

N(3)-C(7)  1.253(4) 

N(3)-C(10)  1.447(4) 

C(1)-C(2)  1.386(5) 

C(1)-C(6)  1.401(4) 

C(2)-H(2)  0.9500 

C(2)-C(3)  1.389(5) 

C(3)-H(3)  0.9500 

C(3)-C(4)  1.382(4) 

C(4)-C(5)  1.384(5) 

C(5)-H(5)  0.9500 

C(5)-C(6)  1.378(5) 

C(6)-H(6)  0.9500 

C(8)-H(8)  1.0000 

C(8)-C(9)  1.533(4) 

C(8)-C(13)  1.508(4) 

C(9)-H(9A)  0.9900 

C(9)-H(9B)  0.9900 

C(10)-H(10C)  0.9900 

C(10)-H(10D)  0.9900 

C(10)-C(11)  1.490(5) 

C(11)-H(11)  0.9500 

C(11)-C(12)  1.306(5) 

C(12)-H(12C)  0.9500 
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Table A6.1.4 (cont’d) 

C(12)-H(12D)  0.9500 

C(13)-C(14)  1.399(4) 

C(13)-C(18)  1.383(5) 

C(14)-H(14)  0.9500 

C(14)-C(15)  1.384(5) 

C(15)-H(15)  0.9500 

C(15)-C(16)  1.376(5) 

C(16)-H(16)  0.9500 

C(16)-C(17)  1.390(5) 

C(17)-H(17)  0.9500 

C(17)-C(18)  1.389(5) 

C(18)-H(18)  0.9500 

S(1A)-O(1A)  1.426(2) 

S(1A)-O(2A)  1.418(3) 

S(1A)-N(1A)  1.656(3) 

S(1A)-C(1A)  1.763(3) 

S(2A)-C(7A)  1.718(4) 

S(2A)-C(8A)  1.919(6) 

S(2AA)-C(7A)  1.886(7) 

S(2AA)-C(8A)  1.763(6) 

O(3A)-N(2A)  1.218(4) 

O(4A)-N(2A)  1.219(4) 

N(1A)-C(7A)  1.415(4) 

N(1A)-C(9A)  1.548(12) 

N(1A)-C(9AA)  1.364(14) 

N(2A)-C(4A)  1.472(5) 

N(3A)-C(7A)  1.243(5) 

N(3A)-C(10A)  1.465(4) 

C(1A)-C(2A)  1.388(5) 

C(1A)-C(6A)  1.389(5) 

C(2A)-H(2A)  0.9500 

C(2A)-C(3A)  1.384(5) 

C(3A)-H(3A)  0.9500 

C(3A)-C(4A)  1.384(5) 
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Table A6.1.4 (cont’d) 

C(4A)-C(5A)  1.375(6) 

C(5A)-H(5A)  0.9500 

C(5A)-C(6A)  1.383(5) 

C(6A)-H(6A)  0.9500 

C(8A)-H(8A)  1.0000 

C(8A)-H(8AA)  1.0000 

C(8A)-C(9A)  1.512(10) 

C(8A)-C(9AA)  1.630(13) 

C(8A)-C(13A)  1.506(5) 

C(9A)-H(9AA)  0.9900 

C(9A)-H(9AB)  0.9900 

C(9AA)-H(9AC)  0.9900 

C(9AA)-H(9AD)  0.9900 

C(10A)-H(10A)  0.9900 

C(10A)-H(10B)  0.9900 

C(10A)-C(11A)  1.473(6) 

C(11A)-H(11A)  0.9500 

C(11A)-C(12A)  1.293(6) 

C(12A)-H(12A)  0.9500 

C(12A)-H(12B)  0.9500 

C(13A)-C(14A)  1.399(5) 

C(13A)-C(18A)  1.370(5) 

C(14A)-H(14A)  0.9500 

C(14A)-C(15A)  1.409(5) 

C(15A)-H(15A)  0.9500 

C(15A)-C(16A)  1.343(7) 

C(16A)-H(16A)  0.9500 

C(16A)-C(17A)  1.378(7) 

C(17A)-H(17A)  0.9500 

C(17A)-C(18A)  1.358(7) 

C(18A)-H(18A)  0.9500 

C(19)-C(19)#1  0.90(10) 

C(19)-C(20)  1.60(2) 

C(19)-C(20)#1  1.20(4) 



Appendix 6 – X-Ray Crystallography Reports Relevant to Chapter 3  436 

Table A6.1.4 (cont’d) 

C(19)-C(23)#2  1.45(4) 

C(19)-C(23)#3  1.72(4) 

C(20)-C(19)#1  1.20(4) 

C(20)-C(20)#1  1.31(8) 

C(20)-C(21)#1  1.19(4) 

C(20)-C(21)  1.60(2) 

C(21)-C(20)#1  1.19(4) 

C(21)-C(21)#1  1.04(7) 

C(21)-C(22)#1  1.09(4) 

C(21)-C(22)  1.54(2) 

C(22)-C(21)#1  1.09(4) 

C(22)-C(22)#1  1.23(7) 

C(22)-C(23)#1  1.37(4) 

C(22)-C(23)  1.55(2) 

C(23)-C(19)#4  1.72(4) 

C(23)-C(19)#5  1.45(4) 

C(23)-C(22)#1  1.37(4) 

C(23)-C(23)#1  0.97(4) 

C(24)-C(24)#6  0.66(5) 

C(24)-C(25)  1.60(2) 

C(24)-C(25)#6  1.18(5) 

C(24)-C(28)#5  1.57(7) 

C(24)-C(28)#7  1.75(6) 

C(25)-C(24)#6  1.18(5) 

C(25)-C(25)#6  1.82(7) 

C(25)-C(26)  1.60(2) 

C(26)-C(25)#6  1.60(2) 

C(26)-C(27)#6  1.53(2) 

C(26)-C(27)  1.53(2) 

C(27)-C(27)#6  1.70(8) 

C(27)-C(28)  1.52(2) 

C(27)-C(28)#6  1.02(6) 

C(28)-C(24)#8  1.75(6) 

C(28)-C(24)#2  1.57(7) 
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Table A6.1.4 (cont’d) 

C(28)-C(27)#6  1.02(6) 

C(28)-C(28)#6  0.89(9) 

O(1)-S(1)-N(1) 104.85(13) 

O(1)-S(1)-C(1) 107.87(15) 

O(2)-S(1)-O(1) 120.48(15) 

O(2)-S(1)-N(1) 109.13(15) 

O(2)-S(1)-C(1) 108.25(15) 

N(1)-S(1)-C(1) 105.26(14) 

C(7)-S(2)-C(8) 91.39(14) 

C(7)-N(1)-S(1) 122.3(2) 

C(7)-N(1)-C(9) 114.6(2) 

C(9)-N(1)-S(1) 123.0(2) 

O(3)-N(2)-O(4) 123.6(3) 

O(3)-N(2)-C(4) 118.4(3) 

O(4)-N(2)-C(4) 118.0(3) 

C(7)-N(3)-C(10) 119.3(3) 

C(2)-C(1)-S(1) 118.3(2) 

C(2)-C(1)-C(6) 121.5(3) 

C(6)-C(1)-S(1) 120.2(3) 

C(1)-C(2)-H(2) 120.4 

C(1)-C(2)-C(3) 119.3(3) 

C(3)-C(2)-H(2) 120.4 

C(2)-C(3)-H(3) 120.8 

C(4)-C(3)-C(2) 118.3(3) 

C(4)-C(3)-H(3) 120.8 

C(3)-C(4)-N(2) 118.4(3) 

C(3)-C(4)-C(5) 123.0(3) 

C(5)-C(4)-N(2) 118.6(3) 

C(4)-C(5)-H(5) 120.7 

C(6)-C(5)-C(4) 118.6(3) 

C(6)-C(5)-H(5) 120.7 

C(1)-C(6)-H(6) 120.4 

C(5)-C(6)-C(1) 119.2(3) 

C(5)-C(6)-H(6) 120.4 
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Table A6.1.4 (cont’d) 

N(1)-C(7)-S(2) 108.5(2) 

N(3)-C(7)-S(2) 129.0(2) 

N(3)-C(7)-N(1) 122.5(3) 

S(2)-C(8)-H(8) 108.9 

C(9)-C(8)-S(2) 102.8(2) 

C(9)-C(8)-H(8) 108.9 

C(13)-C(8)-S(2) 112.5(2) 

C(13)-C(8)-H(8) 108.9 

C(13)-C(8)-C(9) 114.6(3) 

N(1)-C(9)-C(8) 103.2(2) 

N(1)-C(9)-H(9A) 111.1 

N(1)-C(9)-H(9B) 111.1 

C(8)-C(9)-H(9A) 111.1 

C(8)-C(9)-H(9B) 111.1 

H(9A)-C(9)-H(9B) 109.1 

N(3)-C(10)-H(10C) 109.3 

N(3)-C(10)-H(10D) 109.3 

N(3)-C(10)-C(11) 111.8(3) 

H(10C)-C(10)-H(10D) 107.9 

C(11)-C(10)-H(10C) 109.3 

C(11)-C(10)-H(10D) 109.3 

C(10)-C(11)-H(11) 117.4 

C(12)-C(11)-C(10) 125.3(3) 

C(12)-C(11)-H(11) 117.4 

C(11)-C(12)-H(12C) 120.0 

C(11)-C(12)-H(12D) 120.0 

H(12C)-C(12)-H(12D) 120.0 

C(14)-C(13)-C(8) 119.0(3) 

C(18)-C(13)-C(8) 122.0(3) 

C(18)-C(13)-C(14) 119.0(3) 

C(13)-C(14)-H(14) 119.9 

C(15)-C(14)-C(13) 120.2(3) 

C(15)-C(14)-H(14) 119.9 

C(14)-C(15)-H(15) 119.8 
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Table A6.1.4 (cont’d) 

C(16)-C(15)-C(14) 120.4(3) 

C(16)-C(15)-H(15) 119.8 

C(15)-C(16)-H(16) 120.1 

C(15)-C(16)-C(17) 119.8(3) 

C(17)-C(16)-H(16) 120.1 

C(16)-C(17)-H(17) 120.1 

C(18)-C(17)-C(16) 119.9(3) 

C(18)-C(17)-H(17) 120.1 

C(13)-C(18)-C(17) 120.6(3) 

C(13)-C(18)-H(18) 119.7 

C(17)-C(18)-H(18) 119.7 

O(1A)-S(1A)-N(1A) 104.59(15) 

O(1A)-S(1A)-C(1A) 108.09(16) 

O(2A)-S(1A)-O(1A) 120.09(16) 

O(2A)-S(1A)-N(1A) 110.18(16) 

O(2A)-S(1A)-C(1A) 108.57(17) 

N(1A)-S(1A)-C(1A) 104.15(15) 

C(7A)-S(2A)-C(8A) 93.6(2) 

C(8A)-S(2AA)-C(7A) 93.3(2) 

C(7A)-N(1A)-S(1A) 121.7(3) 

C(7A)-N(1A)-C(9A) 115.8(5) 

C(9A)-N(1A)-S(1A) 118.7(4) 

C(9AA)-N(1A)-S(1A) 118.7(6) 

C(9AA)-N(1A)-C(7A) 119.5(6) 

O(3A)-N(2A)-O(4A) 124.1(4) 

O(3A)-N(2A)-C(4A) 118.0(3) 

O(4A)-N(2A)-C(4A) 117.9(3) 

C(7A)-N(3A)-C(10A) 118.3(3) 

C(2A)-C(1A)-S(1A) 118.0(3) 

C(2A)-C(1A)-C(6A) 121.7(3) 

C(6A)-C(1A)-S(1A) 120.3(3) 

C(1A)-C(2A)-H(2A) 120.4 

C(3A)-C(2A)-C(1A) 119.2(3) 

C(3A)-C(2A)-H(2A) 120.4 
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Table A6.1.4 (cont’d) 

C(2A)-C(3A)-H(3A) 121.0 

C(2A)-C(3A)-C(4A) 118.0(3) 

C(4A)-C(3A)-H(3A) 121.0 

C(3A)-C(4A)-N(2A) 118.2(3) 

C(5A)-C(4A)-N(2A) 118.4(3) 

C(5A)-C(4A)-C(3A) 123.4(3) 

C(4A)-C(5A)-H(5A) 120.8 

C(4A)-C(5A)-C(6A) 118.4(4) 

C(6A)-C(5A)-H(5A) 120.8 

C(1A)-C(6A)-H(6A) 120.4 

C(5A)-C(6A)-C(1A) 119.1(4) 

C(5A)-C(6A)-H(6A) 120.4 

N(1A)-C(7A)-S(2A) 109.7(3) 

N(1A)-C(7A)-S(2AA) 107.2(3) 

N(3A)-C(7A)-S(2A) 125.7(3) 

N(3A)-C(7A)-S(2AA) 127.5(3) 

N(3A)-C(7A)-N(1A) 124.0(3) 

S(2A)-C(8A)-H(8A) 108.0 

S(2AA)-C(8A)-H(8AA) 108.6 

C(9A)-C(8A)-S(2A) 107.8(5) 

C(9A)-C(8A)-H(8A) 108.0 

C(9AA)-C(8A)-S(2AA) 108.1(6) 

C(9AA)-C(8A)-H(8AA) 108.6 

C(13A)-C(8A)-S(2A) 105.7(3) 

C(13A)-C(8A)-S(2AA) 118.1(4) 

C(13A)-C(8A)-H(8A) 108.0 

C(13A)-C(8A)-H(8AA) 108.6 

C(13A)-C(8A)-C(9A) 118.8(5) 

C(13A)-C(8A)-C(9AA) 104.6(6) 

N(1A)-C(9A)-H(9AA) 110.5 

N(1A)-C(9A)-H(9AB) 110.5 

C(8A)-C(9A)-N(1A) 106.3(7) 

C(8A)-C(9A)-H(9AA) 110.5 

C(8A)-C(9A)-H(9AB) 110.5 
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Table A6.1.4 (cont’d) 

H(9AA)-C(9A)-H(9AB) 108.7 

N(1A)-C(9AA)-C(8A) 109.4(9) 

N(1A)-C(9AA)-H(9AC) 109.8 

N(1A)-C(9AA)-H(9AD) 109.8 

C(8A)-C(9AA)-H(9AC) 109.8 

C(8A)-C(9AA)-H(9AD) 109.8 

H(9AC)-C(9AA)-H(9AD) 108.2 

N(3A)-C(10A)-H(10A) 109.2 

N(3A)-C(10A)-H(10B) 109.2 

N(3A)-C(10A)-C(11A) 112.0(3) 

H(10A)-C(10A)-H(10B) 107.9 

C(11A)-C(10A)-H(10A) 109.2 

C(11A)-C(10A)-H(10B) 109.2 

C(10A)-C(11A)-H(11A) 116.5 

C(12A)-C(11A)-C(10A) 127.0(4) 

C(12A)-C(11A)-H(11A) 116.5 

C(11A)-C(12A)-H(12A) 120.0 

C(11A)-C(12A)-H(12B) 120.0 

H(12A)-C(12A)-H(12B) 120.0 

C(14A)-C(13A)-C(8A) 118.4(4) 

C(18A)-C(13A)-C(8A) 122.1(4) 

C(18A)-C(13A)-C(14A) 119.5(3) 

C(13A)-C(14A)-H(14A) 120.8 

C(13A)-C(14A)-C(15A) 118.4(4) 

C(15A)-C(14A)-H(14A) 120.8 

C(14A)-C(15A)-H(15A) 119.8 

C(16A)-C(15A)-C(14A) 120.4(4) 

C(16A)-C(15A)-H(15A) 119.8 

C(15A)-C(16A)-H(16A) 119.7 

C(15A)-C(16A)-C(17A) 120.5(4) 

C(17A)-C(16A)-H(16A) 119.7 

C(16A)-C(17A)-H(17A) 119.9 

C(18A)-C(17A)-C(16A) 120.2(4) 

C(18A)-C(17A)-H(17A) 119.9 
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Table A6.1.4 (cont’d) 

C(13A)-C(18A)-H(18A) 119.6 

C(17A)-C(18A)-C(13A) 120.9(4) 

C(17A)-C(18A)-H(18A) 119.6 

C(19)#1-C(19)-C(20)#1 98(4) 

C(19)#1-C(19)-C(20) 48(2) 

C(19)#1-C(19)-C(23)#2 91(2) 

C(19)#1-C(19)-C(23)#3 57.4(16) 

C(20)#1-C(19)-C(20) 54(4) 

C(20)#1-C(19)-C(23)#2 164(6) 

C(20)-C(19)-C(23)#3 104(3) 

C(20)#1-C(19)-C(23)#3 155(5) 

C(23)#2-C(19)-C(20) 139(4) 

C(23)#2-C(19)-C(23)#3 34.3(18) 

C(19)#1-C(20)-C(19) 34(4) 

C(19)#1-C(20)-C(20)#1 79(4) 

C(19)-C(20)-C(21) 94(3) 

C(19)#1-C(20)-C(21) 123(4) 

C(20)#1-C(20)-C(19) 47.3(19) 

C(20)#1-C(20)-C(21) 46.9(19) 

C(21)#1-C(20)-C(19) 124(4) 

C(21)#1-C(20)-C(19)#1 157(7) 

C(21)#1-C(20)-C(20)#1 79(3) 

C(21)#1-C(20)-C(21) 41(3) 

C(20)#1-C(21)-C(20) 54(4) 

C(20)#1-C(21)-C(22) 129(4) 

C(21)#1-C(21)-C(20)#1 92(4) 

C(21)#1-C(21)-C(20) 48(2) 

C(21)#1-C(21)-C(22) 44.9(19) 

C(21)#1-C(21)-C(22)#1 93(3) 

C(22)#1-C(21)-C(20)#1 174(6) 

C(22)#1-C(21)-C(20) 132(4) 

C(22)-C(21)-C(20) 93(2) 

C(22)#1-C(21)-C(22) 53(4) 

C(21)#1-C(22)-C(21) 42(4) 
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Table A6.1.4 (cont’d) 

C(21)#1-C(22)-C(22)#1 83(3) 

C(21)#1-C(22)-C(23)#1 142(5) 

C(21)#1-C(22)-C(23) 139(4) 

C(21)-C(22)-C(23) 97(2) 

C(22)#1-C(22)-C(21) 44.5(17) 

C(22)#1-C(22)-C(23)#1 73(2) 

C(22)#1-C(22)-C(23) 57.5(18) 

C(23)#1-C(22)-C(21) 117(3) 

C(23)#1-C(22)-C(23) 38.1(19) 

C(19)#5-C(23)-C(19)#4 31(3) 

C(19)#5-C(23)-C(22) 140(4) 

C(22)-C(23)-C(19)#4 115(2) 

C(22)#1-C(23)-C(19)#5 156(4) 

C(22)#1-C(23)-C(19)#4 131(3) 

C(22)#1-C(23)-C(22) 50(3) 

C(23)#1-C(23)-C(19)#5 88(2) 

C(23)#1-C(23)-C(19)#4 57.4(15) 

C(23)#1-C(23)-C(22) 61(2) 

C(23)#1-C(23)-C(22)#1 81.2(19) 

C(24)#6-C(24)-C(25)#6 118(3) 

C(24)#6-C(24)-C(25) 40(2) 

C(24)#6-C(24)-C(28)#5 94(2) 

C(24)#6-C(24)-C(28)#7 63.7(17) 

C(25)#6-C(24)-C(25) 80(5) 

C(25)#6-C(24)-C(28)#5 146(3) 

C(25)-C(24)-C(28)#7 103(3) 

C(25)#6-C(24)-C(28)#7 171(4) 

C(28)#5-C(24)-C(25) 134(4) 

C(28)#5-C(24)-C(28)#7 31(4) 

C(24)#6-C(25)-C(24) 21.4(19) 

C(24)-C(25)-C(25)#6 40(2) 

C(24)#6-C(25)-C(25)#6 60(2) 

C(24)#6-C(25)-C(26) 115(4) 

C(26)-C(25)-C(24) 95(4) 



Appendix 6 – X-Ray Crystallography Reports Relevant to Chapter 3  444 

Table A6.1.4 (cont’d) 

C(26)-C(25)-C(25)#6 55.3(15) 

C(25)-C(26)-C(25)#6 69(3) 

C(27)-C(26)-C(25) 116.5(19) 

C(27)#6-C(26)-C(25) 157(2) 

C(27)-C(26)-C(25)#6 157(2) 

C(27)#6-C(26)-C(25)#6 116.5(19) 

C(27)#6-C(26)-C(27) 68(3) 

C(26)-C(27)-C(27)#6 56.2(17) 

C(28)#6-C(27)-C(26) 116(5) 

C(28)-C(27)-C(26) 91(4) 

C(28)#6-C(27)-C(27)#6 62(3) 

C(28)-C(27)-C(27)#6 36(3) 

C(28)#6-C(27)-C(28) 35(5) 

C(24)#2-C(28)-C(24)#8 22.2(18) 

C(27)#6-C(28)-C(24)#2 149(4) 

C(27)-C(28)-C(24)#8 100(3) 

C(27)-C(28)-C(24)#2 121(4) 

C(27)#6-C(28)-C(24)#8 152(6) 

C(27)#6-C(28)-C(27) 82(6) 

C(28)#6-C(28)-C(24)#8 63.7(17) 

C(28)#6-C(28)-C(24)#2 86(2) 

C(28)#6-C(28)-C(27) 40(3) 

C(28)#6-C(28)-C(27)#6 105(7) 
  ___________________________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
#1 -x,y,-z+1    #2 x,y+1,z    #3 -x,y+1,-z+1    #4 -x,y-1,-z+1       
#5 x,y-1,z    #6 -x+2,y,-z+2    #7 -x+2,y-1,-z+2       
#8 -x+2,y+1,-z+2       
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Table A6.1.5  Anisotropic displacement parameters  (Å2x103) for thiazolidine (S)-315.  The 

anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11  + ... + 2hka*b*U12]. 
______________________________________________________________________________  
 U11 U22  U33 U23 U13 U12 
______________________________________________________________________________  

S(1) 238(4)  213(4) 119(3)  -6(3) 17(3)  23(3) 

S(2) 242(4)  282(4) 118(3)  15(3) 13(3)  50(3) 

O(1) 256(11)  298(13) 112(9)  4(10) 11(8)  11(10) 

O(2) 328(13)  232(13) 197(11)  -32(10) 9(10)  17(11) 

O(3) 336(15)  298(16) 559(18)  -20(14) -52(13)  -32(12) 

O(4) 236(13)  475(18) 579(18)  -18(16) -69(12)  67(14) 

N(1) 236(13)  233(14) 117(11)  37(11) 22(9)  60(12) 

N(2) 242(15)  320(20) 285(15)  -33(13) -11(11)  40(13) 

N(3) 339(16)  298(17) 139(12)  30(12) 2(11)  116(13) 

C(1) 232(15)  216(19) 140(13)  -14(12) 31(11)  28(12) 

C(2) 219(15)  213(18) 167(14)  -4(13) 9(11)  63(13) 

C(3) 260(17)  233(19) 213(15)  9(13) 21(12)  27(13) 

C(4) 212(15)  260(18) 214(15)  -36(14) 13(12)  33(14) 

C(5) 243(17)  290(20) 239(17)  4(14) -41(13)  88(14) 

C(6) 283(17)  234(19) 210(15)  33(14) 14(12)  84(14) 

C(7) 289(16)  198(16) 150(14)  2(14) 25(11)  21(14) 

C(8) 230(15)  171(15) 133(13)  3(11) 4(11)  -2(12) 

C(9) 206(15)  249(17) 130(13)  22(13) 14(11)  39(13) 

C(10) 480(20)  430(30) 142(15)  30(15) 1(14)  196(19) 

C(11) 307(17)  262(18) 198(15)  49(15) 29(13)  72(16) 

C(12) 500(20)  260(20) 390(20)  26(18) 74(18)  21(18) 

C(13) 229(15)  231(18) 113(13)  50(12) 28(11)  30(13) 

C(14) 271(17)  259(18) 170(14)  19(13) -21(12)  -16(14) 

C(15) 195(16)  380(20) 218(16)  4(15) -18(12)  29(14) 

C(16) 247(17)  330(20) 194(15)  60(14) 44(12)  81(14) 

C(17) 317(18)  165(16) 177(14)  3(13) 50(12)  8(13) 

C(18) 233(16)  236(19) 186(14)  32(12) 36(12)  -16(13) 

S(1A) 327(4)  267(5) 126(3)  -18(3) -5(3)  -33(4) 

S(2A) 324(16)  500(30) 143(9)  71(12) 55(9)  189(17) 

S(2AA) 313(19)  400(30) 162(12)  -68(14) 22(11)  50(20) 

O(1A) 313(13)  344(15) 152(11)  14(10) -14(9)  -53(11) 
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Table A6.1.5 (cont’d) 

O(2A) 425(14)  302(14) 193(11)  -37(11) -40(10)  -56(12) 

O(3A) 272(15)  510(20) 770(20)  -73(18) -53(14)  63(14) 

O(4A) 383(17)  385(19) 600(20)  13(16) -35(14)  -55(14) 

N(1A) 313(15)  304(16) 129(12)  11(12) 29(11)  -16(13) 

N(2A) 288(17)  370(20) 343(17)  -34(14) 13(13)  -2(14) 

N(3A) 427(18)  369(18) 152(13)  16(13) -6(12)  57(15) 

C(1A) 277(17)  226(18) 150(14)  -37(13) 39(12)  -15(14) 

C(2A) 272(17)  330(20) 198(15)  25(14) 51(12)  18(14) 

C(3A) 309(19)  280(20) 244(17)  29(14) 56(14)  0(14) 

C(4A) 242(17)  340(20) 281(18)  -55(16) 41(13)  6(14) 

C(5A) 303(19)  320(20) 300(19)  -35(17) -45(15)  49(16) 

C(6A) 366(19)  245(19) 239(16)  -45(16) -8(14)  13(16) 

C(7A) 248(16)  370(20) 113(13)  -1(15) -10(11)  -51(16) 

C(8A) 350(20)  620(30) 197(16)  42(18) 76(14)  120(20) 

C(9A) 360(50)  390(70) 200(30)  20(40) 80(30)  150(40) 

C(9AA) 260(60)  170(70) 110(40)  -40(40) 40(40)  60(40) 

C(10A) 510(20)  520(30) 105(14)  -12(17) -3(14)  130(20) 

C(11A) 770(30)  660(30) 204(19)  90(20) -10(20)  330(30) 

C(12A) 1110(40)  550(30) 330(20)  60(20) 70(30)  370(30) 

C(13A) 273(16)  291(18) 128(13)  27(14) 11(11)  69(15) 

C(14A) 420(20)  270(20) 139(14)  41(13) 6(13)  -3(15) 

C(15A) 370(20)  680(30) 245(18)  180(20) 48(16)  220(20) 

C(16A) 290(20)  890(40) 360(20)  340(30) -41(16)  -50(20) 

C(17A) 610(30)  580(30) 420(20)  310(20) -230(20)  -280(30) 

C(18A) 650(30)  260(20) 240(18)  41(16) -118(18)  -90(20) 

C(19) 1400(200)  2800(400) 2700(300)  0(200) -600(200)  -300(200) 

C(20) 1970(190)  2600(400) 2500(200)  -50(180) 200(200)  -100(200) 

C(21) 2200(200)  2200(300) 2200(200)  -100(160) 430(180)  70(190) 

C(22) 2300(200)  2200(300) 1810(190)  320(160) 500(160)  300(180) 

C(23) 1900(200)  2000(300) 1310(170)  170(140) 850(160)  450(190) 

C(24) 950(140)  8800(900) 600(160)  500(200) 610(130)  400(300) 

C(25) 1010(160)  8800(900) 1100(200)  300(200) -70(140)  200(200) 

C(26) 320(70)  8700(900) 1600(200)  0 -210(100)  0 

C(27) 1240(180)  8500(900) 1300(200)  100(200) 60(160)  -400(200) 
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Table A6.1.5 (cont’d) 

C(28) 1070(170)  8300(900) 860(190)  -100(300) -550(170)  -700(300) 

______________________________________________________________________________ 
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Table A6.1.6      Hydrogen coordinates (x103) and isotropic  displacement parameters (Å2x103)  

for thiazolidine (S)-315 
________________________________________________________________________________  
 x  y  z  Uiso 
________________________________________________________________________________  
  
H(2) 861 322 737 24 

H(3) 932 510 754 28 

H(5) 985 -20 844 31 

H(6) 914 -201 831 29 

H(8) 712 -51 854 21 

H(9A) 747 176 787 23 

H(9B) 774 318 839 23 

H(10C) 825 -268 981 42 

H(10D) 876 -166 984 42 

H(11) 885 -552 1000 31 

H(12C) 868 -570 880 46 

H(12D) 891 -765 923 46 

H(14) 636 57 857 28 

H(15) 579 314 874 32 

H(16) 599 657 914 31 

H(17) 677 744 938 26 

H(18) 734 490 919 26 

H(2A) 146 -119 759 32 

H(3A) 74 -288 742 33 

H(5A) 26 259 654 37 

H(6A) 100 422 668 34 

H(8A) 242 -207 591 46 

H(8AA) 243 -224 609 46 

H(9AA) 256 -55 701 38 

H(9AB) 209 -158 672 38 

H(9AC) 235 -83 700 21 

H(9AD) 273 105 692 21 

H(10A) 145 390 516 46 

H(10B) 192 528 522 46 

H(11A) 128 768 497 66 

H(12A) 130 784 617 79 
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Table A6.1.6 (cont’d) 

H(12B) 106 963 570 79 

H(14A) 309 -405 585 33 

H(15A) 390 -424 586 52 

H(16A) 434 -124 616 62 

H(17A) 400 204 641 66 

H(18A) 320 230 640 47 
________________________________________________________________________________ 
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A6.2   X-RAY CRYSTAL STRUCTURE ANALYSIS OF THIAZOLIDINE 329 
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Figure A6.2.1      X-ray crystal structure of thiazolidine 329  
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Table A6.2.1 Experimental details for X-ray structure determination of thiazolidine 329 

Low-temperature diffraction data (and scans) were collected on a Bruker Kappa 

diffractometer coupled to a Apex II CCD detector with graphite monochromated Mo K 

radiation (=0.71073 Å) for the structure of thiazolidine 329.  The structure was solved by 

direct methods using SHELXS and refined against F2 on all data by full-matrix least 

squares with SHELXL-2013 refinement using established techniques.  All non-hydrogen 

atoms were refined anisotropically.  All hydrogen atoms were included into the model at 

geometrically calculated positions and refined using a riding model.  The isotropic 

displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the 

atoms they are linked to (1.5 times for methyl groups).  All disordered atoms were 

refined with the help of similarity restraints on the 1,2- and 1,3- distances and 

displacement parameters as well as rigid bond restraints for anisotropic displacement 

parameters.   

Thiazolidine 329 crystallizes in the triclinic space group P-1 with one molecule in the 

asymmetric unit along with 0.389(2) molecules of benzene and 0.111(2) molecules of 

ethyl acetate.  The partially occupied benzene and ethyl acetate molecules are located at 

mutually exclusive positions near a crystallographic inversion center and are disordered 

accordingly.  This leads to non-integer values for the atoms in the empirical formula.  

The carbon atoms in the benzene were restrained to be flat.  The 1,2- and 1,3- distances 

for the ethyl acetate were restrained to be similar to the distances in the ester moiety of 

the main molecule.   
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Table A6.2.2 Crystal data and structure refinement for thiazolidine 329 

Caltech Identification code  rac15 

CCDC Deposition Number 956878 

Empirical formula  C23.78 H25.22 N2 O4.22 S2 

Formula weight  470.68 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P -1 

Unit cell dimensions a = 8.0719(4) Å α= 108.416(4)°. 

 b = 10.9911(6) Å β= 102.525(3)°. 

 c = 14.6381(8) Å γ = 100.436(2)°. 

Volume 1158.33(11) Å3 

Z 2 

Density (calculated) 1.349 Mg/m3 

Absorption coefficient 0.264 mm-1 

F(000) 495 

Crystal size 0.450 x 0.400 x 0.050 mm3 

Theta range for data collection 2.028 to 30.611°. 

Index ranges –11 ≤ h ≤ 11, –15 ≤ k ≤ 15, –20 ≤ l ≤ 20 

Reflections collected 73111 

Independent reflections 7117 [R(int) = 0.0401] 

Completeness to theta = 25.242° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7461 and 0.6920 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7117 / 241 / 375 

Goodness-of-fit on F2 1.045 

Final R indices [I>2sigma(I)] R1 = 0.0335, wR2 = 0.0852 

R indices (all data) R1 = 0.0411, wR2 = 0.0910 

Extinction coefficient n/a 

Largest diff. peak and hole 0.519 and -0.298 e·Å-3 
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Table A6.2.3      Atomic coordinates (x 104) and equivalent  isotropic displacement parameters (Å2x 

103) for thiazolidine 329.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
O(1) 6720(1) 912(1) 6958(1) 19(1) 

O(2) 7685(1) -166(1) 5483(1) 18(1) 

S(1) 7769(1) 1012(1) 6298(1) 14(1) 

C(1) 9977(1) 1738(1) 7028(1) 15(1) 

C(2) 10368(2) 2473(1) 8051(1) 22(1) 

C(3) 12116(2) 2931(1) 8639(1) 25(1) 

C(4) 13466(2) 2658(1) 8223(1) 21(1) 

C(5) 13041(1) 1962(1) 7189(1) 20(1) 

C(6) 11303(1) 1495(1) 6586(1) 18(1) 

C(7) 15338(2) 3066(2) 8883(1) 30(1) 

N(1) 7101(1) 1999(1) 5728(1) 14(1) 

C(8) 6907(1) 3260(1) 6257(1) 16(1) 

N(2) 7432(1) 3818(1) 7202(1) 20(1) 

C(11) 6995(2) 5071(1) 7627(1) 27(1) 

C(12) 8307(2) 6001(1) 8604(1) 30(1) 

C(13) 9751(2) 5797(2) 9062(1) 37(1) 

S(2) 5817(1) 3868(1) 5380(1) 19(1) 

C(9) 5708(1) 2434(1) 4293(1) 15(1) 

C(14) 5921(1) 2800(1) 3405(1) 17(1) 

C(15) 4955(2) 1907(1) 2438(1) 25(1) 

C(16) 5200(2) 2182(2) 1604(1) 33(1) 

C(17) 6411(2) 3338(2) 1730(1) 31(1) 

C(18) 7365(2) 4231(1) 2688(1) 24(1) 

C(19) 7112(2) 3970(1) 3524(1) 18(1) 

C(10) 7117(1) 1788(1) 4692(1) 14(1) 

C(20) 8939(1) 2443(1) 4674(1) 17(1) 

O(3) 9954(1) 3388(1) 5361(1) 27(1) 

O(4) 9225(1) 1840(1) 3801(1) 25(1) 

C(21) 10843(2) 2499(2) 3681(1) 39(1) 

C(1S) 11128(19) -483(17) 9748(10) 51(2) 
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Table A6.2.3 (cont’d) 

C(2S) 10130(17) 77(11) 9173(10) 49(2) 

C(3S) 8871(17) 592(13) 9507(10) 53(3) 

C(4S) 8570(20) 585(17) 10386(11) 58(2) 

C(5S) 9491(17) -5(13) 10916(10) 53(2) 

C(6S) 10810(18) -484(13) 10638(9) 48(2) 

C(1T) 11250(60) -420(70) 9690(20) 54(4) 

C(2T) 10990(40) -780(20) 8564(14) 69(5) 

O(1T) 12404(19) -714(14) 10186(10) 63(3) 

O(2T) 9820(20) -163(16) 9947(14) 51(3) 

C(3T) 10080(30) 210(30) 11027(16) 56(4) 

C(4T) 8270(30) 370(20) 11135(15) 62(5) 
________________________________________________________________________________ 
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Table A6.2.4      Bond lengths [Å] and angles [°] for thiazolidine 329 

_____________________________________________________  

O(1)-S(1)  1.4310(8) 

O(2)-S(1)  1.4361(8) 

S(1)-N(1)  1.6597(9) 

S(1)-C(1)  1.7533(11) 

C(1)-C(6)  1.3894(14) 

C(1)-C(2)  1.3904(15) 

C(2)-C(3)  1.3888(17) 

C(2)-H(2)  0.9500 

C(3)-C(4)  1.3931(16) 

C(3)-H(3)  0.9500 

C(4)-C(5)  1.3938(16) 

C(4)-C(7)  1.5053(16) 

C(5)-C(6)  1.3880(15) 

C(5)-H(5)  0.9500 

C(6)-H(6)  0.9500 

C(7)-H(7A)  0.9800 

C(7)-H(7B)  0.9800 

C(7)-H(7C)  0.9800 

N(1)-C(8)  1.4129(13) 

N(1)-C(10)  1.4640(13) 

C(8)-N(2)  1.2593(14) 

C(8)-S(2)  1.7704(11) 

N(2)-C(11)  1.4617(15) 

C(11)-C(12)  1.4965(19) 

C(11)-H(11A)  0.9900 

C(11)-H(11B)  0.9900 

C(12)-C(13)  1.307(2) 

C(12)-H(12)  0.9500 

C(13)-H(13A)  0.9500 

C(13)-H(13B)  0.9500 

S(2)-C(9)  1.8239(11) 

C(9)-C(14)  1.5114(14) 

C(9)-C(10)  1.5510(14) 
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Table A6.2.4 (cont’d) 

C(9)-H(9)  1.0000 

C(14)-C(15)  1.3929(15) 

C(14)-C(19)  1.3949(15) 

C(15)-C(16)  1.3908(18) 

C(15)-H(15)  0.9500 

C(16)-C(17)  1.389(2) 

C(16)-H(16)  0.9500 

C(17)-C(18)  1.3827(18) 

C(17)-H(17)  0.9500 

C(18)-C(19)  1.3898(15) 

C(18)-H(18)  0.9500 

C(19)-H(19)  0.9500 

C(10)-C(20)  1.5249(14) 

C(10)-H(10)  1.0000 

C(20)-O(3)  1.1980(14) 

C(20)-O(4)  1.3313(14) 

O(4)-C(21)  1.4494(16) 

C(21)-H(21A)  0.9800 

C(21)-H(21B)  0.9800 

C(21)-H(21C)  0.9800 

C(1S)-C(6S)  1.381(9) 

C(1S)-C(2S)  1.396(10) 

C(1S)-H(1S)  0.9500 

C(2S)-C(3S)  1.358(9) 

C(2S)-H(2S)  0.9500 

C(3S)-C(4S)  1.363(10) 

C(3S)-H(3S)  0.9500 

C(4S)-C(5S)  1.348(11) 

C(4S)-H(4S)  0.9500 

C(5S)-C(6S)  1.354(9) 

C(5S)-H(5S)  0.9500 

C(6S)-H(6S)  0.9500 

C(1T)-O(1T)  1.202(18) 

C(1T)-O(2T)  1.340(18) 
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Table A6.2.4 (cont’d) 

C(1T)-C(2T)  1.529(17) 

C(2T)-H(2T1)  0.9800 

C(2T)-H(2T2)  0.9800 

C(2T)-H(2T3)  0.9800 

O(2T)-C(3T)  1.458(18) 

C(3T)-C(4T)  1.539(18) 

C(3T)-H(3T1)  0.9900 

C(3T)-H(3T2)  0.9900 

C(4T)-H(4T1)  0.9800 

C(4T)-H(4T2)  0.9800 

C(4T)-H(4T3)  0.9800 

 

O(1)-S(1)-O(2) 119.28(5) 

O(1)-S(1)-N(1) 107.46(5) 

O(2)-S(1)-N(1) 103.82(5) 

O(1)-S(1)-C(1) 108.38(5) 

O(2)-S(1)-C(1) 108.19(5) 

N(1)-S(1)-C(1) 109.37(5) 

C(6)-C(1)-C(2) 121.16(10) 

C(6)-C(1)-S(1) 119.28(8) 

C(2)-C(1)-S(1) 119.42(8) 

C(3)-C(2)-C(1) 118.85(10) 

C(3)-C(2)-H(2) 120.6 

C(1)-C(2)-H(2) 120.6 

C(2)-C(3)-C(4) 121.14(11) 

C(2)-C(3)-H(3) 119.4 

C(4)-C(3)-H(3) 119.4 

C(3)-C(4)-C(5) 118.72(10) 

C(3)-C(4)-C(7) 120.57(11) 

C(5)-C(4)-C(7) 120.68(11) 

C(6)-C(5)-C(4) 121.06(10) 

C(6)-C(5)-H(5) 119.5 

C(4)-C(5)-H(5) 119.5 

C(5)-C(6)-C(1) 118.98(10) 
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Table A6.2.4 (cont’d) 

C(5)-C(6)-H(6) 120.5 

C(1)-C(6)-H(6) 120.5 

C(4)-C(7)-H(7A) 109.5 

C(4)-C(7)-H(7B) 109.5 

H(7A)-C(7)-H(7B) 109.5 

C(4)-C(7)-H(7C) 109.5 

H(7A)-C(7)-H(7C) 109.5 

H(7B)-C(7)-H(7C) 109.5 

C(8)-N(1)-C(10) 114.00(8) 

C(8)-N(1)-S(1) 122.79(7) 

C(10)-N(1)-S(1) 121.40(7) 

N(2)-C(8)-N(1) 123.68(10) 

N(2)-C(8)-S(2) 127.37(8) 

N(1)-C(8)-S(2) 108.95(7) 

C(8)-N(2)-C(11) 116.34(10) 

N(2)-C(11)-C(12) 113.38(11) 

N(2)-C(11)-H(11A) 108.9 

C(12)-C(11)-H(11A) 108.9 

N(2)-C(11)-H(11B) 108.9 

C(12)-C(11)-H(11B) 108.9 

H(11A)-C(11)-H(11B) 107.7 

C(13)-C(12)-C(11) 126.39(12) 

C(13)-C(12)-H(12) 116.8 

C(11)-C(12)-H(12) 116.8 

C(12)-C(13)-H(13A) 120.0 

C(12)-C(13)-H(13B) 120.0 

H(13A)-C(13)-H(13B) 120.0 

C(8)-S(2)-C(9) 93.46(5) 

C(14)-C(9)-C(10) 114.60(9) 

C(14)-C(9)-S(2) 112.74(7) 

C(10)-C(9)-S(2) 105.20(7) 

C(14)-C(9)-H(9) 108.0 

C(10)-C(9)-H(9) 108.0 

S(2)-C(9)-H(9) 108.0 
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Table A6.2.4 (cont’d) 

C(15)-C(14)-C(19) 119.35(10) 

C(15)-C(14)-C(9) 118.64(10) 

C(19)-C(14)-C(9) 121.95(9) 

C(16)-C(15)-C(14) 119.89(11) 

C(16)-C(15)-H(15) 120.1 

C(14)-C(15)-H(15) 120.1 

C(17)-C(16)-C(15) 120.38(12) 

C(17)-C(16)-H(16) 119.8 

C(15)-C(16)-H(16) 119.8 

C(18)-C(17)-C(16) 119.95(12) 

C(18)-C(17)-H(17) 120.0 

C(16)-C(17)-H(17) 120.0 

C(17)-C(18)-C(19) 119.94(11) 

C(17)-C(18)-H(18) 120.0 

C(19)-C(18)-H(18) 120.0 

C(18)-C(19)-C(14) 120.48(10) 

C(18)-C(19)-H(19) 119.8 

C(14)-C(19)-H(19) 119.8 

N(1)-C(10)-C(20) 110.41(8) 

N(1)-C(10)-C(9) 104.82(8) 

C(20)-C(10)-C(9) 111.54(8) 

N(1)-C(10)-H(10) 110.0 

C(20)-C(10)-H(10) 110.0 

C(9)-C(10)-H(10) 110.0 

O(3)-C(20)-O(4) 125.32(10) 

O(3)-C(20)-C(10) 123.43(10) 

O(4)-C(20)-C(10) 111.24(9) 

C(20)-O(4)-C(21) 114.48(11) 

O(4)-C(21)-H(21A) 109.5 

O(4)-C(21)-H(21B) 109.5 

H(21A)-C(21)-H(21B) 109.5 

O(4)-C(21)-H(21C) 109.5 

H(21A)-C(21)-H(21C) 109.5 

H(21B)-C(21)-H(21C) 109.5 
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Table A6.2.4 (cont’d) 

C(6S)-C(1S)-C(2S) 119.1(7) 

C(6S)-C(1S)-H(1S) 120.5 

C(2S)-C(1S)-H(1S) 120.5 

C(3S)-C(2S)-C(1S) 118.6(7) 

C(3S)-C(2S)-H(2S) 120.7 

C(1S)-C(2S)-H(2S) 120.7 

C(2S)-C(3S)-C(4S) 121.8(8) 

C(2S)-C(3S)-H(3S) 119.1 

C(4S)-C(3S)-H(3S) 119.1 

C(5S)-C(4S)-C(3S) 119.2(8) 

C(5S)-C(4S)-H(4S) 120.4 

C(3S)-C(4S)-H(4S) 120.4 

C(4S)-C(5S)-C(6S) 121.2(8) 

C(4S)-C(5S)-H(5S) 119.4 

C(6S)-C(5S)-H(5S) 119.4 

C(5S)-C(6S)-C(1S) 120.0(8) 

C(5S)-C(6S)-H(6S) 120.0 

C(1S)-C(6S)-H(6S) 120.0 

O(1T)-C(1T)-O(2T) 125(2) 

O(1T)-C(1T)-C(2T) 120(2) 

O(2T)-C(1T)-C(2T) 111.4(18) 

C(1T)-C(2T)-H(2T1) 109.5 

C(1T)-C(2T)-H(2T2) 109.5 

H(2T1)-C(2T)-H(2T2) 109.5 

C(1T)-C(2T)-H(2T3) 109.5 

H(2T1)-C(2T)-H(2T3) 109.5 

H(2T2)-C(2T)-H(2T3) 109.5 

C(1T)-O(2T)-C(3T) 111.6(19) 

O(2T)-C(3T)-C(4T) 102.8(17) 

O(2T)-C(3T)-H(3T1) 111.2 

C(4T)-C(3T)-H(3T1) 111.2 

O(2T)-C(3T)-H(3T2) 111.2 

C(4T)-C(3T)-H(3T2) 111.2 

H(3T1)-C(3T)-H(3T2) 109.1 
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Table A6.2.4 (cont’d) 

C(3T)-C(4T)-H(4T1) 109.5 

C(3T)-C(4T)-H(4T2) 109.5 

H(4T1)-C(4T)-H(4T2) 109.5 

C(3T)-C(4T)-H(4T3) 109.5 

H(4T1)-C(4T)-H(4T3) 109.5 

H(4T2)-C(4T)-H(4T3) 109.5 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A6.2.5    Anisotropic displacement parameters  (Å2x103) for thiazolidine 329.  The anisotropic 

displacement factor exponent takes the form: -2π2[ h2a*2U11  + ... + 2hka*b*U12]. 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

O(1) 17(1)  20(1) 26(1)  14(1) 11(1)  6(1) 

O(2) 19(1)  13(1) 23(1)  5(1) 6(1)  5(1) 

S(1) 13(1)  13(1) 18(1)  8(1) 6(1)  4(1) 

C(1) 13(1)  17(1) 16(1)  7(1) 5(1)  5(1) 

C(2) 19(1)  32(1) 18(1)  8(1) 9(1)  9(1) 

C(3) 21(1)  38(1) 15(1)  6(1) 6(1)  7(1) 

C(4) 16(1)  27(1) 18(1)  9(1) 4(1)  4(1) 

C(5) 15(1)  25(1) 20(1)  6(1) 7(1)  6(1) 

C(6) 16(1)  19(1) 16(1)  4(1) 6(1)  6(1) 

C(7) 17(1)  46(1) 22(1)  10(1) 2(1)  4(1) 

N(1) 16(1)  12(1) 15(1)  6(1) 5(1)  5(1) 

C(8) 18(1)  14(1) 19(1)  9(1) 8(1)  6(1) 

N(2) 27(1)  17(1) 18(1)  7(1) 9(1)  9(1) 

C(11) 44(1)  21(1) 21(1)  6(1) 12(1)  17(1) 

C(12) 44(1)  21(1) 24(1)  3(1) 17(1)  8(1) 

C(13) 32(1)  32(1) 33(1)  -3(1) 11(1)  2(1) 

S(2) 27(1)  18(1) 19(1)  10(1) 9(1)  12(1) 

C(9) 14(1)  15(1) 17(1)  7(1) 4(1)  2(1) 

C(14) 16(1)  18(1) 16(1)  7(1) 4(1)  4(1) 

C(15) 25(1)  23(1) 19(1)  5(1) 3(1)  -2(1) 

C(16) 38(1)  35(1) 16(1)  4(1) 4(1)  -2(1) 

C(17) 36(1)  37(1) 19(1)  12(1) 10(1)  5(1) 

C(18) 26(1)  25(1) 22(1)  12(1) 8(1)  3(1) 

C(19) 20(1)  17(1) 17(1)  7(1) 5(1)  2(1) 

C(10) 13(1)  13(1) 15(1)  4(1) 4(1)  2(1) 

C(20) 14(1)  19(1) 21(1)  10(1) 6(1)  4(1) 

O(3) 20(1)  28(1) 24(1)  9(1) 2(1)  -7(1) 

O(4) 22(1)  28(1) 29(1)  9(1) 16(1)  8(1) 

C(21) 27(1)  51(1) 51(1)  23(1) 27(1)  11(1) 

C(1S) 55(4)  24(4) 77(4)  14(3) 33(3)  12(3) 

C(2S) 84(6)  18(3) 38(3)  9(3) 18(3)  0(3) 
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Table A6.2.5 (cont’d) 

C(3S) 54(5)  22(3) 53(4)  0(3) -16(3)  5(3) 

C(4S) 52(5)  21(3) 87(5)  -2(3) 30(3)  6(3) 

C(5S) 64(5)  35(4) 38(3)  -4(2) 16(3)  -13(3) 

C(6S) 45(4)  38(5) 50(4)  25(4) -5(3)  -5(3) 

C(1T) 64(7)  30(9) 58(6)  10(8) 14(6)  3(7) 

C(2T) 104(15)  48(10) 60(7)  23(9) 25(8)  30(10) 

O(1T) 62(7)  50(7) 56(7)  6(6) 3(6)  9(6) 

O(2T) 66(6)  25(6) 52(4)  13(4) 7(4)  8(5) 

C(3T) 63(8)  33(9) 53(5)  5(7) 12(6)  -6(8) 

C(4T) 58(9)  49(10) 41(8)  -12(8) -6(6)  0(8) 

______________________________________________________________________________  
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Table A6.2.6      Hydrogen coordinates (x104) and isotropic  displacement parameters (Å2x103)  

for thiazolidine 329 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(2) 9455 2659 8342 27 

H(3) 12396 3439 9338 30 

H(5) 13956 1805 6891 24 

H(6) 11024 1016 5883 21 

H(7A) 15481 2462 9246 46 

H(7B) 15613 3979 9367 46 

H(7C) 16140 3022 8464 46 

H(11A) 5821 4873 7734 33 

H(11B) 6918 5519 7136 33 

H(12) 8068 6820 8923 36 

H(13A) 10049 4993 8773 44 

H(13B) 10502 6453 9683 44 

H(9) 4525 1788 4083 18 

H(15) 4130 1113 2348 30 

H(16) 4535 1575 946 40 

H(17) 6585 3514 1157 37 

H(18) 8191 5023 2775 29 

H(19) 7755 4592 4182 22 

H(10) 6777 813 4282 17 

H(21A) 11839 2619 4251 59 

H(21B) 10772 3370 3658 59 

H(21C) 11013 1953 3053 59 

H(1S) 12012 -858 9531 61 

H(2S) 10329 97 8561 59 

H(3S) 8179 967 9116 63 

H(4S) 7723 992 10623 69 

H(5S) 9209 -86 11495 64 

H(6S) 11517 -821 11054 57 

H(2T1) 12065 -360 8455 103 

H(2T2) 10010 -464 8284 103 
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Table A6.2.6 (cont’d) 

H(2T3) 10709 -1751 8229 103 

H(3T1) 11018 1056 11413 67 

H(3T2) 10402 -495 11258 67 

H(4T1) 7342 -330 10569 93 

H(4T2) 8170 1244 11135 93 

H(4T3) 8157 295 11769 93 

________________________________________________________________________________  
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A6.3    X-RAY CRYSTAL STRUCTURE ANALYSIS OF IMIDAZOLIDINIUM 
374•(ZnBr3•MeOH) 
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Table A6.3.6 Hydrogen Atomic Coordinates 

Table A6.3.7 Hydrogen Bond Distances and Angles 

 

Figure A6.3.1     X-ray crystal structure of imidazolidinium 374•(ZnBr3•MeOH)  
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Table A6.3.1 Experimental details for X-ray structure determination of imidazolidinium 
374•(ZnBr3•MeOH) 
 

Low-temperature diffraction data (and scans) were collected on a Bruker Kappa 

diffractometer coupled to a Apex II CCD detector with graphite monochromated Mo K 

radiation ( = 0.71073 Å) for the structure of imidazolidinium 374•(ZnBr3•MeOH).  The 

structure was solved by direct methods using SHELXS and refined against F2 on all data 

by full-matrix least squares with SHELXL-2013 using established refinement techniques.  

All non-hydrogen atoms were refined anisotropically.  Unless otherwise noted, all 

hydrogen atoms were included into the model at geometrically calculated positions and 

refined using a riding model.  The isotropic displacement parameters of all hydrogen 

atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for 

methyl and hydroxide groups).  All disordered atoms were refined with the help of 

similarity restraints on the 1,2- and 1,3- distances and displacement parameters as well as 

rigid bond restraints for anisotropic displacement parameters.   

Imidazolidinium 374•(ZnBr3•MeOH) crystallizes in the triclinic space group P-1 

with one molecule in the asymmetric unit along with one molecule of methanol.  The 

coordinates for the hydrogen atoms on N3 and O3were taken from the difference Fourier 

synthesis and refined semi-freely with the help of a distance restraint, 0.91(2) and 0.83(2) 

Å respectively.  An additional restraint was required for the hydrogen atom bound to O3 

and the atoms Zn1, O3, C31 and H3O were restrained to be flat.  All three bromine atoms 

were disordered over two positions.  The solvent methanol had vey elongated ellipsoids 

and was disordered over two positions.  The methanol is not very stable and the C-O 

distance was restrained to 1.43(2) Å.  Additionally, the anisotropic displacement 

parameters for the two atoms in the second component of the disorder were constrained 
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to be equivalent.  Even with the disorder the methanol has elongated ellipsoids, however, 

refinement of additional components was not successful.   
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Table A6.3.2 Crystal data and structure refinement for imidazolidinium 374•(ZnBr3•MeOH) 

Caltech Identification code  rac14 

CCDC Deposition Number 956877 

Empirical formula  C27 H44 Br3 N3 O4 S Zn 

Formula weight  811.81 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P -1 

Unit cell dimensions a = 10.5054(14) Å α= 103.177(3)°. 

 b = 12.5274(17) Å β= 109.093(2)°. 

 c = 14.785(2) Å γ = 102.841(3)°. 

Volume 1694.7(4) Å3 

Z 2 

Density (calculated) 1.591 Mg/m3 

Absorption coefficient 4.357 mm-1 

F(000) 820 

Crystal size 0.580 x 0.380 x 0.270 mm3 

Theta range for data collection 1.764 to 30.560°. 

Index ranges –15 ≤ h ≤ 15, –17 ≤ k ≤ 17, –21 ≤ l ≤ 21 

Reflections collected 100294 

Independent reflections 10353 [R(int) = 0.0346] 

Completeness to theta = 25.242° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.1292 and 0.0684 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 10353 / 82 / 412 

Goodness-of-fit on F2 1.096 

Final R indices [I>2sigma(I)] R1 = 0.0332, wR2 = 0.0793 

R indices (all data) R1 = 0.0418, wR2 = 0.0842 

Extinction coefficient n/a 

Largest diff. peak and hole 0.878 and -0.917 e·Å-3 
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Table A6.3.3       Atomic coordinates (x 104) and equivalent  isotropic displacement parameters 

(Å2x 103) for imidazolidinium 374•(ZnBr3•MeOH).  U(eq) is defined as one third of the trace of the 

orthogonalized Uij tensor.  

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
O(1) 4177(2) 6547(2) 5223(1) 24(1) 

O(2) 4429(2) 8386(1) 4821(1) 24(1) 

S(1) 4213(1) 7168(1) 4530(1) 18(1) 

C(1) 2695(2) 6459(2) 3406(2) 18(1) 

C(2) 2284(2) 7039(2) 2722(2) 21(1) 

C(3) 1068(2) 6464(2) 1841(2) 24(1) 

C(4) 270(2) 5323(2) 1631(2) 24(1) 

C(7) -1077(2) 4724(3) 691(2) 33(1) 

C(5) 717(2) 4751(2) 2324(2) 24(1) 

C(6) 1922(2) 5310(2) 3212(2) 22(1) 

N(1) 5573(2) 6976(2) 4235(1) 18(1) 

C(8) 6315(2) 7626(2) 3813(2) 18(1) 

N(3) 6281(2) 8679(2) 3862(2) 22(1) 

C(11) 6662(2) 9434(2) 3284(2) 22(1) 

C(12) 5359(3) 9741(2) 2755(2) 31(1) 

C(13) 7911(3) 10511(2) 4005(2) 31(1) 

N(2) 7008(2) 7029(2) 3402(1) 18(1) 

C(14) 8269(2) 7560(2) 3202(2) 20(1) 

C(15) 7914(2) 7273(2) 2070(2) 25(1) 

C(16) 9538(2) 7195(2) 3714(2) 24(1) 

C(9) 6792(2) 5874(2) 3547(2) 17(1) 

C(21) 6427(2) 4851(2) 2623(2) 18(1) 

C(22) 7171(2) 4051(2) 2748(2) 20(1) 

C(27) 8267(2) 4165(2) 3761(2) 25(1) 

C(23) 6873(2) 3098(2) 1914(2) 25(1) 

C(24) 5860(2) 2920(2) 967(2) 28(1) 

C(28) 5587(3) 1911(3) 62(2) 44(1) 

C(25) 5097(2) 3697(2) 865(2) 26(1) 
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Table A6.3.3 (cont’d) 

C(26) 5343(2) 4650(2) 1680(2) 21(1) 

C(29) 4402(2) 5400(2) 1501(2) 28(1) 

C(10) 5663(2) 5793(2) 4001(2) 19(1) 

Zn(1) 727(1) 1039(1) 2621(1) 25(1) 

O(3) 1824(2) 1549(2) 1805(2) 42(1) 

C(31) 3303(4) 2206(4) 2288(4) 69(1) 

Br(1) -1687(2) 97(1) 1446(2) 31(1) 

Br(2) 1081(1) 2756(1) 3849(1) 16(1) 

Br(3) 1841(2) -171(2) 3374(2) 30(1) 

Br(1A) -1582(4) 220(5) 1241(6) 39(1) 

Br(2A) 1081(4) 2743(3) 3828(3) 83(3) 

Br(3A) 1793(7) -231(6) 3212(7) 47(1) 

O(1S) 10478(14) 1719(7) 9938(6) 64(2) 

C(1S) 8692(15) 1307(5) 9413(8) 65(3) 

O(1T) 11160(20) 2063(15) 10107(8) 46(3) 

C(1T) 9360(20) 1417(16) 9601(11) 46(3) 
________________________________________________________________________________ 
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Table A6.3.4      Bond lengths [Å] and angles [°] for imidazolidinium 374•(ZnBr3•MeOH) 

_____________________________________________________  

O(1)-S(1)  1.4260(16) 

O(2)-S(1)  1.4310(17) 

S(1)-N(1)  1.6740(17) 

S(1)-C(1)  1.748(2) 

C(1)-C(2)  1.387(3) 

C(1)-C(6)  1.398(3) 

C(2)-C(3)  1.387(3) 

C(2)-H(2)  0.9500 

C(3)-C(4)  1.392(3) 

C(3)-H(3)  0.9500 

C(4)-C(5)  1.397(3) 

C(4)-C(7)  1.504(3) 

C(7)-H(7A)  0.9800 

C(7)-H(7B)  0.9800 

C(7)-H(7C)  0.9800 

C(5)-C(6)  1.384(3) 

C(5)-H(5)  0.9500 

C(6)-H(6)  0.9500 

N(1)-C(8)  1.389(2) 

N(1)-C(10)  1.475(3) 

C(8)-N(3)  1.314(3) 

C(8)-N(2)  1.334(2) 

N(3)-C(11)  1.485(3) 

N(3)-H(3N)  0.868(17) 

C(11)-C(12)  1.518(3) 

C(11)-C(13)  1.524(3) 

C(11)-H(11)  1.0000 

C(12)-H(12A)  0.9800 

C(12)-H(12B)  0.9800 

C(12)-H(12C)  0.9800 

C(13)-H(13A)  0.9800 

C(13)-H(13B)  0.9800 

C(13)-H(13C)  0.9800 
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Table A6.3.4 (cont’d) 

N(2)-C(9)  1.490(3) 

N(2)-C(14)  1.497(2) 

C(14)-C(15)  1.525(3) 

C(14)-C(16)  1.526(3) 

C(14)-H(14)  1.0000 

C(15)-H(15A)  0.9800 

C(15)-H(15B)  0.9800 

C(15)-H(15C)  0.9800 

C(16)-H(16A)  0.9800 

C(16)-H(16B)  0.9800 

C(16)-H(16C)  0.9800 

C(9)-C(21)  1.515(3) 

C(9)-C(10)  1.538(3) 

C(9)-H(9)  1.0000 

C(21)-C(26)  1.407(3) 

C(21)-C(22)  1.409(3) 

C(22)-C(23)  1.397(3) 

C(22)-C(27)  1.514(3) 

C(27)-H(27A)  0.9800 

C(27)-H(27B)  0.9800 

C(27)-H(27C)  0.9800 

C(23)-C(24)  1.386(4) 

C(23)-H(23)  0.9500 

C(24)-C(25)  1.396(3) 

C(24)-C(28)  1.512(3) 

C(28)-H(28A)  0.9800 

C(28)-H(28B)  0.9800 

C(28)-H(28C)  0.9800 

C(25)-C(26)  1.395(3) 

C(25)-H(25)  0.9500 

C(26)-C(29)  1.512(3) 

C(29)-H(29A)  0.9800 

C(29)-H(29B)  0.9800 

C(29)-H(29C)  0.9800 



Appendix 6 – X-Ray Crystallography Reports Relevant to Chapter 3  474 

Table A6.3.4 (cont’d) 

C(10)-H(10A)  0.9900 

C(10)-H(10B)  0.9900 

Zn(1)-O(3)  2.030(2) 

Zn(1)-Br(3A)  2.310(6) 

Zn(1)-Br(2A)  2.314(4) 

Zn(1)-Br(2)  2.3423(6) 

Zn(1)-Br(3)  2.369(2) 

Zn(1)-Br(1)  2.3860(13) 

Zn(1)-Br(1A)  2.408(4) 

O(3)-C(31)  1.428(4) 

O(3)-H(3O)  0.816(18) 

C(31)-H(31A)  0.9800 

C(31)-H(31B)  0.9800 

C(31)-H(31C)  0.9800 

O(1S)-C(1S)  1.680(8) 

O(1S)-H(1S)  0.8400 

C(1S)-H(1S1)  0.9800 

C(1S)-H(1S2)  0.9800 

C(1S)-H(1S3)  0.9800 

O(1T)-C(1T)  1.704(14) 

O(1T)-H(1T)  0.8400 

C(1T)-H(1T1)  0.9800 

C(1T)-H(1T2)  0.9800 

C(1T)-H(1T3)  0.9800 

 

O(1)-S(1)-O(2) 121.07(10) 

O(1)-S(1)-N(1) 103.94(9) 

O(2)-S(1)-N(1) 106.90(9) 

O(1)-S(1)-C(1) 108.90(10) 

O(2)-S(1)-C(1) 109.46(10) 

N(1)-S(1)-C(1) 105.36(9) 

C(2)-C(1)-C(6) 121.2(2) 

C(2)-C(1)-S(1) 119.77(16) 

C(6)-C(1)-S(1) 119.03(16) 
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Table A6.3.4 (cont’d) 

C(3)-C(2)-C(1) 118.8(2) 

C(3)-C(2)-H(2) 120.6 

C(1)-C(2)-H(2) 120.6 

C(2)-C(3)-C(4) 121.3(2) 

C(2)-C(3)-H(3) 119.3 

C(4)-C(3)-H(3) 119.3 

C(3)-C(4)-C(5) 118.9(2) 

C(3)-C(4)-C(7) 120.8(2) 

C(5)-C(4)-C(7) 120.3(2) 

C(4)-C(7)-H(7A) 109.5 

C(4)-C(7)-H(7B) 109.5 

H(7A)-C(7)-H(7B) 109.5 

C(4)-C(7)-H(7C) 109.5 

H(7A)-C(7)-H(7C) 109.5 

H(7B)-C(7)-H(7C) 109.5 

C(6)-C(5)-C(4) 120.9(2) 

C(6)-C(5)-H(5) 119.6 

C(4)-C(5)-H(5) 119.6 

C(5)-C(6)-C(1) 119.0(2) 

C(5)-C(6)-H(6) 120.5 

C(1)-C(6)-H(6) 120.5 

C(8)-N(1)-C(10) 110.49(16) 

C(8)-N(1)-S(1) 127.75(15) 

C(10)-N(1)-S(1) 117.14(13) 

N(3)-C(8)-N(2) 129.07(18) 

N(3)-C(8)-N(1) 120.52(18) 

N(2)-C(8)-N(1) 110.40(18) 

C(8)-N(3)-C(11) 131.07(17) 

C(8)-N(3)-H(3N) 112.5(19) 

C(11)-N(3)-H(3N) 116.4(19) 

N(3)-C(11)-C(12) 108.11(18) 

N(3)-C(11)-C(13) 109.48(19) 

C(12)-C(11)-C(13) 111.6(2) 

N(3)-C(11)-H(11) 109.2 
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Table A6.3.4 (cont’d) 

C(12)-C(11)-H(11) 109.2 

C(13)-C(11)-H(11) 109.2 

C(11)-C(12)-H(12A) 109.5 

C(11)-C(12)-H(12B) 109.5 

H(12A)-C(12)-H(12B) 109.5 

C(11)-C(12)-H(12C) 109.5 

H(12A)-C(12)-H(12C) 109.5 

H(12B)-C(12)-H(12C) 109.5 

C(11)-C(13)-H(13A) 109.5 

C(11)-C(13)-H(13B) 109.5 

H(13A)-C(13)-H(13B) 109.5 

C(11)-C(13)-H(13C) 109.5 

H(13A)-C(13)-H(13C) 109.5 

H(13B)-C(13)-H(13C) 109.5 

C(8)-N(2)-C(9) 111.32(16) 

C(8)-N(2)-C(14) 124.62(17) 

C(9)-N(2)-C(14) 119.92(15) 

N(2)-C(14)-C(15) 111.62(17) 

N(2)-C(14)-C(16) 111.36(17) 

C(15)-C(14)-C(16) 110.66(17) 

N(2)-C(14)-H(14) 107.7 

C(15)-C(14)-H(14) 107.7 

C(16)-C(14)-H(14) 107.7 

C(14)-C(15)-H(15A) 109.5 

C(14)-C(15)-H(15B) 109.5 

H(15A)-C(15)-H(15B) 109.5 

C(14)-C(15)-H(15C) 109.5 

H(15A)-C(15)-H(15C) 109.5 

H(15B)-C(15)-H(15C) 109.5 

C(14)-C(16)-H(16A) 109.5 

C(14)-C(16)-H(16B) 109.5 

H(16A)-C(16)-H(16B) 109.5 

C(14)-C(16)-H(16C) 109.5 

H(16A)-C(16)-H(16C) 109.5 
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Table A6.3.4 (cont’d) 

H(16B)-C(16)-H(16C) 109.5 

N(2)-C(9)-C(21) 116.28(16) 

N(2)-C(9)-C(10) 103.46(15) 

C(21)-C(9)-C(10) 114.31(16) 

N(2)-C(9)-H(9) 107.4 

C(21)-C(9)-H(9) 107.4 

C(10)-C(9)-H(9) 107.4 

C(26)-C(21)-C(22) 119.84(19) 

C(26)-C(21)-C(9) 122.58(18) 

C(22)-C(21)-C(9) 117.50(18) 

C(23)-C(22)-C(21) 119.3(2) 

C(23)-C(22)-C(27) 118.13(19) 

C(21)-C(22)-C(27) 122.50(19) 

C(22)-C(27)-H(27A) 109.5 

C(22)-C(27)-H(27B) 109.5 

H(27A)-C(27)-H(27B) 109.5 

C(22)-C(27)-H(27C) 109.5 

H(27A)-C(27)-H(27C) 109.5 

H(27B)-C(27)-H(27C) 109.5 

C(24)-C(23)-C(22) 121.5(2) 

C(24)-C(23)-H(23) 119.3 

C(22)-C(23)-H(23) 119.3 

C(23)-C(24)-C(25) 118.4(2) 

C(23)-C(24)-C(28) 121.0(2) 

C(25)-C(24)-C(28) 120.6(2) 

C(24)-C(28)-H(28A) 109.5 

C(24)-C(28)-H(28B) 109.5 

H(28A)-C(28)-H(28B) 109.5 

C(24)-C(28)-H(28C) 109.5 

H(28A)-C(28)-H(28C) 109.5 

H(28B)-C(28)-H(28C) 109.5 

C(26)-C(25)-C(24) 122.0(2) 

C(26)-C(25)-H(25) 119.0 

C(24)-C(25)-H(25) 119.0 
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Table A6.3.4 (cont’d) 

C(25)-C(26)-C(21) 118.7(2) 

C(25)-C(26)-C(29) 117.7(2) 

C(21)-C(26)-C(29) 123.54(19) 

C(26)-C(29)-H(29A) 109.5 

C(26)-C(29)-H(29B) 109.5 

H(29A)-C(29)-H(29B) 109.5 

C(26)-C(29)-H(29C) 109.5 

H(29A)-C(29)-H(29C) 109.5 

H(29B)-C(29)-H(29C) 109.5 

N(1)-C(10)-C(9) 103.18(15) 

N(1)-C(10)-H(10A) 111.1 

C(9)-C(10)-H(10A) 111.1 

N(1)-C(10)-H(10B) 111.1 

C(9)-C(10)-H(10B) 111.1 

H(10A)-C(10)-H(10B) 109.1 

O(3)-Zn(1)-Br(3A) 102.1(2) 

O(3)-Zn(1)-Br(2A) 104.27(11) 

Br(3A)-Zn(1)-Br(2A) 116.2(3) 

O(3)-Zn(1)-Br(2) 104.66(6) 

O(3)-Zn(1)-Br(3) 105.41(9) 

Br(2)-Zn(1)-Br(3) 110.95(5) 

O(3)-Zn(1)-Br(1) 106.04(9) 

Br(2)-Zn(1)-Br(1) 113.94(4) 

Br(3)-Zn(1)-Br(1) 114.79(6) 

O(3)-Zn(1)-Br(1A) 96.5(3) 

Br(3A)-Zn(1)-Br(1A) 117.44(17) 

Br(2A)-Zn(1)-Br(1A) 115.77(13) 

C(31)-O(3)-Zn(1) 120.9(2) 

C(31)-O(3)-H(3O) 120(3) 

Zn(1)-O(3)-H(3O) 118(3) 

O(3)-C(31)-H(31A) 109.5 

O(3)-C(31)-H(31B) 109.5 

H(31A)-C(31)-H(31B) 109.5 

O(3)-C(31)-H(31C) 109.5 
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Table A6.3.4 (cont’d) 

H(31A)-C(31)-H(31C) 109.5 

H(31B)-C(31)-H(31C) 109.5 

C(1S)-O(1S)-H(1S) 109.5 

O(1S)-C(1S)-H(1S1) 109.5 

O(1S)-C(1S)-H(1S2) 109.5 

H(1S1)-C(1S)-H(1S2) 109.5 

O(1S)-C(1S)-H(1S3) 109.5 

H(1S1)-C(1S)-H(1S3) 109.5 

H(1S2)-C(1S)-H(1S3) 109.5 

C(1T)-O(1T)-H(1T) 109.5 

O(1T)-C(1T)-H(1T1) 109.5 

O(1T)-C(1T)-H(1T2) 109.5 

H(1T1)-C(1T)-H(1T2) 109.5 

O(1T)-C(1T)-H(1T3) 109.5 

H(1T1)-C(1T)-H(1T3) 109.5 

H(1T2)-C(1T)-H(1T3) 109.5 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A6.3.5  Anisotropic displacement parameters  (Å2x103) for imidazolidinium 

374•(ZnBr3•MeOH).  The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11  

+ ... + 2hka*b*U12]. 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

O(1) 21(1)  34(1) 21(1)  12(1) 12(1)  9(1) 

O(2) 23(1)  23(1) 27(1)  3(1) 15(1)  6(1) 

S(1) 16(1)  22(1) 19(1)  6(1) 11(1)  6(1) 

C(1) 15(1)  22(1) 21(1)  8(1) 10(1)  7(1) 

C(2) 21(1)  23(1) 26(1)  9(1) 13(1)  10(1) 

C(3) 24(1)  33(1) 23(1)  12(1) 13(1)  15(1) 

C(4) 17(1)  35(1) 21(1)  7(1) 10(1)  10(1) 

C(7) 20(1)  49(2) 23(1)  8(1) 7(1)  7(1) 

C(5) 18(1)  26(1) 28(1)  8(1) 10(1)  3(1) 

C(6) 18(1)  24(1) 25(1)  10(1) 10(1)  6(1) 

N(1) 15(1)  20(1) 20(1)  7(1) 11(1)  6(1) 

C(8) 15(1)  21(1) 15(1)  3(1) 7(1)  3(1) 

N(3) 26(1)  18(1) 26(1)  5(1) 19(1)  6(1) 

C(11) 26(1)  19(1) 26(1)  6(1) 17(1)  6(1) 

C(12) 35(1)  34(1) 34(1)  14(1) 19(1)  16(1) 

C(13) 32(1)  21(1) 36(1)  6(1) 18(1)  1(1) 

N(2) 15(1)  18(1) 20(1)  5(1) 10(1)  4(1) 

C(14) 17(1)  22(1) 23(1)  6(1) 12(1)  4(1) 

C(15) 28(1)  26(1) 25(1)  8(1) 17(1)  9(1) 

C(16) 17(1)  30(1) 28(1)  9(1) 13(1)  5(1) 

C(9) 14(1)  19(1) 20(1)  7(1) 8(1)  5(1) 

C(21) 14(1)  19(1) 20(1)  6(1) 8(1)  4(1) 

C(22) 16(1)  22(1) 25(1)  9(1) 12(1)  7(1) 

C(27) 22(1)  34(1) 29(1)  16(1) 12(1)  15(1) 

C(23) 24(1)  20(1) 36(1)  8(1) 18(1)  7(1) 

C(24) 23(1)  24(1) 31(1)  0(1) 14(1)  1(1) 

C(28) 38(1)  36(1) 42(2)  -11(1) 16(1)  4(1) 

C(25) 19(1)  29(1) 22(1)  3(1) 7(1)  1(1) 
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Table A6.3.5 (cont’d) 

C(26) 16(1)  23(1) 22(1)  7(1) 6(1)  4(1) 

C(29) 21(1)  34(1) 26(1)  10(1) 4(1)  12(1) 

C(10) 18(1)  22(1) 23(1)  9(1) 11(1)  8(1) 

Zn(1) 24(1)  22(1) 29(1)  9(1) 12(1)  7(1) 

O(3) 50(1)  47(1) 36(1)  19(1) 25(1)  11(1) 

C(31) 53(2)  75(3) 85(3)  35(2) 44(2)  0(2) 

Br(1) 27(1)  37(1) 25(1)  12(1) 7(1)  2(1) 

Br(2) 18(1)  14(1) 17(1)  3(1) 8(1)  4(1) 

Br(3) 31(1)  24(1) 36(1)  14(1) 12(1)  11(1) 

Br(1A) 28(1)  42(1) 36(2)  9(1) 8(1)  4(1) 

Br(2A) 85(3)  84(3) 96(4)  48(3) 40(2)  32(2) 

Br(3A) 42(2)  36(1) 85(3)  32(2) 35(2)  27(1) 

O(1S) 112(6)  44(3) 47(3)  14(3) 51(4)  17(4) 

C(1S) 118(6)  31(2) 69(5)  15(3) 71(5)  16(4) 

O(1T) 74(8)  40(5) 25(3)  15(3) 18(4)  14(5) 

C(1T) 74(8)  40(5) 25(3)  15(3) 18(4)  14(5) 

______________________________________________________________________________ 
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Table A6.3.6      Hydrogen coordinates (x104) and isotropic  displacement parameters (Å2x103)  

for imidazolidinium 374•(ZnBr3•MeOH) 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(2) 2826 7815 2855 25 

H(3) 773 6857 1372 29 

H(7A) -1896 4599 880 49 

H(7B) -1048 3976 329 49 

H(7C) -1164 5207 252 49 

H(5) 187 3969 2183 29 

H(6) 2219 4918 3681 26 

H(3N) 5930(30) 8950(20) 4288(19) 26 

H(11) 6941 9000 2765 27 

H(12A) 4592 9033 2276 47 

H(12B) 5597 10263 2389 47 

H(12C) 5047 10125 3259 47 

H(13A) 7661 10915 4539 46 

H(13B) 8132 11027 3630 46 

H(13C) 8744 10285 4311 46 

H(14) 8547 8420 3501 24 

H(15A) 7648 6434 1758 37 

H(15B) 8747 7664 1967 37 

H(15C) 7118 7537 1759 37 

H(16A) 9696 7321 4426 36 

H(16B) 10389 7658 3672 36 

H(16C) 9345 6373 3372 36 

H(9) 7696 5909 4079 20 

H(27A) 8580 3481 3698 38 

H(27B) 7844 4227 4264 38 

H(27C) 9085 4860 3978 38 

H(23) 7376 2560 1999 30 

H(28A) 6006 2192 -376 66 

H(28B) 4559 1533 -317 66 

H(28C) 6019 1353 294 66 
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Table A6.3.6 (cont’d) 

H(25) 4387 3573 222 31 

H(29A) 3713 5092 795 41 

H(29B) 4989 6193 1641 41 

H(29C) 3893 5402 1951 41 

H(10A) 4736 5221 3507 23 

H(10B) 5966 5574 4621 23 

H(3O) 1370(40) 1460(30) 1211(15) 62 

H(31A) 3421 3011 2631 103 

H(31B) 3714 2180 1779 103 

H(31C) 3791 1876 2786 103 

H(1S) 10767 1332 9552 96 

H(1S1) 8373 1939 9684 98 

H(1S2) 8297 623 9573 98 

H(1S3) 8364 1119 8677 98 

H(1T) 11346 2769 10163 70 

H(1T1) 8935 1883 9964 70 

H(1T2) 9141 641 9663 70 

H(1T3) 8973 1354 8884 70 

________________________________________________________________________________ 
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Table A6.3.7  Hydrogen bonds for imidazolidinium 374•(ZnBr3•MeOH)  [Å and °] 

____________________________________________________________________________  

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________  

 C(2)-H(2)...Br(3)#1 0.95 2.97 3.584(3) 123.6 

 C(2)-H(2)...Br(3A)#1 0.95 2.90 3.519(6) 123.9 

 C(6)-H(6)...Br(2) 0.95 2.81 3.545(2) 135.1 

 N(3)-H(3N)...O(2) 0.868(17) 2.05(2) 2.767(2) 140(3) 

 C(16)-H(16A)...Br(2)#2 0.98 2.93 3.855(2) 156.7 

 C(16)-H(16B)...Br(3)#3 0.98 3.01 3.872(3) 147.4 

 C(16)-H(16B)...Br(3A)#3 0.98 3.06 3.925(7) 147.6 

 C(9)-H(9)...Br(2)#2 1.00 2.82 3.523(2) 127.7 

 C(10)-H(10B)...Br(2)#2 0.99 3.08 3.550(2) 110.5 

 O(3)-H(3O)...O(1S)#4 0.816(18) 1.95(2) 2.741(7) 164(3) 

 O(3)-H(3O)...O(1T)#4 0.816(18) 1.92(3) 2.645(11) 148(4) 

 O(1S)-H(1S)...Br(1)#5 0.84 2.61 3.440(6) 170.0 

 C(1S)-H(1S2)...Br(1)#6 0.98 2.99 3.753(8) 136.0 

 C(1S)-H(1S3)...Br(3)#5 0.98 2.91 3.845(8) 159.8 

 C(1T)-H(1T3)...Br(3A)#5 0.98 2.85 3.749(18) 153.3 

____________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 x,y+1,z    #2 -x+1,-y+1,-z+1    #3 x+1,y+1,z       

#4 x-1,y,z-1    #5 -x+1,-y,-z+1    #6 x+1,y,z+1       
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A6.4   X-RAY CRYSTAL STRUCTURE ANALYSIS OF IMIDAZOLIDINE 343 
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Figure A6.4.1     X-ray crystal structure of imidazolidine 343  
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Table A6.4.1 Experimental details for X-ray structure determination of imidazolidine 343 

Low-temperature diffraction data (and scans) were collected on a Bruker Kappa 

diffractometer coupled to a Apex II CCD detector with graphite monochromated Mo K 

radiation ( = 0.71073 Å) for the structure of imidazolidine 343.  The structure was solved 

by direct methods using SHELXS and refined against F2 on all data by full-matrix least 

squares with SHELXL-2013 using established refinement techniques.  All non-hydrogen 

atoms were refined anisotropically.  All hydrogen atoms were included into the model at 

geometrically calculated positions and refined using a riding model.  The isotropic 

displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the 

atoms they are linked to (1.5 times for methyl groups).   

Imidazolidine 343 crystallizes in the orthorhombic space group Pbca with one 

molecule in the asymmetric unit.  A majority of the molecule was disordered over two 

positions.  All disordered atoms were refined with the help of similarity restraints on the 

1,2- and 1,3- distances.  All atoms were refined with the help of similarity as well as rigid 

bond restraints for anisotropic displacement parameters.   
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Table A6.4.2 Crystal data and structure refinement for imidazolidine 343 

Caltech Identification code  rac16 

CCDC Deposition Number 973927 

Empirical formula  C23 H24 N2 O6 S2 

Formula weight  488.56 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P b c a 

Unit cell dimensions a = 7.5481(4) Å α= 90°. 

 b = 21.3568(13) Å β= 90°. 

 c = 28.1256(18) Å γ = 90°. 

Volume 4533.9(5) Å3 

Z 8 

Density (calculated) 1.431 Mg/m3 

Absorption coefficient 0.278 mm-1 

F(000) 2048 

Crystal size 0.400 x 0.250 x 0.150 mm3 

Theta range for data collection 1.907 to 30.677°. 

Index ranges –10 ≤ h ≤ 10, –30 ≤ k ≤ 30, –39 ≤ l ≤ 40 

Reflections collected 98231 

Independent reflections 7007 [R(int) = 0.0490] 

Completeness to theta = 25.242° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7461 and 0.6817 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7007 / 1023 / 507 

Goodness-of-fit on F2 1.116 

Final R indices [I>2sigma(I)] R1 = 0.0505, wR2 = 0.1269 

R indices (all data) R1 = 0.0597, wR2 = 0.1324 

Extinction coefficient n/a 

Largest diff. peak and hole 0.662 and -0.538 e·Å-3 



Appendix 6 – X-Ray Crystallography Reports Relevant to Chapter 3  488 

Table A6.4.3.      Atomic coordinates (x 104) and equivalent  isotropic displacement parameters (Å2x 

103) for imidazolidine 343.  U(eq) is defined as one third of the trace of the orthogonalized Uij 

tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
O(1) 5335(2) 1620(1) 1380(1) 26(1) 

O(2) 4409(2) 2342(1) 726(1) 31(1) 

S(1) 4127(1) 2069(1) 1184(1) 21(1) 

C(1) 3945(2) 2681(1) 1599(1) 20(1) 

C(2) 4527(2) 2582(1) 2061(1) 22(1) 

C(3) 4518(2) 3079(1) 2378(1) 24(1) 

C(4) 3935(2) 3668(1) 2242(1) 26(1) 

C(5) 3339(3) 3752(1) 1780(1) 32(1) 

C(6) 3336(3) 3263(1) 1455(1) 28(1) 

C(7) 3924(3) 4209(1) 2587(1) 37(1) 

N(1) 2138(13) 1760(4) 1128(4) 18(1) 

C(8) 877(12) 1912(3) 744(3) 21(1) 

C(11) -60(19) 2527(4) 804(4) 21(1) 

C(12) -830(30) 2682(7) 1243(5) 21(2) 

C(13) -1790(30) 3228(7) 1286(4) 21(2) 

C(14) -1950(20) 3623(6) 896(4) 33(2) 

C(15) -1186(18) 3468(5) 464(4) 32(2) 

C(16) -231(16) 2926(4) 418(4) 26(1) 

N(2) -368(12) 1385(3) 805(3) 20(1) 

C(17) -1909(11) 1330(3) 484(2) 29(2) 

C(18) -1271(4) 782(1) 140(1) 11(1) 

C(19) -1060(4) 1020(2) -290(1) 20(1) 

C(9) 88(11) 951(4) 1108(4) 21(1) 

S(2) -891(4) 277(1) 1228(1) 28(1) 

C(10) 1879(10) 1142(3) 1327(2) 18(1) 

C(20) 3219(6) 664(2) 1106(2) 23(1) 

O(3) 3612(9) 724(3) 689(2) 27(1) 

O(4) 3688(6) 201(2) 1380(2) 26(1) 

C(21) 4655(6) -280(2) 1124(2) 39(1) 

C(22) 1640(20) 1198(6) 1871(3) 21(1) 
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Table A6.4.3 (cont’d) 

O(5) 720(20) 1617(8) 2024(6) 28(2) 

O(6) 2335(18) 750(5) 2130(2) 27(1) 

C(23) 2074(14) 822(5) 2643(3) 26(1) 

N(1A) 2257(12) 1661(4) 1182(4) 17(1) 

C(8A) 967(11) 1778(3) 803(3) 16(1) 

C(11A) 53(16) 2403(4) 818(4) 17(1) 

C(12A) -880(30) 2594(7) 1223(5) 22(2) 

C(13A) -1780(30) 3161(7) 1216(4) 28(2) 

C(14A) -1815(18) 3529(5) 811(4) 31(2) 

C(15A) -907(16) 3334(4) 410(4) 31(1) 

C(16A) 12(14) 2775(4) 415(4) 23(1) 

N(2A) -258(11) 1253(3) 881(3) 17(1) 

C(17A) -1788(11) 1187(3) 566(2) 23(1) 

C(18A) -1586(8) 1051(4) 20(2) 64(2) 

C(19A) -321(12) 812(4) -170(3) 92(3) 

C(9A) 244(10) 839(3) 1203(3) 17(1) 

S(2A) -720(4) 172(1) 1345(1) 22(1) 

C(10A) 1983(9) 1075(3) 1432(2) 18(1) 

C(20A) 3358(5) 561(2) 1297(2) 19(1) 

O(3A) 4024(5) 193(2) 1558(2) 29(1) 

O(4A) 3553(8) 579(2) 823(2) 25(1) 

C(21A) 4614(4) 87(2) 615(2) 33(1) 

C(22A) 1630(20) 1207(6) 1960(2) 20(1) 

O(5A) 920(20) 1681(7) 2086(5) 33(2) 

O(6A) 2257(17) 779(5) 2248(2) 28(1) 

C(23A) 1896(15) 893(5) 2748(3) 36(2) 
________________________________________________________________________________ 
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Table A6.4.4      Bond lengths [Å] and angles [°] for imidazolidine 343 

_____________________________________________________  

O(1)-S(1)  1.4335(14) 

O(2)-S(1)  1.4295(14) 

S(1)-N(1)  1.648(9) 

S(1)-N(1A)  1.659(8) 

S(1)-C(1)  1.7562(16) 

C(1)-C(6)  1.387(2) 

C(1)-C(2)  1.387(2) 

C(2)-C(3)  1.387(2) 

C(2)-H(2)  0.9500 

C(3)-C(4)  1.388(2) 

C(3)-H(3)  0.9500 

C(4)-C(5)  1.387(3) 

C(4)-C(7)  1.508(2) 

C(5)-C(6)  1.386(3) 

C(5)-H(5)  0.9500 

C(6)-H(6)  0.9500 

C(7)-H(7A)  0.9800 

C(7)-H(7B)  0.9800 

C(7)-H(7C)  0.9800 

N(1)-C(10)  1.446(8) 

N(1)-C(8)  1.476(8) 

C(8)-N(2)  1.476(8) 

C(8)-C(11)  1.500(8) 

C(8)-H(8)  1.0000 

C(11)-C(16)  1.385(8) 

C(11)-C(12)  1.407(9) 

C(12)-C(13)  1.378(9) 

C(12)-H(12)  0.9500 

C(13)-C(14)  1.387(9) 

C(13)-H(13)  0.9500 

C(14)-C(15)  1.383(8) 

C(14)-H(14)  0.9500 

C(15)-C(16)  1.371(7) 
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Table A6.4.4 (cont’d) 

C(15)-H(15)  0.9500 

C(16)-H(16)  0.9500 

N(2)-C(9)  1.307(6) 

N(2)-C(17)  1.477(7) 

C(17)-C(18)  1.593(5) 

C(17)-H(17A)  0.9900 

C(17)-H(17B)  0.9900 

C(18)-C(19)  1.323(4) 

C(18)-H(18)  0.9500 

C(19)-H(19A)  0.9500 

C(19)-H(19B)  0.9500 

C(9)-C(10)  1.542(8) 

C(9)-S(2)  1.653(6) 

C(10)-C(22)  1.544(8) 

C(10)-C(20)  1.567(7) 

C(20)-O(3)  1.215(6) 

C(20)-O(4)  1.301(6) 

O(4)-C(21)  1.451(6) 

C(21)-H(21A)  0.9800 

C(21)-H(21B)  0.9800 

C(21)-H(21C)  0.9800 

C(22)-O(5)  1.209(9) 

C(22)-O(6)  1.312(9) 

O(6)-C(23)  1.464(7) 

C(23)-H(23A)  0.9800 

C(23)-H(23B)  0.9800 

C(23)-H(23C)  0.9800 

N(1A)-C(10A)  1.450(7) 

N(1A)-C(8A)  1.466(7) 

C(8A)-N(2A)  1.469(7) 

C(8A)-C(11A)  1.503(7) 

C(8A)-H(8A)  1.0000 

C(11A)-C(16A)  1.383(7) 

C(11A)-C(12A)  1.400(9) 
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Table A6.4.4 (cont’d) 

C(12A)-C(13A)  1.387(9) 

C(12A)-H(12A)  0.9500 

C(13A)-C(14A)  1.384(9) 

C(13A)-H(13A)  0.9500 

C(14A)-C(15A)  1.384(8) 

C(14A)-H(14A)  0.9500 

C(15A)-C(16A)  1.381(6) 

C(15A)-H(15A)  0.9500 

C(16A)-H(16A)  0.9500 

N(2A)-C(9A)  1.320(5) 

N(2A)-C(17A)  1.463(7) 

C(17A)-C(18A)  1.569(6) 

C(17A)-H(17C)  0.9900 

C(17A)-H(17D)  0.9900 

C(18A)-C(19A)  1.207(7) 

C(18A)-H(18A)  0.9500 

C(19A)-H(19C)  0.9500 

C(19A)-H(19D)  0.9500 

C(9A)-C(10A)  1.546(7) 

C(9A)-S(2A)  1.649(6) 

C(10A)-C(22A)  1.535(7) 

C(10A)-C(20A)  1.557(7) 

C(20A)-O(3A)  1.187(5) 

C(20A)-O(4A)  1.342(5) 

O(4A)-C(21A)  1.444(6) 

C(21A)-H(21D)  0.9800 

C(21A)-H(21E)  0.9800 

C(21A)-H(21F)  0.9800 

C(22A)-O(5A)  1.199(9) 

C(22A)-O(6A)  1.310(8) 

O(6A)-C(23A)  1.452(7) 

C(23A)-H(23D)  0.9800 

C(23A)-H(23E)  0.9800 

C(23A)-H(23F)  0.9800 
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Table A6.4.4 (cont’d) 

O(2)-S(1)-O(1) 121.63(8) 

O(2)-S(1)-N(1) 102.3(4) 

O(1)-S(1)-N(1) 110.4(3) 

O(2)-S(1)-N(1A) 109.8(3) 

O(1)-S(1)-N(1A) 101.0(2) 

O(2)-S(1)-C(1) 107.88(8) 

O(1)-S(1)-C(1) 106.97(8) 

N(1)-S(1)-C(1) 106.8(4) 

N(1A)-S(1)-C(1) 109.0(4) 

C(6)-C(1)-C(2) 120.95(15) 

C(6)-C(1)-S(1) 119.99(13) 

C(2)-C(1)-S(1) 118.93(12) 

C(3)-C(2)-C(1) 119.01(15) 

C(3)-C(2)-H(2) 120.5 

C(1)-C(2)-H(2) 120.5 

C(2)-C(3)-C(4) 121.20(16) 

C(2)-C(3)-H(3) 119.4 

C(4)-C(3)-H(3) 119.4 

C(5)-C(4)-C(3) 118.54(16) 

C(5)-C(4)-C(7) 120.23(17) 

C(3)-C(4)-C(7) 121.22(17) 

C(6)-C(5)-C(4) 121.41(16) 

C(6)-C(5)-H(5) 119.3 

C(4)-C(5)-H(5) 119.3 

C(5)-C(6)-C(1) 118.88(16) 

C(5)-C(6)-H(6) 120.6 

C(1)-C(6)-H(6) 120.6 

C(4)-C(7)-H(7A) 109.5 

C(4)-C(7)-H(7B) 109.5 

H(7A)-C(7)-H(7B) 109.5 

C(4)-C(7)-H(7C) 109.5 

H(7A)-C(7)-H(7C) 109.5 

H(7B)-C(7)-H(7C) 109.5 

C(10)-N(1)-C(8) 113.4(6) 
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Table A6.4.4 (cont’d) 

C(10)-N(1)-S(1) 116.9(6) 

C(8)-N(1)-S(1) 124.7(6) 

N(2)-C(8)-N(1) 99.1(5) 

N(2)-C(8)-C(11) 110.7(7) 

N(1)-C(8)-C(11) 114.5(8) 

N(2)-C(8)-H(8) 110.7 

N(1)-C(8)-H(8) 110.7 

C(11)-C(8)-H(8) 110.7 

C(16)-C(11)-C(12) 120.3(7) 

C(16)-C(11)-C(8) 119.6(8) 

C(12)-C(11)-C(8) 120.0(8) 

C(13)-C(12)-C(11) 119.6(9) 

C(13)-C(12)-H(12) 120.2 

C(11)-C(12)-H(12) 120.2 

C(12)-C(13)-C(14) 119.3(9) 

C(12)-C(13)-H(13) 120.3 

C(14)-C(13)-H(13) 120.3 

C(15)-C(14)-C(13) 120.9(8) 

C(15)-C(14)-H(14) 119.5 

C(13)-C(14)-H(14) 119.5 

C(16)-C(15)-C(14) 120.2(7) 

C(16)-C(15)-H(15) 119.9 

C(14)-C(15)-H(15) 119.9 

C(15)-C(16)-C(11) 119.6(7) 

C(15)-C(16)-H(16) 120.2 

C(11)-C(16)-H(16) 120.2 

C(9)-N(2)-C(8) 116.7(5) 

C(9)-N(2)-C(17) 123.3(6) 

C(8)-N(2)-C(17) 119.5(6) 

N(2)-C(17)-C(18) 101.0(6) 

N(2)-C(17)-H(17A) 111.6 

C(18)-C(17)-H(17A) 111.6 

N(2)-C(17)-H(17B) 111.6 

C(18)-C(17)-H(17B) 111.6 
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Table A6.4.4 (cont’d) 

H(17A)-C(17)-H(17B) 109.4 

C(19)-C(18)-C(17) 108.0(4) 

C(19)-C(18)-H(18) 126.0 

C(17)-C(18)-H(18) 126.0 

C(18)-C(19)-H(19A) 120.0 

C(18)-C(19)-H(19B) 120.0 

H(19A)-C(19)-H(19B) 120.0 

N(2)-C(9)-C(10) 107.7(5) 

N(2)-C(9)-S(2) 129.3(5) 

C(10)-C(9)-S(2) 122.8(5) 

N(1)-C(10)-C(9) 101.9(5) 

N(1)-C(10)-C(22) 109.1(7) 

C(9)-C(10)-C(22) 108.3(8) 

N(1)-C(10)-C(20) 110.8(6) 

C(9)-C(10)-C(20) 103.6(6) 

C(22)-C(10)-C(20) 121.3(6) 

O(3)-C(20)-O(4) 125.8(4) 

O(3)-C(20)-C(10) 118.1(5) 

O(4)-C(20)-C(10) 115.8(5) 

C(20)-O(4)-C(21) 112.4(4) 

O(4)-C(21)-H(21A) 109.5 

O(4)-C(21)-H(21B) 109.5 

H(21A)-C(21)-H(21B) 109.5 

O(4)-C(21)-H(21C) 109.5 

H(21A)-C(21)-H(21C) 109.5 

H(21B)-C(21)-H(21C) 109.5 

O(5)-C(22)-O(6) 124.8(10) 

O(5)-C(22)-C(10) 118.5(10) 

O(6)-C(22)-C(10) 116.5(7) 

C(22)-O(6)-C(23) 114.6(7) 

O(6)-C(23)-H(23A) 109.5 

O(6)-C(23)-H(23B) 109.5 

H(23A)-C(23)-H(23B) 109.5 

O(6)-C(23)-H(23C) 109.5 
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Table A6.4.4 (cont’d) 

H(23A)-C(23)-H(23C) 109.5 

H(23B)-C(23)-H(23C) 109.5 

C(10A)-N(1A)-C(8A) 113.8(5) 

C(10A)-N(1A)-S(1) 125.0(5) 

C(8A)-N(1A)-S(1) 118.5(6) 

N(1A)-C(8A)-N(2A) 100.3(5) 

N(1A)-C(8A)-C(11A) 115.8(6) 

N(2A)-C(8A)-C(11A) 112.6(6) 

N(1A)-C(8A)-H(8A) 109.2 

N(2A)-C(8A)-H(8A) 109.2 

C(11A)-C(8A)-H(8A) 109.2 

C(16A)-C(11A)-C(12A) 119.2(7) 

C(16A)-C(11A)-C(8A) 119.8(6) 

C(12A)-C(11A)-C(8A) 120.8(7) 

C(13A)-C(12A)-C(11A) 119.4(9) 

C(13A)-C(12A)-H(12A) 120.3 

C(11A)-C(12A)-H(12A) 120.3 

C(14A)-C(13A)-C(12A) 121.0(8) 

C(14A)-C(13A)-H(13A) 119.5 

C(12A)-C(13A)-H(13A) 119.5 

C(15A)-C(14A)-C(13A) 119.3(7) 

C(15A)-C(14A)-H(14A) 120.4 

C(13A)-C(14A)-H(14A) 120.4 

C(16A)-C(15A)-C(14A) 120.1(7) 

C(16A)-C(15A)-H(15A) 119.9 

C(14A)-C(15A)-H(15A) 119.9 

C(15A)-C(16A)-C(11A) 121.0(6) 

C(15A)-C(16A)-H(16A) 119.5 

C(11A)-C(16A)-H(16A) 119.5 

C(9A)-N(2A)-C(17A) 125.3(5) 

C(9A)-N(2A)-C(8A) 115.6(5) 

C(17A)-N(2A)-C(8A) 118.6(5) 

N(2A)-C(17A)-C(18A) 122.3(7) 

N(2A)-C(17A)-H(17C) 106.8 
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Table A6.4.4 (cont’d) 

C(18A)-C(17A)-H(17C) 106.8 

N(2A)-C(17A)-H(17D) 106.8 

C(18A)-C(17A)-H(17D) 106.8 

H(17C)-C(17A)-H(17D) 106.6 

C(19A)-C(18A)-C(17A) 126.1(8) 

C(19A)-C(18A)-H(18A) 117.0 

C(17A)-C(18A)-H(18A) 117.0 

C(18A)-C(19A)-H(19C) 120.0 

C(18A)-C(19A)-H(19D) 120.0 

H(19C)-C(19A)-H(19D) 120.0 

N(2A)-C(9A)-C(10A) 108.1(4) 

N(2A)-C(9A)-S(2A) 128.1(5) 

C(10A)-C(9A)-S(2A) 123.7(4) 

N(1A)-C(10A)-C(22A) 109.4(7) 

N(1A)-C(10A)-C(9A) 101.6(4) 

C(22A)-C(10A)-C(9A) 108.5(7) 

N(1A)-C(10A)-C(20A) 113.3(6) 

C(22A)-C(10A)-C(20A) 118.7(5) 

C(9A)-C(10A)-C(20A) 103.7(5) 

O(3A)-C(20A)-O(4A) 125.9(4) 

O(3A)-C(20A)-C(10A) 126.7(4) 

O(4A)-C(20A)-C(10A) 107.2(4) 

C(20A)-O(4A)-C(21A) 116.2(4) 

O(4A)-C(21A)-H(21D) 109.5 

O(4A)-C(21A)-H(21E) 109.5 

H(21D)-C(21A)-H(21E) 109.5 

O(4A)-C(21A)-H(21F) 109.5 

H(21D)-C(21A)-H(21F) 109.5 

H(21E)-C(21A)-H(21F) 109.5 

O(5A)-C(22A)-O(6A) 124.5(10) 

O(5A)-C(22A)-C(10A) 121.2(9) 

O(6A)-C(22A)-C(10A) 114.1(6) 

C(22A)-O(6A)-C(23A) 114.6(7) 

O(6A)-C(23A)-H(23D) 109.5 
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Table A6.4.4 (cont’d) 

O(6A)-C(23A)-H(23E) 109.5 

H(23D)-C(23A)-H(23E) 109.5 

O(6A)-C(23A)-H(23F) 109.5 

H(23D)-C(23A)-H(23F) 109.5 

H(23E)-C(23A)-H(23F) 109.5 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A6.4.5  Anisotropic displacement parameters  (Å2x103) for imidazolidine 343.  The anisotropic 

displacement factor exponent takes the form: -2π2[ h2a*2U11  + ... + 2hka*b*U12]. 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

O(1) 19(1)  26(1) 34(1)  -10(1) 3(1)  -3(1) 

O(2) 26(1)  47(1) 19(1)  -7(1) 6(1)  -12(1) 

S(1) 16(1)  27(1) 21(1)  -8(1) 5(1)  -7(1) 

C(1) 20(1)  20(1) 19(1)  -4(1) 2(1)  -5(1) 

C(2) 25(1)  19(1) 22(1)  0(1) -1(1)  -3(1) 

C(3) 28(1)  24(1) 21(1)  -4(1) -2(1)  -2(1) 

C(4) 26(1)  20(1) 31(1)  -6(1) 0(1)  -2(1) 

C(5) 41(1)  19(1) 34(1)  1(1) -7(1)  2(1) 

C(6) 36(1)  26(1) 22(1)  1(1) -6(1)  -2(1) 

C(7) 41(1)  28(1) 41(1)  -14(1) -2(1)  0(1) 

N(1) 15(2)  17(2) 22(3)  -3(2) 3(2)  -2(2) 

C(8) 18(2)  25(3) 19(2)  -4(2) -1(2)  -6(2) 

C(11) 17(2)  19(3) 26(2)  -7(2) -2(2)  0(2) 

C(12) 24(3)  20(4) 19(2)  -7(2) 3(2)  -10(3) 

C(13) 23(2)  18(3) 23(3)  -10(2) -3(3)  -1(2) 

C(14) 43(3)  24(4) 32(4)  -8(3) -3(3)  4(3) 

C(15) 38(4)  28(4) 31(3)  -1(3) -7(2)  6(2) 

C(16) 27(3)  32(4) 18(2)  -2(3) -2(2)  1(3) 

N(2) 17(2)  17(3) 26(3)  -11(2) 2(2)  2(2) 

C(17) 16(2)  51(4) 21(2)  -22(3) 0(2)  -7(2) 

C(18) 8(1)  11(1) 15(1)  -4(1) -2(1)  2(1) 

C(19) 14(1)  32(2) 14(2)  -5(1) -3(1)  10(1) 

C(9) 14(2)  15(3) 33(4)  -10(2) 2(2)  -2(2) 

S(2) 24(1)  24(1) 35(1)  -9(1) 6(1)  -9(1) 

C(10) 16(2)  19(2) 20(2)  -7(2) 4(2)  1(1) 

C(20) 14(2)  21(2) 35(3)  -8(2) 2(2)  -3(1) 

O(3) 26(2)  32(3) 24(2)  -9(2) 4(2)  3(2) 

O(4) 27(2)  21(2) 31(2)  -2(2) 10(2)  3(1) 

C(21) 34(2)  33(2) 51(3)  -5(2) 9(2)  5(2) 

C(22) 18(2)  18(2) 26(3)  -3(2) 4(3)  -6(2) 
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Table A6.4.5 (cont’d) 

O(5) 36(3)  25(3) 24(4)  -7(2) 8(3)  3(3) 

O(6) 31(2)  29(2) 21(3)  -7(2) 0(3)  1(1) 

C(23) 25(2)  27(2) 27(3)  -7(2) -1(2)  -7(2) 

N(1A) 14(2)  16(2) 21(2)  -2(2) -3(1)  -3(2) 

C(8A) 17(2)  15(2) 16(2)  -3(2) 3(1)  0(2) 

C(11A) 17(2)  15(2) 18(2)  -2(2) -2(1)  -5(2) 

C(12A) 19(3)  17(3) 29(3)  -6(2) 1(2)  -2(3) 

C(13A) 25(2)  26(3) 32(4)  -14(3) 2(3)  -4(2) 

C(14A) 31(3)  21(3) 42(4)  -10(2) -9(3)  2(2) 

C(15A) 33(4)  28(4) 31(3)  2(3) -4(2)  6(2) 

C(16A) 22(3)  20(3) 26(2)  -1(2) -6(2)  1(2) 

N(2A) 15(2)  11(2) 26(2)  -4(2) -2(1)  -1(2) 

C(17A) 18(2)  27(2) 24(2)  -6(2) -3(2)  0(1) 

C(18A) 55(3)  89(5) 50(3)  -38(3) -13(3)  3(3) 

C(19A) 107(6)  83(5) 87(6)  -44(4) 53(5)  -25(4) 

C(9A) 16(2)  15(2) 21(3)  -4(1) 3(1)  1(2) 

S(2A) 22(1)  18(1) 26(1)  0(1) -1(1)  -7(1) 

C(10A) 14(2)  14(2) 24(2)  1(2) -1(2)  -4(1) 

C(20A) 16(1)  16(2) 26(2)  0(2) -1(2)  -3(1) 

O(3A) 27(2)  22(1) 40(2)  1(2) -8(2)  3(1) 

O(4A) 24(1)  25(2) 27(2)  -11(2) 2(2)  2(1) 

C(21A) 16(1)  24(2) 59(2)  -27(2) 6(1)  0(1) 

C(22A) 18(2)  21(2) 21(2)  -2(2) 2(2)  -7(2) 

O(5A) 50(5)  23(3) 26(4)  -4(2) 6(3)  5(3) 

O(6A) 33(2)  32(2) 20(3)  -3(2) -8(3)  6(1) 

C(23A) 37(3)  53(4) 19(3)  -3(3) -6(2)  7(2) 

______________________________________________________________________________ 
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Table A6.4.6      Hydrogen coordinates (x104) and isotropic  displacement parameters (Å2x103)  

for imidazolidine 343 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(2) 4925 2180 2158 26 

H(3) 4920 3014 2694 29 

H(5) 2924 4152 1683 38 

H(6) 2923 3327 1140 34 

H(7A) 2760 4236 2740 55 

H(7B) 4166 4599 2416 55 

H(7C) 4838 4142 2829 55 

H(8) 1472 1890 427 25 

H(12) -697 2412 1509 26 

H(13) -2345 3334 1579 26 

H(14) -2581 4005 926 39 

H(15) -1326 3739 199 39 

H(16) 310 2823 123 31 

H(17A) -2122 1724 307 35 

H(17B) -2996 1213 660 35 

H(18) -1076 358 229 14 

H(19A) -1288 1452 -345 24 

H(19B) -680 760 -544 24 

H(21A) 5017 -609 1346 59 

H(21B) 5708 -95 976 59 

H(21C) 3893 -459 877 59 

H(23A) 2690 483 2810 40 

H(23B) 805 803 2715 40 

H(23C) 2550 1226 2746 40 

H(8A) 1560 1725 487 19 

H(12A) -896 2339 1499 26 

H(13A) -2382 3298 1494 33 

H(14A) -2456 3912 809 38 

H(15A) -915 3585 132 37 

H(16A) 624 2643 137 27 
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Table A6.4.6 (cont’d) 

H(17C) -2485 1578 595 27 

H(17D) -2531 848 699 27 

H(18A) -2549 1167 -179 77 

H(19C) 673 689 15 111 

H(19D) -320 748 -504 111 

H(21D) 4647 139 269 50 

H(21E) 4094 -321 693 50 

H(21F) 5821 109 742 50 

H(23D) 2360 545 2938 54 

H(23E) 614 927 2797 54 

H(23F) 2470 1283 2847 54 
________________________________________________________________________________ 
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A6.5   X-RAY CRYSTAL STRUCTURE ANALYSOS OF OXAZOLIDINE 375 
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Table A6.5.6 Hydrogen Atomic Coordinates 

 

Figure A6.5.1      X-ray crystal structure of oxazolidine 375  
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Table A6.5.1 Experimental details for X-ray structure determination of oxazolidine 375 

Low-temperature diffraction data (and scans) were collected on a Bruker Kappa 

diffractometer coupled to a Apex II CCD detector with graphite monochromated Mo K 

radiation ( = 0.71073 Å) for the structure of oxazolidine 375.  The structure was solved 

by direct methods using SHELXS and refined against F2 on all data by full-matrix least 

squares with SHELXL-2013 refinement using established techniques.  All non-hydrogen 

atoms were refined anisotropically.  All hydrogen atoms were included into the model at 

geometrically calculated positions and refined using a riding model.  The isotropic 

displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the 

atoms they are linked to (1.5 times for methyl groups).  All disordered atoms were 

refined with the help of similarity restraints on the 1,2- and 1,3- distances and 

displacement parameters as well as rigid bond restraints for anisotropic displacement 

parameters.   
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Table A6.5.2 Crystal data and structure refinement for oxazolidine 375 

Empirical formula  C26 H25 N O7 S 

CCDC Deposition Number 973928 

Formula weight  495.53 

Crystallization solvent  Ethyl Acetate  

Crystal shape  block 

Crystal color  colourless  

Crystal size 0.34 x 0.39 x 0.41 mm 
Preliminary photograph(s)  rotation  

Type of diffractometer  Bruker APEX-II CCD 

Wavelength  0.71073 Å MoK 

Data collection temperature  100 K 

Theta range for 9033 reflections used 
in lattice determination  2.40 to 34.83° 
Unit cell dimensions a = 26.2830(13) Å α= 90° 
 b = 10.5471(5) Å β= 90° 
 c = 8.4772(4) Å γ = 90° 
Volume 2350.0(2) Å3 

Z 4 

Crystal system  orthorhombic 

Space group  P c a 21   (# 29) 

Density (calculated) 1.401 g/cm3 

F(000) 1040 

Theta range for data collection 1.9 to 35.2° 

Completeness to theta = 25.000° 99.8%  

Index ranges –42 ≤ h ≤ 41, –16 ≤ k ≤ 16, –13 ≤ l ≤ 13 

Reflections collected 85187 
Independent reflections 10087 [Rint= 0.0399] 

Reflections > 2s(I) 9439  

Average s(I)/(net I) 0.0240 

Absorption coefficient 0.19 mm-1 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.0000 and 0.9213   

Primary solution method  dual 

Hydrogen placement  geom 

Refinement method Full-matrix least-squares on F2 
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Table A6.5.2 (cont’d) 

Data / restraints / parameters 10087 / 13 / 538 

Treatment of hydrogen atoms  constr 

Goodness-of-fit on F2 1.19 

Final R indices [I>2s(I), 9439 reflections] R1 = 0.0430, wR2 = 0.1033 

R indices (all data) R1 = 0.0470, wR2 = 0.1048 

Type of weighting scheme used calc 

Max shift/error  0.001 

Average shift/error  0.000 

Absolute structure parameter 0.044(12) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.33 and -0.36 e·Å-3 
 

Programs Used  

Cell refinement   SAINT V8.32B (Bruker-AXS, 2007) 

Data collection   APEX2 2013.6-2 (Bruker-AXS, 2007) 

Data reduction   SAINT V8.32B (Bruker-AXS, 2007) 

Structure solution   SHELXT (Sheldrick, 2012) 

Structure refinement   SHELXL-2013/2 (Sheldrick, 2013) 

Graphics  DIAMOND 3 (Crystal Impact, 1999) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 6 – X-Ray Crystallography Reports Relevant to Chapter 3  507 

Table A6.5.3       Atomic coordinates (x 104) and equivalent  isotropic displacement parameters 

(Å2x 103) for oxazolidine 375.  U(eq) is defined as one third of the trace of the orthogonalized Uij 

tensor.  

________________________________________________________________________________  
 x y z Ueq 
________________________________________________________________________________   
S(1) 8926(1) 6201(1) 5357(1) 24(1) 

O(1) 8757(1) 5962(1) 6946(2) 28(1) 

O(2) 8828(1) 5297(2) 4131(2) 35(1) 

N(1) 8669(1) 7567(1) 4885(2) 21(1) 

C(1) 9589(1) 6443(2) 5403(3) 26(1) 

C(2) 9800(1) 7205(3) 6560(3) 36(1) 

C(3) 10325(1) 7313(3) 6651(3) 38(1) 

C(4) 10644(1) 6666(2) 5619(2) 32(1) 

C(5) 10424(1) 5912(2) 4466(3) 37(1) 

C(6) 9899(1) 5798(2) 4339(3) 32(1) 

C(7) 11214(1) 6743(3) 5801(3) 41(1) 

O(3) 8454(4) 9290(10) 3416(13) 31(2) 

O(4) 7331(1) 7845(3) 6401(4) 23(1) 

O(5) 7789(6) 6381(13) 5033(14) 20(1) 

O(6) 8103(1) 8362(3) 8651(3) 20(1) 

O(7) 8770(1) 9307(3) 7484(3) 18(1) 

C(8) 8655(4) 7986(7) 3269(11) 13(2) 

C(9) 8056(7) 9322(18) 4700(20) 22(3) 

C(10) 8209(5) 8173(18) 5850(20) 16(2) 

C(11) 9116(4) 8065(15) 2442(16) 21(2) 

C(12) 9471(3) 8980(7) 2868(7) 26(1) 

C(13) 9938(2) 9060(6) 2102(10) 40(1) 

C(14) 10053(3) 8198(8) 966(11) 44(2) 

C(15) 9701(3) 7272(7) 552(10) 44(2) 

C(16) 9233(3) 7206(6) 1270(9) 29(1) 

C(17) 8091(3) 10654(7) 5427(12) 13(1) 

C(18) 8430(3) 11443(5) 4959(11) 16(1) 

C(19) 8464(3) 12722(6) 5697(9) 24(1) 

C(20) 8107(2) 13055(4) 6806(6) 25(1) 
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Table A6.5.3 (cont’d) 

C(21) 7731(2) 12188(4) 7246(5) 19(1) 

C(22) 7720(2) 10989(4) 6570(5) 16(1) 

C(23) 7715(2) 7381(7) 5901(9) 17(1) 

C(24) 7324(6) 5619(14) 5180(20) 23(2) 

C(25) 8350(2) 8604(3) 7505(4) 14(1) 

C(26) 8860(2) 10020(4) 8925(4) 26(1) 

O(3A) 8459(2) 9216(8) 3393(7) 13(1) 

O(4A) 7556(1) 7446(3) 7202(4) 30(1) 

O(5A) 7767(6) 6217(12) 5341(14) 22(1) 

O(6A) 8992(1) 9186(3) 7025(4) 23(1) 

O(7A) 8266(1) 8980(3) 8372(3) 22(1) 

C(8A) 8668(6) 8051(11) 3175(15) 37(3) 

C(9A) 8106(5) 9189(15) 4546(18) 13(2) 

C(10A) 8303(5) 8102(13) 5730(17) 11(1) 

C(11A) 9229(3) 8166(12) 2597(11) 17(1) 

C(12A) 9556(2) 8999(5) 3331(6) 19(1) 

C(13A) 10052(2) 9131(4) 2790(6) 26(1) 

C(14A) 10225(2) 8406(6) 1527(6) 31(1) 

C(15A) 9903(3) 7558(7) 790(6) 30(1) 

C(16A) 9402(2) 7438(6) 1290(7) 25(1) 

C(17A) 8008(3) 10427(7) 5241(10) 15(1) 

C(18A) 8397(5) 11464(10) 5114(14) 45(3) 

C(19A) 8298(3) 12553(7) 5784(10) 38(2) 

C(20A) 7868(3) 12772(5) 6675(6) 39(1) 

C(21A) 7503(2) 11837(5) 6819(5) 36(1) 

C(22A) 7578(2) 10668(4) 6104(5) 26(1) 

C(23A) 7845(2) 7284(7) 6149(8) 16(1) 

C(24A) 7299(7) 5528(16) 5250(30) 41(4) 

C(25A) 8564(2) 8793(3) 7139(4) 14(1) 

C(26A) 8481(2) 9837(5) 9541(4) 31(1) 
________________________________________________________________________________ 
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Table A6.5.4       Bond lengths [Å] and angles [°] for oxazolidine 375 

___________________________________________________________________________________  

S(1)-O(1)  1.4406(16) 

S(1)-O(2)  1.4334(17) 

S(1)-N(1)  1.6401(16) 

S(1)-C(1)  1.762(2) 

N(1)-C(8)  1.440(10) 

N(1)-C(10)  1.592(12) 

N(1)-C(8A)  1.537(13) 

N(1)-C(10A)  1.326(11) 

C(1)-C(2)  1.384(3) 

C(1)-C(6)  1.393(3) 

C(2)-H(2)  0.9500 

C(2)-C(3)  1.386(3) 

C(3)-H(3)  0.9500 

C(3)-C(4)  1.390(3) 

C(4)-C(5)  1.386(4) 

C(4)-C(7)  1.510(3) 

C(5)-H(5)  0.9500 

C(5)-C(6)  1.389(4) 

C(6)-H(6)  0.9500 

C(7)-H(7A)  0.9800 

C(7)-H(7B)  0.9800 

C(7)-H(7C)  0.9800 

O(3)-C(8)  1.478(14) 

O(3)-C(9)  1.51(2) 

O(4)-C(23)  1.198(8) 

O(5)-C(23)  1.301(19) 

O(5)-C(24)  1.47(2) 

O(6)-C(25)  1.196(5) 

O(7)-C(25)  1.330(5) 

O(7)-C(26)  1.454(5) 

C(8)-H(8)  1.0000 

C(8)-C(11)  1.403(16) 

C(9)-H(9)  1.0000 
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Table A6.5.4 (cont’d) 

C(9)-C(10)  1.60(3) 

C(9)-C(17)  1.54(2) 

C(10)-C(23)  1.546(18) 

C(10)-C(25)  1.52(2) 

C(11)-C(12)  1.389(12) 

C(11)-C(16)  1.379(16) 

C(12)-H(12)  0.9500 

C(12)-C(13)  1.393(10) 

C(13)-H(13)  0.9500 

C(13)-C(14)  1.359(12) 

C(14)-H(14)  0.9500 

C(14)-C(15)  1.389(11) 

C(15)-H(15)  0.9500 

C(15)-C(16)  1.374(9) 

C(16)-H(16)  0.9500 

C(17)-C(18)  1.283(10) 

C(17)-C(22)  1.418(11) 

C(18)-H(18)  0.9500 

C(18)-C(19)  1.490(9) 

C(19)-H(19)  0.9500 

C(19)-C(20)  1.374(9) 

C(20)-H(20)  0.9500 

C(20)-C(21)  1.396(6) 

C(21)-H(21)  0.9500 

C(21)-C(22)  1.389(6) 

C(22)-H(22)  0.9500 

C(24)-H(24A)  0.9800 

C(24)-H(24B)  0.9800 

C(24)-H(24C)  0.9800 

C(26)-H(26A)  0.9800 

C(26)-H(26B)  0.9800 

C(26)-H(26C)  0.9800 

O(3A)-C(8A)  1.358(15) 

O(3A)-C(9A)  1.348(18) 
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Table A6.5.4 (cont’d) 

O(4A)-C(23A)  1.185(8) 

O(5A)-C(23A)  1.334(17) 

O(5A)-C(24A)  1.43(2) 

O(6A)-C(25A)  1.203(5) 

O(7A)-C(25A)  1.320(4) 

O(7A)-C(26A)  1.455(5) 

C(8A)-H(8A)  1.0000 

C(8A)-C(11A)  1.558(17) 

C(9A)-H(9A)  1.0000 

C(9A)-C(10A)  1.61(2) 

C(9A)-C(17A)  1.456(19) 

C(10A)-C(23A)  1.523(15) 

C(10A)-C(25A)  1.558(16) 

C(11A)-C(12A)  1.378(11) 

C(11A)-C(16A)  1.423(12) 

C(12A)-H(12A)  0.9500 

C(12A)-C(13A)  1.391(7) 

C(13A)-H(13A)  0.9500 

C(13A)-C(14A)  1.393(7) 

C(14A)-H(14A)  0.9500 

C(14A)-C(15A)  1.380(8) 

C(15A)-H(15A)  0.9500 

C(15A)-C(16A)  1.390(8) 

C(16A)-H(16A)  0.9500 

C(17A)-C(18A)  1.500(13) 

C(17A)-C(22A)  1.371(11) 

C(18A)-H(18A)  0.9500 

C(18A)-C(19A)  1.307(14) 

C(19A)-H(19A)  0.9500 

C(19A)-C(20A)  1.379(11) 

C(20A)-H(20A)  0.9500 

C(20A)-C(21A)  1.381(9) 

C(21A)-H(21A)  0.9500 

C(21A)-C(22A)  1.388(6) 
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Table A6.5.4 (cont’d) 

C(22A)-H(22A)  0.9500 

C(24A)-H(24D)  0.9800 

C(24A)-H(24E)  0.9800 

C(24A)-H(24F)  0.9800 

C(26A)-H(26D)  0.9800 

C(26A)-H(26E)  0.9800 

C(26A)-H(26F)  0.9800 

 

O(1)-S(1)-N(1) 104.74(9) 

O(1)-S(1)-C(1) 108.06(10) 

O(2)-S(1)-O(1) 120.43(10) 

O(2)-S(1)-N(1) 109.52(9) 

O(2)-S(1)-C(1) 106.81(11) 

N(1)-S(1)-C(1) 106.53(8) 

C(8)-N(1)-S(1) 120.8(3) 

C(8)-N(1)-C(10) 110.1(8) 

C(10)-N(1)-S(1) 122.7(7) 

C(10A)-N(1)-C(8A) 111.5(8) 

C(2)-C(1)-S(1) 119.77(16) 

C(2)-C(1)-C(6) 120.5(2) 

C(6)-C(1)-S(1) 119.58(17) 

C(1)-C(2)-H(2) 120.4 

C(1)-C(2)-C(3) 119.1(2) 

C(3)-C(2)-H(2) 120.4 

C(2)-C(3)-H(3) 119.2 

C(2)-C(3)-C(4) 121.6(2) 

C(4)-C(3)-H(3) 119.2 

C(3)-C(4)-C(7) 120.5(2) 

C(5)-C(4)-C(3) 118.4(2) 

C(5)-C(4)-C(7) 121.1(2) 

C(4)-C(5)-H(5) 119.4 

C(4)-C(5)-C(6) 121.2(2) 

C(6)-C(5)-H(5) 119.4 

C(1)-C(6)-H(6) 120.4 
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Table A6.5.4 (cont’d) 

C(5)-C(6)-C(1) 119.2(2) 

C(5)-C(6)-H(6) 120.4 

C(4)-C(7)-H(7A) 109.5 

C(4)-C(7)-H(7B) 109.5 

C(4)-C(7)-H(7C) 109.5 

H(7A)-C(7)-H(7B) 109.5 

H(7A)-C(7)-H(7C) 109.5 

H(7B)-C(7)-H(7C) 109.5 

C(8)-O(3)-C(9) 109.2(11) 

C(23)-O(5)-C(24) 105.8(12) 

C(25)-O(7)-C(26) 114.3(3) 

N(1)-C(8)-O(3) 102.4(6) 

N(1)-C(8)-H(8) 109.6 

O(3)-C(8)-H(8) 109.6 

C(11)-C(8)-N(1) 118.1(8) 

C(11)-C(8)-O(3) 107.2(10) 

C(11)-C(8)-H(8) 109.6 

O(3)-C(9)-H(9) 110.4 

O(3)-C(9)-C(10) 104.1(13) 

O(3)-C(9)-C(17) 105.5(12) 

C(10)-C(9)-H(9) 110.4 

C(17)-C(9)-H(9) 110.4 

C(17)-C(9)-C(10) 115.7(13) 

N(1)-C(10)-C(9) 100.7(11) 

C(23)-C(10)-N(1) 115.9(12) 

C(23)-C(10)-C(9) 102.4(12) 

C(25)-C(10)-N(1) 114.0(11) 

C(25)-C(10)-C(9) 113.2(13) 

C(25)-C(10)-C(23) 109.7(10) 

C(12)-C(11)-C(8) 119.4(11) 

C(16)-C(11)-C(8) 120.9(9) 

C(16)-C(11)-C(12) 119.6(10) 

C(11)-C(12)-H(12) 119.5 

C(11)-C(12)-C(13) 120.9(8) 
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Table A6.5.4 (cont’d) 

C(13)-C(12)-H(12) 119.5 

C(12)-C(13)-H(13) 120.5 

C(14)-C(13)-C(12) 119.0(6) 

C(14)-C(13)-H(13) 120.5 

C(13)-C(14)-H(14) 119.9 

C(13)-C(14)-C(15) 120.1(6) 

C(15)-C(14)-H(14) 119.9 

C(14)-C(15)-H(15) 119.4 

C(16)-C(15)-C(14) 121.3(7) 

C(16)-C(15)-H(15) 119.4 

C(11)-C(16)-H(16) 120.5 

C(15)-C(16)-C(11) 119.0(7) 

C(15)-C(16)-H(16) 120.5 

C(18)-C(17)-C(9) 120.7(11) 

C(18)-C(17)-C(22) 121.8(7) 

C(22)-C(17)-C(9) 117.4(9) 

C(17)-C(18)-H(18) 120.0 

C(17)-C(18)-C(19) 119.9(9) 

C(19)-C(18)-H(18) 120.0 

C(18)-C(19)-H(19) 120.7 

C(20)-C(19)-C(18) 118.6(5) 

C(20)-C(19)-H(19) 120.7 

C(19)-C(20)-H(20) 120.1 

C(19)-C(20)-C(21) 119.9(4) 

C(21)-C(20)-H(20) 120.1 

C(20)-C(21)-H(21) 120.0 

C(22)-C(21)-C(20) 120.1(4) 

C(22)-C(21)-H(21) 120.0 

C(17)-C(22)-H(22) 120.2 

C(21)-C(22)-C(17) 119.7(4) 

C(21)-C(22)-H(22) 120.2 

O(4)-C(23)-O(5) 131.1(9) 

O(4)-C(23)-C(10) 119.8(8) 

O(5)-C(23)-C(10) 107.1(10) 
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Table A6.5.4 (cont’d) 

O(5)-C(24)-H(24A) 109.5 

O(5)-C(24)-H(24B) 109.5 

O(5)-C(24)-H(24C) 109.5 

H(24A)-C(24)-H(24B) 109.5 

H(24A)-C(24)-H(24C) 109.5 

H(24B)-C(24)-H(24C) 109.5 

O(6)-C(25)-O(7) 125.5(3) 

O(6)-C(25)-C(10) 123.6(7) 

O(7)-C(25)-C(10) 110.8(7) 

O(7)-C(26)-H(26A) 109.5 

O(7)-C(26)-H(26B) 109.5 

O(7)-C(26)-H(26C) 109.5 

H(26A)-C(26)-H(26B) 109.5 

H(26A)-C(26)-H(26C) 109.5 

H(26B)-C(26)-H(26C) 109.5 

C(9A)-O(3A)-C(8A) 111.0(10) 

C(23A)-O(5A)-C(24A) 125.9(13) 

C(25A)-O(7A)-C(26A) 113.7(3) 

N(1)-C(8A)-H(8A) 112.3 

N(1)-C(8A)-C(11A) 108.6(9) 

O(3A)-C(8A)-N(1) 100.0(8) 

O(3A)-C(8A)-H(8A) 112.3 

O(3A)-C(8A)-C(11A) 110.8(10) 

C(11A)-C(8A)-H(8A) 112.3 

O(3A)-C(9A)-H(9A) 107.5 

O(3A)-C(9A)-C(10A) 104.2(11) 

O(3A)-C(9A)-C(17A) 113.3(11) 

C(10A)-C(9A)-H(9A) 107.5 

C(17A)-C(9A)-H(9A) 107.5 

C(17A)-C(9A)-C(10A) 116.3(11) 

N(1)-C(10A)-C(9A) 101.5(10) 

N(1)-C(10A)-C(23A) 117.3(10) 

N(1)-C(10A)-C(25A) 107.1(9) 

C(23A)-C(10A)-C(9A) 107.1(9) 
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Table A6.5.4 (cont’d) 

C(23A)-C(10A)-C(25A) 115.7(9) 

C(25A)-C(10A)-C(9A) 106.7(9) 

C(12A)-C(11A)-C(8A) 119.8(9) 

C(12A)-C(11A)-C(16A) 119.7(7) 

C(16A)-C(11A)-C(8A) 120.4(8) 

C(11A)-C(12A)-H(12A) 120.0 

C(11A)-C(12A)-C(13A) 120.0(6) 

C(13A)-C(12A)-H(12A) 120.0 

C(12A)-C(13A)-H(13A) 119.8 

C(12A)-C(13A)-C(14A) 120.3(5) 

C(14A)-C(13A)-H(13A) 119.8 

C(13A)-C(14A)-H(14A) 119.9 

C(15A)-C(14A)-C(13A) 120.2(5) 

C(15A)-C(14A)-H(14A) 119.9 

C(14A)-C(15A)-H(15A) 119.9 

C(14A)-C(15A)-C(16A) 120.2(5) 

C(16A)-C(15A)-H(15A) 119.9 

C(11A)-C(16A)-H(16A) 120.3 

C(15A)-C(16A)-C(11A) 119.5(6) 

C(15A)-C(16A)-H(16A) 120.3 

C(9A)-C(17A)-C(18A) 120.4(10) 

C(22A)-C(17A)-C(9A) 121.8(8) 

C(22A)-C(17A)-C(18A) 117.7(8) 

C(17A)-C(18A)-H(18A) 120.8 

C(19A)-C(18A)-C(17A) 118.3(11) 

C(19A)-C(18A)-H(18A) 120.8 

C(18A)-C(19A)-H(19A) 118.4 

C(18A)-C(19A)-C(20A) 123.2(8) 

C(20A)-C(19A)-H(19A) 118.4 

C(19A)-C(20A)-H(20A) 120.0 

C(19A)-C(20A)-C(21A) 119.9(5) 

C(21A)-C(20A)-H(20A) 120.0 

C(20A)-C(21A)-H(21A) 120.1 

C(20A)-C(21A)-C(22A) 119.8(5) 
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Table A6.5.4 (cont’d) 

C(22A)-C(21A)-H(21A) 120.1 

C(17A)-C(22A)-C(21A) 121.0(5) 

C(17A)-C(22A)-H(22A) 119.5 

C(21A)-C(22A)-H(22A) 119.5 

O(4A)-C(23A)-O(5A) 114.2(8) 

O(4A)-C(23A)-C(10A) 126.9(8) 

O(5A)-C(23A)-C(10A) 118.7(9) 

O(5A)-C(24A)-H(24D) 109.5 

O(5A)-C(24A)-H(24E) 109.5 

O(5A)-C(24A)-H(24F) 109.5 

H(24D)-C(24A)-H(24E) 109.5 

H(24D)-C(24A)-H(24F) 109.5 

H(24E)-C(24A)-H(24F) 109.5 

O(6A)-C(25A)-O(7A) 124.5(3) 

O(6A)-C(25A)-C(10A) 120.7(5) 

O(7A)-C(25A)-C(10A) 114.6(5) 

O(7A)-C(26A)-H(26D) 109.5 

O(7A)-C(26A)-H(26E) 109.5 

O(7A)-C(26A)-H(26F) 109.5 

H(26D)-C(26A)-H(26E) 109.5 

H(26D)-C(26A)-H(26F) 109.5 

H(26E)-C(26A)-H(26F) 109.5 
  ___________________________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
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Table A6.5.5  Anisotropic displacement parameters  (Å2x103) for oxazolidine 375.  The anisotropic 

displacement factor exponent takes the form: -2π2[ h2a*2U11  + ... + 2hka*b*U12]. 

______________________________________________________________________________  
 U11 U22  U33 U23 U13 U12 
______________________________________________________________________________  

S(1) 307(2)  186(2) 231(2)  33(2) -63(2)  -10(2) 

O(1) 299(7)  260(6) 277(7)  110(5) -33(6)  3(5) 

O(2) 504(10)  189(6) 359(8)  -28(6) -108(7)  -39(6) 

N(1) 222(7)  202(6) 190(6)  63(5) -40(5)  -31(5) 

C(1) 303(8)  267(8) 212(7)  15(7) -14(8)  46(6) 

C(2) 286(10)  507(13) 276(10)  -125(9) 36(8)  -28(9) 

C(3) 307(11)  485(13) 337(11)  -73(10) 37(9)  -18(10) 

C(4) 296(9)  390(10) 257(10)  110(8) 35(7)  86(8) 

C(5) 410(12)  399(12) 294(10)  26(9) 30(9)  217(10) 

C(6) 417(11)  278(9) 275(9)  -42(7) -51(8)  135(9) 

C(7) 304(10)  553(15) 381(12)  187(11) 61(9)  93(10) 

O(3) 460(40)  160(30) 310(40)  0(20) 120(30)  110(30) 

O(4) 174(12)  241(13) 269(14)  -59(11) 87(10)  -40(10) 

O(5) 190(17)  160(30) 240(40)  -20(20) -30(20)  -50(20) 

O(6) 217(12)  216(13) 152(11)  5(9) 47(9)  -27(10) 

O(7) 153(13)  231(13) 161(11)  -15(10) -1(10)  -22(11) 

C(8) 230(30)  62(19) 100(30)  -50(18) -40(20)  -7(18) 

C(9) 150(30)  330(60) 170(40)  120(40) 70(20)  30(30) 

C(10) 160(50)  180(30) 140(20)  -39(17) 70(30)  0(30) 

C(11) 240(40)  190(20) 200(30)  0(20) -60(20)  -20(30) 

C(12) 250(30)  340(20) 200(30)  -40(20) -40(20)  -1(19) 

C(13) 240(20)  470(30) 510(40)  130(30) -50(20)  -60(20) 

C(14) 290(30)  460(40) 590(50)  160(40) 210(30)  110(30) 

C(15) 500(40)  320(30) 490(40)  40(30) 300(40)  140(30) 

C(16) 410(40)  180(20) 280(20)  -15(17) 140(30)  0(20) 

C(17) 90(30)  90(20) 200(30)  15(18) 7(19)  -23(16) 

C(18) 220(20)  15(15) 230(30)  -4(13) 16(19)  2(14) 

C(19) 320(30)  90(20) 330(20)  38(15) 50(20)  -60(18) 

C(20) 340(20)  119(15) 290(20)  -3(14) -48(18)  14(15) 

C(21) 245(17)  156(15) 180(16)  -8(13) -10(14)  27(13) 
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Table A6.5.5 (cont’d) 

C(22) 171(16)  153(15) 149(15)  -6(11) -8(12)  -31(12) 

C(23) 190(30)  180(20) 140(20)  25(15) -25(17)  -80(20) 

C(24) 220(30)  130(20) 350(50)  10(30) -40(30)  -10(30) 

C(25) 133(15)  148(13) 145(15)  4(11) 12(12)  34(12) 

C(26) 303(19)  281(18) 184(16)  -36(13) -26(13)  -96(15) 

O(3A) 140(20)  190(30) 70(20)  66(16) -31(17)  -61(18) 

O(4A) 256(14)  344(14) 299(15)  -66(12) 118(12)  -107(12) 

O(5A) 260(20)  140(30) 270(40)  0(20) -50(30)  -14(18) 

O(6A) 177(13)  288(13) 215(12)  -71(10) 12(10)  -61(10) 

O(7A) 191(11)  331(15) 125(10)  -33(10) 4(9)  -16(10) 

C(8A) 500(60)  380(50) 210(30)  200(30) -110(30)  -90(30) 

C(9A) 70(30)  190(20) 120(30)  32(17) -20(30)  -40(30) 

C(10A) 150(40)  90(20) 90(30)  0(17) 30(20)  -30(20) 

C(11A) 220(40)  210(30) 90(20)  -4(17) 10(20)  20(30) 

C(12A) 210(20)  216(16) 150(20)  -35(17) 29(16)  -32(15) 

C(13A) 225(18)  255(18) 290(20)  37(15) 101(16)  -5(14) 

C(14A) 260(20)  390(20) 290(20)  84(19) 134(17)  40(20) 

C(15A) 320(30)  390(30) 182(17)  24(19) 100(20)  120(20) 

C(16A) 310(30)  270(30) 175(16)  2(16) 17(19)  21(19) 

C(17A) 140(30)  140(30) 170(20)  58(19) -45(16)  -15(17) 

C(18A) 500(50)  630(60) 210(30)  0(30) 10(30)  250(40) 

C(19A) 540(50)  150(20) 440(30)  31(19) -160(30)  -80(30) 

C(20A) 660(40)  220(20) 290(20)  -85(19) -130(30)  210(20) 

C(21A) 550(30)  320(20) 207(17)  30(16) 42(19)  250(20) 

C(22A) 310(20)  248(18) 212(18)  64(14) 66(15)  117(16) 

C(23A) 160(30)  163(16) 140(20)  -14(14) -3(16)  -17(18) 

C(24A) 420(50)  300(50) 510(80)  -30(50) -110(50)  -210(30) 

C(25A) 146(15)  150(13) 116(12)  12(10) -2(12)  17(12) 

C(26A) 312(18)  480(20) 150(14)  -139(15) -44(13)  16(17) 

______________________________________________________________________________ 
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Table A6.5.6      Hydrogen coordinates (x104) and isotropic  displacement parameters (Å2x103)  

for oxazolidine 375 

________________________________________________________________________________  
 x  y  z  Uiso 
________________________________________________________________________________  
  
H(2) 959 765 728 43 

H(3) 1047 784 744 45 

H(5) 1064 546 375 44 

H(6) 975 529 354 39 

H(7A) 1131 760 612 62 

H(7B) 1138 654 479 62 

H(7C) 1133 614 661 62 

H(8) 841 745 266 16 

H(9) 771 918 425 26 

H(12) 939 956 369 31 

H(13) 1017 971 237 48 

H(14) 1037 823 45 53 

H(15) 979 667 -24 52 

H(16) 899 658 96 35 

H(18) 866 1121 414 19 

H(19) 873 1330 541 29 

H(20) 811 1387 727 30 

H(21) 748 1242 801 23 

H(22) 747 1040 687 19 

H(24A) 737 481 462 35 

H(24B) 704 608 471 35 

H(24C) 725 545 629 35 

H(26A) 909 1074 870 38 

H(26B) 902 947 971 38 

H(26C) 854 1034 933 38 

H(8A) 846 751 246 44 

H(9A) 778 889 407 15 

H(12A) 944 948 421 23 

H(13A) 1028 972 329 31 

H(14A) 1057 850 117 38 
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Table A6.5.6 (cont’d) 

H(15A) 1003 706 -6 36 

H(16A) 918 687 76 30 

H(18A) 871 1133 456 54 

H(19A) 853 1323 565 45 

H(20A) 782 1356 719 47 

H(21A) 720 1199 740 43 

H(22A) 733 1003 622 31 

H(24D) 706 597 455 62 

H(24E) 715 547 631 62 

H(24F) 736 467 485 62 

H(26D) 851 1069 909 47 

H(26E) 882 954 985 47 

H(26F) 826 986 1047 47 
________________________________________________________________________________  
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CHAPTER 4 

Progress toward the Total Synthesis of Calophyline A 

 

 

4.1  INTRODUCTION 

Calophyline A is a monoterpenoid indole alkaloid isolated in 2012.  Although it has 

no known biological activity, we were interested in its unusual caged structure, likely the 

result of a rearrangement of an akuammaline alkaloid precursor.  This chapter briefly 

describes the isolation and proposed biosynthesis of calophyline A, summarizes a total 

synthesis recently disclosed by Zu and co-workers, and then proceeds to discuss the 

various synthetic strategies pursued by our research laboratory. 

 

4.1.1  ISOLATION AND PROPERTIES OF CALOPHYLINE A 

Calophyline A (387, Figure 4.1) is a monoterpenoid alkaloid isolated by Zou, Li, and 

co-workers in 2012 from the trunk bark of the Winchia calophylla A. DC. (Apocynaceae) 

tree of Yunnan Province and Hainan island in southern China.1  The leaves and trunk 

bark of W. calophylla have been used in traditional Chinese medicine for the treatment of 
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various respiratory conditions.  The structure of 387 was determined by 

spectroscopic methods and confirmed by X-ray crystallographic analysis.  Although other 

compounds found in the bark of W. calophylla are known to posess modest activity 

against prostate and breast cancer, calophyline A displayed no such activity.  

 

Figure 4.1  Structure of calophyline A 

 

 

4.1.2  TANTILLO’S BIOSYNTHETIC PROPOSAL 

In their isolation report, Zou, Li, and co-workers recognized calophylin A as a 

rearranged monoterpenoid indole alkaloid with an unpreccedented 7/5 ring system  and 

proposed the known alkaloid rhazimol (388, Scheme 4.1) as a biosynthetic precursor.  

Their isolation report includes a proposed biosynthesis from rhazimol,1 but subsequent 

computational studies by Tantillo and co-workers found a key rearrangement step to be 

energetically unviable.2  Tantillo proposed the alternative biosynthesis shown in Scheme 

4.1, which avoids this unlikely rearrangement and relies instead upon biologically 

precedented oxidations and simple carbonyl chemistry.  In this route, rhazimol is 
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oxidized to hemiaminal 389, which opens to ketone 390.  Tautomerization to the 

enol (391) and conjugate addition of the secondary amino group into the α,β-unsaturated 

imine affords enamine 392, which tautomerizes to imine 393.  Formation of the 

tetrahydrofuran ring provides 394 and oxdiation to reform the C10 ketone and N-

methylation complete the biosynthesis of calophyline A. 

 

Scheme 4.1  Tantillo’s proposal for the biosynthesis of calophyline A3 

 

 

4.1.3  ZU’S TOTAL SYNTHESIS 

In 2016, Zu and co-workers reported the first total synthesis of calophyline A.  

Retrosynthetically, they simplified calophyline A to 396 by a late-stage aldol addition 

into formaldehyde (Scheme 4.2).  This was further diconnected using a Heck cyclization 

to afford iodide 397, which would be accessed from cyclohexanol 399 via ketone 398.  In 
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the key step, 399 would be formed by an aza-pinacol rearrangement4,5 of 

spirocycle 400, itself readily available from known indoline 401.4 

 

Scheme 4.2  Zu’s retrosynthesis of calophyline A 

 

In the forward direction, 401 was advanced to aza-pinacol substrate 400 over a three step 

sequence (Scheme 4.3).  Heating triol 400 with trifluoroacetic acid promoted the key 

cascade reaction, which consists of indoline deprotection, aza-pinacol rearrangement, 

selective dehydration to form an α,β-unsaturated imine, and conjugate addition of the 

sulfonamide group, affording 399 in 76% yield.  A series of functional group 

interconversions and alkylation with bromide 402 furnished vinyl iodide 397, which was 

advanced to aldehyde 403 by an intramolecular Heck reaction.  A three step sequence 

effected indoline deprotection, indolenine formation, and ketone installation to afford 

404.  Finally, aldol reaction with formaldehyde installed the hydroxymethyl bridge and a 

one-pot N-methylation and Pinnick sequence delivered the natural product. 
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Scheme 4.3  Zu’s total synthesis of calophyline A 

 

 

4.2  INVESTIGATION OF A CYCLOPROPANE CYCLOADDITION 

ROUTE TOWARD THE SYNTHESIS OF CALOPHYLINE A 

Our initial synthetic plan was inspired by our previous studies of formal 

cycloadditions of cyclopropanes.  We predicted that a C2–C3 cyclopropanated indole 

would be reactive enough to undergo formal (3 + 3) cycloaddition with an appropriate 

1,3-dipole to construct the central cyclohexanone ring. 

 

4.2.1  RETROSYNTEHTIC ANALYSIS  

Retrosynthetically we envisioned calophyline A would arise from pentacycle 405 by 

hemiaminal construction, lactone hydrolysis, and formation of the quaternary ammonium 
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salt (Scheme 4.4).  The cyclohexanone ring of 405 would be assembled by a (3 + 

3) reaction between a cyclopropanated indole such as 407 and a suitable dipole (406).  

Cyclopropane 407 would be accessed from commercially available tryptophol (408). 

 

Scheme 4.4  Initial retrosynthetic analysis 

 

 

4.2.2  ATTEMPTS TO SYNTHESIZE CYCLOPROPANATED INDOLES 

Although (3 + 3) cycloadditions between cyclopropanes and 1,3-dipoles are not 

commonly known,6 we initially approached the route with a focus on exploring the 

reactivity of cyclopropanated indoles such as 407 (Scheme 4.4).  While the synthesis and 

reactivity of several cyclopropanated indoles have been disclosed,7,8 we were interested in 

compounds posessing two geminal acceptor groups, which should increase the 

cyclopropane reactivity and would be synthetically useful in a route to calophyline A. 

We began our studies with efforts to synthesize a variety of C2–C3 cyclopropanated 

indoles beginning with those posessing geminal acceptor groups.  To investigate the 

effect of the indole nitrogen electronics, protected trytophols (409 and 410) were 
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subjected to the two-step sequence shown in Scheme 4.5 to access diazomaloantes 

411 and 412.  Upon treatment with various cyclopropanation conditions,9 however, only 

decomposition, carbenoid dimerization, or Boc cleavage results were obtained.  

 

Scheme 4.5  Attempted syntheses of cyclopropanated indoles with two acceptor groups 

 

Suspecting that the combination of two acceptor groups and a strong nitrogen donor 

group was too polarizing for cyclopropane stability, we chose to synthesize various 

cyclopropanes with only one acceptor group in the hope they would be isolable.  

Trytophol (408) was advanced to 415 in good yield using Fukuyama’s procedure for 

diazoacetate synthesis (Scheme 4.6A).10  Protection of the indole nitrogen with a Boc 

group furnished diazoacetate 416.  A more electron-rich indole was incorporated by 

reacting N-methyl tryptophol (409) with acid chloride 417 and in situ sulfinate 

elimination (Scheme 4.6B).11  Unfortunately, despite an examination of various catalysts, 

we were unable to form the desired cyclopropanes (420 and 421), with most conditions 

resulting in decomposition (Scheme 4.6C). 
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Scheme 4.6  Attempted syntheses of cyclopropanated indoles with one acceptor group 

 

 

4.2.3  DISCOVERY OF A (3 + 2) CYCLOADDITION RESULT AND THE 

DESIGN OF A NEW SYNTHETIC STRATEGY 

In light of our inability to achieve an indole cyclopropanation using either acceptor–

acceptor diazo substrates such as 411 or 412 or acceptor diazo substrates like 416 or 419, 

we chose to investigate a donor–acceptor diazo substrate.  Reactions of donor–acceptor 

carbenoids (derived from donor–acceptor diazo compounds) are often more selective than 

those of other carbenoids due to the stabilizing effect of the electron-donating group 

(Scheme 4.7A).12  Furthermore, Qin and co-workers made use of a donor–acceptor diazo 

substrate in their indole cyclopropanation en route to communesin F (Scheme 4.7B).7c 
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Scheme 4.7  A) General classes of diazo compounds.  B) Qin’s use of a donor–acceptor 

diazo compound cyclopropanation in a total synthesis 

 

In our case, cyclopropanation with an aryldiazo compound similar to 425 would 

produce a cyclopropane likely insufficiently reactive to undergo a desired cycloaddition 

reaction.  Additionally, the aryl group would ultimately need to be removed, which we 

anticipated to be challenging.  However, Davies and co-workers have shown that styrenyl 

diazoacetates also form donor–acceptor carbenoids when treated with rhodium 

catalysts.13  If we were to use a styrenyl diazoacetate substrate in our cyclopropanation,13 

a simple oxidative cleavage of the styrene olefin could install an acceptor group where 

needed on the cyclopropane framework. 
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dichloromethane furnished tetracycle 429 in 32% yield (Scheme 4.8 and Figure 

4.2).  This result is perhaps unsurprising, as Davies has reported the analgous rhodium-

catalyzed intermolecular (3 + 2) cyloaddition between indoles and vinyl diazoacetates.14 

 

Scheme 4.8  Synthesis and reaction of styrenyl diazoacetate 428 

 

Figure 4.2  Crystal structure of tetracycle 429  

 

 We imagined a (3 + 2) cycloaddition reaction could be productive if the phenyl 

substitutent was replaced with a group that could act as an electrofuge in a later 

fragmentation step (432→433, Scheme 4.9).  More specifically, we envisioned (3 + 2) 

cycloadduct could be cyclopropanated to afford 432, which could then be converted to 

tetracycle 433 by a cyclopropane fragmentation step.  Closure of the pyrrolidine ring by 

epoxide opening would furnish 434, which after oxidation would be advanced to 

calophyline A as in our initial synthetic plan. 
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Scheme 4.9  Revised synthetic plan for calophyline A 

 

To explore the feasibility of this revised plan, we synthesized a variety of vinyl 

diazoacetates and subjected them to metal-catalyzed dediazotization conditions.  The 

results are shown in Scheme 4.10.  Unfortunately, despite investigating compounds with 

either olefin geometry containing various R2 groups which could serve as the deisred 

electrofuge (or readily be converted to an electrofugre) such as carboxylates and a furan 

rings (entries 2–8), we were unable to observe the desired cycloaddition reaction.  The 

use of a diazo enol silane substrate, which would form a cyclopentanone product 

following desilylation, was also unsuccessful.  Our attempts to investigate substrates 

containing other R2 groups, including TMS, SnBu3, and styrenyl, were frustrated by 

difficulties in their synthesis. 
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Scheme 4.10  Unsuccessful (3 + 2) cycloadditions of various vinyl diazoacetates 

 

Concurrently with our efforts to indentify a (3 + 2) cycloaddition substrate, we briefly 

examined a few cyclopropanation conditions, using tetracycle 429 as a model system 

(Scheme 4.11).  To our disappointment, treatment with either standard Corey–

Chaykovsky conditions (entry 1) or a substituted sulfur ylide (entry 2) resulted in little 

reaction.  Exposure to the rhodium carbenoid derived from ethyl diazoacetate led to 

decomposition (entry 3).  At this point we concluded our studies of an indole-vinyl 

diazoacetate (3 + 2) cycloaddition/cyclopropanation/fragmentation approach in favor of 

other synthetic routes. 
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Scheme 4.11  Attempts to cyclopropanate tetracycle 429 

 

 

4.3  INVESTIGATION OF A [4 + 2] CYCLOADDITION ROUTE 

TOWARD THE SYNTHESIS OF CALOPHYLINE A 

After our lack of success with the initial (3 + 3) disconnection or the (3 + 

2)/cyclopropanation/fragmentation sequence, we began to consider disconnections not 

involving cyclopropane intermediates.  Our efforts toward a synthesis with a key [4 + 2] 

cycloaddition step are presented in this section.  

 

4.3.1  RETROSYNTHETIC ANALYSIS 

Preserving our endgame strategy, we envisioned that calophyline could be accessed 

by a series of transformations from a pentacycle such as 439, which itself could arise 

from enone 440 by a radical conjugate addition (Scheme 4.12).  Installation of the 

allylamino group would be accomplished by amine opening of epoxide 441, which would 

in turn be accessed from cyclohexadiene 442.15  We planned to construct the 
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or ether (X = H2) linkage.  Cycloaddition precursors would be readily aviailable 

from tryptophol. 

 

Scheme 4.12  General retrosynthetic analysis for a [4 + 2] route to calophyline A 

 

Perhaps the most common cycloddition approach for the formation of 

cyclohexadienes is a [4 + 2]/retro-[4 + 2] stragey.  This is often carried out with pyrone 

dienes, extruding carbon dioxide to afford cyclohexadiene products, a strategy commonly 

seen in complex molecule synthesis.16  While only a single report of pyrone-indole 

cycloaddition reactions is known (Scheme 4.13A),17 similar reactions of pyridazines 

(extruding nitrogen gas)18 and thiophene-1,1-dioxides (extruding sulfur dioxide)19 have 

been successfully carried out with indole dipolarophiles, leading to the fused 

cyclohexadiene products in good yields (Scheme 4.13B and C). 
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Scheme 4.13  Reaction of pyrones (A), pyridazines (B), and thiophene-1,1-dioxides (C) in [4 

+ 2]/retro [4 + 2] sequences 

 

An alternative cycloaddition-based approach could involve application of a 

cyclobutadiene cycloaddition.  Snapper and co-workers have reported that tethered 

cyclobutadienes (unmasked in situ from the cyclobutadienyliron tricarbonyl complex by 

treatment with an oxidant) readily undergo cycloadditions with proximal olefins to afford 

fused cyclobutene products (Scheme 4.14).20  Upon heating, these strained products are 

smoothly converted to the cyclohexadienes by a 4π electrocyclic ring opening step.  A 

unique advantage of the method is the ability to engage non-activated olefins as 

dienophiles in the [4 + 2] step, presumably due to the extreme reactivity of the 

cyclobutadiene moiety. 
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Scheme 4.14  Reaction of a cyclobutadienyliron complex in a [4 + 2]/electrocyclic ring 

opening sequence 

 

 

4.3.2  ATTEMPTS TO ACHIEVE THE DESIRED [4 + 2] CYCLOADDITION 

In the forward direction, we began our studies with a pyridazine diene.  Coupling of 

3-pyridazine carboxylic acid (456) with tryptophol afforded ester 457, which was heated 

in diethylaniline in a microwave (Scheme 4.15A).  Unfortunately, no reaction was 

observed, which may be due to the preferred s-cis conformation of the ester linkage21 

preventing the substrate from adopting a reactive orientation.  Although we were unable 

to access a 3-hydroxymethylpyridazine building block to create the necessary ether 

linkage (which would require a subsequent allylic oxidation to install the ester functional 

group), we thought it would remain feasible to access the product from a substrate with a 

three-carbon ether tether, such as 462 (Scheme 4.15B).  To this end, we synthesized aryl 

ethers 460 and 461 by nucleophilic aromatic substitution reactions with readily avialable 

3,6-dichloropyridazine and heated them in diethylaniline.  Unsurprisingly, the Boc group 

of 460 was lost, but no further reactivity was observed.  In the case of the very electron-

rich indole 461, no reactivity was detected whatesoever. 
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Scheme 4.15  Attempts to apply an indole-pyridazine [4 +2]/retro-[4 + 2] cycloaddition 

toward the synthesis of calophyline A 

 

 

Concurrently with our investigations into indole-pyridazine cycloadditions, we 

carried out studies of similar cycloadditions of thiophene-1,1-dioxides.  We initially 

synthesized an ester-linked substrate by coupling tryptophol with thiophene-2-carboxylic 

acid and subsequent oxidation of the thiophene sulfur using m-CPBA (Scheme 4.16A).  

While the oxidation was successful, the thiophene-1,1-dioxide was impossible to separate 

from excess reagent and benzoic acid byproduct.  The mixture was heated in 

chlorobenzene to promote the desired cycloaddition cascade, but no reaction was 

observed. 
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Scheme 4.16  A) An attempt to apply an ester-linked indole-thiophene-1,1-dioxide [4 

+2]/retro-[4 + 2] cycloaddition toward the synthesis of calophyline A.  B) Attempts to oxidize 

thiopene-2-carboxylic esters. 

 

To circumvent the issues with purification of the coupled thiophene-1,1-dioxide, we 

attempted to couple a tryptophol partner to the fully oxidized thiophene dioxide directly.  

A straightforwad approach would involve oxidation of a simpler thiophene-2-carboxylic 

ester, cleavage to the carboxylic acid, and coupling to tryptophol.  Unfortunately, 

attempts to access the necessary thiophene dioxides using several different conditions 

were not successful (Scheme 4.16B).  Oxidations of protected 2-hydroxymetylthiophenes 

were also unsuccessful. 

N
H

OH DCC, DMAP
CH2Cl2, 0→23 °C

(95% yield)

408

464

A)
SHO2C

N
H

O

O

S

465

O
O

B)

unable to remove 
oxidation byproducts

100 °C, PhCl

N
H

466

O
O

H

1.

2.  m-CPBA, MeOH
     CHCl3, 23 °C

St-BuO2C

     CHCl3, 23 °C
m-CPBA, MeOH St-BuO2C OO

467 468

no reaction

St-BuO2C

     DCE, 84 °C
m-CPBA SHO2C OO

467 469

unable to remove excess 
reagent and byproduct

St-BuO2C

     acetone, 23 °C
DMDO St-BuO2C OO

467 468

no reaction

SMeO2C

DCE, 84 °C
m-CPBA SMeO2C OO

470 471

no reaction



Chapter 4 – Progress toward the Total Synthesis of Calophyline A  540 

Realizing that the ester linkage between the indole and diene fragments was 

likely problematic, we directed efforts toward the synthesis of an ether-linked substrate.  

Despite exploring a variety of bases, solvents, and leaving groups, efforts to couple 2-

hydroxymethylthiophene (473) with indole-containing electrophiles and efforts to couple 

2-bromomethylthiophene (476) with tryptophols were not successful (Scheme 4.17). 

 

Scheme 4.17  Attempted synthesis of an ether-linked indole-thiophene-1,1-dioxide cycloaddition 

substrate 

 

As an alternative to the intramolecular cycloadditions discussed above, we also 

briefly examined the possibility of an intermolecular reaction.  If known 2,5-

dibromothiophene-1,1-dioxide (477, Scheme 4.18) were used as the diene, a palladium-

catalyzed carbonylative esterification reaction would transform the cycloadduct (478) 

into a cyclohexadiene very similar to the desired intramolecular cycloaddition products 

(479).  Disappointingly, 477 failed to show any reactivity when heated with tryptophol or 

protected variants.  Diene 477 also failed to react with indole, suggesting it may not be 

sufficiently reactive for our application. 
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Scheme 4.18  Unsuccessful intermolecular cycloadditions with 2,5-dibromothiophene-1,1-

dioxide 

 

Despite only a single method for pyrone-indole [4 + 2] reactions, we briefly explored 

such an approach in our synthesis.  Perhaps unsurprisingly, the intermolecular reactions 

were unsuccessful, with no reactivity observed (Scheme 4.19). 

 

Scheme 4.19  Unsuccessful intermolecular cycloadditions with a pyrone diene 

 

Finding the [4 + 2]/retro-[4 + 2] step to be challenging, we turned our attention to a 

final [4 + 2] strategy: the use of a cyclobutadiene Diels–Alder/electrocyclic ring opening 

sequence.  Iron complex 487 was prepared from dimethyl malonate (485) and 1,1,3,3-

tetramethoxypropane (486) according to literature proceedures (Scheme 4.20A).22,23  The 

ester-linked cycloaddition substrate was available in a single step by DCC coupling, 

albeit in low yield.  Exposure to ceric ammonium nitrate (CAN) to promote oxidative 

unmasking of the cyclobutadiene moeity and cycloaddition resulted in only unidentifiable 

decomposition products, likely due to competitive oxidation or nitration of the indole ring 

(Scheme 4.20B).24  The use of trimethylamine N-oxide (TMAO) in place of CAN was 

also unsuccessful. 
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The preparation of an ether-linked substrate was briefly attempted, using 

known hydroxymethyl-substituted cyclobutadienyliron complex 49125 (Scheme 4.20C).  

We were disappointed to note that Brønsted or Lewis acid catalyzed methods were not 

able to successfully couple 491 to tryptophol.  Future studies could include reaction of a 

tryptophol derivative with the trichloroacetimidate 49325 or known bromomethyl-

substituted cyclobutadienyliron complex 494.26 

 

Scheme 4.20  Exploration of an indole-cyclobutadiene [4 + 2]/electrocyclic ring opening sequence 
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such a compound by a different method.  We focused on an intramolecular [2 + 2 

+ 2] cycloaddition between two alkynes and an alkene, a method frequently used for the 

construction of complex cyclohexadienes from relatively simple precursors.27 

 

4.4.1  SYNTHETIC PRECEDENT AND RETROSYNTHETIC ANALYSIS 

We reasoned that engaging the indole C2–C3 bond as the alkene partner in an 

intramolecular alkene-alkyne-alkyne [2 + 2 + 2] cycloaddition could form a 

cyclohexadiene similar  to the desired intermediate of the [4 + 2] route previsouly 

discussed.  Examples of [2 + 2 + 2] cycloadditions utilizing the indole C2–C3 bond as a 

2π component are known, with Vollhardt reporting several examples.28  Substrates with 

the alkyne units tethered at either the indole nitrogen or at both the nitrogen and the C3 

position are known to be successful, and some intermolecular examples are shown as 

well.  One example from Vollhardt’s laboratory is shown in Scheme 4.21. 

 

Scheme 4.21  An example of a [2 + 2 + 2] cycloaddition engaging the indole C2–C3 bond28c 

 

Retrosynthetically, we envisioned that calophyline could be accessed from pentacycle 

497, itself formed from cyclohexadiene 498 by various olefin functionalizations (Scheme 

4.22).  The cyclohexadiene would be formed by an intramolecular [2 + 2 + 2] 
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cycloadditions of a substrate such as 499, which would be available from 

tryptophol (408).  

Scheme 4.22  Retrosynthetic analysis employing a [2 + 2 + 2] cycloaddition 

 

 

4.4.2  EXPLORATION OF A [2 + 2 + 2] STRATEGY 

Given that no examples existed of intramolecular [2 + 2 + 2] cycloadditions between 

an indole C2–C3 bond and a diyne fragment tethered at the indole 3-position, we chose to 

perform preliminary studies on a more readily available model system rather than the 

ynamide shown in Scheme 4.22.  To construct such a system, N-Boc tryptophol was O-

propargylated with bromide 500 to afford diyne 501 (Scheme 4.23).  A portion of this 

material was subjected to silylation of the terminal alkyne to install a group suitable for 

subsequent Tamao–Fleming oxidation.  With these two substrates in hand, a variety of 

catalysts were screened for activity in the desired cycloaddition reaction.  Unfortunately, 

only decomposition or a lack of reactivity were observed.  Given the difficulties in 

achieving the necessary reactivity in a simple model system, we elected to conclude 

explorations of the [2 + 2 + 2] cycloadditions route at this point. 
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Scheme 4.23  Investigation of an intramolecular [2 + 2 + 2] cycloaddition toward the total 

synthesis of calophyline A 

 

 

4.5  FUTURE DIRECTION: CONSIDERATION OF A BROMOOXINDOLE 

ALKYLATION ROUTE TOWARD THE SYNTHESIS OF CALOPHYLINE A 

A potential future route to explore involves the creation of the quaternary stereocenter 

at the indole C3 position by using the bromooxindole alkylation methodology previously 

developed in our laboratory.  In 2007, our research group reported the facile reaction of 

unsubstituted malonates with 3-bromooxindoles to form all-carbon quaternary 

stereocenters,29 and the asymmetric variant was reported in 2009 (Scheme 4.24A).30  Our 

laboratory later applied the analogous reaction with a 2-aryl malonate in the formal 

syntheses of communesin F and perophoramidine (Scheme 4.24B).31  Although the 

conditions as presently optimized are not ideal for reactions of 2-alkylmalonate 

nucleophiles, an unpublished example with 2-allyl diethyl malonate is known, forming 3-

allyloxindole 512 in low yield (Scheme 4.24C).32   
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Scheme 4.24  Reactions of 3-bromooxindoles with malonate nucleophiles 

 

The proposed route to calophyline A would commence with an alkylation product 

such as 512 (Scheme 4.24C).  Wacker oxidation would afford methyl ketone 513, which 

would then undergo an intramolecular condensation33 to furnish tricycle 514.  This 

intermediate could be converted to tetracycle 515 by hydroxyl deprotection and 

diastereoselective lactonization.  This compound could conceivably be advanced to 

calophyline A by way of an intermediate such as enoate 516. 
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Scheme 4.25  A potential oxindole alkylation route to calophyline A 

 

 

4.6  CONCLUSIONS 

In summary, our efforts toward the total synthesis of calophyline A are described, 

including routes featuring a cyclopropanated indole (3 + 3) cycloaddition, an indole-vinyl 

diazoacetate (3 + 2) cycloaddition, an indole-diene [4 + 2]/retro-[4 + 2] or [4 + 

2]/electrocyclic ring opening cascade, and an indole-diyne [2 + 2 + 2] cycloaddition.  

Future studies may include consideration of a bromooxindole alkylation approach. 
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tryptophol (410),37 acid chloride 417,11 carboxylic acid 427,38 N-(4-

methoxybenzyl)tryptophol (459),37 thiophene 467,39 thiophene 470,40 thiophene dioxide 

477,41 pyrone 481,22 iron complex 487,23 iron complex 491,25 malonate 517,42 and 

dibromide 51843 were prepared according to literature procedures.  N,N’-ditosylhydrazine 

was prepared as described by Fukuyama.10  Tryptophol (408) is commercially available, 

but may also be synthesized according to a literature proceedure.44  Thiophene-2-

carboyxlic acid (454), pyridazine-3-carboxylic acid (456), dimethylmalonate (485), 

1,1,3,3,-tetramethoxypropane (486), and 3,6-dichloropyridazine were purchased from 

commercial suppliers and used as received, as were all other reagents.  Copper(I) 

trifluoromethanesulfonate benzene comples, copper(I) trifluoromethanesulfonate toluene 

complex, copper(II) acetylacetonate, copper(II) trifluoromethanesulfonate, copper(I) 

chloride, copper(I) bromide dimethylsulfide complex, tetrakis(acetonitrile)copper(I) 

hexafluorophosphate, copper(II) hexafluoroacetylacetonate, copper(II) isobutyrate, 

silver(I) trifluoromethanesulfonate, silver(I) hexafluorophosphate, silver(I) 

acetylacetonate, iron(III) acetylacetonate, rhodium(II) acetate, rhodium(II) 

trifluoroacetate, cyclooctadiene rhodium chloride dimer, cymeme ruthenium dichloride 

dimer, IPrAuCl, cyclopentadienylcobalt chloride dicarbonyl, dicobalt octacarbonyl, 

cobaltocene, decamethylcobaltocene, tetrakis(triphenylphosphine)palladium(0), 

cyclooctadiene iridium chloride dimer, and lithium hexamethyldisilazide were stored in a 

nitrogen-filled glovebox.  Brine is defined as a saturated aqueous solution of sodium 

chloride.  Reactions requiring external heat were modulated to the specified temperatures 

using an IKAmag temperature controller.  Reaction progress was monitored by thin-layer 

chromatography (TLC) or Agilent 1290 UHPLC-LCMS.  TLC was performed using E. 
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Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized by UV 

fluorescence quenching, potassium permanganate, or p-anisaldehyde staining.  SiliaFlash 

P60 Academic Silica gel (particle size 0.040–0.063 mm) was used for flash 

chromatography.  1H and 13C NMR spectra were recorded on a Varian Inova 500 

spectrometer (500 MHz and 126 MHz, respectively), a Bruker AV III HD spectrometer 

equipped with a Prodigy liquid nitrogen temperature cryoprobe (400 MHz and 101 MHz, 

respectively), or a Varian 300 spectrometer (300 MHz and 75 MHz, respectively) and are 

reported in terms of chemical shift relative to residual CDCl3 (δ 7.26 and δ 77.16 ppm, 

respectively).  Data for 1H NMR spectra are reported as follows: chemical shift (δ ppm) 

(multiplicity, coupling constant (Hz), integration).  Abbreviations are used as follows: s = 

singlet, d = doublet, t = triplet, q = quartet, m = complex multiplet.  Infrared (IR) spectra 

were recorded on a Perkin Elmer Paragon 1000 spectrometer using thin film samples on 

NaCl plates, or a Thermo Scientific Nicolet iS5 attenuated total reflectance spectrometer 

using neat solid, neat oil, or CDCl3 or C6H6 solution samples, and are reported in 

frequency of absorption (cm–1).  High-resolution mass spectra (HRMS) were obtained 

from the Caltech Mass Spectral Facility using a JEOL JMS-600H High Resolution Mass 

Spectrometer with fast atom bombardment (FAB+) ionization mode. 

 

4.7.2   PROCEDURES AND CHARACTERIZATION DATA 
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To a flame-dried round bottom flask equipped with a magnetic stir bar was 

added 409 (602 mg, 3.44 mmol).  The flask was capped with a rubber septum and 

evacuated and backfilled with nitrogen three times.  Dichloromethane (38 mL) was added 

by syringe.  The septum was quickly removed to allow for the addition of DMAP (42 mg, 

0.34 mmol).  Triethylamine (1.44 mL, 10.31 mmol) was added by syringe and the 

mixture was cooled to 0 °C in an ice water bath.  Methyl malonyl chloride (1.11 mL, 

10.31 mmol) was added slowly dropwise.  The mixture was allowed to warm to 23 °C 

and stir overnight.  Upon completion (as determined by TLC analysis), the reaction 

mixture was quenched with saturated aqueous ammonium chloride solution.  The 

aqueous layer was extracted with dichloromethane (1 x 30 mL) and the combined organic 

layers were washed with saturated sodium bicarbonate solution (1 x 30 mL).  The organic 

layers were dried over magensium sulfate, filtered, and concentrated to afford the crude 

product, which was purified by silica gel chromatography (20% ethyl acetate in hexanes) 

to afford 699 mg of the product malonate (74% yield). 

A solution of the malonate (699 mg, 2.54 mmol) in acetonitrile (2 mL) was added 

dropwise to a 0 °C stirring solution of p-ABSA (610 mg, 2.54 mmol) and triethlamine 

(375 μL) in acetonitrile (7 mL) in a flame-dried flask under nitrogen.  The mixture was 

allowed to warm to 23 °C and stir overnight.  Upon completion (as determined by TLC 

analysis), the reaction mixture was filtered through celite, washing with ether.  The 

filtrate was concentrated to afford the crude product, which was purified by silica gel 

chromatography (25% ethyl acetate in hexanes) to afford 781 mg of diazomaloante 411 

(quantitative yield, 74% over two steps).  1H NMR (400 MHz, CDCl3) δ = 7.61 (dt, J = 

7.9, 1.0, 1H), 7.30 (dt, J = 8.2, 0.9, 1H), 7.23 (ddd, J = 8.2, 6.9, 1.2, 1H), 7.12 (ddd, J = 
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8.0, 6.9, 1.1, 1H), 6.92 (d, J = 0.9, 1H), 4.48 (t, J = 7.2, 2H), 3.85 (s, 3H), 3.76 (s, 

3H), 3.14 (td, J = 7.2, 0.8, 2H); 13C NMR (101 MHz, CDCl3) δ 161.8, 161.0, 137.0, 

127.9, 127.2, 121.8, 119.1, 118.9, 110.0, 109.4, 66.0, 52.7, 32.8, 24.8; ATR-IR (CDCl3 

solution) 2954, 2134, 1754, 1731, 1475, 1438, 1328, 1270, 1086, 760, 740 cm–1; HRMS 

(FAB+) m/z calc’d for C15H16N3O4 [M+H]+: 302.1141, found 302.1136. 

 

 

1-(2-(1-(tert-butoxycarbonyl)-1H-indol-3-yl)ethyl) 3-methyl 2-diazomalonate (412): 

To a flame-dried round bottom flask equipped with a magnetic stir bar was added 410 

(1.369 g, 5.24 mmol).  The flask was capped with a rubber septum and evacuated and 

backfilled with nitrogen three times.  Dichloromethane (58 mL) was added by syringe.  

The septum was quickly removed to allow for the addition of DMAP (64 mg, 0.52 

mmol).  Triethylamine (2.19 mL, 15.72 mmol) was added by syringe and the mixture was 

cooled to 0 °C in an ice water bath.  Methyl malonyl chloride (1.69 mL, 15.72 mmol) was 

added slowly dropwise.  The mixture was allowed to warm to 23 °C and stir overnight.  

Upon completion (as determined by TLC analysis), the reaction mixture was quenched 

with saturated aqueous ammonium chloride solution.  The aqueous layer was extracted 

with dichloromethane (1 x 50 mL) and the combined organic layers were washed with 

saturated sodium bicarbonate solution (1 x 50 mL).  The organic layers were dried over 

magensium sulfate, filtered, and concentrated to afford the crude product, which was 

N
Boc

OH 1. methyl malonyl chloride
    DMAP, Et3N, CH2Cl2, 0→23 °C
2. p-ABSA, Et3N, MeCN, 0→23 °C N

Boc

O

O

N2

O

OMe

410 412
(76% yield, 2 steps)
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purified by silica gel chromatography (15% ethyl acetate in hexanes) to afford 

1.5908 g of the product malonate (84% yield). 

A solution of the malonate (1.59 g, 4.40 mmol) in acetonitrile (3.5 mL) was added 

dropwise to a 0 °C stirring solution of p-ABSA (1.06 g, 4.40 mmol) and triethlamine 

(650 μL) in acetonitrile (12 mL) in a flame-dried flask under nitrogen.  The mixture was 

allowed to warm to 23 °C and stir overnight.  Upon completion (as determined by TLC 

analysis), the reaction mixture was filtered through celite, washing with acetonitrile.  The 

filtrate was concentrated to afford the crude product, which was purified by silica gel 

chromatography (20% ethyl acetate in hexanes) to afford 1.56 g of diazomaloante 412 

(91% yield, 76% over two steps).  1H NMR (500 MHz, CDCl3) δ = 8.13 (s, 1H), 7.58–

7.52 (m, 1H), 7.45 (s, 1H), 7.32 (ddd, J = 8.4, 7.2, 1.3, 1H), 7.27–7.23 (m, 1H), 4.51 (t, J 

= 7.0, 2H), 3.85 (s, 3H), 3.09 (td, J = 7.0, 1.0, 2H), 1.68 (s, 9H); 13C NMR (126 MHz, 

CDCl3) δ 166.7, 161.8, 161.0, 149.9, 130.5, 124.7, 123.7, 122.8, 119.0, 116.3, 115.5, 

83.8, 65.0, 52.8, 41.6, 28.4, 24.8; ATR-IR (CDCl3 solution) 2979, 2135, 1759, 1458, 

1369, 1324, 1270, 1255, 1158, 1089, 760 cm–1; HRMS (FAB+) m/z calc’d for C19H21N3O6 

[M•]+: 387.1430, found 387.1441. 

 

 

2-(1H-indol-3-yl)ethyl 2-diazoacetate (415): 

To a flame-dried round bottom flask equipped with a magnetic stir bar were added 

408 (950 mg, 5.89 mmol), sodium bicarbonate (1.49 g, 17.67 mmol), and acetonitrile (30 

N
H

OH 1. bromoacetyl bromide
    NaHCO3, MeCN, 0 °C
2. TsHN–NHTs, DBU
    THF, 0 °C

N
H

O

O

H

N2

408
(72% yield, 2 steps)

415
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mL).  After cooling to 0 °C, bromoacetyl bromide (770 μL) was added dropwise 

and the reaction was stirred for 20 minutes.  After TLC analysis indicated consumption of 

the starting material, the mixture was quenched with water at 0 °C and the aqueous layer 

was extracted with dichloromethane (3 x 40 mL).  The organic layers were washed with 

brine (1 x 30 mL), dried over magnesium sulfate, and concentrated to give the crude 

product, which was used without further purification. 

To a flame-dried round bottom flask equipped with a magnetic stir bar were added the 

crude product from the previous step and N,N’-ditosylhydrazine (4.01 g, 11.78 mmol).  

THF (30 mL) was added and the mixture was cooled to 0 °C.  DBU was added dropwise 

and the mixture was stirred under nitrogen for 45 minutes.  After TLC analysis indicated 

consumption of the starting material, the mixture was quenched with saturated aqueous 

sodium bicarbonate solution and extracted with ether (3 x 50 mL).  The organic layers 

were washed with brine (1 x 50 mL), dried over magnesium sulfate, and concentrated to 

afford the crude product, which was purified by silica gel chromatography (25% ethyl 

acetate in hexanes) to afford 974 mg of diazoacetate 415 (72% yield over two steps).  1H 

NMR (300 MHz, CDCl3) δ = 8.01 (s, 1H), 7.63 (d, J = 7.8, 1H), 7.42–7.33 (m, 1H), 7.17 

(dddd, J = 21.6, 8.0, 7.1, 1.2, 2H), 7.05 (d, J = 2.4, 1H), 4.74 (s, 1H), 4.44 (t, J = 7.1, 2H), 

3.12 (td, J = 7.1, 0.8, 2H). 

 

 

tert-butyl 3-(2-(2-diazoacetoxy)ethyl)-1H-indole-1-carboxylate (416): 

N
H

O

O

H

N2

415

Boc2O, DMAP
CH2Cl2, 23 °C

(87% yield)
N
Boc

O

O

H

N2
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Diazoacetate 415 (974 mg, 4.28 mmol) was dissolved in dichloromethane (10 

mL).  Di-tert-butyl dicarbonate (1.02 g, 4.67 mmol) was added, followed by DMAP (53 

mg, 0.43 mmol).  The mixture was stirred for 7 hours at 23 °C.  TLC analysis showed 

incomplete conversion, so additional DMAP (50 mg) and di-tert-butyl dicarbonate (400 

mg) were added and the mixture was allowed to stir at 23 °C overnight.  Upon 

completion, the reaction solution was washed with brine (1 x 20 mL), dried over sodium 

sulfate, filtered, and evaporated to give the crude product, which was purified by silica 

gel chromatography (15% ethyl acetate in hexanes) to afford 1.23 g of diazoacetate 416 

(87% yield).  1H NMR (500 MHz, CDCl3) δ = 8.12 (s, 1H), 7.88–7.75 (m, 1H), 7.56–7.49 

(m, 1H), 7.48–7.40 (m, 1H), 7.32 (tdd, J = 7.0, 3.6, 1.9, 1H), 4.82–4.70 (m, 1H), 4.44 (t, J 

= 7.0, 2H), 3.05 (td, J = 7.0, 1.1, 2H), 1.74–1.60 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 

163.3, 149.8, 128.6, 124.6, 123.9, 123.5, 122.6, 119.0, 116.6, 115.4, 115.2, 64.2, 43.1, 

28.4, 24.8; ATR-IR (CDCl3 solution) 2979, 2112, 1729, 1698, 1458, 1368, 1253, 1151, 

1091, 737 cm–1. 

 

 

2-(1-methyl-1H-indol-3-yl)ethyl 2-diazoacetate (419): 

To a flame-dried round bottom flask equipped with a magnetic stir bar were added 

409 (500 mg, 2.85 mmol) and dichloromethane (22 mL) under argon.  Acid chloride 417 

(892 mg, 3.42 mmol) was added, and the mixture was cooled to 0 °C before 

dimethylaniline (398 μL, 3.14 mmol) was added dropwise.  The solution was allowed to 

N
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stir at 0 °C for 30 minutes, at which point triethylamine (1.99 mL, 14.3 mmol) was 

added.  The reaction was stirred at 0 °C for 30 minutes followed by 23 °C for 15 minutes.  

TLC analysis indicated the presence of starting material, so the mixture was allowed to 

stir overnight.  After a second TLC analysis showed no change in conversion, the mixture 

was concentrated and partitioned between water (30 mL) and ether (30 mL).  The 

aqueous layer was extracted with ether (1 x 30 mL), washed with saturated sodium 

bicarbonate solution (1 x 30 mL), dried over magnesium sulfate, filtered, and 

concentrated to give the crude product, which was purified by silica gel chromatography 

(10% ethyl acetate in hexanes) to afford 436 mg of diazoacetate 419 (63% yield).  1H 

NMR (500 MHz, CDCl3) δ = 7.61 (dt, J = 7.9, 1.0, 1H), 7.30 (dt, J = 8.2, 1.0, 1H), 7.26–

7.19 (m, 1H), 7.13 (ddd, J = 8.0, 6.9, 1.1, 1H), 6.90 (d, J = 0.8, 1H), 4.75 (s, 1H), 4.42 (t, 

J = 7.1, 2H), 3.77 (s, 3H), 3.11 (td, J = 7.1, 0.8, 2H); 13C NMR (126 MHz, CDCl3) δ 

142.7, 137.0, 129.7, 128.0, 127.0, 125.4, 121.8, 119.0, 110.4, 109.4, 65.3, 32.8, 25.0; 

ATR-IR (neat oil) 3100, 2951, 2105, 1684, 1394, 1333, 1237, 1126, 1011, 730 cm–1; 

HRMS (FAB+) m/z calc’d for C13H13N3O2 [M•]+: 243.1008, found 243.1004. 

 

 

2-(1-methyl-1H-indol-3-yl)ethyl (E)-2-diazo-4-phenylbut-3-enoate (428): 

To an oven-dried vial equipped with a magnetic stir bar were added, in order, 

carboxylic acid 427 (624 mg, 3.85 mmol), dichloromethane (4 mL), DMAP (30 mg), and 

N-methyltryptophol (676 mg, 3.85 mmol).  The mixture was cooled to 0 °C and DCC 

N
Me

O

O

N2

428

Ph

1. N-methyltryptophol
    DCC, DMAP
    CH2Cl2, 0→23 °C
2. p-ABSA, DBU
    MeCN, 0→23 °C

427

CO2H

(47% yield, 2 steps)
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(874 mg, 4.24 mmol) was added.  The reaction was stirred for 5 minutes at 0 °C 

and then allowed to warm to 23 °C and stir overnight.  Upon completion (as determined 

by TLC analysis), the reaction mixture was filtered through Celite and concentrated.  The 

residue was suspended in dichloromethane and filtered through Celite again.  The filtrate 

was washed with 0.5 N aqueous hydrochloric acid (2 x 10 mL) and saturated aquous 

sodium bicarbonate (1 x 10 mL).  The organic layer was dried over magnesium sulfate, 

filtered, and concentrate to give the crude product, which was purified by silica gel 

chromatography (10% ethyl acetate in hexanes) to afford 870 mg of the ester product 

(71% yield). 

To a flame-dried round bottom flask equipped with a magnetic stir bar were added the 

ester (879 mg, 2.72 mmol), p-ABSA (784 mg, 3.26 mmol), and acetonitrile (72 mL) 

under argon.  The mixture was cooled to 0 °C and DBU (447 μL) was added rapidly by 

syringe.  The reaction was allowed to warm to 23 °C and stir overnight.  Upon 

completion (as determined by TLC analysis), the mixture was quenced with saturated 

aqueous ammonium chloride solution and extracted with ether (3 x 50 mL).  The 

combined organic layers were washed with brine (1 x 50 mL), dried over sodium sulfate, 

filtered, and concentrated to give the crude product, which was purified by silica gel 

chromatography (15% hexanes in ethyl acetate) to afford 617 mg of diazoester 428 (66% 

yield, 47% over two steps).  1H NMR (500 MHz, CDCl3) δ = 7.63 (dt, J = 7.9, 1.0, 1H), 

7.36–7.29 (m, 5H), 7.24–7.17 (m, 1H), 6.92 (d, J = 0.8, 1H), 6.47 (d, J = 16.3, 1H), 6.19 

(d, J = 16.3, 1H), 4.50 (t, J = 7.1, 2H), 3.77 (s, 3H), 3.16 (td, J = 7.1, 0.8, 2H). 
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7-methyl-6-phenyl-1,2,6a,7-tetrahydropyrano[4',3':2,3]cyclopenta[1,2-b]indol-4(6H)-

one (429): 

In a nitrogen-filled govebox, a dry vial equipped with a magnetic stir bar was charged 

with copper(I) trifluoromethanesulfonate (<1 mg) and sealed with a cap containing a 

septum, wrapping electrical tape around the cap to prevent the entry of oxygen.  The vial 

was then removed from the glovebox and put under a nitrogen atmosphere.  

Dichloromethane (1 mL) was added, and then a solution of diazoester 428 (24 mg, 0.07 

mmol) in dichloromethane (1 mL) was added by syringe pump over 1 hour.  After stirring 

for an additional 45 minutes, TLC analysis indicated the presence of starting material, but 

the reaction mixture was nevertheless adsorbed onto Celite and purified by silica gel 

chromatography (10% to 25% ethyl acetate in hexanes) to afford 7 mg of tetracycle 429 

(32% yield).  1H NMR (500 MHz, CDCl3) δ = 7.41–7.34 (m, 2H), 7.33–7.27 (m, 1H), 

7.23 (td, J = 7.7, 1.2, 1H), 7.20–7.16 (m, 2H), 7.10 (dd, J = 7.4, 1.2, 1H), 6.80 (d, J = 2.0, 

1H), 6.76 (td, J = 7.4, 1.0, 1H), 6.53 (d, J = 7.8, 1H), 4.86 (td, J = 12.1, 3.7, 1H), 4.59 

(ddd, J = 12.1, 5.5, 2.3, 1H), 4.13 (d, J = 6.0, 1H), 3.96 (dd, J = 6.0, 2.0, 1H), 2.80 (s, 

3H), 2.25 (ddd, J = 13.6, 12.1, 5.5, 1H), 2.17–2.08 (m, 1H); 13C NMR (126 MHz, CDCl3) 

δ 147.6, 144.4, 142.4, 135.1, 129.8, 129.4, 129.3, 128.3, 127.5, 124.3, 118.2, 110.4, 

110.2, 107.3, 88.4, 67.2, 55.6, 34.6, 33.4; ATR-IR (neat solid) 3050, 2945, 1593, 1521, 

1448, 1339, 1003, 818, 744 cm–1; HRMS (FAB+) m/z calc’d for C21H20NO2 [M+H]+: 

318.1494, found 318.1490. 
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X-ray quality single crystals of tetracycle 429 were produced by vapor diffusion of 

heptane (containing 2% benzene) into a solution of 429 in ethyl acetate. 

 

 

2-(1H-indol-3-yl)ethyl pyridazine-3-carboxylate (457): 

To an oven-dried vial equipped with a magnetic stir bar were added, in order, 

carboxylic acid 456 (100 mg, 0.81 mmol), dichloromethane (0.81 mL), DMAP (13 mg), 

and tryptophol (408, 131 mg, 0.81 mmol).  The mixture was cooled to 0 °C and DCC 

(183 mg, 0.87 mmol) was added.  The reaction was stirred for 5 minutes at 0 °C and then 

allowed to warm to 23 °C and stir overnight.  Upon completion (as determined by TLC 

analysis), the reaction mixture was filtered through Celite and concentrated.  The residue 

was suspended in dichloromethane and filtered through Celite again.  The filtrate was 

washed with 0.5 N aqueous hydrochloric acid (2 x 10 mL) and saturated aquous sodium 

bicarbonate (1 x 10 mL).  The organic layer was dried over magnesium sulfate, filtered, 

and concentrate to give the crude product, which was subjected to silica gel 

chromatography (10% methanol in dichloromethane) to afford 58 mg of ester 457 (27% 

yield), which was contaminated with dicyclohexylurea.  An attempt to purify further by 

colum chromatography (75% ethyl acetate in hexanes) was unsuccessful, so the material 

was carried on impure.  1H NMR (500 MHz, CDCl3) δ = 9.36 (ddt, J = 5.0, 1.7, 0.8, 1H), 

8.16 (ddt, J = 8.5, 1.8, 0.8, 2H), 7.71–7.66 (m, 1H), 7.63 (ddt, J = 8.4, 5.1, 0.9, 1H), 7.37 

N
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N
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(d, J = 8.1, 1H), 7.24–7.16 (m, 2H), 7.13 (tq, J = 7.0, 0.9, 1H), 4.76 (t, J = 7.3, 

2H), 3.33 (td, J = 7.4, 1.0, 2H). 

 

 

tert-butyl 3-(2-((6-chloropyridazin-3-yl)oxy)ethyl)-1H-indole-1-carboxylate (460): 

To an oven-dried vial equipped with a magnetic stir bar were added alcohol 410 (274 

mg, 1.05 mmol) and THF (750 μL).  The solution was cooled to 0 °C in an ice water bath 

and sodium hydride (60% dispersion in mineral oil, 50 mg, 1.25 mmol) was added.  The 

mixture was stirred at 0 °C for 10 minutes and 3,6-dichloropyridazine (150 mg, 1.00 

mmol) was added.  The reaction was allowed to warm to 23 °C and stir for 9 hours.  

Although TLC analysis revealed the presence of starting material, the mixture was 

quenched by pouring into saturated aqueous ammonium chloride solution.  The aqueous 

layer was extracted with ether (1 x 5 mL) and the organic layer was washed with water (1 

x 5 mL).  The organic layer was dried over magnesium sulfate, filtered, and concentrated 

to give the crude product, which was subjected to silica gel chromatography (25% ethyl 

acetate in hexanes).  Chromatography was not successful in proving pure 460, but the 

impure product was carried on as it was.  The yield was not determined.  1H NMR (300 

MHz, CDCl3) δ = 8.13 (d, J = 8.1, 1H), 7.65–7.58 (m, 1H), 7.52–7.46 (m, 2H), 7.39–7.27 

(m, 2H), 6.94 (dd, J = 9.2, 0.8, 1H), 4.79 (t, J = 6.9, 2H), 3.23 (td, J = 6.9, 1.0, 2H), 1.67 

(s, 9H).  HRMS (FAB+) m/z calc’d for C19H21ClN3O3 [M+H]+: 374.1271, found 

374.1275. 

N
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3-(2-((6-chloropyridazin-3-yl)oxy)ethyl)-1-(4-methoxybenzyl)-1H-indole (461): 

To an oven-dried vial equipped with a magnetic stir bar were added alcohol 459 (841 

mg, 2.99 mmol) and THF (3.1 mL).  The solution was cooled to 0 °C in an ice water bath 

and sodium hydride (60% dispersion in mineral oil, 143 mg, 3.56 mmol) was added.  The 

mixture was stirred at 0 °C for 10 minutes and 3,6-dichloropyridazine (425 mg, 2.85 

mmol) was added.  The reaction was allowed to warm to 23 °C and stir for 5 hours.  

Although LCMS analysis revealed the presence of a small amount of starting material, 

the mixture was quenched by pouring into saturated aqueous ammonium chloride 

solution.  The aqueous layer was extracted with ether (1 x 10 mL) and the organic layer 

was washed with water (1 x 10 mL).  The organic layer was dried over magnesium 

sulfate, filtered, and concentrated to give the crude product, which was purified by silica 

gel chromatography (25% ethyl acetate in hexanes) to afford 771 mg of arene 461 (69% 

yield).  1H NMR (500 MHz, CDCl3) δ = 7.68 (ddd, J = 7.8, 1.2, 0.7, 1H), 7.34 (d, J = 9.1, 

1H), 7.29 (dt, J = 8.2, 0.9, 1H), 7.18 (ddd, J = 8.2, 7.0, 1.2, 1H), 7.12 (ddd, J = 8.0, 7.0, 

1.1, 1H), 7.08–7.04 (m, 2H), 6.99 (d, J = 0.9, 1H), 6.92 (d, J = 9.1, 1H), 6.86–6.81 (m, 

2H), 4.77 (t, J = 7.1, 2H), 3.78 (s, 3H), 3.29 (td, J = 7.1, 0.9, 2H); 13C NMR (126 MHz, 

CDCl3) δ 164.5, 159.3, 151.1, 136.7, 131.0, 129.7, 128.5, 128.4, 126.3, 122.0, 120.5, 

119.3, 119.3, 114.3, 111.2, 109.9, 68.3, 55.5, 49.6, 25.1; ATR-IR (neat solid) 3055, 2949, 
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(69% yield)
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1585, 1442, 1377, 1278, 1246, 1148, 1029, 811, 733, 678 cm–1; HRMS (FAB+) 

m/z calc’d for C22H21ClN3O2 [M+H]+: 394.1322, found 394.1322. 

 

 

2-(1H-indol-3-yl)ethyl thiophene-2-carboxylate 1,1-dioxide (465): 

To an oven-dried vial equipped with a magnetic stir bar were added, in order, 

carboxylic acid 464 (397 mg, 3.10 mmol), dichloromethane (3.1 mL), DMAP (50 mg), 

and tryptophol (408, 500 mg, 3.10 mmol).  The mixture was cooled to 0 °C and DCC 

(704 mg, 3.41 mmol) was added.  The reaction was stirred for 5 minutes at 0 °C and then 

allowed to warm to 23 °C and stir for 5 hours.  Upon completion (as determined by TLC 

analysis), the reaction mixture was filtered through Celite and concentrated.  The residue 

was suspended in dichloromethane and filtered through Celite again.  The filtrate was 

washed with 0.5 N aqueous hydrochloric acid (2 x 20 mL) and saturated aquous sodium 

bicarbonate (1 x 20 mL).  The organic layer was dried over magnesium sulfate, filtered, 

and concentrated to give the crude product, which was purified by silica gel 

chromatography (25% ethyl acetate in hexanes) to afford 798 mg of thiophene 465 (95% 

yield). 

A solution of thiophene 465 (798 mg, 2.94 mmol) and m-CPBA (70–75% purity, 1.27 

g, 7.35 mmol) in methanol (12 mL) and chloroform (12 mL) was stirred at 23 °C for 2 

hours.  TLC analysis showed low conversion, so additional m-CPBA (635 mg) was added 

and the reaction mixture allowed to stir for an additional 15 hours.  TLC analysis still 
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revealed incomplete conversion, but the reaction mixture was poured into a 

seperatory funned and diluted with dichloromethane (10 mL).  The organic layer was 

washed with saturated aqueous sodium thiosulfate (1 x 20 mL) and saturated aqueous 

sodium bicarbonate (3 x 20 mL).  The organic layers were dried over sodium sulfate, 

filtered, and concentrated to give the crude product.  Attempts to purify by silica gel 

chromatography were only partially successful in removing the oxidation byproducts, so 

the material was carried on to the next step as it was.  A yield was not determined for this 

step.  1H NMR (300 MHz, CDCl3) δ = 8.77 (d, J = 8.4, 1H), 8.49 (d, J = 1.8, 1H), 7.96 

(dd, J = 8.1, 1.5, 1H), 7.78 (dd, J = 3.8, 1.3, 1H), 7.64–7.50 (m, 3H), 7.24–7.15 (m, 1H), 

7.08 (td, J = 4.7, 3.8, 1H), 4.73 (t, J = 6.3, 2H), 3.51 (t, J = 6.4, 2H). 

 

 

2-(1H-indol-3-yl)ethyl cyclobutadienylirontricarbonyl carboxylate (488): 

To an oven-dried vial equipped with a magnetic stir bar were added, in order, 

carboxylic acid 487 (100 mg, 0.42 mmol), dichloromethane (0.42 mL), DMAP (13 mg), 

and tryptophol (408, 68 mg, 0.42 mmol).  The mixture was cooled to 0 °C and DCC (93 

mg, 0.45 mmol) was added.  The reaction was stirred for 5 minutes at 0 °C and then 

allowed to warm to 23 °C and stir for 2 hours.  Upon completion (as determined by TLC 

analysis), the reaction mixture was filtered through Celite and concentrated.  The residue 

was suspended in dichloromethane and filtered through Celite again.  The filtrate was 

washed with 0.5 N aqueous hydrochloric acid (2 x 10 mL) and saturated aquous sodium 

bicarbonate (1 x 10 mL).  The organic layer was dried over magnesium sulfate, filtered, 

CO2H

Fe(CO)3
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(16% yield)

N
H

O

O

Fe(CO)3

488



Chapter 4 – Progress toward the Total Synthesis of Calophyline A  563 

and concentrate to give the crude product, which was subjected to silica gel 

chromatography (20% ethyl acetate in hexanes) to afford 27 mg of ester 488 (16% yield).  

1H NMR (300 MHz, CDCl3) δ = 8.05 (s, 1H), 7.63 (dd, J = 7.4, 1.2, 1H), 7.37 (dt, J = 

8.0, 0.9, 1H), 7.21 (ddd, J = 8.1, 7.0, 1.4, 1H), 7.14 (ddd, J = 8.0, 7.1, 1.1, 1H), 7.03 (d, J 

= 2.2, 1H), 4.50 (s, 2H), 4.36 (t, J = 7.2, 2H), 4.27 (s, 1H), 3.08 (td, J = 7.2, 0.8, 2H); 13C 

NMR (126 MHz, CDCl3) δ 212.1, 167.2, 136.2, 127.5, 122.1, 119.4, 118.8, 111.7, 111.2, 

67.7, 65.3, 65.0, 64.9, 62.5, 24.6; HRMS (FAB+) m/z calc’d for C18H13FeNO5 [M•]+: 

379.0143, found 379.0154. 

 

 

dimethyl 2-(4-bromobut-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonate (500): 

A flame-dried round bottom flask equipped with a magnetic stir bar was charged with 

sodium hydride (60% dispersion in mineral oil, 303 mg, 7.56 mmol) and THF (7.4 mL).  

Malonate 517 (1.00 mL, 6.58 mmol) was added neat dropwise by syringe and the mixture 

was stirred at 23 °C for 1 hour before being transferred by syringe to a solution of 

dibromide 518 (4.18 g, 19.74 mmol) in THF (30 mL).  This mixture was stirred at 23 °C 

for 3 hours.  Upon completion, the reaction was quenched with water (50 mL) and 

extracted with ether (3 x 40 mL).  The organic layers were washed with water (1 x 40 

mL) and brine (1 x 40 mL), dried over sodium sulfate, filtered, and concentrated to give 

the crude product, which was purified by silica gel chromatography (10% ethyl acetate in 

hexanes) to provide 1.92 g of malonate 500 (97% yield).  1H NMR (500 MHz, CDCl3) δ 

= 3.86 (td, J = 2.4, 0.7, 2H), 3.78 (d, J = 0.8, 6H), 3.06 (td, J = 2.4, 0.7, 2H), 2.97 (dd, J = 

CO2MeMeO2C

Br

500

CO2MeMeO2C

517

NaH, THF, 23 °C

Br

Br
518

(97% yield)
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2.7, 0.7, 2H), 2.05 (t, J = 2.7, 1H); 13C NMR (126 MHz, CDCl3) δ 169.1, 81.8, 

78.8, 78.4, 72.0, 56.7, 53.4, 23.3, 22.9, 14.7; ATR-IR (CDCl3 solution) 3291, 2955, 1737, 

1436, 1326, 1293, 1206, 1056, 977, 657 cm–1; HRMS (FAB+) m/z calc’d for C12H14BrO4 

[M+H]+: 301.0075, found 301.0075. 

 

 

dimethyl 2-(4-(2-(1-(tert-butoxycarbonyl)-1H-indol-3-yl)ethoxy)but-2-yn-1-yl)-2-

(prop-2-yn-1-yl)malonate (501): 

To a flame-dried round bottom flask equipped with a magnetic stir bar were added 

sodium hydride (60% dispersion in mineral oil, 187 mg, 3.89 mmol) and DMF (4 mL).  A 

solution of alcohol 410 (1.02 g) in DMF (9.2 mL) was added dropwise by syringe and the 

mixture was stirred at 23 °C for 1 hour.  A solution of bromide 500 (1.17 g, 3.89 mmol) 

in DMF (2.8 mL) was added dropwise by syringe and the mixture was stirred at 23 °C for 

1 hour, until TLC analysis showed complete consumption of the starting material.  The 

reaction mixture was quenched with water (30 mL) and extracted with ethyl acetate (3 x 

30 mL).  The combined organic layers were washed with brine (1 x 30 mL), dried over 

sodium sulfate, filtered, and concentrated to give the crude product, which was purified 

by silica gel chromatography (20% ethyl acetate in hexanes) to provide 811 mg of diyne 

501 (43% yield).  Note that some material was lost during the workup, so the yield may 

be artificially low.  1H NMR (500 MHz, CDCl3) δ = 7.63–7.57 (m, 1H), 7.34–7.30 (m, 

1H), 7.23 (ddd, J = 8.2, 7.0, 1.2, 1H), 7.19–7.10 (m, 1H), 7.04 (d, J = 1.0, 1H), 4.79 (t, J 

N
Boc

410

OH
N
Boc

O

CO2Me
CO2Me

CO2MeMeO2C

Br

+

500

H
NaH

DMF, 23 °C

(43% yield)
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= 2.2, 2H), 4.38–4.27 (m, 2H), 3.68 (s, 6H), 3.12 (td, J = 7.6, 0.9, 2H), 3.01 (t, J = 

2.3, 2H), 2.96 (d, J = 2.6, 2H), 2.05 (t, J = 2.7, 1H), 1.49 (s, 9H); 13C NMR (126 MHz, 

CDCl3) δ 169.2, 153.7, 128.4, 125.5, 122.1, 119.6, 119.2, 110.9, 109.6, 109.4, 82.1, 79.9, 

78.4, 72.0, 67.0, 56.6, 53.3, 36.1, 29.9, 27.9, 25.0, 23.1, 23.0; IR (Neat Film, NaCl) 3286, 

2979, 1740, 1467, 1436, 1369, 1278, 1255, 1213, 1162, 1101, 1056, 963, 859, 794, 742, 

650 cm–1; HRMS (FAB+) m/z calc’d for C27H31NO7 [M•]+: 481.2100, found 481.2103. 

 

 

dimethyl 2-(4-(2-(1-(tert-butoxycarbonyl)-1H-indol-3-yl)ethoxy)but-2-yn-1-yl)-2-(3-

(triethylsilyl)prop-2-yn-1-yl)malonate (502): 

A flame-dried round bottom flask equipped with a magnetic stir bar was charged with 

diyne 501 (500 mg, 1.04 mmol) and placed under a nitrogen atmostphere.  THF (11.2 

mL) was added the the mixture cooled to –78 °C in a dry ice/acetone bath.  A solution of 

LiHMDS (263 mg, 1.57 mmol) in THF (1.5 mL) was added dropwise by syringe, and the 

mixture was stirred at –78 °C for 45 minutes.  A solution of phenyldimethylsilyl chloride 

(262 µL, 1.56 mmol) in THF (5.6 mL) was added dropwise by syringe, and the reaction 

nmixture was allowed to warm to 23 °C and stir overnight.  Upon completion (as 

determined by TLC analysis), the mixture was diluted with ether (50 mL) and poured into 

saturated aqueous ammonium chloride solution (50 mL).  The ether layer was separated 

and washed with brine (1 x 50 mL), dried over magnesium sulfate, filtered, and 

concentrated to give the crude product.  Silica gel colum chromatography was not able to 

N
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CO2Me
CO2Me

H
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N
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CO2Me
CO2Me

SiMe2Ph
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LiHMDS, THF, –78 °C;
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deliver pure silane 502, and the material was carried forward impure.  A yield for 

the reaction was was not determined.  Integrals are approximate.  1H NMR (500 MHz, 

CDCl3) δ = 7.64–7.55 (m, 3H), 7.44–7.31 (m, 4H), 7.24 (ddd, J = 8.2, 7.1, 1.2, 1H), 7.14 

(ddd, J = 7.9, 7.0, 1.0, 1H), 7.04 (d, J = 0.8, 1H), 4.79 (t, J = 2.2, 2H), 4.33 (dd, J = 7.9, 

7.2, 2H), 3.65 (s, 6H), 3.12 (ddd, J = 8.1, 7.2, 0.9, 2H), 3.04 (s, 2H), 3.02 (t, J = 2.3, 2H), 

1.50 (s, 9H), 0.42 (s, 3H), 0.38 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 169.2, 153.6, 

139.2, 137.0, 136.1, 133.7, 133.7, 129.8, 129.5, 128.4, 128.0, 128.0, 125.5, 122.1, 119.5, 

119.1, 110.9, 109.6, 102.6, 86.8, 82.0, 80.0, 77.6, 67.0, 56.9, 53.1, 36.1, 27.9, 25.0, 24.5, 

23.2, 0.1, -0.7; ATR-IR (C6H6 solution) 2955, 2180, 1736, 1456, 1428, 1368, 1275, 1250, 

1208, 1158, 1026, 817, 782, 735, 702 cm–1; HRMS (FAB+) m/z calc’d for C35H41NO7Si 

[M•]+: 615.2652, found 615.2642. 
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Scheme A7.1  Initial retrosynthetic analysis 

 

 
 

Scheme A7.2  Formation of tetracycle 429  
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Scheme A7.3  Revised synthetic plan  

 
 
 
 

Scheme A7.4  Attempted (3 + 2) cycloadditions  
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Scheme A7.5  Retrosynthesis incorporating a [4 + 2] cycloaddition  

 
 
 
 

Scheme A7.6  Retrosynthetic analysis employing a [2 + 2 + 2] cycloaddition 
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Scheme A7.7  Investigation of an intramolecular [2 + 2 + 2] cycloaddition 

 

 
 

Scheme A7.8  Proposed synthetic route procceing via bromoxindole alkylation product 512 
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Figure A8.3 13C NMR (101 MHz, CDCl3) of compound 411. 

Figure A8.2 ATR-IR (CDCl3 solution) of compound 411. 
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Figure A8.6 13C NMR (126 MHz, CDCl3) of compound 412. 
 

Figure A8.5 ATR-IR (CDCl3 solution) of compound 412. 
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Figure A8.10 13C NMR (126 MHz, CDCl3) of compound 416. 
 

Figure A8.9 ATR-IR (CDCl3 solution) of compound 416. 
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Figure A8.13 13C NMR (126 MHz, CDCl3) of compound 419. 
 

Figure A8.12 ATR-IR (neat oil) of compound 419. 
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Figure A8.17 13C NMR (126 MHz, CDCl3) of compound 429. 
 

Figure A8.16 ATR-IR (neat solid) of compound 429. 
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Figure A8.22 13C NMR (126 MHz, CDCl3) of compound 461. 
 

Figure A8.21 ATR-IR (neat solid) of compound 461. 
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Figure A8.25 13C NMR (126 MHz, CDCl3) of compound 488. 
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Figure A8.28 13C NMR (126 MHz, CDCl3) of compound 500. 
 

Figure A8.27 ATR-IR (CDCl3 solution) of compound 500. 
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Figure A8.31 13C NMR (126 MHz, CDCl3) of compound 501. 
 

Figure A8.30 Infrared spectrum (thin film/NaCl) of compound 501. 
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Figure A8.34 13C NMR (126 MHz, CDCl3) of compound 502. 
 

Figure A8.33 ATR-IR (C6H6 solution) of compound 502. 
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A9.1   X-RAY CRYSTAL STRUCTURE ANALYSIS OF TETRACYCLE 429 

N

O
O

Ph
H

Me

429  

Contents 

Table A9.1.1 Experimental Details 

Table A9.1.2 Crystal Data 

Table A9.1.3 Atomic Coordinates  

Table A9.1.4 Full Bond Distances and Angles 

Table A9.1.5 Anisotropic Displacement Parameters 

Table A9.1.6 Hydrogen Atomic Coordinates 

Table A9.1.7 Torsion Angles 

 

 

Figure A9.1.1     X-ray crystal structure of tetracycle 429 

 

 
 

 

 



Appendix 9 – X-Ray Crystallography Report Relevant to Chapter 4  606 

Table A9.1.1 Experimental details for X-ray structure determination of tetracycle 429 

Low-temperature diffraction data (φ-and ω-scans) were collected on a Bruker AXS 

D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with 

Cu Kα radiation (λ = 1.54178 Å) from an IμS micro-source for the structure of tetracycle 

429. The structure was solved by direct methods using SHELXS and refined against F2 

on all data by full-matrix least squares with SHELXL-2014 using established refinement 

techniques. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms 

were included into the model at geometrically calculated positions and refined using a 

riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 

1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups).  

Tetracycle 429 crystallizes in the orthorhombic space group P212121 with one 

molecule in the asymmetric unit. 

 

 

Table A9.1.2 Crystal data and structure refinement for tetracycle 429 

Identification code  P16006 

Empirical formula  C21 H19 N O2 

Formula weight  317.37 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 5.8176(2) Å a= 90°. 

 b = 9.2250(2) Å b= 90°. 

 c = 29.7053(8) Å g = 90°. 

Volume 1594.21(8) Å3 

Z 4 
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Density (calculated) 1.322 Mg/m3 

Absorption coefficient 0.673 mm-1 

F(000) 672 

Crystal size 0.250 x 0.100 x 0.050 mm3 

Theta range for data collection 2.975 to 74.451°. 

Index ranges -6<=h<=7, -10<=k<=11, -37<=l<=36 

Reflections collected 12810 

Independent reflections 3243 [R(int) = 0.0250] 

Completeness to theta = 67.679° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7538 and 0.6734 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3243 / 0 / 218 

Goodness-of-fit on F2 1.055 

Final R indices [I>2sigma(I)] R1 = 0.0258, wR2 = 0.0660 

R indices (all data) R1 = 0.0264, wR2 = 0.0665 

Absolute structure parameter -0.03(5) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.143 and -0.190 e.Å-3 
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Table A9.1.3      Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 

103) for tetracycle 429.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  
________________________________________________________________________________  

 x y z U(eq) 
________________________________________________________________________________   
O(1) 1980(2) 638(1) 7386(1) 25(1) 

C(1) 1514(3) 358(2) 6952(1) 19(1) 

O(2) 7(2) -500(1) 6862(1) 24(1) 

C(2) 2985(2) 1067(2) 6609(1) 18(1) 

C(3) 3162(2) 650(2) 6180(1) 18(1) 

C(4) 5049(2) 1452(2) 5935(1) 17(1) 

C(5) 6455(3) 2135(2) 6334(1) 17(1) 

C(15) 6456(2) 509(2) 5621(1) 18(1) 

C(16) 7614(3) -704(2) 5785(1) 20(1) 

C(17) 8944(3) -1561(2) 5500(1) 22(1) 

C(18) 9105(3) -1218(2) 5046(1) 24(1) 

C(19) 7952(3) -23(2) 4879(1) 25(1) 

C(20) 6632(3) 840(2) 5164(1) 22(1) 

C(6) 5386(3) 4518(2) 6388(1) 19(1) 

N(1) 7201(2) 3621(1) 6264(1) 19(1) 

C(21) 8635(3) 3957(2) 5880(1) 24(1) 

C(7) 5021(3) 5957(2) 6267(1) 22(1) 

C(8) 3088(3) 6656(2) 6444(1) 24(1) 

C(9) 1569(3) 5948(2) 6727(1) 23(1) 

C(10) 1937(3) 4492(2) 6842(1) 20(1) 

C(11) 3845(3) 3786(2) 6671(1) 17(1) 

C(12) 4709(2) 2228(2) 6729(1) 16(1) 

C(13) 5642(3) 1910(2) 7202(1) 20(1) 

C(14) 3647(3) 1736(2) 7525(1) 23(1) 
________________________________________________________________________________   
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Table A9.1.4      Bond lengths [Å] and angles [°] for tetracycle 429 
___________________________________________________________________________________  

O(1)-C(1)  1.3431(17) 

O(1)-C(14)  1.463(2) 

C(1)-O(2)  1.2107(19) 

C(1)-C(2)  1.4819(19) 

C(2)-C(3)  1.334(2) 

C(2)-C(12)  1.510(2) 

C(3)-C(4)  1.511(2) 

C(3)-H(3)  0.9500 

C(4)-C(15)  1.5160(19) 

C(4)-C(5)  1.5721(19) 

C(4)-H(4)  1.0000 

C(5)-N(1)  1.4527(18) 

C(5)-C(12)  1.5547(19) 

C(5)-H(5)  1.0000 

C(15)-C(16)  1.393(2) 

C(15)-C(20)  1.396(2) 

C(16)-C(17)  1.393(2) 

C(16)-H(16)  0.9500 

C(17)-C(18)  1.389(2) 

C(17)-H(17)  0.9500 

C(18)-C(19)  1.382(2) 

C(18)-H(18)  0.9500 

C(19)-C(20)  1.393(2) 

C(19)-H(19)  0.9500 

C(20)-H(20)  0.9500 

C(6)-N(1)  1.391(2) 

C(6)-C(7)  1.393(2) 

C(6)-C(11)  1.402(2) 

N(1)-C(21)  1.4477(18) 

C(21)-H(21A)  0.9800 

C(21)-H(21B)  0.9800 

C(21)-H(21C)  0.9800 

C(7)-C(8)  1.399(2) 

C(7)-H(7)  0.9500 



Appendix 9 – X-Ray Crystallography Report Relevant to Chapter 4  610 

Table A9.1.4 (cont’d) 

C(8)-C(9)  1.384(2) 

C(8)-H(8)  0.9500 

C(9)-C(10)  1.402(2) 

C(9)-H(9)  0.9500 

C(10)-C(11)  1.383(2) 

C(10)-H(10)  0.9500 

C(11)-C(12)  1.5325(19) 

C(12)-C(13)  1.5336(18) 

C(13)-C(14)  1.514(2) 

C(13)-H(13A)  0.9900 

C(13)-H(13B)  0.9900 

C(14)-H(14A)  0.9900 

C(14)-H(14B)  0.9900 

 

C(1)-O(1)-C(14) 122.64(11) 

O(2)-C(1)-O(1) 118.93(13) 

O(2)-C(1)-C(2) 123.73(13) 

O(1)-C(1)-C(2) 117.25(13) 

C(3)-C(2)-C(1) 124.96(14) 

C(3)-C(2)-C(12) 112.28(12) 

C(1)-C(2)-C(12) 122.26(12) 

C(2)-C(3)-C(4) 112.02(12) 

C(2)-C(3)-H(3) 124.0 

C(4)-C(3)-H(3) 124.0 

C(3)-C(4)-C(15) 114.05(12) 

C(3)-C(4)-C(5) 102.18(11) 

C(15)-C(4)-C(5) 114.37(12) 

C(3)-C(4)-H(4) 108.6 

C(15)-C(4)-H(4) 108.6 

C(5)-C(4)-H(4) 108.6 

N(1)-C(5)-C(12) 104.56(11) 

N(1)-C(5)-C(4) 115.16(11) 

C(12)-C(5)-C(4) 104.56(11) 

N(1)-C(5)-H(5) 110.7 
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Table A9.1.4 (cont’d) 

C(12)-C(5)-H(5) 110.7 

C(4)-C(5)-H(5) 110.7 

C(16)-C(15)-C(20) 118.68(13) 

C(16)-C(15)-C(4) 120.51(12) 

C(20)-C(15)-C(4) 120.81(13) 

C(15)-C(16)-C(17) 120.80(13) 

C(15)-C(16)-H(16) 119.6 

C(17)-C(16)-H(16) 119.6 

C(18)-C(17)-C(16) 119.93(14) 

C(18)-C(17)-H(17) 120.0 

C(16)-C(17)-H(17) 120.0 

C(19)-C(18)-C(17) 119.74(14) 

C(19)-C(18)-H(18) 120.1 

C(17)-C(18)-H(18) 120.1 

C(18)-C(19)-C(20) 120.41(14) 

C(18)-C(19)-H(19) 119.8 

C(20)-C(19)-H(19) 119.8 

C(19)-C(20)-C(15) 120.43(14) 

C(19)-C(20)-H(20) 119.8 

C(15)-C(20)-H(20) 119.8 

N(1)-C(6)-C(7) 127.91(14) 

N(1)-C(6)-C(11) 110.96(13) 

C(7)-C(6)-C(11) 121.13(14) 

C(6)-N(1)-C(21) 121.26(13) 

C(6)-N(1)-C(5) 107.25(12) 

C(21)-N(1)-C(5) 119.16(12) 

N(1)-C(21)-H(21A) 109.5 

N(1)-C(21)-H(21B) 109.5 

H(21A)-C(21)-H(21B) 109.5 

N(1)-C(21)-H(21C) 109.5 

H(21A)-C(21)-H(21C) 109.5 

H(21B)-C(21)-H(21C) 109.5 

C(6)-C(7)-C(8) 117.69(14) 

C(6)-C(7)-H(7) 121.2 
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Table A9.1.4 (cont’d) 

C(8)-C(7)-H(7) 121.2 

C(9)-C(8)-C(7) 121.61(14) 

C(9)-C(8)-H(8) 119.2 

C(7)-C(8)-H(8) 119.2 

C(8)-C(9)-C(10) 120.18(15) 

C(8)-C(9)-H(9) 119.9 

C(10)-C(9)-H(9) 119.9 

C(11)-C(10)-C(9) 118.98(14) 

C(11)-C(10)-H(10) 120.5 

C(9)-C(10)-H(10) 120.5 

C(10)-C(11)-C(6) 120.40(13) 

C(10)-C(11)-C(12) 131.56(13) 

C(6)-C(11)-C(12) 108.04(12) 

C(2)-C(12)-C(11) 114.88(12) 

C(2)-C(12)-C(13) 108.44(12) 

C(11)-C(12)-C(13) 113.50(11) 

C(2)-C(12)-C(5) 102.47(11) 

C(11)-C(12)-C(5) 100.41(11) 

C(13)-C(12)-C(5) 116.71(12) 

C(14)-C(13)-C(12) 109.23(12) 

C(14)-C(13)-H(13A) 109.8 

C(12)-C(13)-H(13A) 109.8 

C(14)-C(13)-H(13B) 109.8 

C(12)-C(13)-H(13B) 109.8 

H(13A)-C(13)-H(13B) 108.3 

O(1)-C(14)-C(13) 113.70(12) 

O(1)-C(14)-H(14A) 108.8 

C(13)-C(14)-H(14A) 108.8 

O(1)-C(14)-H(14B) 108.8 

C(13)-C(14)-H(14B) 108.8 

H(14A)-C(14)-H(14B) 107.7 
___________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms:  
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Table A9.1.5  Anisotropic displacement parameters  (Å2x103) for tetracycle 429.  The anisotropic 

displacement factor exponent takes the form: -2π2[ h2a*2U11  + ... + 2hka*b*U12]. 
______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 
______________________________________________________________________________  

O(1) 26(1)  29(1) 19(1)  3(1) 4(1)  -3(1) 

C(1) 19(1)  17(1) 21(1)  2(1) 3(1)  4(1) 

O(2) 22(1)  21(1) 29(1)  2(1) 5(1)  -1(1) 

C(2) 16(1)  16(1) 21(1)  2(1) 1(1)  2(1) 

C(3) 16(1)  17(1) 22(1)  0(1) 0(1)  1(1) 

C(4) 17(1)  18(1) 16(1)  0(1) 0(1)  0(1) 

C(5) 17(1)  19(1) 16(1)  -1(1) 1(1)  1(1) 

C(15) 17(1)  19(1) 18(1)  -3(1) 1(1)  -3(1) 

C(16) 22(1)  20(1) 18(1)  0(1) 0(1)  -2(1) 

C(17) 21(1)  20(1) 26(1)  -2(1) -1(1)  1(1) 

C(18) 21(1)  29(1) 23(1)  -8(1) 3(1)  1(1) 

C(19) 27(1)  32(1) 17(1)  -2(1) 2(1)  1(1) 

C(20) 22(1)  25(1) 18(1)  0(1) -1(1)  2(1) 

C(6) 22(1)  21(1) 14(1)  -3(1) -2(1)  -3(1) 

N(1) 20(1)  19(1) 18(1)  -2(1) 3(1)  -3(1) 

C(21) 24(1)  26(1) 21(1)  -1(1) 6(1)  -6(1) 

C(7) 30(1)  19(1) 17(1)  1(1) -1(1)  -5(1) 

C(8) 36(1)  16(1) 21(1)  -1(1) -6(1)  2(1) 

C(9) 24(1)  22(1) 23(1)  -4(1) -3(1)  4(1) 

C(10) 21(1)  22(1) 17(1)  -1(1) -2(1)  0(1) 

C(11) 21(1)  18(1) 13(1)  -1(1) -2(1)  -2(1) 

C(12) 16(1)  18(1) 15(1)  -1(1) 1(1)  1(1) 

C(13) 21(1)  24(1) 17(1)  1(1) -1(1)  2(1) 

C(14) 26(1)  26(1) 16(1)  1(1) 0(1)  1(1) 
______________________________________________________________________________  
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Table A9.1.6     Hydrogen coordinates (x103) and isotropic displacement parameters (Å2x103)  

for tetracycle 429 
________________________________________________________________________________  

 x  y  z  U(eq) 
________________________________________________________________________________   

H(3) 2213 -66 6045 21 

H(4) 4341 2254 5756 20 

H(5) 7787 1503 6416 21 

H(16) 7494 -949 6095 24 

H(17) 9740 -2378 5616 27 

H(18) 10005 -1803 4850 29 

H(19) 8060 211 4568 30 

H(20) 5846 1659 5046 26 

H(21A) 7684 3999 5608 35 

H(21B) 9807 3203 5845 35 

H(21C) 9384 4896 5927 35 

H(7) 6049 6448 6071 26 

H(8) 2810 7641 6367 29 

H(9) 274 6449 6844 28 

H(10) 891 3998 7033 24 

H(13A) 6570 1010 7197 25 

H(13B) 6642 2716 7302 25 

H(14A) 4257 1473 7825 28 

H(14B) 2849 2679 7555 28 
________________________________________________________________________________  



Appendix 9 – X-Ray Crystallography Report Relevant to Chapter 4  615 

Table A9.1.7    Torsion angles [°] for tetracycle 429 
________________________________________________________________________________  

C(14)-O(1)-C(1)-O(2) -175.30(13) 

C(14)-O(1)-C(1)-C(2) 8.0(2) 

O(2)-C(1)-C(2)-C(3) -14.2(2) 

O(1)-C(1)-C(2)-C(3) 162.33(14) 

O(2)-C(1)-C(2)-C(12) 174.58(14) 

O(1)-C(1)-C(2)-C(12) -8.9(2) 

C(1)-C(2)-C(3)-C(4) -171.71(13) 

C(12)-C(2)-C(3)-C(4) 0.29(17) 

C(2)-C(3)-C(4)-C(15) 139.24(13) 

C(2)-C(3)-C(4)-C(5) 15.29(15) 

C(3)-C(4)-C(5)-N(1) -138.10(12) 

C(15)-C(4)-C(5)-N(1) 98.16(14) 

C(3)-C(4)-C(5)-C(12) -23.96(13) 

C(15)-C(4)-C(5)-C(12) -147.70(11) 

C(3)-C(4)-C(15)-C(16) -57.99(18) 

C(5)-C(4)-C(15)-C(16) 59.13(18) 

C(3)-C(4)-C(15)-C(20) 122.41(15) 

C(5)-C(4)-C(15)-C(20) -120.48(14) 

C(20)-C(15)-C(16)-C(17) 0.8(2) 

C(4)-C(15)-C(16)-C(17) -178.83(13) 

C(15)-C(16)-C(17)-C(18) -0.7(2) 

C(16)-C(17)-C(18)-C(19) 0.3(2) 

C(17)-C(18)-C(19)-C(20) 0.0(2) 

C(18)-C(19)-C(20)-C(15) 0.0(2) 

C(16)-C(15)-C(20)-C(19) -0.4(2) 

C(4)-C(15)-C(20)-C(19) 179.20(14) 

C(7)-C(6)-N(1)-C(21) -18.5(2) 

C(11)-C(6)-N(1)-C(21) 161.92(12) 

C(7)-C(6)-N(1)-C(5) -160.28(14) 

C(11)-C(6)-N(1)-C(5) 20.17(15) 

C(12)-C(5)-N(1)-C(6) -29.67(14) 

C(4)-C(5)-N(1)-C(6) 84.47(14) 

C(12)-C(5)-N(1)-C(21) -172.36(12) 

C(4)-C(5)-N(1)-C(21) -58.22(18) 
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Table A9.1.7 (cont’d) 

N(1)-C(6)-C(7)-C(8) -178.36(14) 

C(11)-C(6)-C(7)-C(8) 1.1(2) 

C(6)-C(7)-C(8)-C(9) -0.5(2) 

C(7)-C(8)-C(9)-C(10) -0.4(2) 

C(8)-C(9)-C(10)-C(11) 0.7(2) 

C(9)-C(10)-C(11)-C(6) 0.0(2) 

C(9)-C(10)-C(11)-C(12) -179.62(14) 

N(1)-C(6)-C(11)-C(10) 178.68(12) 

C(7)-C(6)-C(11)-C(10) -0.9(2) 

N(1)-C(6)-C(11)-C(12) -1.64(15) 

C(7)-C(6)-C(11)-C(12) 178.78(12) 

C(3)-C(2)-C(12)-C(11) 91.92(15) 

C(1)-C(2)-C(12)-C(11) -95.83(15) 

C(3)-C(2)-C(12)-C(13) -139.91(13) 

C(1)-C(2)-C(12)-C(13) 32.34(17) 

C(3)-C(2)-C(12)-C(5) -15.92(16) 

C(1)-C(2)-C(12)-C(5) 156.32(12) 

C(10)-C(11)-C(12)-C(2) 54.7(2) 

C(6)-C(11)-C(12)-C(2) -124.89(13) 

C(10)-C(11)-C(12)-C(13) -70.84(19) 

C(6)-C(11)-C(12)-C(13) 109.53(13) 

C(10)-C(11)-C(12)-C(5) 163.84(15) 

C(6)-C(11)-C(12)-C(5) -15.79(13) 

N(1)-C(5)-C(12)-C(2) 145.53(11) 

C(4)-C(5)-C(12)-C(2) 24.11(14) 

N(1)-C(5)-C(12)-C(11) 26.93(13) 

C(4)-C(5)-C(12)-C(11) -94.49(12) 

N(1)-C(5)-C(12)-C(13) -96.18(14) 

C(4)-C(5)-C(12)-C(13) 142.40(12) 

C(2)-C(12)-C(13)-C(14) -53.11(16) 

C(11)-C(12)-C(13)-C(14) 75.84(16) 

C(5)-C(12)-C(13)-C(14) -168.10(12) 

C(1)-O(1)-C(14)-C(13) -32.47(19) 

C(12)-C(13)-C(14)-O(1) 55.15(17) 
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Table A9.1.7 (cont’d) 

________________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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CHAPTER 5† 

Palladium(II)-Catalyzed Allylic C–H Oxidation of Hindered Substrates  

Featuring Tunable Selectivity Over Extent of Oxidation 

 

 

5.1   INTRODUCTION 

Recent developments in C–H functionalization have made major contributions to 

organic chemistry and are beginning to change the way chemists approach synthetic 

transformations.1 Allylic C–H acetoxylation2,3 and other functionalizations4 of terminal 

olefins have received considerable attention over the past decade as allyl groups are 

versatile and widespread in synthetic organic chemistry.  After the seminal report by 

White and co-workers of palladium-catalyzed allylic acetoxylation,3a numerous research 

groups have developed alternative conditions for this transformation, mainly differing in 

the identity of the terminal oxidant.3 

Complementing reports of the two-electron oxidation of allyl groups to allylic 

acetates, the four-electron oxidation of allyl groups to enones or enals has also been 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
† This work was performed in collaboration with Dr. Xiangyou Xing, alumnus of the Stoltz group.  

This work has been published, with portions of this chapter adapted with permission from Xing, X.; 
O’Connor, N. R.; Stoltz, B. M. Angew. Chem., Int. Ed. 2015, 54, 11186–11190.  Copyright 2015 WILEY-
VCH. 
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described.  While the oxidation of olefins, particularly cycloalkenes, to enones is well 

precedented,5 few examples exist of the transformation of allyl groups to enals.6,7  Of 

these limited cases, most produce the enals in low yield and with poor selectivity over 

other oxidation products, and/or require activated allylic C–H bonds (i.e. allylbenzenes).  

None of these methods are reported to be effective on complex or sterically hindered 

substrates. 

 

5.1.1   ENANTIOSELECTIVE SYNTHESIS OF QUATERNARY α-ALLYL 

LACTAMS AND ATTEMPTED ALLYLIC FUNCTIONALIZATION 

Our research group has had a longstanding interest in the asymmetric synthesis of α-

quaternary carbonyl compounds via catalytic decarboxylative enantioselective allylic 

alkylation.8,9  In 2012 we reported the construction of quaternary α-allyl lactams (529) in 

excellent yield and ee using this strategy (Scheme 5.1).8c   

 

Scheme 5.1  Enantioselective synthesis of α-quaternary lactams by palladium-catalyzed 

decarboxylative allylic alkylation 

 

Given our interest in C–H activation,10 the utility of allyl groups as functional 

handles, and the known status of allylic C–H bonds as a privileged motif in the C–H 

activation literature, we investigated the use of several reported procedures for the C–H 

functionalization of our lactam products (Scheme 5.2).11  Interestingly, use of classical 

conditions for allylic oxidation 12  such as selenium dioxide, 13  singlet oxygen, and 

R1N

O
R2 O

O

Pd2(pmdba)3 (5 mol %)
(S)-(CF3)3-t-BuPHOX (12.5 mol %)

toluene, 40 °C R1N

O
R2

up to 97% yield
up to 99% ee528 529

n n
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Kharasch–Sosnovsky conditions14 resulted in either decomposition or no reaction.  Use of 

a palladium(II) catalyst with tert-butylhydroperoxide also resulted in no reaction.15  

Oxidation with chromium trioxide unexpectedly gave imide 531 in low yield.16  The 

conditions recently developed by White and co-workers (Pd(II), benzoquinone, DMSO, 

acetic acid)3a showed no reactivity, and those reported by Stahl and co-workers (Pd(II), 

oxygen, acetic acid)3i only produced the desired allylic acetates in low yields, leaving 

most of the starting materials unreacted. 

 

Scheme 5.2  Investigation into the allylic oxidation of lactam 530 

 

 

5.2   DEVELOPMENT OF A NOVEL PALLADIUM(II)-CATALYZED 

ALLYLIC ACETOXYLATION REACTION 

We attribute the absence of the desired reactivity to the sterically demanding 

quaternary center at the homoallylic position.  This hypothesis is corroborated by the 

paucity of examples of such sterically encumbered allylic oxidations in the methods 
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literature.  Realizing the amide functional group could act as an internal ligating group, 

we chose to develop conditions for the substrate-directed palladium-catalyzed allylic C–

H acetoxylation of these molecules.  We hoped that the use of a directing group, largely 

unknown in allylic C–H oxygenation reactions,17 would enable reactivity even in the most 

sterically hindered and challenging substrates. 

 

5.2.1   OPTIMIZATION OF THE ALLYLIC ACETOXYLATION 

We began our studies by screening various palladium(II) catalysts, oxidants, and 

solvents in the allylic acetoxylation of an N-benzoyl lactam (Scheme 5.3, entry 1), 

accessable via our allylic alkylation chemistry.8c  Gratifyingly, exposure of the substrate 

to palladium(II) acetate and Oxone in a mixture of acetonitrile and acetic acid produced 

trace amounts of allylic acetate 532 and enal 533.  We were pleased to find that Oxone 

was superior to other oxidants examined, as it is readily available, inexpensive, stable, 

relatively non-toxic, and environmentally safe.18  To our knowledge, this is the first report 

of Oxone as an oxidant for an allylic C–H functionalization reaction. 

Although the benzoyl-protected lactam was poorly reactive under our conditions, use 

of the free N–H lactam resulted in moderate conversion to a separable mixture of allylic 

acetate 532 and enal 533 products (Scheme 5.3, entry 2).  Further optimization revealed 

N-benzyl lactams to be superior to the free lactams, giving full conversion within a matter 

of hours (entries 3–6).  Subsequent experiments showed that the addition of acetic 

anhydride and molecular sieves was necessary to obtain the allylic acetate product in 

good yield.  An examination of other palladium(II) precursors (entries 4–6) led us to 

select palladium(II) hexafluoroacetylacetonate, as it resulted in the shortest reaction time 
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while maintaining a good ratio of the desired allylic acetate (532) to the undesired enal 

(533, entry 6).  With all substrates, we found that acetonitrile was necessary as a solvent, 

as its omission led to a significant decrease in reactivity.  In all cases, we observed little 

or no formation of the methyl ketone or aldehyde products expected from Wacker–Tsuji 

reactivity. 

 

Scheme 5.3  Optimization of the allylic acetoxylation 

 

 

5.2.2   SUBSTRATE SCOPE OF THE ALLYLIC ACETOXYLATION 

With the optimized conditions in hand, we investigated the substrate scope of the 

reaction.  We quickly found that the lactam nature of the substrate was critical to 

achieving good reactivity.  Interestingly, cyclic compounds lacking an amide functional 

group gave only low conversion under our conditions, as did a wide variety of linear 

amides investigated (see Appendix 10).  The scope of allylic acetoxylation of lactam 

substrates is shown in Scheme 5.4. Substrates incorporating alkyl groups at the α-position 

were well tolerated, furnishing the corresponding allylic acetates (537, 538, 540, 541) in 

Entry Catalyst (mol %) Oxone Equiv Conversion (%)a Products (532:533)c

1 Pd(OAc)2 (5.0) 1.5 31 6:1

2 Pd(OAc)2 (5.0) 1.5 100 8:1

3d Pd(OAc)2 (7.5) 2.5 100 8:1

4d Pd(TFA)2 (7.5) 2.5 100 9:1

5d Pd(acac)2 (7.5) 2.5 90 7:1

6d Pd(hfacac)2 (7.5) 2.5 100 8:1

R

Bn

Bn

Bn

Bn

Bz

H

RN

O
Et Pd(II) catalyst

Oxone
5:1 MeCN:AcOH

60 °C, 0.1 M
530

RN

O
Et

532

RN

O
Et

533

OAc O

H

Time (h)

96

3

10

10

10

4

Yield (%)b

trace

41

62

62

55

65

Conditions: lactam 530 (0.10 mmol), catalyst (0.05 or 0.075 equiv; see table), Oxone (1.5 or 2.5 equiv; see table), MeCN (714 µL), 
and AcOH (286 µL) at 60 °C for 96 h or until full conversion by TLC.  a Conversion was determined from the yield of the isolated 
recovered starting material.  b Yield is that of isolated combined producs 532 and 533.  c Ratio determined by 1H NMR analysis 
of the crude reaction mixture.  d A solvent mixture of 5:1:1 MeCN/AcOH/Ac2O was used, and 4Å MS (80 mg) were added.
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good yields and selectivities.  Substrates with benzyl (539) or aryl (542) groups at the α-

position were also competent.19  The identity of the amide substituent is not limited to a 

benzyl group, and replacement with alkyl or aryl groups (543 and 546), or even olefin-

containing groups (547 and 548) did not reduce the yield or selectivity.19  The free N–H 

lactam was also a successful substrate (544).  A quaternary stereocenter was not found to 

be necessary, as an α-tertiary lactam underwent acetoxylation in good yield and exclusive 

selectivity over enal formation (545).  Finally, substrates derived from caprolactam (549, 

550) and butyrolactam (551–554), readily accessed via our decarboxylative allylic 

alkylation chemistry, also reacted smoothly.20 
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Scheme 5.4  Substrate scope of the allylic acetoxylation 

 

 

5.2.3   SYNTHETIC UTILITY OF ALLYLIC ACETATES 

The synthetic utility of allylic acetates is well known in the literature, and using 

standard conditions we were able to further derivatize products as sterically hindered as 

537 (Scheme 5.5).  Osmium-catalyzed dihydroxylation provided diol 555 in good yield 

and diastereoselectivity.21  Hydrogenation of the olefin proceeded smoothly, giving 

aliphatic acetate 556 in excellent yield.  Epoxidation was also facile, furnishing the 

product (557) as a single diastereomer in excellent yield.22  Hydrolysis of the acetate to 
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60 °C for 3–6 h.  Yields are combined of the isolated separable acetate and enal products.  a Reaction time = 24 h.  b Reaction time = 11 h.
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reveal allylic alcohol 558 as well as global reduction of the amide and ester 

functionalities to afford amine 559 were also successful.  Finally, realizing the synthetic 

utility of allylic acetates in transition-metal-catalyzed allylic substitution reactions, we 

were pleased to find that ruthenium-mediated substitution with dimethyl malonate 

produced malonate 560 in good yield.23 

 

Scheme 5.5  Synthetic utility of an allylic acetate product 

 

 

5.3   DEVELOPMENT OF THE ALLYLIC OXIDATION REACTION TO 

FORM ENAL PRODUCTS 

 

5.3.1   OPTIMIZATION OF THE ENAL FORMATION 

After exploring the scope of the acetoxylation reaction, we were intrigued about the 

possibility of optimizing for the enal product seen in small amounts in most 

acetoxylations.  During early optimization studies of the allylic acetoxylation reaction, 

we observed that the omission of molecular sieves or acetic anhydride resulted in a higher 
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degree of enal formation.  Using this as a starting point, we identified optimal conditions 

for enal formation (Scheme 5.6).  Remarkably, only simple changes to the reaction 

conditions allow for a significant change in the product ratio, allowing for facile control 

of the degree of oxidation.  Essentially, only the presence or absence of water controls 

switch between a two-electron oxidation of the allyl group to the allylic acetate (i.e. 

534→535) and a four-electron oxidation of the allyl group to the enal (i.e. 534→536). 

While palladium(II) hexafluoroacetylacetonate is an effective catalyst for oxidation to the 

enal, we opted to use the cheaper and more widely available palladium(II) acetate, as the 

results were similar.  We found the presence of small amounts of water to be necessary to 

achieve high conversion, and the presence of acetic acid aided in suppressing formation 

of the methyl ketone (i.e. standard Wacker–Tsuji oxidation).24 

 

5.3.2   SUBSTRATE SCOPE OF THE ENAL FORMATION 

The scope of the enal formation is shown in Scheme 5.6.  We found that N-benzyl 

valerolactams with a variety of alkyl groups at the α-position were well tolerated, 

furnishing the enal products (561, 562, 564, 565) in good yields and selectivities over the 

allylic acetates.  Substrates with α-benzyl and α-phenyl substituents were also 

successfully oxidized to enals 563 and 566, respectively.  As with the allylic 

acetoxylation reaction, we found that the benzyl-protected nitrogen was not critical, and 

that the N-methyl, N-aryl, and N–H substrates were also suitable (567, 568, and 569).  

Unfortunately, lactams of other ring sizes showed low conversion (570), and α-tertiary 

substrates gave predominately the methyl ketone product of a Wacker–Tsuji oxidation 

(not shown). 
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Scheme 5.6  Substrate scope of the enal formation 

 

 

5.3.3   SYNTHETIC UTILITY OF AN ENAL PRODUCT 

Similar to allylic acetates, enals are useful synthetic intermediates, and we were able 

to subject enal 561 to a variety of transformations (Scheme 5.7).  Reduction to the 

aliphatic aldehyde (571) by hydrogenation was facile, as was a one-carbon homologation 

to diene 572 under Wittig conditions.  We also found that the enal could be oxidized 

directly to the methyl ester (573) in excellent yield using a protocol developed by Thakur 

and coworkers.25  Finally, a Passerini multicomponent coupling with t-butyl isocyanide 

and p-anisic acid provided adduct 574 in good yield, albeit as a mixture of 

diastereomers.26 
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Scheme 5.7  Synthetic utility of an enal product 

 

 

5.4   CONCLUSIONS AND FUTURE DIRECTIONS 

In summary, we have reported a novel protocol for palladium-catalyzed allylic C–H 

oxidation using inexpensive, non-toxic, and safe Oxone as the terminal oxidant.  This 

method is far more tolerant of steric bulk than previously known examples, possibly as a 

result of substrate-directed reactivity.  Furthermore, we have discovered that a minor 

change in conditions allows for access to either the allylic acetate products of a two-

electron oxidation or the enal products of a four-electron oxidation.  This reactivity 

switch demonstrates an unusual ability to selectively achieve different increases in 

oxidation state by a single palladium-catalyzed system.  The synthetic utility of the 

products resulting from these new C–H functionalization methods has been demonstrated 

by conversion of the prototypical products to a range of functionalized heterocycles. 

Although the allylic oxidation chemistry reported herein has certain scope limitations, 

the complete applicability of these new conditions for C–H functionalization is not yet 

fully realized.  For example, exposure of (S)-carvone (575) to similar reaction conditions 
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resulted in selective allylic acetoxylation in moderate yield (Scheme 5.8).  Future 

directions may include further exploration of this reactivity. 

 

Scheme 5.8  Selective allylic acetoxylation of carvone 

 

 

5.5   EXPERIMENTAL SECTION 

5.5.1   MATERIALS AND METHODS 

Unless noted in the specific procedure, reactions were performed in non-dry 

glassware under an air atmosphere.  Dried and deoxygated solvents (Fisher Scientific) 

were prepared by passage through columns of activated aluminum before use.[ 27 ]  

Anhydrous carbon tetrachloride was purchased from Sigma Aldrich and used as received.  

Methanol (Fisher Scientific) was distilled from magnesium methoxide immediately prior 

to use.      Commercial reagents (Sigma Aldrich or Alfa Aesar) were used as received 

with the exception of δ-valerolactam (Oakwood Chemical), dichloro(p-

cymene)ruthenium(II) dimer (Strem Chemicals), triphenylphosphine (Sigma Aldrich) , 

lithium hexamethyldisilazide (Sigma Aldrich), zinc(II) chloride (Sigma Aldrich), and 

lithium tri-tert-butoxyaluminum hydride (Sigma Aldrich) which were stored in a 

nitrogen-filled govebox.  Diisopropylamine (Oakwood Chemical) and trimethylsilyl 

chloride (Alfa Aesar) were distilled from calcium hydride immediately prior to use.  The 

acetic acid (J. T. Baker) and acetic anhydride (Sigma Aldrich) used in the allylic 

acetoxylation reactions were stored in a 1:1 mixture over activated 4 Å MS.  Brine is 

O
Me

Me

O

Me
OAc

Pd(OAc)2 (20 mol %)
Oxone (1.1 equiv)

AcOH, 95 °C

(40% yield based on 
recovered starting material)

575 576
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defined as a saturated aqueous solution of sodium chloride.  Reactions requiring external 

heat were modulated to the specified temperatures using an IKAmag temperature 

controller.  Reaction progress was monitored by thin-layer chromatography (TLC) or 

Agilent 1290 UHPLC-LCMS.  TLC was performed using E. Merck silica gel 60 F254 

precoated plates (0.25 mm) and visualized by UV fluorescence quenching, potassium 

permanganate, or p-anisaldehyde staining.  SiliaFlash P60 Academic Silica gel (particle 

size 0.040-0.063 mm) was used for flash chromatography.  1H and 13C NMR spectra were 

recorded on a Varian Inova 500 spectrometer (500 MHz and 126 MHz, respectively) or a 

Bruker AV III HD spectrometer equipped with a Prodigy liquid nitrogen temperature 

cryoprobe (400 MHz and 101 MHz, respectively), and are reported in terms of chemical 

shift relative to residual CHCl3 (δ 7.26 and δ 77.16 ppm, respectively).  Data for 1H 

NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling 

constant (Hz), integration).  Abbreviations are used as follows: s = singlet, bs = broad 

singlet, d = doublet, t = triplet, q = quartet, m = complex multiplet.  Infrared (IR) spectra 

were recorded on a Perkin Elmer Paragon 1000 spectrometer using thin film samples on 

NaCl plates, and are reported in frequency of absorption (cm–1).  High-resolution mass 

spectra (HRMS) were obtained from the Caltech Mass Spectral Facility using a JEOL 

JMS-600H High Resolution Mass Spectrometer with fast atom bombardment (FAB+) 

ionization mode or were acquired using an Agilent 6200 Series TOF with an Agilent 

G1978A Multimode source in electrospray ionization (ESI+) mode.  Melting points were 

measured with a BÜCHI Melting Point B-545 apparatus. 
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5.5.2   GENERAL EXPERIMENTAL PROCEDURES 

 

General Procedure A.  Benzyl protection of lactams. 

To a flame-dried round-bottom flask with a magnetic stir bar were added sodium 

hydride (60% dispersion in mineral oil, 56.5 mmol, 1.13 equiv) and THF (16 mL).  The 

flask was capped with a rubber septum, put under a nitrogen atmosphere, and cooled to 0 

°C using an ice water bath.  A solution of lactam 577 (50.0 mmol, 1.00 equiv) in THF (75 

mL) was added rapidly dropwise by syringe, and the resulting mixture was allowed to 

warm to 23 °C and stir for 2 hours.  Benzyl bromide (53.5 mmol, 1.07 equiv) was added 

dropwise by syringe, and the mixture stirred for another 2 hours.  Upon completion (as 

determined by TLC analysis), the suspension was diluted with water (300 mL) and 

extracted with ethyl acetate (3 x 300 mL).  The combined organic layers were washed 

with brine (1 x 300 mL), dried over magnesium sulfate, filtered, and concentrated in 

vacuo.  The crude residue was purified by silica gel column chromatography, using 

mixture of hexanes and ethyl acetate as eluent.  The products were obtained in 90–99% 

yield. 

 

 

General Procedure B.  Installation of the α-substituents. 

HN

O

n

NaH, THF, 0→23 °C;

BnBr, 23 °C

(90–99% yield)

BnN

O

n

577 578

BnN

O

n

578

1. LDA, THF, 0 °C;
    R–X; –78→23 °C

2. LDA, THF, 0 °C;
    allyl–Br; –78→23 °C

BnN

O

n

579

R

(8–40% yield 
over two steps)
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To a flame-dried round-bottom flask with a magnetic stir bar were added 

diisopropylamine (25.4 mmol, 1.2 equiv) and THF (13 mL) by syringe.  The solution was 

stirred under nitrogen and cooled to 0 °C using an ice water bath.  n-Butyllithium (2.5 M 

in hexane, 25.1 mmol, 1.19 equiv) was added rapidly dropwise by syringe, and the 

solution was allowed to stir at 0 °C for 20 minutes.  Meanwhile, lactam 578 (21.1 mmol, 

1.00 equiv) was dissolved in THF (200 mL) in a flame-dried round-bottom flask under 

nitrogen and cooled to 0 °C using an ice water bath.  The freshly prepared LDA solution 

was transferred to the lactam solution rapidly dropwise via syringe, and the mixture was 

allowed to stir at 0 °C for 45 minutes.  The solution was then cooled to –78 °C using a 

dry ice and acetone bath, and the appropriate alkyl halide (27.5 mmol, 1.30 equiv) was 

added dropwise by syringe.  The flask was placed in an ice water bath and allowed to 

gradually warm to 23 °C overnight.  Upon completion (as determined by TLC analysis), 

the reaction mixture was quenched by the addition of saturated aqueous ammonium 

chloride solution (400 mL), and the aqueous layer extracted with chloroform (3 x 300 

mL).  The combined organic layers were washed with brine (1 x 300 mL), dried over 

sodium sulfate, filtered, and concentrated in vacuo.  The crude residue was purified by 

silica gel column chromatography using mixtures of hexanes and ethyl acetate as eluent. 

To a flame-dried round-bottom flask with a magnetic stir bar were added 

diisopropylamine (29.3 mmol, 1.50 equiv) and THF (15 mL) by syringe.  The solution 

was stirred under nitrogen and cooled to 0 °C using an ice water bath.  n-Butyllithium 

(2.5 M in hexane, 29.1 mmol, 1.49 equiv) was added rapidly dropwise by syringe, and 

the solution was allowed to stir at 0 °C for 20 minutes.  Meanwhile, the mono-alkylated 

intermediate lactam (19.5 mmol, 1.00 equiv) was dissolved in THF (61 mL) in a flame-
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dried round-bottom flask under nitrogen and cooled to 0 °C using an ice water bath.  The 

freshly prepared LDA solution was transferred to the lactam solution rapidly dropwise 

via syringe, and the mixture was allowed to stir at 0 °C for 45 minutes.  The solution was 

then cooled to –78 °C using a dry ice and acetone bath, and allyl bromide (117.0 mmol, 

6.00 equiv) was added dropwise by syringe.  The flask was placed in an ice water bath 

and allowed to gradually warm to 23 °C overnight.  Upon completion (as determined by 

TLC analysis), the reaction mixture was quenched by the addition of saturated aqueous 

ammonium chloride solution (300 mL), and the aqueous layer extracted with chloroform 

(3 x 200 mL).  The combined organic layers were washed with brine (1 x 200 mL), dried 

over sodium sulfate, filtered, and concentrated in vacuo.  The crude residue was purified 

by silica gel column chromatography using mixtures of hexanes and ethyl acetate as 

eluent.  The products were obtained in 8–40% yield over two steps. 

 

 

General Procedure C.  Optimization of the allylic acetoxylation reaction. 

To a flame-dried 25 mL round-bottom flask with a magnetic stir bar were added, in 

order, the appropriate lactam 530 (0.10 mmol, 1.00 equiv), the appropriate palladium(II) 

catalyst (0.075 mmol or 0.05 mmol, 0.075 equiv or 0.05 equiv), Oxone (0.15 mmol or 

0.25 mmol, 1.50 equiv or 2.50 equiv), and (if indicated) hot, activated 4 Å molecular 

sieves (80 mg).  The flask was then capped with a rubber septum and evacuated and 

backfilled twice with nitrogen.  The appropriate solvent mixture (total volume 1 mL, 5:2 

acetonitrile:acetic acid or 5:1:1 acetonitrile:acetic acid:acetic anhydride) was added by 

RN

O
Et Pd(II) catalyst

Oxone
solvent

60 °C, 0.1 M

530

RN

O
Et

532

RN

O
Et

533

OAc O

H
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syringe.  The resulting suspension was stirred under nitrogen for 5 minutes at 23 °C and 

then heated to 60 °C in an oil bath.  Upon completion (as determined by TLC analysis), 

the flask was allowed to cool to 23 °C and the contents were filtered through a short plug 

of silica gel, rinsing with ethyl acetate.  The filtrate was adsorbed onto silica gel (approx. 

1 g), which was then flushed with ethyl acetate.  The eluent was concentrated to give the 

crude product as an oil.  After NMR analysis to determine the acetate:enal ratio, the crude 

residue was purified by silica gel column chromatography, using mixtures of hexanes and 

ethyl acetate as eluent. 

 

 

General Procedure D.  Allylic acetoxylation of α-allyl lactams. 

To a flame-dried 25 mL round-bottom flask with a magnetic stir bar were added, in 

order, lactam 534 (0.20 mmol, 1.00 equiv), palladium(II) hexafluoroacetylacetonate (8 

mg, 0.015 mmol, 0.075 equiv), Oxone (154 mg, 0.50 mmol, 2.50 equiv), and hot, 

activated 4 Å molecular sieves (160 mg).  The flask was then capped with a rubber 

septum and evacuated and backfilled twice with nitrogen.  Acetonitrile (1.43 mL) and 1:1 

acetic acid:acetic anhydride (571 μL) were added by syringe.  The resulting suspension 

was stirred under nitrogen for 5 minutes at 23 °C and then heated to 60 °C in an oil bath.  

Upon completion (as determined by TLC analysis), the flask was allowed to cool to 23 

°C and the contents were filtered through a short plug of silica gel, rinsing with ethyl 

acetate.  The filtrate was adsorbed onto silica gel (approx. 2 g), which was then flushed 

with ethyl acetate.  The eluent was concentrated to give the crude product as an oil.  After 

R1N

O
R2 Pd(hfacac)2 (7.5 mol %)

Oxone (2.5 equiv)
5:1:1 MeCN:AcOH:Ac2O

MS4Å, 60 °C, 0.1 M

534

n

R1N

O
R2

535

n

OAc
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NMR analysis to determine the acetate:enal ratio, the crude residue was purified by silica 

gel column chromatography, using mixtures of hexanes and ethyl acetate as eluent. 

 

 

General Procedure E.  Enal formation from α-allyl lactams. 

To a 25 mL round-bottom flask with a magnetic stir bar were added, in order, lactam 

534 (0.20 mmol, 1.00 equiv), palladium(II) acetate (3 mg, 0.015 mmol, 0.075 equiv), and 

Oxone (154 mg, 0.50 mmol, 2.50 equiv).  Acetonitrile (1.82 mL), acetic acid (183 μL, 

3.20 mmol, 16.00 equiv), and water (29 μL, 1.60 mmol, 8.00 equiv) were added by 

syringe.  The resulting suspension was stirred for 5 minutes at 23 °C and then heated to 

50 °C in an oil bath.  Upon completion (as determined by TLC analysis), the flask was 

allowed to cool to 23 °C and anhydrous magnesium sulfate (approx. 200 mg) was added.  

After stirring for 5 minutes the contents were filtered through a short plug of silica gel, 

rinsing with ethyl acetate.  The filtrate was adsorbed onto silica gel (approx. 2 g), which 

was then flushed with ethyl acetate.  The eluent was concentrated to give the crude 

product as an oil.  After NMR analysis to determine the acetate:enal ratio, the crude 

residue was purified by silica gel column chromatography, using mixtures of hexanes and 

ethyl acetate as eluent. 

 

5.5.3   SUBSTRATE SYNTHESIS AND CHARACTERIZATION DATA 

 

R1N

O
R2

534

n

R1N

O
R2

536

n

O

HPd(OAc)2 (7.5 mol %)
Oxone (2.5 equiv)
AcOH (16.0 equiv)
H2O (8.00 equiv)

MeCN, 50 °C, 0.1 M

R1N

O
R2
O

O

n

R1N

O
R2

n

528 529
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Compounds of the general structures 528 (not used in this work) and 529, including 

one used in this work (R1 = Bz, R2 = Et, n = 1; starting material for entry 1 of Scheme 1) 

may be prepared as previously reported by our research group.8c 

 

 

1-benzylpiperidin-2-one (581): 

Lactam 581 was prepared from δ-valerolactam (580) using General Procedure A.  

Characterization data match those reported in the literature.28 

 

 

1-benzylazepan-2-one (583): 

Lactam 583 was prepared from ε-caprolactam (582) using General Procedure A.  

Characterization data match those reported in the literature.29 

 

 

1-benzylpyrrolidin-2-one (584): 

Lactam 584 was prepared from 2-pyrrolidinone (584) using General Procedure A.  

Characterization data match those reported in the literature.30 

 

HN

O

BnN

O

580 581

583

BnN

O

582
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O

BnN

O

585

HN

O
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3-allyl-1-benzyl-3-ethylpiperidin-2-one (586): 

Lactam 586 was prepared from 581 using General Procedure B.  Rf = 0.40 (33% ethyl 

acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.34–7.27 (m, 2H), 7.26–7.20 (m, 

3H), 5.78 (dddd, J = 16.7, 10.5, 8.1, 6.7 Hz, 1H), 5.10–5.05 (m, 1H), 5.06–5.03 (m, 2H), 

4.60 (d, J = 14.6 Hz, 1H), 4.56 (d, J = 14.6 Hz, 1H), 3.22–3.10 (m, 2H), 2.55 (ddt, J = 

13.5, 6.7, 1.3 Hz, 1H), 2.21 (ddt, J = 13.5, 8.0, 1.1 Hz, 1H), 1.83 (dq, J = 13.6, 7.5 Hz, 

1H), 1.78–1.63 (m, 3H), 1.52 (dq, J = 13.6, 7.5 Hz, 1H), 0.88 (t, J = 7.5 Hz, 3H); 13C 

NMR (CDCl3, 126 MHz) δ 174.5, 137.7, 135.0, 128.6, 128.1, 127.3, 117.8, 50.6, 47.8, 

45.3, 31.6, 28.9, 19.8, 8.9; IR (Neat Film, NaCl) 2938, 1633, 1488, 1453, 1352, 1196, 

913, 736 cm–1; HRMS (ESI+) m/z calc’d for C17H24NO [M+H]+: 258.1852, found 

258.1856. 

 

 

3-allyl-1-benzyl-3-methylpiperidin-2-one (587): 

Lactam 587 was prepared from 581 using General Procedure B.  Rf = 0.50 (33% ethyl 

acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.32–7.27 (m, 2H), 2.26–2.20 (m, 

3H), 5.81–5.71 (m, 1H), 5.11–5.04 (m, 2H), 4.62 (d, J = 14.6 Hz, 1H), 4.50 (d, J = 14.6 

Hz, 1H), 3.24–3.10 (m, 2H), 2.57 (ddt, J = 13.5, 6.7, 1.3 Hz, 1H), 2.23 (ddt, J = 13.4, 8.1, 

1.0 Hz, 1H) 1.89–1.80 (m, 1H), 1.80–1.69 (m, 2H), 1.58–1.47 (m, 1H), 1.25 (s, 3H); 13C 

BnN

O

581

BnN

O
Et

586

BnN

O

581

BnN

O
Me

587
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NMR (CDCl3, 126 MHz) δ 175.1, 137.7, 143.6, 128.6, 128.0, 127.3, 118.1, 50.5, 47.9, 

44.5, 41.6, 32.6, 26.0, 19.4; IR (Neat Film, NaCl) 2936, 1634, 1488, 1432, 1349, 1196, 

914, 750 cm–1; HRMS (ESI+) m/z calc’d for C16H22NO [M+H]+: 244.1696, found 

244.1699. 

 

 

3-allyl-1,3-dibenzylpiperidin-2-one (588): 

Lactam 588 was prepared from 581 using General Procedure B.  Rf = 0.40 (33% ethyl 

acetate in hexanes); 1H NMR (CDCl3, 500 MHz) 7.32–7.13 (m, 10H), 5.82 (dddd, J = 

16.8, 10.6, 8.2, 6.5 Hz, 1H), 5.15–5.11 (m, 1H), 5.11–5.06 (m, 1H), 4.68 (d, J = 14.5 Hz, 

1H), 4.48 (d, J = 14.6 Hz, 1H), 3.38 (d, J = 13.0 Hz, 1H), 3.06 (ddd, J = 12.0, 7.4, 4.6 Hz, 

1H), 2.99–2.87 (m, 1H), 2.72 (ddt, J = 13.4, 6.5, 1.4 Hz, 1H), 2.61 (d, J = 13.1 Hz, 1H), 

2.21 (ddt, J = 13.4, 8.2, 1.0 Hz, 1H), 1.78–1.68 (m, 2H), 1.64 (qdd, J = 11.9, 5.9, 2.7 Hz, 

1H), 1.46–1.34 (m, 1H); 13C NMR (CDCl3, 126 MHz) δ 173.8, 138.3, 137.4, 134.5, 

130.8, 128.5, 128.1, 128.1, 127.3, 126.4, 118.5, 50.8, 47.8, 46.7, 44.8, 44.6, 28.6, 19.7; 

IR (Neat Film, NaCl) 3027, 2939, 1631, 1495, 1453, 1353, 1194, 916, 742 cm–1; HRMS 

(ESI+) m/z calc’d for C22H26NO [M+H]+: 320.2009, found 320.2019. 

 

 

3-allyl-1-benzyl-3-propylpiperidin-2-one (589): 

BnN

O

581
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Lactam 589 was prepared from 581 using General Procedure B.  Rf = 0.50 (33% ethyl 

acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.35–7.29 (m, 2H), 7.27–7.20 (m, 

3H), 5.90–5.66 (m, 1H), 5.10–5.06 (m, 1H), 5.06–5.04 (m, 1H), 4.61 (d, J = 14.5 Hz, 

1H), 4.55 (d, J = 14.5 Hz, 1H), 3.16 (td, J = 5.4, 4.6, 2.2 Hz, 2H), 2.56 (ddt, J = 13.5, 6.7, 

1.3 Hz, 1H), 2.22 (ddt, J = 13.5, 8.1, 1.0 Hz, 1H), 1.83–1.57 (m, 5H), 1.55–1.41 (m, 1H), 

1.41–1.32 (m, 1H), 1.32–1.21 (m, 1H), 0.91 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3, 126 

MHz) δ 174.4, 137.7, 134.9, 128.5, 128.1, 127.2, 117.8, 50.5, 47.7, 45.1, 43.7, 41.4, 29.5, 

19.8, 17.6, 14.8; IR (Neat Film, NaCl) 2955, 1632, 1487, 1437, 1350, 1194, 913, 734 cm–

1; HRMS (ESI+) m/z calc’d for C18H26NO [M+H]+: 272.2009, found 272.2014. 

 

 

3-allyl-1-benzyl-3-(2-methoxyethyl)piperidin-2-one (590): 

Lactam 590 was prepared from 581 using General Procedure B.  Rf = 0.3 (33% ethyl 

acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.34–7.27 (m, 2H), 7.27–7.20 (m, 

3H), 5.86–5.65 (m, 1H), 5.08 (dtd, J = 13.3, 2.4, 1.1 Hz, 2H), 4.62 (d, J = 14.6 Hz, 1H), 

4.52 (d, J = 14.5 Hz, 1H), 3.56–3.37 (m, 2H), 3.29 (s, 3H), 3.24–3.12 (m, 2H), 2.56 (ddt, 

J = 13.6, 6.7, 1.3 Hz, 1H), 2.26 (ddt, J = 13.5, 8.0, 1.0 Hz, 1H), 2.09 (ddd, J = 14.1, 7.7, 

6.5 Hz, 1H), 1.83–1.63 (m, 5H); 13C NMR (CDCl3, 126 MHz) δ 173.9, 137.7, 134.4, 

128.6, 128.1, 127.3, 118.4, 69.7, 58.7, 50.7, 47.9, 44.0, 43.7, 38.0, 30.1, 19.7; IR (Neat 

Film, NaCl) 2925, 1632, 1487, 1452, 1195, 1114, 915, 736 cm–1; HRMS (ESI+) m/z 

calc’d for C18H26NO2 [M+H]+: 288.1958, found 288.1966. 
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1-benzyl-3-phenylpiperidin-2-one (591): 

Lactam 591 was prepared from 581 following a known procedure.2a  To a flame-dried 

round-bottom flask with a magnetic stir bar were added lactam 581 (662 mg, 3.50 mmol, 

2.20 equiv) and THF (6.4 mL).  The solution was stirred under nitrogen and cooled to –

20 °C using a dry ice and acetone bath.  A solution of lithium hexamethyldisilazide (532 

mg, 3.18 mmol, 2.00 equiv) in THF (1.4 mL) was added by syringe, and the reaction 

mixture was allowed to stir at –20 °C for 20 minutes.  A solution of zinc(II) chloride (477 

mg, 3.50 mmol, 2.20 equiv) in THF (7 mL) was added, and the reaction mixture was 

allowed to stir at –20 °C for another 20 minutes, after which it was transferred via syringe 

to a flame-dried round-bottom flask with a magnetic stir bar and a reflux condenser 

containing tris(dibenzylideneacetone)dipalladium(0) (23 mg, 0.025 mmol, 0.015 equiv), 

DavePhos (30 mg, 0.076 mmol, 0.048 equiv), bromobenzene (169 μL, 1.59 mmol, 1.00 

equiv), and THF (3.2 mL).  The mixture was heated to 65 °C for 10 hours.  Upon 

completion (as determined by TLC analysis), the reaction mixture was allowed to cool to 

23 °C, quenched by the addition of saturated aqueous ammonium chloride solution (100 

mL), and the aqueous layer was extracted with ether (3 x 200 mL).  The combined 

organic layers were dried over magnesium sulfate and concentrated in vacuo.  The crude 

residue was purified by silica gel column chromatography (20% ethyl aceate in hexanes 

to 25% ethyl acetate in hexanes) to provide lactam 591 as a colorless oil (141 mg, 15% 

yield).  Characterization data match those reported in the literature.5 

BnN

O

581

LiHMDS, THF, –20 °C;
ZnCl2, –20 °C;

Pd2(dba)3, DavePhos
PhBr, 65 °C

(15% yield)

BnN

O

591
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3-allyl-1-benzyl-3-phenylpiperidin-2-one (592): 

To a flame-dried round-bottom flask with a magnetic stir bar were added 

diisopropylamine (348 μL, 2.48 mmol, 1.50 equiv) and THF (1.3 mL) by syringe.  The 

solution was stirred under nitrogen and cooled to 0 °C using an ice water bath.  n-

Butyllithium (2.5 M in hexane, 983 μL, 2.46 mmol, 1.49 equiv) was added rapidly 

dropwise by syringe, and the solution was allowed to stir at 0 °C for 20 minutes.  

Meanwhile, lactam 591 (439 mg, 1.65 mmol, 1.00 equiv) was dissolved in THF (5.3 mL) 

in a flame-dried round-bottom flask under nitrogen and cooled to 0 °C using an ice water 

bath.  The freshly prepared LDA solution was transferred to the lactam solution rapidly 

dropwise via syringe, and the mixture was allowed to stir at 0 °C for 45 minutes.  The 

solution was then cooled to –78 °C using a dry ice and acetone bath, and allyl bromide 

(857 μL, 9.90 mmol, 6.00 equiv) was added dropwise by syringe.  The flask was placed 

in an ice water bath and allowed to gradually warm to 23 °C overnight.  Upon completion 

(as determined by TLC analysis), the reaction mixture was quenched by the addition of 

saturated aqueous ammonium chloride solution (100 mL), and the aqueous layer 

extracted with chloroform (3 x 75 mL).  The combined organic layers were washed with 

brine (1 x 100 mL), dried over sodium sulfate, filtered, and concentrated in vacuo.  The 

crude residue was purified by silica gel column chromatography (5% ethyl aceate in 

hexanes) to provide lactam 592 as a colorless oil (332 mg, 66% yield).  Rf = 0.4 (10% 

ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.41–7.26 (m, 9H), 7.25–7.19 

BnN
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591

Ph
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(66% yield)



Chapter 5 – Palladium-Catalyzed Allylic C–H Oxidation of Hindered Substrates  642 

(m, 1H), 5.76 (dddd, J = 17.1, 10.2, 8.2, 6.1 Hz, 1H), 5.14–5.04 (m, 2H), 4.69 (s, 2H), 

3.28–3.16 (m, 1H), 3.12 (dddd, J = 12.1, 5.2, 3.7, 1.3 Hz, 1H), 2.96 (ddt, J = 13.5, 6.1, 

1.4 Hz, 1H), 2.53 (ddt, J = 13.6, 8.2, 1.0 Hz, 1H), 2.19 (dtd, J = 13.9, 4.0, 1.3 Hz, 1H), 

2.12–1.97 (m, 1H), 1.72–1.61 (m, 2H); 13C NMR (CDCl3, 126 MHz) δ 172.4, 144.0, 

137.6, 135.4, 128.7, 128.5, 128.3, 127.4, 126.8, 126.6, 118.2, 51.2, 50.8, 47.5, 45.8, 31.4, 

19.0; IR (Neat Film, NaCl) 3061, 2943, 1635, 1495, 1442, 1352, 1197, 916, 761, 699 cm–

1; HRMS (ESI+) m/z calc’d for C21H24NO [M+H]+: 306.1852, found 306.1850. 

 

 

3-allyl-3-ethyl-1-methylpiperidin-2-one (594): 

To a flame-dried round-bottom flask with a magnetic stir bar were added sodium 

hydride (60% dispersion in mineral oil, 122 mg, 3.06 mmol, 1.10 equiv) and THF (5 

mL).  The flask was capped with a rubber septum, put under a nitrogen atmosphere, and 

cooled to 0 °C using an ice water bath.  A solution of lactam 593 (preparation described 

below, 465 mg, 2.78 mmol, 1.00 equiv) in THF (15 mL) was added rapidly dropwise by 

syringe, and the resulting mixture was allowed to warm to 23 °C and stir for 2 hours.  

Methyl iodide (191 μL, 3.06 mmol, 1.10 equiv) was added dropwise by syringe, and the 

mixture stirred for another 2 hours.  Upon completion (as determined by TLC analysis), 

the suspension was diluted with water (100 mL) and extracted with ethyl acetate (3 x 100 

mL).  The combined organic layers were washed with brine (1 x 100 mL), dried over 

magnesium sulfate, filtered, and concentrated in vacuo.  The crude residue was purified 

by silica gel column chromatography (40% ethyl acetate in hexanes) to provide lactam 
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594 as a colorless oil (490 mg, 97% yield).  Rf = 0.4 (33% ethyl acetate in hexanes); 1H 

NMR (CDCl3, 500 MHz) δ 5.77–5.61 (m, 1H), 5.05–5.01 (m, 1H), 5.00 (t, J = 1.2 Hz, 

1H), 3.29–3.15 (m, 2H), 2.89 (s, 3H), 2.45 (ddt, J = 13.6, 6.7, 1.4 Hz, 1H), 2.15 (ddt, J = 

13.6, 8.1, 1.1 Hz, 1H), 1.84–1.58 (m, 5H), 1.46 (dq, J = 13.7, 7.4 Hz, 1H), 0.82 (t, J = 7.5 

Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 174.6, 135.1, 117.6, 50.5, 45.1, 43.0, 35.2, 31.3, 

28.9, 19.7, 8.0; IR (Neat Film, NaCl) 2938, 1635, 1499, 1458, 1398, 1357, 1201, 911 cm–

1; HRMS (ESI+) m/z calc’d for C11H20NO [M+H]+: 182.1539, found 182.1542. 

 

 

3-ethylpiperidin-2-one (595): 

Lactam 595 was prepared from 580 following a known procedure.31  To a flame-dried 

round-bottom flask with a magnetic stir bar were added lactam 580 (2.25 g, 22.7 mmol, 

1.00 equiv) and THF (50 mL).  The solution was stirred under nitrogen and cooled to –78 

°C using a dry ice and acetone bath.  n-Butyllithium (2.5 M in hexane, 18.3 mL, 45.7 

mmol, 2.01 equiv) was added dropwise by syringe, and the reaction mixture was allowed 

to warm to 0 °C and stir for 1 hour.  Ethyl iodide (2.73 mL, 34.1 mmol, 1.50 equiv) was 

added dropwise by syringe, and the solution was stirred for 45 minutes at 0 °C.  Upon 

completion (as determined by TLC analysis), the mixture was quenched with saturated 

aqueous ammonium chloride solution (100 mL) and the aqueous layer was extracted with 

chloroform (3 x 200 mL).  The combined organic layers were washed with brine (1 x 200 

mL), dried over sodium sulfate, and concentrated in vacuo.  The crude residue was 

purified by silica gel column chromatography (ethyl acetate) to provide lactam 595 as a 
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white solid (2.60 g mg, 90% yield).  Characterization data match those reported in the 

literature.7 

 

 

3-allyl-3-ethylpiperidin-2-one (593): 

Lactam 593 was prepared from 595 following a known procedure.6  To a flame-dried 

round-bottom flask with a magnetic stir bar were added lactam 595 (2.60 g, 20.4 mmol, 

1.00 equiv) and THF (60 mL).  The solution was stirred under nitrogen and cooled to –78 

°C using a dry ice and acetone bath.  n-Butyllithium (2.5 M in hexane, 8.24 mL, 20.6 

mmol, 1.01 equiv) was added dropwise by syringe, and the reaction mixture was allowed 

to warm to 0 °C and stir for 1.25 hours.  Trimethylsilyl chloride (3.77 mL, 22.5 mmol, 

1.10 equiv) was added rapidly by syringe, and the reaction mixture was allowed to stir for 

1.75 hours at 0 °C.  Meanwhile, to a flame-dried round-bottom flask with a magnetic stir 

bar were added diisopropylamine (4.29 mL, 30.6 mmol, 1.50 equiv) and THF (15 mL) by 

syringe.  The amine solution was stirred under nitrogen and cooled to 0 °C using an ice 

water bath.  n-Butyllithium (2.5 M in hexane, 12.2 mL, 30.4 mmol, 1.49 equiv) was 

added rapidly dropwise by syringe, and the solution was allowed to stir at 0 °C for 20 

minutes.  The freshly prepared LDA solution was then added to the reaction mixture 

rapidly by syringe, and the resulting solution was stirred for 45 minutes at 0 °C.  The 

solution was then cooled to –78 °C using a dry ice and acetone bath, and allyl bromide 

(21 mL, 250 mmol, 12.3 equiv) was added dropwise by syringe.  The reaction mixture 

was allowed to warm to 0 °C and stir for 1.25 hours.  Upon completion (as determined by 
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TLC analysis), the mixture was quenched with saturated aqueous ammonium chloride 

solution (100 mL) and the aqueous layer was extracted with chloroform (3 x 200 mL).  

The combined organic layers were washed with 1 M aqueous hydrochloric acid (2 x 100 

mL), water (1 x 100 mL), brine (1 x 100 mL), dried over sodium sulfate, and 

concentrated in vacuo.  The crude residue was purified by silica gel column 

chromatography (50% ethyl acetate in hexanes) to provide lactam 593 as a colorless oil 

(2.09 g, 61% yield).  Characterization data match those reported in the literature.8 

 

 

3-allyl-1-benzylpiperidin-2-one (596): 

To a flame-dried round-bottom flask with a magnetic stir bar were added 

diisopropylamine (2.91 mL, 20.8 mmol, 1.05 equiv) and THF (10 mL) by syringe.  The 

solution was stirred under nitrogen and cooled to 0 °C using an ice water bath.  n-

Butyllithium (2.5 M in hexane, 8.71 mL, 21.8 mmol, 1.10 equiv) was added rapidly 

dropwise by syringe, and the solution was allowed to stir at 0 °C for 30 minutes before 

being cooled to –78 °C in a dry ice and acetone bath.  A solution of lactam 581 (3.75 g, 

19.8 mmol, 1.00 equiv) in THF (60 mL) was added dropwise by cannula.  The reaction 

mixture was stirred at –78 °C for 4 hours.  Allyl bromide (1.79 mL, 20.8 mmol, 1.05 

equiv) was added dropwise by syringe, and the reaction mixture was allowed to gradually 

warm to 23 °C and stir for 16 h.  Upon completion (as determined by TLC analysis) the 

reaction mixture was quenched by the addition of saturated aqueous ammonium chloride 

solution (200 mL), and the aqueous layer extracted with chloroform (3 x 200 mL).  The 
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combined organic layers were washed with brine (1 x 200 mL), dried over sodium 

sulfate, filtered, and concentrated in vacuo.  The crude residue was purified by silica gel 

column chromatography (25% ethyl aceate in hexanes) to provide lactam 596 as a 

colorless oil (2.77 g, 61% yield).  Rf = 0.7 (50% ethyl acetate in hexanes); 

characterization data match those reported in the literature.[32] 

 

 

3-allyl-3-ethyl-1-(4-methoxyphenyl)piperidin-2-one (597): 

The conditions for this transformation were adapted from a known procedure.[33]  To a 

flame-dried round-bottom flask with a magnetic stir bar were added lactam 593 (1.00 g, 

5.98 mmol, 1.20 equiv) and DMF (6 mL).  The solution was stirred under nitrogen and 

copper(I) iodide (190 mg, 1.00 mmol, 0.20 equiv), potassium phosphate tribasic (2.12 g, 

10.0 mmol, 2.00 equiv), N,N’-dimethylethylenediamine (108 μL), and 4-bromoanisole 

(630 μL, 5.04 mmol, 1.00 equiv) were added.  The heterogeneous mixture was then 

heated to 110 °C under nitrogen for 20 hours.  Upon completion (as determined by 

LCMS analysis), the mixture was filtered through a plug of sodium sulfate, rinsing with 

dichloromethane.  The filtrate was washed with water (3 x 100 mL), dried over sodium 

sulfate, filtered, and concentrated in vacuo.  The crude residue was purified by silica gel 

column chromatography (20% ethyl acetate in hexanes) to provide lactam 597 as a 

colorless oil (203 mg, 12% yield).  Rf = 0.3 (20% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 7.17–7.04 (m, 2H), 6.95–6.83 (m, 2H), 6.01–5.69 (m, 1H), 5.14–
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5.10 (m, 1H), 5.10 (s, 1H), 3.80 (s, 3H), 3.58 (t, J = 5.9 Hz, 2H), 2.60 (ddt, J = 13.5, 6.7, 

1.3 Hz, 1H), 2.23 (ddt, J = 13.4, 8.1, 1.0 Hz, 1H), 2.00–1.77 (m, 5H), 1.57 (dq, J = 13.6, 

7.4 Hz, 1H), 0.95 (t, J = 7.4 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 174.9, 158.0, 137.0, 

135.1, 127.5, 118.0, 114.4, 55.6, 52.5, 45.7, 43.7, 31.9, 29.3, 20.6, 9.0; IR (Neat Film, 

NaCl) 3072, 2937, 1646, 1511, 1457, 1293, 1243, 1199, 1105, 1134, 913, 829 cm–1; 

HRMS (ESI+) m/z calc’d for C17H24NO2 [M+H]+: 274.1802, found 274.1813. 

 

 

3-allyl-3-ethyl-1-(2-methylallyl)piperidin-2-one (598): 

To a flame-dried round-bottom flask with a magnetic stir bar were added lactam 593 

(400 mg, 2.40 mmol, 1.00 equiv) and THF (12 mL).  The flask was capped with a rubber 

septum, put under an argon atmosphere, and cooled to 0 °C using an ice water bath.  

Sodium hydride (60% dispersion in mineral oil, 192 mg, 4.80 mmol, 2.00 equiv) was 

then added in one portion, and the suspension was allowed to warm to 23 °C and stir for 

2 hours.  The suspension was then cooled to 0 °C using an ice water bath, and 3-bromo-2-

methylpropene (267 μL, 2.64 mmol, 1.10 equiv) was added by syringe.  The suspension 

was allowed to warm to 23 °C and stir for 1 hour.  Upon completion (as determined by 

TLC analysis), the reaction mixture was diluted with water (100 mL) and extracted with 

ethyl acetate (3 x 100 mL).  The combined organic layers were washed with brine (1 x 

100 mL), dried over sodium sulfate, filtered, and concentrated in vacuo.  The crude 

residue was purified by silica gel column chromatography (10% ethyl acetate in hexanes) 
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to provide lactam 598 as a colorless oil (531 mg, >99% yield).  Rf = 0.5 (20% ethyl 

acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 5.86–5.62 (m, 1H), 5.07–5.04 (m, 

1H), 5.04–5.02 (m, 1H), 4.85 (q, J = 1.5 Hz, 1H), 4.76 (dt, J = 2.4, 1.1 Hz, 1H), 4.02–

3.80 (m, 2H), 3.24–3.08 (m, 2H), 2.58–2.38 (m, 1H), 2.18 (ddt, J = 13.5, 8.2, 1.1 Hz, 

1H), 1.89–1.68 (m, 5H), 1.67 (s, 3H), 1.56–1.45 (m, 1H), 0.87 (td, J = 7.4, 1.2 Hz, 3H); 

13C NMR (CDCl3, 126 MHz) δ 174.3, 140.9, 135.1, 117.8, 112.0, 52.7, 47.6, 45.3, 43.4, 

31.6, 29.0, 20.2, 19.9, 8.9; IR (Neat Film, NaCl) 3074, 2939, 1637, 1488, 1458, 1440, 

1346, 1285, 1197, 1000, 911 cm–1; HRMS (ESI+) m/z calc’d for C14H24NO [M+H]+: 

222.1852, found 222.1860. 

 

 

3-allyl-1-cinnamyl-3-ethylpiperidin-2-one (599): 

To a flame-dried round-bottom flask with a magnetic stir bar were added lactam 593 

(400 mg, 2.40 mmol, 1.00 equiv) and THF (12 mL).  The flask was capped with a rubber 

septum, put under an argon atmosphere, and cooled to 0 °C using an ice water bath.  

Sodium hydride (60% dispersion in mineral oil, 192 mg, 4.80 mmol, 2.00 equiv) was 

then added in one portion, and the suspension was allowed to warm to 23 °C and stir for 

2 hours.  The suspension was then cooled to 0 °C using an ice water bath, and 3-bromo-1-

phenyl-1-propene (520 mg, 2.64 mmol, 1.10 equiv) was added by syringe.  The 

suspension was allowed to warm to 23 °C and stir for 2 hours.  Upon completion (as 

determined by TLC analysis), the reaction mixture was diluted with water (100 mL) and 
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extracted with ethyl acetate (3 x 100 mL).  The combined organic layers were washed 

with brine (1 x 100 mL), dried over sodium sulfate, filtered, and concentrated in vacuo.  

The crude residue was purified by silica gel column chromatography (20% ethyl acetate 

in hexanes) to provide lactam 599 as a colorless oil (676 mg, >99% yield).  Rf = 0.3 (20% 

ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.39–7.33 (m, 2H), 7.31 (ddd, J 

= 7.7, 6.7, 1.2 Hz, 2H), 7.26–7.20 (m, 1H), 6.48 (dt, J = 15.7, 1.5 Hz, 1H), 6.14 (dt, J = 

15.8, 6.5 Hz, 1H), 5.90–5.57 (m, 1H), 5.08 (ddt, J = 5.0, 2.3, 1.3 Hz, 1H), 5.06 (t, J = 1.2 

Hz, 1H), 4.14 (dd, J = 6.5, 1.4 Hz, 2H), 3.42–3.13 (m, 2H), 2.54 (ddt, J = 13.5, 6.7, 1.3 

Hz, 1H), 2.20 (ddt, J = 13.5, 8.1, 1.0 Hz, 1H), 1.95–1.65 (m, 5H), 1.52 (dq, J = 13.5, 7.4 

Hz, 1H), 0.89 (t, J = 7.4 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 174.3, 136.8, 135.1, 

132.6, 128.7, 127.7, 126.5, 125.0, 117.8, 49.5, 47.9, 45.4, 43.4, 31.6, 28.9, 20.0, 8.9; IR 

(Neat Film, NaCl) 2938, 1631, 1487, 1448, 1352, 1282, 1196, 965, 912, 746 cm–1; HRMS 

(ESI+) m/z calc’d for C19H26NO [M+H]+: 284.2009, found 284.2019. 

 

 

3-allyl-1-benzyl-3-methylazepan-2-one (600): 

Lactam 600 was prepared from 583 using General Procedure B.  Rf = 0.4 (33% ethyl 

acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.33–7.27 (m, 2H), 7.26–7.21 (m, 

3H), 5.94–5.72 (m, 1H), 5.12–5.07 (m, 1H), 5.06 (t, J = 1.2 Hz, 1H), 4.69 (d, J = 14.6 Hz, 

1H), 4.52 (d, J = 14.6 Hz, 1H), 3.42 (ddd, J = 15.2, 7.9, 4.0 Hz, 1H), 3.28 (ddd, J = 15.2, 

6.3, 3.9 Hz, 1H), 2.54–2.34 (m, 2H), 1.76–1.59 (m, 3H), 1.59–1.45 (m, 3H), 1.28 (s, 3H); 

13C NMR (CDCl3, 126 MHz) δ 177.5, 138.5, 135.0, 128.5, 128.1, 127.2, 117.7, 53.2, 
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47.0, 46.3, 44.2, 34.9, 27.4, 26.2, 23.1; IR (Neat Film, NaCl) 2930, 1626, 1495, 1453, 

1359, 1244, 913, 746 cm–1; HRMS (ESI+) m/z calc’d for C17H24NO [M+H]+: 258.1852, 

found 258.1853. 

 

 

3-allyl-1-benzylazepan-2-one (601): 

To a flame-dried round-bottom flask with a magnetic stir bar were added lactam 583 

(1.00 g, 4.92 mmol, 1.00 equiv) and THF (26 mL).  The solution was stirred under 

nitrogen and cooled to –78 °C using a dry ice and acetone bath.  n-Butyllithium (2.5 M in 

hexane, 2.16 mL, 5.41 mmol, 1.10 equiv) was added dropwise by syringe, and the 

solution was allowed to stir at –78 °C for 1 hour.  Allyl bromide (510 μL, 5.90 mmol, 

1.20 equiv) was then added dropwise by syringe, and the solution was allowed to 

gradually warm to 23 °C and stir for 17 hours.  Upon completion (as determined by 

LCMS analysis), the reaction mixture was quenched by the addition of saturated aqueous 

ammonium chloride solution (100 mL), and the aqueous layer extracted with ethyl 

acetate (3 x 100 mL).  The combined organic layers were dried over magnesium sulfate, 

filtered, and concentrated in vacuo.  The crude residue was purified by silica gel column 

chromatography (20% ethyl aceate in hexanes) to provide lactam 601 as a colorless oil 

(838 mg, 70% yield).  Rf = 0.2 (25% ethyl acetate in hexanes); 1H NMR (CDCl3, 500 

MHz) δ 7.34–7.28 (m, 2H), 7.27–7.22 (m, 3H), 5.88 (dddd, J = 17.1, 10.2, 7.9, 5.6 Hz, 

1H), 5.14–4.95 (m, 2H), 4.75 (d, J = 14.6 Hz, 1H), 4.45 (d, J = 14.6 Hz, 1H), 3.56–3.40 

(m, 1H), 3.17 (dddd, J = 15.3, 5.7, 2.1, 1.1 Hz, 1H), 2.66 (dtt, J = 14.3, 5.7, 1.5 Hz, 1H), 
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2.59 (dtd, J = 10.4, 6.7, 6.0, 1.5 Hz, 1H), 2.12 (dtt, J = 14.0, 7.6, 1.1 Hz, 1H), 1.92–1.83 

(m, 1H), 1.76 (dtd, J = 13.9, 4.7, 1.3 Hz, 1H), 1.64 (ddt, J = 13.9, 5.3, 4.0 Hz, 1H), 1.51 

(dtt, J = 13.8, 12.4, 3.9 Hz, 1H), 1.34 (dddd, J = 13.8, 12.5, 10.5, 3.1 Hz, 1H), 1.28–1.12 

(m, 1H); 13C NMR (CDCl3, 126 MHz) δ 176.7, 138.2, 137.5, 128.6, 128.3, 127.3, 116.3, 

51.2, 48.1, 43.5, 36.8, 29.5, 29.3, 27.6; IR (Neat Film, NaCl) 2929, 1646, 1477, 1430, 

1358, 1263, 1217, 912, 736 cm–1; HRMS (ESI+) m/z calc’d for C16H22NO [M+H]+: 

244.1696, found 244.1708. 

 

 

3-allyl-1-benzyl-3-methylazepan-2-one (602): 

Lactam 602 was prepared from 584 using General Procedure B.  Rf = 0.4 (20% ethyl 

acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.34–7.19 (m, 5H), 5.73 (dddd, J = 

16.8, 10.1, 8.3, 6.5 Hz, 1H), 5.16–4.97 (m, 2H), 4.47 (d, J = 14.6 Hz, 1H), 4.42 (d, J = 

14.6 Hz, 1H), 3.13–3.03 (m, 2H), 2.35 (ddt, J = 13.6, 6.5, 1.3 Hz, 1H), 2.19 (ddt, J = 

13.5, 8.3, 1.0 Hz, 1H), 1.97–1.86 (m, 1H), 1.86–1.77 (m, 1H), 1.64 (dq, J = 13.7, 7.5 Hz, 

1H), 1.52 (dq, J = 13.7, 7.4 Hz, 1H), 0.87 (t, J = 7.5 Hz, 3H); 13C NMR (CDCl3, 126 

MHz) δ 177.7, 136.8, 134.3, 128.7, 128.3, 127.6, 118.3, 48.2, 46.8, 43.9, 41.6, 30.0, 26.8, 

8.8; IR (Neat Film, NaCl) 3065, 2965, 1684, 1495, 1430, 1265, 1080, 1001, 916, 743 cm–

1; HRMS (ESI+) m/z calc’d for C16H22NO [M+H]+: 244.1696, found 244.1705. 
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3-allyl-1-benzyl-3-methylpyrrolidin-2-one (603): 

Lactam 603 was prepared from 584 using General Procedure B.  Rf = 0.4 (40% ethyl 

acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.35–7.19 (m, 5H), 5.74 (dddd, J = 

16.9, 10.1, 8.1, 6.7 Hz, 1H), 5.15–4.98 (m, 2H), 4.46 (d, J = 14.7 Hz, 1H), 4.42 (d, J = 

14.6 Hz, 1H), 3.19–3.01 (m, 2H), 2.33 (ddt, J = 13.6, 6.6, 1.3 Hz, 1H), 2.21 (ddt, J = 

13.7, 8.1, 1.0 Hz, 1H), 1.99 (ddd, J = 12.8, 8.2, 6.4 Hz, 1H), 1.69 (ddd, J = 12.8, 7.9, 5.5 

Hz, 1H), 1.16 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 178.7, 136.9, 134.3, 128.8, 128.3, 

127.7, 118.5, 47.0, 44.2, 43.6, 42.4, 30.6, 23.3; IR (Neat Film, NaCl) 2962, 1685, 1495, 

1430, 1290, 917, 739 cm–1; HRMS (ESI+) m/z calc’d for C15H20NO [M+H]+: 230.1539, 

found 230.1539. 

 

 

3-allyl-1,3-dibenzylpyrrolidin-2-one (604): 

Lactam 604 was prepared from 584 using General Procedure B.  Rf = 0.6 (33% ethyl 

acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.29–7.15 (m, 8H), 7.09–7.03 (m, 

2H), 5.79 (dddd, J = 16.7, 10.1, 8.5, 6.2 Hz, 1H), 5.18–5.07 (m, 2H), 4.47 (d, J = 14.7 

Hz, 1H), 4.16 (d, J = 14.7 Hz, 1H), 3.09 (d, J = 13.2 Hz, 1H), 2.86 (td, J = 9.2, 4.9 Hz, 

1H), 2.63 (d, J = 13.2 Hz, 1H), 2.52 (ddt, J = 13.6, 6.3, 1.4 Hz, 1H), 2.39–2.19 (m, 2H), 

1.98–1.78 (m, 2H); 13C NMR (CDCl3, 126 MHz) δ 177.0, 137.0, 136.4, 134.0, 130.3, 

128.6, 128.2, 128.2, 127.4, 126.6, 118.8, 49.5, 46.8, 43.8, 43.2, 42.8, 26.1; IR (Neat Film, 

NaCl) 2915, 1771, 1683, 1495, 1436, 1249, 917, 744 cm–1; HRMS (ESI+) m/z calc’d for 

C21H24NO [M+H]+: 306.1852, found 306.1857. 
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3-allyl-1-benzylpyrrolidin-2-one (605): 

To a flame-dried round-bottom flask with a magnetic stir bar were added 

diisopropylamine (479 μL, 3.42 mmol, 1.20 equiv) and THF (1.72 mL) by syringe.  The 

solution was stirred under nitrogen and cooled to 0 °C using an ice water bath.  n-

Butyllithium (2.5 M in hexane, 1.36 mL, 3.39 mmol, 1.19 equiv) was added rapidly 

dropwise by syringe, and the solution was allowed to stir at 0 °C for 20 minutes.  

Meanwhile, lactam 584 (500 mg, 2.85 mmol, 1.00 equiv) was dissolved in THF (9 mL) in 

a flame-dried round-bottom flask under nitrogen and cooled to 0 °C using an ice water 

bath.  The freshly prepared LDA solution was transferred to the lactam solution rapidly 

dropwise via syringe, and the mixture was allowed to stir at 0 °C for 45 minutes.  The 

solution was then cooled to –78 °C using a dry ice and acetone bath, and allyl bromide 

(321 μL, 3.71 mmol, 1.30 equiv) was added dropwise by syringe.  The flask was placed 

in an ice water bath, allowed to gradually warm to 23 °C, and stirred for 20 hours.  Upon 

completion (as determined by TLC analysis), the reaction mixture was quenched by the 

addition of saturated aqueous ammonium chloride solution (100 mL), and the aqueous 

layer extracted with chloroform (3 x 100 mL).  The combined organic layers were 

washed with 1 M aqueous hydrochloric acid (2 x 100 mL), water (1 x 100 mL), brine (1 x 

100 mL), dried over sodium sulfate, and concentrated in vacuo.  The crude residue was 

purified by silica gel column chromatography (20% ethyl aceate in hexanes) to provide 

BnN

O

605

BnN

O

584

H
LDA, THF, 0 °C;

allyl–Br, –78→23 °C

(83% yield)
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lactam 605 as a colorless oil (509 mg, 83% yield).  Rf = 0.3 (20% ethyl acetate in 

hexanes); characterization data match those reported in the literature.[34] 

 

5.5.4   PROCEDURES FOR UNSUCCESSFUL ALLYLIC OXIDATIONS 

 

Allylic acetates 537 and 543 were prepared from 586 and 593 following a known 

procedure.3i To a round-bottom flask with a magnetic stir bar were added, in order, 

sodium acetate (3.5 mg, 0.043 mmol, 0.20 equiv), palladium(II) acetate (2.4 mg, 0.011 

mmol, 0.05 equiv), diazefluorenone ligand (1.9 mg, 0.011 mmol, 0.05 equiv), dioxane 

(600 μL), and acetic acid (190 μL).  The appropriate lactam substrate (586 or 593, 0.21 

mmol, 1.00 equiv) was added, and the flask was capped with a rubber septum.  The 

solution was stirred vigorously while oxygen was bubbled through for 15 minutes.  The 

solution was then stirred at 60 °C under an oxygen atmosphere for 41 hours.  TLC 

analysis throughout this time showed little conversion of the starting material.  After 41 

hours, the reaction mixture was filtered through a plug of silica gel, rinsing with ethyl 

acetate, and concentrated to give the crude residue.  In the case of either lactam substrate, 

NMR and LCMS analysis showed small amounts of the corresponding allylic acetate 

product (537 or 543).  Characterization data for 537 and 543 are provided below. 

 

 

RN

O
Et

RN

O
Et

OAc

537  R = Bn
543  R = H

586  R = Bn
593  R = H

Pd(OAc)2, NaOAc
N N

O

dioxane, AcOH
60 °C, O2 atm

(low conversion)

dioxane, 80 °C
HN

O
Et

593

Decomposition
SeO2
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To a 1 dram screw-top vial with a magnetic stir bar were added lactam 593 (25 mg, 

0.15 mmol, 1.00 equiv) and dioxane (1.5 mL). Selenium dioxide (83 mg, 5.00 equiv) was 

added and the reaction mixture was stirred at 80 ºC for 2h.  At this time, TLC analysis 

showed only baseline material, and the mixture was filtered through a plug of silica gel, 

rinsing with ethyl acetate.  The filtrate was concentrated and NMR and LCMS analysis 

showed complete decomposition of the starting material. 

 

 

The conditions for this transformation were adapted from a known procedure.35  To a 

1 dram screw-top vial with a magnetic stir bar were added lactam 593 (27 mg, 0.16 

mmol, 1.00 equiv) and dichlomethane (1.5 mL).  Selenium dioxide (9 mg, 0.08 mmol, 

0.50 equiv) and TBHP (5 M in decane, 160 μL, 0.80 mmol, 5.00 equiv) were added and 

the reaction mixture was stirred at 23 °C for 5 hours.  TLC analysis throughout this time 

showed no conversion of the starting material.  After 5 hours, the reaction mixture was 

filtered through a plug of silica gel, rinsing with ethyl acetate, and concentrated to give 

the crude residue.  NMR and LCMS analysis showed only starting material 593 and trace 

impurities. 

 

 

To a 1 dram screw-top vial with a magnetic stir bar were added lactam 586 (10 mg, 

0.039 mmol, 1.00 equiv) and carbon tetrachloride (2 mL).  Tetraphenylporphyrin (6 mg, 

CH2Cl2, 23 °C
HN

O
Et

593

No Reaction
SeO2, TBHP

BnN

O
Et

586

O2, TPP, hυ
No Reaction

CCl4, 0→23 °C
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0.20 mmol, 5 mM in reaction solution) was added, the vial was capped with a septum, 

and oxygen was bubbled through the stirring solution for 2 minutes.  The vial was cooled 

to 0 °C using an ice water bath, and a 500 W halogen floodlight was placed at a distance 

d = 10 cm from the vial.  The solution was irradiated and allowed to gradually warm to 

23 °C over a period of 2 hours, and was further irradiated at 23 °C for an additional 12 

hours.  TLC analysis throughout this time showed no reactivity.  After 14 hours total 

reaction time, the mixture was filtered through a plug of silica gel, rinsing with ethyl 

acetate.  The filtrate was concentrated, and NMR and LCMS analysis showed only 

starting material 586 and tetraphenylporphyrin. 

 

 

3-allyl-1-benzyl-3-ethylpiperidine-2,6-dione (531): 

Imide 531 was prepared from 586 following a known procedure.[36]  Lactam 586 (20 

mg, 0.078 mmol, 1.00 equiv) was dissolved in 3.1 mL acetic acid in a 20 mL vial with a 

stir bar and heated to 77 °C.  A solution of chromium(VI) oxide (31 mg, 0.31 mmol, 4.00 

equiv) in acetic acid (1.6 mL) was added dropwise by pipette.  The vial was sealed with a 

Teflon-lined cap and stirred at 77 °C for 1 hour.  LCMS analysis at 1 hour showed full 

conversion of the starting material.  The mixture was cooled to 23 °C, and filtered 

through a plug of silica gel, rinsing with ethyl acetate.  The filtrate was diluted with 

heptanes and concentrated.  The crude residue was purified by silica gel column 

chromatography (20% ethyl aceate in hexanes) to provide imide 531 as a colorless oil 

(6.6 mg, 31% yield).  Rf = 0.6 (25% ethyl acetate in hexanes); 1H NMR (CDCl3, 500 

BnN

O
Et

O

BnN

O
Et

586

AcOH, 77 °C

(31 % yield)

CrO3
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MHz) δ 7.34–7.26 (m, 4H), 7.25–7.20 (m, 1H), 5.66 (dddd, J = 17.0, 10.2, 7.8, 6.9 Hz, 

1H), 5.13–5.00 (m, 2H), 4.95 (s, 2H), 2.79–2.63 (m, 2H), 2.49 (ddt, J = 13.8, 6.9, 1.3 Hz, 

1H), 2.29 (ddt, J = 13.9, 7.8, 1.1 Hz, 1H), 1.92–1.77 (m, 2H), 1.72 (dq, J = 14.0, 7.5 Hz, 

1H), 1.68–1.58 (m, 1H), 0.84 (t, J = 7.5 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 176.5, 

172.2, 137.7, 133.0, 128.7, 128.5, 127.4, 119.3, 45.2, 43.2, 40.2, 29.3, 28.7, 24.8, 8.3; IR 

(Neat Film, NaCl) 2967, 1722, 1676, 1455, 1345, 1164 cm–1; HRMS (ESI+) m/z calc’d 

for C17H22NO2 [M+H]+: 272.1645, found 272.1632. 

 

 

The conditions for this transformation were adapted from a known procedure.15 To an 

oven-dried 1 dram screw-top vial with a magnetic stir bar were added, in order, lactam 

586 (35 mg, 0.14 mmol, 1.00 equiv) potassium carbonate (5 mg, 0.036 mmol, 0.26 

equiv), and dichloromethane (750 μL).  Palladium hydroxide on carbon (20 wt. %, 11 

mg) and tert-butyl hydroperoxide (5.0 M in decane, 137 μL, 0.69 mmol, 5.00 equiv) were 

added.  The vial was sealed with a Teflon-lined cap and the reaction mixture was stirred 

at 23 °C for 48 hours.  TLC analysis throughout this time showed very little conversion 

of the starting material.  After 48 hours, the mixture was filtered through Celite, rinsing 

first with dichloromethane and later with ethyl acetate.  The filtrate was concentrated and 

NMR and LCMS analysis showed starting material 586 with trace impurities. 

 

 

BnN
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The conditions for this transformation were adapted from a known procedure.37 To a 

1 dram screw-top vial with a magnetic stir bar were added lactam 593 (17 mg, 0.10 

mmol, 1.00 equiv) and benzene (1 mL).  Copper(I) bromide (16 mg, 0.11 mmol, 1.10 

equiv) and tert-butyl peroxybenzoate (110 μL, 0.60 mmol, 6.00 equiv) were added and 

the reaction mixture was heated to 80 °C and stirred for 5 hours.  TLC and LCMS 

analysis throughout this time showed no conversion of the starting material.  After 5 

hours, the mixture was filtered through a plug of silica gel, rinsing with ethyl acetate.  

The filtrate was concentrated and NMR and LCMS analysis showed only starting 

material 593. 

 

 

The conditions for this reaction were adapted from a known procedure.3a To a round-

bottom flask with a magnetic stir bar were added, in order, palladium(II) acetate (5.5 mg, 

0.025 mmol, 0.10 equiv), benzoquinone (53 mg, 0.50 mmol, 2.00 equiv), and activated 4 

Å molecular sieves (53 mg).  DMSO (740 μL), lactam 593 (41 mg, 0.25 mmol, 1.00 

equiv), and acetic acid (740 μL) were added.  The vial was sealed with a Teflon-lined cap 

and heated to 40 °C for 15 hours.  TLC analysis throughout this time showed no 

conversion of the starting material.  After 15 hours, the reaction mixture was quenched 

with saturated aqueous ammonium chloride (10 mL) and extracted with dichloromethane 

(3 x 10 mL).  The combined organic layers were washed with water (1 x 10 mL), dried 

over sodium sulfate, filtered, and concentrated in vacuo.  NMR and LCMS analysis of the 

crude product showed only starting material 593 and trace impurities. 

DMSO, AcOH
MS4Å, 40 °C

HN

O
Et

593

No Reaction
Pd(OAc)2, BQ
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5.5.5   ALLYLIC ACETATE CHARACTERIZATION DATA 

 

(E)-3-(1-benzyl-3-ethyl-2-oxopiperidin-3-yl)allyl acetate (597): 

Acetate 537 was prepared from 586 using General Procedure D.  56% isolated yield, 

63% combined yield with enal.  Rf = 0.3 (33% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 7.34–7.28 (m, 2H), 7.28–7.20 (m, 3H), 5.88 (dt, J = 16.0, 1.3 Hz, 

1H), 5.61 (dt, J = 15.9, 6.2 Hz, 1H), 4.65 (d, J = 14.5 Hz, 1H), 4.59–4.54 (m, 2H), 4.51 

(d, J = 14.6 Hz, 1H), 3.26–3.04 (m, 2H), 2.06 (s, 3H), 1.95–1.84 (m, 1H), 1.84–1.70 (m, 

4H), 1.70–1.59 (m, 1H), 0.85 (t, J = 7.4 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 172.7, 

171.0, 139.5, 137.6, 128.7, 128.1, 127.4, 123.7, 65.2, 50.7, 48.5, 47.8, 31.9, 29.1, 21.2, 

19.3, 8.6; IR (Neat Film, NaCl) 2939, 1738, 1634, 1495, 1453, 1361, 1231, 1028, 969, 

736 cm–1; HRMS (ESI+) m/z calc’d for C19H26NO3 [M+H]+: 316.1907, found 316.1913. 

 

 

(E)-3-(1-benzyl-3-methyl-2-oxopiperidin-3-yl)allyl acetate (538): 

Acetate 538 was prepared from 587 using General Procedure D.  67% isolated yield, 

74% combined yield with enal.  Rf = 0.2 (33% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 7.35–7.26 (m, 3H), 7.26–7.20 (m, 2H), 5.91 (dt, J = 15.8, 1.3 Hz, 

1H), 5.63 (dt, J = 15.8, 6.2 Hz, 1H), 4.62 (d, J = 14.6 Hz, 1H), 4.56 (dt, J = 6.3, 1.5 Hz, 

2H), 4.52 (d, J = 14.5 Hz, 1H), 3.29–3.06 (m, 2H), 2.06 (s, 3H), 1.95–1.86 (m, 1H), 1.86–
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1.78 (m, 1H), 1.78–1.69 (m, 2H), 1.36 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 173.1, 

170.9, 140.5, 137.6, 128.7, 128.1, 127.4, 123.2, 65.1, 50.6, 47.9, 44.7, 34.2, 26.6, 21.2, 

19.5; IR (Neat Film, NaCl) 2936, 1738, 1634, 1489, 1453, 1361, 1232, 1028, 976, 736 

cm–1; HRMS (ESI+) m/z calc’d for C18H24NO3 [M+H]+: 302.1751, found 302.1755. 

 

 

(E)-3-(1,3-dibenzyl-2-oxopiperidin-3-yl)allyl acetate (539): 

Acetate 529 was prepared from 588 using General Procedure D.  54% isolated yield, 

62% combined yield with enal.  Rf = 0.3 (33% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 7.30–7.26 (m, 2H), 7.26–7.12 (m, 8H), 5.88 (dt, J = 15.9, 1.4 Hz, 

1H), 5.63 (dt, J = 15.9, 6.1 Hz, 1H), 4.76 (d, J = 14.6 Hz, 1H), 4.68–4.52 (m, 2H), 4.43 

(d, J = 14.6 Hz, 1H), 3.38 (d, J = 13.2 Hz, 1H), 3.16–2.99 (m, 2H), 2.79 (d, J = 13.2 Hz, 

1H), 2.08 (s, 3H), 1.87–1.53 (m, 4H); 13C NMR (CDCl3, 126 MHz) δ 171.8, 171.0, 139.4, 

137.4, 137.3, 131.2, 128.6, 128.1, 128.0, 127.4, 126.6, 124.4, 65.0, 50.9, 49.8, 47.9, 45.0, 

29.8, 21.2, 19.2; IR (Neat Film, NaCl) 2940, 1738, 1634, 1495, 1453, 1360, 1233, 1193, 

1028, 979, 743 cm–1; HRMS (ESI+) m/z calc’d for C24H28NO3 [M+H]+: 378.2064, found 

378.2067. 

 

 

(E)-3-(1-benzyl-2-oxo-3-propylpiperidin-3-yl)allyl acetate (540): 
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Acetate 540 was prepared from 589 using General Procedure D.  58% isolated yield, 

66% combined yield with enal.  Rf = 0.3 (33% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 7.34–7.26 (m, 3H), 7.26–7.20 (m, 2H), 5.89 (dt, J = 16.0, 1.4 Hz, 

1H), 5.61 (dt, J = 16.0, 6.2 Hz, 1H), 4.62 (d, J = 14.5 Hz, 1H), 4.57 (dt, J = 6.3, 1.5 Hz, 

2H), 4.53 (d, J = 14.6 Hz, 1H), 3.30–3.01 (m, 2H), 2.06 (s, 3H), 1.89–1.76 (m, 4H), 1.76–

1.69 (m, 1H), 1.61 (ddd, J = 13.4, 12.3, 4.4 Hz, 1H), 1.39–1.14 (m, 2H), 0.91 (t, J = 7.3 

Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 172.7, 171.0, 139.8, 137.6, 128.7, 128.2, 127.4, 

123.5, 65.3, 50.7, 48.4, 47.8, 41.6, 29.9, 21.2, 19.4, 17.5, 14.7; IR (Neat Film, NaCl) 

2955, 1739, 1635, 1495, 1453, 1360, 1230, 1027, 979, 736 cm–1; HRMS (ESI+) m/z 

calc’d for C20H28NO3 [M+H]+: 330.2064, found 330.2067. 

 

 

(E)-3-(1-benzyl-3-(2-methoxyethyl)-2-oxopiperidin-3-yl)allyl acetate (541): 

Acetate 541 was prepared from 590 using General Procedure D.  55% isolated yield, 

61% combined yield with enal.  Rf = 0.2 (33% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 7.40–7.31 (m, 3H), 7.30–7.25 (m, 2H), 5.91 (dt, J = 15.9, 1.3 Hz, 

1H), 5.68 (dt, J = 15.9, 6.2 Hz, 1H), 4.69 (d, J = 14.5 Hz, 1H), 4.67–4.59 (m, 2H), 4.57 

(d, J = 14.6 Hz, 1H), 3.57–3.45 (m, 2H), 3.34 (s, 3H), 3.30–3.17 (m, 2H), 2.24–2.14 (m, 

1H), 2.12 (s, 3H), 2.02–1.71 (m, 5H); 13C NMR (CDCl3, 126 MHz) δ 172.0, 170.8, 139.0, 

137.4, 128.6, 128.0, 127.3, 124.0, 69.5, 64.9, 58.5, 50.6, 47.7, 47.3, 38.4, 30.8, 21.0, 

19.2; IR (Neat Film, NaCl) 2936, 2872, 1738, 1634, 1489, 1453, 1360, 1240, 1196, 1113, 
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1028, 972, 736 cm–1; HRMS (ESI+) m/z calc’d for C20H28NO4 [M+H]+: 346.2013, found 

346.2023. 

 

 

(E)-3-(1-benzyl-2-oxo-3-phenylpiperidin-3-yl)allyl acetate (541): 

Acetate 542 was prepared from 592 using General Procedure D.  62% isolated yield, 

70% combined yield with enal.  Rf = 0.8 (50% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 7.38–7.27 (m, 8H), 7.25–7.18 (m, 2H), 6.38 (dt, J = 16.0, 1.4 Hz, 

1H), 5.69 (dt, J = 16.0, 6.2 Hz, 1H), 4.82 (d, J = 14.4 Hz, 1H), 4.64 (dt, J = 6.2, 1.2 Hz, 

2H), 4.54 (d, J = 14.4 Hz, 1H), 3.34–3.12 (m, 2H), 2.32–2.13 (m, 2H), 2.08 (s, 3H), 1.83–

1.71 (m, 1H), 1.71–1.59 (m, 1H); 13C NMR (CDCl3, 126 MHz) δ 171.4, 171.0, 143.3, 

139.3, 137.4, 128.8, 128.6, 128.5, 127.6, 127.5, 126.9, 123.7, 65.2, 53.9, 51.0, 47.6, 33.3, 

21.2, 18.9; IR (Neat Film, NaCl) 2934, 1737, 1636, 1494, 1445, 1352, 1231, 1195, 1027, 

761, 700 cm–1; HRMS (ESI+) m/z calc’d for C23H26NO3 [M+H]+: 364.1906, found 

364.1901. 

 

 

(E)-3-(3-ethyl-1-methyl-2-oxopiperidin-3-yl)allyl acetate (543): 

Acetate 543 was prepared from 594 using General Procedure D.  59% isolated yield, 

65% combined yield with enal.  Rf = 0.1 (50% ethyl acetate in hexanes); 1H NMR 
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(CDCl3, 500 MHz) δ 5.83 (dt, J = 16.0, 1.4 Hz, 1H), 5.55 (dt, J = 16.0, 6.2 Hz, 1H), 

4.70–4.32 (m, 2H), 3.35–3.26 (m, 1H), 3.25–3.15 (m, 1H), 2.92 (s, 3H), 2.05 (s, 3H), 

1.91–1.76 (m, 5H), 1.64 (dq, J = 13.7, 7.5 Hz, 1H), 0.80 (t, J = 7.4 Hz, 3H); 13C NMR 

(CDCl3, 126 MHz) δ 172.8, 171.0, 139.4, 123.5, 65.2, 50.5, 48.3, 35.3, 31.7, 29.1, 21.2, 

19.3, 8.5; IR (Neat Film, NaCl) 2940, 1739, 1636, 1500, 1446, 1362, 1242, 1026, 981 

cm–1; HRMS (ESI+) m/z calc’d for C13H21NO3 [M+H]+: 240.1594, found 240.1598. 

 

 

(E)-3-(3-ethyl-2-oxopiperidin-3-yl)allyl acetate (544): 

Acetate 544 was prepared from 593 using General Procedure D.  51% isolated yield, 

56% combined yield with enal.  Rf = 0.1 (67% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 6.00 (s, 1H), 5.82 (dt, J = 16.0, 1.3 Hz, 1H), 5.62 (dt, J = 15.9, 6.2 

Hz, 1H), 4.68–4.41 (m, 2H), 3.28 (qd, J = 4.2, 3.6, 1.7 Hz, 2H), 2.05 (s, 3H), 1.96–1.70 

(m, 5H), 1.63 (dq, J = 13.7, 7.5 Hz, 1H), 0.85 (t, J = 7.4 Hz, 3H); 13C NMR (CDCl3, 126 

MHz) δ 175.0, 171.0, 138.9, 123.9, 65.1, 48.2, 42.8, 31.4, 29.0, 21.2, 19.2, 8.5; IR (Neat 

Film, NaCl) 3203, 2941, 1740, 1657, 1490, 1361, 1231, 1027, 980 cm–1; HRMS (ESI+) 

m/z calc’d for C12H20NO3 [M+H]+: 226.1438, found 226.1430. 

 

 

(E)-3-(1-benzyl-2-oxopiperidin-3-yl)allyl acetate (545): 
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Acetate 545 was prepared from 596 using General Procedure D.  61% isolated yield.  

Rf = 0.2 (33% ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.37–7.19 (m, 

5H), 6.06 (dd, J = 15.7, 6.4 Hz, 1H), 5.71 (dt, J = 15.2, 6.3 Hz, 1H), 4.78–4.38 (m, 4H), 

3.22 (t, J = 5.9 Hz, 2H), 3.16 (q, J = 7.0 Hz, 1H), 2.07 (d, J = 1.6 Hz, 3H), 2.06–1.70 (m, 

4H); 13C NMR (CDCl3, 126 MHz) δ 171.0, 170.3, 137.3, 134.2, 128.7, 128.3, 127.5, 

125.6, 65.1 50.5, 47.5, 44.7, 27.2, 21.4, 21.2; IR (Neat Film, NaCl) 3225, 2936, 1738, 

1618, 1494, 1453, 1361, 1234, 1028, 737 cm–1; HRMS (ESI+) m/z calc’d for C17H22NO3 

[M+H]+: 288.1594, found 288.1607. 

 

 

(E)-3-(3-ethyl-1-(4-methoxyphenyl)-2-oxopiperidin-3-yl)allyl acetate (546): 

Acetate 546 was prepared from 597 using General Procedure D.  54% isolated yield, 

61% combined yield with enal.  Rf = 0.2 (33% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 7.15–7.06 (m, 2H), 6.96–6.84 (m, 2H), 5.91 (dt, J = 15.9, 1.3 Hz, 

1H), 5.68 (dt, J = 15.9, 6.2 Hz, 1H), 4.71–4.52 (m, 2H), 3.80 (s, 3H), 3.70–3.48 (m, 2H), 

2.08 (s, 3H), 2.04–1.82 (m, 5H), 1.69 (dq, J = 13.6, 7.4 Hz, 1H), 0.90 (t, J = 7.4 Hz, 3H); 

13C NMR (CDCl3, 126 MHz) δ 173.1, 171.0, 158.2, 139.5, 136.7, 127.6, 123.7, 114.5, 

65.3, 55.6, 52.5, 48.8, 32.0, 29.4, 21.2, 20.0, 8.7; IR (Neat Film, NaCl) 2939, 1739, 1645, 

1607, 1511, 1464, 1294, 1243, 1030, 825 cm–1; HRMS (ESI+) m/z calc’d for C19H26NO4 

[M+H]+: 332.1856, found 332.1871. 
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(E)-3-(3-ethyl-1-(2-methylallyl)-2-oxopiperidin-3-yl)allyl acetate (547): 

Acetate 547 was prepared from 598 using General Procedure D.  50% isolated yield, 

56% combined yield with enal.  Rf = 0.2 (33% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 5.85 (dt, J = 15.9, 1.3 Hz, 1H), 5.60 (dt, J = 15.9, 6.2 Hz, 1H), 4.86 

(h, J = 1.3 Hz, 1H), 4.74 (qt, J = 1.6, 0.7 Hz, 1H), 4.63–4.49 (m, 2H), 4.02–3.95 (m, 1H), 

3.94–3.87 (m, 1H), 3.32–3.05 (m, 2H), 2.06 (s, 3H), 1.95–1.74 (m, 5H), 1.73–1.49 (m, 

4H), 0.84 (t, J = 7.4 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 172.5, 171.0, 140.7, 139.6, 

123.6, 112.0, 65.2, 52.7, 48.6, 47.7, 31.9, 29.3, 21.2, 20.2, 19.4, 8.7; IR (Neat Film, 

NaCl) 2939, 1740, 1636, 1489, 1441, 1362, 1230, 1198, 1025, 967, 896 cm–1; HRMS 

(ESI+) m/z calc’d for C16H26NO3 [M+H]+: 280.1907, found 280.1914. 

 

 

(E)-3-(1-cinnamyl-3-ethyl-2-oxopiperidin-3-yl)allyl acetate (548): 

Acetate 548 was prepared from 599 using General Procedure D.  51% isolated yield, 

60% combined yield with enal.  Rf = 0.3 (33% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 7.39–7.28 (m, 4H), 7.26–7.19 (m, 1H), 6.48 (dd, J = 15.9, 1.4 Hz, 

1H), 6.14 (dt, J = 15.8, 6.5 Hz, 1H), 5.87 (dt, J = 15.9, 1.3 Hz, 1H), 5.60 (dt, J = 15.9, 6.2 

Hz, 1H), 4.65–4.48 (m, 2H), 4.21–4.07 (m, 2H), 3.37–3.20 (m, 2H), 2.06 (s, 3H), 1.91–

1.76 (m, 4H), 1.73–1.61 (m, 2H), 0.85 (t, J = 7.4 Hz, 3H); 13C NMR (CDCl3, 126 MHz) 
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δ 172.5, 171.0, 139.5, 136.7, 132.9, 128.7, 127.8, 126.5, 124.7, 123.6, 65.3, 49.6, 48.5, 

47.9, 31.8, 29.1, 21.2, 19.4, 8.6; IR (Neat Film, NaCl) 2939, 1740, 1636, 1490, 1448, 

1361, 1232, 1026, 967, 750, 694 cm–1; HRMS (ESI+) m/z calc’d for C21H28NO3 [M+H]+: 

342.2066, found 342.2077. 

 

 

(E)-3-(1-benzyl-3-methyl-2-oxoazepan-3-yl)allyl acetate (549): 

Acetate 549 was prepared from 600 using General Procedure D.  40% isolated yield.  

Rf = 0.3 (33% ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.34–7.28 (m, 

2H), 7.26–7.22 (m, 3H), 5.94 (dt, J = 16.0, 1.4 Hz, 1H), 5.54 (dt, J = 16.0, 6.3 Hz, 1H), 

4.80 (d, J = 14.6 Hz, 1H), 4.55 (dt, J = 6.1, 1.3 Hz, 2H), 4.45 (d, J = 14.6 Hz, 1H), 3.51 

(ddt, J = 15.2, 11.3, 1.1 Hz, 1H), 3.08 (ddd, J = 15.2, 5.7, 2.1 Hz, 1H), 2.03 (s, 3H), 1.84–

1.64 (m, 4H), 1.64–1.52 (m, 2H), 1.35 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 176.4, 

170.9, 138.9, 138.4, 128.6, 128.3, 127.3, 123.3, 65.1, 53.0, 48.5, 47.6, 36.6, 27.9, 25.3, 

21.1; IR (Neat Film, NaCl) 2925, 1740, 1636, 1419, 1363, 1236, 1028, 965, 745 cm–1; 

HRMS (ESI+) m/z calc’d for C19H26NO3 [M+H]+: 316.1907, found 316.1921. 

 

 

(E)-3-(1-benzyl-2-oxoazepan-3-yl)allyl acetate (550): 
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Acetate 550 was prepared from 601 using General Procedure D.  53% isolated yield, 

63% combined yield with enal.  Rf = 0.2 (33% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 400 MHz) δ 7.35–7.22 (m, 5H), 6.18 (ddt, J = 15.6, 8.4, 1.3 Hz, 1H), 5.58 (dtd, 

J = 15.6, 6.3, 1.0 Hz, 1H), 4.71 (d, J = 14.6 Hz, 1H), 4.65–4.51 (m, 2H), 4.47 (d, J = 14.6 

Hz, 1H), 3.44 (dd, J = 15.3, 11.1 Hz, 1H), 3.37–3.12 (m, 2H), 2.06 (s, 3H), 1.90 (dd, J = 

11.1, 4.6 Hz, 1H), 1.84–1.71 (m, 1H), 1.71–1.57 (m, 2H), 1.36–1.17 (m, 2H); 13C NMR 

(CDCl3, 101 MHz) δ 175.5, 171.0, 137.9, 135.7, 128.7, 128.5, 127.5, 123.8, 65.2, 51.4, 

48.0, 47.7, 31.1, 28.8, 27.6, 21.2; IR (Neat Film, NaCl) 2931, 1740, 1639, 1442, 1364, 

1235, 1197, 1028, 972 cm–1; HRMS (ESI+) m/z calc’d for C18H24NO3 [M+H]+: 302.1751, 

found 302.1758. 

 

 

(E)-3-(1-benzyl-3-ethyl-2-oxopyrrolidin-3-yl)allyl acetate (551): 

Acetate 551 was prepared from 602 using General Procedure D.  66% isolated yield.  

Rf = 0.1 (25% ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.35–7.26 (m, 

3H), 7.23–7.17 (m, 2H), 5.87 (dt, J = 15.9, 1.3 Hz, 1H), 5.64 (dt, J = 15.9, 6.2 Hz, 1H), 

4.61–4.52 (m, 2H), 4.50 (d, J = 14.7 Hz, 1H), 4.41 (d, J = 14.7 Hz, 1H), 3.23–3.02 (m, 

2H), 2.11–2.02 (m, 1H), 2.07 (s, 3H), 2.00–1.92 (m, 1H), 1.78–1.63 (m, 1H), 0.88 (t, J = 

7.4 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 176.2, 170.9, 136.7, 136.6, 128.8, 128.2, 

127.7, 123.9, 65.0, 50.9, 46.9, 43.6, 29.7, 28.2, 21.1, 8.8; IR (Neat Film, NaCl) 2925, 

1740, 1636, 1419, 1363, 1236, 1028, 965, 745 cm–1; HRMS (ESI+) m/z calc’d for 

C18H24NO3 [M+H]+: 302.1751, found 302.1759. 
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(E)-3-(1-benzyl-3-methyl-2-oxopyrrolidin-3-yl)allyl acetate (552): 

Acetate 552 was prepared from 603 using General Procedure D.  48% isolated yield, 

54% combined yield with enal.  Rf = 0.1 (40% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 7.35–7.26 (m, 3H), 7.24–7.18 (m, 2H), 5.89 (dt, J = 15.8, 1.3 Hz, 

1H), 5.66 (dt, J = 15.8, 6.2 Hz, 1H), 4.56 (dt, J = 6.2, 1.5 Hz, 2H), 4.46 (d, J = 3.3 Hz, 

2H), 3.26–3.05 (m, 2H), 2.12 (ddd, J = 12.8, 7.5, 5.5 Hz, 1H), 2.07 (s, 3H), 1.89 (ddd, J = 

12.7, 7.7, 6.4 Hz, 1H), 1.31 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 176.7, 170.9, 137.5, 

136.6, 128.8, 128.2, 127.7, 123.4, 64.9, 47.1, 46.7, 43.3, 32.5, 32.1, 21.1; IR (Neat Film, 

NaCl) 2927, 1738, 1689, 1495, 1428, 1361, 1233, 1028, 972, 740 cm–1; HRMS (ESI+) 

m/z calc’d for C17H22NO3 [M+H]+: 288.1594, found 288.1593. 

 

 

(E)-3-(1,3-dibenzyl-2-oxopyrrolidin-3-yl)allyl acetate (553): 

Acetate 553 was prepared from 604 using General Procedure D.  50% isolated yield, 

58% combined yield with enal.  Rf = 0.2 (40% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 7.29–7.26 (m, 1H), 7.26–7.20 (m, 5H), 7.20–7.14 (m, 2H), 7.11–

7.06 (m, 2H), 5.97 (dt, J = 15.9, 1.4 Hz, 1H), 5.63 (dt, J = 15.8, 6.1 Hz, 1H), 4.63–4.51 

(m, 2H), 4.45 (d, J = 14.7 Hz, 1H), 4.27 (d, J = 14.7 Hz, 1H), 3.15 (d, J = 13.3 Hz, 1H), 

2.98 (ddd, J = 9.6, 8.0, 6.2 Hz, 1H), 2.77 (d, J = 13.3 Hz, 1H), 2.61 (ddd, J = 9.6, 8.3, 4.9 
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Hz, 1H), 2.07 (s, 3H), 2.06–1.99 (m, 1H), 1.94 (ddd, J = 13.0, 8.0, 4.9 Hz, 1H); 13C NMR 

(CDCl3, 126 MHz) δ 175.4, 170.9, 137.0, 137.0, 136.3, 130.5, 128.7, 128.2, 128.2, 127.6, 

126.8, 124.1, 64.8, 51.8, 47.0, 43.5, 43.0, 28.0, 21.1; IR (Neat Film, NaCl) 2920, 1740, 

1685, 1495, 1437, 1361, 1230, 1028, 973, 743 cm–1; HRMS (ESI+) m/z calc’d for 

C23H26NO3 [M+H]+: 364.1907, found 364.1931. 

 

 

(E)-3-(1-benzyl-2-oxopyrrolidin-3-yl)allyl acetate (555): 

Acetate 555 was prepared from 605 using General Procedure D.  57% isolated yield, 

61% combined yield with enal.  Rf = 0.3 (50% ethyl acetate in hexanes); 1H NMR 

(CDCl3, 500 MHz) δ 7.36–7.27 (m, 3H), 7.25–7.19 (m, 2H), 5.92 (ddt, J = 15.5, 6.6, 1.3 

Hz, 1H), 5.76 (dtd, J = 15.6, 6.1, 1.4 Hz, 1H), 4.59 (dq, J = 6.3, 1.2 Hz, 2H), 4.49 (d, J = 

14.6 Hz, 1H), 4.44 (d, J = 14.7 Hz, 1H), 3.28–3.12 (m, 3H), 2.26 (dddd, J = 12.8, 8.8, 

6.7, 4.1 Hz, 1H), 2.08 (s, 3H), 1.91 (dq, J = 12.7, 8.5 Hz, 1H); 13C NMR (CDCl3, 126 

MHz) δ 174.2, 170.9, 136.5, 132.2, 128.9, 128.3, 127.8, 126.7, 64.8, 47.1, 45.0, 44.9, 

25.0, 21.1; IR (Neat Film, NaCl) 2923, 1735, 1685, 1430, 1363, 1238, 1027, 971 cm–1; 

HRMS (ESI+) m/z calc’d for C16H20NO3 [M+H]+: 274.1438, found 274.1447. 

 

 

(S)-(6-oxo-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)methyl acetate (576): 
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To a flame-dried 25 mL round-bottom flask with a magnetic stir bar were added, in 

order, (S)-carvone (575, 30 mg, 0.2 mmol, 1.00 equiv), palladium(II) acetate (9 mg, 0.04 

mmol, 0.20 equiv), and Oxone (68 mg, 0.22 mmol, 1.10 equiv).  The flask was then 

capped with a rubber septum and evacuated and backfilled twice with nitrogen.  Acetic 

acid (1.00 mL) was added by syringe.  The resulting suspension was stirred under 

nitrogen for 5 minutes at 23 °C and then heated to 95 °C in an oil bath.  Although TLC 

analysis did not show full consumption of 575, the reaction was stopped at 16 hours.  The 

flask was allowed to cool to 23 °C and the contents were filtered through a short plug of 

silica gel, rinsing with ethyl acetate.  The filtrate was adsorbed onto silica gel (approx. 2 

g), which was then flushed with ethyl acetate.  The eluent was concentrated to give the 

crude product as an oil.  The crude residue was purified by silica gel column 

chromatography (15% ethyl acetate in hexanes) to provide recovered (S)-carvone (14 mg, 

0.096 mmol, 48% yield, 52% conversion) and acetate 576 as a colorless oil (8.7 mg, 21% 

yield, 40% yield based on recovered starting material).  Rf = 0.3 (25% ethyl acetate in 

hexanes); 1H NMR (CDCl3, 500 MHz) δ 6.75 (ddq, J = 5.6, 2.8, 1.4 Hz, 1H), 5.18 (q, J = 

0.9 Hz, 1H), 5.05 (dd, J = 1.3, 0.7 Hz, 1H), 4.61 (dd, J = 12.8, 1.0 Hz, 1H), 4.59–4.53 (m, 

1H), 2.87–2.74 (m, 1H), 2.64 (ddd, J = 16.0, 3.7, 1.6 Hz, 1H), 2.53 (dddt, J = 18.2, 6.0, 

4.5, 1.5 Hz, 1H), 2.40 (dd, J = 16.1, 13.2 Hz, 1H), 2.35–2.26 (m, 1H), 2.10 (s, 3H), 1.80 

(dt, J = 2.6, 1.4 Hz, 3H).; 13C NMR (CDCl3, 126 MHz) δ 199.3, 170.8, 145.4, 144.3, 

135.8, 113.8, 65.9, 43.2, 38.6, 31.5, 21.1, 15.9; IR (Neat Film, NaCl) 2923, 1741, 1673, 

1433, 1371, 1227, 1109, 1029, 903 cm–1; HRMS (FAB+) m/z calc’d for C12H17O3 

[M+H]+: 209.1178, found 209.1187. 
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5.5.6   ENAL CHARACTERIZATION DATA 

 
(E)-3-(1-benzyl-3-ethyl-2-oxopiperidin-3-yl)acrylaldehyde (591): 

Enal 591 was prepared from 586 using General Procedure E.  50% isolated yield, 

56% combined yield with allylic acetate.  Rf = 0.2 (33% ethyl acetate in hexanes); 1H 

NMR (CDCl3, 500 MHz) δ 9.57 (d, J = 7.6 Hz, 1H), 7.37–7.27 (m, 3H), 7.25–7.18 (m, 

2H), 7.06 (d, J = 16.2 Hz, 1H), 6.13 (dd, J = 16.2, 7.7 Hz, 1H), 4.70 (d, J = 14.5 Hz, 1H), 

4.49 (d, J = 14.5 Hz, 1H), 3.45–3.05 (m, 2H), 2.03–1.89 (m, 3H), 1.85–1.69 (m, 3H), 

0.88 (t, J = 7.5 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 194.2, 171.4, 161.9, 137.1, 

131.6, 128.8, 128.1, 127.7, 50.9, 49.8, 47.7, 31.6, 28.5, 19.5, 8.6; IR (Neat Film, NaCl) 

2940, 1713, 1689, 1634, 1606, 1495, 1453, 1356, 1262, 1198, 982, 735 cm–1; HRMS 

(ESI+) m/z calc’d for C17H22NO2 [M+H]+: 272.1645, found 272.1647. 

 

 

(E)-3-(1-benzyl-3-methyl-2-oxopiperidin-3-yl)acrylaldehyde (562): 

Enal 562 was prepared from 587 using General Procedure E.  67% isolated yield.  Rf 

= 0.1 (33% ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 9.57 (d, J = 7.6 Hz, 

1H), 7.37–7.27 (m, 3H), 7.25–7.17 (m, 2H), 7.08 (d, J = 16.1 Hz, 1H), 6.15 (dd, J = 16.1, 

7.6 Hz, 1H), 4.61 (d, J = 14.5 Hz, 1H), 4.56 (d, J = 14.5 Hz, 1H), 3.33–3.10 (m, 2H), 

2.09–1.94 (m, 1H), 1.94–1.71 (m, 3H), 1.47 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 

194.2, 171.7, 162.5, 137.1, 130.9, 128.9, 128.2, 127.7, 50.8, 47.8, 45.8, 33.4, 26.3, 19.5; 
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IR (Neat Film, NaCl) 2931, 1689, 1638, 1488, 1453, 1351, 1198, 1106, 978, 735, 702 

cm–1; HRMS (ESI+) m/z calc’d for C16H20NO2 [M+H]+: 258.1489, found 258.1500. 

 

 

(E)-3-(1,3-dibenzyl-2-oxopiperidin-3-yl)acrylaldehyde (563): 

Enal 563 was prepared from 588 using General Procedure E.  50% isolated yield, 

56% combined yield with allylic acetate.  Rf = 0.4 (33% ethyl acetate in hexanes); 1H 

NMR (CDCl3, 500 MHz) δ 9.59 (d, J = 7.6 Hz, 1H), 7.32–7.26 (m, 4H), 7.26–7.23 (m, 

2H), 7.20–7.10 (m, 4H), 7.04 (d, J = 16.2 Hz, 1H), 6.10 (dd, J = 16.1, 7.6 Hz, 1H), 4.79 

(d, J = 14.5 Hz, 1H), 4.41 (d, J = 14.5 Hz, 1H), 3.46 (d, J = 13.3 Hz, 1H), 3.22–3.00 (m, 

2H), 2.88 (d, J = 13.3 Hz, 1H), 1.99–1.77 (m, 2H), 1.79–1.61 (m, 2H); 13C NMR (CDCl3, 

126 MHz) δ 194.0, 170.4, 161.6, 136.8, 136.2, 132.0, 131.0, 128.8, 128.3, 128.1, 127.6, 

127.1, 51.2, 51.1, 47.8, 44.5, 29.3, 19.5; IR (Neat Film, NaCl) 2924, 1689, 1636, 1494, 

1453, 1355, 1194, 982, 743 cm–1; HRMS (ESI+) m/z calc’d for C22H24NO2 [M+H]+: 

334.1802, found 334.1802. 

 

 

(E)-3-(1-benzyl-2-oxo-3-propylpiperidin-3-yl)acrylaldehyde (564): 

Enal 564 was prepared from 589 using General Procedure E.  55% isolated yield, 

62% combined yield with allylic acetate.  Rf = 0.5 (33% ethyl acetate in hexanes); 1H 
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NMR (CDCl3, 500 MHz) δ 9.57 (d, J = 7.7 Hz, 1H), 7.36–7.26 (m, 3H), 7.25–7.19 (m, 

2H), 7.06 (d, J = 16.2 Hz, 1H), 6.12 (dd, J = 16.2, 7.6 Hz, 1H), 4.67 (d, J = 14.5 Hz, 1H), 

4.51 (d, J = 14.6 Hz, 1H), 3.40–3.03 (m, 2H), 1.93 (dd, J = 7.3, 4.6 Hz, 2H), 1.91–1.84 

(m, 1H), 1.84–1.68 (m, 3H), 1.38–1.15 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H); 13C NMR 

(CDCl3, 126 MHz) δ 194.2, 171.4, 162.1, 137.1, 131.4, 128.8, 128.2, 127.7, 51.0, 49.7, 

47.7, 41.1, 29.2, 19.6, 17.5, 14.5; IR (Neat Film, NaCl) 2957, 1688, 1634, 1489, 1453, 

1352, 1196, 982, 736 cm–1; HRMS (ESI+) m/z calc’d for C18H24NO2 [M+H]+: 286.1802, 

found 286.1808. 

 

 

(E)-3-(1-benzyl-3-(2-methoxyethyl)-2-oxopiperidin-3-yl)acrylaldehyde (565): 

Enal 565 was prepared from 590 using General Procedure E.  54% isolated yield.  Rf 

= 0.3 (50% ethyl acetate in hexanes); 9.57 (d, J = 7.6 Hz, 1H), 7.36–7.27 (m, 3H), 7.25–

7.21 (m, 2H), 7.03 (d, J = 16.1 Hz, 1H), 6.16 (dd, J = 16.2, 7.6 Hz, 1H), 4.71 (d, J = 14.5 

Hz, 1H), 4.48 (d, J = 14.5 Hz, 1H), 3.46 (td, J = 6.4, 1.7 Hz, 2H), 3.28 (s, 3H), 3.26–3.16 

(m, 2H), 2.22 (dt, J = 14.1, 6.6 Hz, 1H), 2.13–2.02 (m, 2H), 1.97 (dddd, J = 13.8, 6.7, 

3.3, 1.1 Hz, 1H), 1.83 (ddtd, J = 13.5, 6.7, 5.0, 3.4 Hz, 1H), 1.79–1.66 (m, 1H); 13C NMR 

(CDCl3, 126 MHz) δ 194.1, 170.9, 161.6, 137.1, 131.6, 128.8, 128.2, 127.7, 69.2, 58.7, 

51.0, 48.7, 47.8, 38.2, 30.2, 19.6; IR (Neat Film, NaCl) 2927, 1685, 1636, 1490, 1452, 

1355, 1196, 1112, 979, 736 cm–1; HRMS (ESI+) m/z calc’d for C18H24NO3 [M+H]+: 

302.1751, found 302.1759. 
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(E)-3-(1-benzyl-2-oxo-3-phenylpiperidin-3-yl)acrylaldehyde (566): 

Enal 566 was prepared from 592 using General Procedure E.  48% isolated yield, 

54% combined yield with allylic acetate.  Rf = 0.2 (20% ethyl acetate in hexanes); 1H 

NMR (CDCl3, 500 MHz) δ 9.61 (d, J = 7.7 Hz, 1H), 7.53 (d, J = 16.2 Hz, 1H), 7.42–

7.26 (m, 8H), 7.25–7.21 (m, 2H), 6.17 (dd, J = 16.2, 7.7 Hz, 1H), 4.83 (d, J = 14.3 Hz, 

1H), 4.59 (d, J = 14.3 Hz, 1H), 3.38–3.17 (m, 2H), 2.37 (ddd, J = 13.5, 5.5, 3.3 Hz, 1H), 

2.30–2.07 (m, 1H), 1.83–1.61 (m, 2H); 13C NMR (CDCl3, 126 MHz) δ 194.4, 169.9, 

161.3, 140.8, 137.0, 130.5, 128.9, 128.5, 127.8, 127.6, 127.3, 54.6, 51.1, 47.4, 32.0, 18.7; 

IR (Neat Film, NaCl) 2937, 1683, 1634, 1494, 1446, 1352, 1196, 763 cm–1; HRMS 

(ESI+) m/z calc’d for C21H22NO2 [M+H]+: 320.1645, found 320.1658. 

 

 

(E)-3-(3-ethyl-1-methyl-2-oxopiperidin-3-yl)acrylaldehyde (567): 

Enal 567 was prepared from 594 using General Procedure E.  59% isolated yield.  Rf 

= 0.2 (33% ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 9.55 (d, J = 7.6 Hz, 

1H), 7.01 (d, J = 16.2 Hz, 1H), 6.09 (dd, J = 16.2, 7.7 Hz, 1H), 3.35 (ddd, J = 11.9, 8.7, 

5.0 Hz, 1H), 3.25 (ddd, J = 12.1, 5.8, 4.9 Hz, 1H), 2.95 (s, 3H), 1.97–1.72 (m, 6H), 0.84 

(t, J = 7.5 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 194.2, 171.4, 161.9, 131.6, 50.4, 49.6, 

BnN
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35.5, 31.4, 28.5, 19.5, 8.5; IR (Neat Film, NaCl) 2939, 1688, 1635, 1506, 1456, 1257, 

1204, 1104 cm–1; HRMS (ESI+) m/z calc’d for C11H18NO2 [M+H]+: 196.1332, found 

196.1328. 

 

 

(E)-3-(3-ethyl-1-(4-methoxyphenyl)-2-oxopiperidin-3-yl)acrylaldehyde (568): 

Enal 568 was prepared from 597 using General Procedure E.  53% isolated yield, 

58% combined yield with allylic acetate.  Rf = 0.2 (33% ethyl acetate in hexanes); 1H 

NMR (CDCl3, 500 MHz) δ 9.58 (d, J = 7.6 Hz, 1H), 7.14–7.10 (m, 2H), 7.07 (d, J = 16.2 

Hz, 1H), 6.94–6.87 (m, 2H), 6.19 (dd, J = 16.2, 7.6 Hz, 1H), 3.81 (s, 3H), 3.66 (ddd, J = 

12.1, 8.7, 5.0 Hz, 1H), 3.62–3.52 (m, 1H), 2.16–1.89 (m, 5H), 1.83 (dq, J = 13.7, 7.5 Hz, 

1H), 0.94 (t, J = 7.4 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 194.2, 171.7, 161.9, 158.4, 

136.2, 131.6, 127.5, 114.6, 55.6, 52.5, 50.1, 31.7, 28.7, 20.1, 8.6; IR (Neat Film, NaCl) 

2938, 1685, 1647, 1510, 1295, 1243, 1130, 1032, 982, 827 cm–1; HRMS (ESI+) m/z 

calc’d for C17H22NO3 [M+H]+: 288.1594, found 288.1604. 

 

 

(E)-3-(3-ethyl-2-oxopiperidin-3-yl)acrylaldehyde (569): 

Enal 569 was prepared from 593 using General Procedure E.  44% isolated yield, 

53% combined yield with allylic acetate.  Rf = 0.1 (20% ethyl acetate in hexanes); 1H 
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NMR (CDCl3, 500 MHz) δ 9.55 (d, J = 7.6 Hz, 1H), 6.98 (d, J = 16.1 Hz, 1H), 6.14 (dd, 

J = 16.2, 7.6 Hz, 1H), 5.85 (s, 1H), 3.46–3.26 (m, 2H), 2.01–1.90 (m, 3H), 1.90–1.84 (m, 

1H), 1.84–1.73 (m, 2H), 0.90 (t, J = 7.5 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 194.1, 

173.4, 161.1, 131.8, 49.4, 42.8, 31.1, 28.3, 19.3, 8.4; IR (Neat Film, NaCl) 3287, 2941, 

1687, 1662, 1489, 1464, 1354, 1107, 983 cm–1; HRMS (ESI+) m/z calc’d for C10H16NO2 

[M+H]+: 182.1176, found 182.1177. 

 

 

(E)-3-(1,3-dibenzyl-2-oxopyrrolidin-3-yl)acrylaldehyde (570): 

Enal 570 was prepared from 604 using General Procedure E.  30% isolated yield.  Rf 

= 0.4 (33% ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 9.58 (d, J = 7.6 Hz, 

1H), 7.30–7.26 (m, 3H), 7.26–7.22 (m, 3H), 7.20–7.14 (m, 2H), 7.12–7.04 (m, 3H), 6.12 

(dd, J = 16.0, 7.6 Hz, 1H), 4.45 (d, J = 14.7 Hz, 1H), 4.26 (d, J = 14.6 Hz, 1H), 3.24 (d, J 

= 13.4 Hz, 1H), 3.07–2.88 (m, 1H), 2.83 (d, J = 13.4 Hz, 1H), 2.69–2.52 (m, 1H), 2.18 

(ddd, J = 13.3, 8.2, 5.2 Hz, 1H), 2.11–1.98 (m, 1H); 13C NMR (CDCl3, 126 MHz) δ 

193.8, 173.8, 158.9, 135.9, 131.7, 130.4, 128.9, 128.6, 128.3, 127.9, 127.4, 53.1, 47.3, 

43.5, 42.8, 27.4; IR (Neat Film, NaCl) 2921, 1738, 1683, 1495, 1454, 1246, 981, 745, 

702 cm–1; HRMS (ESI+) m/z calc’d for C21H22NO2 [M+H]+: 320.1645, found 320.1640. 
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5.5.7   ALLYLIC ACETATE DERIVATIZATION PROCEDURES AND 

CHARACTERIZATION DATA 

 

3-(1-benzyl-3-ethyl-2-oxopiperidin-3-yl)-2,3-dihydroxypropyl acetate (555): 

To a 1 dram screw-top vial with a magnetic stir bar were added, in order, acetate 537 

(18 mg, 0.057 mmol, 1.00 equiv), acetone (reagent grade, 540 μL), deionized water (180 

μL), potassium osmate(VI) dehydrate (2 mg, 0.006 mmol, 0.10 equiv), and 4-

methylmorpholine N-oxide (13 mg, 0.144 mmol, 2.00 equiv).  The vial was sealed with a 

Teflon-lined cap and the purple solution was stirred at 23 °C for 3 hours.  Upon 

completion (as determined by TLC analysis), the reaction mixture was adsorbed onto 

Celite and purified by silica gel column chromatography (50% ethyl acetate in hexanes) 

to provide the major diastereomer 555 as colorless crystals (16.5 mg, 83% yield).  Rf = 

0.3 (50% ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.36–7.30 (m, 2H), 

7.29–7.26 (m, 2H), 7.26–7.23 (m, 1H), 5.96 (d, J = 8.5 Hz, 1H), 4.60 (d, J = 14.7 Hz, 

1H), 4.56 (d, J = 14.8 Hz, 1H), 4.28 (dd, J = 11.5, 7.5 Hz, 1H), 4.22 (dd, J = 11.5, 4.8 Hz, 

1H), 3.96 (dddd, J = 9.6, 7.5, 4.8, 1.5 Hz, 1H), 3.52 (dd, J = 8.5, 1.4 Hz, 1H), 3.31–3.07 

(m, 2H), 2.27 (d, J = 9.7 Hz, 1H), 2.10 (s, 3H), 2.03–1.93 (m, 1H), 1.93–1.85 (m, 1H), 

1.85–1.77 (m, 2H), 1.77–1.63 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H); 13C NMR (CDCl3, 126 

MHz) δ 176.9, 171.3, 136.7, 128.8, 128.1, 127.6, 75.8, 69.8, 67.5, 50.5, 47.1, 45.4, 30.2, 

27.3, 21.2, 20.0, 8.1; IR (Neat Film, NaCl) 3382, 2936, 2878, 1736, 1606, 1495, 1453, 

1362, 1248, 1206, 1039, 737 cm–1; HRMS (ESI+) m/z calc’d for C19H28NO5 [M+H]+: 

350.1962, found 350.1977. 
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Colorless, translucent X-ray quality crystals of diol 555 were obtained by slow diffusion 

of 2% benzene in pentane into a solution of 555 in ether at –20 °C, mp: 86–88 °C. 

 

 

3-(1-benzyl-3-ethyl-2-oxopiperidin-3-yl)propyl acetate (556): 

To a round-bottom flask with a magnetic stir bar were added acetate 537 (40 mg, 0.13 

mmol, 1.00 equiv) and ethyl acetate (750 μL).  Palladium on carbon (10 wt. %, 2 mg) 

was added, and the suspension was stirred vigorously while the air atmosphere was 

replaced with hydrogen by three evacuation/back-fill cycles.  The reaction mixture was 

then stirred at 23 °C under an atmosphere of hydrogen (supplied by a balloon) for 5 

hours.  As TLC analysis showed remaining starting material, an additional 5 mg of 

palladium on carbon (10 wt. %) was added.  After letting the reaction mixture stir for an 

additional 19 hours, TLC analysis showed full conversion.  The mixture was filtered 

through Celite, rinsing with ethyl acetate.  The filtrate was concentrated and the crude 

residue was purified by silica gel column chromatography (25% ethyl acetate in hexanes) 

to provide aliphatic acetate 556 as a colorless oil (34.0 mg, 99% yield).  Rf = 0.7 (50% 

ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.37–7.27 (m, 2H), 7.25–7.19 

(m, 3H), 4.66 (d, J = 14.5 Hz, 1H), 4.50 (d, J = 14.5 Hz, 1H), 4.22–3.85 (m, 2H), 3.29–

3.13 (m, 2H), 2.05 (s, 3H), 1.94–1.50 (m, 10H), 0.89 (t, J = 7.5 Hz, 3H); 13C NMR 

(CDCl3, 126 MHz) δ 174.6, 171.3, 137.8, 128.7, 128.2, 127.4, 65.1, 50.7, 47.8, 44.9, 

34.9, 31.6, 29.4, 24.0, 21.2, 20.0, 8.9; IR (Neat Film, NaCl) 2936, 1737, 1631, 1453, 
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O
Et
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1362, 1241, 1038, 738, 701 cm–1; HRMS (ESI+) m/z calc’d for C19H28NO3 [M+H]+: 

318.2064, found 318.2051. 

 

 

(3-(1-benzyl-3-ethyl-2-oxopiperidin-3-yl)oxiran-2-yl)methyl acetate (557): 

To a 1 dram screw-top vial with a magnetic stir bar were added, in order, acetate 537 

(10 mg, 0.032 mmol, 1.00 equiv), 3-chloroperbezoic acid (54 mg, 0.32 mmol, 10.00 

equiv), and dichloromethane (320 μL).  The vial was sealed with a Teflon-lined cap and 

the pale yellow solution was stirred at 23 °C for 12 hours.  Upon completion (as 

determined by TLC analysis), the reaction mixture was diluted with dichloromethane (3 

mL) and quenched with saturated aqueous sodium thiosulfate (3 mL).  The organic layer 

was separated and washed with saturated aqueous sodium bicarbonate solution (3 x 3 

mL), dried over sodium sulfate, filtered, and concentrated in vacuo.  NMR analysis of the 

crude reaction mixture showed a single diasteromer.  The crude was residue purified by 

silica gel column chromatography (25% ethyl acetate and 1% triethylamine in hexanes) 

to provide epoxide 557 as a colorless oil (9.9 mg, 93% yield, single diastereomer).  Rf = 

0.5 (50% ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.36–7.27 (m, 3H), 

7.24 (ddt, J = 7.6, 1.4, 0.7 Hz, 2H), 4.67 (d, J = 14.6 Hz, 1H), 4.56 (d, J = 14.6 Hz, 1H), 

4.42 (dd, J = 12.2, 3.1 Hz, 1H), 3.97 (dd, J = 12.3, 6.3 Hz, 1H), 3.46 (d, J = 2.3 Hz, 1H), 

3.20–3.15 (m, 2H), 3.13 (ddd, J = 6.3, 3.1, 2.4 Hz, 1H), 2.11 (s, 3H), 1.90 (dq, J = 13.8, 

7.5 Hz, 1H), 1.85–1.72 (m, 1H), 1.68 (dt, J = 13.8, 7.5 Hz, 1H), 1.61–1.51 (m, 2H), 0.91 

(t, J = 7.5 Hz, 4H); 13C NMR (CDCl3, 126 MHz) δ 172.6, 170.9, 137.3, 128.8, 128.0, 
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127.5, 64.8, 60.9, 52.2, 50.9, 47.6, 45.4, 28.9, 24.2, 20.9, 19.8, 8.7; IR (Neat Film, NaCl) 

2940, 1744, 1632, 1494, 1453, 1364, 1232, 1037, 907, 735 cm–1; HRMS (ESI+) m/z 

calc’d for C19H26NO4 [M+H]+: 332.1856, found 332.1853. 

 

 

(E)-1-benzyl-3-ethyl-3-(3-hydroxyprop-1-en-1-yl)piperidin-2-one (558): 

To a 1 dram screw-top vial with a magnetic stir bar were added, in order, acetate 537 

(102 mg, 0.32 mmol, 1.00 equiv), freshly powdered potassium hydroxide (27 mg, 0.49 

mmol, 1.50 equiv), methanol (1.3 mL), and water (300 μL).  The vial was sealed with a 

Teflon-lined cap and the solution was stirred at 23 °C for 4 minutes.  Upon completion 

(as determined by TLC analysis), the reaction mixture was adsorbed onto Celite and 

purified by silica gel column chromatography (50% ethyl acetate in hexanes) to provide 

allylic alcohol 558 as a colorless oil (88.0 mg, >99% yield).  Rf = 0.2 (50% ethyl acetate 

in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.35–7.26 (m, 3H), 7.25–7.21 (m, 2H), 5.83 

(dt, J = 15.9, 1.4 Hz, 1H), 5.75–5.65 (m, 1H), 4.68 (d, J = 14.5 Hz, 1H), 4.50 (d, J = 14.6 

Hz, 1H), 4.26–4.05 (m, 2H), 3.35–3.06 (m, 2H), 1.97–1.86 (m, 1H), 1.86–1.64 (m, 6H), 

0.86 (td, J = 7.4, 1.2 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 173.1, 137.6, 136.6, 128.8, 

128.7, 128.2, 127.4, 63.9, 50.7, 48.4, 47.9, 32.0, 29.3, 19.4, 8.7; IR (Neat Film, NaCl) 

3402, 2936, 2863, 1617, 1494, 1452, 1353, 1196, 981, 734, 701 cm–1; HRMS (ESI+) m/z 

calc’d for C17H24NO2 [M+H]+: 274.1802, found 274.1803. 
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(E)-3-(1-benzyl-3-ethylpiperidin-3-yl)prop-2-en-1-ol (559): 

To an oven-dried 1 dram screw-top vial with a magnetic stir bar were added, in order, 

acetate 537 (30 mg, 0.095 mmol, 1.00 equiv), lithium aluminum hydride (72 mg, 1.90 

mmol, 20.00 equiv), and THF (500 μL).  The vial was sealed with a Teflon-lined cap and 

the suspension was stirred at 70 °C for 10 hours.  Upon completion (as determined by 

TLC analysis), the reaction mixture cooled to 0 °C using an ice water bath.  1.5 mL water 

was added slowly dropwise, followed by 1.5 mL NaOH (15 wt. %), followed by 4.5 mL 

water.  The suspension was stirred until the color turned white (45 minutes), after which 

it was filtered through Celite, rinsing with ether.  The filtrate was concentrated and the 

crude residue was purified by silica gel column chromatography (50% ethyl acetate and 

1% triethylamine in hexanes with) to provide amine 559 as a colorless oil (23.9 mg, 97 % 

yield).  Rf = 0.3 (50% ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.33–

7.27 (m, 4H), 7.26–7.21 (m, 1H), 5.58 (dt, J = 16.0, 5.7 Hz, 1H), 5.50 (dt, J = 15.9, 1.0 

Hz, 1H), 4.12 (d, J = 5.6 Hz, 2H), 3.44 (s, 2H), 2.51–1.95 (m, 4H), 1.75 (s, 1H), 1.59 (m, 

1H), 1.50 (d, J = 15.5 Hz, 3H), 1.37 (dt, J = 13.8, 7.2 Hz, 2H), 0.70 (t, J = 7.5 Hz, 3H); 

13C NMR (CDCl3, 126 MHz) δ 139.7, 139.0, 129.1, 128.2, 127.6, 127.0, 64.5, 63.7, 62.8, 

54.8, 39.3, 33.4, 22.3, 7.9; IR (Neat Film, NaCl) 3326, 2934, 1453, 1349, 1091, 974, 739, 

698 cm–1; HRMS (ESI+) m/z calc’d for C17H26NO [M+H]+: 260.2009, found 260.2018. 
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dimethyl (E)-2-(3-(1-benzyl-3-ethyl-2-oxopiperidin-3-yl)allyl)malonate (560): 

The conditions for the transformation were adapted from a known procedure.23 In a 

nitrogen-filled glovebox, an oven-dried 1 dram screw-top vial with a magnetic stir bar 

was charged with dichloro(p-cymene)ruthenium(II) dimer (12 mg, 0.019 mmol, 0.50 

equiv), triphenylphosphine (10 mg, 0.038 mmol, 1.00 equiv), and toluene (150 μL).  To 

this solution was added a solution of acetate 537 (12 mg, 0.038 mmol, 1.00 equiv) in 

toluene (100 μL).  Dimethyl malonate (7 μL, 0.057 mmol, 1.50 equiv) was then added, 

followed by a solution of lithium hexamethyldisilazide (9 mg, 0.052 mmol, 1.40 equiv) in 

THF (100 μL).  The vial was sealed with a Teflon-lined cap and heated at 60 °C for 90 

hours.  Upon completion (as determined by LCMS analysis) the reaction was removed 

from the glovebox, adsorbed onto Celite, and purified by silica gel column 

chromatography (20% ethyl acetate in hexanes) to provide malonate 560 as a colorless oil 

(12.1 mg, 82% yield.  Rf = 0.2 (25% ethyl acetate in hexanes); 1H NMR (CDCl3, 500 

MHz) δ 7.35–7.28 (m, 3H), 7.25–7.20 (m, 2H), 5.65 (dt, J = 15.8, 1.3 Hz, 1H), 5.44 (dt, J 

= 15.8, 7.0 Hz, 1H), 4.62 (d, J = 14.6 Hz, 1H), 4.53 (d, J = 14.5 Hz, 1H), 3.71 (s, 3H), 

3.71 (s, 3H), 3.45 (t, J = 7.6 Hz, 1H), 3.32–3.04 (m, 2H), 2.66 (ddd, J = 7.5, 7.0, 1.3 Hz, 

2H), 1.84 (dq, J = 13.5, 7.4 Hz, 1H), 1.80–1.67 (m, 4H), 1.67–1.58 (m, 1H), 0.83 (t, J = 

7.4 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 173.0, 169.5, 169.5, 138.1, 137.7, 128.7, 

128.1, 127.4, 125.0, 52.6, 52.6, 52.0, 50.6, 48.6, 47.8, 32.3, 32.1, 29.3, 19.3, 8.6; IR (Neat 

Film, NaCl) 2952, 1734, 1635, 1437, 1350, 1261, 1195, 1153, 740 cm–1; HRMS (ESI+) 

m/z calc’d for C22H30NO5 [M+H]+: 388.2118, found 388.2110. 
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5.5.8   ENAL DERIVATIZATION PROCEDURES AND 

CHARACTERIZATION DATA 

 

3-(1-benzyl-3-ethyl-2-oxopiperidin-3-yl)propanal (571): 

To a round-bottom flask with a magnetic stir bar were added enal 561 (30 mg, 0.11 

mmol, 1.00 equiv) and ethyl acetate (320 μL).  Palladium on carbon (10 wt. %, 2 mg) 

was added, and the suspension was stirred vigorously while the air atmosphere was 

replaced with hydrogen by three evacuation/back-fill cycles.  The reaction mixture was 

then stirred at 23 °C under one atmosphere of hydrogen (supplied by a balloon) for 1.25 

hours.  After completion (as determined by TLC analysis), the mixture was filtered 

through Celite, rinsing with ethyl acetate.  The filtrate was concentrated and the crude 

residue was purified by silica gel column chromatography (25% ethyl acetate in hexanes) 

to provide aliphatic aldehyde 571 as a colorless oil (29.3 mg, 97% yield).  Rf = 0.5 (50% 

ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 9.77 (t, J = 1.5 Hz, 1H), 7.37–

7.27 (m, 3H), 7.25–7.18 (m, 2H), 4.65 (d, J = 14.5 Hz, 1H), 4.48 (d, J = 14.5 Hz, 1H), 

3.36–3.06 (m, 2H), 2.59 (dddd, J = 17.4, 10.1, 5.7, 1.6 Hz, 1H), 2.49 (dddd, J = 17.3, 

10.1, 5.6, 1.5 Hz, 1H), 1.98 (ddd, J = 14.0, 10.1, 5.6 Hz, 1H), 1.93–1.85 (m, 1H), 1.85–

1.71 (m, 3H), 1.67–1.50 (m, 3H), 0.89 (t, J = 7.5 Hz, 3H); 13C NMR (CDCl3, 126 MHz) 

δ 202.6, 174.1, 137.7, 128.7, 128.1, 127.5, 50.7, 47.8, 44.4, 39.8, 31.1, 30.3, 29.9, 19.7, 

8.6; IR (Neat Film, NaCl) 2937, 1722, 1628, 1494, 1452, 1351, 1194, 736, 701 cm–1; 

HRMS (ESI+) m/z calc’d for C17H24NO2 [M+H]+: 274.1802, found 274.1805. 
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(E)-1-benzyl-3-(buta-1,3-dien-1-yl)-3-ethylpiperidin-2-one (572): 

To a flame-dried round-bottom flask with a magnetic stir bar were added methyl 

triphenylphosphonium bromide (64 mg, 0.18 mmol, 1.25 equiv) and THF (0.9 mL).  The 

white suspension was cooled to 0 °C using an ice water bath and n-butyllithium (2.5 M in 

hexanes, 72 μL, 1.25 equiv) was added dropwise by syringe.  The mixture was stirred for 

15 minutes at 0 °C and a solution of enal 561 (40 mg, 0.15 mmol, 1.00 equiv) in THF 

(180 μL) was added dropwise by syringe.  The mixture was stirred for 1 hour at 0 °C and 

20 hours at 23 °C.  As the reaction was not progressing, additional ylide (1.25 equiv, 

generated as described above) was added by syringe at 0 °C.  The reaction was allowed to 

stir at 23 °C for 5 hours, at which point additional ylide (2.50 equiv, generated as 

described above) was added at 0 °C.  After stirring for 3 hours at 23 °C, TLC analysis 

showed complete consumption of the starting material.  The reaction was quenched by 

addition of saturated aqueous ammonium chloride solution (5 mL).  The mixture was 

extracted with ether (3 x 5 mL), and the combined organic layers were washed with brine 

(1 x 5 mL), dried over magnesium sulfate, filtered, and concentrated in vacuo.  The crude 

residue was purified by silica gel column chromatography (20% ethyl aceate in hexanes) 

to provide diene 572 as a colorless oil (32.1 mg, 79% yield).  Rf = 0.5 (25% ethyl acetate 

in hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.34–7.26 (m, 2H), 7.26–7.21 (m, 3H), 6.35 

(dtd, J = 16.9, 10.2, 0.7 Hz, 1H), 6.10 (ddd, J = 15.7, 10.2, 0.7 Hz, 1H), 5.81 (dd, J = 

15.7, 0.8 Hz, 1H), 5.14 (ddt, J = 17.0, 1.6, 0.7 Hz, 1H), 5.03 (ddt, J = 10.1, 1.6, 0.7 Hz, 

1H), 4.62 (d, J = 14.6 Hz, 1H), 4.57 (d, J = 14.6 Hz, 1H), 3.35–2.98 (m, 2H), 1.90 (dq, J 

BnN

O
Et

561

O

H

BnN

O
Et

572

n-BuLi, [MePPh3]Br
THF, 0→23 °C

(79% yield)
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= 13.6, 7.5 Hz, 1H), 1.86–1.78 (m, 3H), 1.78–1.64 (m, 2H), 0.86 (t, J = 7.4 Hz, 3H); 13C 

NMR (CDCl3, 126 MHz) δ 172.9, 139.0, 137.7, 137.3, 130.3 128.7, 128.2, 127.4, 116.4, 

50.7, 48.8, 47.9, 32.2, 29.4, 19.5, 8.8; IR (Neat Film, NaCl) 2966, 1635, 1600, 1488, 

1452, 1352, 1196, 1007, 733, 701 cm–1; HRMS (ESI+) m/z calc’d for C18H24NO [M+H]+: 

270.1853, found 270.1851. 

 

 

(E)-1-benzyl-3-(buta-1,3-dien-1-yl)-3-ethylpiperidin-2-one (573): 

The conditions for the transformation were adapted from a known procedure.25 To a 1 

dram screw-top vial with a magnetic stir bar were added, in order, vanadyl 

acetylacetonate (1 mg, 0.001 mmol, 0.04 equiv) and hydrogen peroxide (35 wt. % in 

water, 50 μL).  A solution of enal 561 (10 mg, 0.04 mmol, 1.00 equiv) in methanol (200 

μL) was then added.  The vial was sealed with a Teflon-lined cap and the solution was 

stirred at 23 °C for 17 hours.  Upon completion (as determined by TLC analysis), the 

reaction mixture was diluted with dichloromethane (3 mL), adsorbed onto Celite and 

purified by silica gel column chromatography (25% ethyl acetate in hexanes) to provide 

enoate 573 as a colorless oil (11.2 mg, 93% yield).  Rf = 0.4 (10% ethyl acetate in 

hexanes); 1H NMR (CDCl3, 500 MHz) δ 7.37–7.26 (m, 3H), 7.25–7.18 (m, 2H), 7.04 (d, 

J = 16.1 Hz, 1H), 5.90 (d, J = 16.1 Hz, 1H), 4.68 (d, J = 14.5 Hz, 1H), 4.51 (d, J = 14.5 

Hz, 1H), 3.74 (s, 3H), 3.32–3.09 (m, 2H), 1.95 (dq, J = 13.5, 7.4 Hz, 1H), 1.91–1.82 (m, 

2H), 1.82–1.67 (m, 3H), 0.88 (t, J = 7.4 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 171.4, 

167.2, 152.6, 137.4, 128.8, 128.2, 127.5, 120.8, 51.7, 50.9, 49.3, 47.8, 31.6, 29.3, 19.5, 

BnN

O
Et

561

O

H

BnN

O
Et

573

O

OMe
VO(acac)2

H2O2, H2O, MeOH

(93% yield)
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8.7; IR (Neat Film, NaCl) 2946, 1723, 1631, 1434, 1341, 1273, 1197, 1020, 701 cm–1; 

HRMS (ESI+) m/z calc’d for C18H24NO3 [M+H]+: 302.1751, found 302.1754. 

 

 

(E)-4-(1-benzyl-3-ethyl-2-oxopiperidin-3-yl)-1-(tert-butylamino)-1-oxobut-3-en-2-yl 

4-methoxybenzoate (574): 

The conditions for the transformation were adapted from a known procedure.26 To a 

0.5 dram screw-top vial with a magnetic stir bar were added, in order, enal 561 (10 mg, 

0.037 mmol, 1.00 equiv), tert-butyl isocyanide (42 μL, 0.37 mmol, 10.0 equiv), 4-

methoxybenzoic acid (56 mg, 0.37 mmol, 10.0 equiv), and dichloromethane (50 μL).  

The vial was sealed with a Teflon-lined cap and the white suspension was stirred at 23 °C 

for 21 hours, and then at 40 °C for 12 additional hours.  Upon completion (as determined 

by LCMS analysis), the reaction mixture was diluted with dichloromethane (2 mL) and 

washed with saturated aqueous sodium bicarbonate solution (1 x 2 mL).  The organic 

layer was dried over sodium sulfate, filtered, and concentrated in vacuo.  The crude 

residue was purified by silica gel column chromatography (25% ethyl acetate in hexanes) 

to provide the product (574) as an inseparable 1:1 mixture of diastereomers (12.1 mg, 

64% yield).  Rf = 0.3 (25% ethyl acetate in hexanes); 1H NMR (CDCl3, 500 MHz) δ 8.04 

(dd, J = 2.1, 1.5 Hz, 1H), 8.03 (dd, J = 2.1, 1.5 Hz, 1H), 7.35–7.27 (m, 1H), 7.25–7.16 

(m, 3H), 6.96 (d, J = 2.5 Hz, 1H), 6.94 (t, J = 2.4 Hz, 1H), 6.07 (ddd, J = 15.9, 9.9, 1.2 

Hz, 1H), 5.87 (d, J = 8.6 Hz, 1H), 5.78 (ddd, J = 15.9, 9.8, 6.7 Hz, 1H), 5.69 (ddd, J = 

BnN

O
Et

574

O
NHt-Bu

O

Ar

O

Ar = 4-OMeC6H4

BnN

O
Et

561

O

H
4-OMe-C6H4CO2H

t-BuNC, CH2Cl2, 40 °C

(64% yield)
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6.9, 3.3, 1.2 Hz, 1H), 4.64 (dd, J = 26.6, 14.6 Hz, 1H), 4.52 (dd, J = 14.6, 6.6 Hz, 1H), 

3.88 (d, J = 1.1 Hz, 3H), 3.33–3.02 (m, 2H), 1.96–1.80 (m, 3H), 1.80–1.61 (m, 1H), 1.35 

(d, J = 1.7 Hz, 9H), 0.86 (td, J = 7.4, 5.8 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 172.7, 

172.7, 167.8, 167.7, 164.8, 163.9, 163.9, 140.0, 139.8, 137.5, 132.4, 132.0, 132.0, 128.7, 

128.7, 128.0, 128.0, 127.4, 127.4, 124.2, 124.0, 121.9, 121.9, 114.0, 114.0, 113.8, 75.0, 

74.8, 55.7, 51.5, 51.5, 50.7, 50.6, 48.7, 48.6, 47.8, 47.8, 36.8, 32.0, 31.7, 29.1, 29.1, 28.8, 

24.8, 19.4, 19.3, 8.6, 8.6; IR (Neat Film, NaCl) 3320, 2965, 1691, 1606, 1453, 1256, 

1168, 1102, 1028 cm–1; HRMS (ESI+) m/z calc’d for C30H39N2O5 [M+H]+: 507.2853, 

found 507.2857. 

 

5.5.9   MECHANISTIC INVESTIGATION EXPERIMENTS 

 

Oxidation of allylic alcohol 558 to enal 561: 

To a 0.5 dram vial with a magnetic stir bar were added, in order, allylic alcohol 558 

(11 mg, 0.04 mmol, 1.00 equiv), palladium(II) acetate (1 mg, 0.03 mmol, 0.075 equiv), 

and Oxone (31 mg, 0.10 mmol, 2.5 equiv).  Acetonitrile (400 μL), acetic acid (37 μL, 3.2 

mmol, 16.00 equiv), and water (6 μL, 1.6 mmol, 8.00 equiv) were added by syringe.  The 

resulting suspension was stirred for 5 minutes at 23 °C and then heated to 50 °C in an oil 

bath.  Upon completion (as determined by TLC analysis), the flask was allowed to cool to 

23 °C.  The reaction mixture was filtered through a plug of silica gel, rinsing with ethyl 

acetate, and concentrated to give the crude product, which was identical to 561 by 1H 

NMR, TLC, and LCMS analysis. 

BnN

O
Et

Pd(OAc)2 (7.5 mol %)
Oxone (2.5 equiv)
AcOH (16.0 equiv)
H2O (8.00 equiv)

MeCN, 50 °C, 0.1 M

(100% conversion)

BnN

O
Et

O

H

OH

558 561
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Oxidation of aliphatic aldehyde 571 to enal 561: 

To a 0.5 dram vial with a magnetic stir bar were added, in order, aliphatic aldehyde 

571 (3 mg, 0.011 mmol, 1.00 equiv), palladium(II) acetate (<1 mg, 0.015 mmol, 0.075 

equiv), and Oxone (8 mg, 0.028 mmol, 2.5 equiv).  Acetonitrile (100 μL), acetic acid (10 

μL, 3.2 mmol, 16.00 equiv), and water (2 μL, 1.6 mmol, 8.00 equiv) were added by 

syringe.  The resulting suspension was stirred for 5 minutes at 23 °C and then heated to 

50 °C in an oil bath.  Upon completion (as determined by TLC analysis), the flask was 

allowed to cool to 23 °C.  The reaction mixture was filtered through a plug of silica gel, 

rinsing with ethyl acetate, and concentrated to give the crude product, which was 

identical to 561 by 1H NMR, TLC, and LCMS analysis. 

 

 

 

 

 

 

 

 

 

 

BnN

O
Et

O

H Pd(OAc)2 (7.5 mol %)
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MeCN, 50 °C, 0.1 M

(100% conversion)
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APPENDIX 10† 

Supplementary Synthetic Information Relevant to Chapter 5 

 

 

A10.1  INTRODUCTION 

This section presents poor substrates for the C–H allylic acetoxylation and enal 

formation reactions.  The substrates were either unreactive, gave low yields of the desired 

products as the only isolable material, afforded primarily Wacker–Tsuji oxidation 

products, or decomposed. 

 

A10.2  UNSUCCESSFUL SUBSTRATES IN THE ALLYLIC ACETOXYLATION 

REACTION 

Figure A10.1 presents those substrates that performed poorly under the allylic 

acetoxylation conditions.  The decomposition observed with 622 suggests amide 

coordination may play a role in the allylic C–H functionalization. 

 

                                                
† This work was performed in collaboration with Dr. Xiangyou Xing, alumnus of the Stoltz group.  This 
work has been published, with selected data in this appendix reproduced with permission from Xing, X.; 
O’Connor, N. R.; Stoltz, B. M. Angew. Chem., Int. Ed. 2015, 54, 11186–11190.  Copyright 2015 WILEY-
VCH. 
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Figure A10.1  Poor substrates in the allylic acetoxylation reaction 

 

 

A10.3  UNSUCCESSFUL SUBSTRATES IN THE ENAL FORMATION 

REACTION 

Under the optimized conditions for the formation of enals, many attempted substrates 

instead underwent Wacker–Tsuji oxidation to afford the methyl ketones.  A selection of 

these substrates is shown in Figure A10.2. 
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Figure A10.2  Poor substrates in the enal formation reaction 

 

 

A10.4  CONCLUSIONS 

These problematic substrates illustrate the limitations of this palladium(II)/Oxone 

catalyst system in the realm of allylic C–H functionalization reactions.  Further 

exploration of this system might involve substrates with strongly coordinating directing 

groups (similar to 615) or examination of the role of olefin directing groups, which may 

be responsible for the unexpected C–H acetoxylation of carvone discussed in Section 5.5. 
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APPENDIX 11 

Spectra Relevant to Chapter 5: 

Palladium(II)-Catalyzed Allylic C–H Oxidation of Hindered Substrates  

Featuring Tunable Selectivity Over Extent of Oxidation 
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Figure 11.3 13C NMR (126 MHz, CDCl3) of compound 586. 

Figure A11.2 Infrared spectrum (thin film/NaCl) of compound 586. 



Appendix 11 – Spectra Relevant to Chapter 5   

 

705 

  

Fi
gu

re
 A

11
.4

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3
) o

f c
om

po
un

d 
58

7.
 

 

Bn
N

O
M
e 58
7



Appendix 11 – Spectra Relevant to Chapter 5   

 

706 

  

Figure A11.6 13C NMR (126 MHz, CDCl3) of compound 587. 
 

Figure A11.5 Infrared spectrum (thin film/NaCl) of compound 587. 
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Figure A11.9 13C NMR (126 MHz, CDCl3) of compound 588. 
 

Figure A11.8 Infrared spectrum (thin film/NaCl) of compound 588. 
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Figure A11.11 Infrared spectrum (thin film/NaCl) of compound 589. 
 

Figure A11.12 13C NMR (126 MHz, CDCl3) of compound 589. 
 



Appendix 11 – Spectra Relevant to Chapter 5   

 

711 

  

Fi
gu

re
 A

11
.1

3 
1 H

 N
M

R
 (5

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 
59

0.
 

  

Bn
N

O

59
0O
M
e



Appendix 11 – Spectra Relevant to Chapter 5   

 

712 

  

Figure A11.15 13C NMR (126 MHz, CDCl3) of compound 590. 
 

Figure A11.14 Infrared spectrum (thin film/NaCl) of compound 590. 
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Figure A11.18. 13C NMR (126 MHz, CDCl3) of compound 592. 
 

Figure A11.17 Infrared spectrum (thin film/NaCl) of compound 592. 
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Figure A11.21 13C NMR (126 MHz, CDCl3) of compound 594. 
 

Figure A11.20 Infrared spectrum (thin film/NaCl) of compound 594. 
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Figure A11.24 13C NMR (126 MHz, CDCl3) of compound 597. 
 

Figure A11.23 Infrared spectrum (thin film/NaCl) of compound 597. 
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Figure A11.27 13C NMR (126 MHz, CDCl3) of compound 598. 
 

Figure A11.26 Infrared spectrum (thin film/NaCl) of compound 598. 
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Figure A11.30 13C NMR (126 MHz, CDCl3) of compound 599. 
 

Figure A11.29 Infrared spectrum (thin film/NaCl) of compound 599. 
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Figure A11.33 13C NMR (126 MHz, CDCl3) of compound 600. 
 

Figure A11.32 Infrared spectrum (thin film/NaCl) of compound 600. 
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Figure A11.36 13C NMR (126 MHz, CDCl3) of compound 601. 
 

Figure A11.35 Infrared spectrum (thin film/NaCl) of compound 601. 
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Figure A11.39 13C NMR (126 MHz, CDCl3) of compound 602. 
 

Figure A11.38 Infrared spectrum (thin film/NaCl) of compound 602. 
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Figure A11.42 13C NMR (126 MHz, CDCl3) of compound 603. 
 

Figure A11.41 Infrared spectrum (thin film/NaCl) of compound 603. 
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Figure A11.45 13C NMR (126 MHz, CDCl3) of compound 604. 
 

Figure A11.44 Infrared spectrum (thin film/NaCl) of compound 604. 
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Figure A11.48 13C NMR (126 MHz, CDCl3) of compound 531. 
 

Figure A11.47 Infrared spectrum (thin film/NaCl) of compound 531. 
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Figure A11.51 13C NMR (126 MHz, CDCl3) of compound 537. 
 

Figure A11.50 Infrared spectrum (thin film/NaCl) of compound 537. 
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Figure A11.54 13C NMR (126 MHz, CDCl3) of compound 538. 
 

Figure A11.53 Infrared spectrum (thin film/NaCl) of compound 538. 
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Figure A11.57 13C NMR (126 MHz, CDCl3) of compound 539. 
 

Figure A11.56 Infrared spectrum (thin film/NaCl) of compound 539. 
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Figure A11.60 13C NMR (126 MHz, CDCl3) of compound 540. 
 

Figure A11.59 Infrared spectrum (thin film/NaCl) of compound 540. 
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Figure A11.63 13C NMR (126 MHz, CDCl3) of compound 541. 
 

Figure A11.62 Infrared spectrum (thin film/NaCl) of compound 541. 
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Figure A11.66 13C NMR (126 MHz, CDCl3) of compound 542. 
 

Figure A11.65 Infrared spectrum (thin film/NaCl) of compound 542. 
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Figure A11.69 13C NMR (101 MHz, CDCl3) of compound 543. 
 

Figure A11.68 Infrared spectrum (thin film/NaCl) of compound 543. 
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Figure A11.72 13C NMR (101 MHz, CDCl3) of compound 544. 

Figure A11.71 Infrared spectrum (thin film/NaCl) of compound 544. 
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Figure A11.75 13C NMR (126 MHz, CDCl3) of compound 545. 
 

Figure A11.74 Infrared spectrum (thin film/NaCl) of compound 545. 
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Figure A11.78 13C NMR (126 MHz, CDCl3) of compound 546. 
 

Figure A11.77 Infrared spectrum (thin film/NaCl) of compound 546. 
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Figure A11.81 13C NMR (126 MHz, CDCl3) of compound 547. 
 

Figure A11.80 Infrared spectrum (thin film/NaCl) of compound 547. 
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Figure A11.84 13C NMR (126 MHz, CDCl3) of compound 548. 
 

Figure A11.83 Infrared spectrum (thin film/NaCl) of compound 548. 
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Figure A11.87 13C NMR (126 MHz, CDCl3) of compound 549. 
 

Figure A11.86 Infrared spectrum (thin film/NaCl) of compound 549. 
 



Appendix 11 – Spectra Relevant to Chapter 5   

 

761 

  

Fi
gu

re
 A

11
.8

8 
1 H

 N
M

R
 (4

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 
55

0.
 

  

55
0

Bn
N

O
H

O
Ac



Appendix 11 – Spectra Relevant to Chapter 5   

 

762 

  

Figure A11.90 13C NMR (101 MHz, CDCl3) of compound 550. 
 

Figure A11.89 Infrared spectrum (thin film/NaCl) of compound 550. 
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Figure A11.93 13C NMR (126 MHz, CDCl3) of compound 551. 
 

Figure A11.92 Infrared spectrum (thin film/NaCl) of compound 551. 
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Figure A11.96 13C NMR (126 MHz, CDCl3) of compound 552. 
 

Figure A11.95 Infrared spectrum (thin film/NaCl) of compound 552. 
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Figure A11.99 13C NMR (126 MHz, CDCl3) of compound 553. 
 

Figure A11.98 Infrared spectrum (thin film/NaCl) of compound 553. 
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Figure A11.102 13C NMR (126 MHz, CDCl3) of compound 554. 
 

Figure A11.101 Infrared spectrum (thin film/NaCl) of compound 554. 
 



Appendix 11 – Spectra Relevant to Chapter 5   

 

771 

  

Fi
gu

re
 A

11
.1

03
 1 H

 N
M

R
 (5

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 
55

5.
 

  

Bn
N

O
Et

55
5

O
Ac

O
H O

H



Appendix 11 – Spectra Relevant to Chapter 5   

 

772 

  

Figure A11.105 13C NMR (126 MHz, CDCl3) of compound 555. 
 

Figure A11.104 Infrared spectrum (thin film/NaCl) of compound 555. 
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Figure A11.108 13C NMR (126 MHz, CDCl3) of compound 556. 
 

Figure A11.107 Infrared spectrum (thin film/NaCl) of compound 556. 
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Figure A11.111 13C NMR (126 MHz, CDCl3) of compound 557. 
 

Figure A11.110 Infrared spectrum (thin film/NaCl) of compound 557. 
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Figure A11.114 13C NMR (126 MHz, CDCl3) of compound 558. 
 

Figure A11.113 Infrared spectrum (thin film/NaCl) of compound 558. 
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Figure A11.117 13C NMR (126 MHz, CDCl3) of compound 559. 
 

Figure A11.116 Infrared spectrum (thin film/NaCl) of compound 559. 
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Figure A11.120 13C NMR (126 MHz, CDCl3) of compound 560. 
 

Figure A11.119 Infrared spectrum (thin film/NaCl) of compound 560. 
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Figure A11.123 13C NMR (126 MHz, CDCl3) of compound 561. 
 

Figure A11.122 Infrared spectrum (thin film/NaCl) of compound 561. 
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Figure A11.126 13C NMR (126 MHz, CDCl3) of compound 562. 
 

Figure A11.125 Infrared spectrum (thin film/NaCl) of compound 562. 
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Figure A11.129 13C NMR (126 MHz, CDCl3) of compound 563. 
 

Figure A11.128 Infrared spectrum (thin film/NaCl) of compound 563. 
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Figure A11.132 13C NMR (126 MHz, CDCl3) of compound 564. 
 

Figure A11.131 Infrared spectrum (thin film/NaCl) of compound 564. 
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Figure A11.135 13C NMR (126 MHz, CDCl3) of compound 565. 
 

Figure A11.134 Infrared spectrum (thin film/NaCl) of compound 565. 
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Figure A11.138 13C NMR (126 MHz, CDCl3) of compound 566. 
 

Figure A11.137 Infrared spectrum (thin film/NaCl) of compound 566. 
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Figure A11.141 13C NMR (126 MHz, CDCl3) of compound 567. 
 

Figure A11.140 Infrared spectrum (thin film/NaCl) of compound 567. 
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Figure A11.144 13C NMR (126 MHz, CDCl3) of compound 569. 
 

Figure A11.143 Infrared spectrum (thin film/NaCl) of compound 569. 
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Figure A11.147 13C NMR (126 MHz, CDCl3) of compound 568. 
 

Figure A11.146 Infrared spectrum (thin film/NaCl) of compound 568. 
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Figure A11.150 13C NMR (126 MHz, CDCl3) of compound 570. 
 

Figure A11.149 Infrared spectrum (thin film/NaCl) of compound 570. 
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Figure A11.153 13C NMR (126 MHz, CDCl3) of compound 571. 
 

Figure A11.152 Infrared spectrum (thin film/NaCl) of compound 571. 
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Figure A11.156 13C NMR (126 MHz, CDCl3) of compound 572. 
 

Figure A11.155 Infrared spectrum (thin film/NaCl) of compound 572. 
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Figure A11.159 13C NMR (126 MHz, CDCl3) of compound 573. 
 

Figure A11.158 Infrared spectrum (thin film/NaCl) of compound 573. 
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Figure A11.162 13C NMR (126 MHz, CDCl3) of compound 574. 
 

Figure A11.161 Infrared spectrum (thin film/NaCl) of compound 574. 
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Figure A11.165 13C NMR (126 MHz, CDCl3) of compound 576. 
 

Figure A11.164 Infrared spectrum (thin film/NaCl) of compound 576. 
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A12.1   X-RAY CRYSTAL STRUCTURE ANALYSIS OF DIOL 555 

BnN

O
Et

OAc

555

OH

OH

 

Contents 

Table A12.1.1 Experimental Details 

Table A12.1.2 Crystal Data 

Table A12.1.3 Atomic Coordinates  

Table A12.1.4 Full Bond Distances and Angles 

Table A12.1.5 Anisotropic Displacement Parameters 

Table A12.1.6 Hydrogen Atomic Coordinates 

Table A12.1.7 Torsion Angles 

Table A12.1.8 Hydrogen Bond Distances and Angles 

 

 

Figure A12.1.1     X-ray crystal structure of diol 555 
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Table A12.1.1 Experimental details for X-ray structure determination of diol 555 

Low-temperature diffraction data (φ-and ω-scans) were collected on a Bruker AXS 

D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with 

Cu Kα radiation (λ = 1.54178 Å) from an IμS micro-source for the structure of diol 555. 

The structure was solved by direct methods using SHELXS and refined against F2 on all 

data by full-matrix least squares with SHELXL-2014 using established refinement 

techniques. All non-hydrogen atoms were refined anisotropically. Unless otherwise 

noted, all hydrogen atoms were included into the model at geometrically calculated 

positions and refined using a riding model. The isotropic displacement parameters of all 

hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 

times for methyl groups).  

Diol 555 crystallizes in the orthorhombic space group P212121 with one molecule in 

the asymmetric unit. The coordinates for the hydrogen atoms bound to O2 and O3 were 

located in the difference Fourier synthesis and refined semi-freely with the help of a 

restraint on the O-H distance (0.84(4) Å).  

 

Table A12.1.2 Crystal data and structure refinement for diol 555 

CCDC deposition number 1057691 

Empirical formula  C19 H27 N O5 

Formula weight  349.41 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Orthorhombic 

Space group  P212121 
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Table A12.1.2 (cont’d) 

 

Unit cell dimensions a = 7.8598(4) Å a= 90°. 

 b = 11.0342(6) Å b= 90°. 

 c = 20.5656(13) Å g = 90°. 

Volume 1783.58(17) Å3 

Z 4 

Density (calculated) 1.301 Mg/m3 

Absorption coefficient 0.767 mm-1 

F(000) 752 

Crystal size 0.150 x 0.100 x 0.100 mm3 

Theta range for data collection 4.299 to 74.529°. 

Index ranges -9<=h<=9, -8<=k<=13, -25<=l<=25 

Reflections collected 12461 

Independent reflections 3592 [R(int) = 0.0553] 

Completeness to theta = 67.679° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7538 and 0.6907 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3592 / 2 / 234 

Goodness-of-fit on F2 1.056 

Final R indices [I>2sigma(I)] R1 = 0.0368, wR2 = 0.0729 

R indices (all data) R1 = 0.0470, wR2 = 0.0765 

Absolute structure parameter 0.00(14) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.182 and -0.201 e.Å-3 
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Table A12.1.3      Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 

103) for diol 555.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  
________________________________________________________________________________  

 x y z U(eq) 
________________________________________________________________________________   
N(1) 3370(3) 3133(2) 986(1) 16(1) 

C(13) 1612(3) 3420(2) 809(1) 18(1) 

C(21) 831(3) 4438(2) 1206(1) 16(1) 

C(22) 282(3) 5492(2) 901(1) 18(1) 

C(23) -554(3) 6393(2) 1254(1) 21(1) 

C(24) -825(3) 6248(2) 1914(1) 23(1) 

C(25) -244(3) 5205(2) 2224(1) 22(1) 

C(26) 579(3) 4304(2) 1873(1) 19(1) 

C(1) 3702(3) 2140(2) 1342(1) 14(1) 

O(1) 2533(2) 1498(1) 1558(1) 17(1) 

C(2) 5551(3) 1718(2) 1435(1) 13(1) 

C(6) 5875(3) 1416(2) 2158(1) 14(1) 

O(2) 4694(2) 530(1) 2395(1) 16(1) 

C(7) 5905(3) 2505(2) 2618(1) 14(1) 

O(3) 4348(2) 3153(2) 2569(1) 17(1) 

C(8) 6201(3) 2075(2) 3309(1) 17(1) 

O(4) 6995(2) 3075(1) 3653(1) 17(1) 

O(5) 6468(3) 2166(2) 4609(1) 26(1) 

C(9) 7090(3) 2982(2) 4303(1) 18(1) 

C(10) 8103(4) 4004(2) 4588(1) 23(1) 

C(11) 5664(3) 524(2) 1031(1) 18(1) 

C(12) 7406(4) -94(2) 1031(2) 25(1) 

C(3) 6887(3) 2629(2) 1183(1) 16(1) 

C(4) 6245(3) 3928(2) 1163(1) 19(1) 

C(5) 4663(3) 3988(2) 751(1) 18(1) 
________________________________________________________________________________   
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Table A12.1.4      Bond lengths [Å] and angles [°] for diol 555 
___________________________________________________________________________________  

N(1)-C(1)  1.343(3) 

N(1)-C(13)  1.464(3) 

N(1)-C(5)  1.469(3) 

C(13)-C(21)  1.519(3) 

C(13)-H(13A)  0.9900 

C(13)-H(13B)  0.9900 

C(21)-C(22)  1.390(3) 

C(21)-C(26)  1.394(4) 

C(22)-C(23)  1.395(4) 

C(22)-H(22)  0.9500 

C(23)-C(24)  1.384(4) 

C(23)-H(23)  0.9500 

C(24)-C(25)  1.392(4) 

C(24)-H(24)  0.9500 

C(25)-C(26)  1.388(4) 

C(25)-H(25)  0.9500 

C(26)-H(26)  0.9500 

C(1)-O(1)  1.241(3) 

C(1)-C(2)  1.539(3) 

C(2)-C(3)  1.543(3) 

C(2)-C(6)  1.544(3) 

C(2)-C(11)  1.560(3) 

C(6)-O(2)  1.434(3) 

C(6)-C(7)  1.530(3) 

C(6)-H(6)  1.0000 

O(2)-H(2O)  0.83(2) 

C(7)-O(3)  1.421(3) 

C(7)-C(8)  1.517(3) 

C(7)-H(7)  1.0000 

O(3)-H(3O)  0.83(2) 

C(8)-O(4)  1.452(3) 

C(8)-H(8A)  0.9900 

C(8)-H(8B)  0.9900 

O(4)-C(9)  1.344(3) 
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Table A12.1.4 (cont’d) 

O(5)-C(9)  1.203(3) 

C(9)-C(10)  1.499(4) 

C(10)-H(10A)  0.9800 

C(10)-H(10B)  0.9800 

C(10)-H(10C)  0.9800 

C(11)-C(12)  1.529(4) 

C(11)-H(11A)  0.9900 

C(11)-H(11B)  0.9900 

C(12)-H(12A)  0.9800 

C(12)-H(12B)  0.9800 

C(12)-H(12C)  0.9800 

C(3)-C(4)  1.521(3) 

C(3)-H(3A)  0.9900 

C(3)-H(3B)  0.9900 

C(4)-C(5)  1.505(4) 

C(4)-H(4A)  0.9900 

C(4)-H(4B)  0.9900 

C(5)-H(5A)  0.9900 

C(5)-H(5B)  0.9900 

 

C(1)-N(1)-C(13) 119.7(2) 

C(1)-N(1)-C(5) 124.7(2) 

C(13)-N(1)-C(5) 115.59(19) 

N(1)-C(13)-C(21) 114.0(2) 

N(1)-C(13)-H(13A) 108.8 

C(21)-C(13)-H(13A) 108.8 

N(1)-C(13)-H(13B) 108.8 

C(21)-C(13)-H(13B) 108.8 

H(13A)-C(13)-H(13B) 107.6 

C(22)-C(21)-C(26) 119.3(2) 

C(22)-C(21)-C(13) 120.0(2) 

C(26)-C(21)-C(13) 120.6(2) 

C(21)-C(22)-C(23) 120.6(3) 

C(21)-C(22)-H(22) 119.7 
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Table A12.1.4 (cont’d) 

C(23)-C(22)-H(22) 119.7 

C(24)-C(23)-C(22) 120.0(2) 

C(24)-C(23)-H(23) 120.0 

C(22)-C(23)-H(23) 120.0 

C(23)-C(24)-C(25) 119.6(2) 

C(23)-C(24)-H(24) 120.2 

C(25)-C(24)-H(24) 120.2 

C(26)-C(25)-C(24) 120.5(3) 

C(26)-C(25)-H(25) 119.7 

C(24)-C(25)-H(25) 119.7 

C(25)-C(26)-C(21) 120.1(2) 

C(25)-C(26)-H(26) 120.0 

C(21)-C(26)-H(26) 120.0 

O(1)-C(1)-N(1) 121.1(2) 

O(1)-C(1)-C(2) 118.8(2) 

N(1)-C(1)-C(2) 119.9(2) 

C(1)-C(2)-C(3) 113.80(19) 

C(1)-C(2)-C(6) 109.93(19) 

C(3)-C(2)-C(6) 110.59(19) 

C(1)-C(2)-C(11) 104.10(18) 

C(3)-C(2)-C(11) 109.40(19) 

C(6)-C(2)-C(11) 108.73(19) 

O(2)-C(6)-C(7) 109.6(2) 

O(2)-C(6)-C(2) 111.61(19) 

C(7)-C(6)-C(2) 115.36(18) 

O(2)-C(6)-H(6) 106.6 

C(7)-C(6)-H(6) 106.6 

C(2)-C(6)-H(6) 106.6 

C(6)-O(2)-H(2O) 104(2) 

O(3)-C(7)-C(8) 110.8(2) 

O(3)-C(7)-C(6) 109.76(19) 

C(8)-C(7)-C(6) 109.65(18) 

O(3)-C(7)-H(7) 108.9 

C(8)-C(7)-H(7) 108.9 
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Table A12.1.4 (cont’d) 

C(6)-C(7)-H(7) 108.9 

C(7)-O(3)-H(3O) 109(2) 

O(4)-C(8)-C(7) 106.53(18) 

O(4)-C(8)-H(8A) 110.4 

C(7)-C(8)-H(8A) 110.4 

O(4)-C(8)-H(8B) 110.4 

C(7)-C(8)-H(8B) 110.4 

H(8A)-C(8)-H(8B) 108.6 

C(9)-O(4)-C(8) 116.82(19) 

O(5)-C(9)-O(4) 123.7(2) 

O(5)-C(9)-C(10) 125.1(2) 

O(4)-C(9)-C(10) 111.1(2) 

C(9)-C(10)-H(10A) 109.5 

C(9)-C(10)-H(10B) 109.5 

H(10A)-C(10)-H(10B) 109.5 

C(9)-C(10)-H(10C) 109.5 

H(10A)-C(10)-H(10C) 109.5 

H(10B)-C(10)-H(10C) 109.5 

C(12)-C(11)-C(2) 115.3(2) 

C(12)-C(11)-H(11A) 108.4 

C(2)-C(11)-H(11A) 108.4 

C(12)-C(11)-H(11B) 108.4 

C(2)-C(11)-H(11B) 108.4 

H(11A)-C(11)-H(11B) 107.5 

C(11)-C(12)-H(12A) 109.5 

C(11)-C(12)-H(12B) 109.5 

H(12A)-C(12)-H(12B) 109.5 

C(11)-C(12)-H(12C) 109.5 

H(12A)-C(12)-H(12C) 109.5 

H(12B)-C(12)-H(12C) 109.5 

C(4)-C(3)-C(2) 113.4(2) 

C(4)-C(3)-H(3A) 108.9 

C(2)-C(3)-H(3A) 108.9 

C(4)-C(3)-H(3B) 108.9 
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Table A12.1.4 (cont’d) 

C(2)-C(3)-H(3B) 108.9 

H(3A)-C(3)-H(3B) 107.7 

C(5)-C(4)-C(3) 109.3(2) 

C(5)-C(4)-H(4A) 109.8 

C(3)-C(4)-H(4A) 109.8 

C(5)-C(4)-H(4B) 109.8 

C(3)-C(4)-H(4B) 109.8 

H(4A)-C(4)-H(4B) 108.3 

N(1)-C(5)-C(4) 111.0(2) 

N(1)-C(5)-H(5A) 109.4 

C(4)-C(5)-H(5A) 109.4 

N(1)-C(5)-H(5B) 109.4 

C(4)-C(5)-H(5B) 109.4 

H(5A)-C(5)-H(5B) 108.0 
___________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms:  
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Table A12.1.5  Anisotropic displacement parameters  (Å2x103) for diol 555.  The anisotropic 

displacement factor exponent takes the form: -2π2[ h2a*2U11  + ... + 2hka*b*U12]. 
______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 
______________________________________________________________________________  

N(1) 16(1)  15(1) 16(1)  2(1) -1(1)  0(1) 

C(13) 19(1)  20(1) 16(1)  -1(1) -5(1)  3(1) 

C(21) 12(1)  16(1) 21(1)  -2(1) -2(1)  -2(1) 

C(22) 15(1)  21(1) 19(1)  0(1) -1(1)  -4(1) 

C(23) 18(1)  14(1) 31(2)  1(1) -2(1)  -1(1) 

C(24) 18(1)  21(1) 31(2)  -9(1) 3(1)  -2(1) 

C(25) 18(1)  31(1) 18(2)  -4(1) 1(1)  -5(1) 

C(26) 17(1)  21(1) 20(1)  2(1) -1(1)  -2(1) 

C(1) 17(1)  13(1) 11(1)  -4(1) -1(1)  -1(1) 

O(1) 14(1)  17(1) 21(1)  0(1) 2(1)  -3(1) 

C(2) 11(1)  14(1) 14(1)  -1(1) 1(1)  -1(1) 

C(6) 12(1)  11(1) 17(1)  0(1) 1(1)  0(1) 

O(2) 20(1)  11(1) 19(1)  2(1) 1(1)  -2(1) 

C(7) 14(1)  12(1) 16(1)  0(1) -1(1)  1(1) 

O(3) 18(1)  10(1) 22(1)  -1(1) -1(1)  3(1) 

C(8) 22(1)  11(1) 17(1)  -2(1) -2(1)  0(1) 

O(4) 22(1)  15(1) 14(1)  -1(1) -4(1)  -1(1) 

O(5) 30(1)  31(1) 18(1)  3(1) 2(1)  -5(1) 

C(9) 17(1)  21(1) 15(1)  -1(1) -2(1)  4(1) 

C(10) 22(1)  25(1) 21(1)  -6(1) -2(1)  2(1) 

C(11) 20(1)  16(1) 18(1)  -1(1) 2(1)  0(1) 

C(12) 29(2)  20(1) 27(2)  -4(1) 5(1)  6(1) 

C(3) 14(1)  18(1) 17(1)  1(1) 2(1)  -2(1) 

C(4) 20(1)  16(1) 20(1)  1(1) 1(1)  -4(1) 

C(5) 22(1)  16(1) 18(1)  3(1) 3(1)  -1(1) 
______________________________________________________________________________  
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Table A12.1.6     Hydrogen coordinates (x103) and isotropic displacement parameters (Å2x103)  

for diol 555 
________________________________________________________________________________  

 x  y  z  U(eq) 
________________________________________________________________________________   

H(13A) 908 2683 862 22 

H(13B) 1579 3649 343 22 

H(22) 477 5599 449 22 

H(23) -936 7107 1040 25 

H(24) -1403 6857 2155 28 

H(25) -414 5109 2678 27 

H(26) 972 3595 2089 23 

H(6) 7029 1037 2181 16 

H(2O) 3780(30) 710(30) 2213(14) 25 

H(7) 6860 3054 2489 17 

H(3O) 4550(40) 3884(19) 2621(15) 25 

H(8A) 5108 1855 3517 20 

H(8B) 6954 1356 3312 20 

H(10A) 7558 4284 4989 34 

H(10B) 8156 4674 4275 34 

H(10C) 9258 3723 4685 34 

H(11A) 4815 -56 1203 22 

H(11B) 5347 708 576 22 

H(12A) 8281 495 905 38 

H(12B) 7400 -766 719 38 

H(12C) 7654 -405 1467 38 

H(3A) 7903 2591 1467 20 

H(3B) 7241 2385 740 20 

H(4A) 5988 4211 1609 22 

H(4B) 7132 4463 977 22 

H(5A) 4197 4821 763 22 

H(5B) 4954 3793 295 22 
________________________________________________________________________________  
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Table A12.1.7    Torsion angles [°] for diol 555 
________________________________________________________________________________  

C(1)-N(1)-C(13)-C(21) 103.5(3) 

C(5)-N(1)-C(13)-C(21) -76.4(3) 

N(1)-C(13)-C(21)-C(22) 119.0(2) 

N(1)-C(13)-C(21)-C(26) -64.2(3) 

C(26)-C(21)-C(22)-C(23) -1.7(4) 

C(13)-C(21)-C(22)-C(23) 175.1(2) 

C(21)-C(22)-C(23)-C(24) 0.7(4) 

C(22)-C(23)-C(24)-C(25) 0.6(4) 

C(23)-C(24)-C(25)-C(26) -1.0(4) 

C(24)-C(25)-C(26)-C(21) -0.1(4) 

C(22)-C(21)-C(26)-C(25) 1.4(4) 

C(13)-C(21)-C(26)-C(25) -175.4(2) 

C(13)-N(1)-C(1)-O(1) -4.4(3) 

C(5)-N(1)-C(1)-O(1) 175.6(2) 

C(13)-N(1)-C(1)-C(2) 169.9(2) 

C(5)-N(1)-C(1)-C(2) -10.1(3) 

O(1)-C(1)-C(2)-C(3) -176.6(2) 

N(1)-C(1)-C(2)-C(3) 9.0(3) 

O(1)-C(1)-C(2)-C(6) -51.9(3) 

N(1)-C(1)-C(2)-C(6) 133.7(2) 

O(1)-C(1)-C(2)-C(11) 64.4(3) 

N(1)-C(1)-C(2)-C(11) -110.0(2) 

C(1)-C(2)-C(6)-O(2) 56.0(2) 

C(3)-C(2)-C(6)-O(2) -177.47(19) 

C(11)-C(2)-C(6)-O(2) -57.3(2) 

C(1)-C(2)-C(6)-C(7) -69.9(2) 

C(3)-C(2)-C(6)-C(7) 56.6(3) 

C(11)-C(2)-C(6)-C(7) 176.78(19) 

O(2)-C(6)-C(7)-O(3) -70.0(2) 

C(2)-C(6)-C(7)-O(3) 57.0(3) 

O(2)-C(6)-C(7)-C(8) 52.0(3) 

C(2)-C(6)-C(7)-C(8) 178.9(2) 

O(3)-C(7)-C(8)-O(4) -84.9(2) 

C(6)-C(7)-C(8)-O(4) 153.74(19) 
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Table A12.1.7 (cont’d) 

C(7)-C(8)-O(4)-C(9) 168.1(2) 

C(8)-O(4)-C(9)-O(5) -4.8(4) 

C(8)-O(4)-C(9)-C(10) 173.7(2) 

C(1)-C(2)-C(11)-C(12) 179.2(2) 

C(3)-C(2)-C(11)-C(12) 57.3(3) 

C(6)-C(2)-C(11)-C(12) -63.6(3) 

C(1)-C(2)-C(3)-C(4) 24.6(3) 

C(6)-C(2)-C(3)-C(4) -99.7(2) 

C(11)-C(2)-C(3)-C(4) 140.5(2) 

C(2)-C(3)-C(4)-C(5) -56.6(3) 

C(1)-N(1)-C(5)-C(4) -23.0(3) 

C(13)-N(1)-C(5)-C(4) 156.9(2) 

C(3)-C(4)-C(5)-N(1) 55.1(3) 
________________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

!!
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Table A12.1.8    Hydrogen bonds for diol 555 [Å and °] 
________________________________________________________________________________  

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
________________________________________________________________________________  

 O(2)-H(2O)...O(1) 0.83(2) 1.88(2) 2.645(2) 152(3) 

 O(3)-H(3O)...O(2)#1 0.83(2) 1.91(2) 2.730(2) 169(3) 

 C(10)-H(10C)...O(5)#2 0.98 2.47 3.374(3) 153.9 

 C(4)-H(4A)...O(2)#1 0.99 2.57 3.530(3) 163.7 

 C(4)-H(4A)...O(3) 0.99 2.63 3.364(3) 131.0 
________________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
#1 -x+1,y+1/2,-z+1/2    #2 x+1/2,-y+1/2,-z+1       
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