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BSTRACT

Strong similarities between control theory and the theory on the solution of operator equa-
tions have been observed and basic results in control theory have been derived from operator
theory arguments. The purpose of this work is to investigate the theory of controller design as
an application of basic operator theory principles and to establish a unified framework in which
control theory can benefit from a “rich” operator theory. The major impact is anticipated in
ponlinear feedback control theory: controller design can be formulated as selection of an iterative
algorithm to solve a nonlinear operator equation corresponding to the control objective. As an
example, controllers induced by the method of successive substitution and the Newton method
are introduced and the corresponding analysis and synthesis issues are studied. Applied to linear
systems, the proposed concepts have a straightforward interpretation in terms of familiar notions
in linear controller design theory. Applications are presented and extensions of the current results
are suggested to conclude the thesis.
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CHAPTER 1

NTRODUCTION

Control theory has had positive interactions with operator theory so far. A number of control
researchers have either noticed (Astrom and Wittenmark 1984) or alluded to (Goodwin and Sin
1984) and some have used an underlying duality between control theory and the theory on the
solution of operator equations, to establish strong quantitative results.

It suffices to mention a few : Kalman (1960) was first to use Contraction Principle arguments
to study the stability of autonomous discrete nonlinear systems. Using his original notation, the
autonomous dynamic system described by the discrete evolution equation

2(tkt1) = H(z(t)) - 2(t)

is globally asymptotically stable if the norm of the operator H(z) is less than 1 for all z.

Zames (1966) used an input-output formalism, abstracting the system to an operator map-
ping Lo input functions to extended Lo output functions. He established closed loop stability
on the condition that the induced system operator norm is less than 1 (Small Gain Theorem),
in effect employing the same Contraction Mapping Principle in a different framework. The well
known conicity and circle conditions surfaced by applying the principle to the special case of
static nonlinearities. In the same work it is shown, how the sufficient conditions of the contrac-
tion mapping theorem can be strengthened to necessary and sufficient conditions by manipulating
input-output relations. Safonov (1980) extended Zames' results to a more general setting based
on the theory of topological separation in function spaces.

Rosenbrock (1974) introduced the Gerschgorin theorem, used in the analysis of iterative
linear equation solution algorithms ( Jacobi, Gauss-Seidel etc., Ortega and Rheinboldt 1970), to
study the stability of decentralized control structures.

Perhaps the most profound demonstration of the duality for the case of linear systems, is the
work of Doyle and Stein (Doyle and Stein 1979 and 1981, Stein 1981). The authors noticed that
loop shaping methods produced compensators that inherently contained the inverse of the linear
system operator. They showed how to construct inverses of linear dynamical systems by adjusting
the noise parameters of Linear Quadratic Regulator compensators. To analyse the robust stability
of the resulting control structures the method of Singular Value Decomposition, commonly used



Chapter I 2

in studies of sensitivity of linear operator inversion, naturally surfaced( Lehtomaki 1981, Doyle
and Stein 1981).

On the othe hand, basic control theory results appear in operator theory. For example, the
von Neumann convergence analysis (Richtmeyer and Morton 1969) for linear partial differential
equation solution procedures is a basic form of the Nyquist stability criterion. In its context, re-
cursive solution schemes are Fourier transformed from time to frequency domain and the stability
of the scheme is established as a standard application of the Nyquist stability theorem.

To the above, Chapter IV adds a number of quantitative results in support of the duality
argument. Practically all the related results are confined to analysis issues, such as stability
and robustness. The implications to synthesis and design have yet to be studied. The focus
of this work is feedback controller design: if the design problem were to be formulated as an
operator equation, it could benefit in both the analysis and synthesis aspects from a relatively
well developed theory on the solution of operator equations.

For linear systems no major gains are to be expected, since the implied operator inversion
has been either explicitly (Garcia and Morari 1982, Zames 1981} or implicitly (Stein 1981) used
in control studies; still some insight in the issue of inverting control might be gained.

Compared to linear systems however, there are very few results in nonlinear controller design,
mainly on stability analysis, while only limited attempts to a general synthesis theory have been
reported: For autonomous systems, methods emanating from stability analysis of differential
equations (Lyapunov 1892, LaSalle and Lefschetz 1961) have been employed, Kalman (1960) being
first in providing a formal adaptation to systems analysis. For closed loop systems, Popov’s (1973)
and Zames' (196€) respective approaches are prominent, although their impact is practically
confined to systems that can be represented by interconnections of linear dynamic operators with
static nonlinear elements. Later, a number of applications of the Lyapunov method to stability
(and instability) of systems with nonstationary nonlinear elements were reported by Eastern
researchers (Skorodinskii 1981 and 1982, Barabanov 1982, Molchanov and Pyatinskii 1982).

An ad hoc approach characterizes controller synthesis methods for nonlinear systems, com-
bined with extrapolations of linear controller design techniques like adaptive control (Goodwin
and Sin 1984) and robust control (Doyle 1984).

Nonlinear Optimal Control (Athans and Falb 1966, Bryson and Ho 1975), is historically the
first direct effort towards nonlinear control synthesis that proved useful in a number of aerospace
and other non-continuous (batch) applications. Although nonlinear optimal control has been crit-
icized from different viewpoints, namely that weighting does not provide insight to the final design
properties, on line solution of the two point boundary value problem is in general prohibitive to
applications etc., it appears that the real shortcoming is that even for linear systems stability is
not assured in the face of modelling error (Doyle 1978).

Nonlinear Internal Model Control was introduced by Economou and Morari (1985) as an
extension of a linear controller design technique. The controller structure is based on the inverse
operator of the nonlinear system, obtained by analytical or numerical inversion.
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The theory of Hunt, Su and Meyer (1983), provides a theoretically rigorous alternative to
controller design for nonlinear systems. The basic idea is to derive analytic state, input and output
transformations that reduce a nonlinear system to a linear dynamic element. Subsequently basic
linear control techniques can be employed. The first successful implementation of the method was
recently reported (Meyer 1985). It has been pointed out however that the method is complicated
in general, involving the need for analytical solution of a set of recursive partial differential
equations. The conditions for the existence of solutions are non-trivial to establish. Another
point of criticism is that the linear controller is designed for the transformed inputs and outputs,
which in general have no physical interpretation at all.

The purpose of this thesis is to establish the duality between controller design and algorithm
development for the solution of operator equations. A number of meaningful control objectives
can be formulated as operator inversion and/or optimization problems, which in turn have a good
practical as well as theoretical support. This framework allows us to address nonlinear controller
design in a general and intuitively clear manner, which at the same time naturally extends familiar
notions from linear systems control. At the present stage, no hope is expressed to exhaust the
subject, but rather to expose a concept and illustrate its applications.

In Chapter II the notation and necessary computational tools are introduced. Chapter III
summarizes operator equation theory fundamentals, while a hybrid algorithm motivated by sys-
tems control requirements is developed. In Chapter IV the basic duality features are presented
and the equivalence of the control problem to an operator equation is established for a class of
control objectives. A general analysis theory is detailed in Chapter V. Control law synthesis is in-
vestigated in the next Chapters, where Contraction Principle (Chapter VI) and Newton (Chapter
VII) controllers are introduced and analyzed in the light of iterative operator equation solution
algorithms. Chapter VIII summarizes and concludes the work. '



CHAPTER II

PRELIMINARIES

1. ASSUMPTIONS

The systems considered are governed by the vector ordinary differential equations:

R CR0) ()

where z € R" is the state of the system and for every t € [0, 00) u(t) € R™ is the input, with the
corresponding output map (y € R™):

y = g(z) (11.2)

Example Il.1 : The reversible ezothermic reaction

kg
A R

—
kr

is carried out in the ideal stirred tank reactor of fig. II.1. The following differential-algebrasc

equations model the dynamics of the reactor. They are derived from differential mase and energy

balances:
%:Et}_ = %(A" —z,) — kae~Q4/R%5 g, 4 kpe=Or/Resg,
égtz = ',II(R*' — 25) + kae~@4/Rog) — kpemQr/RZsg,
8 i -AH
-5? - }'(T" —z3) + = (kae™Qa/Ras g, — fpe~Qr/Reag,)
p
— z2
v = z)+ 2

where 2; = A, (concentration of A in the tank), zo = R, (concentration of R in the tank) and
zy = T, (tank temperature).
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FIGURE I1.1 : Continuous Stirred Tank Reactor with reversible reaction. A: concentra-

N

tion of A, R: concentration of R, T: temperature. Subscript 1 denotes feed conditions, sub-
script 0 denotes tank (and outlet) conditions.

A system of thie form se treated in more detail sn Chapters V, VI and VI

The systems considered are assumed to have one and only one solution z(t) for given data
t°, z(t°) and u(t). Conditions for existence and uniqueness of solutions of (II.1) can be found
in standard texts (Holtzman 1970, Vidyasagar 1978) and will not be discussed here. Instead,
following Kalman (1960), the dynamic systems considered are defined axiomatically through the
following set of axioms:
1i. (Existence) There is a function x(t;1%,2% u(t)), called the transition (or, state evolution)

At tO’ 0’ t
function, satistying (II.1) ): ox(t: 6: u(t)) = f(x(t; 1%, 2% u(t)), u(t)), t>1°

Lii. x(t;6°, 2% u(t)) is defined for all z°, %, ¢t > 0

Liii. x(t9;1%, 2% u(t)) = 2° for all ¢°, 2°

Liv. (Umqueness) x (1% 14, x (1529, 2%, u(t)), u(t)) = x(t%; 1%, 2% u(t)) for all 20, ¢°, ¢, ¢2
Lv. x(t;1°,2% u(t)) is continuous with respect to all arguments

Lvi. x(t;¢°, 2%, u(t)) is differentiable with respect to all arguments

Example 1.2 : Consider the system (Vidyasagar 1978) described by

Oz
__6t1 = a:cl(ﬂ2 - 22)
622

6! =-1 + z u

with 1 = 0, z(l) = Zj9, zg = Zog and u(t) = 0. It can be verified that the system has a unique

solution
-1

.40 0 — g’ _ 1).—28%t
xi1(t:1°,2°,u) = {14+ (5 - 1)e
Zi0
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x2(t; £, 2%, u) = 230 — ¢

which satssfice azioms 1.5 - L.vi .

Example I1.3 : Consider the lincar system described by

oz
EY-AI-FBu

with t®© = 0, 2° = z, and u = u; (constant). The differential equations can be integrated
analytically (Kaslath 1980), yielding

x(t; 2% us) = e*zo + (e*' — I)A™'Buy;

3. NOTATION

The system inputs are assumed to be piecewise constant functions to reduce the problem at
hand to a finite dimensional space. The letter s is used as a superscript to mark the discrete
time. The s** sampling interval extends from t® to t*+1; T = t*+1 —¢* is the (constant) sampling
time; z° is the state at t°; u® is the system input, held constant over (t°,¢°+1].

In the discrete setting of the study, x(f2; f1, 2, u) is the solution of (1) at time ¢3, for u(t) = u

(t, <t < t3), and initial condition x(t;;¢;,2,u} = 2; x° will denote the state of the system at
t =% je 25tL:

Xa d:f-f x"'“ - X(ts + T; ts’ zs,us)

Since (I1.1) is stationary: x(f; + At; 1, z,u) = x(tz + At;tp, z,u), time will be dropped from the
parameter list and the following convention will be used:

x® = x(T;2°,u°) = x(t° + T;1°,2°, u¥)

Example 1l 4 : Referring to the system of the Ezample I1.2,

® ﬂ2 ~28%T ~3
xi=|1+(5 -1

L0
Xs=220—T
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8 8
The derivatives of x® with respect to z° and u® will be ®° (dzef %) and T’ (d=ef %)

respectively. y* (qﬁ-f g(z’)) is the system output at £°.
Example 1.5 : For the system in ezample I1.2 straightforward calculations show:

axi &xi -2

,82 a3 ﬂ2 P 2
g = | 070 Oz | _ | e 27T 1+(;§--—1)e 28%aT 0
ox:  Oxi n 0
0z10 Ozy 0 1
ceE anjfi . will denote the derivative of the output map (I.2) at z = z°.
(==

Capital letters F, P,Q etc., denote operators and script letters Y, X, U are used for metric
spaces.

8. SBTATE DERIVATIVES

The state derivatives with respect to initial conditions (®°) and inputs (I'*) frequently appear
throughout the paper. Except for simple cases, as in example I1.2, analytical evaluation of the
. derivatives is rarely possible. In the following a computational theory for related quantities is
presented. The statements are proved in Appendix II.

a. ®° is the solution at £ = #*+! of the initial value problem

a?it) = afg’ - x(t; 2°, u®) (1) (I1.3)

with initial conditions
o(t°) =1 (IT.4)

It is implied that x(t; 2%, u®} has been already computed by solving the initial value prob-
lem (II.1) and subsequently {II.3) is integrated along the trajectory x(t;z°®,u®). Caracotsios
and Stewart (1984) and Leis and Kramer (1984), using the linearity of (II.3) with respect to
®(t), showed that no additional integration is necessary: (II.1) is integrated by a standard iter-
ative predictor-corrector implicit integration formula. When convergence has been attained, the
derivative term on the right hand side of (I1.3) becomes available. Then (II.3) is a linear system
of equations which is solvable in one forward step, with no additional iterations necessary. In
this procedure, effectively a system of n ordinary differential equations is solved, instead of the
complete system of n+n? equations of (II.1) and (I1.3) . General purpose software implementing
the procedure is currently available (Caracotsios and Stewart 1984).
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Example 11.6 : For a linear system (II1.8) and (II1.{) can be integrated analytically (see Appendiz
1T}, sielding:

Qs — eAT (ns)
i.c., the state transition matriz of discrete state space representations of linear systems (see also
ezample I1.8). CR" then is the autonomous system response (u(t) = 0) ot time t =T, to a unit

sirength smpulse in every state at t = O when the system is at equilibrium.

b. I'? is the solution at ¢ = {*+! of the initial value problem

or(t)  of(s. ¢ aflc, ¢
at) - ((?g : ¢ =x(t; 2%, u’ T + ég ) ¢ = x(t; 2%, u®) (IL.6)
E=u’ E=u’
with initial conditions
L) =0 (1L.7)

As in the ®° case, no additional integration is necessary for the computation of I'®.

Example 1.7 : For a linear system (I1.6) and (II.7) can be integrated analytically (Appendiz
I}, yelding:

I*=(eAT -1)A'B (11.8)
I'? hae a familiar interpretation for linear systems: It is the input matriz of discrete state space
representations (see also ezample I1.8). CT'® 16 the system response att = T to a unit step change

sn all the inputs at t = 0 when the system is at equilibrium.

c. In the remainder of the section, a computational theory for the second order state deriva-
tives is detailed. Second order derivatives appear in the stability analysis of the Newton controllers
in Chapter VII. The reader may skip this material at a first reading.

In the beginning of the section, first order derivatives were shown to be matrices resulting
from the differentiation of a vector function with respect to a vector variable. Second order
differentiation involves the derivative of a matrix function with respect to a vector variable and
some new quantities have to be introduced (4).

Definition I.1 : A bilinear matrix H of dimension m X1 X n is an ordered collection of real
numbers hogy, a = 1,2...m, = 1,2...1, v = 1,2...n. It is highlighted by inclusion in
brackets: {H}, or {h,s+}.

Definition 11.2 : The derivative of an m X n matrix function F(u) = [f,(u)] with respect to
the l-dimensional vector u = [ug} is the m X I X n bilinear matrix {H} with elements

hass def 0 for(u)

auﬁ

(T) A complete treatment of the bilinear operators appearing in matrix differentiation is given by Rall
(1979). Here only the necessary notions are discussed.



Preliminaries 9

Definition 1.3 : The right dot product of an m x I X n bilinear matrix {F} with a regular
n X k matrix G is the m x | x k bilinear matrix {H} = {F} o G with elements

b=n

hapy =Y Jups 95

6=1

Definition I1.4 : The left dot product of an m x I X n bilinear matrix {F} with a regular k xm
matrix G is the k x I x n bilinear matrix {H} = G » {F} with elements

d=m

hapy = Y Gas Joo

6=1

Definition 1.5 : The circle product of an m x | X n bilinear matrix {F} and a regular I x k
matrix G is the m X k x n bilinear matrix {H} = {F} o G with elements

6=l

hogy = E Jobsv96+

Two useful differentiation properties are stated. The proofs are in Appendix II
Differentiation of a product

{BA(t;)t;B(u)} _ {6A£u)

dB
o B(u) + 4w o (2212
du
Differentiation of composition

et o

In this context the second and higher order derivatives can be computed. In Appendix II the
following statements are proven.

(s} % {6:1:8 } = {3 X(zi)——g—l} is the solution at t = t*+! of the initial value problem

o{2.(1)}) _ 0S(c. )
at ¢

= et @+ (FEEE i ar ey om0 @)
£= u®
where ®(t) as in (I1.3) , and initial condition

{8.(1°)} = {0}
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Example 11.8 : For a linear system :

(82} = {0) (1L.10)

(Proof in Appendiz I1.)

od° 62 ) T; 48, s . .
Then, {®} = du’ }=A X;_Ta;usu )} is the solution at ¢ = t*+! of the initial value

problem
{aq;;t(t)} afff; e)’éi 2%, uf) ® (&)} +{ a(gz ¢) éizgt;zs,us)}ol‘(t)oQ(t)
+{ 8g(ag )‘éf"“ u) o 80 (IL.11)

where I'(¢) as in (II.6) , and initial condition

{®.(¢°)} = {0}

Example 11.9 : For a linear system :

{85} = {0} (I.12)

(Proof in Appendiz I1.)

52 v B 4,8
Also, {T';} = {st }=A Xa(f;;z;u )} is equal to {®:} and formule (II.11) and (IL12)
can be used directly.

are 2
Finally, {T'S} L {aus} = {6 g{u:) e )} is the solution at t = t* + 1 of the initial value

problem
B{th(f)} _ 3f(;; 5){%?;9;:9,:1 ) o {Tu(0} + {82{9(:2 0“52‘; 2%, ut) o T(0 o (1)
+ {%%%EQ 2Z§(t,z°,u8)} r(t) + { ;é;,fe)lé_:__f}t’z Lue)1oT()

with initial condition
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Example 11.10 : For linear systems:
{ri}=1{0} (IL.14)
(Proof in Appendiz II.)
It should be noted that equations (I1.9) , (II.11) and (II.13) are ordinary differential equa-

tions of dimension n XnXn, nXnxXm, nXxmXn and n X m X m respectively, which are solved
by any standard integrator by rearrangement to one dimensional vector differential equations.

Example .11 : The following ezample of a linear system e sllustrative of the different notions

sntroduced so far. Coneider the linear, continuous system

9z1

Py, =4z — 320+ u
023 _

ar o

y =2

with a sampling time of T = 0.1. Then, irrespective of initial conditions:

e [ 0.122 ]
= |5.7x1073

@ =0 & =T'=0 TI%=0

QS

Il

[ 1.470 -0.367

0.122 0.983

From ezample I1.8, the discrete state space description of the system for the given sampling time

18
22t! = 147025 — 0.367z + 0.122u°

2it! = 0.122325 + 0.983z5 + 5.7 x 107 u®
ys+l - z;—H
It is observed that the state transition matriz is equal to ®° and that the input matriz
it equal to I'°. This 45 by no means coincidence, but rather a unique characteristic of linear
systems. It demonstrates that for linear systems the derivative of the system operator is steelf, a
fact diecussed sn Chapter III.

4. REMARKS
Every continuous system, when sampled at a period T, gives rise to a discrete system of the

form
x* =zt = F(z°, u®) (IL.1")
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Explicit functional relationships of this form, are possible only in the (rare) occasion when (II.1)
can be integrated analytically, as is for example the case of linear systems. On the other hand,
description (I1.1') is more general than (II.1), because not every discrete system arises by sampling
a continuous system, as is the case of linear discrete systems with an odd number of negative real
poles (Kalman 1960).

In any case, although only continuous systems of the form (II.1) are treated in the present
context, the theory applies equally well to discrete systems of the form (II.1'). Then &° =
OF(2°,u®)/82°,T* = 0F(2°,u®)/du’ and every result in the chapters to follow holds for systems

of this form.
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Appendix II

Computation of the state derivatives w.r.t. initial conditions
Ox(t; z%, u®
Define the function ®(f) def -—2(—(—-—-——’———-)—

« 8 8
527 , t € [t?,00). By definition ®° = wﬁ‘:}“’u_l =
Q(t”H). Differentiate ®(¢) with respect to ¢ to obtain:
o0%(1) ﬁb‘x(t;zs‘,u") 8 ox(t2®,u’)
ot ~ 8t 8zc  8z° at
_ 0f(x(t2%,u%) u) _ 8S(c. €] o, ox(t2t )
dz° d¢ I§= th;z 10’ dz°
=y
Now substitute ®(t) from its definition:
a8(t) _ 31(s,€)
Y = 3¢ ¢ = X(t; z° us) @(t) (H.3)
£=ut
At 1= 1%, x(t%;2°,u®) = 2° so that:
azx*

114

dz° (IL.4)
Summing up, ®° is the solution at ¢ = #*+! of the initial value problem (II.3) with initial conditions
(IL.4j .

For a linear system, using the notation of Section II, (II.3) and (II.4) become:

8% (t)
“ar =A%
Q(ts) =17

The solution is found in any standard textbook (Kailath 1980).

Qs — Q(ts'H) — eA(gH—l..tA)Q(tS)
=eAT. T
= AT

Computation of state derivatives w.r.t. inputs:

(11.5) wm

« pf ]
Define the function I'(t) def M

i x(T;z°, u’
B0 , U € [t°,00). By definition I'* = —-(—5;;——')- =
T'(t**!). Differentiate I'({) with respect to t to obtain:

ar(t) _B__Bx(t; z%,u’) 0 Ox(t; 2% u®)
‘ at ot dus " dus ot
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x(t; 2%, u®) is the solution of the state evolution equation (II.1), therefore

ar(t) _ af(x(t;z°,u")

T Sus (chain differentiation)
_ 9/, §) L, ox(tat ety | 81(6,§)
¢ 2=x£t;z,u ) T Bur
=u

P} lc=x t; 2%, u’
G st S

Substitute I'(Z) from its definition in the above expression

or(t) _ aJ(s, é)l

0f(s, €
Y, £y ¢= 2* us) I‘(t) + ._____ae )lg _ x(t;z’, us) (H.6)
= £E= u®

At t = t%, x(t%; 2°,u®) = z° which is independent of u®. It follows

. Ox(t%; 2%, u’
I‘(t ) = ——-(—é;:‘—‘)' =0 (H7)

Summing up, I'* is the solution at { = {*+1 of the initial value problem (II.6) with initial conditions
(IL7) .

For a linear system, using the notation of Section II, (I1.6) and (II.7) become

or(t)
'—a—?‘“ -AF(t) + B

I'{t’)=0
The solution is found in any standard textbook (Kailath 1980)

= r(ts+1) —_ eA(tl+1_tl)r(ts) _ eA(t"H-t’)(e—A(t"H—t‘) _ I)A__IB 1
=-e"T(e™47 - 1)A7'B
= (AT -INA"'B

Proof of the bilinear matrix properties

a. Product differentiation : Consider the (01,8'7) element of {6‘43} Itis

OAB .  aef 0(AB)ay _ 01 s(AasBsA)
{55, esn = =

BUp

6u,3
_ 0Aqs 6357
_¥ Oug BM+ZAG6 du

which dy definitions I1.3 and 4 is the (aﬁ*‘x)”‘ element of eB+AelE 8u
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b. Composition Differentiation : Consider the (aﬂ'y)th element of {-8_4_%%2)_2} It is

{aA( z(u))

CALel) | Dhalelu) _ 5 2] 320

Oug ; dz Odug

By Def I1.5 the term on the right is the circle product {%%} 0 %,—
Computation of second order state derivatives

@, : For the second order state derivatives w.r.t. initial conditions, consider the function {®,(¢) e

a®(t),  ,9%x(t; 2% u°)
(e} = {0 —

to [ to obtain:

}. By definition, {®} = {®: (t"H)} Differentiate {®,(f)} with respect

a{®. (1)) _d,08(t), _, 8 8%()
B TR A P P TR
8 |arl,
= {azs f(as;. e) ¢ = X(t; zg,us) Q(t)] }
X E=u’
a |af(s.¢ af(c, € ad(t
={5Zs ai- ) éix(t,zs,uﬂ)]}'a(t)'l' ‘(;; )lg.—;x(t z us) '{ az(s)}
_ {8 .g(;f)ig (25, a) o B(1) 0 8 (0)
£=u’
6!2(; f)lf = x(t:2%,ut) ® (22(0) (I1.9)
§=u’
At =t°,
8 d BQ(tB)
e (28 - (=0 -
For a linear system {Négg@} = {32(’25;“*2'36)} = {0}. Then (I.9) becomes

o{®.(1)}
o = Ae(8(1)

with {®,(t°)} = {0}, i.e. an unforced linear system with zero initial condition. Readily then {®.(1)} =
{0} and more specifically

{22} = {8.(""")} = {0} (I1.10)
®,: The second order derivative of the states with respect to inputs is taken up next. For this

purpose define the function {®,(t)} = def ( )} By definition {®2} = {®. (t*11)}. Differentiate
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{®.(t)} with respect to t to obtain:

oo, _ 8 50l0), _
ai ot a?’
= {azs aféi: 6) ¢ = X(t; zs’us) Q(t)] }
L E=u’
.
8 195§ a1(¢.€) oot
= {6118 ai- %ixgt;z‘,uﬁ)]}.g(t)‘i’ ai_ l%ix(t, zs,us) { au(s)}
8 f(¢, €) 8%/ (s, €)
= [{ B¢? }éz)f‘g; zs,us)} r(t)-l- { Be0€ lgzﬁg’zs, u’) }} OQ(t)
LA )+ @) may
£="u
Att =15, ®(t) = I so that:
() = {5} = (0) -

For a linear system the second order derivatives of f(:t, u) with respect to both arguments are zero
and (II.11) becomes

0{®. (1)} _
——-57"-' =Ae {Qu(t)}

Again, it is a linear unforced system, with zero initial conditions, therefore
{®} = {2.(t""")} = {0} (I1.12) wm

I'y: The second order derivative of the state with respect to the inputs is computed similarly. Define

t 22 2% ut
the function {T, (1)} = {—a—g—(t—) } = {5’——3‘—(6’—;—1—5‘-—)}. By definition {T'%} = {T'y (#°+)}. Differentiate

{T4(t)} with respect to time to obtain:

BT (0} _ _q_{ar(t)}___{ 8 ar(t)}

ot ot ous dus ot
_ (9 18568 9f(s,€)
“tw | "o o= Xtz ) PO+ 5 lf =x(tz ,u‘)}}
! E=u E=u
_ (0 9818 9/(¢,€) or(t)
={aw | "o c£=x(,t;z’,u‘)]}'r(t) T l‘f:th;z‘,u') o
L =u =u
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3 9f(s.§)
3w " oe ls‘=xt;z‘,u‘)}
§=u
|, 8%1(c. 8 ox(t; 2%, u®)  8%1(¢, €)
_[{Tlf=x(m',u')}° v T To0e |g=x(natun)}] T
§=u' E=u
ar(s, &
+ .(9; )‘ ~ (i 2%, u®) * {Tu()
{=u
9%f(s, £) ax(t;2°,u®)  8°1(¢,€)
1 EYER |§=x(t;r‘,u’)}° Frram a¢? ls=xt;z‘°‘,u’)}
§=u’ E=u
a%f(c, a2 f(s, €
{{ .;(g'ie)iS':X(t,Z" us)} L(t) +{ as.(gé)Igzxt,zs,u’)}jl'r(t)
E=u E=u
as(¢. €
t gi, )‘§=X(tsxsvus).{ru(t)}
§=u
62 ’6 az.f ’
+{ aff(;g)lgzx(t’za,us)}or(t)+{ a(eiﬁ)!(zx(t;z,,f)} (IL.13)
§=u E=u’

ar(t)

At t = ts, {Fu(ts)} = { dut

}, with {T'(¢°)} = {0}. It follows

{Tu(t°)} = {0} -

For a linear system the second order derivatives of f(z, u) with respect to its arguments are zero
and (I1.13) is

(Eelly 4o o)

i.e. an unforced nonlinear system with zero initial conditions. It follows

{ri} = {r(e*)} ={0} (I1.14) m=



CHAPTER 111

OPERATOR EQUATION SOLUTION

Functional Analysis suggests useful algorithms for obtaining solutions to a wide class of
operator equations. A well developed analysis theory supports the properties of the algorithms,
namely existence of solutions, convergence, rate of convergence and sensitivity to approximation
error. A few results, providing the basic analysis framework are summarized in the following.
They can be found in any standard text on the subject (Kolmogorov and Fomin 1957, Kantorovi¢
and Akilow 1964, Ortega and Rheinboldt 1970, Rall 1979). Then a hybrid algorithm, arising in
control applications, is developed and its convergence properties are investigated.

1. THE METHOD OF SUCCESSIVE SUBSTITUTIONS

Let the equation to be solved be:
P(z)=0 (IL.1)

where P is an operator on a normed space Z. (III.1) is equivalent to the operator equation:
z=2+Q(P(2)) ¥ F(2) (IM1.2)
where @) is any continuous operator on the range of P with the property
Qe)=0 & £=0 (IML.3)
(II1.2) generates the recursive sequence:
M =F(™), m=0,12,... (I11.4)

If F is continuous and if the sequence (II1.4) converges, it converges to a solution of (III.1) .
The Contraction Mapping Theorem (Banach 1922, Cacciopoli 1931) and related results establish
a computational theory for (II1.4). Some definitions are in order:

Definition Ill.1 : If F is an operator on a Banach space Z, then any 2* € Z with the property
z* = F(z*) is called a fized point of the operator.
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Definition 11l.2 : An operator F on a Banach space Z into itself is called a contraction mapping
of the closed ball () U(z°,r) if there exists a real number 6, 0 < 6 < 1 such that:

IP(*) = F(*)| < 8 ]|2" - 27 (I1.5)

for all 2*, 22 € U(%,r).

Definition i3 : The quantity 6 in Def III.2 is called the contraction constant of F in U (2°,r).

Establishing the validity of (III.5) is a cumbersome undertaking. When F is differentiable
the situation is significantly simplified: an exact characterization of the contraction property can
be developed.

Lemma .1 : (Curtain and Pritchard 1977) If the operator F on 8 Banach space Z is twice
differentiable in a closed convex subset {1 of Z then

IF(z}) = F(2)Il £ sup |IF'(A="+ (1~ N2 =22, v2', 22 en (I1.6)

|F(z') = F(22) - F'(?)( = 2%)|| £ 4+ sup ||[F"(Xz' + (1= 2)22 ||* - %)%, v',22en

0<A<1

(O1.7)

Lemma 1.2 : Let the operator F on a Banach space Z be differentiable in U(z%,r). F is a
contraction of U(z°, r) if and only if

IF'(z)|| <6<1, VzeU(r) (I11.8)

where || - || is any induced operator norm(}).

Proof : In Appendix III.

In the following, use of condition (III.8) will be made to characterize contraction properties
of operators. When the operator is not differentiable the theorems remain unchanged except that
(1.5} has to be used instead of (III.8) .

The basic Contraction Mapping Theorem is stated next:

Theorem lil.1 : (Holtzman, 1970) If F maps a set U into itself and F is a contraction mapping
of the set with contraction constant 8, then:

1. F has a fixed point 2* in U.
2. z* is unique in U.
3. The sequence {z™} defised by (IIl.4) converges to z* with
|27 = 2*|| < 87|20 - 2| (IIL.9)

There is an inherent difficulty in applying Theorem III.1, namely that a set has to be found
that maps into itself, which is not always easy. Rall (1979) replaces this condition with another
one, more suitable for computation.

(1) A closed ball U(2°,r) e defined by: U(zo,r) ={zeZ:|z- 20“ <r}
Hf"!(ﬁ)ll

(1) An induced operator norm is defined for every vector norm by: ”FlL: sup
A z#0



Chapter III 20

Theorem 111.2 : (Rall 1979) If F is a contraction mapping of U(2°,r) with contraction con-
stant 6 for
o) def o .
> IR - LU, e
1. F has a fixed point z* in U(2°,1°).
2. z* is unique in U (2%, r).
3. The sequence {2™} generated by (III.4) converges to z* with

|7 - 2| < 0710 = 2] (Im.10)
4. Even more, the sequence {i™} generated by
Pl =F(z™), 2eU(:%r°), m=01,2,..

converges to z* with
7™ = 2| < 6™|2° - 2*| (II.11)

Claim 4 of the theorem is not very useful if the objective is to solve a particular operator
equation. Once it has been established that the equation can be solved by an iteration starting
at 20, there is little interest to know whether it would be solvable if the iteration started at any
other point. On the other hand this claim will be shown to be very important in stability analysis
of nonlinear systems (Chapter V).

Theorem III.2 has an instructive graphical interpretation, which at the same time serves as
a constructive procedure for establishing the contraction conditions. To this end, let 2% be an
arbitrary point, F(2°) the value of the operator at 2° and U(z°,1) a ball of radius ! centered at
z°. Then define the function of [

W= s IFE) (mL.12)
z€U(29,)

By definition 6(!) is a non-negative, continuous, non-decreasing function of I. It depends on the
operator F and on the particular operator norm used in its definition. Fig. III.1 displays possible
shapes for 6(!) for three different operators when the same norm is used. Fig. III.2 shows possible
shapes for 6(l) for the same operator when three different norms are used.

Let 1) be the ball radius when 6(l) becomes 1 ( if for every I, 8(I) > 1 as in fig. III.1 curve
a,set I} =0;if §(!) <1foralll asin fig. IIL.1 curve b, set I; = o0). Then:

Case 1 If [; = O a contraction condition cannot be established because 8 is always greater
than 1; another norm or another point z° should be considered.

Case 2 If [} = oo, F is a contraction of the space as a whole (global contraction). Theorem
II1.2 readily applies to show that the equation z = F(z) has a unique solution in the space to
which (III.4) converges for every initial point in the space.
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I8 I

CI!’I 3

FIGURE II11.1 : Typical 9(1) shapes for different operators, same norm.

ot

1

FIGURE 111.3 : Typical 0(I) shapes for different norms, same operator.

Case 31f0 < I, < oo (fig. IIL.1, curve c), for ! in [0,;) the function r°(l) is defined
(1) = IF(°) = 2|/ (1 - 6()) (I1.13)

By definition r°(l) is non-negative, continuous, non-decreasing function of I. Typical r°(l) shapes
are shown in figures I11.3 and IT1.4 for different operators and different norms in relation to the
curve r0 = 1.

Theorem II1.2 can be interpreted in terms of the quantities [, §(!) and r®(l). Consider some
* € [0,1). To this implicitly corresponds an I* € [0,];) from (IIL.12) and explicitly an r® from
(IIL.13) . Given 6*, the conditions of theorem IIL.2 are satisfied if ||F'(2)|| < 8*, Vze U(:%r%).
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FIGURE I11.4 : Typical r° (1) shapes for different norms, same operator.

H r® < I*, then this is true by (II1.12) . If on the other hand r® > I* then there are z € U(2°,1°)
such that ||F’(z)|| > 6* and the conditions of Theorem III.2 are violated.

In the present case 3, four basic patterns can occur:

attern a: r°(1) does not intersect line r® = I (fig. II.3, curve a). Then the conditions

of Theorem III.2 cannot be satisfied. Another norm or initial point should be considered. To
understand why, select any I*, 0 < I* <1;. The corresponding r°(I*) is always greater than I*.
It follows from the arguments of the previous paragraph that the contraction conditions cannot
be met. This will be true for any I*, QED.

Pattern b: r°(l) intersects live r® = [ at two points, I¥ and IV (fig. II.3, curve b). Then
there is a solution in I7{2%,1F), it is unique in U(2°,1V) and (III.4) converges to it for every initial
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point z € U(z°,1V). To understand why, consider any I*,I* < I* <IY. The corresponding r°(I*)
is then smaller or equal ot I*. It follows that the conditions are satisfied and the claims derive
from Theorem III.2.

attern c: r°(l) intersects line r® = I at only one point IM (fig. II1.3, curve c). Then there
is a solution in U(2°,I™), which is unique in this ball and (III.4) converges to it for every initial
point z € U(2°,1M). The same argumentation used in pattern 3.b establishes the claims.

Pattern d: r°(0) = 0 (fig. II1.3, curve d). Then 2° is a solution of z = F(z) and r°(l) = 0
for all I. This case is treated in detail in the following {Theorem II1.3) (1).

The issues and application aspects related to Theorem III.2 become significantly simpler
when 2° is the solution of the operator equation (III.1) . This is a preposterous situation from
an operator theory point of view: if the solution of an operator equation is known, there is little
incentive to develope solution methods and study their properties. Nevertheless it will become
evident in later Chapters, that treatment of this situation is of crucial importance when stability
of equilibrium states of nonlinear systems is considered.

Theorem Nl.3 : Let z* be a solution of the equation z = F(z). If
|IF'(z)]| <6 <1, VzeU(s*r) (III.14)

then:
1. z* is the unique fixed point of F in U(2*,r).
2. The sequence {z™} generated by (II1.4) converges to z* with

[|2™ = z*|| < 6™||° - #*|| (II1.15)

for every 2° € U(z*,r).

Proof: In Appendix III.

Theorem II1.3 suggests a particularly simple procedure to characterize a set of points that
generate sequences {z™} converging to z* at least as fast as 7°||2° — z*|| : Define the function
6(1) as in (I11.12) ; then find any [ such that 6(l) < 6p; U(z*,1) is a set of points with the desired
property.

Linear operators

For linear finite dimensional operators the contraction conditions can be strengthened further.
Related results are summarized and discussed in the following.

Definition Il.4 : Let A be a linear operator on a finite dimensional space. The maximum
modulus eigenvalue of A is called the spectral radius of A and is denoted by p(A).

Lemma 1.3 : (Rall 1979) The (Frechet) derivative of a linear operator is the operator itself.

(1) Patterns with more than two intersections can occur, but then the problem can always be referred to

esther pattern b or ¢
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Lemma lll.4 : (Rall 1979) The (Frechet) derivative of an operator at a point 2% is a linear
operator.

Lemma Mll.5 : (Stakgold 1979) Every linear operator on a finite dimensional space has a
matrix representation which is unique with respect to a basis of the space.

Lemma lll.6 : (Ortega and Rheinboldt 1970, Desoer and Vidyasagar 1975) Let N be the set
of all induced operator norms on a finite dimensional space. Then, for any linear operator A

inf ||A|li =
jint, llAll = o(4)
In addition, given any ¢ > 0, a norm can be constructed with the property: ||A]l; < p(A) +e.

This norm is defined by
lAll: = i(PD)~APD||x

where P is the similarity transformation of A to its Jordan form, D = diag(l’e’_._’en-—l) and
Il - |l is the 1-matrix norm:

1Al = llai]ll = 125 <n§:|aul

Corollary lll.1 : For a linear operator A on a finite dimensional space, the successive substi-

tution sequence
M= A"+ B, m=0,12,...

1. When p(A) < 1, converges to (I — A)~'B, the unique solution of z = Az + B
2. When p(A) > 1 aud (I — A) is invertible, does not converge in general.
3. When p(A) = 1 no conclusions can be drawn.

Proof: In Appendix III.

Example 1l.1 : Consider the linear operator with matriz representation

1.470 -0.367
A=

0.122 0.983

The eigenvalues of A are 1.105 and 1.35, therefore p(A) = 1.35. The sequence
™1 = A(2™) does not converge for any non-zero initial point 2.

Remarks

a. The conditions for convergence of successive substitution algorithms are only sufficient, i.e.
the sequence {z™} of Theorem III.1 might converge even though the contraction constant 0 is
greater than 1. For the special case of linear operators, Corollary III.1 establishes necessary
and sufficient conditions for convergence when p(A) # 1.
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b. Because the spectral radius is smaller than any induced operator norm, it is a promising
candidate for the least conservative convergence criteria, as is the case of Corollary II1.1 for
linear operators. On the other hand by Lemma ITI.4 F'(z) is a linear operator, therefore for
any induced norm

p(F'(2)) S |IF'(2)]l

However a condition like
p(F'(z)) <6< 1

cannot replace (II1.8) when F is nonlinear. The reason is that although for any fixed 2, an
induced norm can be defined that is arbitrarily close to p{F'(z)) (Lemma I11.6), this norm is
“tailored” to the specific z and can be significantly larger than the spectral norm at another
point in U(z°, ). Tailoring is only useful when F is linear because then F'(z) is independent
of 2.

c. The spectral radius can be useful as a necessary convergence condition, i.e. when p(F'(z)) > 1
for some z € U(z%r) there is no induced operator norm that satisfies the conditions of
Theorem .1 in U(2°,r).

The method of successive substitution is simple and general. It does not suggest however
how to select the operator Q in (III.2) so that the convergence properties can be affected in a
desirable manner. This is done in the context of the Newton method.

3. THE NEWTON METHOD
Assuming differentiability and smoothness of the derivatives, the operator P in (IIL1) is

expanded in its Taylor series around a point z°:
P(z) = P(:°) + P'(°)(z ~ 2°) + O])|z = 2°)|*) (I11.16)

The standard procedure to derive the Newton method is to assume that z is a solution of P(z) = 0
and then truncate the higher order terms. As a result (ITI.16}) becomes a linear operator equation
in 2
0= P(°) +[P'(:"))(z - 2°)
Solving for z yields
z=2"—[P'(:°)]"P(2°) (II1.17)

which in turn generates the recursive Newton sequence:
2 = ™ [P'(:™)] 7 P(2™) (111.18)

Note that for @ = —[P'(2™)]~!, (III.2) and (III.18) are identical. There are a number of
modifications of the Newton method. Two of the most commonly used are defined next:
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Definition Il.5 : The simplified Newton method is generated when the derivative in (III.18)
is always computed at the same point z,.y:

2™ = 2™ — [P'(2,4)]7 P(2™) (II1.19)

Definition 1.6 : The relazed Newton method is generated when the the z update in (III.18)
is relaxed by some factor A:

zm+1 = zm _ A{P'(zm)]_lp(zm) (HI.?O)

where the value of A depends on some monotonicity criterion (Stoer 1972).
The Kantorovié theorem and related results establish the computational theory of the basic
Newton method (III.18) :

Theorem I11.4 : (Kantorovié 1964) Consider an operator P on a Banach space Z, such that
P is twice differentiable and the following conditions hold:
i. There is a 2° € Z such that [P'(2°)]™! exists with

PO = o, I [P'(2°) 7 P(2%)]] < mo

ii. ||P"(z)|| € K in a closed ball U(2°,25,)
iii. ho & BomoK < 1
Then the sequence (I11.18) exists for all m > 0 and converges to a solution of (III.1} which
exists and is unique in U (2°,27).
A few remarks are illustrative of the “mechanics” of the Newton method. Using Lemma III.1
1P(z) = P'(0) < sup [[P"(3z + (1= M) [l = 27
0<2<1
<K|:- 2|

Multiplication by the norm of linear operator [P'(z°)]~! (which exists and is bounded by condi-
tion i of Theorem III.4) and rearranging, yields

I P' ) HHIEP (2) = PO < TP HLE N = 20
When the conditions of Theorem II1.4 are satisfied
[P NP(2°) = P'(2)]| S BK 2m0 < 1 (11121

(I1.21) bas a straightforward interpretation: the term on the left is an expression for the mag-
nitude of the relative change of the first operator derivative in the ball (7(20,2170), i.e. Theorem
II1.4 asserts that the Newton method will converge if the relative change of the operator derivative
in the ball U(z° 2n,) is less than 100%.

If a solution z* of the operator equation (ITI.1) is known, stronger conclusions can be deduced:
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Theorem 1.5 : Consider the operator P on a Banach space Z. Let z* be such that P(2*) = 0.

Assume P’ has a bounded inverse and P" is bounded in U(z*,r) with B=sup ||[P'(z)]7!||
zeU(z*,7)

and K = sup [[P”(z)||. Consider also the conditions:

2€0(2%,1)
i 6,%iBKr<1
i 6 E [P KT <1
Then:

1. Assuming i., the sequence
M =" — [P TP (O1.22)
converges to 2* for any 2° € U(z*,r) with
|+ - 2| < $BE||:™ - 2%
2. Assuming ii., the sequence
M = M~ [P(2*)) T P (™) (I11.23)
converges to z* for any z° € U(z*,r) with
|2 - 2| < $BE||:™ - 2|

3. If i. and/or ii. hold, z* is the unique solution of P(z) = 0 in U(z*,r).

Proof: In Appendix III.

The implications of Theorem IIL.5 is that quadratic convergence can be guaranteed under
the assumption of boundedness of the second derivative in some neighbor of the solution. By
definition 6, < 0; and consequently condition i. is stronger than ii.

Note also that algorithm (II1.23) is a simplified Newton method (the derivative is always
computed at the same point 2*) with quadratic convergence to the solution. The consequence is
that algorithm (II1.23) is not only more computationally efficient, but also guarantees a larger
radius of convergence than (II1.22) .

8. A HYBRID ALGORITHM
Application of operator equation solution methods to dynamic control systems motivates

development of hybrid algorithms, where some subset of the variables are under successive sub-
stitution, while the rest are updated by another algorithm. Perhaps the best way to describe
related algorithms is by a representing example.

Consider the operator

Y xU— X xU
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(z,u) LN P(z,u)

the associated operator equation
P(z,u)=0 (I11.24)

and the equivalent successive substitution form
(z,u) = F(z,u) (T11.25)
with
f
F(z,0) ¥ (2,4) + Q(P(z,8)), Q(:,€)=0 <« (5,6)=0

The following hybrid Newton algorithm (HN1) is defined:
Step O: Select an initial point (2%, u®).
Step 1: Compute a new point using the successive substitution algorithm (III.25) :

(=7H, ultt) = F(a™,u™) (IT1.26)
Step 2: Compute a second new point using the Newton method
(fon-!-l’ uz-&-l) - (Zm, um) _ [P'(zm, um)]_IP(.’cm, um) (m‘27)

Step 3: Set (z™+1,u™+!) = (27w T!). Go to step L.
A similar (and simpler) algorithm (HN2) is obtained if the derivative at (III.27) is always
computed at the solution (z*,u*):

(Rt ultt) = (2™, u™) ~ |[P'(z*, u*)] 7 P(z™, u™) (111.28)

Theorems I11.6 and II1.7 establish convergence conditions for the respective hybrid algorithms.
The oo-norm in the product space X' x U(1) is used.

Theorem I1.6 :  Consider the operator P and let (z*,u*) be such that P(z*,u*) = 0. Assume
P' has a bounded inverse and P" is bounded in U((z*,u*),r) with

B = sup P! (2, w)] 7 I
(z,)€0((z",%"),1)
K= sup ||P" (2, u)]|

(z.%)EU((2*,u%).r)

If
i. The operator F of (II1.25) is a contraction of U((z*,u*),r) with contraction constant 6.

(1) The co-norm in a product space X x U is defined by ||(2, u)]|ooc = max{||z|},||u]|}, where -] e

any vector norm in esther space
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i. oy ¥ iBKr<1
Then:
1. Algorithm (HN1) converges to (z*,u*) for any (z°,u°) € U((z*,u*),r), with
i(z™+, u™ ) = (2, u*)]| < maz {8, 05 (=™, u™) = (2%, u")]| (I11.29)
and, there exists some m* such that for m > m*

((z™ 2, w™ ) = (2%, w*)]] < 6c|(=™, u™) ~ (27, o) (I11.30)

2. (z*,u*) is the unique solution of P(z,u) = 0 in U((z*,u*),r)
Proof: In Appendix III.

Theorem Ill.7 : Consider the operator P and let (z*, u*) be such that P(z*,u*) = 0. Assume
P’ has a bounded inverse at (z*,u*) and P" is bounded in U((z*,u*),r) with

B =||[P'(z*,u")] 7|
K = max PN x)u
(2,4)€0 (2% u%)r) |1P" (=, )]

If
i. The operator F of (II1.25) is a contraction of U((z*, u*),r) with contraction constant 8,
ii. 6y € 1BKr<1
Then:
1. Algorithm (HN2) converges to (z*,u*) for any (2°,u°) € U((z*, u*),r), with

Iz, um*) = (2%, u*)|| < maz{fe, On }||(2™, u™) = (2, u7)]] (II1.31)
and, there exists some m* such that for m > m*
Iz, — (2,0 < B2, u™) - (2*,00)) (11L.32)

2. (z*,u*) is the unique solution of P(z,u) =0 in U((z*,u*),r)

Proof: In Appendix III.
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Appendix II1

Proof of Lemma 1I1.2
a) (If) Let 21,22 € U(2°%r). Then by Lemma IIL.1

IF(z) = F(2)I  IF'(A2* + (1= X)) ]l = 2*)l, VA eo,] (II1.33)
Since U (2%, r) is convex, 2, ezt 4+ (1 -2A)z%2 € U(2%r). By assumption then
|7 (22)]| < 6

and (II1.33) shows
IF (') = F(*)]| < 6l|2" - 22| (IIL.5)

b) (Only if) Suppose there were 21,22 € U(2°% r) such that ||F(z) — F(2?)|| > 6]|z* — 22|]. By
Lemma III.1
0ll-* = 2| < |IF(z") = F(2)|| < IIF' (1)l Il = 22

This implies that

([F'(22)] > 8, 2x € U(2%)

which contradicts the assumption. mm

Proof of Theorem II1.8

1. Lemma II1.2 establishes that F' is a contraction of U(z*,r). By Theorem IIL.1 the result will be
established if F maps U(z*, r) into itself, i.e if z € U(z*,r) then F(z) € U(z*,r):

IF(z) = 2| = IF(z) = F() "€ IF (e + (1= )z = ) < Jlz - 2l < v

which shows that F(z) € U(z*,r). 2.

Lem.1
<

|27 = 2 = ||F (") = F()]] |F'(Az™ + (1= 2) ) =™ = 2]l < 62" = 27|

And by induction
|| =2 < o™ - 2| -

Proof of Corollary IIl.1
i. The derivative of the affine linear operator Az + B is the operator A. From Lemma IIL5, for any

€ > 0 there exists an induced norm of A4 such that

p(A) < ||Alli < p(A4) +e
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Choose € = (1 — p(A))/2. Then
lAlli < p(4) + (1 - p(4))/2=(1+p(4))/2< 1
and from Lemma II1.3 it follows
N4z +B)lli = ||l4]: <1, VzeZ

From Theorem III.3 A is a contraction of the total space and the sequence {Zm} converges for all 2.
ii. (I — A)™! is invertible by assumption, therefore we can shift the origin by z = (I — A)~ b
¢ = z— (I — A)~!b and the successive substitution algorithm becomes:

§m+l = A(g’")

Let Z,q2 be the eigenvector of A corresponding to the (possibly non-unique) eigenvalue of A of maximum
magnitude Apqaz. Set ¢® = Zpnaz. Then ¢! = A¢® = Aoz Zmas and iterating ¢™ = Amazimaz. It
follows: HgmH = l/\mu|’"”zmun and limm_.oong'"” = 00, since by assumption ]Amul > 1. This
implies that lim,, oo |[2™]] = liMp—co [™ + (I = 4)71b]| = 00. Now, for any ¢® with a non-zero
projection on Zp,qz, the go component along Zp,,; will be amplified to 00. In fact it is trivial (but not
very interesting in this context) to extend the result to any ¢ which has a non-zero projection to the

span of the eigenvectors of A corresponding to eigenvalues of magnitude greater than 1.

Proof of Theorem II1.5
1) Since by assumption P(2*) = 0 and P'(2)~! exists and is bounded in U(2*,r), it is true that

=2 - [P'(zm)]'lP(z*) (III.34)
Subtract (III.34) from (111.18) to obtain

gt = am = 2t P77 (PG - P(E)
=t = = PP - £ - (PE) - P())

S S NP EIT s g IPOS (0= 0T =

= [lm =M <3 BE)E - P (I11.35)

Let 0y, def -;—BKHz'" — 2z*||. It will be shown in the following that ¢, < 67" 0.
FirstSiep : Show that ¢, < 8; by induction.
Fork =0Q:

0o = $BK||2® - 2*|| < 1BKr =6,



because z° € U(z*,r).
For k = m assume &, < 6;. Then

Omt1 = $BEK|[z"H! - 2|

< iBK [4BK|z™ - 2*||* ]

= [3BE|:™ - ||
= ("m)2
<6
<6,

SecondStep : Show that 041 < 010,

Om+1 < (‘frm)2
<610

It follows trivially that oy, < 67"0¢. Then

lim ¢, = lim 6’6o =0
M3 e OO m OO

This implies that
lim ~BK||z™ - 2*||=0
m—00 2

which in turn shows that

lim 2™ =2*
me=—00
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From (III.35)

Induction assumption

Theorem assumption i.

From above

From above o, < 6;

2) The proof is identical to the above. The only change is that now (II1.34) will be

& =z2* = [P'(*)|71P(*) (I11.36)
8)Assume that there is another solution z, in U(z*,r). Then
zy = z, — [P'(2)]71P(z%) (II1.37)
It is also
=2~ [P'(x)]7 P(*) (I11.38)
Following the same steps as in obtaining (JI1.35) :
llzs = 2]l € $BE]|z — 2*|* < Oullze = 2| < flz0 = 2] (111.39)

(m.39) is a contradiction.
Proof of Theorem II1.6
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1) Consider the m?? step of HN1. Since F is a contraction:

(2" *2, u ) = (2%, u*)|| < 6|z, u™) - (7, v

<= max{||z7' ! = 2*||, [|ul T — o[} < Oc||(27, uT) - (2%, u7)
=>”z;"+l _ zt“ < oc”(zm’um) _ (z',u*)“

=||z™*! — z*|| < 6.||(z™,u™) - (2%, u*)]| (HN1 step 3) (IIT.40)

Norm definition

Since P has the properties required by Theorem III.5, using the notation of the Theorem IIL.5 proof, it

18:
=5+ i) - (2w S omll(E™, u™) ~ (&, 0 From (IIL.35)
= max{|leit - 2|t - v} S omll(=™,w") ~ (2", )]

=[luft - v*|| < om]|(z™, u™) = (2%, )]

=|[u™*! — u*|| < op|(z™, ™) — (2%, u*)]| (HN1step 3) (III.41)
From (II.40) and (IIL.41) it follows
max{f|z”*! = 2°||, [[u™* - u*||} < max{f;, om }{|(2", u™) = (2%, w7} (I1.42)
From the proof of theorem IIL5 0y, < Ox and (IT1.42) shows
2™+, u™ ) = (2, u*)|| < max{6e, On }|(s™, u™) = (27, &) (IT1.43)

In the proof of Theorem II1.5 it is shown that &, — 0for m — co. This implies that fore = 8, > 0,
there exists some m* > 0 such that 0,, < 6, for all m > m*. Then (II1.42) implies

(™8, u™ ) = (2%, wh)]| < 6ell(=™, u™) = (27, u)| (IIL.44)

2) The uniqueness of (z*, u"‘) is established by Theorem III.3, because by assumption F is a con-

traction, therefore it has a unique solution.mm
Proof of Theorem II1.7
The proof is identical to that given for Theorem III.6.




CHAPTER IV

CONTROL THEORY vs. OPERATOR EQUATION THEORY

The noted duality between control theory and the theory on the solution of operator equations
can be sought in the feedback mechanism that underlines both. Consider for example the solution

of the operator equation
Py* = y* (Iv.1)

where for given P and y*, u* is to be computed.

Trial inputs u® are injected into the operator P. The outcome of the operation Pu?, i.e.
y® = Pu?®, is compared to y* and an algorithm A, which in general depends on P, produces a new
trial input u®*!

ua+1 — A(ua’ y’,y*;P)

with the objective of u®*1 being in some sense “closer” to u* than u®. A generic block diagram
representation of the procedure is shown in fig. IV.1; at the same time it is the basic block
structure of feedback control where the algorithm block takes the place of the more familiar

controller block.

OPERATOR -

——eespl ALGORITHH

|

FIGURE 1V.1 : Block diagram representation of an sterative operator equation solution

procedure.

Reversing the argument, a number of important control problems could be formulated as
operator equation problems and controller design could be viewed as selection of an algorithm for
the solution of an operator equation.
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It was emphasized in the introduction that the underlying duality has been explicitly used
to address a number of analysis issues. At the same time however, methods for the solution of
operator equations are inherently used in well known synthesis approaches.

The case of proportional control is the simplest to examine. The associated block structure
appears in fig. IV.2, where the dashed box encloses the equivalent algorithm for the solution of

an operator equation:
u'tl = k. (y* — Pu’) (Iv.2)

—_—f el - -

FIGURE 1V.3 : Block diagram of a proportional control structure

From an operator theory point of view, the method is successive substitution with the suffi-

cient convergence condition
|kl -|P|| < 1

i.e. the familiar small gain condition on the loop gain. To uncover the equation that algorithm
(IV.2) solves, the limit of (IV.2) is taken as 8 — oo. If (IV.2) converges the operator equation
is shown to be:

u* —k-(y*—Pu*)=0

This is not the desired objective expressed by (IV.1) and the associated offset is not surprising.
Offsets are eliminated by stabilizing controllers with integral action. Fig. IV.3 shows the
block structure of an integral action controller, where @ is its non-integral part.
The algorithm is
't =’ + Q(y* - Pu°) (Iv.3)

Again a basic successive substitution method surfaces, this time however the correct equation is

solved, as can be easily verified by assuming convergence and taking the limit of (IV.3) on both
sides as 8 — co. It is evident that integral action controllers correspond to algorithms for the
solution of the correct operator equation.

Next a representing scheme of the family of inverting controllers is examined (Internal Model
Control, Garcia and Morari 1982). Fig. IV.4 is the block diagram representation of the basic
algorithm, where P is the plant, M is the (linear) model and M =1 js the inverse of the model:
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u+§ 0 ;%- —Y P £

Y

FIGURE IV.8 : Block diagram of the integral action controller C(z) = (2 — 1)71Q(z)
(q: backward shift - delay - operator).

FIGURE 1V.4 : Block diagram of an inverting parametrization controller

wt! = M~1(y* - Pu’ + Mu®)
=u* - M~Y(Pu’ - y*) (IV .4)

Taking into account that the derivative of the linear operator M is itself, (IV.4) can be rewritten:
us+1 = u’ — [MI]—-I(Pus _ y:)

For M = P it correspouds to the exact Newton method for the solution of Pu = y*, while for
M # P it corresponds to some simplified Newton method.

To make the point concrete, control problems are posed through various objectives. These
include following a specified trajectory, minimizing some performance index, disturbance rejection,
dead-beat action, state dead-beat action etc. For a number of meaningful objectives the control
problem is equivalent to the solution of an operator equation.

As an example, consider a certain objective, that of following a given trajectory, together with
a simple operator interpretation of a dynamic system: under the assumptions 1l.i-vi of Chapter
II, the system defines an operator, which maps states z* at the beginning of a sampling interval
t* and inputs u® constant over that sampling interval, to states z°+! = x(T'; 2°, u*) and outputs
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y'T! = g(z"+?) at t°!. The objective is to drive the system to a steady state (z°+! = z°) with
its output at y**! = y*. If the system operator is S

X xU— X xY()

(z,u) = (x, )

then the control objective is expressed by the operator equation
S(z,u) = (z,y%) (Iv.s)

Control law computations to achieve the objective can be based on iterative algorithms for
the solution of (IV.5) . Potential gains of this approach stem from a well developed theory on
algorithms for the solution of operator equations, especially in areas where control theory has not
progressed as much, as is the case of nonlinear systems.

A number of important issues in controller design, such as stability, performance, robustness
etc., have their well studied counterparts in the theory of operator equations: convergence, speed
of convergence, sensitivity to approximation error etc. Some notable differences do exist however
and have to be reconciled :

I. From the definition of the system operator S, at the current state z°® and input u® an
iterative algorithm for the solution of (IV.5) produces a new pair (2*+!,u®*!) for the next
iteration. In the operator theory interpretation a new iteration can start at any point in the
domain of P. In the control interpretation, although u®*! can be assigned as a system input
arbitrarily (assuming no input coustraint), z°%1 is the state of the system at ¢ = ¢*+! and,
disregarding unrealistic impulses in the states, cannot be arbitrary: it has to equal the system
state at { = t**!, as it has evolved during the s** sampling interval i.e.,

z*t! = x(T; 2%, u*) (Iv.e)

Not every algorithm has this property. Basic operator algorithms have to be modified so
that (IV.6) holds. The following definition discriminates between algorithms that do have this
property and may therefore be used in deriving control laws, from those that cannot be used.

Definition IV.1 : An algorithm for the solution of (IV.5) is said to be consistent in the
derivation of control laws, if the new state z°+! generated by the algorithm is such that (IV.6)
holds.

Consistency Requirement
z*+! = x(T; z°, u*)

(1) Note that in the discretized problem considered, X, U and Y become R", R™ and R™ respectively.
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This requirement on algorithms necessitates use of hybrid algorithms similar to (HN1) and
(HN2) of Chapter III.

II. The solutions of operator equations are rarely, if ever, known a priori.

In the framework presented earlier in the chapter, desired steady states of dynamic nonlinear
systems are solutions to appropriate operator equations. Most of the time these solutions are
known a priori, either by experimentation, or off-line simulation, or the solution of steady-state
algebraic equations.

Therefore, the interest is focused in studying the stability properties of known steady states,
as well as driving systems to them from perturbed states, rather than using operator equation
methods to compute steady states of a system. Theorems like Theorem III.3, which are rather
meaningless from an operator theory point of view, become very important as analysis tools in
the following Chapter.

III. An algorithm for the solution of a particular operator equation is used only once. On
the other hand, if the control problem is based on iterative algorithms, these will be continuously
implemented for as long as system operation continues. Therefore extensive study to improve the
convergence properties of control algorithms is justified, although it is not always profitable for
operator equations.

For example, the convergence properties of algorithm (III.4) are adjusted by the “user-
supplied” operator Q. If the algorithm is used to solve the operator equation (III.1), then any
Q that happens to generate convergence to the solution for some initial guess is satisfactory in
general. There is no need to find a @ that will guarantee convergence for a whole set of initial
guesses. It is not crucial also to go to great lengths to adjust @ so as the fastest convergence rate
is attained, since the equation will be solved only once. On the other hand, if (III.4) is the control
algorithm for the system represented by (IIL.1), it is very important to search for a @ that will
stabilize the system for all possible initial conditions, as well as speed-up settling time.

IV. An important issue in both operator equation theory and feedback control is how con-
vergence properties are affected by errors in the computation of the algorithms.

In most cases, error sources are conceptually similar. For example errors arising from ap-
proximation or truncation can be treated in the same fashion as errors arising from measurement
error or noise. It is also often that instead of solving the exact equation, an approximate yet
simpler equation is solved. In the same sense, instead of basing the control calculations on the
exact system description, often a simplified model is used.

However there is a marked difference: the operators involved in operator equations are for
all practical purposes exactly known (or can be approximated to any desired degree of accuracy).
This is seldom the case in control, where exact system descriptions are rarely available. This
motivates the modification of some basic convergence theorems to account for the situation and
is discussed in detail in the next Chapters.



CHAPTER V

NONLINEAR SYSTEMS ANALYSIS

In this Chapter analysis tools are developed to characterize the properties of dynamic non-
linear systems, with or without feedback. The criteria stem from convergence analysis of operator
equation solution algorithms. Emphasis is placed on the issues of stability and robustness.

The Chapter is divided in five sections. The first section provides a framework for the analysis.
Then the state-feedback stability case is studied, which is defined by the assumptions of complete
knowledge of the state vector and exact modelling. In the following sections these assumptions
are successively dropped: section 3 assumes only exact modelling and details criteria for model
reference stability, while in section 4 robustness issues (i.e. stability in the face of modelling error)
are investigated. Finally section 5 contains a few remarks on applying the analysis theorems.

The Chapter lays the foundation for the analysis of the control laws that are developed in
later Chapters.

1. A FRAMEWORK FOR THE ANALYSIS

There are different notions of stability of nonlinear systems and, before we proceed any
further, it is appropriate to define the type of stability relevant in the present context. To do so,
a description of the underlying physical framework and some definitions are in order.

A system of the form (II.1)
oz

7 = =) (I.1)
v =g(z)

sampled at a constant sampling interval T, with its input vector u held constant at a certain level
uy, is the framework for open-loop stability. A number of questions naturally arise pertaining
to the dynamic behavior of the system: knowing that at the beginning of the observations the
system state vector z is at a level z°, will the system tend to settle to some state z* as we observe
it at consecutive sampling instants? Is there a state z* with the property that if the system is at
z* at any observation, it will remain at this state for all subsequent observations? On the other
hand, if there is such a state, will the system return to it after some perturbation? And, finally,
if this is the case, what is the extent of perturbations that the system at z* can tolerate?
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A set of definitions puts these questions in a quantitative format :

Definition V.1 : (Open-loop System Operator) Under the assumptions of existence and unigue-
ness of solutions to (II.1), constant input u = uy and sampling at a constant rate T, system (I.1)
gives rise to a well defined nonlinear operator O; that maps the state at sampling instant s to
the state at the next sampling instant s + 1:

Rn '____’Rn

2® oL gl = Oy (") def x(T;2°% uy)

where the subscript f underlines the dependence of the system operator on the particular system
input uy.

Example V.1 : In a well stirred tank, the revereible dissociation reaction of a chemical species A

to epecies B i carried out.

ki
——y

e
ks

A 2B

The dissociation reaction rate vy ts
ri =kiCamol-171- 871, k; >0, C, concentrationof A
with the association reaction rate ry being
rg = kgCg mol - 17t - 871, ky >0, Cg concentrationof B
The tank ss tnsulated, while the heat of the reaction is negligible. As a result the reaction conditions

are ieothermal and the reaction rate coefficients ky and ky are constant. The differential mass

balance for the reactants 18

A Fu(t) -k —k
Y, FA() 1CA+2 2CB
—-agf = Fp(t) + 2k,C4 — k2C%

where Fs(1) and Fp(t) are the respective rates of addition of reactants into the tank. Fy and
Fg are the inputs to the system. Assuming Fy = uy; = 0, Fg = uyy = 0 (no addition of
reactants), then multiplying the first equation by 2 and adding to the second shows that

3(20,4 + CB)

T =0 = () def 2C 4 + Cp = constant
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Consequently, letting z = Cp and Cq = (Co — Cg)/2 = (Co — 2)/2, the reactor dynamics are

described by
az _ Co - Z 2
EY) - 2k1 2 k22
= '—kzlz - klz +k100
Co—2
y2=Ca = 02

It ss shown in Appendiz V that the system operator is given by

22 +a—- A +A—a
2(1-B)z*+ (1-Bla+(1+8)A 2

2 = 0,(z*) = fA

where

_k _\/ﬁﬁ ky _ \/.’iz.z ky
a—kz,A— (kz) +4k20’0 and 8 = exp(—k.T (kz) +4k200)

Definition V.2 : (Equilibrium State) A state vector z} is an equilibrium state of the open
loop system of Def. V.1 if it has the property

f(27,us) =0 (V.1)
Def V.2 and (II.1) imply that

oz *
YT 0, for z(0) =z}

therefore z7 has the additional property

z; = x(T; 2%, uy) (v.1")

Example V.2 : For the reaction system of Ezample V.1, possible equilibrium states are solutions

of the steady-state equation
—kz(.’I})2 - kll; + k100 =0

This quadratic equation has two solutions, one negative and one positive. The negative solution

corresponds to negative concentrations and therefore has no physical significance. The positive

o1k \/k_x2 ky
z,_2[ 2 &) e,

solution ss
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and is the unigque equilibrium etate of the system. It can be verified, using the ezpressions of
ezample V.1, that

2:c;+a—A +A-a
2(1 - B)ay + (L- Bla+ (1 +8)A 2

2 = Oy(27) = BA

Definition V.3 : (Equilibrium State Stability) An equilibrium state z7 is stable if there is
some real constant r; > 0 and for any € > O there exists a sampling instant s, = 8¢(¢), such that
for any initial state in (7(2}, rs) the system evolves with

|z* — 23|l <€, V&> s (V.2)

Stability in the sense of Def. V.3 is a local concept, as it basically asserts that arbitrarily
small perturbations about a stable equilibrium state result in arbitrarily small perturbations of the
trajectory {z°} at large enough times. A concept to characterize stability to finite perturbations
is introduced next.

Definition V.4 : (Region of Attraction) A set ; C R" is a region of (exponential) attraction
for z} if every trajectory starting at any initial state z° € {}; converges to }, with

l2® — 23|| < 6°||z® — 2}|l, O < theta<1

A system can have none, one or many equilibrium states for every u;. To each stable equi-
librium state corresponds at least one non-empty region of attraction. If the region of attraction
is R" itself, a strong type of stability arises.

Definition V.5 : (Global Stability) An equilibrium state is globally stable, if R™ is a region of
attraction.

The stability concepts introduced thus far pertain to what is usually referred to as uniform
asymptotic stability. Uniformity stems from the system time-invariance assumption (equations
(I1.1) are time-independent). At the same time, since the scope of this work is nonlinear systems
control rather than nonlinear system dynamics, asymptotic stability is the stability concept of
interest.

Finally, for linear systems the situation is significantly simplified. In general, linear systems
bave a unique equilibrium state (t) which, if stable, has R" as a region of attraction (globally
stable).

(t) Linear systems can have whole subspaces of R" as equilibrium states when unity is an eigenvalue of
the state transition matrix, or when zero is an eigenvalue of the A matrix of the state space representation

of the continuous system.
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The same concepts of stability carry over to the closed-loop case. Then, the input vector is
no longer constant. It changes according to some control law of the form

u't = y(z°, v, y5)(1) (V.3)

where y} is any external input (for example a set-point command).

Definition V.6 : (Closed-loop System Operator) The open-loop system of Def. V.1 augmented
by control law (V.3) generates a well defined nonlinear operator Cy that maps the state and input
at sampling instant s to the state and input at sampling time s +1 :

Rn+m — Rn+m
[z’ ] c, [z} x(T; z°, u®)
e by
us us+1 '1;(:8, us’ y;)
T
Vector [z’ u”) is called the (augmented) closed-loop state.

For analysis purposes Cy can be treated in the same fashion Oy is, where now the augmented
closed-loop state replaces the open-loop state in the definitions given and the theorems to follow.

2. THE STATE-FEEDBACK CASE

Assumptions : At any sampling instant, the state vector is completely known.
The model of the system is exact
2.1. Open-loop stability
The Contraction Mapping Theorems (CMT) of Chapter III provide a natural framework for
addressing all the issues raised in section 1 in a unified manner. Using CMT arguments the

following stability theorems are stated and then proved.

Theorem V.1 : Consider the open-loop system of Def. V.1 and an equilibrium state z}. It

iax(T; z,uy)
dz

‘ <6<1, VzeU(z},r) (V.4)

Then :
1. The equilibrium state z} is unique in U(z},r)

(f) This is a general type of control law. For example, any linear or nonlinear state and/or output

control law can be expressed in this form:

ut = K (2, g} — p*H) = K (x(T; 2%, u*), o} — 9(x(T; 2°, u"))) = ¢(a",0°, 3)
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2. The equilibrium state z} is stable

3. U(z;, r) is a region of attraction for z7.

Proof : In Appendix V.

In Theorem V.1 knowledge of z} is assumed, which is usually the case (through experimen-
tation, simulation or solution of the algebraic steady state equations). This will be also assumed
in the remainder of the Chapter. In case x} is not known (as for example when unknown distur-
bances are present), Theorem V.1 can be modified to establish the existence of an equilibrium
state and characterize its stability at the same time :

Theorem V.1' : Consider the open-loop system of Def. V.1 and an initial state z°. If

" Ox(T;z,uy)
dz

’ <6<1, VzeU(z%r) (V.5)

where r > r° € ||x(T; 2°, u;) — 2°)|/(1 - 6), then
1. There is a unique equilibrium state 2} in U(z°,r)

2. z_‘, is stable

3. U(z°,r%) is a region of attraction for z7.

Proof : In Appendix V.
Theorems V.1 and V.1’ relate to each other the way Theorems III.2 and II1.3 do.

Example V.3 : The derivative of the system operator of example V.1 1s

80, 45A?

dz  [2(1-B)z+(1-Bla+ (1+B)A]?

where by definstion
a>0,A>0,0<8<x1

The derivative operator s¢ @ monotone decreasing function of z. For z € [O, OO) it agttains sts

mazrimum value at 2 =0

B L . [
L5 72 || =122 Lol = [0 B)0 + (17 212D

It can be easily shown that for § < 1:

48 < (1 + 8)?
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Then
60;
oz

48A?
T -Bla+ (1+8)AP
o 48AT
(1 + B)a]?
_48

(1+8)?
<l1

Thss shows that the conditions of Theorem V.1 are satisfied in any closed ball centered at z} (see‘
ezample V.2) of radius r < z;. As a result 23, the only equilibrium state of the eystem, is stable
and has U(z}, r), r < :r} ae a region of convergence. The contraction constant is (using the

monotonicity of the derivative operator):

00y
dz

N 4A?
2= B) (g} — )+ (1 - B)a + (1+ B)AJ

6 =
zel (:z;,r)

(The result can be strengthened by noticing that Oy is a contraction of [0, 00) that maps [0, 00)
to iteelf. Then, using Theorem III.1, convergence to z} can be established for any z° € [0, o),

therefore the positive real axis is a region of attraction for .’t;)

Example V.4 : Analytic expressions for the system operator and sts derivative are rare sn practice
and the associated quantitice have to be computed numerically. This ezample ezamines the open
loop stability of the ideal continuous stirred tank reactor of ezample II.1. To facilitate graphical
sllustration of the stability conditions, it will be assumed that the feed stream concentration is kept
constant, with A; = 1.0 and R; = 0. This assumption will effectively reduce the reactor to a two
state system and consequently will allow for graphical interpretation of the stability condition of
Theorem V.1.

The following two differential equations describe the reactor state evolution, after appropriate
values for the coefficients are introduced:

xy =]1-2

a.

{—t"l = —25 + 3 % 10 exp(~5000/z3) 2, — 6 x 107 exp(—7000/z3)z2

8

éi = T — z3 + 0.05[3 x 10° exp(—5000/z3)z, — 6 X 107 exp(—7000/zs)z5)]

where t in min, 23, 23 sn mol - 171, 25 in K /100 and T;, the inlet temperature, in K [100.

Equilibrium states are obtained by solving the algebraic steady state equations for different values
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of the system input T;:

Lieg = 1-zy,
0= —Zg¢, + 3 X 10% exp(—5000/Zs¢q)21cq — 6 X 107 exp(—T000/z5.4)Z2e,
0 =T, — 23, +0.05]3 x 10° exp(—5000/Zs¢g)21cq — 6 X 107 exp(=7000/23¢;)23¢]

Fig. V.1is then constructed after elimination of T;. It is the temperature - conversion equilibrium
diagram for the reactor. A well defined mazimum conversion point is at 21, = 0.492, 2., =
0.508 and z3., = 4.35. At this point T; = 4.33.

z
o 8.6
g —
[

a -
& -
z -
s -
e 8.4 n
o

[ -
m o
_—’f. -
= 8.2
= -
53] -
i

d -—
5 -
(&)

w e 1 T T 1 | T T T T ' T 1 T 1

6 8

N
BN

EQUILIBRIUM REACTOR TEMPERATURE

FIGURE V.1 : Temperature - conversion equilibrium diagram for the Continuous Stirred
Tank Reactor.

For all practical purposes, the operating region of the reactor e confined sn the two-dimensional
snterval
0.0 S 2] _<_ 1.0

20<2356.0

For two different values of the system input T;, the 2-norm of the system derivative operator:
5L
dz

a. selecting a sampling time of 1.0 min,
b. for (z2,z3) in the operating region, solving the initial value problem (I1.8) and (IL.4) (%). It is
then plotted as a function of z; and z3 in fig. V.2 (uy =T; = 3.5)and V.8 (uy =T, = 4.33).

x, .
”2 = “'5';“2 e computed by

(1) Program DDASAC (Caracotsios and Stewart 1984) was used, that produced the derivative operator

by integrating the differential equations over a sampling interval.
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FIGURE V.2 : £-norm of the derivative operator as & function of Ty (R concentration)
and I3 (reactor temperature), for T; = 3.5. Two different viewing angles of the surface are
shown. The mazimum value i6 0.57 for 2 = 0.0 and z3 = 4.1 (+ : equilibrium state, ® :

state of mazimum norm).

FIGURE V.8 : 2-norm of the derivative operator ae a function of 3 (R concentration)

and Ty (reactor temperature), for T; = 4.33. Two different viewing angles of the surface
are shown. The mazimum value is 0.5{ for o = 0.0 and z3 = 3.6+ : equilibrium state,

e : state of marmum norm).

The followsng table can be conetructed:

Input, T; L2eq T3eq max ”%“
3.50 0.157 3.51 0.57
433 0.508 4.33 0.54

Using theorem V.1 we deduce that the respective equilibrium states are stable. Any circle centered
ot the equilibrium siate, lying snside the operating region is @ region of attraction. The contrac-
tion constants (that characterize the speed with which the reactor returns to equilibrium after any

perturbation within the operating region) are 0.57 and 0.54 respectively.
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When the contraction condition holds for all z € R" stability can be established in a global
sense.
Corollary V.1 : Consider the open-loop system of Def. V.1. If

Ox(T;z,uy)
dz

[ge<1, Vz € R" (V.6)

then
1. The system has a unique equilibrium state z}
2. z} is globally stable
3. R" is a region of attraction for :r}‘.

Proof ; Follows trivially from Theorem V.1 by setting r = oo.

Theorem V.1. has a familiar interpretation for linear systems.

Corollary V.2 : For a linear system of the form

%£=AI+BUJ (V7)
t

1 z} = —A~'Buy is the unique globally stable equilibrium state if the eigenvalues of the state
transition matrix ® = eA7T are inside the unit circle.
2. If some of the eigenvalues of the state transition matrix are outside the unit circle, the system
does not have a stable equilibrium state.

Proof : In Appendix V.

Example V.5 : Consider the linear, continuous system

%:411-—312+u
3Z2_

Bt

vy =22

with a sampling time of T = 0.1. From ezample II.8, the discrete state space description of the
system for the given sampling time 15

23+ = 1.4702% — 0.367z5 + 0.1224;

z5t! = 0.1222% +0.98325 + 5.7 x 10~ %u,

ys+1 — z;-{»l

The state transition matriz is then (sce also ezample I1.11)

1.470 -0.367
®=

0.122 0.938
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The esgenvalues of ® are 1.105 and 1.35, i.e. both are outeide the unit circle. As a result the
closed loop system is (globally) unstable.

2.2 Closed-loop stability

It was mentioned in the introduction that open-loop stability arguments carry over to the
closed-loop case by augmenting the open-loop system operator Oy by the feedback control law
(V.8) . In this context Theorem V.1 and Corollaries V.1 and V.2 have their closed-loop counter-
parts which are stated next. The associated proofs are identical and will not be repeated(?).

Theorem V.2 ;. Consider the closed-loop system of Def. V.6 and an equilibrium state
T
(z‘ u*) If

Ix 9x

0z Ou z P

op o0 |S0<h v(2) ev(a,u)n) (V.8)
dz JBu

Then
T _
1. The equilibrium state (z* u‘) is unique in U((z*,u*),r)

T

2. [z* u* ) is a stable equilibrium state
_ ) T
3. U((z*,u*),r) is a region of attraction for (z* u*) .

Example V.6 : Consider the closed-loop configuration of an open-loop linear system with a static
nonlinear feedback block, shown in fig V.4.

+ u ] taxBSf y
g =Cx®

h(:) M&———

FIGURE V.4 : Linear system with nonlinear feedback.

(f) For the sake of brevity the dependence of X and ¢ on z,u,T and y; is suppressed, as well as the
subscripts f. It is implied throughout the remainder of the chapter that the assumptions of Def. V.6

hold.
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The linear system ss described by
2t = ®z° +Tu’
y' = Czﬂ
The nonlinearsty is assumed to be characterized by the nonlinear m-variable differentiable vector
function h(-)
v=nh(w), h(0)=0

Setting w® = y* = Cz°® and u® = —v® = —h(w®), the closed-loop equations are obtained:

2t = ®z° +T'u®
Y =Cz’
u® = —h(Cz®)

It can be easily verified that 2° = 0, u® = 0 is an equilibrium state. Furthermore, for this
particular case, u® is @ function of z° alone and as a result the closed-loop stability condition 18

simplified: substituting u® in the state evolution equation yields
z*t! = ®z2° -~ Th(Cz®)

Theorem V.1 asserte that if

18 ~TH(z)C|| < 1, vz € R", H(z) = 22U
o¢ ¢ =Cz

then O is the unique globally stable equilibrium state of the system.
In the following ezamples, a number of implications and applications of this stability condition will

be investigated.

Example V.7 : Let h(w) = 0, Vw € R™, i.c. the open-loop case. Then H(z) = 0 and the
stability condition of ezample V.6 becomes ”QH < 1. Since @ is a constant matriz, the spectral

radius can replace the norm yielding

p(®) <1

which is in agreement with Corollary V.2 (stability condition for open-loop linear systems).

Example V.8 : Let h(w) = w (linear unity feedback). Then H{(z) = I and the stability condition
of ezample V.6 becomes: p(® —T'C) < 1, i.e. the eigenvalues of (& —TC) should be inside the

unst csrcle.



Nonlinear Systems Analyste 51

The standard stability condition for linear discrete systems can be derived sn this fashion. The
eigenvalues of (B —'C) are the roots of the closed-loop characteristic polynomial: det(z] —® +
I'C). Using Schur’s formula for the determinant of block matrices (Kailath 1980), we obtain

I c
det(z] — & + T'C) = det
-I' z2I-&

= det(z] — ®)det[I + C(zI — ®)~'T
= det(z] — ®)det|[I + G(2))
where G(2) is the tranefer function of the linear block. This shows that the closed-loop system will

be stable if the roots of the product of the open-loop characteristic polynomial (det(z] — ®)) with
the determinant of the return difference operator (I -+ G'(z)), are tnstde the unist circle.

Example V.9 : Consider the case where the linear system of ezample V.6 18 single input-single
output. Assume aleo that the derivative of the nonlinearity lies in some interval [a,b] c R:

asrldéfag(:)Sb, Vw € R

The stability condition of ezample V.6 becomes

18 - nTC|| < 1, Yy € |a, b] (R1)

The result bears some close relationship with the well known describing functions and Kalman
conjectures (Munro 1979) and some discuseion s in order.

The describing function conjecture is that the closed-loop system will be stable if all the kinear
systems obtained by replacing the nonlinearity with all possible “instantancous” gains ’—1-(-‘:—'1 are
stable, s.e. if

det h(w)

p(® - €TC) <1, VE ,weR (c1)

Two are the main differences between result (R1) and conjecture (C1). First, from basic calculus,
the values § assumes are a subset of the values that n assumes:
. 0h . . h h{w
a < inf 202 e BW) (w)

dh{w)
< £<L —d L
w  Jw v oow —f-sﬁ,p w ‘s‘,f,p ow

<?b

and as a result (R1) imposes a much stronger condition. Second, the spectral radius s used tn
(C1) instead of the norm in (R1).

The conjecture according to Kalman, proclaims that the closed-loop system will be stable sf all the
Q—%%i st can

linear systems obtained by replacing the nonlinearity with all possible slopes n =

attain are stable, t.e. if

p(® - nI'C) < 1, Vg € a,b (C2)
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The only difference between (R1) and (C2) is the use of norm in the first, while the second employs
a spectral radius condition. Consequently (R1) is a stronger condition than (C2).
The depicted differencee partially ezplain why both (C1) and (C2) have been shown to be false.

Example V.10 : The special case of a constraint nonlinearity s treated sn this ezample. The

nonlinearity e characterized by

1, otherwise.

h(w) = {w, if |w]<1;

and 15 shown in fig. V.5.

2

h(w) e

-5 -4 -3 -2 -1 e 1 2 3 4 H

FIGURE V.5 : A constraint nonlinearsty.

This type of nonlinearity is not differentiable and as a result condition (R1) does not formally
apply. However h(w) can be approzimated to any desired degree of accuracy by a differentiable
function h(w) whose derivative ranges from 0 to 1. Then condition (R1) applies to assert stability
when

1@ - nTC|| < 1, ¥ € [0, 1]

Corollary V.3 : Consider the closed-loop system of Def. V.6. If

ox 9x
dz Ou z

<6<1, V e R*+™ V.9
o ov | () e
dz Ou

then

T
1. The system has a unique equilibrium state (z* u*)
T
2. (z* u*) is globally stable

T
3. R*t™ js a region of attraction for [z* u‘) .
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Corollary V.4 : Consider the closed-loop system generated by augmenting an open-loop linear

system of the form
2t =92’ + Tu®(1) (v.10)

with a linear feedback control law
't = ¥zf + Tu® + Oy (v.11)

Then
T

1. If the eigenvalues of the matrix [ ] are inside the unit circle, the system has a unique

v T
globally stable equilibrium state
2. If some eigenvalues of this matrix are outside the unit circle, the system does not have a stable

equilibrium state.

Example V.11 : Consider the closed-loop system generated by the linear system of ezample V.5

and control law

u*t = —33.75zf — 71.3z5 — 2.46u° + 8L.7y"
Then the closed-loop stability matriz becomes

1.470 —0.367 0.122
0.122 0983 57x10"3
-33.75 -71.3 ~2.46

which has a epectral radius of approzimately 0.01. It follows that all esgenvalues are inside the
unst circle and the closed loop system is globally etable.

Corollaries V.2 and 4 have some more information content compared to Theorems V.1 and
2, because they provide both stability and instability conditions. In the following it is shown that
instability conditions parallel to the stability conditions of Theorems V.1 and 2 can be derived
for nonlinear systems. In order to do so, the relation of the stability conditions developed so far
to traditional stability concepts, has to be brought up first.

2.3 Relation to Lyapunov stability

The indirect (first} method of Lyapunov is a powerful tool to characterize local stability of
ponlinear systems. The method allows to draw conclusions about a nonlinear system by linearizing
the system at some equilibrium state and studying the behavior of the resulting linear system.

Lemma V.1 : (Vidyasagar 1978) Consider the autonomous system

dz

(T) In Chapter II it was shown how this expression is obtained by sampling a continuous linear system
of the form : z = Az + Bu.
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and let
51(z) (V.13)

A= oz |,

Iy

with 7} an equilibrium state. Then
1. z} is stable if all eigenvalues of A have negative real parts.

2. z} is unstable if at least one eigenvalue of A has a positive real part.
The following Theorem characterizes the relation of the stability Theorems V.1 and 2 to the

indirect Lyapunov method stability analysis.

Theorem V.3 :
1. If an equilibrium state is stable by Theorems V.1 or 2, then it is stable in the sense of

Lyapunov.
2. If an equilibrium state is stable in the sense of Lyapunov then it is stable by Theorem V.1

or V.2
3. If an equilibrium state is unstable in the sense of Lyapunov, then the conditions of Theorems

V.1 or 2 are not satisfied by any induced operator norm.
4. If the norm conditions of Theorem V.1 or V.2 are not satisfied by any induced operator norm

in a neighborhood of an equilibrium state, then the equilibrium state is not Lyapunov stable.
Proof : In Appendix V.
Theorem V.3 asserts that the stability results of the section are in good agreement with
established results in nonlinear systems. The advantage of these theorems over the indirect
Lyapunov method is that they give criteria for stability to finite perturbations, contrary to the

local nature of the indirect Lyapunov method.

Example V.12 : For the system of ezample V.1

6("'k212 - klx + k_[Co)
oz 3

A= = —(2kp2% + k1) < 0

7
because cvery term in the parenthesis is positive. It follows that z} ts Lyapunov stable. It was

shown in Ezample V.8 that :c} ss stable by Theorem V.1 also.

The direct (second) method of Lyapunov gives criteria for global stability of equilibrium
states. The following theorem is the discrete version of the basic Krassovskii (1959) theorem which
establishes a connection between Lyapunov functions and global stability of discrete systems of

the form
't = x(T; 2%, uy)

It is assumed that the unique equilibrium state of the system has been shifted to the origin.
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Lemma V.2 : (Gruji¢ and Siljak 1973) The equilibrium state of the system is globally stable
if and only if there exists a scalar function V : R® — R! (called a8 “Lyapunov” function) with
the properties

i. V (z) is continuous in R"
ii. mljzll < V(2) < mallzll, (1) vz € R?
iii. V(z°!) < psV(z®), V& > 0,

where n;, 52 > 0, 0 < 53 < 1 are real numbers.

The following theorem characterizes the relation of the stability Theorem V.1 (and with
appropriate modifications of Theorem V.2) to the indirect Lyapunov method stability analysis.

Theorem V.4 : If (T
(XE2y | co<a(y), veerr
and x(T;0,u;) = 0, then
1. z =0 is the unique equilibrium state of system (V.13)
2. There exist Lyapupov functions for the system

3. ||x(T;z,us) — z||o is 8 Lyapunov function for the system, where || - ||o is any vector norm.

Proof: In Appendix V.

Although Lemma V.2 gives necessary and sufficient conditions for global stability in terms of
some Lyapunov function, it does not provide guidelines for constructing such functions. Corollary
V.1 on the other hand serves a number of purposes at the same time: it establishes the existence,
uniqueness and global stability of an equilibrium state, while as a side product (through Theorem
V.4) it establishes the existence and gives explicit formulas for the construction of Lyapunov
functions.

2.4 Instability Conditions

Instability conditions, analogous to the stability conditions of Theorems V.1 and 2, can be
established at this point. They are summarized in Theorem V.b:

Theorem V.5 : Consider the open (closed) loop system of Def. V.1 (V.6) and a region
Q C RY(R"™). If

0

o(3,)>1, Vzen (V.14)
= & z
z U
( or ﬂ{gi Qﬂ]>1 v(u)eﬂ ) (v.14)'
8z bu

then (1 does not contain any stable equilibrium states. Furthermore if ! = R" (R"*™) the system

is globally unstable.

(t) || - ||z denotes the Euclidean vector norm: ||zl = /2% + 23 + - - + 22
(t) || * llame denotes the operator morm induced by the vector morm || - |la: [[Fllama =
= PG,

Nziizo  lzlle
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Proof : In Appendix V

Theorem V.5 is somewhat more convenient to apply than its counterparts V.1 and 2, be-
cause the instability condition depends only on a unique “measure”, the spectral radius, whereas
stability conditions depend on a non-uniquely defined norm. But more on that later in section V5.

3. MODEL REFERENCE STABILITY
In this section the assumption of complete knowledge of the state vector is dropped. The im-
portance of doing so is investigated first and then the state-feedback case conditions are modified

to account for the new situation.

Assumption The model of the system is exact

In order to use control laws of the form (V.3) and subsequently apply the results of section 2,
the state vector must be accessible at every sampling instant. The exact model of the system is
available and, if the state of the system was known at some sampling instant {eg. t=0), the state
vector could be inferred at any subsequent time by simulating the model of the system

%‘:—:f(z,u), at t=0: 2=2° (V.15)
and observing the model state z. In essence then the situation treated in section 2 would reappear.
However the exact system state is rarely available at any time and a value for z° has to be assumed
for control law computations and stability analysis, which is in general different from the system
state : 20 # z°.

It turns out that this is a justifiable practice when the system has a unique globally stable
equilibrium state. However, when the system is unstable or has more than one equilibrium states
it is likely that the system and the model will display marked differences in behavior, depending
on the initial estimate of the state. For example they might settle to different equilibrium states
or either might settle while the other becomes unstable.

The depicted situation is very well understood in linear systems theory: simulation of the
model to infer the system state corresponds to employing an open-loop observer and is a valid
approach for open-loop stable systems. When the system is unstable, a closed-loop observer has
to be realized by feeding back information about the discrepancies of model and system outputs
to the model equations (V.15) .

The implications to the analysis of systems under state feedback are most important and are
discussed next. It is appropriate to clarify the underlying physical situation:

The system evolution over a sampling interval depends explicitly on the state of the system
at the beginning of the interval and on the system input. There is no explicit dependence on the
model state. The dependence is given by

+1 = 3 (2%, u) (V.16)

where the T argument has been suppressed.
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The model evolution on the other hand depends on the model state z°, the input u® and,
assuming feedback of the system output y* = g(z°), on the system state, through some relation

2+ = ¢(2°, 2%, u®) (V.17)

To conform with Chapter VI, a particular expression for the functional relationship ¢(-, -, )
will be adopted :

P=g(2f 2% u%) = x(2°, v') + Q(g(2°) — 9(2°)) (v.18)

Note that for z¢ = 2° it is ¢(2*, 2%, u®) = x(2°,u®) and as a result the model evolution matches
the evolution of the system states.

Finally, the control law depends on previous inputs u®, model states z%, possibly on system
states through output feedback and external inputs y* :

ut = y(2°, 2%, vt p*) (v.19)

The system operator for this case, as well as the notion of model reference are defined next:

Definition V.7 : (Model Reference Operator) The open-loop system of Def. V.1 augmented
by model (V.18) and control law (V.19) generates a well defined nonlinear operator S that maps
system states, model states and inputs at a sampling instant s to states and inputs at sampling
time 8 +1:

R2n+m — R2n+m

u®)
(z°) - g(z*))
us

' ¥*)

z° x(z*,
v [ ] = o(v) = [x( u) + Qg
¢ &

(z,z,

In this context, Theorem V.2 can be restated. The proof, being identical in this case, is
omitted.

Theorem V.6 : Consider the system of Def. V.7 and an equilibrium state

8 8
7 0 o
Q%L &x_8s KXi<g<y, VveU(s*,r) (V.20)
8y oy oy
Oz 8z 8

Then the equilibrium state v* is unique in U(v*,r), it is stable and has U(v*,r) as a region of
attraction.
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Compared to Theorem V.2, Theorem V.6 is more useful and meaningful, because it asserts
stability in the face of incomplete knowledge of the system state. In effect the theorem establishes
the stability of the real system for all perturbations inside the respective region of attraction,
instead of establishing the stability of the model as Theorem V.2 essentially does. Results paralle]
to Corollaries V.3 and V.4 and Theorem V.5 carry over to the model reference case. Again the
proofs are identical and are not included.

Corollary V.5 : Consider the closed-loop system of Def. V.7. If

8x 0 8x
Bz ou
Q% & _% %Xl<g<i Vv € RZ*+T V.2
8z 8z 8z bu - ’ ( . 1)
by by 8y
bz 8z By

then the system has a unique equilibrium state which is globally stable and R*"*™ is a region of

attraction.
Corollary V.6 : Consider the closed-loop system generated by augmenting a linear open-loop

system of the form (V.10)

z*t1 = ®2° + T’ (V.10)
with a linear model
2t =95 +Tu* + Q(Cz* - C2°) (V.22)
and a linear control law
utl = W28 + Tu® + Az® + Oy* (V.23)
as well as the constant matrix
L) 0 r
L=1QC &-QC T (V24)
A ¥ T

1. If the eigenvalues of L are inside the unit circle, the closed-loop system has a unique globally
stable equilibrium state
2. If some eigenvalues of L are outside the unit circle, the system has a unique unstable equilibrium

state.

Example V.13 : Consider the ciosed-loop system generated by the linear system of ezample V.5
T
augmented by model (V.22 , with Q = (17.35 2.46) , t.c.

28T = 147028 — 17.725 + 0.122u° + 17.352;
257 = 0.1222] - 1.4725 + 5.7 x 10™%u® + 2.462
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and the control law

u’t! = —906.7z] — 33.75z] + 835.32] — 2.46u” + 81.7y"

Then
1.47 -0.367 0 0 0.122
22 0.983 0 0 5.7x 103
L= 0 17.35 1.47 -177 0.122

0 2.46 0.122 -147 5.7x10°3
0 -906.7 -33.75 835.3 —2.46

The spectral radius of L ie approzimately 0.01, therefore all esgenvalues of L arc inside the unit
circle and the closed-loop eystem ss globally stable.

Theorem V.7 : Consider the closed-loop system of Def. V.7 and a region @ C R*"+™, If

8x 0 8x
8z Bu
Pl Q% -Q% Z|>1, wen (V.25)
8y oy oy
8z 8z Bu

then Q) does not contain any stable equilibrium states. Furthermore if (1 = R2"*™ the system is
globally unstable.

4. ROBUSTNESS ANALYSIS
In this section the assumption of exact modelling of the system is dropped. The stability
conditions of section 3 carry over with minor mathematical, yet, from a practical viewpoint,

crucial modifications.
For example the only modification necessary in Theorem V.6 is to change functional rela-

tionship (V.18) to reflect the modelling error :
2 = ¢(2°, u®) + Q(g(2°) — h(z")) (V.26)

Definition V.8 : (Closed-loop Operator with General Modelling Error) The open-loop system
of Def. V.1 augmented by model (V.26) and control law (V.19) generates a well defined nonlinear
operator G that maps the n system states, | model states and m inputs at a sampling instant &
to states and inputs at sampling time 8 +1 :

Rn +4-l4m Rn +i4+m

def z° G def x (2%, v’
v = | 2 | — () = | o2 ) + Qlg(2°) - h(2°%))
z
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Theorem V.8 : Consider the system of Def. V.8 and an equilibrium state

) 8
b2 0 By
QL % -Qf Zl<o<1 Ve r) (V.27)
8y oy oy
oz bz i34

Then the equilibrium state v* is unique in U(v*,r), it is stable and has U(v*,r) as a region of
attraction.

Theorem V.8 is of practical use only in the case where, although the system is exactly
known, some other model is used for the — possible simplification of — contro!l calculations. If on
the contrary, the functional relationship z*¥! = x(z°, u®) is not explicitly available, the usefulness
of the theorem is minimal. Treatment of general structural uncertainty in nonlinear systems is a
formidable task at present and will not be pursued any further.

However mathematical rigor and — to a certain extent — applicability, can be maintained in
the case of parametric uncertainty, that is when the system is known up to a set of parameters.

In this case the following physical situation arises. The system is described by the evolution
equation

2t = x(z°,u% p) (v.28)

with p a constant — yet unknown — parameter vector, that takes values in an interval I, C RP.
In order to stress the dependence on the parameter vector the notation %X (p) and 2 (p) is used
for the state and input derivatives respectively, although in general % and %21‘- also depend on z,
u and T. The model is described by the equation

2*t = x(2%,u%; po) + Q(g(=°; p) — 9(2°;p0)) (V.29)
where p; is the nominal value of the parameter vector. Finally the control law is as in (V.19) :
u'tl = (2% 2%’ y") (V.30)

It should be noted that the equilibrium state depends on p. To underline the dependence,
the notation vy will be employed, vy  denoting an equilibrium state of the nominal system. In
this case, the equilibrium state is not explicitly known and consequently a theorem analogous to
Theorem V.1’ will be used for stability analysis, with the addition that the contraction condition
holds for all p € I,.

Definition V.9 : (Closed-loop Parametric Uncertainty Operator) The open-loop system (V.28)
augmented by model (V.29) and control Iaw (V.30) generates a well defined nonlinear operator
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P that maps system states, model states and inputs at a sampling instant s to states and inputs

at sampling time 8 + 1 :
R2n+m P R2n+m

z° x(z°, u®; p)
vt & [Z] - w(vf) € [X(z‘,u’;po)+Q(a(Z’;p) - 9(z% po))
u8

'l’(laa zs, ua, U*)

Theorem V.9 : Counsider the system of Def. V.9 and an equilibrium state

T
Vg, = (:c:,o zp, u’;o) of the nominal system. If
; () 0 2x(p)
Q%(p) Z(po) -Q%(r) ZE(m)||<b<1, Veel(y,r)Vpel,  (V.31)

-1 oy [:1]

bz bz by
where

0 def X(z;*()’ u;ﬂ;p) - z;o
r>r° = sup || Qg(z;,;p) — Qg(zy,)
vEl, 0
Then

1. The system has a unique, stable equilibrium state v} in U(v} ,r).
2. v} has a region of attraction U(vy, rp) of radius ry > r —r°.

Proof: In Appendix V.
Corollary V.7 : Consider the closed-loop system of Def. V.9. If

9% (p) 0 - & (p)

Q%(p) Zi(p)-QE(p.) E(po)||<6<1, VveR™™, Vpel, (V.32)
oy 8y oy
8z z Su

then the system has a unique equilibrium state which is globally stable and R*"*™ is a region of

attraction.
Corollary V.8 : Consider the closed-loop system generated by augmenting an open-loop linear

system of the form (V.10)
z°t! = ®(p)z® + T (p)v’ (V.10)

with a linear model

22t = ®(p,)2® + T(po)u® + Q(C(p)z* — C(po)z®) (V.33)

and a linear control law
u'tl = W% + Tu® + Az° + Oy* (V.34)
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as well as the matrix

&(p) 0 I'(p)
L= | QC(p) ®(p)-QC(ro) TI(po) (V.35)
A v T

1. If the eigenvalues of L are inside the umit circle for all p € I, the closed-loop system has a
unique globally stable equilibrium state

2. If some eigenvalues of L are outside the unit circle for all p € I, the system has a unique
unstable equilibrium state.

Theorem V.10 : Consider the closed-loop system of Def. V.9 and a region  C R*"+™_ If

2(p) 0 2 (p)

p| Q%) F(r)-QF(p) Flp)|>1, Ve Vpel, (V.36)
ou ov 0w
bz bz Bu

then Q does not contain any stable equilibrium states. Furthermore if 0 = R2"t™ the system is
globally unstable.

8. CONCLUDING REMARKS
5.1 Disturbances
Up to this point no explicit mention to disturbances was given. Stability was studied in the

face of perturbations from equilibrium states. However disturbances frequently appear in control
systems and some additional discussion is in order. Both constant and time-varying disturbances
will be treated. Only the open-loop case will be covered, extension to the other cases being
straightforward. The notation

s+

2°t! = x(2°, uy; d°) (v.37)

is introduced to denote the effect of disturbances to the system evolution, where d° is the distur-
bance vector at the s** sampling interval. In this context

2+ = x(2°,us;0) € x(2°,uy) (V.38)

will denote the nominal (undisturbed) system evolution.
5.1.1 Constant Disturbances :
5.1.1.1 Additive constant disturbances: The disturbance set is characterized by

d°=del;cR”
and the system evolution equation {V.37) becomes

2t = x(2% us) +d (V.39)



Nonlinear Systems Analysie 63

The system equilibrium state depends on d and the notation z} is used to underline this depen-

dence:
zy = x(z3,us) +d (V.40)

3 is unknown and consequently Theorem V.1 cannot be used. The following theorem character-
izes the stability properties of the disturbed system. Note that the contraction conditions do not
depend on d. The only difference from Theorem V.1 is that there is a minimum radius for the

contraction ball.

Theorem V.11 : Consider the open-loop system described by
2 = x(2°,uy) +d (V.39)
where d € I; ¢ R". Let § be the maximum possible magnitude of d:

6 = sup ||d|| (V.41)
del,

and let z} be an equilibrium state of the undisturbed system (V.38) . If

ax(z, i
(2@ ooy VaeU(ehr) (V.42)
0z
with 5
def
>R= —— V.
r> T—% (V.43)
Then
1. There is an equilibrium state z} of the disturbed system (V.39) in U(z}, R).
2. z is unique in U(27,r).
3. zj is stable.
4. U(z;, r) is a region of attraction for zj.

Proof: In Appendix V.
5.1.1.2. Constant non-additive disturbances : Constant disturbances act the same way uncertain

parameters do (i.e. modelling uncertainty), therefore the analysis of section V.4 (parametric
uncertainty) directly applies.

§.1.2. Time varying disturbances :
5.1.2.1. Bounded disturbances: The set of disturbances is characterized by

|ld®]| < 6, d*€lcR (V.44)

The following theorem gives conditions for bounded system response to bounded time-varying

disturbances.
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Theorem V.12 : Consider the open-loop system described by
2t = x(2°, uy;d°) (V.38)

where d® is bounded:
l@°ll <6, d°elscRe (V.44)

Let z} be an equilibrium solution of the undisturbed system

2y = x(z},uy;0) (V.45)
and define the quantity B by
def 0x(z,uy;d)
B = sup ———
lidli<s oa |

2€U(2%,r4)
If the undisturbed system is a contraction

“6)((:, uy)

Py |<6<1, VzeU(z}r) (V.46)

with r such that R = B§/(1-6) < r < ry, then

1. Every trajectory that starts in a ball U(z;, r0), ro £ R, remains bounded in U(z},R).

2. Every trajectory that starts in a ball (7(:}, ro), R < ro < r, remains bounded in U (27}, ro)-
Furthermore, for any € > 0, there exists 8o = 8o(¢) such that for 8 > s; the trajectory is bounded
in U(z},R +¢).

Proof: In Appendix V.
5.1.2.2. Asymptotically constant disturbances: The set of disturbances is characterized by

ld°]| € A%, 0<A<1 (V.47)

i.e. they tend to zero asymptotically. The following Theorem gives stability conditions for this
case.

Theorem V.13 : Consider the open-loop system described by

2°t! = x(2°,uy;d°) (V.39)

with
ld°|| < A6, d° €I, CcR? (V.47)

Let z} be an equilibrium solution of the undisturbed system

27 = x(z%,us;0) (V.39)
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and define the quantity B by

p & sup ————————BX(Z’ uy;d) Il
lall€ ad

zEU(z;,rg)
If the undisturbed system is a contraction

“aX(z’ uf)

Lll<o<1, VzeU(ar) (V.48)

with r such that R &' B§[/(1-6) <r <rq, then
1. z7 is the unique equilibrium state of (vV.38).
2. Every trajectory that starts at z° € ﬁ(z}, r) converges to z; with

ll2° = 23| < 6°]12° — 23| + aB6 - maz {6}~ (V.49)

Proof: In Appendix V.
5.2. Selecting a Norm

There is a marked difference between the stability and instability conditions of the previ-
ous sections: in both cases some measure of the derivative of the system operator is compared
against 1; instability is conditional on a unique measure, the spectral radius of the derivative op-
erator, whereas any norm out of an infinite multitude of induced norms can be used for stability
analysis. Some of these norms produce more conservative results than others and the question of
which norm is more appropriate to use, naturally arises.

It is instructive to review the stability analysis theorems for a moment. System stability was
established on the condition that the derivative — which will be called L(v) here to generalize
notation — of the system operator is bounded from above by 1 for every state v in some region.
This L had different forms depending on the context. For example in the case of Theorem V.1
it was called —g—ﬁ and was a function of the open-loop system state z; in Theorem V.2 it was

&x Ox
6z  Ou .
a function of z and u etc.
Sy 8y
bz Bu

For any particular v, L(v) is a linear operator (Lemma III.4). By Lemma II1.6 every induced
norm of L(v) is greater than or equal to its spectral radius. Furthermore, a norm can be found
that approaches arbitrarily close to the spectral radius. It deems promising then to compute
p(L(v)) and then select a norm that approximates it for the subsequent analysis. It turns out
that this may not be a good practice, because the particular norm employed is tailored to v
and may be considerably larger (and therefore conservative) than the spectral radius p(L(v'))
at another state v’ in the region of interest. However it is a justifiable practice when either the
system operator is smoothly nonlinear (note that by Corollary V.2 the spectral norm is an exact
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characterization for linear systems), or when only a small region, over which L(v) does not change
significantly, is of interest.

5.3. Implementation aspects
It is evident that stability analysis of nonlinear systems involves a sizable amount of com-

putation. It seems this is a price to be paid in a quest for a general treatment of nonlinear

systems.

No systematic way to carry out the computations is available at present. It poses as a
future research topic. At the current state of this theory, a ‘brute-force’ approach is adopted
to implement the theoretical findings. It is described in the following for the case of open-loop
stability (Theorem V.1). The same procedure with appropriate modifications is used to establish
the conditions of the other Theorems.

Step 1: Fix the external input (u = u;). Compute an equilibrium state of interest (z7) by
solving equation (V.1) and selecting one of its solutions.

dx

32: ..
zs

Step 2: Solve the initial value problem (II.3-4) at z7 to compute ®(z}) =

i) If p(®(z})) > 1, z} is unstable and stability analysis concludes.
i) If p(Q(r})) =1, no conclusions can be drawn, analysis terminates.
iii) If p(®(27)) < 1, continue to establish region of attraction.
Step 3. Select an induced norm.
i) If ||®(z})|| > 1 the norm is not appropriate. Go to Step 3.
ii) If ||@(z7)]] < L, select a sufficiently small radius r, continue.
Step 4: Divide the surface S of the ball U(z7,r) into a finite grid of points (states). At each
grid point solve problem (II.3-4). \
Step 5. Compute 8 = r;xggc”@(z)”
i) If 6 < 1 increase r, go to Step 4.
ii) If 8 > 1 reduce r to its previous value, continue.
Step 6: z} is stable, with [7(1}, r) a region of attraction.
i} If the region of attraction is satisfactory, analysis concludes.
ii) If not, alternative norms should be considered, go to Step 3.
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Appendix V
Facts related to the reaction system of example V.1
1. Integration to obtain z°+! = Oy (z°):

0z kl kl

— = —ky2* -k 2+ k,Cp = —ka(2®* + =z - —C,

Y 2 1 1Co 2 Fa %5 0)

= '—kg(z2 +azx — aC’o) where a = %;-
0z

= —ky Ot
22 + az - aC) 2
/ J-FI 6x /t‘+l k at t t ts i
> - =
z? +az — GCQ te 2 & x=x
20 4o — [(E)2 + 400 22° +a+\J(B)2 + 420y
< —log [ -
A 228+1+Q+\/k 2+4‘J'Co zs+a-\/%2+4%00
20 +a—A 22° +a+ A .
— — 2 k
22 s ot A 22 oA = exp(—koTA) where A = \/;;- +4:2Co

PRSNGSR 2z +a—- A A-a

2. Differentiation:

00;(z%) _ gzt
dz% ~  dBz*

_ A [4(1 - B)z° +2(1 — B)a +2(1 + B)A] — [4(1 — B)z* +2(1 - B)a -

2(1 - ﬂ)zs +(1- ﬂ)a n (1 T ﬂ)A + ) where 8 = exp(-.k2TA) <

2(1+ B8)4A]

[2(1 - B)z+(1-B)a+(1+8)A]?
_ 4872
T 21-Bjz+ (1 - Bla+ (1+ F)A)

Proof of Theorem V.1

The proof is based on the fact that the properties of the open-loop system are characterized by the

properties of the operator Oy of Def. V.1.

1. By (V.1') an equilibrium state :t} is a fixed point of the operator Oy. By assumption

1%2L o<1, V2eD(zn)

Theorem II1.3 then asserts that z} is unique.

2. Let ry in Def. V.3 be equal to r. By the assumptions of this theorem, Theorem II1.3 implies that

if 2811 = Oy (I’) then
Ea z}” < 6°||2° - z}“, vzl e U(x},r,)
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Choose any € > 0 and let 85 > [In(e/||z° — z7||)/In(6)]. For & > s,:
llz® — 23]| < 6°)|2° — 2% < 6°°||2° — 2}|| < € V2° € U(z},7s)

By Def. V.3, there exists ry = r > 0 such that for any € > O there exists 80 = 8 (6) such that for every
trajectory that starts in U(z},ry), ||2° — 27]] <€ Vs > 8.

3. Part 2 of the proof established that lim, . |[z° — z}” =0, ie.

. 0
Jim. 2° =13, V2’ €U(a},r)

ie. every trajectory starting at an initial state z € U(z},r) converges to z}. By Def. V.4 it follows that
(7(1‘}, r) is a region of attraction for 1‘;.-

Proof of Theorem V.1’

The proof is based on the fact that the properties of the open-loop system are characterized by the

properties of the operator O of Def. V.1.
1. By (V.1') an equilibrium state z; is a fixed point of the operator Of. By assumption

80,

I B2 |<8<1, VzeU(zr)

Theorem II1.2 then asserts that .’t; exists and is unique.
2. Let ry in Def. V.3 be equal to r°. By the assumptions of this theorem, Theorem III.2 implies
that if 2°7! = O;(2%) then

e~ 231l < 0l = 251, V20 € O(e5rs)
Choose any € > 0 and let 85 > [ln(e/“zo - x}”)/ln(@)] For 8 > 3o:
2 — 3]l < 010 — 23| < 6 — 23| < ¢ Ve € D(eSry)

By Def. V.3, there exists ry = r® > 0 such that for any € > O there exists 85 = 80(6) such that for
every trajectory that starts in U(:c;, rr)y |l2° = z}“ <€eVs> s
8. Part 2 of the proof establishes that lim,— o ||2° — x}” =0, i.e.
: 0 #i 0
'lixgoz’ =zy, V2" €U(z},r)
i.e. every trajectory starting at an initial state z € (7(1:}, ro) converges to z}. By Def. V.4 it follows
that f](.’t}, ro) is a region of attraction for :c} -

Proof of Corollary V.2
1. Example I1.3 shows that the system operator Oy is

21! = e T2 4 (eAT - I)A™'By;
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To obtain the equilibrium state, the following equation is solved
2% = AT} + (e*T — I)A™ By (v.50)

yielding
1‘; = —A-lBu](T)

Oorollary III.1 establishes that .’c} is the unique fixed point of Oy, i.e. the unique equilibrium state
of the system. It also establishes that every trajectory starting at any z° € R" converges to z} and
consequently z} is globally stable.

2. Assume that (€47 — I} is invertible. Then again 27 = —A~'Buy is the unique equilibrium
state because (V.50) has a unique solution. Select a ball ﬁ(z;, rs). For any ry > O this ball contains
a vector with non-zero projection on the eigenvector associated with the eigenvalue of eAT of maximum
magnitude. It was shown in Corollary III.1 that this vector will be amplified to infinity. This shows that
there is no ry > 0 such that Hz’ - z;H <¢€Vs> 8,.mm

Proof of Theorem V.3

Only the case of open-loop stability (Theorem V.1) is treated. The closed-loop case (Theorem V.2)

proof is identical.
1. An equilibrium state is stable by Theorem V.1 when there is some ry > 0 such that

Ox(T;z,uy)

| e [[<1, Vze€ U_'(:z}, rs)

which implies that
x(T; %}, uy)
— | & V.5
I < (v.51)

Ox(T;z%,u afle,
The quantity ®* = __)d___j___fl is computed next. To this end let A = M . From
kY d¢ ¢= z}

(11.3), ®* is the solution at = T of the initial value problem

28(1) _ 37(c.€)

* V.52
ot d¢ g:x(f;:rf,uf) Q(t) ( )
§=uy
where ®(0) = I and x{; z%, ;) is the solution of the initial value problem
dx .
5. =J0ew), x(0) =1} (V.53)

(1) Note that the factor (eAT — I) was cancelled because the assumption p(eAT) < 1 implies that
(eAT — I} is invertible.



Chapter V. 70

V.53) has the (unique) solution x(¢; z%,us) = 2%, which upon substitution in (V.52) generates the
SRt J

linear initial value problem

o®(t) _ a7(s,€) _ ,
B = o |s = 2 Bl = 43() (V.54)
§=uy

(V.54) is analytically integrated {example I1.6) to
&(t) =€t and & =eAT
Then from (V.51) ||e*T|| < 1 and from Lemma IIL6:
p(e?T) <1

which implies that all the eigenvalues of A have negative real parts.
2. Lemma V.1 implies that all the eigenvalues of 47T are inside the unit circle, therefore p(eAT) <1,
Ox(T; 2%, uy)

ie. pf 62} ) < 1. Then from Lemma II1.6 there exists some induced operator norm || - ||; such
that Ox (T 2% uy)
X ) zja ur
” oz ”‘
Ox(T; 2, uy)

By the assumptions 1.i-vi of Chapter I, ®(z) = is a continuous function of z, therefore

oz
||®(z)]]: is a continuous function of z also ( because the norm function is continuous). It follows that
there exists r > 0, such that

|®(=)lli <1, VzeU(z}r)

Theorem V.1 asserts that x} is stable.

3. If an equilibrium state is unstable in the sense of Lyapunov, the argumentation of the previous
two parts of the proof can be repeated to show that p(®*) > 1. By the continuity of ® and the continuity
of the spectral radius, it follows that there is exists r > 0 such that

p(®(z)) >1, VzeU(z},r)
From Lemma II1.6 then, for all induced norms
||®(2)]] > 1, VzeU(z},r)

Consequently for any 1’ > O there exist z € U(z;,r') such that ||®(z)|| > 1 and the conditions of
Theorem V.1 cannot be satisfied.
4. The proof is by contradiction. If the equilibrium state was Lyapunov stable, then

ox(T; z}, uy)
Bz}

ol

) <1
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Then by the result 2 of this theorem there would exist some norm and some ball centered at z} that

would satisfy the conditions of Theorem V.1, which is not possible by assumption.am

Proof of Theorem V.4
The uniqueness is established by Corollary V.1. Then it will be shown that Viz) = ||x(T; z,us) -

z||o is a Lyapunov function.

idi.

It is shown that ”x(T; z, uf) — z” has the three properties required by Lemma V.2.

. Follows immediately from the continuity assumption IL.1.i-vi.

. The case a = 2 is treated first:

IX(Ts2,uz) = 2ll2 = |Ix(Ts 2, u5) = x(T50,u7) = ll2 < {Ix(T52,us) = x(T50,us)ll2 + ||z]l2
Lem.IIl .
em<l 1 max ” aX(T’ ¢, uf)
A€[0,1] d¢

—_—

< (1+6)|lzlla < m3llz|lz, formy =1+6

. Il |z = Ollz + [|=ll> < 6]|]lz + |=]l2

Also
Ix(T; z,u5) = 2llz 2 | llzllz = lIx(T; 2, us)|l2 |

Ox(T; ¢, uy)
ll=ll2 e, I 3¢

ll2 l|=Il2
¢ = Az

= (1 - 6)||z|l2 = n}, forg; =(1-6) >0

2

For any vector norm in a finite dimensional space it is known (Golub and Van Loan, 1984) that
there exist positive constants v; and vy such that va)|z]le < ||2]l2 £ v1||z]|a- Setting 71 = 0} /11
and 5z = N,V it immediately follows from the above that

mllzllz < 1IX(T5 2, u7) = zlla < n2fl]l2

It is to be shown that

x(T; x(T; 2, us), us) = x(Ts 2, up)lla < nslix(T5 2, u5) - 2la
Indeed

Ox(T;z,u
(T3 X(T; 2,u5),ug) = x(Ts 2, up)]la € supn—"(*(—arﬁ

= 0||x(T; z,us) - zllo
= ns]|x(T; 2, uy) — 7|lo

lla—e [IX(T; 2, u5) = 2]l

for ns = O.om
Proof of Theorem V.5
The proof is by contradiction. Suppose (I contained a stable equilibrinm state z}. It was shown in

parts 1 and 2 of the proof to Theorem V.3 that in this case

x(T; 2%, us)

32 )<1, z7€Q
J
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This contradicts the assumption of the theorem.

Proof of Theorem V.9

1. The proof is based on Theorem III.2, in exactly the same fashion that Theorem 1 was based on
Theorem IIL.3.

Choose some p € I,. The existence of a stable equilibrium state of the system will be established
for the particular p. Thus the system will be shown to be stable for every p € I,.

Letz = v, 2° F(z) = =(v;p). Then

R
= Upys

x(z;o’ u;o;p) - z;(i

RE|F(°) - ) /1-86) = Qg(z;o;p)o— Qg(z;,) || < r°

Theorem II.2 applies directly to show that there is a unique stable equilibrium state in U(zo, ro), ie. in
U(v;,,r°).
2. Assume that vy is the equilibrium state of the system. Then, U(v;,‘, rp) C U(v;o,r) forr, =

r — r°. From the assumption it follows that

dr(v)
dv

<6<1, YveU(y,r)

Theorem V.6 applies to show that v; is unique in [7(v;, rp), it is stable and has U’(v;, rp) as a region of

attraction.ms

Proof of Theorem V.11
The proof of claims 1, 2 and 3 is based on Theorem V.1'. To this end let 20 = z}. Then

r® = |x(2% us;d) - 2°||/(1 - 6)
= |Ix(2° us) +d - 2°||/(1 - 6)
= |Ix(2}, us) +d - ||/(1 - 6)
= |27 +d ~23l/(1-6)
<6/1-6)ER

Theorem V.1’ applies to assert that the disturbed system has a unique equilibrium state (i.e. zj by
definition) in U(:%';‘.3 R} which is stable.

4. It is first shown that a trajectory that starts in U(z}, r) remains in this same ball. This is done
by induction.
For k = 0, z° is in the ball because the trajectory starts in it.

For k = 8 assume that z° is in the ball and therefore

e~ 251l < r (v.55)
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Then
flz"*! = 23| = lIx(2®, us) +d - 23|
< lIx(=%,ur) — 231 + |1d]]

= lx(e*, u7) = x(z5, u)ll + ] From eq. V.1
< Ol|z° — 27|+ 6 From the contraction assumption
<6r+46 Induction assumption
=0r+(1-6)R From the definition of R
<6r+(1~06)r (r > R) by assumption
=r
Therefore the trajectory lies entirely in U(z s r) where the contraction condition holds. Then
ll2*** = 23l = lIx(2°, us) +d = 23|

= |Ix(2® us) + d = (x(23, u;) + d)| From (V.39)

= |ix(2", us) - x(zZ, uy)|]

< 6]j2° — 23]

where the last inequality is based on the contraction assumption, as well as the fact that z° is in the

contraction ball as was shown above. It is easy to show then that
[|2° — 23] < 6°])=° ~ 23|

and consequently that every trajectory, starting anywhere in U(z}, r) converges to zj;. Therefore by the

definition of a region of attraction U(.’c}, r) is a region of attraction for z7.mm
Proof of Theorem V.12

1. The proof is by induction.

For k = 0 it is true, because by assumption the trajectory starts at 2% € U’(z;, ro).

For k = & assume that

lz° - G| < R (V.56)
Then
2"+t — 23l = lIx(2®, usid°) = x(2}, uy50)]|
= |Ix(2",us;d°) — x(2°,us; 0) + x(2°, us;0) ~ x(2}, us; 0)]|
S x(2®, upsd®) = x(2% ug; O)) + |lx (27, us; 0) = x(27, ugs; 0|

< B||d®|| + 8]|=° — Z}H From contraction and B definition
< Bé + 6||z° — 7| Bound on disturbance
= (1-6)R + 6]|z° — 27| R definition
<(1-6)R+6R Induction assumption

R
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2. It is enough to show that at the 8t" sampling interval, any trajectory will be in a ball U(x}‘, R+
6%(ro — R)).This is shown by induction.
Fork=02%¢€ ﬂ(x}‘, R+ ro — R) by assumption.
For k = & assume that z° € (7(:}, R +6°(ro — R)). Then
ll2**t = 23| = lIx(2°, us;d°) = x(27, us; 0}
= |Ix(2°, us3d°) — x(2°,us;0) + x(2°, uy;0) = x(27, us; 0)]]
<lix(2®,up;d7) — x(2°, uy; Ol + lx(z°,us;0) = (zjvuf’ o)l

< Bl|d®|| + 6]|z° — z7|| From contraction and B definition
< Bé + §||2° - 2} ]| Bound on disturbance
< Bé + (R + 6°(ro — R)) Induction assumption
=(1-6)R+6(R +6°(ro — R)) R definition

=(1-6)R+6R +6"(r, — R)
=R + 98+1(f0 - R)
This proves that z°71 € ﬁ(.’c},R +6°t(ro — R)).mm

Proof of Theorem V.13
1. At 8 = 00, d® = 0, therefore

x(:c}, us;0) = x;
2. The conditions of Theorem V.12 are satisfied if the conditions of the current Theorem V.13 are.
Therefore, it is inferred that every trajectory that starts inside ﬁ(z;, r) remains in this ball. Therefore

the contraction conditions will hold along any trajectory. Then:
2" = 231 = lIx(2®, uss d°) — x(27, w5 0)|
= |Ix (2%, us;d°) = x(2°,us50) + x(2°, us;0) — x(2}, us; 0|
< Ix(2" up;d?) = x(2°,uz; 0)|| + |Ix(2°, us; 0) — x(27, us; O)||
< Blld|| + 6j2° — 27|
< AB6 + 6||2° — 27|

In a similar fashion

||2° — 23| £ AB6 + el

l|lz* - z%|| < AB6 + 6||z° - 23|
Then, backward substitution leads to
=g~ 1
2* =23l < BS Y 6°2* +06°||2° - 5|
=0

< 6°||z° — z%|| + sBémaz{A,6}°}

(V.57)
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. . def .
Since lim; oo (8B6n°) =0f0<np <1land 0< g = maz{\,6} < 1 by assumption, (V.57) shows
that the trajectory converges to z}.
3. The previous paragraph established that every trajectory converges to z;, therefore by definition

U(z}, r) is a region of attraction.mm



CHAPTER VI

CONTRACTION PRINCIPLE SYNTHESIS

In Chapter IV control objectives were posed as operator equations. In this Chapter, successive
substitution algorithms are employed to solve these equations and generate control laws. The
results of Chapter V motivate the search for control laws that generate closed-loop operators
with desired contraction properties.

The first section provides the basic synthesis framework. Linear control laws for nonlinear
systems are developed in the next section and their properties and implications are investigated
in detail. In section 3 nonlinear control laws are proposed by extrapolating the results of section
2. Finally the Chapter concludes with the remarks of section 4. |

1. INTRODUCTION
A general synthesis framework for control laws derived from Contraction Mapping arguments

is developed. It provides a unified treatment of synthesis problems associated with the three basic
types of system operators considered in Chapter V ( Def. V.6, V.7 and V.9). Later in the Chapter
(section 2) the framework is specialized to each respective operator.

Assume that a particular control objective is expressed in the form of an operator equation :

P(v)=0 (VL1)

with v an augmented state vector, possibly containing system and/or model states and control
inputs.

T
Example VI.1 : For the control objective ezpressed in (IV.5) it is v = (z u] end P(v) =
S(z,u) - (z,4*).

Following the guidelines of section IIL.1, (VI.1) is cast in an equivalent successive
substitution form :

v=v+Q(P(v) ¥ F(v) (V1.2)
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provided that Q(-) is continuous and invertible. As long as (VI.2) is to be used for control
law computations, an additional condition is imposed on Q(-), that of generating consistent
algorithms in the sense of (IV.6). The set of consistent operators @ will be denoted by Q.. The
control algorithm becomes :

v = F(v*) ="+ Q(P(+*)), QE€Qc (V1.3)

F is the operator that characterizes the behavior of the closed-loop system. In particular,
its contraction properties determine the stability properties of the system. The properties of F
depend on the operators P and Q. Although P is a fixed operator, Q is adjustable. Motivated
by the discussion in Chapters Il and V, the design problem is to select @ such that either of the
following two objectives is attained.
i) (Performance objective) Given an equilibrium state v* of F and a ball U(v*,r), find Q such
that the rate of settling to equilibrium from any initial state inside U(v*, r), is maximal. By
Theorem II1.3, in the worst case it is :

8
||v°—v*us[ sup nF'(v)u] I = o] (VL4)
vEG'(v',r)

Consequently the performance objective generates the min-max optimization problem :

min  sup |[[F'(v)]| VL5
QEQ. veU (v*,r) l ( )

ii) (Stability objective). Given an equilibrium state v* of F, find @ such that the radius r of a
ball of attraction U(v*,r) is maximal. The constrained optimization problem arises :

max r (V1.6)
QEQ.
under the condition
sup ||F'(v)]| <1 (VL.7)
veU (v*,r)

In what follows, emphasis will be placed on the first objective. Treatment of the second

objective follows in the same fashion.
If Qop¢ is the solution of (VI.5) with 8,,; = sup HFém(v)H < 1, the following theorem

summarizes the properties of the resulting closed-loop system.

Theorem VI.1 : Consider the closed-loop system operator F generated by system P and
control law Qop¢, With Q¢ the solution of (VI.5). If 6,5 o sup||Fg, . (v)|| <1, the closed-loop
system has a unique, stable equilibrium state in U(v*,r). The system returns to v* after any

perturbation to v € U(v*,r) at least as fast as

llv* = o[l < 65,]10° = o°| (V1.8)
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Proof : Follows trivially from Theorem V.2.

Solving problems of the type (VI.5) or (VI.6) for general nonlinear operators corresponds
to a nonlinear optimization search over an infinite dimensional space of operators, which is not
tractable at the current stage. The problems are in principle solvable when @ is restricted to a
set of linear operators. Linear Q generate linear control laws for nonlinear systems, which are
investigated in the next section.

2. LINEAR CONTROL LAWS
In this section the framework of section 1 is specialized to three important design problems.
The structure of the section closely follows the development of the analysis theory in Chapter V

for various sets of assumptions.
2.1 The State-Feedback Case
Assumptions The model of the system is exact

The state vector is completely known
Operator Equation
The operator equation expressed by (IV.5), namely to drive the system at steady state with its

output at a desired value y*.

z = x(z,u) ( System at steady state) (VL9)

y* =g(z) (Output at desired value y*)
Successive Substitution Form

zs+l Z’ x(zs,us) _ 28
= VI.10
[U’“] | [U’] ! Q[ v —g(=°) (V110)
The set of consistent Qs

A candidate linear operator Q

R"xR™"— R" xR"™
(n,€) = Q(n., €)
has the properties

1L Q(n,€)=(0,0) = (n,€¢)=(0,0)
ii. @ is consistent (in the sense that the algorithm (VI.10) generated by Q is consistent).

Coumsistency requirements impose a special structure on candidate Q’s : any Q is a linear operator

mapping a finite dimensional space R"*+™ into a finite dimensional space R**™, therefore it has a

matrix representation which is unique with respect to a basis of R™ ", This matrix representation

is partitioned
n m
Q= { Qu @ ) n
Qa1 Q2 m
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(VI.10) yields then

2t = 2° + Qui(x(2°,v*) — 2°) + Qu2(y* — 9(2°)) (VL1La)
wt = uf + Qo (x(2%, u%) — 2°) + Qa2 (v — 9(2°)) (VL11b)

From (IV.6) z°*! = x(2*,u’), which upon substitution in (VL.11.a) implies

x(z°,u®) = z° + Qui (x(2*, u®) — 2°) + Qu2(y" — g(=°))
<= (Qu = D)(x(2*,u*) - 2°) + Qu2(y™ — 9(")) = 0
3 X(zs’ ua) - zs _ X(zs’ us) _ za
= [Qu I le] [ y* — g(z*) ) =0, v [ Y —g(z*) ] (VI.12)

T
Without loss of generality (because the vectors [x(z’,u’) -z° y* - g(z’)) span R"t™ in

non-degenerate cases ) (VI.12) implies

(ou-1 @u)=(0 o)

i.e. Qll :I a.nd Ql? = Q.

Summing up, a consistent operator @ will be of the form

L m

m

I 0 n .
Q= [Qm sz] @22 mom-singular

where the non-singularity condition is imposed by the requirement that a consistent @ is invertible.
The Control Algorithm

For Q € Q. the successive substitution form (VI.10) generates the control algorithm

*t! = x(2°,u°) (V1.13.a)
u'tl = u® + Qi (x (2%, u*) — 2°) + Qa2 (¥" — 9(2°)) (VI.13.b)

(VI.13.b) is the candidate control law. It has a straightforward interpretation: the second term
on the right is state feedback through Qy;, the third term is output feedback through Q,., while
the first term accounts for the integral action of the control law. Fig. VL1 shows a block diagram
realization of the control law.
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s+1

u# + u
*_qs 0, ‘;E +§ é I [. X () = he) Y

o
it

FIGURE VL1 : Block structure of the state feedback control law (q: backward shift-
delay-operator).

The Design Problem
Differentiating the right hand side of (VI.13) with respect to z = z° and u = u® and letting

0 0
®(z,u) = —X;%Lyl, I(z,u) = —X-giit) and C(z) = _Q_%Li).’ the design problem (VL.5) trans-

lates in this case :

The State-Feedback Design Problem

Q(I, U) r(za U)
min max
QEQ:  (z.u)€0((z"u"),r) Q21(®(z,u) = I) = Q22C(2) I+ Q2T (z,u)

Implications for Linear Systems

The design problem is simplified when the system is linear : the entries in the norm are indepen-
dent of z and u and the problem becomes (using the results of section n.3)

The Linear State-Feedback Design Problem
min 5 et (AT -1)A~'B )
QEQ. P Q21(eAT ~I) = Q22C I+ Qy(eAT —I)A1B

The problem is equivalent to a classical pole placement problem, which (assuming observability
and controllability) is analytically solvable. The solution yields p = 0, i.e. all the closed-loop poles
are shifted to the origin. The corresponding control law is commonly known as “state dead-beat
controller”.
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Example V1.2 : Consider the linear, continuous eystem

%_421—-812+u
632_

FI

y =22

with a sampling time of T = 0.1. From (I.5] and (I1.8] it ss

1.470 -0.367

5.7x 1073

$=er" = {
0.122 0.938

], F=(eAT—])A—lB=[ 122 ]

Let
Qa1 = [01 ﬂ) y Q2= (’7)

The linear design problem becomnes

1.470 -0.367 0.122
min_ p 122 0.983 5.7x 1073
@AIER | 0470 +0.1228 —0.367a — 0.0178 — 4 1+0.1220 +5.7x 10734

The coefficients of the characteristic polynomsial of the design problem matriz are equated to zero
(e0 that all eigenvalues, therefore p, are at zero). This results in @ system of three linear equations

for a, B and 7, with the solution

a=-187
g = —-203.7
~n= 81.7

These values are substituted in (VI.18.b), yielding the control law
utt! = uf — 18.7(x§ — ) — 203.7(x5 — z3) + 8L.7(y* — ¢°)

Fig. V1.2 shows the response of the system under this control law to a step up setpoint com-
mand (y* from 0.0 to 1.0}. The system settles after three steps, displaying the state deadbeat

characteristic.

Suboptimal Control Laws
In some cases, associated with smooth nonlinear systems, it is possible to obtain simple, yet
efficient control algorithms without going into great lengths to solve the optimization design
problem of this section. Two simplified procedures are discussed next.
i. ( Local linearization design ). An equilibrium state is located and the system is linearized
around this state. The linear state-feedback case design problem is solved to compute Q2
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FIGURE V1.2 : Contraction controller design for linear unstable eystem. Setpoint track-
ing. (— — —— : Setpoint command, ———— : Output.)

and Q7. They are substituted in (VI.13) in turn to generate the control law. Theorem
V.2 is used to study the stability of the resulting closed-loop system. An induced norm that
approximates the closed-loop spectral radius at the equilibrium state should be used for the
analysis.

ii. Some induced norms (for example the 1- and co- norms) have the property :

, V ABCD

L

A B
¢ D

Based on this property, suboptimal control laws are sought by selecting appropriate @’s that
make the adjustable blocks (C and D) of the design problem equal to zero. It can be easily
shown by substitution, that the following operators have the desired property :

Q2 = - [C(2)(®(z,v) = I)"'T(z,u)] ™" C(2)(®(z,u) -~ I)~?
Qa2 = — [C(2)(2(z,u) - )" 'T(z,u)]

However, both Q3; and Q22 in (VI.14) are nonlinear operators in z and u. To obtain linear
operators, (VI.14) is computed at a fixed reference state (2,cs,ures) — in most cases the

(VL14)

desired equilibrium state is an appropriate reference — yielding the control law:

Q21 = - [C(zrcf)(q’(:’rd’ Upes) — I)—lr(zrcf’ ”re.f)]—l CZres)(®(2ress tres) — I)_l

(V1.15)
Q2 = = [C(2re) (B(res, res) = 1) "I (rey, tres)]



Contraction Principle Synthesis 83

Theorem V.2 is then used for stability analysis of the resulting closed-loop system.

2.2 The Model Reference Case

Assumptions The model of the system is exact

Operator Equation

The control objective is to drive the system and model to steady state with the output at y*.
The equation associated with the model will be assumed to be of the form :

2 = x(2* u') + Qlol=*) — 0l2")) (VL16)

because the resulting model evolution exactly matches the system evolution when 2® = 2% In
this context, the operator equation is :

z = x(z,u) ( System at steady state )
z = x(z,u) + Q(g(z) — g(2)) ( Model matching of system evolution ) (VL17)
y* = g(z) ( Output at desired value y* )

Successive Substitution Form

zs+1 z® X(zs,us) - 2°
[ Pl ] = [ 2® ] + Q [x(z’, u®) + Q(g(z°) — g(2*)) — =* (VI1.18)

ua+1 uf

The set of consistent Qs

A candidate linear operator Q

RRXxR"XR" — R"XR"xXR™

(1, &) ~> Q(v,m, €)

has the the properties

i. @Q(v,n,€)=(0,0,0) < (v,1,§)=(0,0,0)

ii. @ is consistent. (in the sense that the algorithm (VI.18) generated by Q is consistent).
Consistency requirements impose a special structure on candidate Q’s : any Q is a linear operator
mapping a finite dimensional space R"1**™ into a finite dimensional space R"*"+™  therefore
it has a matrix representation which is unique with respect to a basis of R"***™_ This matrix

representation is partitioned
L3

Qu Q12 Qis n
Q=| Q@21 Q22 Q2 n
Qs1 Qs2 Qss

m

(VI.18) becomes then

2+ = 2° + Qui{x (2", u") — 2°) + Qu2(x (2%, v°) + Qlg(2®) - 9(=°)) = 2°) + Qus (¥* — 9(=°))
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(VI.19.0)
2t = 2"+ Qai(x(2%, ") — 2°) + Qa2 (x(2°,u") + Q(g(2°) — 9(2°)) — 2°) + Qas(v* - g(2°))

(VL19.3)
't = o’ + Qs (x(2% u®) — 2°) + Qs2(x(2%,u®) + Q(g(2°) — 9(2°)) — 2°) + Qss(v* — g(=*))

(VIL19.¢)

The system state is not available for control and consequently Q2; and Qs; can only be
equal to 0. In addition, the system evolution does not explicitly depend on the mode] state and
as a result @;2 = 0. Furthermore, the model evolution should match the system evolution when

25 =27 ie.
2"t = x (2%, u°) (V1.20)
Setting z° = z° in (VI.19.b) and equating the right hand sides of (VI.19.b) and (VI.20) :
x(2%,07) = #* + Qua(x(=*, ') + Qg(=*) — 9(*) = ) + Qus (" —9(=*))  (VL.21)
which upon rearrangement yields :
X(za,us) — _ X(za, ua) -—z*
(01 @) [0 ) =0 v (V1:2)

(VI.22) implies that Qg = I and Qs = 0.

Finally consistency requirement restricts the set of admissible @’s even further. Following
the argumentation in 2.1, it can be established that @;;, = I and Q5 = 0.

Summing up, a consisten operator will be of the form

n n m

I 0 0 n

Q= [ 0 I 0 ] n with @ss non-singular
0 Qs2 Qss m

where the non-singularity requirement is imposed by the condition that a consistent @ is invertible.

Control Algorithm
For Q € Q., (VI.19) become :

z*t! = x(2°,u®) (V1.23.a)
¥ = x(2*,u') + Qal2*) - 9(=%)) (V1.23.5)
W = 0t 5 Qe (x(, ) + Qlole’) -~ o)) ~ ) + Qusl” ~g(e"))  (VL.28)
(VI.23.b) and (VI.23.c) comprise the control law. (VI.23.b) represents the model with output
feedback through Q. (VI.23.c) generates the control input by employing system output feedback
through Qssand model state feedback through Qs2. Finally, the first term of the (VI.23.c) right

hand side provides for the integral action. A block diagram realization of the resulting closed-loop
system is shown in fig. VI.2.
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SYSTEM

Y + o 0 U
*.9 (> 9
-0— 0, g X(y0)

FIGURE VL8 : Block structure of the model reference control law (q: Backward shift -
delay - operator).

The Design Problem

Differentiating the right hand side of (VI.23) with respect to z = 2%, z = 2° and u = u® and
aX(w u) aX(v u) ag()

setting ®(-, u) = W’ I'(-,u) = e and C()= -5F)—, the design problem (VI.15)
translates to :
Model Reference Design Problem
&z, u) 0 I'(z, u)
min sup QC(z) ®(z,u) - QC(z) I'(z,u)
Q.Q. (z.2,)€0((z°%,2%,u")1) (Q32Q - Q33)C(.’€) Q32(<I>(z, U) - QC(Z) - I) I+ ngf(z,u)

Implications for Linear Systems
If the system is linear the entries in the norm are not dependent on (z, z, u). Using the results of
section I1.3 then, the problem becomes :

Linear Model Reference Design Problem

eAT 0 (AT -IAT'B
min p QC eAT — QC’ (eAT - I)A"lB
@R | (@320 ~ Qs3)C Quz(eAT = QC ~1I) I+ Qsp(eAT -I)A™!B

Again a pole-placement problem surfaces, with the objective of shifting the closed-loop poles to
the origin, resulting in a stabilizing state dead-beat controller.
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Example V1.3 : Consider the linear open-loop system of example VI.2. Let

Qa1 = (a ﬁ],Q22= [7) and Q= (Z],

Then, the linear design problem becomes

1.47 -0.367 0 0 0.122
122 0.683 0 0 5.7 x 10~

minp | O ) 1.47 ~0.367 -6 0.122
0 € 0.122 0.983 ~ ¢ 5.7 x 103

0 ab+Be-v 0.47040.1228 —0.367a-ab8-0.0178—Bc 1+40.1220+45.7x10" %4

The coefficients of the characteristic polynomial of the deeign problem matriz are equated to zero

and the resulting system of equations is solved to obtain

a -18.7
B -203.7
7l = 81.7
6 17.35
€ 2.46

These values are substituted in (VI.28) yielding the model evolution equations

2itl = 14725 — 17.7225 + 0.122u° + 17.35y°
281 = 0.12225 — 1.4725 + 5.7 x 10™3u® + 2.46y°

and the control law
u'tl = u® —18.7(z]7! - 2]) — 203.7(25F! - 25) + 8L.1(y* — ¥°)

The system response o step up setpoint command (y* from 0.0 to 1.0) is studied, when the initial
model state s significantly different from the system state. The model state “captures” the system
state in two sampling intervals (fig. VI{), after which the system settles in three additional
sntervals (fig. VI1.5).

Suboptimal Control Laws
Suboptimal control laws are sought, to reduce the effort associated with solving the optimization

design problem :

i. A two step approach, suggested by classical synthesis, is discussed next.

Step 1: Solve the state feedback design problem of section 2. and compute matrices Q3; = A
and Q49 = B.



STATE #2

STATE #1

ouTPUT

S 87
w.§ i . —- " S
B_
a
=S | I ] |
75
e-iT 2 — -3 — v N
=75 | | ] |
e 8.2 G. 4 0.6 2.8 1

TIME

FIGURE V1.4 : Contraction controller design for linear unstable system, model reference

case. State convergence. [~ : System state, A: Model state).
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FIGURE V1.8 : Contraction controller design for linear unstable system, model reference

case. Setpoint tracking. (— — —— : Setpoint command, ———— : Oulput.)

Step 2: Set Q3o = A and Qss = B and then solve the model reference design problem with



Chapter VI 88

respect to Q:

&(z,u) 0 I'(z,u)
o min sup QC(z) &(z,u) - QC(z) I(z,u)
ER™IT  (aizw)€U((2%2" ")) || (AQ — B)C(z) A(®(z,u) - QC(2) —=I) I+ AT(z,u)

ii. ( Local linearization design ) An equilibrium state is located and the system is linearized
around this state. The linear model reference design problem is solved to compute Q, Q32 and
Qss. They are substituted in (VI.23) in turn to generate the control law. Theorem V.5 is used
to study the stability of the resulting closed-loop system. An induced norm that approximates
the closed-loop spectral radius at the equilibrium state should be used for the analysis.

2.8 The Case of Parametric Uncertainty

The discussion parallels that of the previous paragraph 2.2, with the main addition that the
contraction conditions should hold for the set of parameters.
Assumptions The system is known up to a set of parametersp€ I C R?
Operator Equation
The control objective is to drive the system and model to steady state with the output at y*.

z = x(z, u; p) ( System at steady state )
z=x(z,u;p0) + Q(g(z;p) — g(2;p0)) ( Model matching of system evolution ) (V1.24)
y* = g(z;p) ( Output at desired value y* )

Successive Substitution Form

zs—l—l z°f X(xs’ us;p) -z .
2L =1 2t + Q@ | x(2%u%po) + Qlo(2%p) — 9(2°; po)) — 2° (V1.25)
utt u’ v* - 9(z;p)

The set of consistent Q’s
The same conditions in 2.2 on candidate @Q’s apply in this case and as a result the set Q. is the

same.
Control Algorithm
For Q € Q,, (V1.25) become :

2°t1 = x(2°,u%; p)
2*F1 = x(2%,u%; po) + Qg(2*; ) — g(2*; po))

utl =+ Qs (x(2%, 6% po) + @lo(2%; p) — 9(2% po)) — 2°) + Qs (v — 9(2°; p))
(VI1.26)
The interpretation and block diagram realization in this case is identical to the model reference
case (fig. VI1.2).
The Design Problem

dx(- u; p)
a()

I(,u;p)= _3_)(_(_‘6_,_;52_)’ C(yp) = ?%i(;j—)g-)-, and v = (z, z,u), the design problem (V1.5) trans-

Differentiating the right hand side of (VI.26) and setting &(-,u;p) =
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lates to :
Parametric Uncertainty Design Problem
&(z, u; p) 0 I(z,u;p)
min  sup QC(z;p) ®(z,u; po) ~ QC(z; po) I'(z, u; po)

e.q. VDL (@32Q — Qs3)O(zp) Qua(®(2,up0) ~ QC(zipo) = I) I+ Qs2l(z,u;p0)

Implications for Linear Systems
If the system is linear the entries in the norm are not dependent on (z, z, u). Using the results of
section I1.3 then, the problem becomes (after setting A, = A(p) and Ay = A(po) etc.) :

Linear Parametric Uncertainty Design
el 0 (e**T —I)A; 1B,
min sup p QC, erT - QC, (T - NA;'B,
@RI | (@52Q ~Qs3)Cp Qa2(ehT —QCo —I) I+ Qsa(eteT —I)A; By

Suboptimal Control Laws

( Nominal local linearization design ) Assume that p = p, and subsequently solve the resulting
model reference problem . Theorem V.8 is then used for stability analysis.

3. NONLINEAR CONTROL LAWS

An inherent disadvantage of the successive substitution approach is that it does not suggest
any computational procedure for obtaining nonlinear operators @ that affect algorithm conver-
gence properties in a desirable manner. As a result, alternative operator equation solution meth-
ods should be considered for nonlinear control law synthesis. This is done in the next Chapter
by employing the method of Newton.

In the context of successive substitution methods, only the case of linear operators can be
dealt with mathematical rigor. Nonlinear control laws can be obtained in the state-feedback case

by extrapolating the corresponding linear control laws. The nonlinear operator Q in (VI.13) if
substituted in (VI.12) generates the nonlinear control law :

za-H

— x(za’ uﬁ)
u't! = u® + [C(2)(®(2,u) - I)7'T(a, u)]-1 C(z)(®(z,u) - I)7 (z° - x(z°,u*))

+ [C(2)(®(2,u) = I)"'T(z,u)] " (g(2°) - 4*) (VL27)

~

The stability of the closed-loop system is determined by Theorem V.2.
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Example V1.4 : The Continuous Stirred Tank Reactor of example II.1 will be used as a benchmark
test for the proposed nonlinear control laws. Introducing appropriate values for the coefficients,

the reactor system se described by the following set of equations:

%?— =1- 2z, — 3 x 10° exp(—5000/z5 )z, + 6 x 107 exp(~7000/zs)z,
> = "% + 3 x 10° exp(—5000/z3)z; — 6 x 107 exp(—7000/z3)z5
%’% = T; — 23 + 0.05[3 x 10° exp(—5000/z3)z; — 6 X 107 exp(—7000/z5)z,)

Yy =z3/(z; + z5)

where t is in min, z1, 3 éinmol -171, z3 in K /100 and T;, the inlet temperature, in K [100.
The temperature - conversion equilibrium diagram of the reactor (fig. V.1, ezample V.{) shows
a well defined conversion mazimum. The objective is to safely operate the reactor close to the
mazimum conversion point, using the feed stream temperature as the control input.

It has been shown (Economou and Morari 1985), that as a result of the nonlinearly varying gain of
the reactor, the control problem is inherently difficult to address with a linear controller: integral
action controllers are unstable, non-integral action linear controllers lead to unacceptable offsets
from the desired operating point.

Fig. VI.6 shows the system response to a step-up setpoint command to mazimum conversion,
under control law (I1.27) (). A sampling time T = 1.0 min is used and the initial reactor state
t6 at the left of the mazimum conversion point.

In fig. VI.7 the situation is repeated, only this time the initial reactor state is at the right of the

mazrimum conversion point.

4. CONCLUDING REMARKS
4.1 Linear vs. Nonlinear Controller Design
The design problems for linear and nonlinear systems are conceptually closely related, in the
sense that they derive from the same principles. The respective computational aspects however
are fundamentally different for the following reasons :
i. For linear systems the derivative of the system operator is independent of the state. As a
result, the associated design problem is a simple minimization search. On the other hand,
for nonlinear systems the derivative operator is a function of the system state, resulting in a
considerably more complicated min-max optimization search.
ii. For linear systems a unique measure ( p ) of the system operator is optimized; whereas
for nonlinear systems an additional computational burden is to find the least conservative
operator norm — out of an infinite multitude - to optimize.

(1) Program DDASAC {Caracotsios and Stewart 1984) was used for the on-line computation of the

quantities involved in the control law computations.
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FIGURE V1.6 : System response to a step-up setpoint command under control law (H.27)

. Sampling time T = 1.0 min. Initial reactor state is at the left of the mazmum conver-
sion point (20 = 0.84, zJ = 0.16, z3 = 3.51). (———— : Setpoint command,

System output, i.e. R concentration).
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FIGURE V1.7 : System response to a step-up setpoint command under control law (H.27)

. Sempling time T = 1.0 min. Initial reactor state s at the right of the mazimum conver-

sion point (20 = 0.59, 23 = 0.41, 23 = 5.02). (———— : Setpoint command,

System output, i.e. R concentration).

ili. For linear systems there is only one equilibrium state in general. This is not the case in
nonlinear systems, which can have many equilibrium states; for each equilibrium state a

separate stability analysis is necessary.

iv. For linear systems the region of stability (attraction) is the space itself and as a result once
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stability has been established in some region, it is automatically established for any other

region, the space itself included. For nonlinear systems, stability regions can be finite sub-

spaces of the space; at the same time stability in some region does not have any implications
for stability in any other region.

The implied computational complexity is inherently tied to nonlinear systems controller
design. It is the price to be paid for extending the design problem to a much broader class of
systems than the class of linear systems.

4.2 Implementation Aspects

The bulk of computations associated with contraction principle controllers is performed off-
line in order to solve the corresponding design problems. On-line implementation is not much
different or more complicated than a generic linear control law implementation. At each sampling
time (eg. t = t*) the following steps are performed for the implementation of control law (V1.23)

Step 1 : Measure the system output y* = g(z°) at t = ¢°.
Step 2 : Compute the model output y3, = g(2°*) at t = t°.
Step 3 : Simulate the model equations (II.1), with z(t*) = 2, from ¢ = ¢* to ¢ = t**! to obtain
the quantity x(z°, u®).
At this point all the quantities involved in the control law calculations have been computed.
Then,
Step 4 : Update the model state by (VI1.23.b).
Step 5 : Compute the input to be injected to the system from ¢ = t*+1 to t = t*+2 by (V1.23.c).
Step 6 : Set s =8+ 1. Go to Step 1.
4.3. Integral action
Assuming stability, every control law introduced in this Chapter will have no offset at equilib-
rium. This is merely a consequence of the way the control objective was expressed as an operator
equation. To understand why, note that at equilibrium (VI.2) becomes:

Veq = Veg + QP (veg)
©QP(ve) =0 (and, since Q is invertible)
&P(v,) =0 (V1.28)

In deriving control laws, the objective expressed by P(v) = 0 was to drive a system to steady-
state with the output at a desired value. Then (VI.28) shows that, if the system is stable, the
control objective is attained at steady-state, i.e. the system output will be at the desired value,
with no offset.
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NEWTON SYNTHESIS

1. INTRODUCTION

In Chapter VI it was pointed out that the successive substitution approach is not efficient
in deriving nonlinear control laws. Alternative operator equation solution methods should be
investigated. Nonlinear control synthesis is pursued in this Chapter by employing the Newton
method.

The method and its properties have been investigated in detail (Bartle 1955, Kolmogorov and
Fomin1957, Kantorovié¢ and Akilow 1964, Curtain and Pritchard 1977, Rall 1979). It has been well
established that it is computationally efficient, with fast convergence rates; however it is not very
reliable, in the sense that it produces smaller regions of convergence than alternative methods do
(Steepest Descent, Successive Substitution etc.). Significant advances in developing modifications
of the Newton method with strong convergence properties have been reported (Underrelaxed
Damped method of Stoer 1972,1973 and Deufelhard 1974, Ball Newton method of Nickel 1979).

These counsiderations aside, the Newton method is used here as a prototype for nonlinear
controller synthesis. Alternative methods can then be patterned along the proposed synthesis
guidelines.

It is shown in Appendix VII that the Newton method does not yield consistent control laws.
Hybrid Newton algorithms are constructed in section 2 to account for this situation. Then in
sections 2 and 3 pseudo-Newton control laws are developed by considering different operator
equation formulations of the control problem. Table VII.1 summarizes the proposed laws, the
respective variant control laws, as well as the paragraph they appear.

The structure of the respective sections is common: the operator equation is stated first.
Then, in the standard procedure of deriving the Newton method, control laws are obtained by
truncating the Taylor series expansion of the operator equation; variants of the control laws
follow in the light of the relaxed and simplified Newton methods defined in section III.2; stability
conditions for every control law are developed, based either on the hybrid Newton convergence
Theorems III.6 and 7, or Theorem V.2 and its corollaries; finally the interpretation, properties
and implementation aspects of the control laws are discussed.

Exact modelling and complete access to the state vector will be assumed throughout the
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NEWTON CONTROL LAWS REFERENCE TABLE

TYPE HYBRID NEWTON PSEUDO-NEWTON A PSEUDO-NEWTON B
Basic Lavw 1. (§2.2) II. (§s.2) III. (§¢.2)
Relazed Law
(Control updates LR (83.4) ILR (§s.4) LR (84.4)
relased by A)

Simplified Law

(Derivative computed at 1.8 (§3.5) 1.8 (§s.5) 111§ (§4.5)
fzed reference state)

Linear Low

(Basic Law for IL.L (§s.6) IIL.L (§¢.6)
Lincar Systems)

TABLE VII.1 Newton Control Laws: Nomenclature

Chapter. They correspond to the assumptions of sections V.2 and VI.2. Relaxation of these

assumption will not be treated at present. It is straightforward conceptually to extend the control

laws of this chapter by solving the appropriate operator equations, in the same fashion that the
laws of section VI.2 were extended to the model reference case of section VI.3 and the parametric

uncertainty case of section VI.4.

The control laws will be expressed in a form u®t! = y(z% u®) and ¢ = y(z,u) will denote
this general functional dependence. To facilitate expressing the stability conditions, the notation

of Table VII.2 will be used in the section.

2. HYBRID NEWTON CONTROL LAW

2.1 Operator Equation

The objective is to drive the system to its steady-state such that the output is equal to y*.

z = x(z,u)

g9(x)

x(2° uttt) — 2 = x (T 2%, u%) — 2° + [

( System at Steady-State )

v (Output at desired value y* )
2.2 Control Law Derivation
(VIL.1) is expanded in its Taylor series around a point (z,u) = (z°,u®) yielding

+ Ox(T; %, uf)

ax(T; 2%, u®)

0z*

('t —u®)+ 0 (

g(x(z*T u't)) - y* = g(x(T; 2%, v®)) - ¢*

zo+l - z°
ut+l _—

(VIL1)

- I} (z°! - z°)

2) (VII.2.a)
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CONTROL LAW NOTATION
od
X :X(:r, u) = x(T; z, u) P, = -5—2—
_ _ Ox _ 0%
¢-——Q(.’L’,u)~—a—; Q“_.au
ax or
r"r(”")“au ‘oz
C =Clz,u) = 24| r, =L
o = égg(ﬂ - ax(s, €)
A P ST )
£ = Upe s
ag(c)l ax(s, €)
Crcf = T rrcf = e =
=2z
65‘ §= X(zrefs Uge s af € = u:‘;
TABLE VvII.3 Newton Control Laws: Notation
+ ag(f) J BX(T; Is’ us) (za+1 _ zS)
¢ e = x(T; 2z, u®} 0z°
+ 59((’) aX(T; x:’ us) (us+1 _ us)
o le = x(matw) O
Zs+1 — g% 2 .
+ 0 ( w1 _ gt ) (VH.Z.b)

Assuming that (2%, u®+1) is a solution of (VII.1)

x(za+1’us+1) _ zs-{-—l =0

g(x(:c'+l,u8+l)) _ y* — 0,

truncating the terms of order two and higher and using the notation of section II.2, (VIL2)
becomes

O=x°—2"+ (& - I)(z*t' - 2°) + T°(u**! - u°) (VIL.3.a)
0=g(x") —y* +C°H & (%! - 2°) + C°HI* (v - u°) (VIL3.b)

(VIL.3.a) is solved for (z°*! — 2°) :

zs-}-l — zo = (Qs _ I)—I[za _ Xs - I\s(us+1 - ua)] (VH.4)
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and then (VIL4) is substituted in (VIL.3.b) to obtain u®+! after some rearrangement
u™l = u't [CH (@0 - 1)7IY) T Ot (80 - )T (2" - x°)
+[c (@ - 1)) T (vt - oY) (VIL5)
The Hybrid Newton algorithm is then constructed as follows : Consider any successive
substitution algorithm (section VI.2) with Q;; = I, Q12 = 0, Q21 and Q2. arbitrary operators.
The consistency of the resulting control law was shown in Section VI.2. At the ' iteration this
algorithm produces z:%! and u?*! (equation VI.13). At the same iteration the Newton algorithm
produces 25! from (VIL4) and u§! from (VIL5) . Although in general z3t! # x® - because .
the Newton algorithm is not consistent — it is always z5*! = x® by construction of the consistent
successive substitution algorithm. For the next iteration the hybrid algorithm selects
ze+1 = z:-}-l (= Xs)
(VIL6)

uc+l = u;'v-i-l

By construction the hybrid algorithm is consistent. Summarizing, the control law is :

CONTROL LAW 1.

HYBRID NEWTON
us+1 =u® + [C‘+1(Qs - I)-lrs]"l Cs-l-l‘bs((ps _ I)—l(xs _ Xs')
+ [Cs+l(®s _ I)—lrs]“l (ys+1 _ y*)

2.3 Stability Analysis
According to Theorem III.6 the conditions for stability are:
1. There exist Qg;, Q22 such that

¢ r

<1, VY(z,u)eU((z*,v*),r)
Q2 (®-1)-Q3:C I+QyT
. -1 T
i. sup I I sup HsHl r < 1
zuel(z*u)y) C® CT x,ueU((z'.u'),r)‘

where 5113 = {‘I)z}, S121 = {‘Du}, Sz = {Fx}, Sy22 = {Pu}, So11 = {C'}° o+
Co{®.}, S221 = {C'} o @0l +C e {®.}, Sa12 ={C'}e@ol +Ce{l,}and Sy22 =
{C'}edoT +Ce{l',}.

Example VII.1 : The Continuous Stirred Tank Reactor of ezample VI.1 is used to sllustrate
application of control law I.
Fig. VI.1 shows the system response to a step-up setpoint command to mazmum conversion,

under control law I., when the initial reactor state is at the left of the mazimum conversion point.
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FIGURE VIIL.1 : System response to a step-up sctpoint command under control law I.
Sampling time T = 1.0 min. Initial reactor state is at the lefi of the mazimum conversion
point (20 = 0.84, z§ = 0.16, 2] = 3.51). (~ — —— : Setpoint command,
System output.)

In fig. VI.£ the situation s repeated, only this time the snitial reactor state is at the right of the

mazimum conversion point.

8.55

@.45

pe o e - . e e E o e o e e e W e ae e e ep g

TIME +» min

FIGURE VII.3 : System response to a step-up setpoint command under control law I.
Sampling time T = 1.0 min. Initial reactor state is at the right of the mazimum conver-
sion point (20 = 059, z3 = 041, 15 = 5.02). (~ — —— : Setpoint command,

: System output.)
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2.4 Relaxed Law

Relaxing the updates in law I. by a factor A, the relaxed law is obtained:

CONTROL LAW LR

RELAXED HYBRID NEWTON
&a-{—l =u®+ A [Cs-fl(q,s - I)—lrs]"‘l Cs+1q,s(q)s - I)-—l(za - xo)
+A[CoHH (@0 — 1)) T (- y)

Example VI1.2 : The effect of the relazation factor is sllustrated in fig. VII.S. The system response
to a step-up setpoint command under control law I.R and 8 different relazation factors is shown,

when the snitsal reactor state is at the left of the mazimum conversion point.

B.55
—

B. 45—
p 4
=
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@ .35
4
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8.1 ¥ [ 1 |} ] 1 1 | IR ] I 1 ] [ | I | ] ] | | I ] ] ' ¥

) 2 4 3 8 10

TIME » min
FIGURE VILS : System response to a step-up setpoint command under control law I.R.

Relazation factors: 0.5, 1.0 and 1.5. Sampling time T = 1.0 min. Initial reactor state
is at the left of the mazimum conversion point (2} = 0.84, 23 = 0.16, zJ = 3.51).
(— — —— : Setpoint command, ———— : System output.)
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2.5 Simplified Law

A reference point (Z,.z, trcs) is selected (1) and the appropriate quantities ®,.s, I',.; and
C,.s are computed. The simplified control law is the linear control law obtained by replacing
®°, I' and C**! in (VIL5) (which are matrix functions of z° and u®), by the constant matrices
®..7, T..s and C,.s respectively.

CONTROL LAW I.8
SIMPLIFIED HYBRID NEWTON
utl=u+ [Orcf(Qrcj - I)_lrref]_lcrch)re](q)rcj - I)—l(zs - Xs)
+[Cres(®res = 1) ' Tref] ™ (0" - 07)

According to Theorem L7 if (z,.s, ttres) = (2*, u*), the conditions for stability are:
i. There exist Qg;, @29 such that

¢ r
<1, VY(z,u)eU((z*,u*),r)
Q2 (®-1I)=Q2C I+QxT

Qref -1 Fref

5U SH r < 1
”Crefq’ref Crefrrcf' I.uEU((zI'),u'),r)”{ }”

=3

where S as in §2.3.
2.6 Interpretation

The objective of the Hybrid Newton algorithm is to find the equilibrium state and input of
the system. The quantity 2°+! in (VIL.4) is the first order approximation of the equilibrium
state. As a result the hybrid algorithm “looks” ahead at t = oo when it computes the next input
to the system. Consequently, the control action will be very conservative, and of practical value
only for relatively fast systems where this infinite horizon assumption is reasonable.

The control laws developed later in the Chapter display the opposite behavior, by “looking”
only one step ahead.

Comparison with control law {VI.27) of Chapter VI shows that control law I. is identical (a
technical difference is that in (V1.27) output feedback at t° is used instead at t*+! as is the case
here). It may be recalled that this control law was obtained by selecting nonlinear operators @
that make the lower blocks of the state feedback stability condition equal to zero.

(t) There are different alternatives for reference selection. The reference point may be the equilibrium
state, or any other state around it. Theorem III.7 supports the stability analysis when the equilibrium

state is used.
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2.7 Implementation
Matrices Q;; and Q22 need not be explicitly computed for the implementation of the hybrid
Newton law, because they do not enter the control law expression. Their existence only suffices

for off-line stability analysis.
Computations for the implementation of control law I. are carried out during the s** sampling
interval, in the following succession.
Step 1 : The model equations (II.1) are integrated forward from ¢° to t**! to obtain & and I'®
(Section I1.3).
Step 2 : The quantities C**!, [C*+1(®° - I)“I“’]-1 and C*+19°(®° — I)~! are computed.
Step 3 : The system output y*+! and state x® at ¢ = t*+! are measured.
Step 4 : The new input to be injected into the system at { = ¢*+! is given by Control Law I.
2.8 Asymptotic Behavior

The Hybrid Newton control law I. (and its derivative laws) display some interesting behavior
for large sampling times. It is argued in Appendix VII that for T — oo, it becomes a standard
Newton algorithm for the solution of the algebraic equations that describe the steady state of the
systemi.

Specifically, let x® be the equilibrium state of the open-loop system that corresponds to some
input u®. Then the control law becomes for T — oc:

-1 -1

Bg(g) af(§s E) af(s.’ E) ’ 8 *
u"‘*'l:u’- —_ e P o le=+" (g(x)-y)

This is the same expression used for the solution of the algebraic equation g(z) = y*, with z
an implicit function of u, given by f(z,u) = 0.

The implication is that the control law stability for large sampling times can be studied in
terms of the convergence properties of a Newton iteration for the solution of a system of algebraic
equations.

8. PSEUDO NEWTON CONTROL LAW A

3.1 Operator Equation

The operator equation is discrete this time:

2ot = x(z°, u®) ( System evolution constraint )
(VILT)
glz**t) =y* ( System output at y* in one step )

3.2 Control Law Derivation

(VIL.7) is expanded in its Taylor series around (z°, u®):

g(x(z"tuth)) -y = g(x(=%,u)) - ¢
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+ ag(f) ax(za,us (za+l - zs)
af ¢ = x(z’, u’) dz*

dg(s) dx(z*, ug)(up-{-l —u*)
d¢ ¢ = x(z°%, v*) Ou?

Za—}-l —_ gt

us+l — us

vo ) (vig

In the standard procedure, the left hand side is set to zero, higher order terms are trun-
cated, the consistency requirement is used to compute z°+!(= x°) and the Section II notation is
introduced, after which (VII.8) becomes

0= ys+1 - y* + Cs+lQS(Xs - xs) + [Cs+1rs] Au® (VII.Q)

Solving (VI1.9) for (u®*! — u?) the first pseudo-Newton control law is obtained

CONTROL LAW I1.

PSEUDO-NEWTON A

u'tl =y 4 [wars]—l Cs-HQS(zs __Xs) + [Ca+lrs]"‘1 (y* _ ys+l)

3.3 Stability Analysis
Applying Theorem V.2, the stability condition is:

511 512

Sp1 Sas <1, V(z,u)eU((z* u*),r)

where S;; = ®, S12 =T,

Sp1 = —[CT|" [CO® + {C'} 0B e (x—2)+ C o {8} 8 (x~2)+CO®~I)+{C'}oBoT(¥ -
u)+Ce{l,;}o(y—u)] and

Sy =I-[CT|7}[{C'}oTe(x—2)+Ce{®,}o(x—2)+COT +{C'}oTe(y—u)+Co{l,}o (v —u)

Example V.3 : The Continuous Stirred Tank Reactor of ezample VI.1 ts used to sllustrate
application of control law II.

Fig. VI.{ shows the system response to a step-up setpoint command under control law II. when
the snitial reactor state is at the left of the mazimum conversion point.

In fig. VL5 the situation is repeated, only this time the initial reactor state s at the right of the
mazimum conversion point.



CONUERSION

CONUERSION

Chapter VII 102

e.s
2.4
8.2—
I T 1 1 1
B T ¢ v l T 1 1§ 1 ' T ¢ 1 1 ‘ 1 1 1 l
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FIGURE VII.4 : System response to a step-up setpoint command under control law II.
Sampling time T = 1.0 min. Initial reactor state ss at the left of the mazimum conversion
point (20 = 0.84, zJ = 0.16, z3 = 3.51). (— — —— : Setpoint command,
System output.)
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FIGURE VILS : System response to a step-up setpoint command under control law IL
Sampling time T = 1.0 min. Initial reactor state is at the right of the mazimum conver-
sion point (z0 = 0.59, zJ = 0.41, z = 5.02). (- — —— : Setpoint command,

: System output.)
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3.4 Relaxed Law
Relaxing the updates in law II. by a factor A, the relaxed law is obtained:

CONTROL LAW ILR

RELAXED PSEUDO-NEWTON A

wtl = uf 4 A [COHIT T O (2 — xf) + A [CUHT] T (v -yt

Theorem V.2 characterizes the stability of the relaxed law. The norm condition is obtained from

the previous paragraph, after multiplication of Sz; and (S — I) by the relaxation factor A.

CONUERSION

Example VIl 4 : The effect of the relazation factor is dllustrated in fig. VII.6. The system response
to a step-up setpoint command under control law ILR and 8 different relazation factors 18 shown,

when the instial reactor state ie at the left of the mazimum conversion point.

8.55
—

B.45"

0.35 "

8.25™]

B8.15 lllllllllllll

) 8 10
TIME » min

FIGURE VIIL.6 : System response to a step-up setpoint command under control law II.R.
Relazation factors: 0.25, 0.5 and 1.0. Sampling time T = 1.0 min, Initial reactor state
is at the left of the mazimum conversion point (20 = 0.84, zJ = 0.16, zJ = 3.51).

(— — —— : Setpoint command, ———— : System output.)
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3.5 Simplified Law

A reference point (z,.s, trcs) is selected (for example the equilibrium state of interest) and
the appropriate quantities ®,.s, I'y.y and C,.; are computed. The simplified control law is the
linear control law obtained by replacing ®°, I'* and C°*! in (VII.9) (which are matrix functions
of z° and u®), by the constant matrices ®,.s, I'yey and Cyey respectively.

CONTROL LAW I1.85

SIMPLIFIED PSEUDO-NEWTON A

u"'“ =u’ + [Crcfrrcj]—l Crcf®rcf (-T's - Xs) + [Crejrref]—l (y* - ys+l)

From Theorem V.2, the stability condition is

Sll Sl2

Sp1 Sav <1, VY(z,u)eU((z*,u*),1)

where §;;, = ®, S12 =T,
So1 = ’[Crefrref]-lcrefq)rCJ(q) -I)- [Cfefrref]..lc‘p and
Sag = I = [CresTres]Cres ®resT = [CresTres]~1CT
3.6 Linear Law
For linear systems, it is shown in the appendix that control law II. becomes:

CONTROL LAW IIL.L

LINEAR PSEUDO-NEWTON A
uttl = y® 4 [C(CAT _ I)A—lB]"'l [C,eAT(za - Xa) +yt - ys+1]
= u* + [O(AT = NA7'B] ™ [y - CeATx’]

The stability condition from Corollary V.4 is

( AT (AT - 1)A-'B ) <1
P | —[C(eAT ~ I)A™'B)~'Ce?AT  —[C(eAT — I)A~'B|~!1CeAT (AT — I)A™'B
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Example VII.5 : Consider the two-input two-output linear system

%z‘;‘=—21+$2+3u1—u2
62‘2
8t
323

—_— =2y — I + Uj
at

Y1 = 2z; + 2z — 23

= -z, — 322 + 23 — uz

V2 =321 — 22
Using (11.5) and (I1.8):

0.785 0.153 2.1 x 10~2
=T = -0.153 0472  0.153
—2.1%x10"2 0.153  0.800

0.660 —-0.242
I=(T-I)A"'B= | -45%x10"2  —0.153
0.217 -2.1 x 1072

2 2 -1
o=(5 4 %)

~0.585 0.786 Co = [1.23 1.1 —0.45
-2.07 103 )° ~ {243 -0.013 -0.09

Consgequently
jor~ = |

Then control law II.L becomes
uit! = uf +2.63(zf — x§) — 0.65(z5 — x35) + 0.19(z3 — x3)
—0.585(yF —yit?) + 0.786(ys — w5 *")
utt! = uf — 0.083{z} — x}) — 2.29(25 — x3) + 0.84(z5 — x3)
- 2.07(y} —yit?) +1.03(y; —p5t')

Fig VII.7 shows the setpoint tracking behavior of the closed-loop system under this control law.

The dead-beat actson 18 evident.

3.7 Interpretation

Contrary to control law I. which tries to drive the system output to the desired value y* at
steady state, control law II. tries to drive the system output to y* (up to first order in accuracy)
in one step. As a result the control action is much more aggressive.

For linear systems it becomes a one step ahead output dead-beat controller (see Appendix
VII). Its properties are well studied {Franklin and Powell 1981) and will not be repeated here. It
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3.9 Asymptotic Behavior
For T — oo, it is argued in Appendix VII that the coatrol law II. becomes identical to
control law I. and consequently it displays the same asymptotic behavior.

4. PSEUDO NEWTON CONTROL LAW B
4.1 Operator Equation

The operator equation is discrete this time:

g(z't) =y¢* ( System output at y* in one step )
(VIL10)

2t = x(2%,u°) ( System evolution constraint )
4.2 Contro] Law Derivation
Consider the variation to first order of the output map around a point 2°¥!. Then

8g(s)
42y _ x e+1y _ % s+2 _ _5+1
o) - T =0la") -0+ =5 s.=x,+l(7c z*7)
+ O(|]2°*2 — 2**1|?) (VIL11)

2°*2 is the system state at t = 12 je. z't2 = x(2°*!,u*+!), a nonlinear function of u*+1,
If a u"t! is desired which makes the right hand side of (VII.11) zero to first order (and produces
y**? = y*), the equation to be solved (after introducing the usual notation) is:

0= ya+l ~ 4+ Cs+1(x(2.8+1’u8+1) - ZH’I) (VH.IZ)

The nonlinear equation (VII.12) can be solved either by some iterative method {which is to be
avoided in lieu of on-line calculations), or its solution can be approximated by the solution of an
appropriate linear problem. This linear problem is obtained if x(2z°*!, u**!) is approximated to
first order by expansion around u®:

ax(zs-H , ua)

ou®

Now the notation is introduced: x* = x(2°1,u®), i.e the system state at ¢ = t*+2 if the input
were held constant at u = u® over the (s + 1)'* sampling interval, and its associated partial

58
derivative with respect to u®, I'® def ?—X— Substituting then (VIL.13) into (VIL.12) yields
du’

0= g+ -y + O (5 + TP (w1 — u®) — *) (VIL14)

Solving (VII.14) for u®*?! the second pseudo-Newton control law is obtained

x(z41, 0 = x(2", ") + (u*h —w) 4 O(u™* —w|?)  (VILLY)

CONTROL LAW IIl.

PSEUDO-NEWTON B
u*tl =yt + [Cs'*'lfa]—lC(X' - Xs) + [Cs+1fs]—l(ya _ yc+1)
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4.3 Stability Analysis

The stability condition is obtained from Theorem V.2 :

Si1 Sz

Sy Sall < 1, V(z,u) e U({z*,u*),r)

where S” = Q, Slq = T,
S3 = =[CT]7 [C®+{C'}o®(X ~x)})+C($ ~®) +{C'} o BT (¢ —u) + C o {I';} o (v - )] and
: - . - - B - 0y
Sp2 = 1= [T [{C'} o = x) + C{f ~T)+{C"} o TH(w = u) + C o (L} (v - w)], & = 32,
Example VII.6 : The Continuous Stirred Tank Reactor of ezample VI.1 is used to illustrate
application of control law I1I.
Fig. V1.8 shows the syetem response to a step-up setpoint command under control law III. when

the snitial reactor state ie at the left of the mazimum conversion point.

8.6
S 8.4
¢ i
o
g‘( L
g -d
O g.2"
ﬁ
- N A B B B N B B N N B B B L L B ) LA B
7] 2 4 e 8 10

TIME ,» min

FIGURE VIL8 : Syetem response to a step-up sefpoint command under control law II1.
Sampling time T = 1.0 min. Initial reactor state e at the left of the mazimum conversion
point (20 = 0.84, 25 = 0.16, zJ = 3.51). (- — —~ : Setpoint command,

System output.)

In fig. V1.9 the situation ie repeated, only this time the initial reactor state vs at the right of the

mazimum conversion point.
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FIGURE VILs : System response to a step-up setpoint command under control law IIT.
Sampling time T = 1.0 min. Initial reactor state is at the right of the maezimum conver-
sion point (29 = 0.59, zy = 041, 20 = 5.02). (- — —— : Setpoint command,

: System output.)

4.4 Relaxed Law

Relaxing the updates in law III. by a factor A, the relaxed law is obtained:

CONTROL LAW II1L.R

RELAXED PSEUDO-NEWTON B
us+1 =y’ + AICG+lf8]—IC(XE _ X»a) + AICa-}-lfweJ—l(yt _ ys+l)

Example VII.7 : The effect of the relazation factor s sllustrated in fig. VIL10. The system
reeponse 10 a step-up setpoint command under control law IILR and § different relazation factors

te shown, when the initial reactor state 46 af the left of the mazimum conversion point.

4.5 Simplified Law

A reference point (z,.;,U,.y) is selected (for example the equilibrium state of interest) and
the appropriate quantities f‘,ef and C,.s are computed. The simplified control law is the linear
control law obtained by replacing ®°, I'* and C**! in (VII.14) (which are matrix functions of
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CONUERSION
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TIME » min
FIGURE VIIL.10 : System response to a step-up setpoint command under control law
II.R. Relazation factore: 0.25, 0.5 and 1.0. Sampling time T = 1.0 min. Initial reactor
state ie af the left of the mazimum conversion point (20 = 0.84, z3 = 0.16, 20 = 3.51).
(- — —— : Setpoint command, ————: System output.)

z® and u®), by the constant matrices ®,.7, I',.s and Cy.s respectively.

. N -1
u'tl = ¢f + [Crejrrcj]—lcrej(xs - )Zs) + [Crejrre!] (IJ‘ - UE-H)

CONTROL LAW II1.8

SIMPLIFIED PSEUDO-NEWTON B

The stability condition is (Theorem V.2) :

S Si2

Soi 5o <1, V{z,u)eU((z*,u*),r)

where Sll - Q, 512 = F,
So1 = —[CresTres] 2 Cres®® and Syp = I = [CresTres] 1 Cres (8T +T).
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.6 Linear Law
For linear systems, it is shown in the Appendix that the resulting control law is

CONTROL LAW III.L

LINEAR PSEUDO-NEWTON B
utl =yt 4+ [C(eAT —I)A—IB]-I [C’eAT(za _ X‘) +yt - yn+1]
=u' +[C(eAT - 1A BT [y - Cer Ty’

The stability condition from Corollary V.4 is :

{ eAT (eAT ~I)A~1B ] .
P | —[C(eAT = I)A='B|-1Ce?AT —[C(eAT — I)A~1B]~'CeAT (AT = I)A7'B ) <

4.7 Interpretation

The second pseudo-Newton law is only shghtl} different than the first. Consequently the
same comments apply.

The similarity is demonstrated by the fact that the respective linear laws are identical one
step ahead dead-beat controllers.

4.8 Implementation

Computations for the implementation of control law III. are carried out during the s'* sam-
pling interval, in the following succession.
Step 1: The mode) equations (II.1) are integrated forward from ¢ to t*+! to obtain x°.
Step 2: The model equations are integrated forward from 1! to t*+? with initial condition
z = x* and input u = u® to obtain x° and Ie (Section I1.3).

Step 3: The quantities C**! and [C*11[*]~! are computed.

Step 4: The system output y®t! and state x* at £ = t*+! are measured.

Step 5: The new input to be injected into the system at ¢ = t*+! is given by Control Law III.
4.9 Asymptotic Behavior
For T — oc, it is argued in Appendix VII that the control law III. becomes identical to

control law 1. and consequently it displays the same asymptotic behavior.

8. REMARKS

I. There are quite a few differences between the Contraction Principle Control (CPC) laws
of Chapter VI and the Newton Control (NC) laws of this Chapter. First, on the synthesis side,
CPC laws are derived by solving norm optimization problems; with the solution depending on
the particular norm selection. On the other hand the Newton method gives explicit formulas
for the NC laws, without resorting to optimization; there is no norm dependence. Second, on
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the analysis side, stability apalysis of NC laws is more involved than CPC analysis because the

respective'stability conditions depend explicitly on second derivatives of system operators. Third,
the major computational burden associated with CPC laws is carried out off-line, with on-line
computations being comparable to a standard linear control algorithm. On the contrary, there is
little off-line computation associated with the Newton laws, which are virtually computed on line
(Sections 2.7, 3.8 and 4.8). Finally, CPC algorithms are basically linear, while NC algorithms are
ponlinear, adding to the complexity of the analysis.

1II. It should be stressed that the operators @ used in the construction of the Hybrid algorithms
do not enter in the control law expressions. For stability analysis of Hybrid algorithms their
explicit form is not needed; it is enough to show the existence of Q that make the system operator
8 contraction. ‘

HI. The remarks concerning integral action in §4.4 of Chapter VI carry over to the case of
NC laws: every stable NC law has no offset at steady state.
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Appendix VII

Non-consistency of the Newton algorithms
Substitute the consistency requirement (IV.6) (z°%! = x(z*,u”}) into (VII.4) to obtain
(@ -I)(x"-2°)+T?Au" =2" - x°*
=& (x* ~2°) +T* (vt —u®) = 0
=P (x* — 2°) + C*HIT (u*H —u*) =0

(\i_i b)y: - ys+l =0

This should hold for every z° u® and y*, which of course is not true and as a result the Newton
algorithm is not consistent.

Derivation of control law IL.L

Example I1.3 shows that for a linear system:
x' =®z° + T’

y,+[ = CXQ (VH.15)

Then control law II. becomes:
u*t! = (CT)"!CTu® + C¥2° - CPA° + y* ~ Cx°]
= (CT)~Y[C(®2° 4+ Tu®) - Cx* + ¢ — Oy
= (CT)7HCx® - Cx" +y" - C 81’
Controll law ILL is immediately obtained when ® and T in the expression above are replaced from (IL5)

and (I1.8) respectively.

The dead-beat action is shown next:
yn+2 =Cz°*? = CQ)(S + CTu®tH!
=COx\" +y* -CO®x°
= y‘
Derivation of control law IIL.L
Example I1.2 shows that for a linear system:

x'=®z* +Tu’

(VIL16)
yl+l = CXB

By definition then
xAs = Qxa +Tu*
ox®

u =T

x*const.

I=
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Then control law ITI. becomes:

I

u't! = (CT)~}[CTu® + Cx* - Cx* +¢* — CX’]
(CT)~![CTu® — C®x* — CTu® + y*]
(CT)}[-Cex" +y7]

n

i

Controll law III.L is immediately obtained when ® and I in the expression above are replaced from (I1.5)
and (I1.8) respectively.
" The dead-beat action is shown next:
Y2 =Cz"? = CPx* + CTu'H!
=Co®x*+y" - CPx*
=y

Asymptotic behavior of control law I.

The discussion is only qualitative at this stage: Assume T' 3 1 and that the system is globally
stable. For any u® let X’ be the corresponding equilibrium state, i.e. f{x®, u®) = 0. Since the system is

stable, at times large enough every time derivative will tend to zero. Then (I1.3) yields

_oJ € 5
E=u’

Assuming invertibility of the derivative term, it follows that % = 0.
Also, (I1.6) yields

8f(¢. € s, 0F
0= 3¢ gzxer +6£§=X8
£=u* €=t
and solving for I'®:
-1
oo | e
¢ (=X o¢ =X
£=u’ £=u
Therefore, for large sampling times control law I. becomes
-1 -1
og(s) 8/(s. € 8/(¢.€) .
s+1 _ .6 _ | 8] hEA SRR T ] hCAYRAY s+1 __
voE B |0 o ¢ |¢=x" at | s=¢ (v y') (VILLT)
S' - X E = us e — uD

Consider now the algebraic equations that describe the steady-state of the system:

f{z,u)=0
g{z) =y*
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Consider also the Newton algorithm for the solution:

1. Select u®.
2. Solve f(x*,u’) = 0 to obtain x*(u®).
8. Update u® by the Newton formula

u*tl = uf — T g(x*(¢")) - o) (VII.18)

where the Jacobian J is

Blg(z(v)) - v*]

T= du
_ 9gl¢) x*
05 le=y* Oouf
-1
_ 9g(¢) 81(s. ) N 24 i
o5 ¢=x° os é;is 9¢ E;f‘s

Substitute J in (VII.18) to obtain (VI.17) .
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CHAPTER VIII

CONCLUSIONS

There is a strong duality between the theory of feedback control and operator equation
theory, is the thesis of this dissertation. The research objective was to establish the duality in a
rigorous context and show that control theory can benefit from a well defined operator theory,
with the emphasis in the area of nonlinear systems analysis and controller design.

To this end a framework was developed that formulated the control problem as an operator
inversion problem. The principles and concepts involved were shown to be basically identical.
Application of operator equation methodologies to the fundamental control problems was then
straightforward. Inversion algorithm development led to control law synthesis and algorithm
convergence to stability analysis.

Original results of theoretical value and practical significance were claimed. On the analysis
part, a general stability theory for nonlinear discrete systems was developed. Conditions for local,
finite and global stability were stated and proved and the respective computational aspects were
stressed. On the synthesis part, control laws were derived and shown to possess desirable stability
and performance characteristics. When condensed to the case of linear systems, the results were
found to conform well with traditional linear systems theory concepts and methodologies.

The structure of the dissertation proceeded along the following lines:

The importance of research in the area of nonlinear systems control was advocated in Chap-
ter I. The argument was supported by a literature review stressing the unavailability of a general
design theory. The lack of practically applicable analysis methods and synthesis techniques was
emphasized.

The theoretical and computational background was set in the following two Chapters. In
Chapter II the basic set of assumptions was laid out (namely, well behaved dynamic systems
described by coupled ordinary differential equations, with certain continuity and differentiability
properties of the solutions). A computational theory for differentiation of nonlinear operators
was worked out by transforming the associated problems to initial value problems. In Chapter
II fundamental results from operator equation theory were assembled to build the theoretical
infrastructure. Some new results of unique importance to control considerations were added.

Chapter IV set the conceptual background of the proposed theory. It was shown how control
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problems can be transformed to operator equation problems for different sets of objectives. Both
the similarities and unique features of operator inversion and feedback control problems were
discussed to set the pace for the basic theoretical developments to follow.

A general stability theory was detailed in Chapter V. Conditions that assert (exponential)
stability in the face of infinitessimal, finite and infinite perturbations were established. Both the
open and closed-loop cases were investigated. The results were found in good agreement with
traditional concepts of linear and nonlinear stability. Computational procedures associated with
the analysis theorems were given.

The final Chapters addressed the synthesis aspects. Stemming from the analysis theory, in .
Chapter VI linear control laws for nonlinear systems were shown to be solutions to optimization
problems minimizing a norm of the closed-loop system derivative operator. Although possible
extrapolations to nonlinear control laws were proposed, it was pointed out that the successive
substitution method is not suitable to generate nonlinear controllers.

The method of Newton was employed in Chapter VII as the prototype in deriving nonlinear
control laws for nonlinear systems. It was not chosen on the basis of its properties, rather than for
its clarity in providing guidelines for extension of the approach to alternative operator equation
solution methods.

The original material of the thesis is believed to be in: Chapter II, section 3. Chapter III the
parts associated with Theorems II1.3, II1.6, as well as section 3; finally, Chapters IV, V, VI and
VII in their entirety.

The main objective of the work was to establish the duality of control and operator theories
respectively and show how it can be profitably applied to control problems of theoretical and
practical importance. It is not claimed that the treatment given is complete, because of the
generality of the approach and its far reaching consequences. The development stops at the point
where theoretical work and application to real life systems can be independently continued.

A number of important problems and promising extensions stand out at present.

A basic problem is associated with developing more efficient computational procedures to
a) check the stability conditions of the Chapter V theorems and b) solve the optimization problems
of Chapter VI

A second problem is to reduce the conservativeness of the norm stability conditions of Chap-
ter V and the associated conservativeness of the Chapter VI design problems. In particular, norm
optimization by scaling should be investigated in detail.

Finally the effect of the sampling time was not covered in any detail, although it affects both
the analysis and synthesis and consequently should be dealt with in future efforts.

Following the Newton prototype of Chapter VII, control law synthesis can be straightfor-
wardly extended to alternative operator equation methods to benefit from their respective desir-
able properties. The “robust” Newton methods of Stoer, Deufelhard and Nickel, the family of
steepest descent methods (where the inversion problem is transformed to a functional minimiza-
tion problem) and continuation methods pose as particularly promising alternatives.
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Anotber road to extending the current results is by enlarging the class of systems considered.
For once, the theory is directly applicable to systems of coupled differential and algebraic equations
arising in chemical reactors, realizations of partial differential equations etc. At the same time
extension of the concept to distributed parameter and adaptive systems is possible, after the
appropriate computational tools of Chapter IT are extended in the respective classes.

Finally, extension to continuous systems should be investigated. It was not attempted at
this stage, because operator solution methods are inherently discrete event processes, paturally
befitting to discrete control considerations.
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