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ABSTRACT

Run length coding using standard run lengths has been proposed
by Cherry et al [7]. Their analysis has been mostly experimental for
specific types of data.

In this thesis the globally optimum single standard run length
has been derived for the binary independent source and globally
optimum single standard run lengths of zeros and ones have been
derived for the binary first order Markov source. It is assumed
that the output symbols are subsequently block coded in each case.

A recursion relationship between standard run lengths is derived for
two specific coding algorithms. A simple single standard run length
scheme using a non-block code on the output symbols has also been

derived for the binary independent source.
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INTRODUCTION

A field of interest to communications engineers has been the
minimization of the amount of data required to be transmitted to
describe the behavior of a random source. This field is known by
various names including noiseless coding, redundancy reduction, and
data compression. Various schemes have been described in the
literature [2],[3],[4],[5],0(6],[7],[9],[10]. The theoretical perform-
ance limit of any such scheme is of course that derived by Shannon [8].
A large portion of the analysis of various data compression schemes has
been experimental. Davisson [3], Ehrman [4], and Tunstall [9] have only
recently theoretically analyzed some of the schemes by assuming a spec-
ific source model. This is the approach followed in this thesis.

Efficient coding for an unsymmetrical binary independent or
Markov source may be attained by Huffman coding an extension of the
original source rather than the source itself. As the lack of
symmetry increases a higher extension must be coded to maintain a
given efficiency. This requires an increasing number of code symbols.

Another scheme is to use run length coding. Here the number of
successive zeros say, up to some maximum run length, is transmitted
rather than the zeros themselves. Again to increase the maximum run
length encoded (and thus the efficiency) requires increasing the
number of code symbols.

A different approach is to decide to use n >2 code symbols
where each symbol represents a fixed run length of zeros or ones. To
insure all possible sequences can be encoded, two symbols must be used

to represent a zero and one respectively. This leaves n - 2 symbols
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to be chosen. The technique is known as run length coding using
standard run lengths and the problem now is to choose these standard
run lengths optimally. This technique has been studied experimentally
by Cherry et al [2] with the best standard run lengths for a specific
type of data being determined by exhaustive search.

In this thesis the globally optimum single standard run length
has been derived for the binary independent source and globally optimum
single standard run lengths of zeros and ones have been derived for
the binary first order Markov source. It is assumed that the output
symbols are subsequently block coded in each case. Maxima have been
found for the binary independent source when Huffman coding is sub-
sequently used to code the output symbols and in some cases these have
been shown to be global optimums. A recursion relationship between
standard run lengths is derived for two specific coding algorithms.
This recursion relationship holds for an arbitrary number of standard
run lengths. A simple single standard run length scheme using a non-
block code on the output symbols has also been derived for the binary

independent source.
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CHAPTER I

CODING TECHNIQUE

1.1. Introduction.

In this thesis a binary source is coded into n > 2 code symbols
where each symbol represents a fixed run length of zeros or ones.
To insure all possible sequences can be encoded two symbols must be
used to represent a zero and a one respectively. This leaves n - 2
symbols to be chosen. The problem now is to choose these standard run

lengths optimally.

1.2. Optimality Criterion.

The optimality criterion selected for this thesis is the maximiza-
tion of the compression ratio. The compression ratio is defined as the
expected ratio of the number of binary digits in the input sequence
to the number of binary digits in thg output sequence as the length
of the i:put sequence tends to infinity. The optimal code is then de-
fined by the standard run lengths that maximize the compression ratio.
As will be pointed out later, the formulation of the problem is general
enough so that cost functions other than the length of the output
sequence can be used. This does not change the method of analysis,

however.
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CHAPTER II.

OPTIMAL RUN LENGTH CODING USING ONE STANDARD RUN

LENGTH FOR THE INDEPENDENT BINARY SOURCE

2.1. Introduction.

In this chapter the optimal single run length is determined for
the binary independent source. Of course runs of the most likely
symbol are encoded which is arbitrarily chosen to be 0. In the next
chapter the optimum single run lengths of 0's and 1l's for the binary
first order Markov source are derived. Since a first order Markov
source may be made equivalent to an independent source by assigning
appropriate transition probabilities, this chapter is really a special
case of the following one. The analysis is much more straightforward
for the independent source, however, and it clearly illustrates the
method of analysis used in the following chapter. For this reason

analysis of the independent source is given separately.

2.2. Definition of Coding Technique.

An independent binary source emitting zeros and ones with
probabilities q and p = l-q respectively where q >> p 1is encoded

as follows:

0 -x
L =x

NO's in a row - x

The operation of the coder may be defined by observing that no

action is taken until the occurrence of one of the following two events:
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B.
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A one is reached in the input sequence, or

N zeros have been accumulated.

Thus the coder operation may be viewed as a mapping of certain input

sequences into their corresponding output sequences as shown below.

The mapping of one of the

2.1)

above input sequences into the corresponding

output sequence will be denoted as a coder action (CA).

2.3. Definition of Compression Ratio.

The compression ratio

(CR) 1is defined in Chapter I to be the

expected ratio of the number of binary digits in the input sequence to

the number of binary digits in the output sequence as the length of

the input sequence tends to infinity. .n this case this reduces to

1

n(xl)ﬂ,l + n(xz)!,2 + n(xB)JZ,3

2.2)



where
n = number of input symbols

n(x,)= number of x, '
i i

s (1 =1,2,3) in the output
sequence

4. = cost of the code word for xi(i = 1,2,3) in
binary digits.

The optimum code is then defined by the N that maximizes the

compression ratio (2.2). Obviously Zl’ ﬁz, and £3 may be considered

as the cost of outputing an x or x, respectively rather than

17 %27 3
the length of the code words. This does not change the method of

analysis, however.

2.4. Derivation of Compression Ratio in Terms of Coder Actions.

From (2.1) it is evident that the probability that a coder action

results in an output consisting of a string of J xl's (0 £ J < N-1)

followed by an x is given by

2
PcA(Jxl's,x ) = P(J0's,1l) = qu (0 £J £ N-1)

while the probability that a coder action outputs an X, is given by

PCA(x3) =P(NO0O's) = qN

Thus the expected number of xl's, xz's, and x3's emitted per coder

action is given by



N-1

N _N-1
J 1+(N-1 -N
P
J=1
N-1
J N
BGy) = ) pa’ = 1-g 2.3)
J=1
E(xy) = q
Now consider Q coder actions and let
Q
1 i

m =G E: n,Gx,) G = 1,2,3)

j=1

where nj(xi) is the number of xi's occurring on the jth coder
action. Since the coder actions are independent, the weak law of

large numbers [11] gives

.
Oa
P[lmi-E(xi)l ze] s =5 (i=1,2,3)
Qe
where
N-1
2 J 2
o, = Ipq” - [EGx))] <
J=1
N-1
2
) = qu - [E(Xz)] < ®

o
1]
=



Thus

Vol I

lim

Q
= { = 2.3 2.4
Lim Z%:3c%> Bk) (= 1,2,3) 2.4)

y=

with probability one. The compression ratio (2.2) may be written as

Q Q Q

an(xl) + Z nj(xz) + N Z nj(x3)

J=1 i=1l =1

CR = lim

on T q q
I,l Z nj(xl) + 4, }: nj(xz) + 4y Z nj(x3)
j=l j:l j:l

Dividing numerator and denominator by Q

Q Q
1 1 1
) ZnJ(xl)+Q.Z n(x2)+NEZn(x3)
CR = lim = 5 =1 = 3 (2.5)
Q- 1
Lla Zn(xl)+,€2-6 Zn(x2)+£3QZnJ(x3)
i=1 =1 5=1
Substituting (2.4) into (2.5)
E(x.,) + E(x,) + NE(x,)
CR L 2 - @2.6)

= 4 EG) + LEG,) + 4,E(x,)

with probability one where E(xl), E(XZ)’ and E(x3) are given in (2.3).
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2.5. Optimal Code for Output Symbols of Equal Length.

If 21 =4, =4, =L (2.6) may be written

2 3
E(Xl) + E(XZ) + NE(x3) 1 (N-1) E(x3)
CR = = =1+
i[E(xl) + E(xy)) + E(x3)] L E(xl) +E(x,) + E(x3)
(207)
Substituting (2.3) into (2.7) and reducing yields
1 Hsl)pg
CR==%|1+ - Pf}m v (2.8)
1 + (N-1)q -Nq
To maximize (2.8) it is necessary only to maximize
N
N+1 N (243)
1 + (N-1)q - Nq

Differentiating (2.9) with respect to N, combining terms and setting

the result equal to zero yields

N
Pq

[1-¢"+(N-1)1nq] = © 2.10)
[1+(N-1) g 1ong" ]2

Since

qN >0 and

1

1+ (N-l)qN+ - NqN -1

1 -q+ q[1+(N-l)qN-Nq
N-1
2
1 -4q+qp ZJqJ>O

=1

] 2.11)
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the left hand side of (2.10) is equal to zero only if
N

(N-1)(-1Inq) = 1 - ¢q 2.12)

The graphical solution of this implicit equation is shown in Figure 1.

(N-1) (~1nq)

1-qN

N

|
|
|
!
FE %

Figure 1

lnq”|

Graphical Solution of (N-1)(-lnq) = 1 =~ qN

From Figure 1 and (2.11) it can be seen that if N is decreased
from NO (2.10) is positive while if N is increased from N0 (2.10)
is negative. This means that the slope of (2.10) (or equivalently the
second derivative of (2.8)) is negative at N0 assuring that No
determined a maximum. It is geometrically evident from Figure 1 that
there is only one solution to (2.12). Thus the integer N = No most

nearly satisfying (2.12) defines the globally optimum run length within

1.
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Encoding three output symbols requires a block code length L = 2. The
solution of (2.12) and the resulting compression ratios for various
values of p are given in Table 1. Plots of the optimum N and
compression ratio vs. p are given in Figure 2 and Figure 3

respectively at the end of the chapter.

Table 1

Optimum N and CR when output symbols are block coded

(1=2)

R N CR
0.5000 1 1.000
0.2000 1 1.000
0.1000 5 1.181
0.0500 7 1.636
0.0300 8 2.093
0.0200 10 2 .551
0.0100 14 3.583
0.0050 20 5.046
0.0030 26 6.500
0.0020 32 7.951
0.0015 37 9.173
0.0010 45 11.224

2.6. Optimal Code When Huffman Coding is Used to Code Output Symbols.

Block coding is not the optimum way to encode the output symbols.
The best way to encode symbols with given probabilities is with the
Huffman coding algorithm. To use this algorithm, however, the proba-
bilities of the symbols must be known. The probabilities of X5 Xy,

and Xy may be defined as the limit of their frequency ratio as the



12

length of the input sequence tends to infinity. Thus

n(xi)

n(xl) + n(xz) + n(x3)

P(Xi) = lim i=1,2,3) 2.13)

n—o
where n(xi) (i = 1,2,3) is the number of xi(s) in the output
sequence and n is the number of binary digits in the input sequence.

In terms of register actions (2.13) may be written

Q

Z 1y

=1

P(xi) = lim
Q—»oo

(2.14)

Q
ERCHIENCRIENCNY
j=1

Dividing numerator and denominator by Q and using (2.4) yields

E(xi)
E(Xl) + E(xz) + E(x

P(x,) = (1 =1,2,3)

3)
with probability one. The optimum N and resulting compression ratio
may now be determined by computer search. The values of P(xi)

(i =1,2,3) are calculated for N= 2,3, -+« , the Huffman algorithm
is applied at each step to determine zl, zz, and 23, the compression
ratio is determined according to (2.6), and the N yielding the
maximum value of the compression ratio (2.6) is selected. Note that
this is a fundamentally different process than applying Huffman coding
to the optimum N selected for block coding by the method discussed in
the previous section. It should also be pointed out that only a finite

search is required to determine the globally optimum N for the
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Huffman case. This may be shown as follows. Rewriting (2.6) yields

E(xl) + E(xz) + NE(x3)
(2P Gy P (5, )+ £, P (5) JLE (k) 4E (5, )4E (%) J

CR = (2.15)

But this is just the compression ratio for the block coding case with

the average code length replacing L. Now clearly
4= zlP(xl) + /azP(xz) + 1,3P(x3) >1

and from the previous section, (2.7) and (2.8) the quantity

E(xl) + E(xz) + NE (x
E(xl) + E(x,) + E(x

3)
3)

(2.16)

is a monotonically decreasing function of N approaching 1 for N > No
(since it has only one maximum). Thus the search need only be carried
out until (2.16) is less than or equal to the maximum of (2.15) up to
that point. The results of the computer search are given in Table 2
and plotted in Figures 2 and 3. The points for which the search has
been carried out far enough to guarantee a global maximum are marked
with an asterisk. A comparison of the efficiency of this scheme with
various other coding schemes is given in Figure 9 at the end of

Chapter IV.



14
Table 2

Optimum N and CR when output symbols are Huffman coded

R N CR
0.5000 1 1.000
0.2000 5 1.102
0.1000 7 1.559"
0.0500 10 2.207"
0.0300 12 2.856"
0.0200 15 3.503"
0.0100 21 4.964"
0.0050 29 7.034"
0.0030 37 9.091"
0.0020 45 11.141°
0.0015 52 12,871"

0.0010 64 15.772
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CHAPTER III

OPTIMUM SINGLE RUN LENGTHS OF 0'S AND 1'S

FOR THE BINARY FIRST ORDER MARKOV SQURCE

3.1. Introduction.

As was pointed out in Section 2.1, Chapter II is really a special
case of Chapter III. The independent source is considerably easier to
analyze, however, and it clearly illustrates the basic method used in
both chapters. For this reason the analysis of the independent

source was given separately in Chapter II.

3.2. Definition of Coding Technique.

A binary first order Markov source is defined by the following

transition probabilities

P(0]0) = q P(0|1)

]
o)
’—I

P(1|1)

P(1]0)

]
T

93

where Py = l-q0 and Py = 1-q1- This corresponds to the state diagram

shown in Figure 4. q0
Po Pl
9
Figure &4

State diagram
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This source is then encoded as follows:

0 -»x
1 -x
2 3.1)

KO0's in a row - X

N 1's in a row = x

The operation of the coder may be defined by observing that no

action is taken until the occurrence of one of the following events:

A. the source changes from state 0 to state 1

B. the source changes from state 1 to state 0

C. K 0's have been accumulated

D. N 1's have been accumulated.
If the source changes from state 0 to 1 (event A) the J 0's
(1 £ J < K-1) which have been accumulated thus far are coded as J xl's
and the 1 produced by the state change is stored until it is determined
whether or not N-1 additionmal 1's in a row will occur (thus

allowing coding into an x The source is in state 1 at the end of

4)'
the coding operation. If K 0's have been accumulated (event C)

they are coded as an x no input symbol is stored, and the source is

3}
in state 0 at the end of the coder operation. Similar arguments apply
to events B and D. Thus the probability of a certain coder operation
is dependent on whether the preceding coder operation was triggered by

event A, B, C, or D. As in Chapter II the coder operation may be

defined as a mapping of certain input sequences into their corresponding
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output sequences as shown in Figure 5. This mapping is again denoted

as a coder action (CA). Event C is equivalent to a coder output of

Xq and event D is equivalent to a coder output of X, . Thus to
simplify notation, events C and D are denoted Xq and X, respectively
for the remainder of the chapter.
Triggering Event Coder Action Remarks
& 0l - X,
001 - X % A 1 remains to be coded.
A < . ‘ The source is left in
. state 1.
Q==sQl = Bpeeex
. K-l K-=1
s 10 - X,
110 - Xy X,
A 0 remains to be coded.
B < . The source is left in
. state 0.
lonolo _)xznoox
—
- N-1 N-1
Nothing remains to be
C 0°°°00,- x coded. The source is
{: X 3 left in state 0.
Nothing remains to be
D leeell, = Xy, coded. The source is
N left in state 1.
Figure 5

Coder actions for binary first order Markov source
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3.3. Definition of Compression Ratio.

The compression ratio (CR) is defined in Chapter I to be the
expected ratio of the number of binary digits in the input sequence to
the number of binary digits in the output sequence as the length of

the input sequence tends to infinity. In this case this reduces to

n
n(xl)f,1 + n(xz)l,2 + n(x3),€,3 + n(x4),(’,4

CR = lim
n—o

3.2)
where

n = number of input symbols
n(xi) = number of xi's (i =1,2,3,4) in the output sequence
4; = cost of the code word for X, (i = 1,2,3,4) in binary

digits.

The optimum code is defined by the K and N that maximize the

compression ratio (3.2).

3.4. Derivation of the Compression Ratio in Terms of Coder Actions.

Referring to Figures 4 and 5 and using the reasoning of Section
3.2 the probabilities of the possible coder actions conditioned on the

previous coder action may be determined as follows.

' = ' =
Pop (9% s|A) 0 P (%, s |8) P9,

J-1

|
o

PcA(Jxl'slB) =pq

]
o PcA(sz slB) =



1
PcA(Jx1 s|x3)

1 -
PcA(Jx1 s|x4) =

(J: ]_, oo
Pop (x5 |8) =0
_ K
Pop (55]B) = q
K

Pop (3 1%3)= 4

Poa(50%,)= Py

K-1

J
1 .
Poa 9%y s [x3) = ppiay
J
1 po
PcA(Jx2 Slx4) = P19
(=1, +=- , N-1)

PCA(XalA) =q

]
o

PcA(XalB)
_ N-1
Poa (% |%3)= p ay

N
PCA(xalxa)_ 9

's emitted per coder action are given by

E@1M)=()
K-1
_ J-1
E(xllB) = Ip 4,
J=1
K-1
B J
E(xllXS) - 48,9y
J=1
K~1
E(xl‘x4) = poplqo
J=1
E(x4]8) =0
K-1
E(xy[B) = q_

N-1
J-1
E(x,|A) = z: Ip, 4y
J=1
E(x,|B) =0
N-1
J-1
E(x, |x4) = Ez: Jp Py
=1
N-1
J
E(lex4) = E: Jplq1
J=1
N-1
E(x,|8) = q
E(X4‘B) =0

(3.3)

Thus the conditional expectations of the number of xl's, % 's, x3's,

(3.4)
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~ N-1
E(X3IX3) - qO E(X4lx3) =P ql

Rl N
E(xg]x%,) = ppd, E(x,[%,) = q

Since A, B, C, and D are disjoint events whose union covers the proba-

bility space of coder actions

E(x;) = E(x; [A)Pg, (A) + Ex; [B)Ro, (B) + E(x, [g)Poy ) + Ex, b5 )Pgy 65)

(1= 1,2,3,4) (3.5)

where P (A)

CA is the stationary probability of event A, etc.

Now

consider Q coder actions and let

Q
m(xilz) = % E: nj(inZ) i = 1,2,3,4)
j=1

(z = A}B:X3;X4)

where nj(xilz) is the number of xi's occurring on the jth coder

action given that the previous coder action belonged to event =z.

Since the conditional coder actions are independent, the weak law of

large numbers [11] gives

c(xilz)2

———;—i-— (i=1,2,3,4)
e

[le(xi|z) - E(xilz)| =¢e] <

(z = A,B,x3,x4)

where



23

K-1
c(xlIB) = }E: szoqu - [E(xllB)]2 < o etc.
J=1
Thus
g Q
Qj:,a Z (x, |z) = E(x, |z) (i = 1,2,3,4) (3.6)

= (z = A,B,x X4)

with probability one.

The source may equivalently be thought of as having states A, B
Xq; X, with transitional probabilities PcA(AlA), PCA(AIB)’

It has been shown [ 1] that

1im 2€2)

= B (2) (z = A,B,x,,%,) 3.7)
e ¢ CcA 3%

where PCA(Z) are the unconditional state probabilities.

The compression ratio (3.2) may be written

) Z {n(z) i [nJ(xllz)H*j(xZlz)+Knj(x3‘z)+Nnj(x4|z)]}
z—A,B,x3,x4 j=1
CR = lim
Qo z
z=A,B,x

. {%(z) éi-[21?§x1|2)+22§§x2‘z)+z3n§x3|z)+24n§x4lz)]}
3}4 J

Dividing numerator and denominator by Q2 and substituting (3.6) and

(3.7) yields

E(xl) + E(xz) + KE(x3) + NE(x4)

CR = zlE(xl) + £2E(x2) + £3E(x3) + E4E(x4) (=8
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where E(Xi) (i=1,2,3,4) is given in (3.5).

PCA(A)’ PcA(B), PCA(XS)’ and PCA(XA) must now be determined to
specify E(xi) (i =1,2,3,4). This may be done by observing that the
stationary probabilities of these events must satisfy the following
equations. Since all probabilities refer to coder actions, the
subscript CA will be dropped throughout the derivation for

notational convenience.

P(A)+P(B)+P(x3)+P(x4) =1

P (x, |A)P(A)+P (x, | B)P (B)+P (x, |x5) P (x,)+P (x, [x,)P(x,) = P(x

4

P (x4 |A)P(A)+R (x4 |B)P(B)+P (x4 |%4)P (x ) +P (x4 |%, )P (x,) = P(x (3.9)

3)

P(A|A)P(A)+P(A|B)P(B)+P(A|x3)P(x3)+P(A|x4)P(x P(A)

50

P(BlA)P(A)+P(BlB)P(B)+P(B|x3)P(x3)+P(B|x4)P(x4) P(B)

Of course these five equations are dependent since there are only four
unknowns. The first four equations will be used.
P(x3lz) and P(x4\z) (z = A,B,x3,x4) are given in (3.3). Also

from (3.3)

P(A|A)

I
(@]

]
o
£

n

P

]

£0

P(A|B)



P(Alx3)

]

P(A|x4)

K-l

J=1 K-1
}:: P,P19, = pl(l-qO )
J=1

Thus the first four equations of (3.9) become

P(A)+P(B)+P(x3)+P(x4) =1

N-1 N-1 N
4,  P@)+p q; "P(xz)+q; P(x,) = P(x,)

K

(1-q, " HR(B)+q_ (1-q * P Gey) ) (1-q PG, = PGA)

Solving (3.10b) for

P@A) = - p P(x

Solving (3.10c) for

K
(-4

0
K-1
o

P(B) =

Dividing (3.10d) by

3 *

P(A)

P (B)

)
P(x

(1-qo

-1 K K-1 _
4, P(B)+q P(xg)+p;q — "P(x,) = P(xy)

(1-q,")

9

3)

K-1

—w1 P&

- Plp(x4)

)

and rewriting

(3.10a)

(3.10Db)

(3.10¢)

(3.10d)

(3.11)

(3.12)
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1 -
- ;—;—K—:T P(A) + P(B) + qOP(X3) + plP(XA) =0 (3.13)
(o]

Substituting (3.11) and (3.12) into (3.13) and reducing

K N
(l_q ) (1-q1 )
N-1

q, g

P(x4) =0 (3.14)

Substituting (3.11) and (3.12) into (3.10a) and reducing

1 1 _
T P&y T Py = 1 (=l
qo ql

Solving (3.14) and (3.15) for P(x and P(x

5) o}

K-1 N
qO (1-q1 )

P(x
(1-¢) + (1-q,")

3) (3.16)

N-1 K
ql (1-q0 )

(1= + (1-q,")

P(x (3.17)

W)

Substituting (3.16) and (3.17) into (3.11) and (3.12) and reducing

(t-q,“ (1-q,

(1-q,) + (1-q;)

P(A)

(- (1-q," ")

P (B)
(1-q,) + (1-q,")
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Reinserting the CA notation and summarizing the results

(1-qu-l)(1-qlN)

P, (A) =
oA (1-q) + (1-q;)
o (1-q) (1-q,7) 18y
P B) = .
o (1-q.5) + (1-q,™)
K-1 N
7 T q, "(-q;)
R IR e
N-1 K
PP PO M o 3.
ca s

(1-q,) + (Ltq;)

Note that for K =1, N = 1 the state probabilities reduce to

p
1

P A =0 P X = emt—————m——

CA( ) CA( 3) po + pl
po

Pea(®) =0 Poa(®,) = bo Py

where PCA(XB) and PCA(XA) are just the state probabilities of O

and 1 respectively.

Using (3.3), (3.5), and (3.18), the expected number of x 's
i

(i =1,2,3,4) emitted per coder action is given by
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K-1 K-1 K-1
E(xl) - 1JCA(B) Z Jpoqu»l"' PCA(X3) Z Jpoqu+ PCA(X4) Z Jpoplqu-l
J=1 J=1 J=1
K-1
il }Z: Jqu'l [Poy (B) + q Py (x3) + prPy (x,)]
J=1
[1-kg ™" + (&-1)q *1(1-q,")
x s . (3.19a)
p L(1-q ") + (1-q;)]
Similarly
[1-Ng," " + (¥-1)q, "I (1-¢ )
- (o]
E(XZ) = < T (3.19b)
p,L(1-q ) + (1-q; )]
TR B
E(x3) = PCA(XB) = (3.19c)

(1-q0K) + (l-qlN)

N-1 1 K
E(x,) =P, (x) = i 0, ) (3.19d)
4 cA Y4 K N )
(1-q,) + (1-q; )

In summary, the compression ratic is given by (3.8)

E(xl) + E(xz) + KE(xB) + NE(xa)
CR = (3.8)
BEG) + L,E() + LE@E) + 4EG,)

where E(Xi) (i =1,2,3,4) is given by (3.19).
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3.5. Optimal Code for Output Symbols of Equal Length.

If 4. = 22 = 23 = z4 =L (3.8) may be written

1
L B EGMEG)MEG) [ ®DEG)H-LER,)
LLE G 4B (k) )+E () 4B ()] & E (x))+E (5, ) +E () +E (x, )

(3.20)

Substituting (3.19) into (3.20) and reducing yields

popl(K-l)qu'l(l-qlN) + popl(N-l)qlN-l(l-qu)
p [1-&-1)q “"Hek-2)q I(1-q,"+p [1-(N-1)q, "+ (¥-2) 0110 )

(3.21)

To maximize (3.21) it is necessary only to maximize

K-1 N N-1 K
PPy (K-1)q = “(i-q; ) + p_py(N-1)q, " "(l-q ")

p L1~ ®-Dq Thrk-2)q *I(1-q, " 4p [1- -1y q Ve w-2) g, NI (@-q )
(3.22)

Differentiating (3.22) wrt K and setting the result equal to zero yields

P_P o "
0= -i%i{%1[1-<x-1>qu Leg-2)q (1m0, + p [1-(N-1)q," 1+<N-2>q1N]<1-qOK>}

N K-1 K-1 N-1 K
X{}l-ql )[(K-l)qO lng +q 7] - (N-1)q; “q_ 1nqo}

P_P
ol K-1 N N-1 K K-1 K-1
- K- = s . - - (K-

Yz{} Da, "(l-qy )+ (N-1)q; ~(l-q %}{élt q, -(K-1)q_ "lnq

K K N N-1 N
+ q *+(K-2)q_“lnq J(1-q;)-p [1-(N-1)q, " "+(N-2)q, ]qulnqé}

(3.23)
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where Y is the denominator of (3.22). Expanding the numerator of

(3.23) gives (neglecting the constant popl)

©)

2 - = .
{%l(l-qlN) [1-&-1)q '+ (k-2)q L K-1)q " '1ng_+q © 1]}

©)

~(p1(1-q1N)[1-(K-l)qu'1+(K-2)qOK](N-l)qlN-lqulnq%}

©)

+{%O<1-qu)<1-q1N>[1-(N-1)q1N'1+<N-2>q1N][(K»l)qu'llnqo+qu'1]}

®

-{%O(1-qu)[1-(N-l)qlN'1+<N-2)qlN](N-l)qlN'lqulnqé}

®
3

K-1 N K-1 K-1 K K
{%I(K Da, "(-q;7) [-q, "=®-1)q =~ "lnq +q "+(K-2)q ~1nq ]|

®

+{%0(K-1>qOK'l(1-qlN)[1—(N-l)qlN‘l+(N-2>qlN]qu1nq€}

@

N-1 K N K-1 K-1 K K
-{FI(N-I)ql (1-q, ) (1-q; )[-q = "-(K-1)q_~ "Inq_+q "+(K-2)q_ lnqoq}

®

+{%0(N-1)q1N'1(1-q0K)[1-(N-1)qlN'1+(N-2)q1N]qulnqo}
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Terms 4 and 8 cancel. Regrouping the remaining terms

(:)and(:>
K-1

2
p, (1-q,) {@1-<K-1)qu‘1+(K-2)qOK][<K-1>qOK'11nqo+qo ]

1

- L&D, Mg "

-1 K-1 K K
I-q, -&-L)q~ "lnq +q "+(K-2)q lnqoi}

(:)and(:)
- po(1-q1N)[1-<N-1>q1N'1+<N-2)qlN]{ﬁ<K-1>qOK'11an+qu'1J(1-qu>
- (K-l)qu-lqulnqé}

(:)and(:)

- pl(l-qlN)(N-l)qlN-l{Fl-(K-l)qu-1+(K-2)qu]qulnqo

K K-1 K-1 K K
+ (L-q_ )[-q =~ "-(K-1)q =~ “Inq_+q ~+(K-2)q 1nqoi}
Multiplying out the terms in { } and reducing
K-1 N, 2 K
q,  (1-q; ) (p;*+p Y[ (K-1)1ng +1-q ]
Thus setting the derivative of (3.22) wrt K equal to zero - yields
K-1 N, 2
a9, (l-qy ) (py*e )

K
PPy YZ [(K-l)lnqO +1 - q, 1=0 (3.24)

where Y is the denominator of (3.22).

For K=21, N=21
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K-1 N.2
- >
Poquo (1 ql ) (Pl"'Po) 0

Il
o
N
«
Q
o
-
'
‘—l
+
o
a
o
~
]
-
\%
o

K-1 K
1-(K-1)q  +(K-2)q_

and

N-1
2 § J-1 N-1
Pl Jql +p1q1 >0

J=1

N-1 N
1-(N-1)q;  +(N-2)q,

implying Y and Y2 > 0. Thus the left hand side of (3.24) is equal

to zero only if

(K-1) (-1ng ) = 1-qu (3.25)

This is the same implicit equation as that of Section 2.5 and its
graphical solution is shown in Figure 1. Also by the same argument

as given in Section 2.5, the integer K most nearly satisfying (3.25)
defines the global maximum of (3.22) with respect to K. Since (3.22)
is symmetrical in K and N it is clear that (3.22) is maximized
with respect to N by choosing N to be the integer most nearly
satisfying (within +1)

(N-1) (~1ngq,) = 1-q1N (3.26)

Thus the globally optimum code is defined by the integers K and N
most nearly satisfying (3.25) and (3.26) respectively. The solutions of

(3.25) and (3.26) and the resulting compression ratios for various



33

values of P and p, are given in Table 2.

Note that in Table 2 the compression ratio for Py = 0.001 and
Py = 0.500 is greater than that for P, = 0.001 and Py = 0.005 but
lower than that for Py = p1 = 0.001. This seems strange since in
the second case more strings of 1's should occur than in the first case
and thus, perhaps, a greater overall compression ratio should be
expected. This behavior can be intuitively explained by the fact that
for P, << Py the state probability of a zero is nearly one as shown

below.

— .
Py Py Py

p(0) = ~ 1

Thus the source is almost always in the state 0 where high compression
ratios are obtained. As Pq approaches P, the source is less likely
to be in state zero and the overall compression ratio decreases even
though the compression ratio obtained in state 1 is increasing.

Finally, as the compression ratio in state 1 increases further the

overall compression ratio increases again.

3.6. Optimal Code When Huffman Coding is Used to Code Output Symbols.

The probabilities of xi(i = 1,2,3,4) may be defined as the limit
of their frequency ratio as the length of the input sequence tends to

infinity. Thus

n(xi)

P(Xi) = lim n(x1)+n(x2)+n(x3)+n(x

n—o

(3.27)
4)
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Table 3

Optimum K,N and CR when output symbols

are block coded (L=2)

pO 0.500 0.100 0.050 0.010 0.005 0.001
Py
0.500 (1,1 (5,2) (7,2) (14,2) (20,2) (45,2)
1.000 1.218 1.639 3.537 4.989 11.152
0.100 @2,5) (5,5) (7,5) (14,5) | 0,5 | (45,5)
1.218 1.392 1.672 3.298 4.666 10.703
0.050 @,7) (5,7) (7,7) as,7) | o,7) 45,7)
1.639 1.672 1.859 3.249 4.528 10.415
0.010 (2,14) (5,14) (7,14) (14,14) (20,14) (45,14)
3.537 3.298 3.249 3.821 4.688 9.704
0.005 (2,20) | (5,20) | (7,20) | (14,20) | (20,20) | (45,20)
4,989 4.666 4.528 4.688 5.288 9.600
0.001 @,45) | (5,45) | (7,45) | (14,45) | (20,45) | (45,45)
11.152 10.703 10.415 9.704 9.600 11.471
Key (K,N)

CR
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where n(xi) (i = 1,2,3,4) 1is the number of xi's in the output
sequence and n is the number of binary digits in the input sequence.

In terms of register actions (3.27) may be written

z=A B,x3,x

Q
{n(z) E: 9{xilz)}
=1
P(xi) = lim

Qo
E: {?(z) j{:[§§x1|z)+§§x2lz)+?§x3|z)+§fx4lz)11
Z=A,B,x3,x4 j:l 3.28)

(i =1,2,3,4)

where the notation is the same as that of Section 3.4. Dividing numera-

tor and denominator of (3.28) by Q’2 and using (3.6) and (3.7) yields

E(Xi)

P(x,) = (i = 1,2,3,4)
L E(x;) +E(x,) +E(xy) +E(x,)

A finite computer search may now be performed to determine the optimum
K and N for the Huffman coded output symbols using the same
arguments as those given in Section 2.6. 1In this case the search

would fix N, search K from 1 to N, increment N, search K

from 1 to N, etc.

3.7. Reduction to the Independent Source.

If Py and Py of the binary first order Markov source are

chosen to be p and q respectively, the Markov source is equivalent

to an independent binary source with probabilities p and q for a

1 and 0 respectively. Thus Chapter II is really a special case of
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Chapter III. If P, and q, are chosen as above and K = 1 the

results of Chapter III reduce to those of Chapter II.
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CHAPTER IV

RUN LENGTH CODING USING TWO STANDARD RUN LENGTHS

FOR THE INDEPENDENT BINARY SOURCE

4.1. Introduction.

In this chapter a closed form expression is derived for the
compression ratio when a binary independent source is encoded using
two standard run lengths. The coder is assumed to have a memory of
N binary digits where N is the length of the longest standard run
length. A computer search’is then performed to select the best run
lengths. It is strongly suspected that the results of the computer
search are global optimums although this has not been proved.

The above must be considered a coding algorithm constrained by
the fact that the coder has a memory of only N binary digits. If
memory is unconstrained the problem is much more difficult and a
simple coding algorithm is not possible. This may be illustrated
with a simple example. Suppose it is desired to code a string of

19 0's using the following equal cost symbols.

6 0's in a row - x
7 0's in a row - %,

Using the algorithm discussed above this string would be coded as

2 x4's and 5 xl's = 7 code symbols
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whereas the optimum coder would code the sequence as

L x, and 2 x3's = 3 code symbols.

Thus the technique described in this chapter always codes a string of

zeros by using the maximum number of x4's, then the maximum number

of x3's followed by xl's.

4.2. Definition of Coding Technique.

An independent binary source emitting zeros and ones with proba-

bilities q and p = l-q respectively is encoded as follows.

KO0's in a row -
N O's in a row - x

The remaining O's are then coded as xl's. Note that K and N are
distinct from those in Chapter III.
The operation of the coder is defined as follows. No action is

taken until the occurrence of one of the following two events:

A. a1l is reached in the input sequence, or

B. N 0's have been accumulated.
If event A occurs the source encodes the J0's (0 <J < N-1) and 1
accumulated as [%] x,'s, (J-K[%]) x;'s, and an x, where [ ] is

defined as the integer part of the expression enclosed. If event B

occurs the coder simply outputs an Xy . Thus as in preceding chapters
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the coder operation may be viewed as a mapping of certain input
sequences into their corresponding output sequences as shown below.
The mapping of one of these input sequences into the corresponding

output sequence is again denoted as a coder action (CA).

1- Xy

0ol - xlx2

Qe--0l - x]---x1 X,

K-1 K-1 4.1)
co e 1 - xx 0...00 » x

X 372 X 4

Q+<0 1 > x3-°-x3 XjoooXy Xy

N-1 [gll] N-l-K[%llj

4.3. Definition of Compression Ratio.

The compression ratio is defined to be the expected ratio of the
number of binary digits in the input sequence to the number of binary
digits in the output sequence as the length of the input sequence

tends to infinity.

n
n(xl)!&l+n(x2)zz+n(x3)f,3+n(x4)z4

CR = lim
n—o

(4.2)

where
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n = number of input symbols
n(xi) = number of xi's (i =1,2,3,4) in the output sequence
4; = cost of the code word for x, (i =1,2,3,4) in binary

digits.
The optimum code is again defined by the K and N that maximize the

compression ratio (4.2).

4.4, Derivation of Compression Ratio in Terms of Coder Actions.

Let [g:l]=M. From (4.1) it is evident that the probability

that a coder action results in a string of J xlvs (0 <J < K-1)

followed by an x is given by

2

PcA(Jxl's,xz) = P(J0's,1)+P(K+JO's,1)+ ... + P((M-1)K+JO's,1)

+ P(MK+J0's,1) = qu+qu+J+a--+pq(M-1)K+J+PqMK+J

if J £ N-1-MK. If N-1-MK < J < K-1

PcA(Jxl's,xz) = P(J0's,1)+P(K+JO0's,1)+ ... + P((M-1)K+JO's,1)

J K+J M-1)K+J

Similarly
PCA(XZ) = P(J0's,1) 0 <J < N-1

PcA(Jx3's) = P(JK+LO's) 0<L<K-l ¢o<jJs<M1

N

PcA(Xa) = gq
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Thus the expected number of xi's (i = 1,2,3,4) emitted per coder

action are given by

K-1 K-1 M-1 N-MK-1
J JK MK 3
E(x;) = p Jg- +|p Jq qa | +pqg Jq
J-1 J=1 J=1 =1
N-1
J
E(xz) =Pp q
J=0
M-1 K-1 N-MK-1
JK J
E(xy) = Jq p q | + Mpq E: q
J=1 J=0 =0
N
E(x,) =4

Performing the indicated summations and reducing yields

_ a1k 1) F1a-dN) L L () ¢ (NMR-1) g
E(xl) = + (4.3)
p(l-q) i
E(xz) = l-qN
Kr, o (M-1K_. .| MK
E(xy) = 4 [1-Mg" ~+Q1-1)g ], y(MK_
(1-q )
E(xa) - qN

By the same arguments as given in Section 2.4 it can be shown that the

compression ratio (4.2) converges to
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E(xl) + E(xz) + KE(x3) + NE(xA)

,e,lE(xl) + zZE(xz) + 12,3E(x3) + zaE(xa)
with probability one. Thus in Summary

E(xl) + E(XZ) + KE(x3) + NE(x4)
gR = (4.4)
zlE(xl) + LEX,) + !&3E(x3) # z4E(x4)

where E(xi) (i=1,2,3,4) is given in (4.3).
Using the same arguments as given in Section 2.6 it can also be

shown that the output symbol probabilities converge to

E(xi)
E(xl) + E(xz) + E(x3) + E(x

P(xi) = i = 1,2,3,{!—)

4)
with probability one.

4,5. Optimal Coding.

The integers K and N maximizing (4.4) may now be found by
computer search. This has been done for both the case of equal length
output symbols (zl=z2=£3=zﬁ=2) and when the output symbols were
Huffman coded. The search was carried out well beyond the point where
(4.4) appeared to be maximized. It is strongly suspected that the
results of the computer search are global optimums although this has
not been proved. Results of the computer search are given in Table 4
and Figure 6, 7 and 8. A comparison of the efficiencies of the coding
techniques presented in Chapters II and IV with various other coding
schemes is given in Figure 9. The results of Figure 9 are for

Huffman coding of the output symbols in each case.
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TABLE 4

Compression ratio and run lengths vs p

P Ry Ry X "B X Ny
0.200 1.014 1.102 2 5 1 5
0.100 1.512 1.574 3 8 6 14
0.050 2.286 2,356 4 14 8 20
0.030 3.130 3.183 4 18 8 29
0.020 4.033 4.155 5 23 9 41
0.010 6.235 6.536 6 39 11 61
0.005 9.719 10.287 8 60 14 92
0.003 13.512 14.402 9 77 16 136
Key

p = probability of a 1
CRB = compression ratio when block coding is used on output
symbols
CRH = compression ratio when Huffman coding is used on output

symbols
KB,NB = standard run lengths associated with CRB

KN = standard run lengths associated with CRH
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CHAPTER V

CODING USING AN ARBITRARY NUMBER OF STANDARD RUN LENGTHS

5.1. Introduction.

The optimum coding scheme using single run lengths of 0's and 1's
was derived in Chapter III. 1In Chapter IV closed form expressions for
the output symbol probabilities and compression ratio of a coding al-
gorithm using two standard run lengths of 0's with an independent
binary source were derived. The coder was constrained to have a memory
of N binary digits where N is the length of the longest standard
run length. A computer search was then used to determine the optimum
run lengths over the region searched. It would be desirable to
generalize the results of Chapter III to an arbitrary number of run
lengths. This is a difficult problem since the compression ratio must
be simultaneously maximized over all the standard run lengths. Even if
it is assumed that a run is encoded using the maximum number of the
longest standard run lengths followed by the maximum number of the next
longest run lengths,etc. (so that the compression ratio can at least
be written in closed form), the expressions for the compression ratios
involve integer parts of the ratios of the various run lengths which
cannot be easily handled analytically. 1In this chapter a recursive
coding technique is developed which generalizes to any number of run
lengths and applies to both the binary independent and first order
Markov sources. This technique assumes that the output symbols are

block coded and that the ratios of standard run lengths are integers.
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5.2. Coding Technigque.

The coding algorithm is defined to code an input run by using the
maximum number of the longest standard run lengths followed by the
maximum number of the next longest standard run length, etc. This
algorithm may be performed in two stages as shown in Figure 10. Note
that the coder actions for both coders are the same. That is, coder
No. 2 can act immediately on any coder action from coder No. 1. The
derivation will be carried out for the binary independent source. That

the results also apply to the binary first order Markov source is shown

in Section 5.3.

0 —= Coder No. l}+» x. - 0 —s Coder No. 2 }—s Y, =»x

1 1 1
1 X, = 1 Y2 - X,
Xy = NO's in a row Yy - X,

Y4 =t nlxl's in a row

- ' i
Y nK_3x1 s in a row

Figure 10
Coding Technique

The overall compression ratio may be written as

1 E(x1)+E(x2)+I\IE(x3)
i = L | (E(Y)+E (Y, )+E (Y, )+E (Y, )+ + E(Y.)) (5.1)
1 2 3 47" "t K

where L is the length of the output block code using the same arguments

as presented in Chapter II and IV. But
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E(xl) = E(Yl) + nlE(YA) + eee + nK_3E(YK)

E(x,)) = E(Y))

E(x5) E(Y3)

Thus (5.1) may be written as

1 E(x1)+E(x2)+NE(x3)

B=5 B () 7E () ) ¥E (%3) = (0 ~DE (7,) - <+« - (m_s-DE(Y) (5.2)

Now E(xi) (i = 1,2,3) are functions only of N and the probabilities

of a 0 and 1. To determine the optimum code the bracketed quantity of

n
T ; N 1
(5.2) §USt be maximized over N, Ny oy eee 5 Mo Assuming EI, ;;-,
owi g sk are integers E(YQ), pilE E(YK) may be determined as
follows. The probability of I Y4's per coder action (I =1, ... ,
L -1) 1is given by
n
1
nl-l
PcA(IY4's) - }: PcA(Inl+S 0's, 1) (5.3)
=0
|
The probability of I Ys's per coder action (I =1, ... , == 1) is
2
given by
nz-l
' = [ v
Pop (1Y ') Z [Py (Iny+5 0's,1) + Py (1 +I0,+8 0's, 1)
S=0

4 ams PcA((M-l)n1+In2+S 0's,1)]

where M = ﬁL-.
n
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Using the results of Chapter II this may be written

ny=1 Mo

Fn_+In,+S
PcA(IYS's)= Z{Z pq 1" }

S=0 "F=0

from which E(YS) may be written as

S =5

- WY AL

Continuing, it can be seen that

N3-4

3-3 In 3
E(YJ) = {Z {SZ pq f(N)nl""’nJ 4) (5.4)
I=

where f(N,nl,. is a positive summation of q to the various

*9Bg 42

allowable combinations of standard run lengths. Thus differentiating

the bracketed quantity of (5.2) with respect to Ny _3 yields

n
nK-4 -1
[E(x )+E(x2)+NE(x )] K-3 I
1 3 d “1(-3}
f(N,n goeeey ) ( -1) Iq
b2 1 x-4” dn,_, { k-3 1§=1

B g
X { Z pqs}= 0 (5.5)
S=0

where D 1is the denominator of the bracketed quantity of (5.2). But

[E () +E (x, ) +1E (x,) ]
DZ f(N,nl,.,.,nK_4) >0
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since E(xl) + E(xz) + NE(x3) is the expected number of input symbols

per coder action f(N,nl,... ) is a positive summation as pointed

n
?TK-4

out above and D is equal to the expected number of output symbols

per coder action. Thus (5.5) reduces to
n
K-4

Pg-3 .

a{( -1) ey nK-31pq‘°‘}=o (5.6)
on, 5 | K-3 Z Iq }{ ;0 :

I=1

-1

Now assuming that -3 is known (5.6) gives a relationship from which
n,_, can be determined. Now the same procedure can be applied to Ny 4
yielding (5.6) with N s replacing N _3 and N _s replacing LI
Since N 4 is known this yields a relationship fram which ng_s can
be determined. Thus the solution of (5.6) gives a recursive relationship
between each run length and the next longer run length. This

may be determined as follows. Letting gy = N and ng_ 3 =K in (5.6)

for notational convenience yields

IqIK} [Sz;(:) pqs]}= 0

= -1
K
Performing the indicated summations yields

o
X (K-l)[
I=1

a{wnhﬁgf+§-uﬁﬂ}
=0

oK (1~qK)

Performing the differentiation
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1 K K N N N N+K N MK
——{(1-q ) |(K-1)[q Inq + = q¢ + (z - 1)q Inq - =5 q ]
K. 2 2 K 7
(1-q) K K

K _ N N N N+K
+lgd -ga + G- g ]]
K N N N N+K, K =0
+ ®-Dlqg -ga +G-Da 1gqg 1né}

K

Multiplying out expressions and reducing yields

K
—_—t {(K-l)qunq(l-qN> + (1-qO0q (-4 - % qN<1-qK>.}= 0 (5.7)
K

K.2
(1-9)
Since ————%—§-> 0 (5.7) is equal to zero only if
(1-q)
N G-k, N N N, K
(K-1) (1-q ) (-1nq) = K [q (I-q ) -5 9 (1-q)
q K

or rearranging

N K
(K-1) (~1nq) = (1-¢") [1 - Eﬂ—éliﬂ—ﬁr-] (5-8)
¢ (1-¢M
Now if
(K-1) (-1nq) < (1-¢%) (5.9)

(5.8) will have at least one solution for N as a function of K.
Comparing Figure 6 and Figure 2 (5.9) is satisfied at least for the
case of two standard run lengths over the range where calculations

were made. It is suspected that this is the case in general although

this has not been proved.
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The optimal code for this algorithm may now be searched out as
follows. Start with N3 = 2 and use (5.8) to determine the
remaining standard run lengths. Calculate the compression ratio.
Increment K and repeat. Select the run length set that maximizes
the compression ratio. Global optimality of the search results is not
guaranteed although Figure 6 indicates that over a wide range a
search over low values of Ny _3 is probably sufficient. The compression

ratio vs. number of run lengths for P=0.005 is given in Table 5.

5.3. Generalization to First Order Markov Source.

The coding technique applied to the first order Markov source is

shown in Figure 11.

?L—aCoder No. 1l}—= x1 — 0 — Coder No. 2 j-—e= Y1 —»x1
Xy = 1 Y2 - x3
- 0" d ey ] .
x3 K 0's in a row Y3 nlxl s in a row
xl’—oNl's in a row *

1 .
z, " mX,'s in a row
3 12

- ! i
ZQ mQ_ZXZ S i1n a row

Figure 11

Coding Technique for First Order Markov Source
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TABLE 5

Compression ratio vs number of standard run lengths for p = 0.005

Looror o r o m
1 20 10.092 5.046
2 64 8 19.217 9.719
*
81 9 3 23.032 7.677
Key
NL = pumber of standard run lengths

N,K,M = lengths of the standard run lengths
CRS = compression ratio assuming output symbols of unit cost

CR, = compression ratio when output symbols are block coded

* Note that the compression ratio when the output symbols are block
coded is less for three standard runs than for two standard runs.
This is because the required length of the output symbol block
code increases faster than the compression ratio. The compression
ratio assuming unit cost for output symbols (zl=zz=z3=z4=1) of
course increases. This corresponds to a mapping of the binary

source into a five-level source.
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From Chapter III, the overall compression ratio may be written as

E (x,)+E(x, )+KE (x,)+NE (%, )
T L E(Y1)+E(Y2)+...+E(YK)+E(Z1)+E(z2)+...+E(zQ) :
where L 1is the length of the output block code but
E(Xl) = E(Yl) + nlE(Y3)+ eee + nK_zE(YK)
E(x4) = E(Y,)
E(XZ) = E(zl) + mlE(ZS) + oo + mQ-ZE(zQ>
E(x4) = E(zz)
Thus (5.10) may be written as
o - lr_ E(x1)+E(x2)+KE(x3)+NE(xa) .
L E (%) )+E () )4E (1) +E (%, ) = (1, = 1DE(Y5) = «ev = (mp _,=DE(Y,)
_ -(ml-l)E(z3)- ceo = (mQ-Z-l)E(ZQ)_J

From Chapter III

nz-l M-1

Fn_ +In,+S (1-q_N)
gy = Lo § E 17 1
PCA(IY4 By = q { Polo ) }

K N
S=0 " F=0 (1=q, )+ (1-q

where M = g- and thus
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==~ g =4 M-1 N
5 In2 Fn (l-q. )
1 S 1 1
EQY,) = — Iq P.4d q X
% : o (1-q +-q,)
I=1 S=0 F=0 o 1
Continuing
-3
g2 LI
E(Y)=L Z I =2 Z Sf(NI(n n_ )
J qo qO quO Et Al A J=3
I=1 S=0
But this is the same as (5.4) with q = q, and p = p, except for
the constant i— and f(N,K,nl,.u.,nJ_S). Since both of these factors

o
are constants with respect to the differentiations the same recursion

formula (5.8) results for Ny ,eee,tp o with p = p_ and q = q,

An identical argument on E(zJ) shows that the same recursion formula

(5.8) holds for K, m with p =p, and q = q,.

1""’mQ-z 1 1

5.4. Recursive Coding Technique.

Consider the coding technique shown in Figure 12. Again it is
assumed that a run is encoded using the maximum number of the longest
standard run length followed by the maximum number of the next longest
run length,etc. Also it is assumed that the ratios of the standard

run lengths are integers.
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| 5,3 *R-1,1 *R,1
Coder % Coder X -~ X, - Coder [ _ x 2
. No. 1 1,2 No. 2 = 2,2 =" R-1,2 No. R By
x1’3 x2)3 : :
%24 . :
¥R-1,R+1 *R,R+2

where the coding sequence is defined as follows.

0 "'Xl,l—’xz’l'—.l-c —',LR—]_,I—.X

1 -> Xl’z & X2’2 = see — XR_1,2 - X

< esee — X - X

= X
1,3~ *2,3 R-1,3 ~ *R,3

0's in a row - Xg 4§ 7 eee TX - X
(or nyX, 's in a row) ’

nlo's in a row - x

nRO's in a row = 'R,R+2

[] .
(or nRxR-l,l s in a row)

Figure 12

Recursive coding technique

This time the standard run lengths are selected recursively to
maximize the symbol compression ratio of each coder. The symbol
compression ratio is defined as the expected ratio of input to output
symbols as the length of the input sequence tends to infinity. Thus
g is selected to maximize the symbol compression ratio of coder No. 1,
0, is then selected to maximize the symbol compression ratio of coder

No. 2, etc. Note that the coder actions for all the coders are the
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same. That is, Coder No. 2 can act immediately on any coder action
from coder No. 1, etc. The optimal way to select ny was derived in
Chapters II and III. A recursive technique to optimally select

Doy Mgy eee nK will now be derived.

Consider coder No. J as shown in Figure 13.

*3-1,1 *3,1
*5-1,2 *3,2
. Coder
No. J ¢
X3-1,3+1 *3,342

where the coding sequence is defined as follows.

J-1,1 J,1

i

*3-1,3¢1 7 *1,341

's in a row -

85%5-1,1 B, 042

Figure 13

Coder J
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The symbol compression ratio for each coder is defined as the expected
ratio of the number of symbols in the input sequence to the number of
symbols in the output sequence as the length of the input sequence
tends to infinity. Using the same reasoning as that given in Sections
2.4 and 3.4 the symbol compression ratio for the Jth coder converges

with probability one to

E(x., D)+E(x._. ,)+...+ E(x y+n_E(x )
CRJ J,1 J,2 J,J+1 J J,J+2 (5.11)
E s o+ E
(kg ytBOeg gIbenet By 5 )HEGRS 51p)
where E(xij) denotes the expected number of xij's emitted per
coded action. But for each coder action
E =
Blxy o) & 0B, 550 = Blxy g o
By p) = BE(x;4 o)
. (5.12)
By gp) =BGy 54p)

Thus (5.11) may be written as

. = E(xJ_1’1)+E(xJ_1’2)+...+E(xJ_1JJ+1)
J
E -n_E o
gy, ) 0GB &G g By p) e B g )FEGG 5p)
Combining terms
[E(XJ-1,1)+E(XJ-1,2)+‘"+E(XJ-1’J+1)]

CR. = (5.13)
[E(XJ_1’1)+E(xJ_1’2)+...+E(xJ_1,J+1)]-(nJ-l)E(xJ,J+2)
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Since the quantity

E( )+E(XJ-1 2)+...+-E(x )

£ 31,1 J-1,J+1

does not depend on 0y differentiating (5.3) with respect to ng

and setting the result equal to zero yields

E(xJ_1’1)+E(xJ_1’2)+...+E(xJ_l’J+1) 3 . 1
YZ anJ J J,J+2

But

E(xJ_1’1)+E(xJ_1’2)+...+E(xJ_1’J+1)

>0

YZ

since the numerator is the expected number of input symbols per coder
action and the denominator is equal to the square of the number of
output symbols per coder action. Thus to find the maximum of (5.1) it

is necessary only to solve

9 -
an [(“J'I)E(XJ,J+2)] =8

But

E(XJ,J+2) = By

of the previous section except for subscript notation differences. Thus

the implicit equation (5.8) results except this time the longer standard
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run length is fixed and the next shorter one is to be determined. This
is just the reverse of the previous section. By the same arguments uysed
previously this can be generalized to the first order Markov case
with p = Py and q = g in the case of run lengths of 0's and
P =P and q = 9y for run lengths of 1l's. The compression ratio vs.
number of standard run lengths for p = 0.005 is given in Table 6.
Instead of choosing N by the method of Chapter II and III some im-
provement may be gained by incrementing N constraining Dyy eeey O
to satisfy (5.8) and searching out the maximum compression ratio.

A test of (5.8) is to try to calculate K of Figure (6) given N
and p. This has been done and interestingly enough (5.8) predicted
the correct K exactly for every point checked even though in some

N ; ; : ’
cases o was not an integer as was assumed in the derivation.
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TABLE 6

Compression ratio vs number of standard run lengths for p = 0.005
(recursive scheme)

7 e S
1 20 10.092 5.046
2 20 4 14.350 7.175
3 20 4 2 14.882 4.960

Key
p = probability of a 1
CRB = compression ratio when block coding is used on output
symbols
CRS = compression ratio assuming output symbols of unit cost

N,K,M = lengths of the standard run lengths
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CHAPTER VI

A SIMPLE SINGLE STANDARD RUN LENGTH SCHEME USING A

NON=-BLOCK CODE ON THE OUTPUT SYMBOLS

6.1. Introduction.

In Chapter II the optimum single standard run length for the binary
independent source was derived assuming the output symbols were block
coded. A non~block output code (Huffman) required computer search to
determine the optimum standard run length. In this chapter a simple
coding scheme using a single standard run length and a non-block output

code is analyzed.

6.2. Coding Technique.

Consider a binary independent source emitting ones and zeros with
probabilities p and q = l-p respectively. This sequence is then
encoded as follows. After each M binary digits have been emitted
the coder sends

1 if M zeros have been emitted
0 followed by the original sequence otherwise.
Let the average number of output digits used to represent M source

symbols be denoted by L. Then

qM * (l-qM)(M+1)

t
]

or rewriting

1+ M(1-¢)

=
]

The compression ratio is defined as
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M

R=2= —H
- l+M(1-qM)

Maximizing by differentiating with respect to M and setting the

result equal to zero yields

1
[1+M(1-q D]

=0

5 [1+M(1-qM)-M(l—qM)+M2qM1nq

or
M 1
q (-lng) = 5 (6.1)
M
The same type of reasoning as presented in Section 2.5 shows that (6.1)

defines a global maximum. The optimum M wvs. p and the resulting

compression ratio is given in Table 7.
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TABLE 7

Optimum M and compression ratio vs p for non-block scheme

B M CR
0.2000 3 1.218
0.1000 4 1.684
0.0500 5 2.346
0.0300 6 2.997
0.0200 8 3.646
0.0100 11 5.113
0.0050 15 7.189
0.0030 19 9.249
0.0020 23 11.302
0.0015 26 13.031

0.0010 32 15.934
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CHAPTER VII

CONCLUS IONS

The globally optimum single standard run length has been derived
for the binary independent source and globally optimum single standard
run lengths of zeros and ones have been derived for the binary first
order Markov source. It is assumed that the output symbols are sub-
sequently block coded in each case. The optimum standard run lengths
depend on whether block or Huffman coding is subsequently used to
encode the symbols. If Huffman coding is used on the output symbols
the optimum standard run lengths can be determined by a finite computer
search. A recursion relationship between standard run lengths is
derived for two specific coding algorithms. An area of future study
would be to try to remove the restrictions of these coding algorithms.
A simple single standard run length scheme using a non-block code on
the output symbols has also been derived for the binary independent
source.

An advantage of this scheme over the usual run length coding,
coding extensions of the source, or picking more general variable
length codes [9], is ease of implementation. From a theoretical point
of view, for example, Huffman coding a sufficiently large extension
of the source will guarantee an efficiency as close to one as desired.
Implementing this scheme, however, requires that the coder be able to
distinguish between 2% source sequences of length n where n is the
order of the extension. As the source becomes more and more unsymmetrical
a high extension must be coded to maintain the same efficiency. 1In

contrast, the schemes proposed here require the coder to recognize
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only runs of zeros or ones. This can be accomplished with shift
registers, counters and simple gating circuitry.

Of course the decision of whether or not to use a particular
coding scheme is dependent on the source statistics as well as the
complexity of implementation. The schemes presented in this thesis are
particularly suited to unsymmetrical binary independent sources or
binary first order Markov sources with unsymmetrical transition
probabilities. A comparison of the efficiency of various schemes as a
function of the source statistics is given in Figure 9.

Finally a coding scheme must be chosen with reference to the type
of channel over which the information will be sent. Transmission
over any realistic channel produces the possibility of errors. Errors
of little concern to one particular coding scheme may be disastrous
to another. For example, although the scheme of Chapter VI produces
good compression ratios, loss of sync by the decoder essentially
requires starting over again. Of course there are other classes of
codes which are used because of their immunity to certain types of
errors. These usually require more rather than less data be sent.

Thus the choice of a particular coding scheme for data compression
is dependent not only upon the compression ratio attainable. Other
factors such as ease of implementation, source statistics, amd the

channel that is to be used for transmission also play a major role.
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