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ABSTRACT

The use of biomass as a resource to produce value-added products has garnered signif-
icant interest as a means of reducing reliance on fossil fuels. This task is complicated
by the complex, highly functionalized nature of abundant biomass derivatives, such as
glucose. Tin-containing zeolite Beta (Sn-Beta) has been investigated as a catalyst for
isomerizing aldohexoses into ketohexoses through a Lewis acid mediated hydride shift (1,2-
intramolecular hydride shift, 1,2-HS). Recent studies on the reactivities of Lewis base-doped
and alkali-exchanged Sn-Beta samples have conclusively demonstrated that the open tin site
performs the glucose isomerization reaction. With Lewis base doped Sn-Beta, glucose
conversion is almost completely eliminated and product selectivity is shifted predominantly
to mannose, formed through a 1,2-intramolecular carbon shift (1,2-CS). To understand the
structure-activity relationships between the conditions of the active sites in the zeolite, three
molecular models (tin silsesquioxanes) of the tin sites in the zeolite are synthesized. Two tin
silsesquioxanes that contain an octahedral tin site with and without an adjacent silanol group
are prepared and used as catalysts for the reaction of glucose. The catalyst that contains
the adjacent silanol group selectively forms fructose through a 1,2-HS while the catalyst
without the silanol group yields mannose through a 1,2-CS. These results provide further
evidence for the nature of the active sites in Sn-Beta. A methyl-ligated tin silsesquioxane is
experimentally and theoretically examined to examine possible reactivities at the closed site.
This compound is an active glucose conversion catalyst that selectively produces mannose,
although the rates of reaction are far below those obtained from Sn-Beta. Additionally, a

hybrid quantum mechanical/molecular mechanics model is constructed, and the complete
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catalytic cycle is computationally examined via considering ring-opening, three distinct
pathways for each hydride- and carbon-shift reaction, and ring-closing. The combined
experimental and computational results suggest that there could be reaction pathways that
involve Si-O-Sn cleavage that give much slower reaction rates than the open tin site in
Sn-Beta.

Zeolite and zeolite-like molecular sieves are being used in a large number of applica-
tions such as adsorption and catalysis. Achievement of the long-standing goal of creating
a chiral, polycrystalline molecular sieve with bulk enantioenrichment would enable these
materials to perform enantioselective functions. In part II of this thesis, the synthesis
of enantiomerically enriched samples of a molecular sieve is reported. Enantiopure or-
ganic structure directing agents (OSDAs) are designed with the assistance of computational
methods, and used to synthesize enantioenriched, polycrystalline molecular sieve samples
of either enantiomer. Computational results correctly predicted which enantiomer is ob-
tained, and enantiomeric enrichment is proven by high-resolution transmission electron
microscopy. The enantioenriched and racemic samples of the molecular sieves are tested
as adsorbents and heterogeneous catalysts. The enantioenriched molecular sieves show
enantioselectivity for the ring opening reaction of epoxides and enantioselective adsorption
of 2-butanol (R enantiomer of the molecular sieve shows opposite and approximately equal
enantioselectivity from the S enantiomer of the molecular sieve, while the racemic sample

of the molecular sieve shows no enantioselectivity).
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Part I

Tin Silsesquioxanes as Analogs for the
Open and Closed Sites in

Tin-Containing Zeotype Beta



Chapter 1

INTRODUCTION TO PART I: UNLOCKING AND UNDERSTANDING
THE KEY CATALYTIC PATHWAYS OF BIOMASS CONVERSION

This beginning of this chapter serves to introduce the motivation, obstacles, and current
progress in the quest to produce value-added chemicals from biomass feedstocks. A discus-
sion of molecular sieves and the current possibilities and future goals for biomass conversion
catalysis utilizing these materials is also presented. Additionally, the implementation of
silsesquioxanes as homogeneous complexes to mimic and study the active site in heteroge-

neous catalysts is introduced. Finally, a broad overview of Part I of this thesis is given.

1.1 Motivation for Using Biomass Feedstocks in the Chemical Industry

Since the Industrial Revolution of the 18" century, humanity has globally experienced
remarkable growth economically and technologically.! The beginnings of this revolution
coincided with the design and utilization of devices (like the steam engine) that were
dependent on fossil fuels (namely coal, natural gas, and oil), leading to the facile introduction
of machines to manufacturing processes.! 150 years later, fossil fuel resources remain the
dominant sources of energy and chemicals.> Despite ongoing advances in the oil and gas
sector that have allowed for dramatically greater quantities of crude to be extracted from
existing (and future) reserves, growing concerns associated with extraction and consumption
of fossil fuels has motivated substantial efforts from academia and industry to pursue
and transition to sustainable, renewable, and clean sources for the production of energy

and chemicals. The U.S. Energy Information Administration, however, reports that in
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2015 coal, natural gas, and oil provided 16%, 29%, and 36% of the energy consumed in
the United States, respectively.>? In the same year, only 9% over the energy consumed
was produced from renewable resources, half of which was derived from biomass-related
sources.’ Moreover, despite growth in the renewable energy sector, particularly amongst
solar-derived sources, fossil fuels are expected to remain the dominant, primary sources
of energy — likely due to the capital expenses associated with adapting and implementing
new technologies, as well as current issues regarding energy storage.’

Beyond the production of energy, fossil fuels are crucial feedstocks for the production
of commodity goods. Specifically, 3% of natural gas and 7% of oil consumed in the
United States is used in the chemical industry.> Biomass (matter that has been produced
from biological photosynthesis) presents itself as an intriguing feedstock replacement for
some chemical processes.*® However, the oxygenated nature of biomass (relative to fos-
sil fuel derived hydrocarbons) complicates traditional industrial reactions and potentially
compromises the economic viability of it as a feedstock. Therefore, it is critical to produce
compounds from biomass that have value above the original energy content of the biomass
itself, and, preferably, are easier to synthesize than from conventional methods.”™ The first
part of this thesis focuses on examining a crucial transformation of glucose, a monomer
obtained from lignocellulosic biomass, into fructose — from which numerous interesting
value-added chemicals can be directly obtained.

Despite the significant political, economic, and scientific challenges that persist in devel-
oping and encouraging the adaptation of biomass-derived energy and chemicals, academia

and industry must remain focused on developing processes that are net green.



1.2 Molecular Sieves and their Application for Biomass Catalysis

Molecular sieves are microporous, crystalline materials with pores of less than 2 nm that
are formed from three-dimensional networks of oxide tetrahedra.'®!! Currently, these ma-
terials have found applications in catalysis, separations, ion exchange, and adsorption.!!12
Molecular sieves provide inherent shape-selectivity properties and, coupled with the in-
clusion of catalytic metal centers, are capable of innumerable, highly selective chemical
reactions.!®!! While theory demonstrates that there are millions of distinct hypothetical
framework structures, currently only around 230 framework have been successfully syn-
thesized.!3-16 However, due to the numerous economic and scientific benefits of utilizing
molecular sieves, motivation to develop new structures remains high.

The composition of molecular sieves can vary drastically, imparting distinct properties -
even among equivalent frameworks.!? A typical framework consists of tetrahedrally coor-
dinated atomic centers (referred to as T-atoms) connected to one another via oxygen atoms
to form a complex crystalline structure.!® In many instances, it is possible to incorporate
tetravalent or non-tetravalent elements into the T-atom position, such as tin (IV).!%!7 In
general, microporous materials with framework compositions limited to silicon, aluminum,
and oxygen (i.e., aluminosilicate) are known as zeolites.!%!! Zeotypes are materials that re-
tain equivalent framework structures to zeolites, but the compositional range of the structure
is unconstrained.'!

One particular framework of particular interest is Beta, due in part to its stability and
ease of synthesis that does not require expensive starting materials. Most commonly,

zeolites with *BEA topology consist of an intergrowth of polymorphs A and B of the BEA
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structure.'® As shown in Figure 1.1, this structure consists of a three-dimensional network
of intersecting 12-membered ring channels (i.e., 12 T-atoms)."® Such large channels (ca.

0.8 nm pore diameter) render *BEA a promising platform to perform catalysis on bulky

molecules, such as glucose.19
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Figure 1.1: Framework structure of zeolite Beta.

In molecular sieves, depending upon the conditions under which the material was syn-
thesized, defects may arise throughout the structure.?’ For a pure-silica molecular sieve,
these defects transpire as silanol "nests" within the framework, whereby a given silicon is
incompletely coordinated to the broader network of atoms (e.g., only two or three silicon-
oxygen-silicon bonds are made). A similar principal exists for metal-containing frameworks
that have been isomorphously substituted. For tin-containing zeotype Beta, a known and
highly-selective glucose conversion catalyst that will be discussed at length in Part I of this
thesis, there exist two possible active sites: the closed site and open site.>! The closed site is
classified as a metal center bound to the framework via four —OSi bonds. On the other hand,
the open site is characterized by the presence of a stannanol and three —OSi bonds to the
molecular sieve framework. As open sites are formed by the hydrolysis of a single closed

site bond, a silanol group is expected to be present adjacent to the metal site. Depictions of
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these sites are given in Figure 1.2. Part II of this thesis presents a more rigorous discussion

of molecular sieves and their synthesis.

X X X
\S./OH HO\S A X\S./O\ /
x5 T xY
X X X X

Open Site Closed Site

Figure 1.2: Open (left) and closed (right) sites present in tin-containing Beta.

Moliner et al. first reported that tin-containing zeotypes are active in performing the
isomerization of glucose in water.!” Bermejo-Deval and coworkers demonstrated that Sn-
Beta is also active in methanol solutions.?>?? Utilizing Sn-Beta for a reaction performed
in 10 wt% aqueous glucose solution at 383 K for 30 minutes yields of 45%, 32%, and 9%
for glucose, fructose, and mannose are obtained, respectively. Work in the Davis lab has
determined it is also possible to manipulate the active site of Sn-Beta to solely produce
mannose through a 1,2-intramolecular carbon shift (1,2-CS). This highlights the tunability
of the active site and the necessity to develop a fundamental understanding of how the
structure of a given catalytic site influences subsequent product formation.

In an attempt to understand the glucose isomerization mechanism in Sn-Beta, Roman-
Leshkov and workers utilized isotopic tracer studies to demonstrate that Sn-Beta catalyzed
glucose isomerization proceeds via a C; — C, intramolecular hydride shift (1,2-HS), as
depicted by Figure 1.3. This proposed mechanism stipulated that the active site of Sn-Beta
is the partially hydrolyzed framework tin species. To confirm this hypothesis and gain
further insight as to how glucose catalysis occurs, Bermejo-Deval et al. prepared Sn-Beta

with CH3SnCls, ensuring that all framework tin was of the open site form (with the typical
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hydroxyl group replaced with a methyl group); however, results obtained from this material

were inconclusive.??
H
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Figure 1.3: Initial mechanism proposed for the Sn-Beta Lewis acid catalyzed C; — C,
intramolecular hydride shift isomerization of glucose to fructose.

Subsequent experimental work, in addition to computational studies, strongly indicates
that the active site in Sn-Beta is indeed the open site.?!4-26 Initially, Bermejo-Deval et al.
titrated the silanol groups adjacent to the open tin site with sodium and observed a complete
shift in selectivity from fructose to mannose. This provided the first experimental evidence
that the open site was the most active tin site and emphasized the significance of the silanol
moiety in the reaction mechanism.?* This work also revealed that titration of the open site

with NH3 (Sn-Beta-NHj3) attenuated the activity of the catalyst indicating that the open and
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closed sites do not interconvert under reaction conditions. Harris ef al. subsequently have
shown that the number of open and closed sites in Sn-Beta may be quantitatively determined
utilizing Lewis bases as titrants.?® In doing so, they are able to demonstrate an inverse linear
correlation between the initial rate of glucose isomerization with the quantity of pyridine
dosed. This provided the first true experimental demonstration that isomerization activity
is fully suppressed when all open sites are titrated.

Numerous reaction mechanisms involving the open (and closed) site have been proposed.
Work from Li et al. suggests that glucose first binds to the open site through coordination of
the basic C; carbon hydroxyl, with subsequent transfer of the acidic proton to the framework
lattice followed by a 1,2-intramolecular hydride shift.”’ This results in a monodentately
bound fructose stabilized by the adjacent silanol group through the O; oxygen. Yang et
al. consider a similar type of mechanism, but at the closed site.”® Most significantly,
Rai et al. and Christianson et al. propose similar pathways; however, their calculations
involve the acidic C, hydroxyl proton transferring to the stannanol group, forming a water
molecule.>>?° Rai et al. also demonstrated that in the absence of a silanol group adjacent
to the tin center the glucose binds to the tin bidentately and selectively produces mannose
through a 1,2-CS, known as the Bilik reaction.2*30

In general, the mechanisms proposed by Rai et al. are the most consistent with those ob-
served experimentally, and are shown in Figures 1.4 and 1.5. In general, it was demonstrated
that glucose in a bidentate coordination to the Sn favored a C-shift reaction, while glucose
coordinated to the Sn and neighboring SiOH favored the H-shift reaction, suggesting the
neighboring SiOH promotes fructose selectivity by participating in a concerted reaction.

Although Sn-Beta demonstrates the highest conversion of glucose in water at 413 K, a
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Figure 1.4: Mechanism proposed for the Sn-Beta Lewis acid catalyzed C; — C; intramolec-
ular hydride shift isomerization of glucose to fructose.

number of other materials exhibit isomerization activity. Mesoporous MCM-41 materials
synthesized with tin exhibit approximately 30% glucose conversion, respectively.'® SnO,
dispersed on silica also shows reactivity in methanol solutions.>?

The majority of mechanistic studies have relied heavily upon the use of isotopic labeling
studies to deduce the nature of a given reaction. Despite significant recent advances that
have indicated that the open sites are indeed the active catalytic sites, a clear mechanistic

picture of the glucose isomerization and epimerization processes has yet to be thoroughly

developed.?*2® This stems from the inherent characterization limitations of a heterogeneous
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Figure 1.5: Mechanism proposed for the Sn-Beta Lewis acid catalyzed C; — C; intramolec-

ular carbon shift epimerization of glucose to mannose.

catalyst and the multiplicity of sites that may exist within a given sample. It is clear that

10

further studies are necessary in order to understand the nature of the interactions amongst the

active sites Sn-Beta, the sugar complexes, as well as the solvent during the isomerization and

epimerization reactions. Given the general observation that tin centers dispersed within or

on siliceous matrices are active in the conversion of glucose, it follows naturally that soluble,

homogeneous, well-defined complexes, like metallosilsesquioxanes, are ideal models for

studying the reaction mechanism and active site structure in heterogeneous catalysts.
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1.3 Introduction to Silsesquioxanes: Homogeneous Analogues of Heterogeneous Sys-
tems
Silsesquioxanes are organosilicon compounds that retain a cage-like structure, as demon-
strated by Figure 1.6. Most commonly, silsesquioxane structures are cubic (Tg), while others
may be trigonal prismatic (Tg) or pentahedral (T;p). The Tg structure is most prevalent
due to the geometric stability of the Si4O4 rings. Moreover, the silsesquioxane complex
may either be fully condensed, implying that the most Si-O-Si bonds are attained in a
given geometric arrangement, or incompletely condensed, whereby fewer Si-O-Si bonds
comprise the structure than are possible. In this latter instance, silanol groups are imparted
into the structure, invoking an inherent functionality to the complex, as shown in Figure
1.7. Most importantly, silsesquioxanes are soluble in non-polar solvents, and are therefore

unique candidates to study siliceous heterogeneous catalysts.

|
R R R .
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o &Ro o R\I' o | R s:"R RO
Ve I\ S|_O_|_S|\ I ~ I< |
s R S~ a:
‘/O O\| 0 0] -0 o~ si
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Figure 1.6: Examples of fully condensed silsesquioxanes, where R is an aliphatic or aryl
group.

Incompletely condensed cubic silsesquioxanes are of particular interest as they are rep-

resentative of D4R rings, fundamental molecular sieve building blocks, and provide great
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Figure 1.7: Incompletely condensed T7(OH)3 silsesquioxane.

structural similarity to the environment surrounding metal sites in the Beta topology. More-
over, incompletely condensed trisilanol T7-derivatives (T7(OH)3) yield opportunities to
introduce metals, such as tin and titanium into the material to mimic metal centers, depicted

in Figure 1.8.

Figure 1.8: General structure of a metallosilsesquioxane, where M and X are a given metal
and organic ligand, respectively.

Brown and Vogt first reported the synthesis of T7(OH)3 complexes in 1965 via the
hydrolytic condensation of cyclohexyltrichlorosilane in hydrous acetone.?! The product
was allowed to precipitate from solution over a period of 36 months, and was collected
intermittently. Fortunately, work performed by Feher through the 1990s drastically reduced
32-36

required synthesis times.

Feher’s seminal work on silsesquioxanes also established a structural relationship be-
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tween T7(OH)3; and that of the (111) octahedral face of B-cristobalite and the (0001)

rhombohedral face of S-tridymite, both polymorphs of silica that are commonly observed
in amorphous silica.’> Moreover, there exists extensive spectroscopic similarities between
isolated and geminal surface silanol groups on silica with their respective silsesquioxane
complex analogues.’” Lastly, pKa calculations indicate that the silsesquioxane cage pro-
vides an electronegative CFz-like electron withdrawing effect similar to bulk silica on a
silanol species.?” There is also an observed increase in acidity for silsesquioxane complexes
bearing multiple silanol groups, as is also the case with bulk silica.

Given the clear applicability of implementing silsesquioxanes as models for silica sur-
faces and the geometric similarities between silsesquioxane cages and zeolitic building
blocks, researchers have turned toward utilizing them as analogues for zeolites.>*! In par-
ticular, aluminosilsesquioxanes as model compounds for acidic sites in zeolites have been
obtained by reacting alkylaluminum compounds with T7(OH)3.3840 Using this procedure,
both Lewis and Brgnsted acidic silsesquioxane complexes were synthesized. It was shown
that the aluminosilsesquioxane Brgnsted acid model retained an intramolecular hydrogen
bond comparable to that found in zeolite HY, although the relative acidity of the compound
was reduced due to the inherent strength of the aforementioned bond.*' Moreover, a number
of studies have utilized titanosilsesquioxanes to probe the activity of titanosilicates, such as
Ti-MCM-41, a mesoporous molecular sieve, as well as Ti-substituted MFI, also referred to
as TS-1.974

It is interesting to note that despite the clear advantages of utilizing well-defined single-
site compounds to directly analyze the nature of a catalytic site, there exists little discussion

in the literature on studies where such experiments have been performed. In fact, some
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workers have focused adsorbing metallosilsesquioxanes within MCM-41 structures for di-
rect use as catalysts.*6~*® This is potentially a consequence of the promising performance
that silsesquioxane-based catalysts demonstrate towards epoxidation of alkenes. Notably,
Crocker et al. have reported that titanosilsesquioxanes are the most active titanium-based

epoxidation catalysts reported to date.*?

1.4 Overview of Part I

The collection of work presented in the first part of this thesis focuses on the synthesis
and characterization of three tin silsesquioxanes that function as analogues to the open
and closed sites within tin-containing Beta. Furthermore, these complexes are rigorously
analyzed for their capacity to perform glucose conversion chemistries. Chapter 2 analyzes
two such complexes, one that mimics the open site and one that mimics a sodium-exchanged
open site. This work provides not only the first example of utilizing tin silsesquioxanes
to perform carbohydrate-based chemistry, but also he first fundamental indication of the
structure-activity relationship between catalyst geometries and reaction products for this
system. It was demonstrated that the open site geometry does indeed selectively produce
fructose from glucose through the 1,2-HS mechanism, while the sodium-exchanged open
site analogue produced mannose by the 1,2-CS mechanism. These are in direct alignment
with what has been demonstrated with the heterogeneous Sn-Beta system. Furthermore,
as these compounds are fully characterizable utilizing a host of techniques, the precise
structure of the active site is known. Chapter 3 focuses on a singular complex that mimics
the closed site in tin-containing zeotype Beta. Despite this complex producing mannose

(selectively) and fructose (less selectively), the rates are exceptionally below those found for
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the complexes examined in Chapter 2. This indicates that it is possible to perform glucose
conversion chemistries by breaking the framework Sn-O-Si bond, but it is not likely to
be the primary mechanism by which products are formed using Sn-Beta. Thus, if closed
sites are to participate in catalysis, it is at a rate significantly lower than at the open site.
Finally, in Appendix C, a further examination of how reactions occur on materials studied

in Chapter 2 is detailed.
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Chapter 2

TIN SILSESQUIOXANES AS MODELS FOR THE OPEN SITE IN
TIN-CONTAINING ZEOLITE BETA

Information contained in Chapter 2 was originally published in:
(1) Brand, S. K.; Labinger, J. A.; Davis, M. E. Tin Silsesquioxanes as Models for the

“Open” Site in Tin-Containing Zeolite Beta. ChemCatChem 2016, 8, 121-124, DOI:
10.1002/cctc.201501067,

2.1 Introduction
Zeolites containing framework Lewis acid sites have been demonstrated to be highly active
and selective catalysts in the conversion of complex carbonyl-containing molecules.!'™
Notably, tin-containing zeolite beta (Sn-Beta) has been shown to catalyze glucose to fructose
in aqueous conditions with high yields.*> The glucose isomerization pathway for this
reaction had been shown to occur at the framework tin sites by 1) the ring-opening of
glucose, 2) coordination of the glucose to the tin site, and 3) an intramolecular hydride
shift from the C, to C; position on the open glucose chain.® Remarkably, this glucose
isomerization pathway is analogous to what has been observed with metalloenzymes, such
as D-xylose isomerase XI.7-8

To date, the catalytically active site of Sn-Beta has yet to be elucidated experimentally
under reactions conditions. Corma et al. proposed that framework tin sites in Sn-Beta may
exist in either an “open” (a (Si0)3SnOH center with an adjacent silanol group) or “closed”

(a (Si0)4Sn center) state.” However, experimental results as well as theoretical calculations

suggest that the open site is most active.>%?"1> In work from the Davis lab, Bermejo-Deval
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et al. sodium-exchanged the silanol groups adjacent to the open Sn site and observed a
complete shift in selectivity from fructose to mannose, not only implying that the open site
was likely the most active tin site, but also demonstrating the importance of the adjacent
silanol group in the glucose isomerization pathway.!? In this same study, the open site was
selectively titrated with NH3, which was discovered to render Sn-Beta effectively inactive,
implying that the open site is most active, and that the closed sites do not convert to open
sites under the conditions of the reaction. In a theoretical study, the effect of the adjacent
silanol group at the open site was examined by Rai et al.'®> This work demonstrated that the
activation energy to perform the 1,2-HS to form fructose was significantly lower when the
adjacent silanol group participates in the reaction. However, when the silanol moiety acts
as a spectator, the activation barrier to form mannose by the Bilik mechanism was found to
be much lower than the isomerization reaction.

Here, we examine the reactivities and reaction pathways for homogeneous, readily-
characterizable molecular analogues of the hypothesized active sites in Sn-Beta. The two
tin silsesquioxanes studied are schematically shown in Figure 2.1.

Both materials retain octahedrally coordinated tin sites with an adjacent siloxy group
capped by either a proton (1a), analogous to the open site in Sn-Beta, or a trimethylsilyl
substituent (1b), representative of Na-Sn-Beta. These octahedral tin (IV) structures are

stable in the presence of small amounts of water.'6
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Figure 2.1: Schematic representation of the hypothesized active sites present in Sn-Beta,
and the analogous tin silsesquioxanes synthesized. “R” denotes a cyclohexyl ligand, while
and “X” signifies framework O-Si units. Two water molecules per Sn open site have been
omitted for clarity in the top schematics.

2.2 Experimental Methods

General Air- and Water-Free Synthesis and Purification Procedures

All glassware was dried at 433 K prior to all syntheses, and purged with argon while
cooling. All syntheses, purification procedures, and reaction tests were carried out under
argon using standard air- and water-free techniques. Benzene (99.8%, anhydrous, Sigma-
Aldrich), hexane (95%, anhydrous, Sigma-Aldrich), dimethyl sulfoxide (DMSO, >99.9%,
anhydrous, Sigma-Aldrich), toluene (99.8%, anhydrous, Sigma-Aldrich), and acetonitrile
(99.8%, anhydrous, Sigma-Aldrich) were used as received. Triethylamine (99.5%, Sigma-

Aldrich) was distilled from 3 A molecular sieves. Tin bis(acetylacetonate) dichloride (98%,
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Sigma-Aldrich) and chlorotrimethylsilane (>99%, Sigma-Aldrich) were both used without
further purification.

The incompletely condensed cyclohexyl-ligated trisilanol silsesquioxane, 1, was obtained
from Hybrid Plastics. 1 was purified by recrystallization by slow diffusion of acetonitrile
into a concentrated solution of THF. Purity of 1 was then confirmed using 'H, '*C, and

29Si

Synthesis of 1a and 1b
The methods of synthesis for 1a and 1b were adapted from Duchateau et al who alternatively
used heptacyclopentyl trisilanol silsesquioxane as a starting material for their complexes. !¢

1a was synthesized by the addition of tin bis(acetylacetonate) dichloride (Sn(acac),Cl,)
and heptacyclohexyl trisilanol silsesquioxane, 1, to a dried round bottom flask in stoichio-
metric quantities, and subsequently dissolved in toluene. A slight excess of triethylamine
was then introduced as a scavenger base. The flask was placed in an oil bath at 353 K and
allowed to react over night. Triethylamine hydrochloride slowly precipitated from solution,
and after allowing the reaction to cool, was removed by filtration. The toluene was removed
in vacuo. Hexane was then added, the solids were allowed to dissolve, and then the solvent
was removed in vacuo yielding a white powder as a product in quantitative yields.

1b was synthesized by first reacting a stoichiometric quantity of chlorotrimethylsilane
with 1 to produce a monosilylated intermediate compound, 1b-i, as described by Feher et
al.'” The crude silylated product was purified by fractional recrystallization to remove any

undesired di- or tri-silylated species. 1b-i was then reacted with Sn(acac),Cl, using the

method described for 1a to yield 1b in quantitative yields.
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To ensure that all triethylamine (used as a scavenger base, and reported to be a highly
selective catalyst in the conversion of glucose to fructose) and triethylamine hydrochloride
were removed from both products, the purified solids were additionally heated to 343 K
and held under vacuum for 12 hours to sublimate any residual triethylamine hydrochloride
salt.!® Characterization of the material demonstrated that neither the Sn(acac),Cl, nor

triethylamine hydrochloride salt remained post-reaction.

Material Characterization
Nuclear magnetic resonance (NMR) spectra of 1a and 1b were collected either on a Varian
Inova 500 ('H, 499.7; 13C, 125.7 MHz) equipped with a broadband probe or on a Varian
Inova 400 (298i, 79.4; 1198n, 149.1 MHz). 298i and '”Sn NMR were referenced to SiMey
and SnMey, respectively. Chromium(III) acetylacetonate (Cr(acac)s;) was added to samples
for 2°Si and ''”Sn NMR characterization as a shiftless relaxation agent.

1a: '"H NMR (500 MHz, CDCls, 298 K) ¢ = 5.57, 5.56 (s, 2 x CH, acac, 2H), 4.76 (s,
SiOH, 1H), 2.18, 2.12, 2.04, 2.01 (s, 4 x CH3, acac, 12 H), 1.82 — 1.60 (vbr m, CHH>,
cyclohexyl, 35 H), 1.35 — 1.05 (vbr m, CH3, cyclohexyl, 35 H), 0.80 — 0.64 (vbr m, CH,
cyclohexyl, 6 H), 0.58 (m, CH, cyclohexyl, 1 H). 3C NMR (125.7 MHz, CDCl3, 298 K) §
=196.94, 196.10, 195.26, 194.76 (4 x C=0, acac), 102.39, 102.16 (2 x CH, acac), 28.30 —
26.50 (CHa, cyclohexyl), 25.21, 25.18, 24.17, 24.03, 23.83, 23.56, 23.42 (CH, cyclohexyl,
1:1:1:1:1:1:1 ratio). 2°Si NMR (79.4 MHz, CDCl3, 298 K, 0.02 M Cr(acac)s) 6 = -58.37
(SiOH), -64.31, -65.83, -67.47, -68.30, -69.14, -70.67 (O3SiCgHyy, 1:1:1:1:1:1:1 ratio).
119Sn NMR (149.1 MHz, CDCl3, 298 K, 0.02 M Cr(acac)s) 6 = -729.96.

1b: 'H NMR (500 MHz, CDCl3, 298 K) 6 = 5.55, 5.53 (s, 2 x CH, acac, 2 H), 2.15, 2.12,
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2.01, 2.00 (s, 4 x CH3, acac, 12 H), 1.85 — 1.59 (vbr m, CH», cyclohexyl, 35 H), 1.32-1.10

(vbr m, CH3, cyclohexyl, 35 H), 0.76 — 0.65 (vbr m, CH, cyclohexyl, 5 H), 0.60 (m, CH,
cyclohexyl, 1 H), 0.45 (m, CH, cyclohexyl, 1 H), 0.13 (s, OSi(CH3)3, 9 H). 13C NMR
(125.7 MHz, CDCl3, 298 K) 6 = 196.52, 195.37, 194.87, 194.83 (4 x C=0, acac), 102.28,
102.10 (2 x CH, acac), 28.50 — 26.50 (CH>, cyclohexyl), 25.67, 25.58, 25.43, 25.27, 24.49,
23.59, 23.45 (CH, cyclohexyl, 1:1:1:1:1:1:1 ratio), 2.13 (OSi(CH3)3. 29Si NMR (79.4 MHz,
CDCl3, 298 K, 0.02 M Cr(acac)z) 6 = 8.84 (s, OSi(CH3z)3, -65.69, -67.33, -67.60, -67.83,
-68.31, -70.33, -71.87 (03SiCgH1, 1:1:1:1:1:1:1 ratio). '"Sn NMR (149.1 MHz, CDCl;,
298 K, 0.02 M Cr(acac)3) 6 = -738.01.

Variable-temperature (VT) NMR experiments were used to determine how the structures
of the catalysts were affected under reaction conditions. In a typical experiment, a 2% (w/w)
glucose solution (1:1 volumetric ratio of benzene and DMSO) was mixed with each catalyst
(maintaining a 25:1 glucose to Sn molar ratio) in an NMR tube. Due to a number of
overlapping peaks in the 'H and '*C NMR spectra amongst the catalysts, glucose, and
reaction products, only 2°Si and '°Sn spectra were collected to evaluate the structure of the
catalyst. In conducting the VT NMR experiments, the system was allowed to equilibrate
at a given temperature in the NMR for 10 minutes, and then a spectrum was obtained (256
scans for each nuclei). Due to line broadening effects, 2°Si spectra were only obtained at

278 and 353 K.

Glucose Reaction Procedures
Reactions with D-glucose (Sigma-Aldrich, anhydrous, >99.5%) were conducted in 10 mL

thick-walled glass reactors (VWR) that were heated in a temperature-controlled oil bath
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placed on top of a digital stirring hot plate (Fisher Scientific). Glucose, 1a, and 1b were
separately dried under vacuum (<50 mTorr) for at least 12 hours prior to the addition of
the anhydrous DMSO and benzene solvents, respectively. Additionally, the glass reactors
and stir bars were dried at 433 K for at least 3 hours in an oven, capped with a Teflon
septum, and allowed to cool under an argon purge. In a typical reaction, the dried reactors
were charged with equivalent volumetric quantities of glucose and catalyst stock solutions
to obtain a 6 mL reactor volume. The resultant mixture yielded a 2% (w/w) initial glucose
solution, with a Sn/glucose molar ratio of 1:75. Reactors were placed in the oil bath at 353
K, and approximately 125 mg aliquots were extracted every 15 minutes. These reaction
aliquots were mixed with 125 mg of a 2% (w/w) aqueous D-mannitol (Sigma-Aldrich,
>98%%) solution, which was used as an internal standard for quantification. To ensure
thorough catalyst removal from the aliquot solution prior to quantification, 0.3 mL of H,O
was added, and the solution was filtered using a 0.2 um PTFE syringe filter.

Reaction aliquots were analyzed by high performance liquid chromatography (HPLC)
using an Agilent 1200 system (Agilent) equipped with refractive index (RI) and evaporative
light scattering (ELS) detectors. The glucose, fructose, mannose, and mannitol fractions
were separated with a Hi-Plex Ca column (6.5 x 300 mm, 8 ym particle size, Agilent) held

1

at 353 K. Ultrapure water was used as the mobile phase at a flow rate of 0.6 mL min™".

Glucose conversion and product yields were calculated by:

ngluc(t =0) - ngluc(t)
ngluc(t =0)
n;(1)

ngluc(t =0)

Xglue = x100[%] 2.1)

Yi(t) = x100[%] (2.2)
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where Xg1,c(¢) is the glucose conversion at time ¢; Y;(¢) is the yield of product i at time ¢;
ngiuc(t = 0) is the initial moles of glucose in the reactor; and #;(¢) is the moles of product i
at time ¢.

Reactions performed using labeled '*C glucose at the C; position (Cambridge Isotope
Laboratories, 1-13C D-glucose, 98-99%), glucose enriched with deuterium at the C, position
of glucose (Omicron Biochemicals, D-[2-*H]-glucose, 98% 2H), and doubly labeled glucose
with deuterium at the C, position and labeled '*C glucose at the C; position (Omicron
Biochemicals, D—[2—2H;1—'3C;]—glucose, 99% '3C, 98% 2H) were performed utilizing the
same procedures outlined for D-glucose. Generally, 10% (w/w) initial glucose solutions
were used for isotopic labeling experiments. All other conditions remain equivalent as
described for D-glucose. However, these reactions were quenched in cold water after a
set duration. To separate the catalyst from the reaction solution, approximately 6 mL of
ultrapure water was added and the resultant biphasic solution was filtered. The solvent
of the catalyst-free fraction was then removed in vacuo. The recovered solids were then
dissolved in deuterium oxide and analyzed using 'H (64 scans) and '>C (2048 scans) NMR.
These NMR spectra were referenced to 3-(trimethylsilyl)-1-propanesulfonic acid sodium

salt (DSS).

2.3 Results and Discussion

Reaction Testing

The catalytic activities of 1a and 1b were examined using batch reactions. Conversion and
yield data for glucose reactions catalyzed by 1a and 1b are presented in Figure 2.2. For

1a, fructose is formed as the major primary product. Initially, a small amount of mannose
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is produced concomitantly, but it does not continue to increase after approximately 30
minutes. This behavior is in part likely due to a secondary mannose to fructose isomerization
mechanism. After 120 minutes, the maximum yields obtained were 19.0% and 5.7% for
fructose and mannose, respectively. Glucose reactions with 1b, however, demonstrate a
significant shift in product selectivity to yield 10.2% mannose and 2.2% fructose over
the same reaction duration. These reaction data highlight the influence of the interaction
between the open-chain glucose and the silanol group adjacent to the Lewis acidic tin
site. It is clear that the presence of the silanol group results in the selective formation
of fructose from glucose. However, removal of the silanol group produces predominantly
mannose. Qualitatively, these reactivity results are in agreement with those obtained by

Bermejo-Deval et al. and Rai et al.!®!3
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Figure 2.2: Conversion and yield profiles for reactions with unlabelled glucose: 1a (left)
and 1b (right) at 353 K.
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Examination of the structural integrity of 1a and 1b

Confirmation that 1a and 1b were the sole Sn species in solution was obtained by in situ
NMR characterization while exposing the catalyst to reaction conditions. 2°Si and ''°Sn
NMR spectra (Figures A.1 — A.3) of 1b in the presence of glucose demonstrates that
neither the geometry of the cluster, nor the electronic structure around the Sn changes.
For 1a, a change in the 2°Si and ''”Sn NMR spectra is observed (Figure A.4), however,
this is most likely due to an interaction between the silanol group and Sn site inducing a
geometric rearrangement of the catalyst under reaction conditions. Importantly, hydrolysis
products for either catalyst are not observed at reaction temperatures in the presence of
glucose. Therefore, these data suggest that the tin silsesquioxanes remain intact under
reaction conditions and indicate that under the reaction conditions used the Sn-OSi bonds
are not hydrolyzed to irreversibly form a free tin species and 1.

The hydrogen bonding capacity of the silanol moiety on 1la complicates the analysis
demonstrated with 1b, but generally leads to the same conclusion. The '”Sn spectrum
at 353 K is shown in Figure A.4. Compared to 1a in CDCls, there is a noticeable shift
upfield in the '°Sn spectra (no such shift is observed with 1b). This indicates that the Sn
center has become more shielded, perhaps due to a small interaction between the electron
rich silanol group and the Sn. This peak does not correspond to a free tin species. The
29Si spectrum collected after cooling the sample is additionally shown in Figure A.4. This
confirms that a shift in the geometry of the catalyst occurs; however, none of the peaks
corresponding to the starting material are present. This strongly suggests that hydrolysis of

the material has not occurred.'® The implied geometry of this complex is not in agreement
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with typical dimer formation due to the interaction between two silanol groups. Rather, the
3:1:1:2 relative peak ratio is suggestive of a complex of higher symmetry that may perhaps
be induced by an interaction between the silanol group and Sn. The results obtained from
the VT NMR experiments performed with 1b indicate that the Sn-OSi bond are not broken
under reaction conditions. Generally, the substitution of the TMS moiety with a hydroxyl
group to form 1a would not be expected to destabilize these bonds, further indicating that

1a simply rearranges under reaction conditions.

Reaction Mechanism Elucidation

To examine the mechanism by which fructose and mannose are produced by la and
1b, 'H and '3C nuclear magnetic resonance (NMR) spectroscopy were used. Figure 2.3
summarizes the '>C spectra of the product solutions obtained from reacting 10 %o(w/w)
solutions of glucose deuterated at the C, position (2->H glucose), glucose enriched with
13C at the C; position (1-13C glucose), or glucose consisting of a combination thereof
(2-7H; 1-13C glucose). For reactions carried out using deuterium labeled glucose, low
intensity triplets are observed for the starting reagent, as well as near the anticipated fructose
resonances. This effect is a consequence of the nuclear Overhauser enhancement (NOE),
a technique utilized to amplify '3C resonances for directly bonded 'H-!3C pairs. *H-13C
connectivity however, interrupts this effect, and results in substantial attenuation of the B¢
resonances and production of triplets from coupling to ?H (spin 1). This effect allows for
the simultaneous tracking of >H and '3C labels using solely 1*C NMR.

The absence of a singlet in the product spectra from reactions run with 2-2H glucose

(Figures 2.3 a,c,d,f) at 6 = 77.0 and 74.3 ppm (while simultaneously retaining low lying
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Figure 2.3: 13C NMR spectra of the reactant and product solutions in D>O obtained after
reacting a) 2-2H glucose, b) 1-13C glucose, and c) 2-2H; 1-13C glucose with 1a; d) 2-2H
glucose, e) 1-13C glucose, and f) 2-2H; 1-13C glucose with 1b. The inset spectra have been
enlarged to different extents for clarity and do not represent measured intensities.

triplets) demonstrates that the glucose does not undergo isotopic scrambling. Additionally,
'"H NMR demonstrates (Figures A.5 a,c,d,f) that a peak at § = 3.2 ppm corresponding to
2-?H, does not arise post-reaction confirming that isotopic scrambling events do not occur.?
Importantly, this demonstrates that any isotopic rearrangement that occurs throughout a
reaction is solely an act of 1a or 1b and not due to the solvent system.

Reactions performed with 1-'>C glucose and 1a (Figure 2.3 b,e) demonstrate intense
peaks at 6 = 66.7 and 65.5 ppm, that are representative of the 8 and a forms of 1-13C

fructofuranose, respectively. Additionally, less intense peaks are observed at ¢ = 74.0 and

73.5 ppm, assignable to the 8 and a forms of 2-'3C mannopyranose, respectively. This
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result is also observed with reactions run with 2-?H; 1-13C glucose and 1a, indicating that a
1,2-intramolecular carbon shift occurs corresponding to the Bilik mechanism.?%-?? For this
reactant however, a different result is observed in the region associated with 2-13C fructose.
The data in Figure 2.3 c,f depict low intensity triplets at 6 = 66.3 and 65.0 indicative of
a deuterium bound to the labeled '3C at that position. However, small singlets are also
observed as when 1-'3C glucose was used as a starting material. Typically, this result would
be suggestive of a base-catalyzed mechanism. In this instance it is likely a consequence of
utilizing a compound with a small quantity of 'H (ca. 2%) at the C, position. A similar
phenomenon was observed when 2-2H; 1-13C glucose was reacted with Sn-Beta (Figure
A.6 a,b).

These isotopic labeling experiments demonstrate that for both 1a and 1b, fructose and
mannose are produced from glucose via a 1,2-HS and a 1,2-CS, respectively. 1a appears to
promote the 1,2-HS reaction, selectively producing fructose from glucose. A 1,2-HS also
occurs to form fructose from mannose for reactions catalyzed by 1a but is not observed
with 1b under the conditions examined, likely due to a low concentration of mannose. The
1,2-CS is shown to occur for both catalysts. However, the reaction data indicate that this
pathway is significantly favored for 1b. A summary of the reaction pathways is given in

Figure 2.4.

2.4 Conclusion
In summary, we have shown that 1a and 1b catalyze glucose in qualitatively equivalent yields
to the respective active sites hypothesized in Sn-Beta and Na-Sn-Beta. These reactions are

also performed through equivalent mechanistic pathways. The use of well-defined, stable
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Figure 2.4: Schematic representation of the reaction network of glucose with 1a and 1b
deduced from isotopic labelling experiments. R = C4O4Ho.

molecular analogues of framework tin sites conclusively demonstrates the structure-activity
relationship of the open site present in Sn-Beta. These data indicate that an octahedral tin
site adjacent to a silanol group results in the selective formation of fructose via a 1,2-HS.
However, removing the silanol group results in a qualitative shift to the mannose producing
1,2-CS mechanism, as was first reported by Bermejo-Deval ef al.’> These results with our
“molecular” models strongly suggest that the open site is the most active catalytic center in
Sn-Beta, and that the silanol group is a crucial moiety affecting the distribution of products
obtained from reacting glucose. Furthermore, our study indicates that the sodium cation
present in sodium-exchanged Sn-Beta is likely most strongly associated with the siloxy

group adjacent to the tin site.
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Chapter 3

METHYL-LIGATED TIN SILSESQUIOXANE CATALYZED
REACTIONS OF GLUCOSE

Information contained in Chapter 3 was originally published in:
(1) Brand, S. K.; Josephson, T. R.; Labinger, J. A.; Caratzoulas, S.; Vlachos, D. G.;

Davis, M. E. Methyl-Ligated Tin Silsesquioxane Catalyzed Reactions of Glucose.
Journal of Catalysis 2016, 341, 62-71, DOI: 10.1016/j.jcat.2016.06.013,

T.R.J. provided computational data presented in this chapter.

3.1 Introduction

Microporous solids containing Lewis acid sites have garnered considerable interest for their
ability to selectively convert highly functionalized, carbonyl-containing molecules such
as glucose.!~® Interest in carbonyl-based chemistry has been driven by the attractiveness
of producing transportation fuels and fine chemicals from biomass-derived sources.*¢ A
tin-containing molecular sieve with the zeolite beta topology (Sn-Beta) has emerged as a
useful solid Lewis acid catalyst to perform highly selective reactions with carbohydrates,
such as the isomerization of glucose to fructose.” Sn-Beta, initially synthesized by Corma et
al., has been demonstrated to catalyze the Baeyer-Villiger oxidation of ketones to lactones,
Meerwein-Ponndorf-Verley (MPV) reduction of aldehydes and ketones, isomerization and
epimerization of glucose, carbon-carbon bond coupling reactions, and Diels-Alder reac-
tions.””

The efficacy of Sn-Beta has stimulated research on resolving the active catalytic site

and mechanism for the glucose isomerization reaction. Metal-containing zeolites like
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Sn-Beta, contain a distribution of “closed” sites (a (SiO)4Sn center) and “open” sites (a
(S§i0)3SnOH center with an adjacent silanol group) that occur when the framework is
partially hydrolyzed.'® In a recent study, Harris ef al. demonstrated that the number of
open and closed sites in Sn-Beta may be quantitatively determined utilizing Lewis bases
as titrants.'® In the same report, an inverse linear correlation between the initial rate of
glucose isomerization with the amount of pyridine dosed was demonstrated, implying
that isomerization activity should be fully suppressed when all open sites are titrated.
Bermejo-Deval er al. sodium-exchanged the silanol groups adjacent to the open tin site
and observed a complete shift in selectivity from fructose to mannose, providing the first
experimental evidence that the open site was the most active tin site, as well as emphasizing
the significance of the silanol moiety in the reaction mechanism.'> This work also revealed
that titration of the open site with NH3 (Sn-Beta-NH3) attenuated the activity of the catalyst,
indicating that the open and closed sites do not interconvert under reaction conditions.
Several different reaction mechanisms involving a catalytically active open site have been
proposed. Work from Li ef al. suggests that glucose first binds to the open site through
coordination of the basic C; carbon hydroxyl, with subsequent transfer of the acidic proton
to the framework lattice followed by a 1,2-intramolecular hydride shift.?® This results in
a monodentately bound fructose stabilized by the adjacent silanol group through the O,
oxygen. Yang et al. consider a similar type of mechanism involving the closed site.?!
Rai et al. and Christianson et al. propose similar pathways, however, their calculations
involve the acidic C; hydroxyl proton transferring to the stannanol group, forming a water
molecule.?>?3 Rai et al. also demonstrated that in the absence of a silanol group adjacent

to the tin center, the glucose binds to the tin bidentately and selectively produces mannose
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through a 1,2-intramolecular carbon shift. Experimental results support this prediction.!?

The Davis lab has also shown the effect of the silanol moiety in directing the selectivity of
glucose conversion to either fructose or mannose using a pair of silsesquioxanes retaining
an octahedral tin site with and without an adjacent silanol substituent.?*

The observation of some glucose activity despite poisoning (Sn-Beta-NHj3) implies that
there may be other reaction pathways with rates slower than those catalyzed by the open site
in Sn-Beta. One possible pathway could involve the protonation of a framework Sn-O-Si
bond by glucose to facilitate binding to the Lewis acidic site. To test this case, we synthesized
amethyl-ligated tin silsesquioxane (2a), and investigated its glucose reaction pathways, both
experimentally and theoretically. Compound 2a contains a tin atom terdentately bound to
a silsesquioxane ligand through three Sn-O-Si bridging bonds, as schematically shown in
Figure 3.1. Here, we demonstrate that 2a is an active catalyst (but with low rates of reaction)
for the conversion of glucose to mannose and fructose via 1,2-intramolecular carbon and
hydride shifts, respectively. Additionally, a hybrid quantum mechanics/molecular mechan-
ics (QM/MM) electronic structure model is used to compare pathways in the production
of fructose and mannose. The catalytic cycle model consists of three distinct operations:
1) deprotonation and ring-opening of glucose, 2) hydride- or carbon-shift (Bilik) reactions,

and 3) ring-closing and reprotonation of the mannose or fructose products.

3.2 Experimental Methods
General Air- and Water-Free Synthesis and Purification Procedures
All glassware was dried at 433 K prior to all syntheses, and purged with argon while

cooling. All syntheses, purification procedures, and reaction tests were carried out under
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Figure 3.1: Schematic representation of the structure of 2a. R = cyclohexyl.

argon using standard air- and water-free techniques. Benzene (99.8%, anhydrous, Sigma-
Aldrich), hexane (95%, anhydrous, Sigma-Aldrich), tetrahydrofuran (THF, >99.9%, anhy-
drous, Sigma-Aldrich), dimethyl sulfoxide (DMSO, >99.9%, anhydrous, Sigma-Aldrich)
and acetonitrile (99.8%, anhydrous, Sigma-Aldrich) were used as received. Triethylamine
(99.5%, Sigma-Aldrich) was distilled from 3A molecular sieves. Methyltin trichloride
(97%, Sigma-Aldrich) was used without further purification. Heptacyclohexyl trisilanol
silsesquioxane (1) was obtained from Hybrid Plastics and recrystallized by slow diffusion
of acetonitrile into a concentrated THF solution of; its purity was confirmed by 'H, 13C,

and 2°Si NMR.

Synthesis of 2a
2a was synthesized by the reaction of methyltin trichloride with the incompletely condensed

trisilanol silsesquioxane 1, as reported by Feher et al.?

To ensure that all triethylamine (used
as a scavenger base, and reported to be a highly selective catalyst in the conversion of glucose

to fructose) was removed from the product, acetonitrile was layered onto a concentrated

solution of 2a in benzene.?® The resultant white powder was filtered and dried for 12 hours
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under a dynamic vacuum of <50 mTorr.

Material Characterization

Nuclear magnetic resonance (NMR) spectra of 2a were collected either on a Varian Inova
500 ('H, 499.7 MHz; 13C, 125.7 MHz) equipped with a broadband probe or on a Varian
Inova 400 (298i, 79.4 MHz; 119Sn, 149.1 MHz). 298i and '9Sn NMR were referenced to
SiMe4 and SnMey, respectively. Chromium(III) acetylacetonate (Cr(acac)3) was added to
samples for 2°Si and ''”Sn NMR characterization as a shiftless relaxation agent.

'H NMR (500 MHz, CDCl3, 298 K): 6 = 1.60-1.90 (vbr m, CH>, cyclohexyl, 35 H), 6 =
1.10-1.33 (vbr m, CH>, cyclohexyl, 35 H), 6 = 0.94 (s, CH3, methyl, 35 H), § = 0.65-0.81
(vbr m, CH, cyclohexyl, 7 H). 13C NMR (125.7 MHz, CDCl3, 298 K): § = 27.70, 27.56,
27.18, 26.95, 26.73, 26.67 (s, CHy, cyclohexyl); 6 = 24.35, 23.44, 23.24 (s, 3:3:1 for CH,
cyclohexyl); § = -3.13 (s,CH3, methyl). 2°Si NMR (79.4 MHz, CDCls, 298 K, 0.02 M
Cr(acac)s): 6 = -65.01, -68.24, -69.55 (s, 3:1:3). 1°Sn NMR (149.1 MHz, CDCl3, 298 K,

0.02 M Cr(acac)3): 6 = -247.60.

Reaction Procedures

Reactions of D-glucose (Sigma-Aldrich, anhydrous, >99.5%) were conducted under an-
hydrous conditions in 10 mL thick-walled glass reactors (VWR) that were heated in a
temperature-controlled oil bath placed on top of a digital stirring hot plate (Fisher Scien-
tific). Both glucose and 2a were separately dried under vacuum (<50 mTorr) for at least 12
hours prior to the addition of anhydrous DMSO and benzene solvents, respectively. Glass

reactors (with their stir bars) were dried for at least 3 hours at 433 K, capped with Teflon
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septa, and purged with argon while cooling. In a typical reaction, the dried reactors were
charged with 6 mL of a 1:1 volumetric ratio of the catalyst and glucose stock solutions,
resulting in a 2% (w/w) initial glucose solution, with a glucose:Sn molar ratio of 75. Reac-
tors were placed in the oil bath at a predetermined temperature, and approximately 125 mg
aliquots were extracted at regular time intervals. These reaction aliquots were mixed with
125 mg of a 2% (w/w) aqueous D-mannitol (Sigma-Aldrich, >98%) solution, which was
used as an internal standard for quantification. To ensure thorough catalyst removal from
the aliquot solution prior to quantification, 0.3 mL of H,O was added, and the solution was
filtered using a 0.2 um PTFE syringe filter.

Reaction aliquots were analyzed by high performance liquid chromatography (HPLC)
using an Agilent 1200 system (Agilent) equipped with refractive index (RI) and evaporative
light scattering (ELS) detectors. The glucose, fructose, mannose, and mannitol fractions
were separated with a Hi-Plex Ca column (6.5 x 300 mm, 8 um particle size, Agilent) held

1

at 353 K. Ultrapure water was used as the mobile phase at a flow rate of 0.6 mL min™".

Conversions and yields were calculated by:

ngluc(t = O) - ngluc(t)

Xatue = = S 100[%] 3.1)
(1)
) = | X100 32)

where Xg,c(t) is the glucose conversion at time 7, Y;(¢) is the yield of product i at time ¢,
ngiuc(t = 0) is the initial moles of glucose in the reactor, and #;(¢) is the moles of product i
at time ¢.

Reactions using singly- and doubly-labeled glucose at the C; position (1-'*C glucose, 98-
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99%%, Cambridge Isotope Laboratories; 2-2H; 1-13C glucose, 99% 13C, 98% 2H, Omicron

Biochemicals) were performed utilizing the same conditions outlined for D-glucose, but
were quenched in cold water after a set duration. To separate the catalyst from the reaction
solution, approximately 6 mL of ultrapure water was added and the resultant biphasic solu-
tion was filtered. Solvent was removed from the catalyst-free fraction by rotary evaporation;
the recovered solids were dissolved in D,O and analyzed by 'H and '3C NMR. These NMR

spectra were referenced to 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt (DSS).

Computational Methods

Hybrid quantum mechanics/molecular mechanics (QM/MM) electronic structure calcula-
tions were used to examine the interactions between the sugars and the catalyst and also to
compute various reaction pathways for glucose isomerization and epimerization. All 167
atoms of the catalyst/sugar complex were included in all of the calculations. Within the
framework of the ONIOM approach to QM/MM calculations, the M062X functional was
implemented to model the quantum mechanical domain of the system.?’~2 Specifically, the
cyclohexyl ligands terminating the Si corners of 2a were parameterized using the universal
molecular mechanics force field (UFF). The complexing sugar, methyl substituent, and the
silicon and oxygen atoms of the complex were modeled with the 6-31G(d,p) basis set, while
the Sn atom was described using the LANL2DZ effective core basis set.>° All calculations

were performed in the gas phase using Gaussian 09 version A.09.3!



44

3.3 Results and Discussion

Catalytic Behavior of 2a

Conversion and yield data for glucose reactions catalyzed by 2a are given in Figure 3.2
and Figure 3.3, respectively. Reaction profiles were collected between 363 — 393 K at
10 K intervals. As with Sn-Beta-NH3, 2a converts glucose more selectively to mannose
than fructose. Fructose is detected as a primary product. As the reaction temperature
is increased, formation of by-products becomes increasingly significant, as indicated by
the deterioration in carbon balance (Figure B.1). An initial investigation into identifying
these products indicates that numerous retro-aldol and aldol products are formed. Retro-
aldol and aldol reactions have been reported to be catalyzed by tin-containing molecular
sieves, although under different reaction conditions, e.g., at high temperatures (>433 K) and

through the use of tandem catalysts.3?33
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Figure 3.2: Glucose conversion as a function of time from the reaction of 2% (w/w) glucose
in 1:1 DMSO:benzene solution with 2a (1:75 Sn/glucose molar ratio) at 363 K (e), 373 K
(4), 383 K (m), 393 K (a).
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Figure 3.3: Mannose (A) and fructose (B) yields as a function of time from the reaction of
2% (w/w) glucose in 1:1 DMSO:benzene solution with 2a (1:75 Sn/glucose molar ratio) at
363 K (e),373 K (¢),383 K (m), 393 K (a).

Table 3.1 summarizes the initial rate data for as-made and modified Sn-Beta, 2a, and for
two other tin silsesquioxanes capable of binding glucose without necessarily protonating
the Sn-O-Si bond.>* These silsesquioxanes retain octahedrally coordinated tin sites with
an adjacent siloxy group capped by either a proton (1a), analogous to the open site in
Sn-Beta, or a trimethylsilyl substituent (1b), representative of sodium-exchanged zeolite
Beta (Na-Sn-Beta) (structures for 1a and 1b are given in Figure 3.4).

From these data, 2a and Sn-Beta-NHj3 have the lowest initial rates, approximately an order
of magnitude slower than Sn-Beta. The decreased activity for Sn-Beta titrated with NH3 (to
effectively block the open framework site), in conjunction with that for 2a, corroborates the
hypothesis that reactions at closed sites are slow and selective to mannose. An alternative
hypothesis consistent with the experimental data is that the “open” sites remain active for Sn-

Beta-NHj3, while the modification reduces their activity and fructose selectivity. However,
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Figure 3.4: Schematic representation of the structures of 1a and 1b. “R” denotes a
cyclohexyl ligand.

limited activity of the closed site is a simpler explanation: it does not require assuming the
coincidence of two distinct modifications similarly affecting both rate and selectivity of the
open site.

Apparent activation energies for the simultaneous production of mannose and fructose by
2a are calculated from the data shown in Figure 3.5 (Arrhenius plots are given in Figures B.2
and B.3, and the calculated rate constants are listed in Table B.1). The concentrations of the
mannose and fructose products were used to calculate the values of apparent first-order rate
constants, k. High conversion values, wherein catalyst deactivation and equilibrium effects
become significant, were ignored in the analysis. The epimerization of glucose to mannose
has a calculated apparent activation energy of 87.91 kJ-mol~!, while the isomerization of
glucose to fructose has a modestly higher apparent activation energy of 96.08 kJ-mol~!.
For Sn-Beta, an experimentally determined apparent activation energy of 93 + 15 kJ-mol~!
has been reported for fructose production in H,O, and 70 = 14 kJ -mol~! for mannose

production in CH3OH.'? The similarity of these activation energies, however, does not take



48

into account any variations in non-rate-limiting, pre-equilibrium step energies that may be

responsible for the observed differences in activity between 2a and Sn-Beta.

Glucose Epimerization

25
E, = 87.91 kJ-mol!
-3 |
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£ ]
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Figure 3.5: Arrhenius plot for the first-order epimerization and isomerization of glucose
catalyzed by 2a.

Glucose Reaction Pathways

Figure 3.6 depicts possible routes to fructose and mannose from glucose. A C, to C;
hydride transfer converts glucose into fructose (F1), and a secondary hydride transfer from
C; to A C, transforms fructose (F1) to mannose (M1). A 1,2-intramolecular carbon shift
directly transforms glucose into mannose (M2). A subsequent hydride transfer also produces
fructose (F2). The formation of these products may be distinguished through the use of

isotopically labeled starting compounds.
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Figure 3.6: Possible reaction pathways involving hydride and carbon shifts at C; and C,.
Sugars are depicted using Fischer projections. Abbreviations F1, M1, M2, and F2 indicate
location of '3C on first or second carbon of sugar, when C; of glucose reactant is labeled.
R = C4HgOy4.

13C- and *H-labeling experiments

To investigate the reaction pathways promoted by 2a, 10 %(w/w) glucose enriched with '3C
at the C; position (1-'3C glucose) or with '3C at the C; position and >H at the C» position
(2—2H; 1-13¢C glucose) solutions were reacted for 60 minutes at 373 Kin 1:1 DMSO:benzene,
maintaining a glucose:Sn molar ratio of 75. 13C spectra (Figure 3.7 show strong resonances
at 0 = 98.7 and 94.8, corresponding to the 8- and a-glucopyranose starting material labeled
with 13C at the C; position, respectively. Additionally, both spectra have resonances at ¢
= 74.0 and 73.5, corresponding to - and @-mannopyranose labeled with 13C at the C,
position, respectively (M2 in Figure 3.6. These results, coupled with the reaction data,
suggest that 2a preferentially catalyzes the 1,2-intramolecular carbon shift of glucose to
mannose, analogous to the Bilik reaction.?*

In addition to the formation of mannose, fructose is produced in lower yields. For
the singly labeled 1-'3C glucose experiment, two !3C resonances at § = 66.7 and 65.5
are observed, corresponding to the S and « forms of fructofuranose, respectively. These

resonances are not observed in the spectra obtained from 2-2H; 1-!3C glucose. This result

is likely a consequence of a 1,2-intramolecular hydride shift that negates the nuclear Over-
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Figure 3.7: 1*C NMR spectra for reactant and products with 2a (1:75 Sn/glucose molar
ratio) in a 10% (w/w) at 373 K for 60 minutes with: (A) 1-13C glucose and (B) 2-2H; 1-13C
glucose in a 1:1 DMSO:benzene solvent system.

hauser enhancement (NOE), an effect that amplifies '*C resonances for directly bonded
13C-H pairs; no such amplification occurs for '*C->H pairs, resulting in substantial atten-
uation of the 13C resonances and the subsequent production of triplets from coupling to >H
(spin 1). The low intensity triplets that would be expected in '3C spectra for '3C-?H pairs
are not observable in Figure 3.7, reflecting the low yield of fructose as a consequence of
the kinetic isotope effect. The 'H NMR spectra from the reaction of 2->H; 1-13C glucose,
shown in Figure 3.8, may also be used to confirm that the 1,2-intramolecular hydride shift

is the prevailing fructose-forming mechanism. As discussed by Romén-Leshkov et al., the
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base-catalyzed conversion of 2->H glucose to fructose results in scrambling of the deuterons
between the glucose and solvent system, resulting in unlabeled glucose exhibiting a peak
corresponding to a proton in the C, position at ¢ = 3.2.3 The spectra shown in Figure 3.8
do not demonstrate this behavior, indicating that the glucose remains deuterated at the C,
position, further suggesting that the 1,2-intramolecular hydride shift mechanism occurs.
Moreover, this spectrum exhibits no C; position mannose proton at = 5.17, indicating
that the deuteron shifts from the C, to C; position during the intramolecular carbon shift
reaction, and that the F1 to M1 hydride shift does not occur in significant yield. In general,
the mannose to fructose hydride shift is not detectable under the reaction conditions utilized.

These reaction pathways are analogous to what has been observed with Sn-Beta.!>3

Identification of Catalytic Species
Experiments were performed to confirm that the observed catalysis was due solely to 2a,
and not a consequence of starting reagents or leached tin species formed by degradation of
the catalyst under reaction conditions. Control experiments were performed with 1 exposed
to all synthesis procedures, but without the addition of CH3SnCls. In this instance, no
glucose conversion was observed. A solution of CH3SnCl3 in benzene catalyzed formation
of fructose, but in yields lower than that observed with 2a; no mannose formation was
observed.

To examine the structural integrity of 2a post reaction, the catalyst was separated from
a reaction performed at 393 K for 1 hour, utilizing the same parameters and procedures
outlined previously. These conditions were chosen to ensure a large excess of glucose

relative to 2a, so that statistically all Lewis acid sites should participate in the catalysis.
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Figure 3.8: 1H NMR spectra for: (A) unreacted 2-2H; 1-13C glucose, and (B) reactant and
products with 2a (1:75 Sn/glucose molar ratio) in a 10% (w/w) at 373 K for 60 minutes
with 2-2H; 1-13C glucose in a 1:1 DMSO:benzene solvent system.

In order to separate the catalyst from the crude reaction solution, an excess of hexane was
added to the mixture while the reaction vessel was maintained at 393 K. This resulted in the
formation of an immiscible two-phase system, consisting of the dense polar DMSO phase
containing the carbohydrates and the less dense non-polar catalyst-containing phase. The

two phases were separated, and the hexane solution was allowed to cool, then washed with
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an excess of acetonitrile. The hexane phase was again separated, the volatiles were removed,
and the resultant white powder was dried under vacuum for 12 hours. NMR analysis of this
material (Figures B.4 - B.7) is in very good agreement with spectra obtained of the material
prior to reaction, and data presented in the literature.?> Taken together, these results suggest
that the structure of 2a likely remains intact over the course of the reaction, and is the origin

of the catalytically active species.

Computational Chemistry

For Sn-Beta, the open site has been shown to be the active catalytic site, whereby a
stannanol group facilitates the initial binding step of the glucose molecule to the Lewis
acid site,14-15-19-22.24.35 Thjg reaction mechanism is not possible for 2a, however, due to the
absence of the stannanol.

In order for 2a to catalyze the conversion of glucose, we hypothesize that the Sn-O-Si
bridging bonds must be involved to allow the glucose C; hydroxy proton to transfer to one
of the three Si-O-Sn bridging bonds, analogous to pathways proposed by Li et al. and Yang
et al. %! Beletskiy et al. provide evidence that this type of proton shift may occur for 2-
propanol (adsorbed as 2-propoxide) on silica-immobilized tin silsesquioxane complexes.3®
Similar lattice protonation mechanisms have been proposed for metal-containing zeolites.?
This proton transfer results in the formation of an adjacent silanol group to the tin site,
as well as glucose bound to the tin site. In situ NMR spectroscopy characterization was
attempted by exposing the catalyst to reaction conditions and collecting spectra at 373 K;

unfortunately, no evidence for proton transfer to one of the Sn-O-Si bond was obtained. In

order to garner further insight into the glucose reaction mechanisms for 2a, a theoretical
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approach was taken.

Figure 3.9 depicts the previously described proposed glucose ring-opening mechanism
on 2a and compares the relative gas-phase free energies. The calculations estimate that
deprotonation and ring-opening are endothermic, with intrinsic free energy barriers of 41.3
and 66.6 kJ-mol~!, respectively. Bermejo-Deval et al. report an activation energy of 37.3
kJ-mol~! for ring-opening at an open site.!* Work by Yang et al. also suggests that the
initial glucose deprotonation step at the open site is thermodynamically more stable than
at the closed site.?! These data suggest that binding to and performing ring opening at a
site without a hydroxyl moiety present (as with 2a and the closed site in Sn-Beta) is less
favorable. As considered by Li et al., this variation and subsequent difference in energies

is likely a function of geometric distortion and deviations in Lewis acidity between the two

sites.20
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Figure 3.9: Glucose ring-opening mechanism. Gas-phase free energies (in kJ-mol~!) at 373
K for intermediates and transition states are reported relative to isolated glucose and catalyst.
Intrinsic barriers reported in parentheses. GLUp: glucopyranose; DP: deprotonation; RO:
ring opening; GLU: open-chain glucose.

After ring-opening, hydride transfer or Bilik reactions convert glucose into fructose or
mannose, respectively. Generally, there are three possible pathways in converting glucose,

which we categorize as “O; Binding,” “O, Binding,” and “Bidentate,” identified according
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to whether the open glucose binds to the Sn Lewis acid site via the O position, O, position,
or both during the reaction. The mechanistic details and energetics of these pathways are
compared in Figures 3.10 and 3.11.

The bidentate mechanism involves: 1) coordination of both O; and O, to the Sn center
in an octahedral geometry, 2) deprotonation, forming a silanol and binding O; to the Sn,
3) a H/C-shift with a chelate-like transition state, and 4) reprotonation in sequential steps.
For both isomerization and epimerization, the bidentate pathway is predicted to be the
most favorable, with intrinsic free energy barriers of 79.6 kJ-mol~! and 101.0 kJ-mol~!,
respectively.

The O; binding pathway begins by coordination of the aldehyde oxygen to the Sn,
maintaining a hydrogen bonding interaction between O, and the Sn-O-Si bridge. The first
step binds O; to the Sn during a concerted deprotonation of O, alongside the H/C-shift.
Intrinsic barriers for the H/C-shift are 115.5 kJ-mol~' and 110.9 kJ-mol~!, respectively.
Reprotonation of O; follows in a subsequent step.

The O, binding pathway starts with a deprotonation forming a silanol and binding O,
to the Sn. This deprotonation is endothermic, with an intrinsic barrier of 50 kJ-mol ™!
and a free energy of reaction of 26.9 kJ-mol~!. O, then forms a hydrogen bond with
the silanol formed in situ, which subsequently reprotonates the sugar during the concerted
H/C-shift reaction. Intrinsic barriers for the H/C-shift are 61.1 kJ-mol~! and 93.5 kJ-mol~!,
respectively.

To our knowledge, this is the first time a systematic approach has been considered for
glucose isomerization and epimerization reaction mechanisms, which frequently consider

only the bidentate, O; binding, or O, binding.!4?1-23.38.39
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Figure 3.10: H-Shift Pathways. Three pathways are shown for transforming open-chain
glucose (GLU) into open-chain fructose (F1), via deprotonation (DP), reprotonation (RP),
and H-shift reactions. The bidentate transition state gives the lowest barrier for reaction,
with a slightly more stable transition state than the O2 binding pathway. Gas-phase free
energies (in kJ-mol~!) at 373 K for intermediates and transition states are reported relative
to isolated glucose and catalyst, with intrinsic barriers reported in parentheses.

To finish the catalytic cycle, the ring closing reactions of deprotonated fructose, open

fructose, and open mannose were examined. Deprotonated open fructose ring-closes to
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Figure 3.11: C-Shift Pathways. Open-chain glucose (GLU) transforms directly into open-
chain mannose (M2) through deprotonation (DP), reprotonation (RP), and C-shift reactions.
Four pathways are shown: three starting from the initial geometries of the H-shift reactions
(bidentate, O binding, and O, binding) and an additional bidentate pathway starting from a
different geometry to facilitate O3 hydroxyl interaction with 2a. Gas-phase free energies (in
kJ-mol~!) at 373 K for intermediates and transition states are reported relative to isolated
glucose and catalyst, with intrinsic barriers reported in parentheses.
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produce O;-deprotonated fructofuranose. A slightly different pathway for open fructose ring
closing produces O;-deprotonated fructofuranose. Subsequent reprotonation regenerates
the catalyst and produces fructofuranose. Similarly, open mannose ring-closes to form O-
deprotonated mannopyranose, and subsequent reprotonation regenerates the catalyst and
produces mannopyranose. These pathways have relatively low barriers compared to H/C-
shift reactions. The bidentate, O; binding, and O, binding pathways for interconverting
fructose and mannose (F1 to M1), which have higher barriers than the competing fructose
ring-closing pathways are depicted in Figures B.8-B.10. The energetics of the reported
pathways are given in Table B.2. Products M1 and F2 are not observed because ring-

closing is facile relative to additional H/C-shift reactions.

Selectivity Analysis

Selectivity trends were analyzed using the energy span model.*’ To quantitatively analyze
the reaction pathways, the model must was first reduced. As shown, the bidentate, O
binding, and O, binding pathways all form the same products (F1 or M2). As such,
the highest barrier pathways may be ignored, specifically the O; binding and O, binding
modes for both the 1,2-intramolecular hydride and carbon shift reactions. Additionally, the
subsequent H/C-shift reactions (producing F2 or M1) may be ignored as the ring-closing
and reprotonation transition state barriers are significantly more favorable. For branched
networks at steady state, the Curtin-Hammett principle can be used to estimate steady-state
reaction selectivites using only the free energies of the bidentate H-shift transition state and

the bidentate C-shift transition state to estimate the reaction selectivity, as defined by:*4!
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Fru = o0rs.FRU=GT5,MAN/RT (3.3)

The gas-phase transition state free energies for the mannose (135.6 kJ-mol~!) and fructose
(123.7 kJ-mol~!) pathways are similar, although they favor fructose as the major product. In
experiment, the difference in apparent activation energy is 8.2 kJ-mol~! in favor of mannose

production — a difference too small to be expected to be resolved by QM/MM calculations

which do not take into account the complex solvation environment of the experiments.

Electronic Structure Analysis of H/C-Shift Reactions

The character of the H/C-shift reactions was also analyzed according to the Natural Bond
Orbital (NBO) method (see Tables B.3 — B.8). In general, four overall mechanisms govern a
hydride transfer: (a) electron-proton-electron pathway (e~ —H* —e™) (b) electron-hydrogen
atom transfer (c) hydrogen atom-electron transfer and (d) one-step hydride ion transfer.*?
Choudhary et al. analyzed the hydride transfer in the bidentate mechanism for xylose
to xylulose on the Sn-Beta zeolite.>® They proposed that the H-shift mechanism involves
the rate-limiting transfer of a neutral hydrogen atom from C; to Cj, concerted with a
rapid electron transfer from O, to O;. Following a similar methodology, we conclude that
the bidentate mechanism for the H-shift on 2a follows the same mechanism: a neutral
hydrogen atom transfers from C, to C; concertedly with an adiabatic electron transfer from
O, to Oy, facilitated by a C,-O;, and C;-O; anti-bonding 7 system at the transition state.
The O;-binding H-shift is a test case for observing the H-shift reaction without the prior
deprotonation of O,. Without deprotonation prior to the hydride transfer, the H-C, bond

is less polarized and thus charge separation comes at a higher energy cost. Comparison
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with the bidentate pathway shows how the sugar deprotonation step activates the C, donor
fragment for the subsequent H-shift. The electronic structure of the bidentate C-shift
was also analyzed. The results demonstrate that this pathway’s electronic composition is
remarkably analogous to that of the H-shift, including the C,-O, and C;-O; & system for
transferring an electron and a neutral C; fragment as a transferring group. A detailed

analysis may be found in Appendix B.

3.4 Conclusions

We have synthesized and tested methyl-ligated tin silsesquioxane as a catalyst for glucose
reactivity to examine the activity and structure of tin species that are analogous to the closed
tin site in Sn-Beta. The catalytic nature of 2a suggests that there are glucose conversion
pathways that involve the breaking of the Si-O-Sn linkage at some point in the reaction
cycle and that such pathways may be possible from the closed sites in Sn-Beta. We have
not conclusively proven this point here, and since the bond angles in 2a are significantly
different from Sn-Beta, these pathways may not occur in the latter. However, if they do,
they participate in catalyzing the reaction of glucose at a rate significantly slower than the
open site. Isotopic labeling experiments demonstrate that these reactions occur via 1,2-
intramolecular carbon and hydrogen shift pathways for mannose and fructose, respectively,
yielding products that are indistinguishable from those obtained by catalysis at the open
site. The full catalytic cycle has been theoretically investigated considering three distinct
pathways for the hydride- and carbon-shift reaction reactions. It has been calculated that the
most favorable pathway to produce both fructose and mannose over 2a is by glucose binding

bidentately to the tin center, deprotonation to one of the Sn-O-Si bridges, and performing
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either a hydride- or carbon-shift reaction. We propose that a similar mechanism occurs at

the closed site in Sn-Beta.
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Chapter 4

CONCLUSIONS AND FUTURE DIRECTIONS

4.1 Conclusions

Part I of this thesis has focused on developing well-defined metallosilsesquioxane-based
homogeneous catalysts to model the multiplicity of potential catalytic sites that are present
in tin-containing zeotype Beta. These structures were used to study the glucose isomer-
ization and epimerization reactions at a fully characterized tin site, that is not possible
using traditional heterogeneous molecular sieves. These compounds provide a unique and
conclusive method for elucidating structure-activity relationships for glucose conversions
within Sn-Beta.

The work presented in Chapter 2 was developed during a period of heightened interest
in analyzing and characterizing the catalytic behavior of Sn-Beta. Almost all of these
studies, however, focused on continued use of the heterogeneous material or theoretical
computations.' = The first report on this topic was published by Bermejo-Deval et al., which
showed experimentally the importance of considering the silanol group adjacent to the the
tin center as part of the catalytic site for the conversion of glucose.? It was demonstrated
that titration of the silanol group resulted in a complete shift in catalytic activity to produce
mannose. Moreover, this work also demonstrated that on the timescale of a reaction there
is no open-closed site interchange. In a subsequent experimental study, Harris et al. have
confirmed that the rate of reaction for the isomerization of glucose decreases as the open

Sn sites are progressively titrated.!
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Using materials 1a and 1b it was shown that, qualitatively, that the proximal silanol
moiety is critical in directing how glucose is reacted and plays a direct role in the function
of the catalytic site. In general, the presence of the silanol correlates directly with the 1,2-
intramolecular hydride shift reaction (1,2-HS) to produce fructose, while materials lacking
this functional group (e.g., as a result of titration) correlate with 1,2-intramolecular carbon
shift (1,2-CS) reactions. These results are consistent with existing studies reported in the
literature.' =

Chapter 3 focuses on the synthesis and characterization of a methyl-ligated tin silsesquiox-
ane as a catalyst for glucose reactivity to examine the activity and structure of tin species
that are analogous to the closed tin site in Sn-Beta. The results of this study suggest that
glucose catalysis may occur at the closed site, but at a rate significantly slower than the
open site. In addition to the experimental study, comprehensive theoretical computations
were performed to determine the most favorable pathways for the production of mannose
and fructose using 2a. It was calculated that, thermodynamically, glucose preferably binds
to the tin center bidentately, subsequently deprotonates to one of the Sn-O-Si bridges, and
performs either a hydride- or carbon-shift reaction. Therefore, if reactions to do occur at
tin sites that are fully coordinated to the molecular sieve framework, they likely do so via a

mechanism similar to what we propose for 2a and at a significantly lower rate than at the

open site.

4.2 Future Directions
Sn-Beta is a capable catalyst for a host reactions that may be critical in the production

of value-added chemicals from biomass, namely, Baeyer-Villiger oxidation, Meerwein-
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Ponndorf-Verley, and aldol/retro-aldol reactions.*’ As the active catalytic site has been
effectively established for glucose isomerization and epimerization reactions in Sn-Beta,
workers should be motivated to investigate the possible participation of the proximal silanol
in the aforementioned reactions. Previous computational studies have indicated that this
moiety may act to shuttle protons to facilitate the 1,2-HS.? Similar to the isomerization
reaction, the hypothesized mechanistic schemes for Baeyer-Villiger and aldol/retro-aldol
reactions on carbohydrate substrates rely on proton abstraction and reallocation.® Data
garnered from these investigations may ultimately lead to the design of a catalyst tailored
to a given biomass conversion process to optimize selectivity and activity.

For certain systems, such as those stated above, metal-containing silsesquioxanes may
readily provide significant insights to the catalytic mechanisms of heterogeneous mate-
rials. To date, few studies have been conducted implementing these materials, despite
numerous proof-of-concept papers that demonstrate that silsesquioxanes estimate the elec-
tronic environment of a molecular sieve.®"!! Moreover, work presented in this thesis is in
agreement with previous studies indicating that complex carbohydrate reactions catalyzed
by heterogeneous catalysts are able to be mimicked utilizing metallosilsesquioxanes. As
such, the application of metallosilsesquioxanes to other catalytic systems of interest to the
biomass catalysis community (among others) may prove exceptionally useful, and should
be considered to develop stronger experimental structure-activity relationships and reaction
mechanisms. In particular, 2a has already demonstrated some capacity for performing the
aldol/retro-aldol reaction when dihydroxyacetone and glcyeraldehyde are used as starting
reagents. This reaction has gained interest in recent years after advances made in tan-

dem catalytic systems proposed by Orazov and Davis.* However, minimal experimental
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mechanistic studies for this type of catalytic system have been performed for microporous
materials.

Heterogeneous catalysts are exceptionally interesting at an academic level and are an
incredibly valuable commodity for the chemical industry. Therefore, fundamental principles
garnered for a given reaction that are discovered using metallosilsesquioxanes (as well as
other model systems) must be applied in the development of future heterogeneous catalysts
to ensure that the most efficient, selective, and stable materials are utilized in any potential

future biomass feedstock based industry.
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Chapter 5

INTRODUCTION TO PART II: CHIRAL MOLECULAR SIEVES

This beginning of this introduction provides an overview of the synthesis of molecular
sieves. The notion of chirality is then discussed with regards to organic compounds and
heterogeneous solids. The issues in obtaining and characterizing pure chiral solids are
also discussed. Finally, a brief background of previous efforts to synthesize enantiopure

molecular sieves is provided.

5.1 Introduction to Molecular Sieves and Their Synthesis
Molecular sieves are microporous materials that are broadly defined as crystalline solids
with pores less than 2 nm. They are hierarchically formed from a three-dimensional network
of TOy4 tetrahedra (T = tetrahedral atom, e.g., Si, Al). Beyond microporous materials lies
another class of materials known as mesoporous materials, that are defined to have pores
between 2 to 50 nm. Mesoporous materials have been the subject of significant research
efforts recently, as they serve as intriguing heterogeneous substrates to anchor highly-
selective (and even enantiospecific) homogeneous catalysts.!> However, they generally
do not offer molecular sieving properties that have made microporous materials highly
industrially relevant, and will not be considered in Part II of this thesis.

The well-defined crystalline structures of molecular sieves (and inclusion of a variety
of heteroatoms, vida infra) has predicated their widespread implementation in a variety
of applications, notably catalysis, ion exchange, separation, and adsorption.>* Despite

the diversity of molecular sieve structures, they are generally classified according to 1)
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pore diameters and eccentricity, 2) internal cage sizes, and 3) dimensionality. Pore sizes are
characterized by the the number of T-atoms that form the pore itself. The smallest accessible
pore sizes are 8 membered-rings (MRs) (i.e., 8 T-atoms circumscribe the pore). Almost all
reported frameworks retain 8-12 MRs. While structures containing pores >12MR are known
(i.e., 14 and 18MRs), they are rare and usually unstable.>® A few zeolites have also been
synthesized with odd-membered rings (i.e., 7 and 9 MRs).”® Moreover, a given framework
may have pores that lie in 1, 2, or 3 dimensions with variable sizes. Additionally, at the
intersection of these pores, internal cages may form that are larger than the channels that lead
to them. This consequently allows for the formation of reactive intermediates that cannot
escape the framework. For instance, the methanol-to-olefin process utilizes an 8MR material
with large cages (CHA framework, molecular sieve framework types are designated by three-
letter codes that define the unique connectivity of the oxide tetrahedra).” ! It is believed
that, in order for this process to be carried out with high selectivity to ethylene and propylene
(while maintaining high conversion of methanol) the formation of (polymethyl)benzene in
the cages occurs.? This reactive intermediate itself is too large to exit the cage, but the desired
olefin products may. Frameworks without this specific structure (maintaining equivalent
compositions) do not perform the reaction as selectively or actively.!!~!3 This example can
be extended to numerous other chemical processes, such as fluidized catalytic cracking and
the reduction of NO,..!# It is estimated that the global demand of heterogeneous catalysts in
2015 (which are used in approximately 70% of all chemical processes) amounted to a $20
billion dollar industry.'>!® There exists, therefore, significant motivation to develop and
synthesize more efficient, selective, and stable molecular sieves for a diverse and extensive

array of applications in the chemical industry.
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Broadly, microporous materials form when oxide tetrahedra assemble into secondary
building units, that then self-assemble into larger structural units. For microporous materi-
als, this occurs in a regular, periodic fashion to form a crystalline material. This process is
illustrated in Figure 5.1. Many variables, however, participate in determining the types of

secondary building units that form and their subsequent crystallographic ordering.
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Figure 5.1: Illustration of the crystallization process for molecular sieves, beginning with
polymerization of oxide tetrahedra that then form into secondary building units that self-
assemble into three-dimensional crystalline materials.'”
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Microporous materials can occur as both natural minerals as well as synthetic materials.
In general, naturally occurring minerals are aluminosilicates (a subclass of molecular sieves
referred to as zeolites). Incorporation of aluminum into the framework structure imparts an
overall net negative charge to the framework that must be balanced by cations. Specifically,
each AI’" atom within the framework requires a single extraframework charge-balancing
cation. Typical cations in natural zeolites are alkali metals (e.g., Na*, K*, ...) and alkaline
earth (e.g., Ca®*, Ba?*, ...). For comparison, a pure-silica structure is completely neutral,
and does not require balancing counterions. Cation-containing zeolites serve specific
applications in separations and ion exchanges industrially, but they are not catalytically
active. An exchange of a cation with a proton, however, may impart Brgnsted acid sites
within the zeolite structure, forming a solid acid catalyst. Natural zeolites, however, are often
phase impure, and may not retain properties that are desirable for a given chemical process.
Synthetic analogues provide a means of "designing" and obtaining frameworks of desirable
structures and compositional ranges. Currently, there are approximately 230 distinct and
unique frameworks (a figure that has grown threefold in the past three decades) that are
synthetically attainable out of hundreds of thousands hypothetical structures (around 40 of
the structures are known to form naturally).'®!7 One critical difference between naturally
occurring and synthetic molecular sieves is that the latter may be formed in the presence of
an organic species. Charged organic species may also serve to balance framework charge.
Synthetic materials may also include T-atoms beyond Al (e.g., Sn, Ti, Zn,...). Materials
that include heteroatoms other than aluminum are referred to as zeotypes or zeolite-like
materials. Moreover, molecular sieves do not necessarily need to be formed exclusively

from silica. For instance, aluminophosphates are constructed of AIPOy units, wherein AI>*
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is balanced by P>* to form a net neutral framework. Similar to silica-based structures,
catalytic activity may be imparted to these materials by manipulation of the framework
charge and inclusion of extraframework counterions.

Synthetic molecular sieves are synthesized under hydrothermal conditions and require
four primary components: 1) water, 2) inorganic elements (SiO;, Al;O3, ...), 3) a min-
eralizing agent, such as hydroxide or fluoride, and in some cases 4) an organic molecule
(typically an amine-based that is either charged or uncharged).>*!8-21 The mixture (often
referred to as a gel) is then allowed to react between 100 - 200 °C until crystalline products
are formed. As previously stated, however, the process by which crystallization occurs
is a highly complex, multivariate system that is currently an active area of research.??-2
Although the kinetics of crystallite formation are highly dependent on the concentrations
and types of materials included in a given synthesis gel, a generic depiction of the process
has been reasonably developed for a high-silica framework synthesized in the presence of
an organic molecule.?? Briefly: 1) silicates species in solution form a hydrophobic sphere of
hydration around the organic species, 2) these spheres then begin to self-assemble and form
aggregates on the order of 1-10 nm, and 3) the aggregates then spawn crystalline growth.
In organic-containing syntheses, it is generally believed that the formation of crystallites
are dominated by kinetics, despite all molecular sieves being metastable relative to quartz.
Therefore, by maintaining equivalent (within statistical error) concentrations and types of
inorganic materials, the kinetics of crystallization can be heavily influenced by the structure
of the organic molecule included in the synthesis gel. In fact, the use of organics in the
molecular sieve synthesis is often attributed with the aforementioned threefold increase in

known frameworks in the past three decades.
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The use of organics in the synthesis of molecular sieves falls into three broad functions: 1)
space-filling species, 2) structure-directing, and 3) templating.?%?! Organic species that act
as space-filling agents lead to the formation of a given framework through weak interactions
between the organic and inorganic framework. Typically, this produces frameworks that do
not necessarily mimic the structure of the organic. For templating agents, however, there
is a precise match between the structure of the organic and that of the resultant framework.
Within these two extremes are organic structure-directing agents (OSDAs), which rely on
stronger van der Waals interactions to direct formation of the framework, wherein there is
a correlation between the geometry of the guest OSDA and resultant framework. OSDAs
therefore enable a strategy for “rational design™ of molecular sieves.

One difficulty, however, is developing molecular architectures that 1) direct to new frame-
works previously unknown, 2) unlock compositions of structures that were not previously
possible using other OSDAs, and 3) are not expensive. Zones et al. have proposed a number
of guidelines for "designing" molecules to direct towards a general classes of framework
structures.?’ Moreover, to balance counteracting hydrophobic and hydrophilic effects within
the synthesis gel, it has been proposed and demonstrated that OSDAs of intermediate hy-
drophobicity (e.g., C/N* = 11-15) ensure that the organic interacts approximately equally
with all components in the system.?* While it is possible to develop new organics based
on these heuristics, it is tedious and inefficient. Recently, Pophale et al. have developed
a computational method to rationally design OSDAs that direct to specified frameworks.?®
This computational method has proven highly effective in developing OSDAs to synthesize
frameworks that previously formed under very narrow compositional ranges, or require very

complex organics.?’
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It should be noted that in the context developing molecular sieves for industrial applica-
tions, the inclusion of organics often introduces an undesirable expense, particularly if they
are not available commercially and require additional synthetic steps to produce. Many
techniques have arisen to develop new structures, such as through assembly-disassembly-
organization-reassembly (ADOR) from parent materials.’® Often, however, such parent
materials themselves require OSDAs to synthesize. Therefore, while OSDAs may prove
prohibitively expensive with respect to industrial scale production economics, they are crit-
ical in the production of new molecular sieves frameworks and for synthesizing existing
structures with new compositions. As with many technologies, however, the cost of pro-
duction may decrease with time through improvements in synthesis techniques, reduction

in OSDA complexity, or by varying inorganic parameters of the initial discovery.

5.2 Background and Motivation for Chiral Molecular Sieves

Chirality is defined as a system or object (macroscopic or microscopic) that cannot be
superimposed onto its mirror image. Hands, for instance, are chiral. Achiral objects
however (i.e., objects or systems that do not retain chiral features) may be superimposed on

their mirror images, such as a sphere. This example is illustrated in Figure 5.2

Figure 5.2: Demonstration of chiral, nonsuperimposable mirror images (left) and achiral,
superimposable mirror images (right).
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In the context of organic and inorganic chemistry, chirality provides a means of distin-
guishing between molecules that have equivalent chemical compositions, but with subtle
differences in binding structures that results in the molecules being nonsuperimposable
mirror images. These nonsuperimposable molecules are referred to as enantiomers. At a
molecular level, chirality is induced as a consequence of a given atom (typically carbon)
being bound to four different functional groups, as shown in Figure 5.3. The atom where
this binding feature occurs is referred to as an asymmetric or chiral center. Asymmetric
centers are typically denoted "(R)" or "(S)" based on the specific three-dimensional binding
configuration of the unique and distinct functional groups. Bulk compounds that retain
a singular enantiomer of a compound are referred to as enantiopure, while samples with

equivalent molar concentrations of both enantiomers are known as racemic mixtures.

Br cl ! Cl Br Br Br ! Br Br
Cl Br ! Br Cl Cl Cl: Cl Cl

Figure 5.3: Representation of two distinct, chiral molecules (left) and an achiral molecule
(right). The asymmetric centers for the chiral molecules are denoted by an asterisk.

Chirality and enantiopurity are ubiquitous in nature and the human body, yet achieving
enantiopurity remains one of the great challenges of modern synthetic chemistry. The im-
portance of enantiopurity is readily observed in pharmaceuticals, whereby one enantiomer
of a drug may be a valuable product while the other is toxic. This is famously illustrated
by naproxen (tradename Aleve) where the (S) enantiomer is a highly effective painkiller,
while the (R) enantiomer is a potent liver toxin. Synthetic processes to produce naproxen

industry therefore require costly separations.>! While numerous other molecules mimic
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this effect (particularly with regards to impact on the human physiology) other well-known
examples may be found in penicillamine (an anti-arthritic), thalidomide (a treatment of
morning sickness for in pregnant women) and L-DOPA (to ease the symptoms of Parkin-
son’s disease). While nature produces many compounds as pure enantiomers, generally by
relying upon enzymes, this has proven much harder to achieve synthetically. Enantioselec-
tive catalysts are known, but are generally homogeneous organometallic compounds that
are limited by high cost, low stability and difficulty in separation from product streams.
Due to these limitations, many enantiomeric separations are performed industrially using
chiral salt resolutions (from naturally occurring enantiopure alkaloids) or chiral chromatog-
raphy.3? Heterogeneous catalysts overcome the separation challenge faced in homogeneous
catalysis and are preferred industrially, accounting for 80% of achiral catalysts used.'>'6
Some success in heterogeneous chiral catalysis has been found by anchoring homogeneous
catalysts to heterogeneous supports, making recovery easy.>>>* However, these materials
still often exhibit limited stability. A number of studies have focused on the synthesis of
chiral metal-organic frameworks, and many have demonstrated capacity to perform asym-
metric catalysis, but similarly suffer from stability issues.’>3¢ Therefore, the demand for
robust, heterogeneous catalysts capable of performing enantioselective reactions is high.
Chiral solids are not novel materials. Quartz crystals, for instance, retain a chiral
morphology as well as many known molecular sieves frameworks, namely *BEA, CZP,
GOO, -ITV, JRY, LTJ, OSO, SFS, and STW.!0-3747 Unlike with organic and inorganic
molecules, these crystalline structures do not retain asymmetric point chirality. Rather,
these structures possess structural chiral features, such as a helical pore structure. As is

shown in Figure 5.4, there are two distinct and nonsuperimposable forms of helices that
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are that lead to two possible enantiomers for a given chiral molecular sieve. However,
under typical hydrothermal synthesis conditions these materials are produced as racemic
mixtures. This likely stems from the lack of control over the crystallization process and
inability to manipulate the equivalent kinetics and thermodynamics of formation for either

structural enantiomer.

Figure 5.4: Representation of the nonsuperimposable helical pore structures associated with
chiral molecular sieves.

It has been postulated by Lobo and Davis that OSDAs may act as an effective means of
influencing the kinetics of formation to synthesize only one of the enantiomers for a chiral
molecular sieve.?” Specifically, it is suggested that the OSDA should itself be chiral, stable,
and large enough to impart structural chirality. This hypothesis was tested using an undis-
closed chiral OSDA in the synthesis of *BEA (an intergrowth of polymorph A (a helical,
chiral pore structure) and polymorph B (achiral)). It was demonstrated that polymorph

A was indeed enriched relative to traditional synthesis conditions, and that the material
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was capable of yielding enantiomeric excess (ee) for adsorption and reactivity experiments
(ca. 5% for each). Several other attempts have also been reported using *BEA.*8-52
Collectively, these studies indicate the viability of synthesizing an enantioenriched, chiral
molecular sieve. However, given that *BEA forms as an intergrowth of polymorphs (and
that enrichment of the chiral polymorph A domain does not necessarily guarantee enan-
tioenrichment) has complicated the characterization of these materials and made it difficult
to conclusively demonstrate enantiomerically enriched framework content. Lobo and Davis
have suggested that synthesizing a microporous equivalent of quartz, whereby individual
crystals are single enantiomorphs, would serve as the best platform to achieve and effectively

characterize enantioenrichment.2’

5.3 Overview of Part I1

Chapter 6 of this thesis focuses on the synthesis, characterization, and exploration of the
functionality of an enantioenriched, polycrystalline molecular sieve. This body of work
provides the first instance of the controlled enantioenrichment of a bulk molecular sieve
sample. Moreover, it is the first time that both enantiomers (and the racemic mixture) of a
molecular sieve have been synthesized, allowing for robust controls to be performed for all
characterizations and functionality examinations. It is demonstrated that a computationally
"designed" chiral OSDA preferentially templates one enantiomer of the chiral STW frame-
work structure. Enantioenrichment of the samples is subsequently demonstrated through
new rotational HRTEM techniques that allow for the chiral space groups of either struc-
tural enantiomer to be distinguished. Finally, catalytic reactivity and adsorption studies

were conducted to evaluate the capacity for these materials to perform enantioselective pro-
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cesses. Chapter 7 discusses the future directions for studying and using chiral heterogeneous

molecular sieves.
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Chapter 6

THE SYNTHESIS, CHARACTERIZATION, AND FUNCTIONALITY
OF ENANTIOMERICALLY ENRICHED, POLYCRYSTALLINE
MOLECULAR SIEVES

Information contained in Chapter 6 was originally published in:
(1) Brand, S. K.; Schmidt, J. E.; Deem, M. W.; Daeyaert, F.; Ma, Y.; Terasaki, O.; Ora-
zov, M.; Davis, M. E. Enantiomerically Enriched, Polycrystalline Molecular Sieves.

Proceedings of the National Academy of Sciences 2017, DOI: 10 . 1073 /pnas .
1704638114,

6.1 Introduction

The synthesis of zeolites and zeolite-like molecular sieves has been accomplished using
organic structure-directing agents (OSDAs).!™ This synthetic method utilizes an organic
molecule (OSDA) to interact with and influence the assembly pathway of the inorganic
components to create a crystalline, organic-inorganic composite material. Upon removal
of the OSDA, the microporous void space that is created can be exploited in variety of
applications, i.e., catalysis, separations, ion exchange and adsorption.? These microporous,
polycrystalline materials are three-dimensional networks of oxide tetrahedra (zeolites con-
tain only silicon and aluminum, while zeolite-like molecular sieves can have a broader
range of elements' ™) that create highly-ordered, hydrothermally-stable framework struc-
tures with pores of sizes less than 2 nm. Molecular sieves provide shape-selective properties
and, coupled with the inclusion of catalytic active sites, are capable of innumerable, highly
selective chemical reactions. Despite the abundance of chirality in nature, the discovery of

a zeolite or zeolite-like microporous material with enantioselective properties has remained
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elusive. Enantioenriched, chiral zeolitic materials are of particular interest for their potential
to provide robust, new, enantiospecific, shape-selective catalytic pathways and separation
processes.®13

Several inherently chiral molecular sieves have been synthesized to date (although the
bulk, polycrystalline samples are racemic), including *BEA, CZP, GOO, -ITV, JRY, LT]J,
OSO, SFS, and STW (molecular sieve framework types are designated by three-letter codes
that define the unique connectivity of the oxide tetrahedral).!* In particular, several studies
have reported polymorph A (that possesses a chiral helical pore) enriched *BEA. However,
zeolite *BEA is limited in that the material crystallizes as highly faulted intergrowths of a
racemic mixture of polymorphs A and polymorph B (achiral). In 1992, Lobo and Davis
discussed the concept of synthesizing a chiral * BEA molecular sieve via the use of a
chiral OSDA, and reported low enantioenrichment (ee) for both a chemical reaction and
an adsorption experiment.'> Recently, Tong ef al. have reported a high-fluoride method
of synthesizing polymorph A enriched *BEA using achiral OSDAs (although difficult to
understand the origin of the proposed enantioenrichment), and reported low ee’s from
a chemical reaction.'® Other authors have reported samples enriched in polymorph A
with similar ambiguity in enantioenrichment.!’”-2" These studies suggest the viability of
synthesizing an enantioenriched, chiral molecular sieve. However, the inherent difficulty in
controlling the synthesis of polymorphic domains, and the enantiomeric domains of only
polymorph A in *BEA, has made it very problematic to conclusively prove that a bulk
sample of a molecular sieve does in fact have an enantiomerically enriched framework
content. Lobo and Davis discussed this issue and suggested that a preferred approach would

be to design syntheses that target chiral molecular sieve structures where individual crystals
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are single enantiomorphs (microporous analogs to quartz).'> The STW framework is an
example of this type of molecular sieve, since recent evidence shows that each individual
crystal is a single enantiomorph (i.e., there are no polymorph or opposite enantiomeric
domains within a single crystal).?!

A molecular sieve with the STW framework was initially synthesized as a germanosilicate
(denoted, SU-32) in 2008,?% and then as a hydrothermally stable pure-silica material in
2012.2%23 The STW structure contains 10-membered rings (MRs: number of oxygen or
tetrahedral atoms that make up the ring) that form chiral helical pores.?? Past synthesis
protocols that utilized achiral OSDAs resulted in bulk, polycrystalline samples that were
racemic mixtures of the two structural enantiomers. STW, therefore, provides a good
model for designing the synthesis of bulk, polycrystalline samples of either the “R” or
“S” enantiomers of the framework. Here, we employ computational methods to aid in
our design of chiral OSDAs for the synthesis of enantioenriched STW, and show for the
first time, that a bulk sample of a polycrystalline, molecular sieve can be synthesized with
significant enantiomeric enrichment. Our design (shown in Figure 6.1) provides for the
synthesis of either the “R” or the “S” enantiomers of STW, thus yielding materials that

enable appropriate control experiments when elucidating structures and functions.

6.2 Experimental Methods
Computational Details

We built the method of Pophale ef al. to carry out the computations, here considering
chirality of the OSDA.?* The DREIDING forcefield was used in the GULP simulation

program to carry out the calculations. The OSDA identified in Schmidt ez al. was found to
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Figure 6.1: Illustration of the synthesis of enantioenriched STW samples using enantiopure,
chiral OSDAs.

occupy the cages of STW at a loading of two per cage.>> We carried out a combinatorial
search of two OSDA monomers, linked by the Menshutkin reaction to a halogenated carbon
chain. We obtained the linkers from the shelf and also extended the shelf by applying all
zero-order reactions and brominating the resulting compounds having a OH group. We
required the constructed molecules to contain two chiral centers, no more than 8 torsions,
and between 2 and 4 quaternary amines. In all, we considered 644 linked diquats. The
stabilization energies of all chiral enantiomorphs were calculated, and the energy gap
between the most and second most stable form was computed. The stabilization energy was
computed as in Pophale et al., via geometric placement of the OSDAs in the zeolite, with
four energy minimizations, followed by three increasingly longer molecular dynamics runs

at 343 K.24
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Sources of Chemicals

trans-2-Phenylcyclopropane- 1-carboxylic acid (Sigma-Aldrich, 95%), quinine (Sigma-Aldrich,
anhydrous, >98%), +-dehydroabietylamine (Sigma-Aldrich, 60%), toluene (EMD Milli-
pore, >99.5%), glacial acetic acid (EMD Millipore, 99%), hexane (EMD Millipore, >95%),
water (house still, >99.99%), sodium hydroxide (Alfa Aesar, 97%), diethyl ether (EMD
Millipore, >99.0%), potassium carbonate (Sigma-Aldrich, anhydrous, 99.99% trace metals
basis), methanol (EMD Millipore, >99.8%), sodium bicarbonate (Sigma-Aldrich, >99.7%),
hydrochloric acid (Sigma-Aldrich, 37%), magnesium sulfate (Sigma-Aldrich, anhydrous,
>99.5%), chloroform (EMD Millipore, >99.8%), ethyl acetate (EMD Millipore, >99.5%),
hydrogen peroxide (EMD Millipore, 30% (w/w) in water), tetrahydrofuran (EMD Millipore,
>99.5%), lithium aluminum hydride (Sigma-Aldrich, 95%), ammonium chloride (Sigma-
Aldrich, 99.7%), bromine (Sigma-Aldrich, 99.5%), triphenylphosphine (Sigma-Aldrich,
99%), acetonitrile (Sigma-Aldrich, anhydrous, 99.8%), tetramethylimidazole (TCI Chem-
icals, 98%), Dowex Marathon A, hydroxide from (Sigma-Alrich), [Tetrabutylammonium]
[(A,R)-(1,1’-binaphthalene-2,2’diolato) (bis (tetrachlor-1,2-benzenediolato) phosphat(V))]
(Sigma-Aldrich, >95%), tetraethylorthosilicate (Sigma-Aldrich, 98%), hydrofluoric acid
(Sigma-Aldrich, 48% (w/w) in water), aluminum isopropoxide (Sigma-Aldrich, >99.99%
trace metals basis), and germanium oxide (Strem, 99.99%) were purchased and used as

received.

Synthesis and NMR Characterization of the Chiral Organic Structure Directing Agent
A summary of the synthesis method implemented to develop both the R- and S-enantiomers

of the organic structure directing agent used in this study is detailed in Figure 6.2 (chiral
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separation) and Figure 6.3 (reaction pathway).

Quinine

Figure 6.2: Chiral resolution scheme of trans-2-phenylcyclopropane-1-carboxylic acid using
dehydroabietylamine or quinine to yield 1a or 1a’, respectively.?6-’

= 1) O3 HO WﬁA""’”(OH LiAIH,
HO_ ;2\ OH

ol
Lo o N R e
~N"N _ B - ,
s 2 - Br\\“‘*k*Br PPh3/Br,
T 2) OH" Exchange

Figure 6.3: Scheme for the synthesis of the racemic OSDA 2 from 1. Note that the same
synthesis procedure can be applied to 1a or 1a’ to yield R-2 or S-2, respectively.

Separation of the Enantiomers of 1

Several methods have been described to separate what are denoted the (-)-R (1a) and (+)-S

(1a’) enantiomers of trans-2-phenylcyclopropanecarboxylic acid (1) using either quinine
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and brucine or dehydroabietylamine, respectively.??’ In this work, brucine was avoided

due to the toxicity of this compound.

Chiral Resolution of (1R,2R)-2-Phenylcyclopropane-1-carboxylic acid (1a)

The purification of dehydroabietylamine was conducted by the method reported by Gottstein.?®
900 g of dehydroabietylamine was dissolved in 1.5 liters of toluene. Then a solution of 210
g of glacial acetic acid in 500 mL of toluene was added. The solution was then refrigerated
overnight and the product was collected via filtration and washed with cold toluene. The
product was recrystallized one time from toluene and washed with hexane and dried under
vacuum to yield 490 g of purified dehydroabietylamine acetate.

Dehydroabietylamine acetate (490 g) was dissolved in 630 mL of boiling water. Then
500 mL of 10% NaOH solution were added. After the mixture was chilled it was extracted
several times with diethyl ether, the combined extracts were washed with water and dried
over anhydrous potassium carbonate. The ether was then removed using rotary evaporation
to yield 357 g of a yellow oil that slowly solidified.

The enantiopurification was performed according to the method of Cheng et al.?’ 150 g
of 1 (racemic mixture from Aldrich, MW = 162.19, 925 mmol) was dissolved in 940 mL
of warm methanol. Then 263 g of purified dehydroabietylamine (925 mmol) was dissolved
separately in 750 mL of warm methanol. The two solutions were slowly combined and, after
sitting at room temperature overnight, the resultant solid salt of dehydroabietylamine and
1a was recovered using filtration and was then recrystallized from 90% aqueous methanol
six times to yield a solid with a rotation of [a]pZ’ -81° (c 0.42, MeOH) (literature: [a]pZ°

-80.8° (¢ 0.61, MeOH)) .27 The total mass of recovered solids was 78.5 g.
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The free acid was isolated by adding the salt dehydroabietylamine and 1a to a saturated
solution of NaHCO3 and then extracting with diethyl ether. The aqueous fraction was then
acidified with 37% hydrochloric acid followed by successive extractions with diethyl ether.
The organic extractions were combined, dried over anhydrous magnesium sulfate, and then
the solvent removed using rotary evaporation to yield 18.1 g of enantiopure 1a. The rotation
of 1a in chloroform was found to be [a]p2° =375.6° (¢ 1.07, CHCl») (literature: [a]p2°

—401° (c 0.88, CHCl3)).?’

Chiral Resolution of (15,25)-2-Phenylcyclopropane-1-carboxylic acid (1a’)

Following the method of Cheng e al. and Overberger et al., 125 g of 1 (racemic mixture from
Aldrich, MW=162.19, 771 mmol) were added to 250 g of quinine (Aldrich, MW=324.42,
771 mmol) in 4 L of ethyl acetate at reflux.?®?’ The mixture was then allowed to cool to
room temperature and allowed to sit at room temperature for 1 week, over which time large
white crystals of the salt of quinine and 1a’ precipitated from the solution. The crystals
were recovered by filtration, and the filtrate was then recrystallized an additional 5 times
from ethyl acetate to yield a white product with a rotation of [«] 20 =10.0° (c 1.0, EtOH)
(literature: [a]p?® —10.2° (c 1.0, EtOH)).?” The total yield of the salt at was 95.1 g.

The free-acid product was recovered by dissolving 46.6 g of the salt of quinine and 1a’ in
500 mL of 1 M HCI at room temperature. 1a’ was then recovered by extraction with diethyl
ether to yield 15.0 g. The rotation of 1a’ in chloroform was found to be [«] 20 +370.8° (c
1.07, CHCL3) (literature: [a]p2® +406° (c 1.0, CHCl3)).?’

For both 1a and 1a’, further crystallization steps did not alter the polarimetry experiments.

Additionally, the "H NMR of both compounds was identical to the starting material (CDCl3,
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500 MHz): 6 = 7.0-7.2 (m, 5H, Ph), 2.52 (m, 1H), 1.83 (m, 1H), 1.59 (m, 1H), 1.33 (m,

1H).
The synthesis procedures detailed below are written from the perspective of using a
racemic starting material. However, the exact same procedures can be applied for the

enantiopure starting materials 1a and 1a’ to obtain R-2 and S-2, respectively.

Trans-2-phenylcyclopropane carboxylic acid (1) to trans-1,2-cyclopropane carboxylic

acid (1b)

1b was prepared by ozonolysis of 1 (either enantiomer, or the racemic mixture) in acetic
acid according to the procedure reported by Inouye et al.?° In a typical synthesis 11.6 g of
la MW = 162.19) was dissolved in 200 mL of glacial acetic acid. A stream of ozone was
bubbled through the mixture with stirring (125 mL/minute of 6.7% ozone in O,) at 50°C.
The mixture was allowed to react for 36 hours. The reaction was cooled, and 50 mL of 30%
aqueous H,O; was added and stirred overnight. All liquid was then removed using vacuum
distillation. Then, an additional 50 mL of 30% aqueous H,O, was added, stirred for several
hours, and the liquid again removed using vacuum distillation. This was repeated a total of
4 times, and the recovered solids were dried under vacuum. A total of 7.49 g of solid 1b
was recovered (MW=130.10). 'H NMR (D-0, 500 MHz): § = 2.04 (m, 2H), 1.39 (m, 2H).

13C NMR (D0, 500 MHz): 175.7, 22.1, 15.3.

Trans-1,2-cyclopropane carboxylic acid (1b) to trans-1,2-cyclopropane diol (1c¢)

The procedure for the reduction of 1b to 1¢ was adapted from Taylor et al. 200 mL of THF

in a 1 L round-bottom flask (RBF) were cooled in an ice bath under a nitrogen atmosphere.>°
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Then 14.95 g of LiAlH4 was slowly added and stirred for 1 hour. 25 g of 1b was dissolved

in THF and the slowly added to the LiAlH4 suspension using a dropping funnel. After
the addition was complete the mixture was stirred at O °C for 2 hours. Then, the RBF
was removed from the ice bath and slowly allowed to warm up to room temperature and
stirred for 2 hours. Finally, the reaction was heated to reflux and stirred overnight. The
mixture was then cooled in an ice bath and 60 g of saturated ammonium chloride solution
was slowly added, followed by 100 mL of ethyl acetate. The suspension was stirred for 4
hours and then filtered. The retentate was resuspended in additional ethyl acetate, stirred an
additional 4 hours, and then filtered once again. The liquid filtrate was combined and dried
over magnesium sulfate. After removing the magnesium sulfate by filtration, the solvent
was removed using rotary evaporation to yield a yellow oil. The yield of 1c¢ was 9.54 g (93.4
mmol, 70%) and was used without further purification. '"H NMR (CDCl3, 500 MHz): 6 =
5.05 (s, 2H), 3.76 (m, 2H), 3.07 (m, 2H), 1.01 (m, 2H), 0.43 (m, 2H). 3C NMR (CDCls,

500 MHz): 6 =65.8, 19.8, 7.2.

Trans-1,2-cyclopropane diol (1c¢) to trans-1,2-dibromocyclopropane (1d)

1d was prepared following a method reported by de la Fuente et al.>!

In a typical reaction,
16.04 g of bromine was added to a solution of 26.32 g triphenylphosphine in dry acetonitrile
(200 mL) at 273 K. A solution of 5 g of 1c in dry acetonitrile (100 mL) was added
to the reaction mixture, which was then stirred under an argon purge overnight at room
temperature. Remaining acetonitrile was subsequently evaporated to yield a clear oil as

well as a white triphenylphosphine oxide solid. This crude mixture was finely dispersed

in hexane (2 x 250 mL) and filtered to remove the triphenylphosphine oxide. The hexane
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solution was evaporated under vacuum to give 4.0 g of 1d. If necessary, 1d was purified
using column chromatography on silica gel with hexane/ethyl ether (95:5) as the eluent.
"H NMR (CDCl3, 500 MHz): ¢ = 3.35 (m, 4H), 1.33 (m, 2H), 0.86 (m, 2H). °C NMR

(CDCl3, 500 MHz): 6 =37.0, 24.4, 17.3.

Trans-1,2-dibromocyclopropane (1d) to Final OSDA Product (2)

Compound 1d was dissolved in chloroform and then a 10% excess of tetramethylimidazole
was added and the solution was refluxed overnight. After the reaction was complete,
the reaction mixture was cooled to room temperature and then the diquaternary product
was extracted using water (3 times). The water was removed using rotary evaporation
and the resulting solid was then dried under vacuum overnight. Finally, the product was
recrystallized from chloroform to yield a white product in quantitative yield. 'H NMR
(CDCl3, 500 MHz): 6 =4.80 (m, 1H), 4.04 (m, 1H), 3.74 (s, 3H), 2.99 (s, 3H), 2.31 (s, 3H),
2.24 (s, 3H), 1.73 (m, 1H), 0.85 (t, 2H). '3C NMR (CDCl3, 500 MHz): § = 143.2, 125.8,
125.1,48.2,32.8,17.4,12.4, 10.6, 9.5, 9.1.

Prior to use in inorganic syntheses, 2 was ion exchanged to hydroxide form using Dowex
Marathon A exchange resin and the final product concentration was determined using a

Mettler-Toledo DL22 autotitrator using 0.01 M HCI as the titrant.

Characterization of the Enantiopurity of 2

A survey of the literature finds that the enantiodiscrimination of quaternary (and diqua-
ternary) ammonium compounds can be challenging. One method that has seen published

success for this is the chiral shift reagent, Tetrabutylammonium][(A,R)-(1,1’-binaphthalene-



98
2,2’diolato)(bis(tetrachlor-1,2-benzenediolato)phosphat(V)) (BINPHAT).3% 35 In a typical

NMR experiment, BINPHAT was mixed in equimolar amounts (according to charge) with
2 in boiling CDCls and the product was studied using 'H NMR.

Enantiomers of 2 are denoted R-2 and S-2

Synthesis and Characterization of STW

Synthesis of germanosilicate STW using OSDA 2

STW was synthesized by methods adopted from those previously reported.?>>> Conditions
under which germanosilicate STW was found to crystallize most successfully were found
to stem from starting gel compositions of 1 SiO; : 0.5 GeO;, : 4 H,O : 0.5 HF : 0.5 2
(enantiopure or racemic). For a typical reaction, the desired quantity of germanium oxide
and OSDA were mixed, and the solids were allowed to homogenize over the period of an
hour. Next, a quantity of tetracthylorthosilicate was added, and the mixture was allowed to
hydrolyze over the period of 12 hours. Ethanol produced as a consequence of the hydrolysis
was then allowed to evaporate at room temperature, in addition to a quantity of water to
attain the desired H,O/SiO, ratio. After allowing the gel to age at its final composition
for 24 hours, as-synthesized, racemic, pure-silica STW (particle size ca. 1 um) was added
as seed material (10% (w/w) of SiO; in the gel) to this gel and mixed. The final gel was
transferred to a Teflon-lined stainless steel autoclave and heated at 433 K in a rotating
oven until crystallization products formed. The recovered solids were centrifuged, washed
extensively with water and acetone, then dried in an oven at 343 K. To remove the organic
occluded within the structure, the sample was placed into a tube furnace maintained at 423

K through which ozone was passed (125 mL/minute of 6.7% ozone in O,). For materials
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with less germanium content, the solids were calcined in flowing air (100 mL min~', Airgas,
breathing grade) at 853 K (after a ramp of 1 K min~!) for 6 hours after maintaining 423 K

for 3 hours.

Synthesis of aluminogermanosilicate STW using OSDA 2

Aluminogermanosilicate STW was synthesized using a similar procedure outlined vide
supra for germanosilicate STW. However, to the initial combination of germanium oxide
and OSDA, a quantity of aluminum isopropoxide was added and allowed to homogenize
and hydrolyze. The final gel composition of samples used in catalytic function testing were
1 SiO; : 0.5 GeO; : 0.01 Al,O3 : 5H;0: 0.5 HF : 0.5 2 (enantiopure or racemic). Similar
procedures were also followed to remove the organic content.

A summary of STW syntheses using 2 is provided in Appendix D, in addition to NMR,

XRD, TGA, SEM and, EDS characterizations (Tables D.1-D.4 and Figures D.1-D.6).

Reaction and Analysis Procedures
After addition of 20 mg of Al-containing STW (Si/Al = 30 + 10), 20 mmol of epoxide
substrate, and 5 g of methanol (with pre-dissolved naphthalene as internal standard) were
added to a 10 mL thick-walled glass reactor (VWR) containing a stir bar. The reactor
was crimp-sealed and placed in a temperature-controlled oil bath at the desired reaction
temperature. At predetermined times, aliquots of (100 uL.) were extracted and analyzed.
Quantitative GC/FID analysis was performed on an Agilent 7890B GC system equipped
with a flame ionization detector and an Agilent Cyclosil-B column. Liquid 'H and '3C

NMR spectra were recorded with a Varian INOVA 500 MHz spectrometer equipped with
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an auto-x pfg broad band probe. All liquid NMR analysis was performed in deuterated

methanol.

Adsorption Procedures
Adsorption isotherms were collected on a Quantachrome Autosorb iQ with varying methods

depending upon the adsorbate.

HRTEM Sample Preparation
The powdered sample was crushed and dispersed into ethanol using ultrasonic processing.
Several drops of the dispersion were dropped onto a carbon-film supported TEM grid. Gold
particles were deposited onto the sample through sputter coating.

Electron diffraction patterns and HRTEM images were obtained using a 200 kV using
JEOL JEM-2100F (Cs = 0.5 mm, Cc = 1.1 mm). Each projection image was reconstructed
from a through-focus series of 20 HRTEM images acquired with a constant focus step of

53 A. The structure projection reconstruction was done using software Qfocus.>

6.3 Results and Discussion

Directed Computational Design of a Chiral OSDA for STW

Schmidt et al. reported on the synthesis of STW utilizing a computationally predicted
OSDA.? This work demonstrated the feasibility of a priori predicting chemically syn-
thesizable monoquaternary, imidazolium OSDAs to create a specified, fluoride-mediated,
pure-silica framework. Additionally, STW has been reported to form using diquaternary
imidazolium-based OSDAs that are of sufficient size to conform to 10MR channel struc-

ture, implying more rigid, chiral analogues may be included in the framework of STW,
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and may potentially impart structural chirality.?>3"#* Here, we implemented the previously
published computational method implemented by Schmidt et al., and utilized the molecular
design constraints suggested by Lobo and Davis.'>?* The computational method was mod-
ified such that a given enantiomer of each potential OSDA molecule was simulated in both
enantiomers of STW, with successful candidates producing a strong stabilization in only a
single enantiomer. Based on our previous work with STW, we believed that a computed
stabilization energy larger than -15 kJ-(mol Si)~! would be needed in order to form STW.
Ultimately, a single OSDA candidate was selected (Table 6.1). Relative to the other pre-
dicted OSDAs for STW, 2 has the largest energy difference between enantiomers, making
it the most suitable target for experimental evaluation. Coupled with energy predictions,
this molecule was also selected after ensuring that the both enantiomers were synthetically

attainable.?

Synthesis and Characterization of Enantiopure OSDA 2

Chiral resolution of the starting compound (trans-2-phenylcyclopropane- 1-carboxylic acid,
1) was performed by successive crystallizations with either dehydroabietylamine (DHBA)
or quinine as chiral derivatization agents to obtain the R (1a) or S (1a”) forms of the starting
material (Figure 6.2). Polarimetry measurements were taken for the salt and free-acid forms
of 1a and 1a’ to confirm enantiopurity, after the separation was complete. (A,R)-BINPHAT
tetrabutylammonium salt was used as a chiral shift reagent to detect the enantiopurity of
2 after executing the reactions outlined in Figure 6.3. As shown in Figure 6.4, the neat
product 'H NMR resonances at 4.80 and 4.04 ppm are singular and distinct multiplets.

Addition of BINPHAT to a racemic sample of 2 results in a twofold spectral change: (1) a
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Table 6.1: Potential chiral OSDAs including 2, that was used to prepare enantioenriched
STW, and their associated stabilization energies of both enantiomers in the STW framework
(stabilization energies in kJ-(mol Si)~!)

Eenantiomer 1 Eenantiomer 2
Proposed OSDA i 5 "p6,22) (i.e. P6522)

SN -16.32 -14.60
A

IN/F \ L\K -14.65 1.37

IN% 0 Kﬂ -15.27 -1.58
\

Selected Molecule: OSDA 2

distinct shift upfield of only the aforementioned peaks from their initial position, and (2) an
observed peak split. Integration of the split peaks indicates that they maintain a 1:1 ratio,
expected for a racemic compound. However, the two enantiomers of 2 show only a single
peak. This method confirms the enantiopurity of 2, and demonstrates that no racemization

occurs throughout the organic synthesis scheme.

Synthesis and Characterization of Enantioenriched STW

Syntheses of STW were conducted with enantiopure samples of the R and § enantiomers
of 2, as well as the racemic mixture of the two. These syntheses were performed at
temperatures and H,O/SiO, ratios that are typical for silica-enriched, fluoride-mediated
syntheses. As STW is composed of approximately 80% double 4-tetrahedral atom rings

that are known to be stabilized by inclusion of germanium, addition of varying quantities
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(ppm)
Figure 6.4: 'H NMR chiral shift experiments to analyze the enantiopurity of 2: a) neat

racemic 2, b) racemic 2 with BINPHAT, ¢) R-2 with BINPHAT, and d) S-2 with BINPHAT.
An imidazole methyl resonance in a) has been suppressed at 3.74 ppm for clarity.

of germanium to the synthesis gels was explored.*>*® Following the work of Schmidt ez al.,
reagent molar ratios that lead to the synthesis of STW in the shortest times were: 1 SiO;
: x GeOy : 5 Hy0: 0.5 HF : 0.5 2 at 160 °C (where x is a varying from 0.05 to 0.5) using
10% (w/w) seeds produced from an achiral diquaternary OSDA with crystal sizes on the
order of 1 um.> Aluminum-containing samples were also synthesized (in the presence of
Ge) using aluminum isopropoxide. In these syntheses, initial gel Si/Al ratios were main-
tained above 50, otherwise RTH impurities were observed in the resultant products.’®3
Aging the synthesis gels over the course of 24 hours was found to reduce crystallization
times. A complete summary of the synthesis results is provided (Tables D.1-D.3) along
with representative powder X-ray diffraction (PXRD) patterns (Figure D.1). Additionally,
19F, 2°Si and 2’ Al solid-state NMR (SS NMR) spectra, a representative thermogravimetric

analysis (TGA) and a selection of scanning electron micrographs (SEMs) are listed as sup-

porting characterizations (Figures D.2-D.6). In general, the concentrations of germanium
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and aluminum were found to increase in the product materials relative to the synthesis
gel. Representative results from energy-dispersive X-ray spectroscopy (EDS) are given in
Table D.4 for products from germanosilicate and aluminogermanosilicate synthesis gels.
In addition to STW, numerous other phases were produced without significant variation
in synthesis conditions, including LTA, RTH, IWV, CSV, as well as several phases that
could not be identified or consisted of layered organosilicate materials. Synthesis of these
microporous materials is not unexpected, as they have all been shown to be derived from
similarly shaped imidazole-based OSDAs under crystallization conditions similar to those
reported here >—#447

As-made STW crystals obtained utilizing 2 were analyzed by '>*C CP-MAS solid-state
NMR to evaluate whether the OSDA remains intact and directs the formation of STW.
Figure 6.5 compares the neat OSDA liquid '*C NMR spectrum (Figure 6.5a) with those
obtained from analyzing the occluded organic (from solid-state !*C NMR, Figure 6.5b) and
the organic recovered by dissolution of the framework structure (liquid '3C NMR, Figure
6.5c). Agreement between all spectra indicates that 2 is occluded intact within the STW
framework, and is the structure directing agent. As such, STW is not formed from an
organic decomposition product or as a consequence of spontaneous, directed crystallization
from the seed crystals. Efforts to perform chiral shift experiments on recovered OSDA 2
collected from dissolution of the STW framework by hydrofluoric acid were not successful
due to solubility issues (2, chiral shift reagent, and solvent combinations).

Although it has been speculated that chiral OSDAs (when directed towards a chiral

structure) should necessarily lead to an enrichment in the chirality of framework, this

concept has never been conclusively proven. In order to do so, the chirality of the organic
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Figure 6.5: Comparison of the '3C NMR collected for a) the neat organic, b) the occluded
organic within an enantioenriched STW sample, and c) the OSDA recovered dissolving the
framework with hydrofluoric acid and extracting the organic. Peaks marked with a # or *
denote the CDCl3 solvent and TMS standard, respectively.

occluded within the STW structure must be known, as must the chirality of the framework
structure for a bulk, polycrystalline sample. Circular dichroism (CD) provides an effective
method of accomplishing the former for as-made STW samples. The results for R-, S-, and
racemic STW samples are given in Figure 6.6. As demonstrated, the molecules occluded
within R- and S-STW absorb light at 242 nm with equal and opposite polarities. No measured
rotation of light is observed for the racemic sample as, statistically, any polarization effects
are negated for a sample containing equivalent quantities of chiral crystals. These data
collectively demonstrate that 2 remains chiral and enantiopure within the STW framework.
While it may be possible to analyze the structural chirality of a calcined STW structure,
no adsorption in the 200-300 nm range was detected from our germanosilicate samples.
Incorporation of UV-active heteroatoms beyond those that have been used in this work may

provide a pathway for future investigation via CD studies.
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Figure 6.6: Circular dichroism spectra for as-made samples of STW using R-, S-, and
racemic OSDA 2.

In previous reports involving the enrichment of polymorph A in *BEA (which does
not guarantee enantioenrichment), characterization of any true structural enrichment of
polymorph A has been limited to transmission electron microscopy (TEM) analysis (PXRD
analyses are fraught with problems) of the polymorph domains, and demonstration of
enantioenrichment by measuring some function, e.g., catalysis or adsorption.!>!6 A distinct
issue with this methodology, however, is that the synthesis of these materials lacks proper
controls with regards to the enantiomorphs obtained in the product materials, and therefore
it is not possible to perform appropriate analytical and experimental controls to confirm
chirality. The methods we have developed and used here are not subject to these problems.
We are able to control the synthesis of a chiral OSDA (and obtain the R-, S-, and racemic

forms thereof) to yield bulk, polycrystalline STW samples composed of individual crystals
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of a single chirality. As such, characterization and functional results that are capable of
probing the bulk chirality of the two enantioenriched samples of opposing direction must
demonstrate enantiomeric excess (ee) that is approximately equal and opposite, with the
racemic preparation revealing no ee. The CD experiments for the R-, S-, and racemic STW
samples provide the first illustration of how these types of controls can be exploited to
derive meaningful conclusions.

Characterization of the structural chirality of STW is complicated. An examination of the
literature yields few methods for effectively determining this property for siliceous microp-
orous materials beyond the demonstration of enantiomeric excesses derived from reactions
or adsorption experiments. Analytical difficulty partially stems from the small crystal sizes
(as is the case for STW synthesized with OSDAs used here) that prohibit the use of single
crystal XRD. Rojas et al. point towards the possibility of examining the optical activity to
quantity enantiomeric excess within a bulk, polycrystalline sample.* Scanning and high-
resolution transmission electron microscopy (SEM and HRTEM, respectively) have proven
to be highly advantageous methods for analyzing crystallite morphologies. HRTEM has
been used previously to analyze the polymorph domains in *BEA.!%29 However, specific
chiral space groups (i.e., structural enantiomers) within the detected polymorph A domains
were not able to be determined. Fundamentally, the difficulty in unequivocally distinguish-
ing between the space groups of a chiral material using traditional TEM techniques arises
from properties inherent to both structural chirality and experimental limitations. Specifi-
cally, on a given two-dimensional plane (as is observed in a typical TEM experiment), the
structures of the two enantiomers are superimposable and indistinguishable. A method was

therefore developed to perform three-dimensional HRTEM experiments by Ma ef al. in
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order to effectively characterize chiral space groups.?' The projection of STW-framework
shifts after rotating along the screw axis as schematically illustrated in Figure 6.7a. Of note
is that the rotation direction can be either clockwise (to the right) or count-clockwise (to the
left) viewed along c to reach at least two zone axes. A zeolite crystal (that has been deposited
with gold nanoparticles (diameter 5 nm) that serve as reference points with the microporous
structure) is first aligned to [2110] zone axis and a through-focus series of HRTEM images
are taken from a thin area. The crystal is then tilted continuously to the right or to the left
by 30° about the screw axis as schematically illustrated in Figure 6.7a. Based on simulated
results, the crystal is right-handed if the shift direction is downwards when the crystal is
tilted to the right (Figure 6.7b and c). Upon rotation, the [ITOO] or [10TO] ZOne axes are
observed if the tilting direction is to the right or left, respectively. A series of through-focus
images are then taken again along either zone axis. Two images along [ZHO] and [ITOO] are
obtained by structure projection reconstructions using the through-focus series of HRTEM
images and are aligned based on the positions of gold nanoparticles (Figure 6.7d-g and
Figures D.7-D.9 in Appendix D). By comparing the aligned images from the two zone axes,
there is an observable shift between the two projections from which the space group of the
crystal can be assigned.

The results collected from using this method to analyze STW crystals selected from bulk,
polycrystalline samples synthesized using the R-, S- and racemic versions of 2 are given in
Table 6.2. Out of the six crystals analyzed for both the R- and S-OSDA derived samples, five
were determined to possess the P6,22 and P6522 space groups, respectively, demonstrating
(within this data set) notable enantioenrichment. Moreover, these experimental results are

consistent with computational predictions whereby R-OSDA 2 is expected to yield crystals
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Figure 6.7: a) Schematic representation of a six-fold rotation of STW frameworks with
different handedness. b-c) Simulated HRTEM images of the zeolite with right- and left-
handedness, respectively. The atomic structure models, where blue and red balls represent
Si and O atoms, were overlaid on top of the simulated images. The shift between two
images for right-handed and left-handed STW frameworks has the same length but reverse
directions. d-e) Comparison of two HRTEM images with gold nanoparticles as markers.
A crystal was tilted from [ZHO] (d) to [IOTO] (e) and a shift-down was observed, which
indicates a space group of P6522. f-g) The processed images of (f) and (g) after Fourier
filtering that only includes spatial frequencies within a particular range to enhance the
contrasts of gold nanoparticles. Scale bars are 5 nm.
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with P6;22 space group and, similarly, S-OSDA 2 is anticipated to result in crystals with
the P6522 space group (Table 6.1). Analysis of the racemic sample resulted in an equal
number of crystals from each space group, as expected.

Table 6.2: Summary of the results obtained from rotational HRTEM analysis for STW
crystals synthesized from the R-, S- and racemic OSDA 2.

Number of
OSDA Used Crystals Analyzed P6,22 P6522
R-2 6 5 1
S-2 6 1 5
Racemic 2 6 3 3

Ideally, for a given sample synthesized using a chiral OSDA, HRTEM analysis would
subsequently demonstrate only crystals from the expected space group. However, as shown
in Table 6.2, a crystal from both chiral OSDA derived samples was determined to be from
the unexpected space group (e.g., P6522 from the R-OSDA). Possible reasons for incom-
plete purity include (1) the crystal of the opposite space group was a seed crystal, (2) there
was OSDA degradation that occurred that yielded a racemic portion of the polycrystalline
sample, and (3) the inherent nature of the crystallization process does not synthesize an
enantiopure, but only an enantioenriched, polycrystalline sample. Further studies are under-
way to test for these possibilities in hopes of eliminating any of these complications. While
currently the number of crystals that have been analyzed is not sufficient to draw a statisti-
cally conclusive picture of the bulk chirality of the samples, these HRTEM data (coupled
with the distinct differences detected between R- and S-OSDA synthesized materials) are
useful to demonstrate, for the first time, enantioenrichment of a bulk, polycrystalline sample

of a molecular sieve. Work is ongoing to analyze a larger number of crystals and subse-
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quently improve the statistics for quantifying enantioenrichment of STW samples prepared
without seed crystals.

CD and HRTEM characterizations demonstrate that a given enantiomer of OSDA 2
maintains its respective chirality in the occluded state, and is capable of producing an enan-
tioenriched, molecular sieve framework. While there may exist crystallization processes
wherein achiral molecules lead to enantioenrichment of product solids, such as by spon-
taneous chiral symmetry breaking by self-catalyzed crystallization,*® such systems would
not allow for the directed synthesis of specific enantiomers of crystals, as we are able to
demonstrate in this work. Thus, it follows that the initial hypothesis by Lobo and Davis
that any bulk, polycrystalline sample having enantioenrichment (not obtained solely from
chiral seeds) must be derived from a chiral OSDA with a particular set of properties, ap-
pears valid.!> Additionally, this synthesis methodology ensures that all forms (R-, S-, and

racemic) are attainable, thus allowing for appropriate controls to be performed.

Adsorption and Catalysis with Enantioenriched STW

The chirality in STW is defined over the specific distance within the helical STW pore
structure (Figure 6.1).*° As a consequence, adsorption and catalysis that show ee’s will
involve molecules that are of sufficient size to effectively experience the chirality of the
structure, yet still be able to pass through the limited size of the pores. As such, we expect
that any measured ee’s will be greatly dependent on the selection of molecules used to test for
a function. Moreover, the external surfaces of the crystallites may behave nonspecifically,
resulting in diminishing ee’s.

To examine whether the enantioenriched STW samples are capable of performing enan-
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tioselective functions, catalysis and adsorption experiments were conducted. Epoxide
ring-opening reactions on 1,2-epoxyalkanes were selected for catalysis, as they have been
shown to take place within molecular sieves at relatively low temperatures.’®>2 Such
low-temperature probe reactions are particularly desirable because symmetry-breaking dis-
persive interactions with the catalyst surface are expected to be relatively larger contributors
to the transition state free energies compared to high-temperature scenarios. The results
from these reactions are reported in Table 6.3. For epoxides shorter than Cg, enantiomeric
excesses that are not significantly different than experimental error are observed. However,
as the chain length is further extended (to approximate the size of OSDA 2) the magnitude
of the ee’s become significantly different from experimental error. Of importance is that
results that approximately the same magnitude of the ee’s are obtained, but in opposite
directions, from the R-STW and the S-STW, as should be. Trans-stilbene oxide was also
used as a substrate and minimal ring opening was observed. As this substrate is too large
to enter the pores of STW, this control experiment demonstrates that the rate of reaction
outside the pore structure (i.e., on the surface of the crystals) is negligible, and that any
measured ee’s do not occur as a consequence of surface or solvent effects.

Vaporsorption experiments were performed utilizing the pure R-, S- and racemic solutions
of 2-butanol. Previous computational studies suggested that germanosilicate STW is capable
of selectively adsorbing R- and S-glycidol into the helices of the respective enantiomers
of the framework, with increasing discrimination between enantiomers from a racemic
mixture with decreasing system temperatures.>> Experiments were therefore performed at
278 K (which allows for a vapor pressure great enough to collect sufficient adsorption data).

Figure 6.8 illustrates the adsorption isotherms obtained for R-, S- and racemic 2-butanol
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Table 6.3: Summary of enantiomeric excess from the ring opening of 1,2-epoxyalkanes
with methanol using aluminum-containing racemic, R-, and S-STW as catalysts. Product a
is the less substituted 1-methoxyalkan-2-ol product, while product b is the more substituted
2-methoxyalkan-1-ol product. The reaction solutions were analyzed after 48 hours.

OH ' ' OR'
R-OH 0 R-OH
OR'\)\/ >~ HO\)\/
a b

Enantiomeric Excess of Products Using
Enantioenriched STW

R-STW Racemic STW S-STW
Substrate
a, % b, % a, % b, % a, % b, %
1,2-epoxybutane -0.14 2.31 0.05 0.06 0.02 -2.26
1,2-epoxyhexane 1.29 2.83 0.20 -0.92 -1.96 -3.46
1,2-epoxyoctane 413 9.85 1.14 -0.86 -4.41 -10.65

in germanosilicate R- and S-STW. For R-STW, R-2-butanol is selectively adsorbed relative
to S-2-butanol. The racemic 2-butanol isotherm lies at the approximate average of the
isotherms from the enantiomerically enriched sample 2-butanol isotherms. An equivalent,
but inverse, result is observed from S-STW.

R-STW S-STW

2.4 | —*2-butanol ] —»—2-butanol
——R-2-butanol ——R-2-butanol
——S-2-butanol -9 [ ——S-2-butanol

0.03 0.04 0.05 0.06 0.07 0.08 0.03 0.04 0.05 0.06 0.07 0.08
PP, PP,

Figure 6.8: 2-butanol adsorption isotherms at 278 K for germanosilicate R- and S-STW.
Differences in uptake are a result of variations in sample crystallinity.
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6.4 Conclusion

We have computationally designed a large, rigid, and stable chiral OSDAs to synthesize
the two polycrystalline, enantiomorphs of STW (enantiomerically enriched) following the
synthesis heuristics specified by Lobo and Davis for chiral molecular sieves.!> Under typical
silica-enriched, fluoride-mediated inorganic reaction conditions the chiral OSDA directs
towards the formation of the STW framework. Solid-state NMR and circular dichroism
characterizations demonstrate that the occluded OSDA remains intact within the STW
pores and retains enantiopurity. Newly developed three-dimensional HRTEM techniques
are applied to determine the chirality of individual crystals. These data show that the samples
synthesized using a chiral OSDA are enantioenriched with the space group of STW that
is a priori computationally predicted based on the OSDA’s chirality, while the racemic
OSDA leads to a racemic mixture of crystals. We believe that this is the first reported and
confirmed instance of a rational and controlled synthesis of bulk, polycrystalline molecular
sieve with enantioenrichment. Additionally, we find that the enantioenriched materials are
capable of yielding enantioenrichment for reaction and adsorption experiments.

The initial discovery of transition-metal-catalyzed asymmetric reactions by Noyori and
co-workers gave preliminary ee’s up to 10% for the copper-catalyzed cyclopropanations
of olefins.>* Improvements over time of this catalytic system have to led to industrial
applications of asymmetric hydrogenation catalysts.>> We hope that our initial demonstration

of molecular sieve asymmetric catalysis may follow a similar pathway.
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Chapter 7

CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Conclusions

The work presented in Chapter 6 describes the controlled synthesis of the two enantiomers
of the STW framework using a computationally designed, large, rigid, and stable chiral
organic structure directing agent as was initially specified by Lobo and Davis in 1992.!
Characterizations of the OSDA and inorganic framework structure (liquid and solid-state
NMR, powder XRD, CD, HRTEM) demonstrate that the chiral OSDA produces enantioen-
riched STW samples. Crucially, samples that are synthesized with the chiral OSDA yield
crystals with the a priori computationally predicted space group (as confirmed by novel
3-dimensional HRTEM techniques). A racemic mixture of the OSDA similarly results in a
racemic crystalline samples. At the time of writing, this is the first reported and confirmed
instance of a rational and controlled synthesis of bulk, polycrystalline molecular sieve with
enantioenrichment. Moreover, preliminary adsorption and reactivity experiments indicate
that these materials are capable of performing enantioselective processes.

Most importantly, the system presented in Chapter 6 provides a means of performing
rigorous controls to demonstrate true enantioenrichment for the synthesized STW crystals
and any subsequent function. Specifically, the TEM, catalysis, and adsorption experiments
performed with R- and S-STW samples demonstrates relative enantioenrichment of equiv-
alent (and opposite) magnitudes. Moreover, as expected, similar experiments performed

with racemic STW samples resulted in no measurable enantioenrichment. Interestingly,
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the largest ee’s obtained from catalysis are ca. 10%. A similar ee was reported for the
first asymmetric catalysis for an organometallic compound in 1966.2 Given the current
efficacy of organometallic compounds in performing enantioselective catalysis (ee >99%),
it is possible that further optimization of the heterogeneous STW system may yield similar

results.

7.2 Future Directions

The work presented in the second part of this thesis presents a preliminary, proof-of-concept
for the bulk and controlled synthesis of an enantioenriched molecular sieve. As such, there
exists a multitude of opportunities to improve upon the reported system, namely:

1) the computational design of the OSDA can be improved to reduce synthetic complexity,
as well as improve the stability energetics within the STW framework (and readily allowing
for the production of pure-silica, seedless syntheses),

2) a higher throughput method of determining the space group of individual crystals
should be developed in order to garner greater statistical confidence for enantioenrichment
(perhaps by exploiting the optical activity of the crystals, as examined by Rojas et al.)?, and

3) a large scale investigation into the types of chiral reactions (by incorporation of a
variety of heteroatoms) and separations possible by STW, as well as determination of how
substrate size influences enantioselectivities.

Optimization of these parameters may provide a means of developing a viable hetero-
geneous chiral catalyst. In particular, successfully developing the latter point is critical
in order for enantioenriched STW to garner further academic and industrial interest. As

was discussed in the introduction to Part II, the production of enantiopure compounds is
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critical in the pharmaceutical industry (among others). At the industrial scale, production
of enantiopure compounds typically requires significant capital investment in equipment to
perform the requisite reactions and associated enantiomeric separations. Using a heteroge-
neous, enantioenriched molecular sieve, one can imagine the possibility of combining these
steps into a single step process. This would likely result in significant reduction in capital
as well as operational costs (e.g., through the use of fewer solvents and chiral derivatization
agents). Similar reductions in process complexity may also be imagined in a variety of
other chemical industries, such as those focused on pesticides and fragrances.

In addition to the optimization of existing catalytic and separation processes, metal-
containing enantioenriched STW may provide means to perform novel and desirable enan-
tioselective catalysis. The upgrading of biomass-derived substrates to value-added products
is one area that shows significant potential for this application, as discussed in part I of this
thesis. For instance, the production of lactic acid (as a monomer for the production of
poly(lactic acid), a biodegradable and environmentally benign plastic used in a growing
number of consumer and medical applications) relies heavily on enzymatic fermentation
that: 1) may only be conducted under a narrow range of conditions, 2) produces large quan-
tities of waste, 3) is energy intensive, and 4) cost inefficient.*® The subsequent products
may contain varying content of either the D- or L- enantiomer depending on the enzymatic
process selected. However, synthesis of solely the D-enantiomer of lactic acid is difficult.!®
The properties of poly(lactic acid (PLA), which is formed through a controlled ring-opening
polymerization, are heavily influenced by the content of the D- or L- enantiomers along
in the polymer chain (e.g., crystallinity, glass transition temperature, and melting temper-

ature).>® Using renewable sources of carbohydrates and enantioenriched STW, it may be
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possible to synthesize either enantiomer of lactic acid (or their derivatives) selectively under
a wide range of conditions, providing a means of readily producing biodegradable plastics
with tunable properties.!!=!3 A variety of other relevant systems are imaginable across a

host of industries.
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Appendix A

SUPPLEMENTARY INFORMATION FOR CHAPTER 2
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Figure A.1: Variable-temperature ''°Sn NMR spectra for 1b collected between 298 K and
353 Kin 10 K increments.
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Figure A.2: Variable-temperature 2°Si NMR spectra for 1b collected at 298 K prior to
heating, at 353 K, then again at 298 K after cooling the sample.
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Figure A.3: Enhanced view of the variable-temperature >°Si NMR spectra for 1b collected
at 298 K prior to heating, at 353 K, then again at 298 K after cooling the sample.



128

Al

-61 -62 -63 -64 -65 -740 -742 -744 -746 -748 -750
<+— §/ppm <+— §/ppm

Figure A.4: 2°Si NMR spectrum obtained at 298 K post-reaction (left) and ''°Sn (right) at
353 K of 1a under reaction conditions.
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Figure A.5: "H NMR spectra of the reactant and product solutions in DO obtained after
reacting a) 2-2H glucose, b) 1-13¢ glucose, and c) 2-2H; 1-13C glucose with 1a; d) 2-2H
glucose, e) 1-13C glucose, and f) 2-2H; 1-13C glucose with 1b.
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Figure A.6: 13C NMR spectra of the reactant and product solutions in D,O obtained after
reaction with a 10% (w/w) 2-2H;1-13C glucose with Sn-Beta in a) HO and b) D,O after 1
hour at 353 K.
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Appendix B

SUPPLEMENTARY INFORMATION FOR CHAPTER 3
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Figure B.1: Carbon balance for reaction testing carried out using 2% (w/w) glucose in an
equivolumetric DMSO:benzene solution with 2a (1:75 Sn/glucose molar ratio) at 363 K
(0),373 K (4),383 K (m), 393 K (4).
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Figure B.2: First order epimerization reaction of glucose to mannose. Reaction testing was
carried out using 2% (w/w) glucose in an equivolumetric DMSO:benzene solution with 2a
(1:75 Sn/glucose molar ratio) at 363 K (e), 373 K (¢), 383 K (m), 393 K (a).
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Figure B.3: First order isomerization reaction of glucose to fructose. Reaction testing was
carried out using 2% (w/w) glucose in an equivolumetric DMSO:benzene solution with 2a
(1:75 Sn/glucose molar ratio) at 363 K (e), 373 K (¢), 383 K (m), 393 K (a).
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Table B.1: Kinetic rate constants for the production of mannose (via epimerization) and
glucose (via isomerization) from glucose. Reaction testing was carried out using 2% (w/w)
glucose in an equivolumetric DMSO:benzene solution with 2a (1:75 Sn/glucose molar
ratio).

Temperature  Mannose Fructose
k(s71,10%) k(s71,10%)

363 9.398 3.985
373 20.189 9.165
383 43.713 20.876

393 85.902 45.073
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Figure B.4: '"H NMR spectral comparison of as-synthesized 2a catalyst (A) with 2a sepa-
rated (B) from a 2% (w/w) glucose in an equivolumetric DMSO:Benzene solution at 393

K after 1 hour using a 1:75 Sn/glucose molar ratio. The * denotes the chloroform solvent
peak, while the # designates a residual hexane peak.



135

(A)

26 24 22 -2 -3 -4

30 25 20 15 10 5 0 -5
Chemical Shift (ppm)

30 28

(B)
ﬁ ‘
30 28 26 24 22 -2 -3 -4
ke :
W - | ‘ A
30 25 20 15 10 5 0 -5

Chemical Shift (ppm)

Figure B.5: '3C NMR spectral comparison of as-synthesized 2a catalyst (A) with 2a
separated (B) from a 2% (w/w) glucose in an equivolumetric DMSO:Benzene solution at

393 K after 1 hour using a 1:75 Sn/glucose molar ratio. The # denote a residual hexane
peak.
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Figure B.6: 2°Si NMR spectral comparison of as-synthesized 2a catalyst (A) with 2a
separated (B) from a 2% (w/w) glucose in an equivolumetric DMSO:Benzene solution at
393 K after 1 hour using a 1:75 Sn/glucose molar ratio.
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Figure B.7: ''”Si NMR spectral comparison of as-synthesized 2a catalyst (A) with 2a
separated (B) from a 2% (w/w) glucose in an equivolumetric DMSO:Benzene solution at
393 K after 1 hour using a 1:75 Sn/glucose molar ratio.
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Table B.2: Energetics of reported pathways.

Ring-Opening Energetics

All energies Electronic Zero-Point Enthalpy Gibbs Free Gibbs Free
inkJ/mol  Energy Corrected Energy Energy
Energy (298 K) (373 K)
Adsorbed GLU  -94.96 -86.44 -87.17 -21.64 -5.15
Adsorbed GLU  -94.96 -86.44 -87.17 -21.64 -5.15
Deprotonation TS -45.66 -49.14 -51.42 18.47 36.06
Deprotonated GLU -67.17 -61.81 -61.70 -0.54 14.85
Ring Opening TS -20.24 -18.33 -23.77 60.34 81.51
Open-Chain GLU  -42.17 -35.72 -36.68 36.67 55.13
Bidentate H-Shift Energetics
All energies Electronic Zero-Point Enthalpy Gibbs Free Gibbs Free
inkJ/mol  Energy Corrected Energy Energy
Energy (298 K) (373 K)
Open-Chain GLU  -42.17 -35.72 -36.68 36.67 55.13
Deprotonation TS 0.33 -9.95 -10.17 49.06 63.97
Deprotonated GLU  -35.04 -33.66 -33.03 28.59 44.09
H-Shift TS 53.87 44.22 44.65 107.77 123.66
Deprotonated FRU ~ -85.71 -81.71 -81.81 -11.14 6.65
Reprotonation TS -32.33 -34.99 -38.53 44.28 65.12
Open-Chain FRU  -69.08 -61.86 -61.32 6.02 22.97
O, Binding H-Shift Energetics
All energies Electronic Zero-Point Enthalpy Gibbs Free Gibbs Free
inkJ/mol  Energy Corrected Energy Energy
Energy (298 K) (373 K)
Open-Chain GLU  -55.55 -48.49 -48.56 20.07 37.35
DP+H-Shift TS 71.47 63.78 61.67 134.52 152.86
Deprotonated FRU  -26.91 -22.53 -23.15 42.07 58.49
Reprotonation TS -3.01 -10.10 -11.28 55.58 72.41
Open-Chain FRU  -55.83 -52.01 -50.78 10.14 25.47
0, Binding H-Shift Energetics
All energies Electronic Zero-Point Enthalpy Gibbs Free Gibbs Free
inkJ/mol  Energy Corrected Energy Energy
Energy (298 K) (373 K)
Open-Chain GLU  -38.64 -35.13 -34.21 26.95 42.34
Deprotonation TS 13.87 10.81 10.16 75.78 92.30
Deprotonated GLU ~ -12.39 -13.34 -12.95 52.68 69.20
RP+H-Shift TS 66.38 53.87 53.21 114.90 130.43
Open-Chain FRU  -64.90 -53.51 -51.54 8.57 23.70
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Bidentate 1 C-Shift Energetics

All energies Electronic Zero-Point Enthalpy Gibbs Free Gibbs Free

inkJ/mol  Energy Corrected Energy Energy

Energy (298 K) (373 K)
Open-Chain GLU  -42.17 -35.72 -36.68 36.67 55.13
Deprotonation TS 0.33 -9.95 -10.17 49.06 63.97
Deprotonated GLU  -35.04 -33.66 -33.03 28.59 44.09
C-Shift TS 80.11 77.20 76.81 140.80 156.91
Deprotonated MAN  -18.97 -17.84 -17.49 45.30 61.10
Reprotonation TS 20.75 9.69 10.29 67.38 81.75
Open-Chain MAN  -17.59 -16.51 -14.06 39.54 53.03

Bidentate 2 C-Shift Energetics

All energies Electronic Zero-Point Enthalpy Gibbs Free Gibbs Free

inkJ/mol  Energy Corrected Energy Energy

Energy (298 K) (373 K)

Deprotonated GLU  -50.51 -48.51 -48.14 17.97 34.60
C-Shift TS 49.04 46.18 44.08 117.21 135.62
Deprotonated MAN  -35.45 -33.01 -34.23 36.50 54.30
Reprotonation TS 12.94 7.55 3.96 80.62 99.92
Open-Chain MAN  -44.10 -37.53 -38.99 32.04 49.92

O, Binding C-Shift Energetics

All energies Electronic Zero-Point Enthalpy Gibbs Free Gibbs Free
in kJ/mol  Energy Corrected Energy Energy
Energy (298 K) (373 K)
Open-Chain GLU  -30.43 -27.65 -25.85 32.51 47.20
DP+C-Shift TS 84.63 80.64 80.17 141.61 157.08
Deprotonated MAN  -27.47 -25.44 -25.06 40.99 57.62
Reprotonation TS 12.97 2.81 3.07 66.51 82.47
Open-Chain MAN  -41.30 -38.61 -36.90 25.01 40.59
0, Binding C-Shift Energetics
All energies Electronic Zero-Point Enthalpy Gibbs Free Gibbs Free
inkJ/mol  Energy Corrected Energy Energy
Energy (298 K) (373 K)
Open-Chain GLU  -38.64 -35.13 -34.21 26.95 42.34
Deprotonation TS 13.87 10.81 10.16 75.78 92.30
Deprotonated GLU  -12.39 -13.34 -12.95 52.68 69.20
RP+C-Shift TS 89.80 87.49 87.62 147.57 162.65
Open-Chain MAN  -31.12 -28.54 -26.30 33.08 48.03
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Direct Ring-Closing of Deprotonated FRU

All energies Electronic Zero-Point Enthalpy Gibbs Free Gibbs Free

inkJ/mol  Energy Corrected Energy Energy
Energy (298 K) (373 K)
Deprotonated FRU ~ -47.08 -44.88 -45.03 22.29 39.24
Ring-Closing TS ~ -10.16 -14.44 -18.35 61.65 81.79
O, Deprotonated FRUf  -88.26 -83.95 -87.87 -11.26 8.02
Reprotonation TS 34.29 25.73 24.53 86.46 102.05
FRUf  -96.89 -91.25 -91.19 -31.89 -16.96

Direct Ring-Closing of Deprotonated FRU; O2-Assisted Reprotonation

All energies Electronic Zero-Point Enthalpy Gibbs Free Gibbs Free

inkJ/mol  Energy Corrected Energy Energy

Energy (298 K) (373 K)
Deprotonated FRU ~ -47.08 -44.88 -45.03 22.29 39.24
Ring-Closing TS -10.16 -14.44 -18.35 61.65 81.79
Ol Deprotonated FRUf  -88.75 -83.76 -85.94 -20.68 -4.25
0O2-Assisted RP TS 2.05 -8.49 -13.00 61.25 79.94
FRUf  -94.42 -87.81 -90.35 -22.94 -5.98

Ring-Closing of Open-Chain Fructose

All energies Electronic Zero-Point Enthalpy Gibbs Free Gibbs Free

inkJ/mol  Energy Corrected Energy Energy

Energy (298 K) (373 K)
Deprotonated FRU  -26.91 -22.53 -23.15 42.07 58.49
Reprotonation TS -3.01 -10.10 -11.28 55.58 72.41
Open-Chain FRU  -55.83 -52.01 -50.78 10.14 25.47
Ring-Closing TS~ -10.90 -11.13 -14.64 66.03 86.34
O2 Deprotonated FRUf  -81.72 -80.46 -81.15 -12.89 4.29
Reprotonation TS -35.38 -39.39 -42.77 32.71 51.70
FRUf -115.12 -108.65 -112.23 -34.78 -15.29

Mannose Ring-Closing Energetics

All energies Electronic Zero-Point Enthalpy Gibbs Free Gibbs Free

in kJ/mol  Energy Corrected Energy Energy

Energy (298 K) (373 K)
Open-Chain MAN  -28.30 -26.88 -24.40 29.44 42.99
Ring-Closing TS -5.60 1.52 -6.38 87.43 111.03
Deprotonated MANp  -59.38 -48.44 -52.18 22.83 41.71
Reprotonation TS -26.75 -28.57 -32.40 42.84 61.77

MANp  -88.04 -79.95 -80.26 -18.28 -2.69
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Electronic Structure Analysis of H/C-Shift Reactions

Bidentate H-Shift
Following the treatment of Choudhary et al., we examine the donor:hydride:acceptor charge
distribution, treating the C,-Cg fragment (including oxygen and hydrogen atoms) as the
donor and the Cy, O, HC; fragment as the acceptor. The donor:hydride:acceptor charge
distribution shifts from -0.937:0.252:0.075 on the reactant, to -0.543:0.282:-0.351 at the
transition state, to 0.005:0.258:-0.850 on the product. The shift in charge from the donor
fragment to the acceptor fragment clearly indicates the net transfer of charge that accom-
panies the H-shift. NBO analysis indicates a lone pair orbital on the transferring H with
an occupancy of 0.714, with no bond between the transferring H and C; or C,. At the
transition state, O, and O, are both bonded to Sn, as well, with 0(Sn-O1) and o (Sn-O5,)
bonding orbital occupancies of 1.904 and 1.901, respectively, and both O; and O, have
partial double bonds with C; and C;: the 7(C-O1) and 7(C,-O,) orbitals have occupancies
are 1.989 and 1.982, respectively, while the anti-bonding 7*(C;-O) and 7*(C,-O;) or-
bitals have high occupancies, at 0.570 and 0.712, respectively. Therefore, the NBO analysis
shows the formation of the C,-O, double bond and the weakening of the C{-O; double
bond, corresponding to the transformation of the aldose into a ketose. At the transition
state, the transferring hydrogen is slightly positively charged.

Which mechanism for the H-shift is most tenable? The significant positive charge on the
transferring H rules out the hydride ion mechanism (d). Mechanisms (a) and (b) involve
a fast electron transfer prior to the rate-limiting transfer of a proton or a neutral hydrogen,

and would produce an intermediate with two electrons of opposite spin on different atoms.!
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We performed unrestricted calculations, which converged to the restricted solution, ruling
out these mechanisms. That leaves mechanism (c), a rate-limiting neutral H atom shift,
followed by an electron transfer. In our case, the H atom (partial charge of 0.282 and
lone pair occupancy of 0.714) is transferred during an adiabatic e~ transfer from donor to
acceptor through the conjugated 7 system between C,-O, and C;-Oy, in agreement with
Choudhary et al.

This can also be observed by examining the change in electron density of the complex
over the course of the reaction (Figure B.11). In the deprotonated glucose, O, has higher
electron density than Oy, but at the H-shift transition state, the electron density is diminishing
at O, while increasing at O;. This shift in electron density is also reflected in the NBO
partial charges; the O; and O, partial charges are -0.613 and -0.965, respectively, in the
deprotonated glucose reactant, -0.793 and -0.853 at the transition state, and -0.931 and
-0.656 in the deprotonated fructose product. Likewise, the partial charges on C; and C;
shift from 0.472 and -0.019, respectively in deprotonated glucose, to 0.182 and 0.239 at
the transition state, to -0.178 and 0.599 in the product. The net charge transfer between the
donor and acceptor fragments (0.932 electrons) is completely accounted for among these

four atoms.

Bidentate C-shift

The charge distribution on the C-shift reaction can be examined in an analogous way,
treating the C;, O;, HC; fragment as the acceptor, the C;, O, HO, fragment as the
donor, and the C3-Cg (including oxygens and hydrogens) as the transferring group. The

donor:C3 group:acceptor charge distribution shifts from -0.710:0.017:0.050 on the reactant
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Figure B.11: Transfer of electron density during bidentate H-shift, shown by electrostatic
potential mapping at 0.02 e”/A3. Red corresponds to high electron density and blue
corresponds to low electron density. From deprotonated glucose, H on C, (a) is transferred
(b) to Cy, forming deprotonated fructose (c).

t0 -0.396:0.144:-0.395 at the transition state, to 0.0.067:0.004:-0.710 on the product. As in
the H-shift, the donor is transferring electron density to the acceptor. The C-shift transition
state shares many features with the H-shift transition state. O; and O, are both formally
bonded to Sn; o-(Sn-O7) and o(Sn-O;) have occupancies of 1.899 and 1.933. O; and O,
also have partially formed/broken double bonds; 7(C;-O;) and 7 (C,-O;) have occupancies
of 1.986 and 1.980, and 7*(C;-O;) and n*(C,-O;) have occupancies of 0.579 and 0.611.
While the H-shift has a lone pair on the transferring H at the transition state, the C-shift has
a lone pair on the transferring C3 (occupancy 0.914) and no bond with C; or C,.

What mechanism for the C-shift best agrees with these results? The C3 atom as well as
the C3 fragment is slightly positively charged over the course of the C-shift reaction, ruling
out a C- mechanism. Unrestricted calculations converged to the restricted solution, ruling
out the C-shift analogs to mechanisms (a) and (b), assuming the C-shift step is slower than
the e~ transfer. Therefore, we conclude that the C-shift mechanism, like the H-shift, is a

rate-limiting neutral C fragment transfer accompanied by an adiabatic e~ transfer from O,
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to Oy through the conjugated 7 system. Electron density maps (Figure B.12) also show the
transfer of electron density from O, to O; over the course of the reaction, as corroborated

by the partial charges, as well (Table B.4).

01

Figure B.12: Transfer of electron density during bidentate C-shift, shown by electrostatic
potential mapping at 0.02 e”/A3. Red corresponds to high electron density and blue
corresponds to low electron density. From deprotonated glucose (a), Cs is transferred (b)
to Cy, forming deprotonated mannose (c).

O, Binding H-shift

The O; binding and O binding pathways are generally similar, in that both involve a hydride
transfer concerted with a proton transfer. The O; binding H-shift begins with open-chain
glucose with O; coordinated to the Sn site, and O, hydroxyl H-bonded to a Sn-O-Si bridge.
The concerted H-shift reaction involves the same H transfer from the C, fragment to the
C; fragment as seen in the bidentate mechanism, so the same donor:hydrogen:acceptor
relationship applies. However, the concerted reaction also involves an H-transfer from O,
to the complex. This H-transfer is a proton transfer, as supported by a high partial charge on
H (>0.5) throughout the reaction, and a very small change in charge on the complex fragment
(only 0.171 electrons), so only a small amount of electron density is being transferred along

this route.
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The C,-C; H-shift is formally a hydride transfer. It follows the same mechanism as the
bidentate (H + e™) due to the positive charge on H and no evidence of electron transfer
prior to H-shift, according to unrestricted calculations. As in the bidentate transition state,
the transferring H has a partially occupied lone pair (occupancy of 0.702) and no formal
bonds with C; or C,, and both O; and O, have weak double bonds with high occupancies
of m*(C1-0Oy) and 7*(C,-O7) of 0.781 and 0.563. Oy is formally bonded to the Sn, but in
contrast to the bidentate transition state, O, is formally bonded to the transferring proton
(0(0O2-H) and o*(0O,-H) occupancies of 1.980 and 0.116), which has not yet formed a bond
with the bridge O. This O,-H bond is weaker than in the reactant (o*(02-H) = 0.037),
because electron density from the bridge O lone pairs is delocalized by the o*(02-H),
according to second order perturbation delocalization. By examining geometries along the
intrinsic reaction coordinate between the transition state and the product, this o*(0O2-H)
actually reaches an occupancy of 0.203 before the proton is finally transferred to the bridge
oxygen.

Overall, the C; fragment decreases in charge by -0.96, the C, fragment increases in
charge by 0.72, and the catalyst structure increases in charge by 0.171. Therefore, the C;
fragment is still transferring around 1 e~ to the C; fragment during the formal hydride
transfer, but it receives a small amount of charge from 2a during the proton transfer to the
catalyst, offsetting the charge transfer.

The O; binding C-shift is structurally similar to that for the O binding H-shift.
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Table B.3: NBO partial charges of the sugar molecule during chelate H-shift reaction.
Points a-d are select points along the intrinsic reaction coordinate, with relative electronic
energies provided for reference. The donor fragment consists of C,-Cg, O2-Og, HC3-HCsg,
and HO3-HOg, the acceptor fragment consists of C;, Oy, and HC;, and 2a consists of all
the atoms present in the catalyst prior to interaction with the sugar. During this reaction,
HO; is located on 2a as a silanol.

Reactant a b TS c d Product
E (kcal/mol) 0.00 9.26 12.49 19.02 11.34 4.02 -2.97

C; 04722 0.4633 0.4310 0.1822 -0.1246 -0.1723 -0.1777

C, -0.0189 -0.0279 -0.0049 0.2392 0.5647 0.6329 0.5991

Csz 0.0456 0.0544 0.0527 0.0306 -0.0021 -0.0132 -0.0072

Cs 0.0395 0.0396 0.0399 0.0378 0.0340 0.0338 0.0403

Cs 0.0558 0.0535 0.0531 0.0531 0.0531 0.0530 0.0556
Ce¢ -0.1344 -0.1351 -0.1347 -0.1348 -0.1349 -0.1350 -0.1340

O; -0.6125 -0.6516 -0.6859 -0.7933 -0.8845 -0.9182 -0.9314
O, -09652 -0.9409 -0.9223 -0.8536 -0.7441 -0.6936 -0.6561
O3 -0.7924 -0.7752 -0.7743 -0.7660 -0.7561 -0.7557 -0.7636
04 -0.8120 -0.8057 -0.8066 -0.8046 -0.8019 -0.8012 -0.8109
Os5 -0.7859 -0.7855 -0.7854 -0.7849 -0.7837 -0.7832 -0.7814
O¢ -0.8036 -0.8046 -0.8045 -0.8045 -0.8047 -0.8048 -0.8071
HC, 02154 0.2217 0.2303 0.2600 0.2677 0.2598 0.2590
HC, 0.2521 02627 02754 0.2817 0.2568 0.2399 0.2479
HC; 0.2598 0.2566 0.2581 0.2663 0.2739 0.2736 0.2721
HCs 0.2332 0.2232  0.2261 0.2323 0.2369 0.2391 0.2378
HCs 0.2473 0.2492 0.2494 0.2502 0.2509 0.2511 0.2534
HCgs; 02145 0.2154 0.2155 0.2168 0.2185 0.2188 0.2186
HGCs, 0.2325 0.2318 0.2320 0.2322 0.2321 0.2320 0.2333
HO, 0.5620 0.5647 0.5655 0.5627 0.5574 0.5561 0.5427
HO; 0.5079 0.5053 0.5056 0.5071 0.5086 0.5090 0.5101
HO4 0.5300 0.5273 0.5290 0.5281 0.5248 0.5245 0.5330
HOs 0.5037 0.5032 0.5032 0.5044 0.5057 0.5059 0.5021
HOg 0.5055 0.5064 0.5063 0.5073 0.5086 0.5088 0.5095

HC; donor  -0.9371 -0.9090 -0.8618 -0.5429 -0.1157 -0.0042 0.0046
HC, 0.2521 0.2627 0.2754 0.2817 0.2568 0.2399  0.2479

HC; acceptor  0.0750  0.0334 -0.0246 -0.3511 -0.7413 -0.8308 -0.8502
HO, 0.5620 0.5647 0.5655 0.5627 0.5574 0.5561 0.5427

2a  0.0481 0.0482 0.0455 0.0495 0.0429 0.0391 0.0550
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Table B.4: NBO partial charges of the sugar molecule during chelate C-shift reaction.
Points a-d are select points along the intrinsic reaction coordinate, with relative electronic
energies provided for reference. The donor fragment consists of C,, Oy, and HO,, the
acceptor fragment consists of C;, Oy, and HCy, and the Cz fragment consists of C3-Cg,
03-0O¢, HO3-HOg, and HC3-HCg. 2a consists of all the atoms present in the catalyst prior
to interaction with the sugar. During this reaction, HO, is located on 2a as a silanol.

Reactant a b TS C d Product

E (kcal/mol) 0.00 6.41 10.74 22.77 10.57 4.10 2.05
C; 04456 0.4437 04330 0.1901 -0.0033 -0.0102 -0.0110
C, -0.0289 -0.0171 -0.0078 0.1722 0.4488 0.4673 0.4630
Csz 0.0555 0.0570 0.0612 0.1176 0.0489 0.0522 0.0538
Cs 0.0323  0.0359 0.0330 0.0062 0.0289 0.0310 0.0296
Cs 0.0412 0.0436 0.0440 0.0465 0.0425 0.0415 0.0430
Ce -0.1447 -0.1429 -0.1426 -0.1447 -0.1424 -0.1427 -0.1430
O; -0.5962 -0.6147 -0.6474 -0.8236 -0.9295 -0.9499 -0.9538
O, -09602 -0.9484 -09349 -0.8391 -0.6753 -0.6424 -0.6373
O3 -0.8132 -0.8039 -0.8114 -0.7939 -0.8469 -0.8566 -0.8499
04 -0.8059 -0.7961 -0.8008 -0.8005 -0.8110 -0.8187 -0.8155
Os -0.7798 -0.7795 -0.7801 -0.7757 -0.7774 -0.7785 -0.7786
O¢ -0.8113 -0.8114 -0.8146 -0.8080 -0.8073 -0.8129 -0.8138
HC; 02009 0.2063 0.2153 0.2388 0.2546 0.2540 0.2547
HC, 02788 0.2727 02752 0.2714 0.2485 0.2398 0.2413
HC; 0.2335 0.2230 0.2207 0.2458 0.2490 0.2467 0.2437
HC, 0.2379 0.2377 0.2400 0.2526 0.2478 0.2501 0.2489
HCs 02392 0.2345 0.2353 0.2399 0.2396 0.2399 0.2389
HCs; 02414 0.2392 0.2395 0.2432 0.2410 0.2405 0.2407
HGCs> 0.2196  0.2150 0.2167 0.2166 0.2169 0.2177  0.2150
HO, 0.5621 0.5716 0.5716 0.5726 0.5757 0.5751 0.5735
HO; 0.5323  0.5368 0.5447 0.5538 0.5446 0.5460 0.5474
HO, 0.5186 0.5175 0.5193  0.5217 0.5211 0.5201 0.5205
HOs 0.4990 0.5010 0.5009 0.5014 0.4985 0.4980 0.4990
HOg 0.5217 0.5220 0.5248 0.5218 0.5203 0.5239 0.5247

Cs donor -0.7103 -0.6928 -0.6674 -0.3955 0.0220 0.0647 0.0670

Cs fragment  0.0171  0.0291 0.0306 0.1441 0.0141 -0.0019 0.0042
Cz acceptor  0.0504  0.0352 0.0009 -0.3947 -0.6782 -0.7062 -0.7101
HO, 0.5621 0.5716 0.5716 0.5726 0.5757 0.5751 0.5735

2a  0.0807 0.0569 0.0643 0.0735 0.0664 0.0682 0.0654
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Table B.5: NBO partial charges of the sugar molecule during Concerted 1 H-shift reaction.
Points a-d are select points along the intrinsic reaction coordinate, with relative electronic
energies provided for reference. The donor fragment consists of C,-Cg, O2-Og, HC3-HCg,
and HO3-HOg, the acceptor fragment consists of C;, Oy, and HCy, and 2a consists of all
the atoms present in the catalyst prior to interaction with the sugar. During this reaction,
HO; is transferred from O, to a bridge on 2a.

Reactant a b TS C d Product
E (kcal/mol) 0.00 10.00 18.86 28.27 19.09 11.83 7.51

C; 04907 04977 04238 0.0410 -0.1888 -0.1961 -0.1948
C, -0.0285 -0.0474 0.0095 0.3917 0.6272 0.6209 0.6005
Csz 0.0576  0.0655 0.0639 0.0260 -0.0064 -0.0102 -0.0115
Cs 0.0501 0.0436 0.0455 0.0482 0.0504 0.0471 0.0471
Cs 0.0453  0.0402 0.0405 0.0402 0.0407 0.0422 0.0432
Ce -0.1324 -0.1334 -0.1340 -0.1341 -0.1338 -0.1340 -0.1344
O; -0.6537 -0.6993 -0.7579 -0.8751 -0.9375 -0.9558 -0.9676
O, -0.7978 -0.8098 -0.7961 -0.7323 -0.6593 -0.6397 -0.6250
O3 -0.7956 -0.8029 -0.7987 -0.7903 -0.7875 -0.7921 -0.7951
04 -0.7935 -0.8026 -0.8011 -0.7981 -0.7988 -0.8020 -0.8032
Os -0.7820 -0.8019 -0.8000 -0.7948 -0.7904 -0.7902 -0.7903
O¢ -0.7879 -0.7979 -0.7972 -0.7959 -0.7959 -0.7969 -0.7974
HC; 0.2022 02407 02572 0.2913 0.2806 0.2642 0.2401
HC, 02466 02662 02875 0.2937 0.2737 0.2625 0.2759
HC; 0.2212  0.2341 0.2390 0.2562 0.2580 0.2502 0.2485
HC, 0.2156 0.2226 0.2246 0.2308 0.2337 0.2303 0.2263
HCs 02369 0.2308 0.2323 0.2344 0.2320 0.2295 0.2266
HGCs; 0.2362 0.2365 0.2374 0.2395 0.2393 0.2373  0.2361
HGCs> 0.2336  0.2319 0.2321 0.2313 0.2296 0.2287  0.2299
HO, 0.5429 0.5470 0.5531 0.5697 0.5750 0.5751 0.5770
HOs; 0.5251  0.5301 0.5319 0.5297 0.5257 0.5233 0.5243
HO, 0.5211  0.5294 0.5292 0.5292 0.5280 0.5269 0.5276
HOs 0.5164 0.5143 0.5142 0.5143 0.5112 0.5080 0.5071
HOg 0.5032 0.5135 0.5131 0.5123 0.5114 05113  0.5118

HC, donor -0.7552 -0.8032 -0.7139 -0.2617 0.0150 -0.0091 -0.0279
HC, 0.2466 0.2662 0.2875 0.2937 0.2737 0.2625 0.2759

HC; acceptor  0.0392  0.0391 -0.0769 -0.5429 -0.8457 -0.8876 -0.9223
HO, 0.5429 0.5470 0.5531 0.5697 0.5750 0.5751 0.5770

2a  -0.0735 -0.0491 -0.0498 -0.0590 -0.0180 0.0592 0.0973
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Table B.6: NBO partial charges of the sugar molecule during Concerted 1 C-shift reaction.
Points a-d are select points along the intrinsic reaction coordinate, with relative electronic
energies provided for reference. The donor fragment consists of C,, Oy, and HO,, the
acceptor fragment consists of C;, Oy, and HCy, and the Cz fragment consists of C3-Cg,
03-0O¢, HO3-HOg, and HC3-HCg. 2a consists of all the atoms present in the catalyst prior
to interaction with the sugar. During this reaction, HO; is transferred from O, to a bridge
on 2a.

Reactant a b TS c d Product

E (kcal/mol) 0.00 12.33 17.66 26.56 17.00 12.24 1.18
C; 04821 04713 0.4422 0.1689 0.0003 -0.0185 -0.0221
C, -0.0482 -0.0150 0.0037 0.2493 0.4315 0.4326 0.4491
C; 0.0539 0.0631 0.0677 0.1013 0.0563 0.0649 0.0554
Cs 0.0435 0.0425 0.0403 0.0227 0.0412 0.0474 0.0540
Cs 0.0550 0.0508 0.0508 0.0530 0.0535 0.0534 0.0541
C¢ -0.1325 -0.1355 -0.1360 -0.1363 -0.1358 -0.1358 -0.1347
0O; -0.6325 -0.7180 -0.7590 -0.8837 -0.9559 -0.9735 -0.9876
0, -0.8103 -0.8017 -0.7992 -0.7357 -0.6412 -0.6082 -0.5827
O3 -0.7947 -0.7811 -0.7745 -0.7543 -0.7781 -0.7941 -0.8044
O4 -0.7918 -0.7863 -0.7836 -0.7760 -0.7871 -0.7890 -0.7889
05 -0.7956 -0.8033 -0.8022 -0.8004 -0.8004 -0.8003 -0.7999
O¢ -0.8015 -0.8030 -0.8036 -0.8042 -0.8039 -0.8039 -0.8032
HC; 0.1878 0.2347 0.2466 0.2688 0.2690 0.2722 0.2711
HC, 0.2951 0.2707 0.2742 0.2589 0.2143 0.2051 0.1865
HCs; 0.2334 0.2412 0.2561 0.2852 0.2650 0.2440 0.2325
HC, 02303 0.2285 0.2314 0.2274 0.2125 0.2175 0.2217
HCs 0.2352 0.2467 0.2470 0.2467 0.2426 0.2413 0.2411
HCe; 0.2117 02169 0.2180 0.2193 0.2147 0.2133  0.2137
HCs> 0.2364 0.2357 0.2370 0.2396 0.2394 0.2403  0.2394
HO, 0.5367 0.5391 0.5404 0.5555 0.5632 0.5572 0.5698
HOs; 0.5147 0.5213 0.5219 0.5157 0.4981 0.5065 0.5174
HO, 0.5132  0.5137 0.5131 0.5115 0.5127  0.5166 0.5142
HOs 0.5125 0.5136 0.5147 0.5159 0.5121 0.5109 0.5103
HOg 0.5067 0.5090 0.5099 0.5116 0.5091 0.5082 0.5072

Csz donor -0.5635 -0.5460 -0.5214 -0.2276 0.0046 0.0295 0.0530
Cs fragment  0.0303  0.0739 0.1080 0.1785 0.0519 0.0411 0.0298
Cz acceptor  0.0374  -0.0120 -0.0703 -0.4460 -0.6867 -0.7198 -0.7385
HO, 0.5367 0.5391 0.5404 0.5555 0.5632 0.5572 0.5698

2a  -0.0409 -0.0549 -0.0568 -0.0605 0.0669 0.0919 0.0859
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Table B.7: NBO partial charges of the sugar molecule during Concerted 2 H-shift reaction.
Points a-d are select points along the intrinsic reaction coordinate, with relative electronic
energies provided for reference. The donor fragment consists of C,-Cg, O2-Og, HC3-HCg,
and HO3-HOg, the acceptor fragment consists of C;, Oy, and HCy, and 2a consists of all
the atoms present in the catalyst prior to interaction with the sugar. During this reaction,
HO; is transferred from a silanol on 2a to Oy, regenerating the Sn-O-Si bridge.

Reactant a b TS C d Product
E (kcal/mol) 0.00 9.83 12.06 15.05 7.09 -2.92 -8.22

C; 04467 04730 04575 0.2556 -0.1274 -0.1975 -0.1925
C, -0.0342 -0.0571 -0.0407 0.1450 0.5441 0.6552 0.6350
Csz 0.0544 0.0628 0.0630 0.0463 0.0039 -0.0169 -0.0200
Cs 0.0402 0.0364 0.0352 0.0352 0.0383 0.0387 0.0438

Cs 0.0415 0.0416 0.0415 0.041 0.0405 0.0396 0.0390
Ce¢ -0.1343 -0.1350 -0.1354 -0.1356 -0.1355 -0.1350 -0.1346
O; -05786 -0.6119 -0.6251 -0.6864 -0.7584 -0.7804 -0.7730
O, -09719 -09579 -0.9367 -0.8892 -0.7827 -0.7139 -0.6626
O3 -0.7963 -0.8034 -0.8016 -0.7967 -0.7887 -0.7857 -0.7874
04 -0.8003 -0.7979 -0.7965 -0.7945 -0.7917 -0.7908 -0.7877
Os -0.7817 -0.7790 -0.7788 -0.7789 -0.7796 -0.7804 -0.7813
O¢ -0.7953 -0.7938 -0.7932 -0.7927 -0.7921 -0.7919 -0.7915
HC; 0.1865 0.2069 0.2330 0.2577 0.2686 0.2517 0.2461
HC, 0.2614 03119 0.3397 0.3613 0.3277 0.2822 0.2462
HC; 0.2366 0.2467 0.2529 0.2629 0.2750 0.2769 0.2747
HC, 0.2266 0.2274 0.2267 0.2305 0.2389 0.2427 0.2343
HCs 02451 0.2499 0.2508 0.2508 0.2495 0.2482 0.2482
HCs; 0.2336  0.2353 0.2367 0.2376 0.2383  0.2380 0.2362
HGCs> 0.2196  0.2179 0.2192 0.2199 0.2203 0.2201 0.2245
HO, 0.5716 0.5625 0.5611 0.5537 0.5360 0.5266 0.5190
HO; 0.5185 0.5181 0.5211 0.5219 0.5178 0.5164 0.5142
HO, 0.5164 0.5120 0.5144 0.5155 0.5142 0.5137 0.5078
HOs 0.4928 0.4928 0.4937 0.4951 0.4967 0.4972 0.4974
HOg 0.5062 0.5045 0.5044 0.5048 0.5059 0.5060 0.5029

HC, donor -0.9825 -0.9787 -0.9234 -0.6808 -0.1869 -0.0218 -0.0070
HC, 0.2614 03119 0.3397 0.3613 0.3277 0.2822 0.2462

HC; acceptor  0.0546  0.0680 0.0653 -0.1731 -0.6172 -0.7262 -0.7194
HO, 0.5716 0.5625 0.5611 0.5537 0.5360 0.5266 0.5190

2a 0.0949  0.0363 -0.0428 -0.0611 -0.0597 -0.0607 -0.0389
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Table B.8: NBO partial charges of the sugar molecule during Concerted 1 C-shift reaction.
Points a-d are select points along the intrinsic reaction coordinate, with relative electronic
energies provided for reference. The donor fragment consists of C,, Oy, and HO,, the
acceptor fragment consists of C;, Oy, and HCy, and the Cz fragment consists of C3-Cg,
03-0O¢, HO3-HOg, and HC3-HCg. 2a consists of all the atoms present in the catalyst prior
to interaction with the sugar. During this reaction, HO; is transferred from the silanol on
2a to Oy, regenerating the Sn-O-Si bridge.

Reactant a b TS c d Product
E (kcal/mol) 0.00 8.60 11.17 21.77 9.19 2.69 -4.75

C; 04506 0.4496 0.4530 0.1947 -0.0282 -0.0200 -0.0213
C, -0.0288 -0.0125 -0.0061 0.1977 0.5154 0.5089 0.4690

Csz; 0.0576  0.0654 0.0650 0.1530 0.0491 0.0427 0.0476
Cs 0.0401 0.0385 0.0363 0.0143 0.0386 0.0380 0.0401

Cs 0.0427 0.0414 0.0408 0.0449 0.0408 0.0390 0.0358

C¢ -0.1355 -0.1379 -0.1375 -0.1374 -0.1366 -0.1350 -0.1334
0; -0.5692 -0.6021 -0.6113 -0.7197 -0.7765 -0.7755 -0.7840
O, -09614 -09736 -09673 -0.86098 -0.7111 -0.6624 -0.6268
O3 -0.7997 -0.7906 -0.7876 -0.7534 -0.8066 -0.8117 -0.8075
04 -0.8023 -0.7886 -0.7877 -0.7797 -0.7835 -0.7842 -0.7743
Os -0.7899 -0.7840 -0.7840 -0.7813 -0.7846 -0.7879 -0.7982
O¢ -0.7947 -0.7907 -0.7895 -0.7895 -0.7915 -0.7899 -0.7896
HC; 0.1981 0.2117 0.2175 0.2655 0.2670 0.2651 0.2751
HC, 02282 0.2456 0.2444 0.2418 0.2137 0.2029 0.2054
HC; 02396 0.2512 02490 0.2564 0.2674 0.2629 0.2430
HC; 02127 0.2169 0.2215 0.2422 0.2380 0.2386 0.2392
HCs 02374 0.2469 0.2466 0.2435 02411 0.2302 0.2277
HCe; 0.2332 0.2358 0.2358 0.2389 0.2358 0.2356  0.2357
HGCe, 0.2241  0.2273 0.2265 0.2270 0.2265 0.2280 0.2296
HO, 0.5685 0.5510 0.5550 0.5435 0.5232 0.5202 0.5209
HO; 0.5320 0.5157 0.5150 0.5309 0.5193 0.5217 0.5175
HO4 0.5206 0.5042 0.5022 0.5025 0.5016 0.5006 0.4931
HOs 0.4963 0.5019 0.5018 0.5061 0.5045 0.5060 0.5103
HOg 0.5065 0.4989 0.4984 0.5026 0.5024 0.5018 0.5030

Cs donor -0.7619 -0.7404 -0.7291 -0.4303 0.0179 0.0493 0.0476
Cs fragment  0.0208  0.0521 0.0526 0.2209 0.0623  0.0364 0.0195
Cz acceptor  0.0796  0.0592 0.0593 -0.2594 -0.5376 -0.5305 -0.5301

HO, 0.5685 0.5510 0.5550 0.5435 0.5232 0.5202 0.5209
2a 0.0931 0.0781 0.0622 -0.0747 -0.0659 -0.0755 -0.0579
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Appendix C

A COMPUTATIONAL EXAMINATION OF THE HYDRIDE AND
CARBON SHIFT REACTIONS ON TIN SILSESQUIOXANES

Information contained in this Appendix was originally published in:
(1) Josephson, T. R.; Brand, S. K.; Caratzoulas, S.; Vlachos, D. G. 1,2-H- versus 1,2-

C-Shift on Sn-Silsesquioxanes. ACS Catalysis 2017, 7, 25-33, DOIL: 10 . 1021/
acscatal .6b03128,

T.R.J. provided computational data presented.

C.1 Introduction
Utilization of lignocellulosic biomass as a renewable chemical feedstock is a promising path
to a more sustainable chemical industry.l‘5 Lewis-acidic zeolites, Sn-Beta in particular,
have emerged as useful catalysts for a wide range of transformations in biomass conversion,
including Baeyer-Villiger oxidation of ketones to lactones, the Meerwein-Ponndorf-Verley
(MPV) reduction of carbonyls, the 1,2-intramolecular hydride shift (1,2-HS) of glucose and
xylose, retro-aldol and esterification of sugars to lactates, the 1,2-intramolecular carbon
shift (1,2-CS) of glucose and arabinose, and dehydration reactions in the production of
renewable aromatics from furans.®!3

The isomerization of glucose to fructose is of particular interest due to the abun-
dance of cellulose as a glucose feedstock and the value of fructose for production of 5-
hydroxymethylfurfural (HMF) and lactic acid.'*~!'6 119Sn NMR and acetonitrile adsorption

and spectroscopy have identified two types of Sn sites in Sn-Beta: a “closed” framework

Sn site, Sn(OSi)4, and a hydrolyzed “open” site, Sn(OSi);OH with a neighboring SiOH.!”
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Open sites are stronger Lewis acids than closed sites and more active for glucose iso-
merization.!”"!° Figure C.1 shows a reaction scheme for different glucose transformation
reactions catalyzed by Sn-Beta. Sn-Beta selectively produces fructose F1 via a 1,2-HS
reaction from glucose, and mannose M1 as a side product via a subsequent 1,2-HS reaction
from fructose.'® Modification of the open site by Na* titration or with borate salts shifts
selectivity from fructose to mannose, but this mannose is produced via a 1,2-CS (M2), or
Bilik reaction.!>!8-20 Moreover, different synthesis methods produce catalysts with different
ratios of open and closed sites.!”!” Understanding these structure-activity and structure-
selectivity relationships is important for optimizing Sn-Beta synthesis and deployment in

future biorefineries.

D H H D )
3C:0 45 ng DPC-OH, 5 s 3C:O0 4205 O q124s D-OH
HO4+-H = |0 “— D}OH = HOSC-H = ™C:0
R R R R R
1-2H; 1-3C 1-2H; 1-13C 2-2H; 1-13C 1-2H; 2-13C 1-2H; 2-13C
D-Mannose D-Fructose D-Glucose D-Mannose D-Fructose
(M1) (F1) (M2) (F2)

Figure C.1: Possible reaction pathways involving hydride and carbon shifts at C; and C,.
Sugars are depicted using Fischer projections. Abbreviations F1, M1, M2, and F2 indicate
location of '3C on first or second carbon of sugar, when C; of glucose reactant is labeled.
R = C4HgOy4.

Beginning with Assary and Curtiss’ examination of glyceraldehyde isomerization to
dihydroxyacetone on open and closed sites of Sn-Beta, several computational studies have
investigated the glucose isomerization mechanism on the Sn-Beta zeolite.>! ">’ These have
found that the open site is more active than the closed site, whether examined as a 5T (five
tetrahedral atoms) cluster, or an extended 208T QM/MM model, implicating the stronger

Brgnsted basicity of SnOH relative to SnOSi. However, a study using periodic DFT
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found little difference between closed and open sites.?!>226 Using a 9T open site cluster,
Rai et al. found that glucose in a bidentate coordination to the Sn favored the 1,2-CS
reaction, while glucose coordinated to the Sn and neighboring SiOH favored the 1,2-HS
reaction, suggesting the neighboring SiOH enabling fructose selectivity by participating
in a concerted reaction.”> However, a more complete analysis of this 9T cluster with and
without Na-exchange identified a more favorable bidentate binding geometry that favored
the H-shift without SiOH participation, instead finding that Na* provides electrostatic
stabilization of the C-shift transition state (TS) more than the H-shift TS.?” A larger, less
flexible zeolite cluster favored a concerted, rather than bidentate, mechanism for both Sn-
Beta and Na-Sn-Beta, and observed the same electrostatic effect on the H/C-shift transition
states.

These studies highlight several challenges associated with modeling Sn-Beta. In addi-
tion, there is no experimental consensus for the crystallographic location of the Sn atom.
Consequently, computational studies have used either the T2 substitution, as it is most
thermodynamically stable closed site, or the T9 substitution, in agreement with acetonitrile
adsorption and spectroscopic evidence.!”?#2° The T5/T6 sites exhibited similar agree-
ment with acetonitrile adsoprtion, and have also been proposed on account of EXAFS
experiments, but have not been examined computationally.!”-3°

Silsesquioxanes have been useful for reducing the heterogeneous-homogeneous gap in
catalysis by providing single-site molecular analogues for evaluating structure-property
relationships.®! Recently, several Sn silsesquioxanes have been synthesized and tested to

evaluate the active sites in Sn-Beta.’?3> Beletskiy et al., synthesized a tetrahedral Sn-

silisesquioxane, grafted it onto silica, and demonstrated its activity for epoxide ring-opening
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and MPV reduction, comparable to Sn-Beta.3>33 This catalyst was also active for glucose
isomerization to fructose, but formed significant side products, possibly due to surface
silanol groups. Brand et al. have synthesized and tested three tin silsesquioxanes (Figure
C.2) with structural differences designed to model the open (1a), Na-exchanged (1b), and
closed (2a) sites in Sn-Beta.?*3> All catalysts are active for glucose isomerization and
epimerization. Analysis of initial rate data for these three tin silsesquioxanes and Sn-
Beta, Na-Sn-Beta, and NH3-Sn-Beta reveals several structure-property correlations among
the catalysts.>> Sn-Beta and 1a are most active, and selective towards fructose (although
mannose formed from Sn-Beta is from a 1,2-HS from fructose, while 1a forms mannose
through the 1,2-CS of glucose). Na-Sn-Beta and 1b, each of which have had the neighboring
SiOH replaced, showed reduced activity in glucose conversion and a shift in product
selectivity to mannose formed by 1,2-CS of glucose, implicating the SiOH as an important
feature for promoting selectivity to fructose. NH3-Sn-Beta, CH3-Sn-Beta, and 2a exhibited
an order of magnitude reduction in activity relative to Sn-Beta, with mannose as major
product, providing evidence for some residual activity on closed Sn sites. Taken together,
these silsesquioxane experiments have decoupled the functions of the open, closed, and Na-
exchanged sites, which cannot be done explicitly in the heterogeneous case due to challenges
in synthesizing zeolites with exclusively one kind of Sn site.

In our previous paper, we calculated several pathways for glucose ring-opening, conver-
sion to fructose and mannose, and product ring-closing on 2a.% In this work, we report
glucose transformation mechanisms for 1a and 1b, focusing on the rate-determining steps

of the 1,2-HS and 1,2-CS.
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Figure C.2: Tin-silsesquioxanes synthesized and tested for glucose isomerization by Brand
et al. 1a and 1b contain an octahedral Sn site, coordinated by two acetylacetonate ligands,
and 2a contains a tetrahedral Sn site ligated by a methyl group.>*3> These are structural
models of the Sn-Beta open, Na-exchanged, and closed sites.

C.2 Computational Methods

Electronic structure calculations were performed using density functional theory to calculate
reaction pathways and examine catalyst/substrate interactions. Geometry optimizations and
frequency calculations were performed using the M062X functional with the LANL2DZ
effective core basis set for the Si and Sn atoms, 3-21G for the cyclohexyl ligands, and 6-
31G(d,p) basis set for the sugar, acac ligands, framework O atoms, and the H or CH3 groups
on the SiOH (1a) or SiIOTMS (1b) moieties (basis set A).3%37 After geometry optimization,
single-point electronic energy calculations with larger basis sets were performed to refine
the calculated electronic energies, using LANL2DZ for Si and Sn, 6-31G(d,p) for the

cyclohexyl ligands, and 6-31G(2df,pd) for the sugars, acac ligands, framework O atoms,
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and H/TMS (basis set B). Transition states were verified by identifying a single imaginary
frequency, and reactants and products were connected to transition states by following the
intrinsic reaction coordinate. Calculations were performed in the gas phase using Gaussian
09 version A.09; Natural Bond Orbital (NBO) analysis was performed with NBO version
6.0; and analysis using Bader’s Atoms-In-Molecules theory (QTAIM) was performed using

Critic2.3841

C.3 Results and Discussion

Catalyst Structure

To investigate the stability of the Sn-O interactions with the acac ligands, we examined
several possible conformations of 1a and 1b (Figure C.3). Both 1a and 1b were most stable
with both acac ligands in the cis orientation; significant energy penalties (>20 kcal-mol~!)
are incurred by pulling one or both ligands into the trans orientation. Several alternative
conformations for 1a were considered by deprotonating the SiOH to a ligand and forming
a third Sn-O-Si bridge. When the proton was transferred to Cs of the acac (forming a
diketone) or to an acac O (forming an enol), the resulting structures were significantly less
stable than the original structure, because the SiOH is not strongly acidic and the acac ligand
is not a strong proton acceptor (vide infra). An additional configuration was 3.7 kcal-mol~!
less stable than the original structure. In this, the SiOH coordinates to the Sn and H-bonds
to the displaced cis acac ligand. The dominant Lewis structure of the Sn site in the most

stable configuration according to NBO analysis is presented in Figure C.10.
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Figure C.3: Different orientations of acac ligands on Sn in 1a and 1b, with relative free
energies at 353 K reported in kcal-mol~!.

Proton Affinities

Both the 1,2-HS and 1,2-CS reactions are activated by an initial deprotonation of the
substrate.>? In addition, the Brgnsted basicity of the SnOH in Lewis-acidic zeolites has
been proposed as a descriptor for the 1,2-HS barrier.?® To probe the relative strength of
candidate Brgnsted bases, proton affinities were calculated for several sites on the catalyst
(Figure C.4). The Sn-O-Si bridge oxygens bound the proton most strongly, with proton
affinities of 242 kcal-mol~! for both 1a and 1b. In 1a, a proton placed on the SiOH migrated
to the Sn-O-Si bridge during optimization, while in 1b, a proton placed on the SiIOTMS
was shared with a ligand oxygen. The proton affinities of the ligand oxygens (O4-O7) were
considerably less favorable — ranging from 217.0 to 222.3 kcal-mol~' — and in several
cases, the proton migrated away from the ligand O to another O during optimization. The
third carbon of each acac ligand also had weaker proton affinities (ranging from 217.7 to
229.7 kcal-mol~!). We therefore rule out the acac ligands as proton acceptors in sugar

deprotonation.
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Protonation 1a Proton Affinity 1b Proton Affinity

Site (kcal/mol) (kcal/mol)

.C1, O:c 239.8° 237.2¢

:( } 0, 240.2 241.9

>; Os /04xo 0; 235.3 239.5

=%\ /0, '\l 0 0, 242.0° 2203
[ NPAL, .

C2\__O/8n SI~R Os 219.9 217.6

); ! | cl) 04 217.0 2223

O3 07 239.0b 238.4b

G 217.7 220.5

G, 224.7 229.7

Figure C.4: Proton affinities of candidate Brgnsted bases in 1a (X=H) and 1b (X=Si(CH3)3).
“Proton migrated to bridge O, during optimization; shared with SiOH. ®Proton migrated to
Si-O-Si bridge; shared with ligand O7 “Proton on OTMS; shared with ligand O7.

Reaction Pathways
To reduce configurational complexity, accelerate calculations, and focus on the salient
features of the reaction mechanism, we approximated glucose as glyceraldehyde (GLY), the
smallest aldose which allows for comparison of the 1,2-HS and 1,2-CS reactions, producing
dihydroxyacetone (DHA) and GLY with opposite chirality to the reactant, respectively.
The 1,2 hydride/carbon shift reaction on a bifunctional Lewis acid/Brgnsted base active
site can be generalized to three possible mechanisms, depending on the binding geometry
to the site.® The “bidentate binding” pathway, so-named for the bidentate coordination
of the sugar at the transition state, involves three steps: 1) deprotonation of O, to the
Brgnsted base and binding of O, to the Lewis acid, 2) the H/C-shift reaction in a chelate-
like transition state, and 3) reprotonation of O;. The “O; binding” pathway is two steps:
concerted deprotonation with the H/C-shift, followed by reprotonation. The “O, binding”

pathway is also two steps: deprotonation of O, to the Brgnsted base and subsequent H/C-
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shift concerted with reprotonation. Only 6 pathways are needed to examine a catalyst with
a single Lewis-acid/Brgnsted base site, the methyl-tin silsesquioxane 2a, with only the
Sn-O-Si bridge moiety. While 1b has only Sn-O-Si bridges as Brgnsted bases, allowing
for 6 distinct pathways, 1a has Sn-O-Si bridges as well as a SiOH, which may facilitate
proton transfers to the Sn-O-Si bridges or to the acac ligands, as has been proposed for

Sn-Beta.?>7

Reaction Pathways on Sn-O-Si Bridges

Figure C.5 depicts the pathways on the Sn-O-Si bridges, and Table C.2 and Figures C.11-
C.13 contain the energetics for these pathways on 1a and 1b. For a 1,2-HS reaction, the
product is DHA, and R; and R, designate H and CH;OH, respectively. For a 1,2-CS
reaction, the product is GLY of opposite chirality, and R; and R, designate CH,OH and H,
respectively.

The bidentate binding pathway begins by deprotonating GLY to a Sn-O-Si bridge,
binding O, of GLY to the Sn and forming a new silanol. At intermediate B-3, 1a has two
SiOH groups, while 1b has this new SiOH and the original SIOTMS. Because GLY cannot
coordinate both O; and O, to the Sn prior to the deprotonation, it must adopt the chelate
geometry B-4 in a separate step. Likewise, the intermediate B-6 did not retain the bidentate
binding mode prior to the reprotonation step. We did not identify transition states between
B-3 and B-4 or B-6 and B-7, although on 1b, optimization of the product from the B-5
transition state bypassed B-6 and converged directly to B-7. The highest free energy state
in these pathways was B-5, with the H-shift being favored over the C-shift on both 1a (TS

free energies of 28.3 and 32.8 kcal-mol ™!, respectively) and 1b (27.5 and 38.1 kcal-mol~!).
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The higher barrier for the C-shift is likely due to greater steric hindrance by the acac ligands
on the transferring CH>,OH group compared to the H. Christianson et al., also found the
bidentate-binding C-shift TS to be less stable than that for the H-shift on Sn-Beta.?’

The bidentate binding pathways contain configurations unique to this work in their un-
usually crowded 7-coordinated Sn. In Sn-Beta, both closed and open sites are tetrahedral
when all water ligands have been removed, 5-coordinated with NH3 adsorbed, and octa-
hedral when water is adsorbed.!® In aqueous solution, the coordination of Sn (IV) is 6,
as [Sn(OH,)s]**, but higher coordination has not been observed.*?> Furthermore, while
bidentate binding is possible in relatively flexible zeolite clusters, it is unfavorable in larger,
less flexible clusters and periodic zeolite models in which the open site is formed by hy-
drolyzing a Sn-O-Si.?>>727 For these reasons, we were not expecting to find a favorable
bidentate binding mode in 1a and 1b, yet it is not only possible, but most favorable for
H-shift pathways. In order to accommodate the sugar oxygens at the TS, the ligand and
framework oxygens are displaced, and the average Sn-O(acac) distance increases from 2.052
A in isolated 1a to 2.122 A at the bidentate H-shift TS on 1a. An octahedral Sn ideally
contains O-Sn-O angles of 90°, and 1a and 1b have angles ranging from 84.5° between
oxygens on the same ligand, and 101.2° between a framework and ligand O. However, in the
bidentate H-shift TS, for example, the coordinated oxygens form a pentagonal bipyramid
with O-Sn-O angles ranging from 70.7° to 76.4° in the plane of the pentagon, near the ideal
value of 72°. While the bidentate H-shift is the most stable H-shift pathway, the bidentate
C-shift is unfavorable due to its bulkier transition state; the steric hindrance imposed by the
acac ligands results in more favorable monodentate binding for the C-shift.

The O;-binding pathway begins by coordinating O; to the Sn and the O, hydroxyl into
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an H-bond with a Sn-O-Si bridge. This either requires bringing Sn into a 7-coordinated
arrangement (O H/C-shift on 1a, and O H-shift on 1b) or displacing an O of the acac ligand
(O; C-shift on 1b). O, is then deprotonated to form a silanol in a concerted reaction with the
H/C-shift. The final step is reprotonation of O; from the newly formed silanol. On 1a, both
the H-shift and C-shift TS were considerably less stable than in the bidentate binding mode
(16 and 9 kcal-mol~! higher energy, respectively), but on 1b, the O;-binding C-shift TS
was more stable than the bidentate binding TS by 10 kcal-mol~!. This stabilization occurs
due to reduced crowding around the Sn site and interactions between the O3 hydroxyl and
acac ligand oxygens.

The O,-binding pathway begins as the bidentate binding pathway, by deprotonating the
O; hydroxyl to a Sn-O-Si bridge. The aldehyde O forms an H-bond with the newly-formed
silanol, and in the next step, the silanol transfers its proton to Oy in a concerted step with
the H/C-shift, forming the final product. As in the O; binding pathways, the O, binding
H/C-shift on 1a and H-shift on 1b are less stable the bidentate pathways, while the C-shift
on 1b is comparable to the bidentate C-shift, though less stable than the O-binding TS.

The Sn-O-Si bridge pathways comprise the possible pathways on 1b, and we can identify
an important effect of the SiOH replacement with SiOTMS. On 1a, the bidentate H-shift is
favored over the C-shift by 4.5 kcal-mol~!, while on 1b, the H-shift is even more favored,
by 7.6 kcal-mol~!; in this case, the bulky TMS crowds the ligands, which cannot displace
as much to accommodate the bulky C-shift TS. On the other hand, the O;-binding pathway
on 1b significantly stabilizes the C-shift, while it does not on 1a. This brings the difference
between the most favorable pathways on 1b, the bidentate H-shift and the O; binding C-shift,

to less than 1 kcal-mol~!, within typical DFT errors.
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It is helpful to highlight the unity in these mechanisms — states B-1, B-2, and B-3 are
comparable to O»-1, O-2, and O,-3, while states B-7, B-8, and B-9 are comparable to

0,-3, O,-4, and O;-5, although specific geometries may vary.

Reaction Pathways Unique to 1a

The silanol function on la enables additional reaction pathways by facilitating proton
transfers during the H/C-shift steps and by permitting the cis,cis 2 configuration of 1a,
allowing participation of a ligand oxygen. We identified O; and O, binding pathways with
the SiOH acting as the proton acceptor/donor, facilitating a proton transfer with either a
Sn-O-Si bridge or with a ligand O, as well as a pathway in which a displaced acac ligand
stabilizes the H/C-shift transition state by interacting with the transferring moiety. These
pathways are shown in Figure C.6 and C.7; energetics are reported in Table C.3 and Figures
C.14 and C.15.

In the Oy, and Oy, pathways, GLY approaches the Sn site on the same side as the SiOH,
and the SiOH participates by shuttling a proton to a Sn-O-Si bridge. In the Oy, pathways,
the SiOH donates an H-bond across a face of the silicate cube to an opposite Sn-O-Si bridge,
and when the GLY undergoes a concerted H-shift and deprotonation, the SiOH acts as a
proton “wire,” receiving the O, hydroxyl proton and passing its own proton to the Sn-O-Si
bridge. In the Oy, pathways, GLY deprotonates to a Sn-O-Si bridge and binds to the Sn as
in the O, pathways, but the subsequent concerted H-shift/reprotonation uses the SiOH to
shuttle the proton to O;. TS energies for all of these pathways were unfavorable, being over
10 kcal-mol~! greater than H/C-shift TS energies for the bidentate binding mode on 1a.

Two variations on these pathways were also explored. In these pathways, catalyst 1a
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Figure C.5: Reaction pathways for H/C-shift on Sn-O-Si bridge in 1a and 1b. GLY =
glyceraldehyde, DHA = dihydroxyacetone, DP = deprotonation, RP = reprotonation. When
R; =H, Ry, = CH,OH, the rate-determining step contains a H-shift, and the product is DHA.
When R; = CH,OH, R, = H, the rate-determining step contains a C-shift, and the product
is glyceraldehyde of opposite chirality to the reactant.

first rearranges to the cis,cis 2 configuration (see Figure C.3). When the sugar binds, the

displaced acac ligand O interacts with the O3 hydroxyl of GLY, and HC,, which will undergo
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Figure C.6: Pathways unique to 1a, invoking the SiOH in proton transfer to a Sn-O-Si
bridge. GLY = glyceraldehyde, DHA = dihydroxyacetone, DP = deprotonation, RP =
reprotonation. When R = H, R, = CH;OH, the rate-determining step contains a H-shift,
and the product is DHA. When R; = CH,OH, R, = H, the rate-determining step contains a
C-shift, and the product is glyceraldehyde of opposite chirality to the reactant.

the H-shift, is either far from (Oy4p-;,) or near to (O145-1p) the acac O. The H-shift proceeds
in a concerted reaction with the SiOH shuttling a proton from O, to the Sn-O-Si bridge,
but the ligand interaction reduces the barrier. In Oyg;-;4, the ligand oxygen is H-bonded
to O3 at the TS, bringing the TS free energy to 38.8 kcal-mol~!, and in Oy p_sp, the ligand

oxygen is coordinated to the transferring H atom, reducing the transition state free energy to

32.7 kcal-mol~!. Having a ligand O stabilizing the transferring H does reduce the barrier,
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Figure C.7: Pathways unique to 1a, continued, invoking the SiOH in proton transfer to an
acac ligand O. GLY = glyceraldehyde, DHA = dihydroxyacetone, DP = deprotonation, RP
= reprotonation.

but the bidentate pathway, with a TS energy of 28.3 kcal-mol~') remains favored by 4.4
kcal-mol~!.

We also identified pathways involving the SiOH shuttling a proton to an acac ligand
oxygen. These also begin with the catalyst in the cis,cis 2 configuration, except when
the sugar binds, the displaced acac ligand oxygen retains its H-bond with the SiOH. In
these pathways, the sugar undergoes an Oi-binding pathway, a concerted C-shift with
deprotonation to the SiOH, which passes its proton to the ligand O, forming an enol.
Reversing this proton shuttle back to the O; oxygen completes the cycle to produce the
product sugar. In both the H- and C-shift reactions, the Oz hydroxyl is interacting with the
ligand acac (or enol at Oy _3), which dramatically reduces the C-shift TS free energy to

28.2 kcal/mol. This is the most favorable C-shift pathway on 1a, which is comparable in
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energy to the H-shift, although varying significantly in structure.

Overall, the most favorable H-shift TS for both 1a and 1b is the bidentate binding
mode, with transition state free energies of 28.3 and 27.5 kcal-mol~!, respectively. Figure
C.9 shows images of these geometries. We find that, while the SiOH permits numerous
additional pathways on 1a, none of these are more energetically favorable than the bidentate
binding mode, which both 1a and 1b can accommodate. Likewise, the most favorable C-
shift TS for both 1a and 1b have remarkably similar free energies, 28.2 and 28.3 kcal-mol ™!,
respectively, even though 1a involves a concerted proton shuttle from O, to SiOH to an acac
ligand, while 1b involves a concerted proton transfer to a Sn-O-Si bridge. The common
feature in both of these pathways is a strong interaction between acac ligand oxygen(s)
and the O3 hydroxyl at the transition state. Despite the structural diversity among these
reaction pathways, the transition state energies are indistinguishable, within typical DFT
errors. These maximum transition state free energy results for all pathways are summarized
in Figure C.8.

One common feature among the most favorable C-shift reactions is an H-bonding inter-
action between the Cz hydroxyl and an oxygen atom of the catalyst. To examine this more
closely, we analyzed several H/C-shift transition states using Bader’s Atoms In Molecules
(QTAIM) theory.*® Table C.4 in the Supporting Information provides key information about
the (3, -1) bond critical points (BCPs) involved in the H/C-shift elementary steps.

The key interaction identified in the Bader analysis for the C-shift is the contraction of
the C3-O3 bond at the transition state, which is accompanied by an increase in electron
density and charge concentration as the single bond takes on more double-bond character.

The lowest-barrier C-shift TS exhibits the most dramatic contraction of the C3-O3; bond,
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Figure C.8: Maximum transition state free energy of all reaction pathways. Free energies
calculated at 353 K, with electronic energies calculated using basis set B (see computational
methods) and zero-point corrections and entropic contributions calculated using basis set
A. Full reaction profiles are reported in Tables C.2 and C.3 and in Figures C.11-C.15 in the
Supporting Information. Free and transition state energies calculated using basis set A are
also reported in Tables C.5 and C.6 and Figure C.16

from 1.403 A in gas phase to 1.333 A at the Oy41-4 C-shift TS, while the highest-barrier
C-shift exhibits less contraction, with a C3-O3 bond length of 1.361 A at the C-shift TS. This
contraction is accompanied by an increase in charge density p, an increase in local charge
concentration (marked by a sign change in V2(p)), and an increase in bond ellipticity — all
signatures of increased double-bond character. This is facilitated by H-bond interactions
between the O3 hydroxyl and SiOH, SiOSi, or ligand O in the catalyst, depending on the
pathway. In the most favorable C-shift on both 1a and 1b, the O3 hydroxyl is interacting with
two ligand oxygens, which stabilize a weakened Oz-H bond and a strengthened C3-O3 bond.
The activity for both of these catalysts for the C-shift pathway is therefore a consequence

of the acac ligands.
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Figure C.9: Lowest-barrier transition state geometries for the H/C-shift reaction on 1a and
Ib. The sugar, acac ligands, Sn-O-Si bridge atoms, and SiOH/SiOTMS are shown as ball
and stick to clarify the active site geometry and to highlight the sugar/catalyst interactions.
Coordinates may be found in the Supporting Information as OH_H_B-5, OH_C_O3;_4,
TMS_H_B-5, and TMS_C_O,,.

According to the Energy Span Model and the Curtin-Hammett Principle, the selectivity
of a simple reaction network with measured turn-over frequencies (TOF) to two products

can be expressed as

_TOF,
" TOFp

Grs.B=G1s.A
~ @BAOTS = o= T (C.1)

S

where AGTS is the difference in Gibbs free energy of the selectivity-determining TS for

products A and B.*3* From the experimental data at 353 K, with 1a, Grsyan — Grs.rru
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= 0.22 kcal-mol~!, while with 1b, Grs yan — Grs,rru = -0.73 kcal-mol~! (see Table C.1).

Both of these free energy differences are less than typical DFT error of 2 kcal-mol~!.

Table C.1: Experimental initial rate data on 1a and 1b from Brand e al. and the Gibbs free
energy differences between the TOF-determining transition states for fructose and mannose
formation assuming constant pre-exponential terms.343

la 1b
Fructose TOF (mol/(s-L-mol Sn))  0.756 0.134
Mannose TOF (mol/(s-L-mol Sn))  0.549 0.380
TOFg,,/TOF 141 1.38  0.353
AGrg 0.320 -1.04
Grs.man-Grs.Fru at 353 K (kcal/mol)  0.224 -0.731

Although our DFT calculations do not (and could not, with an error of 2 kcal-mol™1)
characterize the effect of the TMS substitution, they are consistent with experiment in iden-
tifying H-shift and C-shift pathways of comparable barriers on each catalyst. Nevertheless,
within this level of accuracy, we can rule out the hypothesis that SIOH participation in the
rate-determining step is critical for fructose selectivity, because H-shift pathways involving
SiOH participation (O14p, O24p, O15p-14> O156-1, and Oy;) consistently gave higher barriers
than the bidentate H-shift pathway (4.4 kcal-mol~! higher for Oy-1b and > 6.9 kcal-mol~!
higher for the others). We also identify the importance of ligand O interactions with O3 for
stabilizing the C-shift transition state; pathways without this ligand interaction gave higher
barriers (4.7 kcal-mol~! higher for bidentate on 1a and >9 kcal-mol~! higher for the others).

1a and 1b are therefore limited models of the open sites of Sn-Beta and Na-Sn-Beta,
in particular due to the presence of the acac ligands, which stabilizes the C-shift transition
state whether or not a SiOH is present. Sn-Beta is so selective to H-shift reactions that
mannose from C-shift is undetected; mannose is instead produced via a double H-shift.

Consequently, the activation of the C-shift pathway by Na-Sn-Beta is a dramatic change.
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Because 1a is already active for the C-shift, the shift in selectivity to mannose with the
TMS substitution is more incremental. We have identified why this is the case: the acac
ligands can stabilize the C-shift transition so that it has comparable barriers to the H-shift

on both 1a and 1b.

C.4 Conclusions

Several pathways were investigated for H-shift and C-shift pathways on the tin-silsesquioxanes
1a and 1b. The H-shift proceeds through a bidentate binding pathway on both 1a and 1b,
and the C-shift proceeds through concerted pathways that invoke the acac ligand. The most
favorable H/C-shift pathways on 1a and 1b have comparable barriers, consistent with both
fructose (from H-shift) and mannose (from C-shift) produced in significant quantities on
both catalysts. Although the experimentally observed shift in selectivity is too subtle to
capture the effect of TMS substitution within the DFT framework, we demonstrate that
SiOH need not participate in the TOF-determining transition state, and that the acac ligands

are responsible for activating the C-shift pathways on 1a and 1b.
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C.7 Supplementary Information

Lewis structures from NBO analysis of catalysts 1a and 1b.

Si(CH5);3

Si— O—/Si
]
04
U0l
07 N\
—O—Si\ R
R

Figure C.10: The most stable resonance structures of 1a and 1b are characterized by four
covalent Sn-O bonds. Each acac ligand has one bond to Sn, two C=0, a lone pair on Cg,
and only one lone pair on the O bonded to Sn.
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Figure C.11: Free energy profiles of H/C-shift on 1a and 1b through the bidentate pathway.
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Figure C.14: Free energy profiles of H/C-shift on 1a through the Oy, O15p-14, and Oy5p—1p
pathways.
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Figure C.15: Free energy profiles of H/C-shift on 1a through the Oy, and O,y pathways.

Bader Analysis of H/C-shift Transition States on 1a
During the bidentate H-shift reaction, the C,-H bond is stretched from 1.10 to 1.36 at
the transition state. The electron density p at the BCP decreases from 0.168 to 0.121,

indicating a weakening of the bond, and the Laplacian V?(p) changes sign, from -0.139 to
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0.102, indicating a switch from a region of local charge concentration to charge depletion.
The ellipticity of the Co-H BCP increases from 3.12 x 107 to 3.74, further indicating a
dramatic weakening of the bond. At the H-shift TS, the transferring H does not yet have a
bond with Cy, even though the C;-H distance is only 1.38 ; no C{-H BCP is observed, nor
is there a (3,+1) ring critical point (RCP) present in the C{-C;,-H triangle.

Likewise, in the bidentate C-shift reaction, the C,-C3 bond is stretched from the reactant
to the C-shift transition state, which is accompanied by a decrease in p (from 0.173 to
0.078), an increase in Vz(p) (from 0.072 to 0.161), and an increase in ellipticity (from 3.90
x 1073 to 1.06), indicating severe weakening in the C-C bond. The BCP is between C; and
Cs3 at the TS, but there is no BCP between C; and Cs, nor a RCP in the C;-C,-C3 triangle.
The C3-Oj3 distance contracts slightly, from 1.41 to 1.36 , and this is accompanied by an
increase in p at the BCP from 0.237 to 0.258, a sign change in V?(p) from 0.092 to -0.026,
and an increase in ellipticity from 4.89 x 1073 to 1.70 x 1072, all signatures of increased
n character in the C3-O3 bond. While the C3-O3 bond is strengthened, the O3-H bond is
weakened slightly, with a small decrease in p from 0.241 to 0.238, a small increase in V2(p)
from -0.528 to -0.484, and a slight increase in ellipticity from 4.88 x 107> to 6.20 x 1073.

The bidentate C-shift reaction has a transition state energy of 32.8 kcal-mol~!, the Oy
pathway has a TS energy of 28.2 kcal-mol~!, and the Oy, pathway has a TS energy of 47.6
kcal-mol~!. The stability of each TS is correlated to the p, Vz(p), and € of the C3-O3 bond,

reinforcing the importance of stabilizing the C3 moiety at the C-shift transition state.
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Table C.4: Bader Analysis of Select Bond Critical Points (BCPs) for gas-phase glyceralde-

hyde (GLY) and various intermediate and transition states.

Gas-phase GLY P Vz(p) € (ellipticity)
Cr-Cs 1.74x 1007 6.79x 1072  2.33x107°

C,-H 1.68Ex 107! -1.39x 107!  2.08x 1073

C3-0; 238Ex 107! 877x 1072 9.09x 1073

0s-H 242Ex 107! -541x10°Y 5.56x 1073

HO;-0, 257Ex 1072 734x 1072  6.57x 107!
OH_H_B-4 DP GLY P V2(p) e (ellipticity)
C,-C; 1.73x 1077 7.02x102 3.90x 1073

C,-H 1.68x 107! -1.39x 107" 3.19x 10™*

C3-03 237x 107" 924x1072 4.89x 1073

Os-H 241x 1071 -528x1072 4.88x1073
HO3-OHSi 346x 1072 9.04x 1072 1.68x 107!
OH_H_B-5 Bidentate H-Shift TS Jo, V2(p) € (ellipticity)
C,-C; 1.80x 1077 484x 1072 1.28x1072

C,-H 121x1070  1.02x 107! 3.47

C3-03 241x 107" 741x1072 845x 1073

0s-H 238x 107! 494x 107! 552x1073
HO;-OHSI 3.56x 1072 927x1072 6.78x 1073
OH_C_B-5 Bidentate C-shift TS e, Vz(p) € (ellipticity)

C-Cs 783x1072 1.61x 107! 1.06

C,-H 1.71x 107! -1.62x10°"  7.63x1073

C3-03 258x 1071 -259x 1072 1.70x 1072

0Os-H 238x 107" -4.84x10°! 6.20x1073
HO;-OHSI 340x 1072 8.88x 1072 3.61x1072
OH_C_Oy ;4 Ligand-Assist C-Shift TS P Vz(p) € (ellipticity)
C,-C;3 8.00x 1072 1.63x101 794x 107!

C,-H 1.71x107Y  -1.56x 107" 1.06x 1072

C3-0; 268x 1071 -7.71x1072  1.42x 1072

0Os-H 235x 107" -454x10°! 554x1073
HO;-ligand O, 297x1072  822x1072 697x1072
HO;3-ligand O, 280x1072 7.62x1072 6.81x1072
OH_C_Oy4p-2 O; C-shift TS Je, Vz(p) € (ellipticity)
C-C, 215x 1077 -7.01x1072 7.47x1073

C;-Cs 898x 1072 1.67x107' 344x107!

C,-H 1.71x10°"  -1.58x 107" 8.51x1073

C3-0; 256x 107" -1.48x1072 1.59x 1072

0s-H 237x 107" -477x10°Y  5.11x1073
HO3-Origand 3.58x 1072 9.45x1072 9.13x 1073
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Figure C.16: Maximum TS free energy of all reaction pathways. Free energies calculated
at 353 K, with electronic energies calculated using basis set A (see computational methods)
and zero-point corrections and entropic contributions calculated using basis set A.
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Appendix D

SUPPLEMENTARY INFORMATION FOR CHAPTER 6
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Table D.1: Summary of STW syntheses using racemic 2. A = amorphous, U = unknown,
synthesis time is reported in days. 'A mixture of 2 and pentamethylimidazolium (P) in a
ratio of 2/P = 9 was used as the OSDA. 22/P = 4,32/P = 2.3.

Si/Ge Si/Al H;O/TO, Temp. (°C) Seeds Time Results

2 00 5 175 None 6 STW + dense
9 00 5 175 None 16 STW + U
00 00 5 175 None 23 BEA + dense
2 00 <3 175 None 4 WV
9 00 <3 175 None 4 IWV
o0 00 <3 175 None 20  Si-RTH layered
2 00 4 175 None 4 IWV + STW
2 00 5 175 None 4 IWV + STW
2 00 7 175 None 4 IWV + STW
10 00 4 175 None 4 IWV + CIT-7
10 00 5 175 None 4 IWV
10 00 7 175 None 4 IWV
2 00 5 175 Si-STW 4 STW
10 00 5 175 Si-STW 4 IWV + STW
2 00 5 160 Si-STW 3 STW +U
o) 00 4 175 None 13 Si-RTH layered
00 00 5 175 None 13 Si-RTH layered
00 00 7 175 None 36 Dense
10 00 5 160 Si-STW 8 STW
00 o) 5 160 Si-STW 11 Si-RTH layered
o0 00 5 175 Si-STW 11 Si-RTH layered
10 00 5 160 Si-STW 23 STW
15 00 5 160 Si-STW 16 STW
20 00 5 160 Si-STW 16 MTW
20 00 5 160 Si-STW 16 MTW
10 00 5 160 Si-STW 13 STW + IWV
15 00 5 160 Si-STW 13 STW + IWV
20 00 5 160 Si-STW 7 STW
20 00 5 160 Si-STW 18 STW + IWV
20 00 5 160 Si-STW 18 STW + IWV
30 00 5 160 Si-STW 7 IWV
30 00 5 160 Si-STW 7 Iwv
50 00 5 160 Si-STW 18 STW + IWV
50 00 5 160 Si-STW 18 IWV
10 00 4 160 Si-STW 20 STW
10 00 7 160 Si-STW 5 IWV + STW
10 ) 7 160 Si-STW 5 IWV + STW
20 00 4 160 Si-STW 20 STW
20 00 7 160 Si-STW 5 IWV + STW



Si/Ge Si/Al H;O/TO, Temp. (°C) Seeds Time Results
20 oo 10 160 Si-STW 5 WV
30 00 4 160 Si-STW 20 STW + A
30 00 7 160 Si-STW 12 WV
30 0o 10 160 Si-STW 20 WV
0o 00 4 160 Si-STW 37  STW + layered'
00 00 4 160 Si-STW 37 STW?
00 0o 4 160 Si-STW 20 STW?
00 0o 2 160 None 14  MTW + STW
00 0o 2 160 None 14  MTW + STW
00 Io%) 3 160 None 14 MTW + STW
%) Io%) 3 160 None 19 MTW + STW
4 0 5 160 None 7 LTA
8 00 5 160 None 7 LTA
20 0o 5 160 Si-STW 7 LTA +U
100 oo 5 160 Si-STW 30 A
20 00 5 160 Si-STW 8 U
8 00 4 160 Si-STW 10 U
10 0o 4 160 Si-STW 24 U
12 o0 4 160 Si-STW 10 U+A
14 00 4 160 Si-STW 10 U+A
10 00 4 160 Si-STW 13 IWV + LTA
2 00 5 160 Si-STW 10 STW
2 0o 5 160 Si-STW 10 LTA + A
4 0o 5 160 Si-STW 10 LTA +U
4 0o 5 160 Si-STW 10 LTA +U
4 00 5 160 Si-STW 13 STW + U
4 00 5 160 Si-STW 13 STW + U
6 0o 5 160 Si-STW 13 STW +U
6 0o 5 160 Si-STW 13 STW + U
8 0o 5 160 Si-STW 29 LTA +U
8 00 5 160 Si-STW 29 LTA +U
10 0o 5 160 Si-STW 29 LTA +U
10 00 5 160 Si-STW 29 LTA +U
8 0o 5 160 Si-STW 11 LTA
8 00 5 160 Si-STW 11 LTA
2 100 5 160 Si-STW 13 STW + LTA
2 100 5 160 Si-STW 13 STW
12 00 5 160 Si-STW 11 LTA
12 00 5 160 Si-STW 11 LTA
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Table D.2: Summary of STW syntheses using R-2. A = amorphous, U = unknown, synthesis
time is reported in days.

Si/Ge Si/Al H;O/TO, Temp. (°C) Seeds Time Results
20 ) 4 160 Si-STW 16 STW
20 ) 4 160 Si-STW 16 RTH
20 00 4 160 Si-STW 16 RTH +IWV + STW
20 ) 4 160 Si-STW 16 RTH
30 00 4 160 Si-STW 16 RTH
2 100 4 160 Si-STW 10 STW
2 100 4 160 Si-STW 10 STW + LTA
2 100 4 160 Si-STW 10 STW + LTA + U
2 100 4 160 Si-STW 10 STW + LTA
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Table D.3: Summary of STW syntheses using S-2. A = amorphous, U = unknown, synthesis
time is reported in days.

Si/Ge Si/Al H;O/TO, Temp. (°C) Seeds Time Results
20 00 5 160 None 10 IWV + STW
20 00 5 160 Si-STW 5 IWV + STW
5 00 5 160 None 5 STW + tiny IWV
5 o) 5 175 Si-STW 5 IWV + STW
00 00 5 160 Si-STW 8 MTW + STW
00 00 5 160 None 8 MTW + STW
20 00 4 160 Si-STW 13 STW
20 00 4 160 Si-STW 13 STW
20 ) 4 160 Si-STW 25 A
20 ) 4 160 Si-STW 25 A
10 ) 4 160 Si-STW 24 LTA +U
10 00 4 160 Si-STW 24 LTA +U
2 00 5 160 Si-STW 12 STW + LTA
2 00 5 160 Si-STW 12 STW + LTA
2 ) 5 160 Si-STW 12 STW
2 00 5 160 None 12 STW + LTA
2 00 5 160 None 12 LTA+U
2 100 5 160 Si-STW 13 STW
2 100 5 160 Si-STW 12 STW
2 100 5 160 Si-STW 13 STW + LTA
2 100 5 160 Si-STW 20 STW + LTA
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Figure D.1: Representative PXRD diffraction patterns for a) pure-silica racemic STW and
b) germanosilicate enantrioenriched S-STW. The d-spacings in the enantioenriched sample
are shifted as a consequence of the germanium content.

3¢, 19F, 27Al and ?°Si solid-state NMR were performed using a Bruker DSX-500
spectrometer (11.7 T) and a Bruker 4mm MAS probe. The spectral operating frequencies
were 500.2 MHz, 125.721 MHz, 130.287 MHz and 99.325 MHz for 'H, 13C, 'F, 2’Al
and 2°Si nuclei, respectively. Spectra were referenced to external standards as follows:
tetramethylsilane (TMS) for 'H and ?°Si, CECl; for !°F, adamantane for '3C as a secondary
external standard relative to tetramethylsilane and 1.0 M Al(NOs3)3 aqueous solution for

27Al. Samples were spun at 14 kHz for 'H and >’ Al MAS NMR and 8 kHz for 13C and ?°Si
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MAS and CPMAS NMR experiments. '°F MAS NMR were collected at both 13 and 15

kHz to assign spinning sidebands. For detection of 2’ Al signal, a short 0.5s - u1/18 pulse was

used before FID was recorded in order to make quantitative comparison among resonances.
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Figure D.2: 'F NMR spectrum for an enantioenriched S-STW germanosilicate sample.
Peaks labeled with a * correspond to spinning side bands.
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Figure D.3: 2°Si NMR spectrum for an enantioenriched S-STW germanosilicate sample.

Thermogravimetric analysis (TGA) measurements were performed on Perkin Elmer STA
6000. Samples (0.01-0.06 g) were placed in an alumina crucible and heated at 1 K/min in

a flowing stream (0.667 cm?/s) of air.
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Figure D.4: Al NMR spectrum for an enantioenriched S-STW aluminogermanosilicate
sample.
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Figure D.5: A representative TGA profile for enantioenriched germanosilicate S-STW.

EDS spectra were acquired with an Oxford X-Max SDD X-ray Energy Dispersive Spec-

trometer system on a ZEISS 1550 VP FESEM, equipped with in-lens SE.
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S-STW R-STW Racemic SDA

SU-7401F OKY ,00C um WD 80mm SU-7401F 0KV X30, SU-7401F

SU-7401F SEI 10KV X30000 100nm WD 30mm LEI 10k X20000 1um  WD8Omm

Figure D.6: Select SEM images for S-, R- and racemic STW.

Table D.4: Representative energy-dispersive X-Ray spectroscopy results for products ob-
tained using S-2 in germanosilicate and aluminogermanosilicate synthesis gels.

Starting Gel Si/Ge Si/Al
Germanosilicate, Si/Ge =2 0.806 + 0.047 -
Aluminogermanosilicate, Si/Ge = 2; Si/Al =100 0.861 +0.045 30.15+ 11.96
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Figure D.7: Comparison of two HRTEM images with gold nanoparticles as markers. a,b, A
crystal was tilted from [2110] (a) to [1100] (b) and a shift-up was observed, which indicates
a space group of P6522. ¢,d, The processed images of (a) and (b) after Fourier filtering that
only includes spatial frequencies within a particular range to enhance the contrasts of gold
nanoparticles.
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Figure D.8: Comparison of two HRTEM images with gold nanoparticles as markers. a,b,
A crystal was tilted from [2110] (a) to [1100] (b) and a shift-down was observed, which
indicates a space group of P6,22. c¢,d, The processed images of (a) and (b) after Fourier
filtering that only includes spatial frequencies within a particular range to enhance the
contrasts of gold nanoparticles.
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Figure D.9: Comparison of two HRTEM images with gold nanoparticles as markers. a,b, A
crystal was tilted from [2110] (a) to [1010] (b) and a shift-up was observed, which indicates
a space group of P6;22. ¢,d, The processed images of (a) and (b) after Fourier filtering that
only includes spatial frequencies within a particular range to enhance the contrasts of gold
nanoparticles.



