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ABSTRACT

A class of moduli spaces that has long been the interest of many algebraic geome-
ters is the class of moduli spaces parametrizing maps from curves to target spaces.
Different such moduli spaces have distinct geometry and also invariants associated
to them. In this thesis, we will study the geometry of three such moduli spaces,
Mg,n([pt /C*]), Quotc(n, d), and QO’Z(G(n, n),d). By understanding the global ge-
ometry of each moduli space, we will produce a stratification, which plays a central

role in proving a result about invariants associated to the space.

In Chapter 1, we study gauge Gromov-Witten invariants, which are the Euler char-
acteristics of admissible classes on Mg,n([pt /C*]), the moduli space of maps from
stable curves to [pr/C*]. In [1], Frenkel, Teleman, and Tolland show that while
M, ¢,n 18 not finite type, thsese gauge Gromov-Witten invariants are well-defined. By
using a particular stratification of /F\/(vo,n, we prove that when g = 0, n-pointed gauge
Gromov-Witten invariants can be reconstructed from 3-pointed invariants. This
reconstruction theorem provides a concrete way to compute gauge Gromov-Witten
invariants, and serves as an alternate proof of well-definedness of the invariants in

genus 0 case.

In Chapter 2, we compute the Poincare polynomials of Quot schemes, Quotc(n, d).
We see that by using an appropriate stratification, we can recursively compute
the Poincare polynomials of Quotc(n, d). Moreover, we see that the generating
series for the Poincare polynomials is a rational function. As an application, we
compute the Poincare polynomials of the moduli spaces of MOP-stable quotients,
QO’Z(G(n, n), d). We show that the generating series for these polynomials is also a

rational function.
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Chapter 1

RECONSTRUCTION THEOREM IN GAUGE GROMOV-WITTEN
THEORY

1.1 Introduction

In [9], Lee defines quantum K-invariants, which are K-theoretic push-forwards to
Spec C of certain vector bundles on Mg,n(X, B). These quantum K-invariants are
shown to satisfy several axioms. Moreover, when g = 0 and X = P’, Lee and Pand-
haripande prove in [10] that there exist divisor relations in Pic(mo,n(Pr , 8)) which
allow one to reconstruct all quantum K-invariants of My, (P", 8) from quantum
K-invariants of Mo,l(P’, B).

In [1], Frenkel, Teleman, and Tolland consider the compactification of the moduli
space of maps from curves to a space with automorphisms. They define the moduli
stack of Gieseker bundles on stable curves, Mg,n, and showed that there exist well-
defined K-theoretic invariants in the case where the target is [pt/C*]. Proving
well-definedness of these invariants is difficult because the resulting moduli space is
complete but not finite type. Their proof of well-definedness of invariants relies on
their description of local charts on the moduli stack. While the use of charts allows
them to conclude that the invariants are indeed finite, it does not tell us how the
invariants can be computed and does not easily generalize to [ X /C*] for arbitrary

scheme X.

Instead of using local charts, I describe a stratification of /F\\/(ig,n by locally closed
strata. When g = 0, this stratification, along with divisorial relations, allows us to

reconstruct n-pointed invariants from lower pointed invariants.

Theorem 1.1. n-pointed genus 0 gauge Gromov-Witten invariants can be recon-

structed from 3-pointed invariants.

The reconstruction theorem for genus 0 gauge Gromov-Witten invariants not only
serves as an alternative proof of the well-definedness of the invariants but also gives

an algorithm for computing them.



1.2 Reconstruction in quantum K-theory

In this section, we will define the moduli spaces M, ,(X,3) and the resulting
quantum K-invariants. We then state the reconstruction theorem for quantum K-
invariants when g = 0. The background on Hg,n follows [2] and the discussion of

quantum K-invariants follows [9].

The moduli spaces M, ,(X, )

Definition 1.1. /2] Let X be a scheme and let B € Hy(X). Then, a stable map of
class B from a prestable curve (C, x1, . . ., x,) of genus g with n marked points, x;, is

a morphism f : C — X satisfying the following conditions.

1. The homological push-forward of C satisfies f.([C]) = B.

2. Each irreducible component of C contracted by f is stable. In other words, if

E is an irreducible component of C which is contracted by f, then
8(E) +n(E) 2 3,

where n(E) is the number of nodes and marked points on E.
The moduli space of such maps is denoted by Mg,n(X, B).

It follows from the definition that stable maps have finite automorphisms. Using

this fact, Kontsevich prove the following theorem.
Theorem 1.2. /8] Let X be a smooth projective scheme over C, and let 8 € Hy(X).
Then, Mg,n(X, B) is a proper Deligne-Mumford stack.

When X = SpecC, we denote Mg,n(Spec C) = Hg,n. There are two classes of
morphisms that arise naturally. The first is the class of forgetful morphisms which
forget the k-th marked point and stabilize if necessary. We denote the morphism
forgetting the k-th marked point by

fte s Mgnii(X, B) — Mg (X, B).

We also have the stabilization morphisms which forget the map f : C — X, and

stabilize the prestable curve, C, if necessary. This map is denoted by

st : Hg,n(x, B) — ﬂg,n.



Quantum K-invariants

Definition 1.2. [/1] Let X be a scheme. The Grothendieck group of locally free
sheaves on X is the quotient of the free abelian group generated by the isomorphism
classes of the locally free sheaves on X by the relation Y, (=1)'F; = 0, whenever

0— Fy > F; — --- F;, — 0is an exact sequence.

The Grothendieck group of locally free sheaves on X is denoted K(X).

If f: X — Y is a proper morphism, we define the K-theoretic push-forward
homomorphism f, : K(X) — K(Y) by

AFD) = ) (-D[R£F).
The K-theoretic push-forward to Spec C is denoted y.

Now, we define the quantum K-invariants as the K-theoretic push-forwards of certain

K-classes on M, ,.

Definition 1.3. [9] The quantum K -invariants are
1o s Y FY = X(Mga(X, B), 0" @ ev*(y1 ® -+ @ ) @ 5t"F),

where yi,...,yn € K(X), F € K (Mg,n), and Q""" is the virtual structure sheaf.

While quantum K-invariants do not satisfy all the axioms of cohomological Gromov-
Witten invariants [7], they satisfy seven of them, two of which are the splitting axiom

and the string equation.

Proposition 1.1. [9] Let g = g1 + g» and n = ny + ny and let

D : Mgl»nl"'l X Mgz,nzﬂ - Mg’”
be the map gluing the last marked point of M g.m+1 With the first marked point of
/\/(g2 m+1. Then, pulled back quantum K-invariants from M g.n can be written as a

sum of products of quantum K-invariants of M eumi+1 and M g+l

Theorem 1.3 (String Equation). [9] Let ft : Mg,nH(X, B) — ﬂg,n(X, B) be the
morphism forgetting the last marked point. Let L; denote the cotangent line bundle
along the i-th marked point. Then, for g = 0 we have

o (a0 Sl (i)

1




where both sides of the equation are formal series in formal variables ;.

For g > 1 we have
: 1 1
3 O‘”r 1.1
ﬂ( l—q?{‘lnl—qiﬁi) (-0

vir — - 1
- 0 1—q7{— [( - H! +Zl—q,)(£l—1—qi£i)]’ (1.2)

where H = Roﬂ*wc i is the Hodge bundle.

Note that Theorem 1.3 relates (n + 1)-pointed quantum K-invariants not involving

L,+1 with n-pointed quantum K-invariants.

Reconstruction of quantum K-invariants
In [10], Lee and Pandharipande prove that two relations hold in Pic(ﬂo,n(P’, B)).
These divisor relations, combined with the axioms of quantum K-invariants, show

that n-pointed quantum K-invariants can be reconstructed from 1-pointed invariants.

Let B € Hy(P"). Let B1,8, € Hy(P") such that 8 + B, = B. Partition the set
{L,...,n} i_nto S1 and its complement S, := §{. Then, we denote by Dy, g, s, 5, the
divisor in My, parametrizing reducible curves C = C; U C, such that the marked

points p; € C; if j € §; and the images of C; are §; fori = 1 and 2. Now, define

Dipjp; = Z Ds, pi|$p.p»  and  Dij = Z Ds, p115,.8, -
ieSi|jes, i€51,j€82.81+B2=P

Denote by £; the class in Pic(ﬂo,n(Pr, f3)) corresponding to the i-th cotangent
bundle. Then, we have the following theorem.

Theorem 1.4. [10] Let B € H>(P") and let L € Pic(P"). Then, the following
relations hold in Pic(moyn(P’, B)).

LoeviL=eviL+(BL)Li= > (BiLYDig;p,
Bi+p2=B

2. L,‘+.£j:D

With Theorem 1.4, Lee and Pandharipande prove the reconstruction theorem for

invariants in both quantum cohomology and quantum K-theory.

Theorem 1.5. [10]
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1. Let R c H*(X) be a self-dual subring generated by Chern classes of elements
of Pic(X). Suppose

T YDh - o T, (V1) T8, (€)) = 0

or all n-pointed invariants with v; € R and & € R*. Then, all n-pointed
14 Y 14

invariants of classes of R can be reconstructed from I-point invariants of R.

2. Let R ¢ K*(X) be a self-dual subring generated by elements of Pic(X).
Suppose

(Til(yl)’ s Tkn,l(')’n—l)s Tkn(é‘:)) =0

for all n-pointed invariants with y; € Rand & € R*. Then, all n-pointed quan-
tum K-invariants of classes of R can be reconstructed from 1-point quantum

K-invariants of R.

1.3 Moduli stack of Gieseker bundles

We will now present the moduli stack of Gieseker bundles as defined in [1]. Moduli
stack of Gieseker bundles arise when studying the moduli space of maps from
prestable curve to spaces with automorphisms such as [pr/C*]. We recall the

definition of families of prestable marked curves.

Definition 1.4. (7 : C — B,{0;|i € I}) is called a family of prestable marked

curves over a base scheme B if

1. m: C — B is a flat proper morphism whose fibers are connected curves of

genus g with at-worst-nodal singularities, and

2. 1 is an ordered indexing set such that for all i, o; : B — C is a section not

passing through nodes of fibers, and

If all rational components of C has at least 3 special points, we say (C,0;) is a

family of stable marked curves.

We will always assume that any rational component of a fiber of 7 has at least two

special points.

A map from a stable nodal curve C to [pt/C*] is equivalent to a principal C*-bundle
on C. Such a C* bundle is given by a C*-bundle on the normalization of C and

identification of the two fibers at the preimages of each of the nodes. Since the space
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of identifications of the two fibers is isomorphic to C*, the moduli stack of principal

C*-bundles on stable curves fails to be complete.

To make the space complete, we consider all Gieseker bundles on stable curves.
Definition 1.5. /1] Let (C, 0y) be a stable marked curve. A Gieseker bundle on

(C, 0y) is a pair (m, L) consisting of

1. a morphism m : (C’, o) — (C, o) such that m is an isomorphism away from
preimages of nodes of C, and the preimages of nodes of C are either nodes or

a P! with two special points; and

2. a line bundle L on C’ such that the degree of L restricted to every unstable
P! has degree 1. Such unstable rational components of C' are called Gieseker

bubbles.

Then, Mg,n is defined to be the moduli stack of Gieseker bundles on stable genus g,

n-pointed curves.

Definition 1.6. /1] The stack Mg,n of Gieseker C*-bundles on stable genus g curves

with n marked points is a fibered category whose objects are (X, C, oi, P), where

1. X is a test scheme,

2. m: C — X is a flat projective family of prestable curves with marked points
o;: X — C, and

3. p: P — Cisa Gieseker bundle on the stabilization of C.

The morphisms in this category are commutative diagrams

7

Ti

A<~—"T
hB\

S

<
-

-

|

where f is CX equivariant and the bottom square is Cartesian.

-~
N
N
-~

|
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M, carries several universal families. It has a family of stable curves of genus g
with n marked points 7 : 5&,, — /‘/[vgn with o7 : Mvg,n — C, and a Gieseker bundle
P:Pon— ~g,,,. The universal Gieseker bundle defines a map ¢ : ~g,,, — [pt/C*].

We define the evaluation maps ev; = ¢ o 05 : Mg,n — [pt/C~].

The moduli space, Mg,n, is a disjoint union of components corresponding to the
total degree of the Gieseker bundle. Each of the components of Mg,n is complete
but is not finite type in general. For example, consider the component of the moduli
space /F\/(VOA corresponding to total degree D. There are infinitely many Gieseker
bundles over reducible curve with two components, C = C| U C, such that the line
bundle, £, has degrees d; and d» over C; and C; and d; + d» = D. Thus, /f\\/(dg,n is
not finite type and therefore not proper. However, the following properties hold for

—_—

Men.

Proposition 1.2. []]

1. ~g’n is locally of finite type and locally finitely presented.

2. Mg, is unobstructed.

For a prestable curve with a Gieseker bundle (C, o3, ), we define its topological
type to be the pair (y, d), where 7 is the modular graph of C and d : V(y) — Z is

—_—

the degree map. The topological type of Gieseker bundles allow us to stratify M, ,,.

Proposition 1.3. [/] Mg,n admits a topological type stratification by locally closed
and disjoint substacks M, 4y parametrizing all curves with modular graph -y with

degree d. Moreover, M, q) are of finite type and finite presentation.

Moreover, we know which kinds of deformations of curves can occur.

Lemma 1.1. [1] Let (C, 0, P) be a C* bundle on a prestable curve having topolog-
ical type (y,d). Suppose that we are given a deformation (C’, o/, P’) of (C, 0y, P)
over the Spec of a complete discrete valuation ring. The topological type (y', d") of
the generic fiber can be any degree labeled modular graph obtained from (y, d) by

finite combinations of the following elementary operations:

1. Resolve a self node: delete a self-edge attached to a vertex v, increasing the

genus g, by 1, leave the multi-degree unchanged.
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2. Resolve a splitting node: join a pair of adjacent vertices vi and v, into a
single vertex v, having genus g, = g, + 8y, and degree d,, = d,, + d,,. Delete

one edge joining vi and vy, and convert the others to self-edges.
Moreover, all such modular graphs occur in some deformation.

On M, ,,, there are special K-theory classes that we want to consider.

Definition 1.7. Let V be a finite dimensional representation of C*. Let L; = 0Ty

be the relative tangent sheaf to C at ;. Then, we define the following K-theory

classes on Mg .

1. The evaluation bundle is ev;[V] = o ¢"V.

2. The descendant bundles are evi[V] ® [.E®j "), where j; € Z.

3. The Dolbeault index Iy of V is the complex Rr.p*V.

4. The admissible line bundles L are £ = (det Rm,¢*C1)®79, where q € Qsy.

5. An admissible complex is the tensor product of an admissible line bundle with

Dolbeaut index, evaluation, and descendant bundles
a=LQ® (® Rn*go*Va) ® (®ev; Wi® L").
a

Theorem 1.6. [1] Let a be an admissible class. Let F : Mg,n — /Vgn be the
forgetful morphism forgetting the bundle and stabilizing the curve. Then, the derived

push-forward RF.« is coherent.

1.4 Outline
Let /‘/(vo,n = /F\/(vo,n([pt/ C*]) be the moduli stack of Gieseker stable bundle with the

universal curve 7, : 50,,1 — Mo,n. We will denote the universal bundle by % ,.

Let @« = det(Rm.¢*C1) ™1 ® (® eviCy, ® Ll.ai ) be an admissible class on MQ".
We will show that the admissible class a can be reconstructed from finitely many
admissible classes of /\70,3. Since /\70,3 = [pt/C*], admissible classes on /\70,3 have
finite Euler characteristics. The reconstruction proves that for g = 0, the invariants

are well-defined.
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First, we show that one can define an open embedding ég,n — /F\/(Vg,nﬂ. If we denote
the complement of the image of égn by Zgn+1, using the long exact sequence of

local cohomologies, we obtain
XMgnst, @) = x(Com @) + x7, (@),

provided all the terms above are finite. Now, since é‘vg,n is the universal curve
over /F\/[vg,n we can compute )((ag,n, @) by pushing forward to /F\/(Vg,n along the map
Ty - 55,,,1 — Mg,n.

X(Con @) = X(Mga, Ry,

Therefore, we have

X(Mg,n+1’ CU) = X(Mg,m Rﬂ'n*a') + ng,nﬂ (CZ)

Repeating, we conclude that

XMz, Rm.a) + Z XZOk(R”*O‘) g=0
4<k<n
X(/F\‘/fg,n,a): x(My 1, Rr.a) + Z Xz (Rma) g=1
2<k<n
xMq 0, Rm.a) + Z ng,k(Rﬂ*a’) g=2
1<k<n

—_— —_— —_~ —_—

where 1 1 Mg, --> Mgyi, k < n is the composition of 7y : Co¢ — My, for
k<t<n-1.

We then stratify Zg,n by countably many locally closed strata. This stratification

will have the property that for g = 0, we can compute Xz, (@) recursively as a finite

sum of products of lower pointed invariants on Mg, where k < n.

Moreover, the embedding of ég,n — /F\/(Vg’n_‘_] will show that for admissible classes,

a, on Mg .1 that do not involve CVZ +1Ca,,, and L1, the push-forward of a| o to
g.n

M., is an admissible class on M, ,.

A divisor relation similar to the relation proven in Theorem 1.4 then reduce the
problem of computing admissible classes on My ,+1 to computing those that do not

involve ev) , C, , and L. Lastly, understanding the structure of the boundary

n+l

loci in 50,,1 as A% x (Pl)t bundles over products of /F\/(vo,n/, where n’ < n, allows us to

compute X(Mo,n+1) as a finite sum of X(Mo,n') where n’ < n.

Combining, we will conclude that n-pointed invariants can be computed as a finite

sum of products of lower pointed invariants.
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1.5 Embedding C~‘g7n — Mg,n+1

In this section, we will define an embedding E‘g’n — Mg,n_‘_l. Recall that we have
a similar embedding for the stable curves. If we let Eg,n - Mg,n be the universal
curve, we have an embedding Eg,n — M&M 1. In short, given a point p on a n-
pointed stable curve, (C, py, . . ., pn), We can associate to it a (n + 1)-pointed curve,

(C,ps- - D, ,q)s Where

1. if p € C is not a special point, then C" = C, p; = p; foralli = 1,...,n, and

Pn+1 = p; O1

2. if p € C is a special point, then (C’,p}, ..., p/ ) is the stable curve whose
stabilization after forgetting p/ ., is C, with the images of p] under the stabi-
lization are p; fori = 1,...,n and p fori = n + 1. In other words, C’ is the
stable curve obtained from C by adding a rational component at p with three

special points, one of which is p/ .

Figure 1.1 show a few examples of the correspondence described above. In the

second and third examples in the figure, the components containing p, are rational.

P11 P P2 P1 Pn+1 D2

p P D2 \Pn+1

Figure 1.1: Examples of the correspondence Eg,n — Mg,,m.

In other words, we consider a resolution of Eg,n X431, Cgn along the subscheme
8.n

where the diagonal meets the special points to obtain C — Eg,n such that each fiber
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is a (n + 1)-pointed, genus g stable curve. This gives us the desired embedding of

Cg’n i Mg,i’l+l'

More precisely, we have the following theorem by Knudsen.

Theorem 1.7. [6] Consider a S-valued point of Eg,n, i.e. an n-pointed stable curve
n: X — S with n sections, o, ..., 0, and an extra section A. Let I be the ideal
sheaf of A, and define K on X by the exact sequence

0—=O0x —=1"®Ox(oy + -+ + 07) —= K —0,

where 6 : Ox — IV & Ox(o| + - -+ + 0y,) is the diagonal, 6(t) = (t,t). Now, let

X* := Proj(SymK). Then, oy, ..., 0y, A have unique liftings (Tl’, ...,0 . making

n+l
X? into a (n + 1)-pointed stable curve with X* — X a contraction. Moreover, this

gives rise to an embedding
Con = Mg

We will use a similar strategy to define our embedding of (T’g,n — Mg,n+1. Let
(C,p1,...,pn P) be a Gieseker bundle parametrized by a point of /\7(;,,, and let p €
C. Then, we define a Gieseker bundle on a (n+1)-pointed curve, (C’, p, ..., p . |, P’)

as follows:

1. if p € Cis not a special point, then C’ = C, p_ = p; fori = 1,...,n, p:;+1 =p,
and P’ = P; or

2. if p € C is a special point, then C’ is the curve obtained from C by adding
a rational component at p with three special points, one of which is p’ ;.
The map, ¢ : C" — C, contracting the component containing p/ ., is an
isomorphism away from p € C, and the images of p are p; fori = 1,...,n.
Finally, we define P’ := ¢*P.

Note that $’ does satisty the Gieseker condition. We always haveamap ¢ : C' — C
which forgets p’ | and stabilizes the component containing p’ , if necessary. In
both cases, P’ = ¢*P and note that all Gieseker bubbles of C’ are preimages of
Gieseker bubbles of C!. Hence, P’ satisfies the Gieseker conditions since P satisfies

them.

Figure 1.2 shows a few examples of the correspondence described above. The

dashed lines in third and fourth figures represent Gieseker bubbles, which are

"We are only allowed to add a single stable rational component.
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unstable rational components with two nodes over which the line bundle has degree
1. In the first and third examples, the line bundle over the (n + 1)-pointed curve is
the same as the line bundle over the n-pointed curve as the two curves are the same.
In second and fourth examples, p collides with a special point on the n-pointed
curve and the corresponding (n + 1)-pointed curve has an extra rational component
containing p,;. In these cases, the line bundle over the (n + 1)-pointed curve has
degree 0 over the component containing p,+1. Over the other components, the line

bundle remains “unchanged”.

pPr P P2 P1 Pn+1 P2

P2
Pn+1
P1 |
\Pn+l
pn+l N

Figure 1.2: Examples of the correspondence (A,‘;,,, - /Wg,n+1

In other words, we can define an embedding ég,n — Mg,n+1 as follows. Let
T, ~g,,, — My, be the universal curve over Mg ,. Then, we have sections
o Mg — Eg,n fori=1,...,n. Let D; := 07.(M,,) and let D¢ be the locus of

singular points of the fibers of 7.

Let A C égn i égn be the diagonal. Then, by using the analogous sheaf, K,
8.n

defined in Theorem 1.7, we get a contraction

& : C := Proj(Sym %) — C~‘g,n XM 5&”.
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Composing with the projection from the fiber product to ag,,, we get

ﬁ'zp}’ZOEZC—)Cg,n XMgan,n_) g,

such that the bundle (prj og)*P, , is a Gieseker bundle over ég,n. Asin Theorem 1.7,
the sections, o7, have unique lifts, giving us n sections o5 : (:‘;,,n — C. The lift of
the diagonal, A, gives us another section, which we will denote by 7,1. Therefore,
(5’, 01, . s Onsl, (pr10€) Py ) is a family of Gieseker bundles over ég,n with (n+1)
sections. Hence, we get a map C~‘g,n — MgJH_] which is an open embedding. We

have the following diagram:

C( Cg,n+1

T=pryog
& T+l

~ o N
Cen X M Con Con' g+l
pri jﬂ'n
_ x _

Note that ¢*C; = ev,,,C;, where ¢ : 5&,, — [pt/C*] and vy ¢ Mgpi1 —

[pt/CX].

Now, we consider the restriction to (j‘g,n of the determinant bundle and the evaluation
bundles on M, ;1. In particular, we want to compare these line bundles to the pull-
backs of their analogs from M, ,,.

Proposition 1.4. Let 7, : é’vg,n — My, be the universal curve, and consider the

embedding of 5&,, - /F\/(Vg,nﬂ described above. Then the following are true over
5g7n.

l. Foralli=1,...,n moeviC) = ev; Ca, where ev; : Mgy, — [pt/C*] and
evi : Mg =1 — [pt/C*] are the respective evaluation morphisms.

2. detRmy41.¢"Cy = m, det Rm,.*Cy, where ¢ : ég,n — [pt/C*] and ¢

Cg,n+1 - [pt/CX]

Proof. First, let’s consider the evaluation line bundles. We know
myoev:Cy=m, 00, 0¢"Cy = (050m,) ¢ Cy.

By definition, &7 is the lift of o;. In other words, 7 o &; = o0y o m,. Hence, we see
that (07 o m,)*¢"Cy = (7 0 7;)"¢*C) = 5/ (A" 0 9*Cy)

IR

év;C,. Therefore, the
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pull-back of the evaluation line bundles on Mg,n are isomorphic to the evaluation

line bundles on M, ;11 when restricted to é'g,,

Since 5g,n — Mg,n is flat, we know that 7, (Rm,.#) = Rpry.(pr{%) and hence,

m,(det RmyP) = det Rpro.(priP). If ¢ : C — [pt/C¥], then we know that

¢*Cy = pr{ o&” 0 ¢*Cy. Since ¢ : C — C~‘g,n X C~‘g,n simply contracts rational
8

- =0 "

curves, we have that Re..Og

¢. - ¢~ Thus, we conclude that
817 Mg n =8

det Rpry.(pri¢*Cy) = det R(pry o €). (g o pri)* o ¢*Cy) = det R7.(¢"Cy).

Since 7 is the restriction of 7,41 to C— C~‘g,n, the pull-back of the determinant line

bundle is isomorphic to the restriction of the determinant line bundle. m|

Let a be an admissible class on /’\\/(dgﬂﬂ, which is a class of the form
@ = (det Rmy41.¢"C1) 77 ® (®;ev; Cy, ® L) .

We are interested in the push-forward of |z to Mg,n. We first recall the projection
8.n

formula.

Theorem 1.8 (Projection formula). [4] Let f : X — Y be a morphism of ringed
spaces. Let  be an Ox-module and let & be a locally free Oy-module of finite rank.
Then, for all i,

Rf(F® f*E) = R f.(F)®E.

By the projection formula and the observations above, we have

n+1

(det R 1,6°C1) 77 @ (® ev; Co, ® L]
i=1

13

R,

|

R, (alégm)

Ry

13

i=1

n n+l
Qe c) o R ( Cu o (D Lf"') |

i=1 i=1

13

(det R, <P*C1 )_q ®

. . . * An+1
In particular, if @ does not involve ev; , C, ., and L "', we have

n

Ry, (alég’") = (det Rm.0"C1) 7 ® (® ev; C/li) ® Rty (® Llf‘i) )
i=1

i=1

n
”Z(det Rﬂn*SD*Cl)_q ® (® YTZ eV:'ﬁ C/l,- ® L?i) ® ev;k1+l C/ln+1 ®L

An+1
n+l
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1.6 Stratification of 2g,n = Mg,n \ CN‘g,n_1

Now, we will study the complement of the image of C~‘g,n_1 in Mg,n and define a
stratification of the complement by a countably infinite collection of locally closed
strata.

Recall that we embedded Cg,, 1 in Mgn by considering points of the fibers of
Ty1 - Cg,, 1 = Mgn 1 as the last marked point and attaching an extra rational
component at p if necessary. In particular, any n-pointed curve such where p,, lies
on a component with more than 4 special points is in the image of ég,n_l. Hence,
a point in /F\/(vg,,, is not in the image of 5g,n_1 only if it parametrizes a Gieseker
bundle (C, py, . . ., pn, ) such that the component containing p,, call it C’, becomes
unstable after forgetting p,,.

Thus, C is not in the image of ég,n_l only if C’ is arational curve containing precisely
three special points2. Since one of the special points is p,, C’ can have either one
or two nodes. If C” has exactly one node, we will call C a curve of type L. If C’ has
two nodes, C \ C’ can either have one or two connected components. If C \ C’ is the
disjoint union of two connected components we will say C is a curve of type II. If

C \ C’ is connected, we will say C is of type III.

’

Figure 1.4: Examples of type II curves

Figures 1.3, 1.4, and 1.5 show examples of type I, II, and III curves, respectively.

As before, dashed lines represent Gieseker bubbles over which the line bundle has

2This is because all rational components have at least two components and only Gieseker bubbles
are allowed to have two special points, both of which must be nodes.
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PR

!
|
p |
| ‘n |
T hd T
| |

Figure 1.5: Examples of type III curves

degree 1. In all the figures, the component containing p,, is rational. All other
connected components of the curves in the figures, along with the restriction of the

given line bundle, are lower pointed Gieseker bundles3.

Note that Zg » is the disjoin union of the strata of type I, II, and I1I curves. In the sub-
sections that follow, we will stratify subschemes of Z gn of type I, II, and III curves.
Also, we will consider the connected component Mg nD C Mg n parametrizing

Gieseker bundles of some fixed total degree D.

1.7 TypelI curves
Let (C,p1,...,pnP) € Mg,n be a type I curve. As before, let C’ denote the
irreducible component of C containing p,. Then, C’ is a rational component
containing 2 marked points and a node. Let the marked points be p; and p,,. Note
that there is only one way a type I curve can be in the image of Eg’n_l. This happens
when we choose the point p = p; on the fiber as shown in Figure 1.6.
Di
Pn
Di \

Cl

Il'e
U

p

Figure 1.6: Type I curve lying in the image of @,n—l

If a type I curve is in the image of ég,n_l, then the degree of P|c» must be 0.
Moreover, such curve cannot have a Gieseker bubble attached to C’. Therefore,
the type I curves that do not lie in the image of 5g,n_1 are the ones such that either
deg P|c # 0 or C’ is attached to a Gieseker bubble.

3These components can have genus greater than 0.
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Fori =1,...,n—1,let Zl.1 be the closed subscheme of M ¢,n Whose points parametrize
type I curves not in the image of ég,n_l such that C’ contains p, and p;. First, note
that Zl.1 is closed in M, ,: any degeneration of a type I curve is another type I curve;
and the degree of P|¢- is locally constant away from the Gieseker bubble.

Now, denote by Wl.1 ;4 the locally closed stratum corresponding to the topological
types depicted in Figure 1.7, where (y, D — d) is any topological type of genus g

Gieseker bundle of degree D — d. In other words, Wl.1 ;4 1s the stratum corresponding

pi Di
() :
|
Pn

deg P|C' =d

C/

: . 1
Figure 1.7: Modular graphs and curves of Wi

to type I curves such that

1. degP|cr = d; and

2. C’ is not attached to a Gieseker bubble.

Note that W, € Cyu—1 if and only if d = 0.

Denote by Fl.l , the closed stratum corresponding to the topological types depicted in
Figure 1.8, where (v, D — d — 1) is any topological type of genus g Gieseker bundle

of degree D — d — 1. In other words, le ;4 1s the stratum corresponding to type /

degP|cr =d

: : 1
Figure 1.8: Modular graphs and curves of F; ,

curves such that

1. degP|c = d; and

2. (' is attached to a Gieseker bubble.
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Note that Fl1 PR (fg,n_l for all 7 and d.

By Lemma 1.1, we see that for each i and d, we have

T _w!l UF!l U Rl
Wia =WiaVF gV Fi

1

Moreover, all the curves in Z, , that are deformations of curves of Ft.1 4 are parametrized

by points of le , Wl1 , and Wif Jil’

obtained from a curve in Fl.1 , by smoothing the node on the connecting Gieseker

. . 1 .
More precisely, points of W, ; parametrize curves

bubble opposite to C’4. Figure 1.9 shows such a deformation.

Pi
Pn

degP|cr =d

Cl

Figure 1.9: Smoothing the node in the dashed circle

Likewise, the points of Wl.l 4+ parametrize curves obtained from curves in Fil 4 by
smoothing the node on C” as shown in Figure 1.10.

Pi
Pn

degPlcr=d+1

Cl

Figure 1.10: Smoothing the node in the dashed circle

We can visualize the stratum of type I curves in the following way:
---/v\’)WI e Fl WWIWFIWWI e Fl WWI YV
id-1 id-1 id id id+1 id+1 i,d+2 ’
where A ~» B means A lies in the closure of B.

Now, we define Zl.1 ; as follows.

1 1
Wl UF!,  d<o0

1
Wi,d+1

1o
Zi,d -

1 .
UF!, d>0

Keeping in mind Wz%o C (fg,n_l, we see that Zl.1 = UZZ.% 4 gives us the desired

stratification of Zl.l (see Figure 1.11).

~4We cannot smooth both since such a deformation would result in a curve that lies in the image
of Cg. .
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i0 C Cgn-1

Figure 1.11: Stratification of Z by Z!,

Before we move onto type Il curves, we give an alternate way of defining Zl.1 4» Which
will be useful later. Let Ul.1 4 be the stratum of points parametrizing all curves of
zg,n obtained by smoothing nodes of curves in Fl.l ;- By Lemma 1.1, this is precisely

Il | |
Uig=WiaVE YW, 0

12
Note that {U}, | d € Z} is an open cover of Z/.

Then, we can define Z/ , as follows.

1

Ul \ Ul
_ U\
id =

v 4<0

1 1 '
Ui,d \ Ui,d—l d=0

1 1
Geometry of F,and Z;
We defined Fl1 , as the stratum of points parametrizing curves of splitting type
({7, n}, {i, n}°) where marked points p; and p,, are on a rational curve connected to

a Gieseker bubble. Moreover, the universal bundle has degree d restricted to the
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component, C’, containing p; and p,, and degree e := D — d — 1 restricted to the

component, Cy, containing the other marked points. Hence,

p—;

1 ~ aqd e
Fi,d = MO,3 X Mg,n—l’

where we identify the third marked point of Mg3 and the (n — 1)-st marked point
of Mg .1 as the two nodes on the connecting Gieseker bubble. The marked points
of /\78{ , are denoted p;, p,, and the node p3. The marked points of /\7(/;’”_1 are the
points p; for j # i,n, and the node p,_;.

Now, we take a closer look at Zl.1 4+ Proposition 4.15 and Corollary 4.16 of [1] tell

us that Zi1 J is an affine bundle over Fl.1 -

Proposition 1.5. /7]

1. Ford > 0, Zl.1 4 Classifies bundles which arise from Fl.1 4 by smoothing away
the node attaching C’ to the connecting Gieseker bubble.

2. Ford <0, Zg 4 Classifies bundles which arise from le 4 by smoothing away
the node attaching the connecting Gieseker bubble to the components not

containing py.

3. We have a map n : Zl.1 P Fl.l 4 Such that n is the structure map of an affine
bundle.

Note that our Fi1 , correspond to those labeled F in [1], and our Zt.1 4 correspond to
those labeled Z (when d > 0) and W (when d < 0). 1 and 2 of Proposition 1.5
follow directly from the definition of Zl.1 e

While Frenkel, Teleman, and Tolland do not say exactly which affine bundle 7 :
Zl.1 P Fl.l 4 18, the proof of Proposition 4.15 in [1] contains more information which
leads to the following Proposition:

Proposition 1.6. The map n : Zg 4> Ft1 4 Jrom Proposition 1.5 is given by the
bundle

(Ly'ePHm(Pe ) d>0

PR (L 0P ) d<0

where

1. L3 is the cotangent bundle along the third section on Mg 3
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2. L, is the cotangent bundle along the (n — 1)-st section on M;,n— T

—_—

3. P3d is the restriction of the universal bundle along the third section on Mg 3

and

4. P¢_| is the restriction of the universal bundle along the (n — 1)-st section on

M;n_l.
Proof. Letd > 0and consider curves parametrized by points of Zl.f 4+ Allsuchcurves
have splitting type ({i, n}, {i,n}¢). Recall that we denote the component containing
pn by C’, and the other component by C;, where we discard the connecting Gieseker
bubble between them if there is one. Let # denote the universal bundle over curves
of Zg 4~ Now, we have two trivializations of # restricted to the two components
C’and Cy, say ¢’ : Pp, — C*and t; : Py, — C*, where k # i,n. These two
trivializations then give us the gluing isomorphism, ¢, of the fibers of ¥ over the
node. Now, as proof of Proposition 4.15 in [1] points out, scaling ¢’ to 0, we obtain
in the limit a connecting Gieseker bubble with a degree 1 transferred from C’5.
Hence, this gives rise toamap 1 : Zl.{ P le , for d > 0. Similarly, scaling ¢’ to oo

givesamap Z! , — F! ford < 0.

Moreover, the choices of the trivializations ¢’ and #; give us a map between the two
fibers of the universal bundles over the nodes on C’ and Cy, which are #,, and $), |,
respectively. As Remark 1.12.1 in [1] explains, this map #,,_, — %, is given by
t’/t1, and is precisely the gluing isomorphism, ¢, over the node attaching C” with C;
when we have a type I curve with no connecting Gieseker bubble. When ' = 0,
this map ¥, — %, becomes the 0 map and we get a connecting Gieseker bubble,
as we saw above. Hence, given a section of 77 : Z!, — F/ , we obtain a morphism

P|U—n—l - P|U—3'

; 1 ~ Agd Ae
Now, since Fl g = M0,3 X Mg’n_l,
pull-backs of line bundles over Mg3 and M; e

pry - Fll i /F\/(w;n_1 be the projection maps. First, P|,_, is equal to priPe

we try to write P|,,_, and P|,, in terms of

.ol Ad
Let pri : F,; — /\/(0,3 and

by definition. However, #|s, is not equal to pry Pg’ since P3d is the restriction
of the universal bundle over Mg 5 to 03 and thus, has 1 lower degree than P|,:
deg P|s, = d+ 1. Recall that the map 7 : Zg g Fll , inserted a connecting Gieseker
bubble by scaling the trivialization, ¢’, to 0 and transferring 1 degree from C’ to the
bubble. Hence, P|, = pri(P¢ ® L3V).

5See Remark 1.12.1 in [1].




22

Therefore, sections of 77 : Zl.1 P Fl.1 4 correspond to sections of
Hom (prik?,f_l,pr;‘(£3_l ® P3d)) = prf(Lgl ® P3d) ® (pr;P,f_l)_l.
Hence, we conclude that for d > 0,7 : Z! , — F! is the affine bundle given by

L' PHm (P ).

Ford < 0, the situation is symmetric. Recall that when d < 0, instead of transferring
1 degree to the bubble from C’, we transfer it from C;. The mapn : Z! , — F! is
then defined by scaling the trivialization, ¢’, to co. By the same argument as in the

d > 0, case we conclude that 77 : Zl,1 P Fl.1 4 1s the affine bundle given by
P 'w(Ll 0P ).

O

Another way to show that Zi} , is the affine bundle given by (£ '® SD? )R (P l)_1 is
by considering the formal neighborhood of le pr Zg ;4 corresponds to smoothings of
the node attaching C’ to the connecting Gieseker bubble, which is the marked point
p3 on Mé{ 5~ Smoothing a node is represented by the formal neighborhood given by
T. ® T_ where T denote the tangent bundles at the node on the two components. In
our case, those bundles are £3! from C’, and P¢ ® (P¢_)~! from the connecting
Gieseker bubble. The tangent bundle at the node on the connecting Gieseker bubble
is 793‘1 X (7’;_1)_1 since O(1) of the Gieseker bubble is glued on the two nodes, p3
and p,_1, to the fibers #,, and #,,_,. Hence, Zl.17 4 corresponds to the affine bundle

over le 4 given by
prifi'e (Pl ) ) = (L o P m P )
1.8 Type II curves

Now, we stratify the stratum of type II curves.

Let (C,p1,....pnP) € Mg,n be a type II curve and let C” denote the irreducible
component of C containing p,. Since C is a type II curve, C’ contains the marked
point p, and two nodes, and C \ C’ has two connected components. Note that there

are precisely three ways for a type II curve to lie in the image of 5g,n_1.

1. We choose the node on two stable components as p (Figure 1.12); or
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2. we choose a point on a Gieseker bubble as p (Figure 1.13); or

3. we choose the node on a stable component and a Gieseker bubble as p (Fig-
ure 1.14).

AN SN

p \ \Pn'+l

Figure 1.12: Choosing a node on two stable components

\Pn'+1

Figure 1.13: Choosing a point on a Gieseker bubble

DPn+1

Figure 1.14: Choosing a node on a stable component and a bubble

Therefore, a type II curve is in the image of ég,n_l if and only if either

1. degP|cr = 1 and C’ is not connected to a Gieseker bubble; or
2. deg P|cr = 0 and C’ is connected to 0 or 1 Gieseker bubbles.
For a type II curve, C \ C’ has two connected components. For I c [n — 1] :=

{1,...,n — 1} such that |I|,|I¢] > 2, let ZI2 be the closed subscheme of Mgn
whose points parametrize type Il curves not in the image of ég,n_l such that points

{pi | i € I} and {p; | i ¢ I} are on separate connected components of C \ C’.
Without loss of generality, denote by C; the curve containing points with indices in

I, and C; the other connected component.

As we did with type I curves, we will first look at the stratification of ZI2 by
topological types. We will fix D, the total degree of the Gieseker bundle, and also
the splitting g; + g» = g of the total genus g into genus, g, of C| and g, of C;. Note
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that type II curves can have 0, 1, or 2 Gieseker bubbles attached to C’. We will call

these strata W2, Y2, and F2, respectively.

Let di,d>» € Z. We denote by W I(d &)
to the topological type depicted in Figure 1.15, where (y;, d;) is any topological

the locally closed stratum corresponding

type of genus g; Gieseker bundle of degree d; with marked points of C;, such that
8 =81t &2

Pn
@ N @ P
d=D-d| —d>

Figure 1.15: Modular graphs and curves of WI (didy)

In other words, W2

Tdvdy) is the stratum corresponding to type II curves such that

1. degP|c, = d;; and

2. C’ is not connected to any Gieseker bubbles.

We will denote by

2 .
Wiarm U W
D—d\—dy=d

Note that le 4 C Eg,n_l if and only if d = O or 1 by the discussion from the beginning

of the section.

The type II curves with a Gieseker bubble connecting C” with C; will be denoted

le( didy)’ The topological type of such curves is shown in Figure 1.16.

D@-@®

d=D-dy—-dy-1

Figure 1.16: Modular graphs and curves of ¥, ( diy)

We also define
2 ._ 2 2
Yia= U (Yla(dlad2) VY (da, dl))
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Note that Y[% 4, C Eg,n_l ifandonly d = 1.

Lastly, we denote by F? 1 (dy.dy) the stratum of type II curves with two Gieseker bubbles

with the topological type shown in Figure 1.17.

s
s
s
s
s
’
’

d=D-d|—dy—
Figure 1.17: Modular graphs and curves of F; ( dy.dy)
Also, define
2 ._ 2
Fia = U FI,(dl,dz)'
D-d|—dy=d
Again by Lemma 1.1, we see that F P , and F? 1 (dy.dy) AT€ closed in /F\\/(dg,n. Similarly to

the type I case, let UI (i)

Zg » that are obtained by smoothing 0 or 1 of the nodes on each Gieseker bubble of

denote the stratum of points parametrizing all curves of
curves of FIZ( auap
Ulanay = Filanay Y Yiaa O Yiaparn Y Yie@yay O Yie dnar 1)
W ) ¥ Wiy Y Wikaape W2(d1+1 b1y
Note that { T (drdb) | D —d; — d, = d} forms an open cover of Z 4 in Zg,,

Also, the stratum of all smoothings of curves of F’ 12 418
2 _ 2
Ul’d - U UI’(dl’dz)
D—dy—dr=d
= Fl,UY},UY}, UW; UW},_ UW}, ;.

Note that { Td | d € Z} forms an open cover of 22

We can visualize the closure relations of these type II strata using the following

infinite two dimensional grid” in Figure 1.188.

Figure 1.19 shows U? T(didy) 28 deformations of curves in F? 1 (dvdb)’ The dashed lines

attached to the nodes on the Gieseker bubbles indicate which deformation happen

as we smooth the chosen node.

6As we saw in Section 1.7, we cannot smooth both nodes~of the same Gieseker bubble since
such deformation would result in a curve lying in the image of Cq 1.

"The two dimensions correspond to smoothings of the two connecting Gieseker bubbles. The
direction along each axis is determined by which of the two nodes on the bubble is smoothed.

8Keep in mind closure relations are transitive.
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WI,(dl—l,d2+l) ¢

: 5

2
YI,(dl—l,d2+l) ~
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2
Ul i)

1

2
WI,(dl,d2+l)

:

T

2
W[,(d1+1,d2+1)

:

2
v YI,(dl,d2+l) ~

5

2 2 2 2 2
YL(dl—l,dz) o F L(d-1.d) "~ Yie (tpary ™ F. L(dyd) ™" Ylv,(dz,d1+1>
N ¥ ¥ § é
2 2 2 2 2
W14 > Yiga-1ay P Wikanay ™ Yicaiay > Wi
g § N A N
2 2 2 2 2
YIC,(dz—l,dl—l) ‘ FI,(dl—l,dz—l) ~ ch-,(d2—1,d1) v Fl,(dl,dz—l) ~ ch,(dz—l,d1+1)
2 2 2 2 2
W],(d1—1,d2—1) ¢ YI,(dl—l,dz—l) ~ W],(dl,dz—l) v YI,(dl,dz—l) ~ WI,(d1+1,d2—1)
1
2
UI,(dl—l,dz—l)
Figure 1.18: Type II strata and their closure relations
(dl,d2+1) = (d1+1,d2+1)

xﬁ/‘,
»

(dy,dy+1)

Figure 1.19: Closer look at

NG
X
7
g
7
-/
N -
X S~ o /’
»

~7

\

(d1 + 1, dz + 1)

2
Ulf(dlst)
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We are finally ready to define our stratification of le. Define

2 2
UI,d \ UI,d+1 d=<1

7> .
U,%d\U,%d_1 d>?2

ILd =

We also define
2 e 72
Zi v = Z1a NV ULdrdy)-
Recalling that WIZ’O, WIZ’I, lel C Eg’n_l, we see that ZI% d stratify ZIZ. Moreover, for
each d, le 418 the disjoint union

2 2
Zl»d - U ZI,(dl,dz)'
D—d—dy=d

Figure 1.20 shows the stratification of 212 by ZI2 ,and All superscripts and

2
Ziddy)’
subscripts except for the degrees are suppressed for the sake of simplicity.

In Figure 1.20, dy, d> € Z are such that D — d; — d» = 1. The strata that lie in the
blue shaded region are the ones that are in the image of ég,n_l. The red boxes are

the Zi( &) where (d’, d”) are the degrees corresponding to the F(, 4 in the same

box. For example, the box labeled (2.2) correspond to ZIZ( dyd-1)° Moreover, each

box labeled (d, k) lie in led. For example, boxes (1.1), (1.2), and (1.3), which are

Z2 2 2

. .. 2
T (dy—Ldy+1y ZI,(dl,dz)’ ZI,(d1+1,d2—1)’ respectively, all lie in Zl,l' Note that

D-(d-1)-(dh+1)=D-di—~dy=D—(d +1)=(dr— 1) = 1.

) 2
Geometry of I(dy.do) and Z[,(dl,dz)

By the same argument as in the type I case,

2 ~ Aqdi
Fl,dl,dz = M

A1d A
41 X M0,3 X M

g+ 1

where d = D — dy — d» — 2. Also, by Proposition 1.5, we know that there exists a

map 7 : le, (drdy) FIZ’( i)’ which is the structure map of an affine bundle. From

o 2
our description of Z T(drdy)y WE know that

1. ford > 2, ZIZ( dy.dy) classifies bundles which arise from F 12( didy) by smoothing

away nodes attaching the connecting Gieseker bubbles to C; and C,; and

2 . . . 2 .
2. ford <1, ZI,( diy) classifies bundles which arise from F [ (dy.y) by smoothing

away nodes attaching the connecting Gieseker bubbles to C’.
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Figure 1.20: Stratification of le
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Figure 1.21: le(dl &) when D —d| —dr, > 2

By the same argument as in the proof of Proposition 1.6, we obtain the following

proposition.
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Proposition 1.7. The map n : ZI2 (i) ™ F 12( dydy) is the structure map of the affine
bundle

(£ih o7 ) e m0g,) @ (0 s P & (L, ©PE ) d=2
((7)"?'“)—1 = (Ll_l 2 Pld) 2 O[VIZ) ® (OA712 [z (.[:3—1 ® 7)351) X (pﬁiﬁ.l)_]) d<1 >
where

. L1141 1s the cotangent bundle along the (|1|+1)-st section, o|j|+1, on M;‘ e

~

2. 73|‘;'|+ | I8 the restriction to o1y of the universal bundle over MZ: et

3. Ly and L3 are the cotangent bundles along oy and 03 on MgS,'

4. Pld and P3d are the restrictions to o and o3 of the universal bundle over

Ad .
M0,3’
5. Lyje|+1 is the cotangent bundle along ojc|41 on MZ; el and

& . o . d,
6. 73| AR the restriction to ojc|+1 of the universal bundle over Mg27| rels1

1.9 Type III curves

A necessary and sufficient condition for a type III curve to be in the image of C~‘g,n_1
is the same as the condition for type II curves. Denote by Z> the closed subscheme
of Mg,n whose points parametrize type III curves that do not lie in the image of
ég,n_l. For j € Z consider the strata Fj whose points parametrize type III curves
such that

1. deg®P|cr = j; and

2. ('’ is connected to two Gieseker bubbles.

Then, for j > 0, we define Z; recursively as

3 _ 3 3 3
Z} = (UJ. nz ) vz
0<k<j-1

where U; = Uﬂy,d is the union running over all (y, d) such that there exists a
modification f : (y/,d’) — (y, d) with (y/, d’) the modular graph of a bundle in Fj3.
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Similarly for j < —1, we define Z; recursively as

3 _ 3 3 3
z=(vinz)\ | Z

j+l<ks-1

By the same argument we see that Z; is locally closed for all j € Z and that
X2(F) = Y xp(F)
JEZ !

For j > 0, Z; parametrize all type III curves that are obtained from curves of FJ.3 by
smoothing the nodes on C’. For j < —1, Zf parametrize all type III curves that are
obtained from curves of Fj3 by smoothing the nodes on the two connecting Gieseker
bubbles that do not lie on C’.

1.10 Cohomology over Zg,n

Recall that we would like to compute )((/Wg,n, a), where «a is an admissible bundle
on /F\\/(dg’n. In order to compute X(/F\\/(Jg,n, «), we use the stratification of /F\\/(dg,n as a
union of C~g,n, Zl.l, ZIZ, and Z3. First, we recall the definition of cohomology with

support on a locally closed subscheme.

Definition 1.8. /5] Let X be a topological space and let Z C X be a locally closed
subset. Define the sections of F with support in Z as

I'z(X, %) = {s € F(X) | Supp(s) C Z}.

Then, Iz is left exact but not necessarily exact. We define the right derived functors

of I'z to be the local cohomology groups with support with Z,
Hy(X, F) := RTz(X, F).

Local cohomologies satisfy several properties.

Proposition 1.8. [5] Let Z be a locally closed subset of X. Suppose Z C Y C X.
Then,

HIZ(X, T) = HIZ(Y’ ﬂY),

for all i and for all sheaves ¥ on X.

Using Proposition 1.8, we will simply denote H%(T) = HE(X, F).
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Proposition 1.9. Let Z C X be an open subset. Then,
HY,(F) = H'(Z, %),

for all i and for all sheaves ¥ on X.

When Z C X is a locally closed subset, there is an associated long exact sequence
of cohomologies.

Lemma 1.2. /5] Let X be a topological space and let Z C X be a locally closed
subset. Let Z' C Z be closed in Z and let Z" := Z \ Z'. Then, we have the following

long exact sequence of local cohomologies for any abelian sheaf F on X :

0 — HY.(F) — HYUF) — Ho(F) — HL(F) — HL(F) = HL.(F) — -

Corollary 1.1. Let X be a topological space and let Z C X be a locally closed
subset. LetY = X \ Z and let F be a sheaf on X. Then, we have the following long

exact sequence of local cohomologies:

0 — HY(F) — H'(X,F) — H'(Y,F) —» H(F) - H'(X,F) - H'(Y,F) — - - .

Proof. The long exact sequence is the one associated to the triple Z,Y c X from
Lemma 1.2, where the local cohomologies with support on open subsets of X are

replaced with regular cohomologies using Proposition 1.9. i

Note that C~‘g,n_1 is open in Mg,n and thus, zg,n is closed. By Corollary 1.1, for any

sheaf F on M, ,, we have the following long exact sequence of local cohomologies
0— HE (F) = HYF) = H'(Con-1.F) = Hy (F) = H'(F) = H'(Con-1.F) > -+
gn g.n

where H (F) := H' (/T/[dg,,,, ). Hence, if all the following terms are well-defined, we
have

XMy F) = X(Con-1.) + Xz, (F).
In following sections, we will show that when g = 0, the terms are indeed well-

defined and that the equation above gives us a formula for computing n-pointed

invariants, (Mo, @), from lower pointed invariants, y (Mo, @), where m < n.

Note that the strata Z!, Z?, and Z? are a pairwise disjoint collection of locally closed
strata. Hence, by using Lemma 1.2 on zV. 7% 73 ¢ ZLgn, We get

Xz, ) = x2:(F) + x22(F) + x2(F).
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Since Z! = ;’;11 Zl.l, where Zl.1 are pairwise disjoint, we conclude that

n—1
X2 (F) = ) xp(F).
i=1

Also, recall from Section 1.7 that for all i, Zl.l0 is open in Z!. And Z!

i,+1

Zi1 \ Zgo. Similarly, for all d > 0, Zgi 4 s open in Zl.l \ (U| k|<d Zg d). Therefore,

by the long exact sequence of local cohomologies, we conclude that if y,1 (¥) and
L]

2d )(Z;d(i’-') are well defined for a sheaf 7, then

is open in

X (F) = ) Xz (P,

deZ

for all i € [n — 1]. Combining the two results, we get

X2 )= Y, ) xg ().

ie[n—1] deZ

Similarly, we know from Section 1.8 that Z = [, ZIZ, where the union is over all
subsets / C [n — 1] such that 2 < I < n — 3. Moreover, we also know that le can
be stratified by ZI2 4+ We know that Zfo is open in Z2, and for d > 0, Zizi 4 is open

in 72\ (U|k|<d Zfd). Hence, by Lemma 1.2, we have

X (F) = ) xz1 ().

deZ

Finally, for each I and d, ZI2 4 is a disjoint union of ZIZ( didy)’ where we run over all

di,dy € Z such that D — dy — d, = d. Therefore, we get,

Xp(F)= ) xz, ().

dy,dr€Z
Since this holds true for all I C [n — 1], we conclude that
2= >, D xz

I,dl,dz
1] dideZ
2<|1|<n-3
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Combining the results above, we obtain

Xz P = | D xz@ |+ D, xz@®|+xz® (3
’ i€[n-] Ic[n~1]
2<|I1<n-3
= Z DXz (P (1.4)
i€[n-1] deZ
o2 2 X, (| xn). (1.5)
ICc[n-1] di,d2eZ
2<|I|<n-3

In particular, when g = 0, there are no Type III curves®. Hence, Z> = 0 and thus,

XZo,n(T) = Z ZXZI )|+ Z Z XZ%d dy |- (1.6)

i€e[n-1]deZ Ic[n—-1] d\,dr€Z
2<|I|<n-3

1.11 Towards finiteness of X(/Wo,n, @)

Recall that we have

XMogp, @) = x(Mop-1, Rm) + xz, (@)

In Section 1.10, we showed that the second term, Xz, (@), can be written as a

countable sum of local Euler characteristics yz(a), where Z is locally closed.

We wish to show that when g = 0, n-pointed gauge Gromov-Witten invariants can
be reconstructed from lower pointed invariants and thus, are well defined. In this
section, we will show that all but finitely many terms of the sum in the equation 1.6
vanish. Moreover, the nonvanishing terms can be written as a sum of products of

x(Mo, @), where n’ < n and o’ is an admissible class on Mo, .

Vanishing of Xz;d(a) ford < O0Oand d > 0

First, fix i € [n — 1]. We will show that y l(oz) vanishes for all but finitely many
deZ. ’

Suppose d > Oandlete = D—d—1. Recall from Proposition 1.6 that F; l = Md

Mgn |» and that Z1 is an affine bundle over F1 given by (£ ® Pd) = (Pe_ 1) !

9Since all type III curves have genus greater than 0.
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where L3 is the cotangent bundle along o3 in Mg 3
universal bundle to o3, and Pr‘f_ | 1s the restriction of the universal bundle to o,,_1 in

/f\\/(d(‘in_1 . Also, recall that the normal bundle N zZ, is given by (Psd ) m (L;_ll P ).

?’g is the restriction of the

Now, using the filtration spectral sequence, we obtain

Xz,@ = x|Fpa®detNy ®SymNy @SymNyi . |.

Consider the C*-action on Fl.l 4 given by the global scaling of the universal bundle on
C’, i.e. the pull back of the global C* action on Mg ;- The weight of this C* action
is 1 on 7)3‘1 and 0 on 'E3_1’ £ and $¢ .- Since det NZil’d = (Péi)—l X (.E;_ll ®Pc 1)

n—1°

C* action has weight -1 on it. Hence, the C* action has negative weights on the

components of Sym NZ_ld. Lastly,

SymN;! L =sym((Lo @) apy).

Therefore, we see that C* action has negative weights on all the components of

Sym N ;,1 iz - Hence, the weights of the chosen C* action on all the components of
i,d' i, d

detNz1 ® SymNy ® Sym N;,lld/z{

i, i,d

are negative.

We have left to compute the weight of the C*-action on . Since « is an admissible
class, @ = (det Rm,¢*C1) ™4 ® (@l eviCy ® L;’j). However, for all j € [n], the

weight of our chosen C* action on eV;‘. Cy ® L;lj is independent of d.

Lemma 1.3. [1] For the chosen C*-action,

1. C*acts on eV; Cy; with weight A;, if p; is parametrized by a point of Mo,3.
2. C*acts on ev;‘. Ca; with weight 0, if p; is not parametrized by a point of /i/(vo,}

3. C* acts on L; with weight 0.

Finally, we want to compute the weight of the C* action on det Rr.¢*C;. However,
the action is simply global rescaling of the universal degree d line bundle on
Mo,g. Hence, the weight of the C* action det Rm.¢*Cy is d + 1, and its weight on
(det Rm.p*Cy)™ 9 is —g(d + 1) where g > 0.

We see that the weight of the C*-action on a over Fi1 4 1s a linear function of d with

slope —g < 0. Since all the components of det NZ'ld ® Sym NZ'Id ® Sym N;ll iz
b b i,d! “i,d
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have negative weights with respect to our chosen C* action, we see that for d > 0,
C* acts with negative weights on all components of

* — * a; -1

(det Rt,¢*C1) 7 @ ((X) eviCy, ® Ljf) ®detNz) ®SymNyy @ SymNL| ), .

J

In particular, there do not exist sections that are invariant with respect to the chosen

C*-action. Therefore, we conclude that for d > 0, )(Z;d(Rn*a/) = 0.

Moreover, note that @ over le g = /F\/(vo,3 X Mo,n_l can be written as a box sum of a line
bundle over /T/(do,g and a line bundle over Mo,n—l . Recall that the isomorphism Mo,g X
J\;(O,n— 1= le ;18 defined by associating the rational component of C containing points
pi and p,, with the corresponding point on M%, and associating the other (possibly

reducible) component containing points p;, j # i, n with the corresponding point on
Mon-1.

Using the isomorphism, we see that (X) ; CV; Cy ® .E;lj can be written as
(eviCy ® L ®ev,Cy, ® L") B (®j¢i,n ev;Cy, ® L?‘f) :
where the first term is a line bundle over /,-\;(,0’3’ and the second term is a line bundle
over /F\/(vo,n_l.
Now, we have the following lemma.
Lemma 1.4. We have an isomorphism
det Rm,¢"Cy = det Rm.¢|Cy ® det Rmr,.5Cy,

where @i : Moz — [pt/C*] and @3 : M1 — [pt/C]

Proof. Before we prove the isomorphism globally, we will first verify the isomor-
phism fiber-wise over points of le ;4 to get a clear picture of why the two bundles
are isomorphic. The global picture, and the proof of the isomorphism are almost
identical. Let p € le , parametrizing a reducible curve C = C' U BU C”, where B
is the Gieseker bubble connecting the component C’ containing p; and p, with the
component C” containing the rest of the marked points. Let  be the restriction of
the universal line bundle Py, to C. Note that B = P! and that |3 = O(1). Consider
the morphism C’ [| B[] C” — C given by normalizing the two nodes on B. This

morphism gives a short exact sequence of sheaves on C.

0-P—->Pi.PreP - PloPl, =0
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where P’ := i.P|c, P” := i.P|cr, and p and g are the two nodes on B. Now,

consider the associated long exact sequence of cohomology groups:
0— H'(P) —» H'®) e H'P',0(1)) @ H'(P") - P|, & P|,
— H(P)e H'(P") - H'(P) > 0.

However, H(P!, O(1)) is canonically isomorphic to O(1)|o ® O(1)|«. In particular,
we have H'(P!, O(1)) = P|, ® P|,. Therefore, we conclude that H(P) = H(P") @
H(®P")and H(P) = H'(P’) @ H'(P”). Hence, we conclude that

Rn.P = Rrn.P’ & Rn.P”.
Taking determinants of both sides, we obtain
det(Rm,P) = det(Rr,P’) ® det(Rm.P”).
Since P’ = i.P|c» and P” = i.P|c», We can write

det(Rn.P) = det(Rn.P|c) ® det(Rm.Plcr).

The isomorphism above holds for all points of le , and moreover, hold globally over
le = M(‘){3 X M&n_ .- Let C~‘,-,d be the restriction of the universal curve, CNOJ,, over
le - Let B be the family of Gieseker bubbles over le g Then, we see that (:‘di,d is the
union of three connected components, 5073, B, and 50,,[_1, where 8 is connected to
50,3 and 50,,,_1 along the last marked sections 03 and 0,1, respectively. Letting $’
and P” denote the restrictions of P to 50,3 and 50,,,_1, and letting o’ = 50,3 N B,

and 0" = 50,,1_1 N B, we have the following short exact sequence:
0->P—>Poi.PlgdP — Ple®Pl — 0.
Since B is the family of Gieseker bubbles over Fl.l g0 itisa P! bundle over Fl.l p and

P|g = Og(1). Pushing forward along 7 : C — Fi1 4> We obtain the following long

exact sequence:
0—- nP - P e&n0g(l)dnP” - Pl,®Pl,
— R'n,. P’ @ R'n,P” — R'n, P — 0.
Sincenr : B8 — Fi,ld is a P!-bundle, 7.05(1) = P|, ® P|,». Hence, we obtain

Rn.P = Rn.P’'®Rr.P”, and thus, det(Rr.P) = det(Rr.P’)Qdet(Rx.P”). Finally,
noting that P’ = 5‘3|503 and P = P| oy WE conclude that over Fl.1 , We have

det(Rm.¢"Cy) = det(Rm,¢Cy) ® det(Rm.5Cy).



37
Combining both results, we get the following proposition.
Proposition 1.10. Leti € [n—1]and d € Z. Let Fy ! be the stratum of type I curves

as defined in Section 1.6. Then, Fl Mo3 X MOn 1. Moreover, the isomorphism

of spaces gives rise to the following isomorphism of line bundles:

IR

(det Rm.p"Cy) 7 ® (® GV;T C/l_i ® .Ejl) ((det Rm.¢"C1) 9@ eV;k Cy ® .Ela' Rev,Cy ® .EZ")
J
@ ((det Rro"C1) 7 ® (8jain 0¥} Coy © L)

In particular, for any admissible class, a over Fl.1 , we conclude that there exist

admissible classes a\ and ay on Moz and Mo ,—1, respectively such that

a = o ¥ap.

Proof. The proposition follows directly from the discussion above. Note that the

analysis is independent of our choice of i € [n — 1] and d € Z. O

Now, suppose d < 0. We want to show that for d <« 0, )(Z;d(Rﬂ*a/) = 0. Again,

recall that F | = Mo,g X Mg n-1, the normal bundle to Z ! in /Wg » is isomorphic to
(L;'eP3)rP ! and Zl.1 is an affine bundle over F1 glven by (L' @P,_)rP;!.

Consider the pullback of the C* action on Mo,3. We already showed that the weight
of this action on a over Fl.1 4 1s given by a linear polynomial with slope —g < 0.

However, we have
det N1 = L' PHmPe ),

SymN, = (Sym£3 ®sym7>d)xsym( e

SymN_ !

g = Sym@d w (Sym L @ Sym#y )

Recall that, the weight of our chosen C* action is 1 on Pd and O on £3 , Ln 1>
and P¢ . Therefore, C* acts with positive weight on all the components of the

vector bundles above. Hence, for d < 0, the weight of the chosen C*-action on

all components of det Nz;d ® Sym Nz;d ® SymN ! 71
i, i, d

a®det N. 7 ® Sym Nz;d ® Sym NFll /21 does not have any invariant sections under
L b id! “i,d

the chosen C* action. Consequently, )(Z;d(a/) = 0 for d < 0. Moreover, by

must be positive. Hence,

Proposition 1.10, we know that there exist admissible classes @ and a, over M3

and /F\/(V(),n_l, respectively, such that over Fl.1 g We have

a = o) Hap.
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Since )(Z_ld(oz) =0ford > 0and d < 0, we conclude that I; = {d € Zl)(z;d(a/) # 0}

is finite. Then, Proposition 1.10 implies that for all d, there exist admissible classes

@14 and a2 4 on Moz and My,—1, respectively such that

Xz (@)= ) x(Mas, a1 x(Mop-1, 2.0).
| del;
Vanishing of Xz, . )(oz) for all but finitely many pairs (d;, d»)
»(dy.dy
Now, we show that y,> )(a/) = 0 for all but finitely many pairs (dy, d») € Z?.

1,(dy,dy
FixI c[n—1]suchthat2 < |I|<n-3andd|,d»b € Z. Letd :=D—dy —dr, — 2

and suppose d > 2. Then, we saw from Section 1.8 that

2 ~ Aqd1 Aaqd Aqd>
Fanay = Mol X Moz X Mg ey
. P : : 2 e 72 T AqD
For simpllc{[z of notation, we write F := FI,(dl,dz)’ Z = ZI,(dl,dz)’ M = M0,|1|+1
and M, := /\/(gz| relet Recall from Proposition 1.7 that the formal neighborhood of

F is isomorphic to
NN, & N3 d Ny,

where

_ d _
e (£|,|1+1 ® P|,1|+1) = (P! @O0y,

No= (@ ) (L7 e ) m O,

[1]+1

- d -
N3 = OMI X (£31 ®P3d) X (P|]2|c+]) 1’

- - d
No=0g m(@PH ™ m (Ll @2 ,)-

Since d > 2, Z parametrize type II curves obtained by smoothing nodes attached to
Cy and C,. Hence, the normal bundle to Z in M, ,, is isomorphic to N> @ N3 and Z
is the affine bundle to F given by N| & Ni.

Consider the pullback of the global C*-action on M,. This C*-action has weight

1 on Pz+1 and O on all other line bundles appearing in ;. Hence, C*-action has
weight 1 on Np, -1 on N,, and 0 on N3 and Nj.

The weight of this particular C*-action on « is again given by a linear polynomial
in d with slope —g < 0. As before, the weights of this C*-action on evj. C,; and on

L;” are independent of d; for all j = 1,...,n by Lemma 1.3.

Moreover, the following lemma allows us to compute the weights of our chosen
C*-action on (det Rmr,¢*C;)74.



39

Lemma 1.5. We have
det Rm,."Cy = det Rm,.¢]Cy ® det Rm.¢,C ® det Rm,¢3Cy,

where @1 : M, — [pt/C*], ¢ : M, — [pt/C*], and ¢ : /F\/(vo,g — [pt/C*].

Proof. The proofis similar to the proof of Lemma 1.4. Every point of F parametrizes
a type Il curve, C, with two connecting Gieseker bubbles attached to C’, the compo-
nent containing p,. In other words, we have, C = C; U B; U C’ U B, U C;, where By
and B, are connecting Gieseker bubbles. Moreover, C; contains the marked points

with indices in 7, and C; contains the marked points with indices in /€.

Let C be the restriction of the universal curve, 50,,1, over F =F 12( i)’ Let Cy, Co,

and C’ be the families of curves over F containing the sections o; withi € 1,7 € I,
and i = n respectively. Let 81 and B, denote the two families of Gieseker bubbles,
andlet S, =C;nNSB;, T, =CnN B,

By normalizing S; and 7;, we obtain a morphism
alls|]c]]s]]e-c
This morphism gives rise to the following short exact sequence
0-P->PoQoP oQdP— Pl ®Plr, ®Pln e Pls, = 0,

where £ is the restriction of the universal bundle to C, P; = i.P|c;, P’ = i.Plc’,
and Q = i*P|3i. Since B, and B, are Gieseker bubbles, we know that B; — F is
a P'-bundle and Q; = Og,(1). Therefore, we have

ﬂ'*Qj = PlSj EBSDlTj-

Moreover, R’ r.Q; = 0 for all p > 0.

The short exact sequence above gives rise to the following long exact sequence:
0—- P — P on &P &n®n.P>

— Pls, ® Plr, ® Plr, ® Pls, —» R'n.P — R'n.P & R'n.P ® R'n. P, — 0.

Since 1.Q; = P|s, ® P|r;, we conclude that

P = 1P & n.P & n. P,
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and
R'7.P = R'7.P & R'n.P" & R'n.P>.

Since fibers of 7 are one dimensional, higher derived push-forwards vanish. There-
fore, we have
Rn.P = Rn, P, ® Rn.P’ & Rn.P>.

Now, note that Cy, C’, and C, are identified with the universal curves over Mo |71+1, Mo,
and M |jc|+1 under the isomorphism F = My, +1 X Mo3 X Mo, sc|+1. Hence, above

isomorphism can be written as
Rm.¢*Cy = Rm.¢,Cy 8 Rr.¢>Cy 8 Rm,.3C;.

Taking determinants of both sides, we get the desired isomorphism. m|

The weight of the chosen C*-action on det Rm.]Cy is di + 1. Since the chosen
C*-action is trivial over the other components C, and Cs, the weights are 0 on
det Rm.5Cy and det Rm.¢;Cy. Hence, the C*-action has weight —g(d; + 1) on
(det Rm,.*Cy)71.

Now, note that
det Nz®Sym Nz®Sym N;/IZ = det (N, & N3)®@Sym (N, @ N3)®Sym(N1_169N4_1).

Recalling that C*-action has weight 1 on NVi, -1 on N3, and 0 on N3 and Ny, we see
that the C*-action has negative weights on all components of the vector bundle above.
Hence, for d; > 0, the C*-action has negative weights on all components of the
vector bundle @ ® det Nz ® Sym Nz ® Sym N;}Z. We conclude that )(le,(dl’dz)(a) =0
for di > 0.

By a symmetric argument, we conclude that for d; < 0, XZIz,(dl,dz)(Rﬂ-*a,) = 0. Also,
note that the choice of d; was made without loss of generality. Therefore, we can

conclude that XZ?W o =0 for d, > 0 and d, < 0 as well.
»(dy,dy

Therefore, for all but finitely many (dy, d»), Xz, )(Rﬂ*a/) = 0 and thus, Xz2 is
1.(dy,
finite for all 1. "

Combining the results, we obtain the following proposition similar to Proposi-
tion 1.10.

Proposition 1.11. Let I C [n— 1| with 2 < |I| < n -3 and let (dy, dy) € Z*. Let

F 12( i) be the stratum of type Il curves as defined in Section 1.6. Then,

p v =4 >
Flanay = Mol X Moz X Mg ey
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Moreover, the isomorphism of spaces gives rise to the following isomorphism of line
bundles:

IR

(det Rm.¢"Cy) 1 ® (® eviCy ® L?i)
i iel

R ((det Rm.¢*Ci) ¥ ®@ev, C,y, ® L")

((det Rr.o"C1) 1 ® (® eviCyp ® L

))

3 ((det Rr.p"C) 1 ® (® ev; Cy, ® L}

iel¢

In particular, for any admissible class, a, over F 12( dydyy there exist admissible classes

ay, az, and az on Mo j+1, Mos, and Mo jc|+1, respectively, such that

a=a Xay X a3.

Propositions 1.10, 1.11, and the analysis in this section give us the following

important result.

Proposition 1.12. Let @ be an admissible class on Mo,. Let Zo, € Mo, be the
complement of the image of the universal curve, 50,,,_1, over Mon—1. Then, Xz, ()
can be written as a finite sum of products of x (Mo, @), where o’ is an admissible

class on Mo, withn’ < n.

1.12 String equation and divisor relations on /ﬂ\\/(do,n

Section 1.11 made the first step towards reconstructing gauge Gromov-Witten in-
variants by showing that the local cohomology of an admissible class over the
complement of 50,,1_1 in /\70,,, can be computed as a finite sum of fewer pointed

invariants. Recall that
X Mo @) = X(Con1,@) + x5, (@).

If we can show that X((Afo,,,_l, @) can be reconstructed from fewer pointed invariants,

we will have proven the reconstruction theorem for gauge Gromov-Witten invariants.

Showing that X(EO,n, a) can be reconstructed from fewer pointed gauge Gromov-
Witten invariants is similar to the proof of the reconstruction theorem for quantum
K-invariants from [10]. The open stratum, 507,1 C Mon+1, is the universal curve

over My, and thus, we have 7, : Co,, = Moy-

In Section 1.5, we showed that the determinant line bundles and the evaluation line

bundles at points other than the (n + 1)-st point restricted to 50,,1 can all be written

)
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as pull-backs of corresponding line bundles on Mo,n- In this section, we will prove

relations concerning the (n + 1)-st evaluation bundle and the cotangent line bundles

L.

String equation
First, we study the relation between the cotangent line bundles. More precisely, how
do the line bundles £i|50

bundles for My ,+1 and My, respectively, and 7, : 50,,1 — Mo,?

and r;¢; differ, where £; and ¢{; are the cotangent line

We recall the string equation for MQ,,, which answer the analogous question in the

regular Gromov-Witten theory.

Theorem 1.9. [14] Let & : MOMH — Mg,n be the forgetful morphism forgetting
the last marked point. Let L; and €; be the cotangent bundles along the i-th marked
point on M(),n.ﬂ and Ho,n respectively. Then, we have the equality

L=rn® O(D;),

where Dj is the divisor whose generic point parametrizes a curve with two compo-
nents. One of the components contains i-th and the last marked point, and the other

contains the rest.

A similar relation exist for the moduli stack of Gieseker bundles.

Proposition 1.13. Let L; be the i-th relative cotangent bundle on Mo,n+ 1 and let €;
be the i-th relative cotangent bundle on /F\/(vo,n. Recall that we have an embedding
50,,1 — /\~/(0,n+1. Let D; be the divisor on /\7qn+ 1 whose generic curve has two
components, one of which contains the i-th and the (n + 1)-st marked points and the

other component contains the rest. Then, we have the relation,

Lilg,, = 7,ti ® O(Dy)lg,

Proof. Note that for all i, £; = F*L; where F : /F\/(VQ,,, — Mo,n is the forgetful
morphism forgetting the line bundle. Moreover, since Mo,m 1 is the universal curve

over ﬂo,n, we have the following diagram:

_ Fo—
Con —— Mon+1

S

P F -
MO,}’L — MOJl
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where F : 50,,1 — MOJH_] factors through 50,,1 — /F\/(VO,nH — M()JH_]. Hence,
the relation above still holds true for /‘/(vo,n. More precisely, let £; and ¢; be the
cotangent bundles along i-th marked point on ]\\/(d()’n-y] and /\A/(do,”, respectively. Since
the cotangent bundles are simply pullbacks of the cotangent bundles over Mo,n, we

conclude that over (Ajo,,,, we have the relation
Lilg,, = 1l ®0Dilg, .

where D; the divisor on My ,+; whose generic curve has two components, one of

which contains the i-th and the last marked point and the other contains the rest. O

Divisor relations

We now look at the bundles involving the (n + 1)-st marked point, namely ev’ , C)
and L,+1. Since the relations between the restriction and pull-backs for the eval-
uation bundles and the cotangent bundles are well understood for all other points,
we will prove relations between the evaluation bundles and cotangent bundles at
different marked points. Once we understand the relations between the evaluation
bundles and cotangent bundles at different marked points, we will be able to reduce
any admissible line bundle to one which does not involve bundles at the (n + 1)-st

marked point.

We first recall two divisor relations that hold in Pic(mo,n(P’, B)).

Theorem 1.10. [10] Let Dg, g,|s, g, denote the divisor in Mo,n parametrizing maps
whose domain C = Cy U C; is reducible such that the marked points py € S; lies on
C;, and the class of the image of C; is B; with 81 + 2 = 5. Now, we define

Dipyjjp, = Z Ds, py152.5,
i€S1,jES

ilj = Z Ds, 152,52
I€81,jeS2.B1+P2=p

Let L € Pic(P") and i # j. Then the following relations hold in Pic(ﬂo,n(P’, B)).

D

I eviL=eviL+(BL)L;- Z (B1, LYD; 1.4
Bi+p2=p

2. Li +Lj = Di|j-

Similar relations hold for the moduli stack of Gieseker bundles. Let Mo,n, E C /T/(do,n

be the connected component whose points parametrize bundles of total degree
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E € Z. Let £; denote the i-th cotangent bundle. Also, let D;; denote the divisor
whose generic point is a reducible curve where the i-th and j-th marked points are
on distinct components. Finally, let D; 4; r—q be the divisor whose generic point
parametrizes a reducible curve, say C U C” such that p; € C, p; € C’ and the degree
of the line bundle restricted to C and C” are d and E — d, respectively. Then, we
have the following proposition.

Proposition 1.14. Let A € Zand leti # j = 1,...,n. Then, the following relations
hold in Pic(Mo,.g).

1. evl.*Cl = ev;.‘C,l +AELj - Yz AdD; q)j E-a

2. .E,' +-£j = DiU

Proof. Proof of the second relation follows directly from the fact that £; on /F\/Ivo,n is
the pull back of the corresponding cotangent line bundle on Mo’n. Since the relation
holds in Pic(moﬂ), we conclude that the relation holds in Pic(ﬂo,n,E) simply by
pulling back the relation from Pic(ﬂo,n).

The proof of the first relation is almost identical to the proof for the case of My, in
[10].

To show that the first relation is true, it suffices to show that the relation is true when
restricted to curves Bon M := Mo,n, £ which intersect boundary divisors transversely.

Given, B — M, we have the following cartesian diagram:

T—f—“’ﬂm/@ﬂ
B—M

By pulling back sections 0,0 : M — C, we get two sections of S — B, say s; and

s;. Note that for k = i, j we have
(B,ev, Cy) = (51, ¢"Cp),

(B, Li) = —(Sk> Sk)-

Since S is the fiber product B X, C, we know that S is a P'-bundle over B blown up
at points where B intersects the boundary divisors of M. Since boundary divisors
whose points parametrize reducible curves with more than 2 components have

codimension strictly greater than 1, we can assume B meets only the boundary
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divisors whose points parametrize reducible curves with 2 components. Therefore,
S is a P! bundle, P, over B blown up at points such that each reducible fiber is a
union of two (-1)-curves. Let P = P(V), where V is a rank two vector bundle over B.

Let Sing C B denote the points where B intersects a boundary divisor of M. Then,
Pic(S) = Pic(P) ® (@besingzb) = Pic(B)® Z @ (@bggmgzb) .

In particular, every line bundle on S can be written as 7% L ® O(d) (— 2beSing ebEb)
where E}, is the exceptional divisor over b € Sing. Write the line bundles correspond-
ing to divisors s; and s; as 7*L; ® O(1) (— 3 62Eb) and 7°L; ® O(1) (— 3 6{;Eb),
where 62 = 1if s; intersects E} and O otherwise, and similarly for 62. We can also
write ¢*C, as 7°L ® O(AE) (— X, AdpEp) where d, is the degree of the universal
bundle restricted to E,. Then, intersection theory on § gives:

(si,¢*Cy) = deg L + AE deg L; + AEc;(V) — Z Ady6,
(sj»¢"Cy) = deg L + AE deg L; + AEc;(V) — Z Adypd,
(si, i) = 2deg Li + ¢1(V) — Z St
<Sj, Sj) = 2deg Lj + CI(V) - Z 52
Moreover, since s; and s; never intersect, we have
<S,’, Sj) =0= deg L; + deg Lj + Cl(V) - Z 5252

Let Sing(i) be the points b € B such that s; intersects Ej, but s; does not, and let

Sing(j) be the points such that s; intersects Ej, but s; does not. Then, we have

<Si, QO*C,1>_<S]', QO*C/1>+/1E<SJ’ s]) = ﬂE(deg Li_deg L])_ Z ﬂdb‘l‘ Z /ldb‘i'/lE(S], S]>
beSing(i) beSing(j)

= AE(—degL,-—cl(V)+Zagag—deng)— Z Adp + Z Ady + AE(s;, ;)

beSing(i) beSing(j)
= AE Y (G5, -6) - >, Adpy+ Y Ady
beSing(i) beSing(j)
- — Z Adp + A Z (E —dp)
beSing(i) beSing(j)

_—) Z dy, + Z (E —dp)|.
beSing(i) beSing(j)
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Therefore, we conclude that
(5 ¢"Ca) = (5, ¢"Ca) = AE(sjs;) =4 > dp=A Y. (E=dp).
beSing(i) beSing(j)

Hence,

(B,evi Cy) = (B,eviCy) + AE(B, Lj) - 1 Z dy + Z (E—dp)|.
beSing(i) beSing(j)
Since this holds for all B meeting boundary divisors transversely, we conclude that

in Pic(M) we have the relation

eviCy = eV;f Ci+AEL; - Z AdD; g, E-a-
de’Z

1.13 Reduction to boundary loci
Using the results of Section 1.12 we can reduce computing the Euler characteristic

of an admissible class, )((50,,1, a), where

n+1
a = (det Rm,"C1) 7 ® (® evi Cy, ® Lia") ,
i=1

to computing the Euler characteristic, X(EO,n’ a’), where

n
@ = (detRm.¢"C1) 1 ® (® ev; Cp, @ myl ® O(a,-D,-)|5On
i=1 ’

An+1
eviCyp,, @ LI ® (® 0(—/1n+1an+1,d|1,E—d))) ® ('El_l ® O(Dilj)) )

deZ

®

with E € Z such that the weight of the C*-action on /F\/(v()’n_f_] is 0. Hence, it suffices

to compute )((50,,1, a’) for a class, a’, on 50,,, of the form

n

o = (det Rm,¢*C1) 1 ® (@ ev; Cy, ® ﬂflﬁfi) ® (® O(ijj)),

i=1 jeJ

where {B; | j € J} is a countable set of boundary divisors on 50,,1 that are either

D, Djjp11, or Dj gjpi1,g—q for some i € [n] and d; € Z.
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General results from K-theory

We now recall a few results from K-theory to address the O(d;B;) terms.

Proposition 1.15. Let X be a scheme and let D C X be a divisor. Then, we have
the following relation in K-theory for all n € Zs¢:

O(—IZD) = OX - OnD-

Proof. The relation follows immediately from the exact sequence
0 — O(-nD) —» Ox — O,p — O.
m]

Lemma 1.6. [9] Let D = Ulf D; be a divisor with normal crossing, such that D; are

smooth. Then,

0_>OD_>ZODi_>ZOD,»OD_,-_>"'_>OOD,»_>O
;

i<j
is an exact sequence.
Proof. We reproduce the proof of the lemma from [9] to deduce a slightly more
general corollary.

The relation is equivalent to the exactness of the following sequence at the origin

0—0/(xi-+,x0) > 0/(x) = -+ = Of(x1 -+ x) > 0.

For k = 2, we have the sequence
0— O/(x1x2) = O/(x1) ® O/(x2) = O/(x1,x2) — O,

which is exact. By the inclusion-exclusion principle, the case of k > 3 is proven.

Exactness of the sequence away from the origin is a simple induction since we have

fewer divisors meeting transversely. O
Corollary 1.2. Let Dy,..., Dy be smooth divisors, meeting in normal crossings.
Then,

O - OD - Z O}’Z[D[ - Z Ol’l,‘D[ﬂnij — Oﬂn,-D,- - O
i

i<j

s an exact sequence.

Proof. The proof is identical to the proof of Lemma 1.6, where instead of x; we

have xl.”" . O



48

Stratification of the boundary loci

Using the results stated above, we can reduce the original problem further to com-
puting y(Z, @), where X is a boundary locus and « is the restriction of an admissible
bundle, possibly tensored with normal bundle to other boundary loci. More pre-

cisely, X C 50,}1 - /F\/(VO,,,H is the intersection of boundary divisors D;, D;|;, and

Ve
D; 4)j,E-q- And « is the restriction to X of

(detRm.¢*C1) ™1 ® (®L, evI Cy, @ miti) ®

where @’ the tensor product of normal bundles to other boundary divisors.

Let X be the intersection of boundary divisors of type D;, D;;, and D; g g—a-
Then, the boundary divisors that contain X prescribe the splitting type of curves
parametrized by 2. In other words, X is the locus whose generic point parametrizes
curves of certain splitting type!°. Now, by Proposition 1.3, we can further stratify

as the disjoint union of strata
X= U My.ay,
(r.d)

where M, 4) is the stratum whose generic point parametrizes a curve with the

topological type (v, d) satisfying the prescribed splitting type. However, since X is

closed in 50,,,,, we know that for each My, 4y, M(y.q) N 50,,1 C X. Therefore, we have

2= U M(%d) N 5()’,1.
(r.d)

To simplify notation, we will write Ny q) := m N 50,,,,. Note that N, 4) are not
mutually disjoint in general. In fact, we have already seen strata of this form when
stratifying zg,n. Type I, 11, III curves all corresponded to a particular splitting type
and we stratified each by countably many disjoint locally closed subsets, £ = U;cz%;,
such that X; is closed in X\ Up< ;X fori > Oandin X\ U;.j<oX; fori < 0. Moreover,
for each j, X; contained a closed subset (which we denoted by F I F2, and F3) over

which X; was an affine bundle.

We now stratify ¥ using the same strategy as the one employed in Section 1.6.
Since each N, 4) is closed in X, and there are at most countably many such N, 4,

any enumeration of the N, ), say X! = Ny, q4,) for i € Zo allows us to define

10possibly with a prescribed degree splitting
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% := X7\ (Uo<j<iZj). Then, we see that X; are disjoint sets such that UX; = X, and
%, is closed in T\ (Up<<Z;).

First, we show that we can cover X with N, 4), where y is a modular graph with no
Gieseker bubbles.

Proposition 1.16. We can find a collection of (y, d) such that

1. X = U Ny.ay
2. Forall (y,d) # (y',d'), Niy.a) ¢ Niy.ary, and

3. (v, d) contains no Gieseker bubbles.

Proof. The idea of the proof is very simple. X corresponds to a splitting type with
possible degree splitting. However, since Gieseker bubbles do not affect the splitting
type, if a topological type (y, d) containing Gieseker bubble is in X, we can contract
those bubbles and still stay in X.

Suppose (v, d) contains a Gieseker bubble. Then by Lemma 1.1, we know that
there exist deformations from (y, d) to (y’,d’), where (y’, d’) contains no Gieseker
bubbles. These deformations are precisely the ones where we contract all the
Gieseker bubbles and transfer the degrees to the adjacent components. In particular,
My.a) C m Now, note that if (y, d) satisfies the splitting type prescribed
by the boundary locus, X, at least one of the topological types (y’, d") obtained by
contracting the Gieseker bubbles must also satisfy the splitting type of .

In fact, there exists (y’,d’) such that M, 4y C Z N 50,,1. Suppose there does not
exist deformations of (y, d) in 50,,1. That means all deformations (y’, d’) of (y, d) are
such that either M, 4 C Z Uor Z? as defined in Section 1.6. However, that means
that M, 4) must in fact be one of F Lor F2. In particular, M, 4) ¢ 50,,,, which is a

contradiction.

Therefore, we can find M, 4y C XN Co. such that My.a) € My 4. Hence, even
after discarding all (y, d) that contain Gieseker bubbles, we still have

x=J (Mw) N C~‘o,n) = Noa-

Now, we discard all N, 4) for which there exists a topological type, (¥, d’), with

Ny.4) € Niyr.a7y- Then, we obtain a collection of topological types (y, d) satisfying
the conditions of the proposition. O
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From now on, we will always assume that we have a collection of topological types,

(y, d), satisfying the conditions in Proposition 1.16.

Note that X is the intersection of boundary divisors specifying splitting types with

possible degree condition. Hence, we can write

X= U Noy.ay
d

where

1. vy is determined by X and is the same for all N, 4),
2. 7 contains no Gieseker bubbles, and
3. d satisfies degree conditions determined by X of the type d(v;) = d; for a

subset of the vertices v; € V(y) 1.

Now, we define a stratification of X into locally closed strata. Choose an arbitrary
2y = Niy.dy)- Now, consider the set

I'o = {(y,d) | 3!v; € V(y) such that dy(v;)—d(v;) = £1 and do(vi1+1)—d(vi+1) = F1}.

In other words, I'y is the set of topological types obtained from (7, dy) by transferring
asingle degree from one of the vertices to an adjacent vertex. If there exist (y, d) € I
such that N, 4) C X, we let them be 2; = Ny,a,) fori =1,...,ng. If there does not
exist such (y, d), we let 2’1 be an arbitrary N, 4,) distinct from Z(’). Now, define

I't = {(y,d) | 3!v; € V(y) such that d;(v;)—d(v;) = £1 and d;(vi+1)—-d(vi+1) = F1}.

Similarly as before, we let Z;O +1 be those N, 4 such that (y,d’) € T.

Note that I'y N I'; is not empty in general. Hence, we only choose those N, 4 that

no+n1

have not been chosen before.

Since V() is finite, so are the sets I'; and thus, each step in the enumeration process
above is finite. Hence, we get an enumeration of the N(,.4) as £\ = N4, 1 € Z>0

by repeating the process above. Now, we recursively define

=30\ Uz

0<j<i

As before, the strata X; have the property that

1Y might not impose any degree condition.
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1. £ = UZ,-, and

2. X;isclosed in X\ U Zi|

0<j<i
By repeatedly applying the long exact sequence from Lemma 1.2, we conclude that

X(EF) = Z xz:(F)

for any sheaf ¥ on X. In particular, computation of y(Z, @) can be reduced to

computing s, (@), where « is the restriction to X of an admissible class.

1.14 Admissible classes on X;

Before computing ys,(«), we first look at the geometry of %;.

Proposition 1.17. Let (y, d) be a topological type containing no Gieseker bubbles
and letr + 1 = |V(y)|. Let vy’ be a modular graph obtained from vy by inserting a
Gieseker bubble between every pair of adjacent vertices. Let d’ be a degree map
on vy such that there exists a deformation (y',d’) — (y,d). Let I be the collection
of all topological types (y”,d"”) such that the deformation above factors through
(y", d")12:
0. d) — (",d") - (v, 4).

In other words, (y”,d") is a topological type obtained by contracting Gieseker
bubbles of (y',d’) in a way that does not violate the degree map d. Then,
Utyr.amer Merary is an A" -bundle over My a1y *>.

More precisely, let By, ..., B, be the r families of Gieseker bubbles over M, 4.
Now let p; and q; be the sections representing the loci of the two nodes on B;, where
pi is the locus of nodes that are getting smoothed away. Then, there exists a map
77 . U M(’)’”,d”) e M(’y’,d’)’
(,y//’d//)el—‘

which is the structure map of the A" -bundle

P eryma?),

where Li_l and P; are the cotangent bundle and restriction of the universal bundle
along p;, and Q; is the restriction of the universal bundle to g; 1%

2Note that (y, d), (y’,d’) € T.

13The proof of Proposition 6.2 in [1] briefly mentions that Z is an affine bundle over F. Z and F
of Proposition 6.2 are precisely UM~ g7 and M, 41).

14Both #; and Q; of the appropriate degree.
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Moreover, M, q4) is a (PY -bundle over My 4.

Proof. The deformation (y’,d”) — (y, d) is one where you contract the r connect-
ing Gieseker bubbles. More precisely, for each connecting Gieseker bubble, the
deformation smooths one of the two nodes that lie on each bubble. Moreover, the
node that is being smoothed is prescribed by the degree maps d’ and d. Now, note
that (y”,d”) € T are precisely the topological types obtained by smoothing a pre-
scribed subset of the nodes. Hence, Ur M, 4) is the set of points parametrizing
deformations of curves of M, 4y by smoothing r prescribed nodes. Therefore, by

Proposition 1.5, we conclude that Ur M, 4 is an A"-bundle over M, 4.

In fact, the same argument as in Sections 1.11 and 1.20, M, 4 = Mo,n, X
- X Mo,n,+1, where (ny,...,n,+1) is the splitting type of the modular graph y’.
Moreover, by the argument of the proofs of Propositions 1.6 and 1.7, we conclude
that Ur M, 4 is the total space of the A"-bundle on M, 4,

P (Lt errra),

where Ll._l and P; are the cotangent bundle and restriction of the universal bundle
along p;, and Q; is the restriction of the universal bundle to ¢;. Note that we must
choose the universal bundle of the appropriate degree for ; and Q;. More precisely,
the degree of P; is d;, where d; is the degree of the corresponding vertex prescribed

by our topological type (v, d’).

Now, M, q4) is simply the stratum of points parametrizing all smoothings of the
curves of M, 4. However, this is precisely the (P! -bundle over M,y defined
by
r
[1Proi (((£7' @ Py m@ ) @0).
i=1

O

Corollary 1.3. 3; is a A* X (P! -bundle over My .ary, where |V(y)| = r+1 > s+t+1
and (v, d") is a topological type satisfying the following conditions.

1. (y',d’) is obtained from (y, d) by inserting Gieseker bubbles between every
pair of adjacent vertices such that there exists a deformation (y',d’) — (v, d),

and

2. M(y’,d’) C Zi-
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Moreover, M, 4y is isomorphic to a product
M()",d’) = MO,”I XX MO,an

where (ni, ..., n.41) is the splitting type of (y, d).

Proof. Using the notation from Proposition 1.16, suppose X! = N(y.4). Suppose
|[V(y)| = r+ 1. Then, we can insert at most r connecting Gieseker bubbles. Suppose
k of the connecting Gieseker bubbles are allowed in Z; i.e. there exists a topological
type (y’,d’) with one of those k connecting Gieseker bubbles inserted such that
M(yr,d/) - Zlf . Note that for each of the k connecting Gieseker bubbles, there are
two choices for the degree splitting. Since the universal bundle must have degree
1 on the Gieseker bubble, we must decrease the degree of one of the adjacent
components by 1. Suppose for s of the allowed connecting Gieseker bubbles, only
one such degree splitting is allowed in X;. Then, for r := k — s of the allowed

connecting Gieseker bubbles, both degree splittings are allowed in ;.

Now, we claim that for any degeneration (y’, d”) of (y, d) obtained by a combination
of inserting any of the allowed Gieseker bubbles with the degree splitting, M, 4/ C
%;. In other words, let (y1, d1) and (y», d») be topological types obtained from (y, d)
by inserting distinct bubbles B; and decreasing the degree on the components C;!5.
Then, if (3, d3) is obtained from (y, d) by inserting both bubbles B; and B,, and
decreasing the degree of the components C; and G5, My, 4,) C Z;. However,
this is true by the construction of X;. In the enumeration process, we successively
looked at neighboring topological types obtained by transferring a single degree
from a component to one of the adjacent components. The transfer of degrees is
done precisely through the connecting Gieseker bubble and thus, if two transfers of
degrees via two distinct bubbles are each allowed in X;, the degeneration by both

operations must also be allowed in Z;.

Therefore,

M(y',d’) = MO,nl XX MO,nHla
and X; is an A* x (P')’-bundle over M,.ary. Moreover, the normal bundle Ny, 1Go

restricted to M, 4, and Ny, ., /x, are isomorphic to the tensor product of the

’d’

pulled back cotangent line bundles along the marked points of /F\/Ivo,nk playing the

roles of the nodes on the connecting Gieseker bubbles. m|

I5¢ 1 and C, are not necessarily distinct.
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Now, we show that admissible classes are well-defined over the boundary loci.

Proposition 1.18. Let £ = UZ; be as above and let a be an admissible class. Then,
xs, (@) is zero for all but finitely many i. Moreover, s /(a) can be written as a

product of lower pointed gauge Gromov-Witten invariants.

Proof. We saw in Corollary 1.3 that Z; is a A* x (P!)'-bundle over My.ar). Let 5
be the (P')'-bundle over M.y such that %; is an A®-bundle over ) By the same
argument as in the proof of in Proposition 1.12 of Section 1.11, we see that

Xz, (@) = Y (i, @ ® det Ny ® Sym Ny 6. © SymN=! ).

:/Con /%

Again by Proposition 6.2 of [1], we conclude that ys, (@) vanish for all but finitely

many '6.

Now, we know precisely which (P!)’-bundle E; is over Myr.ary. Namely,
S~ i -1 ) -1
%= [ proi; (£ e P @) @),

where £;; is the cotangent bundle along one of the two nodes of the connecting
Gieseker bubble, B;,, for which the degree transfer to either adjacent component is
allowed in ;, #;; is the restriction of the universal bundle on the same node, Q; ;i

the restriction of the universal bundle on the other node.

Letnm: % — My .an. Since ¥, is a (P')'-bundle over My.ar), we know that any
line bundle on i is isomorphic to n*L(ey, ..., e;). Moreover, since each of the
P! corresponds to transferring a single degree from one component to an adjacent
component, the only C*-weights that change are the weights on det Rm.¢*C; over
the MO,n,- corresponding to the affected components. In particular, we know that

e; = =1 since the degree on the affected components change by exactly 117.

We compute Y& Liey,...,e)) in ¢ steps, in each of which we project down
along a P! fiber. Hence, we reduce to the case where fl, is a P!-bundle over ET,-, and
the line bundle in question is 7*L(e). By the projection formula, Theorem 1.8, we
know that

R (Fen*8) = Ra(F)®E.

16As in Section 1.11, the C*-weights on the components will all be negative or positive for all
but finitely many degree splittings on V().

7The sign of ¢; depends on the particular (y’, d’) we choose and whether the degree is transferred
from or to C;.
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Hence,
R'n.(n*L(e)) = L ® R'7.(O(e)).

If e = —1, then we know that Rz, (O(=1)) = 0 for all i. If e = 1, we know
Rim.(O(1)) = 0 for all i # 0. Moreover, R°7,(O(1)) = Oy ® O, Where Oy and O,

are the structure sheaves of the zero and the infinity sections, respectively.

Hence, by pushing down to M, 4) = HMO,n,-» we can compute y(Z;, @) as
XMy a), @), where @’ is « restricted to M, 4-) possibly tensored by cotangent
bundles along marked points of /F\/(vo,ni. However, since M, 4+ is a product of the
Mo,n,- and @’ is a tensor product of bundles associated with an admissible class, we

conclude that
X(M(Vlad’)’ CY/) = n X(MOJLU ai),

where «; is an admissible class on Mo, . O

1.15 Proof of the reconstruction theorem

We are finally ready to prove the main theorem, Theorem 1.1. As mentioned before,
the reconstruction theorem for genus 0 gauge Gromov-Witten invariants not only
provides an alternate proof of well-definedness of genus 0 gauge Gromov-Witten
invariants but also gives an explicit algorithm for computing the invariants from

pointed invariants.

Proof of Theorem 1.1. Let a be an admissible class on /T/(io,n. We want to show that
¥ Mowa) = 3" ([ [ xMaw.a)).

where the the right hand side is a finite sum of finite products of X(/ﬂ\\/(io,nr, a’) with

n’ < n and o’ admissible on M.

Consider the embedding 50,,1_1 — Mo,n defined in Section 1.5. As before, we define
ZO,n to be the complement of EO,n—l in MQ". By Lemma 1.2, we know that

XM, @) = ¥(Cot. @) + x5, (@)

if all the terms above are well-defined. By Proposition 1.12, we know that Xz, ()
can be written as a finite sum of finite products of lower pointed gauge Gromov-
Witten invariants. Hence, it suffices to show that )(((Afo,n_ 1, @) can be written as a

finite sum of finite products of lower pointed invariants.
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Let m : Cyo—1 — Mon—1 be the map associated to the universal curve over Mg ,—1.

By Propositions 1.13 and 1.14, the class of « is the same as the class of

n

@ = (detRm.o"C1) ™7 ® (® evi Cy, ® ﬂ*fi‘”) ® (® O(ijj)) ’

i=1

Now, by Proposition 1.15 and Lemma 1.6, we conclude that )((ao,n_l,a) can be

written as a sum

X(Con-1,@) = x(Con-1,@') + Z Y, ay),

where

1. ' is of the form (det Rm,.¢*C1)™7 ® (®ln=_11 eviCy ® ﬂ'*fi‘l"),

2. the sum is over a countable collection of boundary loci, 2, each of which is an
intersection of boundary divisors of the type D;, D;j;, and D; 4 g—q as defined
in Proposition 1.14, and

3. ay is the restriction to X of an admissible bundle on Mo,n, possibly tensored

with normal bundles to other boundary divisors.

By the projection formula, Theorem 1.8, and Proposition 1.4, we see that )((5’0,”_1, a’)

is equal to y(Mo—1, @”) where @” is an admissible class on Mo,_1.

Finally, by Proposition 1.18, we conclude that all but finitely many terms y(Z, ay)
vanish. Moreover, each y(X, @z) can be written as a finite product of X(Mo,n', B)

where n” < n and $8 is an admissible class on Mo,

Therefore, X(Mo,n, @) can be written as the finite sum of products of lower pointed

invariants. O

Corollary 1.4. Genus 0 gauge Gromov-Witten invariants are well-defined.

Proof. Since Mo,3 = [pt/C*], X(M0,3, @) is finite for any admissible class @ on
Mo3. By Theorem 1.1, higher pointed invariants can be reconstructed from the
3-pointed invariants. Hence, we conclude that genus O gauge Gromov-Witten in-

variants are well-defined. O
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1.16 Future directions

The proof of the reconstruction theorem leads to several questions. First, can we
generalize the stratification of Mo,n to Mo,n([X /C*])? In [1], Frenkel, Teleman,
and Tolland define the moduli space Mo,n([X /C*]) and suggest existence of invari-
ants. The stratification of Mo,n is canonical and allows one to recursively compute
invariants of Mo,n from invariants of Mo’g. If we can stratify /Wo,n([X /C*]) in a
similar way, we would then reduce the proof of well-definedness of the invariants
to the case of /F\/(vo,3([X /C*]). Since Frenkel, Teleman, and Tolland prove in [1]
that Mg,n([X /C*]) — Mg,n is proper, and since Mvo,3 = [pt/C*], we know that
invariants of Mgg([X /C*]) are well-defined. Thus, reducing well-definedness of in-
variants to the case of /F\/(VO,3([X /C*]) would prove existence of gauge Gromov-Witten

invariants for arbitrary [X/C*].

Similarly, the stratification could be used to study the finiteness of invariants for
Mg,n for g > 0. The stratification used in the proof of reconstruction theorem
breaks the proof of finiteness down to the finiteness of invariants for Ml,l and Mg,o
for g > 2, and a study of the invariants over boundary divisors. A closer look at the
boundary divisors might provide an alternative proof of well-definedness of gauge

Gromov-Witten invariants for higher genus.

Another topic of interest is the S,-equivariant K-theory of /F\/Ivg,n, where S, acts by
permuting the marked points. Understanding the S,-equivariant K-theory of Mg,n
is important because for higher genus, the boundary strata of Mg,n are naturally
quotients of products of strata under an action of S,,. Hence, to study the K-theory of
M, ¢,n» we must understand the S,,-equivariant K-theory of lower genus, lower pointed
spaces. Moreover, in [3], Givental studies the permutation equivariant K-theory of
Mo,n- It would be interesting to compare the S,-equivariant K-theory of MO,n with

that of Mo,n-

Lastly, one could try to generalize gauge Gromov-Witten theory to cases where
the target space is [X/G] with an arbitrary group G. We would first need to
define Gieseker G-bundles over stable curves, generalizing the definition of Gieseker
C*-bundles. Then, we can study the moduli space of Gieseker G-bundles over
stable curves, /‘/Ivg,n([pt /G]), and define gauge Gromov-Witten invariants. Once we
establish a gauge Gromov-Witten theory for [pz/G], one can then generalize the
theory to the case of arbitrary [X/G]| and study whether there exist well-defined

invariants.

In [12], Solis constructs toric varieties, a special case of which recovers the local
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model for M0,4(@t /C*]). It would be interesting to see if the higher dimensional
toric varieties Solis constructs can admit a modular interpretation as local models
of Mg,n([pt /T]), where T is a torus of arbitrary rank. These toric varieties could
give us an idea as to what the appropriate definition of Gieseker T-bundles on stable
curves should be. Moreover, they exhibit many similarities with /F\/(vg,n([pt /C*]) and
I plan to study whether a similar stratification exists.

Once we have a gauge Gromov-Witten theory for [ X /G|, we can study its relation to
the Gromov-Witten theory of GIT quotients. We do not impose stability conditions
in the sense of geometric invariant theory to maps to [ X /G], which is the reason that
the resulting moduli stack fails to be proper. In [1], Frenkel, Teleman, and Tolland
conjecture that the Gromov-Witten invariants of the GIT quotients can be recovered
from the gauged Gromov-Witten invariants by applying the Chern character to
certain limits of the gauged invariants. The case of smooth curves and G-bundles

was proven in [13].
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Chapter 2

GENERATING SERIES FOR THE POINCARE POLYNOMIALS
OF QUOT SCHEMES AND Q,(G(n, n), d)

2.1 Introduction

The moduli space of stable quotients was defined in [8] and can be interpreted as
a compactification of the moduli space of curves to G(r, n) using the philosophy
of Grothendieck Quot schemes. The space of stable quotients, Qg,m(G(n, r),d),
is different from the Kontsevich stable maps compactification, Mg,m(G(n, r),d),
and provides an alternate method of compactification. One interesting case is
when r = n, when G(n, n) is simply a point. Hence, the space of stable maps,
Mg,m(G(n, n), d) is equal to Mg,m. In particular, Mo,z(Gr(n, n), d) is empty for all n
and d. However, @072(G(n, n), d) is nonempty whenever n > 1 and d > 0.

We study the spaces QO,Z(G(n, n),d) as we vary n and d. In particular, we compute
their Poincare polynomials. We first compute the Poincare polynomials of Quot
schemes, Quotc(n, d), parametrizing torsion quotient sheaves of 02” over projective
curves. Then, we use the result to find the Poincare polynomials of QO,Z(G(n, n),d).

In fact, we will show

Theorem 2.1.  [. Let C be aprojective curve and let Q¢ . 4(t) denote the Poincare
polynomial of Quotc(n,d). Then, the generating series for Qcna(t) is a

rational function. More precisely, let
Qcnlt,x) = )" Ocna(d)x! € Z][x.1]]
d

be the generating series for Qcn.q(t). Then, we have

[(1+tx)(1+ %) - (1 + 27 1x)]8
(1 =x)(1=2x)[(1 = 2x)(1 = t*x) - - - (1 = 12n"2x)]2"

QC,n(t’ X) =

2. Let @n,d(t) be the Poincare polynomial of @072((}(11, n),d). Then, the generat-

ing series for @n,d(t) is a rational function. More precisely, let

0,(t,%) = Y Cua()x! € Z[[t, x]]
d

be the generating series for Qn’d(t). Then, we have

— (1-2"x)(t> - 1)
f, = .
Onlt, %) 12225 4 x — 1
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2.2 Grothendieck ring of varieties and the Poincare polynomial

In this section, we introduce the Grothendieck ring of varieties and the Poincare
polynomial of a topological space. The Grothendieck ring of varieties was first
mentioned by Grothendieck in his correspondences with Serre, published in [1],
and will be useful in computing the Poincare polynomials of Quot schemes that we

examine later.

Definition 2.1. Consider the free abelian group generated by the isomorphism
classes of C-varieties, Z[Var [|C]. Then, the Grothendieck ring of varieties over C
is the quotient of Z|Var |C] by the relations

[X]=[X\Z]+[Z]
where Z C X is a closed subscheme. The multiplication is defined by
[X]-[Y] =[XxY].

The Grothendieck ring of C-varieties is denoted K(Var |C).

The multiplicative inverse in K(Var/C) is the class of Spec C and will be denoted
by 1. Another important element of K(Var/C) is the class of A!, which will be
denoted L.

The following relations can easily be derived from the definition of K(Var/C) and

their proofs can be found in [6].

Proposition 2.1. [6] The following relations hold in K(Var/C).

1. Let X =[] X; where X; are mutually disjoint locally closed subschemes of X.
Then,

Knowing the class of X in K(Var/C) is helpful in computing its Poincare polynomial,

which we define now.
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Definition 2.2. Let X be a compact topological space and let b; be its i-th Betti
number fori = 0,...,2dim X. Then, the Poincare polynomial of X is the polynomial

Px(t) = Z bit' € Z[t].

We now have the following proposition that says the Poincare polynomial can be
extended to all of K(Var/C).

Proposition 2.2. [6] There exists a well-defined map P : K(Var/C) — Z|[t] such
that for any smooth projective scheme, X, Px(t) := P([X])(¢) is equal to its Poincare

polynomial. Moreover, P is a ring homomorphism. In particular,
1. If [X] = [Y], then Px(t) = Py(t);
2. IfY C X is a closed subscheme, then

Px(t) = Py(1) + Px\y(?); and

3. Forany X,Y,
Pxxy(t) = Px(t)Py(t).

We call P([X]) the virtual Poincare polynomial of X.

Let’s compute the class and the Poincare polynomial for a few varieties. Recall that

L :=[A']. Since A" can be viewed as an A'-bundle over A"!, we see that
[A"] =1L".
And since we can stratify P" as
P" = UTAK,
in K(Var/C) we have the following relation:
[P"l=1+L+L%>+---+1"

Lastly, since A! = C* U pr and pr = Spec C plays the role of the multiplicative
identity in K(Var/C), we have

[C]=L-1.
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Now, we compute the Poincare polynomials for A", P", and C*. From [5], we know
that for A! the virtual Betti numbers are by = 0,01 =0, and b = 1. In general, the

virtual Betti numbers for A" are

1 i=2n
b, = .
0 i#2n

Hence, the Poincare polynomials for A" are
Pun(t) = 12"

Note that we have
Pan(t) = (Pa(1)",

as we could have seen using Proposition 2.2 and the relation [A"] = L". For P", the

stratification P” = UAK and Proposition 2.2 give us

n
Ppn(t) = Z ik
k=0

Again, note that the answer matches with the one computed using the Betti numbers
of P" [5]. Finally, since C* = Al \ Spec C, we see that

Pcx(t) = ?-1.

2.3 Grothendieck Quot schemes
We first give the definition of Quot schemes following [3].

Definition 2.3. /3] Let X be a finite type S-scheme and let  be a coherent sheaf.

Let T be a S-scheme and consider the following diagram:

XxsTXZ—=X.

L

Ir——-S§

Then, Quoty s is the functor whose objects of Quoty ;7s(T) are surjections
oF > &,

where & is a coherent sheaf on X Xs T flat over T.
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If X — S is projective, we can decompose Quoty 55 further. Fix a relatively very

ample line bundle £ on X over S. Then, we have

Quoty s = U Quot)lz/(lr/s,
PeQ[1]

where Quott

X/F/S parametrizes coherent quotients, &, with Hilbert polynomial P.

IP

Grothendieck proved that under certain conditions, the functors Quot, IF7s

are

representable.

Theorem 2.2. [3] Let S be Noetherian, X — S projective with L a relatively
very ample line bundle. Then, for any coherent sheaf ¥ on X and any polynomial

lP

P € Q[A), the functor Quot® is represented by a projective S-scheme Quot,, IF1s

X/F/S
called a Quot scheme.

We are interested in the Quot schemes over projective curves C. In particular, we

are interested in the Quot schemes over C parametrizing surjections
®n
O;" » &,

where & is a torsion sheaf on C. In other words, we are interested in Quot schemes,

P _ . . . . .
Quot C/02 Spec T where P(1) = d is a constant polynomial. To simplify notations
we will write

- d
Quotc(n, d) = QMOIC/Og’"/SpecC'
For p € C, we have a subscheme of Quotc(n, d) parametrizing torsion sheaves &

supported only on p. We will denote this punctual Quot scheme by Quot,(n, d).

2.4 Moduli space of stable quotients

Now we introduce the moduli space of stable quotients defined in [8].

Let G(r, n) denote the Grassmanian parametrizing r-dimensional subspaces of C".
As Toda explains in [9], the moduli space of stable quotients can be viewed as a way
of compactifying the space of smooth curves to G(r,n). For a curve, C, defining
a map C — G(r,n) is equivalent to a surjection OECB" - Q, where Q is a locally
free sheaf of rank (n — r) on C. The moduli space of such maps, where we fix the

underlying curve C, is not compact and there are two natural ways to compactify it.

1. Kontsevich stable maps compactification as defined in Definition 1.1; and

2. Grothendieck’s Quot scheme compactification described in Section 2.3.
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If we consider the moduli space of maps to G(r, n) while varying the underlying
curve, C, the Kontsevich stable maps compactification gives rise to Mg,n(G(r, n),d).

The Quot scheme compactification gives rise to the moduli space of stable quotients.

Definition 2.4. /8] A stable quotient is a collection (C, pi, . . ., Pm» O?" » Q) ofa

m-pointed nodal curve, C, and a quotient sheaf Q on C such that

1. Q is locally free near the marked points and the nodes. In particular det Q is
well-defined, and

2. The R-line bundle
wc(pr+ -+ + pm) ® (det 0)%°

is ample for all € > 0.

The moduli space of stable quotients, (C, Py, . . ., Pm» Og” —» ), where C has genus
g, Q is locally free of rank (n — r) with deg Q = d is denoted Qg,m(G(r, n), d).

Theorem 2.3. /8] Qg,m (G(r, n), d) is a separated and proper Deligne-Mumford stack
of finite type over C with a perfect obstruction theory.

One interesting phenomenon regarding stable quotients is when n = r. In this case,

G(n,n) = SpecC and thus, My ,,(G(n, n),d) is non-empty only if d = 0 and we
have ﬂg,m(G(n, n),0) = Mg,m. However, Qg,m(G(n, n),d) parametrize all stable
quotients (C, p1, - - -, Pm» O?” —» (), where Q is a torsion sheaf of length d on C,

giving us more interesting spaces.

Lemma 2 of [8] computes the Poincare polynomial of @072((}(1, 1),d).

Lemma 2.1. /8] Let P; be the Poincare polynomial of QO,Z(G(I, 1),d). Then,
Py(t) = (1 + )",

foralld > 0.

In Section 2.7, we will compute the Poincare polynomials for QO’Z(G(n, n), d) for all
n,d > 0.
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2.5 Poincare polynomials of punctual Quot schemes
We first find the Poincare polynomials of punctual Quot schemes, Quot,(n,d).
Recall that Quot,(n,d) is a subscheme of Quotc(n, d) parametrizing surjections

O?” - Q, where Q is a torsion sheaf of length d supported on p € C.

We will compute the Poincare polynomial of Quot,(n, d) by examining its class in

K(Var/C). To do that, we first prove the following lemma.

Lemma 2.2. Let Quot,(n,d) be as before where n,d > 1. Then, we have the
following relation in K(Var /C):

[Quot,(n, d)] = Z LY [Quoty(n — 1,d")].
d’'<d

Proof. The points of Quot,(n, d) parametrize surjections O?” - Q where Q is a
torsion sheaf of length d supported on p. Equivalently, they parametrize injections
S - O?" such that the quotient is a torsion sheaf of length d supported on p. Since
p is a smooth point of C, its formal neighborhood is Spec C[[x]]. By looking at the
formal neighborhood of p, we see that the points of Quot,(n, d) correspond to the
matrices representing an injection, C[[x]]®" — C[[x]]®", up to right multiplication
by an element of GL,(C[[x]]) such that the image ideal in C[[x]]®" has colength d.

In other words, points of Quoty(n, d) parametrize colength d ideals of C[[x]]®"!.

We first consider the Quot,(2, d) case before considering Quot,(n, d) for general n.
Let

M = (i i ) € Quot,(2, d).

Note that right multiplication by elements of GL,(C[[x]]) are simply the column
operations. Hence, we can add, subtract, swap columns, and multiply an entire
column by a unit in C[[x]] i.e. a non-multiple of x. By applying appropriate column

operations, we can reduce M to the matrices of the form

i)
g Kk g x¢

Now, by multiplying the first column by an appropriate unit in C[[x]], we can further

x4’ 0
g x¥)

IRight multiplication by an element of GL,(C[[x]]) tells us that we are free to choose the
generators of that ideal.

reduce M to a matrix of the form




67

Note that since the matrix represents an ideal of colength d, we must have d’+d” = d.

Finally, by subtracting an appropriate multiple of the second column from the first
column, we can further reduce g to a polynomial, Zg/_l a;x', of degree less than d’.

Hence, for each element M of Quot,(2, d), there exists a unique matrix of the form,

x4" 0
Zo -1 aixi .Xd

where d’ + d” = d, that represents M. We saw that every element has such a
representation, and two distinct matrices of the form above cannot differ by a series
of column operations. We will call d’ the length of the “sub-quotient" restricted to
the second factor of O. More precisely, consider the injection i : C[[x]] — C[[x]]®?

into the second factor. Now consider the following cartesian square

Cl[x]] —— C[[x]]

Cl[x]]#* > C[[x]]22

Then, M’ : C[[x]] — C[[x]] is precisely the ideal (x¢).

Now, we can stratify Quot,(2, d) by the value of d’ in the (2,2)-entry of the matrix M
in the reduced form. Alternatively, this stratification can be described as follows. Let
i:0c — 0292 be the second factor. Then, given (S — 0?2 - Q) € Quot,(2,d),

we can consider the pullback S’ = § Xog? Oc from the following cartesian square:

0—S——0Oc¢ .

|

2
0—§——02

Then, we get a new exact sequence S — O¢ —» Q’. Since Q is a torsion sheaf
supported on p, Q' must also be a torsion sheaf supported on p of length d’ < d.
Then, (8" — Oc —» Q') is an element of Quot,(1,d’). This gives us a map
Quoty(2,d) — [14<q4 Quoty(1,d’), which we can use to stratify Quot,(2, d).

By the analysis above, we see that over Quot,(1,d’), the fibers are isomorphic to

A?2_ The points of the stratum corresponding to d’ are uniquely determined by

More precisely, the fibers are isomorphic to Quotp(l,d — d’) x A% since we get to choose
x4~ in the (1,1)-entry and a polynomial of degree at most d’ in the (2,1)-entry. However, since
Quoty(1,d — d') is just a point, the fibers are isomorphic to A?,
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matrices of the form

x4 0
r_ . 3
Zg 1 aix’ xd

In other words, these points are uniquely determined by the choice of coefficients

ao, - . .,aq4-1 € C. Therefore, we get the desired recursion

Quoty(2,d) = Z Ld/Quotp(l, d).

d’<d

Now, we proceed by induction on n. Again, we take a matrix M € Quot,(n, d). By

column operation, we can reduce M to the form

xXh0 0 .. o)

|

where * are the rest of the columns. In other words, we have a block matrix

xh 0
* M|’
where M’ is a (n — 1) X (n — 1) matrix with a nontrivial determinant. Hence,

M’ € Quoty(n — 1,d’) for some d’. However, since M € Quot,(n, d) we must have
d =d-d.

Now, by induction or by further column operations, we can reduce M to an lower
triangular matrix whose diagonal entries are all powers of x, say x%. And by
further column operations we can assume *’s are polynomials of degree at most

d, — 1, where r is the corresponding column number:

xa 0 0 o 0
* x® 0 0
* * x 0 |,
% % sk “ e xdn

where ), d; = d. Analogous to the Quot,(2, d) case, we get a map Quot,(n,d) —
[ <q Quoty(n — 1,d") by restricting to the last (n — 1) factors of O®", which is
precisely represented by M’ from above3. Fixing d’ = d, + - - - + d,, the fibers of

the above map over Quot,(n — 1, d’) are again isomorphic to A?" coming from the

3 As before, this is equivalent to taking the fiber product of the kernel, S — Og” - Q, with the
injection of the last (n — 1) factors, i : Oc®n -1 — Oc¢.
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choice of polynomials Zg’_l a;x' forall r = 2, ..., n on the first column. Therefore,

we get the desired relation in K(Var/C):

[Quot,(n, d)] = Z LY [Quot,(n — 1,d")].

d'<d

With the recursion in Lemma 2.2, we can compute the class of Quot,(n,d) in
K(Var/C).

Proposition 2.3. For all n > 1 and d > 0, the class of Quot,(n,d) in K(Var/C)
can be written in the following form#

(Ln _ 1)(Ln+1 _ 1) . (Ln+d—1 _ 1)

(L— 1)(L2— 1)...(Ld_ 1) 2.1)

[Quot,(n,d)] =

Proof. First, note that when n = 1, Quot,(1,d) = SpecC. Points of Quot,(1,d)
parametrize colength d ideals in C[[x]]. However, since C[[x]] is a PID, (x%) is the
unique ideal of colength d in C[[x]]. Hence, Quot,(1, d) = Spec C.

Now, the boundary conditions and the recursive relation in Lemma 2.2 uniquely
determine the class of Quot,(n, d) in K(Var/C). Hence, it suffices to show that

equation 2.1 satisfy the conditions.
For n = 1, equation 2.1 becomes

_L-nrr-n---@i-1)

S L-D@2-1)---LI-1) I

[Quot,(1,d)]

Hence, we only have left to show that the equation satisfies the recursion. Suppose
the equation 2.1 holds for all n’ < n and all d’. We want to show that the recursion

in Lemma 2.2 gives us equation 2.1. By the recursion we have

[Quoty(n,d)] = > L[Quoty(n - 1,d")] 2.2)
d’<d
n—1 _ n_1Y...(Tn+d -2 _
O it (| el VPP

e L-DI2-1)--- LT —1)

However, (2.3) is equal to

L —=1)--- (Ln+d—l -1 P (Ld’+l -1)--- (Ld -1)
L-1)- --(Ld -1) Z L B 1)(Ln+d’—1 -1)--- (Ln+d—1 _ 1)'

d'<d
“When d = 0, the formula gives [Quot,(n,0)] = 1.
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Hence, it suffices to show that

Z L@ - 1)

d’<d

L -1 (@Li-1)

(Ln+d’—1 _ 1) .. (Ln+d—1 _ 1) = L.

We will prove this by induction on d. For d = 0, we have

1
n—1 _
L =D = 1.

Now let d > 1 and assume the equality holds for all d’ < d. Then, we get

(Ld’+1 _ 1) . (Ld _ 1)
(Ln+d/—1 _ 1) .. (Ln+d—1 _ 1)

LA@wr-1 -1
( )Jr

d’ v n—1
Ln+d—1 -1 Z L (L - 1)

d’'<d-1
_Ldet-1 0 Li-1 3 LY@t - DLt - 1) (L - 1)

Ln+d—1 -1 + Ln+d—1 -1 A (Ln+d’—l _ 1) ... (Ln+d—2 _ 1)

L@t -1) L4 -1
Ln+d—1 -1 + L”+d—1 -1

LAL'-1+L7-1

Ln+d—1 -1
_ Ln+d—1 -1
- Ln+d-1 _

Hence equation 2.1 satisfies the recursive relation from Lemma 2.2 and the initial

conditions. O

In particular, we have

-1 &
[Quoty(n. 1)] = +— = )| LF = [F""]
0

for all n.> Moreover, by Proposition 2.2, we obtain the following corollary.

Corollary 2.1. Let P, 4(t) denote the Poincare polynomial of Quot,(n, d). Then, we

have
(th _ 1)(t2n+2 _ 1) . (l2n+2d—2 _ 1)

(tz _ 1)(t4 _ 1) . (t2d _ 1)

5In fact, Quoty(n, 1) = P! for all .

Pn,d(t) =
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2.6 Generating series for Poincare polynomials of Quotc(n, d)
In this section, we will find the Poincare polynomial of Quotc(n, d). Then, we will
show that the generating series for the Poincare polynomials of Quotc(n, d) is, in

fact, a rational function.

We first start by examining the class of [Quotc(n, d)] in K(Var/C) using the same

stratification as in the proof of Lemma 2.2.

Lemma 2.3. Let C be a smooth curve over C, and let n,d > 1. Then, we have the
following relation in K(Var /C):
n .
[Quotc(n, d)] = [Hilb/ L,
(di,....dn)eP(d) i=1

where Hilbdci = Quotc(1,d;) is the Hilbert scheme over C of colength d; ideal
sheaves, and P(d) = {(dy,...,d,) € Z" | d; > 0, )., d; = d} is the set of all ordered
partitions of d.

Proof. Recall that points of Quotc(n, d) parametrize exact sequence (S — O2" —»
Q) such that Q is a torsion sheaf of length d. Leti : O?("_l) — Og" be the inclusion
of the last (n — 1) factors of O¢. Now, consider the following cartesian diagram:

s —02" Y.

|

§— 0%

The diagram above gives us another exact sequence (S — O?(”_l) - Q’), where Q
is a torsion sheaf of length d” < d. In other words, we have (§' — O?("_l) » Q') €
Quotc(n—1,d").

Therefore, we have a map Quotc(n, d) — [l z<4 Quotc(n —1,d"). Now, the fibers

over Quotc(n — 1,d’) can be further stratified. Consider the expanded diagram

(. o S —
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obtained from the cartesian diagram above. Now, (S” — O¢ — Q") € Quotc(1,d—
d’) and thus we can stratify the fibers of Quotc(n, d) over Quotc(n— 1, d”") by where
each point maps to Quotc(1,d — d’). Now, the fibers over Quotc(1,d — d’) are

isomorphic to A? by exactly the same argument as in the proof of Lemma 2.2.

Note that Quotc(1, d) is isomorphic to Hilb%, the Hilbert scheme parametrizing
ideal sheaves on C of colength d, by definition. Hence, by Proposition 2.2, we
conclude that the following relation holds in K(Var/C):

[Quotc(n, d)] = Z [Quotc(n — 1,d")|[Hilbd LY.
d’'<d

By induction on n, we get

[Quotc(n, d)]

Z [Quotc(n — 1, d")][Hilbd ¢ TL¢
d’'<d

= > [HIb@ LA [HilbE LA [Hilb]
(dy,....dn)eP(d)

- [Hilb% |[Hilb% L% [Hilb® L% - . . [Hilbd L~ Ddn
C C C C
(di,....dn)eP(d)

_ Z ﬁ[Hildef]Lidf,

(di,...dn)€P(d) i=1
as desired. m|

Now, let Q¢ .4(t) denote the Poincare polynomial of Quotc(n, d). We will show

that the generating series for Q¢ 4(¢) is a rational function.

Theorem 2.4. Let C be a projective curve and let Q¢ 4(t) denote the Poincare
polynomial of Quotc(n,d). Then, the generating series for Qcnq(t) is a rational

function. More precisely, let

Qcalt,x) = Y Ocna(d)x? € Z][x.1]]
d

be the generating series for Qcn.a(t). Then, we can write

[(1+22)(1+3%) - (1 + 21 x)]28
(1= x)(1 = 270[(1 — 2x)(1 = £4x) - - (1 — £2020) 2

QC,n(t’ X) =
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Proof. First, we find the generating series for the classes of Quotc(n, d) in the power
series Grothendieck ring, K(Var/C)[[x]], using Lemma 2.3.

DlQuotc(n.d)lx? = Y| > [Hilb J[HilbZILE - - - [Hilbgr JL D x4 )

d d \(d\,...d,)eP(d)

S D [Hilb® Lx [Hilb@ LA % - [Hilb LD x
d \(di,....d,)eP(d)

= Z[Hﬂbg]xd) Z[Hﬂbg]ﬂ_,dxd)--- Z[Hﬂbg]w-l)dxd)
d d d
n—1
= Z [Hilb L x¢
=0

Since C is a projective curve, we know by [7] that the generating series for the
Poincare polynomials, Q¢ 1.4(2), of Hilbé is
(1 +1x)*

(1 =x)(1=£2x)

Oc.(t, x) = Z Qcra(t)x? =
d
where g is the genus of C. Hence, we have

2kd .d (1 + 12k*1x)%
Nt = .
Ed Qc,1,a()tx 0= P = 25y

By Lemma 2.3 and Proposition 2.2, we know that
Qcna® = D 0cra Qim0 ia ) - Qc 1q, (O,
(d1,.dy)eP(d)
Now, we are ready to find the generating series Q,(f, x). We use the same manip-

ulation as we did in finding the generating series for the classes of Quotc(n, d) in
K(Var/C)[[x]] to find Q¢ (1, x) in Z[[x, t]].

D Ocnald)x
d

(Z Qc’l’d(t)xd) (Z Qc,1.4(t)*x d) Z Qc,1,d(t)f2("_1)dxd)
d d

(1 +1x)%8 (1 +3x)8 (1 + 2 1x)%8

(1 - x)(1 - £2x) ((1 —2x)(1 - t4x)) o ((1 —2n2x)(1 - anx))
[(1+tx)(1+3%)--- (1 + 2 1x)]8

(1= x)(1 = 200)[(1 = 22x)(1 = £4x) - - - (1 — 20-2x) ]2

Therefore, we conclude that the generating series, Q¢ (%, x), is in fact a rational

QC,n(t, .X')

function. o
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When, C = P! we get a particularly nice expression for the generating series for

Quotpi(n, d) in the power series Grothendieck ring.
Corollary 2.2. The generating series for [Quotpi(n, d)] in K(Var/C)[[x]] is a ra-
tional function in x. More precisely, we have

1
(1 - x)(1 —Lx)?--- (1 - L 1x)%(1 - L"x)’

Z Quotpi(n, d)x¢ =
d

Proof. From the proof of Theorem 2.4, we saw

n—1
Z Quotpi(n, d)x‘ = rl Z[Hilbg,]Lidxd) .
d i=0 \ d
We know that Hllb]‘P{1 =~ P4 6. Since [P¢] = flzo L/, we have
1
[Hllbd ]x? = L' x4 =
YLTARED ) ) KR —

Similarly, for general k, we have

d
1
d kd _.d kdd
ESHMb L _ES(EZL)L © (1 =Lkrx)(1 - L*+1x)’

d i=0

Hence, we have

n—1

Z Quotpi(n, d)x?
d

e

~

mwdmdd
d

S
—_

- 1
:iﬂ(u—mmu—wﬂm)
1
(1 -x)(1 =Lx)2---(1 =Lr1x)2(1 = L"x)’

2.7 The generating series for Poincare polynomials of QO,Z(G(n, n),d)

Lemma 2 of [8] computes the Poincare polynomial of éo,z(G(l, 1),d) for d > 0.

Lemma 2.4. [8] Let P;(t) be the Poincare polynomial of QO,Z(G(I, 1),d), where
d > 0. Then,
Py(t) = (1 + 2471,

®See for example [4].
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In the proof of this lemma, they show that QO’Z(G(n, n), d) can be stratified as follows.
Lemma 2.5. /8] QO’Z(G(n, n),d) can be written as a disjoint union of quasi-

projective strata, S, .4, indexed by ordered partitions, (d,, . . ., dy), of d”. More-

over, for each ordered partition, (d,, . . ., d;), we have

k
Sdrondy) = 1_[ Quotcx(n, d;)/C*.
i=1

Infact, Sg,.a,) C QO,Z(G(n, n), d) is the stratum of points parametrizing (C, p1, p2, Q),
where C is a nodal curve with k rational components, Cy, ..., Ci, such that Q has
length d; on C;. Note that since there are only two marked points on C, p; and p»
must lie on the two extremal components of C. Moreover, all components of C are
rational with two special points and thus, by the stability condition, Q must have

positive length on each C;.

To simplify notation, we will write
Qn,d(t) = QCX,n,d,
Ont, x) = Qorn(t, X) = ) Qcrna()x,
d

0,4(1) = P Go@ )
S,a(t) = Ps (1),
where S, 7 C QO’Z(G(n, n),d) is the stratum associated to the ordered partition
d=(d,...,dy).
Now, we try to find the generating function for the Poincare polynomials of QO’Z(G(n, n),d)

with » fixed.

Theorem 2.5. Let
0,(t,%) := Y Cua)x! € Z[[1, x]]
d

be the generating series for the Poincare polynomials of @n’d(G(n, n),d). Then,
0,(t, x) is a rational function in t and x. More precisely, we have
3.6 ) (1—12"x)(t> - 1)
,X) = .
" 22—+ 2x 4+ x - 1
“i.e. tuples (dy, . .., dy) such that &; > O for alli and ¥ d; = d.
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Proof. We first compute Q,(t, x). The computation is similar to the computation
in the proof of Theorem 2.4. MacDonald’s generating function for Q; 4(¢) does not

hold in our case since C* is not projective.

From the proof of Lemma 2 in [8], we know that the Poincare polynomial of
Hilb?(C¥) is
Qia(t) = 24 = 2772,

Hence, we get

0i1(6,x) = Qrat)x

d=0
- 14 Z(Izd _ t2d—2)xd
d>0
= 1+ - I)Z 2472 x4
d>0
= 1+ -1)x Z 124 x4
d=0
2
-1
= 1+ M
1-12x
o I=x
-2
It follows that for general k we have
1 —?kx

; P(Hilbd(CX))(I)Idexd = m

Now, by Lemma 2.3, we obtain

(1000} (S04 .- oo
d d 7

l—x 1-¢* 1 — 2 2x

On(x,1)

1-2x 1-1t*x 1 -1y
B 1-x
1 =gy

Now, we compute @n’d(t, x). By Lemma 2.5 we have
[Qo2(Gmmd)] = > [S,7,
deP(d)

where P(d) = {(dy,...,dy) | di > OVi and },d; = d} is the set of all ordered
partitions of d. Therefore,

0na®)= D 8,50,

deP(d)



Recall that )
Sndy..ndy) = 1—[ Quotcx(n, d;)/C*.

From [2], we know that the Poincare polynomial of Quotcx(n, d;)/C* is equal to

Qn,di (t)
2-1"

Hence,

k

Q ,di(t)

Sn’(dl,...,dk)(l.) = 1—[ t;— 1 ’
i=1

We are now ready to compute Q,(t, x):

én(t’ -x) = Z@n,d(t)xd

d>0

< 5[ 2 sa0e]

d20 \gep(d)

= Z Z Sn,(dl,...,dk)(f)xd'+'"+d")

k>0 \di,....di>1

_y( ¥ (H (fé”i(f)) dd)

k>0 \di,....d>1 \i=1

_ . Qn,di<t)xdf))
_ Qnd1 (l)x ! _ Qn,dk(t)xdk
) ;) (le (2 =1) ) (dz1 (2-1) ))

_ Z Ql’l(x’t)_l)
B 2 -1

k>0
1

1= (Qn(x,0)=1) (> - 1)

(1 i x(t? = 1) )_1
(1 —121x)(t2 - 1)
(1-2"x)(1> - 1)
(1 =122%)(t2 - 1) — x(t?" = 1)
(1-"x)* - 1)
22—t 2x 4 x -1

-1

Hence, Q,,(t, x) is a rational function in 7 and x.
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