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ABSTRACT

A class of moduli spaces that has long been the interest of many algebraic geome-
ters is the class of moduli spaces parametrizing maps from curves to target spaces.
Different such moduli spaces have distinct geometry and also invariants associated
to them. In this thesis, we will study the geometry of three such moduli spaces,
M̃g,n([pt/C×]),QuotC(n, d), and Q0,2(G(n, n), d). By understanding the global ge-
ometry of each moduli space, we will produce a stratification, which plays a central
role in proving a result about invariants associated to the space.

In Chapter 1, we study gauge Gromov-Witten invariants, which are the Euler char-
acteristics of admissible classes on M̃g,n([pt/C×]), the moduli space of maps from
stable curves to [pt/C×]. In [1], Frenkel, Teleman, and Tolland show that while
M̃g,n is not finite type, thsese gauge Gromov-Witten invariants are well-defined. By
using a particular stratification of M̃0,n, we prove that when g = 0, n-pointed gauge
Gromov-Witten invariants can be reconstructed from 3-pointed invariants. This
reconstruction theorem provides a concrete way to compute gauge Gromov-Witten
invariants, and serves as an alternate proof of well-definedness of the invariants in
genus 0 case.

In Chapter 2, we compute the Poincare polynomials of Quot schemes, QuotC(n, d).
We see that by using an appropriate stratification, we can recursively compute
the Poincare polynomials of QuotC(n, d). Moreover, we see that the generating
series for the Poincare polynomials is a rational function. As an application, we
compute the Poincare polynomials of the moduli spaces of MOP-stable quotients,
Q0,2(G(n, n), d). We show that the generating series for these polynomials is also a
rational function.
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C h a p t e r 1

RECONSTRUCTION THEOREM IN GAUGE GROMOV-WITTEN
THEORY

1.1 Introduction
In [9], Lee defines quantum K-invariants, which are K-theoretic push-forwards to
SpecC of certain vector bundles onMg,n(X, β). These quantum K-invariants are
shown to satisfy several axioms. Moreover, when g = 0 and X = Pr , Lee and Pand-
haripande prove in [10] that there exist divisor relations in Pic(M0,n(Pr, β)) which
allow one to reconstruct all quantum K-invariants of M0,n(Pr, β) from quantum
K-invariants ofM0,1(Pr, β).

In [1], Frenkel, Teleman, and Tolland consider the compactification of the moduli
space of maps from curves to a space with automorphisms. They define the moduli
stack of Gieseker bundles on stable curves, M̃g,n, and showed that there exist well-
defined K-theoretic invariants in the case where the target is [pt/C×]. Proving
well-definedness of these invariants is difficult because the resulting moduli space is
complete but not finite type. Their proof of well-definedness of invariants relies on
their description of local charts on the moduli stack. While the use of charts allows
them to conclude that the invariants are indeed finite, it does not tell us how the
invariants can be computed and does not easily generalize to [X/C×] for arbitrary
scheme X .

Instead of using local charts, I describe a stratification of M̃g,n by locally closed
strata. When g = 0, this stratification, along with divisorial relations, allows us to
reconstruct n-pointed invariants from lower pointed invariants.

Theorem 1.1. n-pointed genus 0 gauge Gromov-Witten invariants can be recon-
structed from 3-pointed invariants.

The reconstruction theorem for genus 0 gauge Gromov-Witten invariants not only
serves as an alternative proof of the well-definedness of the invariants but also gives
an algorithm for computing them.
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1.2 Reconstruction in quantum K-theory
In this section, we will define the moduli spaces Mg,n(X, β) and the resulting
quantum K-invariants. We then state the reconstruction theorem for quantum K-
invariants when g = 0. The background onMg,n follows [2] and the discussion of
quantum K-invariants follows [9].

The moduli spacesMg,n(X, β)

Definition 1.1. [2] Let X be a scheme and let β ∈ H2(X). Then, a stable map of
class β from a prestable curve (C, x1, . . . , xn) of genus g with n marked points, xi, is
a morphism f : C → X satisfying the following conditions.

1. The homological push-forward of C satisfies f∗([C]) = β.

2. Each irreducible component of C contracted by f is stable. In other words, if
E is an irreducible component of C which is contracted by f , then

g(E) + n(E) ≥ 3,

where n(E) is the number of nodes and marked points on E .

The moduli space of such maps is denoted byMg,n(X, β).

It follows from the definition that stable maps have finite automorphisms. Using
this fact, Kontsevich prove the following theorem.

Theorem 1.2. [8] Let X be a smooth projective scheme over C, and let β ∈ H2(X).
Then,Mg,n(X, β) is a proper Deligne-Mumford stack.

When X = SpecC, we denote Mg,n(SpecC) = Mg,n. There are two classes of
morphisms that arise naturally. The first is the class of forgetful morphisms which
forget the k-th marked point and stabilize if necessary. We denote the morphism
forgetting the k-th marked point by

f tk :Mg,n+1(X, β) → Mg,n(X, β).

We also have the stabilization morphisms which forget the map f : C → X , and
stabilize the prestable curve, C, if necessary. This map is denoted by

st :Mg,n(X, β) → Mg,n.
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Quantum K-invariants

Definition 1.2. [11] Let X be a scheme. The Grothendieck group of locally free
sheaves on X is the quotient of the free abelian group generated by the isomorphism
classes of the locally free sheaves on X by the relation

∑(−1)iFi = 0, whenever
0→ F0 → F1 → · · · Fk → 0 is an exact sequence.

The Grothendieck group of locally free sheaves on X is denoted K(X).

If f : X → Y is a proper morphism, we define the K-theoretic push-forward
homomorphism f∗ : K(X) → K(Y ) by

f∗([F]) =
∑
(−1)i[Ri f∗F].

The K-theoretic push-forward to SpecC is denoted χ.

Now, we define the quantumK-invariants as the K-theoretic push-forwards of certain
K-classes onMg,n.

Definition 1.3. [9] The quantum K-invariants are

〈γ1, . . . , γn, F〉 = χ(Mg,n(X, β),Ovir ⊗ ev∗(γ1 ⊗ · · · ⊗ γn) ⊗ st∗F),

where γ1, . . . , γn ∈ K(X), F ∈ K(Mg,n), and Ovir is the virtual structure sheaf.

While quantumK-invariants do not satisfy all the axioms of cohomological Gromov-
Witten invariants [7], they satisfy seven of them, two of which are the splitting axiom
and the string equation.

Proposition 1.1. [9] Let g = g1 + g2 and n = n1 + n2 and let

Φ :Mg1,n1+1 ×Mg2,n2+1 →Mg,n

be the map gluing the last marked point ofMg1,n1+1 with the first marked point of
Mg2,n2+1. Then, pulled back quantum K-invariants fromMg,n can be written as a
sum of products of quantum K-invariants ofMg1,n1+1 andMg2,n2+1.

Theorem 1.3 (String Equation). [9] Let f t : Mg,n+1(X, β) → Mg,n(X, β) be the
morphism forgetting the last marked point. Let Li denote the cotangent line bundle
along the i-th marked point. Then, for g = 0 we have

π∗

(
Ovir

(
n∏

i=1

1
1 − qiLi

))
=

(
1 +

n∑
i=1

qi

1 − qi

) (
Ovir

(
n∏

i=1

1
1 − qiLi

))
,
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where both sides of the equation are formal series in formal variables qi.

For g ≥ 1 we have

π∗

(
Ovir 1

1 − qH−1

n−1∏
i=1

1
1 − qiLi

)
(1.1)

= Ovir 1
1 − qH−1

[(
1 −H−1 +

n−1∑
i=1

qi

1 − qi

) (
n−1∏
i=1

1
1 − qiLi

)]
, (1.2)

whereH = R0π∗ωC/M is the Hodge bundle.

Note that Theorem 1.3 relates (n + 1)-pointed quantum K-invariants not involving
Ln+1 with n-pointed quantum K-invariants.

Reconstruction of quantum K-invariants
In [10], Lee and Pandharipande prove that two relations hold in Pic(M0,n(Pr, β)).
These divisor relations, combined with the axioms of quantum K-invariants, show
that n-pointed quantumK-invariants can be reconstructed from 1-pointed invariants.

Let β ∈ H2(Pr). Let β1, β2 ∈ H2(Pr) such that β1 + β2 = β. Partition the set
{1, . . . , n} into S1 and its complement S2 := Sc

1 . Then, we denote by DS1,β1 |S2,β2 the
divisor inM0,n parametrizing reducible curves C = C1 ∪ C2 such that the marked
points p j ∈ Ci if j ∈ Si and the images of Ci are βi for i = 1 and 2. Now, define

Di,β1 | j,βj =
∑

i∈S1 | j∈S2

DS1,β1 |S2,β2, and Di, j =
∑

i∈S1, j∈S2,β1+β2=β

DS1,β1 |S2,β2 .

Denote by Li the class in Pic(M0,n(Pr, β)) corresponding to the i-th cotangent
bundle. Then, we have the following theorem.

Theorem 1.4. [10] Let β ∈ H2(Pr) and let L ∈ Pic(Pr). Then, the following
relations hold in Pic(M0,n(Pr, β)).

1. ev∗i L = ev∗j L + 〈β, L〉L j −
∑

β1+β2=β

〈β1, L〉Di,β1 | j,β2 .

2. Li + L j = Di | j .

With Theorem 1.4, Lee and Pandharipande prove the reconstruction theorem for
invariants in both quantum cohomology and quantum K-theory.

Theorem 1.5. [10]
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1. Let R ⊂ H∗(X) be a self-dual subring generated by Chern classes of elements
of Pic(X). Suppose

(τi1(γ1), . . . , τkn−1(γn−1), τkn(ξ)) = 0

for all n-pointed invariants with γi ∈ R and ξ ∈ R⊥. Then, all n-pointed
invariants of classes of R can be reconstructed from 1-point invariants of R.

2. Let R ⊂ K∗(X) be a self-dual subring generated by elements of Pic(X).
Suppose

(τi1(γ1), . . . , τkn−1(γn−1), τkn(ξ)) = 0

for all n-pointed invariants with γi ∈ R and ξ ∈ R⊥. Then, all n-pointed quan-
tum K-invariants of classes of R can be reconstructed from 1-point quantum
K-invariants of R.

1.3 Moduli stack of Gieseker bundles
We will now present the moduli stack of Gieseker bundles as defined in [1]. Moduli
stack of Gieseker bundles arise when studying the moduli space of maps from
prestable curve to spaces with automorphisms such as [pt/C×]. We recall the
definition of families of prestable marked curves.

Definition 1.4. (π : C → B, {σi |i ∈ I}) is called a family of prestable marked
curves over a base scheme B if

1. π : C → B is a flat proper morphism whose fibers are connected curves of
genus g with at-worst-nodal singularities, and

2. I is an ordered indexing set such that for all i, σi : B → C is a section not
passing through nodes of fibers, and

If all rational components of C has at least 3 special points, we say (C, σi) is a
family of stable marked curves.

We will always assume that any rational component of a fiber of π has at least two
special points.

A map from a stable nodal curve C to [pt/C×] is equivalent to a principal C×-bundle
on C. Such a C× bundle is given by a C×-bundle on the normalization of C and
identification of the two fibers at the preimages of each of the nodes. Since the space
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of identifications of the two fibers is isomorphic to C×, the moduli stack of principal
C×-bundles on stable curves fails to be complete.

To make the space complete, we consider all Gieseker bundles on stable curves.

Definition 1.5. [1] Let (C, σi) be a stable marked curve. A Gieseker bundle on
(C, σi) is a pair (m,L) consisting of

1. a morphism m : (C′, σ′i ) → (C, σi) such that m is an isomorphism away from
preimages of nodes of C, and the preimages of nodes of C are either nodes or
a P1 with two special points; and

2. a line bundle L on C′ such that the degree of L restricted to every unstable
P1 has degree 1. Such unstable rational components of C′ are called Gieseker
bubbles.

Then, M̃g,n is defined to be the moduli stack of Gieseker bundles on stable genus g,
n-pointed curves.

Definition 1.6. [1] The stack M̃g,n of Gieseker C×-bundles on stable genus g curves
with n marked points is a fibered category whose objects are (X,C, σi,P), where

1. X is a test scheme,

2. π : C → X is a flat projective family of prestable curves with marked points
σi : X → C, and

3. p : P → C is a Gieseker bundle on the stabilization of C.

The morphisms in this category are commutative diagrams

P f̃ //

p
��

P′

p′
��

C
f //

π
��

C′

π
��

X

σi

HH

// X′
σ′i

VV

,

where f̃ is C× equivariant and the bottom square is Cartesian.
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M̃g,n carries several universal families. It has a family of stable curves of genus g
with n marked points π : C̃g,n → M̃g,n with σi : M̃g,n → C, and a Gieseker bundle
p : Pg,n → C̃g,n. The universal Gieseker bundle defines a map ϕ : C̃g,n → [pt/C×].
We define the evaluation maps evi = ϕ ◦ σi : M̃g,n → [pt/C×].

The moduli space, M̃g,n, is a disjoint union of components corresponding to the
total degree of the Gieseker bundle. Each of the components of M̃g,n is complete
but is not finite type in general. For example, consider the component of the moduli
space M̃0,4 corresponding to total degree D. There are infinitely many Gieseker
bundles over reducible curve with two components, C = C1 ∪C2, such that the line
bundle, L, has degrees d1 and d2 over C1 and C2 and d1 + d2 = D. Thus, M̃g,n is
not finite type and therefore not proper. However, the following properties hold for
M̃g,n.

Proposition 1.2. [1]

1. M̃g,n is locally of finite type and locally finitely presented.

2. M̃g,n is unobstructed.

For a prestable curve with a Gieseker bundle (C, σi,P), we define its topological
type to be the pair (γ, d), where γ is the modular graph of C and d : V(γ) → Z is
the degree map. The topological type of Gieseker bundles allow us to stratify M̃g,n.

Proposition 1.3. [1] M̃g,n admits a topological type stratification by locally closed
and disjoint substacksM(γ,d) parametrizing all curves with modular graph γ with
degree d. Moreover,M(γ,d) are of finite type and finite presentation.

Moreover, we know which kinds of deformations of curves can occur.

Lemma 1.1. [1] Let (C, σi,P) be a C× bundle on a prestable curve having topolog-
ical type (γ, d). Suppose that we are given a deformation (C′, σ′i ,P′) of (C, σi,P)
over the Spec of a complete discrete valuation ring. The topological type (γ′, d′) of
the generic fiber can be any degree labeled modular graph obtained from (γ, d) by
finite combinations of the following elementary operations:

1. Resolve a self node: delete a self-edge attached to a vertex v, increasing the
genus gv by 1, leave the multi-degree unchanged.
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2. Resolve a splitting node: join a pair of adjacent vertices v1 and v2 into a
single vertex v, having genus gv = gv1 + gv2 and degree dv = dv1 + dv2 . Delete
one edge joining v1 and v2, and convert the others to self-edges.

Moreover, all such modular graphs occur in some deformation.

On M̃g,n, there are special K-theory classes that we want to consider.

Definition 1.7. Let V be a finite dimensional representation of C×. Let Li = σ
∗
i Tπ

be the relative tangent sheaf to C at σi. Then, we define the following K-theory
classes on M̃g,n.

1. The evaluation bundle is ev∗i [V] = σ∗i ϕ∗V .

2. The descendant bundles are ev∗i [V] ⊗ [L
⊗ ji
i ], where ji ∈ Z.

3. The Dolbeault index IV of V is the complex Rπ∗ϕ∗V .

4. The admissible line bundles L are L � (det Rπ∗ϕ∗C1)⊗−q, where q ∈ Q>0.

5. An admissible complex is the tensor product of an admissible line bundle with
Dolbeaut index, evaluation, and descendant bundles

α = L ⊗
(⊗

a

Rπ∗ϕ∗Va

)
⊗

(
⊗i ev∗i Wi ⊗ Lni

i

)
.

Theorem 1.6. [1] Let α be an admissible class. Let F : M̃g,n → Mg,n be the
forgetful morphism forgetting the bundle and stabilizing the curve. Then, the derived
push-forward RF∗α is coherent.

1.4 Outline
Let M̃0,n := M̃0,n([pt/C×]) be the moduli stack of Gieseker stable bundle with the
universal curve πn : C̃0,n → M̃0,n. We will denote the universal bundle by P0,n.

Let α = det(Rπ∗ϕ∗C1)−q ⊗
(
⊗ ev∗i Cλi ⊗ L

ai
i

)
be an admissible class on M̃0,n.

We will show that the admissible class α can be reconstructed from finitely many
admissible classes of M̃0,3. Since M̃0,3 � [pt/C×], admissible classes on M̃0,3 have
finite Euler characteristics. The reconstruction proves that for g = 0, the invariants
are well-defined.
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First, we show that one can define an open embedding C̃g,n → M̃g,n+1. If we denote
the complement of the image of C̃g,n by Z̃g,n+1, using the long exact sequence of
local cohomologies, we obtain

χ(M̃g,n+1, α) = χ(C̃g,n, α) + χZ̃g,n+1
(α),

provided all the terms above are finite. Now, since C̃g,n is the universal curve
over M̃g,n we can compute χ(C̃g,n, α) by pushing forward to M̃g,n along the map
πn : C̃g,n → M̃g,n.

χ(C̃g,n, α) = χ(M̃g,n, Rπn∗α).

Therefore, we have

χ(M̃g,n+1, α) = χ(M̃g,n, Rπn∗α) + χZ̃g,n+1
(α).

Repeating, we conclude that

χ(M̃g,n, α) =



χ(M̃0,3, Rπ∗α) +
∑

4≤k≤n

χZ̃0,k
(Rπ∗α) g = 0

χ(M̃1,1, Rπ∗α) +
∑

2≤k≤n

χZ̃1,k
(Rπ∗α) g = 1

χ(M̃g,0, Rπ∗α) +
∑

1≤k≤n

χZ̃g,k
(Rπ∗α) g ≥ 2

,

where π : M̃g,n d M̃g,k, k ≤ n is the composition of π` : C̃g,` → M̃g,` for
k ≤ ` ≤ n − 1.

We then stratify Z̃g,n by countably many locally closed strata. This stratification
will have the property that for g = 0, we can compute χZ̃0,n

(α) recursively as a finite
sum of products of lower pointed invariants on M̃0,k , where k < n.

Moreover, the embedding of C̃g,n → M̃g,n+1 will show that for admissible classes,
α, on M̃g,n+1 that do not involve ev∗n+1 Cλn+1 and Ln+1, the push-forward of α |C̃g,n to
M̃g,n is an admissible class on M̃g,n.

A divisor relation similar to the relation proven in Theorem 1.4 then reduce the
problem of computing admissible classes on M̃0,n+1 to computing those that do not
involve ev∗n+1 Cλn+1 and Ln+1. Lastly, understanding the structure of the boundary
loci in C̃0,n as As × (P1)t bundles over products of M̃0,n′, where n′ < n, allows us to
compute χ(M̃0,n+1) as a finite sum of χ(M̃0,n′) where n′ < n.

Combining, we will conclude that n-pointed invariants can be computed as a finite
sum of products of lower pointed invariants.
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1.5 Embedding C̃g,n → M̃g,n+1

In this section, we will define an embedding C̃g,n → M̃g,n+1. Recall that we have
a similar embedding for the stable curves. If we let Cg,n → Mg,n be the universal
curve, we have an embedding Cg,n → Mg,n+1. In short, given a point p on a n-
pointed stable curve, (C, p1, . . . , pn), we can associate to it a (n + 1)-pointed curve,
(C′, p′1, . . . , p′n+1), where

1. if p ∈ C is not a special point, then C′ = C, p′i = pi for all i = 1, . . . , n, and
pn+1 = p; or

2. if p ∈ C is a special point, then (C′, p′1, . . . , p′n+1) is the stable curve whose
stabilization after forgetting p′n+1 is C, with the images of p′i under the stabi-
lization are pi for i = 1, . . . , n and p for i = n + 1. In other words, C′ is the
stable curve obtained from C by adding a rational component at p with three
special points, one of which is p′n+1.

Figure 1.1 show a few examples of the correspondence described above. In the
second and third examples in the figure, the components containing pn+1 are rational.

⇒
p1 p p2 p1 p2pn+1

⇒
p1 p = p2 p1

p2
pn+1

⇒
p1p p2 pn+1

p2
p1

Figure 1.1: Examples of the correspondence Cg,n →Mg,n+1.

In other words, we consider a resolution of Cg,n ×Mg,n
Cg,n along the subscheme

where the diagonal meets the special points to obtain C → Cg,n such that each fiber
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is a (n + 1)-pointed, genus g stable curve. This gives us the desired embedding of
Cg,n →Mg,n+1.

More precisely, we have the following theorem by Knudsen.

Theorem 1.7. [6] Consider a S-valued point of Cg,n, i.e. an n-pointed stable curve
π : X → S with n sections, σ1, . . . , σn, and an extra section ∆. Let I be the ideal
sheaf of ∆, and define K on X by the exact sequence

0 // OX // Iν ⊕ OX(σ1 + · · · + σn) // K // 0 ,

where δ : OX → Iν ⊕ OX(σ1 + · · · + σn) is the diagonal, δ(t) = (t, t). Now, let
X s := Proj(SymK). Then, σ1, . . . , σn,∆ have unique liftings σ′1, . . . , σ

′
n+1 making

X s into a (n + 1)-pointed stable curve with X s → X a contraction. Moreover, this
gives rise to an embedding

Cg,n →Mg,n.

We will use a similar strategy to define our embedding of C̃g,n → M̃g,n+1. Let
(C, p1, . . . , pn,P) be a Gieseker bundle parametrized by a point of M̃g,n and let p ∈
C. Then, we define aGieseker bundle on a (n+1)-pointed curve, (C′, p′1, . . . , p′n+1,P

′)
as follows:

1. if p ∈ C is not a special point, then C′ = C, p′i = pi for i = 1, . . . , n, p′n+1 = p,
and P′ = P; or

2. if p ∈ C is a special point, then C′ is the curve obtained from C by adding
a rational component at p with three special points, one of which is p′n+1.
The map, ϕ : C′ → C, contracting the component containing p′n+1 is an
isomorphism away from p ∈ C, and the images of p′i are pi for i = 1, . . . , n.
Finally, we define P′ := ϕ∗P.

Note that P′ does satisfy the Gieseker condition. We always have a map ϕ : C′→ C

which forgets p′n+1 and stabilizes the component containing p′n+1 if necessary. In
both cases, P′ = ϕ∗P and note that all Gieseker bubbles of C′ are preimages of
Gieseker bubbles ofC1. Hence, P′ satisfies the Gieseker conditions sinceP satisfies
them.

Figure 1.2 shows a few examples of the correspondence described above. The
dashed lines in third and fourth figures represent Gieseker bubbles, which are

1We are only allowed to add a single stable rational component.
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unstable rational components with two nodes over which the line bundle has degree
1. In the first and third examples, the line bundle over the (n + 1)-pointed curve is
the same as the line bundle over the n-pointed curve as the two curves are the same.
In second and fourth examples, p collides with a special point on the n-pointed
curve and the corresponding (n + 1)-pointed curve has an extra rational component
containing pn+1. In these cases, the line bundle over the (n + 1)-pointed curve has
degree 0 over the component containing pn+1. Over the other components, the line
bundle remains “unchanged”.

⇒
p1 p p2 p1 p2pn+1

⇒
p1 p = p2 p1

p2
pn+1

⇒
p pn+1

⇒
p pn+1

Figure 1.2: Examples of the correspondence C̃g,n → M̃g,n+1

In other words, we can define an embedding C̃g,n → M̃g,n+1 as follows. Let
πn : C̃g,n → M̃g,n be the universal curve over M̃g,n. Then, we have sections
σi : M̃g,n → C̃g,n for i = 1, . . . , n. Let Di := σi∗(M̃g,n) and let Dsing be the locus of
singular points of the fibers of πn.

Let ∆ ⊂ C̃g,n ×M̃g,n
C̃g,n be the diagonal. Then, by using the analogous sheaf, K,

defined in Theorem 1.7, we get a contraction

ε : C̃ := Proj(SymK) → C̃g,n ×M̃g,n
C̃g,n.
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Composing with the projection from the fiber product to C̃g,n we get

π̃ = pr2 ◦ ε : C̃ → C̃g,n ×M̃g,n
C̃g,n → C̃g,n,

such that the bundle (pr1◦ε)∗Pg,n is a Gieseker bundle over C̃g,n. As in Theorem 1.7,
the sections, σi, have unique lifts, giving us n sections σ̃i : C̃g,n → C̃. The lift of
the diagonal, ∆, gives us another section, which we will denote by σ̃n+1. Therefore,
(C̃, σ̃1, . . . , σ̃n+1, (pr1 ◦ε)∗Pg,n) is a family of Gieseker bundles over C̃g,n with (n+1)
sections. Hence, we get a map C̃g,n → M̃g,n+1 which is an open embedding. We
have the following diagram:

C̃ � � //

π̃=pr2◦ε

%%

ε
��

C̃g,n+1

πn+1
��

C̃g,n ×M̃g,n
C̃g,n

pr2 //

pr1
��

C̃g,n
πn
��

� � // M̃g,n+1

C̃g,n
πn // M̃g,n

Note that ϕ∗C1 � ẽv∗n+1C1, where ϕ : C̃g,n → [pt/C×] and ẽvn+1 : M̃g,n+1 →
[pt/C×].

Now, we consider the restriction to C̃g,n of the determinant bundle and the evaluation
bundles on M̃g,n+1. In particular, we want to compare these line bundles to the pull-
backs of their analogs from M̃g,n.

Proposition 1.4. Let πn : C̃g,n → M̃g,n be the universal curve, and consider the
embedding of C̃g,n → M̃g,n+1 described above. Then the following are true over
C̃g,n.

1. For all i = 1, . . . , n, π∗n ◦ ev∗i Cλ � ẽv∗iCλ, where evi : M̃g,n → [pt/C×] and
ẽvi : M̃g,n=1 → [pt/C×] are the respective evaluation morphisms.

2. det Rπn+1∗ϕ̃∗C1 � π∗n det Rπn∗ϕ∗C1, where ϕ : C̃g,n → [pt/C×] and ϕ̃ :
C̃g,n+1 → [pt/C×].

Proof. First, let’s consider the evaluation line bundles. We know

π∗n ◦ ev∗i Cλ � π∗n ◦ σ∗i ◦ ϕ∗Cλ � (σi ◦ πn)∗ϕ∗Cλ.

By definition, σ̃i is the lift of σi. In other words, π̃ ◦ σ̃i � σi ◦ πn. Hence, we see
that (σi ◦ πn)∗ϕ∗Cλ � (π̃ ◦ σ̃i)∗ϕ∗Cλ � σ̃∗i (π̃∗ ◦ ϕ∗Cλ) � ẽv∗iCλ. Therefore, the
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pull-back of the evaluation line bundles on M̃g,n are isomorphic to the evaluation
line bundles on M̃g,n+1 when restricted to C̃g,n.

Since C̃g,n → M̃g,n is flat, we know that π∗n(Rπn∗P) � Rpr2∗(pr∗1P) and hence,
π∗n(det Rπn∗P) � det Rpr2∗(pr∗1P). If ϕ̃ : C̃ → [pt/C×], then we know that
ϕ̃∗C1 � pr∗1 ◦ ε

∗ ◦ ϕ∗C1. Since ε : C̃ → C̃g,n ×M̃g,n
C̃g,n simply contracts rational

curves, we have that Rε∗OC̃ = OC̃g,n×M̃g,n
C̃g,n . Thus, we conclude that

det Rpr2∗(pr∗1ϕ
∗C1) � det R(pr2 ◦ ε)∗ ((ε ◦ pr1)∗ ◦ ϕ∗C1) � det Rπ̃∗(ϕ̃∗C1).

Since π̃ is the restriction of πn+1 to C̃ → C̃g,n, the pull-back of the determinant line
bundle is isomorphic to the restriction of the determinant line bundle. �

Let α be an admissible class on M̃g,n+1, which is a class of the form

α = (det Rπn+1∗ϕ
∗C1)−q ⊗

(
⊗i ev∗i Cλi ⊗ L

ai
i

)
.

We are interested in the push-forward of α |C̃g,n to M̃g,n. We first recall the projection
formula.

Theorem 1.8 (Projection formula). [4] Let f : X → Y be a morphism of ringed
spaces. Let F be an OX-module and let E be a locally free OY -module of finite rank.
Then, for all i,

Ri f∗(F ⊗ f ∗E) � Ri f∗(F) ⊗ E .

By the projection formula and the observations above, we have

Rπn∗
(
α |C̃g,n

)
� Rπn∗

(
(det Rπn+1∗ϕ

∗C1)−q ⊗
(
n+1⊗
i=1

ev∗i Cλi ⊗ L
ai
i

))
� Rπn∗

(
π∗n(det Rπn∗ϕ∗C1)−q ⊗

(
n⊗
i=1

π∗n ev∗i Cλi ⊗ L
ai
i

)
⊗ ev∗n+1 Cλn+1 ⊗ L

an+1
n+1

)
� (det Rπn∗ϕ∗C1)−q ⊗

(
n⊗
i=1

ev∗i Cλi

)
⊗ Rπn∗

(
ev∗n+1 Cλn+1 ⊗

n+1⊗
i=1
Lai

i

)
.

In particular, if α does not involve ev∗n+1 Cλn+1 and L
an+1
n+1 , we have

Rπn∗
(
α |C̃g,n

)
= (det Rπn∗ϕ

∗C1)−q ⊗
(

n⊗
i=1

ev∗i Cλi

)
⊗ Rπn∗

(
n⊗

i=1
Lai

i

)
.
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1.6 Stratification of Z̃g,n = M̃g,n \ C̃g,n−1

Now, we will study the complement of the image of C̃g,n−1 in M̃g,n and define a
stratification of the complement by a countably infinite collection of locally closed
strata.

Recall that we embedded C̃g,n−1 in M̃g,n by considering points of the fibers of
πn−1 : C̃g,n−1 → M̃g,n−1 as the last marked point and attaching an extra rational
component at p if necessary. In particular, any n-pointed curve such where pn lies
on a component with more than 4 special points is in the image of C̃g,n−1. Hence,
a point in M̃g,n is not in the image of C̃g,n−1 only if it parametrizes a Gieseker
bundle (C, p1, . . . , pn,P) such that the component containing pn, call it C′, becomes
unstable after forgetting pn.

Thus,C is not in the image of C̃g,n−1 only ifC′ is a rational curve containing precisely
three special points2. Since one of the special points is pn, C′ can have either one
or two nodes. If C′ has exactly one node, we will call C a curve of type I. If C′ has
two nodes, C \C′ can either have one or two connected components. If C \C′ is the
disjoint union of two connected components we will say C is a curve of type II. If
C \ C′ is connected, we will say C is of type III.

pi pn
pi

pn

Figure 1.3: Examples of type I curves

pn
pn

pn

Figure 1.4: Examples of type II curves

Figures 1.3, 1.4, and 1.5 show examples of type I, II, and III curves, respectively.
As before, dashed lines represent Gieseker bubbles over which the line bundle has

2This is because all rational components have at least two components and only Gieseker bubbles
are allowed to have two special points, both of which must be nodes.
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pn
pn

pn

Figure 1.5: Examples of type III curves

degree 1. In all the figures, the component containing pn is rational. All other
connected components of the curves in the figures, along with the restriction of the
given line bundle, are lower pointed Gieseker bundles3.

Note that Z̃g,n is the disjoin union of the strata of type I, II, and III curves. In the sub-
sections that follow, we will stratify subschemes of Z̃g,n of type I, II, and III curves.
Also, we will consider the connected component M̃g,n,D ⊂ M̃g,n parametrizing
Gieseker bundles of some fixed total degree D.

1.7 Type I curves
Let (C, p1, . . . , pn,P) ∈ M̃g,n be a type I curve. As before, let C′ denote the
irreducible component of C containing pn. Then, C′ is a rational component
containing 2 marked points and a node. Let the marked points be pi and pn. Note
that there is only one way a type I curve can be in the image of C̃g,n−1. This happens
when we choose the point p = pi on the fiber as shown in Figure 1.6.

⇒
p = pi

pi
pn C′

Figure 1.6: Type I curve lying in the image of C̃g,n−1

If a type I curve is in the image of C̃g,n−1, then the degree of P|C ′ must be 0.
Moreover, such curve cannot have a Gieseker bubble attached to C′. Therefore,
the type I curves that do not lie in the image of C̃g,n−1 are the ones such that either
degP|C ′ , 0 or C′ is attached to a Gieseker bubble.

3These components can have genus greater than 0.
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For i = 1, . . . , n−1, let Z1
i be the closed subscheme ofM̃g,n whose points parametrize

type I curves not in the image of C̃g,n−1 such that C′ contains pn and pi. First, note
that Z1

i is closed in M̃g,n: any degeneration of a type I curve is another type I curve;
and the degree of P|C ′ is locally constant away from the Gieseker bubble.

Now, denote by W1
i,d the locally closed stratum corresponding to the topological

types depicted in Figure 1.7, where (γ,D − d) is any topological type of genus g
Gieseker bundle of degree D − d. In other words, W1

i,d is the stratum corresponding

pi

pn

g=0
d

γ
D−d

pi
pn C′

degP|C ′ = d

Figure 1.7: Modular graphs and curves of W1
i,d

to type I curves such that

1. degP|C ′ = d; and

2. C′ is not attached to a Gieseker bubble.

Note that W1
i,d ⊂ C̃g,n−1 if and only if d = 0.

Denote by F1
i,d the closed stratum corresponding to the topological types depicted in

Figure 1.8, where (γ,D − d − 1) is any topological type of genus g Gieseker bundle
of degree D − d − 1. In other words, F1

i,d is the stratum corresponding to type I

pi

pn

g=0
d

g=0
1

γ
D−d−1 pi

C′ pn

degP|C ′ = d

Figure 1.8: Modular graphs and curves of F1
i,d

curves such that

1. degP|C ′ = d; and

2. C′ is attached to a Gieseker bubble.
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Note that F1
i,d 1 C̃g,n−1 for all i and d.

By Lemma 1.1, we see that for each i and d, we have

W1
i,d = W1

i,d ∪ F1
i,d ∪ F1

i,d−1.

Moreover, all the curves in Z̃g,n that are deformations of curves ofF1
i,d are parametrized

by points of F1
i,d,W

1
i,d and W1

i,d+1. More precisely, points of W1
i,d parametrize curves

obtained from a curve in F1
i,d by smoothing the node on the connecting Gieseker

bubble opposite to C′4. Figure 1.9 shows such a deformation.

pi
C′

pn

degP|C ′ = d

 

pi
pn C′

degP|C ′ = d

Figure 1.9: Smoothing the node in the dashed circle

Likewise, the points of W1
i,d+1 parametrize curves obtained from curves in F1

i,d by
smoothing the node on C′ as shown in Figure 1.10.

pi
C′

pn

degP|C ′ = d

 

pi
pn C′

degP|C ′ = d + 1

Figure 1.10: Smoothing the node in the dashed circle

We can visualize the stratum of type I curves in the following way:

· · · W1
i,d−1 f F1

i,d−1 W1
i,d f F1

i,d  W1
i,d+1 f F1

i,d+1 W1
i,d+2 f · · · ,

where A B means A lies in the closure of B.

Now, we define Z1
i,d as follows.

Z1
i,d =


W1

i,d ∪ F1
i,d d < 0

W1
i,d+1 ∪ F1

i,d d ≥ 0
.

Keeping in mind W1
i,0 ⊂ C̃g,n−1, we see that Z1

i = ∪Z1
i,d gives us the desired

stratification of Z1
i (see Figure 1.11).

4We cannot smooth both since such a deformation would result in a curve that lies in the image
of C̃g,n.
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...

W1
i,−2

F1
i,−2

W1
i,−1

F1
i,−1

W1
i,0

F1
i,0

W1
i,1

F1
i,1

W1
i,−1

...

⊂ C̃g,n−1

Z1
i,−1 ←

Z1
i,0 ←

Z1
i,1 ←

Z1
i,−2 ←

Figure 1.11: Stratification of Z1
i by Z1

i,d

Before we move onto type II curves, we give an alternate way of defining Z1
i,d , which

will be useful later. Let U1
i,d be the stratum of points parametrizing all curves of

Z̃g,n obtained by smoothing nodes of curves in F1
i,d . By Lemma 1.1, this is precisely

U1
i,d = W1

i,d ∪ F1
i,d ∪W1

i,d+1.

Note that {U1
i,d | d ∈ Z} is an open cover of Z1

i .

Then, we can define Z1
i,d as follows.

Z1
i,d =


U1

i,d \U1
i,d+1 d < 0

U1
i,d \U1

i,d−1 d ≥ 0
.

Geometry of F1
i,d and Z1

i,d

We defined F1
i,d as the stratum of points parametrizing curves of splitting type

({i, n}, {i, n}c) where marked points pi and pn are on a rational curve connected to
a Gieseker bubble. Moreover, the universal bundle has degree d restricted to the
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component, C′, containing pi and pn, and degree e := D − d − 1 restricted to the
component, C1, containing the other marked points. Hence,

F1
i,d � M̃

d
0,3 × M̃

e
g,n−1,

where we identify the third marked point of M̃d
0,3 and the (n − 1)-st marked point

of M̃e
g,n−1 as the two nodes on the connecting Gieseker bubble. The marked points

of M̃d
0,3 are denoted pi, pn, and the node p3. The marked points of M̃e

g,n−1 are the
points p j for j , i, n, and the node pn−1.

Now, we take a closer look at Z1
i,d . Proposition 4.15 and Corollary 4.16 of [1] tell

us that Z1
i,d is an affine bundle over F1

i,d .

Proposition 1.5. [1]

1. For d ≥ 0, Z1
i,d classifies bundles which arise from F1

i,d by smoothing away
the node attaching C′ to the connecting Gieseker bubble.

2. For d < 0, Z1
i,d classifies bundles which arise from F1

i,d by smoothing away
the node attaching the connecting Gieseker bubble to the components not
containing pn.

3. We have a map η : Z1
i,d → F1

i,d such that η is the structure map of an affine
bundle.

Note that our F1
i,d correspond to those labeled F in [1], and our Z1

i,d correspond to
those labeled Z (when d ≥ 0) and W (when d < 0). 1 and 2 of Proposition 1.5
follow directly from the definition of Z1

i,d .

While Frenkel, Teleman, and Tolland do not say exactly which affine bundle η :
Z1

i,d → F1
i,d is, the proof of Proposition 4.15 in [1] contains more information which

leads to the following Proposition:

Proposition 1.6. The map η : Z1
i,d → F1

i,d from Proposition 1.5 is given by the
bundle 

(L−1
3 ⊗ P

d
3 ) � (P

e
n−1)

−1 d ≥ 0

(Pd
3 )
−1 � (L−1

n−1 ⊗ P
3
n−1) d < 0

,

where

1. L3 is the cotangent bundle along the third section on M̃d
0,3,
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2. Ln−1 is the cotangent bundle along the (n − 1)-st section on M̃e
g,n−1,

3. Pd
3 is the restriction of the universal bundle along the third section on M̃d

0,3,
and

4. Pe
n−1 is the restriction of the universal bundle along the (n − 1)-st section on
M̃e

g,n−1.

Proof. Let d ≥ 0 and consider curves parametrized by points of Z1
i,d . All such curves

have splitting type ({i, n}, {i, n}c). Recall that we denote the component containing
pn by C′, and the other component by C1, where we discard the connecting Gieseker
bubble between them if there is one. Let P denote the universal bundle over curves
of Z1

i,d . Now, we have two trivializations of P restricted to the two components
C′ and C1, say t′ : Ppn → C× and t1 : Ppk → C×, where k , i, n. These two
trivializations then give us the gluing isomorphism, ι, of the fibers of P over the
node. Now, as proof of Proposition 4.15 in [1] points out, scaling t′ to 0, we obtain
in the limit a connecting Gieseker bubble with a degree 1 transferred from C′5.
Hence, this gives rise to a map η : Z1

i,d → F1
i,d for d ≥ 0. Similarly, scaling t′ to ∞

gives a map Z1
i,d → F1

i,d for d < 0.

Moreover, the choices of the trivializations t′ and t1 give us a map between the two
fibers of the universal bundles over the nodes onC′ andC1, which are Pp3 and Ppn−1 ,
respectively. As Remark 1.12.1 in [1] explains, this map Ppn−1 → Pp3 is given by
t′/t1, and is precisely the gluing isomorphism, ι, over the node attaching C′ with C1

when we have a type I curve with no connecting Gieseker bubble. When t′ = 0,
this map Ppn → Pp3 becomes the 0 map and we get a connecting Gieseker bubble,
as we saw above. Hence, given a section of η : Z1

i,d → F1
i,d , we obtain a morphism

P|σn−1 → P|σ3 .

Now, since F1
i,d � M̃d

0,3 × M̃
e
g,n−1, we try to write P|σn−1 and P|σ3 in terms of

pull-backs of line bundles over M̃d
0,3 and M̃e

g,n−1. Let pr1 : F1
i,d → M̃

d
0,3 and

pr2 : F1
i,d → M̃

e
g,n−1 be the projection maps. First, P|σn−1 is equal to pr∗2P

e
n−1

by definition. However, P|σ3 is not equal to pr∗1P
d
3 since Pd

3 is the restriction
of the universal bundle over M̃d

0,3 to σ3 and thus, has 1 lower degree than P|σ3:
degP|σ3 = d+1. Recall that the map η : Z1

i,d → F1
i,d inserted a connecting Gieseker

bubble by scaling the trivialization, t′, to 0 and transferring 1 degree from C′ to the
bubble. Hence, P|σ3 � pr∗1 (P

d
3 ⊗ L

−1
3 ).

5See Remark 1.12.1 in [1].
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Therefore, sections of η : Z1
i,d → F1

i,d correspond to sections of

Hom
(
pr∗2P

e
n−1, pr∗1 (L

−1
3 ⊗ P

d
3 )

)
� pr∗1 (L

−1
3 ⊗ P

d
3 ) ⊗ (pr∗2P

e
n−1)

−1.

Hence, we conclude that for d ≥ 0, η : Z1
i,d → F1

i,d is the affine bundle given by

(L−1
3 ⊗ P

d
3 ) � (P

e
n−1)

−1.

For d < 0, the situation is symmetric. Recall that when d < 0, instead of transferring
1 degree to the bubble from C′, we transfer it from C1. The map η : Z1

i,d → F1
i,d is

then defined by scaling the trivialization, t′, to ∞. By the same argument as in the
d ≥ 0, case we conclude that η : Z1

i,d → F1
i,d is the affine bundle given by

(Pd
3 )
−1 � (L−1

n−1 ⊗ P
e
n−1).

�

Another way to show that Z1
i,d is the affine bundle given by (L−1

3 ⊗P
d
3 )� (P

e
n−1)

−1 is
by considering the formal neighborhood of F1

i,d . Z1
i,d corresponds to smoothings of

the node attaching C′ to the connecting Gieseker bubble, which is the marked point
p3 on M̃d

0,3. Smoothing a node is represented by the formal neighborhood given by
T+ ⊗T− where T± denote the tangent bundles at the node on the two components. In
our case, those bundles are L−1

3 from C′, and Pd
3 � (P

e
n−1)

−1 from the connecting
Gieseker bubble. The tangent bundle at the node on the connecting Gieseker bubble
is Pd

3 � (P
e
n−1)

−1 since O(1) of the Gieseker bubble is glued on the two nodes, p3

and pn−1, to the fibers Pp3 and Ppn−1 . Hence, Z1
i,d corresponds to the affine bundle

over F1
i,d given by

pr∗1L
−1
3 ⊗

(
Pd

3 � (P
e
n−1)

−1
)
� (L−1

3 ⊗ P
d
3 ) � (P

e
n−1)

−1.

1.8 Type II curves
Now, we stratify the stratum of type II curves.

Let (C, p1, . . . , pn,P) ∈ M̃g,n be a type II curve and let C′ denote the irreducible
component of C containing pn. Since C is a type II curve, C′ contains the marked
point pn and two nodes, and C \C′ has two connected components. Note that there
are precisely three ways for a type II curve to lie in the image of C̃g,n−1.

1. We choose the node on two stable components as p (Figure 1.12); or
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2. we choose a point on a Gieseker bubble as p (Figure 1.13); or

3. we choose the node on a stable component and a Gieseker bubble as p (Fig-
ure 1.14).

⇒
p pn+1

Figure 1.12: Choosing a node on two stable components

⇒
p pn+1

Figure 1.13: Choosing a point on a Gieseker bubble

⇒
p pn+1

Figure 1.14: Choosing a node on a stable component and a bubble

Therefore, a type II curve is in the image of C̃g,n−1 if and only if either

1. degP|C ′ = 1 and C′ is not connected to a Gieseker bubble; or

2. degP|C ′ = 0 and C′ is connected to 0 or 1 Gieseker bubbles.

For a type II curve, C \ C′ has two connected components. For I ⊂ [n − 1] :=
{1, . . . , n − 1} such that |I |, |Ic | ≥ 2, let Z2

I be the closed subscheme of M̃g,n

whose points parametrize type II curves not in the image of C̃g,n−1 such that points
{pi | i ∈ I} and {pi | i < I} are on separate connected components of C \ C′.
Without loss of generality, denote by C1 the curve containing points with indices in
I, and C2 the other connected component.

As we did with type I curves, we will first look at the stratification of Z2
I by

topological types. We will fix D, the total degree of the Gieseker bundle, and also
the splitting g1 + g2 = g of the total genus g into genus, g1, of C1 and g2 of C2. Note
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that type II curves can have 0, 1, or 2 Gieseker bubbles attached to C′. We will call
these strata W2,Y2, and F2, respectively.

Let d1, d2 ∈ Z. We denote by W2
I,(d1,d2) the locally closed stratum corresponding

to the topological type depicted in Figure 1.15, where (γi, di) is any topological
type of genus gi Gieseker bundle of degree di with marked points of Ci, such that
g = g1 + g2.

pn

γ1
d1

g=0
d

γ2
d2

d = D − d1 − d2

pn

Figure 1.15: Modular graphs and curves of W2
I,(d1,d2)

In other words, W2
I,(d1,d2) is the stratum corresponding to type II curves such that

1. degP|Ci = di; and

2. C′ is not connected to any Gieseker bubbles.

We will denote by
W2

I,d :=
⋃

D−d1−d2=d

W2
I,(d1,d2).

Note thatW2
I,d ⊂ C̃g,n−1 if and only if d = 0 or 1 by the discussion from the beginning

of the section.

The type II curves with a Gieseker bubble connecting C′ with C1 will be denoted
Y2

I,(d1,d2). The topological type of such curves is shown in Figure 1.16.

pn

γ1
d1

g=0
1

g=0
d

γ2
d2

d = D − d1 − d2 − 1

pn

Figure 1.16: Modular graphs and curves of Y2
I,(d1,d2)

We also define
Y2

I,d :=
⋃

D−d1−d2=d

(
Y2

I,(d1,d2) ∪ Y2
Ic,(d2,d1)

)
.
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Note that Y2
I,d ⊂ C̃g,n−1 if and only d = 1.

Lastly, we denote by F2
I,(d1,d2) the stratum of type II curves with two Gieseker bubbles

with the topological type shown in Figure 1.17.

pn

γ1
d1

g=0
1

g=0
d

g=0
1

γ2
d2

d = D − d1 − d2 − 2

pn

Figure 1.17: Modular graphs and curves of F2
I,(d1,d2)

Also, define
F2

I,d :=
⋃

D−d1−d2=d

F2
I,(d1,d2).

Again by Lemma 1.1, we see that F2
I,d and F2

I,(d1,d2) are closed in M̃g,n. Similarly to
the type I case, let U2

I,(d1,d2) denote the stratum of points parametrizing all curves of
Z̃g,n that are obtained by smoothing 0 or 1 of the nodes on each Gieseker bubble of
curves of F2

I,(d1,d2) 6.

U2
I,(d1,d2) := F2

I,(d1,d2) ∪ Y2
I,(d1,d2) ∪ Y2

I,(d1,d2+1) ∪ Y2
Ic,(d2,d1) ∪ Y2

Ic,(d2,d1+1)

∪W2
I,(d1,d2) ∪W2

I,(d1+1,d2) ∪W2
I,(d1,d2+1) ∪W2

I,(d1+1,d2+1).

Note that {U2
I,(d1,d2) | D − d1 − d2 = d} forms an open cover of Z2

I,d in Z̃g,n.

Also, the stratum of all smoothings of curves of F2
I,d is

U2
I,d =

⋃
D−d1−d2=d

U2
I,(d1,d2)

= F2
I,d ∪ Y2

I,d ∪ Y2
I,d−1 ∪W2

I,d ∪W2
I,d−1 ∪W2

I,d−2.

Note that {U2
I,d | d ∈ Z} forms an open cover of Z2

I .

We can visualize the closure relations of these type II strata using the following
infinite two dimensional grid7 in Figure 1.188.

Figure 1.19 shows U2
I,(d1,d2) as deformations of curves in F2

I,(d1,d2). The dashed lines
attached to the nodes on the Gieseker bubbles indicate which deformation happen
as we smooth the chosen node.

6As we saw in Section 1.7, we cannot smooth both nodes of the same Gieseker bubble since
such deformation would result in a curve lying in the image of C̃g,n−1.

7The two dimensions correspond to smoothings of the two connecting Gieseker bubbles. The
direction along each axis is determined by which of the two nodes on the bubble is smoothed.

8Keep in mind closure relations are transitive.
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W2
I,(d1−1,d2−1) Y2

I,(d1−1,d2−1) W2
I,(d1,d2−1) Y2

I,(d1,d2−1) W2
I,(d1+1,d2−1)

Y2
Ic,(d2−1,d1−1) F2

I,(d1−1,d2−1) Y2
Ic,(d2−1,d1) F2

I,(d1,d2−1) Y2
Ic,(d2−1,d1+1)

W2
I,(d1−1,d2) Y2

I,(d1−1,d2) W2
I,(d1,d2) Y2

I,(d1,d2) W2
I,(d1+1,d2)

Y2
I,(d1−1,d2) F2

I,(d1−1,d2) Y2
Ic,(d2,d1) F2

I,(d1,d2) Y2
Ic,(d2,d1+1)

W2
I,(d1−1,d2+1) Y2

I,(d1−1,d2+1) W2
I,(d1,d2+1) Y2

I,(d1,d2+1) W2
I,(d1+1,d2+1)

U2
I,(d1−1,d2−1)

U2
I,(d1,d2)

Figure 1.18: Type II strata and their closure relations

(d1, d2 + 1) (d1 + 1, d2 + 1)

(d1, d2 + 1) (d1 + 1, d2 + 1)

Figure 1.19: Closer look at U2
I,(d1,d2)
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We are finally ready to define our stratification of Z2
I . Define

Z2
I,d :=


U2

I,d \U2
I,d+1 d ≤ 1

U2
I,d \U2

I,d−1 d ≥ 2
.

We also define
Z2

I,(d1,d2) := Z2
I,d ∩UI,(d1,d2).

Recalling that W2
I,0,W

2
I,1,Y

2
I,1 ⊂ C̃g,n−1, we see that Z2

I,d stratify Z2
I . Moreover, for

each d, Z2
I,d is the disjoint union

Z2
I,d =

⋃
D−d1−d2=d

Z2
I,(d1,d2).

Figure 1.20 shows the stratification of Z2
I by Z2

I,d and Z2
I,(d1,d2). All superscripts and

subscripts except for the degrees are suppressed for the sake of simplicity.

In Figure 1.20, d1, d2 ∈ Z are such that D − d1 − d2 = 1. The strata that lie in the
blue shaded region are the ones that are in the image of C̃g,n−1. The red boxes are
the Z2

I,(d ′,d ′′), where (d
′, d′′) are the degrees corresponding to the F(d ′,d ′′) in the same

box. For example, the box labeled (2.2) correspond to Z2
I,(d1,d2−1). Moreover, each

box labeled (d, k) lie in Z2
I,d . For example, boxes (1.1), (1.2), and (1.3), which are

Z2
I,(d1−1,d2+1), Z2

I,(d1,d2), Z2
I,(d1+1,d2−1), respectively, all lie in Z2

I,1. Note that

D − (d1 − 1) − (d2 + 1) = D − d1 − d2 = D − (d1 + 1) − (d2 − 1) = 1.

Geometry of F2
I,(d1,d2) and Z2

I,(d1,d2)
By the same argument as in the type I case,

F2
I,d1,d2

� M̃d1
g1,|I |+1 × M̃

d
0,3 × M̃

d2
g2,|Ic |+1,

where d = D − d1 − d2 − 2. Also, by Proposition 1.5, we know that there exists a
map η : Z2

I,(d1,d2) → F2
I,(d1,d2), which is the structure map of an affine bundle. From

our description of Z2
I,(d1,d2), we know that

1. for d ≥ 2, Z2
I,(d1,d2) classifies bundles which arise from F2

I,(d1,d2) by smoothing
away nodes attaching the connecting Gieseker bubbles to C1 and C2; and

2. for d ≤ 1, Z2
I,(d1,d2) classifies bundles which arise from F2

I,(d1,d2) by smoothing
away nodes attaching the connecting Gieseker bubbles to C′.
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Wd1−1,d2−2 Yd1−1,d2−2 Wd1,d2−2 Yd1,d2−2 Wd1+1,d2−2 Yd1+1,d2−2 Wd1+2,d2−2

Yd1−1,d2−2 Fd1−1,d2−2 Yd1,d2−2 Fd1,d2−2 Yd1+1,d2−2 Fd1+1,d2−2 Yd1+2,d2−2

Wd1−1,d2−1 Yd1−1,d2−1 Wd1,d2−1 Yd1,d2−1 Wd1+1,d2−1 Yd1+1,d2−1 Wd1+2,d2−1

Yd1−1,d2−1 Fd1−1,d2−1 Yd1,d2−1 Fd1,d2−1 Yd1+1,d2−1 Fd1+1,d2−1 Yd1+2,d2−1

Wd1−1,d2 Yd1−1,d2 Wd1,d2 Yd1,d2 Wd1+1,d2 Yd1+1,d2 Wd1+2,d2

Yd1−1,d2 Fd1−1,d2 Yd1,d2 Fd1,d2 Yd1+1,d2 Fd1+1,d2 Yd1+2,d2

Wd1−1,d2+1 Yd1−1,d2+1 Wd1,d2+1 Yd1,d2+1 Wd1+1,d2+1 Yd1+1,d2+1 Wd1+2,d2+1

Yd1−1,d2+1 Fd1−1,d2+1 Yd1,d2+1 Fd1,d2+1 Yd1+1,d2+1 Fd1+1,d2+1 Yd1+2,d2+1

Wd1−1,d2+2 Yd1−1,d2+2 Wd1,d2+2 Yd1,d2+2 Wd1+1,d2+2 Yd1+1,d2+2 Wd1+2,d2+2

4.1 3.2 2.3

3.1 2.2

2.1

1.1 0.1 -1.1

1.2 0.2

1.3

Figure 1.20: Stratification of Z2
I

Figure 1.21: Z2
I,(d1,d2) when D − d1 − d2 ≥ 2

By the same argument as in the proof of Proposition 1.6, we obtain the following
proposition.
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Proposition 1.7. The map η : Z2
I,(d1,d2) → F2

I,(d1,d2) is the structure map of the affine
bundle
((
L−1
|I |+1 ⊗ P

d1
|I |+1

)
� (Pd

1 )
−1 � OM̃2

)
⊕

(
OM̃1
� (Pd

3 )
−1 �

(
L−1
|Ic |+1 ⊗ P

d2
|Ic |+1

))
d ≥ 2((

Pd1
|I |+1

)−1
�

(
L−1

1 ⊗ P
d
1

)
� OM̃2

)
⊕

(
OM̃2
�

(
L−1

3 ⊗ P
d
3

)
�

(
Pd2
|Ic |+1

)−1
)

d ≤ 1
,

where

1. L |I |+1 is the cotangent bundle along the (|I |+1)-st section,σ|I |+1, on M̃d1
g1,|I |+1;

2. Pd1
|I |+1 is the restriction to σ|I |+1 of the universal bundle over M̃d1

g1,|I |+1;

3. L1 and L3 are the cotangent bundles along σ1 and σ3 on M̃d
0,3;

4. Pd
1 and Pd

3 are the restrictions to σ1 and σ3 of the universal bundle over
M̃d

0,3;

5. L |Ic |+1 is the cotangent bundle along σ|Ic |+1 on M̃d2
g2,|Ic |+1; and

6. Pd2
|Ic |+1 is the restriction to σ|Ic |+1 of the universal bundle over M̃d2

g2,|Ic |+1.

1.9 Type III curves
A necessary and sufficient condition for a type III curve to be in the image of C̃g,n−1

is the same as the condition for type II curves. Denote by Z3 the closed subscheme
of M̃g,n whose points parametrize type III curves that do not lie in the image of
C̃g,n−1. For j ∈ Z consider the strata F3

d whose points parametrize type III curves
such that

1. degP|C ′ = j; and

2. C′ is connected to two Gieseker bubbles.

Then, for j ≥ 0, we define Z3
j recursively as

Z3
j =

(
U3

j ∩ Z3
)
\

⋃
0≤k≤ j−1

Z3
k,

where U3
j = ∪M̃γ,d is the union running over all (γ, d) such that there exists a

modification f : (γ′, d′) → (γ, d) with (γ′, d′) the modular graph of a bundle in F3
j .
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Similarly for j ≤ −1, we define Z3
j recursively as

Z3
j =

(
U3

j ∩ Z3
)
\

⋃
j+1≤k≤−1

Z3
k .

By the same argument we see that Z3
j is locally closed for all j ∈ Z and that

χZ3(F) =
∑
j∈Z

χZ3
j
(F).

For j ≥ 0, Z3
j parametrize all type III curves that are obtained from curves of F3

j by
smoothing the nodes on C′. For j ≤ −1, Z3

j parametrize all type III curves that are
obtained from curves of F3

j by smoothing the nodes on the two connecting Gieseker
bubbles that do not lie on C′.

1.10 Cohomology over Z̃g,n

Recall that we would like to compute χ(M̃g,n, α), where α is an admissible bundle
on M̃g,n. In order to compute χ(M̃g,n, α), we use the stratification of M̃g,n as a
union of C̃g,n, Z1

i , Z2
I , and Z3. First, we recall the definition of cohomology with

support on a locally closed subscheme.

Definition 1.8. [5] Let X be a topological space and let Z ⊂ X be a locally closed
subset. Define the sections of F with support in Z as

ΓZ (X, F) := {s ∈ F(X) | Supp(s) ⊂ Z}.

Then, ΓZ is left exact but not necessarily exact. We define the right derived functors
of ΓZ to be the local cohomology groups with support with Z ,

Hi
Z (X, F) := Ri

ΓZ (X, F).

Local cohomologies satisfy several properties.

Proposition 1.8. [5] Let Z be a locally closed subset of X . Suppose Z ⊂ Y ⊂ X .
Then,

Hi
Z (X, F) = Hi

Z (Y, F|Y ),

for all i and for all sheaves F on X .

Using Proposition 1.8, we will simply denote Hi
Z (F) := Hi

Z (X, F).
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Proposition 1.9. Let Z ⊂ X be an open subset. Then,

Hi
Z (F) = Hi(Z, F),

for all i and for all sheaves F on X .

When Z ⊂ X is a locally closed subset, there is an associated long exact sequence
of cohomologies.

Lemma 1.2. [5] Let X be a topological space and let Z ⊂ X be a locally closed
subset. Let Z′ ⊂ Z be closed in Z and let Z′′ := Z \ Z′. Then, we have the following
long exact sequence of local cohomologies for any abelian sheaf F on X:

0→ H0
Z ′(F) → H0

Z (F) → H0
Z ′′(F) → H1

Z ′(F) → H1
Z (F) → H1

Z ′′(F) → · · · .

Corollary 1.1. Let X be a topological space and let Z ⊂ X be a locally closed
subset. Let Y = X \ Z and let F be a sheaf on X . Then, we have the following long
exact sequence of local cohomologies:

0→ H0
Z (F) → H0(X, F) → H0(Y, F) → H1

Z (F) → H1(X, F) → H1(Y, F) → · · · .

Proof. The long exact sequence is the one associated to the triple Z,Y ⊂ X from
Lemma 1.2, where the local cohomologies with support on open subsets of X are
replaced with regular cohomologies using Proposition 1.9. �

Note that C̃g,n−1 is open in M̃g,n and thus, Z̃g,n is closed. By Corollary 1.1, for any
sheaf F on M̃g,n, we have the following long exact sequence of local cohomologies

0→ H0
Z̃g,n
(F) → H0(F) → H0(C̃g,n−1, F) → H1

Z̃g,n
(F) → H1(F) → H1(C̃g,n−1, F) → · · · ,

where Hi(F) := Hi(M̃g,n, F). Hence, if all the following terms are well-defined, we
have

χ(M̃g,n, F) = χ(C̃g,n−1, F) + χZ̃g,n
(F).

In following sections, we will show that when g = 0, the terms are indeed well-
defined and that the equation above gives us a formula for computing n-pointed
invariants, χ(M̃0,n, α), from lower pointed invariants, χ(M̃0,m, α), where m < n.

Note that the strata Z1, Z2, and Z3 are a pairwise disjoint collection of locally closed
strata. Hence, by using Lemma 1.2 on Z1, Z2, Z3 ⊂ Z̃g,n, we get

χZ̃g,n
(F) = χZ1(F) + χZ2(F) + χZ3(F).
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Since Z1 =
∐n−1

i=1 Z1
i , where Z1

i are pairwise disjoint, we conclude that

χZ1(F) =
n−1∑
i=1

χZ1
i
(F).

Also, recall from Section 1.7 that for all i, Z1
i,0 is open in Z1

i . And Z1
i,±1 is open in

Z1
i \ Z1

i,0. Similarly, for all d ≥ 0, Z1
i,±d is open in Z1

i \
(⋃
|k |<d Z1

i,d

)
. Therefore,

by the long exact sequence of local cohomologies, we conclude that if χZ1
i, j
(F) and∑

d χZ1
i,d
(F) are well defined for a sheaf F, then

χZ1
i
(F) =

∑
d∈Z

χZ1
i,d
(F),

for all i ∈ [n − 1]. Combining the two results, we get

χZ1(F) =
∑

i∈[n−1]

∑
d∈Z

χZ1
i,d
(F).

Similarly, we know from Section 1.8 that Z2 =
∐

I Z2
I , where the union is over all

subsets I ⊂ [n − 1] such that 2 ≤ I ≤ n − 3. Moreover, we also know that Z2
I can

be stratified by Z2
I,d . We know that Z2

I,0 is open in Z2
I , and for d ≥ 0, Z2

i,±d is open

in Z2
i \

(⋃
|k |<d Z2

i,d

)
. Hence, by Lemma 1.2, we have

χZ1
i
(F) =

∑
d∈Z

χZ1
i,d
(F).

Finally, for each I and d, Z2
I,d is a disjoint union of Z2

I,(d1,d2), where we run over all
d1, d2 ∈ Z such that D − d1 − d2 = d. Therefore, we get,

χZ2
I
(F) =

∑
d1,d2∈Z

χZ2
I,d1,d2
(F).

Since this holds true for all I ⊂ [n − 1], we conclude that

χZ2(F) =
∑

I⊂[n−1]
2≤|I |≤n−3

∑
d1,d2∈Z

χZ2
I,d1,d2
(F).
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Combining the results above, we obtain

χZ̃g,n
(F) = ©­«

∑
i∈[n−]

χZ1
i
(F)ª®¬ +

©­­­«
∑

I⊂[n−1]
2≤|I |≤n−3

χZ2
I
(F)

ª®®®¬ + χZ3(F) (1.3)

=
©­«

∑
i∈[n−1]

∑
d∈Z

χZ1
i,d
(F)ª®¬ (1.4)

+

©­­­«
∑

I⊂[n−1]
2≤|I |≤n−3

∑
d1,d2∈Z

χZ2
I,d1,d2
(F)

ª®®®¬ + χZ3(F). (1.5)

In particular, when g = 0, there are no Type III curves9. Hence, Z3 = ∅ and thus,

χZ̃0,n
(F) = ©­«

∑
i∈[n−1]

∑
d∈Z

χZ1
i,d
(F)ª®¬ +

©­­­«
∑

I⊂[n−1]
2≤|I |≤n−3

∑
d1,d2∈Z

χZ2
I,d1,d2
(F)

ª®®®¬ . (1.6)

1.11 Towards finiteness of χ(M̃0,n, α)
Recall that we have

χ(M̃0,n, α) = χ(M̃0,n−1, Rπ∗α) + χZ̃0,n
(α).

In Section 1.10, we showed that the second term, χZ̃0,n
(α), can be written as a

countable sum of local Euler characteristics χZ (α), where Z is locally closed.

We wish to show that when g = 0, n-pointed gauge Gromov-Witten invariants can
be reconstructed from lower pointed invariants and thus, are well defined. In this
section, we will show that all but finitely many terms of the sum in the equation 1.6
vanish. Moreover, the nonvanishing terms can be written as a sum of products of
χ(M̃0,n′, α

′), where n′ < n and α′ is an admissible class on M̃0,n′.

Vanishing of χZ1
i,d
(α) for d � 0 and d � 0

First, fix i ∈ [n − 1]. We will show that χZ1
i,d
(α) vanishes for all but finitely many

d ∈ Z.

Suppose d ≥ 0 and let e = D−d−1. Recall from Proposition 1.6 that F1
i,d � M̃

d
0,3×

M̃e
0,n−1, and that Z1

i,d is an affine bundle over F1
i,d given by (L−1

3 ⊗ P
d
3 ) � (P

e
n−1)

−1,
9Since all type III curves have genus greater than 0.



34

where L3 is the cotangent bundle along σ3 in M̃d
0,3, P

d
3 is the restriction of the

universal bundle to σ3, and Pe
n−1 is the restriction of the universal bundle to σn−1 in

M̃e
0,n−1. Also, recall that the normal bundle NZ1

i,d
is given by (Pd

3 )
−1�(L−1

n−1⊗P
e
n−1).

Now, using the filtration spectral sequence, we obtain

χZ1
i,d
(α) = χ

(
F1

i,d, α ⊗ det NZ1
i,d
⊗ Sym NZ1

i,d
⊗ Sym N−1

F1
i,d
/Z1

i,d

)
.

Consider the C×-action on F1
i,d given by the global scaling of the universal bundle on

C′, i.e. the pull back of the global C× action on M̃d
0,3. The weight of this C

× action
is 1 on Pd

3 and 0 on L−1
3 ,L−1

n−1, and P
e
n−1. Since det NZ1

i,d
� (Pd

3 )
−1� (L−1

n−1 ⊗P
e
n−1),

C× action has weight -1 on it. Hence, the C× action has negative weights on the
components of Sym NZ1

i,d
. Lastly,

Sym N−1
F1
i,d
/Z1

i,d

� Sym
((
L3 ⊗ (Pd

3 )
−1

)
� Pe

n−1

)
.

Therefore, we see that C× action has negative weights on all the components of
Sym N−1

F1
i,d
/Z1

i,d

. Hence, the weights of the chosen C× action on all the components of

det NZ1
i,d
⊗ Sym NZ1

i,d
⊗ Sym N−1

F1
i,d
/Z1

i,d

are negative.

We have left to compute the weight of the C×-action on α. Since α is an admissible
class, α � (det Rπ∗ϕ∗C1)−q ⊗

(⊗
j ev∗j Cλj ⊗ L

aj

j

)
. However, for all j ∈ [n], the

weight of our chosen C× action on ev∗j Cλj ⊗ L
aj

j is independent of d.

Lemma 1.3. [1] For the chosen C×-action,

1. C× acts on ev∗j Cλj with weight λ j , if p j is parametrized by a point of M̃0,3.

2. C× acts on ev∗j Cλj with weight 0, if p j is not parametrized by a point of M̃0,3.

3. C× acts on L j with weight 0.

Finally, we want to compute the weight of the C× action on det Rπ∗ϕ∗C1. However,
the action is simply global rescaling of the universal degree d line bundle on
M̃0,3. Hence, the weight of the C× action det Rπ∗ϕ∗C1 is d + 1, and its weight on
(det Rπ∗ϕ∗C1)−q is −q(d + 1) where q > 0.

We see that the weight of the C×-action on α over F1
i,d is a linear function of d with

slope −q < 0. Since all the components of det NZ1
i,d
⊗ Sym NZ1

i,d
⊗ Sym N−1

F1
i,d
/Z1

i,d
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have negative weights with respect to our chosen C× action, we see that for d � 0,
C× acts with negative weights on all components of

(det Rπ∗ϕ∗C1)−q ⊗
(⊗

j

ev∗j Cλj ⊗ L
aj

j

)
⊗ det NZ1

i,d
⊗ Sym NZ1

i,d
⊗ Sym N−1

F1
i,d
/Z1

i,d

.

In particular, there do not exist sections that are invariant with respect to the chosen
C×-action. Therefore, we conclude that for d � 0, χZ1

i,d
(Rπ∗α) = 0.

Moreover, note that α over F1
i,d � M̃0,3×M̃0,n−1 can be written as a box sum of a line

bundle over M̃0,3 and a line bundle over M̃0,n−1. Recall that the isomorphism M̃0,3×
M̃0,n−1 � F1

i,d is defined by associating the rational component ofC containing points
pi and pn with the corresponding point on M̃0,3, and associating the other (possibly
reducible) component containing points p j, j , i, n with the corresponding point on
M̃0,n−1.

Using the isomorphism, we see that
⊗

j ev∗j Cλj ⊗ L
aj

j can be written as(
ev∗i Cλi ⊗ L

ai
i ⊗ ev∗n Cλn ⊗ L

an
n

)
�

(
⊗ j,i,n ev∗j Cλj ⊗ L

aj

j

)
,

where the first term is a line bundle over M̃0,3, and the second term is a line bundle
over M̃0,n−1.

Now, we have the following lemma.

Lemma 1.4. We have an isomorphism

det Rπ∗ϕ∗C1 � det Rπ∗ϕ∗1C1 � det Rπ∗ϕ∗2C1,

where ϕi : M̃0,3 → [pt/C×] and ϕ2 : M̃0,n−1 → [pt/C×].

Proof. Before we prove the isomorphism globally, we will first verify the isomor-
phism fiber-wise over points of F1

i,d to get a clear picture of why the two bundles
are isomorphic. The global picture, and the proof of the isomorphism are almost
identical. Let p ∈ F1

i,d parametrizing a reducible curve C = C′ ∪ B ∪ C′′, where B

is the Gieseker bubble connecting the component C′ containing pi and pn with the
component C′′ containing the rest of the marked points. Let P be the restriction of
the universal line bundle P0,n toC. Note that B � P1 and that P|B � O(1). Consider
the morphism C′

∐
B

∐
C′′ → C given by normalizing the two nodes on B. This

morphism gives a short exact sequence of sheaves on C.

0→ P → P′ ⊕ i∗P|B ⊕ P′′→ P|p ⊕ P|q → 0,
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where P′ := i∗P|C ′, P′′ := i∗P|C ′′, and p and q are the two nodes on B. Now,
consider the associated long exact sequence of cohomology groups:

0→ H0(P) → H0(P′) ⊕ H0(P1,O(1)) ⊕ H0(P′′) → P|p ⊕ P|q

→ H1(P′) ⊕ H1(P′′) → H1(P) → 0.

However, H0(P1,O(1)) is canonically isomorphic to O(1)|0 ⊕ O(1)|∞. In particular,
we have H0(P1,O(1)) � P|p⊕P|q. Therefore, we conclude that H0(P) � H0(P′)⊕
H0(P′′) and H1(P) � H1(P′) ⊕ H1(P′′). Hence, we conclude that

Rπ∗P � Rπ∗P′ ⊕ Rπ∗P′′.

Taking determinants of both sides, we obtain

det(Rπ∗P) � det(Rπ∗P′) ⊗ det(Rπ∗P′′).

Since P′ = i∗P|C ′ and P′′ = i∗P|C ′′, we can write

det(Rπ∗P) � det(Rπ∗P|C ′) � det(Rπ∗P|C ′′).

The isomorphism above holds for all points of F1
i,d and moreover, hold globally over

F1
i,d � M̃

d
0,3 × M̃

e
0,n−1. Let C̃i,d be the restriction of the universal curve, C̃0,n, over

F1
i,d . Let B be the family of Gieseker bubbles over F1

i,d . Then, we see that C̃i,d is the
union of three connected components, C̃0,3, B, and C̃0,n−1, where B is connected to
C̃0,3 and C̃0,n−1 along the last marked sections σ3 and σn−1, respectively. Letting P′

and P′′ denote the restrictions of P to C̃0,3 and C̃0,n−1, and letting σ′ = C̃0,3 ∩ B,
and σ′′ = C̃0,n−1 ∩ B, we have the following short exact sequence:

0→ P → P′ ⊕ i∗P|B ⊕ P′′→ P|σ′ ⊕ P|σ′′ → 0.

Since B is the family of Gieseker bubbles over F1
i,d , it is a P

1 bundle over F1
i,d and

P|B � OB(1). Pushing forward along π : C̃ → F1
i,d , we obtain the following long

exact sequence:

0→ π∗P → π∗P′ ⊕ π∗OB(1) ⊕ π∗P′′→ P|p ⊕ P|q

→ R1π∗P′ ⊕ R1π∗P′′→ R1π∗P → 0.

Since π : B → F1
i,d is a P1-bundle, π∗OB(1) � P|σ′ ⊕ P|σ′′. Hence, we obtain

Rπ∗P � Rπ∗P′⊕Rπ∗P′′, and thus, det(Rπ∗P) � det(Rπ∗P′)⊗det(Rπ∗P′′). Finally,
noting that P′ = P|C̃0,3

and P′′ = P|C̃0,n−1
, we conclude that over F1

i,d we have

det(Rπ∗ϕ∗C1) � det(Rπ∗ϕ∗1C1) � det(Rπ∗ϕ∗2C1).

�
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Combining both results, we get the following proposition.

Proposition 1.10. Let i ∈ [n− 1] and d ∈ Z. Let F1
i,d be the stratum of type I curves

as defined in Section 1.6. Then, F1
i,d � M̃0,3 × M̃0,n−1. Moreover, the isomorphism

of spaces gives rise to the following isomorphism of line bundles:

(det Rπ∗ϕ∗C1)−q ⊗
(⊗

j

ev∗j Cλj ⊗ L
aj

j

)
�

(
(det Rπ∗ϕ∗C1)−q ⊗ ev∗i Cλi ⊗ L

ai
i ⊗ ev∗n Cλn ⊗ L

an
n

)
�

(
(det Rπ∗ϕ∗C1)−q ⊗ (⊗ j,i,n ev∗j Cλj ⊗ L

aj

j

)
.

In particular, for any admissible class, α over F1
i,d , we conclude that there exist

admissible classes α1 and α2 on M̃0,3 and M̃0,n−1, respectively such that

α � α1 � α2.

Proof. The proposition follows directly from the discussion above. Note that the
analysis is independent of our choice of i ∈ [n − 1] and d ∈ Z. �

Now, suppose d < 0. We want to show that for d � 0, χZ1
i,d
(Rπ∗α) = 0. Again,

recall that F1
i,d � M̃0,3 × M̃g,n−1, the normal bundle to Z1

i,d in M̃g,n is isomorphic to
(L−1

3 ⊗P3)�P−1
n−1, and Z1

i,d is an affine bundle over F1
i,d given by (L

−1
n−1⊗Pn−1)�P−1

3 .

Consider the pullback of the C× action on M̃0,3. We already showed that the weight
of this action on α over F1

i,d is given by a linear polynomial with slope −q < 0.
However, we have

det NZ1
i,d
� (L−1

3 ⊗ P
d
3 ) � (P

e
n−1)

−1,

Sym NZ1
i,d
�

(
SymL−1

3 ⊗ SymPd
3

)
� Sym(Pe

n−1)
−1,

Sym N−1
F1
i,d
/Z1

i,d

� Sym(Pd
3 )
−1 �

(
SymL−1

n−1 ⊗ SymPe
n−1

)
.

Recall that, the weight of our chosen C× action is 1 on Pd
3 and 0 on L−1

3 ,L−1
n−1,

and Pe
n−1. Therefore, C× acts with positive weight on all the components of the

vector bundles above. Hence, for d � 0, the weight of the chosen C×-action on
all components of det NZ1

i,d
⊗ Sym NZ1

i,d
⊗ Sym N−1

F1
i,d
/Z1

i,d

must be positive. Hence,

α ⊗ det NZ1
i,d
⊗ Sym NZ1

i,d
⊗ Sym N−1

F1
i,d
/Z1

i,d

does not have any invariant sections under

the chosen C× action. Consequently, χZ1
i,d
(α) = 0 for d � 0. Moreover, by

Proposition 1.10, we know that there exist admissible classes α1 and α2 over M̃0,3

and M̃0,n−1, respectively, such that over F1
i,d we have

α � α1 � α2.
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Since χZ1
i,d
(α) = 0 for d � 0 and d � 0, we conclude that Ii = {d ∈ Z|χZ1

i,d
(α) , 0}

is finite. Then, Proposition 1.10 implies that for all d, there exist admissible classes
α1,d and α2,d on M̃0,3 and M̃0,n−1, respectively such that

χZ1
i,d
(α) =

∑
d∈Ii

χ(M̃0,3, α1,d)χ(M̃0,n−1, α2,d).

Vanishing of χZ2
I,(d1,d2)

(α) for all but finitely many pairs (d1, d2)

Now, we show that χZ2
I,(d1,d2)

(α) = 0 for all but finitely many pairs (d1, d2) ∈ Z2.

Fix I ⊂ [n − 1] such that 2 ≤ |I | ≤ n − 3 and d1, d2 ∈ Z. Let d := D − d1 − d2 − 2
and suppose d ≥ 2. Then, we saw from Section 1.8 that

F2
I,(d1,d2) � M̃

d1
0,|I |+1 × M̃

d
0,3 × M̃

d2
0,|Ic |+1.

For simplicity of notation, we write F := F2
I,(d1,d2), Z := Z2

I,(d1,d2), M̃1 := M̃d1
0,|I |+1

and M̃2 := M̃d2
0,|Ic |+1. Recall from Proposition 1.7 that the formal neighborhood of

F is isomorphic to
N1 ⊕ N2 ⊕ N3 ⊕ N4,

where
N1 =

(
L−1
|I |+1 ⊗ P

d1
|I |+1

)
� (Pd

1 )
−1 � OM̃2

,

N2 = (Pd1
|I |+1)

−1 �
(
L−1

1 ⊗ P
d
1

)
� OM̃2

,

N3 = OM̃1
�

(
L−1

3 ⊗ P
d
3

)
� (Pd2

|I |c+1)
−1,

N4 = OM̃1
� (Pd

3 )
−1 �

(
L−1
|Ic |+1 ⊗ P

d2
|Ic |+1

)
.

Since d ≥ 2, Z parametrize type II curves obtained by smoothing nodes attached to
C1 and C2. Hence, the normal bundle to Z in M̃g,n is isomorphic toN2 ⊕ N3 and Z

is the affine bundle to F given by N1 ⊕ N4.

Consider the pullback of the global C×-action on M̃1. This C×-action has weight
1 on P|I |+1 and 0 on all other line bundles appearing in Ni. Hence, C×-action has
weight 1 on N1, -1 on N2, and 0 on N3 and N4.

The weight of this particular C×-action on α is again given by a linear polynomial
in d1 with slope −q < 0. As before, the weights of this C×-action on ev∗j Cλj and on
Laj

j are independent of d1 for all j = 1, . . . , n by Lemma 1.3.

Moreover, the following lemma allows us to compute the weights of our chosen
C×-action on (det Rπ∗ϕ∗C1)−q.
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Lemma 1.5. We have

det Rπ∗ϕ∗C1 � det Rπ∗ϕ∗1C1 � det Rπ∗ϕ∗2C1 � det Rπ∗ϕ∗3C1,

where ϕ1 : M̃1 → [pt/C×], ϕ2 : M̃2 → [pt/C×], and ϕ3 : M̃0,3 → [pt/C×].

Proof. The proof is similar to the proof of Lemma1.4. Every point ofF parametrizes
a type II curve, C, with two connecting Gieseker bubbles attached to C′, the compo-
nent containing pn. In other words, we have, C = C1 ∪ B1 ∪C′ ∪ B2 ∪C2, where B1

and B2 are connecting Gieseker bubbles. Moreover, C1 contains the marked points
with indices in I, and C2 contains the marked points with indices in Ic.

Let C be the restriction of the universal curve, C̃0,n, over F = F2
I,(d1,d2). Let C1, C2,

and C′ be the families of curves over F containing the sections σi with i ∈ I, i ∈ Ic,
and i = n respectively. Let B1 and B2 denote the two families of Gieseker bubbles,
and let Si = Ci ∩ Bi, Ti = C ∩ Bi.

By normalizing Si and Ti, we obtain a morphism

C1
∐
B1

∐
C′

∐
B2

∐
C2 → C.

This morphism gives rise to the following short exact sequence

0→ P → P1 ⊕ Q1 ⊕ P′ ⊕ Q2 ⊕ P2 → P|S1 ⊕ P|T1 ⊕ P|T2 ⊕ P|S2 → 0,

where P is the restriction of the universal bundle to C, Pj = i∗P|Cj,P′ = i∗P|C′,
and Q j = i∗P|Bj . Since B1 and B2 are Gieseker bubbles, we know that B j → F is
a P1-bundle and Q j � OBj (1). Therefore, we have

π∗Q j � P|Sj ⊕ P|Tj .

Moreover, Rpπ∗Q j = 0 for all p > 0.

The short exact sequence above gives rise to the following long exact sequence:

0→ π∗P → π∗P1 ⊕ π∗Q1 ⊕ π∗P′ ⊕ π∗Q2 ⊕ π∗P2

→ P|S1 ⊕ P|T1 ⊕ P|T2 ⊕ P|S2 → R1π∗P → R1π∗P1 ⊕ R1π∗P′ ⊕ R1π∗P2 → 0.

Since π∗Q j � P|Sj ⊕ P|Tj , we conclude that

π∗P � π∗P1 ⊕ π∗P′ ⊕ π∗P2,
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and
R1π∗P � R1π∗P1 ⊕ R1π∗P′ ⊕ R1π∗P2.

Since fibers of π are one dimensional, higher derived push-forwards vanish. There-
fore, we have

Rπ∗P � Rπ∗P1 ⊕ Rπ∗P′ ⊕ Rπ∗P2.

Now, note thatC1, C′, andC2 are identifiedwith the universal curves overM̃0,|I |+1, M̃0,3,
and M̃0,|Ic |+1 under the isomorphism F � M̃0,|I |+1×M̃0,3×M̃0,|Ic |+1. Hence, above
isomorphism can be written as

Rπ∗ϕ∗C1 � Rπ∗ϕ∗1C1 � Rπ∗ϕ2C1 � Rπ∗ϕ3C1.

Taking determinants of both sides, we get the desired isomorphism. �

The weight of the chosen C×-action on det Rπ∗ϕ∗1C1 is d1 + 1. Since the chosen
C×-action is trivial over the other components C2 and C3, the weights are 0 on
det Rπ∗ϕ∗2C1 and det Rπ∗ϕ∗3C1. Hence, the C×-action has weight −q(d1 + 1) on
(det Rπ∗ϕ∗C1)−q.

Now, note that

det NZ⊗Sym NZ⊗Sym N−1
F/Z � det (N2 ⊕ N3)⊗Sym (N2 ⊕ N3)⊗Sym(N−1

1 ⊕N
−1
4 ).

Recalling that C×-action has weight 1 onN1, -1 onN2, and 0 onN3 andN4, we see
that theC×-action has negativeweights on all components of the vector bundle above.
Hence, for d1 � 0, the C×-action has negative weights on all components of the
vector bundle α⊗ det NZ ⊗ Sym NZ ⊗ Sym N−1

F/Z . We conclude that χZ2
I,(d1,d2)

(α) = 0
for d1 � 0.

By a symmetric argument, we conclude that for d1 � 0, χZ2
I,(d1,d2)

(Rπ∗α) = 0. Also,
note that the choice of d1 was made without loss of generality. Therefore, we can
conclude that χZ2

I,(d1,d2)
= 0 for d2 � 0 and d2 � 0 as well.

Therefore, for all but finitely many (d1, d2), χZ2
I,(d1,d2)

(Rπ∗α) = 0 and thus, χZ2
I
is

finite for all I.

Combining the results, we obtain the following proposition similar to Proposi-
tion 1.10.

Proposition 1.11. Let I ⊂ [n − 1] with 2 ≤ |I | ≤ n − 3 and let (d1, d2) ∈ Z2. Let
F2

I,(d1,d2) be the stratum of type II curves as defined in Section 1.6. Then,

F2
I,(d1,d2) � M̃

d1
0,|I |+1 × M̃

d
0,3 × M̃

d2
0,|Ic |+1.
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Moreover, the isomorphism of spaces gives rise to the following isomorphism of line
bundles:

(det Rπ∗ϕ∗C1)−q ⊗
(⊗

i

ev∗i Cλi ⊗ L
ai
i

)
�

(
(det Rπ∗ϕ∗C1)−q ⊗

(⊗
i∈I

ev∗i Cλi ⊗ L
ai
i

))
�

(
(det Rπ∗ϕ∗C1)−q ⊗ ev∗n Cλn ⊗ L

an
n

)
�

(
(det Rπ∗ϕ∗C1)−q ⊗

(⊗
i∈Ic

ev∗i Cλi ⊗ L
ai
i

))
.

In particular, for any admissible class, α, over F2
I,(d1,d2), there exist admissible classes

α1, α2, and α3 on M̃0,|I |+1, M̃0,3, and M̃0,|Ic |+1, respectively, such that

α � α1 � α2 � α3.

Propositions 1.10, 1.11, and the analysis in this section give us the following
important result.

Proposition 1.12. Let α be an admissible class on M̃0,n. Let Z̃0,n ⊂ M̃0,n be the
complement of the image of the universal curve, C̃0,n−1, over M̃0,n−1. Then, χZ̃0,n

(α)
can be written as a finite sum of products of χ(M̃0,n′, α

′), where α′ is an admissible
class on M̃0,n′ with n′ < n.

1.12 String equation and divisor relations on M̃0,n

Section 1.11 made the first step towards reconstructing gauge Gromov-Witten in-
variants by showing that the local cohomology of an admissible class over the
complement of C̃0,n−1 in M̃0,n can be computed as a finite sum of fewer pointed
invariants. Recall that

χ(M̃0,n, α) = χ(C̃0,n−1, α) + χZ̃0,n
(α).

If we can show that χ(C̃0,n−1, α) can be reconstructed from fewer pointed invariants,
wewill have proven the reconstruction theorem for gauge Gromov-Witten invariants.

Showing that χ(C̃0,n, α) can be reconstructed from fewer pointed gauge Gromov-
Witten invariants is similar to the proof of the reconstruction theorem for quantum
K-invariants from [10]. The open stratum, C̃0,n ⊂ M̃0,n+1, is the universal curve
over M̃0,n and thus, we have πn : C̃0,n → M̃0,n.

In Section 1.5, we showed that the determinant line bundles and the evaluation line
bundles at points other than the (n + 1)-st point restricted to C̃0,n can all be written
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as pull-backs of corresponding line bundles on M̃0,n. In this section, we will prove
relations concerning the (n + 1)-st evaluation bundle and the cotangent line bundles
Li.

String equation
First, we study the relation between the cotangent line bundles. More precisely, how
do the line bundles Li |C̃0,n

and π∗n ì differ, where Li and ì are the cotangent line
bundles for M̃0,n+1 and M̃0,n, respectively, and πn : C̃0,n → M̃0,n?

We recall the string equation forM0,n, which answer the analogous question in the
regular Gromov-Witten theory.

Theorem 1.9. [14] Let π : M0,n+1 → M0,n be the forgetful morphism forgetting
the last marked point. Let Li and ì be the cotangent bundles along the i-th marked
point onM0,n+1 andM0,n respectively. Then, we have the equality

Li � π∗ ì ⊗ O(Di),

where Di is the divisor whose generic point parametrizes a curve with two compo-
nents. One of the components contains i-th and the last marked point, and the other
contains the rest.

A similar relation exist for the moduli stack of Gieseker bundles.

Proposition 1.13. Let Li be the i-th relative cotangent bundle on M̃0,n+1 and let ì

be the i-th relative cotangent bundle on M̃0,n. Recall that we have an embedding
C̃0,n → M̃0,n+1. Let Di be the divisor on M̃0,n+1 whose generic curve has two
components, one of which contains the i-th and the (n+ 1)-st marked points and the
other component contains the rest. Then, we have the relation,

Li |C̃0,n
� π∗n ì ⊗ O(Di)|C̃0,n

,

Proof. Note that for all i, Li � F∗Li where F : M̃0,n → M0,n is the forgetful
morphism forgetting the line bundle. Moreover, sinceM0,n+1 is the universal curve
overM0,n, we have the following diagram:

C̃0,n
F //

πn
��

M0,n+1

��
π
��

M̃0,n
F //M0,n
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where F : C̃0,n → M0,n+1 factors through C̃0,n → M̃0,n+1 → M0,n+1. Hence,
the relation above still holds true for M̃0,n. More precisely, let Li and ì be the
cotangent bundles along i-th marked point on M̃0,n+1 and M̃0,n, respectively. Since
the cotangent bundles are simply pullbacks of the cotangent bundles over M̃0,n, we
conclude that over C̃0,n, we have the relation

Li |C̃0,n
� π∗n ì ⊗ O(Di)|C̃0,n

,

where Di the divisor on M̃0,n+1 whose generic curve has two components, one of
which contains the i-th and the last marked point and the other contains the rest. �

Divisor relations
We now look at the bundles involving the (n + 1)-st marked point, namely ev∗n+1 Cλ

and Ln+1. Since the relations between the restriction and pull-backs for the eval-
uation bundles and the cotangent bundles are well understood for all other points,
we will prove relations between the evaluation bundles and cotangent bundles at
different marked points. Once we understand the relations between the evaluation
bundles and cotangent bundles at different marked points, we will be able to reduce
any admissible line bundle to one which does not involve bundles at the (n + 1)-st
marked point.

We first recall two divisor relations that hold in Pic(M0,n(Pr, β)).

Theorem 1.10. [10] Let DS1,β1 |S2,β2 denote the divisor inM0,n parametrizing maps
whose domain C = C1 ∪C2 is reducible such that the marked points pk ∈ Si lies on
Ci, and the class of the image of Ci is βi with β1 + β2 = β. Now, we define

Di,β1 | j,β2 =
∑

i∈S1, j∈S2

DS1,β1 |S2,β2

Di | j =
∑

i∈S1, j∈S2,β1+β2=β

DS1,β1 |S2,β2

Let L ∈ Pic(Pr) and i , j. Then the following relations hold in Pic(M0,n(Pr, β)).

1. ev∗i L = ev∗j L + 〈β, L〉L j −
∑

β1+β2=β

〈β1, L〉Di,β1 | j,β2,

2. Li + L j = Di | j .

Similar relations hold for the moduli stack of Gieseker bundles. Let M̃0,n,E ⊂ M̃0,n

be the connected component whose points parametrize bundles of total degree
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E ∈ Z . Let Li denote the i-th cotangent bundle. Also, let Di | j denote the divisor
whose generic point is a reducible curve where the i-th and j-th marked points are
on distinct components. Finally, let Di,d | j,E−d be the divisor whose generic point
parametrizes a reducible curve, say C ∪C′ such that pi ∈ C, p j ∈ C′ and the degree
of the line bundle restricted to C and C′ are d and E − d, respectively. Then, we
have the following proposition.

Proposition 1.14. Let λ ∈ Z and let i , j = 1, . . . , n. Then, the following relations
hold in Pic(M̃0,n,E ).

1. ev∗i Cλ = ev∗jCλ + λEL j −
∑

d∈Z λdDi,d | j,E−d

2. Li + L j = Di | j

Proof. Proof of the second relation follows directly from the fact that Li on M̃0,n is
the pull back of the corresponding cotangent line bundle onM0,n. Since the relation
holds in Pic(M0,n), we conclude that the relation holds in Pic(M̃0,n,E ) simply by
pulling back the relation from Pic(M0,n).

The proof of the first relation is almost identical to the proof for the case of M0,n in
[10].

To show that the first relation is true, it suffices to show that the relation is true when
restricted to curves B on M := M̃0,n,E which intersect boundary divisors transversely.
Given, B→ M , we have the following cartesian diagram:

S //

π
��

C̃

π
��

ϕ // [pt/C×]

B // M

By pulling back sections σi, σj : M → C̃, we get two sections of S → B, say si and
s j . Note that for k = i, j we have

〈B, ev∗k Cλ〉 = 〈sk, ϕ
∗Cλ〉,

〈B,Lk〉 = −〈sk, sk〉.

Since S is the fiber product B ×M C̃, we know that S is a P1-bundle over B blown up
at points where B intersects the boundary divisors of M . Since boundary divisors
whose points parametrize reducible curves with more than 2 components have
codimension strictly greater than 1, we can assume B meets only the boundary
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divisors whose points parametrize reducible curves with 2 components. Therefore,
S is a P1 bundle, P, over B blown up at points such that each reducible fiber is a
union of two (-1)-curves. Let P = P(V), whereV is a rank two vector bundle over B.
Let Sing ⊂ B denote the points where B intersects a boundary divisor of M . Then,

Pic(S) � Pic(P) ⊕
(
⊕b∈SingZb

)
� Pic(B) ⊕ Z ⊕

(
⊕b∈SingZb

)
.

In particular, every line bundle on S can be written as π∗L ⊗O(d)
(
−∑

b∈Sing ebEb

)
where Eb is the exceptional divisor over b ∈ Sing. Write the line bundles correspond-
ing to divisors si and s j as π∗Li ⊗ O(1)

(
−∑

δi
bEb

)
and π∗L j ⊗ O(1)

(
−∑

δ
j
bEb

)
,

where δi
b = 1 if si intersects Eb and 0 otherwise, and similarly for δ j

b. We can also
write ϕ∗Cλ as π∗L ⊗ O(λE) (−∑

b λdbEb) where db is the degree of the universal
bundle restricted to Eb. Then, intersection theory on S gives:

〈si, ϕ
∗Cλ〉 = deg L + λE deg Li + λEc1(V) −

∑
λdbδ

i
b,

〈s j, ϕ
∗Cλ〉 = deg L + λE deg L j + λEc1(V) −

∑
λdbδ

j
b,

〈si, si〉 = 2 deg Li + c1(V) −
∑

δi
b,

〈s j, s j〉 = 2 deg L j + c1(V) −
∑

δ
j
b.

Moreover, since si and s j never intersect, we have

〈si, s j〉 = 0 = deg Li + deg L j + c1(V) −
∑

δi
bδ

j
b.

Let Sing(i) be the points b ∈ B such that si intersects Eb but s j does not, and let
Sing( j) be the points such that s j intersects Eb but si does not. Then, we have

〈si, ϕ
∗Cλ〉−〈s j, ϕ

∗Cλ〉+λE 〈s j, s j〉 = λE(deg Li−deg L j)−
∑

b∈Sing(i)
λdb+

∑
b∈Sing( j)

λdb+λE 〈s j, s j〉

= λE(− deg L j − c1(V) +
∑

δi
bδ

j
b − deg L j) −

∑
b∈Sing(i)

λdb +
∑

b∈Sing( j)
λdb + λE 〈s j, s j〉

= λE
∑
(δi

bδ
j
b − δ

j
b) −

∑
b∈Sing(i)

λdb +
∑

b∈Sing( j)
λdb

= −
∑

b∈Sing(i)
λdb + λ

∑
b∈Sing( j)

(E − db)

= −λ ©­«
∑

b∈Sing(i)
db +

∑
b∈Sing( j)

(E − db)
ª®¬ .
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Therefore, we conclude that

〈si, ϕ
∗Cλ〉 = 〈s j, ϕ

∗Cλ〉 − λE 〈s j, s j〉 − λ
∑

b∈Sing(i)
db − λ

∑
b∈Sing( j)

(E − db).

Hence,

〈B, ev∗i Cλ〉 = 〈B, ev∗j Cλ〉 + λE 〈B,L j〉 − λ
©­«

∑
b∈Sing(i)

db +
∑

b∈Sing( j)
(E − db)

ª®¬ .
Since this holds for all B meeting boundary divisors transversely, we conclude that
in Pic(M) we have the relation

ev∗i Cλ = ev∗j Cλ + λEL j −
∑
d∈Z

λdDi,d | j,E−d .

�

1.13 Reduction to boundary loci
Using the results of Section 1.12 we can reduce computing the Euler characteristic
of an admissible class, χ(C̃0,n, α), where

α = (det Rπ∗ϕ∗C1)−q ⊗
(

n+1⊗
i=1

ev∗i Cλi ⊗ L
ai
i

)
,

to computing the Euler characteristic, χ(C̃0,n, α
′), where

α′ = (det Rπ∗ϕ∗C1)−q ⊗
(

n⊗
i=1

ev∗i Cλi ⊗ π∗n`
ai
i ⊗ O(aiDi)|C̃0,n

)
⊗

(
ev∗1 Cλn+1 ⊗ L

λn+1E
1 ⊗

(⊗
d∈Z
O(−λn+1dDn+1,d |1,E−d)

))
⊗

(
L−1

1 ⊗ O(Di | j)
)an+1

,

with E ∈ Z such that the weight of the C×-action on M̃0,n+1 is 0. Hence, it suffices
to compute χ(C̃0,n, α

′) for a class, α′, on C̃0,n of the form

α′ = (det Rπ∗ϕ∗C1)−q ⊗
(

n⊗
i=1

ev∗i Cλi ⊗ π∗n`
ai
i

)
⊗

(⊗
j∈J

O(d j B j)
)
,

where {B j | j ∈ J} is a countable set of boundary divisors on C̃0,n that are either
Di,Di |n+1, or Di,d |n+1,E−d for some i ∈ [n] and d j ∈ Z.
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General results from K-theory
We now recall a few results from K-theory to address the O(d j B j) terms.

Proposition 1.15. Let X be a scheme and let D ⊂ X be a divisor. Then, we have
the following relation in K-theory for all n ∈ Z≥0:

O(−nD) = OX − OnD.

Proof. The relation follows immediately from the exact sequence

0→ O(−nD) → OX → OnD → 0.

�

Lemma 1.6. [9] Let D = ∪k
1 Di be a divisor with normal crossing, such that Di are

smooth. Then,

0→ OD →
∑

i

ODi →
∑
i< j

ODi∩Dj → · · · → O∩Di → 0

is an exact sequence.

Proof. We reproduce the proof of the lemma from [9] to deduce a slightly more
general corollary.

The relation is equivalent to the exactness of the following sequence at the origin

0→ O/(x1 · · · , xk) →
∑

i

O/(xi) → · · · → O/(x1 · · · xk) → 0.

For k = 2, we have the sequence

0→ O/(x1x2) → O/(x1) ⊕ O/(x2) → O/(x1, x2) → 0,

which is exact. By the inclusion-exclusion principle, the case of k ≥ 3 is proven.
Exactness of the sequence away from the origin is a simple induction since we have
fewer divisors meeting transversely. �

Corollary 1.2. Let D1, . . . ,Dk be smooth divisors, meeting in normal crossings.
Then,

0→ OD →
∑

i

OniDi →
∑
i< j

OniDi∩njDj → · · · → O∩niDi → 0

is an exact sequence.

Proof. The proof is identical to the proof of Lemma 1.6, where instead of xi we
have xni

i . �
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Stratification of the boundary loci
Using the results stated above, we can reduce the original problem further to com-
puting χ(Σ, α), where Σ is a boundary locus and α is the restriction of an admissible
bundle, possibly tensored with normal bundle to other boundary loci. More pre-
cisely, Σ ⊂ C̃0,n ⊂ M̃0,n+1 is the intersection of boundary divisors Di,Di | j, and
Di,d | j,E−d . And α is the restriction to Σ of

(det Rπ∗ϕ∗C1)−q ⊗
(
⊗n

i=1 evn
i Cλi ⊗ π

∗
n ì

)
⊗ α′,

where α′ the tensor product of normal bundles to other boundary divisors.

Let Σ be the intersection of boundary divisors of type Di,Di | j , and Di,d | j,E−d .
Then, the boundary divisors that contain Σ prescribe the splitting type of curves
parametrized by Σ. In other words, Σ is the locus whose generic point parametrizes
curves of certain splitting type10. Now, by Proposition 1.3, we can further stratify Σ
as the disjoint union of strata

Σ =
⋃
(γ,d)
M(γ,d),

where M(γ,d) is the stratum whose generic point parametrizes a curve with the
topological type (γ, d) satisfying the prescribed splitting type. However, since Σ is
closed in C̃0,n, we know that for eachM(γ,d),M(γ,d) ∩ C̃0,n ⊂ Σ. Therefore, we have

Σ =
⋃
(γ,d)
M(γ,d) ∩ C̃0,n.

To simplify notation, we will write N(γ,d) :=M(γ,d) ∩ C̃0,n. Note that N(γ,d) are not
mutually disjoint in general. In fact, we have already seen strata of this form when
stratifying Z̃g,n. Type I, II, III curves all corresponded to a particular splitting type
and we stratified each by countably many disjoint locally closed subsets, Σ = ∪i∈ZΣi,
such that Σi is closed in Σ\∪0≤ j<iΣ j for i ≥ 0 and in Σ\∪i< j≤0Σ j for i < 0. Moreover,
for each j, Σ j contained a closed subset (which we denoted by F1, F2, and F3) over
which Σ j was an affine bundle.

We now stratify Σ using the same strategy as the one employed in Section 1.6.
Since each N(γ,d) is closed in Σ, and there are at most countably many such N(γ,d),
any enumeration of the N(γ,d), say Σ′i = N(γi,di) for i ∈ Z≥0 allows us to define

10Possibly with a prescribed degree splitting
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Σi := Σ′i \
(
∪0≤ j<iΣ j

)
. Then, we see that Σi are disjoint sets such that ∪Σi = Σ, and

Σi is closed in Σ \
(
∪0≤ j<iΣ j

)
.

First, we show that we can cover Σ with N(γ,d), where γ is a modular graph with no
Gieseker bubbles.

Proposition 1.16. We can find a collection of (γ, d) such that

1. Σ =
⋃N(γ,d),

2. For all (γ, d) , (γ′, d′), N(γ,d) 1 N(γ′,d ′), and

3. (γ, d) contains no Gieseker bubbles.

Proof. The idea of the proof is very simple. Σ corresponds to a splitting type with
possible degree splitting. However, since Gieseker bubbles do not affect the splitting
type, if a topological type (γ, d) containing Gieseker bubble is in Σ, we can contract
those bubbles and still stay in Σ.

Suppose (γ, d) contains a Gieseker bubble. Then by Lemma 1.1, we know that
there exist deformations from (γ, d) to (γ′, d′), where (γ′, d′) contains no Gieseker
bubbles. These deformations are precisely the ones where we contract all the
Gieseker bubbles and transfer the degrees to the adjacent components. In particular,
M(γ,d) ⊂ M(γ′,d ′). Now, note that if (γ, d) satisfies the splitting type prescribed
by the boundary locus, Σ, at least one of the topological types (γ′, d′) obtained by
contracting the Gieseker bubbles must also satisfy the splitting type of Σ.

In fact, there exists (γ′, d′) such thatM(γ′,d ′) ⊂ Σ ∩ C̃0,n. Suppose there does not
exist deformations of (γ, d) in C̃0,n. That means all deformations (γ′, d′) of (γ, d) are
such that eitherM(γ′,d ′) ⊂ Z1 or Z2 as defined in Section 1.6. However, that means
thatM(γ,d) must in fact be one of F1 or F2. In particular,M(γ,d) 1 C̃0,n, which is a
contradiction.

Therefore, we can findM(γ′,d ′) ⊂ Σ ∩ C̃0,n such thatM(γ,d) ⊂ M(γ′,d ′). Hence, even
after discarding all (γ, d) that contain Gieseker bubbles, we still have

Σ =
⋃ (
M(γ,d) ∩ C̃0,n

)
=

⋃
N(γ,d).

Now, we discard all N(γ,d) for which there exists a topological type, (γ′, d′), with
N(γ,d) ⊂ N(γ′,d ′). Then, we obtain a collection of topological types (γ, d) satisfying
the conditions of the proposition. �
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From now on, we will always assume that we have a collection of topological types,
(γ, d), satisfying the conditions in Proposition 1.16.

Note that Σ is the intersection of boundary divisors specifying splitting types with
possible degree condition. Hence, we can write

Σ =
⋃

d

N(γ,d),

where

1. γ is determined by Σ and is the same for all N(γ,d),

2. γ contains no Gieseker bubbles, and

3. d satisfies degree conditions determined by Σ of the type d(vi) = di for a
subset of the vertices vi ∈ V(γ) 11.

Now, we define a stratification of Σ into locally closed strata. Choose an arbitrary
Σ′0 := N(γ,d0). Now, consider the set

Γ0 = {(γ, d) | ∃!vi ∈ V(γ) such that d0(vi)−d(vi) = ±1 and d0(vi+1)−d(vi+1) = ∓1}.

In other words, Γ0 is the set of topological types obtained from (γ, d0) by transferring
a single degree fromone of the vertices to an adjacent vertex. If there exist (γ, d) ∈ Γ0

such that N(γ,d) ⊂ Σ, we let them be Σ′i = N(γ,di) for i = 1, . . . , n0. If there does not
exist such (γ, d), we let Σ′1 be an arbitrary N(γ,d1) distinct from Σ

′
0. Now, define

Γ1 = {(γ, d) | ∃!vi ∈ V(γ) such that d1(vi)−d(vi) = ±1 and d1(vi+1)−d(vi+1) = ∓1}.

Similarly as before, we let Σ′n0+1, . . . , Σ
′
n0+n1

be those N(γ,d ′) such that (γ, d′) ∈ Γ1.
Note that Γ0 ∩ Γ1 is not empty in general. Hence, we only choose those N(γ,d ′) that
have not been chosen before.

Since V(γ) is finite, so are the sets Γi and thus, each step in the enumeration process
above is finite. Hence, we get an enumeration of the N(γ,d) as Σ′i = N(γ,di), i ∈ Z≥0

by repeating the process above. Now, we recursively define

Σi := Σ′i \
©­«

⋃
0≤ j<i

Σ j
ª®¬ .

As before, the strata Σi have the property that
11Σ might not impose any degree condition.
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1. Σ =
⋃

i

Σi, and

2. Σi is closed in Σ \
©­«

⋃
0≤ j<i

Σ j
ª®¬.

By repeatedly applying the long exact sequence from Lemma 1.2, we conclude that

χ(Σ, F) =
∑

i

χΣi (F)

for any sheaf F on Σ. In particular, computation of χ(Σ, α) can be reduced to
computing χΣi (α), where α is the restriction to Σ of an admissible class.

1.14 Admissible classes on Σi

Before computing χΣi (α), we first look at the geometry of Σi.

Proposition 1.17. Let (γ, d) be a topological type containing no Gieseker bubbles
and let r + 1 = |V(γ)|. Let γ′ be a modular graph obtained from γ by inserting a
Gieseker bubble between every pair of adjacent vertices. Let d′ be a degree map
on γ′ such that there exists a deformation (γ′, d′) → (γ, d). Let Γ be the collection
of all topological types (γ′′, d′′) such that the deformation above factors through
(γ′′, d′′)12:

(γ′, d′) → (γ′′, d′′) → (γ, d).

In other words, (γ′′, d′′) is a topological type obtained by contracting Gieseker
bubbles of (γ′, d′) in a way that does not violate the degree map d. Then,⋃
(γ′′,d ′′)∈ΓM(γ′′,d ′′) is an Ar-bundle overM(γ′,d ′)13.

More precisely, let B1, . . . ,Br be the r families of Gieseker bubbles overM(γ′,d ′).
Now let pi and qi be the sections representing the loci of the two nodes on Bi, where
pi is the locus of nodes that are getting smoothed away. Then, there exists a map

η :
⋃

(γ′′,d ′′)∈Γ
M(γ′′,d ′′) →M(γ′,d ′),

which is the structure map of the Ar-bundle⊕ (
(L−1

i ⊗ Pi) � Q−1
i

)
,

where L−1
i and Pi are the cotangent bundle and restriction of the universal bundle

along pi, and Qi is the restriction of the universal bundle to qi 14.
12Note that (γ, d), (γ′, d ′) ∈ Γ.
13The proof of Proposition 6.2 in [1] briefly mentions that Z is an affine bundle over F. Z and F

of Proposition 6.2 are precisely ∪M(γ′′,d′′) andM(γ′,d′).
14Both Pi and Qi of the appropriate degree.
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Moreover,M(γ,d) is a (P1)r-bundle overM(γ′,d ′).

Proof. The deformation (γ′, d′) → (γ, d) is one where you contract the r connect-
ing Gieseker bubbles. More precisely, for each connecting Gieseker bubble, the
deformation smooths one of the two nodes that lie on each bubble. Moreover, the
node that is being smoothed is prescribed by the degree maps d′ and d. Now, note
that (γ′′, d′′) ∈ Γ are precisely the topological types obtained by smoothing a pre-
scribed subset of the nodes. Hence, ∪ΓM(γ′′,d ′′) is the set of points parametrizing
deformations of curves ofM(γ′,d ′) by smoothing r prescribed nodes. Therefore, by
Proposition 1.5, we conclude that ∪ΓM(γ′′,d ′′) is an Ar-bundle overM(γ′,d ′).

In fact, the same argument as in Sections 1.11 and 1.20, M(γ′,d ′) � M̃0,n1 ×
· · · × M̃0,nr+1 , where (n1, . . . , nr+1) is the splitting type of the modular graph γ′.
Moreover, by the argument of the proofs of Propositions 1.6 and 1.7, we conclude
that ∪ΓM(γ′′,d ′′) is the total space of the Ar-bundle onM(γ′,d ′)⊕ (

(L−1
i ⊗ Pi) � Q−1

i

)
,

where L−1
i and Pi are the cotangent bundle and restriction of the universal bundle

along pi, and Qi is the restriction of the universal bundle to qi. Note that we must
choose the universal bundle of the appropriate degree for Pi and Qi. More precisely,
the degree of Pi is di, where di is the degree of the corresponding vertex prescribed
by our topological type (γ′, d′).

Now, M(γ,d) is simply the stratum of points parametrizing all smoothings of the
curves ofM(γ′,d ′). However, this is precisely the (P1)r-bundle overM(γ′,d ′) defined
by

r∏
i=1

Proj
((
(L−1

i ⊗ Pi) � Q−1
i

)
⊕ O

)
.

�

Corollary 1.3. Σi is aAs×(P1)t-bundle overM(γ′,d ′), where |V(γ)| = r+1 ≥ s+t+1
and (γ′, d′) is a topological type satisfying the following conditions.

1. (γ′, d′) is obtained from (γ, d) by inserting Gieseker bubbles between every
pair of adjacent vertices such that there exists a deformation (γ′, d′) → (γ, d),
and

2. M(γ′,d ′) ⊂ Σi.
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Moreover,M(γ′,d ′) is isomorphic to a product

M(γ′,d ′) � M̃0,n1 × · · · × M̃0,nr+1,

where (n1, . . . , nr+1) is the splitting type of (γ, d).

Proof. Using the notation from Proposition 1.16, suppose Σ′i = N(γ,d). Suppose
|V(γ)| = r +1. Then, we can insert at most r connecting Gieseker bubbles. Suppose
k of the connecting Gieseker bubbles are allowed in Σi i.e. there exists a topological
type (γ′, d′) with one of those k connecting Gieseker bubbles inserted such that
M(γ′,d ′) ⊂ Σ′i . Note that for each of the k connecting Gieseker bubbles, there are
two choices for the degree splitting. Since the universal bundle must have degree
1 on the Gieseker bubble, we must decrease the degree of one of the adjacent
components by 1. Suppose for s of the allowed connecting Gieseker bubbles, only
one such degree splitting is allowed in Σi. Then, for t := k − s of the allowed
connecting Gieseker bubbles, both degree splittings are allowed in Σi.

Now, we claim that for any degeneration (γ′, d′) of (γ, d) obtained by a combination
of inserting any of the allowed Gieseker bubbles with the degree splitting,M(γ′,d ′) ⊂
Σi. In other words, let (γ1, d1) and (γ2, d2) be topological types obtained from (γ, d)
by inserting distinct bubbles Bi and decreasing the degree on the components Ci 15.
Then, if (γ3, d3) is obtained from (γ, d) by inserting both bubbles B1 and B2, and
decreasing the degree of the components C1 and C2, M(γ3,d3) ⊂ Σi. However,
this is true by the construction of Σi. In the enumeration process, we successively
looked at neighboring topological types obtained by transferring a single degree
from a component to one of the adjacent components. The transfer of degrees is
done precisely through the connecting Gieseker bubble and thus, if two transfers of
degrees via two distinct bubbles are each allowed in Σi, the degeneration by both
operations must also be allowed in Σi.

Therefore,
M(γ′,d ′) � M̃0,n1 × · · · × M̃0,nr+1,

and Σi is an As × (P1)t-bundle overM(γ′,d ′). Moreover, the normal bundle N
Σi/C̃0,n

restricted to M(γ′,d ′), and NM(γ′,d′)/Σi are isomorphic to the tensor product of the
pulled back cotangent line bundles along the marked points of M̃0,nk playing the
roles of the nodes on the connecting Gieseker bubbles. �

15C1 and C2 are not necessarily distinct.
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Now, we show that admissible classes are well-defined over the boundary loci.

Proposition 1.18. Let Σ = ∪Σi be as above and let α be an admissible class. Then,
χΣi (α) is zero for all but finitely many i. Moreover, χΣi (α) can be written as a
product of lower pointed gauge Gromov-Witten invariants.

Proof. We saw in Corollary 1.3 that Σi is a As × (P1)t-bundle overM(γ′,d ′). Let Σ̃i

be the (P1)t-bundle overM(γ′,d ′) such that Σi is an As-bundle over Σ̃i. By the same
argument as in the proof of in Proposition 1.12 of Section 1.11, we see that

χΣi (α) = χ(Σ̃i, α ⊗ det N
Σi/C̃0,n

⊗ Sym N
Σi/C̃0,n

⊗ Sym N−1
Σ̃i/Σi
).

Again by Proposition 6.2 of [1], we conclude that χΣi (α) vanish for all but finitely
many i16.

Now, we know precisely which (P1)t-bundle Σ̃i is overM(γ′,d ′). Namely,

Σ̃i �
∏

Proj j

((
(L−1

i j ⊗ Pi j ) � Q−1
i j

)
⊕ O

)
,

where Li j is the cotangent bundle along one of the two nodes of the connecting
Gieseker bubble, Bi j , for which the degree transfer to either adjacent component is
allowed in Σi, Pi j is the restriction of the universal bundle on the same node, Qi j is
the restriction of the universal bundle on the other node.

Let π : Σ̃i → M(γ′,d ′). Since Σ̃i is a (P1)t-bundle overM(γ′,d ′), we know that any
line bundle on Σ̃i is isomorphic to π∗L(e1, . . . , et). Moreover, since each of the
P1 corresponds to transferring a single degree from one component to an adjacent
component, the only C×-weights that change are the weights on det Rπ∗ϕ∗C1 over
the M̃0,ni corresponding to the affected components. In particular, we know that
ei = ±1 since the degree on the affected components change by exactly 117.

We compute χ(Σ̃i, π
∗L(e1, . . . , et)) in t steps, in each of which we project down

along a P1 fiber. Hence, we reduce to the case where Σ̃i is a P1-bundle over Σ̃i
′
and

the line bundle in question is π∗L(e). By the projection formula, Theorem 1.8, we
know that

Riπ∗(F ⊗ π∗E) � Riπ∗(F) ⊗ E .
16As in Section 1.11, the C×-weights on the components will all be negative or positive for all

but finitely many degree splittings on V(γ).
17The sign of ei depends on the particular (γ′, d ′)we choose and whether the degree is transferred

from or to Ci .
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Hence,
Riπ∗(π∗L(e)) = L ⊗ Riπ∗(O(e)).

If e = −1, then we know that Riπ∗(O(−1)) = 0 for all i. If e = 1, we know
Riπ∗(O(1)) = 0 for all i , 0. Moreover, R0π∗(O(1)) � O0 ⊕ O∞, where O0 and O∞
are the structure sheaves of the zero and the infinity sections, respectively.

Hence, by pushing down to M(γ′,d ′) �
∏ M̃0,ni , we can compute χ(Σi, α) as

χ(M(γ′,d ′), α′), where α′ is α restricted toM(γ′,d ′) possibly tensored by cotangent
bundles along marked points of M̃0,ni . However, sinceM(γ′,d ′) is a product of the
M̃0,ni and α′ is a tensor product of bundles associated with an admissible class, we
conclude that

χ(M(γ′,d ′), α′) =
∏

χ(M̃0,ni, αi),

where αi is an admissible class on M̃0,ni . �

1.15 Proof of the reconstruction theorem
We are finally ready to prove the main theorem, Theorem 1.1. As mentioned before,
the reconstruction theorem for genus 0 gauge Gromov-Witten invariants not only
provides an alternate proof of well-definedness of genus 0 gauge Gromov-Witten
invariants but also gives an explicit algorithm for computing the invariants from
pointed invariants.

Proof of Theorem 1.1. Let α be an admissible class on M̃0,n. We want to show that

χ(M̃0,n, α) =
∑ (∏

χ(M̃0,n′, α
′)
)
,

where the the right hand side is a finite sum of finite products of χ(M̃0,n′, α
′) with

n′ < n and α′ admissible on M̃0,n′.

Consider the embedding C̃0,n−1 → M̃0,n defined in Section 1.5. As before, we define
Z̃0,n to be the complement of C̃0,n−1 in M̃0,n. By Lemma 1.2, we know that

χ(M̃0,n, α) = χ(C̃0,n−1, α) + χZ̃0,n
(α),

if all the terms above are well-defined. By Proposition 1.12, we know that χZ̃0,n
(α)

can be written as a finite sum of finite products of lower pointed gauge Gromov-
Witten invariants. Hence, it suffices to show that χ(C̃0,n−1, α) can be written as a
finite sum of finite products of lower pointed invariants.
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Let π : C̃0,n−1 → M̃0,n−1 be the map associated to the universal curve over M̃0,n−1.
By Propositions 1.13 and 1.14, the class of α is the same as the class of

α′ = (det Rπ∗ϕ∗C1)−q ⊗
(

n⊗
i=1

ev∗i Cλi ⊗ π∗`
ai
i

)
⊗

(⊗
O(d j B j)

)
,

Now, by Proposition 1.15 and Lemma 1.6, we conclude that χ(C̃0,n−1, α) can be
written as a sum

χ(C̃0,n−1, α) = χ(C̃0,n−1, α
′) +

∑
χ(Σ, αΣ),

where

1. α′ is of the form (det Rπ∗ϕ∗C1)−q ⊗
(⊗n−1

i=1 ev∗i Cλi ⊗ π∗`
ai
i

)
,

2. the sum is over a countable collection of boundary loci, Σ, each of which is an
intersection of boundary divisors of the type Di,Di | j, and Di,d | j,E−d as defined
in Proposition 1.14, and

3. αΣ is the restriction to Σ of an admissible bundle on M̃0,n, possibly tensored
with normal bundles to other boundary divisors.

By the projection formula, Theorem1.8, andProposition 1.4, we see that χ(C̃0,n−1, α
′)

is equal to χ(M̃0,n−1, α
′′) where α′′ is an admissible class on M̃0,n−1.

Finally, by Proposition 1.18, we conclude that all but finitely many terms χ(Σ, αΣ)
vanish. Moreover, each χ(Σ, αΣ) can be written as a finite product of χ(M̃0,n′, β),
where n′ < n and β is an admissible class on M̃0,n′.

Therefore, χ(M̃0,n, α) can be written as the finite sum of products of lower pointed
invariants. �

Corollary 1.4. Genus 0 gauge Gromov-Witten invariants are well-defined.

Proof. Since M̃0,3 � [pt/C×], χ(M̃0,3, α) is finite for any admissible class α on
M̃0,3. By Theorem 1.1, higher pointed invariants can be reconstructed from the
3-pointed invariants. Hence, we conclude that genus 0 gauge Gromov-Witten in-
variants are well-defined. �
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1.16 Future directions
The proof of the reconstruction theorem leads to several questions. First, can we
generalize the stratification of M̃0,n to M̃0,n([X/C×])? In [1], Frenkel, Teleman,
and Tolland define the moduli space M̃0,n([X/C×]) and suggest existence of invari-
ants. The stratification of M̃0,n is canonical and allows one to recursively compute
invariants of M̃0,n from invariants of M̃0,3. If we can stratify M̃0,n([X/C×]) in a
similar way, we would then reduce the proof of well-definedness of the invariants
to the case of M̃0,3([X/C×]). Since Frenkel, Teleman, and Tolland prove in [1]
that M̃g,n([X/C×]) → M̃g,n is proper, and since M̃0,3 � [pt/C×], we know that
invariants of M̃0,3([X/C×]) are well-defined. Thus, reducing well-definedness of in-
variants to the case of M̃0,3([X/C×])would prove existence of gaugeGromov-Witten
invariants for arbitrary [X/C×].

Similarly, the stratification could be used to study the finiteness of invariants for
M̃g,n for g > 0. The stratification used in the proof of reconstruction theorem
breaks the proof of finiteness down to the finiteness of invariants for M̃1,1 and M̃g,0

for g ≥ 2, and a study of the invariants over boundary divisors. A closer look at the
boundary divisors might provide an alternative proof of well-definedness of gauge
Gromov-Witten invariants for higher genus.

Another topic of interest is the Sn-equivariant K-theory of M̃g,n, where Sn acts by
permuting the marked points. Understanding the Sn-equivariant K-theory of M̃g,n

is important because for higher genus, the boundary strata of M̃g,n are naturally
quotients of products of strata under an action of Sn. Hence, to study the K-theory of
M̃g,n, wemust understand the Sn-equivariant K-theory of lower genus, lower pointed
spaces. Moreover, in [3], Givental studies the permutation equivariant K-theory of
M0,n. It would be interesting to compare the Sn-equivariant K-theory of M0,n with
that of M̃0,n.

Lastly, one could try to generalize gauge Gromov-Witten theory to cases where
the target space is [X/G] with an arbitrary group G. We would first need to
defineGiesekerG-bundles over stable curves, generalizing the definition of Gieseker
C×-bundles. Then, we can study the moduli space of Gieseker G-bundles over
stable curves, M̃g,n([pt/G]), and define gauge Gromov-Witten invariants. Once we
establish a gauge Gromov-Witten theory for [pt/G], one can then generalize the
theory to the case of arbitrary [X/G] and study whether there exist well-defined
invariants.

In [12], Solis constructs toric varieties, a special case of which recovers the local
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model for M̃0,4([pt/C×]). It would be interesting to see if the higher dimensional
toric varieties Solis constructs can admit a modular interpretation as local models
of M̃g,n([pt/T]), where T is a torus of arbitrary rank. These toric varieties could
give us an idea as to what the appropriate definition of Gieseker T-bundles on stable
curves should be. Moreover, they exhibit many similarities with M̃g,n([pt/C×]) and
I plan to study whether a similar stratification exists.

Once we have a gauge Gromov-Witten theory for [X/G], we can study its relation to
the Gromov-Witten theory of GIT quotients. We do not impose stability conditions
in the sense of geometric invariant theory to maps to [X/G], which is the reason that
the resulting moduli stack fails to be proper. In [1], Frenkel, Teleman, and Tolland
conjecture that the Gromov-Witten invariants of the GIT quotients can be recovered
from the gauged Gromov-Witten invariants by applying the Chern character to
certain limits of the gauged invariants. The case of smooth curves and G-bundles
was proven in [13].
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C h a p t e r 2

GENERATING SERIES FOR THE POINCARE POLYNOMIALS
OF QUOT SCHEMES AND Q0,2(G(n, n), d)

2.1 Introduction
The moduli space of stable quotients was defined in [8] and can be interpreted as
a compactification of the moduli space of curves to G(r, n) using the philosophy
of Grothendieck Quot schemes. The space of stable quotients, Qg,m(G(n, r), d),
is different from the Kontsevich stable maps compactification, Mg,m(G(n, r), d),
and provides an alternate method of compactification. One interesting case is
when r = n, when G(n, n) is simply a point. Hence, the space of stable maps,
Mg,m(G(n, n), d) is equal toMg,m. In particular,M0,2(G(n, n), d) is empty for all n

and d. However, Q0,2(G(n, n), d) is nonempty whenever n ≥ 1 and d ≥ 0.

We study the spaces Q0,2(G(n, n), d) as we vary n and d. In particular, we compute
their Poincare polynomials. We first compute the Poincare polynomials of Quot
schemes,QuotC(n, d), parametrizing torsion quotient sheaves ofO⊕n

C over projective
curves. Then, we use the result to find the Poincare polynomials of Q0,2(G(n, n), d).
In fact, we will show

Theorem 2.1. 1. LetC be a projective curve and letQC,n,d(t) denote the Poincare
polynomial of QuotC(n, d). Then, the generating series for QC,n,d(t) is a
rational function. More precisely, let

QC,n(t, x) :=
∑

d

QC,n,d(t)xd ∈ Z[[x, t]]

be the generating series for QC,n,d(t). Then, we have

QC,n(t, x) = [(1 + t x)(1 + t3x) · · · (1 + t2n−1x)]2g
(1 − x)(1 − t2nx)[(1 − t2x)(1 − t4x) · · · (1 − t2n−2x)]2

.

2. Let Qn,d(t) be the Poincare polynomial of Q0,2(G(n, n), d). Then, the generat-
ing series for Qn,d(t) is a rational function. More precisely, let

Qn(t, x) :=
∑

d

Qn,d(t)xd ∈ Z[[t, x]]

be the generating series for Qn,d(t). Then, we have

Qn(t, x) = (1 − t2nx)(t2 − 1)
t2 − t2n+2x + x − 1

.
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2.2 Grothendieck ring of varieties and the Poincare polynomial
In this section, we introduce the Grothendieck ring of varieties and the Poincare
polynomial of a topological space. The Grothendieck ring of varieties was first
mentioned by Grothendieck in his correspondences with Serre, published in [1],
and will be useful in computing the Poincare polynomials of Quot schemes that we
examine later.

Definition 2.1. Consider the free abelian group generated by the isomorphism
classes of C-varieties, Z[Var/C]. Then, the Grothendieck ring of varieties over C
is the quotient of Z[Var/C] by the relations

[X] = [X \ Z] + [Z],

where Z ⊂ X is a closed subscheme. The multiplication is defined by

[X] · [Y ] = [X × Y ].

The Grothendieck ring of C-varieties is denoted K(Var/C).

The multiplicative inverse in K(Var/C) is the class of SpecC and will be denoted
by 1. Another important element of K(Var/C) is the class of A1, which will be
denoted L.

The following relations can easily be derived from the definition of K(Var/C) and
their proofs can be found in [6].

Proposition 2.1. [6] The following relations hold in K(Var/C).

1. Let X =
∐

Xi where Xi are mutually disjoint locally closed subschemes of X .
Then,

[X] =
∑

i

[Xi].

2. Suppose Z → X is a Zariski fibration with fibers isomorphic to Y . Then,

[Z] = [X] · [Y ].

Knowing the class of X inK(Var/C) is helpful in computing its Poincare polynomial,
which we define now.
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Definition 2.2. Let X be a compact topological space and let bi be its i-th Betti
number for i = 0, . . . , 2 dim X . Then, the Poincare polynomial of X is the polynomial

PX(t) =
∑

biti ∈ Z[t].

We now have the following proposition that says the Poincare polynomial can be
extended to all of K(Var/C).

Proposition 2.2. [6] There exists a well-defined map P : K(Var/C) → Z[t] such
that for any smooth projective scheme, X , PX(t) := P([X])(t) is equal to its Poincare
polynomial. Moreover, P is a ring homomorphism. In particular,

1. If [X] = [Y ], then PX(t) = PY (t);

2. If Y ⊂ X is a closed subscheme, then

PX(t) = PY (t) + PX\Y (t); and

3. For any X,Y ,
PX×Y (t) = PX(t)PY (t).

We call P([X]) the virtual Poincare polynomial of X .

Let’s compute the class and the Poincare polynomial for a few varieties. Recall that
L := [A1]. Since An can be viewed as an A1-bundle over An−1, we see that

[An] = Ln.

And since we can stratify Pn as

Pn = ∪n
1A

k,

in K(Var/C) we have the following relation:

[Pn] = 1 + L + L2 + · · · + Ln.

Lastly, since A1 = C× ∪ pt and pt = SpecC plays the role of the multiplicative
identity in K(Var/C), we have

[C×] = L − 1.
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Now, we compute the Poincare polynomials for An, Pn, and C×. From [5], we know
that for A1 the virtual Betti numbers are b0 = 0, b1 = 0, and b2 = 1. In general, the
virtual Betti numbers for An are

bi =


1 i = 2n

0 i , 2n
.

Hence, the Poincare polynomials for An are

PAn(t) = t2n.

Note that we have
PAn(t) = (PA1(t))n ,

as we could have seen using Proposition 2.2 and the relation [An] = Ln. For Pn, the
stratification Pn = ∪Ak and Proposition 2.2 give us

PPn(t) =
n∑

k=0
tk .

Again, note that the answer matches with the one computed using the Betti numbers
of Pn [5]. Finally, since C× = A1 \ SpecC, we see that

PC×(t) = t2 − 1.

2.3 Grothendieck Quot schemes
We first give the definition of Quot schemes following [3].

Definition 2.3. [3] Let X be a finite type S-scheme and let F be a coherent sheaf.
Let T be a S-scheme and consider the following diagram:

X ×S T

��

π // X

��
T // S

.

Then, QuotX/F/S is the functor whose objects of QuotX/F/S(T) are surjections

π∗F � E,

where E is a coherent sheaf on X ×S T flat over T .
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If X → S is projective, we can decompose QuotX/F/S further. Fix a relatively very
ample line bundle L on X over S. Then, we have

QuotX/F/S =
∐

P∈Q[λ]
QuotP

X/F/S,

where QuotP
X/F/S parametrizes coherent quotients, E, with Hilbert polynomial P.

Grothendieck proved that under certain conditions, the functors QuotP
X/F/S are

representable.

Theorem 2.2. [3] Let S be Noetherian, X → S projective with L a relatively
very ample line bundle. Then, for any coherent sheaf F on X and any polynomial
P ∈ Q[λ], the functor QuotP

X/F/S is represented by a projective S-scheme QuotP
X/F/S

called a Quot scheme.

We are interested in the Quot schemes over projective curves C. In particular, we
are interested in the Quot schemes over C parametrizing surjections

O⊕n
C � E,

where E is a torsion sheaf on C. In other words, we are interested in Quot schemes,
QuotP

C/O⊕n
C
/SpecC, where P(λ) = d is a constant polynomial. To simplify notations

we will write
QuotC(n, d) := Quotd

C/O⊕n
C
/SpecC.

For p ∈ C, we have a subscheme of QuotC(n, d) parametrizing torsion sheaves E
supported only on p. We will denote this punctual Quot scheme by Quotp(n, d).

2.4 Moduli space of stable quotients
Now we introduce the moduli space of stable quotients defined in [8].

Let G(r, n) denote the Grassmanian parametrizing r-dimensional subspaces of Cn.
As Toda explains in [9], the moduli space of stable quotients can be viewed as a way
of compactifying the space of smooth curves to G(r, n). For a curve, C, defining
a map C → G(r, n) is equivalent to a surjection O⊕n

C � Q, where Q is a locally
free sheaf of rank (n − r) on C. The moduli space of such maps, where we fix the
underlying curve C, is not compact and there are two natural ways to compactify it.

1. Kontsevich stable maps compactification as defined in Definition 1.1; and

2. Grothendieck’s Quot scheme compactification described in Section 2.3.
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If we consider the moduli space of maps to G(r, n) while varying the underlying
curve,C, the Kontsevich stable maps compactification gives rise toMg,n(G(r, n), d).
The Quot scheme compactification gives rise to the moduli space of stable quotients.

Definition 2.4. [8] A stable quotient is a collection (C, p1, . . . , pm,O⊕n
C � Q) of a

m-pointed nodal curve, C, and a quotient sheaf Q on C such that

1. Q is locally free near the marked points and the nodes. In particular det Q is
well-defined, and

2. The R-line bundle
ωC(p1 + · · · + pm) ⊗ (det Q)⊗ε

is ample for all ε > 0.

The moduli space of stable quotients, (C,P1, . . . , pm,O⊕n
C � Q), where C has genus

g, Q is locally free of rank (n − r) with deg Q = d is denoted Qg,m(G(r, n), d).

Theorem2.3. [8]Qg,m(G(r, n), d) is a separated and properDeligne-Mumford stack
of finite type over C with a perfect obstruction theory.

One interesting phenomenon regarding stable quotients is when n = r . In this case,
G(n, n) = SpecC and thus, Mg,m(G(n, n), d) is non-empty only if d = 0 and we
have Mg,m(G(n, n), 0) = Mg,m. However, Qg,m(G(n, n), d) parametrize all stable
quotients (C, p1, . . . , pm,O⊕n

C � Q), where Q is a torsion sheaf of length d on C,
giving us more interesting spaces.

Lemma 2 of [8] computes the Poincare polynomial of Q0,2(G(1, 1), d).

Lemma 2.1. [8] Let Pd be the Poincare polynomial of Q0,2(G(1, 1), d). Then,

Pd(t) = (1 + t2)d−1,

for all d > 0.

In Section 2.7, we will compute the Poincare polynomials for Q0,2(G(n, n), d) for all
n, d > 0.
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2.5 Poincare polynomials of punctual Quot schemes
We first find the Poincare polynomials of punctual Quot schemes, Quotp(n, d).
Recall that Quotp(n, d) is a subscheme of QuotC(n, d) parametrizing surjections
O⊕n

C � Q, where Q is a torsion sheaf of length d supported on p ∈ C.

We will compute the Poincare polynomial of Quotp(n, d) by examining its class in
K(Var/C). To do that, we first prove the following lemma.

Lemma 2.2. Let Quotp(n, d) be as before where n, d ≥ 1. Then, we have the
following relation in K(Var/C):

[Quotp(n, d)] =
∑
d ′≤d

Ld ′[Quotp(n − 1, d′)].

Proof. The points of Quotp(n, d) parametrize surjections O⊕n
C � Q where Q is a

torsion sheaf of length d supported on p. Equivalently, they parametrize injections
S → O⊕n

C such that the quotient is a torsion sheaf of length d supported on p. Since
p is a smooth point of C, its formal neighborhood is SpecC[[x]]. By looking at the
formal neighborhood of p, we see that the points of Quotp(n, d) correspond to the
matrices representing an injection, C[[x]]⊕n → C[[x]]⊕n, up to right multiplication
by an element of GLn(C[[x]]) such that the image ideal in C[[x]]⊕n has colength d.
In other words, points of Quotp(n, d) parametrize colength d ideals of C[[x]]⊕n

1.

We first consider the Quotp(2, d) case before considering Quotp(n, d) for general n.
Let

M =

(
f g

h k

)
∈ Quotp(2, d).

Note that right multiplication by elements of GL2(C[[x]]) are simply the column
operations. Hence, we can add, subtract, swap columns, and multiply an entire
column by a unit in C[[x]] i.e. a non-multiple of x. By applying appropriate column
operations, we can reduce M to the matrices of the form

M ⇒
(

f 0
g k

)
⇒

(
f 0
g xd ′

)
.

Now, by multiplying the first column by an appropriate unit inC[[x]], we can further
reduce M to a matrix of the form (

xd ′′ 0
g xd ′

)
.

1Right multiplication by an element of GLn(C[[x]]) tells us that we are free to choose the
generators of that ideal.
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Note that since thematrix represents an ideal of colength d, wemust have d′+d′′ = d.

Finally, by subtracting an appropriate multiple of the second column from the first
column, we can further reduce g to a polynomial,

∑d ′−1
0 ai xi, of degree less than d′.

Hence, for each element M of Quotp(2, d), there exists a unique matrix of the form,(
xd ′′ 0∑d ′−1

0 ai xi xd ′

)
,

where d′ + d′′ = d, that represents M . We saw that every element has such a
representation, and two distinct matrices of the form above cannot differ by a series
of column operations. We will call d′ the length of the “sub-quotient" restricted to
the second factor of O. More precisely, consider the injection i : C[[x]] → C[[x]]⊕2

into the second factor. Now consider the following cartesian square

C[[x]] M ′ //

��

C[[x]]
i
��

C[[x]]⊕2 M // C[[x]]⊕2

.

Then, M′ : C[[x]] → C[[x]] is precisely the ideal (xd ′).

Now, we can stratifyQuotp(2, d) by the value of d′ in the (2,2)-entry of the matrix M

in the reduced form. Alternatively, this stratification can be described as follows. Let
i : OC → O⊕2

C be the second factor. Then, given (S → O⊕2
C � Q) ∈ Quotp(2, d),

we can consider the pullback S′ = S ×O⊕2
C
OC from the following cartesian square:

0 // S′ //

��

OC

i
��

0 // S // O⊕2
C

.

Then, we get a new exact sequence S′ → OC � Q′. Since Q is a torsion sheaf
supported on p, Q′ must also be a torsion sheaf supported on p of length d′ ≤ d.
Then, (S′ → OC � Q′) is an element of Quotp(1, d′). This gives us a map
Quotp(2, d) →

∐
d ′≤d Quotp(1, d′), which we can use to stratify Quotp(2, d).

By the analysis above, we see that over Quotp(1, d′), the fibers are isomorphic to
Ad ′

2. The points of the stratum corresponding to d′ are uniquely determined by
2More precisely, the fibers are isomorphic to Quotp(1, d − d ′) × Ad′ since we get to choose

xd−d
′ in the (1,1)-entry and a polynomial of degree at most d ′ in the (2,1)-entry. However, since

Quotp(1, d − d ′) is just a point, the fibers are isomorphic to Ad′ .
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matrices of the form (
xd−d ′ 0∑d ′−1

0 ai xi xd ′

)
.

In other words, these points are uniquely determined by the choice of coefficients
a0, . . . , ad ′−1 ∈ C. Therefore, we get the desired recursion

Quotp(2, d) =
∑
d ′≤d

Ld ′Quotp(1, d′).

Now, we proceed by induction on n. Again, we take a matrix M ∈ Quotp(n, d). By
column operation, we can reduce M to the form

M ⇒
(
xd1 0 0 · · · 0
∗ ∗ ∗ · · · ∗

)
,

where * are the rest of the columns. In other words, we have a block matrix(
xd1 0
∗ M′

)
,

where M′ is a (n − 1) × (n − 1) matrix with a nontrivial determinant. Hence,
M′ ∈ Quotp(n − 1, d′) for some d′. However, since M ∈ Quotp(n, d) we must have
d′ = d − d1.

Now, by induction or by further column operations, we can reduce M to an lower
triangular matrix whose diagonal entries are all powers of x, say xdr . And by
further column operations we can assume ∗’s are polynomials of degree at most
dr − 1, where r is the corresponding column number:

©­­­­­­­­«

xd1 0 0 · · · 0
∗ xd2 0 · · · 0
∗ ∗ xd3 · · · 0
...

...
... · · · ...

∗ ∗ ∗ · · · xdn

ª®®®®®®®®¬
,

where
∑

di = d. Analogous to the Quotp(2, d) case, we get a map Quotp(n, d) →∐
d ′≤d Quotp(n − 1, d′) by restricting to the last (n − 1) factors of O⊕n, which is

precisely represented by M′ from above3. Fixing d′ = d2 + · · · + dn, the fibers of
the above map over Quotp(n − 1, d′) are again isomorphic to Ad ′ coming from the

3As before, this is equivalent to taking the fiber product of the kernel, S → O⊕n
C
� Q, with the

injection of the last (n − 1) factors, i : OC ⊕n − 1→ OC .
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choice of polynomials
∑dr−1

0 ai xi for all r = 2, . . . , n on the first column. Therefore,
we get the desired relation in K(Var/C):

[Quotp(n, d)] =
∑
d ′≤d

Ld ′[Quotp(n − 1, d′)].

�

With the recursion in Lemma 2.2, we can compute the class of Quotp(n, d) in
K(Var/C).

Proposition 2.3. For all n ≥ 1 and d ≥ 0, the class of Quotp(n, d) in K(Var/C)
can be written in the following form4

[Quotp(n, d)] =
(Ln − 1)(Ln+1 − 1) · · · (Ln+d−1 − 1)
(L − 1)(L2 − 1) · · · (Ld − 1)

. (2.1)

Proof. First, note that when n = 1, Quotp(1, d) � SpecC. Points of Quotp(1, d)
parametrize colength d ideals in C[[x]]. However, since C[[x]] is a PID, (xd) is the
unique ideal of colength d in C[[x]]. Hence, Quotp(1, d) � SpecC.

Now, the boundary conditions and the recursive relation in Lemma 2.2 uniquely
determine the class of Quotp(n, d) in K(Var/C). Hence, it suffices to show that
equation 2.1 satisfy the conditions.

For n = 1, equation 2.1 becomes

[Quotp(1, d)] =
(L − 1)(L2 − 1) · · · (Ld − 1)
(L − 1)(L2 − 1) · · · (Ld − 1)

= 1.

Hence, we only have left to show that the equation satisfies the recursion. Suppose
the equation 2.1 holds for all n′ < n and all d′. We want to show that the recursion
in Lemma 2.2 gives us equation 2.1. By the recursion we have

[Quotp(n, d)] =
∑
d ′≤d

Ld ′[Quotp(n − 1, d′)] (2.2)

=
∑
d ′≤d

Ld ′ (Ln−1 − 1)(Ln − 1) · · · (Ln+d ′−2 − 1)
(L − 1)(L2 − 1) · · · (Ld ′ − 1)

. (2.3)

However, (2.3) is equal to

(Ln − 1) · · · (Ln+d−1 − 1)
(L − 1) · · · (Ld − 1)

∑
d ′≤d

Ld ′(Ln−1 − 1) (Ld ′+1 − 1) · · · (Ld − 1)
(Ln+d ′−1 − 1) · · · (Ln+d−1 − 1)

.

4When d = 0, the formula gives [Quotp(n, 0)] = 1.
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Hence, it suffices to show that∑
d ′≤d

Ld ′(Ln−1 − 1) (Ld ′+1 − 1) · · · (Ld − 1)
(Ln+d ′−1 − 1) · · · (Ln+d−1 − 1)

= 1.

We will prove this by induction on d. For d = 0, we have

(Ln−1 − 1) 1
Ln−1 − 1

= 1.

Now let d ≥ 1 and assume the equality holds for all d′ < d. Then, we get

Ld(Ln−1 − 1)
Ln+d−1 − 1

+
∑

d ′≤d−1
Ld ′(Ln−1 − 1) (Ld ′+1 − 1) · · · (Ld − 1)

(Ln+d ′−1 − 1) · · · (Ln+d−1 − 1)

=
Ld(Ln−1 − 1)
Ln+d−1 − 1

+
Ld − 1
Ln+d−1 − 1

∑
d ′≤d−1

Ld ′(Ln−1 − 1)(Ld ′+1 − 1) · · · (Ld−1 − 1)
(Ln+d ′−1 − 1) · · · (Ln+d−2 − 1)

=
Ld(Ln−1 − 1)
Ln+d−1 − 1

+
Ld − 1
Ln+d−1 − 1

=
Ld(Ln−1 − 1) + Ld − 1

Ln+d−1 − 1

=
Ln+d−1 − 1
Ln+d−1 − 1

= 1.

Hence equation 2.1 satisfies the recursive relation from Lemma 2.2 and the initial
conditions. �

In particular, we have

[Quotp(n, 1)] =
Ln − 1
L − 1

=

n−1∑
0
Lk = [Pn−1],

for all n.5 Moreover, by Proposition 2.2, we obtain the following corollary.

Corollary 2.1. Let Pn,d(t) denote the Poincare polynomial of Quotp(n, d). Then, we
have

Pn,d(t) =
(t2n − 1)(t2n+2 − 1) · · · (t2n+2d−2 − 1)
(t2 − 1)(t4 − 1) · · · (t2d − 1)

.

5In fact, Quotp(n, 1) � Pn−1 for all n.
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2.6 Generating series for Poincare polynomials of QuotC(n, d)
In this section, we will find the Poincare polynomial of QuotC(n, d). Then, we will
show that the generating series for the Poincare polynomials of QuotC(n, d) is, in
fact, a rational function.

We first start by examining the class of [QuotC(n, d)] in K(Var/C) using the same
stratification as in the proof of Lemma 2.2.

Lemma 2.3. Let C be a smooth curve over C, and let n, d ≥ 1. Then, we have the
following relation in K(Var/C):

[QuotC(n, d)] =
∑

(d1,...,dn)∈P(d)

n∏
i=1
[Hilbdi

C ]L
idi,

where Hilbdi
C � QuotC(1, di) is the Hilbert scheme over C of colength di ideal

sheaves, and P(d) = {(d1, . . . , dn) ∈ Zn | di ≥ 0,
∑

di = d} is the set of all ordered
partitions of d.

Proof. Recall that points of QuotC(n, d) parametrize exact sequence (S → O⊕n
C �

Q) such that Q is a torsion sheaf of length d. Let i : O⊕(n−1)
C → O⊕n

C be the inclusion
of the last (n − 1) factors of OC . Now, consider the following cartesian diagram:

S′ //

��

O⊕(n−1)
C

i
��

S // O⊕n
C

.

The diagram above gives us another exact sequence (S′→ O⊕(n−1)
C � Q′), where Q

is a torsion sheaf of length d′ ≤ d. In other words, we have (S′→ O⊕(n−1)
C � Q′) ∈

QuotC(n − 1, d′).

Therefore, we have a map QuotC(n, d) →
∐

d ′≤d QuotC(n − 1, d′). Now, the fibers
over QuotC(n − 1, d′) can be further stratified. Consider the expanded diagram

0 // S′ //

��

O⊕(n−1)
C

//

i
��

Q′ //

��

0

0 // S //

��

O⊕n
C

//

��

Q //

��

0

0 // S′′ // OC // Q′′ // 0

.
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obtained from the cartesian diagram above. Now, (S′′→ OC → Q′′) ∈ QuotC(1, d−
d′) and thus we can stratify the fibers of QuotC(n, d) over QuotC(n− 1, d′) by where
each point maps to QuotC(1, d − d′). Now, the fibers over QuotC(1, d − d′) are
isomorphic to Ad ′ by exactly the same argument as in the proof of Lemma 2.2.

Note that QuotC(1, d) is isomorphic to Hilbd
C , the Hilbert scheme parametrizing

ideal sheaves on C of colength d, by definition. Hence, by Proposition 2.2, we
conclude that the following relation holds in K(Var/C):

[QuotC(n, d)] =
∑
d ′≤d

[QuotC(n − 1, d′)][Hilbd−d ′
C ]Ld ′ .

By induction on n, we get

[QuotC(n, d)] =
∑
d ′≤d

[QuotC(n − 1, d′)][Hilbd−d ′
C ]Ld ′

=
∑

(d1,...,dn)∈P(d)
[Hilbd1

C ]L
d2+···+dn[Hilbd2

C ]L
d3+···+dn · · · [Hilbdn

C ]

=
∑

(d1,...,dn)∈P(d)
[Hilbd1

C ][Hilbd2
C ]L

d2[Hilbd3
C ]L

2d3 · · · [Hilbdn
C ]L

(n−1)dn

=
∑

(d1,...,dn)∈P(d)

n∏
i=1
[Hilbdi

C ]L
idi,

as desired. �

Now, let QC,n,d(t) denote the Poincare polynomial of QuotC(n, d). We will show
that the generating series for QC,n,d(t) is a rational function.

Theorem 2.4. Let C be a projective curve and let QC,n,d(t) denote the Poincare
polynomial of QuotC(n, d). Then, the generating series for QC,n,d(t) is a rational
function. More precisely, let

QC,n(t, x) :=
∑

d

QC,n,d(t)xd ∈ Z[[x, t]]

be the generating series for QC,n,d(t). Then, we can write

QC,n(t, x) = [(1 + t x)(1 + t3x) · · · (1 + t2n−1x)]2g
(1 − x)(1 − t2nx)[(1 − t2x)(1 − t4x) · · · (1 − t2n−2x)]2

.
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Proof. First, we find the generating series for the classes ofQuotC(n, d) in the power
series Grothendieck ring, K(Var/C)[[x]], using Lemma 2.3.∑

d

[QuotC(n, d)]xd =
∑

d

©­«
∑

(d1,...,dn)∈P(d)
[Hilbd1

C ][Hilbd2
C ]L

d2 · · · [Hilbdn
C ]L

(n−1)dn xdª®¬
=

∑
d

©­«
∑

(d1,...,dn)∈P(d)
[Hilbd1

C ]x
d1[Hilbd2

C ]L
d2 xd2 · · · [Hilbdn

C ]L
(n−1)dn xdnª®¬

=

(∑
d

[Hilbd
C]x

d

) (∑
d

[Hilbd
C]L

d xd

)
· · ·

(∑
d

[Hilbd
C]L

(n−1)d xd

)
=

n−1∏
i=0

(∑
d

[Hilbd
C]L

id xd

)
.

Since C is a projective curve, we know by [7] that the generating series for the
Poincare polynomials, QC,1,d(t), of Hilbd

C is

QC,1(t, x) =
∑

d

QC,1,d(t)xd =
(1 + t x)2g

(1 − x)(1 − t2x)
,

where g is the genus of C. Hence, we have∑
d

QC,1,d(t)t2kd xd =
(1 + t2k+1x)2g

(1 − t2k x)(1 − t2k+2x)
.

By Lemma 2.3 and Proposition 2.2, we know that

QC,n,d(t) =
∑

(d1,...,dn)∈P(d)
QC,1,d1(t)QC,1,d2(t)t2d2QC,1,d3(t)t4d3 · · ·QC,1,dn(t)t2(n−1)dn .

Now, we are ready to find the generating series Qn(t, x). We use the same manip-
ulation as we did in finding the generating series for the classes of QuotC(n, d) in
K(Var/C)[[x]] to find QC,n(t, x) in Z[[x, t]].

QC,n(t, x) =
∑

d

QC,n,d(t)xd

=

(∑
d

QC,1,d(t)xd

) (∑
d

QC,1,d(t)t2d xd

)
· · ·

(∑
d

QC,1,d(t)t2(n−1)d xd

)
=

(1 + t x)2g
(1 − x)(1 − t2x)

(
(1 + t3x)2g

(1 − t2x)(1 − t4x)

)
· · ·

(
(1 + t2n−1x)2g

(1 − t2n−2x)(1 − t2nx)

)
=

[(1 + t x)(1 + t3x) · · · (1 + t2n−1x)]2g
(1 − x)(1 − t2nx)[(1 − t2x)(1 − t4x) · · · (1 − t2n−2x)]2

.

Therefore, we conclude that the generating series, QC,n(t, x), is in fact a rational
function. �
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When, C = P1 we get a particularly nice expression for the generating series for
QuotP1(n, d) in the power series Grothendieck ring.

Corollary 2.2. The generating series for [QuotP1(n, d)] in K(Var/C)[[x]] is a ra-
tional function in x. More precisely, we have∑

d

QuotP1(n, d)xd =
1

(1 − x)(1 − Lx)2 · · · (1 − Ln−1x)2(1 − Lnx)
.

Proof. From the proof of Theorem 2.4, we saw∑
d

QuotP1(n, d)xd =

n−1∏
i=0

(∑
d

[Hilbd
P1]Lid xd

)
.

We know that Hilbd
P1 � P

d
6. Since [Pd] = ∑d

i=0 L
i, we have

∑
d

[Hilbd
P1]xd =

∑
d

(
d∑

i=0
Li

)
xd =

1
(1 − x)(1 − Lx) .

Similarly, for general k, we have∑
d

[Hilbd
P1]Lkd xd =

∑
d

(
d∑

i=0
Li

)
Lkd xd =

1
(1 − Lk x)(1 − Lk+1x)

.

Hence, we have∑
d

QuotP1(n, d)xd =

n−1∏
i=0

(∑
d

[Hilbd
P1]Lid xd

)
=

n−1∏
i=0

(
1

(1 − Li x)(1 − Li+1x)

)
=

1
(1 − x)(1 − Lx)2 · · · (1 − Ln−1x)2(1 − Lnx)

.

�

2.7 The generating series for Poincare polynomials of Q0,2(G(n, n), d)
Lemma 2 of [8] computes the Poincare polynomial of Q0,2(G(1, 1), d) for d > 0.

Lemma 2.4. [8] Let Pd(t) be the Poincare polynomial of Q0,2(G(1, 1), d), where
d > 0. Then,

Pd(t) = (1 + t2)d−1.

6See for example [4].
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In the proof of this lemma, they show thatQ0,2(G(n, n), d) can be stratified as follows.

Lemma 2.5. [8] Q0,2(G(n, n), d) can be written as a disjoint union of quasi-
projective strata, S(d1,...,dk ), indexed by ordered partitions, (d1, . . . , dk), of d7. More-
over, for each ordered partition, (d1, . . . , dk), we have

S(d1,...,dk ) �
k∏

i=1
QuotC×(n, di)/C×.

In fact, S(d1,...,dk ) ⊂ Q0,2(G(n, n), d) is the stratumof points parametrizing (C, p1, p2,Q),
where C is a nodal curve with k rational components, C1, . . . ,Ck , such that Q has
length di on Ci. Note that since there are only two marked points on C, p1 and p2

must lie on the two extremal components of C. Moreover, all components of C are
rational with two special points and thus, by the stability condition, Q must have
positive length on each Ci.

To simplify notation, we will write

Qn,d(t) := QC×,n,d,

Qn(t, x) := QC×,n(t, x) =
∑

d

QC×,n,d(t)xd,

Qn,d(t) := PQ0,2(G(n,n),d)(t),

Sn,d(t) := PS
n,d
(t),

where Sn,d ⊂ Q0,2(G(n, n), d) is the stratum associated to the ordered partition
d = (d1, . . . , dk).

Now,we try to find the generating function for the Poincare polynomials ofQ0,2(G(n, n), d)
with n fixed.

Theorem 2.5. Let
Qn(t, x) :=

∑
d

Qn,d(t)xd ∈ Z[[t, x]]

be the generating series for the Poincare polynomials of Qn,d(G(n, n), d). Then,
Qn(t, x) is a rational function in t and x. More precisely, we have

Qn(t, x) = (1 − t2nx)(t2 − 1)
t2 − t2n+2x + x − 1

.

7i.e. tuples (d1, . . . , dk) such that di > 0 for all i and
∑

di = d.
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Proof. We first compute Qn(t, x). The computation is similar to the computation
in the proof of Theorem 2.4. MacDonald’s generating function for Q1,d(t) does not
hold in our case since C× is not projective.

From the proof of Lemma 2 in [8], we know that the Poincare polynomial of
Hilbd(C×) is

Q1,d(t) = t2d − t2d−2.

Hence, we get

Q1(t, x) =
∑
d≥0

Q1,d(t)xd

= 1 +
∑
d>0
(t2d − t2d−2)xd

= 1 + (t2 − 1)
∑
d>0

t2d−2xd

= 1 + (t2 − 1)x
∑
d≥0

t2d xd

= 1 +
x(t2 − 1)
1 − t2x

=
1 − x

1 − t2x
.

It follows that for general k we have∑
d

P(Hilbd(C×))(t)t2kd xd =
1 − t2k x

1 − t2k+2x
.

Now, by Lemma 2.3, we obtain

Qn(x, t) =
(∑

d

Q1,d(t)xd

) (∑
d

Q1,d(t)t2d xd

)
· · ·

(∑
d

Q1,d(t)t2(n−1)d xd

)
=

1 − x
1 − t2x

· 1 − t2x
1 − t4x

· · · 1 − t2n−2x
1 − t2nx

=
1 − x

1 − t2nx
.

Now, we compute Qn,d(t, x). By Lemma 2.5 we have

[Q0,2(G(n, n), d)] =
∑

d∈P(d)

[Sn,d],

where P(d) = {(d1, . . . , dk) | di > 0∀i and
∑

di = d} is the set of all ordered
partitions of d. Therefore,

Qn,d(t) =
∑

d∈P(d)

Sn,d(t).
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Recall that

Sn,(d1,...,dk ) �
k∏

i=1
QuotC×(n, di)/C×.

From [2], we know that the Poincare polynomial of QuotC×(n, di)/C× is equal to

Qn,di (t)
t2 − 1

.

Hence,

Sn,(d1,...,dk )(t) =
k∏

i=1

Qn,di (t)
t2 − 1

.

We are now ready to compute Qn(t, x):

Qn(t, x) =
∑
d≥0

Qn,d(t)xd

=
∑
d≥0

©­«
∑

d∈P(d)

Sn,d(t)x
dª®¬

=
∑
k≥0

( ∑
d1,...,dk≥1

Sn,(d1,...,dk )(t)xd1+···+dk

)
=

∑
k≥0

( ∑
d1,...,dk≥1

(
k∏

i=1

Qn,di (t)
t2 − 1

)
xd1+···+dk

)
=

∑
k≥0

( ∑
d1,...,dk≥1

(
k∏

i=1

Qn,di (t)xdi

t2 − 1

))
=

∑
k≥0

((∑
d1≥1

Qn,d1(t)xd1

(t2 − 1)

)
· · ·

(∑
dk≥1

Qn,dk (t)xdk

(t2 − 1)

))
=

∑
k≥0

(
Qn(x, t) − 1

t2 − 1

) k

=
1

1 − (Qn(x, t) − 1)
(
t2 − 1

)−1

=

(
1 − x(t2n − 1)
(1 − t2nx)(t2 − 1)

)−1

=
(1 − t2nx)(t2 − 1)

(1 − t2nx)(t2 − 1) − x(t2n − 1)

=
(1 − t2nx)(t2 − 1)

t2 − t2n+2x + x − 1
.

Hence, Qn(t, x) is a rational function in t and x. �
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