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ABSTRACT 

 
 Presented herein are three projects, all unified by the use of palladium-catalyzed, 

enantioconvergent, decarboxylative allylic alkylations to synthesize stereochemically rich, 

nitrogen-containing small molecules. The ubiquity of nitrogen in biologically active 

natural products and pharmaceutical ingredients necessitates perpetual exploration and 

development of relevant small molecules. Highly robust palladium-catalyzed allylic 

alkylation reactions of non-stabilized enolates enable the construction of sterically 

encumbered all-carbon quaternary and tetrasubstituted tertiary stereocenters present within 

such targets.  

The successful development of a novel substrate class for palladium-catalyzed 

allylic alkylation, namely dihydropyrido[1,2-a]indolones (DHPIs), has enabled divergent 

syntheses of multiple monoterpene indole alkaloids. By setting the C20 quaternary 

stereocenter present within these alkaloids at an early stage in the synthesis, the remaining 

stereocenters can be forged with exquisite levels of control. Critical to the success of this 

work was the identification of highly tunable and predictable cyclizations between an 

indole and a C2-tethered iminium moiety. Regiodivergent cyclizations were used to 

complete the first catalytic enantioselective total synthesis of (–)-goniomitine, along with 

efficient formal syntheses of (+)-aspidospermidine and (–)-quebrachamine. 

Stereodivergent cyclization strategies were then employed in total syntheses of (+)-

limaspermidine and (+)-kopsihainanine A. Synthetic efforts toward the highly caged 

Kopsia alkaloids (–)-kopsinine, (–)-kopsinilam, and (–)-kopsifoline G are also discussed. 

Lastly, the synthesis of challenging α-quaternary Mannich-type products was 

accomplished through a simple, elegant inversion of strategy. The chiral building blocks 

made available by this technology bear significant potential in the realm of medicinal 

chemistry. Furthermore, this work enabled rapid total syntheses of (–)-isonitramine and 

(+)-sibirinine. 
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Chapter 1 

Enantioselective Palladium-Catalyzed Allylic Alkylation 

Reactions in the Synthesis of Aspidosperma and 

Structurally Related Monoterpene Indole Alkaloids 

 

1.1  INTRODUCTION 

The structural intricacies and biological activities of monoterpene indole alkaloids 

have rendered these compounds attractive targets for total synthesis over the course of 

more than half a century.1 In particular, the structurally related Aspidosperma and Kopsia 

classes of alkaloids comprise some of the most frequently targeted structures in chemical 

synthesis (Figure 1.1.1). Consequently, numerous strategically unique total syntheses 

have been reported for various Aspidosperma and Kopsia family members. In the past 

five years, however, enantioselective Pd-catalyzed allylic alkylation reactions of 

prochiral enolates have become an increasingly popular tool to construct the stereogenic 

all-carbon quaternary center at C20,2 which is a unifying feature of these classic targets 

(see 1, Figure 1.1.1). Presented herein are completed enantioselective syntheses of 

Aspidosperma and Kopsia alkaloids that implement such a Pd-catalyzed allylic 

alkylation.  
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In order to establish a broader context within this field, we will briefly discuss 

other noteworthy unified strategies that have enabled successful syntheses of multiple 

monoterpene indole alkaloids from the Aspidosperma and/or Kopsia families. While 

some non-asymmetric syntheses of these compounds have undoubtedly made profound 

contributions to modern organic synthesis, we will only cover enantioselective syntheses 

in this review.  
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Figure 1.1.1. Representative Aspidosperma and Structurally Related Alkaloids 
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1.2 STRUCTURE, BIOSYNTHESIS, AND NOTEWORTHY BIOLOGICAL 

ACTIVITY OF ASPIDOSPERMA AND RELATED ALKALOIDS 

 The Aspidosperma alkaloids are unified through a largely conserved pentacyclic 

core that is most clearly visible in the non-functionalized namesake of the family, 

aspidospermidine (1, Figure 1.1.1).3 Two notable structural outliers are the nine-

membered ring-containing quebrachamine (2),4 and the aminal-containing goniomitine 

(3).5 Vincadifformine (4)6 and tabersonine (5)7 contain additional unsaturation within the 

pentacyclic core. Common oxygenation patterns include terminal alcohols (e.g., 6),8 N,O-

ketals (e.g., 7–10),9,10 and oxygenation about the benzene fragment (e.g., 11–14).11–14 

Leuconolam (15)15 is related to Aspidosperma alkaloids through indoline oxidative 

cleavage, and can undergo subsequent ring closure to furnish various aminal-containing 

structures (e.g., 16 and 17)16,17 or additional rearrangement and fragmentation to give 

mersicarpine (18).18 The pyrrole ring in rhazinilam (19)19 is expected to originate from a 

biochemical oxidation pathway similar to that of leuconolam (15).20 Kopsia alkaloids 

(e.g., 20–27)21–28 typically contain additional carbon-based rings, often resulting in highly 

caged structures. 

 The biosynthesis of all monoterpene indole alkaloids is believed to begin with an 

enzymatic Pictet–Spengler reaction29 between tryptamine (28) and secologanin (29) to 

yield strictosidine (30, Scheme 1.2.1).30 Subsequent deglycosylation and iminium 

condensation affords 4,21-dihydrogeissoschizine (31), which undergoes a series of 

skeletal rearrangements to arrive at dihydropyridine 32. At this stage, it is envisioned that 

either a Diels–Alder cycloaddition, or a stepwise Michael addition/Friedel–Crafts 
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reaction/tautomerization cascade delivers tabersonine (5), thereby enabling general entry 

into alkaloids of the Aspidosperma type.31  

Scheme 1.2.1. Proposed Biosynthetic Pathway of Aspidosperma Alkaloids  

 

 In addition to their stereochemically rich polycyclic scaffolds, several 

Aspidosperma and Kopsia alkaloids have demonstrated promising biological activity. 

Vincadifformine (4) displayed cytotoxicity in KB/VJ300 vincristine-resistant human oral 

epidermoid carcinoma cells.32 Tabersonine (5) showed cytotoxicity toward HL-60 

myeloid leukemia cells at low micromolar concentrations.33 Rhazinilam (19) showed sub-

micromolar toxicities in A549 human lung adenocarcinoma and HT29 human colon 

adenocarcinoma cell lines,34a but is perhaps best known for its remarkable in vitro 

inhibition of both microtubule assembly and disassembly.34b,c  

1.3  IMPORTANT UNIFIED STRATEGIES 

 The purpose of this section is not to recount every completed monoterpene indole 

alkaloid total synthesis.35 Rather, a representative selection of synthetic strategies that 

have born access to multiple Aspidosperma and/or Kopsia family members will be 

highlighted to establish a broader context for this field.  
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1.3.1  MACMILLAN’S ORGANOCASCADE CATALYSIS 

 In 2011, MacMillan and co-workers demonstrated the power of their 

enantioselective organocascade catalysis36 through the divergent total syntheses of (+)-

aspidospermidine (1), (+)-vincadifformine (4), (–)-kopsinine (20), and (–)-kopsanone 

(21), along with the Strychnos alkaloids (–)-strychnine and (–)-akuammicine.37 Treatment 

of vinyl selenide 34 with 20 mol % of imidizalidinone tribromoacetic acid salt 35•TBA 

in the presence of propynal delivered spiroindoline 36 in high yield and excellent 

enantioselectivity (Scheme 1.3.1.1). A four step sequence including a Pd-catalyzed Heck 

cyclization gave triene 37, which was globally reduced to arrive at (+)-aspidospermidine 

(1). Sequential Swern oxidation and C-acylation completed an enantioselective synthesis 

of (+)-vincadifformine (4). 

Scheme 1.3.1.1. MacMillan’s Enantioselective Organocascade Catalysis Toward 

(+)-Aspidospermidine (1) and (+)-Vincadifformine (4) 

 

 In a similar fashion, the authors synthesized ent-36, which was swiftly converted 

to hexacyclic sulfone 38 (Scheme 1.3.1.2). Global reduction using Raney nickel 

furnished (–)-kopsinine (20), which was advanced to (–)-kopsanone (21) in a further two 
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steps. This unified approach from the MacMillan group stands out for its elegant and 

highly enantioselective organocascade reaction, along with thoughtful synthetic planning 

to enable multiple highly productive transformations. 

Scheme 1.3.1.2. Divergent Synthetic Access to (–)-Kopsinine (20) and (–)-

Kopsanone (21) 

 

1.3.2 MOVASSAGHI’S DIIMINIUM CYCLIZATIONS 

The Movassaghi group has leveraged their expertise in interrupted  

Bischler–Napieralski reactions38 to synthesize versatile diiminium species en route to 

multiple Aspidosperma alkaloids.39 In their first report, α-Quaternary δ-lactam 3940 was 

subjected to the combination of triflic anhydride and 3-cyanopyridine with heating to 

deliver diiminium 40 (Scheme 1.3.2.1A).39a Hydride reduction, followed by 

hydrogenation gave N-methylaspidospermidine (41)41 in 50% overall yield from 39. 

Alternatively, heating diiminium 40 in aqueous acid effected a Grob fragmentation, and 

subsequent hydrogenation and lactam reduction yielded N-methylquebrachamine (42)42 in 

47% overall yield from 39. Critically, the authors found that nine-membered lactam 43 

could be converted to diiminium 40 under milder conditions (Scheme 1.3.2.1B). A 

number of non-hydride nucleophiles could react preferentially at the C2 iminium of 40, 

including a stereo- and regioselective Friedel–Crafts reaction that enabled an efficient 

synthesis of homodimeric dideepoxytabernaebovine (44). 
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Scheme 1.3.2.1. Movassaghi’s First Generation Diiminium Cyclization Cascade 

 

 In a subsequent report, Movassaghi and co-workers employed a similarly mild 

transannular cylization in the total syntheses of additional monomeric and dimeric 

Aspidosperma alkaloids.39b Most recently, the Movassaghi group coupled their diiminium 

cyclization chemistry with amide-directed C–H oxidation to synthesize arene-oxidized 

Aspidosperma alkaloids.39c Nine-membered lactam 4543 was efficiently converted to 

pentacyclic iminium 46, which could undergo hydride reduction and subsequent 

deprotection to deliver (+)-limaspermidine (6), or saponification and concomitant N,O-

ketalization en route to fendleridine (7, Scheme 1.3.2.2A). Fendleridine (7) could then be 

smoothly acylated to provide a directing group for arene Pd-catalyzed C–H oxidation 

(Scheme. 1.3.2.2B). These late-stage oxidations enabled concise total syntheses of 

haplocidine (8) and haplocine (9), further demonstrating the broad utility of 

Movassaghi’s diiminium cyclization strategy in the synthesis of Aspidosperma alkaloids. 
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Scheme 1.3.2.2. Movassaghi’s Synthesis of N,O-Ketal-Containing Alkaloids 

 

1.3.3 RAWAL’S ENANTIOSELECTIVE DIELS–ALDER CYCLOADDTION 

 The Rawal group utilized an enantioselective Diels–Alder cycloaddition to 

complete highly streamlined and scalable syntheses of several family members.44 

Treatment of diene 47 with Cr(III)–Salen catalyst 49 in the presence of ethacrolein (48) 

and molecular sieves gave cyclohexene 50 in 91% yield and 96% enantiomeric excess 
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Scheme 1.3.3.1. Rawal’s Cr(III)–Salen-Catalyzed Enantioselective Diels–Alder 

Reaction 
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1.4 ENANTIOSELECTIVE Pd-CATALYZED ALLYLIC ALKYLATIONS IN 

ASPIDOSPERMA AND KOPSIA ALKALOID TOTAL SYNTHESIS 

  Among the many synthetic challenges facing chemists in pursuit of 

Aspidosperma and Kopsia alkaloids is the ubiquitous all-carbon quaternary stereocenter 

at C20. Since the mid 2000’s, enantioselective Pd-catalyzed allylic alkylation reactions of 

non-stabilized enolates have enabled access to challenging stereogenic quaternary 

centers.46,47 Using this approach, racemic β-oxoesters such as 54 can be swiftly converted 

to their corresponding α-quaternary product (55) in high yield and enantioselectivity. The 

allylic alkylation products (e.g., 56–58) can be further elaborated to chiral building 

blocks (e.g., 59–63) that previously required lengthy synthetic sequences to achieve high 

levels of enantiopurity (Scheme 1.4.1).48 

 Indeed, our lab has employed this methodology to construct monocyclic chiral 

building blocks possessing an all-carbon quaternary center in multiple rapid asymmetric 

formal syntheses of Aspidosperma alkaloids. Vinylogous ester 56 can be transformed into 

γ-quaternary enone 59 in straightforward fashion,48 completing formal syntheses of (–)-

aspidospermine (11) and (–)-quebrachamine (2).49 α-Quaternary piperidin-2-one 57 

provides access to heterocycles 60–62,46c,48 which constitute asymmetric formal syntheses 

of (–)-quebrachamine (2),50 (–)-vincadifformine (4),51 and (+)-rhazinilam (19),52 

respectively. Finally, imide 58 can be easily converted to lactone 63 over three steps,53 

thereby providing enantioselective access to (–)-leuconolam (15), (+)-melodinine E (16), 

(–)-leuconoxine (17), (–)-mersicarpine (18), and (–)scholarisine G (64, aka leuconodine 

B).54 
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Scheme 1.4.1. Pd-Catalyzed Allylic Alkylation Provides Facile Access to Important 

Chiral Building Blocks en Route to Aspidosperma Alkaloids  

 

Recently, several groups have used Pd-catalyzed allylic alkylations to set the C202 

all-carbon quaternary center in de novo enantioselective total syntheses. The 

stereochemical information at C20 can then be used to set the remaining stereocenters 

with high levels of selectivity. Most of the studies described herein utilize conditions 

developed by the Stoltz group for decarboxylative allylic alkylations, namely the 

combination of Pd2(dba)3 and a phosphinooxazoline (PHOX) ligand.46a–c 
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1.4.1 LUPTON’S FORMAL SYNTHESIS OF KOPSIHAINANINE A 

In 2013, the Lupton group reported the enantioselective decarboxylative Pd-

catalyzed allylic alkylation of Boc-protected indolone and carbazolone substrates (e.g., 

65, Table 1.4.1.1).55 The authors found that the combination of Pd2(dba)3 (2.5 mol %) and 

(S)-t-BuPHOX (66, 5 mol %) in toluene at 50 °C delivered the α-quaternary products 

(e.g., 67a–h) in 69–98% yield and 80–94% ee. Broad functional group tolerance was 

observed at the α-position, and one example (67h) illustrated the compatibility of an 

electronically differentiated indole fragment. 

Table 1.4.1.1. Selected Examples from Lupton’s Enantioselective Pd-Catalyzed 

Allylic Alkylations of Indolone and Carbazolone Substrates 

 

 Noting the clear resemblance between their α-quaternary carbazolone products 

(e.g., 67e–h) and monoterpene indole alkaloids, the authors carried out a rapid 

enantioselective formal synthesis of (+)-kopsihainanine A (22). Nitrile 67e was treated 
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with formic acid to effect hydration with concomitant Boc removal, and subsequent 

reprotection delivered N-benzyl carbazolone 68 (Scheme 1.4.1.1). N-benzyl carbazolone 

68 was carried through six additional steps by She and co-workers in their synthesis of 

(±)-kopsihainanine A (22).56 

Scheme 1.4.1.1. Enantioselective Formal Synthesis of (+)-Kopsihainanine A (22) 

 

1.4.2 MA’S TOTAL SYNTHESIS OF METHYL N-

DECARBOMETHOXYCHANOFRUTICOSINATE 

 Ma and co-workers devised an elegant total synthesis of (+)-methyl N-

decarbomethoxychanofruticosinate (26) featuring an enantioselective Pd-catalyzed allylic 

alkylation of a carbazolone substrate and a late-stage intramolecular oxidative coupling 

reaction.57 Beginning from commercially available carbazolone 69, a four-step sequence 

including a Pd-catalyzed allylic alkylation using (R)-t-BuPHOX (ent-66) delivered ent-

67e (Scheme 1.4.2.1). Oxidative cleavage of the allyl fragment, reduction of the resulting 

aldehyde, and alcohol protection using TBSCl gave silyl ether 70. Reductive cyclization 

using nickel boride, followed by imine hydrogenation, delivered tetracycle 71 with the 

requisite trans-fused octahydroquinoline subunit. Acylation of the secondary amine, 

followed by alcohol deprotection and subsequent oxidation, gave aldehyde 72. An 

intramolecular Reformatsky-type reaction was mediated by SmI2, and the resulting β-

hydroxyamide was subjected to amide reduction and then alcohol oxidation to arrive at 
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underwent smooth iodine-promoted oxidative coupling to give imine 74.58 Nucleophilic 

addition of cyanide, followed by hydration and subsequent esterification delivered the 

highly caged target, (+)-methyl N-decarbomethoxychanofruticosinate (26), in 19 steps 

and 5% overall yield from commercially available 69. 

Scheme 1.4.2.1. Ma’s Total Synthesis of (+)-Methyl N-

Decarbomethoxychanofruticosinate (26) 
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1.4.3 MUKAI’S TOTAL SYNTHESIS OF KOPSIHAINANINE A 

 Mukai and co-workers exploited the exceptional enantioselectivities achieved 

through the asymmetric allylic alkylation of piperidin-2-ones46c in a highly 

enantioselective total synthesis of (+)-kopsihainanine A (22).59 The addition of 

1,3−Dicarbonyl 75, available in five linear steps from indole, to a solution of Pd2(dba)3 (5 

mol %) and electron deficient (S)-(CF3)3-t-BuPHOX (76, 12.5 mol %) in TBME at 40 °C 

delivered α-quaternary amide 77 in 82% yield and 98% ee on a one-mmol scale (Scheme 

1.4.3.1). Following global deprotection, the key Bischler–Napieralski cyclization was 

performed to deliver tetracycle 79 in excellent yield as a single diastereomer bearing the 

desired trans-fused [6,6] subunit. A further seven steps were required to advance the 

Bischler–Napieralski product (79) to (+)-kopsihainanine A (22). Despite multiple 

protecting group and redox manipulations, Mukai and co-workers completed a total 

synthesis of (+)-kopsihainanine A (22) in 15 steps and 3% overall yield from indole. 
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Scheme 1.4.3.1. Mukai’s Total Synthesis of (+)-Kopsihainanine A (22) 

 

1.4.4 QIN’S TOTAL SYNTHESIS OF MULTIPLE KOPSIA ALKALOIDS 

 The most recent report in this field is a beautiful unified approach to multiple 
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to give α-diazoketone 87, which enabled the investigation of their key metal-catalyed 

intramolecular cyclopropanation. 

Scheme 1.4.4.1. Synthesis of α-Diazoketone 87 
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a mixture of 93 and 94,61 bearing the carbocyclic cores of (–)-isokopsine (24) and (–)-

kopsine (23), respectively.  

Scheme 1.4.4.2. Intramolecular Cyclopropanation and Elaboration to the 

Carbocyclic Cores of Caged Kopsia Alkaloids 

 

Heptacycle 93 was globally carbomethoxylated, and chemoselective carbonate 

cleavage occurred to give (–)-isokopsine (24, Scheme 1.4.4.3). C–C scission was 

achieved using Pb(OAc)4 to furnish (+)-methyl chanofruticosinate (25). Furthermore, (–)-

isokopsine (24) could be reduced with sodium borohydride, and the resulting diol cleaved 

by Pb(OAc)4 to provide aldehyde 95. Treatment of 95 with sodium methoxide in THF 

effected an intramolecular aldol condensation to give (–)-fruticosine (27). 
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Scheme 1.4.4.3. Completion of (–)-Isokopsine (24), (+)-Methyl Chanofruticosinate 

(25), and (–)-Fruticosine (27) 

 

 Lastly, the authors advanced heptacycle 94 to complete syntheses of (–)-

kopsanone (21) and (–)-kopsine (23). The tertiary alcohol in 94 was converted to a 

xanthate ester, and ensuing radical deoxygenation gave (–)-kopsanone (21, Scheme 

1.4.4.4, Left). Conversely, treatment of 94 with triphosgene followed by methanolysis 

gave (–)-kopsine (23, Scheme 1.4.4.4, Right).62  

Scheme 1.4.4.4. Completion of (–)-Kopsanone (21) and (+)-Kopsine (23) 

 

In summary, Qin and co-workers have designed and executed an impressive 

unified strategy toward several structurally daunting targets. Instrumental to their success 

were an enantioselective Pd-catalyzed allylic alkylation, the incorporation of a 

bromoisoxazole fragment as a masked β-ketonitrile, a copper-catalyzed intramolecular 

cyclopropanation, and several late-stage skeletal rearrangements. 
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1.4.5 QIU’S TOTAL SYNTHESIS OF (–)-ASPIDOPHYTINE 

 In 2013, Qiu and co-workers reported a stereocontrolled total synthesis of (–)-

aspidophytine (10).63 Enantioselective Pd-catalyzed allylic alkylation of β-ketoester 96 

was accomplished using [Pd2(dba)3]•CHCl3 and (S,S)-ANDEN-Phenyl Trost ligand (97) 

to give known vinylogous thioester 98 in 70% yield and 85% ee (Scheme 1.4.5.1).64 A 

two-step hydrolysis protocol gave cyclohexane-1,3-dione 99, which could be enriched to 

97% ee through recrystallization. The dimethoxyindole fragment in (–)-aspidophytine 

(10) was constructed through an acid-catalyzed vinylogous amide formation followed by 

Pd-catalyzed oxidative cyclization. Subsequent N-tosylation under phase-transfer 

conditions gave α-quaternary carbazolone 102. The allyl fragment in 102 was converted 

to a primary azide in straightforward fashion to arrive at carbazolone 104. 
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Scheme 1.4.5.1. Synthesis of α-Quaternary Carbazolone 104 

 

 The authors then expertly used the single stereocenter in 104 to build the three 

remaining rings and complete their synthesis of (–)-aspidophytine (10) in a 

stereoselective fashion (Scheme 1.4.5.2). A four-step sequence effected ketone and azide 

reduction along with amine protection and a Pictet–Spengler-type cyclization to deliver 

cis-fused tetracycle 105. Global deprotection is followed by regioselective alkylation 

using 2-bromoethanol furnished aminoalcohol 106. Pyrrolidine annulation and selenoxide 

elimination gave α,β-unsaturated imine 107, which could undergo hydride reduction and 

reductive amination in the same pot to yield penultimate N-methyl indoline 108. This 

intermediate was converted to (–)-aspidophytine (10) by adapting a two-step protocol 

reported by Corey.65 While their synthesis required 20 steps and proceeded in 0.6% 
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overall yield from known α-quaternary vinylogous thioester 98, Qiu and co-workers 

successfully assembled one of the most functionally elaborate members of the 

Aspidosperma family. 

Scheme 1.4.5.2. Qiu’s Endgame for (–)-Aspidophytine (10) 

 

1.4.6 SHAO’S TOTAL SYNTHESES ENABLED BY ENANTIOENRICHED α-

QUATERNARY CARBAZOLONES 

 In 2013, the Shao group began what has become a fruitful research program in the 

application of Pd-catalyzed allylic alkylation reactions of carbazolone substrates in the 

context of monoterpene alkaloid total synthesis. Their initial disclosure was published 

back-to-back with that of Lupton and co-workers,55 and detailed the asymmetric allylic 

alkylation of N-benzyl carbazolone substrates (Table 1.4.6.1).66 Using similar reaction 

conditions, a range of enantioenriched α-quaternary carbazolone products were obtained 

in 70–93% yield and 84–97% ee. Compounds bearing either nitrile or ester motifs 
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case in these allylic alkylations.67 Simple alkyl substituents were also tolerated (e.g., 110e 

and 110f), and electronically differentiated arene fragments were compatible (e.g., 110g 

and 110h). 

Table 1.4.6.1. Selected Examples from Shao’s First Report on Enantioselective Pd-

Catalyzed Allylic Alkylations of Carbazolone Substrates 

 

 Shao’s first application of this chemistry was in the total syntheses of (–)-

aspidospermidine (1) and (+)-kopsihainanine A (22). Beginning from α-quaternary 

carbazolone 110a, hydration of the pendant nitrile followed by ketone reduction and acid-

promoted cyclization gave lactam 111 (Scheme 1.4.6.1A). A three-step dehomologation 

protocol was used to convert 111 into tetracycle 113, which bears the desired C20 ethyl 

substituent. Lactam reduction and debenzylation under dissolving metal conditions 

furnished 114, which was converted to (–)-aspidospermidine (1) using a three-step 

sequence adapted from Heathcock and co-workers.68 The authors found that lactam 111 

could also serve as an intermediate toward (+)-kopsihainanine A (22, Scheme 1.4.6.1B). 
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Hydroboration/oxidation and base-promoted cyclization of the corresponding mesylate 

gave pentacycle 115, which underwent α-hydroxylation and debenzylation to complete 

the first catalytic enantioselective synthesis of (+)-kopsihainanine (22) in short order, 

albeit in low yield.  

Scheme 1.4.6.1. Shao’s Divergent Syntheses of (–)-Aspidospermidine (1) and (+)-

Kopsihainanine A (22) 

 

 Later that same year, Shao and co-workers published an enantioselective total 

synthesis of (–)-limaspermidine (6).69 Aldehyde 116, which was an intermediate in their 

synthesis of (–)-aspidospermidine (1), was instead treated with excess LiAlH4 in 

refluxing ether to give primary alcohol 117 (Scheme 1.4.6.2). Debenzylation and 

TBDPS-protection provided silyl ether 118, which underwent regioselective acylation to 

deliver α-chloroamide 119. Finkelstein displacement of the chloride and subsequent 

AgOTf-mediated annulation furnished pentacyclic imine 120. Global hydride reduction 
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and desilylation completed their total synthesis of (–)-limaspermidine (6), which had 

previously been converted to (–)-acetylaspidoalbidine (7) in a further two steps by 

Banwell and co-workers.70 

Scheme 1.4.6.2. Shao’s Total Synthesis of (–)-Limaspermidine (6) and Formal 

Synthesis of (–)-Acetylaspidoalbidine (7) 

 

 In a 2014 report, Shao and co-workers expanded their investigations to access 

alkaloids bearing oxygenation on the arene fragment.71 Allylic alkylation precursor 121 

was synthesized in five steps and 41% overall yield from commercially available 

materials. Using their previously optimized conditions, α-quaternary carbazolone 122 

was obtained in 90% yield and 91% ee (Scheme 1.4.6.3). The authors then employed a 

familiar seven-step sequence to arrive at pentacyclic imine 123, which served as a 

common intermediate in their divergent total syntheses of (+)-aspidospermine (11), (–)-

N-acetylcylindrocarpinol (12), (+)-cylindrocarpidine (13), and (+)-10-

oxocylindrocarpidine (14). 
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Scheme 1.4.6.3. Synthesis of Common Intermediate 123 

 

 Exhaustive hydride reduction, N-acylation, and oxidative cleavage of the terminal 

olefin gave aldehyde 125 (Scheme 1.4.6.4A). (+)-Aspidospermine (11), (–)-N-

acetylcylindrocarpidine (12), and (+)-cylindrocarpidine (13) were each available from 

aldehyde 125 in 1–2 steps. Alternatively, chemoselective reduction of 123 using sodium 

borohydride left the pyrrolidin-2-one intact, which facilitated the first total synthesis of (–

)-10-oxocylindrocarpidine (14, Scheme 1.4.6.4B). 

Scheme 1.4.6.4. Shao’s Divergent Syntheses of C12-Methoxy Alkaloids 11–14 
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1.4.7 ZHU’S OXIDATION/REDUCTION/POLYCYCLIZATION CASCADES 

 The laboratories of Jieping Zhu have combined Pd-catalyzed allylic alkylation 

with their domino oxidation/reduction/polycyclization cascades to complete 

enantioselective syntheses of a structurally unique subset of Aspidosperma alkaloids 

(e.g., 15–19).72 The known enantioselective Pd-catalyzed allylic alkylation of β-ketoester 

127 proceeded smoothly to give α-quaternary ketone 128 in 90% yield and 92% ee 

(Scheme 1.4.7.1). The authors carried out a five-step sequence to introduce the azide and 

o-nitrophenyl substituents present in enone 129. Ozonolysis of 129, followed by 

treatment of the intermediate hydroperoxide with Ac2O and Et3N provided methyl ester 

130. Hydrogenation of 130 revealed the nascent aniline and primary amine in 131, which 

cyclized regioselectively under the reaction conditions to give tricycle 132. The addition 

of KOH effected lactamization, and sparging with oxygen provided the presumed 

hydroperoxide (134), which was reduced by dimethyl sulfide to deliver (–)-mersicarpine 

(18) in a remarkable 75% one-pot yield from azide 130. 
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Scheme 1.4.7.1. Zhu’s Synthesis of (–)-Mersicarpine (18) 

 

 Furthermore, the authors found that hydrogenation of azide 130 in the presence of 

acetic anhydride resulted in acetylation of the primary amine to give acetamide 135 

(Scheme 1.4.7.2). Aerobic oxidation of the 3-oxindole moiety followed by the addition of 

KOH produced lactam 136, which underwent acid-promoted cyclization to afford aminal 

137. An intramolecular aldol condensation completed a total synthesis of (–)-scholarisine 

G (64). The tertiary benzylic alcohol in (–)-scholarisine G (64) was smoothly dehydrated 

to give (+)-melodinine E (16), which could be further elaborated to (–)-leuconolam (15) 

and (–)-leuconoxine (17).73 
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Scheme 1.4.7.2. Tailoring Primary Amine Nucleophilicity to Access Aminal-

Containing Alkaloids 

 

 Following their successful elaboration of α-quaternary cyclohexanone 128 toward 

multiple alkaloids, Zhu and co-workers devised clever syntheses of (–)-rhazinilam (19), 
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rhazinilam (19) using a well-precedented reduction/hydrolysis/macrolactamization 

sequence. 

Scheme 1.4.7.3. Zhu’s Total Synthesis of (–)-Rhazinilam (19) 

 

 Furthermore, Zhu and co-workers found that facile cyclocondensation could occur 

between imine 145 and oxalyl chloride to give dioxopyrrole 147 (Scheme 1.4.7.4A). 

Saponification of the methyl ester, followed by nitro reduction/indolization and 
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aminomethine in the natural product. Alternatively, the ketone in 147 could be protected 

as the corresponding methyl enolether (148, Scheme 1.4.7.4B). This enabled 

regiodivergent aniline cyclization in their total synthesis of (+)-leuconodine F (139). 
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Scheme 1.4.7.4. Zhu’s Total Synthesis of (–)-Leucomidine B (138) and (+)-

Leuconodine F (139) 

 

 The Zhu group has elegantly leveraged the high enantioselectivities available in 

Pd-catalyzed allylic alkylations of cyclic substrates to prepare precursors for their 

reduction/oxidation/cyclization cascades. Critically, they have demonstrated the ability to 

tune participating functional groups for the controlled, divergent construction of multiple 

monoterpene indole alkaloid scaffolds. 
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1.5  CONCLUSION AND OUTLOOK 

 Monoterpene indole alkaloids of the Aspidosperma type have long inspired 

innovation in chemical synthesis. Over the past five years, several research groups have 

utilized enantioselective Pd-catalyzed allylic alkylations of prochiral enolates to 

synthesize a wide variety of structurally unique Aspidosperma and Kopsia alkaloids, 

further highlighting the widespread utility of these reactions. Critical to the success of 

these endeavors is the ability to construct multiple stereocenters in the respective targets 

with high diastereoselectivity by leveraging the all-carbon quaternary center formed in 

the Pd-catalyzed allylic alkylation event. Future studies to reduce the loadings of 

precious-metal catalysts, develop non-precious-metal-catalyzed allylic alkylation 

reactions, and the combine this reactivity with emerging synthetic methods will be of 

paramount importance in the advancement of chemical synthesis. 
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CHAPTER 2 

Chemoselectivity in Indole-Iminium Cyclizations:  
 

Total Synthesis of (–)-Goniomitine and Formal Syntheses of  

(+)-Aspidospermidine and (–)-Quebrachamine† 

 

 

2.1  INTRODUCTION, BACKGROUND, AND RETROSYNTHETIC 

ANALYSIS 

Monoterpene indole alkaloids have been extensively studied by chemists and 

biologists alike due to their vast structural diversity and broad biological activity.1 (–)-

Goniomitine (3), isolated from the bark of Gonioma malagasy, is an Aspidosperma 

alkaloid with a unique octahydroindolo[1,2-a][1,8]naphthyridine core (Figure 2.1).2 The 

key structural differences between goniomitine (3) and many Aspidosperma alkaloids 

(e.g., 1, 2, and 4, Figure 2.1.1)3 are the aminal functionality at C21 and the vestigial (2-

hydroxy)ethyl moiety at C7.4 

																																																								
†	This work was performed in collaboration with Dr. Yoshitaka Numajiri and Jun Kikuchi, both of whom 
are alumni of Stoltz group.  Additionally, this research has been published and adapted with permission 
from Pritchett, B. P.; Kikuchi, J.; Numajiri, Y.; Stoltz, B. M. Angew. Chem. Int. Ed. 2016, 55, 13529–
13532. Copyright 2016 Wiley-VCH.	
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Figure 2.1.1. Skeletally Diverse Aspidosperma Alkaloids 

 

Biosynthetically, these features are believed to arise from oxidative degradation 

of the tryptamine fragment in vincadifformine (4) to give 160, which is poised to undergo 

retro-Mannich fragmentation to give iminium 161 (Scheme 2.1.1A). N1–C21 

recombination of iminium 161 can then furnish goniomitine (3).5 Cyclizations between 

an indole and a C2-tethered iminium moiety (e.g., 162, Scheme 2.1.1B) are remarkably 

chemoselective. In the case of a C3-substituted indole fragment (e.g., 162, R1 ≠ H), 

cyclization proceeds via C–N bond formation to furnish aminal-containing tetracycle 163, 

as seen in previous syntheses of goniomitine (3).5–7 Conversely, a C3-unsubstituted indole 

fragment (e.g., 162, R1 = H) undergoes C–C bond formation followed by rearomatization 

to arrive at alternative tetracycle 164, a core that is present in numerous alkaloids (e.g., 1 

and 4).8  

We anticipated that iminium intermediates such as 162 could be accessed in 

straightforward fashion from compounds containing a dihydropyrido[1,2-a]indolone 

(DHPI) core (Scheme 2.1.1C). Retrosynthetically, we envisioned that the propylamine 

fragment in 162 could arise from an anti-Markovnikov hydroamination of the allyl 

functionality in α-quaternary lactam 165. Given our lab’s long-standing interest in the 

asymmetric synthesis of all-carbon quaternary centers, we believed that we could employ 

our Pd-catalyzed allylic alkylation chemistry to construct the quaternary stereocenter at 

C20 in an enantioselective fashion.9,10 We expected that a cross-coupling reaction could 
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enable optional substitution at the C3 position of the DHPI scaffold, thereby providing 

selective routes to tetracycles 163 and 164. Therefore, development of this versatile 

substrate class in our Pd-catalyzed allylic alkylation chemistry would provide a powerful 

tool for divergent enantioselective syntheses of multiple Aspidosperma alkaloids.  

 
Scheme 2.1.1. Biosynthetic Origin and Synthetic Versatility of Iminium 162 

 

 Due to its antiproliferative activity and unusual structure, several groups have 

targeted goniomitine (3) for total synthesis.6,7 While modern approaches to this molecule 

have improved upon the seminal report by Takano and co-workers,7a a synthesis of 

goniomitine (3) that employs asymmetric catalysis to achieve stereocontrol has not yet 

been demonstrated. To date, asymmetric syntheses of goniomitine (3) have relied on 
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derived starting material, a multi-step sequence from an unsubstituted C7 position was 

required. We instead anticipated that a cross-coupling reaction between a C3-brominated 

DHPI and a suitable organometallic reagent would enable efficient access to the (2-

hydroxy)ethyl fragment in the natural product.  Realization of this synthetic plan would 

deliver the first catalytic enantioselective total synthesis of (–)-goniomitine (3). 

 

2.2  PALLADIUM-CATALYZED ALLYLIC ALKYLATION REACTIONS OF 

DHPI SUBSTRATES 

 Our synthesis of (–)-goniomitine (3) commenced from known dicarbonyl 167,11 

which underwent regioselective ketone reduction using sodium borohydride to give 

alcohol 168 in 84% yield (Scheme 2.2.1). Treatment of alcohol 168 with triethylsilane in 

the presence of trifluoroacetic acid afforded known N-acyl indole 166 in 61% yield.12 

Regioselective bromination occurred to give heteroaryl bromide 169 in 95% yield. 

Gratifyingly, treatment of 169 with potassium (2-benzyloxy)ethyl trifluoroborate (170) 

and catalytic PdCl2(AtaPhos)2 afforded cross-coupled product 171 in 86% yield.13,14 Facile 

C-acylation and C-alkylation of tricycles 166, 169, and 171 positioned us to investigate 

the heretofore untested asymmetric allylic alkylation of the dihydropyrido[1,2-a]indolone 

(DHPI) substrate class. 
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Scheme 2.2.1. Synthesis and Suzuki Cross-Coupling of a 3-Bromoindole Fragmenta 

 

Exposure of (2-benzyloxy)ethyl-substituted DHPI 172a to the catalyst derived 

from Pd2(pmdba)3 (10 mol %) and (S)-(CF3)3-t-BuPHOX (76, 25 mol %)15 yielded the α-

quaternary product 165a in 38% yield and 89% enantiomeric excess (Table 2.2.1, Entry 

1). Switching from toluene to TBME as solvent greatly improved the reaction rate and 

yield, albeit with a minor decrease in enantioselectivity (Entry 2). Previous studies by our 

group have revealed that electron-withdrawing substituents on the lactam nitrogen atom 

provide the best results in the allylic alkylation chemistry.9b As the enolate intermediate 

would be in cross-conjugation with the arene π-system, we postulated that a bromide at 

the C3 position could provide both a beneficial electronic effect and a handle for cross-

coupling downstream. While there are numerous reports of aryl bromides withstanding 

the conditions of Pd-catalyzed allylic alkylation reactions, their strategic implementation 

for cross-coupling events following the allylic alkylation is comparatively limited.16 

Gratifyingly, brominated β-amidoester 172b reacted to give the desired quaternary 

alkylated product 165b (Entries 3 and 4), which in TBME was afforded in 83% yield and 

96% ee with no observable interference from the C3 bromide (Entry 4). Given that the 
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BF3K
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PdCl2(AtaPhos)2 (3 mol %)

Cs2CO3 (3 equiv)
toluene/H2O (4:1), 80 °C

(86% yield)

169

CH2Cl2,
0 °C → 23 °C
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(95% yield)
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N

O
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N

O
CH2Cl2, 0 °C → 23 °C
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TFA, Et3SiH
N

O
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OH

N

O

O

THF, 0 °C → 23 °C
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NaBH4

(84% yield) (61% yield)

a AtaPhos = di-tert-butyl(4-dimethylamino)phenylphosphine
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successful inclusion of a C3–H substrate in our allylic alkylation chemistry would enable 

divergent construction of additional alkaloids (vide infra), we were pleased to find that β-

amidoester 172c could deliver α-quaternary lactam 165c in 71% yield and 94% ee (Entry 

6). Reaction of 172b with electron-neutral (S)-t-BuPHOX (66)17 as the ligand, in either 

toluene or TBME as solvent, resulted in diminished ee (Entries 7 and 8). 

Table 2.2.1. Pd-Catalyzed Asymmetric Allylic Alkylation of DHPI Substratesa 

 

 

 

entry solvent ligand 
(mol %) yield [%]b ee [%]cR1 (172  → 165 )

1 toluene 76  (25) 38 89CH2CH2OBn (172a  → 165a )
2 TBME 76  (25) 59 87CH2CH2OBn (172a  → 165a )
3 toluene 76  (12.5) 21 93Br (172b  → 165b )
4 TBME 76  (12.5) 83 96Br (172b  → 165b )

N

O

R1

O
O

R2

172

Pd2(pmdba)3

solvent, 60 °C
N

O

R1

R2

165

time [h]

72
24
24
8

5 toluene 76  (25) 54 92H (172c  → 165c ) 48
6 TBME 76  (12.5) 71 94H (172c  → 165c ) 24

Pd2(pmdba)3 
mol %

10
10
5
5

10
5

ligand

7e toluene 66  (25) 50 80Br (172b  → 165b )
8f TBME 66  (25) 63 72Br (172b  → 165b )

24
24

10
10

N

O

P

F3C

CF3

2

N

O

P

a Reactions were performed in stated solvent (0.033 M) at 60 °C.
b Isolated yield.
c Determined by chiral SFC analysis.
d pmdba = 4,4'-dimethoxydibenzylideneacetone
e Reaction performed at 40 °C
f Reaction performed at 35 °C

76 66

Ph2

R2

Et
Et
Et
Et
Et
Et
Et
Et

(S)-(CF3)3-t-BuPHOX (S)-t-BuPHOX
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2.3  CROSS-COUPLING OF 3-BROMO α-QUATERNARY DHPI 165b 

We next turned our attention toward the cross-coupling of brominated α-

quaternary lactam 165b with a suitable hydroxyethyl surrogate. Unfortunately, we found 

that the Suzuki reaction between 165b and trifluoroborate 170 could not be improved 

beyond a 50% yield of inseparable olefin isomers 165a in a 5:1 ratio (Scheme 2.3.1A). 

We hypothesized that a Pd–H species was responsible for this undesired isomerization 

pathway, and sought to identify an alternative Csp3 nucleophilic coupling partner that 

would not allow for facile β-hydride elimination. Recognizing that a reduction would 

ultimately be required to convert the amide present in 165b to the aminal present in 

goniomitine (3), we decided to incorporate a substituent in a higher oxidation state via the 

cross-coupling, thereby allowing concomitant unveiling of the (2-hydroxy)ethyl moiety at 

a later stage. After investigating a multitude of Negishi conditions, we were thrilled to 

find that Reformatsky reagent 173 could be efficiently coupled with heteroaryl bromide 

165b using catalytic PdCl2(AtaPhos)2 to deliver arylated product 174 in 98% yield without 

any detectable amount of undesired olefin isomers (Scheme 2.3.1B).18 
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Scheme 2.3.1. Cross-Coupling Reactivity of α-Quaternary DHPI 165b 

 
 
 

2.4  (–)-GONIOMITINE ENDGAME 

With the requisite carbon–carbon bonds established, we began investigating 

methods to effect an anti-Markovnikov hydroamination of the terminal olefin of 174. To 

this end, we employed a one-pot hydrozirconation/amination sequence reported by 

Hartwig and co-workers.19 To our knowledge, this is the first implementation of 

Hartwig’s hydrozirconation/amination protocol in the context of natural product 

synthesis. Following this formal hydroamination, we were pleased to find that complete 

reduction of the tert-butyl ester of 175 could be achieved alongside partial reduction of 

the amide carbonyl in one pot using a single reductant. In the event, primary amine 175 

was subjected to LiAlH4 in THF, followed by acidic workup, to afford (–)-goniomitine 

(3) in 30% yield from 174 (Scheme 2.4.1). 

 

 

N

O Et

OBn

N

O Et

Ot-Bu

O

165b  (1.0 equiv)
PdCl2(AtaPhos)2 (3 mol %)

THF, 65 °C
173

Ot-Bu

O
ClZn

(98% yield)

BnO
BF3K

(170 , 1.1 equiv)
PdCl2(AtaPhos)2 (3 mol %)

Cs2CO3 (3 equiv)

toluene/H2O (4:1), 80 °C

(50% yield)

A. Suzuki Cross-Coupling

B. Negishi Cross-Coupling

(1.3 equiv)

N

O Et

Me

OBn

165a

+

174
single olefin isomer

N

O

Br

Et

(5:1 terminal:internal)
165b



Chapter 2 – Chemoselective Indole-Iminium Cyclizations from α-Quaternary DHPIs  50 
Scheme 2.4.1. Completion of the Synthesis of (–)-Goniomitine (3) 

 

 
2.5 ASYMMETRIC FORMAL SYNTHESES OF (+)-ASPIDOSPERMIDINE 

AND (–)-QUEBRACHAMINE 

Having completed the total synthesis of (–)-goniomitine (3), we sought to 

leverage the flexibility of the DHPI scaffold by exploiting the chemoselectivity in 

cyclizations of an indole with a C2-tethered iminium functionality (cf. Scheme 2.1.1B). 

Indeed, the synthesis of 165c completes an enantioselective formal synthesis of (+)-

aspidospermidine (1) (Scheme 2.5.1).6c Furthermore, treatment of 165c with the 

aforementioned hydroamination conditions followed by a mild amide exchange furnishes 

free N–H α-quaternary δ-lactam 176 in 66% yield over two steps, constituting an 

asymmetric formal synthesis of (–)-quebrachamine (2).20 

Scheme 2.5.1. Asymmetric Formal Syntheses of Other Aspidosperma Alkaloids 
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2.6  CONCLUSION 

In summary, we have completed the first catalytic enantioselective total synthesis 

of (–)-goniomitine (3) in 11 steps and 8% overall yield from indole, or 7 steps and 17% 

overall yield from known DHPI 166. The redox efficiency and freedom from protecting-

group manipulations is a marked improvement from previous nonracemic syntheses, 

which deliver the target in 10–28 steps and 0.25–3.2% overall yield from commercial 

materials.21 Rationally designed heteroaryl bromide 172b underwent Pd-catalyzed allylic 

alkylation to deliver the α-quaternary product (165b) in 83% yield and 96% ee. The 

surprisingly robust Caryl–Br bond served as a handle for a subsequent Negishi cross-

coupling. The compatibility of aryl bromides in our allylic alkylation reactions, along 

with the identification of cross-coupling conditions that do not isomerize the allyl group, 

provide a powerful platform for the convergent synthesis of complex organic molecules. 

Additionally, by completing formal syntheses of (+)-aspidospermidine (1) and (–)-

quebrachamine (2), we demonstrate the ability of the DHPI scaffold to provide divergent, 

enantioselective access to structurally diverse alkaloid frameworks.  
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2.7  EXPERIMENTAL SECTION 

2.7.1  MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried 

by passage through an activated alumina column under argon.22 Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-LCMS. TLC 

was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching, p-anisaldehyde, CAM, or KMnO4 staining. 

Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40–63 nm) was used for 

flash chromatography. Melting points were measured with BÜCHI Melting Point B-545. 

1H and 13C NMR spectra were recorded on a Varian Inova 500 (500 MHz and 126 MHz, 

respectively) and a Bruker AV III HD spectrometer equipped with a Prodigy liquid 

nitrogen temperature cryoprobe (400 MHz and 101 MHz, respectively) and are reported 

in terms of chemical shift relative to CHCl3 (δ 7.26 and δ 77.16, respectively). Data for 

1H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant 

(Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = 

triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = 

broad doublet, br t = broad triplet, app = apparent. Data for 13C NMR are reported in 

terms of chemical shifts (δ ppm). IR spectra were obtained by use of a Perkin Elmer 

Spectrum BXII spectrometer using thin films deposited on NaCl plates and reported in 

frequency of absorption (cm-1). Optical rotations were measured with a Jasco P-2000 

polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell, 

and are reported as [α]D
T (concentration in g/100 mL, solvent). Analytical SFC was 
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performed with a Mettler SFC supercritical CO2 analytical chromatography system 

utilizing Chiralpak AD-H column (4.6 mm x 25 cm) obtained from Daicel Chemical 

Industries, Ltd. High resolution mass spectra (HRMS) were obtained from the Caltech 

Mass Spectral Facility using a JEOL JMS-600H High Resolution Mass Spectrometer in 

fast atom bombardment (FAB+) or electron ionization (EI+) mode, or Agilent 6200 

Series TOF with an Agilent G1978A Multimode source in mixed ionization mode (MM: 

ESI/APCI). 

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa 

Aesar and used as received unless otherwise stated. NBS was purchased from Sigma 

Aldrich, recrystallized from H2O, and stored in a –25 °C freezer. 2-tert-Butoxy-2-

oxoethylzinc chloride (173, 0.5 M in Et2O) was purchased from Rieke Metals and used 

within three days. Bis(cyclopentadienyl) zirconium chloride hydride was purchased from 

Strem Chemicals and stored at room temperature in a N2-filled glovebox. 

Hydroxylamine-O-sulfonic acid was purchased from Sigma Aldrich and stored at –30°C 

in the glovebox freezer. PdCl2(AtaPhos)2 was purchased from Sigma Aldrich and stored at 

ambient temperature in a dessicator. MeOH was distilled from magnesium methoxide 

immediately prior to use. (S)-(CF3)3-t-BuPHOX (76),15 tris(4,4’-

methoxydibenzylideneacetone)dipalladium(0) Pd2(pmdba)3,23 and allyl cyanoformate24 

were prepared by known methods. 
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2.7.2  EXPERIMENTAL PROCEDURES 

 

 

9-Hydroxy-8,9-dihydropyrido[1,2-a]indol-6(7H)-one (168): To a solution of tricycle 

16711 (5.92 g, 29.7 mmol, 1.00 equiv) in THF (300 mL) was added NaBH4 (1.24 g, 32.8 

mmol, 1.1 equiv) in two equal portions over 10 min at 0°C. The reaction mixture was 

allowed to warm to 23 °C over the course of 2 h at which point full consumption of 

starting material was observed by TLC analysis. The reaction was quenched by the 

addition of saturated aqueous NH4Cl (100 mL). The biphasic mixture was poured into 

water (100 mL) and extracted with EtOAc (3 x 100 mL). The combined organic layers 

were dried over Na2SO4, filtered, and stripped onto silica gel. Flash column 

chromatography (SiO2, 40% EtOAc in hexanes to 60% EtOAc in hexanes eluent) 

afforded alcohol 168 (5.03 g, 84% yield) as a tan amorphous solid: Rf = 0.45 (1:1 

EtOAc:hexanes eluent); 1H NMR (500 MHz, CDCl3) δ 8.46 (dq, J = 8.2, 0.9 Hz, 1H), 

7.53 (ddd, J = 7.7, 1.4, 0.8 Hz, 1H), 7.35 (ddd, J = 8.4, 7.3, 1.3 Hz, 1H), 7.30–7.26 (m, 

1H), 6.60 (t, J = 0.8 Hz, 1H), 5.12 (t, J = 4.5 Hz, 1H), 3.19–3.11 (m, 1H), 2.74 (dt, J = 

17.5, 5.1 Hz, 1H), 2.28–2.22 (m, 2H), 1.96 (br s, 1H); 13C NMR (126 MHz, CDCl3) δ 

169.1, 139.8, 135.1, 129.2, 125.5, 124.3, 120.8, 116.8, 106.7, 62.6, 29.8, 29.6; IR (Neat 

Film, NaCl) 3396, 3059, 2960, 2934, 1704, 1597, 1473, 1453, 1372, 1358, 1321, 1178, 

1086, 1052, 1022, 1006, 980, 942, 814, 754 cm-1; HRMS (ESI/APCI) m/z calc’d for 

C12H12NO2 [M+H]+: 202.0863, found 202.0862. 
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8,9-Dihydropyrido[1,2-a]indol-6(7H)-one (166): Two flasks were each charged with 

alcohol 168 (4.38 g, 21.8 mmol, 1.00 equiv), CH2Cl2 (220 mL), and Et3SiH (7.6 g, 65.4 

mmol, 3.0 equiv). Each flask was then cooled to 0 °C in an ice water bath. To each flask 

was then added TFA (14.9 g, 130.8 mmol, 6.0 equiv) over 15 min at 0°C. The solution 

turned to dark purple, and was allowed to warm to 23 °C over the course of 2 h, and then 

stirred at 23 °C for an additional 2 h. At this point, full consumption of starting material 

was observed by TLC analysis. The reaction was quenched by the careful addition of 

saturated aqueous NaHCO3 at 0 °C until evolution of gas ceased. The two reaction 

mixtures were combined in a separatory funnel, and extracted with CH2Cl2 (3 x 500 mL). 

The combined organic layers were dried over Na2SO4, filtered, and concentrated under 

reduced pressure. Flash column chromatography (SiO2, 20% Et2O in hexanes to 35% 

Et2O in hexanes eluent) afforded heteroarene 166 (5.0 g, 61% yield) as a white solid: Rf = 

0.25 (3:7 Et2O:hexanes eluent); physical and spectroscopic data were consistent with 

those reported in the literature.12 

 

 
 
10-Bromo-8,9-dihydropyrido[1,2-a]indol-6(7H)-one (169): To a solution of 

heteroarene 166 (910 mg, 4.91 mmol, 1.00 equiv) in CH2Cl2 (20 mL) was charged NBS 

(900 mg, 5.05 mmol, 1.02 equiv) in three equal portions over 15 min at 0°C. After 10 
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O
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min, the cooling bath was removed and the reaction mixture was allowed to warm to 23 

°C. Full consumption of starting material was complete within 20 minutes, as observed 

by TLC analysis. The crude reaction mixture was stripped onto silica gel and purified by 

flash column chromatography (SiO2, 25% hexanes in CH2Cl2 eluent) to afford heteroaryl 

bromide 169 (1.24 g, 95% yield) as a white amorphous solid: Rf = 0.45 (3:1 

CH2Cl2:hexanes eluent); 1H NMR (500 MHz, CDCl3) δ 8.46–8.42 (m, 1H), 7.49–7.44 (m, 

1H), 7.38–7.31 (m, 2H), 2.99 (dd, J = 6.9, 5.8 Hz, 2H), 2.84–2.80 (m, 2H), 2.19–2.10 (m, 

2H); 13C NMR (126 MHz, CDCl3) δ 168.9, 135.4, 134.0, 128.9, 125.5, 124.6, 118.5, 

116.5, 96.7, 34.4, 22.8, 20.9; IR (Neat Film, NaCl) 3405, 3052, 2959, 2878, 2837, 1907, 

1788, 1706, 1593, 1446, 1343, 1258, 1209, 1170, 1142, 1087, 1021, 982, 928, 908, 836, 

799, 746, 650, 618 cm-1; HRMS (FAB+) m/z calc’d for C12H10NOBr [M]+: 262.9940, 

found 262.9936. 

 

 
 
10-(2-(Benzyloxy)ethyl)-8,9-dihydropyrido[1,2-a]indol-6(7H)-one (171): A 15 mL 

round bottom flask equipped with a magnetic stirring bar and a rubber septum was 

charged with heteroaryl bromide 169 (200 mg, 0.757 mmol, 1.0 equiv), potassium (2-

benzyloxy)ethyltrifluoroborate (170, 200 mg, 0.826 mmol, 1.1 equiv), PdCl2(Ataphos)2 

(16 mg, 22.5 µmol, 0.03 equiv), and Cs2CO3 (740 mg, 2.27 mmol, 3.0 equiv). The flask 

was evacuated and backfilled with argon three times. Toluene (3.1 mL) and degassed 

water (0.7 mL) were added via syringe, and the flask was placed into a preheated 80 °C 
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oil bath with stirring. After stirring for 2 h, the biphasic reaction mixture was cooled to 23 

°C, poured into water (15 mL) and extracted with EtOAc (3 x 30 mL). The combined 

organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure. 

Flash column chromatography (25% Et2O in hexanes) afforded heteroarene 171 (207 mg, 

86% yield) as a light yellow oil: Rf = 0.3 (3:2 hexanes:Et2O eluent); physical and 

spectroscopic data were consistent with those reported in the literature.6e 

 
 

 

Allyl 10-(2-(benzyloxy)ethyl)-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indole-7-

carboxylate (177): A flame-dried round bottom flask was charged with LHMDS (282 

mg, 1.69 mmol, 2.0 equiv) and a magnetic stirring bar in a N2-filled glove box. The flask 

was sealed, removed from the glovebox, fitted with an argon line, and suspended in a dry 

ice/acetone bath. THF (4.5 mL) was added slowly to the flask and allowed to stir until the 

LHMDS had been completely dissolved. A solution of heteroarene 171 (270 mg, 0.845 

mmol, 1.0 equiv) in THF (1.1 mL) was added dropwise, and the reaction was allowed to 

stir for 30 min at –78 °C. Allyl cyanoformate (112 mg, 1.01 mmol, 1.2 equiv) was then 

added dropwise, and the reaction was allowed to warm slowly to 0 °C over 4 h. Once the 

cooling bath temperature reached 0 °C, 100 mL of saturated aqueous NH4Cl was then 

added slowly and the mixture stirred for 20 min before being extracted with EtOAc (3 x 

20 mL). The combined organic layers were washed with brine (100 mL), dried over 

Na2SO4, filtered, and concentrated. The crude residue was purified by flash column 
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chromatography (SiO2, 50% Et2O in hexanes) to give tertiary β-amidoester 177 (256 mg, 

75% yield) as a yellow oil: Rf = 0.3 (3:2 hexanes:Et2O eluent); 1H NMR (500 MHz, 

CDCl3) δ 8.48–8.41 (m, 1H), 7.47–7.41 (m, 1H), 7.34–7.25 (m, 7H), 5.93 (ddt, J = 17.2, 

10.4, 5.7 Hz, 1H), 5.35 (dq, J = 17.2, 1.5 Hz, 1H), 5.25 (dq, J = 10.5, 1.3 Hz, 1H), 4.75–

4.67 (m, 2H), 4.49 (s, 2H), 3.80 (dd, J = 8.1, 5.0 Hz, 1H), 3.68 (t, J = 6.9 Hz, 2H), 3.06 

(ddd, J = 16.4, 7.9, 4.5 Hz, 1H), 2.95 (t, J = 6.9 Hz, 2H), 2.94–2.87 (m, 1H), 2.46 (dtd, J 

= 13.0, 8.4, 4.5 Hz, 1H), 2.29 (ddt, J = 13.0, 7.9, 4.8 Hz, 1H); 13C NMR (126 MHz, 

CDCl3) δ 169.1, 165.0, 138.4, 134.9, 133.6, 131.6, 130.5, 128.5, 127.73, 127.65, 124.6, 

124.3, 119.1, 118.1, 116.7, 114.6, 73.2, 69.5, 66.4, 51.1, 25.02, 24.98, 20.0; IR (Neat 

Film, NaCl) 3062, 3032, 2941, 2857, 1737, 1697, 1622, 1454, 1376, 1307, 1258, 1171, 

1128, 1094, 1020, 937, 803, 746, 698 cm-1; HRMS (FAB+) m/z calc’d for C25H26NO4 

[M+H]+: 404.1856, found 404.1867.  

 
Allyl 10-(2-(benzyloxy)ethyl)-7-ethyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indole-7-

carboxylate (172a): To a solution of β-amidoester 177 (210 mg, 0.52 mmol, 1.0 equiv) 

in CH2Cl2 (3.5 mL) were added Cs2CO3 (678 mg, 2.08 mmol, 4.0 equiv) and EtI (0.25 

mL, 3.12 mmol, 6.0 equiv) at 23 °C with stirring. After 18 h, starting material was 

completely consumed as determined by TLC analysis. Saturated aqueous NH4Cl (10 mL) 

was added, followed by extraction with EtOAc (3 x 15 mL). The combined organic layers 

were washed with brine, dried over Na2SO4, and concentrated. Flash column 

chromatography (SiO2, 25% Et2O in hexanes) afforded quaternary β-amidoester 172a 

(165 mg, 73% yield) as a faintly yellow oil: Rf = 0.33 (7:3 hexanes:Et2O eluent); 1H NMR 

(400 MHz, CDCl3) δ 8.54–8.45 (m, 1H), 7.48–7.40 (m, 1H), 7.35–7.22 (m, 7H), 5.82 

(ddt, J = 17.2, 10.4, 5.6 Hz, 1H), 5.22 (dq, J = 17.2, 1.5 Hz, 1H), 5.16 (dq, J = 10.5, 1.3 
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Hz, 1H), 4.64–4.59 (m, 2H), 4.50 (s, 2H), 3.67 (t, J = 7.0 Hz, 2H), 3.06 (dt, J = 16.8, 4.8 

Hz, 1H), 2.99–2.81 (m, 3H), 2.46 (dt, J = 13.5, 4.8 Hz, 1H), 2.23–2.06 (m, 3H), 1.03 (t, J 

= 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 171.4, 167.8, 138.4, 135.1, 133.9, 131.5, 

130.7, 128.5, 127.7, 127.6, 124.4, 124.0, 118.8, 118.0, 116.9, 113.9, 73.2, 69.6, 66.2, 

56.6, 28.9, 28.1, 24.9, 19.1, 9.4; IR (Neat Film, NaCl) 3028, 2938, 2857, 1734, 1701, 

1620, 1457, 1370, 1328, 1310, 1225, 1189, 1098, 1020, 986, 935, 750, 697 cm-1; HRMS 

(ESI/APCI) m/z calc’d for C27H30NO4 [M+H]+: 432.2169, found 432.2177.  

 

 
 
Allyl 10-bromo-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indole-7-carboxylate (178): A 

flame-dried round bottom flask was charged with LHMDS (2.62 g, 1.69 mmol, 2.0 equiv) 

and a magnetic stirring bar in a N2-filled glove box. The flask was sealed, removed from 

the glovebox, fitted with an argon line, and suspended in a dry ice/acetone bath. THF (48 

mL) was added slowly to the flask and allowed to stir until the LHMDS had been 

completely dissolved. A solution of heteroaryl bromide 169 (2.07 g, 7.83 mmol, 1.0 

equiv) in THF (4 mL) was added dropwise, and the reaction was allowed to stir for 30 

min at –78 °C. Allyl cyanoformate (1.04 g, 9.36 mmol, 1.2 equiv) was then added 

dropwise, and the reaction was allowed to warm slowly to 0 °C over 4 h. Once the 

cooling bath temperature reached 0 °C, saturated aqueous NH4Cl (200 mL) was then 

added slowly and the mixture stirred for 20 min before being extracted with EtOAc (3 x 

250 mL). The combined organic layers were washed with brine (100 mL), dried over 

Na2SO4, filtered, and concentrated. Flash column chromatography (SiO2, 10% EtOAc in 
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Br
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O
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169 178

LHMDS; 
allyl cyanoformate
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THF, –78 °C → 0 °C DMF, 50 °C
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hexanes) afforded tertiary β-amidoester 178 (2.67 g, 98% yield) as clear colorless oil: Rf 

= 0.6 (3:1 hexanes:EtOAc eluent, orange by p-anisaldehyde stain); 1H NMR (500 MHz, 

CDCl3) δ 8.46–8.41 (m, 1H), 7.50–7.44 (m, 1H), 7.39–7.33 (m, 2H), 5.93 (ddt, J = 17.1, 

10.4, 5.7 Hz, 1H), 5.35 (dq, J = 17.2, 1.5 Hz, 1H), 5.27 (dq, J = 10.4, 1.2 Hz, 1H), 4.76–

4.67 (m, 2H), 3.85 (dd, J = 7.7, 4.9 Hz, 1H), 3.08 (ddd, J = 16.9, 8.2, 4.8 Hz, 1H), 2.98 

(ddd, J = 17.0, 7.9, 4.9 Hz, 1H), 2.59–2.50 (m, 1H), 2.37 (ddt, J = 13.4, 8.2, 4.9 Hz, 1H); 

13C NMR (126 MHz, CDCl3) δ 168.6, 164.5, 134.3, 134.1, 131.4, 129.0, 125.8, 125.0, 

119.2, 118.7, 116.6, 97.6, 66.6, 50.8, 24.5, 20.6; IR (Neat Film, NaCl) 3059, 2948, 2883, 

1742, 1712, 1598, 1450, 1377, 1346, 1307, 1239, 1215, 1173, 1151, 1090, 1022, 986, 

924, 753 cm-1; HRMS (FAB+) m/z calc’d for C16H15NO3Br [M+H]+: 348.0230, found 

348.0220.  

 
Allyl 10-bromo-7-ethyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indole-7-carboxylate 

(172b): To a solution of β-amidoester 178 (166 mg, 0.476 mmol, 1.0 equiv) in DMF (1.6 

mL) were added K2CO3 (263 mg, 1.9 mmol, 4.0 equiv) and EtI (0.08 mL, 0.95 mmol, 2.0 

equiv). The reaction mixture was heated to 50 °C with stirring. After 5 h, starting 

material was completely consumed as determined by TLC analysis. Saturated aqueous 

NH4Cl (5 mL) was added, followed by extraction with EtOAc (3 x 20 mL). The 

combined organic layers were washed with brine, dried over Na2SO4, and concentrated. 

Flash column chromatography (SiO2, 10% Et2O in hexanes) afforded quaternary β-

amidoester 172b (136 mg, 76% yield) as a clear colorless oil: Rf = 0.45 (17:3 

hexanes:Et2O eluent); 1H NMR (500 MHz, CDCl3) δ 8.51–8.46 (m, 1H), 7.49–7.44 (m, 

1H), 7.39–7.32 (m, 2H), 5.84 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.25 (dq, J = 17.2, 1.5 

Hz, 1H), 5.20 (dq, J = 10.5, 1.3 Hz, 1H), 4.69–4.60 (m, 2H), 3.12 (dt, J = 17.3, 4.6 Hz, 
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1H), 2.90 (ddd, J = 17.0, 11.7, 4.9 Hz, 1H), 2.53 (ddd, J = 13.6, 4.9, 4.3 Hz, 1H), 2.26–

2.11 (m, 3H), 1.06 (t, J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 170.9, 167.4, 

134.5, 134.4, 131.3, 129.1, 125.6, 124.8, 119.0, 118.6, 116.7, 97.0, 66.4, 56.6, 28.5, 28.1, 

19.9, 9.4; IR (Neat Film, NaCl) 3054, 2961, 2878, 1728, 1708, 1594, 1448, 1369, 1325, 

1306, 1261, 1219, 1176, 1088, 1025, 920, 798, 748 cm-1; HRMS (FAB+) m/z calc’d for 

C18H19NO3Br [M+H]+: 376.0543, found 376.0560.  

 

 
 
Allyl 6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indole-7-carboxylate (179): A flame-dried 

round bottom flask was charged with LHMDS (1.8 g, 10.8 mmol, 2.0 equiv) and a 

magnetic stirring bar in a N2-filled glove box. The flask was sealed, removed from the 

glovebox, fitted with an argon line, and suspended in a dry ice/acetone bath. THF (32 

mL) was added slowly to the flask and allowed to stir until the LHMDS had been 

completely dissolved. A solution of heteroarene 166 (1.0 g, 5.4 mmol, 1.0 equiv) in THF 

(4 mL) was added dropwise, and the reaction was allowed to stir for 30 min at –78 °C. 

Allyl cyanoformate (720 mg, 6.48 mmol, 1.2 equiv) was then added dropwise, and the 

reaction mixture was allowed to warm slowly to 0 °C over 4 h. Once the cooling bath 

temperature reached 0 °C, saturated aqueous NH4Cl (200 mL) was then added slowly and 

the mixture stirred for 20 min before being extracted with EtOAc (3 x 200 mL). The 

combined organic layers were washed with brine (100 mL), dried over Na2SO4, filtered 

and concentrated. Flash column chromatography (SiO2, 15% acetone in hexanes) 

afforded tertiary β-amidoester 179 (1.32 g, 91% yield) as a faintly yellow oil which 
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solidified to an off-white amorphous solid upon storage at –30 °C: Rf = 0.35 (4:1 

hexanes:acetone eluent); 1H NMR (500 MHz, CDCl3) δ 8.45–8.42 (m, 1H), 7.48–7.44 

(m, 1H), 7.32–7.24 (m, 2H), 6.36 (td, J = 1.4, 0.7 Hz, 1H), 5.93 (ddt, J = 17.2, 10.5, 5.7 

Hz, 1H), 5.35 (dq, J = 17.2, 1.5 Hz, 1H), 5.26 (dq, J = 10.4, 1.2 Hz, 1H), 4.77–4.67 (m, 

2H), 3.83 (dd, J = 8.0, 5.0 Hz, 1H), 3.11 (dddd, J = 16.4, 8.1, 4.5, 1.4 Hz, 1H), 2.98 

(dddd, J = 16.4, 8.5, 4.6, 1.5 Hz, 1H), 2.55–2.46 (m, 1H), 2.38–2.29 (m, 1H); 13C NMR 

(126 MHz, CDCl3) δ 169.0, 165.2, 137.0, 135.1, 131.5, 129.9, 124.51, 124.48, 120.0, 

119.1, 116.7, 105.8, 66.5, 51.1, 25.3, 21.8; IR (Neat Film, NaCl) 3085, 3051, 2946, 2850, 

1732, 1690, 1577, 1454, 1381, 1356, 1301, 1213, 1177, 1148, 1021, 977, 932, 802, 742 

cm-1; HRMS (FAB+) m/z calc’d for C16H16NO3 [M+H]+: 270.1130, found 270.1140. 

 
Allyl 7-ethyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indole-7-carboxylate (172c): To a 

solution of β-amidoester 179 (790 mg, 2.93 mmol, 1.0 equiv) in CH2Cl2 (20 mL) were 

added Cs2CO3 (3.82 g, 11.73 mmol, 4.0 equiv) and EtI (1.41 mL, 17.6 mmol, 6.0 equiv) 

at 23 °C with stirring. After 18 h, starting material was completely consumed as 

determined by TLC analysis. Saturated aqueous NH4Cl (100 mL) was added, followed by 

extraction with EtOAc (3 x 150 mL). The combined organic layers were washed with 

brine, dried over Na2SO4, and concentrated. Flash column chromatography (SiO2, 15% 

Et2O in hexanes) afforded quaternary β-amidoester 172c (760 mg, 87% yield) as a faintly 

yellow oil: Rf = 0.3 (17:3 hexanes:Et2O eluent); 1H NMR (500 MHz, CDCl3) δ 8.49 (ddt, 

J = 8.0, 1.3, 0.7 Hz, 1H), 7.48–7.43 (m, 1H), 7.33–7.23 (m, 2H), 6.31 (dt, J = 1.8, 0.9 

Hz, 1H), 5.84 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.24 (dq, J = 17.2, 1.5 Hz, 1H), 5.18 (dq, 

J = 10.5, 1.3 Hz, 1H), 4.65 (dt, J = 5.6, 1.4 Hz, 2H), 3.07 (dtd, J = 16.8, 4.8, 1.0 Hz, 1H), 

2.98 (dddd, J = 16.7, 11.7, 4.7, 1.9 Hz, 1H), 2.47 (dt, J = 13.5, 4.6 Hz, 1H), 2.26–2.10 
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(m, 3H), 1.05 (t, J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 171.3, 168.0, 137.3, 

135.3, 131.4, 130.1, 124.27, 124.25, 119.9, 118.8, 116.8, 105.2, 66.2, 56.7, 29.2, 28.2, 

20.8, 9.4; IR (Neat Film, NaCl) 3395, 3051, 2964, 2880, 1704, 1597, 1446, 1353, 1260, 

1101, 1021, 877, 798, 746 cm-1; HRMS (ESI/APCI) m/z calc’d for C18H20NO3 [M+H]+: 

298.1438, found 298.1435.  

General Procedure A: Pd-Catalyzed Allylic Alkylation 

Please note that the absolute configuration of 165a and 165c have been inferred from 

previous studies.9 The absolute configuration of 165b was assigned by conversion to (–)-

goniomitine (3).  

 

(S)-7-Allyl-10-(2-(benzyloxy)ethyl)-7-ethyl-8,9-dihydropyrido[1,2-a]indol-6(7H)-one 

(165a): An oven-dried 20 mL scintillation vial was charged with Pd2(pmdba)3 (14 mg, 

12.7 µmol, 0.1 equiv), (S)-(CF3)3-t-BuPHOX (76, 18.8 mg, 31.8 µmol, 0.25 equiv), and a 

magnetic stirring bar in a N2-filled glove box. The vial was then charged with TBME (3.2 

mL) and stirred at 23 °C for 30 minutes, generating a dark purple solution. To the 

preformed catalyst solution was added a solution of 172a (55 mg, 0.127 mmol, 1.0 equiv) 

in TBME (0.64 mL). The vial was sealed, removed from the glovebox, and placed in a 

preheated 60 °C heating block with stirring. Full consumption of starting material was 

achieved after 24 h, as determined by TLC analysis. The crude reaction mixture was 

N

O O
O

Et

76  (25 mol %)
Pd2(pmdba)3 (10 mol %)

TBME, 60 °C
N
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P N
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Chapter 2 – Chemoselective Indole-Iminium Cyclizations from α-Quaternary DHPIs  64 
stripped onto silica gel, and purified by flash column chromatography (SiO2, 5% Et2O in 

hexanes) to afford α-quaternary lactam 165a (29 mg, 59% yield) as a faintly yellow oil: 

Rf = 0.33 (17:3 hexanes:Et2O eluent); 89% ee,25 [α]D
25 –29.5 (c 1.4, CHCl3); 1H NMR 

(400 MHz, CDCl3) δ 8.53–8.46 (m, 1H), 7.47–7.42 (m, 1H), 7.34–7.23 (m, 7H), 5.87–

5.74 (m, 1H), 5.14–5.10 (m, 1H), 5.09 (s, 1H), 4.50 (s, 2H), 3.69 (t, J = 7.0 Hz, 2H), 

3.00–2.93 (m, 4H), 2.62 (dd, J = 14.0, 7.0 Hz, 1H), 2.38 (dd, J = 13.8, 7.8 Hz, 1H), 

2.00–1.93 (m, 2H), 1.84 (dq, J = 14.8, 7.5 Hz, 1H), 1.72 (dq, J = 14.5, 7.4 Hz, 1H), 0.95 

(t, J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 173.6, 138.5, 135.1, 134.4, 133.8, 

130.7, 128.5, 127.71, 127.66, 124.1, 123.7, 118.8, 117.9, 116.8, 113.2, 73.2, 69.7, 46.6, 

40.0, 28.6, 28.4, 24.9, 18.1, 8.5; IR (Neat Film, NaCl) 3066, 3032, 2930, 2856, 1694, 

1619, 1455, 1366, 1309, 1260, 1189, 1100, 1073, 1020, 916, 801, 750, 696 cm-1; HRMS 

(FAB+) m/z calc’d for C26H30NO2 [M+H]+: 388.2271, found 388.2269. 

 

Methyl (S,E)-4-(10-(2-(benzyloxy)ethyl)-7-ethyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-

a]indol-7-yl)but-2-enoate (180): To a solution of terminal olefin 165a (11 mg, 28 µmol, 

1.0 equiv) and methyl acrylate (25 mg, 280 µmol, 10 equiv) in CH2Cl2 (0.6 mL) was 

added Grubb’s second generation catalyst (1.2 mg, 1.4 µmol, 0.05 equiv) at 23 °C. The 

reaction was sealed and placed in a preheated 40 °C heating block with stirring. After 3 h, 

complete consumption of starting material was observed by TLC analysis. Flash column 

chromatography (SiO2, 35% Et2O in hexanes) afforded α,β-unsaturated ester 180 (3.8 

Grubb's 2nd Gen.
CH2Cl2, 40 °C
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O Et
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mg, 30% yield) as a clear colorless oil: Rf = 0.2 (7:3 hexanes:Et2O eluent); 89% ee, [α]D

25 

–64.4 (c 0.11, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.50–8.45 (m, 1H), 7.47–7.42 (m, 

1H), 7.34–7.22 (m, 7H), 6.95 (ddd, J = 15.5, 8.2, 7.1 Hz, 1H), 5.94–5.89 (m, 1H), 4.50 

(s, 2H), 3.71 (s, 3H), 3.69 (t, J = 7.2 Hz, 2H), 3.00–2.92 (m, 4H), 2.79 (ddd, J = 14.2, 

7.1, 1.6 Hz, 1H), 2.52 (ddd, J = 14.2, 8.3, 1.3 Hz, 1H), 1.96 (dd, J = 7.3, 6.0 Hz, 2H), 

1.78 (qd, J = 7.4, 4.6 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 

172.8, 166.6, 144.6, 138.4, 135.0, 133.9, 130.7, 128.5, 127.73, 127.67, 124.6, 124.3, 

123.9, 118.0, 116.8, 113.7, 73.2, 69.6, 51.7, 46.7, 38.0, 29.0, 28.4, 24.9, 18.1, 8.5; IR 

(Neat Film, NaCl) 3028, 2923, 2854, 1722, 1693, 1620, 1455, 1434, 1371, 1312, 1271, 

1187, 1101, 1074, 1021, 751, 697 cm-1; HRMS (FAB+) m/z calc’d for C28H31NO4 [M]+: 

445.2248, found 445.2246; SFC conditions: 8% i-PrOH, 2.5 mL/min, Chiralpak AD-H 

column, λ = 210 nm, tR (min): major = 40.93, minor = 44.73. 

 

(S)-7-Allyl-10-bromo-7-ethyl-8,9-dihydropyrido[1,2-a]indol-6(7H)-one (165b): The 

reaction was conducted according to general procedure A. α-Quaternary β-amidoester 

172b (386 mg, 1.02 mmol, 1.0 equiv); Pd2(pmdba)3 (56 mg, 51 µmol, 0.05 equiv); (S)-

(CF3)3-t-BuPHOX (76, 76 mg, 0.128 mmol, 0.125 equiv); TBME (31 mL). The reaction 

mixture was stirred for 8 h at 60 °C. Flash column chromatography (SiO2, 40% CH2Cl2 in 

hexanes) afforded α-quaternary lactam 165b (274 mg, 83% yield) as a clear colorless oil: 

Rf = 0.33 (2:1 hexanes:CH2Cl2 eluent); 96% ee, [α]D
25 –36.0 (c 1.26, CHCl3); 1H NMR 

N
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(500 MHz, CDCl3) δ 8.50–8.47 (m, 1H), 7.49–7.45 (m, 1H), 7.37–7.31 (m, 2H), 5.81 

(dddd, J = 16.6, 10.5, 7.7, 6.9 Hz, 1H), 5.16–5.14 (m, 1H), 5.12 (t, J = 1.2 Hz, 1H), 

3.08–2.94 (m, 2H), 2.63 (ddt, J = 14.0, 7.0, 1.3 Hz, 1H), 2.40 (ddt, J = 14.0, 7.8, 1.1 Hz, 

1H), 2.10–1.99 (m, 2H), 1.85 (dq, J = 14.0, 7.5 Hz, 1H), 1.81–1.69 (m, 1H), 0.97 (t, J = 

7.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 173.1, 135.0, 134.3, 133.4, 129.2, 125.3, 

124.4, 119.1, 118.4, 116.7, 96.3, 46.7, 39.8, 28.4, 28.2, 18.9, 8.5; IR (Neat Film, NaCl) 

3075, 2971, 2939, 1704, 1639, 1594, 1449, 1367, 1348, 1307, 1179, 1151, 1057, 1025, 

922, 751 cm-1; HRMS (FAB+) m/z calc’d for C17H18NOBr [M]+: 331.0566, found 

331.0566; SFC conditions: 2% MeOH, 3 mL/min, Chiralpak AD-H column, λ = 210 nm, 

tR (min): major = 11.87, minor = 11.11. 

 

(S)-7-Allyl-7-ethyl-8,9-dihydropyrido[1,2-a]indol-6(7H)-one (165c): The reaction was 

conducted according to general procedure A. α-Quaternary β-amidoester 172c (730 mg, 

2.45 mmol, 1.0 equiv); Pd2(pmdba)3 (134 mg, 0.12 µmol, 0.05 equiv); (S)-(CF3)3-t-

BuPHOX (76, 181 mg, 0.31 µmol, 0.125 equiv); TBME (74 mL). The reaction mixture 

was stirred for 24 h. Flash column chromatography (SiO2, 5% Et2O in hexanes) afforded 

α-quaternary lactam 165c (410 mg, 71% yield) as a clear colorless oil: Rf = 0.6 (17:3 

hexanes:Et2O eluent); 94% ee, [α]D
25 –69.7 (c 2.09, CHCl3); 1H NMR (400 MHz, CDCl3) 

δ 8.52–8.45 (m, 1H), 7.48–7.43 (m, 1H), 7.31–7.20 (m, 2H), 6.29 (td, J = 1.5, 0.8 Hz, 

1H), 5.82 (dddd, J = 17.0, 10.2, 7.7, 6.9 Hz, 1H), 5.16–5.11 (m, 1H), 5.14–5.07 (m, 1H), 

3.04 (tt, J = 6.3, 1.4 Hz, 2H), 2.64 (ddt, J = 14.0, 6.9, 1.3 Hz, 1H), 2.41 (ddt, J = 13.9, 

N

O Et

165c
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7.8, 1.1 Hz, 1H), 2.08–1.95 (m, 2H), 1.87 (dq, J = 13.9, 7.5 Hz, 1H), 1.83–1.68 (m, 1H), 

0.97 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 173.8, 137.9, 135.3, 133.7, 

130.2, 124.0, 123.9, 119.8, 118.8, 116.7, 104.6, 46.7, 40.1, 28.9, 28.6, 19.8, 8.5; IR (Neat 

Film, NaCl) 3073, 2968, 2940, 2877, 1691, 1595, 1573, 1450, 1354, 1299, 1181, 1049, 

1004, 911, 795, 743 cm-1; HRMS (ESI/APCI) m/z calc’d for C17H20NO [M+H]+: 

254.1539, found 254.1534; SFC conditions: 2% MeOH, 3 mL/min, Chiralpak AD-H 

column, λ = 210 nm, tR (min): major = 11.08, minor = 10.06. 

 

tert-Butyl (S)-2-(7-allyl-7-ethyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indol-10-

yl)acetate (174): To an oven-dried 20 mL scintillation vial was charged heteroaryl 

bromide 165b (188 mg, 0.565 mmol, 1.0 equiv), PdCl2(AtaPhos)2 (12 mg, 17 µmol, 0.03 

equiv), THF (4.2 mL), and a magnetic stirring bar in a N2-filled glovebox. A 

commercially available (from Rieke Metals) solution of Reformatsky reagent 173 in Et2O 

(1.47 mL, 0.5 M, 0.735 mmol, 1.3 equiv) was added dropwise. The reaction was sealed 

and placed in a preheated 65 °C heating block with stirring. After 3 h, full consumption 

of starting material was observed by TLC analysis. The solution was cooled to 23 °C and 

MeOH (ca. 1 mL) was added to quench any excess Reformatsky reagent. The crude 

reaction mixture was stripped onto silica gel and purified by flash column 

chromatography (SiO2, 8% Et2O in hexanes) to afford cross-coupled product 174 (204 

mg, 98% yield) as a clear colorless oil: Rf = 0.25 (9:1 hexanes:Et2O eluent); [α]D
25 –39.8 

N

O Et

Ot-Bu

O

(173 , 1.3 equiv)
PdCl2(AtaPhos)2 (3 mol %)

THF, 65 °C

Ot-Bu

O
ClZn

174

N

O

Br

Et

165b



Chapter 2 – Chemoselective Indole-Iminium Cyclizations from α-Quaternary DHPIs  68 
(c 0.35, CHCl3); 1H NMR (500 MHz, CDCl3) δ 8.49–8.47 (m, 1H), 7.50–7.47 (m, 1H), 

7.31–7.25 (m, 2H), 5.82 (dddd, J = 17.1, 10.2, 7.7, 6.9 Hz, 1H), 5.13 (ddt, J = 9.5, 2.0, 

1.2 Hz, 1H), 5.10 (q, J = 1.2 Hz, 1H), 3.54 (s, 2H), 3.07–2.95 (m, 2H), 2.63 (ddt, J = 

14.0, 7.0, 1.3 Hz, 1H), 2.41 (ddt, J = 14.0, 7.7, 1.1 Hz, 1H), 2.07–1.96 (m, 2H), 1.91–

1.80 (m, 1H), 1.79–1.70 (m, 1H), 1.43 (s, 9H), 0.96 (t, J = 7.5 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 173.6, 170.2, 135.03, 134.96, 133.7, 130.3, 124.3, 123.8, 118.8, 118.2, 

116.7, 109.9, 81.3, 46.6, 39.9, 31.6, 28.5, 28.4, 28.2, 18.1, 8.5; IR (Neat Film, NaCl) 

3073, 2972, 2933, 1729, 1698, 1618, 1456, 1366, 1311, 1259, 1141, 1075, 1022, 917, 

802, 752 cm-1; HRMS (ESI/APCI) m/z calc’d for C23H30NO3 [M+H]+: 368.2220, found 

368.2210. 

 

(–)-Goniomitine (3): An oven-dried scintillation vial was charged with α-quaternary 

lactam 174 (137 mg, 0.37 mmol, 1.0 equiv), THF (1.5 mL), and a magnetic stirring bar in 

a N2-filled glovebox. To this solution was added bis(cyclopentadienyl) zirconium 

chloride hydride (115 mg, 0.445 mmol, 1.2 equiv), and the mixture was stirred at 23 °C 

until a yellow solution was observed (ca. 45 min). An additional portion of 

bis(cyclopentadienyl) zirconium chloride hydride (29 mg, 0.11 mmol, 0.3 equiv) was 

added and the reaction mixture was stirred for an additional 30 min. Hydroxylamine-O-

sulfonic acid (71 mg, 0.63 mmol, 1.7 equiv) was added, the vial was sealed and removed 

from the glovebox, and stirring was resumed at 23 °C in a fume hood for an additional 30 
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min. The crude reaction mixture was loaded directly onto a short plug of silica gel and 

eluted with 10% MeOH in CH2Cl2 to deliver primary amine 175 (98 mg, Rf = 0.2, 9:1 

CH2Cl2:MeOH eluent) as an orange foam. Semi-crude primary amine 175 was 

immediately dissolved in THF (5.1 mL) and cooled to 0 °C. A solution of LiAlH4 (1.02 

mL, 1.0 M in THF, 4.0 equiv) was added dropwise, and the reaction was stirred at 0 °C 

for 1 h. At this point, the cooling bath was removed and the reaction was stirred for an 

additional 6 h. The reaction was cooled to 0 °C and quenched by the careful addition of 

H2O (5 mL) and AcOH (15 mL) and stirred for 6 hours. The solution was basified with 

2N NaOH until pH > 12, and was extracted with EtOAc (3 x 100 mL), dried over 

Na2SO4, filtered and concentrated. Flash column chromatography (SiO2, 3% MeOH in 

CH2Cl2 eluent) afforded (–)-goniomitine (3) (33 mg, 30% yield over two steps) as a 

faintly yellow oil: Rf = 0.45 (9:1 CH2Cl2:MeOH eluent); [α]D
25 –67.1 (c 0.085, CHCl3 

(passed through basic alumina)); 1H NMR (500 MHz, CDCl3 (passed through basic 

alumina)) δ 7.51 (dt, J = 7.7, 1.0 Hz, 1H), 7.29 (dt, J = 8.2, 1.0 Hz, 1H), 7.14 (ddd, J = 

8.1, 7.0, 1.2 Hz, 1H), 7.08 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 4.79 (s, 1H), 3.83 (t, J = 6.5 

Hz, 2H), 3.08–3.00 (m, 2H), 2.98–2.90 (m, 2H), 2.88–2.76 (m, 2H), 2.52 (td, J = 12.9, 

6.6 Hz, 1H), 1.93–1.87 (m, 1H), 1.79–1.66 (m, 3H), 1.6 (dq, J = 15, 7.6 Hz, 1H), 1.55–

1.45 (m, 3H), 1.21 (dq, J = 14.7, 7.3 Hz, 1H), 0.89 (t, J = 7.6 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 135.5, 132.8, 129.2, 120.7, 119.7, 118.2, 108.4, 106.1, 71.7, 62.7, 45.8, 

35.2, 34.2, 28.8, 27.8, 21.8, 21.7, 18.7, 7.2; IR (Neat Film, NaCl) 3288 (br), 3051, 2934, 

2877, 2241, 1679, 1611, 1462, 1416, 1357, 1309, 1203, 1188, 1108, 1044, 1013, 908, 

867, 737 cm-1; HRMS (ESI/APCI) m/z calc’d for C19H27N2O [M+H]+: 299.2118, found 

299.2121. 
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(R)-3-(2-(1H-Indol-2-yl)ethyl)-3-ethylpiperidin-2-one (176): An oven-dried 1-dram 

vial was charged with α-quaternary lactam 165c (40 mg, 0.16 mmol, 1.0 equiv), THF 

(0.8 mL), and a magnetic stirring bar in a N2-filled glovebox. To this solution was added 

bis(cyclopentadienyl) zirconium chloride hydride (49 mg, 0.19 mmol, 1.2 equiv), and the 

mixture was stirred at 23 °C until a light yellow solution was observed (ca. 30 min). 

Hydroxylamine-O-sulfonic acid (29 mg, 0.25 mmol, 1.6 equiv) was added, the vial was 

sealed and removed from the glovebox, and stirring was resumed at 23 °C in a fume hood 

for an additional 30 min. The crude reaction mixture was loaded directly onto a short 

plug of silica gel and eluted with 10% MeOH in CH2Cl2 to deliver the intermediate 

primary amine (Rf = 0.2, 9:1 CH2Cl2:MeOH eluent). The semi-crude primary amine was 

immediately dissolved in MeOH (5.2 mL), then K2CO3 (65 mg, 0.47 mmol, 3.0 equiv) 

was added. The reaction was stirred at 23 °C for 1 h, at which point complete 

consumption of starting material was determined by TLC analysis. The reaction mixture 

was poured onto saturated aqueous NaHCO3 and extracted with EtOAc (3 x 75 mL). The 

combined organic layers were dried over Na2SO4, filtered and concentrated. Flash column 

chromatography (SiO2, 40% acetone in hexanes) afforded free N–H lactam 176 (28 mg, 

66% yield over two steps) as a white amorphous solid: Rf = 0.3 (3:2 hexanes:acetone 

eluent); [α]D
25 –32.7 (c 0.41, CH3OH); 1H NMR (500 MHz, CDCl3) δ 8.43 (br s, 1H), 

7.50 (ddt, J = 7.7, 1.4, 0.8 Hz, 1H), 7.29 (dq, J = 8.0, 1.0 Hz, 1H), 7.09 (ddd, J = 8.1, 

7.1, 1.3 Hz, 1H), 7.07–7.02 (m, 1H), 6.21 (dd, J = 2.0, 0.9 Hz, 1H), 5.83 (br s, 1H), 3.32 

N

O Et
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(td, J = 5.7, 2.2 Hz, 2H), 2.90–2.82 (m, 1H), 2.69 (dddd, J = 14.7, 11.1, 4.6, 1.0 Hz, 1H), 

2.13 (ddd, J = 13.6, 11.2, 4.5 Hz, 1H), 1.90–1.75 (m, 6H), 1.67–1.60 (m, 1H), 0.91 (t, J = 

7.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 177.2, 140.0, 136.2, 128.8, 121.0, 119.8, 

119.5, 110.6, 99.3, 45.3, 42.9, 37.8, 31.3, 29.2, 23.9, 19.8, 8.6; IR (Neat Film, NaCl) 

3285, 3252, 2971, 2952, 2868, 1643, 1588, 1486, 1456, 1421, 1351, 1328, 1287, 1216, 

1104, 1010, 795, 735 cm-1; HRMS (ESI/APCI) m/z calc’d for C17H23N2O [M+H]+: 

271.1805, found 271.1813. 

 

2.7.3  DETERMINATION OF ENANTIOMERIC EXCESS 

Table 2.7.3.1. Determination of Enantiomeric Excess of α-Quaternary DHPIs  

 

 
 
 
 
 

entry product assay conditions ee (%)

1
SFC: 8% IPA, 2.5 mL/min

Chiralpak AD-H, λ = 210 nm
tR (min): major 40.93, minor 44.73

89

2
SFC: 2% MeOH, 3 mL/min

Chiralpak AD-H, λ = 210 nm
tR (min): major 11.87, minor 11.11

96

3
SFC: 2% MeOH, 3 mL/min

Chiralpak AD-H, λ = 210 nm
tR (min): major 11.08, minor 10.06

94
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2.7.4 COMPARISON OF SYNTHETIC (–)-GONIOMITINE TO PUBLISHED 

DATA 

The optical rotation of our synthetic (–)-goniomitine (3), [α]D
25 –67.1 (c 0.085, 

CHCl3 (passed through basic alumina)), differs from values previously reported in the 

literature: [α]D
25 –80 (c 0.9, CHCl3),2 [α]D

25 –87.1 (c 0.42, CHCl3),7a [α]D
25 –78.1 (c 0.14, 

CHCl3),7b [α]D
25 –80 (c 0.46, CHCl3).7c We have also noted that some 13CNMR 

resonances of the natural product vary depending on the CDCl3 used to make the sample 

(vide supra). Since we obtained SFC traces of both rac- and (–)-165b, and since the 

quaternary center is not susceptible to racemization, we do not believe that this 

discrepancy indicates erosion of enantiopurity. 
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Table 2.7.4.1. Comparison of Synthetic and Natural (–)-Goniomitine (3) 

Synthetic (–)-Goniomitine 

(CDCl3 directly from bottle) 

Synthetic (–)-Goniomitine 

(CDCl3 filtered through basic alumina) 

Natural (–)-Goniomitine2 

1H NMR (500 MHz, CDCl3) 1H NMR (500 MHz, CDCl3) 1H NMR (400 MHz, CDCl3) 

4.80 (s, 1H) 4.79 (s, 1H) 4.86 (s, 1H) 

3.83 (t, J = 6.4, 2H) 3.83 (t, J = 6.5, 2H) 3.81 (t, 2H) 

2.93 (td, J = 6.5, 2.2 Hz, 2H) 2.94 (td, J = 6.6, 3.3 Hz, 2H) 3.0 (t, 2H) 

1.57 (dt, J = 15.0, 7.5 Hz, 1H) 1.57 (dt, J = 15.0, 7.5 Hz, 1H) 1.56 (m, J = 7 Hz, 1H) 

1.20 (dq, J = 14.7, 7.7 Hz, 1H) 1.21 (dq, J = 14.7, 7.3 Hz, 1H) 1.20 (m, J = 7 Hz, 1H) 

0.87 (t, J = 7.6 Hz, 3H) 0.89 (t, J = 7.6 Hz, 3H) 0.86 (t, J = 7 Hz, 3H) 
13C NMR (126 MHz, CDCl3) 13C NMR (126 MHz, CDCl3) 13C NMR (CDCl3) 

135.4 135.5 135.4 

132.6 132.8 132.6 

129.3 129.2 129.3 

120.9 120.7 120.8 

120.1 119.7 119.9 

118.2 118.2 118.1 

108.7 108.4 108.7 

107.4 106.1 106.8 

70.6 71.7 71.1 

62.5 62.7 62.6 

44.9 45.8 45.4 

35.3 35.2 35.3 

33.6 34.2 33.8 

28.7 28.8 28.7 

27.7 27.8 27.8 

21.7 21.8 21.8 

20.3 21.7 20.8 

18.5 18.7 18.5 

7.2 7.2 7.3 
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Figure 2.7.4.1. Comparison of 1HNMR and 13CNMR Spectra of Synthetic (–)-
Goniomitine (3) 
1HNMR spectrum of our synthetic (–)-Goniomitine (500 MHz, CDCl3) 

 
 
 
 

  
 
 
 
 

1HNMR spectrum of (–)-Goniomitine synthesized by Jia et al (400 MHz, CDCl3)7c 
 

 
 
 
 
 
 
 
 
 

 
13CNMR spectrum of our synthetic (–)-Goniomitine (126 MHz, CDCl3) 

 
 
 
 
 
 
 
 
 
 
 

13CNMR spectrum of (–)-Goniomitine synthesized by Jia et al (100 MHz, CDCl3)7c 
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APPENDIX 1 

A Fischer Indolization Approach Toward 

the Total Synthesis of (–)-Goniomitine † 

 

A1.1  INITIAL RETROSYNTHETIC ANALYSIS 

In our initial retrosynthetic analysis of (–)-goniomitine (3), we believed that late-

stage redox manipulations and alcohol deprotection could furnish the natural product 

from lactam 165a (Scheme A1.1.1). We expected the quaternary center in lactam 165a 

could arise from the enantioselective Pd-catalyzed decarboxylative allylic alkylation of 

racemic β-amidoester 172a. Importantly, we believed that enantioconvergent 

construction of the quaternary center would offer significant improvement over the 

comparatively poor stereocontrol featured in previous enantioselective syntheses of (–)-

goniomitine (3).1 Disconnection of the ethyl and alloc groups revealed key 

dihydropyrido[1,2-a]indolone (DHPI) 171, which we anticipated could be accessed via 

the Fischer indolization of 1,3-cyclohexanedione 181. 

 
																																																								
†	This work was performed in collaboration with Dr. Yoshitaka Numajiri and Jun Kikuchi, both of whom 
are alumni of Stoltz group.  Additionally, this research has been published and adapted with permission 
from Pritchett, B. P.; Kikuchi, J.; Numajiri, Y.; Stoltz, B. M. Heterocycles 2017, 95, 1245–1253. Copyright 
2017	The	Japan	Institute	of	Heterocyclic	Chemistry.	
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Scheme A1.1.1. Initial Retrosynthesis of (–)-Goniomitine (3) 

	
 

A1.2  BRIEF INTRODUCTION TO THE FISCHER INDOLIZATION 

The acid-promoted Fischer indolization reaction, first discovered in 1883, is one 

of the most robust and widely utilized methods for the synthesis of substituted indoles 

from carbonyl precursors.2 Ketones (e.g., 182) and aldehydes can be converted to the 

respective arylhydrazones (e.g., 184) under either Brønsted or Lewis acidic conditions 

(Scheme A1.2.1A). The arylhydrazone intermediate (184) undergoes tautomerization to 

the corresponding enehydrazine (185), followed by a [3,3]-sigmatropic rearrangement 

and finally elimination of ammonia to deliver an indole product (188). This venerable 

transformation has seen widespread use in the realm of total synthesis,3 and has been 

rendered enantioselective in an elegant desymmetrization reaction of meso cyclic 

ketones.4 Of particular relevance to our synthetic plan toward (–)-goniomitine (3) was a 

report from Teuber and co-workers describing a Fischer indolization protocol for the 

synthesis of DHPI products (Scheme A1.2.1B).5 They found that treatment of 2-

substituted 1,3-cyclohexanediones (189) with phenylhydrazine and sulfuric acid first 

gives tricycle 190, which undergoes sequential hydrolysis and N-acylation to furnish 

DHPI 191. 
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Scheme A1.2.1. Relevant Fischer Indolization Reactions 

 

 
A1.3  DHPI MODEL SYSTEM STUDIES 

Our studies on the Pd-catalyzed allylic alkylation of the previously unexplored 

DHPI substrate class commenced with C3-methyl DHPI 193, which is readily available 

from 2-methyl-1,3-cyclohexanedione (192, Scheme A1.3.1).5 DHPI 193 was smoothly 

acylated using LHMDS and allyl cyanoformate. Subsequent site-selective alkylation with 

iodomethane delivered racemic β-amidoester 172d in 77% overall yield from 193. We 

found that subjecting 172d to a solution of Pd2(pmdba)3 (5 mol%) and (S)-(CF3)3-t-

BuPHOX (76, 12.5 mol%) in toluene at 60 °C resulted in minimal conversion, despite 

prolonged reaction times (Table A1.3.1, Entry 1). Full consumption of starting material 

was only achieved after switching from toluene to TBME as solvent, and raising the 

loading of Pd2(pmdba)3 and ligand to 10 mol% and 25 mol%, respectively (Entry 2). 

Under these conditions, we were able to isolate α-quaternary DHPI 165d in 60% yield 

and 90% enantiomeric excess. 
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Scheme A1.3.1. Synthesis of C3-Methyl α-Quaternary DHPI 165d	

	

 
A1.4  INTRACTABLE ROUTE TO (–)-GONIOMITINE 

Regarding the total synthesis of (–)-goniomitine (3), our first challenge was to 

establish a regioselective C-alkylation of 1,3-cyclohexanedione (195) with (2-

benzyloxy)ethyl iodide (196). Although Ma and co-workers previously reported this 

transformation, we were unsuccessful in our attempts to reproduce their work.6 We 

discovered that slightly different conditions afforded the desired C-alkylated product 182 

in 70% yield as the enol tautomer (Scheme A1.4.1). After investigating several 

conditions for the Fischer indolization reaction, it was discovered that subjecting enol-

182 to 2N HCl in refluxing toluene furnished key DHPI 171, albeit in an unsatisfactory 

range of 10–33% yield. Nevertheless, we were able to synthesize β-amidoester 172a from 

DHPI 171 in 55% yield over a two-step sequence analogous to that described above (cf. 

Schemes A1.3.1 and A1.4.1), which put us in position to test the allylic alkylation 

chemistry on the real system. Once again, we observed that TBME as solvent, along with 

high catalyst loading, was required to deliver α-quaternary allylic alkylation product 

165a in a disappointing 59% yield and 87% enantiomeric excess. We thus concluded that 
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C3-alkyl substituents on the indole core of DHPI substrates were detrimental for Pd-

catalyzed decarboxylative allylic alkylation reactions. 

Scheme A1.4.1. Synthesis of α-Quaternary DHPI 165a Toward (–)-Goniomitine (3)	

 

 
A1.5  CONCLUSION 

To summarize, we employed a Fischer indolization protocol to synthesize a key 

tricyclic DHPI intermediate (171) toward (–)-goniomitine (3) in three steps from 

commercial materials. While this transformation failed to deliver the product in good 

yield, sufficient material was made available to study the Pd-catalyzed enantioselective 

allylic alkylation of the DHPI substrate class. As a result, we discovered a critical 

electronic effect at the C3 position of the indole moiety that led to a reevaluation of our 

strategy, and consequently the first catalytic enantioselective total synthesis of (–)-

goniomitine (3).7 
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A1.6  EXPERIMENTAL SECTION 

A1.6.1  MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried 

by passage through an activated alumina column under argon.8 Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-LCMS. TLC 

was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching, p-anisaldehyde, CAM, or KMnO4 staining. 

Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40–63 nm) was used for 

flash chromatography. Melting points were measured with BÜCHI Melting Point B-545. 

1H and 13C NMR spectra were recorded on a Varian Inova 500 (500 MHz and 126 MHz, 

respectively) and are reported in terms of chemical shift relative to CHCl3 (δ 7.26 and δ 

77.16, respectively). Data for 1H NMR are reported as follows: chemical shift (δ ppm) 

(multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: 

s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, 

br s = broad singlet, br d = broad doublet, br t = broad triplet, app = apparent. Data for 13C 

NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained by use 

of a Perkin Elmer Spectrum BXII spectrometer using thin films deposited on NaCl plates 

and reported in frequency of absorption (cm-1). Optical rotations were measured with a 

Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm 

path-length cell and are reported as: [α]D
T (concentration in g/100 mL, solvent). 

Analytical SFC was performed with a Mettler SFC supercritical CO2 analytical 

chromatography system utilizing Chiralcel OB-H column (4.6 mm x 25 cm) obtained 
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from Daicel Chemical Industries, Ltd. High resolution mass spectra (HRMS) were 

obtained from the Caltech Mass Spectral Facility using a JEOL JMS-600H High 

Resolution Mass Spectrometer in fast atom bombardment (FAB+) or electron ionization 

(EI+) mode, or Agilent 6200 Series TOF with an Agilent G1978A Multimode source in 

mixed ionization mode (MM: ESI/APCI). 

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa 

Aesar and used as received unless otherwise stated. Phenylhydrazine was purified by 

distillation and stored at –30 °C in a freezer. (2-Benzyloxy)ethyl iodide (196),9 (S)-

(CF3)3-t-BuPHOX (76), 10  tris(4,4’-methoxydibenzylideneacetone)dipalladium(0) 

Pd2(pmdba)3,11 and allyl cyanoformate12 were prepared by known methods. 
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A1.6.2  EXPERIMENTAL PROCEDURES 

 

 

Allyl 10-methyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indole-7-carboxylate (194): A 

flame-dried round bottom flask was charged with LHMDS (670 mg, 4.0 mmol, 1.9 

equiv) and a magnetic stirring bar in a N2-filled glove box. The flask was sealed, removed 

from the glovebox, fitted with an argon line, and suspended in a dry ice/acetone bath. 

THF (11 mL) was added slowly to the flask and allowed to stir until the LHMDS had 

been completely dissolved. A solution of C3-methyl DHPI 193 (420 mg, 2.1 mmol, 1.0 

equiv) in THF (2.5 mL) was added dropwise, and the reaction was allowed to stir for 30 

min at –78 °C. Allyl cyanoformate (270 mg, 2.43 mmol, 1.15 equiv) was then added 

dropwise, and the reaction was allowed to warm slowly to 0 °C over 4 h. Once the 

cooling bath temperature reached 0 °C, 100 mL of saturated aqueous NH4Cl was then 

added slowly and the mixture stirred for 20 min before being extracted with EtOAc (3 x 

50 mL). The combined organic layers were washed with brine (100 mL), dried over 

Na2SO4, filtered and concentrated. The crude residue was purified by flash column 

chromatography (SiO2, 15% acetone in hexanes) to give tertiary β-amidoester 194 (580 

mg, 97% yield) as a faintly yellow oil: Rf = 0.41 (3:1 hexanes:acetone eluent); 1H NMR 

(500 MHz, CDCl3) δ 8.45–8.41 (m, 1H), 7.45–7.41 (m, 1H), 7.32–7.27 (m, 2H), 5.94 

(ddt, J = 17.2, 10.5, 5.7 Hz, 1H), 5.35 (dq, J = 17.2, 1.5 Hz, 1H), 5.26 (dq, J = 10.4, 1.2 

Hz, 1H), 4.72 (dq, J = 5.7, 1.5 Hz, 2H), 3.82 (dd, J = 8.0, 5.0 Hz, 1H), 3.04 (dddd, J = 

16.4, 8.1, 4.7, 1.1 Hz, 1H), 2.90 (dddd, J = 16.3, 8.3, 4.7, 1.2 Hz, 1H), 2.55–2.45 (m, 

N

O

N

O O
O

193 194

LHMDS; 
allyl cyanoformate
THF, –78 °C → 0 °C
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1H), 2.33 (ddt, J = 13.1, 8.0, 4.8 Hz, 1H), 2.19 (t, J = 1.0 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 169.2, 164.9, 134.8, 132.1, 131.6, 131.3, 124.6, 124.2, 119.0, 118.0, 116.6, 

113.3, 66.4, 51.1, 25.0, 19.8, 8.6; IR (Neat Film, NaCl) 3050, 2943, 2359, 1741, 1698, 

1627, 1459, 1396, 1383, 1370, 1338, 1308, 1269, 1246, 1220, 1172, 1156, 1128, 1104, 

1028, 989, 750 cm-1; HRMS (ESI/APCI) m/z calc’d for C17H18NO3 [M+H]+: 284.1281, 

found 284.1287. 

 

 
Allyl 7,10-dimethyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indole-7-carboxylate 

(172d): To a solution of β-amidoester 194 (107 mg, 0.38 mmol, 1.0 equiv) in DMF (1.2 

mL) were added K2CO3 (61 mg, 0.45 mmol, 1.2 equiv) and MeI (28 µL, 0.45 mmol, 1.2 

equiv). The reaction mixture was heated to 50 °C with stirring. After 5 h, starting 

material was completely consumed as determined by TLC analysis. Saturated aqueous 

NH4Cl (10 mL) was added, followed by extraction with EtOAc (3 x 20 mL). The 

combined organic layers were washed with brine, dried over Na2SO4, and concentrated. 

Flash column chromatography (SiO2, 15% acetone in hexanes) afforded quaternary β-

amidoester 172d (88 mg, 79% yield) as a clear colorless oil: Rf = 0.47 (3:1 

hexanes:acetone eluent); 1H NMR (500 MHz, CDCl3) δ 8.49–8.44 (m, 1H), 7.45–7.41 (m, 

1H), 7.33–7.27 (m, 2H), 5.84 (ddt, J = 17.2, 10.4, 5.5 Hz, 1H), 5.24 (dq, J = 17.2, 1.5 Hz, 

1H), 5.18 (dq, J = 10.5, 1.3 Hz, 1H), 4.64 (dq, J = 5.5, 1.5 Hz, 2H), 3.06–2.96 (m, 1H), 

2.87 (dddd, J = 16.8, 11.0, 4.8, 1.4 Hz, 1H), 2.58 (ddd, J = 13.4, 5.4, 4.8 Hz, 1H), 2.18 

N
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(dd, J = 1.1, 0.7 Hz, 3H), 2.07 (ddd, J = 13.5, 11.0, 4.8 Hz, 1H), 1.68 (s, 3H); 13C NMR 

(126 MHz, CDCl3) δ 172.1, 168.5, 135.0, 132.3, 131.5 (2C),13 124.5, 124.1, 118.7, 118.0, 

116.7, 112.9, 66.3, 52.6, 32.9, 21.7, 19.1, 8.5; IR (Neat Film, NaCl) 2939, 1735, 1700, 

1628, 1458, 1385, 1345, 1364, 1267, 1240, 1060, 971, 934, 752 cm-1; HRMS (FAB+) m/z 

calc’d for C18H20NO3 [M+H]+: 298.1438, found 298.1435. 

 

 
 

(S)-7-Allyl-7,10-dimethyl-8,9-dihydropyrido[1,2-a]indol-6(7H)-one (165d): An oven-

dried 20 mL scintillation vial was charged with Pd2(pmdba)3 (14 mg, 12.7 µmol, 0.1 

equiv), (S)-(CF3)3-t-BuPHOX (76, 18.8 mg, 31.8 µmol, 0.25 equiv), and a magnetic 

stirring bar in a N2-filled glove box. The vial was then charged with TBME (3.2 mL) and 

stirred at 23 °C for 30 min, generating a dark purple solution. To the preformed catalyst 

solution was added a solution of 172d (55 mg, 0.127 mmol, 1.0 equiv) in TBME (0.64 

mL). The vial was sealed, removed from the glovebox, and placed in a preheated 60 °C 

heating block with stirring. Full consumption of starting material was achieved after 24 h, 

as determined by TLC analysis. The crude reaction mixture was stripped onto silica gel, 

and purified by flash column chromatography (SiO2, 30% CH2Cl2 in hexanes) to afford 

α-quaternary lactam 165d (19.5 mg, 60% yield) as a clear colorless oil: Rf = 0.41 (1:1 

hexanes:CH2Cl2 eluent); 90% ee, [α]D
25 –75.8 (c 0.42, CHCl3); 1H NMR (500 MHz, 

CDCl3) δ 8.48–8.44 (m, 1H), 7.44–7.40 (m, 1H), 7.30–7.26 (m, 2H), 5.88–5.78 (m, 1H), 
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5.17–5.13 (m, 1H), 5.13–5.11 (m, 1H), 2.96 (dddt, J = 16.5, 8.0, 5.6, 1.3 Hz, 2H), 2.66–

2.60 (m, 1H), 2.42 (ddt, J = 13.8, 7.7, 1.1 Hz, 1H), 2.18 (t, J = 1.0 Hz, 3H), 2.09 (ddd, J 

= 13.7, 8.5, 5.4 Hz, 1H), 1.87 (ddd, J = 13.5, 7.3, 5.2 Hz, 1H), 1.36 (s, 3H); 13C NMR 

(126 MHz, CDCl3) δ 174.3, 134.9, 133.5, 133.0, 131.5, 124.2, 123.7, 119.0, 117.8, 116.6, 

112.0, 43.1, 42.3, 31.7, 23.3, 18.3, 8.5; IR (Neat Film, NaCl) 3074, 2968, 2933, 2864, 

1694, 1625, 1455, 1382, 1360, 1336, 1311, 1291, 1247, 1190, 1121, 1060, 1015, 999, 916, 

803, 753 cm-1; HRMS (ESI/APCI) m/z calc’d for C17H20NO [M+H]+: 254.1539, found 

254.1547; SFC conditions: 5% i-PrOH, 2.5 mL/min, Chiralcel OB-H column, λ = 210 

nm, τR (min): major = 7.55, minor = 5.97. 

 

 
2-(2-(Benzyloxy)ethyl)-3-hydroxycyclohex-2-en-1-one (enol-182): A flask was charged 

with a magnetic stirring bar, 1,3-cyclohexanedione (195, 336 mg, 3.0 mmol, 1.0 equiv), 

and KOH (170 mg, 3.0 mmol, 1.0 equiv). EtOH (1.3 mL) and H2O (0.2 mL) were added 

at 23 °C with stirring, followed by (2-benzyloxy)ethyl iodide9 (196, 870 mg, 3.3 mmol, 

1.1 equiv). The flask was fitted with a reflux condenser, placed in an oil bath, and the 

reaction was heated to 110 °C with stirring. After 18 h, an additional portion of KOH 

(170 mg, 3.0 mmol, 1.0 equiv) was added and the reaction was stirred for 1 h at which 

point full consumption of starting material was determined by TLC analysis. The reaction 

mixture was then removed the oil bath and allowed to cool to 23 °C. The reaction mixture 

was poured onto EtOAc (50 mL) and washed with H2O (2 x 25 mL). The combined 

aqueous layers were acidified to pH 2 using 1N HCl and were then extracted with EtOAc 

O

O

enol-182

(196 , 1.1 equiv)

EtOH/H2O, 100 °C
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O
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(3 x 50 mL). The combined organic layers were dried over Na2SO4, filtered and 

concentrated. Flash column chromatography (SiO2, 45% EtOAc in hexanes) afforded 

enol-182 (515 mg, 70% yield) as a colorless amorphous solid: Rf = 0.25 (1:1 

hexanes:EtOAc eluent); 1H NMR (500 MHz, CDCl3) δ 9.68 (s, 1H), 7.39–7.28 (m, 5H), 

4.58 (s, 2H), 3.63–3.59 (m, 2H), 2.73–2.67 (m, 2H), 2.46 (t, J = 6.3 Hz, 2H), 2.34 (dd, J 

= 7.2, 6.1 Hz, 2H), 1.91 (dt, J = 12.6, 6.5 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ 198.3, 

174.8, 136.6, 128.8, 128.4, 128.1, 114.1, 73.8, 72.1, 36.6, 29.5, 22.7, 20.7; IR (Neat Film, 

NaCl) 3059, 3029, 2934, 2867, 2664, 1574, 1453, 1372, 1266, 1191, 1095, 856, 735, 697 

cm-1; HRMS (ESI/APCI) m/z calc’d for C15H19O3 [M+H]+: 247.1329, found 247.1324. 

 

 
10-(2-(Benzyloxy)ethyl)-8,9-dihydropyrido[1,2-a]indol-6(7H)-one (171): A flask was 

charged with a magnetic stirring bar, enol-182 (370 mg, 1.5 mmol, 1.0 equiv), PhNHNH2 

(162 mg, 1.5 mmol, 1.0 equiv), and toluene (3 mL). Aqueous HCl (2N, 1.5 mL) was then 

added at 23 °C. The flask was fitted with a reflux condenser, placed in an oil bath, and 

the reaction was heated to 100 °C with stirring. After 24 h, the reaction mixture was 

cooled to 23 °C, diluted with H2O (10 mL) and extracted with CH2Cl2 (3 x 10 mL). The 

combined organic layers were dried over Na2SO4, filtered and concentrated. Flash column 

chromatography (SiO2, 15% EtOAc in hexanes) afforded DHPI 171 (158 mg, 33% yield) 

as an orange oil: Rf = 0.3 (3:2 hexanes:Et2O eluent); spectroscopic data were consistent 

with those reported in the literature.14 
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APPENDIX 2 

Miscellaneous Studies Relevant to Chapter 2 

 

A2.1  INTRODUCTION 

This section presents enantioenriched α-quaternary DHPIs that were not further 

advanced in the context of a planned total synthesis. Additional noteworthy reactions of 

DHPIs are also discussed. 

A2.2  BRIEF SUBSTRATE SCOPE EXPLORATION 

 A series of β-amidoesters (172e–g) were subjected to the aforementioned 

optimized Pd-catalyzed decarboxylative allylic alkylation conditions to furnish the 

corresponding α-quaternary DHPI products (Table A2.2.1). Once again, a bromide at the 

C3 position of the indole nucleus was tolerated (e.g., 172e → 165e), but C3-alkyl groups 

(e.g., 172f and 172g) did not perform as well. While nitrile 165f bearing a C3-methyl 

group was obtained in 82% yield and 91% ee, an elevated catalyst loading was required 

to achieve full conversion. Interestingly, α-quaternary Mannich adduct 172g1 reached full 

conversion using a typical catalyst loading, albeit with slightly diminished yield. It is 

possible that an α-substituent capable of coordinating to the palladium center (e.g., the 
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carbamate carbonyl in 172g) is able to override the innate poor reactivity of C3-alkyl 

substrates. 

Table A2.2.1. Pd-Catalyzed Allylic Alkylation of Additional DHPI Substratesa,b 

 

 
A2.3  DISCOVERY OF A FACILE LACTAM EXCHANGE PROCESS 

 Simultaneous to our efforts in avoiding olefin isomerization during the cross-

coupling of α-quaternary DHPI 165b, we investigated conditions for an anti-

Markovnikov hydroamination of the allyl group. Upon exposure of DHPI 165b to the 

hydrozirconation/amination protocol developed by Hartwig and co-workers,2 we were 

surprised to co-isolate the desired primary amine 197 with a highly related byproduct in 
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O
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76  (12.5 mol %)
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N

O
BocHN

83% yield 82% yieldc 61% yield
91% ee 91% ee 92% ee

a Reaction conditions for the Pd-catalyzed allylic alkylation: 172 (1 equiv),   
Pd2(pmdba)3 (5 mol %) and 76 (12.5 mol %) in TBME (0.033 M) at 60 °C. 
b Enantiomeric excesses were determined by chiral SFC analysis.
c Reaction was performed using 10 mol % Pd2(pmdba)3 and 25 mol % 76.
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an approximately 1:1 ratio (Scheme A2.3.1A). 1HNMR analysis of this mixture indicated 

the presence of a free indole N–H bond, which led us to conclude that the primary amine 

in 197 had cyclized to give δ-lactam 198. Noting the ease with which this process 

occurred, and the synthetic utility of the free N–H lactams (e.g., 176, vide supra), we 

were pleased to discover that treatment of this mixture with potassium carbonate in 

ethanol smoothly converted all material to the translactamized product (198) in 73% yield 

over the two steps (Scheme A2.3.1B). 

Scheme A2.3.1. Discovery of a Facile Lactam Exchange Reaction 

 

 
A2.4 OPTIONAL DELAYED BROMINATION 

 In an effort to repurpose some material in our synthesis of (–)-goniomitine (3), we 

were pleased to find that bromination could be accomplished at a later point in the 

synthetic sequence. In the event, C3-unsubstituted DHPI 172c was treated with NBS to 

afford C3-brominated DHPI 172b in 94% yield (Scheme A2.4.1). 
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Scheme A2.4.1. Bromination at a Later Stage 

 

 
A2.5  CONCLUSIONS 

 The enantioselective Pd-catalyzed decarboxylative allylic alkylation of DHPI 

substrates typically proceeds in good yield and high ee. An unusual substitution effect is 

observed at the C3 position of the indole nucleus. In the cases of a C3–H or C3–Br 

functionality, the substrates perform well. C3–alkyl substrates, however, typically require 

higher catalyst loadings to reach full conversion. The origin of this effect is unknown. 

The lactam carbonyl 13CNMR shift for these compounds is not appreciably affected by 

the substituent at C3, therefore a simple enolate stabilization trend is not obviously at 

play. Interestingly, α-substituents capable of a Lewis basic interaction with the Pd(II) 

center appear to be able to override the poor reactivity of C3–alkyl substrates. 

Nevertheless, this substrate class affords access to structurally complex nitrogen-

containing small molecules that could be of broad interest to the synthetic community. 
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A2.6  EXPERIMENTAL SECTION 

A2.6.1  MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried 

by passage through an activated alumina column under argon.3 Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-LCMS. TLC 

was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching, p-anisaldehyde, CAM, or KMnO4 staining. 

Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40–63 nm) was used for 

flash chromatography. Melting points were measured with BÜCHI Melting Point B-545. 

1H and 13C NMR spectra were recorded on a Varian Inova 500 (500 MHz and 126 MHz, 

respectively) and are reported in terms of chemical shift relative to CHCl3 (δ 7.26 and δ 

77.16, respectively) or CHDCl2 (δ 5.32 and δ 53.84, respectively). Data for 1H NMR are 

reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), 

integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = 

quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad 

doublet, br t = broad triplet, app = apparent. Data for 13C NMR are reported in terms of 

chemical shifts (δ ppm). IR spectra were obtained by use of a Perkin Elmer Spectrum 

BXII spectrometer using thin films deposited on NaCl plates and reported in frequency of 

absorption (cm-1). Optical rotations were measured with a Jasco P-2000 polarimeter 

operating on the sodium D-line (589 nm), using a 100 mm path-length cell and are 

reported as: [α]D
T (concentration in g/100 mL, solvent). Analytical SFC was performed 

with a Mettler SFC supercritical CO2 analytical chromatography system utilizing 
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Chiralcel (OB-H and OD-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical 

Industries, Ltd. High resolution mass spectra (HRMS) were obtained from the Caltech 

Mass Spectral Facility using a JEOL JMS-600H High Resolution Mass Spectrometer in 

fast atom bombardment (FAB+) or electron ionization (EI+) mode, or Agilent 6200 

Series TOF with an Agilent G1978A Multimode source in mixed ionization mode (MM: 

ESI/APCI). 

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa 

Aesar and used as received unless otherwise stated. NBS was purchased from Sigma 

Aldrich, recrystallized from H2O, and stored in a –25 °C freezer. Bis(cyclopentadienyl) 

zirconium chloride hydride was purchased from Strem Chemicals and stored at room 

temperature in a N2-filled glovebox. Hydroxylamine-O-sulfonic acid was purchased from 

Sigma Aldrich and stored at –30°C in the glovebox freezer. (S)-(CF3)3-t-BuPHOX,4 and 

tris(4,4’-methoxydibenzylideneacetone)dipalladium(0) [Pd2(pmdba)3]5 were prepared by 

known methods. 
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A2.6.2  EXPERIMENTAL PROCEDURES 

 

 

Allyl 10-bromo-7-(3-methoxy-3-oxopropyl)-6-oxo-6,7,8,9-tetrahydropyrido[1,2-

a]indole-7-carboxylate (172e): To a solution of β-amidoester 178 (395 mg, 1.13 mmol, 

1.0 equiv) in MeCN (7.6 mL) were added methyl acrylate (0.2 mL, 2.22 mmol, 1.96 

equiv) and DBU (9 µL, 59 µmol, 0.05 equiv) at 23 °C with stirring. After 8 h, starting 

material was completely consumed as determined by TLC analysis. Saturated aqueous 

NH4Cl (100 mL) was added, followed by extraction with EtOAc (3 x 150 mL). The 

combined organic layers were washed with brine, then dried over Na2SO4, filtered and 

concentrated. Flash column chromatography (SiO2, 30% Et2O in hexanes) afforded 

quaternary β-amidoester 172e (444 mg, 90% yield) as a clear colorless oil: Rf = 0.35 (3:2 

hexanes:Et2O eluent); 1H NMR (500 MHz, CDCl3) δ 8.47–8.43 (m, 1H), 7.49–7.45 (m, 

1H), 7.39–7.34 (m, 2H), 5.83 (ddt, J = 17.2, 10.4, 5.7 Hz, 1H), 5.24 (dq, J = 17.3, 1.5 

Hz, 1H), 5.21 (dq, J = 10.5, 1.2 Hz, 1H), 4.65 (dq, J = 5.7, 1.6 Hz, 2H), 3.67 (s, 3H), 

3.12 (dt, J = 17.4, 4.8 Hz, 1H), 2.87 (ddd, J = 17.1, 11.4, 5.0 Hz, 1H), 2.71–2.64 (m, 

1H), 2.58–2.46 (m, 2H), 2.46–2.41 (m, 2H), 2.16 (ddd, J = 13.6, 11.4, 4.9 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ 173.2, 170.5, 167.0, 134.3, 134.0, 131.1, 129.2, 125.7, 124.9, 

119.4, 118.7, 116.7, 97.4, 66.7, 55.6, 52.0, 29.90, 29.88, 29.80, 19.8; IR (Neat Film, 

NaCl) 2949, 1734, 1709, 1597, 1449, 1371, 1345, 1310, 1226, 1173, 1087, 1039, 922, 

N

O

Br

O
O

178

N

O

Br
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750 cm-1; HRMS (ESI/APCI) m/z calc’d for C20H21NO5Br [M+H]+: 434.0598, found 

434.0586. 

 

 

Allyl 7-(2-cyanoethyl)-10-methyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indole-7-

carboxylate (172f): To a solution of β-amidoester 194 (73 mg, 0.26 mmol, 1.0 equiv) in 

MeCN (1.7 mL) were added acrylonitrile (34 µL, 0.52 mmol, 2.0 equiv) and DBU (6 µL, 

39 µmol, 0.1 equiv) at 23 °C with stirring. After 4 h, starting material was completely 

consumed as determined by TLC analysis. The reaction mixture was diluted with ethyl 

acetate (20 mL). The resulting mixture was washed with 1N HCl, saturated aqueous 

sodium bicarbonate and brine, dried over Na2SO4, filtered, and concentrated. Flash 

column chromatography (SiO2, 15% EtOAc in hexanes) afforded nitrile 172f (55.6 mg, 

64% yield) as a clear colorless oil: Rf = 0.32 (4:1 hexanes:EtOAc eluent); 1H NMR (500 

MHz, CDCl3) δ 8.45–8.39 (m, 1H), 7.47–7.41 (m, 1H), 7.35–7.28 (m, 2H), 5.84 (ddt, J = 

17.3, 10.5, 5.7 Hz, 1H), 5.28–5.19 (m, 2H), 4.67 (dt, J = 5.7, 1.4 Hz, 2H), 3.06 (dt, J = 

16.8, 4.8 Hz, 1H), 2.89–2.77 (m, 2H), 2.64 (ddd, J = 17.0, 9.7, 6.0 Hz, 1H), 2.55 (dt, J = 

13.4, 4.8 Hz, 1H), 2.50–2.38 (m, 2H), 2.21–2.13 (m, 1H), 2.18 (s, 3H); 13C NMR (126 

MHz, CDCl3) δ 170.3, 166.6, 134.9, 131.5, 131.3, 131.0, 124.8, 124.5, 119.6, 119.4, 

118.2, 116.7, 113.6, 66.8, 55.2, 31.2, 30.7, 18.8, 13.8, 8.6; IR (Neat Film, NaCl) 3051, 

2940, 2862, 2248, 1734, 1696, 1627, 1458, 1384, 1369, 1338, 1316, 1227, 1185, 1137, 

N

O O
O
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N

O O
O
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1090, 1057, 935, 752 cm-1; HRMS (FAB+) m/z calc’d for C20H21N2O3 [M+H]+: 337.1552, 

found 337.1566. 

 
General Procedure A: Pd-Catalyzed Allylic Alkylation 

Please note that the absolute configuration of 165e and 165f have been inferred from 

previous studies.6 

 

 

Methyl (R)-3-(7-allyl-10-bromo-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indol-7-

yl)propanoate (165e): A flame-dried 100 mL Schlenk flast was charged with 

Pd2(pmdba)3 (34 mg, 31 µmol, 0.05 equiv), (S)-(CF3)3-t-BuPHOX (76, 46 mg, 78 µmol, 

0.125 equiv), and a magnetic stirring bar in a N2-filled glove box. The flask was then 

charged with TBME (17 mL) and stirred at 23 °C for 30 minutes, generating a dark 

purple solution. To the preformed catalyst solution was added a solution of 172e (270 

mg, 0.622 mmol, 1.0 equiv) in TBME (1.8 mL, including washings). The flask was 

sealed, removed from the glovebox, and placed in a preheated 60 °C oil bath with 

stirring. Full consumption of starting material was achieved after 12 h, as determined by 

TLC analysis. The crude reaction mixture was stripped onto silica gel, and purified by 

flash column chromatography (SiO2, 25% Et2O in hexanes) to afford α-quaternary lactam 

165e (201 mg, 83% yield) as a faintly yellow oil: Rf = 0.38 (7:3 hexanes:Et2O eluent); 

91% ee,  [α]D
25 –6.7 (c 1.54, CHCl3); 1H NMR (500 MHz, CDCl3) δ 8.47–8.42 (m, 1H), 
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7.50–7.44 (m, 1H), 7.37–7.31 (m, 2H), 5.84–5.74 (m, 1H), 5.18 (q, J = 1.1 Hz, 1H), 

5.17–5.14 (m, 1H), 3.64 (s, 3H), 3.03 (t, J = 6.7 Hz, 2H), 2.61 (ddt, J = 14.1, 7.1, 1.2 Hz, 

1H), 2.53–2.37 (m, 3H), 2.18–2.05 (m, 3H), 2.05–1.97 (m, 1H); 13C NMR (126 MHz, 

CDCl3) δ 173.6, 172.3, 134.6, 134.3, 132.5, 129.2, 125.5, 124.6, 119.9, 118.5, 116.7, 

96.8, 51.9, 45.8, 39.9, 30.3, 29.1, 28.9, 18.8; IR (Neat Film, NaCl) 3075, 2949, 2868, 

1738, 1704, 1639, 1595, 1449, 1372, 1347, 1309, 1176, 1107, 1036, 996, 922, 835, 754 

cm-1; HRMS (FAB+) m/z calc’d for C19H20NO3Br [M]+: 389.0626, found 389.0632; SFC 

conditions: 10% IPA, 2.5 mL/min, Chiralcel OD-H column, λ = 210 nm, tR (min): major 

= 9.17, minor = 7.99. 

 

(R)-3-(7-Allyl-10-methyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indol-7-

yl)propanenitrile (165f): The reaction was conducted according to general procedure A. 

α-Quaternary β-amidoester 172f (27 mg, 0.08 mmol, 1.0 equiv); Pd2(pmdba)3 (8.8 mg, 8 

µmol, 0.1 equiv); (S)-(CF3)3-t-BuPHOX (76, 11.9 mg, 0.02 mmol, 0.25 equiv); TBME 

(2.4 mL). The reaction mixture was stirred for 9 h at 60 °C. Flash column 

chromatography (SiO2, 33% Et2O in hexanes) afforded nitrile 165f (19.2 mg, 82% yield) 

as a clear colorless oil: Rf = 0.19 (7:3 hexanes:Et2O eluent); 91% ee, [α]D
25 +20.7 (c 0.38, 

CHCl3); 1H NMR (500 MHz, CDCl3) δ 8.46–8.38 (m, 1H), 7.43 (ddt, J = 6.6, 4.3, 2.1 Hz, 

1H), 7.32–7.28 (m, 2H), 5.78 (ddt, J = 16.8, 10.2, 7.4 Hz, 1H), 5.23–5.16 (m, 2H), 3.02–

2.97 (m, 2H), 2.60–2.50 (m, 2H), 2.49–2.42 (m, 2H), 2.32–2.23 (m, 1H), 2.18 (t, J = 1.1 

Hz, 3H), 2.08–1.99 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 171.7, 134.8, 131.9, 131.8, 

165f

N

O

CN
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131.5, 124.6, 124.2, 120.3, 119.8, 118.1, 116.6, 113.1, 45.8, 39.7, 31.5, 29.1, 17.8, 12.8, 

8.5; IR (Neat Film, NaCl) 3073, 2935, 2862, 2247, 1690, 1625, 1457, 1382, 1370, 1317, 

1187, 1056, 920, 754 cm-1; HRMS (ESI+) m/z calc’d for C19H21N2O [M+H]+: 293.1654, 

found 293.1680; SFC conditions: 10% IPA, 3 mL/min, Chiralpak AD-H column, λ = 210 

nm, tR (min): major = 8.29, minor = 7.35. 

 

(R)-3-(2-(3-Bromo-1H-indol-2-yl)ethyl)-3-ethylpiperidin-2-one (198): An oven-dried 

scintillation vial was charged with α-quaternary DHPI 165b (305 mg, 0.92 mmol, 1.0 

equiv), THF (3.7 mL), and a magnetic stirring bar in a N2-filled glovebox. To this 

solution was added bis(cyclopentadienyl) zirconium chloride hydride (284 mg, 1.1 mmol, 

1.2 equiv), and the mixture was stirred at 23 °C until a light yellow solution was observed 

(ca. 30 min). Hydroxylamine-O-sulfonic acid (166 mg, 1.47 mmol, 1.6 equiv) was added, 

the vial was sealed and removed from the glovebox, and stirring was resumed at 23 °C in 

a fume hood for an additional 30 min. The crude reaction mixture was loaded directly 

onto a plug of silica gel and eluted (CH2Cl2 : NH3 (7N solution in MeOH) = 95:5) to 

deliver a mixture of the primary amine 197 and secondary lactam 198 (250 mg, ca. 1:1 

ratio, 78% combined yield). A portion (190 mg, 0.54 mmol, 1.0 equiv) of this mixture 

was dissolved in EtOH (11 mL), then K2CO3 (225 mg, 1.63 mmol, 3.0 equiv) was added. 

The reaction was stirred at 23 °C for 1 h, at which point complete consumption of starting 

material was determined by TLC analysis. The reaction mixture was poured onto 

saturated aqueous NaHCO3 and extracted with EtOAc (3 x 75 mL). The combined 
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organic layers were dried over Na2SO4, filtered and concentrated. Flash column 

chromatography (SiO2, 40% acetone in hexanes) afforded free N–H lactam 198 (176 mg, 

93% yield) as a white amorphous solid: Rf = 0.4 (3:2 hexanes:acetone eluent); [α]D
25 –

11.6 (c 1.3, CH2Cl2); 1H NMR (500 MHz, CD2Cl2) δ 9.33 (br s, 1H), 7.44–7.40 (m, 1H), 

7.29–7.26 (m, 1H), 7.15–7.08 (m, 2H), 6.10 (s, 1H), 3.30 (q, J = 4.4, 3.4 Hz, 2H), 2.98 

(ddd, J = 14.4, 10.5, 6.1 Hz, 1H), 2.64 (ddd, J = 14.4, 10.4, 4.9 Hz, 1H), 2.07 (ddd, J = 

13.7, 10.4, 4.9 Hz, 1H), 1.90–1.81 (m, 4H), 1.79–1.73 (m, 2H), 1.63 (dq, J = 14.8, 7.4 

Hz, 1H), 0.90 (t, J = 7.5 Hz, 3H); 13C NMR (126 MHz, CD2Cl2) δ 177.4, 137.7, 135.4, 

127.8, 122.3, 120.3, 118.3, 111.4, 89.0, 45.6, 43.1, 37.2, 31.6, 29.3, 22.5, 20.0, 8.6; IR 

(Neat Film, NaCl) 3290, 3221, 3183, 3058, 2961, 2935, 2874, 1640, 1615, 1454, 1333, 

1297, 1228, 797, 742 , 671, 627 cm-1; HRMS (ESI/APCI) m/z calc’d for C17H22N2OBr 

[M+H]+: 349.0910, found 349.0909. 

 

Allyl 10-bromo-7-ethyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indole-7-carboxylate 

(172b): To a solution of β-amidoester 172c (218 mg, 0.73 mmol, 1.0 equiv) in CH2Cl2 

(3.7 mL) at 0 °C was added NBS (138 mg, 0.76 mmol, 1.04 equiv) in three equal portions 

over 10 minutes. After 10 min, the cooling bath was removed and the reaction mixture 

was allowed to warm to 23 °C. Full consumption of starting material was complete 

within 1 h, as observed by TLC analysis. The crude reaction mixture was stripped onto 

silica gel and purified by flash column chromatography (SiO2, 60% CH2Cl2 in hexanes) to 

afford quaternary β-amidoester 172b (259 mg, 94% yield) as a clear colorless oil.7 
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APPENDIX 3 

Synthetic Summary for Chapter 2: 

Chemoselectivity in Indole-Iminium Cyclizations:  
 

Total Synthesis of (–)-Goniomitine and Formal Syntheses of  

(+)-Aspidospermidine and (–)-Quebrachamine 

 

Scheme A3.1. Catalytic Enantioselective Total Synthesis of (–)-Goniomitine (3) 
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Scheme A3.2. Enantioselective Formal Syntheses of (+)-Aspidospermidine (1) and 

(–)-Quebrachamine (2) 

 

Table A3.1. Enantioselective Pd-Catalyzed Decarboxylative Allylic Alkylation of 

DHPI Substratesa,b 

 

 

N

O Et

1
(+)-Aspidospermidine

N
H

N

Et

H

2
(–)-Quebrachamine

1. Cp2Zr(H)Cl; H2NOSO3H
THF, 23 °C

2. K2CO3, MeOH, 23 °C

(66% yield, 2 steps)

N
H

N

Et

N
H

HN

EtO

176165c

six
steps

four
steps

N

O

R1

O
O

R2

172 165

(12.5 mol %)
Pd2(pmdba)3 (5 mol %)

TBME, 60 °C
N

O

R1

R2

165e

N

O

Br

MeO2C

165f

N

O

CN

165g

N

O
BocHN

83% yield 82% yieldc 61% yield
91% ee 91% ee 92% ee

a Reaction conditions for the Pd-catalyzed allylic alkylation: 172 (1 equiv),   
Pd2(pmdba)3 (5 mol %) and 76 (12.5 mol %) in TBME (0.033 M) at 60 °C. 
b Enantiomeric excesses were determined by chiral SFC analysis.
c Reaction was performed using 10 mol % Pd2(pmdba)3 and 25 mol % 76.

165a

N

O Et

165b

N

O

Br

Et

165c

N

O Et

59% yieldc 83% yield 71% yield
87% ee 96% ee 94% ee

OBn

165d

N

O

60% yieldc
90% ee

P N

O

CF3

(4-CF3-C6H4)2

76
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APPENDIX 4 

Spectra Relevant to Chapter 2: 

Chemoselectivity in Indole-Iminium Cyclizations:  
 

Total Synthesis of (–)-Goniomitine and Formal Syntheses of  

(+)-Aspidospermidine and (–)-Quebrachamine 
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Figure A4.3. 13C NMR (126 MHz, CDCl3) of compound 168. 
 

Figure A4.2. Infrared spectrum (Thin Film, NaCl) of compound 168. 
 



Appendix 4 – Spectra Relevant to Chapter 2  112 

 

0
1

2
3

4
5

6
7

8
9

p
p
m

  

Fi
gu

re
 A

4.
4.

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
16
9.

 
 

 

N O

Br



Appendix 4 – Spectra Relevant to Chapter 2  113 

 

020406080100120140160180200
ppm

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure A4.6. 13C NMR (126 MHz, CDCl3) of compound 169. 
 

Figure A4.5. Infrared spectrum (Thin Film, NaCl) of compound 169. 
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Figure A4.9. 13C NMR (126 MHz, CDCl3) of compound 177. 
 

Figure A4.8. Infrared spectrum (Thin Film, NaCl) of compound 177. 
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Figure A4.12. 13C NMR (101 MHz, CDCl3) of compound 172a. 
 

Figure A4.11. Infrared spectrum (Thin Film, NaCl) of compound 172a. 
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 Figure A4.15. 13C NMR (126 MHz, CDCl3) of compound 178. 
 

Figure A4.14. Infrared spectrum (Thin Film, NaCl) of compound 178. 
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 Figure A4.18. 13C NMR (126 MHz, CDCl3) of compound 172b. 
 

Figure A4.17. Infrared spectrum (Thin Film, NaCl) of compound 172b. 
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Figure A4.21. 13C NMR (126 MHz, CDCl3) of compound 179. 
 

Figure A4.20. Infrared spectrum (Thin Film, NaCl) of compound 179. 
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 Figure A4.24. 13C NMR (126 MHz, CDCl3) of compound 172c. 
 

Figure A4.23. Infrared spectrum (Thin Film, NaCl) of compound 172c. 
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 Figure A4.27. 13C NMR (126 MHz, CDCl3) of compound 165a. 
 

Figure A4.26. Infrared spectrum (Thin Film, NaCl) of compound 165a. 
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Figure A4.30. 13C NMR (101 MHz, CDCl3) of compound 180. 
 

Figure A4.29. Infrared spectrum (Thin Film, NaCl) of compound 180. 
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Figure A4.33. 13C NMR (126 MHz, CDCl3) of compound 165b. 
 

Figure A4.32. Infrared spectrum (Thin Film, NaCl) of compound 165b. 
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 Figure A4.36. 13C NMR (101 MHz, CDCl3) of compound 165c. 
 

Figure A4.35. Infrared spectrum (Thin Film, NaCl) of compound 165c. 
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Figure A4.39. 13C NMR (126 MHz, CDCl3) of compound 174. 
 

Figure A4.38. Infrared spectrum (Thin Film, NaCl) of compound 174. 
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Figure A4.42. 13C NMR (126 MHz, CDCl3) of (–)-goniomitine (3). 
 

Figure A4.41. Infrared spectrum (Thin Film, NaCl) of (–)-goniomitine (3). 
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Figure A4.45. 13C NMR (126 MHz, CDCl3) of compound 176. 
 

Figure A4.44. Infrared spectrum (Thin Film, NaCl) of compound 176. 
 



Appendix 4 – Spectra Relevant to Chapter 2  140 

 

0
1

2
3

4
5

6
7

8
9

p
p
m

  

Fi
gu

re
 A

4.
46

. 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
19
4.

 
 

 

N O
O

O



Appendix 4 – Spectra Relevant to Chapter 2  141 

 

020406080100120140160180200
ppm

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A4.48. 13C NMR (126 MHz, CDCl3) of compound 194. 
 

Figure A4.47. Infrared spectrum (Thin Film, NaCl) of compound 194. 
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Figure A4.51. 13C NMR (126 MHz, CDCl3) of compound 172d. 
 

Figure A4.50. Infrared spectrum (Thin Film, NaCl) of compound 172d. 
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Figure A4.54. 13C NMR (126 MHz, CDCl3) of compound 165d. 
 

Figure A4.53. Infrared spectrum (Thin Film, NaCl) of compound 165d. 
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Figure A4.57. 13C NMR (126 MHz, CDCl3) of compound enol-182. 
 

Figure A4.56. Infrared spectrum (Thin Film, NaCl) of compound enol-182. 
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Figure A4.60. 13C NMR (126 MHz, CDCl3) of compound 172e. 
 

Figure A4.59. Infrared spectrum (Thin Film, NaCl) of compound 172e. 
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 Figure A4.63. 13C NMR (126 MHz, CDCl3) of compound 172f. 
 

Figure A4.62. Infrared spectrum (Thin Film, NaCl) of compound 172f. 
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Figure A4.66. 13C NMR (126 MHz, CDCl3) of compound 165e. 
 

Figure A4.65. Infrared spectrum (Thin Film, NaCl) of compound 165e. 
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Figure A4.69. 13C NMR (126 MHz, CDCl3) of compound 165f. 
 

Figure A4.68. Infrared spectrum (Thin Film, NaCl) of compound 165f. 
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Figure A4.72. 13C NMR (126 MHz, CD2Cl2) of compound 198. 
 

Figure A4.71. Infrared spectrum (Thin Film, NaCl) of compound 198. 
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CHAPTER 3 

Stereoselectivity in Indole-Iminium Cyclizations:  
 

Total Synthesis of (+)-Limaspermidine, Formal Synthesis of  

(+)-Kopsihainanine A, and Progress Toward the Total  

Syntheses of (–)-Kopsinine and (–)-Kopsinilam† 

 

 

3.1  INTRODUCTION AND SYNTHETIC DESIGN 

 Monoterpene indole alkaloids from the structurally related Aspidosperma and 

Kopsia families have attracted the attention of synthetic chemists for over the course of 

more than half a century due to their intricate polycyclic structures and broad biological 

activity.1,2 One significant structural difference between these families is the ring fusion 

geometry of the octa- or decahydroquinoline moiety contained within the polycyclic core. 

Aspidosperma alkaloids typically possess a cis-fused azadecalin motif (e.g., 1 and 6, blue 

highlight, Figure 3.1.1).3 Conversely, members of the Kopsia family often contain a 

trans-fused azadecalin substructure (e.g., 22, 20, and 199, red highlight, Figure 3.1.1).4 

																																																								
†	This work was performed in collaboration with Dr. Etienne Donckele, a Postdoctoral scholar in the Stoltz 
group. A manuscript detailing the syntheses of (+)-Limaspermidine (6) and (+)-Kopsihainanine A (22) is 
currently in preparation.	
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Figure 3.1.1. Representative Aspidosperma and Kopsia Alkaloids. 

 

 We recently reported the enantioselective Pd-catalyzed allylic alkylation of 

dihydropyrido[1,2-a]indolone (DHPI) substrates.5 The utility of the enantioenriched α-

quaternary DHPI products was illustrated through regiodivergent indole-iminium 

cyclization pathways to access multiple Aspidosperma alkaloid frameworks (Scheme 

3.1.1A). Given the high enantioselectivities and rapid accessibility of these chiral 

building blocks, we sought to further highlight the versatility of the DHPI substrate class 

by leveraging stereodivergent indole-iminium cyclizations toward additional 

monoterpene indole alkaloid targets (Scheme 3.1.1B). 
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Scheme 3.1.1. DHPIs as Precursors for Indole-Iminium Cyclizations. 

 

 We envisioned that δ-lactam 200, available in two steps from the α-quaternary 

Pd-catalyzed allylic alkylation product (cf. Scheme 3.1.1A),5 could undergo hydride 

reduction and subsequent dehydration to deliver C2-tethered iminium 201 (Scheme 

3.1.1B, Blue Path). A Pictet–Spengler-type cyclization could then occur, with the indole 
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moiety approaching from the less hindered α-face, to yield tetracycle 202 bearing a cis-

fused octahydroquinoline subunit.  We anticipated that such an intermediate could be 

advanced to (+)-limaspermidine (6). Alternatively, by reversing the order of these events 

(i.e., C–C formation then C–H formation), a Bischler–Napieralski cyclization could 

furnish tetracyclic iminium 203, and the ensuing hydride reduction would proceed from 

the less hindered α-face of the molecule to give the trans-fused octahydroquinoline 

subunit in tetracycle 204 (Scheme 3.1.1B, Red Path).6 We expected that 204 could be 

carried on in a total synthesis of (+)-kopsihainanine A (22).  

 

3.2  DEVELOPMENT OF STEREODIVERGENT CYCLIZATION 

STRATEGIES FROM A COMMON DHPI PRECURSOR 

At the outset of our investigations, we aimed to verify whether the 

aforementioned stereodivergent cyclization strategies were viable using α-quaternary 

DHPI 165c as a model system (Scheme 3.2.1). We were delighted to find that subjecting 

165c to formal anti-Markovnikov hydroamination conditions developed by Hartwig,7 

followed by addition of lithium aluminum hydride, and subsequent quenching with 

hydrochloric acid and methanol resulted in the formation of putative C2-tethered iminium 

206 (Scheme 3.2.1A). The indole moiety is nucleophilic at N1 and C3, which gives rise 

to isomeric tetracycles bearing either a newly formed C–N or C–C bond (207 and ent-

114, respectively, Scheme 3.2.1B). C–N bond formation gives aminal 207, which can 

revert to iminium 206 via hydrolysis. Alternatively, a Pictet–Spengler-type reaction 

forms a C–C bond with subsequent rearomatization to irreversibly furnish cis-fused 
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tetracycle ent-114. Remarkably, this one-pot sequence delivers ent-114 in 61% yield as a 

single diastereomer without the need to exchange solvents or isolate any intermediates. 

 
Scheme 3.2.1. One-Pot Synthesis of Cis-Fused Tetracycle ent-114 from α-

Quaternary DHPI 165c. 
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δ-lactam 176 is available in 66% yield over two steps from DHPI 165c (Scheme 3.2.2). 
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quaternary DHPIs), we embarked on the application of this stereodivergent strategy in the 

context of monoterpene indole alkaloid total synthesis. 

Scheme 3.2.2. Synthesis of Trans-Fused Tetracycle 208 from α-Quaternary DHPI 

165c. 

 

 
3.3  RETROSYNTHETIC ANALYSIS OF (+)-LIMASPERMIDINE 

Retrosynthetically, we believed (+)-limaspermidine (6) could be synthesized via 

late-stage annulation and alcohol deprotection of ethanolamine 209, which in turn could 

arise from the regioselective alkylation of tetracycle 210 (Scheme 3.3.1). The cis ring 

fusion geometry of the azadecalin subunit in 210 would be controlled through a Pictet–

Spengler-type cyclization following the anti-Markovnikov hydroamination and 

subsequent hydride reduction of α-quaternary DHPI 165h. 

 
Scheme 3.3.1. Retrosynthetic Analysis of (+)-Limaspermidine (6). 
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3.4  TOTAL SYNTHESIS OF (+)-LIMASPERMIDINE 

Our synthesis of (+)-limaspermidine (6) began from unsubstituted DHPI 166, 

which is available in multi-gram quantities from indole (Scheme 3.4.1).5 Straightforward 

C-acylation using allyl cyanoformate, followed by C-alkylation using (2-benzyloxy)ethyl 

iodide (196)8 delivered β-amidoester 172h in 80% yield over the two steps. Treatment of 

172h to a solution of Pd2(pmdba)3 (5 mol %) and (S)-(CF3)3-t-BuPHOX (76, 12.5 mol %) 

in TBME at 60 °C delivered α-quaternary DHPI 165h in 82% yield and 94% ee.  

 
Scheme 3.4.1. Synthesis of α-Quaternary DHPI 165h. 

 

 
Anti-Markovnikov hydroamination was accomplished using the aforementioned 

hydrozirconation/amination protocol developed by Hartwig and co-workers (Scheme 
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aluminum hydride was added, followed by quenching with acetic acid and water to 

promote the desired indole-iminium cyclization.  This one-pot sequence furnished cis-
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could be advanced without purification to afford ethanolamine 209 in an improved 62% 

yield over the two steps. Ethanolamine 209 was treated with methanesulfonyl chloride 

followed by potassium tert-butoxide to effect pyrrolidine annulation. Subsequent hydride 

reduction yielded O-benzyl limaspermidine (212), which succumbed to debenzylation 

using excess BF3•Et2O in ethanethiol as solvent to give (+)-limaspermidine (6) in 60% 

yield over the final three steps.9 

 
Scheme 3.4.2. Completed Total Synthesis of (+)-Limaspermidine (6). 

 

 
3.5  RETROSYNTHETIC ANALYSIS OF (+)-KOPSIHAINANINE A 
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The trans-fused octahydroquinoline subunit of 213 could be constructed through a 
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Scheme 3.5.1. Retrosynthetic Analysis of (+)-Kopsihainanine A (22). 
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Scheme 3.6.1. Synthesis of α-Quaternary δ-Lactam 214. 

 

 
We next investigated the Bischler–Napieralski cyclization of 214 to access the 

trans-fused octahydroquinoline subunit present in many Kopsia alkaloids. To this end, δ-
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which could be reduced using sodium borohydride in methanol (Table 3.6.1, Entry 1). 

We observed an increased yield upon switching to the combination of triflic anhydride 

and 2-chloropyridine for amide activation (Entry 2). After optimization of stoichiometry 

and careful reaction timing, trans-fused tetracycle 213 could be synthesized in 84% yield 

(Entry 3).  
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Table 3.6.1. Synthesis of Trans-Fused Tetracycle 213 en Route to Kopsia Alkaloids11 

 

 
 With trans-fused tetracycle 213 in hand, we sought to complete a highly efficient 

synthesis of (+)-kopsihainanine A (22). Several Brønsted bases and Lewis acids were 

screened for the lactamization of 213, but we ultimately found that the bicyclic guanidine 

base, TBD, smoothly facilitated this transformation to deliver lactam 218 in 65% yield 

(Scheme 3.6.2). Compound 218 was previously shown to undergo α-hydroxylation via 

enolization using LDMA and trapping with (TMSO)2 in Zhu’s total synthesis of (±)-

kopsihainanine A (22).12 Thus, we have completed an asymmetric formal synthesis of the 

Kopsia alkaloid (+)-kopsihainanine A (22) in eight steps and 26% overall yield from the 

tricyclic DHPI core (166). 

 
Scheme 3.6.2. Enantioselective Formal Synthesis of (+)-Kopsihainanine A (22). 
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3.7  RETROSYNTHETIC ANALYSIS OF (–)-KOPSININE 

We imagined that a base-promoted annulation cascade could forge the vicinal 

quaternary and tetrasubstituted tertiary stereocenters of the indoline moiety present in (–)-

kopsinine (20, Scheme 3.7.1). Alkyl chloride 219 could arise from the reductive 

amination between chloroacetaldehyde and the piperidine nitrogen of tetracycle 213, 

which we previously employed in our synthesis of (+)-kopsihainanine A (22). 

 
Scheme 3.7.1. Retrosynthetic Analysis of (–)-Kopsinine (20). 
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three steps. At this stage, all that remained was the final C–C bond that we planned to 

construct through an intramolecular Mannich reaction. Unfortunately, pentacycle 221 

failed to undergo the desired C–C bond formation under either basic conditions (LDA in 

THF, LHMDS in THF, and NaOMe in MeOH), Lewis acidic conditions (TMSOTf in 

CH2Cl2), or Brønsted acidic conditions (HCl in MeOH, p-TsOH in CH2Cl2, and TFA in 

THF).  

 
Scheme 3.8.1. Endgame Studies Toward (–)-Kopsinine (20) and (–)-Kopsinilam 

(199). 

 

Carbon-based nucleophilic additions into imines of this type (e.g., 221) are 

typically limited to either organolithium reagents16 or cyanide (Scheme 3.8.2A and 

3.8.2B, respectively).17 To our knowledge, the lone example of enol addition is the acid-

promoted cyclization of ketone 225 to give indoline 226 in 85% yield (Scheme 3.8.2C).18  
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Scheme 3.8.2. Relevant Additions of Carbon-Based Nucleophiles to Indolenines. 
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exocyclic C20 substituent variability afforded by α-quaternary DHPIs renders this 

substrate class highly valuable within the synthetic community. Perhaps the most direct 

comparison can be seen in Shao’s total synthesis of (–)-aspidospermidine (1).19d Seven 

steps are required to convert their Pd-catalyzed allylic alkylation product, α-quaternary 

carbazolone 110a, into cis-octahydroquinoline-containing tetracycle 114 (Scheme 

3.9.1A). Conversely, our DHPI Pd-catalyzed allylic alkylation product (i.e., 165c) is 

converted to the same tetracycle in one pot without any sacrifice in overall yield (Scheme 

3.9.1B). The choice to convert the allyl group to a propylamine fragment enables high 

levels of exocyclic substituent flexibility at C20, which in turn requires less cumbersome 

downstream elaboration (e.g., obviating the tedious conversion of an allyl group to an 

ethyl group). Futhermore, the N-acyl moiety acts as a traceless protecting group for the 

indole nitrogen, thereby eliminating wasted time and materials for 

protection/deprotection steps. 

 
Scheme 3.9.1. Comparative Synthetic Utility of Carbazolone and DHPI Pd-

Catalyzed Allylic Alkylation Products. 
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3.10  CONCLUSIONS AND OUTLOOK 

 The combination of Pd-catalyzed allylic alkylations of dihydropyrido[1,2-

a]indolone (DHPI) substrates with stereodivergent indole-iminium cyclization strategies 

is a powerful tool for the synthesis of Aspidosperma and Kopsia monoterpene indole 

alkaloids. The high enantioselectivities and synthetic flexibility conferred by the DHPI 

substrate class enabled rapid syntheses of (+)-limaspermidine (6) and (+)-kopsihainanine 

A (22). A highly advanced intermediate toward (–)-kopsinilam (199) was also 

synthesized, with only an intramolecular Mannich addition remaining to complete the 

synthesis.  

The enantioselective construction of the C20 all-carbon quaternary center is 

leveraged to set the remaining stereocenters in these targets in a controlled and 

predictable fashion. The N-acyl moiety in the DHPI substrate class acts as a traceless 

protecting group for the indole nitrogen, which adds elegance and efficiency en route to 

complex tetracyclic alkaloid building blocks. The future of using α-quaternary DHPIs for 

the total synthesis of monoterpene indole alkaloids is indeed bright! 
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3.11  EXPERIMENTAL SECTION 

3.11.1  MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried 

by passage through an activated alumina column under argon.20 Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-LCMS. TLC 

was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching, p-anisaldehyde, CAM, or KMnO4 staining. 

Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40–63 nm) was used for 

flash chromatography. Melting points were measured with BÜCHI Melting Point B-545. 

1H and 13C NMR spectra were recorded on a Varian Inova 500 (500 MHz and 126 MHz, 

respectively) and a Bruker AV III HD spectrometer equipped with a Prodigy liquid 

nitrogen temperature cryoprobe (400 MHz and 101 MHz, respectively) and are reported 

in terms of chemical shift relative to CHCl3 (δ 7.26 and δ 77.16, respectively). Data for 

1H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant 

(Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = 

triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = 

broad doublet, br t = broad triplet, app = apparent. Data for 13C NMR are reported in 

terms of chemical shifts (δ ppm). IR spectra were obtained by use of a Perkin Elmer 

Spectrum BXII spectrometer using thin films deposited on NaCl plates and reported in 

frequency of absorption (cm-1). Optical rotations were measured with a Jasco P-2000 

polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell 

and are reported as: [α]D
T (concentration in g/100 mL, solvent). Analytical SFC was 
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performed with a Mettler SFC supercritical CO2 analytical chromatography system 

utilizing Chiralpak (AD-H) or Chiralcel (OD-H)columns (4.6 mm x 25 cm) obtained 

from Daicel Chemical Industries, Ltd. High resolution mass spectra (HRMS) were 

obtained from the Caltech Mass Spectral Facility using a JEOL JMS-600H High 

Resolution Mass Spectrometer in fast atom bombardment (FAB+) or electron ionization 

(EI+) mode, or Agilent 6200 Series TOF with an Agilent G1978A Multimode source in 

mixed ionization mode (MM: ESI/APCI). 

 Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa 

Aesar and used as received unless otherwise stated. Bis(cyclopentadienyl) zirconium 

chloride hydride was purchased from Strem Chemicals and stored at room temperature in 

a N2-filled glovebox. Hydroxylamine-O-sulfonic acid was purchased from Sigma Aldrich 

and stored at –30°C in the glovebox freezer. MeOH was distilled from magnesium 

methoxide immediately prior to use. (S)-(CF3)3-t-BuPHOX (76),21 tris(4,4’-

methoxydibenzylideneacetone)dipalladium(0) Pd2(pmdba)3,22 allyl cyanoformate,23 and 

(2-benzyloxy)ethyl iodide (196)24 were prepared by known methods. 
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3.11.2  EXPERIMENTAL PROCEDURES 

 

 

Cis-fused tetracycle ent-114: An oven-dried scintillation vial was charged with α-

quaternary DHPI 165c (53 mg, 0.209 mmol, 1.0 equiv), THF (1.0 mL), and a magnetic 
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Flash column chromatography (SiO2, 10% NH3 (7N solution in MeOH), 45% EtOAc and 

Cp2Zr(H)Cl;
H2NOSO3H

THF, 23 °C

N

O Et
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45% hexanes) afforded cis-fused tetracycle ent-114 (32.7 mg, 61% yield) as a white 

amorphous solid: Rf = 0.59 (2:2:1 hexanes:EtOAc:NH3 (7N solution in MeOH) eluent); 

1H NMR (400 MHz, CD3OD) δ 7.52 (dt, J = 7.5, 0.9 Hz, 1H), 7.26–7.22 (m, 1H), 7.01 

(td, J = 7.9, 7.5, 1.5 Hz, 1H), 6.96 (td, J = 7.4, 1.3 Hz, 1H), 3.71 (s, 1H), 3.05–2.97 (m, 

1H), 2.83–2.68 (m, 3H), 2.42 (ddd, J = 13.7, 11.0, 7.3 Hz, 1H), 1.88–1.81 (m, 1H), 1.78–

1.65 (m, 1H), 1.61–1.46 (m, 4H), 1.10 (dq, J = 14.5, 7.5 Hz, 1H), 0.87 (t, J = 7.6 Hz, 

3H); 13C NMR (101 MHz, CD3OD) δ 138.1, 135.9, 128.4, 121.6, 119.7, 118.2, 111.5, 

111.2, 57.5, 46.8, 35.8, 35.5, 30.7, 24.7, 22.7, 20.9, 7.9; IR (Neat Film, NaCl) 3193, 

3052, 2927, 2855, 1678, 1622, 1571, 1461, 1430, 1200, 1183, 1134, 743 cm-1; HRMS 

(ESI/APCI) m/z calc’d for C17H23N2 [M+H]+: 255.1856, found 255.1860. 

 

Trans-fused tetracycle 208: To a solution of δ-lactam 176 (39 mg, 0.144 mmol, 1.0 

equiv) in CH2Cl2 (4.8 mL) were added 2-chloropyridine (22 µL, 0.229 mmol, 1.6 equiv) 

and triflic anhydride (34 µL, 0.202 mmol, 1.4 equiv) at –20 °C (dry ice in H2O/MeOH 

(7:3) bath). After 15 min, the reaction mixture was removed from the cooling bath and 

stirring continued for a further 15 min. At this time, the reaction mixture was cooled back 

to –20 °C and a solution of NaBH4 (27 mg, 0.714 mmol, 5.0 equiv) in MeOH (5 mL) was 

added dropwise over a period of two minutes. The reaction was diluted with CH2Cl2 and 

quenched by the addition of saturated aqueous NaHCO3 (10 mL). The biphasic mixture 

was poured into H2O (25 mL) and extracted with CH2Cl2 (3 x 50 mL). The combined 

organic layers were dried over Na2SO4, filtered and concentrated. Flash column 

N
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HN

EtO
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N
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chromatography (SiO2, 2% Et3N in EtOAc) afforded trans-fused tetracycle 208 (23.2 mg, 

63% yield) as a faintly pink amorphous solid: Rf = 0.22 (9:1 CH2Cl2:MeOH eluent); 

[α]D
25 +110.9 (c 0.34, CH3OH);	1H NMR (400 MHz, CD3OD) δ 7.70 (dt, J = 7.8, 1.2 Hz, 

1H), 7.32–7.27 (m, 1H), 7.05 (ddd, J = 8.1, 7.1, 1.3 Hz, 1H), 6.99 (ddd, J = 8.2, 7.1, 1.3 

Hz, 1H), 4.19 (app t, J = 1.8 Hz, 1H), 3.47–3.37 (m, 1H), 3.09 (td, J = 13.3, 4.3 Hz, 1H), 

2.84–2.66 (m, 2H), 1.99–1.82 (m, 3H), 1.73–1.64 (m, 1H), 1.61–1.45 (m, 2H), 1.43–1.17 

(m, 3H), 0.88 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, CD3OD) δ 137.9, 136.2, 126.7, 

121.7, 120.1, 119.2, 112.1, 106.1, 64.5, 47.1, 37.3, 32.1, 32.0, 20.7, 20.3, 17.7, 7.5; IR 

(Neat Film, NaCl) 3397, 3156, 3051, 2923, 2852, 1578, 1463, 1430, 1375, 1326, 1247, 

1096, 875, 738 cm-1; HRMS (ESI/APCI) m/z calc’d for C17H23N2 [M+H]+: 255.1856, 

found 255.1855. 

 

 Allyl 7-(2-(benzyloxy)ethyl)-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indole-7-

carboxylate (172h): To a solution of β-amidoester 179 (727 mg, 2.70 mmol, 1.0 equiv) 

in DMF (9 mL) were added K2CO3 (522 mg, 3.78 mmol, 1.4 equiv) and iodide 1968 (990 

mg, 3.78 mmol, 1.4 equiv) at 23 °C with stirring. The reaction mixture was placed in a 

pre-heated 50 °C oil bath. After 4 h, starting material was completely consumed as 

determined by TLC analysis. Saturated aqueous NH4Cl (50 mL) was added, followed by 

extraction with EtOAc (3 x 100 mL). The combined organic layers were washed with 

H2O (50 mL), brine (50 mL), dried over Na2SO4, and concentrated. Flash column 

chromatography (SiO2, 25% Et2O in hexanes) afforded quaternary β-amidoester 172h 
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(903 mg, 83% yield) as a clear colorless oil: Rf = 0.32 (7:3 hexanes:Et2O eluent); 1H 

NMR (500 MHz, CDCl3) δ 8.49–8.43 (m, 1H), 7.48–7.44 (m, 1H), 7.32–7.22 (m, 2H), 

7.23–7.18 (m, 5H), 6.31 (dt, J = 1.8, 0.9 Hz, 1H), 5.81 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 

5.21 (dq, J = 17.2, 1.5 Hz, 1H), 5.16 (dq, J = 10.5, 1.3 Hz, 1H), 4.64–4.56 (m, 2H), 4.46 

(d, J = 11.8 Hz, 1H), 4.43 (d, J = 11.8 Hz, 1H), 3.74 (t, J = 6.3 Hz, 2H), 3.07 (dtd, J = 

16.7, 4.7, 1.1 Hz, 1H), 2.96 (dddd, J = 16.6, 11.7, 4.6, 1.8 Hz, 1H), 2.59–2.49 (m, 2H), 

2.41 (dt, J = 14.3, 6.1 Hz, 1H), 2.27 (ddd, J = 13.5, 11.8, 4.7 Hz, 1H); 13C NMR (126 

MHz, CDCl3) δ 171.2, 167.9, 138.2, 137.2, 135.4, 131.4, 130.2, 128.4, 127.64, 127.62, 

124.30, 124.28, 119.9, 118.9, 116.8, 105.3, 73.1, 66.8, 66.4, 55.3, 34.7, 30.3, 20.9; IR 

(Neat Film, NaCl) 3066, 3032, 2930, 2855, 1728, 1701, 1597, 1577, 1451, 1353, 1333, 

1301, 1171, 1093, 1026, 973, 798, 733, 695 cm-1; HRMS (ESI/APCI) m/z calc’d for 

C25H26NO4 [M+H]+: 404.1856, found 404.1865. 

 

(S)-7-Allyl-7-(2-(benzyloxy)ethyl)-8,9-dihydropyrido[1,2-a]indol-6(7H)-one (165h): 

A flame-dried 100 mL Schlenk Flask was charged with Pd2(pmdba)3 (56 mg, 51.1 µmol, 

0.05 equiv), (S)-(CF3)3-t-BuPHOX (76, 77 mg, 0.13 mmol, 0.125 equiv), and a magnetic 

stirring bar in a N2-filled glove box. The flask was then charged with TBME (28 mL) and 

stirred at 23 °C for 30 minutes, generating a dark purple solution. To the preformed 

catalyst solution was added a solution of 172h (417 mg, 1.03 mmol, 1.0 equiv) in TBME 

(3 mL, including washings). The flask was sealed, removed from the glovebox, and 
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placed in a preheated 60 °C oil bath with stirring. Full consumption of starting material 

was achieved after 8 h, as determined by TLC analysis. The crude reaction mixture was 

stripped onto silica gel, and purified by flash column chromatography (SiO2, 12% Et2O 

→ 25% Et2O in hexanes) to afford α-quaternary DHPI 165h (305 mg, 82% yield) as a 

faintly yellow oil: Rf = 0.5 (7:3 hexanes:Et2O eluent); 94% ee, [α]D
25 +22.6 (c 1.2, 

CHCl3); 1H NMR (500 MHz, CDCl3) δ 8.49–8.46 (m, 1H), 7.49–7.46 (m, 1H), 7.30–7.25 

(m, 2H), 7.25–7.20 (m, 5H), 6.30 (q, J = 1.3 Hz, 1H), 5.82 (ddt, J = 16.0, 11.2, 7.4 Hz, 

1H), 5.15 (t, J = 1.1 Hz, 1H), 5.14–5.11 (m, 1H), 4.47 (d, J = 11.8 Hz, 1H), 4.43 (d, J = 

11.8 Hz, 1H), 3.69 (dt, J = 9.6, 6.9 Hz, 1H), 3.62 (ddd, J = 9.6, 7.2, 5.7 Hz, 1H), 3.05 

(ddd, J = 7.5, 5.9, 1.3 Hz, 2H), 2.66 (ddt, J = 13.9, 7.0, 1.3 Hz, 1H), 2.49–2.42 (m, 1H), 

2.29 (dt, J = 14.2, 7.1 Hz, 1H), 2.12–2.03 (m, 2H), 1.99 (ddd, J = 14.2, 6.9, 5.7 Hz, 1H); 

13C NMR (126 MHz, CDCl3) δ 173.5, 138.3, 137.7, 135.3, 133.2, 130.2, 128.4, 127.62, 

127.59, 124.02. 123.96, 119.8, 119.3, 116.7, 104.7, 73.2, 66.7, 45.6, 40.9, 35.4, 29.5, 

19.9; IR (Neat Film, NaCl) 3062, 3028, 2930, 2856, 1693, 1639, 1595, 1574, 1451, 1433, 

1355, 1299, 1181, 1097, 1026, 1001, 915, 797, 733, 695 cm-1; HRMS (ESI/APCI) m/z 

calc’d for C24H26NO2 [M+H]+: 360.1958, found 360.1962; SFC conditions: 15% i-PrOH, 

2.5 mL/min, Chiralcel OD-H column, λ = 210 nm, tR (min): major = 8.83, minor = 9.71. 

 

(4aR,11cR)-4a-(2-(Benzyloxy)ethyl)-2,3,4,4a,5,6,7,11c-octahydro-1H-pyrido[3,2-

c]carbazole (210): A flame-dried round bottom flask was charged with α-quaternary 

DHPI 165h (98 mg, 0.273 mmol, 1.0 equiv), THF (1.4 mL), and a magnetic stirring bar 
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in a N2-filled glovebox. To this solution was added bis(cyclopentadienyl) zirconium 

chloride hydride (84 mg, 0.325 mmol, 1.2 equiv), and the mixture was stirred at 23 °C for 

30 min. A second portion of bis(cyclopentadienyl) zirconium chloride hydride (14 mg, 54 

µmol, 0.2 equiv) was added, and the reaction mixture was stirred for an additional 30 min 

at which point a brown solution was observed. Hydroxylamine-O-sulfonic acid (46 mg, 

0.406 mmol, 1.5 equiv) was added, the vial was sealed and removed from the glovebox, 

and stirring was resumed at 23 °C in a fume hood for an additional 10 min. The reaction 

mixture was then cooled to 0 °C and LiAlH4 (0.82 mL, 1.0 M in THF, 0.82 mmol, 3.0 

equiv) was added over five minutes. The reaction was stirred at 0 °C for 15 minutes 

before careful quenching with H2O (2.2 mL) and AcOH (6.6 mL). Stirring was continued 

at 23 °C for 12h, at which point complete equilibration to the desired Pictet–Spengler 

product 210 was observed by LCMS. The mixture was basified with 2N NaOH until pH 

> 12, and was extracted with CH2Cl2 (3 x 75 mL). The combined organic layers were 

dried over Na2SO4, filtered and concentrated to afford crude cis-fused tetracycle 210 (96 

mg), which was carried on without further purification.  

An analytical sample of 210 was obtained after flash column chromatography 

(SiO2, 2% Et3N in EtOAc): off-white foam; Rf = 0.45 (19:1 EtOAc:Et3N eluent); [α]D
25 –

23.1 (c 0.22, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.94 (br s, 1H), 7.56 (d, J = 7.3 Hz, 

1H), 7.35–7.24 (m, 6H), 7.14–7.01 (m, 2H), 4.45 (s, 2H), 3.75 (s, 1H), 3.61–3.54 (m, 

2H), 3.01 (d, J = 12.2 Hz, 1H), 2.80–2.72 (m, 3H), 2.36 (app q, J = 10.2 Hz, 1H), 1.85–

1.75 (m, 2H), 1.65–1.43 (m, 6H); 13C NMR (126 MHz, CDCl3) δ 138.7, 136.3, 134.1, 

128.5, 127.60, 127.57, 127.5, 121.0, 119.3, 117.6, 112.1, 110.6, 73.0, 66.9, 56.7, 46.3, 

36.7, 35.1, 34.4, 25.4, 22.8, 20.3; IR (Neat Film, NaCl) 3401, 3295, 3147, 3057, 3030, 



Chapter 3 – Stereoselective Indole-Iminium Cyclizations from α-Quaternary DHPIs   182 
2926, 2854, 1622, 1588, 1495, 1466, 1452, 1364, 1328, 1101, 1028, 1011, 806, 739, 697 

cm-1; HRMS (ESI/APCI) m/z calc’d for C24H29N2O [M+H]+: 361.2274, found 361.2287. 

 

Ethanolamine 209: To a solution of crude cis-fused tetracycle 210 (96 mg, 0.266 mmol, 

1.0 equiv) in EtOH (8.9 mL) were added 2-bromoethanol (0.15 mL, 2.11 mmol, 8.0 

equiv), K2CO3 (295 mg, 2.11 mmol, 8.0 equiv) and a magnetic stirring bar. The 

suspension was heated to 80 °C and stirred for 4 h, at which point full consumption of 

starting material was observed by TLC analysis. The suspension was concentrated to 

dryness, partitioned between H2O (75 mL) and EtOAc (75 mL), and extracted with 

EtOAc (2 x 75 mL). The combined organic layers were washed with brine (50 mL), dried 

over Na2SO4, filtered and concentrated. Flash column chromatography (SiO2, 1% Et3N in 

EtOAc) gave ethanolamine 209 (68 mg, 62% yield in two steps from 165h) as tan foam: 

Rf = 0.5 (19:1 EtOAc:Et3N eluent); [α]D
25 +17.8 (c 1.28, CHCl3); 1H NMR (500 MHz, 

CDCl3) δ 7.90 (br s, 1H), 7.42–7.38 (m, 1H), 7.32–7.28 (m, 2H), 7.27–7.22 (m, 4H), 

7.12–7.05 (m, 2H), 4.40 (d, J = 11.9 Hz, 1H), 4.37 (d, J = 11.9 Hz, 1H), 3.56–3.42 (m, 

3H), 3.24 (s, 1H), 3.17–3.07 (m, 3H), 2.87–2.72 (m, 3H), 2.26–2.17 (m, 2H), 1.89–1.74 

(m, 2H), 1.66–1.51 (m, 3H), 1.48–1.41 (m, 1H), 1.30 (ddd, J = 14.1, 8.3, 5.8 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ 138.6, 136.2, 135.4, 129.9, 128.5, 127.62, 127.57, 121.1, 

119.6, 117.8, 110.6, 110.5, 73.0, 67.0, 63.2, 58.0, 54.2, 52.3, 36.84, 36.82, 35.8, 25.2, 

22.1, 20.5; IR (Neat Film, NaCl) 3406, 3212, 3178, 3107, 3060, 3031, 2943, 2871, 1619, 

1584, 1496, 1452, 1366, 1329, 1305, 1246, 1187, 1104, 1075, 1038, 983, 903, 870, 741, 

N
H

HN

OBn

210

K2CO3
BrCH2CH2OH

EtOH, 80 °C
N
H

NHO

OBn

209



Chapter 3 – Stereoselective Indole-Iminium Cyclizations from α-Quaternary DHPIs   183 
697 cm-1; HRMS (ESI/APCI) m/z calc’d for C26H33N2O2 [M+H]+: 405.2537, found 

405.2541. 

 

O-Benzyl Limaspermidine (212): To a solution of primary alcohol 209 (64 mg, 158 

µmol, 1.0 equiv) and N,N-diisopropylethylamine (DIPEA, 36 µL, 206 µmol, 1.3 equiv) in 

CH2Cl2 (3.1 mL) was added methanesulfonyl chloride (MsCl, 12.5 µL, 161 µmol, 1.02 

equiv) dropwise at –15 °C (ice/MeOH bath). After stirring at –15 °C for 45 min, KOt-Bu 

(0.79 mL, 0.5 M in THF, 0.395 mmol, 2.5 equiv) was added and the reaction mixture was 

allowed to warm to 0 °C over a period of 2 h. The reaction mixture was quenched with 

brine (25 mL), and extracted with EtOAc (5 x 50 mL). The combined organic layers were 

dried over Na2SO4, filtered and concentrated. The crude residue was dissolved in EtOH 

(4.8 mL) and the resulting solution cooled to 0 °C. NaBH4 (30 mg, 0.79 mmol, 5.0 equiv) 

was added in three equal portions over 10 min. After stirring at 0 °C for 15 additional 

min, the reaction mixture was removed from the ice bath and stirring was continued for a 

further 3 h. Sodium citrate dihydrate (233 mg, 0.79 mmol, 5.0 equiv) and H2O (5 mL) 

were added, and the mixture was stirred at 23 °C for 30 min. The reaction mixture was 

partitioned between H2O (20 mL) and EtOAc (20 mL), and extracted with EtOAc (3 x 25 

mL). The combined organic layers were dried over Na2SO4, filtered and concentrated. 

Flash column chromatography (SiO2, 8% MeOH in CH2Cl2) gave O-benzyl 

limaspermidine (212, 44.6 mg, 73% yield) as faint yellow oil: Rf = 0. 22 (19:1 

CH2Cl2:MeOH eluent); [α]D
25 +10.0 (c 0.44, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.30 

1. MsCl, DIPEA, DCM, –20 °C;
KOt-Bu, THF, –20 °C → 23 °C
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(dd, J = 8.0, 6.5 Hz, 2H), 7.27–7.23 (m, 1H), 7.22–7.19 (m, 2H), 7.08 (d, J = 7.4 Hz, 

1H), 7.02 (td, J = 7.6, 1.3 Hz, 1H), 6.74 (td, J = 7.3, 1.0 Hz, 1H), 6.64 (d, J = 7.7 Hz, 

1H), 4.36 (d, J = 12.0 Hz, 1H), 4.32 (d, J = 12.0 Hz, 1H), 3.51 (dd, J = 11.0, 6.2 Hz, 

1H), 3.44 (ddd, J = 9.6, 8.1, 5.9 Hz, 1H), 3.40–3.35 (m, 1H), 3.15–3.10 (m, 1H), 3.05 (d, 

J = 11.0 Hz, 1H), 2.35–2.22 (m, 2H), 2.27 (s, 1H), 2.08–1.93 (m, 2H), 1.86 (ddd, J = 

14.5, 8.3, 6.5 Hz, 1H), 1.80–1.70 (m, 1H), 1.66 (ddt, J = 13.0, 6.4, 3.1 Hz, 2H), 1.54–

1.42 (m, 3H), 1.31–1.19 (m, 2H), 1.08–1.03 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 

149.6, 138.6, 135.4, 128.4, 127.7, 127.5, 127.4, 123.0, 119.4, 110.6, 72.8, 71.0, 66.2, 

65.6, 53.9, 53.6, 53.0, 38.7, 36.9, 35.6, 35.5, 28.4, 24.4, 21.9; IR (Neat Film, NaCl) 3361, 

3027, 2928, 2857, 2779, 2722, 1606, 1481, 1462, 1363, 1332, 1259, 1176, 1095, 1026, 

740, 697 cm-1; HRMS (ESI/APCI) m/z calc’d for C26H33N2O [M+H]+: 389.2587, found 

389.2592. 

 

(+)-Limaspermidine (6): To a solution of O-benzyl limaspermidine (212, 21 mg, 54 

µmol, 1.0 equiv) in EtSH (1.8 mL) was added BF3•Et2O (133 µL, 1.07 mmol, 20 equiv) 

at 0 °C. After stirring at 0 °C for 30 min, the reaction mixture was transferred to a pre-

heated 30 °C oil bath and stirred for an additional 4 h. After cooling to 23 °C and 

quenching with saturated aqueous NHCO3 (5 mL) and H2O (5 mL), the mixture was 

stirred for an additional 2 h, then extracted with CH2Cl2 (3 x 20 mL). The combined 

organic layers were dried over Na2SO4, filtered and concentrated. Flash column 

chromatography (SiO2, 8% MeOH in CH2Cl2) furnished (+)-limaspermidine (6, 13.5 mg, 
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84% yield) as an off-white amorphous solid: Rf = 0. 27 (9:1 CH2Cl2:MeOH eluent); [α]D

25 

+22.6 (c 0.17, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.08 (dd, J = 7.4, 1.2 Hz, 1H), 7.01 

(td, J = 7.6, 1.3 Hz, 1H), 6.73 (td, J = 7.4, 1.0 Hz, 1H), 6.64 (d, J = 7.7 Hz, 1H), 3.63 (td, 

J = 10.0, 5.4 Hz, 1H), 3.58–3.48 (m, 2H), 3.16–3.10 (m, 1H), 3.04 (app dt, J = 10.9, 2.2 

1H), 2.34–2.22 (m, 3H), 2.06 (td, J = 13.8, 3.5 Hz, 1H), 1.99 (ddd, J = 12.4, 10.9, 2.9 

Hz, 1H), 1.81–1.67 (m, 3H), 1.65 (d, J = 13.5 Hz, 1H), 1.54–1.44 (m, 3H), 1.27 (td, J = 

13.4, 4.6 Hz, 1H), 1.19 (ddd, J = 14.2, 9.3, 5.4 Hz, 1H), 1.04 (dd, J = 13.7, 3.8 Hz, 1H), 

0.92 (br s, 1H); 13C NMR (126 MHz, CDCl3) δ 149.6, 135.4, 127.5, 122.9, 119.3, 110.6, 

70.8, 65.5, 58.8, 53.9, 53.6, 53.0, 40.6, 38.7, 35.62, 35.55, 28.4, 24.4, 21.9; IR (Neat 

Film, NaCl) 3308, 3149, 2930, 2858, 2816, 2793, 1607, 1466, 1320, 1256, 1216, 1166, 

1041, 1015, 900, 749 cm-1; HRMS (ESI/APCI) m/z calc’d for C19H27N2O [M+H]+: 

299.2118, found 299.2114. 

 

Allyl 7-(3-methoxy-3-oxopropyl)-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indole-7-

carboxylate (172i): To a solution of β-amidoester 179 (530 mg, 1.96 mmol, 1.0 equiv) in 

MeCN (13.1 mL) were added methyl acrylate (0.36 mL, 3.92 mmol, 2.0 equiv) and DBU 

(15 µL, 98 µmol, 0.05 equiv) at 23 °C with stirring. After 90 min, starting material was 

completely consumed as determined by TLC analysis. Saturated aqueous NH4Cl (100 

mL) was added, followed by extraction with EtOAc (3 x 150 mL). The combined organic 

layers were washed with H2O (100 mL), brine (100 mL), then dried over Na2SO4, filtered 

and concentrated. Flash column chromatography (SiO2, 25% acetone in hexanes) 
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afforded quaternary β-amidoester 172i (670 mg, 96% yield) as a light yellow oil: Rf = 

0.33 (3:1 hexanes:acetone eluent); 1H NMR (500 MHz, CDCl3) δ 8.47–8.44 (m, 1H), 

7.47–7.45 (m, 1H), 7.31–7.24 (m, 2H), 6.32 (dt, J = 1.7, 0.9 Hz, 1H), 5.83 (ddt, J = 17.2, 

10.4, 5.7 Hz, 1H), 5.24 (dq, J = 17.2, 1.6 Hz, 1H), 5.19 (dq, J = 10.5, 1.3 Hz, 1H), 4.65 

(dt, J = 5.7, 1.4 Hz, 2H), 3.67 (s, 3H), 3.09 (dtd, J = 16.8, 4.9, 1.1 Hz, 1H), 2.96 (dddd, J 

= 16.7, 11.5, 4.8, 1.8 Hz, 1H), 2.68 (ddd, J = 15.8, 9.3, 6.5 Hz, 1H), 2.55 – 2.47 (m, 2H), 

2.44 (ddd, J = 10.7, 5.6, 3.9 Hz, 2H), 2.13 (ddd, J = 13.4, 11.4, 4.7 Hz, 1H); 13C NMR 

(126 MHz, CDCl3) δ 173.4, 170.9, 167.5, 136.8, 135.3, 131.2, 130.1, 124.44, 124.42, 

120.0, 119.2, 116.8, 105.6, 66.5, 55.6, 52.0, 30.6, 30.0, 29.9, 20.8; IR (Neat Film, NaCl) 

2951, 2854, 1738, 1704, 1600, 1577, 1455, 1375, 1357, 1315, 1227, 1176, 1087, 1034, 

989, 935, 802, 755 cm-1; HRMS (ESI/APCI) m/z calc’d for C20H22NO5 [M+H]+: 

356.1492, found 356.1498. 

 

Methyl (R)-3-(7-allyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indol-7-yl)propanoate 

(165i): A flame-dried 250 mL Schlenk Flask was charged with Pd2(pmdba)3 (90 mg, 82.1 

µmol, 0.05 equiv), (S)-(CF3)3-t-BuPHOX (76, 120 mg, 0.202 mmol, 0.125 equiv), and a 

magnetic stirring bar in a N2-filled glove box. The flask was then charged with TBME 

(42 mL) and stirred at 23 °C for 30 minutes, generating a dark purple solution. To the 

preformed catalyst solution was added a solution of 172i (580 mg, 1.63 mmol, 1.0 equiv) 

in TBME (7 mL, including washings). The flask was sealed, removed from the glovebox, 

N
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O

CO2Me
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and placed in a preheated 60 °C oil bath with stirring. Full consumption of starting 

material was achieved after 12 h, as determined by TLC analysis. The crude reaction 

mixture was stripped onto silica gel, and purified by flash column chromatography (SiO2, 

25% Et2O in hexanes) to afford α-quaternary DHPI 165i (456 mg, 90% yield) as a yellow 

oil: Rf = 0.29 (7:3 hexanes:Et2O eluent); 92% ee, [α]D
25 –4.2 (c 0.89, CHCl3); 1H NMR 

(500 MHz, CDCl3) δ 8.47–8.43 (m, 1H), 7.47–7.44 (m, 1H), 7.29–7.22 (m, 2H), 6.30 (td, 

J = 1.4, 0.7 Hz, 1H), 5.85–5.75 (m, 1H), 5.18–5.16 (m, 1H), 5.15–5.14 (m, 1H), 3.64 (s, 

3H), 3.07 (td, J = 6.7, 1.4 Hz, 2H), 2.63 (ddt, J = 14.1, 7.1, 1.2 Hz, 1H), 2.53–2.39 (m, 

3H), 2.18–2.03 (m, 3H), 2.01–1.91 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 173.8, 172.9, 

137.4, 135.3, 132.8, 130.2, 124.14, 124.11, 119.9, 119.6, 116.7, 105.0, 51.9, 45.8, 40.2, 

30.5, 29.6, 29.2, 19.7; IR (Neat Film, NaCl) 3459, 3376, 3077, 2948, 2865, 1731, 1694, 

1639, 1597, 1575, 1452, 1358, 1310, 1258, 1176, 1101, 1031, 996, 920, 879, 800, 757, 

644 cm-1; HRMS (ESI/APCI) m/z calc’d for C19H22NO3 [M+H]+: 312.1594, found 

312.1584; SFC conditions: 7% i-PrOH, 2.5 mL/min, Chiralpak AD-H column, λ = 210 

nm, tR (min): major = 15.71, minor = 14.34. 

 

Primary alcohol 215: To a solution of DHPI 165i (1.2 g, 3.85 mmol, 1.0 equiv) in THF 

(38 mL) were added RhCl(PPh3)3 (176 mg, 0.19 mmol, 0.05 equiv) and catecholborane 

(7.6 mL, 1.0 M in THF, 7.6 mmol, 2.0 equiv) sequentially at 23 °C. After stirring at 23 

°C for 30 min,  H2O (10 mL) and NaBO3•4H2O (2.9 g, 18.8 mmol, 5.0 equiv). The 

reaction mixture was transferred to a pre-heated 85 °C oil bath and stirred for 15 min. 

N

O

165i

MeO2C

then NaBO3•4H2O
THF/H2O, 85 °C

RhCl(PPh3)3 (5 mol %)
catecholborane, THF, 23 °C

O

215

MeO2C
OH



Chapter 3 – Stereoselective Indole-Iminium Cyclizations from α-Quaternary DHPIs   188 
After cooling to 23 °C, the resulting suspension was filtered. The filter cake was washed 

with THF, and the filtrate was concentrated to dryness. The residue was partitioned 

between CH2Cl2 (40 mL) and H2O (40 mL), and the aqueous layer was extracted with 

CH2Cl2 (40 mL). The combined organic layers were washed with 1N aq. NaOH (3 x 40 

mL) and brine (40 mL), dried over Na2SO4, filtered and concentrated. Flash column 

chromatography (SiO2, 20% Et2O in CH2Cl2) afforded alcohol 215 as a yellow oil (1.09 g, 

86%): Rf = 0.21 (4:1 CH2Cl2:Et2O eluent); [α]D
25 +10.9 (c 1.23, CHCl3); 1H NMR (500 

MHz, CDCl3) δ 8.44–8.41 (m, 1H), 7.47–7.44 (m, 1H), 7.29–7.21 (m, 2H), 6.29 (app q, J 

= 1.1 Hz, 1H), 3.66–3.61 (m, 2H), 3.64 (s, 3H), 3.07 (ddt, J = 7.2, 5.8, 1.3, 2H), 2.52–

2.36 (m, 2H), 2.17–2.02 (m, 3H), 2.00–1.88 (m, 2H), 1.77–1.69 (m, 2H), 1.66–1.59 (m, 

2H); 13C NMR (126 MHz, CDCl3) δ 173.9, 173.4, 137.3, 135.2, 130.2, 124.13, 124.10, 

119.9, 116.7, 105.1, 62.8, 51.9, 45.6, 31.6, 30.6, 29.7, 29.2, 27.1, 19.7; IR (Neat Film, 

NaCl) 3449, 2948, 2869, 1736, 1695, 1598, 1575, 1454, 1379, 1356, 1335, 1311, 1181, 

1056, 1024, 819, 802, 758 cm-1; HRMS (ESI/APCI) m/z calc’d for C19H24NO4 [M+H]+: 

330.1700, found 330.1705. 

 

Azide 216: To a solution of alcohol 215 (148 mg, 0.45 mmol, 1.0 equiv) in THF (2.3 mL) 

were added PPh3 (147 mg, 0.56 mmol, 1.25 equiv), DPPA (0.11 mL, 0.52 mmol, 1.15 

equiv), and DTBAD (129 mg, 0.56 mmol, 1.25 equiv) sequentially at 0 °C. After stirring 

for 15 min,  the reaction mixture was removed from the cooling bath and stirred for an 

additional 30 min at 23 °C. 2N aq. HCl (1 mL) was added, the mixture was poured into 

N
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H2O (20 mL), and was extracted with EtOAc (3 x 30 mL). The combined organic layers 

were dried over Na2SO4, filtered and concentrated. Flash column chromatography (SiO2, 

20% EtOAc in hexanes) afforded azide 216 as a yellow oil (132 mg, 83%): Rf = 0.33 (3:1 

hexanes:EtOAc eluent); [α]D
25 –65.7 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.45–

8.41 (m, 1H), 7.49–7.43 (m, 1H), 7.31–7.21 (m, 2H), 6.31 (app q, J = 1.3 Hz, 1H), 3.65 

(s, 3H), 3.32 (td, J = 6.4, 1.3 Hz, 2H), 3.09 (dddd, J = 7.2, 5.7, 4.4, 1.5 Hz, 2H), 2.50–

2.37 (m, 2H), 2.18–2.06 (m, 2H), 2.06–1.96 (m, 2H), 1.95–1.84 (m, 1H), 1.77–1.61 (m, 

3H); 13C NMR (101 MHz, CDCl3) δ 173.7, 172.8, 137.1, 135.3, 130.2, 124.23, 124.19, 

119.9, 116.7, 105.2, 52.0, 51.8, 45.6, 32.7, 30.5, 29.8, 29.1, 23.7, 19.7; IR (Neat Film, 

NaCl) 2949, 2868, 2096, 1736, 1694, 1597, 1575, 1454, 1380, 1356, 1336, 1312, 1302, 

1262, 1179, 1027, 1000, 819, 803, 758 cm-1; HRMS (ESI/APCI) m/z calc’d for 

C19H23N4O3 [M+H]+: 355.1765, found 355.1767. 

 

Methyl (R)-3-(3-(2-(1H-indol-2-yl)ethyl)-2-oxopiperidin-3-yl)propanoate (214): To a 

solution of azide 216 (700 mg, 1.97 mmol, 1.0 equiv) in THF (20 mL) and H2O (4 mL) 

was added polymer-bound PPh3 (1.31 g, ~3 mmol/g loading, 3.94 mmol, 2.0 equiv) in 

one portion. The reaction mixture was placed in a pre-heated oil bath and stirred at 65 °C 

for 4 h. After cooling to 23 °C, the reaction mixture filtered, washing with EtOAc, and 

the filtrate was concentrated to dryness. Flash column chromatography (SiO2, 4% MeOH 

in CH2Cl2) afforded δ-lactam 214 as a light yellow foam (525 mg, 81%): Rf = 0.27 (19:1 

CH2Cl2:MeOH eluent); [α]D
25 –21.4 (c 0.4, CHCl3); 1H NMR (500 MHz, CDCl3) δ 8.37 
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(br s, 1H), 7.50 (d, J = 7.7 Hz, 1H), 7.30–7.27 (m, 1H), 7.10 (ddd, J = 8.1, 7.1, 1.3 Hz, 

1H), 7.04 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 6.21 (s, 1H), 5.85 (br s, 1H), 3.66 (s, 3H), 3.32 

(td, J = 5.7, 2.1 Hz, 2H), 2.86 (ddd, J = 14.6, 11.1, 5.8 Hz, 1H), 2.69 (ddd, J = 15.0, 

11.0, 4.5 Hz, 1H), 2.42 (h, J = 8.5 Hz, 2H), 2.16 (ddd, J = 13.7, 11.2, 4.6 Hz, 1H), 2.01 

(t, J = 8.2 Hz, 2H), 1.91–1.80 (m, 4H), 1.77–1.68 (m, 1H); 13C NMR (101 MHz, CDCl3) 

δ 176.0, 174.1, 139.5, 136.2, 128.7, 121.1, 119.8, 119.5, 110.7, 99.4, 51.9, 44.3, 42.8, 

37.5, 33.2, 30.2, 29.4, 23.6, 19.5; IR (Neat Film, NaCl) 3287, 3054, 2949, 2870, 1731, 

1645, 1551, 1489, 1456, 1417, 1289, 1173, 1094, 1061, 1012, 910, 782, 748 cm-1; HRMS 

(ESI/APCI) m/z calc’d for C19H25N2O3 [M+H]+: 329.1860, found 329.1868. 

 

Trans-fused tetracycle 213: To a solution of δ-lactam 214 (111 mg, 0.338 mmol, 1.0 

equiv) in CH2Cl2 (8.4 mL) were added 2-chloropyridine (39 µL, 0.405 mmol, 1.2 equiv) 

and triflic anhydride (63 µL, 0.372 mmol, 1.1 equiv) at –20 °C (dry ice in H2O/MeOH 

(7:3) bath). After 15 min, the reaction mixture was removed from the cooling bath and 

stirring continued for a further 15 min. At this time, the reaction mixture was cooled back 

to –20 °C and a solution of NaBH4 (64 mg, 1.69 mmol, 5.0 equiv) in MeOH (8.4 mL) 

was added dropwise over a period of two minutes. The reaction was diluted with CH2Cl2 

and quenched by the addition of saturated aqueous NaHCO3 (10 mL). The biphasic 

mixture was poured into H2O (25 mL) and extracted with CH2Cl2 (3 x 50 mL). The 

combined organic layers were dried over Na2SO4, filtered and concentrated. Flash column 

chromatography (SiO2, 1% MeOH → 8% MeOH in CH2Cl2) afforded trans-fused 

213
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tetracycle 213 (89 mg, 84% yield) as a yellow foam: Rf = 0.22 (9:1 CH2Cl2:MeOH 

eluent); [α]D
25 +21.3 (c 0.5, CHCl3);	1H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 7.9 Hz, 

1H), 7.82 (br s, 1H), 7.25 (d, J = 7.2 Hz, 1H), 7.07 (ddd, J = 8.1, 7.1, 1.4 Hz, 1H), 7.01 

(ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 3.96 (app t, J = 2.0 Hz, 1H), 3.61 (s, 3H), 3.33–3.26 (m, 

1H), 2.91 (td, J = 12.9, 3.8 Hz, 1H), 2.75 (dddd, J = 20.2, 11.8, 6.2, 3.1 Hz, 1H), 2.65 

(ddt, J = 16.7, 6.4, 1.4 Hz, 1H), 2.30 (ddd, J = 14.8, 12.1, 5.5 Hz, 1H), 2.20 (ddd, J = 

14.8, 11.9, 4.8 Hz, 1H), 1.98 (td, J = 13.4, 12.7, 5.3 Hz, 1H), 1.78–1.69 (m, 3H), 1.62–

1.42 (m, 3H), 1.35–1.23 (m, 1H); 13C NMR (101 MHz, CDCl3) δ 174.9, 136.1, 133.1, 

127.2, 120.9, 120.5, 119.2, 110.8, 110.4, 64.1, 51.8, 47.2, 35.5, 33.6, 32.0, 29.0, 22.5, 

20.6, 20.3; IR (Neat Film, NaCl) 3395, 3177, 3054, 2926, 2856, 1731, 1619, 1579, 1465, 

1435, 1317, 1250, 1198, 1174, 1142, 1109, 1014, 875, 856, 739, 693 cm-1; HRMS 

(ESI/APCI) m/z calc’d for C19H25N2O2 [M+H]+: 313.1911, found 313.1905. 

 

 

Pentacyclic lactam 218: In an N2-filled glovebox, an oven-dried scintillation vial was 

charged with a magnetic stirring bar, cis-fused tetracycle 213 (56 mg, 0.179 mmol, 1.0 

equiv), toluene (2.2 mL), THF (0.44 mL), and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD, 

25 mg, 0.179 mmol, 1.0 equiv) at 23 °C. The vial was sealed and removed from the 

glovebox and placed in a pre-heated 80 °C heating block. After stirring for 5 h at 80 °C, 

the reaction mixture was cooled to 23 °C stripped onto silica gel. Flash column 

chromatography (SiO2, 2% MeOH in CH2Cl2) afforded lactam 218 (32.5 mg, 65% yield) 

as a white amorphous solid: Rf = 0.32 (19:1 CH2Cl2:MeOH eluent); [α]D
25 –17.5 (c 0.38, 
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CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.87 (br s, 1H), 7.72–7.67 (m, 1H), 7.26 (dt, J = 

8.1, 0.9 Hz, 1H), 7.11 (ddd, J = 8.2, 7.1, 1.3 Hz, 1H), 7.02 (ddd, J = 8.1, 7.1, 1.1 Hz, 

1H), 4.41 (dd, J = 12.9, 5.6 Hz, 1H), 4.33 (app t, J = 2.0 Hz, 1H), 3.15 (td, J = 12.8, 3.3 

Hz, 1H), 3.02 (dddd, J = 13.6, 11.1, 6.6, 3.2 Hz, 1H), 2.76 (ddt, J = 17.2, 5.8, 1.7 Hz, 

1H), 2.11–2.04 (m, 2H), 2.01–1.83 (m, 4H), 1.73–1.67 (m, 2H), 1.59–1.48 (m, 2H); 13C 

NMR (101 MHz, CDCl3) δ 186.1, 136.3, 133.2, 125.1, 121.9, 120.3, 119.8, 111.2, 110.4, 

64.4, 53.8, 39.9, 37.0, 35.0, 34.6, 27.8, 22.5, 19.8; IR (Neat Film, NaCl) 3273, 3059, 

2924, 2853, 1657, 1464, 1409, 1328, 1245, 1163, 1131, 1075, 910, 846, 804, 738 cm-1; 

HRMS (ESI/APCI) m/z calc’d for C18H21N2O [M+H]+: 281.1648, found 281.1649. 

 

 

α-Chloroacetamide 220: To a solution of tetracycle 213 (140 mg, 0.45 mmol, 1.0 equiv) 

and Et3N (102 µL, 0.73 mmol, 1.6 equiv) in CH2Cl2 (5 mL) was added chloroacetyl 

chloride (36 µL, 0.45 mmol, 1.0 equiv) dropwise at 0 °C.  After stirring for 15 min at 0 

°C, the reaction was quenched with sat. aq. NH4Cl (10 mL).  The aqueous layer was 

separated and extracted with CH2Cl2 (2 x 10 mL).  The combined organic layers were 

washed with brine (10 mL), dried over Na2SO4, filtered and concentrated to afford α-

chloroacetamide 220 (170 mg, Rf = 0.41 in 9:1 CH2Cl2:MeOH eluent), which was 

immediately advanced without further purification. 
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Indolenine 221: To a solution of crude α-chloroacetamide 220 (170 mg) in acetone (3 

mL) was added sodium iodide (670 mg, 4.5 mmol, 10 equiv) at 23 °C. The reaction was 

heated to 55 °C for 2 h in the dark. After cooling to 23 °C, H2O (5 mL) was added, and 

the mixture was extracted with EtOAc (3 x 5mL). The combined organic layers were 

dried over Na2SO4, filtered, and concentrated to afford an α-iodoacetamide intermediate, 

which was immediately advanced without further purification.   

To a solution of the crude α-iodoacetamide in THF (6 mL) was added AgOTf 

(226 mg, 0.88 mmol, 2.0 equiv) at 23 °C. The flask was covered with aluminum foil and 

the mixture was stirred for 2 h. The reaction was quenched with sat. aq. NH4Cl (10 mL).  

The aqueous layer was separated and extracted with EtOAc (3 x 10 mL). The combined 

organic layers were washed with brine (10 mL), dried over Na2SO4, filtered and 

concentrated. Flash column chromatography (SiO2, 2% MeOH in CH2Cl2) afforded 

indolenine 221 as a light yellow oil (96 mg, 61% yield): Rf = 0.39 (19:1 CH2Cl2:MeOH 

eluent); [α]D
25 +35.2 (c 0.5, CHCl3);	1H NMR (400 MHz, CDCl3) δ 7.57 (dt, J = 7.8, 0.9 

Hz, 1H), 7.36 (td, J = 7.6, 1.2 Hz, 1H), 7.31 (ddd, J = 7.5, 1.2, 0.6 Hz, 1H), 7.19 (td, J = 

7.5, 1.1 Hz, 1H), 4.31 (dd, J = 13.5, 7.0 Hz, 1H), 3.71 (s, 3H), 3.19 (d, J = 17.0 Hz, 1H), 

3.07–2.99 (m, 3H), 2.94 (s, 1H), 2.40 (dd, J = 17.0, 1.4 Hz, 1H), 2.31–2.26 (m, 3H), 1.99 

(ddd, J = 13.9, 4.3, 2.9 Hz, 2H), 1.94–1.85 (m, 1H), 1.81 (ddd, J = 13.9, 4.8, 2.1 Hz, 

1H), 1.62–1.54 (m, 1H), 1.23–1.13 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 182.6, 173.5, 

172.0, 153.1, 146.0, 128.8, 126.4, 121.3, 120.5, 74.3, 57.1, 52.2, 40.1, 39.7, 39.3, 34.6, 

220
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33.4, 29.1, 28.5, 21.8, 19.2; IR (Neat Film, NaCl) 2948, 2865, 1736, 1690, 1565, 1460, 

1423, 1260, 1196, 1062, 916, 869, 766, 730 cm-1; HRMS (ESI/APCI) m/z calc’d for 

C21H25N2O3 [M+H]+: 353.1860, found 353.1852. 

 

3.11.3 COMPARISON OF SYNTHETIC (+)-LIMASPERMIDINE TO 

PUBLISHED DATA 

Table 3.11.3.1. Comparison of Synthetic (+)-Limaspermidine (6) 1H NMR Data. 

This Work Movassaghi’s Report25 
1H NMR (500 MHz, CDCl3) 1H NMR (400 MHz, CDCl3) 

7.08 (dd, J = 7.4, 1.2 Hz, 1H) 7.08 (d, J = 7.7 Hz, 1H) 
7.01 (td, J = 7.6, 1.3 Hz, 1H) 7.01 (app td, J = 7.6, 1.3 Hz, 1H) 
6.73 (td, J = 7.4, 1.0 Hz, 1H) 6.73 (app td, J = 7.4, 1.0 Hz, 1H) 

6.64 (d, J = 7.7 Hz, 1H) 6.64 (d, J = 7.7 Hz, 1H) 
3.63 (td, J = 10.0, 5.4 Hz, 1H) 3.63 (td, J = 10.0, 5.5 Hz, 1H) 

3.58–3.48 (m, 2H) 3.58–3.47 (m, 2H) 
3.16–3.10 (m, 1H) 3.17–3.08 (m, 1H) 

3.04 (app dt, J = 10.9, 2.2 Hz, 1H) 3.05 (d, J = 11.1 Hz, 1H) 
2.34–2.22 (m, 3H) 2.37–2.17 (m, 3H) 

2.06 (td, J = 13.8, 3.5 Hz, 1H) 
2.16–1.90 (m, 2H) 1.99 (ddd, J = 12.4, 10.9, 2.9 Hz, 1H) 

1.81–1.67 (m, 3H) 
1.87–1.58 (m, 5H) 1.65 (d, J = 13.5 Hz, 1H) 

1.54–1.44 (m, 3H) 1.58–1.37 (m, 3H) 
1.27 (td, J = 13.4, 4.6 Hz, 1H) 

1.37–1.12 (m, 2H) 1.19 (ddd, J = 14.2, 9.3, 5.4 Hz, 1H) 

1.04 (dd, J = 13.7, 3.8 Hz, 1H) 1.03 (d, J = 13.7 Hz, 1H) 
0.92 (br s, 1H) 0.89 (br s, 1H) 
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Table 3.11.3.2. Comparison of Synthetic (+)-Limaspermidine (6) 13C NMR Data. 

This Report Movassaghi’s Report25 
13C NMR (126 MHz, CDCl3) 13C NMR (125 MHz, CDCl3) 

149.6 149.6 

135.4 135.4 

127.5 127.5 

122.9 122.9 

119.3 119.3 

110.6 110.6 

70.8 70.8 

65.5 65.5 

58.8 58.8 

53.9 53.9 

53.6 53.6 

53.0 53.0 

40.6 40.7 

38.7 38.7 

35.62 35.6 

35.55 35.6 

28.4 28.4 

24.4 24.5 

21.9 21.9 
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APPENDIX 5 

Miscellaneous Studies Relevant to Chapter 3 

 

A5.1  INTRODUCTION 

This section presents alternative syntheses of intermediates from Chapter 3, along 

with an unoptimized synthesis of a highly advanced pentacyclic intermediate toward (–)-

kopsifoline G (227, Figure A5.1.1).1  

Figure A5.1.1. Structure of (–)-Kopsifoline G (227) 

 

A5.2  ALTERNATIVE ROUTES TO δ-LACTAM 214 

 Our initial synthesis of lactam 214 involved the Mitsunobu displacement of 

primary alcohol 215 with phthalimide to give 227 (Scheme A5.2.1A). Unfortunately, we 

found that despite multiple iterations of column chromatography, primary phthalimide 

227 could not be rigorously purified. Hydrazinolysis of the impure material revealed the 

primary amine, and ensuing translactamization gave δ-lactam 214 in 58% yield over two 

steps Alternatively, Mitsunobu displacement of alcohol 215 with 2-

N
H

N

227
(–)-Kopsifoline G

CO2Me

O

O
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nitrobenzenesulfonamide gave sulfonamide 228 (Scheme A5.2.1B). Treatment of 

sulfonamide 228 with thiophenol effected amine deprotection and concomitant 

translactamization to arrive at 214 in 70% yield over two steps. We noticed that the thiol-

promoted deprotection/cyclization failed to reach full conversion on larger scale, even at 

elevated temperatures. Given these complications, we decided to move forward with an 

azide as a masked primary amine. 

Scheme A5.2.1. Alternative Syntheses of Lactam 214 

 

A traditional mesylate formation/azide displacement protocol proceeded in 88% 

yield over two steps (Scheme A5.2.2). We examined several conditions for the reduction 

of azide 216, including hydrogenation and Staudinger reactions, but the aforementioned 

use of polymer-bound PPh3 proved synthetically superior in this context. 

Scheme A5.2.2. Alternative Synthesis and Reduction of Azide 216 
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A5.3  ONE-POT ACYLATION/ANNULATION WITH OXALYL CHLORIDE 

 In our efforts to synthesize complex polycyclic Kopsia alkaloids (e.g., 227), we 

found that N-acylation of tetracycle 213 could be achieved under mild conditions (vide 

supra). We thus postulated that 213 could react with oxalyl chloride to give an N-oxalyl 

piperidine intermediate (230), which would be poised to undergo a Friedel–Crafts-type 

acylation at C3 of the indole nucleus (Scheme A5.3.1). In the event, treatment of 213 

with oxalyl chloride afforded what we believe to be hemiaminal 231 in 53% yield.2 

Scheme A5.3.1. A Pyrrolidine-Dione Annulation Toward (–)-Kopsifoline G (227) 

 

A5.4  CONCLUSIONS 

 Our investigations toward the enantioselective synthesis of complex Kopsia 

alkaloids revealed that the best method for introducing the piperidine nitrogen (N4)3 

found in these targets is via an azide. Furthermore, while multiple conditions successfully 

promote azide reduction with concomitant cyclization, the best reagent for this 

transformation proved to be polymer-bound PPh3. Lastly, we found that tetracycle 213 

could react with oxalyl chloride in an N-acylation/Friedel–Crafts acylation cascade to 

213
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give pyrrolidine-dione-containing 231, which has been tentatively assigned by HRMS, 

IR, and 2D NMR data. 
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A5.5  EXPERIMENTAL SECTION 

A5.5.1  MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried 

by passage through an activated alumina column under argon.4 Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-LCMS. TLC 

was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching, p-anisaldehyde, CAM, or KMnO4 staining. 

Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40–63 nm) was used for 

flash chromatography. Melting points were measured with BÜCHI Melting Point B-545. 

1H and 13C NMR spectra were recorded on a Varian Inova 500 (500 MHz and 126 MHz, 

respectively) and are reported in terms of chemical shift relative to CHCl3 (δ 7.26 and δ 

77.16, respectively). Data for 1H NMR are reported as follows: chemical shift (δ ppm) 

(multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: 

s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, 

br s = broad singlet, br d = broad doublet, br t = broad triplet, app = apparent. Data for 13C 

NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained by use 

of a Perkin Elmer Spectrum BXII spectrometer using thin films deposited on NaCl plates 

and reported in frequency of absorption (cm-1). Optical rotations were measured with a 

Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm 

path-length cell and are reported as: [α]D
T (concentration in g/100 mL, solvent). High 

resolution mass spectra (HRMS) were obtained from the Caltech Mass Spectral Facility 

using a JEOL JMS-600H High Resolution Mass Spectrometer in fast atom bombardment 
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(FAB+) or electron ionization (EI+) mode, or Agilent 6200 Series TOF with an Agilent 

G1978A Multimode source in mixed ionization mode (MM: ESI/APCI). 

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa 

Aesar and used as received unless otherwise stated. 
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A5.5.2  EXPERIMENTAL PROCEDURES 

 

 

Azide 216: To a solution of alcohol 215 (1.1 g, 3.33 mmol, 1.0 equiv) and Et3N (1.5 mL, 

10.76 mmol, 3.2 equiv) in CH2Cl2 (24 mL) was added methanesulfonyl chloride (MsCl, 

0.28 mL, 3.62 mmol, 1.09 equiv) slowly at 0 °C. The reaction mixture was stirred at 0 °C 

for 15 min, then was quenched with sat. aq. NaHCO3 (10 mL). After stirring for an 

additional 15 min, the aqueous layer was separated and extracted with CH2Cl2 (2 x 20 

mL). The combined organic layers were washed with brine, dried over Na2SO4 and 

concentrated. The crude product was dissolved in DMF (24 mL), and NaN3 (240 mg, 

3.69 mmol, 1.1 equiv) was added. The suspension was stirred at 60 °C for 1h, at which 

point complete consumption of starting material was determine by TLC analysis. The 

reaction mixture was diluted with H2O (20 mL), and extracted with EtOAc (4 × 20 mL). 

The combined organic layers were washed with H2O (2×20 mL) and brine (20 mL), dried 

over Na2SO4 and concentrated. Flash column chromatography (SiO2, 20% EtOAc in 

hexanes) afforded azide 216 as a yellow oil (1.04 g, 88% over two steps): Rf = 0.33 (3:1 

hexanes:EtOAc eluent). Physical and spectral data matched those reported in Chapter 3. 
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Sulfonamide 229:	To a solution of alcohol 215 (164 mg, 0.5 mmol, 1.0 equiv) in CH2Cl2 

(10 mL) were added 2-nitrobenzenesulfonamide (306 mg, 1.5 mmol, 3.0 equiv), 

diphenyl-2-pyridylphosphine (263 mg, 1.0 mmol, 2.0 equiv) at 23 °C. Di-tert-

butylazodicarboxylate (1 mL, 1.0 M in CH2Cl2, 2.0 equiv) was added over 30 min via 

syringe pump, and the resulting mixture was stirred at 23 °C for an additional 2 h. HCl (5 

mL, 4.0 M in 1,4-dioxane) was added, and after stirring for 1 h, the reaction mixture was 

concentrated. The residue was dissolved in CH2Cl2 (30 mL) and washed with 4 M aq. 

HCl (2 x 20 mL). the organic layer was dried over Na2SO4, filtered and concentrated. 

Flash column chromatography (SiO2, 20% EtOAc in hexanes) afforded sulfonamide 229 

(216 mg, 85%) as a yellow foam: Rf = 0.29 (4:1 hexanes:EtOAc eluent); [α]D
25 –87.2 (c 

1.1, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.39–8.34 (m, 1H), 8.07 (dd, J = 7.7, 1.6 Hz, 

1H), 7.74 (dd, J = 7.7, 1.5 Hz, 1H), 7.66 (td, J = 7.6, 1.5 Hz, 1H), 7.60 (td, J = 7.7, 1.6 

Hz, 1H), 7.48–7.44 (m, 1H), 7.28–7.24 (m, 2H), 6.30 (q, J = 1.2 Hz, 1H), 5.36 (t, J = 6.1 

Hz, 1H), 3.64 (s, 3H), 3.14 (qd, J = 6.4, 1.6 Hz, 2H), 3.05 (tdd, J = 7.1, 5.4, 1.5 Hz, 2H), 

2.37 (dt, J = 10.1, 6.6 Hz, 2H), 2.12–1.90 (m, 4H), 1.86–1.79 (m, 1H), 1.68–1.58 (m, 

3H); 13C NMR (101 MHz, CDCl3) δ 173.6, 172.7, 148.1, 137.1, 135.2, 133.8, 133.7, 

132.9, 131.1, 130.2, 125.5, 124.24, 124.20, 120.0, 116.7, 105.2, 52.0, 45.5, 44.2, 32.4, 

30.5, 29.7, 29.0, 24.5, 19.6; IR (Neat Film, NaCl) 3332, 2949, 1731, 1692, 1596, 1539, 

1453, 1440, 1357, 1341, 1312, 1166, 1078, 909, 853, 782, 759, 730, 654 cm-1; HRMS 

(ESI/APCI) m/z calc’d for C25H31N4O7S [M+NH4]+: 531.1908, found 531.1915. 
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Methyl (R)-3-(3-(2-(1H-indol-2-yl)ethyl)-2-oxopiperidin-3-yl)propanoate (214): To a 

solution of sulfonamide 229 (308 mg, 0.6 mmol, 1.0 equiv) in MeCN (10 mL) were 

added thiophenol (195 mg, 1.77 mmol, 3.0 equiv) and K2CO3 (325 mg, 2.4 mmol, 4.0 

equiv) at 23 °C. The reaction mixture was placed in a pre-heated oil bath and stirred at 50 

°C for 12 h. After cooling to 23 °C, the reaction mixture was concentrated to dryness. 

Flash column chromatography (SiO2, 4% MeOH in CH2Cl2) afforded δ-lactam 214 as a 

light yellow foam (163 mg, 83%): Rf = 0.27 (19:1 CH2Cl2:MeOH eluent). Physical and 

spectral data matched those reported in Chapter 3. 

 

Hemiaminal 231: To a solution of tetracycle 213 (15 mg, 48 µmol, 1.0 equiv) in THF (1 

mL) was added N,N-diisopropylethylamine (DIPEA, 14.4 µL, 106 µmol, 2.2 equiv) and 

oxalyl chloride (4.3 µL, 50 µmol, 1.05 equiv) at 0 °C. After 30 min, the reaction mixture 

was removed from the cooling bath and allowed to stir at 23 °C for an additional 2.5 h. 

At this time, full consumption of starting material was determined by TLC analysis. 
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Saturated aq. NaHCO3 (5 mL) was added, and the mixture was extracted with EtOAc (3 x 

5 mL). The combined organic layers were dried over Na2SO4, filtered, and concentrated. 

Flash column chromatography (SiO2, 2% MeOH in CH2Cl2) afforded hemiaminal 2315 

(9.8 mg, 53% yield) as a light orange amorphous solid: Rf = 0.3 (19:1 CH2Cl2:MeOH 

eluent); [α]D
25 +124.2 (c 0.37, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.13 (td, J = 7.7, 

1.2 Hz, 1H, C10H), 7.03 (dd, J = 7.6, 0.7 Hz, 1H, C9H), 6.78 (td, J = 7.5, 1.0 Hz, 1H, 

C11H), 6.64 (ddd, J = 7.9, 1.0, 0.5 Hz, 1H, C12H), 5.27 (s, 1H), 4.19 (dd, J = 13.4, 6.1 Hz, 

1H, C3Ha), 4.12 (s, 1H), 3.67 (s, 3H, C23H3), 3.65 (s, 1H, C21H), 2.85–2.75 (m, 2H, C16Ha, 

C3Hb), 2.64 (dt, J = 19.5, 9.5 Hz, 1H, C21Hb), 2.24 (ddd, J = 9.1, 6.4, 4.0 Hz, 2H, C18H2), 

2.00 (ddd, J = 14.7, 9.5, 1.3 Hz, 1H, ), 1.95–1.90 (m, 1H), 1.89–1.80 (m, 3H), 1.66–1.60 

(m, 1H), 1.48–1.39 (m, 1H), 1.38–1.30 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 208.1 

(C6), 173.3 (C22), 168.3 (C5), 147.7 (C8), 130.2 (C10), 129.8 (C13), 122.9 (C9), 120.2 (C11), 

110.8 (C12), 95.4 (C2), 74.4 (C21), 59.4 (C7), 52.1 (C23), 39.8 (C3), 36.6 (C20), 34.3 (C16), 

32.9, 28.9, 28.6 (C18), 21.0 (C19), 19.6; IR (Neat Film, NaCl) 3486, 3294, 3015, 2950, 

2871, 1732, 1693, 1603, 1484, 1468, 1442, 1315, 1271, 1171, 1130, 1019, 752 cm-1; 

HRMS (ESI/APCI) m/z calc’d for C21H25N2O5 [M+H]+: 385.1758, found 385.1752. 
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A5.6  NOTES AND REFERENCES 

1. For the isolation of (–)-kopsifoline G (227), see: Chen, J.; Li, X.; Li, N.; Lu, J.; 

Xu, X.; Duan, H.; Qin, L. Chem. Nat. Compd. 2012, 48, 834–835. 

2. This reaction has not been optimized. The structural assignment of 231 was 

tentatively assigned according to HRMS, IR and 2D NMR data. For details, see 

the experimental information. We cannot make a definitive claim regarding the 

stereochemistry of the hemiaminal. 

3. For a uniform numbering system of monoterpene indole alkaloids, see: Le Men, 

J.; Taylor, W. I. Experientia 1965, 21, 508–510. 

4. Pangborn, A. M.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. 

Organometallics 1996, 15, 1518–1520. 

5. Some preliminary 1H and 13C assignments for compound 231 have been made. 

See the inset for numbering. 
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APPENDIX 6 

Synthetic Summary for Chapter 3: 

Stereoselectivity in Indole-Iminium Cyclizations:  
 

Total Synthesis of (+)-Limaspermidine, Formal Synthesis of  

(+)-Kopsihainanine A, and Progress Toward the Total  

Synthesis of (–)-Kopsinine and (–)-Kopsinilam 

 

Scheme A6.1. Hydroamination/Reduction/Pictet–Spengler Cascade for the 

Synthesis of Cis-Fused Octahydroisoquinoline-Containing Building Blocks 
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Scheme A6.2. Hydroamination/Translactamization/Bischler–Napieralski Sequence 

for the Synthesis of Trans-Fused Octahydroisoquinoline-Containing Building Blocks 
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Scheme A6.4. Catalytic Enantioselective Synthesis of (+)-Kopsihainanine A (22) 

 

 

 

 

 

 

 

 

 

 

 

N

O O
O

LHMDS;
allylcyanoformate

N

O

166 179

(96% yield)

THF, –78 °C → 0 °C

(96% yield)

MeCN, 23 °C
DBU, methyl acrylate

N

O O
O

CO2Me

172i

(90% yield, 92% ee)

MTBE, 60 °C

(S)-(CF3)3-t-BuPHOX
(76 , 12.5 mol %)

Pd2(pmdba)3 (5 mol %)
N

O

165i
MeO2C

N

O

216
MeO2C (81% yield)

THF/H2O
(5:1), 65 °C

PPh3
(polymer-bound)

N
H

HN

O

214

CO2Me

N

O

215
MeO2C(87% yield)

then NaBO3•4H2O
THF/H2O, 85 °C

RhCl(PPh3)3 (5 mol %)
catecholborane, THF, 23 °C

OH

N3

213

N
H

HN

CO2Me

(65% yield)

toluene/THF
(5:1), 80 °C N

H

N

22
(+)-Kopsihainanine A

O
HO

N
H

NO

TBD

218
(91% yield)

THF, –78 °C → 23 °C
LDMA, HMPA; (TMSO)2

[Zhu, 2014]

(88% yield)

2. NaN3
DMF, 60 °C

1. MsCl, Et3N
CH2Cl2, 0 °C

then NaBH4, MeOH
–20 °C → 23 °C

2-Cl-pyr, Tf2O
CH2Cl2, –20 °C → 23 °C



Appendix 6 – Synthetic Summary for Chapter 3    214 
Scheme A6.5. Progress Toward the Total Syntheses of (–)-Kopsinine (20), (–)-

Kopsinilam (199), and (–)-Kopsifoline G (227) 
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Scheme A6.6. Comparative Synthetic Utility of Carbazolone and DHPI Pd-

Catalyzed Allylic Alkylation Products. 
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Figure A7.3. 13C NMR (101 MHz, CD3OD) of compound ent-114. 
 

Figure A7.2. Infrared spectrum (Thin Film, NaCl) of compound ent-114. 
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Figure A7.6. 13C NMR (101 MHz, CD3OD) of compound 208. 
 

Figure A7.5. Infrared spectrum (Thin Film, NaCl) of compound 208. 
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Figure A7.9. 13C NMR (126 MHz, CDCl3) of compound 172h. 

Figure A7.8. Infrared spectrum (Thin Film, NaCl) of compound 172h. 
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Figure A7.12. 13C NMR (126 MHz, CDCl3) of compound 165h. 

Figure A7.11. Infrared spectrum (Thin Film, NaCl) of compound 165h. 
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Figure A7.15. 13C NMR (101 MHz, CDCl3) of compound 210. 

Figure A7.14. Infrared spectrum (Thin Film, NaCl) of compound 210. 
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Figure A7.18. 13C NMR (126 MHz, CDCl3) of compound 209. 

Figure A7.17. Infrared spectrum (Thin Film, NaCl) of compound 209. 
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Figure A7.21. 13C NMR (126 MHz, CDCl3) of compound 212. 

Figure A7.20. Infrared spectrum (Thin Film, NaCl) of compound 212. 
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Figure A7.24. 13C NMR (126 MHz, CDCl3) of (+)-Limaspermidine (6). 

Figure A7.23. Infrared spectrum (Thin Film, NaCl) of (+)-Limaspermidine (6). 
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Figure A7.27. 13C NMR (126 MHz, CDCl3) of compound 172i. 

Figure A7.26. Infrared spectrum (Thin Film, NaCl) of compound 172i. 
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Figure A7.30. 13C NMR (126 MHz, CDCl3) of compound 165i. 

Figure A7.29. Infrared spectrum (Thin Film, NaCl) of compound 165i. 
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Figure A7.33. 13C NMR (126 MHz, CDCl3) of compound 215. 

Figure A7.32. Infrared spectrum (Thin Film, NaCl) of compound 215. 
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Figure A7.36. 13C NMR (101 MHz, CDCl3) of compound 216. 

Figure A7.35. Infrared spectrum (Thin Film, NaCl) of compound 216. 
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Figure A7.39. 13C NMR (126 MHz, CDCl3) of compound 214. 

Figure A7.38. Infrared spectrum (Thin Film, NaCl) of compound 214. 
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Figure A7.42. 13C NMR (101 MHz, CDCl3) of compound 213. 

Figure A7.41. Infrared spectrum (Thin Film, NaCl) of compound 213. 
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Figure A7.45. 13C NMR (101 MHz, CDCl3) of compound 218. 

Figure A7.44. Infrared spectrum (Thin Film, NaCl) of compound 218. 
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Figure A7.48. 13C NMR (101 MHz, CDCl3) of compound 221. 

Figure A7.47. Infrared spectrum (Thin Film, NaCl) of compound 221. 
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Figure A7.51. 13C NMR (101 MHz, CDCl3) of compound 229. 

Figure A7.50. Infrared spectrum (Thin Film, NaCl) of compound 229. 
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Figure A7.54. 13C NMR (126 MHz, CDCl3) of compound 231. 

Figure A7.53. Infrared spectrum (Thin Film, NaCl) of compound 231. 
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CHAPTER 4 

Enantioselective Synthesis of α-Quaternary Mannich Adducts:  
 

Total Syntheses of (–)-Isonitramine and (+)-Sibirinine† 

 

 

4.1   INTRODUCTION AND BACKGROUND 

The Mannich reaction, first discovered in the early 20th century, is among the 

most robust reactions known to produce nitrogen-containing compounds.  In a classic 

intermolecular Mannich reaction, an aldehyde, an amine and an α-acidic carbonyl 

compound react to form a β-amino carbonyl product.1  Recent progress in this area, 

including modified imine donors and well-explored catalyst systems, has made available 

a wide variety of asymmetric α-functionalizations of carbonyl compounds.2 To date, 

asymmetric Mannich-type reactions3 and α-aminomethylation reactions4 to establish α-

stereogenic α-quaternary carbonyl compounds have been limited to 1,3-dicarbonyl 

nucleophiles (e.g., 232, Scheme 4.1.1.A). To our knowledge, the lone exceptions are the 

																																																								
†	This work was performed in collaboration with Dr. Yoshitaka Numajiri and Dr. Koji Chiyoda, both of 
whom are alumni of Stoltz group.  Additionally, this work has been published and adapted with permission 
from Numajiri, Y.; Pritchett, B. P.; Chiyoda, K.; Stoltz, B. M. J. Am. Chem. Soc. 2015, 137, 1040–1043. 
Copyright 2015 American Chemical Society.	
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proline-catalyzed Mannich-type reaction of α-branched aldehydes reported by Barbas 

and co-workers,5 and Trost’s zinc ProPhenol-catalyzed Mannich-type reaction of 

tetralone nucleophiles.3e However, these substrates only possess one enolizable position 

and in the latter example the resulting enolates are stabilized through conjugation with 

the arene π-system. Moreover, these reactions3–5 require prochiral aldimine electrophiles 

derived from either glyoxalate esters (e.g., 233, R2 = CO2R) or aryl aldehydes (e.g., 233, 

R2 = (hetero)aryl), which add an additional element of stereocontrol via the facial bias of 

the imine (Scheme 4.1.1.A).  

The synthesis of enantioenriched α-quaternary Mannich adducts6 derived from α-

alkyl-substituted ketones (e.g., 235, Scheme 4.1.1.B) is limited by three important 

considerations. First, there are two enolizable positions of similar pKa, which will result 

in nonselective enolization. Second, it is unlikely that the equilibrating conditions 

required to access the thermodynamically preferred enolate (i.e., 236) will be amenable to 

enantioselective addition into an aldimine electrophile. Finally, it is unclear whether non-

prochiral formaldehyde-derived imines can be successfully implemented this 

transformation. To overcome these challenges, we envisioned a strategy wherein the 

alkylation, not the aminomethylation, would be the enantiodetermining step. 
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Scheme 4.1.1. Limitations of Existing Enantioselective Mannich-Type Reactions 

 

4.2   STRATEGIC PALLADIUM-CATALYZED ALLYLIC ALKYLATION 

Over the course of the past decade, our group has demonstrated decarboxylative 

palladium-catalyzed asymmetric alkylation of β-ketoesters as a powerful tool to access 

quaternary centers with high enantioselectivities.7  The extensive substrate scope and 

broad functional group compatibility of this transformation8,9 encouraged further 

exploration of palladium catalysts in the synthesis of amine-containing substrates, 

thereby facilitating access to enantioenriched bioactive alkaloids or pharmaceutical 

candidates.  We therefore sought to implement our well-studied, reliable alkylation 

chemistry in a simple yet powerful strategy for the synthesis of α-quaternary Mannich 

products in an enantioselective fashion (Scheme 4.2.1.A). Introduction of an 

aminomethyl group to β-ketoester 238 using classical Mannich chemistry would furnish 

β-aminoketone 239. A palladium-catalyzed asymmetric allylic alkylation reaction would 

then afford the enantioenriched α-quaternary ketone product 240.  Compound 240 can be 

thought of as an α-aminomethylation product of the so-called “thermodynamic” enolate 

of compound 235.  We imagined that successful exploration of this inverted strategy 

B. Inherent Limitations of an Enantioselective Aminomethylation
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would enable rapid, stereocontrolled total syntheses of (–)-isonitramine and (+)-sibirinine 

(241 and 242, respectively, Scheme 4.2.1.B).10–12 

Scheme 4.2.1. α-Quaternary Mannich Adducts via Enantioselective Alkylation 

 

 

4.3  NITROGEN PROTECTING GROUP EVALUATION 

 To introduce the aminomethyl moiety, we employed sulfonylmethyl carbamates 

(e.g., 243a) as versatile and readily available imine precursors.13  In the presence of 

Cs2CO3, the Boc-protected imine generated from 243a reacted with β-ketoester 23814 to 

smoothly afford β-aminoketone 239a (99% yield) at ambient temperature (Scheme 

4.3.1).  In a similar manner, we obtained other protected aminoketones (e.g., 239b–g) in 

good to excellent yields.15 

Scheme 4.3.1. Synthesis of β-Ketoester 239a 
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 With β-ketoesters 239a–g in hand, our investigation into this substrate class 

commenced in the context of palladium-catalyzed allylic alkylation (Table 4.3.1).  We 

found that exposure of Boc-protected substrate 239a to a the catalyst derived from 

Pd2(dba)3 (5 mol %) and (S)-(CF3)3-t-BuPHOX (76, 12.5 mol %)16 in toluene at ambient 

temperature afforded the desired product 240a in 94% yield and 86% ee (entry 1).  Cbz-

protected 239b also gave excellent yield and ee (entry 3).   It is important to note that we 

did not detect any N-alkylated side products, a result that highlights the mild nature of our 

reaction conditions.17 Arylcarbamates 239c–e gave slightly decreased enantioselectivities 

in the products (entries 4–6).  Changing from carbamate to benzoyl or tosyl protecting 

groups resulted in poor enantioselectivity (entries 7 and 8, respectively), possibly due to 

their ability to coordinate to the catalyst and/or the enhanced acidity of the N–H proton. 

Alternatively, it is possible that a beneficial lewis-basic interaction between the nitrogen 

protecting group and the palladium(II) center is maximized when using carbamates. We 

found that the more electron-withdrawn ligand, 76, gave higher enantioselectivity. In the 

case of (S)–t-BuPHOX (66),18 we observed diminished ee (Table 4.3.1, entry 2). 
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Table 4.3.1. Optimization of the Amine Protecting Groupa 

 

4.4  β-OXOESTER SUBSTRATE SCOPE INVESTIGATION 

 We found that a broad range of ketones and amides (e.g., 245a–j, and 172g) can 

easily be converted into enantioenriched α-tetrasubstituted Mannich-type products (e.g., 

246a–j, and 165g) with this two-step strategy (Table 4.4.1).  For all substrates, the first 

step proceeded in good to excellent yields (51–98%).  In the allylic alkylation, 2-phenyl-

2-propenyl-substituted 246a was obtained in high yield (91%) and excellent 

enantioselectivity (90% ee).  Cycloheptanone 245b proved to be a good substrate and the 

corresponding α-quaternary cycloheptanone 246b was isolated in 93% yield and 87% ee, 
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while cyclopentanone 246c was synthesized with slightly lower enantioselectivity (82% 

ee).  Vinylogous ester 245d and tetralone 245e afforded α-quaternary vinylogous ester 

246d and tetralone 246e in 70% yield and 92% ee, and 74% yield and 93% ee, 

respectively.  Basic tertiary amines are tolerated by the reaction conditions, as 4-

piperidinone 246f was isolated in 78% yield and 90% ee.  We were pleased to find that 

under slightly elevated reaction temperatures (40 °C), the desired lactam 246g, 

morpholinone 246h, and carbazolone 246i were available in moderate to excellent yields 

(51–94%) and excellent enantioselectivities (90–99% ee). Unfortunately, imide 245j 

performed poorly in this chemistry, to deliver the corresponding α-quaternary product 

(246j) in 76% yield but only 55% ee. C3-methyl DHPI 165g was obtained in 61% yield 

and 92% ee. 
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Table 4.4.1. Two-Step Enantioselective Synthesis of α-Aminomethyl Carbonyl 

Compounds (246) from β-Oxoesters (244)a,b 

 

4.5 TOTAL SYNTHESES OF (–)-ISONITRAMINE AND (+)-SIBIRININE 

In order to exhibit the utility of our method for generating interesting and useful 

chiral building blocks, total syntheses of (–)-isonitramine (241) and (+)-sibirinine (242) 

was carried out (Scheme 4.5.1).  (–)-Isonitramine (241) is a spirocyclic alkaloid 

posessing an  azaspiro[5.5]undecane core. (+)–Sibirinine (242) is a tricyclic alkaloid 

featuring an N,O-acetal, a tertiary amine N-oxide, and two pairs of vicinal stereocenters, 

including an all-carbon quaternary center. Asymmetric allylic alkylation using one gram 

of 239b proceeded with one half of the typical catalyst loading without any loss of 
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enantioselectivity. Reduction of β-amino ketone 240b with diisobutylaluminum hydride 

(DIBAL), followed by acetylation of the resulting alcohol, yielded carbamate 247 as a 

single diastereomer.  Hydroboration of the terminal alkene in carbamate 247 provided 

primary alcohol 248 in 86% yield over 3 steps.  Cyclization of the mesylate derived from 

primary alcohol 248 smoothly delivered spirocycle 249.   Simultaneous removal of the 

acetyl and Cbz groups using potassium hydroxide furnished (–)-isonitramine (241) in 

77% yield.  Treatment of (–)-isonitramine (241) with excess acetaldehyde yielded the 

desired N,O-acetal, which was smoothly N-oxidized by m-CPBA to give (+)-sibirinine 

(242) in 92% yield over two steps. Notably, conversion of (–)-isonitramine (241) to (+)-

sibirinine (242) can be accomplished in one pot by forming the N,O-acetal intermediate 

under an oxygen atmosphere, albeit in diminished yield. Spectral data of (–)-241 and (+)-

242 were in agreement with those previously reported.11,12 Furthermore, our synthesis of 

(–)-isonitramine (241) confirms the absolute stereochemistry of 240b.11 

Scheme 4.5.1. Total Syntheses of (–)-Isonitramine (241) and (+)-Sibirinine (242) 
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4.6  CONCLUSION 

 In summary, we have developed an inverted approach to the synthesis of α-

quaternary and -tetrasubstituted tertiary Mannich-type products by strategic enolate 

formation to give products in moderate to excellent yields and good to excellent 

enantiomeric excess.  This chemistry tolerates a variety of ketone, amide, and vinylogous 

ester functionalities even in the presence of basic tertiary amines and relatively acidic N–

H moieties.  Multiple ring sizes, aromatic, and heteroaromatic scaffolds are also 

accessible via this strategy.  Furthermore, this method enables the efficient construction 

of spirocyclic amine-containing scaffolds, as illustrated in our syntheses of the alkaloids 

(–)-isonitramine (241) and (+)-sibirinine (242).  The first total synthesis of (+)-sibirinine 

(242) was accomplished in 11 steps and 36% overall yield from commercially available 

diallyl pimelate. 
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4.7  EXPERIMENTAL SECTION 

4.7.1  MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried 

by passage through an activated alumina column under argon.19 Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-LCMS. TLC 

was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching, p-anisaldehyde, or KMnO4 staining. Silicycle 

SiliaFlash® P60 Academic Silica gel (particle size 40–63 nm) was used for flash 

chromatography. Melting points were measured with BÜCHI Melting Point B-545. 1H 

and 13C NMR spectra were recorded on a Varian Inova 500 (500 MHz and 126 MHz, 

respectively) and a Varian Mercury 300 spectrometer (300 MHz and 76 MHz, 

respectively) and are reported in terms of chemical shift relative to CHCl3 (δ 7.26 and δ 

77.16, respectively). Data for 1H NMR are reported as follows: chemical shift (δ ppm) 

(multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: 

s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, 

br s = broad singlet, br d = broad doublet, br t = broad triplet, app = apparent. Data for 13C 

NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained by use 

of a Perkin Elmer Spectrum BXII spectrometer using thin films deposited on NaCl plates 

and reported in frequency of absorption (cm-1). Optical rotations were measured with a 

Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm 

path-length cell and are reported as: [α]D
T (concentration in g/100 mL, solvent). 

Analytical SFC was performed with a Mettler SFC supercritical CO2 analytical 
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chromatography system utilizing Chiralpak (AD-H, AS-H) or Chiralcel (OD-H, OJ-H, or 

OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. High 

resolution mass spectra (HRMS) were obtained from the Caltech Mass Spectral Facility 

using a JEOL JMS-600H High Resolution Mass Spectrometer in fast atom bombardment 

(FAB+) or electron ionization (EI+) mode, or Agilent 6200 Series TOF with an Agilent 

G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure 

chemical ionization (APCI+), or mixed ionization mode (MM: ESI/APCI). 

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa 

Aesar and used as received unless otherwise stated. Et3N and pyridine were distilled from 

calcium hydride prior to use. MeOH was distilled from magnesium methoxide 

immediately prior to use. (S)-t-BuPHOX,18 (S)-(CF3)3-t-BuPHOX,16 tris(4,4’-

methoxydibenzylideneacetone)dipalladium(0) Pd2(pmdba)3,20 sulfonyl carbamates 243a–

g,21 and 1,3-dicarbonyl compounds 238,14 244a–h7,8b,8c were prepared by known methods. 
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4.7.2  EXPERIMENTAL PROCEDURES 

General Procedure A: α-Aminomethyl 1,3-dicarbonyl Substrate Synthesis 
 

 
 
Allyl 1-(((tert-butoxycarbonyl)amino)methyl)-2-oxocyclohexane-1-carboxylate 

(239a): To a stirred solution of β-ketoester 238 (0.91 g, 5.0 mmol, 1 equiv) in CH2Cl2 (25 

mL) was added sulfonylmethyl carbamate 243a (1.63 g, 6.0 mmol, 1.2 equiv) in one 

portion at ambient temperature.  After stirring for 5 min, Cs2CO3 (4.70 g, 12.5 mmol, 2.5 

equiv) was added in one portion.  After 12 h, full consumption of starting material was 

determined by TLC analysis.  Saturated aqueous ammonium chloride was added slowly, 

and the biphasic mixture was stirred at ambient temperature for 20 min and extracted 

with CH2Cl2 (3 x 25 mL).  The combined organic layers were dried over Na2SO4, filtered, 

and concentrated in vacuo.  Flash column chromatography (SiO2, 10% EtOAc in 

hexanes) afforded α-aminomethyl β-ketoester 239a (1.55 g, 99% yield) as a faintly 

yellow oil. Rf = 0.55 (25% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.91 (ddt, J 

= 16.5, 10.4, 5.8 Hz, 1H), 5.33 (m, 1H), 5.25 (m, 1H), 5.17 (m, 1H), 4.63 (m, 2H), 3.54 

(dd, J = 13.9, 7.7 Hz, 1H), 3.40 (dd, J = 13.9, 5.7 Hz, 1H), 2.59–2.41 (m, 3H), 1.99 (m, 

1H), 1.81 (m, 1H), 1.73–1.51 (m, 3H), 1.40 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 

209.0, 171.0, 156.0, 131.6, 119.2, 79.4, 66.4, 62.4, 44.4, 40.9, 33.9, 28.5, 27.3, 22.2; IR 

(Neat Film, NaCl) 3461, 3404, 2976, 2939, 2867, 1713, 1501, 1452, 1366, 1247, 1229, 

1168, 1141 cm-1; HRMS (FAB+) m/z calc’d for C16H26NO5 [M+H]+: 312.1811, found 

312.1824. 
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Spectroscopic Data for 239b–g, 245a–j, and 172g 
	

 
Allyl 1-(benzyloxycarbonylaminomethyl)-2-oxocyclohexane-1-carboxylate (239b): 

The reaction was conducted according to general procedure A.  Ketoester 238 (1.66 g, 

9.09 mmol); sulfonylmethyl carbamate 243b (3.33 g, 10.9 mmol); Cs2CO3 (7.40 g, 22.7 

mmol).  The reaction mixture was stirred for 18 h.  Flash column chromatography (SiO2, 

15% EtOAc in hexanes) afforded α-aminomethyl β-ketoester 239b (2.95 g, 8.54 mmol, 

94% yield) as a colorless oil. Rf = 0.27 (20% EtOAc in hexanes); 1H NMR (500 MHz, 

CDCl3) δ 7.38–7.28 (m, 5H), 5.86 (ddt, J = 16.6, 10.5, 5.9 Hz, 1H), 5.41 (m, 1H), 5.32 

(m, 1H), 5.23 (m, 1H), 5.11–5.01 (m, 2H), 4.63–4.52 (m, 2H), 3.62 (dd, J = 13.8, 7.7 Hz, 

1H), 3.46 (dd, J = 13.8, 5.6 Hz, 1H), 2.59–2.42 (m, 3H), 2.00 (m, 1H), 1.81 (m, 1H), 

1.72–1.53 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 208.8, 170.7, 156.5, 136.6, 131.5, 

128.6, 128.2, 128.1, 119.3, 66.8, 66.4, 62.2, 44.8, 40.9, 33.9, 27.2, 22.1; IR (Neat Film, 

NaCl) 3450, 3394, 2943, 1724, 1711, 1509, 1453, 1265 1219, 1141, 981 cm-1; HRMS 

(ESI+) m/z calc’d for C19H24NO5 [M+H]+: 346.1649, found 346.1634. 

 
Allyl 1-((4-methoxyphenoxy)carbonylaminomethyl)-2-oxocyclohexane-1-carboxylate 

(239c): The reaction was conducted according to general procedure A.  Ketoester 238 

(182 mg, 1.00 mmol); sulfonylmethyl carbamate 243c (386 mg, 1.20 mmol); Cs2CO3 

(910 mg, 2.50 mmol).  The reaction mixture was stirred for 24 h.  Flash column 

chromatography (SiO2, 15% EtOAc in hexanes) afforded α-aminomethyl β-ketoester 
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239c (265 mg, 0.733 mmol, 73% yield) as a colorless oil. Rf = 0.18 (20% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.01–6.97 (m, 2H), 6.88–6.82 (m, 2H), 5.91 (m, 

1H), 5.67 (m, 1H), 5.34 (m, 1H), 5.26 (m, 1H), 4.67–4.64 (m, 2H), 3.78 (s, 3H), 3.67 (dd, 

J = 13.9, 7.7 Hz, 1H), 3.53 (dd, J = 13.9, 5.6 Hz, 1H), 2.62–2.46 (m, 3H), 2.03 (m, 1H), 

1.84 (m, 1H), 1.76–1.58 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 208.9, 170.7, 157.0, 

155.3, 144.7, 131.5, 122.4, 119.4, 114.4, 66.5, 62.2, 55.7, 45.0, 40.9, 34.0, 27.2, 22.1; IR 

(Neat Film, NaCl) 3377, 2943, 1742, 1732, 1709, 1498, 1201, 1055 cm-1; HRMS (ESI+) 

m/z calc’d for C19H24NO6 [M+H]+: 362.1598, found 362.1601. 

 
Allyl 1-(phenoxycarbonylaminomethyl)-2-oxocyclohexane-1-carboxylate (239d): The 

reaction was conducted according to general procedure A.  Ketoester 238 (182 mg, 1.00 

mmol); sulfonylmethyl carbamate 243d (350 mg, 1.20 mmol); Cs2CO3 (910 mg, 2.50 

mmol).  The reaction mixture was stirred for 24 h.  Flash column chromatography (SiO2, 

15% EtOAc in hexanes) afforded α-aminomethyl β-ketoester 239d (310 mg, 0.936 

mmol, 94% yield) as a colorless oil. Rf = 0.25 (20% EtOAc in hexanes); 1H NMR (500 

MHz, CDCl3) δ 7.37–7.29 (m, 2H), 7.18 (m, 1H), 7.12–7.05 (m, 2H), 5.92 (ddt, J = 17.3, 

10.5, 5.9 Hz, 1H), 5.71 (m, 1H), 5.34 (m, 1H), 5.26 (m, 1H), 4.71–4.62 (m, 2H), 3.68 (dd, 

J = 13.9, 7.8 Hz, 1H), 3.53 (dd, J = 13.9, 5.6 Hz, 1H), 2.64–2.47 (m, 3H), 2.04 (m, 1H), 

1.84 (m, 1H), 1.77–1.58 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 208.9, 170.7, 154.8, 

151.1, 131.5, 129.3, 125.4, 121.6, 119.5, 66.5, 62.1, 45.0, 40.9, 34.0, 27.3, 22.1; IR (Neat 

Film, NaCl) 3377, 2943, 1745, 1728, 1709, 1514, 1489, 1202, 1143 cm-1; HRMS (ESI+) 

m/z calc’d for C18H22NO5 [M+H]+: 332.1492, found 332.1483. 
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Allyl 1-((4-fluorophenoxy)carbonylaminomethyl)-2-oxocyclohexane-1-carboxylate 

(239e): The reaction was conducted according to general procedure A.  Ketoester 238 

(182 mg, 1.00 mmol); sulfonylmethyl carbamate 243e (371 mg, 1.20 mmol); Cs2CO3 

(910 mg, 2.50 mmol).  The reaction mixture was stirred for 24 h.  Flash column 

chromatography (SiO2, 15% EtOAc in hexanes) afforded α-aminomethyl β-ketoester 

239e (278 mg, 0.796 mmol, 80% yield) as a colorless oil. Rf = 0.28 (25% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.08–6.98 (m, 4H), 5.91 (ddt, J = 17.2, 10.5, 5.9 

Hz, 1H), 5.72 (m, 1H), 5.34 (m, 1H), 5.26 (m, 1H), 4.68–4.60 (m, 2H), 3.67 (dd, J = 13.9, 

7.8 Hz, 1H), 3.52 (dd, J = 13.9, 5.5 Hz, 1H), 2.64–2.46 (m, 3H), 2.04 (m, 1H), 1.83 (m, 

1H), 1.76–1.57 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 208.9, 170.7, 160.0 (J = 243 

Hz), 154.8, 147.0 (J = 4 Hz), 131.4, 123.0 (J = 9 Hz), 119.5, 115.9 (J = 23 Hz), 66.6, 

62.1, 45.1, 40.9, 34.0, 27.3, 22.1; IR (Neat Film, NaCl) 3377, 2944, 1746, 1732, 1711, 

1497, 1219, 1193, 1147 cm-1; HRMS (ESI+) m/z calc’d for C18H21FNO5 [M+H]+: 

350.1398, found 350.1392. 

 
Allyl 1-(benzamidomethyl)-2-oxocyclohexane-1-carboxylate (239f): The reaction was 

conducted according to general procedure A.  Ketoester 238 (182 mg, 1.00 mmol); 

sulfonylmethyl carbamate 243f (413 mg, 1.50 mmol); Cs2CO3 (977 mg, 3.0 mmol).  The 

reaction mixture was stirred for 24 h.  Flash column chromatography (SiO2, 15% EtOAc 

in hexanes) afforded α-aminomethyl β-ketoester 239f (250 mg, 0.793 mmol, 79% yield) 
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as a white amorphous solid. Rf = 0.30 (40% EtOAc in hexanes); 1H NMR (500 MHz, 

CDCl3) δ 7.72 – 7.67 (m, 2H), 7.49–7.44 (m, 1H), 7.42–7.36 (m, 2H), 6.96–6.87 (m, 1H), 

5.83 (ddt, J = 17.2, 10.4, 6.0 Hz, 1H), 5.27 (dq, J = 17.1, 1.4 Hz, 1H), 5.18 (dq, J = 10.4, 

1.2 Hz, 1H), 4.65–4.52 (m, 2H), 3.96 (dd, J = 13.6, 7.7 Hz, 1H), 3.65 (dd, J = 13.6, 5.2 

Hz, 1H), 2.61–2.49 (m, 3H), 2.05–1.97 (m, 1H), 1.87–1.81 (m, 1H), 1.75–1.58 (m, 3H); 

13C NMR (126 MHz, CDCl3) δ 209.5, 170.8, 167.4, 134.4, 131.6, 131.4, 128.6, 127.0, 

119.5, 66.6, 62.2, 43.3, 40.9, 34.2, 27.2, 22.1; IR (Neat Film, NaCl) 3447, 3356, 3061, 

3028, 2943, 2866, 1712, 1667, 1651, 1602, 1580, 1519, 1488, 1450, 1307, 1280, 1203, 

1142 cm-1; HRMS (ESI+) m/z calc’d for C18H22NO4 [M+H]+: 316.1543, found 316.1559. 

 
Allyl 1-(((4-methylphenyl)sulfonamido)methyl)-2-oxocyclohexane-1-carboxylate 

(239g): The reaction was conducted according to general procedure A.  Ketoester 238 

(182 mg, 1.00 mmol); sulfonylmethyl carbamate 243g (488 mg, 1.50 mmol); Cs2CO3 

(977 mg, 3.0 mmol).  The reaction mixture was stirred for 24 h.  Flash column 

chromatography (SiO2, 25% EtOAc in hexanes) afforded α-aminomethyl β-ketoester 

239g (365 mg, 0.999 mmol, >99% yield) as a clear colorless oil. Rf = 0.25 (25% EtOAc 

in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.73–7.69 (m, 2H), 7.30 (dd, J = 8.4, 1.0 Hz, 

2H), 5.88 (ddt, J = 17.2, 10.4, 5.9 Hz, 1H), 5.32 (dq, J = 17.2, 1.5 Hz, 1H), 5.27 (dq, J = 

10.4, 1.2 Hz, 1H), 5.20 (dd, J = 8.3, 5.8 Hz, 1H), 4.61 (dt, J = 5.9, 1.3 Hz, 2H), 3.21 (dd, 

J = 12.5, 8.4 Hz, 1H), 3.06 (dd, J = 12.5, 5.8 Hz, 1H), 2.65–2.56 (m, 1H), 2.46–2.36 (m, 

4H), 2.06–1.97 (m, 1H), 1.82–1.76 (m, 1H), 1.72–1.58 (m, 4H); 13C NMR (126 MHz, 

CDCl3) δ 209.0, 170.4, 143.6, 137.0, 131.4, 129.9, 127.1, 119.6, 66.6, 61.6, 47.2, 40.9, 
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34.1, 27.0, 22.1, 21.7; IR (Neat Film, NaCl) 3289, 2942, 2867, 1728, 1709, 1451, 1335, 

1206, 1163, 1092 cm-1; HRMS (FAB+) m/z calc’d for C18H24NO5S [M+H]+: 366.1375, 

found 366.1367. 

 
2-Phenylallyl 1-(((tert-butoxycarbonyl)amino)methyl)-2-oxocyclohexane-1-

carboxylate (245a): The reaction was conducted according to general procedure A.  

Ketoester 244a (311 mg, 1.2 mmol); sulfonylmethyl carbamate 243a (392 mg, 1.44 

mmol); Cs2CO3 (977 mg, 3.0 mmol).  The reaction mixture was stirred for 24 h.  Flash 

column chromatography (SiO2, 15% EtOAc in hexanes) afforded α-aminomethyl β-

ketoester 245a (368 mg, 0.95 mmol, 79% yield) as a pale yellow oil. Rf = 0.5 (25% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.42–7.38 (m, 2H), 7.36–7.32 (m, 

2H), 7.31–7.27 (m, 1H), 5.53 (d, J = 0.9 Hz, 1H), 5.37 (q, J = 1.1 Hz, 1H), 5.1 (d, J = 

13.0 Hz, 1H), 5.07 (t, J = 7.0 Hz, 1H), 5.01 (d, J = 13.0, 1H), 3.48 (dd, J = 13.9, 7.6 Hz, 

1H), 3.35 (dd, J = 13.9, 5.8 Hz, 1H), 2.38–2.27 (m, 2H), 2.26–2.18 (m, 1H), 1.81 (m, 

1H), 1.69–1.63 (m, 1H), 1.60–1.50 (m, 1H), 1.49–1.41 (m, 2H), 1.39 (s, 9H); 13C NMR 

(126 MHz, CDCl3) δ 208.7, 170.8, 155.0, 142.4, 137.9, 128.7, 128.3, 126.3, 116.3, 79.4, 

66.9, 62.3, 44.3, 40.6, 33.7, 28.4, 27.2, 21.9; IR (Neat Film, NaCl) 3458, 3411, 2975, 

2938, 2866, 1715, 1499, 1365, 1167, 1141 cm-1; HRMS (ESI+) m/z calc’d for 

C22H29NO5Na [M+Na]+: 410.1938, found 410.1923. 
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Allyl 1-(t-butoxycarbonylaminomethyl)-2-oxocycloheptane-1-carboxylate (245b): 

The reaction was conducted according to general procedure A.  Ketoester 244b (196 mg, 

1.00 mmol); sulfonylmethyl carbamate 243a (326 mg, 1.20 mmol); Cs2CO3 (815 mg, 

2.50 mmol).  The reaction mixture was stirred for 24 h.  Flash column chromatography 

(SiO2, 15% EtOAc in hexanes) afforded α-aminomethyl β-ketoester 245b (234 mg, 0.719 

mmol, 72% yield) as a colorless oil. Rf = 0.47 (20% EtOAc in hexanes); 1H NMR (500 

MHz, CDCl3) δ 5.90 (m, 1H), 5.32 (m, 1H), 5.25 (m, 1H), 5.18 (m, 1H), 4.68–4.56 (m, 

2H), 3.56 (dd, J = 14.0, 7.7 Hz, 1H), 3.50 (dd, J = 14.0, 5.8 Hz, 1H), 2.68 (m, 1H), 2.56 

(ddd, J = 13.0, 8.3, 3.3 Hz, 1H), 2.08 (m, 1H), 1.86–1.76 (m, 2H), 1.73–1.48 (m, 5H), 

1.40 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 210.2, 171.7, 156.1, 131.7, 119.0, 79.4, 66.2, 

63.9, 45.3, 42.7, 31.7, 30.1, 28.4, 25.7, 25.3; IR (Neat Film, NaCl) 3461, 2976, 2933, 

1718, 1501, 1456, 1366, 1248m 1225, 1169 cm-1; HRMS (ESI+) m/z calc’d for 

C17H27NO5Na [M+Na]+: 348.1781, found 348.1772. 

 
Allyl 1-(t-butoxycarbonylaminomethyl)-2-oxocyclopentane-1-carboxylate (245c): 

The reaction was conducted according to general procedure A.  Ketoester 244c (168 mg, 

1.00 mmol); sulfonylmethyl carbamate 243a (326 mg, 1.20 mmol); Cs2CO3 (815 mg, 

2.50 mmol).  The reaction mixture was stirred for 24 h.  Flash column chromatography 

(SiO2, 15% EtOAc in hexanes) afforded α-aminomethyl β-ketoester 245c (255 mg, 0.858 

mmol, 86% yield) as a colorless oil. Rf = 0.50 (33% EtOAc in hexanes); 1H NMR (500 

MHz, CDCl3) δ 5.87 (ddt, J = 17.2, 10.4, 5.6 Hz, 1H), 5.29 (m, 1H), 5.24 (m, 1H), 5.13 
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(m, 1H), 4.67–4.55 (m, 2H), 3.50 (dd, J = 14.0, 7.0 Hz 1H), 3.46 (dd, J = 14.0, 6.0 Hz, 

1H), 2.49–2.34 (m, 3H), 2.16–1.98 (m, 3H), 1.42 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 

213.7, 171.3, 156.3, 131.5, 118.8, 79.7, 66.1, 61.5, 42.1, 38.2, 31.7, 28.4, 19.8; IR (Neat 

Film, NaCl) 3394, 2976, 1749, 1715, 1504, 1454, 1366, 1249, 1229, 1168, 966 cm-1; 

HRMS (ESI+) m/z calc’d for C15H23NO5Na [M+Na]+: 320.1468, found 320.1467. 

 
Allyl 1-(((tert-butoxycarbonyl)amino)methyl)-4-isobutoxy-2-oxocyclohept-3-ene-1-

carboxylate (245d): The reaction was conducted according to general procedure A.  

Ketoester 244d22 (100 mg, 0.375 mmol); sulfonylmethyl carbamate 243a (122 mg, 0.45 

mmol); Cs2CO3 (305 mg, 0.936 mmol).  The reaction mixture was stirred for 10 h.  Flash 

column chromatography (SiO2, 15% EtOAc in hexanes) afforded α-aminomethyl β-

ketoester 245d (123 mg, 0.311 mmol, 83% yield) as a clear oil. Rf = 0.5 (25% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 5.87 (ddt, J = 17.3, 10.5, 5.7 Hz, 1H), 5.38 (s, 

1H), 5.29 (dq, J = 17.2, 1.6 Hz, 1H), 5.27 (m, 1H), 5.21 (dq, J = 10.5, 1.3 Hz, 1H), 4.63 

(ddt, J = 13.2, 5.9, 1.4 Hz, 1H), 4.56 (ddt, J = 13.3, 5.8, 1.4 Hz, 1H), 3.64 (dd, J = 13.7, 

7.8 Hz, 1H), 3.51–3.44 (m, 3H), 2.55 (ddd, J = 17.9, 10.0, 4.2 Hz, 1H), 2.44 (ddd, J = 

17.8, 7.1, 3.8 Hz, 1H), 2.36 (m, 1H), 2.03–1.94 (m, 2H), 1.89–1.76 (m, 2H), 1.40 (s, 9H), 

0.94 (dd, J = 6.7, 1.5 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 198.1, 174.9, 172.1, 156.1, 

131.7, 118.8, 105.3, 79.3, 74.9, 66.2, 63.9, 46.4, 34.2, 29.3, 28.5, 27.9, 21.3, 19.2; IR 

(Neat Film, NaCl) 3459, 3394, 3083, 2961, 2934, 2874, 1734, 1718, 1636, 1610, 1499, 

1388, 1366, 1232, 1171 cm-1; HRMS (ESI+) m/z calc’d for C21H33NO6Na [M+Na]+: 

418.2200, found 418.2192. 
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Allyl 2-(((tert-butoxycarbonyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthalene-

2-carboxylate (245e): The reaction was conducted according to general procedure A.  

Ketoester 244e (230.3 mg, 1.0 mmol); sulfonylmethyl carbamate 243a (326 mg, 1.2 

mmol); Cs2CO3 (815 mg, 2.5 mmol).  The reaction mixture was stirred for 24 h.  Flash 

column chromatography (SiO2, 15% EtOAc in hexanes) afforded α-aminomethyl β-

ketoester 245e (395 mg, 0.999 mmol, >99% yield) as a pale yellow oil. Rf = 0.5 (25% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.49 

(td, J = 7.5, 1.5 Hz, 1H), 7.34–7.29 (m, 1H), 7.23 (dq, J = 7.8, 0.7 Hz, 1H), 5.86–5.76 (m, 

1H), 5.33–5.27 (m, 1H), 5.22–5.14 (m, 2H), 4.61 (dt, J = 2.4, 1.4 Hz, 1H), 4.59 (dt, J = 

2.4, 1.4 Hz, 1H), 3.79 (dd, J = 13.9, 7.9 Hz, 1H), 3.56 (dd, J = 13.9, 5.4 Hz, 1H), 3.10 (dt, 

J = 17.5, 5.4 Hz, 1H), 3.02 (ddd, J = 17.4, 9.4, 4.8 Hz, 1H), 2.57 (dt, J = 13.8, 5.3 Hz, 

1H), 2.20 (ddd, J = 14.1, 9.5, 5.0 Hz, 1H), 1.41 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 

195.6, 171.0, 156.1, 143.4, 134.1, 131.9, 131.5, 129.0, 128.0, 127.0, 118.7, 79.5, 66.1, 

59.4, 43.6, 29.3, 28.5, 25.8; IR (Neat Film, NaCl) 3454, 3395, 2977, 2934, 1731, 1717, 

1683, 1601, 1505, 1456, 1366, 1235, 1170 cm-1; HRMS (FAB+) m/z calc’d for 

C20H26NO5 [M+H]+: 360.1811, found 360.1801. 

 

 
Allyl 1-benzyl-3-(((tert-butoxycarbonyl)amino)methyl)-4-oxopiperidine-3-

carboxylate (245f): The reaction was conducted according to general procedure A.  

Ketoester 244fError! Bookmark not defined.  (296 mg, 1.08 mmol); sulfonylmethyl carbamate 243a 
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(353 mg, 1.296 mmol); Cs2CO3 (882 mg, 2.7 mmol).  The reaction mixture was stirred 

for 24 h.  Flash column chromatography (SiO2, 15% EtOAc in hexanes) afforded α-

aminomethyl β-ketoester 245f (349 mg, 0.867 mmol, 80% yield) as a clear colorless oil. 

Rf = 0.45 (25% EtOAc in hexanes); 1H NMR (500 MHz, C6D6) δ 7.20–7.12 (m, 4H), 

7.11–7.05 (m, 1H), 5.71 (ddt, J = 16.5, 10.9, 5.7 Hz, 1H), 5.37 (t, J = 6.8 Hz, 1H), 5.09 

(dd, J = 17.2, 1.6 Hz, 1H), 4.94 (dq, J = 10.4, 1.3 Hz, 1H), 4.47 (d, J = 5.8, 1.4 Hz, 2H), 

3.63 (dd, J = 13.9, 6.0 Hz, 1H), 3.57 (dd, J = 13.9, 7.4 Hz, 1H), 3.23–3.20 (m, 1H), 3.19 

(d, J = 13.5 Hz, 1H), 3.10 (d, J = 13.4 Hz, 1H), 2.65 (ddd, J = 14.3, 10.0, 6.7 Hz, 1H), 

2.37–2.29 (m, 2H), 1.99 (d, J = 11.6, 1H), 1.93–1.87 (m, 1H), 1.37 (s, 9H); 13C NMR 

(126 MHz, C6D6) δ 205.9, 170.5, 155.9, 138.3, 132.2, 129.0, 128.7, 127.6, 118.4, 79.0, 

66.1, 62.9, 61.9, 58.9, 53.1, 43.0, 40.3, 28.4; IR (Neat Film, NaCl) 3457, 2976, 2925, 

2811, 1718, 1499, 1366, 1250, 1225, 1169 cm-1; HRMS (FAB+) m/z calc’d for 

C22H31N2O5 [M+H]+: 403.2233, found 403.2238. 

 
Allyl 1-benzoyl-3-(tert-butoxycarbonylaminomethyl)-2-oxopiperidine-3-carboxylate 

(245g): The reaction was conducted according to general procedure A.  Amido ester 244g 

(231 mg, 0.800 mmol); sulfonylmethyl carbamate 243a (261 mg, 0.960 mmol); Cs2CO3 

(652 mg, 2.00 mmol).  The reaction mixture was stirred for 24 h.  Flash column 

chromatography (SiO2, 15→20% EtOAc in hexanes) afforded α-aminomethyl amido 

ester 245g (245 mg, 0.588 mmol, 74% yield) as a colorless oil. Rf = 0.36 (33% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 7.81–7.74 (m, 2H), 7.50 (m, 1H), 7.44–7.36 (m, 

2H), 5.97 (ddt, J = 16.6, 10.4, 6.0 Hz, 1H), 5.40 (m, 1H), 5.33 (m, 1H), 5.15 (m, 1H), 
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4.82–4.63 (m, 2H), 3.91–3.74 (m, 2H), 3.71 (dd, J = 13.9, 7.5 Hz, 1H), 3.50 (dd, J = 13.9, 

5.9 Hz, 1H), 2.43 (m, 1H), 2.12–1.91 (m, 3H), 1.41 (s, 9H); 13C NMR (126 MHz, CDCl3) 

δ 174.9, 172.2, 170.7, 156.1, 135.6, 132.1, 131.3, 128.3, 128.3, 119.9, 79.7, 66.8, 58.4, 

46.8, 44.7, 29.1, 28.4, 20.0; IR (Neat Film, NaCl) 3446, 2976, 1714, 1684, 1500, 1449, 

1391, 1366, 1271, 1249, 1164, 1141, 939 cm-1; HRMS (ESI+) m/z calc’d for 

C22H28N2O6Na [M+Na]+: 439.1840, found 439.1854. 

 
Allyl 4-benzoyl-2-(tert-butoxycarbonylaminomethyl)-3-oxomorpholine-2-

carboxylate (245h): The reaction was conducted according to general procedure A.  

Morpholinone 244h (100 mg, 0.346 mmol); sulfonylmethyl carbamate 243a (188 mg, 

0.691 mmol); Cs2CO3 (338 mg, 1.04 mmol).  The reaction mixture was stirred for 24 h.  

Flash column chromatography (SiO2, 20→25% EtOAc in hexanes) afforded α-

aminomethyl morpholinone 245h (132 mg, 0.315 mmol, 91% yield) as a colorless oil. Rf 

= 0.34 (10% EtOAc in toluene); 1H NMR (500 MHz, CDCl3) δ 7.67–7.65 (m, 2H), 7.52 

(m, 1H), 7.43–7.38 (m, 2H), 5.97 (m, 1H), 5.41 (m, 1H), 5.33 (m, 1H), 5.00 (brs, 1H), 

4.76–4.73 (m, 2H), 4.30–4.17 (m, 2H), 4.05–3.90 (m, 2H), 3.87–3.72 (m, 2H), 1.42 (s, 

9H); 13C NMR (126 MHz, CDCl3) δ 172.7, 167.7, 167.5, 155.8, 134.7, 132.5, 131.0, 

128.5, 128.3, 119.9, 83.1, 79.9, 67.2, 62.1, 45.0, 44.8, 28.4; IR (Neat Film, NaCl) 3388, 

2977, 2934, 1746, 1714, 1693, 1507, 1449, 1367, 1317, 1279, 1233, 1165, 1066, 944, 

757, 727, 693 cm-1; HRMS (ESI+) m/z calc’d for C21H26N2O7Na [M+Na]+: 441.1632, 

found 441.1636. 
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Allyl 3-(((tert-butoxycarbonyl)amino)methyl)-4-oxo-9-tosyl-2,3,4,9-tetrahydro-1H-

carbazole-3-carboxylate (245i): The reaction was conducted according to general 

procedure A.  Ketoester 244i23 (400 mg, 0.994 mmol); sulfonylmethyl carbamate 243a 

(307 mg, 1.13 mmol); Cs2CO3 (770 mg, 2.36 mmol).  The reaction mixture was stirred 

for 24 h.  Flash column chromatography (SiO2, 15% EtOAc in hexanes) afforded α-

aminomethyl β-ketoester 245i (418 mg, 0.756 mmol, 80% yield) as a clear colorless oil. 

Rf = 0.33 (25% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 8.21–8.17 (m, 1H), 

8.15–8.12 (m, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.38–7.31 (m, 2H), 7.27 (d, J = 8.4 Hz, 2H), 

5.80 (m, 1H), 5.25–5.17 (m, 2H), 5.15 (m, 1H), 4.58 (dt, J = 5.8, 1.4 Hz, 2H), 3.74 (dd, J 

= 14.0, 7.7 Hz, 1H), 3.59 (m, 2H), 3.41 (ddd, J = 19.2, 8.3, 5.2 Hz, 1H), 2.67 (dt, J = 

13.9, 5.4 Hz, 1H), 2.37 (s, 3H), 2.28 (m, 1H), 1.42 (s, 9H); 13C NMR (126 MHz, CDCl3) 

δ 191.4, 170.6, 156.1, 150.7, 146.1, 136.2, 135.3, 131.5, 130.4, 126.9, 125.8, 125.7, 

125.2, 121.9, 118.9, 117.1, 114.0, 79.6, 66.2, 59.3, 43.3, 29.2, 28.5, 22.1, 21.8; IR (Neat 

Film, NaCl) 3445, 3054, 2977, 2933, 2254, 1733, 1713, 1596, 1558, 1505, 1481, 1451, 

1410, 1380, 1244, 1174, 1090 cm-1; HRMS (ESI+) m/z calc’d for C29H33N2O7S [M+H]+: 

553.2003, found 553.1994. 

 
Allyl 1-(benzyloxy)-3-(((tert-butoxycarbonyl)amino)methyl)-2,6-dioxopiperidine-3-

carboxylate (245j): A detailed preparative procedure for compound 245j was not 

recorded. However, the physical and spectral data are as follows: clear colorless oil; Rf = 

O

O

O
NHBoc

N
Ts

N

O

O

NHBoc

O

BnO
O



Chapter 4 – Enantioselective Synthesis of a-Quaternary Mannich Adducts   279 
0.41 (40% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.53–7.49 (m, 2H), 7.39–

7.34 (m, 3H), 5.86 (ddt, J = 16.6, 10.4, 5.9 Hz, 1H), 5.33 (dq, J = 17.2, 1.4 Hz, 1H), 5.27 

(dq, J = 10.4, 1.2 Hz, 1H), 5.12 (t, J = 7.0 Hz, 1H), 5.02–4.96 (m, 2H), 4.65 (dq, J = 6.0, 

1.3 Hz, 2H), 3.77–3.63 (m, 2H), 2.87 (dt, J = 18.1, 4.7 Hz, 1H), 2.67 (ddd, J = 17.8, 11.9, 

5.4 Hz, 1H), 2.26 (dt, J = 14.2, 4.9 Hz, 1H), 2.05–1.98 (m, 1H), 1.41 (s, 9H); 13C NMR 

(126 MHz, CDCl3) δ 169.0, 167.08, 167.05, 156.1, 133.8, 130.8, 130.1, 129.3, 128.6, 

120.2, 80.1, 78.0, 67.1, 57.7, 43.8, 30.1, 28.4, 23.7; IR (Neat Film, NaCl) 3452, 3394, 

2977, 2888, 1731, 1703, 1504, 1454, 1366, 1336, 1301, 1239, 1184, 976, 859, 751, 699 

cm-1; HRMS (ESI+) m/z calc’d for C22H28N2O7Na [M+Na]+: 455.1789, found 455.1797. 

 
Allyl 7-(((tert-butoxycarbonyl)amino)methyl)-10-methyl-6-oxo-6,7,8,9-

tetrahydropyrido[1,2-a]indole-7-carboxylate (172g): The reaction was conducted 

according to general procedure A.  β-Amidoester 194 (98 mg, 0.346 mmol, 1.0 equiv); 

sulfonylmethyl carbamate 243a (113 mg, 0.416 mmol, 1.2 equiv); Cs2CO3 (281 mg, 

0.862 mmol, 2.5 equiv); CH2Cl2 (1.7 mL).  The reaction mixture was stirred for 12 h.  

Flash column chromatography (SiO2, 15% EtOAc in hexanes) afforded α-aminomethyl 

β-amidoester 172g (113 mg, 79% yield) as a clear colorless oil: 1H NMR (500 MHz, 

CDCl3) δ 8.46–8.40 (m, 1H), 7.46–7.40 (m, 1H), 7.34–7.27 (m, 2H), 5.85 (ddt, J = 16.4, 

10.9, 5.7 Hz, 1H), 5.36 (t, J = 6.8 Hz, 1H), 5.26 (d, J = 17.2 Hz, 1H), 5.21 (dq, J = 10.6, 

1.3 Hz, 1H), 4.65 (dt, J = 5.7, 1.4 Hz, 2H), 3.91 (dd, J = 13.9, 7.4 Hz, 1H), 3.73 (dd, J = 

13.9, 6.0 Hz, 1H), 3.13 (dt, J = 16.8, 4.9 Hz, 1H), 2.88–2.80 (m, 1H), 2.53 (dt, J = 13.6, 

N

O O
O

NHBoc
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5.0 Hz, 1H), 2.23–2.15 (m, 1H), 2.17 (s, 3H), 1.43 (s, 9H); 13C NMR (126 MHz, CDCl3) 

δ 170.3, 167.3, 156.2, 134.9, 132.0, 131.6, 131.3, 124.6, 124.4, 119.2, 118.1, 116.6, 

113.4, 79.7, 66.6, 58.2, 44.1, 28.5, 28.1, 18.7, 8.5; IR (Neat Film, NaCl) 3447, 2976, 

2935, 1736, 1715, 1697, 1628, 1503, 1458, 1388, 1366, 1247, 1226, 1172, 1125, 1059, 

962, 863, 752 cm-1; HRMS (ESI+) m/z calc’d for C23H28N2O5Na [M+Na]+: 435.1890, 

found 435.1889. 
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General Procedure B: Palladium-Catalyzed Allylic Alkylation 
 
Please note that the absolute configuration of all products 240 and 246 has been inferred 

from previous studies,Error! Bookmark not defined. with the exception of 240b, which was assigned 

by conversion to (–)-isonitramine (241). For isolated yields, see Tables 4.3.1 and 4.4.1. 

For GC, HPLC, or SFC conditions, as well as optical rotation data, please refer to Tables 

4.7.4.1 and 4.7.4.2. 

 

 
 
(S)-Tert-butyl ((1-allyl-2-oxocyclohexyl)methyl)carbamate (240a): In a nitrogen-filled 

glove box, [Pd2(dba)3] (9.2 mg, 0.010 mmol, 0.05 equiv) and (S)-(CF3)3-t-BuPHOX (76) 

(14.8 mg, 0.025 mmol, 0.125 equiv) were added to a 20 mL scintillation vial equipped 

with a magnetic stirring bar.  The vial was then charged with toluene (4.1 mL) and stirred 

at 25 °C for 30 min, generating a yellow solution.  To the preformed catalyst solution was 

added a solution of 239a (62.3 mg, 0.20 mmol, 1 equiv) in toluene (2.0 mL).  The vial 

was sealed and stirred at 25 °C until the full consumption of β-ketoester 239a was 

observed by TLC analysis.  The reaction mixture was concentrated in vacuo.  Flash 

column chromatography (SiO2, 2% EtOAc in CH2Cl2 eluent) afforded α-quaternary 

ketone 240a (50.2 mg, 94% yield) as a colorless oil. 86% ee, [α]D
25 –25.5 (c 0.865, C6H6); 

Rf = 0.55 (5% EtOAc in DCM); 1H NMR (400 MHz, C6D6) δ 5.64 (m, 1H), 5.05 (br t, J = 

6.4 Hz, 1H), 4.94 (ddt, J = 10.1, 2.0, 1.0 Hz, 1H), 4.87 (dq, J = 17.0, 1.5 Hz, 1H), 3.30 

(dd, J = 13.9, 7.2 Hz, 1H), 3.24 (dd, J = 13.9, 6.1 Hz, 1H), 2.15–2.08 (m, 2H), 2.01–1.91 

O

O

O
NHBoc

Pd2(dba)3 (5 mol %)
76  (12.5 mol %)

O NHBoc

toluene, 23 °C

239a 240a

N

O

P

CF3

76
(S)-(CF3)3-t-BuPHOX

(4-CF3-C6H4)2
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(m, 2H), 1.44 (s, 9H), 1.41–1.30 (m, 2H), 1.25–1.12 (m, 2H); 13C NMR (101 MHz, C6D6) 

δ 213.5, 156.2, 133.3, 118.5, 78.7, 53.1, 45.2, 39.1, 37.9, 33.7, 28.5, 27.1, 20.6; IR (Neat 

Film, NaCl) 3462, 3395, 2977, 2939, 2867, 1718, 1499, 1167 cm-1; HRMS (ESI+) m/z 

calc’d for C15H25NO3Na [M+Na]+: 290.1727, found 290.1718; SFC conditions: 10% IPA, 

2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): major = 7.65, minor = 8.46. 

Spectroscopic Data for 240b–g, 246a–j, and 165g 

 
(S)-Benzyl (1-allyl-2-oxocyclohexyl)methylcarbamate (240b): The reaction was 

conducted according to general procedure B.  Ketoester 239b (69.1 mg, 0.200 mmol).  

The reaction mixture was stirred at 23 ºC for 14 h.  Flash column chromatography (SiO2, 

10→15% EtOAc in hexanes) afforded ketone 240b (57.7 mg, 0.191 mmol, 96% yield) as 

a colorless oil. 86% ee, [α]D
25 –38.6 (c 1.20, CHCl3); Rf = 0.44 (25% EtOAc in hexanes); 

1H NMR (300 MHz, CDCl3) δ 7.42–7.25 (m, 5H), 5.67 (m, 1H), 5.21 (m, 1H), 5.16–5.00 

(m, 4H), 3.34 (dd, J = 13.9, 5.9 Hz, 1H), 3.24 (dd, J = 13.9, 7.4 Hz, 1H), 2.54–2.20 (m, 

4H), 1.99 (m, 1H), 1.81–1.60 (m, 5H); 13C NMR (126 MHz, CDCl3) δ 215.5, 156.9, 

136.7, 132.2, 128.6, 128.2, 128.1, 119.2, 66.8, 53.2, 45.4, 39.3, 38.0, 33.7, 27.2, 20.6.; IR 

(Neat Film, NaCl) 3351, 2937, 1722, 1702, 1510, 1454, 1234, 1134 cm-1; HRMS (ESI+) 

m/z calc’d for C18H24NO3 [M+H]+: 302.1751, found 302.1756; SFC conditions: 5% IPA, 

2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): major = 8.12, minor = 9.06. 

 
 
 
 
 
 

O NHCbz
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(S)-4-Methoxyphenyl (1-allyl-2-oxocyclohexyl)methylcarbamate (240c): The reaction 

was conducted according to general procedure B.  Ketoester 239c (72.3 mg, 0.200 

mmol).  The reaction mixture was stirred at 23 ºC for 24 h.  Flash column 

chromatography (SiO2, 15→20% EtOAc in hexanes) afforded ketone 240c (57.6 mg, 

0.181 mmol, 91% yield) as a colorless oil. 83% ee, [α]D
25 –29.3 (c 0.76, CHCl3); Rf = 

0.25 (25% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.05–6.97 (m, 2H), 6.90–

6.81 (m, 2H), 5.70 (m, 1H), 5.49 (m, 1H), 5.18–5.09 (m, 2H), 3.78 (s, 3H), 3.40 (dd, J = 

13.9, 6.0 Hz, 1H), 3.28 (dd, J = 13.9, 7.2 Hz, 1H), 2.55–2.44 (m, 2H), 2.41–2.28 (m, 2H), 

2.03 (m, 1H), 1.90–1.64 (m, 5H); 13C NMR (126 MHz, CDCl3) δ 215.6, 157.0, 155.6, 

144.8, 132.2, 122.5, 119.3, 114.4, 55.7, 53.2, 45.6, 39.4, 38.0, 33.8, 27.3, 20.6; IR (Neat 

Film, NaCl) 3345, 2937, 1740, 1700, 1501, 1201 cm-1; HRMS (ESI+) m/z calc’d for 

C18H24NO4 [M+H]+: 318.1700, found 318.1705; SFC conditions: 10% IPA, 2.5 mL/min, 

Chiralcel OB-H column, λ = 210 nm, tR (min): major = 9.47, minor = 11.13. 

 
(S)-phenyl (1-allyl-2-oxocyclohexyl)methylcarbamate (240d): The reaction was 

conducted according to general procedure B.  Ketoester 239d (66.3 mg, 0.200 mmol).  

The reaction mixture was stirred at 23 ºC for 24 h.  Flash column chromatography (SiO2, 

10→15% EtOAc in hexanes) afforded ketone 240d (51.5 mg, 0.179 mmol, 90% yield) as 

a colorless oil. 77% ee, [α]D
25 –28.9 (c 0.40, CHCl3); Rf = 0.29 (25% EtOAc in hexanes); 

1H NMR (500 MHz, CDCl3) δ 7.34 (t, J = 7.7 Hz, 2H), 7.17 (m, 1H), 7.11 (d, J = 8.0 Hz, 

O NH

OO

OMe

O NH

OO
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2H), 5.70 (m, 1H), 5.53 (m, 1H), 5.20–5.11 (m, 2H), 3.41 (dd, J = 14.0, 6.0 Hz, 1H), 3.29 

(dd, J = 14.0, 7.2 Hz, 1H), 2.55–2.45 (m, 2H), 2.42–2.29 (m, 2H), 2.03 (m, 1H), 1.90–

1.65 (m, 5H); 13C NMR (126 MHz, CDCl3) δ 215.7, 155.1, 151.2, 132.1, 129.3, 125.3, 

121.6, 119.4, 53.2, 45.6, 39.4, 38.0, 33.8, 27.3, 20.6; IR (Neat Film, NaCl) 3346, 2937, 

1743, 1701, 1490, 1203 cm-1; HRMS (ESI+) m/z calc’d for C17H22NO3 [M+H]+: 

288.1594, found 288.1589; SFC conditions: 10% IPA, 2.5 mL/min, Chiralcel OB-H 

column, λ = 210 nm, tR (min): major = 6.53, minor = 8.13. 

 
(S)-4-fluorophenyl (1-allyl-2-oxocyclohexyl)methylcarbamate (240e): The reaction 

was conducted according to general procedure B.  Ketoester 239e (69.9 mg, 0.200 

mmol).  The reaction mixture was stirred at 23 ºC for 24 h.  Flash column 

chromatography (SiO2, 10→15% EtOAc in hexanes) afforded ketone 240e (51.4 mg, 

0.168 mmol, 84% yield) as a colorless oil. 77% ee, [α]D
25 –27.4 (c 0.78, CHCl3); Rf = 

0.37 (25% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.10–6.97 (m, 4H), 5.69 

(m, 1H), 5.54 (m, 1H), 5.17–5.10 (m, 2H), 3.40 (dd, J = 13.9, 6.0 Hz, 1H), 3.27 (dd, J = 

13.9, 7.2 Hz, 1H), 2.55–2.45 (m, 2H), 2.41–2.29 (m, 2H), 2.04 (m, 1H), 1.91–1.63 (m, 

5H); 13C NMR (126 MHz, CDCl3) δ 215.7, 160.0 (J = 243 Hz), 155.1, 147.1 (J = 4 Hz), 

132.1, 123.1 (J = 7 Hz), 119.4, 115.9 (J = 24 Hz), 53.2, 45.6, 39.4, 37.9, 33.8, 27.3, 20.6; 

IR (Neat Film, NaCl) 3347, 2938, 1742, 1699, 1498, 1192 cm-1; HRMS (ESI+) m/z calc’d 

for C17H21FNO3 [M+H]+: 306.1500, found 306.1493; SFC conditions: 10% IPA, 2.5 

mL/min, Chiralpak AS-H column, λ = 210 nm, tR (min): major = 6.94, minor = 8.24. 

O NH

OO

F
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(S)-N-((1-allyl-2-oxocyclohexyl)methyl)benzamide (240f): The reaction was conducted 

according to general procedure B.  Ketoester 239f (19.1 mg, 0.60 mmol).  The reaction 

mixture was stirred at 23 ºC for 20 h.  Flash column chromatography (SiO2, 10→15% 

EtOAc in hexanes) afforded ketone 240f as a colorless oil. 56% ee, Rf = 0.23 (25% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.76–7.72 (m, 2H), 7.49 (m, 1H), 

7.45–7.40 (m, 2H), 6.78 (m, 1H), 5.66 (m, 1H), 5.15 (d, J = 1.2 Hz, 1H), 5.12 (m, 1H), 

3.58 (dd, J = 13.8, 6.1 Hz, 1H), 3.55 (dd, J = 13.8, 6.1 Hz, 1H), 2.56–2.47 (m, 2H), 2.40–

2.32 (m, 2H), 2.03 (m, 1H), 1.92–1.79 (m, 2H), 1.77–1.61 (m, 3H); 13C NMR (126 MHz, 

CDCl3) δ 216.6, 167.5, 134.7, 132.3, 131.6, 128.7, 127.0, 119.4, 53.5, 43.9, 39.5, 38.3, 

34.1, 27.4, 20.6; IR (Neat Film, NaCl) 3439, 3338, 3070, 2936, 2864, 1693, 1668, 1649, 

1535, 1515, 1486, 1454, 1286, 1127 cm-1; HRMS (ESI/APCI) m/z calc’d for C17H22NO2 

[M+H]+: 272.1645, found 272.1638; SFC conditions: 20% IPA, 2.5 mL/min, Chiralpak 

AD-H column, λ = 210 nm, tR (min): major = 4.04, minor = 4.91. 

 
(S)-N-((1-Allyl-2-oxocyclohexyl)methyl)-4-methylbenzenesulfonamide (240g): The 

reaction was conducted according to general procedure B.  Ketoester 239g (74.0 mg, 

0.202 mmol).  The reaction mixture was stirred at 23 ºC for 20 h.  Flash column 

chromatography (SiO2, 15% EtOAc in hexanes) afforded ketone 240g (35.3 mg, 0.109 

mmol, 54% yield) as a yellow oil. 24% ee, Rf = 0.3 (25% EtOAc in hexanes); 1H NMR 

(500 MHz, CDCl3) δ 7.71 (m, 2H), 7.30 (dd, J = 8.3, 0.9 Hz, 2H), 5.61 (dddd, J = 16.3, 

10.8, 7.9, 6.9 Hz, 1H), 5.11–5.06 (m, 3H), 2.97 (dd, J = 12.6, 6.7 Hz, 1H), 2.70 (dd, J = 

O NHBz

O NHTs
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12.6, 7.5 Hz, 1H), 2.50–2.43 (m, 2H), 2.41 (s, 3H), 2.31–2.21 (m, 2H), 2.01 (m, 1H), 

1.84–1.55 (m, 5H); 13C NMR (126 MHz, CDCl3) δ 215.7, 143.4, 137.0, 131.5, 129.9, 

127.0, 119.7, 52.5, 47.7, 39.2, 37.4, 33.4, 27.1, 21.6, 20.5; IR (Neat Film, NaCl) 3285, 

3071, 2938, 2865, 1919, 1762, 1703, 1638, 1598, 1495, 1454, 1333, 1164, 1091 cm-1; 

HRMS (ESI+) m/z calc’d for C17H24NO3S [M+H]+: 322.1471, found 322.1456; SFC 

conditions: 15% IPA, 2.5 mL/min, Chiralcel OJ-H column, λ = 210 nm, tR (min): major = 

3.14, minor = 3.85. 

 
(S)-tert-Butyl ((2-oxo-1-(2-phenylallyl)cyclohexyl)methyl)carbamate (246a): The 

reaction was conducted according to general procedure B.  Ketoester 245a (110 mg, 

0.284 mmol); [Pd2(pmdba)3] (15.6 mg, 0.014 mmol, 0.05 equiv).  The reaction mixture 

was stirred at 23 ºC for 24 h.  Flash column chromatography (SiO2, 20% acetone in 

hexanes) afforded ketone 246a (88.7 mg, 0.258 mmol, 91% yield) as a yellow oil. 90% ee, 

[α]D
25 –30.9 (c 4.45, CHCl3); Rf = 0.55 (25% EtOAc in hexanes); 1H NMR (500 MHz, 

CDCl3) δ 7.32–7.26 (m, 5H), 5.23 (d, J = 1.4 Hz, 1H), 5.08 (d, J = 2.0 Hz, 1H), 4.67 (dd, 

J = 8.3, 4.4 Hz, 1H), 3.16 (dd, J = 14.0, 8.5 Hz, 1H), 3.09 (dd, J = 13.9, 4.7 Hz, 1H), 2.99 

(d, J = 14.1 Hz, 1H), 2.71 (d, J = 14.1 Hz, 1H), 2.38 (ddd, J = 14.4, 10.8, 5.7 Hz, 1H), 

2.30 (dt, J = 13.9, 4.8 Hz, 1H), 1.87 (dt, J = 15.3, 5.5 Hz, 1H), 1.77–1.60 (m, 5H), 1.38 

(s, 9H); 13C NMR (126 MHz, CDCl3) δ 214.9, 156.3, 144.9, 142.7, 128.6, 127.7, 126.7, 

118.3, 79.1, 54.0, 44.9, 39.8, 39.7, 34.4, 28.5, 27.2, 20.9; IR (Neat Film, NaCl) 3463, 

3374, 2975, 2935, 2865, 1713, 1703, 1699, 1505, 1455, 1365, 1247, 1169 cm-1; HRMS 

(FAB+) m/z calc’d for C21H30NO3 [M+H]+: 344.2226, found 344.2236; SFC conditions: 

O NHBoc

Ph
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15% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): major = 2.46, 

minor = 2.78. 

 
(S)-tert-Butyl (1-allyl-2-oxocycloheptyl)methylcarbamate (246b): The reaction was 

conducted according to general procedure B.  Ketoester 245b (97.6 mg, 0.300 mmol).  

The reaction mixture was stirred at 23 ºC for 20 h.  Flash column chromatography (SiO2, 

10→15% EtOAc in hexanes) afforded ketone 246b (78.7 mg, 0.280 mmol, 93% yield) as 

a pale yellow oil. 87% ee, [α]D
25 –22.7 (c 0.85, CHCl3); Rf = 0.53 (20% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 5.72 (ddt, J = 17.3, 10.4, 7.5 Hz, 1H), 5.12–5.03 

(m, 2H), 4.93 (brs, 1H), 3.31–3.19 (m, 2H), 2.65–2.56 (m, 1H), 2.46 (ddd, J = 11.3, 8.8, 

2.5 Hz, 1H), 2.35 (m, 1H), 2.20 (m, 1H), 1.79–1.41 (m, 8H), 1.41 (s, 9H); 13C NMR (126 

MHz, CDCl3) δ 217.1, 156.2, 133.2, 118.8, 79.3, 54.8, 45.2, 41.1, 39.4, 33.3, 30.8, 28.5, 

26.7, 24.7; IR (Neat Film, NaCl) 3372, 2930, 1716, 1698, 1503, 1365, 1247, 1117 cm-1; 

HRMS (ESI+) m/z calc’d for C17H28NO3 [M+H]+: 282.2064, found 282.2051; SFC 

conditions: 5% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): major = 

4.25, minor = 4.63. 

 
(S)-tert-Butyl (1-allyl-2-oxocyclopentyl)methylcarbamate (246c): The reaction was 

conducted according to general procedure B.  Ketoester 245c (59.5 mg, 0.200 mmol).  

The reaction mixture was stirred at 23 ºC for 20 h.  Flash column chromatography (SiO2, 

10→15% EtOAc in hexanes) afforded ketone 246c (50.0 mg, 0.196 mmol, 98% yield) as 

a colorless oil. 82% ee, [α]D
25 –12.8 (c 0.96, CHCl3); Rf = 0.38 (25% EtOAc in hexanes); 

O NHBoc

O NHBoc
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1H NMR (500 MHz, CDCl3) δ 5.69 (ddt, J = 17.4, 10.2, 7.4 Hz, 1H), 5.14–5.05 (m, 2H), 

4.86 (brs, 1H), 3.25 (dd, J = 13.9, 6.9 Hz, 1H), 3.14 (dd, J = 13.9, 5.7 Hz, 1H), 2.30–2.23 

(m, 2H), 2.20–2.13 (m, 2H), 1.99–1.79 (m, 4H), 1.43 (s, 9H); 13C NMR (126 MHz, 

CDCl3) δ 222.6, 156.3, 133.0, 119.1, 79.5, 52.5, 44.0, 38.4, 37.5, 31.1, 28.5, 18.8; IR 

(Neat Film, NaCl) 3360, 2975, 1713, 1510, 1365, 1248, 1166 cm-1; HRMS (ESI+) m/z 

calc’d for C14H23NO3Na [M+Na]+: 276.1570, found 276.1565; SFC conditions: 5% IPA, 

2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): major = 2.97, minor = 4.26. 

 
(S)-tert-Butyl ((1-allyl-4-isobutoxy-2-oxocyclohept-3-en-1-yl)methyl)carbamate 

(246d): The reaction was conducted according to general procedure B.  Ketoester 245d 

(100 mg, 0.253 mmol); [Pd2(pmdba)3] (13.9 mg, 0.012 mmol, 0.05 equiv).  The reaction 

mixture was stirred at 23 ºC for 24 h.  Flash column chromatography (SiO2, 10% EtOAc 

in hexanes) afforded ketone 246d (62.2 mg, 0.177 mmol, 70% yield) as a pale yellow oil. 

92% ee, [α]D
25 –28.7 (c 0.65, CHCl3); Rf = 0.6 (25% EtOAc in hexanes); 1H NMR (500 

MHz, CDCl3) δ 5.70 (ddt, J = 17.5, 10.3, 7.4 Hz, 1H), 5.28 (s, 1H), 5.10–5.03 (m, 3H), 

3.53–3.44 (m, 2H), 3.33 (dd, J = 13.6, 6.4 Hz, 1H), 3.18 (dd, J = 13.6, 6.4 Hz, 1H), 2.55–

2.42 (m, 2H), 2.37–2.28 (m, 2H), 1.98 (dt, J = 13.3, 6.7 Hz, 1H), 1.94–1.87 (m, 1H), 

1.81–1.72 (m, 3H), 1.41 (s, 9H), 0.95 (d, J = 6.7 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 

205.8, 172.7, 156.4, 133.4, 118.8, 104.9, 79.1, 74.7, 55.5, 47.1, 41.3, 36.1, 31.6, 28.6, 

28.0, 20.5, 19.3; IR (Neat Film, NaCl) 3373, 3075, 2972, 2931, 2868, 1716, 1694, 1504, 

1393, 1366, 1249, 1166 cm-1; HRMS (FAB+) m/z calc’d for C20H34NO4 [M+H]+: 

352.2488, found 352.2474; SFC conditions: 3% IPA, 2.5 mL/min, Chiralpak AS-H 

column, λ = 254 nm, tR (min): major = 4.41, minor = 6.12. 

O NHBoc

Oi-Bu
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(S)-tert-Butyl ((2-allyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)methyl)carbamate 

(246e): The reaction was conducted according to general procedure B.  Ketoester 245e 

(81 mg, 0.225 mmol); [Pd2(pmdba)3] (12.3 mg, 0.011 mmol, 0.05 equiv).  The reaction 

mixture was stirred at 23 ºC for 24 h.  Flash column chromatography (SiO2, 10% EtOAc 

in hexanes) afforded ketone 246e (52.2 mg, 0.167 mmol, 74% yield) as a pale yellow oil. 

93% ee, [α]D
25 –1.3 (c 1.32, CHCl3); Rf = 0.6 (25% EtOAc in hexanes); 1H NMR (500 

MHz, CDCl3) δ 8.00 (dd, J = 8.0, 1.4 Hz, 1H), 7.48 (td, J = 7.5, 1.5 Hz, 1H), 7.30 (td, J = 

7.6, 1.2 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 5.79 (m, 1H), 5.15–5.05 (m, 3H), 3.50 (dd, J = 

13.9, 6.2 Hz, 1H), 3.29 (dd, J = 13.9, 6.9 Hz, 1H), 3.11 (ddd, J = 16.9, 11.1, 5.3 Hz, 1H), 

2.94 (dt, J = 17.5, 4.6 Hz, 1H), 2.37 (dd, J = 14.2, 8.0 Hz, 1H), 2.28 (dd, J = 14.2, 6.8 Hz, 

1H), 2.11 (ddd, J = 14.0, 11.1, 5.2 Hz, 1H), 2.03 (dt, J = 14.0, 4.7 Hz, 1H), 1.41 (s, 9H); 

13C NMR (126 MHz, CDCl3) δ 202.2, 156.4, 143.5, 133.7, 132.7, 131.6, 129.0, 127.9, 

126.9, 119.2, 79.2, 49.3, 44.8, 36.6, 28.9, 28.5, 25.0; IR (Neat Film, NaCl) 3449, 3378, 

3073, 2976, 2930, 1716, 1699, 1678, 1600, 1505, 1455, 1365, 1232, 1170 cm-1; HRMS 

(FAB+) m/z calc’d for C19H26NO3 [M+H]+: 316.1913, found 316.1920; SFC conditions: 

15% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): major = 2.48, 

minor = 2.80. 

 
(S)-tert-Butyl ((3-allyl-1-benzyl-4-oxopiperidin-3-yl)methyl)carbamate (246f): The 

reaction was conducted according to general procedure B.  Ketoester 245f (115 mg, 0.286 

mmol); [Pd2(pmdba)3] (15.7 mg, 0.014 mmol, 0.05 equiv).  The reaction mixture was 

O NHBoc

N
Bn

O NHBoc
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stirred at 23 ºC for 24 h.  Flash column chromatography (SiO2, 10% EtOAc in hexanes) 

afforded ketone 246f (79.3 mg, 0.223 mmol, 78% yield) as a pale yellow oil. 90% ee, 

[α]D
25 –34.0 (c 1.58, CHCl3); Rf = 0.55 (25% EtOAc in hexanes); 1H NMR (500 MHz, 

CDCl3) δ 7.37–7.27 (m, 5H), 5.61 (m, 1H), 5.07 (m, 1H), 5.04 (d, J = 1.1 Hz, 1H), 5.00 

(m, 1H), 3.58 (d, J = 13.0 Hz, 1H), 3.53 (d, J = 13.0 Hz, 1H), 3.37 (dd, J = 14.0, 7.3 Hz, 

1H), 3.19 (dd, J = 14.0, 5.7 Hz, 1H), 2.84 (m, 1H), 2.69 (d, J = 11.6 Hz, 1H), 2.63–2.50 

(m, 3H), 2.48–2.36 (m, 3H), 1.41 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 212.8, 156.2, 

138.3, 132.6, 129.0, 128.5, 127.4, 119.2, 79.3, 62.3, 59.7, 53.6, 53.1, 44.1, 39.5, 38.1, 

28.5; IR (Neat Film, NaCl) 3452, 3373, 3063, 2976, 2929, 2807, 1713, 1638, 1504, 1453, 

1391, 1365, 1248, 1170 cm-1; HRMS (FAB+) m/z calc’d for C21H31N2O3 [M+H]+: 

359.2335, found 359.2345; SFC conditions: 8% IPA, 2.5 mL/min, Chiralpak AD-H 

column, λ = 210 nm, tR (min): major = 4.94, minor = 6.46. 

 
(S)-tert-Butyl ((3-allyl-1-benzoyl-2-oxopiperidin-3-yl)methyl)carbamate (246g): The 

reaction was conducted according to general procedure B.  Amidoester 245g (83.3 mg, 

0.200 mmol).  The reaction mixture was stirred at 40 ºC for 20 h.  Flash column 

chromatography (SiO2, 15→20% EtOAc in hexanes) afforded lactam 246g (69.7 mg, 

0.187 mmol, 94%) as a colorless oil. 90% ee, [α]D
25 +33.6 (c 1.05, CHCl3); Rf = 0.29 

(25% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.56–7.46 (m, 3H), 7.44–7.37 

(m, 2H), 5.78 (m, 1H), 5.24–5.15 (m, 2H), 4.96 (m, 1H), 3.84 (m, 1H), 3.73 (ddd, J = 

12.7, 10.3, 4.3 Hz, 1H), 3.37 (dd, J = 13.8, 6.5 Hz, 1H), 3.22 (dd, J = 13.8, 6.5 Hz, 1H), 

2.60 (dd, J = 13.8, 8.0 Hz, 1H), 2.48 (dd, J = 13.8, 6.7 Hz, 1H), 2.12–1.93 (m, 3H), 1.82 

(m, 1H), 1.42 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 178.6, 175.4, 156.4, 136.3, 131.9, 

BzN

O NHBoc
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131.8, 128.4, 127.6, 120.1, 79.5, 48.8, 47.2, 46.0, 39.7, 28.8, 28.5, 19.3; IR (Neat Film, 

NaCl) 3373, 2975, 1693, 1678, 1502, 1390, 1365, 1272, 1248, 1167 cm-1; HRMS (ESI+) 

m/z calc’d for C21H28N2O4Na [M+Na]+: 395.1941, found 395.1954; SFC conditions: 10% 

MeOH, 3.0 mL/min, Chiralpak AD-H column, λ = 254 nm, tR (min): major = 2.64, minor 

= 3.12. 

 
(R)-tert-Butyl ((2-allyl-4-benzoyl-3-oxomorpholin-2-yl)methyl)carbamate (246h): 

The reaction was conducted according to general procedure B.  Morpholinone 245h (33.0 

mg, 0.079 mmol).  The reaction mixture was stirred at 40 ºC for 12 h.  Flash column 

chromatography (SiO2, 15→20% EtOAc in hexanes) afforded morpholinone 246h (27.3 

mg, 0.073 mmol, 92%) as a colorless oil. 99% ee, [α]D
25 +10.8 (c 0.93, CHCl3); Rf = 0.43 

(33% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.57–7.48 (m, 3H), 7.43–7.38 

(m, 2H), 5.89 (m, 1H), 5.23–5.17 (m, 2H), 4.88 (br s, 1H), 4.14–3.88 (m, 4H), 3.63 (m, 

1H), 3.40 (dd, J = 14.1, 5.6 Hz, 1H), 2.69 (dd, J = 14.3, 7.4 Hz, 1H), 2.52 (dd, J = 14.3, 

7.0 Hz, 1H), 1.44 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 173.0, 172.6, 155.9, 135.6, 

132.1, 131.7, 128.3, 128.1, 119.9, 82.2, 79.9, 60.6, 46.0, 45.5, 40.0, 28.5; IR (Neat Film, 

NaCl) 3382, 2978, 1707, 1689, 1509, 1367, 1281, 1250, 1225, 1166, 1091 cm-1; HRMS 

(ESI+) m/z calc’d for C20H26N2O5Na [M+Na]+: 397.1734, found 397.1728; SFC 

conditions: 3% MeOH, 2.5 mL/min, Chiralpak AS-H column, λ = 254 nm, tR (min): 

major = 4.06, minor = 4.62. 

 

BzN
O

O NHBoc
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(S)-tert-Butyl ((3-allyl-4-oxo-9-tosyl-2,3,4,9-tetrahydro-1H-carbazol-3-

yl)methyl)carbamate (246i): The reaction was conducted according to general 

procedure B.  Ketoester 245i (100 mg, 0.181 mmol); [Pd2(pmdba)3] (10.0 mg, 0.009 

mmol, 0.05 equiv).  The reaction mixture was stirred at 40 ºC for 48 h.  Flash column 

chromatography (SiO2, 10% EtOAc in hexanes) afforded ketone 246i (46.9 mg, 0.091 

mmol, 51% yield) as a white foam.24 92% ee, [α]D
25 –13.3 (c 0.28, C6H6); Rf = 0.45 (25% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 8.20 (m, 1H), 8.16 (dd, J = 7.3, 1.8 

Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.41–7.31 (m, 2H), 7.28 (m, 2H), 5.77 (m, 1H), 5.11 

(m, 1H), 5.08 (dd, J = 17.1, 1.8 Hz, 1H), 5.05 (br t, J = 6.7 Hz, 1H), 3.49 (dd, J = 13.9, 

6.2 Hz, 1H), 3.44 (dt, J = 19.2, 4.8 Hz, 1H), 3.33–3.28 (m, 1H), 3.27 (dd, J = 13.9, 7.0 

Hz, 1H), 2.38 (s, 3H), 2.32–2.28 (m, 2H), 2.16–2.11 (m, 2H), 1.40 (s, 9H); 13C NMR (126 

MHz, CDCl3) δ 199.1, 156.4, 150.1, 146.1, 136.4, 135.6, 132.9, 130.5, 126.8, 126.0, 

125.6, 125.1, 121.9, 119.3, 116.6, 114.1, 79.4, 49.4, 44.6, 37.5, 29.5, 28.5, 21.8, 21.6; IR 

(Neat Film, NaCl) 3432, 3372, 3058, 2976, 2928, 1712, 1657, 1505, 1451, 1407, 1366, 

1247, 1173 cm-1; HRMS (ESI+) m/z calc’d for C28H33N2O5S [M+H]+: 509.2105, found 

509.2094; SFC conditions: 15% IPA, 2.5 mL/min, Chiralcel OB-H column, λ = 210 nm, 

tR (min): major = 7.21, minor = 5.19. 

 

 

 

N

O NHBoc

Ts
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(S)-tert-Butyl-((3-allyl-1-(benzyloxy)-2,6-dioxopiperidin-3-yl)methyl)carbamate 

(246j): The reaction was conducted according to general procedure B.  Imidoester 245j 

(72 mg, 0.166 mmol, 1.0 equiv); [Pd2(pmdba)3] (7.6 mg, 0.008 mmol, 0.05 equiv); ligand 

(76, 12.4 mg, 0.0208 mmol, 0.125 equiv); toluene (5.1 mL).  The reaction mixture was 

stirred at 60 ºC for 24 h.  Flash column chromatography (SiO2, 30% EtOAc in hexanes) 

afforded imide 246j (49 mg, 76% yield) as a clear colorless oil. 55% ee; Rf = 0.5 (40% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.52–7.48 (m, 2H), 7.39–7.36 (m, 

3H), 5.66 (ddt, J = 17.3, 10.1, 7.4 Hz, 1H), 5.19–5.16 (m, 1H), 5.13 (dq, J = 16.9, 1.5 Hz, 

1H), 5.04–4.97 (m, 2H), 4.82 (t, J = 6.6 Hz, 1H), 3.40 (dd, J = 14.1, 6.2 Hz, 1H), 3.31 

(dd, J = 14.1, 7.3 Hz, 1H), 2.84–2.69 (m, 2H), 2.30 (d, J = 7.4 Hz, 2H), 1.89–1.76 (m, 

2H), 1.43 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 172.6, 167.8, 156.3, 133.8, 131.2, 

130.3, 129.4, 128.6, 120.5, 80.0, 78.2, 48.3, 45.4, 38.2, 29.4, 28.5, 23.3; IR (Neat Film, 

NaCl) 3377, 3064, 3033, 2975, 2935, 2251, 1734, 1718, 1696, 1507, 1452, 1365, 1248, 

1169, 973, 914, 750, 699 cm-1; HRMS (ESI+) m/z calc’d for C21H28N2O5Na [M+Na]+: 

411.1890, found 411.1885; SFC conditions: 5% IPA, 2.5 mL/min, Chiralcel OB-H 

column, λ = 210 nm, tR (min): major = 3.74, minor = 3.01. 

 

tert-Butyl (S)-((7-allyl-10-methyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indol-7-

yl)methyl)carbamate (165g): The reaction was conducted according to general 

procedure B. α-Quaternary β-amidoester 172g (37 mg, 0.09 mmol, 1.0 equiv); 

N

O NHBoc

O

BnO

N

O
BocHN
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Pd2(pmdba)3 (4.9 mg, 4.5 µmol, 0.05 equiv); (S)-(CF3)3-t-BuPHOX (76, 6.6 mg, 11.1 

µmol, 0.125 equiv); TBME (2.7 mL). The reaction mixture was stirred for 12 h at 60 °C. 

Flash column chromatography (SiO2, 30% Et2O in hexanes) afforded α-quaternary DHPI 

165g (20 mg, 61% yield) as an off-white foam: Rf = 0.33 (7:3 hexanes:Et2O eluent); 92% 

ee, [α]D
25 +40.1 (c 0.41, CHCl3); 1H NMR (500 MHz, CDCl3) δ 8.45–8.39 (m, 1H), 7.46–

7.41 (m, 1H), 7.32–7.27 (m, 2H), 5.83 (ddt, J = 16.7, 10.3, 7.4 Hz, 1H), 5.21–5.11 (m, 

3H), 3.61 (dd, J = 13.9, 6.1 Hz, 1H), 3.42 (dd, J = 13.9, 7.1 Hz, 1H), 3.04 (dt, J = 16.8, 

4.9 Hz, 1H), 2.94 (dddd, J = 18.4, 10.9, 6.2, 1.6 Hz, 1H), 2.50 (dt, J = 7.3, 1.2 Hz, 2H), 

2.20–2.17 (m, 3H), 2.11–2.00 (m, 2H), 1.43 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 

173.3, 156.4, 134.8, 132.6, 132.1, 131.6, 124.4, 124.1, 119.8, 118.0, 116.5, 112.8, 79.5, 

48.1, 45.4, 37.9, 28.5, 27.2, 17.8, 8.5; IR (Neat Film, NaCl) 3448, 3373, 3069, 2975, 

2931, 2865, 1716, 1690, 1625, 1507, 1457, 1384, 1365,  1340, 1318, 1246, 1168, 1078, 

916, 752 cm-1; HRMS (FAB+) m/z calc’d for C22H29N2O3 [M+H]+: 369.2178, found 

369.2169; SFC conditions: 5% IPA, 2.5 mL/min, Chiralcel OD-H column, λ = 210 nm, tR 

(min): major = 19.76, minor = 21.43. 
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Total Synthesis of (–)-Isonitramine (241) and (+)-Sibirinine (242) 

 

 

Alcohol 248: To a solution of enantioenriched ketone 240b (851 mg, 2.82 mmol) in 

CH2Cl2 (14.2 mL) was added DIBAL (6.21 mL, 1.0 M solution in CH2Cl2, 6.21 mmol, 

2.20 equiv) dropwise at –78 ºC.  After stirring at –78 ºC for 15 min, the reaction mixture 

was quenched with saturated aqueous Rochelle’s salt (20 mL) and stirred at 23 °C for 2 h.  

The phases were separated and the aqueous phase was extracted with CH2Cl2 (2 x 25 

mL).  The combined organic phases were dried over Na2SO4, filtered, and concentrated 

under reduced pressure.  The crude product was used for the next reaction without further 

purification. 

To a solution of the crude secondary alcohol in Ac2O (7.1 mL) was added 

pyridine (7.1 mL) at room temperature.  After full consumption of the starting material 

was observed by TLC analysis, the reaction mixture was concentrated and azeotropically 

dried with toluene twice.  The resulting residue was used in the next reaction without 

further purification. 

To a flame-dried flask was added cyclohexene (1.43 mL, 14.1 mmol, 5.00 equiv), 

diethyl ether (10 mL), and BH3•Me2S (7.05 mL, 2.0 M solution in THF, 3.5 mmol, 1.24 

equiv) at 0 ºC.  The reaction mixture was stirred at 0 ºC for 3 h, then the solid was 

allowed to settle without stirring, and the supernatant was removed using a syringe.  To 

the resulting solid was added THF (8.0 mL) and a solution of acetate 247 in THF (6.2 

mL) at 0 ºC.  After full consumption of acetate 247 by TLC analysis, the reaction mixture 

O NHCbz 1. DIBAL
CH2Cl2, –78 °C

240b

2. Ac2O
pyridine, 60 °C

OAc NHCbz Cy2BH
THF, 0 °C;

OAc NHCbz

OH

247 248

NaBO3•4H2O
H2O, 23 °C
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was quenched with NaBO3 (3.25 g, 21.2 mmol, 7.52 equiv) and H2O (14 mL) and stirred 

at room temperature for 1 h.  The reaction mixture was diluted with EtOAc, the phases 

were separated, and the aqueous phase was extracted with EtOAc (2 x 25 mL).  The 

combined organic phases were dried over Na2SO4, filtered, and concentrated under 

reduced pressure.  Flash column chromatography (SiO2, 30→50% EtOAc in hexanes) 

afforded alcohol 248 (886 mg, 86% yield, over 3 steps) as a colorless oil. [α]D
25 +7.5 (c 

0.95, CHCl3); Rf = 0.33 (50% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.39–

7.28 (m, 5H), 5.35 (m, 1H), 5.14–5.02 (m, 2H), 4.77 (dd, J = 9.7, 4.5 Hz, 1H), 3.68–3.58 

(m, 2H), 3.30 (dd, J = 14.3, 8.0 Hz, 1H), 2.88 (dd, J = 14.2, 5.5 Hz, 1H), 2.05 (s, 3H), 

1.71–1.16 (m, 12H); 13C NMR (126 MHz, CDCl3) δ 171.4, 157.1, 136.7, 128.6, 128.3, 

128.2, 75.3, 66.9, 63.5, 45.5, 40.9, 30.0, 26.9, 26.0, 25.3, 23.9, 21.4, 20.4; IR (Neat Film, 

NaCl) 3385, 2937, 2866, 1718, 1528, 1455, 1374, 1247, 1026 cm-1; HRMS (ESI+) m/z 

calc’d for C20H30NO5 [M+H]+: 364.2118, found 364.2109. 

 

 

Spirocycle 249: To a solution of primary alcohol 248 (865 mg, 2.38 mmol) in CH2Cl2 (12 

mL) was added Et3N (0.497 mL, 3.57 mmol, 1.50 equiv) and MsCl (0.203 mL, 2.63 

mmol, 1.10 equiv) at 0 ºC.  After full consumption of alcohol 248 was observed by TLC 

analysis, the reaction mixture was quenched with saturated aqueous NaHCO3 (25 mL) 

and the phases were separated.  The aqueous phase was extracted with CH2Cl2 (2 x 25 

mL).  The combined organic phases were dried over Na2SO4, filtered, and concentrated 

OAc NHCbz

OH

248

1. MsCl, Et3N
CH2Cl2, 0 °C

2. NaH
THF, reflux

NOAc
Cbz

249
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under reduced pressure.  The crude product was used in the next reaction without further 

purification. 

To a suspension of sodium hydride (114 mg, 60 wt% dispersion in mineral oil, 

2.86 mmol) in THF (6 mL) was added a solution of the above methanesulfonate in THF 

(6 mL) at 0 ºC.  The reaction mixture was stirred at reflux for 2 h. Upon cooling to 23 °C, 

the reaction mixture was quenched with saturated aqueous NH4Cl (20 mL) and diluted 

with CH2Cl2 (20 mL).  The phases were separated, and the aqueous phase was extracted 

with CH2Cl2 (3 x 25 mL).  The combined organic phases were dried over Na2SO4, filtered, 

and concentrated under reduced pressure.  Flash column chromatography (SiO2, 15% 

EtOAc in hexanes) afforded spirocycle 249 (732 mg, 89% yield, over 2 steps) as a 

colorless oil. [α]D
25 +46.8 (c 0.97, CHCl3); Rf = 0.57 (33% EtOAc in hexanes); 1H NMR 

(500 MHz, CDCl3, mixture of rotamers) δ 7.39–7.26 (m, 5H), 5.20–5.01 (m, 2H), 4.86–

4.61 (m, 1H), 3.96–2.91 (m, 4H), 2.05 (s, 3H), 1.87–1.00 (m, 12H); 13C NMR (126 MHz, 

CDCl3, mixture of rotamers) δ 170.6, 155.7, 137.0, 128.6, 128.1, 128.0, 75.2 (74.3), 67.2, 

51.4 (50.7), 44.8, 37.0 (36.9), 30.6 (29.1), 30.2, 26.5, 22.4 (21.8), 21.3, 20.8 (20.7), 20.6 

(20.5); IR (Neat Film, NaCl) 2938, 2861, 1732, 1699, 1434, 1242 cm-1; HRMS (ESI+) 

m/z calc’d for C20H29NO4 [M+H]+: 346.2013, found 346.2016. 

 

(–)-Isonitramine (241): To a solution of spirocycle 249 (712 mg, 2.06 mmol) in ethylene 

glycol (13 mL) was added KOH (3.00 g, 53.4 mmol, 25.92 equiv) and hydrazine hydrate 

(0.51 mL) at 23 °C.  After stirring at 120 ºC for 1.5 h, the reaction mixture cooled to 23 

NOAc KOH
NH2NH2•H2O

H
NOH

241
(–)-Isonitramine

Cbz

249

ethylene glycol
120 ºC
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°C and diluted with H2O (100 mL).  The aqueous phase was extracted with CH2Cl2 (200 

mL) using a continuous liquid/liquid extractor and the organic phase was concentrated 

under reduced pressure.  Flash column chromatography (SiO2, CHCl3:MeOH:NH3(aq) = 

46:50:4 eluent) afforded (–)-isonitramine (241) (270 mg, 77% yield) as a white solid. 

[α]D
25 –4.1 (c 0.96, CHCl3); Lit: [α]D

20 –5.0 (c 2.1, CHCl3)11e; Rf = 0.30 

(CHCl3:MeOH:NH3 (aq) = 46:50:4); m.p. 86.9–88.8 ºC; 1H NMR (500 MHz, CDCl3) δ 

3.66 (dd, J = 11.3, 3.7 Hz, 1H), 3.04 (m, 1H), 2.94 (m, 1H), 2.60 (ddd, J = 11.3, 11.3, 3.4 

Hz, 1H), 2.52 (d, J = 11.3 Hz, 1H), 2.24 (m, 1H), 2.06 (m, 1H), 1.78–1.14 (m, 8H), 1.06 

(ddd, J = 13.3, 13.3, 5.5 Hz, 1H), 0.96 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 80.7, 

61.0, 47.4, 36.9, 36.3, 29.9, 29.0, 24.4, 23.3, 20.4; IR (Neat Film, NaCl) 3292, 2929, 

2858, 1539, 1457, 1419, 1282, 1064 cm-1; HRMS (ESI+) m/z calc’d for C10H20NO 

[M+H]+: 170.1539, found 170.1541. 

 

(+)-Sibirinine (242): An oven-dried 1-dram vial was charged with a magnetic stirring 

bar, (–)-isonitramine (241, 20 mg, 0.118 mmol), oven-dried powdered 3 Å molecular 

sieves (40 mg), and CH2Cl2 (1.5 mL). To this stirring suspension was added acetaldehyde 

(0.133 mL, 2.36 mmol, 20.0 equiv). The vial was sealed with a teflon-lined cap, and the 

reaction was stirred at 23 °C for 30 h. The reaction mixture was then filtered through 

celite, washing with CH2Cl2. The filtrate was concentrated under reduced pressure to 

yield a pale yellow oil, which was used in the subsequent reaction without further 

purification. 

H
NOH

241
(–)-Isonitramine

1. CH3CHO, 3 Â m.s.
CH2Cl2, 23 °C

2. m-CPBA
CH2Cl2, 0 °C

N
O OMe

242
(+)-Sibirinine
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The above crude hemiaminal was dissolved in CH2Cl2 (1.2 mL) and cooled to 

0 °C (water/ice bath). To this stirring solution was added m-CPBA (29 mg, 0.13 mmol) in 

one portion. After 15 min, full consumption of starting material was observed by TLC 

analysis. The reaction mixture was filtered through celite, washing with CH2Cl2, and 

concentrated under reduced pressure. Flash column chromatography (SiO2, CH2Cl2: NH3 

(7N solution in MeOH) = 92:8 eluent) afforded (+)-sibirinine (242) (22.9 mg, 92% yield, 

over 2 steps) as a colorless oil. [α]D
25 +10.3 (c 0.56, CHCl3); Rf = 0.40 (CH2Cl2: NH3 (7N 

solution in MeOH) = 9:1); 1H NMR (500 MHz, CDCl3) δ 4.50 (qd, J = 5.8, 1.5 Hz, 1H), 

3.73 (dd, J = 13.4, 7.1 Hz, 1H), 3.53 (ddd, J = 12.0, 4.1, 1.5 Hz, 1H), 3.21 (d, J = 12.2 

Hz, 1H), 3.11 (dt, J = 12.2, 2.5 Hz, 1H), 3.03 (dddd, J = 14.7, 13.4, 5.5, 1.6 Hz, 1H), 2.45 

(tdt, J = 14.4, 13.5, 5.9 Hz, 1H), 2.32 (dd, J = 14.1, 5.8 Hz, 1H), 1.87 (dtd, J = 13.1, 3.8, 

1.7 Hz, 1H), 1.79 (dq, J = 12.3, 3.6 Hz, 1H), 1.65 (d, J = 5.8 Hz, 3H), 1.64–1.60 (m, 1H), 

1.57–1.46 (m, 2H), 1.46 (dt, J = 13.0, 4.0 Hz, 1H), 1.41–1.31 (m, 2H), 1.23 (m, 1H), 1.17 

(m, 1H); 13C NMR (126 MHz, CDCl3) δ 102.2, 84.4, 77.8, 62.5, 38.2, 34.7, 27.0, 26.3, 

24.7, 21.2, 19.6, 14.6; IR (Neat Film, NaCl) 2934, 2854, 1466, 1446, 1367, 1138, 1120, 

1103, 961, 940 cm-1; HRMS (ESI/APCI) m/z calc’d for C12H22NO2 [M+H]+: 212.1645, 

found 212.1640. 
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4.7.3  DETERMINATION OF ENANTIOMERIC EXCESS 

Table 4.7.3.1. Determination of Enantiomeric Excess and Optical Rotation – Part 1 

 

 

 

 

entry compound analytic conditions ee (%) polarimetry

1
SFC: 5% IPA, 2.5 mL/min

Chiralpak AD-H, λ = 210 nm
tR (min): major 3.73, minor 4.30

86 [α]D25 –25.5
(c 0.865, C6H6)

O NHBoc

240a

2
SFC: 5% IPA, 2.5 mL/min

Chiralpak AD-H, λ = 210 nm
tR (min): major 8.12, minor 9.06

86 [α]D25 –38.6
(c 1.20, CHCl3)

240b

3
SFC: 10% IPA, 2.5 mL/min
Chiralcel OB-H, λ = 210 nm

tR (min): major 9.47, minor 11.13
83 [α]D25 –29.3

(c 0.76, CHCl3)

240c

6
SFC: 20% IPA, 2.5 mL/min

Chiralpak AD-H, λ = 210 nm
tR (min): major 4.04, minor 4.91

56 Specific Rotation
Not Determined

O NHBz

240f

7
SFC: 15% IPA, 2.5 mL/min
Chiralcel OJ-H, λ = 210 nm

tR (min): major 3.14, minor 3.85
24

O NHTs

240g

O NHCbz

O NH

O O

OMe

4
SFC: 10% IPA, 2.5 mL/min
Chiralcel OB-H, λ = 210 nm

tR (min): major 6.53, minor 8.13
77 [α]D25 –28.9

(c 0.40, CHCl3)

240d

O NH

O O

5
SFC: 10% IPA, 2.5 mL/min

Chiralpak AS-H, λ = 210 nm
tR (min): major 6.94, minor 8.24

77 [α]D25 –27.4
(c 0.78, CHCl3)

240e

O NH

O O

F

Specific Rotation
Not Determined
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Table 4.7.3.2. Determination of Enantiomeric Excess and Optical Rotation – Part 2 

 

entry compound analytic conditions ee (%) polarimetry

1
SFC: 15% IPA, 2.5 mL/min

Chiralpak AD-H, λ = 210 nm
tR (min): major 2.46, minor 2.78

90 [α]D25 –30.87
(c 4.45, CHCl3)

O NHBoc

Ph
246a

2
SFC: 5% IPA, 2.5 mL/min

Chiralpak AD-H, λ = 210 nm
tR (min): major 4.25, minor 4.63

87 [α]D25 –22.7
(c 0.85, CHCl3)

O NHBoc

246b

3
SFC: 5% IPA, 2.5 mL/min

Chiralpak AD-H, λ = 210 nm
tR (min): major 2.97, minor 4.26

82 [α]D25 –12.8
(c 0.96, CHCl3)

O
NHBoc

246c

4
SFC: 3% IPA, 2.5 mL/min

Chiralpak AS-H, λ = 254 nm
tR (min): major 4.41, minor 6.12

92 [α]D25 –28.7
(c 0.65, CHCl3)

O NHBoc

246d
i-BuO

5
SFC: 15% IPA, 2.5 mL/min

Chiralpak AD-H, λ = 210 nm
tR (min): major 2.48, minor 2.80

93 [α]D25 –1.3
(c 1.32, CHCl3)

O NHBoc

246e

6
SFC: 8% IPA, 2.5 mL/min

Chiralpak AD-H, λ = 210 nm
tR (min): major 4.94, minor 6.46

90 [α]D25 –34.0
(c 1.58, CHCl3)

N
Bn

O NHBoc

246f

7
SFC: 10% MeOH, 3.0 mL/min
Chiralpak AD-H, λ = 254 nm

tR (min): major 2.64, minor 3.12
90 [α]D25 +33.6

(c 1.05, CHCl3)
BzN

O NHBoc

246g

8
SFC: 3% MeOH, 2.5 mL/min
Chiralpak AS-H, λ = 254 nm

tR (min): major 4.06, minor 4.62
99 [α]D25 +10.8

(c 0.93, CHCl3)
BzN

O

O NHBoc

246h

11
SFC: 5% IPA, 2.5 mL/min

Chiralcel OD-H, λ = 210 nm
tR (min): major 19.76, minor 21.43

92 [α]D25 +40.1
(c 0.41, CHCl3)

N

O NHBoc

165g

9
SFC: 15% IPA, 2.5 mL/min
Chiralcel OB-H, λ = 210 nm

tR (min): major 7.21, minor 5.19
92 [α]D25 –13.3

(c 0.28, C6H6)

O NHBoc

246i
N
Ts

10
SFC: 5% IPA, 2.5 mL/min

Chiralcel OB-H, λ = 210 nm
tR (min): major 3.74, minor 3.01

55

246j

N

O
BnO

O

NHBoc

ND
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4.7.4 COMPARISON OF SYNTHETIC (+)-SIBIRININE TO PUBLISHED 

DATA 

As detailed above, we found that hemiaminal formation and subsequent N-

oxidation of (–)-isonitramine (241) furnished (+)-sibirinine (242). This finding is in 

contrast to a previous report, where (–)-sibirinine (242) was obtained in a similar 

sequence from (–)-isonitramine (241).12 Given that the optical rotation of our synthesized 

(–)-isonitramine (241) matches those found in previously reported syntheses,11 and that 

the optical rotation reported in the isolation paper of (–)-isonitramine10 (241) has been 

refuted,11e the optical rotation values reported in the isolation of sibirinine12 (242) should 

be regarded as incorrect. 

Limited spectral data were available for sibirinine (242) in the isolation paper.12 

Full 13C NMR, partial 1H NMR, optical rotation, and HRMS data were reported. 

Comparisons between data obtained from the synthetic material and data available in the 

literature are detailed in the following table. 
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Table 4.7.4.1. Comparison of Synthetic and Natural Sibirinine (242) 

 

 

 

 

 

 

 

Synthetic (+)-sibirinine Natural sibirinine12 
1H NMR (500 MHz, CDCl3) 1H NMR (CDCl3) 

4.50 (qd, J = 5.8, 1.5 Hz, 1H) 4.58 (qd, J = 5.7, 1.2 Hz, 1H) 

3.21 (d, J = 12.2 Hz, 1H) 3.31 (d, J = 12 Hz, 1H) 

3.11 (dt, J = 12.2, 2.5 Hz, 1H) 3.17 (dd, J = 12, 2.3 Hz, 1H) 

1.65 (d, J = 5.8 Hz, 3H) 1.65 (d, J = 5.7 Hz, 3H) 
13C NMR (126 MHz, CDCl3) 13C NMR (CDCl3) 

102.2 101.9 

84.4 84.3 

77.8 77.1 

62.5 62.0 

38.2 38.1 

34.7 34.5 

27.0 26.8 

26.3 26.1 

24.7 24.6 

21.2 21.0 

19.6 19.0 

14.6 14.4 
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Synthetic Summary for Chapter 4: 

Enantioselective Synthesis of α-Quaternary Mannich Adducts: 

Total Syntheses of (–)-Isonitramine and (+)-Sibirinine 

 

Scheme A8.1. Synthesis and Application of α-Quaternary Mannich Adducts 
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Table A8.1. Optimization of the Amine Protecting Group 

 

 

 

 

 

 

 

 

O

O

O
NHR

Pd2(dba)3 (5 mol %)
ligand (12.5 mol %)

O NHR

entry R (239 → 240)

X = OMe (239c → 240c)

O

O
X

yield [%]b ee [%]c

N

O

P

F3C

CF3

2

N

O

P

ligand

1

2

3

4

5

6

7

8

Boc (239a → 240a)

Boc (239a → 240a)

Cbz (239b → 240b)

Bz (239f → 240f)

Ts (239g → 240g)

X = H (239d → 240d)

X = F (239e → 240e)

86

80

86

83

77

77

56

24

94

NDd

96

91

90

84

NDd

54

toluene, 23 °C

239 240

a Reaction performed with 0.2 mmol of 239, 5 mol % of Pd2(dba)3 (dba = dibenzylideneacetone), 
12.5 mol % of ligand in toluene (0.033 M) at 23 °C.
b Isolated yield.
c Determined by chiral SFC analysis.  Absolute stereochemistry has been assigned by anology,
except in entry 2, which was assigned by conversion into (–)-isonitramine (241).
d A yield was not determined.

76 66

76

76

76

76

76

76

76

76

Ph2

(S)-(CF3)3-t-BuPHOX (S)-t-BuPHOX
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Table A8.2. Two-Step Enantioselective Synthesis of α-Aminomethyl Carbonyl 

Compounds (246) from β-Oxoesters (244) 

 

 

 

 

 

 

 

 

 

 

 

X
Y

O

OR

O

X
Y

O

OR

O
NHBoc

n

243a, Cs2CO3

n

Pd2(dba)3 (5 mol %)
76  (12.5 mol %) X

Y

O

n

NHBoc

O NHBoc

245c 86% yield
246c 98% yield, 82% ee

O NHBoc

X

O NHBoc

Ph

BzN

O NHBoc

O NHBoc

Oi-Bu

O NHBoc

BzN
O

O NHBoc

245b 72% yield
246b 93% yield, 87% ee

245a 79% yield
246a 91% yield, 90% eec

245d 83% yield
246d 70% yield, 92% eec

245e 99% yield
246e 74% yield, 93% eec

245g 74% yield
246g 94% yield, 90% eed

245f 80% yield
246f 78% yield, 90% eec

245h 80% yield
246h 92% yield, 99% eed

245i 80% yield
246i 51% yield, 92% eec,d

N
Bn

O NHBoc

N

O NHBoc

Ts

toluene, 23 °C

245 246244

N

O NHBoc

245j  yield NDe

246j 76% yield, 55% eed

O

BnO

CH2Cl2, 23 °C

a Reaction conditions for the Pd-catalyzed allylic alkylation: 245 (1 equiv), Pd2(dba)3 (5 mol %) and XX (12.5 mol %) 
  in toluene (0.033 M) at 23 °C for 12–48 h. 
b Enantiomeric excesses were determined by chiral SFC analysis.
c Pd2(pmdba)3 (pmdba = bis(4-methoxybenzylidene)acetone) was used instead of Pd2(dba)3.
d Reactions were performed on 245g, 245h, and 245i at 40 °C.
e A detailed synthetic procedure for compound 245j was not found, therefore a yield cannot be claimed.
f Reaction was performed in TMBE (0.033 M) at 60 °C.

172g  79% yield
165g  61% yield, 92% eec,f

N

O NHBoc



Appendix 8 – Synthetic Summary for Chapter 4    311 
Scheme A8.2. Total Syntheses of (–)-Isonitramine (241) and (+)-Sibirinine (242) 
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CH2Cl2, –78 °C
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THF, 0 °C;

240b
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CH2Cl2, 0 °C

N
O OMe

242
(+)-Sibirinine

toluene, 23 °C, 24 h 2. Ac2O
pyridine, 60 °C

247 248

249

NaBO3•4H2O
H2O, 23 °C

2. NaH
THF, reflux

(94% yield, 86% ee)

(92% yield, 2 steps)(77% yield)

ethylene glycol
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Figure A9.3. 13C NMR (126 MHz, CDCl3) of compound 239a. 

Figure A9.2. Infrared spectrum (Thin Film, NaCl) of compound 239a. 
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Figure A9.6. 13C NMR (126 MHz, CDCl3) of compound 239b. 

Figure A9.5. Infrared spectrum (Thin Film, NaCl) of compound 239b. 
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Figure A9.9. 13C NMR (126 MHz, CDCl3) of compound 239c. 

Figure A9.8. Infrared spectrum (Thin Film, NaCl) of compound 239c. 
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Figure A9.12. 13C NMR (126 MHz, CDCl3) of compound 239d. 

Figure A9.11. Infrared spectrum (Thin Film, NaCl) of compound 239d. 
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Figure A9.15. 13C NMR (126 MHz, CDCl3) of compound 239e. 

Figure A9.14. Infrared spectrum (Thin Film, NaCl) of compound 239e. 
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Figure A9.18. 13C NMR (126 MHz, CDCl3) of compound 239f. 

Figure A9.17. Infrared spectrum (Thin Film, NaCl) of compound 239f. 
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Figure A9.21. 13C NMR (126 MHz, CDCl3) of compound 239g. 

Figure A9.20. Infrared spectrum (Thin Film, NaCl) of compound 239g. 
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Figure A9.24. 13C NMR (101 MHz, C6D6) of compound 240a. 

Figure A9.23. Infrared spectrum (Thin Film, NaCl) of compound 240a. 
 



Appendix 9 – Spectra Relevant to Chapter 4  329 

 

0
1

2
3

4
5

6
7

8
9

1
0

p
p
m

   

Fi
gu

re
 A

9.
25

. 1 H
 N

M
R 

(5
00

 M
H

z,
 C

D
Cl

3) 
of

 c
om

po
un

d 
24
0b

. 
 

 

O
NH

Cb
z



Appendix 9 – Spectra Relevant to Chapter 4  330 

 

020406080100120140160180200220
ppm

020406080100120140160180200220
ppm

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure A9.27. 13C NMR (126 MHz, CDCl3) of compound 240b. 

Figure A9.26. Infrared spectrum (Thin Film, NaCl) of compound 240b. 
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Figure A9.30. 13C NMR (126 MHz, CDCl3) of compound 240c. 

Figure A9.29. Infrared spectrum (Thin Film, NaCl) of compound 240c. 
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Figure A9.33. 13C NMR (126 MHz, CDCl3) of compound 240d. 

Figure A9.32. Infrared spectrum (Thin Film, NaCl) of compound 240d. 
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Figure A9.36. 13C NMR (126 MHz, CDCl3) of compound 240e. 

Figure A9.35. Infrared spectrum (Thin Film, NaCl) of compound 240e. 
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Figure A9.39. 13C NMR (126 MHz, CDCl3) of compound 240f. 

Figure A9.38. Infrared spectrum (Thin Film, NaCl) of compound 240f. 
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Figure A9.42. 13C NMR (126 MHz, CDCl3) of compound 240g. 

Figure A9.41. Infrared spectrum (Thin Film, NaCl) of compound 240g. 
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Figure A9.45. 13C NMR (126 MHz, CDCl3) of compound 245a. 

Figure A9.44. Infrared spectrum (Thin Film, NaCl) of compound 245a. 
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Figure A9.48. 13C NMR (126 MHz, CDCl3) of compound 245b. 

Figure A9.47. Infrared spectrum (Thin Film, NaCl) of compound 245b. 
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Figure A9.51. 13C NMR (126 MHz, CDCl3) of compound 245c. 

Figure A9.50. Infrared spectrum (Thin Film, NaCl) of compound 245c. 
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Figure A9.54. 13C NMR (126 MHz, CDCl3) of compound 245d. 

Figure A9.53. Infrared spectrum (Thin Film, NaCl) of compound 245d. 
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Figure A9.57. 13C NMR (126 MHz, CDCl3) of compound 245e. 

Figure A9.56. Infrared spectrum (Thin Film, NaCl) of compound 245e. 
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Figure A9.60. 13C NMR (126 MHz, CDCl3) of compound 245f. 

Figure A9.59. Infrared spectrum (Thin Film, NaCl) of compound 245f. 
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Figure A9.63. 13C NMR (126 MHz, CDCl3) of compound 245g. 

Figure A9.62. Infrared spectrum (Thin Film, NaCl) of compound 245g. 
 



Appendix 9 – Spectra Relevant to Chapter 4  355 

 

0
1

2
3

4
5

6
7

8
9

1
0

p
p
m

   

Fi
gu

re
 A

9.
64

. 1 H
 N

M
R 

(5
00

 M
H

z,
 C

D
Cl

3) 
of

 c
om

po
un

d 
24
5h

. 
 

 

Bz
N

O

O

O

ONH
Bo
c



Appendix 9 – Spectra Relevant to Chapter 4  356 

 

020406080100120140160180200220
ppm

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure A9.66. 13C NMR (126 MHz, CDCl3) of compound 245h. 

Figure A9.65. Infrared spectrum (Thin Film, NaCl) of compound 245h. 
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Figure A9.69. 13C NMR (126 MHz, CDCl3) of compound 245i. 

Figure A9.68. Infrared spectrum (Thin Film, NaCl) of compound 245i. 
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Figure A9.72. 13C NMR (126 MHz, CDCl3) of compound 245j. 

Figure A9.71. Infrared spectrum (Thin Film, NaCl) of compound 245j. 
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Figure A9.75. 13C NMR (126 MHz, CDCl3) of compound 172g. 

Figure A9.74. Infrared spectrum (Thin Film, NaCl) of compound 172g. 
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Figure A9.78. 13C NMR (126 MHz, CDCl3) of compound 246a. 

Figure A9.77. Infrared spectrum (Thin Film, NaCl) of compound 246a. 
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Figure A9.81. 13C NMR (126 MHz, CDCl3) of compound 246b. 

Figure A9.80. Infrared spectrum (Thin Film, NaCl) of compound 246b. 
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Figure A9.84. 13C NMR (126 MHz, CDCl3) of compound 246c. 

Figure A9.83. Infrared spectrum (Thin Film, NaCl) of compound 246c. 
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Figure A9.87. 13C NMR (126 MHz, CDCl3) of compound 246d. 

Figure A9.86. Infrared spectrum (Thin Film, NaCl) of compound 246d. 
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Figure A9.90. 13C NMR (126 MHz, CDCl3) of compound 246e. 

Figure A9.89. Infrared spectrum (Thin Film, NaCl) of compound 246e. 
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Figure A9.93. 13C NMR (126 MHz, CDCl3) of compound 246f. 

Figure A9.92. Infrared spectrum (Thin Film, NaCl) of compound 246f. 
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Figure A9.96. 13C NMR (126 MHz, CDCl3) of compound 246g. 

Figure A9.95. Infrared spectrum (Thin Film, NaCl) of compound 246g. 
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Figure A9.99. 13C NMR (126 MHz, CDCl3) of compound 246h. 

Figure A9.98. Infrared spectrum (Thin Film, NaCl) of compound 246h. 
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Figure A9.102. 13C NMR (126 MHz, CDCl3) of compound 246i. 

Figure A9.101. Infrared spectrum (Thin Film, NaCl) of compound 246i. 
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Figure A9.105. 13C NMR (126 MHz, CDCl3) of compound 246j. 

Figure A9.104. Infrared spectrum (Thin Film, NaCl) of compound 246j. 
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Figure A9.108. 13C NMR (126 MHz, CDCl3) of compound 165g. 

Figure A9.107. Infrared spectrum (Thin Film, NaCl) of compound 165g. 
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Figure A9.111. 13C NMR (126 MHz, CDCl3) of compound 248. 

Figure A9.110. Infrared spectrum (Thin Film, NaCl) of compound 248. 
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Figure A9.114. 13C NMR (126 MHz, CDCl3) of compound 249. 

Figure A9.113. Infrared spectrum (Thin Film, NaCl) of compound 249. 
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Figure A9.117. 13C NMR (126 MHz, CDCl3) of (–)-Isonitramine (241). 

Figure A9.116. Infrared spectrum (Thin Film, NaCl) of (–)-Isonitramine (241). 
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Figure A9.120. 13C NMR (126 MHz, CDCl3) of (+)-Sibirinine (242). 

Figure A9.119. Infrared spectrum (Thin Film, NaCl) of (+)-Sibirinine (242). 
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