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Abstract

The creeping motion of a sphere normal to a deformable fluid-fluid interface has
been studied using numerical and experimental techniques. A numerical method
based on the distribution of point force singularities at fluid surfaces, the boundary
integral method, has been applied to sphere motion in the presence of an interface
subject to the constraint of either constant velocity normal to the interface, or
constant non-hydrodynamic body force normal to the plane of the undeformed
interface. Cases for several values of the viscosity ratio, density difference, and
interfacial tension between the two fluids are considered. Calculations reveal two
distinct modes of interface deformation: a film drainage mode in which fluid drains
away in front of the sphere leaving an ever thinning film, and a tailing mode where
the sphere passes several radii beyond the plane of the initially undeformed interface,
while remaining encapsulated by the original surrounding fluid which is connected
with its main body by a thin thread-like tail behind the sphere. We consider the
influence of the viscosity ratio, density difference, interfacial tension and starting

position of the sphere in determining which of these two modes of deformation will

occur.

Experiments were performed for a rigid sphere translating normal to a de-
formable fluid-fluid interface with large capillary number. The motion of fluid at
the interface in both the axial and radial directions was recorded as was the total
force on the sphere. The experimental results were compared to boundary integral
calculations of the interface position and force on the sphere, employing both a fully
mobile and completely immobile model for interfacial dynamics. These comparisons

indicate significant reduction in the interface mobility for the experimental system.

In order to increase our understanding of the actual breakthrough process,
a third model for interfacial dynamics was developed. The latest model includes

the disjoining pressure in the normal stress jump boundary condition. Preliminary
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calculations indicate that dispersion forces can result in a change in the calculated
mode of breakthrough, converting tailing cases to the film drainage mode. Further,
for the range of parameters studied here, the effect of dispersion forces was relatively

small until the sudden onset of motion of the interface toward the sphere caused

breakthough.
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Introduction
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The creeping motion of bubbles, drops, and particles through a viscous medium
near a fluid-fluid interface has long been of interest in industrial applications. The
resistance of emulsions to coalescence, the removal of contaminants in a liquid by
flotation, and the mixing of liquid polymers are examples where an understanding
of the behavior of a body near a deformable interface is central to predicting the
performance of the larger system. One class of this group of problems involves
the motion of a particle or drop near a plane, deformable interface separating two
immiscible Newtonian fluids. The case of small body moving toward a large drop
can also be represented by this system. If the particle or drop is moving toward
the interface, the body may pass through the interface into the second fluid. Such
a process is called coalescence when the body is a drop of the second fluid, and

breakthrough when a rigid particle or a drop of some third fluid is involved.

The generalized coalescence problem including both drops and particles is of
interest in many important processes. The stability of a suspension of liquid drops
depends primarily on the ability of the drops to resist coalescence. Also, the final
phase separation stages of a liquid-liquid extraction process involve droplets of one
liquid, A, rising toward a stationary interface through another liquid, B, and B
settling through A. The capture of particles by a fibrous mat collector onto which
a layer of liquid has condensed is an example of a relevant breakthrough process.
Although the analysis of such problems is extremely complex, we feel that the case of
a single rigid sphere moving near a deformable, plane interface through a quiescent
fluid is a valid prototype of the more involved phenomena mentioned above. For
example, using a sphere and a flat interface to model the case of a small sphere
approaching a much larger one introduces an error of order R,;/R;, where R, and
R; are the radii of the small and large sphere, respectively. Also, drops that are

small enough behave essentially as rigid spheres, Maru, Wasan, and Kintner (1971).

The movement of the body may be a result of the action of any of several forces;-
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gravity, bouyancy and viscous forces are the ones most commonly considered, but
the body might also be affected by electrostatic or magnetic forces to name only
two. Furthermore, if the body is very close to the interface, there are short range
forces between the body and interface (for example, London-van der Waals and

electrical double layer forces) which may play a role.

Shah, Wasan, and Kintner (1972) consider the passage of a liquid drop through

an interface to occur in six stages, namely:

1. An accelerating zone where the drop attains its ter-

minal velocity.

2. A free fall zone where the drop moves at terminal

velocity and there is little interface deformation.

3. A decelerating zone where the presence of the inter-

face causes the drop velocity to change.

4. A film drainage zone. The film drainage configuration

is sketched in Fig. 1.
5. The rupture of the film.

6. the movement of the drop away from the interface in

the second fluid.

Using this list as an outline for the entire process, many researchers have as-
sumed that each step could be studied individually and the knowledge of behavior
for each step then collected for an understanding of the process as a whole. There-
fore, to examine step 4, for example, experiments were run which place a drop or
rigid sphere very close to the interface initially, effectively beginning the the process
with step 4; Hartland (1968), Princen (1963). In general, however, the entire his-

tory of motion affects the instantaneous behavior of the body and interface, and the
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process must be considered from the start and not as individual, independent steps.
Indeed, consideration of the full initial value problem of a particle moving toward
the interface from “far” out in one of the fluids shows that a thin film corresponding
to step 4 does not even form in all cases as the particle passes from one fluid to
another. For certain values of the interfacial tension, density difference and viscos-
ity ratio between the two fluids, the sphere or drop may pass several radii beyond
the plane of the undeformed interface carrying the original surrounding fluid with
it. This fluid will then form a tail behind the sphere. A sketch of the “so-called”
tailing mode is shown in Fig. 2. Breakthrough or coalescence could result from
instabilities in this extending fluid thread before the film in front thins enough to
rupture. The existence of breakthrough without film drainage has also been demon-
strated experimentally for a rigid sphere approaching an initially flat interface at
moderate Reynolds number, Maru, Wasan, and Kintner (1971). In Chapter II, we
will examine whether the tailing mode is a valid solution to the governing equations

and boundary conditions for vanishing Reynolds number, and if so, under what

circustances this type of behavior occurs.

Early investigators of the coalescence phenomenon apparently felt that a par-
ticle or drop would always move relatively quickly toward an interface until an
extremely thin film of fluid separated it from the interface. The drop or sphere
would then stay at this position for some time until suddenly the film would rup-
ture and the body would move rapidly into the second phase, Charles and Mason
(1960). These conclusions were likely a consequence of using spheres or drops in the
early experiments which always had a density equal to or only slightly different from
that of the fluid into which the body would pass. In Chapter II, a force balance on a
body with density intermediate to the two continuous fluids shows that only a film
drainage configuration can result in such a situation. Since the early experiments

revealed that most of the coalescence or breakthrough process was concentrated in
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this quasi-static film drainage configuration, most researchers focused their efforts

on understanding this one part of the overall process.

The resulting analyses and experiments of the film drainage process may be
summarized as follows. H.M. Princen (1963) considered the shape of a fluid drop
at a liquid-liquid interface in the “film drainage” configuration sketched in Fig. 1,
but restricted his analysis to static conditions which were assumed to exist as a
consequence of an unspecified repulsive force between the drop and the interface.
The result was a prediction of “equilibrium” shapes of the interface for a wide
range of Bond numbers, resulting from a balance between hydrostatic pressure and
interfacial tension induced pressure differences, but no information about the time
required for the coalescence process. Also, because interfacial tension and bouyancy
forces are the only ones relevant in a “static” configuration, Princen’s solution
depends only on the dimensionless parameter Apga?/~, where a is a characteristic
length scale of the problem, usually the sphere or undeformed drop radius, and Ap
is the difference in density between the upper and lower fluids, but does not include
the effect of the viscosity of each fluid or the velocity of the body as it approaches
the interface. To model film thinning, Princen applied Reynolds’s lubrication result
for plane parallel disks of equal area. The contact area and force applied to the
disks were taken from the equilibrium calculations. This approximation is crude at

best, as is admitted by the authors.

In subseqgent papers, Princen and Mason (1965a) (1965b) tested these pre-
dictions experimentally and found good agreement between the experimental and
numerical results. Although this agreement indicates Princen’s analysis is correct,
the agreement does not show that such a static analysis is valid for the dynamic
coalescence phenomenon. Princen and Mason’s experiments were carried out by
lowering a drop at the end of a buret to the interface until the film configuration

was established, and then releasing the drop at rest. Photographs were then taken
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of the drop so its shape could be measured.

The concept of equilibrium shapes was expanded by Hartland (1968) to allow
for a better calculation of particle motion. Using the equilibrium position and

interface shape as his initial condition, Hartland solved the equations of motion

subject to the following assumptions:

1. The thickness of the film and its variation with an-
gular position are both small relative to the radius of
the sphere or undeformed drop, up to some critical

angle ¢..

2. The point at which the film starts to tail off, ¢, does

not change with time.

3. Flow in the film occurs only in the direction tangential

to the sphere; there is no radial pressure gradient.

4. Electrical double layers, van der Waal’s forces and

other short range forces are neglected.

5. A no-slip boundary condition is imposed at the sphere or drop surface,

and the interface is either a stress free or no-slip boundary.

Because of assumption 5, Hartland’s solution does not allow motion in the bulk
fluid across the interface, and the viscosity ratio, A, does not appear in his results.
Nevertheless, Hartland was able to derive an equation for the film thickness, §, as
a function of angular position and time with Ca/Cyg as a dimensionless parameter
(Ca = pU/~v, Cg = pU/Apga?). This equation was numerically integrated by
Hartland using an experimental profile as the initial shape. A similar analysis was
also reported by Shah, Wasan, and Kintner (1972) for a drop in which the correct

boundary condition was employed at the drop surface, but still prohibiting motion
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in the second continuous fluid phase. The results of these analyses, though correct
for the stated assumptions, force one to accept a model of the interface which is
usually unrealistic as it prohibits any consideration of circulation in the second
fluid. In addition, no consideration was given to the possibility that the particle

or drop could move into the second fluid without first establishing a film drainage

configuration.

A more satisfactory analysis of the film drainage model was reported by Jones
and Wilson (1978), who carried out an asymptotic expansion for the sphere posi-
tion and interface shape using the ratio of gap thickness to sphere radius as the
small parameter. Their results are the first to include the effects of viscosity ratio.
Furthermore, Jones and Wilson were able to demonstrate the effect of assumptions
made by earlier workers, for example, a no-slip surface slows down the drainage
time compared to a case where circulation in the second fluid is considered. This
treatment was further improved by Smith and Van de Ven (1984) who added the

effect of gravity on the thin film to their solution.

The chief shortcoming of this work, however, is the assumption that a draining
film will occur in all cases, and that the static, equilibrium shape for the spherical
cap in front of the sphere is an adequate initial condition. A preliminary attempt to
explore the possibility of the alternative tail configuration was reported by Maru,
Wasan, and Kintner (1971). These authors used a macroscopic balance in an at-
tempt to determine whether a stable configuration in the quasi-static sense used by
Hartland (1968, 1969), Princen (1963), and Princen and Mason (1965a,b) can exist
for a rigid sphere approaching the interface under the action of bouyancy, or whether
the sphere continues moving through the interface. In this analysis, conditions for
existence of an equilibrium position were examined by assuming the presence of a
surface tension force acting upward on the sphere balanced by body and pressure

forces acting downward. The authors found that for spheres with density interme-
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diate to the two fluids, a stable configuration always exists at the interface. For
spheres heavier than the lower fluid or lighter than the upper fluid, however, Maru,
Wasan, and Kintner find there is a critical radius for which the sphere will not pass
through the interface; only spheres larger than this radius will be able to counteract
the surface tension force to pass into the other phase. However, there are errors
in this analysis, most notably in the assumption of a surface tension force acting
directly on the sphere in the absence of a contact line. The surface tension at the
interface is assumed to act on the sphere at the point where the breakaway region
begins. If the sphere had been resting on the interface, there would be a contact
line, and a force of the type assumed would support the sphere. The particle, how-
ever, is not resting on the interface but is settling through the liquid. The correct
formulation of the problem is to include a pressure jump in the gap region caused
by the curvature of the interface which acts to increase the pressure on this part of

the sphere and slow its motion toward the interface.

To this point, all the analyses mentioned imply that the time for coalescence
after establishment of the film drainage configuration has a unique value. However,
the experiments of Charles and Mason (1960) on drop coalescence show a Gaussian
distribution for the time the sphere remains in the film drainage state. This obser-
vation leads to the conclusion that there must be some step in the process triggered
by a random event. Lang and Wilke (1971) carried out a linear stability analysis for
an infinite plane fluid film bounded above and below by semi-infinite fluids. They
reached the conclusion that whenever a lighter fluid lies under a heavier one, the
system will be unstable with respect to small random perturbations at the interface,
while fluid fluid layers with the heavier on the bottom will be stable. Therefore,
considering only hydrodynamic forces, a drop approaching an interface will always
create an unstable film, but a rigid sphere will produce a stable configuration. Al-

though the film drainage configuration is stable for the motion of a rigid particle,
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the tailing configuration introduces a new question of stability. The photographs of
Maru et al. (1971) show the growth of a varicose disturbance on the fluid thread un-
til ultimately, the tail breaks apart. The configuration of the tail differs significantly
from the classical cases of surface tension instabilities in stationary threads treated
by Rayleigh (1892) and Mikami, Cox, and Mason (1975) to name only two. There
is a complicated flow in the tail with fluid draining at the surface of the thread and
being drawn up in the center. The net flow changes from positive as the volume
of fluid II across the plane of the undeformed interface is increasing, to negative
as the tail volume decreases, draining under the force of gravity. Also, there is an
extensional nature to the flow in the tail as a consequence of the increasing distance
between the sphere and position of the undeformed interface. The effect of this

stretching is to stabilize the thread compared to the “stationary” case.

The experimental data on coalescence and breakthrough at low Reynolds num-
ber is quite limited. Experimental studies which try to investigate the entire process;
Kirkpatric and Lockett (1974), Narayanan, Gossens, and Kosen (1974); rather than
look at a single step, film drainage, for example, have tended to focus on the ef-
fects of the disturbance flow caused by drops on each other. Therefore, the most
meaningful results have come from the work mentioned in the earlier part of this
section. Princen (1963), Hartland (1969), Maru et al. (1971) and Shah et al. (1972)
ran virtually the same experiment, all that was changed were the details of the ap-
paratus and the method of taking data. In this experiment, a drop or sphere was
held near the interface for some time and then released. The shape of the interface
and position of the sphere were recorded by some means usually photographic, al-
though Hartland uses a capacitance technique to measure the gap thickness. This
procedure resulted in a narrow gap between the body and interface at the time of
release. The detailed results, given this initial condition, may differ substantially

from what would occur when the body is released several radii from the position of
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the undeformed interface.

The history of the study of the film drainage problem shows that starting
from very restricted models which eliminated almost all physical factors, researchers
considered systems of increasing complexity in which additional features of the true
physical system were incorporated. This progression continued until Smith and Van
de Van (1984) solved the film drainage problem for all hydrodynamic effects. The
process of paring from the full complex problem factors believed by the researchers
not to dominate the behavior was also applied to the overall problem of a sphere
approaching an interface. Early workers divided the problem into independent
steps and studied the problem by focusing on what they believed to be the most
important, the “film drainage” problem. Only later did workers begin to consider

whether film drainage was always the rate determining step (the basic treatment

by Maru et al.).

The problem of ultimate interest, of course, is to understand the factors which
control the mechanism and dynamics of the breakthrough process. This investi-
gation continues the study of the model problem of a sphere moving normal to
deformable fluid-fluid interface by applying a numerical technique which allows us
to solve for the motion of the sphere and interface as a single integrated process
without prior assumptions about the behavior or configuration of the system. The
numerical method is based on the fundamental solutions of Stokes equation, devel-
oped by Ladyzhenskaya (1963), in terms of a distribution of singularities over the
bounding surfaces of the fluid. The method of solution thus involves evaluating
the single and double layer strengths at the boundaries of the fluid, that is, at the
sphere surface and the interface, and is particularly convenient since the single and

double layer strengths are directly related to the velocity and stress components on

these surfaces.

Youngren and Acrivos used this technique to calculate the slow viscous flow



- 11 -

of an unbounded fluid past a particle of arbitrary shape. Later, they extended
the technique to solve for the steady state deformation of an inviscid drop in an
extensional flow, Youngren and Acrivos (1976). More recently, Rallison and Acrivos
(1978) considered drops of arbitrary viscosity. In our research group, Lee and Leal
(1982) have used this method to determine the drag on a sphere moving at constant
velocity toward a slightly deformable interface. Berdan and Leal (1982) have carried

out similar calculations for translation of a sphere at constant velocity parallel to

the interface.

In the work reported here, we apply the same technique to motion of a sphere
normal to a deformable interface with the constraint that either the force on the
sphere remains constant or the sphere moves with fixed velocity. Fig. 3 gives a
schematic view of the system showing the sphere moving through fluid II toward
fluid I (a convention we use consistently throughout this work) with velocity U.
The Reynolds number for the system, Re = paUa/us, is assumed small enough

that Stokes equation is valid for each fluid. In dimensionless form the equations

are:
0= -—Vpl + szul
0=V .u in fluid 1, (1)
0=—-Vpy + V2u2
0=V-u, in fluid 2. (2)

Here A = py/pa. The boundary conditions for the system are as follows. There is

no bulk flow in the fluids,

u;, u; —0 as |x| — oo, (3)

and at the interface, x € Sy the velocity is continuous.

U3 = Uy (4)’
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The kinematic condition describes the time evolution of the interface shape function,

1 of

n-u1=n-u2='—v—H|—§t—. (5)

Here the interface shape is denoted as z = f(r,t) and the outward pointing normal
n at the interface isn = VH/|VH| with H = z — f(r,t). The final condition at the
interface is the stress jump across the fluid I-fluid II interface. This work considers
several forms for the stress jump. Chapter II uses the form

(/\n~T1—n-T2)=—é(v-n)n+—c—%§fn, (6)

which includes all hydrodynamic effects but not short range forces, or effects due

to interfacial viscosity or surface tension gradients. In Chapter III, the form
(An-Ti—n-Ty) = —— (V-n)n+ — fn + B(x)t (7)
! 27" Ca Cg

which includes a term for the tangential stress jump, magnitude f(x)t, due to
interfacial tension gradients at the interface is adopted for the model. In both
cases, the dimensionless groups Ca and Cg give the ratio of viscous forces tending
to deform the interface to a restoring force; for Ca the restoring force is interfacial

tension, and the relevant restoring force for Cg is the body force due to a density

difference between the two fluids.

In Chapter IV, the effect of the London-van der Waals dispersion force between
the sphere and the fluid I phase is considered in addition to the purely hydrodynamic
forces treated in Chapter II. The dispersion force is an attractive body force resulting
from the mutual polarizability of the two materials, and, as was the case with
the gravitational force, can be expressed as the gradient of a potential. For the
dispersion force, the potential goes as r—® where r is the separation between two
material points. Furthermore, just as the hydrostatic pressure could be incorporated

into the governing differential equation or removed from the definition of the stress
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to appear in the normal stress boundary condition, so too, can the dispersion force
be applied either in the governing equation or the boundary conditions, in which
case the term disjoining pressure is also used. We chose the latter approach as it
allows us to use the same potential solutions for Stokes equation as had been used
in Chapters II and III. As a result, for the case of a disjoining pressure between the
sphere and fluid I, the normal stress jump at the interface is

1 1 1
(An-Tl——n-Tg)=——E&(V-n)n+—é-§fn+—c—,—lFDispn. (8)

Where C! is a dimensionless dispersion force number,the ratio of viscous forces to
attractive dispersion forces; Fpy,p is a function of the system geometry giving the
magnitude of the attractive pressure at a point on the interface. The magnitude of

Fpigp is O(1/the sphere-interface separation).

The remaining boundary condition is for the surface of the sphere. The no-slip
condition which applies at the sphere surface in all cases is that the fluid velocity

equals the velocity of the sphere. In the case of a constant velocity, Us, this is
simply

u =i, at x€Sp. (9a)

For the constant force problem, a force balance on the sphere yields the constraint

on the solution
™
/ TE, sin8d0 = 3, (9b)
0
which determines the particle velocity at any instantaneous position.

We are thus able to treat steps 1—4 of Shah et al.’s scheme in a single numerical
simulation, and consider several models for the behavior of the fluid-fluid interface.
The second chapter of this work applies the numerical technique to the sphere-
interface system considering purely hydrodynamic effects with a constant interfacial

tension at the surface dividing the two fluids. Constant velocity calculations are
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used to explore the role of the physical parameters of the system in controlling the
degree and type of deformation, exploring the role of interfacial tension and density
difference as well as the effect of the viscosity ratio between the two fluids on the
behavior of the system. Although the calculations for a solid sphere with constant
velocity show the existence of breakthrough into the second fluid with the sphere
dragging a tail of the original surrounding fluid with it for a wide range of conditions,
it is not evident that this is representative of the case for constant force. In the
latter circumstance, the sphere will clearly decelerate in the vicinity of the interface,
and this might seem to favor establishment of the film drainage configuration. Thus,
one primary objective is to determine the conditions under which a film drainage
configuration will be established, and those when the sphere continues moving into
the second fluid dragging a tail of the original surrounding fluid behind it. As
time for breakthrough or coalescence changes greatly depending on which mode is
followed, such information is needed in modelling any of the processes mentioned
earlier. By applying a constant force boundary condition on the sphere, we solve for
a settling sphere to determine when a film drainage configuration arises and when

a slender tail of fluid forms behind the sphere.

Chapter III deals with experimental results for high interfacial tension cases.
Berdan, (1982), reported on experiments performed with a tethered sphere moving
at constant velocity toward a deformable interface. In his results, good agreement
between experiment and numerical results were observed for cases of moderate
to low interfacial tension, Ca = O(1) or greater, but for the case of large « the
agreement broke down and significant differences were seen between the two results.
Chapter III reports on our efforts to understand the cause of this discrepancy both

by performing additional experiments, and also, by modifying the numerical model

as described earlier in this section.

Chapter IV reports on the development of a model for and a preliminary study
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of the effect of London-van der Waals dispersion forces on the behavior of the sphere-
interface system. The numerical technique used to study the effect of viscosity ratio,
interfacial tension, and density difference between the two fluids was modified to use
the form for the normal stress jump which includes disjoining pressure, Eq. (8). The
results of this calculation showed that the attraction between the sphere and the
interface could lead to breakthrough via the film drainage mechanism by increasing

the rate at which the interface moved toward the sphere.
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Figure Captions

Figure 1: Film drainage configuration for a sphere at a deformable interface.
Figure 2: Tailing configuration for a sphere at a deformable interface.

Figure 3: Schematic sketch of the system for numerical calculations.
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Figure 2.
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Chapter II

The Creeping Motion of a Spherical Particle

Normal to a Deformable Interface

The text of Chapter II consists of an article which has been accepted

for publication in the Journal of Fluid Mechanics
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Abstract

In this paper, numerical results are presented for the approach of a rigid sphere
normal to a deformable fluid-fluid interface in the velocity range for which inertial
effects may be neglected. Both the case of a sphere moving with constant velocity,
and that of a sphere moving under the action of a constant non-hydrodynamic
body force are considered for several values of the viscosity ratio, density difference
and interfacial tension between the two fluids. Two distinct modes of interface
deformation are demonstrated: a film drainage mode in which fluid drains away
in front of the sphere leaving an ever thinning film, and a tailing mode where the
sphere passes several radii beyond the plane of the initially undeformed interface,
while remaining encapsulated by the original surrounding fluid which is connected
with its main body by a thin thread-like tail behind the sphere. We consider the
influence of the viscosity ratio, density difference, interfacial tension and starting

position of the sphere in determining which of these two modes of deformation will

occur.
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I. INTRODUCTION

When a fluid droplet or rigid spherical particle moves in one fluid bounded
either above or below by a second fluid, the presence of the fluid-fluid interface will
affect the motion of the body, and the interface will in turn be deformed by the
disturbance flow caused by the sphere or drop. If the particle or drop is moving
toward the interface, the body may pass through the interface into the second fluid.
Such a process is called coalescence when the body is a drop of the second fluid and

breakthrough for a rigid particle or a drop of some third fluid.

The generalized coalescence or breakthrough problem is of interest in many
important processes. The stability of a suspension of liquid drops depends primarily
on the ability of the drops to resist coalescence. The final separation stages of a
liquid-liquid extraction process involve droplets of one liquid, A, rising toward a
stationary interface through another liquid, B, and B settling through A, Figure 1.
The capture of particles by a fibrous mat collector onto which a layer of liquid has
condensed is an example of a relevant breakthrough process. A logical problem for
initial investigation of the complicated phenomena inherent in these applications is
a single rigid sphere moving through a quiescent fluid near a deformable, initially
plane interface. Indeed, this problem has already been the subject of intensive
study and is commonly identified as “the” coalescence problem. With one exception,
however, (Maru, Wasan and Kintner, 1971), these earlier investigators have assumed
that the passage of a particle or drop from one fluid to the other always occurs via
the film drainage configuration, depicted in Fig. 2, with “flm drainage” as the

slowest step in an overall process in which each step can (it is assumed) be studied

independently of the others.

In general, however, the prior history of motion affects the instantaneous be-
havior of the body and interface so that the total process must be considered from

the start and not as individual, independent steps. Indeed, we shall see that con-
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sideration of the full initial value problem of a particle moving toward an interface
from “far” out in one of the fluids shows that the film formation and drainage are
not even always steps relevant to the passage of a body from one fluid to another.
[See also Leal and Lee (1981) which contains a preliminary version of some of the
material that is reported here.| For certain values of the interfacial tension, den-
sity difference and viscosity ratio between the two fluids, a long slender tail may
form behind the body as it passes through the original plane of the undisturbed
interface, and breakthrough or coalescence could then result from instabilities in
this extending thread. The existence of breakthrough by this mode has, in fact,
been demonstrated experimentally, but only for a single case of a rigid sphere ap-

proaching an initially flat interface at moderate Reynolds number (Maru, Wasan

and Kintner 1971).

The emphasis of earlier investigators on the film drainage configuration seems
to have resulted from the fact that the sphere or drop used in the early experiments
generally had a density either equal to that of the fluid into which it would pass,
or between the density of the two fluids. As we shall see, a force balance on a
body with density intermediate to the two suspending fluids shows that only a film
drainage configuration can result in such a situation. Since most of the time for
coalescence or breakthrough in these cases is concentrated in the quasi-static film

drainage configuration, most researchers focused their efforts on this portion of the

overall process.

A large number of analyses of the film drainage configuration have been re-
ported in the literature. Many of these were reviewed by Jeffreys and Davies (1971).
However, the most satisfactory analysis of the film drainage configuration is that of
Jones and Wilson (1978), who carried out an asymptotic expansion for the sphere
position and interface shap;e using the ratio of gap thickness to sphere radius as the

small parameter. This treatment was improved by Smith and Van de Ven (1984)
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who also included the effect of gravity on the thin film. The chief shortcoming of
previous theoretical work, in our opinion, is the implicit assumption that a draining
film will occur in all cases. The only theoretical attempt to explore the possibility of
the alternative tail configuration was reported by Maru, Wasan and Kintner (1971),
but this work contains conceptual errors [see Geller (1986), and section V of this

paper].

Experimental data on coalescence and breakthrough at low Reynolds number
is surprisingly limited. Studies which tried to investigate the entire coalescence
process; Kirkpatric and Lockett (1974), Narayaran, Gossens and Kossen (1974);
rather than looking at a single step, e.g., film-drainage, have tended to focus on the
effects of the disturbance flow caused by drops on each other. A number of very
similar film drainage experiments were reported by Princen (1963), Hartland (1968,

1969), Maru et al. (1971) and Shah et al. (1972)

In these latter experiments, a drop or sphere was held near the interface for
some time and then released. This procedure resulted in a narrow gap between the
body and interface at the time of release, and yields a film drainage configuration.
However, the detailed results may differ substantially from what would occur if
the body were released several radii from the undeformed interface. The shape of
the interface and the position of the sphere were usually recorded photographically,
although Hartland used a capacitance technique to measure the gap thickness. Table
I shows the conditions in terms of the relevant dimensionless parameters for which
experiments have been run with rigid spheres. It is evident that although only a
few cases were reported, a fairly wide range of values for the parameters has been

covered, albeit with a restricted range of initial conditions.

This paper reports on a numerical study of a rigid sphere moving normal to
an initially flat deformable interface subject to one of two conditions on the sphere

motion; either the sphere is moving with a constant velocity or it is moving under



- 28 —

TABLE I. Published experimental results

(photographs or numerical data)

A Ca Cg Re
Hartland (1968) 4.76 0.753 0.133 3.62
Hartland (1968) 45.88 0.470 0.090 3.62
Hartland (1969) 0.022 0.465 0.089 0.003
Hartland (1969) 0.210 0.150 0.026 0.045
Maru et al. (1971) 0.434 3.830 1.972 15.19
Shah et al. (1972) 0.440 2.545 1.782 800.76

the action of a constant body force, such as buoyancy. Only gravity, interfacial
tension and viscous forces are considered in the force balance on the sphere; the
effect of Van der Waal’s and other electroviscous forces will be considered in a
future study. Earlier work in this research group has examined the case of a sphere
moving with constant velocity both normal to the interface, Lee and Leal (1982),
and parallel to it, Berdan (1982) but only under conditions of small or moderate
deformation. The present study extends the range of solutions to include large
interface deformation for the constant velocity case, and to obtain corresponding
solutions under the condition of constant force which was not considered in the
earlier work. Our objectives are: to expose those factors which control the details
of interface deformation in this purely hydrodynamics problem; to provide a basis for
comparison with experimental results so that (a) the influence of nonhydrodynamic
factors can be recognized and (b) the effects of such factors as fluid inertia or non-
Newtonian rheology can be evaluated; and, finally, in the case of the constant force

problem, to determine conditions for establishment of a tailing configuration, rather

than a draining film.

The problem of ultimate interest, of course, is to understand the factors which
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control the mechanism and dynamics of the breakthrough process. However, at
the level of analysis represented by the work reported here, we can investigate this
question only in the context of purely hydrodynamic, continuum mechanisms. If,
for example, breakthrough should occur by rupture of a thin film due to instabil-
ities associated with London-van der Waals forces, or even by a purely molecular
mechanism where the “film thickness” is of a molecular (noncontinuum) scale, we
could not determine that fact in the context of the present theory. Indeed, even if
a purely hydrodynamic instability were relevant, its existence might require finer
spatial or temporal resolution than is possible with the present methods of solution.
What we can determine, however, are the conditions when the combination of vis-
cous, capillary and body forces will lead to a conformation in which a film (or tail)
is present. The stability of each configuration must ultimately be treated, includ-
ing all relevant contributions to the local force balance (i.e., at least electroviscous
effects) to judge exactly where and when breakthrough occurs. As indicated above,

the effects of van der Waals and other electroviscous forces will be reported in a

future communication.

Let us now turn to the main problem of this paper — namely, the generation
of solutions to the full dynamical problem of a sphere moving towards an initially
flat, but deforming fluid interface. The mathematical formulation, including the
basic governing equations and an outline of the method of solution via the so-called
boundary integral technique of low Reynolds number hydrodynamics will be pre-

sented in the next section. The rest of the paper is concerned with the results and

interpretation of our numerical calculations.

I1. Mathematical Formulation

(a) Governing Equations and Boundary Conditions
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We consider the translation of a rigid sphere normal to an initially flat but
deformable interface between two immiscible, Newtonian fluids. The governing
equations and boundary conditions are identical for the sphere falling through the
lighter fluid or rising through the heavier fluid; we choose (arbitrarily) to present
our analysis and results for the latter case. Figure 3a shows a schematic view of
the system for a rising sphere. The analysis which we consider is predicated on the

neglect of inertia effects in the fluids and in the motion of the sphere. Thus, we

assume

U
0 @p2 < 1 (1)
K2

where we have chosen the velocity of the sphere, Uy, in an unbounded fluid 2
as the characteristic velocity, and the radius of the sphere as the characteristic
length scale. In the constant velocity formulation of the problem, U, is simply the
sphere velocity. When the sphere is assumed to move under the action of buoyancy,
Uso = (2/9) - (9a%(ps — p2)/12) and this is the maximum velocity of the sphere. In
this case, Eq. (1) is a conservative estimate of conditions necessary for neglect of

inertial effects when the sphere is near the interface.

The governing differential equations, in dimensionless form were previously

given by Lee and Leal (1982), and they are simply restated here for convenience.

0= --VPI + szul

0=V.u, in fluid 1 (2)

0=—Vps + Vu,
0=V - .uy in fluid 2 (3)
u;,u; —0 as |x| — oo (4)
and at the interface x € S;

u; =uy (5)
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(An-T{—n-T%)=—EE(V-n)n+C—gfn (6)

1 of
VH| 3 (7)

where the interface shape is denoted as z = f(r,t) and the outward pointing nor-

n-u;y =n-ug =

mal n at the interface is n = VH/|VH| with H = z — f(r,t) = 0. The stress
T; is the total stress minus the hydrostatic contribution and this is the reason
why the body force term appears in the boundary condition (6), rather than in
the differential equations (2) and (3). It is convenient for formulation purposes to
utilize a cylindrical coordinate system, as indicated in Fig. 3a, with 2z = 0 corre-
sponding to the plane of the underformed interface, and the z-axis passing through
the center of sphere at 2 = —[(t). Three dimensionless parameters result from
the non-dimensionalization, the viscosity ratio, A = p1/uq2; the capillary number
Ca = paUx /7, and Cg = paUs/a?g(p2 — p1). The latter two represent ratios

of the characteristic viscous stress at the interface relative to surface tension and

buoyancy forces, respectively.

The no-slip condition which applies at the sphere surface in all cases is that

the fluid velocity equal the velocity of the sphere. In the case of a constant velocity,
U, this is simply

u; =i, at x€S8p. (8a)

For the constant force problem, a force balance on the sphere yields the constraint

on the solution
T
/ TE, sinag = 3, (8d)
0
which determines the particle velocity at any instantaneous position.

The problem then is to solve (2) and (3), subject to the conditions (4)-(8), for

the velocity and pressure flelds and the interface shape as a function of time and/or
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particle position.
(b) Numerical Procedure

Although the problem in general is non-linear, the non-linearity arises from
the presence of the unknown shape function f, in the boundary conditions; the
governing differential equations are themselves linear. Therefore, it is possible to
use a fundamental solution for the differential equation, and reduce the calculation
to one of finding the particular form of the solution which satisfies the boundary
conditions. Following the earlier work of Lee and Leal (1982), we use the general
solution of Stokes’ equations due to Ladyzhenskaya (1963) in which point singular-
ities are distributed over the bounding surfaces of the fluid resulting in an integral

representation for the pressure and velocity at any arbitrary point in that fluid, x:

u(x) = gl;r— . [flz_ + (x - nf)g(sx — 77)} -T(n)-ndS,
o [ | Eele D 2D ) nas, (9
o) = '2’17? [S E _3(x - gs(x — n)} ~u(n) - nds,
(x -

+ o
4

[__ﬁl’l} - T(n) -ndSs, (10)

3
0

where

n = position on bounding surface, variable of integration
R=|x — 1|

Here S represents the boundary of the fluid domain. Thus, when (9) and (10)
are applied to fluid 2, S includes both the sphere surface and the interface. In fluid

1, the only boundary is the interface. It will be noted that the weighting functions
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in the integrals are just the velocity and stress components at the fluid boundaries.
Thus, the basic idea is to use the boundary conditions (4)-(8) and the limiting forms
of (9) and (10) at the boundaries to obtain a coupled set of integral equations for the
boundary velocity and stress components which are unknown. Once these integral
equations are solved for boundary values of the velocity and stress, the formulae
(9) and (10) can be evaluated to obtain the velocity and pressure at any point in
the fluid domain where these quantities are desired. Frequently, however, the only
quantities of interest are the particle motion and interface shape and, for this, we

need only the surface values of velocity and stress.

The details of applying (9) and (10) together with the boundary conditions
at the interface to obtain integral equations for the boundary velocity and stress
components has been outlined previously by Lee and Leal (1982). Here, we content

ourselves with merely reporting the results. At the interface we obtain

1 3
EuI(x)z— / I -u! ndSI—l—L [I + = ] -Ti -ndS;

R5 87 R RS
1 I I P
+8—7r [R+R3J -T; ‘ndSp, x€ S8y (11)

and

1 3
5(/\+1)u1(x)=z;(/\—1)/ Tl ndSI+—}— [I + rr] T -ndSp
s

. RS 8T R RS
1 I T
- & [E+ﬁ] -F(f)dSr , x€ 51 (12)

where the function F(f) is the stress difference at the interface,

1 I 1 |Kof 30%f 1
F(f)=M-T; —nT =& [T—é?—}-K 62]n+0g'f (13)

here expressed in cylindrical coordinates. The superscripts I and P refer to the
surface of the interface and sphere, respectively; the vector r is defined as r = x —n;

and T/ is the stress tensor evaluated as the interface is approached from fluid i. K



—34 —

is defined as 1/|V H| with the shape function H defined in Eqgs. (15a,b,c). Finally,

on the surface of the sphere

3 Y 1 I T
P = —— — .uf ‘ndS; + — —+=—1-Tf.nds
u® (x) i s, B u’' 'n I+87r SI{R_*—R‘J 2-ndSy
1 I rr P
— —+ —|-T; -ndSp, €S 14

Following the precedent of Lee and Leal (1982), the problem to this point has
been described entirely in terms of the cylindrical coordinate system sketched in
Fig. 3a. Although this representation appears as the “natural” description in view
of the axisymmetric nature of the problem, it can lead to very large values of 9f/dr
and 32 f/9r? when the interface approaches a “tailing” configuration and it was the
loss of numerical accuracy associated with this fact which was largely responsible
for termination of Lee and Leal’s earlier solutions at relatively modest levels of
deformation. In order to overcome this deficiency and insure maximum numerical
accuracy in the calculation of spatial derivatives, we divide the interface into three

sections with the interface shape function H represented by a different coordinate

system in each section (Fig. 3b).

Hi(x)=p—f1(6,t) =0, x€S{ (0<0<bnax) (15a)
Hy(x) =7~ fa(2,t) =0, x€ 52 (#min < 2 < Zmax) (15b)
H3(x) =2z— fa(r,t) = 0, x€ 8 (rmim <7) (15¢)

Equation (15a) locates the interface in terms of the distance from the center of the
sphere as a function of the angle from vertical. In Eq. (15b), the interface shape is
expressed in terms of the distance from the z-axis as a function of z. The “original”
cylindrical coordinate system is used to describe the interface shape as a function

of r in (15c). Although (15b) and (15c) are both written in cylindrical coordinates,
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different functional representations of the interface are used in the two cases. The

vector function F(f) is then given by

2

Ca \kir Kk3r2 862 kir2 36 k3r3 \ a6

1
+—C—gzn1 , for x € 8}

1 1 1 1 82f 1 I
- —— - T TTE T ra f S
F(f2) Ca s <r k% 322>n2 + ngn2 , for x€8,
1 1 (18f 1 0%f 1 L
- —{zZ - Y] _— fi S
F(fs) Caks (r or + k32 3r2>n3+ ngng , for X €53
where
ko= |14 £ (90 ils ny = 4 (1, - 190
1T rz2 \ 88 T e \" T r e )
- ~1/2
B af2\’ 1 (., 8fa,
ky =11+ (5?) , N = E; <1r _5;12 ;
- ~1/2
_ ofs\’ _ 1 (., 9fs,
k3 = |1+ <—(§—T—> y g = E <lz —(—971,- 3

The derivatives in the equation for the normal stress jump junction F(f) were
evaluated by use of a cubic spline polynomial. A spline function was fit through the
center points of the interface segments in each of the three regions and differentiated
analytically at the node points to give df;/dz; (z; = 0, 2, r). The spline function
was also used to prevent the node points from convecting along the interface as

the calculation progressed so that the original segment distribution was maintained

throughout a numerical run.

When the sphere velocity is known so that Eq. (8a) applies, Eqs. (11, 12

and 14) give three integral equations for the unknown quantities u?, Tg and TP,
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provided the interface shape and sphere position are known. When we consider
the constant force problem, on the other hand, Eq. (8b) applies and we have four
integral equations for uf, u?, Tg and TP. Having solved these equations in either
case for some specified initial shape, the kinematic condition, Eq. (7), can be used
to calculate df/dt. This allows the interface shape to be determined at some later
time by adding df/dt At to the present shape. The position of the sphere is also
changed by an increment uf - At and the process is repeated using the new sphere

position and interface shape. In this way, the sphere is “marched” forward from

any given initial condition.

As the problem of motion normal to the interface is axisymmetric, the sur-
face integrals can be simplified greatly by analytically integrating in the azimuthal
direction to reduce the surface integrals to line integrals. Equations (11, 12 and
14) then yield seven linear integral equations in the seven unknowns ul, ul, uf,
T.{M, TF., TE. Following the work of Lee and Leal (1982), these equations were
solved numerically using a simple collocation method. This technique converts the
integral equations into a system of linear algebraic equations. The surface of the
sphere and interface were divided into segments small enough that uf, u®, T£
and TY could be approximated throughout the segment by the value at the center
of the segment. The criteria used here to determine the size of these segments is
discussed in the following section. The integrations were then carried out by Simp-
son’s rule. This procedure converts the seven integral equations into a system of
(4N1 + 2Np + 1) linear algebraic equations where Ny is the number of segments
on the interface and Np is the number of segments on the sphere. This system is
readily solved by Gaussian elimination. One complication is that the integrands in
(11), (12) and (14) become singular when x — 7 [see Eq. (9) for definitions of x and
n]. Thus integration over a small neighborhood of x was carried out analytically

using a linear expansion of the integrands in Eq. (11)-(14) so that all terms remain
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bounded during the numerical integration.

The solutions generated by this numerical scheme are time-dependent through
the kinematic condition Eq. (7), although the governing equations for the fluids are
the steady Stokes equations. All of the equations and boundary conditions (2)-(7)

are based upon the assumption of a characteristic time scale

g

Thus, any motion, including a time-dependent instability, which evolves on a time
scale of this order or slower will be resolved by the numerical solution scheme.

Surface tension driven flows, with a length scale I, will be characterized by a time
scale

t'zﬁ_ﬁ
o

Hence, such motions will be resolved if

o(%)20(5)

This condition can be written in the alternative form
: Ca > 0(1)
~Ca
5 >

Thus, any surface tension driven disturbance with a length scale ! = 0(a) or larger
will be resolved for systems with Ca = 0(1). Very small wavelength disturbances,

or disturbances in systems with a large interfacial tension will not be resolved.

II1. Preliminary Results

The solution to the problem formulated in the previous section will generally de-

pend on both the initial location of the sphere and the initial shape of the interface.
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Therefore, a new set of calculations is required, in principle, for every combination
of initial conditions. In an attempt to circumvent this considerable complication,
Lee and Leal (1982) pursued the concept of “limiting solutions” in which the char-
acteristic time for displacement of the sphere is either very much larger or very
much smaller than an intrinsic measure of the characteristic timescale for interface
motion. These two cases correspond to an interface that remains flat for the fast
moving sphere, or one which reaches a steady state deformation, i.e., u-n = 0 at
each instantaneous position of the sphere in the case of “slow” transition. In either
of these cases, the velocity of the sphere and the interface shape (or velocity) would
depend only on A, Ca, Cg and the instantaneous position of the sphere, thereby
removing the prior history of sphere motion and interface shape as a factor in the so-
lution. Unfortunately, comparison with exact numerical solutions showed that only
relatively few combinations of A, Ca, Cg and initial sphere position corresponded

accurately to these limiting cases.

In the present paper, we therefore have considered further the dependence of the
solution on the initial position of the sphere. It is intuitively evident that a starting
position which is sufficiently large should have a small effect on the solution when
the sphere is near the interface. This is illustrated in Figs. 18 and 20 for results
obtained under the condition of a constant force, Eq. (8b). In these figures, interface
shapes are plotted in a reference frame moving with the sphere so that the interface
appears to be sweeping past the sphere for starting positions, l,, of 3, 5, and 10 radii
from an undeformed interface, with A =1, Ca=1,Cg=1and A = 10, Ca = 1,
Cg = 1. We shall discuss these results in some detail in section V. For present
purposes, it is sufficient to note that the interface shapes for starting positions of
5 and 10 appear to be identical by the time the sphere reaches a position 3 radii
away from the original interface position. The case starting at 3 also produces

deformation equal to the other two cases once the sphere reaches | = 0.75. Figure
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20 indicates that for a higher viscosity ratio, it takes longer for the three cases to
converge to the same shape, but after | = 0.10, the results for the various starting
positions are indistinguishable. Plots of sphere velocity versus position for these
cases are given in Figs. 19 and 21. Again, the results for the three cases converge
as the sphere reaches a position straddling the interface. Finally, Fig. 5 gives the
same type of plot for the constant velocity case with A =1, Ca =1, Cg = 1 with
the same qualitative results. It is evident that a starting position [, = 3 is large
enough to produce solutions which are qualitatively (and over most of the trajectory
quantitatively) representative of the solution for a sphere approaching an interface
from any large distance, and we use the value o = 3 for many of the computations
that are reported in this paper. Solutions with a smaller initial separation between
the sphere and the interface can, however, exhibit important qualitative differences

from these “large initial separation” solutions, as we shall consider later in some

detail.

Another aspect of the numerical calculation which should be discussed prior to
the detailed results is the fact that the domain of numerical integration along the
interface in Eqs. (13, 14 and 16) is necessarily truncated at some finite distance
Ry, from the centerline. Numerical and asymptotic justification for this procedure
was provided by Lee and Leal (1982) for the case of sphere motion at a constant
velocity. Figure 4 demonstrates the effect of increasing Ry on the sphere velocity for
the constant force problem at three different sphere positions. All other calculations
in this study were carried out with Ry > 12. It may also be noted that the truncation
is equivalent to assuming u! and T! =0 for r > R,. Thus, additional justification
of the truncation procedure can be achieved by comparing the calculated values of
u’! and T' near the point of truncation with values near the centerline. Generally,

several orders of magnitude difference existed between these two sets of values.

Although it is a fairly straightforward procedure to decide on a reasonable lower



— 40 -

bound for Ry, deciding on the segment sizes along the sphere and interface surfaces
is a more complex problem. Of course, placing more segments on the surface comes
closer to representing the process of integration, but adding segments to the surface
increases computation time and cost. The number of segments necessary is strongly
influenced by the details of the weighting function distribution along the surface. In
the collocation method used here, it is assumed that u? and T or T are constant
at the center-point value within each segment; thus, the density of segments must be
largest in regions where the values of these variables change most rapidly. Also, the
contribution from any segment decreases at least as fast as 1/r? as r increases, so
larger segment increments can be used as the distance along the interface increases.
The solutions are axisymmetric and we have already indicated that the azimuthal
angle ¢ has been integrated out from the full integral Eqs. (13)-(16) to obtain the
equations which are solved here. Thus the collocation “segments” on the sphere are
actually “strips” around the sphere, with the sphere surface incremented in terms
of the polar angle 4. Following Lee and Leal (1982) a uniform segment distribution
in 0 was chosen for the sphere, with 10 increments in  covering the sphere surface
when the interface deformation was small or moderate, increasing to 16 for large

deformations and/or small sphere-interface separations.

A nonuniform distribution of segment sizes was used along the interface. The
number of segments (which again are strips encircling the r = 0 axis) was taken as
14 for “stiff” interfaces, i.e., those that showed slight deformation, and 16 to 35 for

interfaces with large deformation, again the number increasing as the deformation

grew.

When the three coordinate system representation was used to describe the
interface, two additional parameters were specified, O, and zmin. These were
chosen to correspond to the end of the spherical cap and tail regions, respectively, as

illustrated qualitatively in Fig. 3b. As a result, in each of the three basic regions the
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interface closely followed a coordinate surface except in the area where one represen-
tation changed over into another, and the partial derivatives of the shape functions

in each region had small magnitudes in the chosen coordinate representation.

The final parameter of the numerical algorithm was the time step used in in-
crementing the interface shape and sphere position. This marching was carried out
by simply multiplying the instantaneous velocity of the sphere or interface segment,
calculated by the collocation technique, by the timestep. In other words, the exact
equation for sphere position ! = lo'*'f,_to uPdt is approximated by | = Lo+ 0, uf)Ati
where a new u? is calculated at each time step, and similarly for the interface. The
largest non-dimensional time step, At = At’/(a/Us) used was 0.05 and this value
was decreased as the rate of change of the sphere position or interface shape in-
creased. Also, for both constant force and constant velocity calculations, a shorter
time step is needed as the distance between two surfaces (for example the sphere
and the interface) decreases. Although this time marching procedure is accurate
only to 0(At), the requirement that At decrease as bounding surfaces approach ne-
cessitates a small enough time step that it is not necessary to employ higher order
methods. Whenever a new time step was introduced, an overlap region with the old
larger time step was included in the calculation. The shapes and velocities in this
region were compared for the two cases and if the differences had been greater than
2%, the small time step would have been introduced at an earlier point until the
difference was within 2%. In all cases, however, the difference actually computed

was less than 0.5% when the new time step was introduced.

IV. Results for Motion of a Sphere from a Large Distance
at Constant Velocity

The numerical scheme described in the preceding two sections has been used
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to investigate the motion of a sphere normal to a deformable interface. We first
consider the case where the sphere moves with a constant velocity from a large
distance. The results presented in this section complement Lee and Leal (1982)
who considered the same problem but were limited to calculations for moderate
deformation only. Using the three coordinate system representation, we have now
been able to numerically consider cases where the interface shows large deforma-
tion, continuing in some cases to the point where the sphere has passed many radii
beyond the plane of the undeformed interface. A feature of the numerical algo-
rithm is that the maximum allowable time step becomes smaller as the thickness
of either the film of liquid in front of the sphere or the tail becomes thinner. Thus,
the present computations were terminated when the cost to further increment the
sphere position by a small distance became unacceptably large. In no case was this
computational termination point coincident with the onset of instability of the film
or tail, or of “contact” between the sphere and the interface. Thus, as noted earlier,
a definitive conclusion was never possible as to the final mode of breakthrough. In
some cases, however, the rates of change of the film or tail thickness do provide

strong circumstantial evidence to support either film rupture or tail rupture as the

likely mechanism of breakthrough.

In order to provide a framework for discussion of the results, it is useful to begin
by reviewing the expected role of viscous, capillary and body forces in determining
the degree of interface deformation for the case of sphere motion at a constant
velocity. From a macroscopic point of view, a basic energy balance at any moment
will exist between the rate of working, FU, by the particle on the fluid (where U
is the particle velocity and F is the hydrodynamic drag which, at steady state, is
equal in magnitude to the applied force necessary to maintain the constant velocity
U), and the rate of conversion to internal and potential energy. When the particle

is far from the interface, the rate of working, FU, is converted entirely to heat via
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viscous dissipation. As the particle approaches the interface, however, the force,
F, required to maintain the velocity U increases, partly as a consequence of an
increase in the rate of viscous dissipation and partly to balance the increase in
potential energy of the system as the interface begins to deform so that the heavier
fluid is carried across the plane, z = 0, of the undeformed interface and the surface
area is increased. If we focus on the region above z = 0 that is occupied by fluid II,
as illustrated and considered in detail for a tailing configuration in the Appendix,
an approximate balance exists between the rate of working FU, the rate of increase
of potential energy as the volume of fluid is increased by “entrainment” into the
tail, the rate of increase of surface energy as the interfacial area is increased, the
rate of working by surface stresses at the exterior boundaries of the film plus tail

and the rate of viscous dissipation in the film plus tail.

The details of interface deformation can only be determined by solving the full
problem outlined in the previous section, and we shall present results of this type
very shortly. Some general features can be understood, however, on the basis of the
approximate energy balance in the film plus tail that we have just outlined. Let
us consider initially the case A = 0. Now, for any given A, the rate at which the
interface deforms for a given rate of input of mechanical energy, FU, is determined
by the incremental increase of potential energy that is required due to the increase
of surface area and the increased volume of heavy fluid above the z = 0 plane.
Since the potential energy increase is proportional to the surface tension and the
density difference between the two fluids, and Ca and Cg measure the characteristic
magnitude of viscous forces relative to capillary and buoyancy forces, it is evident
in the constant velocity case that a decrease in Ca and/or Cg will tend to reduce
the rate of interface deformation. Thus, for a given position of the sphere, the
interface will tend to be less deférmed for smaller values of Ca or Cg. Of course,

some of the mechanical energy is converted irreversibly to heat even for A = 0, but
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as A increases both the rate of dissipation within the film plus tail and the rate
of working by viscous stresses at the boundary of the tail-film region will increase.
Consequently, for fixed Ca and Cg (roughly, fixed FU), we may expect that the
rate of deformation will decrease with increase of A since an increased fraction of
the input energy is being dissipated to heat. Thus, again, for a given instantaneous
position of the sphere, the interface will be less deformed as A increases. An upper
bound on the amount of fluid which the sphere can carry across the z = 0 plane
corresponds to the case when viscous effects are negligible and the interfacial free
energy is zero (Ca = o). In this case, the maximum volume of entrained fluid will
be determined by a balance between the force applied to the fluid from the sphere,
F, and the total buoyancy force on the fluid in the film plus tail region. We shall
see shortly, from our detailed solutions, that this balance is very closely approached
for A = 0 even when Ca = 0(1). This is illustrative of the fact that interfacial
tension acts primarily to moderate the rate of entrainment across the interface at
any moment by affecting the shape of the interface in an attempt to minimize the
area (or curvature), but does not itself control the total amount of fluid which
can be carried across the plane by entrainment. Indeed, as the density difference
becomes very small (i. e., Cg — oc), the maximum degree of interface deformation
will become very large for any level of interfacial tension (Berdan and Leal, 1982).
The role of nonzero values for the viscosity ratio, A, is similar to interfacial tension
in the sense that the interface deformation (and rate of entrainment) is decreased
at any instant, relative to its value for A = 0, but a nonzero viscosity ratio does not
in itself control the total maximum volume of fluid which can be entrained across

the z = 0 plane, this still being determined by the balance between drag and the

net body force.

It is important to recognize that the constant velocity problem considered in

this section is special in that a tailing configuration of interface deformation must
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ultimately be achieved in all cases in the absence of hydrodynamic instabilities
leading to rupture of the interface (the exception being Ca = Cg = 0, corresponding
to a solid wall). For very small (but nonzero) values of Ca and/or Cg, the interface
will remain virtually flat until the sphere begins to penetrate the plane z = 0, and
the minimum dimension of the film which then forms will be exceedingly small
compared to the radius of the sphere. Furthermore, the force required to move
the sphere at constant velocity will become exceedingly large. Nevertheless, a film
and tail must ultimately form. Whether such an extremely thin film could actually
be realized in the “real” problem, where additional effects such as van der Waals
forces are present is doubtful, but that is a question which cannot be answered
in the present context where only hydrodynamic, surface tension and body forces
are considered. In addition, as a practical matter, the present numerical scheme is
not well suited to cases involving extremely thin films (or tails) and we are thus
forced (by the cost of obtaining a solution) to stop some calculations involving small
values of Ca and/or Cg before the sphere moves a significant distance across the
z = 0 plane. In these cases, it is important to recognize that the “inability” to
proceed further with the solution does not mean that a tailing configuration will
not ultimately appear in the constant velocity case (assuming of course that no
hydrodynamic instability is encountered). It is only the inability of our present
scheme to generate the solution with reasonable economics for small Ca and/or Cg
which prevents our demonstrating the tailing configuration which must inevitably
occur. The constant velocity problem does not, therefore, contribute directly to
our understanding of the conditions for existence of the film drainage or tailing
configurations which can occur in the case of motion under the action of a constant
force. It does provide the simplest forum for understanding, in detail, the physics
controlling interface deformation and that is its most important role. In addition,

however, the constant velocity case provides an essential basis for high resolution



— 46 —

experimental observations over a wide range of Ca and Cg as are necessary to expose
the role in the coalescence process of effects such as non-Newtonian rheology or

inertia which cannot be studied easily by a theoretical (numerical) analysis (Geller,

Berdan, and Leal, 1986).

Let us now consider the results obtained from the numerical calculations in
detail for the case of sphere motion at a constant velocity. The first case treated is
A=1,Ca= Cg=1. Wechoose to begin with this case because the “characteristic”
measures of viscous, surface tension and gravity forces are all of equal magnitude
and thus these forces should be expected to have a roughly equivalent role in the
behavior of the sphere and interface. Profiles showing the interface shape at equal
increments of time (or particle displacement) are plotted in Fig. 5. The most obvious
feature of this solution is the long, slender tail which evolves behind the sphere and
the rather considerable volume of fluid which is carried across the interface by the
sphere. The “film” over the front portion of the sphere does thin slowly, but in none
of the cases shown in the figure is it particularly thin compared to the sphere radius.
It is also noteworthy that none of the interface shapes drawn in Fig. 5 exhibits any
indication of hydrodynamic or capillary instability, although the spatial resolution
of our solution algorithm is such that disturbances on the scale of either the tail
diameter or minimum sphere-interface separation could be detected if they were
present. It may be noted in this regard that the linear stability analysis of Lang
and Wilke (1971) leads to the conclusion that the “flm” in front of a rigid sphere
approaching an interface should be stable in the absence of van der Waals forces. On
the other hand, the experimental observations of Maru et al. (1971) show the onset
and growth of a varicose disturbance on the “tail” which does cause it to break apart,
but only after the tail is approximately 120 particle radii in length, far beyond the
final configuration which is attainable at reasonable cost with the current method

of solution. The obvious alternative would seem to be a detailed stability analysis
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for a draining, extending tail, such as that shown in Fig. 5. Unfortunately, none of
the existing analyses of “thread” stability is directly applicable, and an improved
analysis does not appear viable to us at the present time due to the complicated
and “unknown” nature of the “base” geometry and flow. The classical analyses
of Rayleigh (1892) and Tomotika (1935) for surface tension driven instability of a
stationary thread “neglect” the nonuniform geometry, the draining flow in the tail,
and, most importantly the extension of the tail with time, which is known from both
experimental and theoretical studies to increase stability, ¢f. Grace (1971), Chin and
Han (1979) and Olbricht and Leal (1983). A problem which more closely resembles
the situation in the tail is the stability of an infinite thread that is aligned with
the symmetry axis of a uniaxial straining flow, treated by Mikami, Cox and Mason
(1975). Their analysis includes the effect on stability of extension and of a decrease
in thread diameter, but in a controlled manner determined by the assumed uniaxial
straining flow (which is not present in the tail behind the sphere). These researchers
predicted a fastest growing wavelength which depends on the instantaneous radius
but which reaches an asymptotic limit with time. For the case A = 1,Ca = 1,
this asymptotic limiting wavelength is approximately 35 thread radii (or roughly
15 sphere radii for our case); our calculations go as far as a length of about 6.5 for
the tail region, considerably less than the wavelength for instability predicted by
Mikami et al., and much less than seen experimentally by Maru et al. (1971). If,
as said before, extension and thinning of the fluid cylinder are factors “stabilizing”
the growth of capillary waves, Mikami’s results may provide an upper bound on the

length that the tail can achieve since the flow assumed in their calculations provides

the greatest extensional character.

An examination of the governing equations and boundary conditions, Egs. (2)-
(8), indicates that the interface shape will depend on the parameters A\, Ca, and

Cg. Lee and Leal (1982) have previously discussed the role of each of A, Ca and
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Cg on the behavior of the deforming interface at small and moderate deformations.
In the remainder of this section, we focus on the large deformation behavior of the
interface beginning with the influence of the viscosity ratio A. The effect of the
viscosity ratio can be seen by comparing the results in Fig. 5 with those in Figs.
6 and 7, where we consider the same values of Ca = Cg = 1, but A = 0 and 10,
respectively. It is visually evident on the basis of the film thickness at the front
stagnation point of the sphere that the amount of deformation for a given position of
the sphere is decreased in the early part of the deformation process as the viscosity
ratio, A is increased. This visual impression is confirmed if we actually measure
the volume of fluid in the film + tail region above the z = 0 plane as a function of
particle position, though the differences on this basis between the cases A = 0 and
A =1 are very small. This can be seen in Fig. 8 where we have plotted (for reasons

to be discussed shortly) the total volume of the fluid region plus sphere normalized

by 6ma?. We have argued earlier that the influence of increased viscosity in the

upper fluid should be primarily one of controlling the rate and details of interface
deformation rather than the maximum amount of fluid which can be carried across
the z = 0 plane. This conjecture is confirmed for A = 0 and 1 by the results in Fig.
8, where a maximum is obvious in the volume which is approximately independent
of A, though occurring somewhat later (i.e., for more negative values of [) for A = 1
than for A = 0. Beyond the point of maximum volume, the film + tail region
begins to lose fluid by “drainage”, though this process is also slower for A = 1 than
for A = 0. The case A = 10, which initially begins with a much smaller volume of
entrained fluid (for I > 0) has not yet yielded a maximum in the volume of entrained
fluid by the time that the calculation was stopped due to the thinness of the film at
the front of the sphere, but the total volume of fluid entrained is similar to the other
cases at intermediate values of /. In all of the general features described above, the

numerical solutions illustrated in Figs. 5-7 confirm the qualitative physical picture
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(outlined at the beginning of this section) of the role of A in the interface deformation
process. Certain detailed features of interface shape could not be predicted by the

qualitative arguments, however, and these are also of interest here.

First, it is evident that the portion of the tail plus film region which changes
shape most rapidly once the total volume begins to decrease by drainage is strongly
dependent on A. In particular, for A = 0, the film region barely thins at all but
instead is carried along in almost rigid motion by the sphere. All of the loss of fluid
volume occurs in the tail, which thins rapidly both because it is being stretched
and because there is no flow entering the tail from the film to compensate for this
stretching and for the drainage of fluid back across the z = 0 plane. For A = 1,
on the other hand, the film is thinned more rapidly as a consequence of viscous
stresses at the interface, the fluid in the tail drains more slowly and the result is a
marked decrease in the rate at which the tail decreases in radius. The fact that the
“flm” barely thins at all when viscous stresses are removed from the interface (in
setting A = 0) shows that neither capillary nor body forces plays a significant role
in this process, at least for Ca = Cg = 0(1). Finally, although we have indicated
previously that the mode of “breakthrough” cannot generally be established in the
absence of a thorough study of possible hydrodynamic instabilities, and/or other
phenomena associated with the existence of colloidal forces between the interface
and sphere surface, or between the interface and itself (for example, across the thin
tail), a simple comparison of the rate of decrease of the film and tail “thickness” in
the case A = 0 is strongly suggestive that “breakthrough” will occur in that case by
a necking failure in the tail, leading presumably to a sphere in fluid 1 surrounded

by a layer of fluid 2 (though this cannot represent an equilibrium configuration, see

Johnson and Sadhal, 1985).

A final point of interest, with regard to these first three solutions, is the vari-

ation of the hydrodynamic drag on the particle as a function of its position. The
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numerically calculated values of the drag ratio (i.e., the drag/6musaU) for the cases
A = 0,1 and 10 with Ca = Cg = 1, are shown as a function of particle position
by the solid lines in Fig. 8. The deviation in the drag from Stokes’ law obviously
increases with A. Furthermore, the results for A = 0 and A = 1 show a definite
maximum in the drag at a position where the particle has passed beyond the plane
of the undisturbed interface. This maximum in the drag appears to occur primarily
because of a corresponding maximum in the volume of fluid in the complete column
consisting of the film and tail. To demonstrate this fact, let us consider the net body
force on the fluid column excluding the sphere which is simply (p1 — p2)g(vs + vs),
where vy is the total volume of fluid in the column (i.e., film plus tail), and v, is the
volume of the sphere. If the contributions of viscous stresses and interfacial tension
were completely negligible in the macroscopic energy balance described earlier, this

net body force should exactly balance the hydrodynamic force from the particle to

the fluid. In this case,

. Vft+ Vs o
D tio = ———C 16
rag ratio = ———; (16)
Thus, for Cg =1
. vy + v,
D ratio = ———
rag ratio P

and it would follow that any variation in the drag ratio with particle position should
be reflected in temporal variations of v f + vs. In order to test this conclusion,
values of v, + vy were measured from the numerical solutions, and (v, + vy)/67ma3
was plotted in Fig. 8 for comparison with the numerically calculated drag ratio. It
is evident that the drag ratio and (vy + wv,)/67a® agree extremely well for the
case A = 0. Apparently, any contributions of viscous dissipation or the increase
in surface energy due to increased surface area to the overall energy balance (from
which the simple “force balance” of (30) is “derived”) are negligible for A = 0, Ca =
Cg = 1. On the other hand, as A increases, the drag ratio considerably exceeds

(vs + vf)/6ma3, though the position of the maximum in the drag ratio still appears
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to agree well with the position of the maximum in (vy + vs). We believe that the
difference between the drag ratio and (vs + vys)/6ma® for A > 0 is primarily a
consequence of the increased rate of working by viscous stresses at the interfacial
boundary of the columnar region. The quantitative comparison for A = 0 provides
strong evidence for the validity of the qualitative picture, based on an overall energy

balance, that was outlined at the beginning of this section.

In the remainder of this section, we consider the detailed effects of variations in
Ca and Cg on the large deformation behavior of the interfaces. We first consider two
cases of small Ca and Cg. Figure 9 shows interface shapes for the case A = 1, Ca =
Cg = 0.1 and Fig. 10 presents the results for A = 1, Ca = Cg = 10~2 both with
the center of the sphere initially 3 radii away from a flat interface. The asymptotic
limiting case, Ca <« 1, Cg < 1, corresponds to very large surface tension and
gravitational forces relative to viscous forces, and is known to yield asymptotically
small deformations of the initially flat interface provided only that the sphere has
not begun to penetrate the plane of the undisturbed interface. Although it is not
known precisely how small Ca and Cg must be for this asymptotic behavior to
manifest itself, it might be supposed that simple dominance of surface tension or
gravitational forces (corresponding to Ca or Cg < 1) would be enough. It is evident
from Fig. 9 that this is not the case. Even for Ca = Cg = 0.1, there is considerable
deformation before the sphere comes close to the z = 0 plane. The role of viscous
forces is small in this case relative to surface tension and gravity effects so we see,
(as was also true for A = 0), that there is only very slow thinning in the film ahead
of the sphere in spite of the fact that A = 1. The important effects are taking place
in the tail behind the sphere. Unlike the earlier results, a long tail is not formed
behind the sphere. What is evident from Fig. 9 is that once the interface has been
deformed by the sphere, say, between ! = —1 and —2, the relatively large surface

tension tends to drive the interface toward a minimum energy configuration, namely
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a spherical shell encapsulating the particle with a flat interface below. At the same
time, the relatively strong capillary forces, in combination with the increased density
difference between the two fluids, causes rapid drainage and a “pinching off” of the
tail behind the sphere. In the second case, A = 1, Ca = Cg = 1072, the magnitude
of the surface tension and density difference is such that the interface appears nearly
rigid at the point where the computation is terminated. Breakthrough, in this case,
undoubtedly occurs in real systems by rupture of the thin film on the front portion
of the body. Nevertheless, if we were to continue the present calculations for a

sufficiently long time, a tail would eventually develop.

Figure 11 shows the drag ratio versus position for A = 1, Ca = Cg = 1, 0.1
and 10~3. The points which appear with the plot for Ca = Cg = 10~2 are exact
analytical results for sphere motion towards a flat interface with A = 1 calculated
by Lee and Leal (1980). The present numerical results can be seen to agree very
well with these analytical results. It should be noted that this comparison provides
a fairly critical test of the accuracy of the numerical scheme because the numerical
solution difficulties are most severe where sphere-interface separation becomes very
small. The generalities discussed with regard to Fig. 8 (such as the existence of
a maximum in the drag) are seen to apply in these cases as well; however, the
increased restoring force associated with the decrease of Ca and Cg causes a very

substantial increase in the magnitude of the drag ratio.

Finally, three constant velocity cases were considered in which A and Cg were
held equal to 1.0, but Ca was varied to examine the effects of surface tension in
more detail. In one of these cases, we took Ca = 10~2, with the result that the
interface deformed very little, and a deformation mode was observed similar to
Ca = Cg = 102 but with slightly increased amplitude of deformation. In the
interest of space conservation, this <;ase is not shown here but will be available in

Geller (1986). The second case, A = 1,Cg = 1 and Ca = o is depicted in Fig. 12.
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Here, the surface tension is zero. As the viscosity ratio is the main factor controlling
the film thickness for either Ca or Cg = 0(1), the thinning of fluid in front of the
sphere is almost identical to that shown in Fig. 5 for A = Cg = Ca = 1. The
difference in interface shapes between these two cases is in the thickness of the tail

behind the sphere. In the present case without any surface tension, the tendency

of the tail to “pinch off” is reduced, and a broader tail results.

The final case we present in the series illustrating the role of surface tension
is Ca=10"1 (A =1, Cg = 1), shown in Fig. 13. In this case, Ca is small enough
to have a very strong influence on the behavior of the interface and yet not so
small as to inhibit all deformation prior to the sphere crossing the z = 0 plane.
Examination of Fig. 13 shows that for the early stages of deformation, [ = 3 to
0, surface tension acts to broaden the deformed part of the interface by flattening
it, and thereby minimizing the total curvature. This broadening can be seen by
comparison with the result for Ca = 1 in Fig. 5. In spite of this “broadening” effect,
however, the total volume of fluid carried across the plane of the initially undeformed
interface is nearly equal for the two cases consistent with the predictions from the
macroscopic balance on the sphere-tail system. Furthermore, though the resistance
of the interface to deformation caused by the large value of + initially results in a
rapid thinning of the thin film in front of the particle, this film does not continue to
drain as the sphere moves but eventually reaches a steady thickness equal to that
for Ca=1,Cg =1, A =1 as expected based on our earlier discussion of the role of
the viscosity ratio in the formation the film. As the sphere moves across the initial
plane of the interface, ! = 0 to —3, the interface must deform in front of the sphere,
and the interface shape near the sphere is almost identical to the case (Fig. 5) where
Ca = 1. However, the effect of surface tension is still to keep the interface as flat
as possible, and the interface does not drop back to the z = 0 plane as near to the

centerline as for the Ca = 1 case. As a consequence, the volume of fluid entrained
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with the sphere for Ca = 10~! is somewhat larger during this period (I = 0 to
—3) than for Ca = 1 (as is the drag ratio). From | = 0 to —3, a transition is also
beginning from one low energy configuration to another. Through | = —3, surface
tension acts to broaden the deformation in order to reduce the interfacial area.
After this point, however, the deformation is great enough that the interface begins
to move rapidly toward the other low energy shape of an encapsulated sphere with
the tail pinched off at the rear. Unlike the case presented earlier in which both Ca
and Cg were 107!, the primary mechanism driving the constriction in the present
case is capillary forces, and it can be seen by comparison of Figs. 9 and 13 that
the drainage occurs less rapidly. Nevertheless, drainage for Ca = 107!, Cg = 1
does occur faster than for the Ca = Cg = 1 case, with 40% of the entrained volume
being lost between | = —4 and —5 for the former case, and only 50% from [ = —4
to —8 in the latter. The rapid change from one low-energy configuration to another
causes a rapid “pinching” of the interface in the tail region so that the likely cause
of breakthrough for cases like Figs. 9 and 13 with Ca = 10~! would seem to be
“pinch off” in which the thickness of the tail goes to “zero”, rather than the growth

of a hydrodynamic instability in the tail as seems likelyfor A=1,Ca =1, Ca = 1.

The final constant velocity case we presentis for A =1, Ca =1, Cg = 107,
This is a case where the role of the density difference between the two fluids dom-
inates over that of the viscosity ratio or surface tension. Figure 14 presents the
interface shapes calculated for this system. The most noticeable feature of these
shapes is that without surface tension to broaden the deformation, the interface falls
back to the 2 = 0 plane relatively near the centerline. In most cases, the interface
is flat beyond r = 1.5. Also, although the magnitude of the drag ratio for this case
is comparable to that for A =1, Ca = 1071, Cg = 1 (Fig. 15); consistent with the
results of the macroscopic balance (Eq. 30), the volume of fluid carried across the

z = 0 plane is an order of magnitude smaller for the Cg = 101 case. A noticeable
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difference in the drag ratio for the case Cg = 10~!, Ca = 1 relative to the other
two cases shown in Fig. 15 is that the drag ratio appears to be leveling off after
| = —3, while the drag continues to decrease for the other two cases. This difference
is attributable to the different mechanisms causing fluid to drain from the region
behind the sphere. In the case where the density difference between the two fluids is
the dominant driving force for drainage, the particle is almost entirely encapsulated
and this combined body of a sphere and fluid film is moving as a single unit. This
conclusion is supported not only by the interface shapes of Fig. 14, but also by the
v, and u, values calculated for the interface in the encapsulated region. Behind
the sphere, the fluid column is apparently no longer being supported by the viscous
forces and so does not contribute to the drag on the sphere. In this case, Cp levels
off near the value for an isolated sphere-film combination moving through fluid I.
In the cases where surface tension is the major cause of drainage (Fig. 13), or is
equal in importance to the density difference (Fig. 9), a significant force is being
exerted on fluid II at the interface. In the film region in front of the sphere, the
force due to surface tension acts in the direction opposite to sphere motion as the
inward normal has a downward pointing z-component. After the sphere begins to
become encapsulated, part of the interface near the sphere has an inward pointing
normal whose z component is in the same direction as the sphere’s motion, and in
this region the z component of the normal force due to interfacial tension will be
directed along the line of sphere motion thereby lowering the drag. As the area of
the interface with upward pointing z component of n is growing (unlike the film
region which has a downward pointing component of the normal but is stable in
size), the net effect is for the drag on the sphere resulting from interfacial tension
to decrease with time as the pinching continues. Since the pinching process will
not stop until the sphere is entirely encapsulated and, as shown above, the drag

following from the density difference levels off, the drag ratio continues to decrease
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The results of this section provide definite evidence of a “tailing” configuration
as the sphere passes across the plane of the undisturbed interface. The dynamics of
the layer of fluid immediately adjacent to the sphere appears to be dominated by
viscous forces, with gravitational forces also playing a role, but to be only weakly
influenced by interfacial tension forces. The dynamics of the tail, on the other hand,
appear to be more strongly influenced by interfacial tension forces, these tending
to pinch off the tail as the system is eventually driven toward a second minimum
free energy configuration in which the sphere is surrounded by a thin fluid layer of
constant thickness and the interface reverts to a flat, undeformed configuration. In
the next two sections we explore the effects of motion under the action of a constant
force, rather than motion at constant velocity as in this section, and also consider

the influence of the initial configuration for values [, < 3.

V. Results for Motion from a Large Distance Due to a Constant

Body Force on the Sphere

In this section, we describe our results for the case of motion under the action of
a constant external body force. Our goals are twofold. First, we wish to determine
whether the conclusions of the preceding section, relating to the roles of A, Ca and
Cg in controlling the shape of the interface, carry over from the constant velocity
to the constant force problem. Also, we are concerned with the conditions for the
establishment of the tailing and film drainage configurations. Unlike the constant
velocity situation discussed in the previous section, where a tail will necessarily de-
velop provided a large enough force is exerted on the sphere, in the constant force
case, either a tailing mode or film drainage behavior might result. The constant

force problem is fundamentally different from the earlier case in that here the ve-
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locity decreases as the sphere approaches the interface hence Ca and Cg decrease
effectively as well. It is possible that the particle force is not great enough at these
lower velocities to carry it across. the plane z = 0 and form a tail with the result
being that film draining is the exhibited mode of breakthrough. Finally, we wish to
compare the results of our numerical solutions against those of earlier theories and
experiments. To accomplish the latter goal, two calculations were carried out corre-
sponding to published experimental runs. One was for a case which experimentally

exhibited film drainage, the other where a tail configuration was reported.

Before proceeding to discuss numerical results, however, we note that it can be
shown without use of a numerical procedure that only one mode of deformation is
possible for a certain subclass of the constant force problem. In particular, in cases
where the force responsible for sphere motion is buoyancy-induced, film-drainage is
the only possible configuration when the particle density is intermediate between
the densities of the two fluids. This result is demonstrated easily by showing that
any configuration in which the particle passes beyond the plane of the initial flat
interface, is inconsistent with a macroscopic “equilibrium” force balance when the
sphere density is between that of the two fluids. The details of this calculation
are shown in the Appendix. The condition of an intermediate sphere density is
satisfied whenever Cg < 2/9. The fact that no inconsistency arises for sphere
densities which are not intermediate to the two fluids (i.e., for Cg > 2/9) does
not, of course, prove that a tailing configuration will actually arise in a dynamical

calculation (or experiment). It shows only that such a configuration is possible.

We consider one case for which the macroscopic balance predicts film drainage,
ie.,, Cg < 2/9. This is for the set of parameters A = 0.022, Ca = 0.464, Cg =
0.089. These parameters correspond to an aluminum sphere falling through golden
syrup toward liquid parafin, the system used in Hartland’s (1969) experiments. The

associated Reynold’s number for this system is 0.003. A feature predicted in the
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film drainage theories for this case is the pinch point described by Hartland (1969)
and given a physical explanation by Jones and Wilson (1978). Calculated interface
shapes for the sphere starting at [, = 3.0 are shown in Fig. 16. The mode of interface
deformation is clearly film drainage. Fig. 17 is an enlargement of the film region
showing the pinching of the interface as predicted by Jones and Wilson {1978). Also
shown are the results from Hartland’s (1969) experiments. Although the calculated
shapes are qualitatively close to the measured interface positions, the quantitative
agreement is not particularly good. We feel that this is most likely a manifestation
of different initial configurations in the two cases. The initial condition for the
numerical work has already been discussed. The sphere is placed with its center 3
radii away from a flat interface and released subject to the condition of a constant
applied force. Hartland is less clear about his initial conditions. In fact, the only
evidence given is the interface shape for ¢ = 1.89. For the case [, = 3, calculated
numerically, it takes a time of 5.50 to reach a film thickness at the center line
corresponding to this measured interface shape. From this, we conclude that the
experimental run by Hartland started with the sphere closer to the interface than

l, = 3, but we cannot be sure exactly where the experiment did start.

We now consider the more interesting cases (Cg > 2/9) where a tailing config-
uration is possible and address the question of when tails actually occur. For the
case of the sphere moving with constant velocity, U, the parameters Ca and Cg are
defined in terms of U. In the present situation, however, the velocity of the sphere
does not have a fixed value but changes with position. An appropriate character-
istic velocity scale for dimensional analysis (cf. Eqs. 2-8) is the Stokes velocity for
motion of the sphere under the same force in an unbounded fluid (i.e., sufficiently
far from the interface). Values of Ca and Cg defined in terms of this velocity are
then used to compare results with the constant velocity case for the same values of

Ca and Cg. However, the actual instantaneous sphere velocity varies with position,
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as already noted, and is generally less than the Stokes velocity. Thus, the values of
Ca and Cg defined in terms of the Stokes velocity overestimate the magnitude of
viscous forces relative to capillary or gravitational (buoyancy) forces for any given
instantaneous position of the sphere. For some purposes, it is therefore useful to
consider “effective” values of Ca and Cg (denoted as Ca.ss and Cg.sy) based on
the instantaneous sphere velocity. The differences between characteristic values of
Ca and Cyg, and their “effective” or instantaneous values, Ca.rs and Cgeysy, are
important in understanding the difference between motion at a constant velocity
and motion with a constant applied force. Fig. 18 shows the interface shape for
A=1,Ca=Cg=1andl, = 3 with a constant applied force on the sphere, while
the instantaneous sphere velocity is plotted in Fig. 19. It is evident that the sphere
velocity is strongly decreased in the presence of the interface when moving under
the action of a constant force. Thus, the deformation at any point in time is less

than in the corresponding constant velocity case, as may be seen by comparing Figs.

5 and 18.

However, there is no question that the deformation process (and thus, presum-
ably, time to breakthrough) will be much longer for a given value of Ca and Cg
in the constant force problem. What is in doubt is the mode of deformation and
ultimately breakthrough. For the purpose of answering this question and providing
a more meaningful comparison of the constant force and constant velocity cases,
interface shapes should be compared at the same positions of the sphere relative
to the plane of the undeformed interface rather than at equal increments of time.
Furthermore, based on the reduction in sphere velocity shown in Fig. 19, the in-
stantaneous or effective values of Ca and Cg in the case A = 1,Ca=1,Cg = 1
range between initial values of Ca = Ca.sy, Cg = Cg. ff =1, and minimum values
Cacss = Cgers = 0.09 at t ~ 15. Thus, one might expect to find interface shapes

which lie somewhere between the constant velocity case A = 1, Ca = 1,Cg =1
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and A =1, Ca = 107!, Cg = 10~! that were shown in Figs. 5 and 9, respectively.
Comparison of Figs. 5, 9 and 18 shows that this is, indeed, the case. Compared with
the interface shape at the same sphere position for the constant velocity problem
with Ca = Cg = 1, it is evident that the “film” is initially thinner in the constant
force solution, but that there is a stronger tendency later in the deformation pro-
cess for the short “tail” behind the sphere to pinch off to produce a film of constant
thickness over the majority of the sphere surface. Although this latter behavior is
strongly reminiscent of the constant velocity case with Ca = Cg = 0.1 (Fig. 9),
the “film” thickness is considerably larger in the constant force problem reflecting
the relatively small forces resisting deformation at earlier times in the process when
Ca.fs and Cg.ss are larger than 0.1. Although calculations for ¢ > 15 were not
carried out, it appears very likely on the basis of comparison with the constant

velocity problem that the mode of breakthrough will be “pinching off” of the fluid
tail behind the sphere.

Additional evidence for the existence of “tailing” modes of interface deforma-
tion in the case of sphere motion with a constant applied force will be presented
shortly. It is apparent, however, that the rapid decrease in Ca.ss and Cgess which
occurs as the sphere slows down does lead to much shorter tails for given values of
Ca and Cg than occured in the constant velocity problem. The possiblity exists
that a given set of parameters which gave a high drag ratio and a broad tail behind

the sphere for constant velocity could yield a film drainage configuration in the

constant force case even for Cg > 2/9.

Fig. 20 shows the interface configuration for the constant force problem with
Ca = Cg = 1, XA = 10, a case which did give a broad tailing configuration in
the constant velocity case. The sphere velocity is plotted against time in Fig. 21.
Comparing Figs. 20 and 7 one sees that the broad tail of the constant velocity plot

has become a film drainage configuration in the constant force problem. At t = 33,
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the sphere velocity has dropped to 0.04 of the corresponding Stokes’ velocity, and
thus Caess = Cgess = 0.04. With such large restoring forces relative to the viscous
forces, further deformation is difficult so one expects the remaining fluid to merely

drain away between the sphere and the interface.

Maru et al. previously attempted to develop an “a priori” criteria for existence
of a tailing configuration. The existence of serious shortcomings in this work have
been mentioned in an earlier section. Here, comparison of present results for the
various values of A points to one of the problems with their work and all others who
use a quasi-static force balance to calculate sphere and interface motion. By failing
to consider the shear stress on the surface of the interface, these authors do not have
any way of judging the time scale of sphere motion relative to drainage of the film,
and so cannot differentiate between systems with different viscosity ratios. In effect,
they assume a film drainage configuration as the initial condition and neglect the
interface beyond the point where it begins to break-away from the sphere. Fig. 18
shows that the film region is established early and remains essentially the same after
t = 8 for l, = 3; whereas, the interface in the break-away region continues to deform
creating a tail configuration. For the large viscosity ratio case and the same values
of Ca and Cyg, the film again is essentially formed at ¢ = 8 but the interface past
r = 1.5 shows much less deformation. As a consequence of their analysis, Maru,
Wasan and Kintner (1971) predict that film drainage will never be observed for

Ca = Cg =1 , while our results give strong indications to the contrary depending

upon the viscosity ratio, A.

The results of the constant force cases described above demonstrate how the
qualitative nature of the interface deformation changes relative to the constant
velocity case. In both of the constant force cases examined so far for Cg > 2/9,
the dramatic decrease in sphere velocity (and thus of Ca and Cg) results in the

absence of long slender tails behind the sphere as were found in the case of constant
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velocity. To determine whether such a configuration is possible or if the deceleration
of the sphere will always prohibit the formation a long tail in creeping flow, a set of
calculations was run duplicating an experiment of Maru, Wasan and Kintner which
produced a long tail behind the sphere, albeit at finite Reynolds number. Using a 3
mm. glass sphere falling through cyclohexanol with a 62.5% glycerine-water solution
as the fluid 1 phase, Maru et al. observed a tail which reached a length of 120 sphere
radii before exhibiting significant disturbances on its surface. The parameters of
this system are A = 0.434, Ca = 3.83, Cg = 1.97; the Reynolds number is 15.19.
With such a large Reynolds number, inertial effects are certainly not negligible, and
it is by no means obvious that a long slender tail should be expected in the creeping
flow regime. However, Fig. 22 shows the calculated interface shapes versus position
for this case and a long thin tail has very definitely developed. Fig. 23 shows how the
sphere velocity changes with position. Note that a minimum is observed at [ = —2.0
(i.e., at t = 7.5), which is related to the maximum found in the drag coefficient for
motion for constant velocity. As the sphere becomes more encapsulated under the
effect of surface tension, the velocity increases, eventually going above 1.00, the
value in an unbounded region of fluid 2. The sphere would have a velocity of 2.304
in an unbounded domain of fluid 1, but this velocity will never be achieved until
breakthrough as the surrounding fluid 2 increases the density of the composite body
above that of the sphere alone. The results of this calculation confirm the existence
of a long slender tail for the case of a sphere moving under a constant bouyancy
force. The comparison with published results can be of only a qualitative nature as

no quantitative data on the interface shapes or sphere velocity were given by Maru

et al. (1971).

As a further demonstration of the existence of tails in the constant force prob-
lem, results for the case A = 1, Ca = 1, Cg = 10 are presented in Fig. 24. This

case again shows the definitive formation of a relatively long, slender tail. The ve-
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locity as a function of position is included in Fig. 23. At the minimum point, the
velocity is approximately 0.4 times the Stokes’ velocity. Thus, Caess and Cgeys
span the ranges 0.2-1 and 2-10, respectively. The nearest constant velocity case
would thus appear to be A = 1,Ca=Cg=1and A = 1,Ca = 1071, Cg = 1.
Indeed, the interface shows many characteristics of the constant velocity results for
the latter case. The broad deformation and surface tension driven constriction are
both features which reappear in the constant force result. The rapid constriction
of the tail which occured in the constant velocity problem, however, is not present
here. As the sphere continues past | = —3 and begins to accelerate, the interface
behaves more like the A = 1, Ca = 1, Cg = 1 constant velocity case. For this set
of parameters, the surface tension force driving constriction is decreased and this is
reflected by the deceleration of pinching in the tail after £ = 13. Also, the increased

viscous force is able to support the fluid in the tail.

The most interesting comparison, however, is with the results shown earlier for
motion with a constant force at A =1, Ca = Cg = 1. The increase in Cg from 1 to
10 means that the effect of body forces on interface deformation should be relatively
unimportant compared to capillary forces in the case A =1, Ca = 1, Cg = 10, and
the comparison with A = 1, Ca = Cg = 1 further allows us to observe the way in
which interfacial tension and density differences influence deformation. Comparing
the results of Figs. 18 and 24, the chief difference at early times when the sphere
velocity is not too strongly influenced by the interface (so that the Ca, ff values are
similar) is that the deformation produced is broader in the case Cg = 10. This is
a consequence of the fact that the smaller density difference in this case yields less
resistance to the tendency of interfacial tension to produce a broad, flat deformation

— i.e., the system, all else being equal can support a larger volume of fluid II across

the z = 0 plane when Cg is increased.

As the sphere continues to move, an increasing volume of the heavy fluid is
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carried across the z = 0 plane until finally, the force applied from the sphere can
no longer support such a large volume of fluid, drainage accelerates and a tail con-
figuration results. Obviously, for larger Cg values, a larger volume of fluid can be
supported and this clearly reflected in comparing results from Figs. 18 and 24,
though comparison is difficult due, in part, to the fact that the changes in sphere
velocity are different in the two cases. As was true for the constant velocity systems,
once the tail configuration appears, the role of interfacial tension changes from one
of tending to preserve the flat interface to one of minimizing the surface area in the
tail region by producing a spherical shell around the sphere with the tail pinched
off. This is demonstrated dramatically in the A =1, Ca =1, Cg = 1 results where
the significantly lower value of Ca.yy from the case of Fig. 24 (0.1 vs. 0.4) causes

a much more rapid pinching of the fluid in the tail region.

VI. Effect of Sphere Starting Position

Previously, we have discussed the effect of starting positions greater than or
equal to three sphere radii from the undeformed interface. These results were
presented to show that if one is interested in the behavior of the sphere-interface
system some time after the sphere begins to approach the interface, results for all
calculations begun at a distance greater than [, = 3 will appear identical. Here, we
discuss another aspect of the initial starting point question: the effect of starting the
sphere very close to the flat interface. Two groups of calculations have been carried
out. In the first, a series of cases were run in which the sphere center was initially
1.2 radii from a flat interface. In the second, initial starting positions were chosen so
that the minimum initial gap between the sphere and a flat interface was comparable
to the film thickness at large times when the initial position was [, — 3. These

second calculations were done only for sets of parameters which displayed tailing
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with a fairly stable film thickness in front of the sphere when started with [, = 3.0.
This type of calculation more closely duplicates the experiments described in the
Introduction where a drop was brought close to an interface and then released,
and may reveal cases where the starting position causes a change from the tailing

configuration to one of film drainage (as was observed in all of the experiments

other than Maru et al., 1971).
(a) Initial Starting Position, [, = 1.2.

Calculations with starting positions /, = 1.2 were performed for several cases.
These included for constant velocity A = 1, Ca = Cg = 0.10, a tailing case; and
the constant force cases A = 1, Ca = Cg = 0.10, and XA = 0.022, Ca = 0.465, Cg =
0.089 which represent a tailing and a film drainage configuration, respectively. In
all of these cases, the calculated values for the velocities, stress and position of the
interface at some value of ! came to within 1% of the values calculated when the
initial position was 3.0. When this occurred, the calculations were stopped. The
quasi-steady assumption made in deriving Eqgs. (13)-(16) insures that for a given
set of parameters, only the current position of the sphere and interface influence
the future behavior of the system; the prior history of the calculation will thus
influence future results only through its effect on the current interface shape and
sphere position. Therefore, when the positions of the sphere and interface in the
lo = 1.2 calculation are the same as in the [, = 3.0 case, all future results will be
identical as well. Fig. 25 shows the I, = 1.2 results for A = 1 Ca = Cg = 0.10
with a constant sphere velocity, and this may be compared to Fig. 9 which gives
results for the same A, Ca and Cg values, but /[, = 3.0. The specific time it takes
for the I, = 1.2 and [, = 3.0 interface shapes to become equal depends on the
dimensionless parameters of the system; however, these results demonstrate that
no change in the mechanism of breakthrough occurs when an initial gap thickness

of 0.2 is used rather than 2.0 corresponding to the I, = 3.0 calculations.



- 66 —

(b) Initial Position, /,, Corresponding to the Thickness of the Film

at Large Deformation.

This calculation differs significantly from all those discussed previously. In all
the cases presented to this point, film and tail formation first occurred simulta-
neously, then film drainage took place as the tail lengthened and narrowed. The
present situation is one in which a thin film is present from the onset of the calcula-
tion, whereas the tail still must be formed from the flat interface. The implication
of this in the constant velocity problem is that the sphere may move across the
interface before a tail has time to form. In the case of constant applied force, the
probability of this happening is enhanced by the fact that the small gap between the
sphere and interface will produce high velocity gradients right from the beginning
of the calculation and so a large contribution to the drag on the sphere. This results
in a lower initial sphere velocity and a corresponding decrease in the effective values
of Ca and Cg. Small values for Ca.fs and Cg.ss tend to inhibit deformation of

the flat interface and result in film drainage for breakthrough.

The constant velocity case chosen was A = 1.0 Ca = Cg = 0.10. For /, = 3.0,
this case displays a short, pinched tail and narrow film surrounding the sphere. The
fact that the tail is short suggests that tail formation is likely to be suppressed in
going to the close starting position. The thickness of the film after formation of
the tail remains relatively constant at 0.05 and this was the separation between
the sphere and interface at the start of the calculation, i.e., /[, = 1.05. Comparing
Figs. 9, 25 and 26 for I, = 3, 1.2 and 1.05, respectively, it can be seen that the
interface shapes are fairly similar; however, in the [, = 1.05 case, calculations would
simply not converge much past ! = 0.0, i.e., the sphere straddling the interface, in
spite of the fact that the convergence had been achieved in other cases with even
thinner films between the sphere and interface. It is possible that no solution exists

beyond the point of convergence for this case with /[, = 1.05. In this case, the
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change in starting position of the sphere would have caused a change in the mode
of breakthrough for A = 1, Ca = Cg = 0.1. However, the solution technique utilized
here does not allow a definitive case that the lack of convergence is not simply a

failure of the numerics.

For a constant force problem, the case of A =1 Ca =1 Cg = 10 was run with
lo = 1.10 corresponding to the film thickness seen in the [, = 3.0 result. The results
of this calculation are shown in Fig. 27. One sees that the two cases agree in the
film region but the results for [, = 1.1 show a narrower tail than for the [, = 3.0
result. Also, although a tail is formed, the total deformation of the interface in
the I, = 1.10 case is much less than for the large starting distance. That is, the
interface for [, = 1.10 lies below that for [, = 3.0 at equal sphere positions. The
result of starting from [, = 1.10 is that tailing is enhanced in the constant force case

and so rather than changing the mode of breakthrough, the close starting positions

hastens breakthrough in the existing mode.

The effect of starting the sphere close to the interface may be summarized by
saying that the initial conditions influence the deformation for some time after the
calculation is begun. For the case when [, = 1.2, the departure of the calculation
from the |, = 3.0 result diminishes with time until the results are identical. For
a starting position corresponding to the film thickness after a tail has been estab-
lished, the departure from the [, = 3.0 result may be significant enough to cause a
change in the breakthrough for the constant velocity case A = 1 Ca = Cg = 0.10
and does cause a departure in the interface shape for the constant force case

A=1Ca=1Ca =10 for a long time after the calculation is started.

VII. CONCLUSIONS

We have used the boundary-integral technique to numerically study the creep-
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ing axisymmetric motion of a sphere normal to an initially flat fluid-fluid interface
under the constraint that the sphere moves either with a constant velocity or under

the action of a constant buoyancy force.

Our calculations show the existence of two distinct modes of interface defor-
mation for the constant force problem which we have designated as film draining
and tailing. The parameters controlling which mode will occur are Ca and Cg, re-
flecting the relative magnitudes of the interfacial tension and the density difference
between the two fluid phases; the forces associated with these two properties tend
to maintain the interface in its initially flat configuration. Thus, when these restor-
ing forces are large relative to the viscous forces generated by the motion of the
sphere, i.e., Ca, Cg << 1, film drainage behavior occurs. When the inverse is true,
i.e., Ca, Cg approximately order 0.1 or greater, a tailing configuration appears. A
further statement about the possibility of tailing for the constant buoyancy force

case can be made: no tails can occur when the density of the sphere is intermediate

to those of the two fluids.

A significant difference in the behavior of the constant force and constant ve-
locity problems is the shortening of the tails in the former case for moderate Ca
and Cg. This follows from the decrease of the instantaneous effective deforming
forces as the sphere approaches the interface. As the sphere comes closer to the in-
terface, its velocity decreases, thereby increasing the strength of interfacial tension
and density body forces due to the density difference relative to viscous forces. The
increased relative strength of the restoring forces makes further deformation more
difficult, with the final outcome being the suppressed extension of the tail and more
film drainage occurring between the sphere and interface. The viscosity ratio acts
not to restore the interface to its initial flat shape, but controls the rate at which

fluid drains from the space between the sphere and interface.

Comparison of our results with published experimental data was carried out
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with fair agreement. These differences which do exist are believed to be a conse-
quence of differences in the initial conditions used, but as the experimental descrip-
tions did not state these initial conditions, this area cannot be explored presently.
Calculations using small interface-sphere separations showed that changes in initial

conditions could significantly influence results, especially at early times.
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Macroscopic Force Balance for a Sphere Several Radii

Beyond an Initially Undeformed Interface

To prove that a sphere moving under a constant body force cannot cross the
plane of the initially undeformed interface when the body force is gravity alone,
a macroscopic force balance is carried out for a sphere which is assumed to have
crossed the plane 2z = 0, carrying a body of fluid II with it in the form of a film
plus tail. We shall see that a contradiction is reached in this balance if the density
of the sphere is between that of the two fluids, thus showing that a configuration of

the tailing type is impossible for this case.

We begin by stating the force balance for the sphere alone

Fezt — psgVa— / (T2-m) -k3S, + pagV, =0 (A1)
SP

where p is the density of the fluid in which the sphere is immersed.

T, is the dynamic stress tensor in fluid 2 (i.e., the total stress minus hydro-

static pressure contributions).
n is the outer unit normal to the sphere.
k is a unit normal in the vertical (2) direction.
Sp is the volume of the sphere,(4/3)ma®.
Fezt is any external force on the sphere in addition to gravity.

A similar balance on the fluid region (“control volume”) marked inside the

dashed lines of Fig. Al gives

P19V — pagVy + /

(Tz-n)-kas, ~ngvs+/ (T, n)-kdS; =0  (A2)
Sp

Sy
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where

vf

S‘

is the volume of fluid 2 in the tail + film region inside the dashed lines of

Fig. 4.
is the sum of vs and v,.
is the dynamic stress tensor in fluid 1.

is the portion of the surface of the control volume defined by the interface

between fluids 1 and 2.

is the portion of the surface of the control volume which is coincident with

the initial plane of the interface.

If we neglect the contribution due to Ty at S*,’ and assume A = 0 so that

fS: (T:1-n) -k3dSr =0, the balance Egs. (1) and (2) can be combined to yield

Vi _ P2 = Ps Fezt
== +
ve p2—p1 g(p2—p1)Vs

(43)

We consider the case Fe;; = 0 in which the only “external” force on the sphere is due

to buoyancy. Now, it is obvious that V;/V, > 1. On the other hand, (p2 — ps)/(p2 —

p1) < 1 unless p, < p;. Hence, we conclude that the configuration represented by

Fig. Al is impossible unless p, < p;. No such inconsistency arises if we apply the

same force balance concepts to a film drainage configuration with p; < p;. The

presence of viscosity in fluid I, A # 0, would act to slow the drainage of the fluid in

the tail, but could not provide a force to actually overcome gravity. Therefore, the

conclusions from Eq. (A3) would hold even for a viscous fluid I.

! The mass flux at S* is seen to be small after calculating the change in tail

volume with time. Furthermore, the velocity and velocity gradients in this region

are also small.
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Schematic sketch of the final stages of phase separation following liquid-

liquid extraction between two immiscible liquids.
Film drainage configuration for a sphere at a deformable interface.

(a) Schematic sketch of the system for numerical calculations. (b) The

three-function representation of the interface shape.

Sphere velocity as a function of Rg for the limiting case of slow sphere
motion (i.e, u/l -n=0). I =1, 3, 5; A\ =10, Ca = Cg = 1 for the

constant force problem (x results from calculations).

Interface shape as a function of sphere position (drawn in a reference
frame in which the sphere is fixed) for A =1, Ca =1, Cg = 1; —
shapes for sphere initially at o = 3; - - - lp = 5; - - - - -

Constant velocity case.

Interface shape as a function of sphere positionfor A =0, Ca=1, Cg =

1, I, = 3. Constant velocity case.

Interface shape as a function of sphere position for A = 10, Ca =
1, Cg=1, l, = 3. Constant velocity case.
Drag ratio versus sphere position for Ca = Cg = 1, A = 0,1 and

10: —— numerically calculated values; volume of the tail plus sphere
measured from the numerically calculated interface profiles divided by

6ra®, + (A =0), O(A =1), A()A = 10).

Interface shape as a function of sphere position for A = 1, Ca =

0.1, Cg = 0.1, [, = 3. Constant velocity case.-
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Figure 20:

- 76 -

Interface shape as a function of sphere position for A = 1, Ca = 1073,
Cg = 1073, [, = 3. Constant velocity case.

Drag ratio versus sphere position for Ca = C¢g = 1,0.1,1073, X =1,
constant velocity case. Values calculated from Lee and Leal (1980), (0).

Interface shape as a function of sphere position for A = 1, Ca =

inf, Cg =1, I, = 3. Constant velocity case.

Interface shape as a function of sphere position for A = 1, Ca =

0.1, Cg =1, lp = 3. Constant velocity case.

Interface shape as a function of sphere positionfor A\ =1, Ca=1, Cg =

0.1,!, = 3. Constant velocity case.

Drag ratio versus sphere position for A =1; Ca=1, Cg =0.1; Ca =
0.1, Cg=1; Ca=Cqg=0.1.

Interface shape as a function of sphere position for A = 0.022, Ca =

0.465, Cg = 0.089,[, = 3. Constant force case.

Detail of film region for A = 0.022, Ca = 0.465, Cg = 0.089,l, = 3:

—— numerical calculations, - — - experimental results from Hartland

(1969).

Interface shape as a function of sphere positionfor A =1, Ca=1, Cg =

1:

shapes for sphere initially at [, =3; - -- [, =5;--- [, = 10.

Constant force problem.

Velocity as a function of sphere position for A = 1, Ca =1, Cyg

Il
[

—lo=3;——= ly=5;--- I, = 10.

Interface shapes as a function of sphere position for A = 10, Ca =

1, Cg=1: — I, =3;-—=1lo=5;----- lo = 10. Constant force

problem.
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Figure 22:

Figure 23:

Figure 24:

Figure 25:

Figure 26:

Figure 27:

Figure Al:

- 77 -

Velocity as a function of sphere position for A = 10, Ca =1, Cg = 1:

Interface shape as a function of sphere position for A = 0.434, Ca =

3.831, Cg =1.972, |, = 3. Constant force case.
Velocity as a function of sphere position for constant force cases.

Interface shape as a function of sphere positionfor A =1, Ca=1, Cg =

10, I, = 3. Constant force case.

Interface shape as a function of sphere position for A =1, Ca= Cg =

0.10, I, = 1.2. Constant velocity case.

Interface shape as a function of sphere position for A =1, Ca = Cg =

0.10, I, = 1.05. Constant velocity case.

Interface shape as a function of sphere positionfor A\ =1, Ca =1, Cg =

10,1/, = 1.10. Constant velocity case.

Schematic sketch of control volume for an overall force balance on the

fluid in the tail plus film.
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LAMBDA = 1.000 CA = 0.100 CG = ©8.100

Figure 9.
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Chapter III

An Experimental Study of the Motion
of a Sphere Normal to a Deformable Interface:

High Capillary Number Results
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I. Introduction

In the previous chapter, the problem of a sphere moving at zero Reynolds
number under the condition of constant velocity or experiencing a constant body
force, normal to a deformable, infinite fluid-fluid interface Was examined using the
boundary integral technique. This numerical procedure predicted the deformation
and stress at the interface and the drag on the sphere or its velocity as it moved to-
ward the interface. In that chapter comparisons between numerical results and two
previously published experimental cases were drawn showing reasonable qualitative
agreement between the two. However, more extensive comparisons of this type were
made by Berdan (1982) where the results of experiments performed specifically for
such comparisons are given. The objectives of Berdan’s experiments were to verify
earlier numerical results and also to show that the experimental system was able
to reproduce the behavior of an infinite fluid domain at zero Reynolds number as a

preliminary to its use in studying the same problem at finite Reynold’s number or

for non-Newtonian fluids.

Berdan presents results of experiments performed in a plexiglass tank in which
a sphere was lowered toward an initially flat interface at a fixed velocity by a tether
wire. The drag which would have existed alone on the sphere was then inferred
by attempting to take into account for the presence of walls and the wire on the
sphere-interface system. Berdan’s experiments covered a range of physical param-
eters involving cases of low, medium and high values of viscosity ratio, interfacial
tension and density difference between the two fluids in many combinations. The
magnitudes of these physical parameters are again described by the three dimen-
sionless groups; viscosity ratio, A = u;/uq; capillary number, Ca = p2U/~ and
a density difference number, Cg = pyU/(p1 — p2)ga?, as was the case in Chapter
II. The results of Berdan’s experiments showed very good quantitative agreement

with the numerical calculations for the 10 cases involving low or moderate values
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of v (Ca order one or greater). In the remaining two cases, however, for which

Ca =~ 0.34, significant departure from the calculations was seen in the experiments.

In order to confirm the ability of the experiments to reproduce the case of a
sphere moving toward an interface in an infinite fluid, it is neccessary to understand
the source of the discrepancy between the experiments and calculations for the low
Ca cases. It is possible that there was some sort of error in performing the experi-
ments reported by Berdan (only one run was performed for each set of parameters)
or that some physical effect played an important role in the behavior of the system
which was not accounted for in the numerics; electroviscous effects, for example.
A final possibility is that the simple geometric difference between the numerical
system (infinite fluids and interface, isolated falling sphere) and the experiments
(finite fluids and interface, presence of walls, sphere-wire combination), is somehow
responsible for the difference between experimental and theoretical results. This
work adresses the first two possibilities by repeating Berdan’s experiments for the.
two Ca =~ 0.34 cases, and considering how restricted tangential mobility at the
interface due to surfactant effects might have effected the results. Tangential mo-
bility at the interface is explored both experimentally and numerically. The former
is done by following the motion of tracer particles at the interface, the latter by

modifying the numerical technique of the preceding chapter to include restricted
mobility.

In the boundary integral method of Chapter II, a form for the stress jump
across the interface was needed. The simplest form for this stress jump and the one
employed in Chapter II is that the tangential stress is continuous and the normal
stress shows a discontinuity proportional to the local curvature, with the constant
of proportionality equal to the interfacial tension, 4. Although this simple model
is used often and generally provides accurate results, it should be remembered that

it is just one of several limiting forms of Scriven’s general equation for the stress
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discontinuity across an interface (Scriven, 1960).

[n-T]=-Vey+ (e +£)Viu+¢[2K(u—nn-u)
+nxV,n-V,xu)+2{nx Vmxmn)-V,n-u)
+n[2Hy +2H(e+k)V,-u—2e(nx Vynxn): V] , (1)

where

2K=-nxV;mxn):Vm .

Representing the behavior of the interface by the single constant parameter, 7,
neglects the contribution of interfacial shear, ¢, and dilational, &, viscosities as well
as the role of interfacial tension gradients. These additional terms become more
important as the capillary number decreases and the concentration of surfactants
increases. Both changes result in an increase of € and « thereby giving greater
weight to the geometric terms they multiply. Also, increasing «y or the concentration

of surfactants allows for a greater potential for variation in 4 and so —V,vy may

increase as well.

A number of previous investigations have been carried out to explore the effects
of interface rheology and surfactant nonuniformity on fluid dynamics. In the case
of falling drops, the role of € and « have been studied by Wei, Schmidt and Slattery
(1974). The effect of surface tension nonuniformity on the dynamics of drops has
been studied for both the case where the surfactant is insoluble in the bulk phases
and quickly leads to a no slip region on the interface (Davis and Acrivos, 1966),
and for soluble surfactants where there is a non-zero velocity over the entire surface
(LeVan and Newman, 1976). Holbrook and LeVan, (1983a,b) consider cases inter-
mediate to these two extremes. More closely related to the present investigation

is the analysis of Shail and Gooden (1983) who examine the problem of a solid
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sphere translating normal to a fluid-fluid interface with a surfactant film, but with
the restriction that the interface remains flat, that is, u - n = 0 on the interface.
This restriction implies that either the sphere-interface separation is large or else
Ca and/or Cg is asymptotically small. Also, unlike Holbrook and LeVan (1983a,
b), who solve the mass transfer problem for coupled transport mechanisms, Shail
and Gooden assume that one of the mechanisms (surface convection, surface dif-
fusion, or diffusion from the bulk fluid to the surface) limits surfactant transport
and so solve the problem separately for each of these limiting processes. Further,
although Shail and Gooden apply Scriven’s expression for the stress jump at the
interface, the restriction that the surface remains planar causes all curvature de-
pendent terms to vanish. Nevertheless, Shail and Gooden were able to demonstrate
the role of a surfactant film in determining the drag on a sphere approaching a
liquid-liquid interface. Unfortunately, our experimental results for the drag on the
sphere cannot be compared to Shail and Gooden’s calculations. The authors’ con-
dition that the interface remains flat means that the two parameters Ca and Cyg
do not appear in either their governing equations or boundary conditions. Instead,
Shail and Gooden have a system characterized by parameters relating interfacial
transport mechanisms. Thus, we have no basis for comparison of the two types
of results in the fluid region before the sphere meets the plane of the undeformed
interface, the domain where Shail and Gooden’s solution overlaps our own (even
assuming we choose to ignore the obviously significant deformation of the interface
in the cases presented here). The macroscopic balances of the appendix to Chapter
IT shows that in the range of Ca and Cg for the experiments, the drag on the sphere
depends very heavily on the volume of fluid carried across the plane of the initially

flat interface, and Shail and Gooden’s treatment of the problem does not allow for

this contribution to the drag.

The full surfactant problem requires treating all modes of surfactant transport
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at the interface simultaneously with solution of the fluid flow problem. Shail and
Gooden treat several limiting cases where some of these transport modes may be
neglected; and further, all cases are linearized with respect to surface concentration.
A greater simplification is to remove consideration of surfactant transport entirely.
The fluids used for the experiments described by Berdan (1982) and reported here
contain surfactants in the form of chemical contaminants and dust particles which
are observed at the fluid-fluid interface. It is the presence of these surfactants which
we believe cause the disparity between Berdan’s experiments and his calculations.
The unknown nature and concentration of these surfactants, though, makes it im-
possible to apply any rigorous theory to the interfacial behavior of the experimental

system. However, we can apply a limiting theory for the dynamics of the interface

which will take into account the presence of surfactants.

It has been recognized that the presence of surface active agents in fluids can
make small drops behave as rigid spheres by inhibiting all tangential motion, thereby
changing the drop-fluid interface to a no-slip surface (Davis and Acrivos, 1966). The
reduction in mobility of fluid at the drop surface is the result of a jump in the tan-
gential component of the stress across the interface brought about by interfacial
tension gradients. As a second limiting case complementing the freely mobile inter-
face result, for comparison to the experimental results, we adopt a model for flow
at the fluid-fluid interface which has no tangential component for the fluid veloc-
ity, u-t = 0. This allows us to replace the mass transfer problem of finding the
concentration of surfactant at each point on the interface with the solution for the
tangential stress jump necessary to inhibit all tangential motion. The expression for
the stress jump in the boundary integral calculation is modified to include a term
for the strength of the interfacial tension gradients, and rather than determine the
value of this term by solving for the transport of surfactant at the interface; the

term is given the magnitude consistent with vanishing tangential velocity in accord
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with the conclusions of Davis and Acrivos (1966).

The use of this ad hoc assumption about the surfactant concentration and
immobility of the interface is not unprecedented. In Sadhal and Johnson’s treatment
of flow past a drop with a stagnant cap (1983), a surfactant film was assumed to
exist a priori over the rising drop from the rear stagnation point to some cap angle
0 in front of which the interface was treated as fully mobile. Sadhal and Johnson
show that if the Peclet number in each fluid phase and at the interface vanishes, or
if there is a strong adsorption barrier to the surfactant flux from the bulk phase to

the interface, tangential motion on the drop surface will cease.

In this chapter, we will present additional experimental results for the anoma-
lous cases in Berdan’s work and apply a zero tangential velocity condition at the
interface to the boundary integral method of Chapter II to show how removing tan-
gential mobility affects the calculations for interface deformation and sphere drag.
By comparing experimental results to the two limiting calculations (immobile and
fully mobile interface), we are able to determine the degree to which the interface is

made immobile by surfactants and the ability of the model to accurately simulate

the experiments.

I1. Experimental Apparatus and Procedure

(a) Experimental Apparatus

The equipment used to perform the experiments outlined in the introduction
consists of three main parts, and will be considered in detail later. Briefly, however,
the three are: a large plexiglass tank containing two immiscible, Newtonian fluids,
a rigid sphere and translation assembly to lower the sphere at a fixed velocity
as well as measure its position, and finally, instruments to record the shape of the

interface and the force on the submerged body (sphere-wire combination). A sketch
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of the experimental system is shown in Fig. 1. All experiments, Berdan’s as well as
our own, used the same equipment to give as great a degree of reproducibility as

possible, but of course, fresh fluid was used for the present runs.

The plexiglass tank was constructed of 1/2 inch plexiglass and measured 15"
across and 36" deep. The lower phase (corresponding to fluid I of the preceding
chapter) was water; the upper phase was a silicon oil blend consisting of two grades
of Dow Corning Silicon Oil 200 fluid with 28.9% 30,000 cs. grade and 71.1% 1000
cs. grade. Both fluids are Newtonian (Olbricht, 1981). The silicon oil blend is
hydrophobic and so is immiscible with the water phase; also, its physical properties
are unaffected by changes in humidity. The physical properties of the fluids were
measured to insure that they agreed with Berdan’s results. The densities of the
liquids were measured with a standard calibrated hydrometer in a temperature
bath stable to £ 0.06° C. The viscosities of the fluids were measured using a Cannon-
Fenske viscometer calibrated to ASTM Std. (D-445) in the same temperature bath.
The surface tension between the two fluids was measured using a du Nouy balance
following ASTM Std. (D-971). In all cases the results agreed with Berdan’s earlier

measurements. These values for density and viscosity of the two fluids and for

surface tension are presented in Table I.

TABLE I. Physical Properties of Liquids Used in Experiments

Fluid © (poise) p (gm/cm?) v (dynes/cm)
silicon oil blend 33.83 0.97075 37
water 9.74 x 10~3 0.99792 -

The particle in the experiments was a polished bronze sphere, spherical to
£ 0.0002 inches. Spheres with two different diameters were used in the experiments;

one with radius 0.4747 cm and the other with a = 1.2697 cm. This gives a minimum
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sphere wall separation of 14 radii. Results of Chapter II show that for this distance,
fluid motion at the interface should have effectively gone to zero and the effect of
the wall on the sphere should be small. The sphere was connected to the translation
system via a stainless steel wire 32 inches long with diameter of 0.0041 inches. This
wire is an important component of the translation system. It must be small enough
in diameter to minimize the disturbance caused to the flow field but must not
experience a change in length during an experiment as this would introduce error
into the sphere position measurement. Furthermore, stretching or coiling will cause
the wire to act like a spring, thus introducing error into the force measurement.
Using the elastic modulus of the present stainless steel wire, the maximum change
in length due to stretching is calculated at 0.06% of its total length. To prevent the

wire from coiling, it was straightened mechanically so that it would hang vertically

under its own weight.

A mechanical translation system performed the function of lowering the sphere
toward the interface at a fixed speed. This assembly consisted of an aluminum bar
which was constrained to move vertically with no rotation by a centering guide that
also functioned to position the sphere in the tank. A 1/50 hp. motor rated at 38
in. lbs. maximum torque raises and lowers the bar by winding or unwinding a steel
cable attached to the aluminum bar around a 6 in. take up spool. The motor has a
continuous setting feedback controller to insure constant velocity. A ruler attached
to the guide bar served to indicate the relative position of the sphere. Before an

experiment was performed, it was necessary to correlate the height of the sphere in

the tank with the reading on the ruler.

The final component of the experimental apparatus is the data acquisition
system. To measure the reduction in tension in the wire as the sphere approached
the interface a very sensitive measuring device was needed. This consisted of a

ring force transducer sending signals to an Omni-Scribe model A-5141-5 multi-span
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strip chart recorder (span 0.001 to 10 volts full scale). The recorder is equiped
with a manual event marker so at least one position per experiment on the chart
recorder could be correlated to the sphere position. The ring force transducer
fitted with a semiconductor bridge is the most accurate small deflection transducer
available that could give output sufficiently high for the small forces and changes
in forces produced during the experiments. The strain in the ring causes changes
in the resistances of the individual legs of the bridge and so a change in the voltage
across the bridge. It is this voltage which is recorded by the chart recorder. The
transducer gain was 620 £2uV per gram and during operation the transducer output
could be read to +2uV. Because of changes in the resistance due to temperature
fluctuations, the ring tensiometer was thermally isolated from the surroundings. It
was fixed rigidly to the guide bar of the translation system by a thermally isolating
coupling and surrounded by an insulated housing. To insure thermal equilibrium

during an experiment, the transducer was warmed up under load for an hour before

starting a run.

The remaining experimental data including interface shape, tracer particle po-
sition, sphere position, and time were recorded on a single video tape via two video
cameras. One camera was always mounted to record simultaneously the position
of the ruler attached to the guide bar and the display of a digital stopwatch. This
allowed us not only to record the relative position of the sphere; but also, by com-
bining the time and position data calculate an average velocity over short periods
during a run. Table BI presents the results of these measurements. The maximum
velocity fluctuation for any run was 4% and the average fluctuation less than 1.40%.
The other camera was mounted to view the motion of the interface. Two camera
positions were used to record different types of interface motion. When mounted
horizontally in the plane of the water-silicon oil interface, the camera recorded the

vertical deformation of the interface as the sphere approached. This was the same
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view recorded by Berdan, and also obtained most easily from the boundary integral
calculations. For some runs, however, the camera was mounted below the tank and
focused up at the plane of the interface. In this case, the plane was illuminated
from the side with a thin horizontal plane of light produced by a 300 W projec-
tor bulb shined through a deep channel formed from two parallel aluminum plates.
Dust particles at the interface reflected this light and acted as tracer particles to
allow the r-component of motion at the interface to be visualized as the sphere ap-
proached (the lens on the video camera had a depth of field long enough to show the
tracer particles throughout an experiment). For the slightly deformed interface, this
will nearly be the tangential component of velocity. A screen spliter combined the
images from the two cameras, one focused on the guide bar, the other on the inter-

face, in a single frame so both sets of data could be recorded on the single video tape.

(b) Experimental Procedure

The plexiglass tank was filled with the lower fluid, water, to a depth of 7.725
inches (dimensionless distance 15.45, 41.32 depending on sphere diameter) after
having been cleaned with distilled water and allowed to dry. The silicon oil phase
was added on top of the water by slowly pouring it down the outside of a tygon tube
placed in the corner of the tank. This procedure was employed so that mixing of the
two fluids was kept to a minimum during the tank filling operation. Even though
there was minimal mixing of the fluids, they were allowed to sit in the tank for
several days to insure that separation of the two phases was complete and a sharp
discontinuity rather than a zone of mixed fluids existed at the interface. The depth
of the upper phase was approximately 21" and we will have more to say about the

depth of this fluid when we discuss how the data taken during an experiment was

converted to the drag ratio for the sphere.

At least one hour before a run, the tether wire and one of the two spheres was
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attached to the ring force transducer and a current passed across the transducer
to allow it to warm up under strain. Once the transducer had been warmed up
and the data acquisition equipment was operating, the sphere was lowered toward
the interface at a velocity controlled to duplicate Berdan’s values of Ca and Cg. It
was not possible, though, to set a precise translation speed; therefore, the sphere
velocities for these runs only approximate Berdan’s. The variance ranges from
—0.013 cm/sec to +0.007 cm/sec corresponding to a relative change of —3.4% to
+1.8% relative to the velocities set by Berdan. The initial distance of the sphere to
the interface was 48.03 radii for the 0.4747 ¢m sphere and 13.88 radii for the 1.2697
cm one. Even for the larger sphere, this distance was far enough away from the
interface that any effects due to start-up motion died out long before the sphere was
within even 10 radii of the water-silicon oil interface. At this distance, the effect
of the interface was negligible (section VI of Chapter II gives a discussion of the
start-up motion for the system). When the center of the sphere was several radii
past the plane of the deformed interface, the effect of the tether wire on the flow in

the tail of fluid II makes the results suspect so there was no reason to continue the

experiment.

In all, eight experiments were performed, four with the large sphere for the pa-
rameters corresponding to what is called case C4 in Berdan (1982), and four with
the 0.4747 cm sphere to duplicate case C11 in Berdan. The precise values for A, Ca
and Cg for all these runs are presented in Table II. For two runs in each case, the
video camera was positioned horizontally at the interface, denoted by “s” after the
run number, and for the remaining cases a bottom view of the tracer particles was
used (“b” follows the run number for these cases). On two occasions, the output
from the force transducer went off-scale on the chart recorder. Both instances were
for experiments using the large sphere, corresponding to Berdan’s case C4, and in

those cases, data could only be taken to sphere position, {,= 1.30. For the other
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two cases corresponding to Berdan’s case C4; a sensitivity 10 times smaller was
used on the recorder and force data was taken for all sphere positions, albeit with

less sensitivity than the preceding two cases.

TABLE II. Dimensionless Parameters for Experimental Runs.

Run a(em) U (cm/sec) A Ca Cg
1b 0.4747 0.371 2.88 x 1074 0.339 2.092
1s 0.4747 0.375 2.88 x 104 0.343 2.116
2b 0.4747 0.365 2.88 x 104 0.334 2.059
2s 0.4747 0.371 2.88 x 10~* 0.339 2.092
3b 1.2697 0.368 2.88 x 10—4 0.336 0.290
3s 1.2697 0.376 2.88 x 104 0.344 0.297
4b 1.2697 0.388 2.88 x 10~ 0.355 0.306
4s 1.2697 0.374 2.88 x 104 0.342 0.295

II1. Numerical Model for Inhibited Tangential Motion at the Interface

And Tracer Particle Movement

Before presenting the results from the experiments described in the previous
section, we will describe the details of the numerical technique that was used to
simulate the behavior of the sphere-interface system under the assumption that the
tangential velocity component of fluid II vanishes at the interface. To solve this
problem, a boundary integral technique is again employed, as was done in Chapter
II. To facilitate this approach, the problem was formulated so that the transistion in
going from a fully mobile interface to one with no tangential velocity occurs in the

stress jump at the interface. Hence, many of the details of Chapter . II remain the
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same for this case. In particular, the governing equation are once again all carried

out under conditions for which Re = pyUa/ps < 1):

0=-Vp + AVzul

0=V.u in fluid 1 (2)
0=-Vpy + V2u,
0=V_-.u, in fluid 2 (3)
with the boundary condition at infinity
u;,u; —0 as |x| — oo (4)

and at the interface x € Sy

U] = Uj (5)
n-u1=n-u2=l—v—1—}:ﬂ%, sz"‘f(r’t) (6)

The change comes in the form of the stress jump equation which is now expressed

in the form,

(An-Tl—n»Tz)=—61;(V-n)n+—§§fn+ﬂ(x)t . (7)

Here the additional term, #(x) is used to account for interfacial tension gradients
and other surfactant effects which may inhibit tangential motion in the interface. In
principle, by solving the coupled mass-momentum equations for fluid and surfactant
molecules, one can obtain an expression for 3(x). Here, however, a simpler approach

is taken. As described in the introduction, we assume that at each point on the
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interface 3(x) has the value necessary for the tangential stress difference to cancel

the fluid motion tangent to the interface in fluid II exactly .
t-uy=0 x €Sy (8)

Of course it is not known “a priori” what value of 8 is needed at each point,
and ((x) is thus an additional unknown arising from the condition of interface
immobility in the tangential direction. to obtain a solution, we need to solve for
B(x) along with the velocity and stress components at the boundaries of the fluids.
The final boundary condition comes from the no-slip condition on the sphere. in

particular, the sphere is moving with velocity Ui, or in non-dimensional terms:
u, =1i, x € Sp. (9)

The velocity and pressure at a point in either fluid is again given by Ladyzhenskaya’s

singularity equation

u(x) = %/s [TIE - & n})2(3x =1 | ) nas,
—% /s el 1;5 nx — 1) -u(n) -ndSy, (10)

o) = _2_17;/5 ['zli _3(x - Qs(x —~ n)} ~u(n) -nds,

where

n = position on bounding surface, the variable of integration
R=x - n|=|r|

(Ladyzhenskaya, 1963).
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Now, however, when the integral form for the velocity on the fluid I side of the
interface is subtracted from the equation for fluid II and the condition for continuity

of velocity at the interface applied, Eq. (5), the result is:

1 I 3 Irr 1 I orr P
o =" (\— —ul ndS;+ — —4+=—|.TP . nds
2(/\nl-l)u (x) 47‘_(/\ 1) ., e ndSi+ o~ . [R+ E 5 +ndSp
1 I rr
- — 4+ —| - F(f)dS S 12
8r Js, [R+R3} (f)dsi, x&S; (12)

where the function F(f) is the stress difference at the interface. With K = 1/|VH|:

F(f)sz\n-T{—nTIz——c—}; [ff—%%-FKs—gg]n%—ngnﬂ-ﬂ(x)t (13)
which is analogous to Egs. (12) and (13) in Chapter II. The remaining integral
equations derived in Chapter II are unaffected by the change in Eq. (7). Eq. (13)
is written in the form used when a single coordinate system describes the interface
shape function. As for the numerical technique of Chapter II, however, when the
interface deformation became large, three functional representations were used to
describe the surface of the interface. In this case, the proper form of Eq. (15) in
Chapter II was used to represent the interface and the corresponding expression for
F(f) in equation (16) was employed in evaluating the shape dependent terms of
Eq. (13). Since A(x) does not include any shape dependent terms (it is an unknown
which is being solved for) it was not necessary to take the different coordinate

representations into account when dealing with that term.

After invoking the collocation assumption and replacing the integrals with
sums, the immobile interface condition adds an additional NI unknowns for the
values of B at each node point but also provides NI additional equations from the
tangential velocity constraint. Appendix A gives the full system of integral equa-

tions as well as the algebraic equations resulting from application of the collocation
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assumption. The linear system was solved by Gaussian elimination and marched
forward in time using an explicit integration of the kinematic condition, Eqn. (6).
Figs. 2 and 3 show calculated results for both mobile and immobile interfaces and
particular values of the dimensionless parameters. Specifically, Fig. 2 gives results
for the case A = 2.88 x 104, Ca = 0.344, Cg = 0.297 equal to the parameters of
case 3s in the experimental work and corresponding to Berdan’s case C4; while Fig. 3
corresponds to case C11 in Berdan with A = 2.88 x 1074, Ca = 0.339, Cg = 2.092.
These are the parameters for experimental case 1b. In both figures, as was done
in the previous chapter, the results are plotted in a reference frame fixed on the

sphere. The interface then appears to be sweeping past the fixed sphere.

Consideration of Figs. 2 and 3 shows a modest but clear difference between the
interface shapes for mobile and immobile interface conditions. It is evident that
the ability of the interface to support a tangential stress jump greatly effects the
role of A in controlling interface deformation. At first, / > 0, the u -t = 0 cases
show wider sphere-interface separation for r = 0 than is seen for a mobile interface.
Later, in both these immobile cases, however, but most notably in the Cg = 2.092
calculation, the film in front of the sphere continues to thin, a phenomenon usually
associated with A > 1, rather than forming a thick film of approximately fixed
width which translates with the sphere as occurs with a mobile interface for the
present value of A. The latter type of behavior was seen in the small A results
of Chapter II. By applying the concepts developed in the previous chapter for the
mechanism of interface deformation in opposition to the restoring forces of density
difference and interfacial tension, we can understand what factors cause this change
in behavior. For an immobile interface, fluid II is forced into motion by the sphere,
but can only move normal to the surface, and so will have a larger z-component of
velocity, and thus show greater deformation, than the case when no surface active

agents are present. This will be accompanied by a larger force on the sphere than
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predicted by the mobile interface result.

However, the film thickness does not remain greater for the immobile case as
the sphere continues to move past the z = 0 plane. Restoring forces continue to
grow as the sphere moves and the interface deforms, and the particle cannot support
this ever increasing volume of fluid II across the z = 0 plane. Therefore, fluid II
must drain back below the plane of the flat interface, and there will be a region
of the interface with a negative z-component of velocity. For A < 1 and a mobile
interface, interfacial tension drives a flow encapsulating the sphere creating a film
that does not thin as the sphere continues to move with the excess fluid draining
from the tail, and a —z velocity in the portion of the interface outside the film. The
flow over the portion of the interface encapsulating and moving with the sphere is
parallel to the sphere surface, that is, tangential at the interface. Radial motion can
not occur if the thickness of the film is maintained. For high A cases, this tangential
motion is opposed by the large energy required to cause fluid I to flow in order to
maintain continuity of velocity at the interface; for the model of interface behavior
applied here, such tangential motion is stopped entirely, preventing encapsulation.
Therefore, in order to allow drainage of fluid II as the sphere moves further past

z = 0, the film continues to thin for the surfactant problem.

In the previous chapter we explained how once a stable film is established
around the sphere, the drag will eventually decrease; whereas, for a film thinning
case, the drag increases monotonically. This same behavior will be seen for these
cases in our discussion of the experimental results; although, the change in the qual-
itative behavior in the region ahead of the sphere is caused by the type of boundary
condition applied for the stress jump at the interface rather than by varying the

physical parameters as was done in Chapter II.
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IV. Experimental Results
(a) Data evaluation for theoretical comparisons

As stated in the introduction, one purpose of performing these experiments was
to compare the results to numerical calculations of the type described in Chapter
IT. This comparison is made to explore the degree to which experiments in the
plexiglass tank with a sphere-tether wire combination body can be made to represent
the problem solved in the previous chapter, that is, a sphere moving toward a
mobile, infinite interface between two semi-infinite fluids. In order to perform this
comparison, the results of the experiments, which of course, are all recorded in
some standard dimension (inches, centimeters, volts, seconds) must be expressed
as non-dimensional quantities; furthermore, the effect of the bounding walls and

tether wire must be discounted from the sphere-interface results.

Three types of data are presented here from eight experiments with a sphere
approaching the interface. For all cases, the force on the sphere-tether wire body
was measured by the ring force tensiometer and the result recorded in volts by
a strip chart recorder. For half the runs, the deformation of the interface in the
z-coordinate (direction parallel to sphere motion) was recorded on videotape, and
for the other half of the experiments, radial distance of tracer particles at the
interface from the center of the tank was measured as a function of time. The
interface deformation data stored on videotape in an analog form was digitized
by tracing the shapes by hand onto a transparency and measuring the position
of points on the interface in 1/10 inch increments. The tracings of the interface
shapes were carried out as accurately as possible, but despite setting the brightness
and contrast to the optimal position for each frame traced, the resolution of the
monitor prevented the tracings from being accurate to more than +2 mm which
translates to non-dimensional lengths of 0.14 for the smaller sphere and 0.06 for the

larger. This resolution problem did not arise in following the tracer particles at the
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interface as they were essentially pin points of light showing precisely against the
dark background. The sphere diameter was also measured from a tracing and this
length used to non-dimensionalize the position data for comparison with numerical
results. Table B2 presents the z-coordinate data for the four side-view experiments
as measured from the transparencies and after non-dimensionalization with respect
to a. Table B3 gives the tracer particle data for those four experiments in the same
way.

Treatment of the force data was more involved than a simple non-dimension-
alization with respect to the characteristic force of Chapter II. For comparison
purposes, it is necessary to account for any force or force modification arising in the
experimental system which would not occur in the sphere-infinite interface system
of the numerical work. This includes the force due to the wire, the correction to
the force on the combined sphere-wire body relative to the sum of the individual
forces on the wire and sphere, and wall corrections. Berdan (1982) discusses the
theories which are applied to the experimental system to deduce what the force
would be if the sphere were alone and the fluid was unbounded. Here, we use

Berdan’s procedure, as described below to treat the interactions as well.

We begin by considering the effect of the walls on the sphere’s drag. Any wall

correction can be written in the form

Drag Ratio = FI,F = - (14)

o 1-k(g)+0(2)°

where Fo, is Stokes drag on a sphere in an infinite fluid, 67uUa, a is the sphere
radius; k, the distance from the sphere center to the bounding surface and k, a
geometry dependent coefficient For a fluid bounded by 1 plane wall, K = 0.5625
(Happel and Brenner, 1983); and for a fluid bounded by two parallel infinite walls,
k = 1.0040 (Ho and Leal, 1973). There is also a result available for a circular

cylindrical enclosure, k& = 2.1044 (Happel and Brenner, 1983). However, no an-
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alytic solution exists for k when a sphere moves enclosed by four perpendicular
walls. One choice in handling the 4-wall correction is merely to double k for the
two-wall problem and use k = 2.0080. Another choice is to apply the correction
for a concentric cylinder with diameter equal to the width of the tank which will
necessarily over correct for the wall effect as the inscribed cylinder will lie closer to
the sphere than the four planar walls at all points but the four points of tangency.
The difference in the drag ratio between using twice the two-wall correction and
k for an inscribed cylinder is less than 0.8% for the value of a/h that applies for
the larger sphere; for the smaller sphere, this difference drops to less than 0.3%.
Clearly, the error associated with one choice over the other is very small. However,
we choose the inscribed cylinder correction for the sphere-wall interaction in the
work reported here. The determining factor in this choice is that exact theoretical
results exist for the axial motion of concentric cylinders and this result can be used

to correct the drag for the force on the wire.

To account for the drag on the wire, we modify Happel and Brenner’s formula
for the drag per unit length on a cylinder (radius b) which moves parallel to its axis
with velocity U relative to a concentric outer cylinder with radius A. Multiplying

their expression by the wire’s length L, we get an expression for the force on the

finite wire

2ruUL
—_— 15
n(5) -1 )

Fwt’rc =

where we use the half-width of the tank for h.

We see from the preceeding discussion that we can easily account for the con-
tribution to the “system” drag due to the motion of the wire through a bounded
fluid (wire-fluid and wire-wall interactions), and the correction to the drag on a
sphere due to sphere-wall interactions. We must finally consider the effect the wire

and sphere have on each other. Clearly, the presence of the wire at the back of the
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sphere should significantly effect the flow in that region with an associated change
in the drag, while the presence of the sphere in front of the wire should moderate the
flow seen by the wire and thus effect the force acting on it. As a result, the drag on
the combination sphere-wire body will differ significantly from the sums of the drag
on the sphere and wire separately. The problem of a sphere attached to a slender
body of circular cross section is solved analytically by de Mester and Katz (1974)
for motion of the body in an infinite fluid. The force on the sphere-slender body
combination in that case is shown to depend on the sphere and slender body radii
as well as the length of the slender body, the last in a highly non-linear way. To get
an accurate measure of the length of the slender body (wire) in the experiments, the
depth of the silicon oil was carefully measured before each experiment. In addition
to the force on the sphere-slender body combination, de Mestre and Katz also give
the force that each would experience if it moved independently through an infinite
fluid. The ratio of the drag on the combination body to the individual contributions
from the sphere and the slender body is called 3. No one has considered the effect
of bounding walls on the analytic results of de Mestre and Katz for the sphere-wire
combination; thus to account for the presence of walls in the experiment, Berdan

introduces an empirical factor « into de Mestre and Katz’s result. This factor, o ,

is defined by the equation:

ot = Drag on (sphere + wire) in tank

16
drag on sphere in tank + drag on wire in tank (16)

The correction term, a, modifies de Mestre and Katz’s interaction factor, 8,
to account for the presence of the tank walls and the interface. As for the wall
correction coeflicient, k, a depends only on the geometry of the system, and so
can, in principle, be determined once for all runs with a given sphere-wire radius

ratio. Berdan evaluated a by finding the value which would yield a drag on the
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sphere equal to Stokes drag when the sphere is far (I > 10) from the interface.
In our present work, we also use Berdan’s value for a, 0.03. Berdan’s method of
choosing a assumes that the effect of the interface and walls on the sphere-wire
combination will be independent of distance from the interface. It is possible (or
even likely) that the sphere-wire interaction will change as the sphere approaches the
interface, and the value of o should be modified in some unknown manner. To check
the appropriateness of the constant « assumption, Berdan compared experimental
results for the sphere approaching a rigid wall to Brenner’s theoretical result for an
infinite plane wall (Brenner, 1961). In this case, the corrected experimental results
with a = 0.03 agreed to +5% with the theoretical predictions. This gives some
evidence of the appropriateness of the various corrections used to deduce the drag
on the sphere in the presence of the wire and tank walls including the assumption
of constant o = 0.03. Presumably any departure from this assumption would be

stronger for the rigid wall case than for the deformable interface that we consider

here.

For comparison to the numerical drag results for an isolated sphere in an infinite
two-fluid system, the corrections for the measured force just outlined were applied
to the output from the ring force tensiometer as follows: a + 8 was calculated from
the geometric information about the size and position of the sphere-wire body and
the total measured force is then divided by that computed quantity. The resulting
value is the sum of the forces on a sphere and a wire moving separately in a bounded
fluid. Eq. (15) is evaluated for the force on the wire and this value is subtracted
from the adjusted force, thus yielding the drag on the sphere in a bounded fluid.
Finally, Eq. (14) is used to transform this force on the sphere in a bounded fluid
into the drag which would have existed for the same sphere in an infinite domain.
Table B4 presents the sphere drag data both in the raw form as read from the chart

recorder (columns 1 and 2 where “position” refers to the z-coordinate measuring
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time, and height is the y-coordinate, measuring the force), as well as the final scaled
form for the distance to the interface in sphere radii and the drag which would exist
on the sphere if the two fluid systems were unbounded, scaled with Stokes drag.
Also included in this table are the total force in dynes and the force which would
be experienced by the wire and sphere separately. The correction due to sphere-
wire interactions is included under the heading “ratio”. In the following section, we
compare the corrected experimental results for a sphere approaching an unbounded

interface with the results of boundary integral calculations.

(b) Comparison of experimental and numerical results

We begin by considering the deformation of the interface in the direction par-
allel to the sphere’s motion. Fig. 4 illustrates the measured and predicted interface
shapes for the high Cg and low Ca experimental case that was originally considered
by Berdan. The parameters used for the sake of calculation were Berdan’s original
values of A = 0.003, Ca = 0.339, Cg = 2.029. As discussed previously, however, it
was not possible to duplicate these parameters precisely in the experiments. While
the sphere velocity could be controlled at a fixed value with precision, the actual
velocity could not be set accurately enough to match the previous experiments.
This variation in the sphere velocity caused Ca and Cg to vary from the numerical
values by +1.2% to —1.5% for the high Cg cases considered here (1,2) and from
+3.2% to —2.3% for the low Cg cases (3,4) that will be considered shortly. These
small differences in Ca and Cg might effect the results slightly but should not cause
wide variations between cases. Far more significant was the the error introduced
in tracing the interface position from the video monitor. Errors in reading the
position of the 2 = 0 plane or the actual position of the interface, could result in
errors on the order of 5 — 15%. In light of the magnitude of the possible errors

that could potentially be introduced into the interface shapes, Fig. 4 shows good



- 131 -

reproducibility between the several experimental runs performed. For the low Cy,
low Ca cases (A = 0.003, Ca = 0.344, Cg = 0.297) shown in Fig. 5, the several
experimental cases are in even better agreement; this is a result of the larger sphere
size causing the relative error in reading the interface shape from the monitor to
be smaller. One conclusion which we can draw from the results of Figs. 4 and 5,
without reference to numerical data, is that the discrepancy reported by Berdan
between experimental observation and theoretical calculations for a clean, mobile
interface was not the result of an isolated error in his procedure nor a fault in the

evaluation of physical constants for the fluids since his results were duplicated here

in several experiments.

A comparison of the experimental results to the shapes predicted by numerical
calculations for mobile and immobile interfaces is shown in Figs. 4 and 5. Fig. 5
shows that the experimental shapes for small Ca and Cg agree with the results
of the calculations within the limits of our ability to read the interface position
from the video monitor, but that the difference between the shapes for the mobile
and immobile interfaces is of the same order as the experimental error. There-
fore, we can only conclude that the experimental results for interface shape for
A =288 x10"% Ca =0.344, Cg = 0.297 are not inconsistent with either type of
interface behavior. However, the continuous thinning of the fluid film in front of the
sphere, which was seen in the discussion of Fig. 3 to be a feature of the immobile
interface system, is demonstrated by the experimental results both for the low Cg
case of Fig. 5 and to an even greater degree by the shapes shown in Fig. 4. The
film thickness is equal to the height of the interface at R = 0 plus (I — 1). This
change in the behavior of the fluid film to that qualitatively associated with the
immobile interface calculations tends to support the hypothesis that the difference
between experimental and theoretical results in Berdan’s work is a consequence of

some surface active agent effecting the behavior of the interface. Although a consis-
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tent difference between mobile and immobile results and experimental observations
cannot be seen in the low Cg data of Fig. 5, the results shown in Fig. 4 reveal that
the experimental interface shapes consistently lie above both sets of calculations
to a degree which is beyond the error in reading interface shapes from the video
monitor. The experimental results indicate that the simple model of a completely
immobilized interface for the behavior of the interface when surface active species
are present underpredicts the degree of deformation of the actual interface, though
the numerical results are closer to experimental observation in this case than for
the clean, mobile interface. Thus while these deformation results do provide cir-
cumstantial evidence of reduced interface mobility, they do not allow a definitive

determination whether significant restriction of the tangential flow at the interface

actually occurs.

In contrast, the tracer particle data which shows a direct image of motion in
the interface, does provide conclusive evidence of a reduction in the r-component
of fluid motion at the interface, and this corresponds directly to reduced tangential
mobility. In particular, Fig. 6 shows the tracer particle results for the two experi-
ments performed with the small sphere (cases 1b, 2b). The results show that the
tracer particles follow very nearly the trajectories predicted by the immobile surface
model, with perhaps only slight tangential motion. For the low Cg experiments (3b,
4b) whose results are shown in Fig. 7, the motion at the interface is intermediate
to the two limiting cases but still shows a significant reduction in mobility. Again
the results for two experiments are combined in the same figure and both show
greatly reduced motion at the interface. From the data on the r and z-component
of interface deformation for the eight experiments performed for this work, and the
two done previously by Berdan, we believe that there is significant restriction of the
tangential flow in the fluid I-fluid II interface, and that this is the primary source

of discrepancy between the low Ca data and the predictions for a mobile interface
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as originally hypothesized by Berdan. This restriction is manifested by a greatly
reduced r-component of fluid velocity, and an increase in the amount of deforma-
tion in the z direction. Both these trends are qualitatively predicted by the simple
immobile interface model that we use to account for surfactant effects; however,

the model predicts the restriction in tangential motion more accurately than the

increase in z deformation.

In order to complete the comparison between data and numerical predictions,
we must compare the drag results from the experiments to the numerically calcu-
lated drag when the fluid-fluid interface allows no tangential velocity. This com-
parison is illustrated in Figs. 8 and 9. The insets in these figures show the results
for the full range of L in the experiments; whereas, the main figure shows the drag
ratio in the region where the sphere is close to the interface and suffers the greatest
effect from its influence. The figures for the full experiment are included to demon-
strate that the drag on the sphere inferred from our experiments does reduce to
Stokes drag when the sphere is far away from the interface. This gives some extra
confidence in our ability to accurately account for the extra forces in the experi-
mental system. Both figures show that there is good reproducibility of results for
the several experiments with the small degree of scatter attributable to the slight
variations in Ca and Cg. The results demonstrate that although tangential motion
is inhibited at the interface, the simple model of completely immobilized tangential
motion, that is, u-t = 0, does not accurately predict the drag on the sphere. In
fact, although the experimental drag on the sphere is ~ 40% greater than the nu-
merical value for the mobile interface case with Ca = 0.344, Cg = 0.297 and ~ 60%
larger for the large Cg case, the qualitative behavior of the experimental systems
for I < 0 follows that predicted for the mobile interface system. In Fig. 8, the rate
at which the drag increases slows as the center of the sphere passes the plane of

the flat interface. In Fig. 9, a maximum is displayed in the experimental drag ratio
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which corresponds to the theoretically calculated predictions. Of course, too much
emphasis should not be placed on the | < 0 results. In this region, wire-interface
effects are likely to be significant, and theses interactions are not accounted for in

our treatment of the experimental drag.

The fact that the experimental results behave qualitatively more like the mobile
interface than the immobile one is most likely a result of the inability of the interface
to produce a large enough tangential stress jump in the film region to completely
inhibit tangential motion there. We have already shown how the results of our
calculations for the immobile interface indicate the formation of a draining film in
front of the sphere as it continues to move. Fig. 9 now shows how the force on
the sphere continues increasing as this layer thins. The calculations also show the
tangential stress jump needed to maintain u -t = 0 grows with the thinning of the
film. In the experiments, though, the surfactants present cannot produce a stress
jump in this region large enough to overcome the high stress at the interface, and
fluid will begin to move tangentially. From this point on, the interface will behave
qualitatively like the mobile one in the film region, and the drag on the sphere will
decrease as some encapsulation occurs. The stress at the interface outside the film
region will be low enough that the surfactant will be able to maintain a stress jump
to prevent tangential motion so the overall drag on the sphere will remain higher
than the drag calculated for the mobile interface cases. There are no tracer particle
results for the interface in the film region as it was not possible to see particles
through the light reflected from the surface of the sphere. For the other cases
presented by Berdan in which the experiments agreed with the mobile interface
calculations, Ca was at least a full order of magnitude greater than for the cases
discussed here. In those large Ca experiments, the interfacial tension gradient could
never acheive a strength large enough to counteract the tangential flow, and good

agreement between experiment and calculation resulted.
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The conclusions we draw from all of the data taken for the experiments is that
the experimental results for the low Ca system can be qualitatively represented
by the simple model where all tangential motion at the interface is suppressed.
Tracer particle data supports the conclusion of reduced interface mobility by di-
rectly showing a reduction in the r-component of fluid velocity at the interface.
The quantitative comparison of the experiments with numerical results employing
the immobile interface model, though, indicates that this simple model does not
accurately represent the behavior at the interface nor accurately predict the force
on the sphere in the presence of a real surfactant film. In order to bring experimen-
tal and numerical results into better agreement, a more sophisticated model must

presumably be used to represent surfactant effects in the numerical scheme.
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Schematic view of experimental apparatus. a: variable speed motor; b:
low pitch 6 inch aluminum take-up wheel; ¢:1/16 inch stainless steel cable
with swivel fitting at lower connection; d: ruler; e: 3/4 inch square by
42 inch aluminum quide bar; f: 6 inch guide affixed rigidly to wall with 8
screw adjustments for vertical allignment of guide bar; g: mark for ruler
readings, attatched to f; h: digital clock; i: ring force transducer with
thermal isolation mounting to guide bar; j: thermal isolation housing
for force transducer; k: 0.0041 inch straightened steel wire; 1: polished
bronze sphere; m: fluid I, water: n: fluid II, silicon oil blend; o: 15inch
square by 36" plexiglass tank; p: video camera with 6:1 zoom and 2
diopter close-up lens; q: video camera with 6:1 zoom and 2 diopter
close-up lens; r: screen splitter and recorder to combine images from
cameras p and q and record results; s: video monitor with interface from

camera p in upper section and clock and ruler from camera q in lower

section.

Interface shape as a function of sphere position (drawn in a reference
frame in which the sphere is fixed) for A = 2.88x107%, Ca = 0.344, Cg =
0.297;

shapes for mobile interface calculation; ~ — — shapes for

immobile interface calculation. Constant velocity case.

Interface shape as a function of sphere position for A = 2.88x1074, Ca =

0.339, Cg = 2.029; shapes for mobile interface calculation; — — —

shapes for immobile interface calculation. Constant velocity case.

Interface shape as a function of sphere position for A = 2.88x 1074, Ca =

0.339, Cg = 2.029; shapes for mobile interface calculation; - — —

shapes for immobile interface calculation; U (Berdan’s data); A (Case



Figure 5:

Figure 6:

Figure T:

Figure 8:

Figure 9:
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1s); x (case 2s).

Interface shape as a function of sphere position for A = 2.88x10™%, Ca =

0.344, Cg = 0.297;

shapes for mobile interface calculation; — - -
shapes for immobile interface calculation; O (Berdan’s data); A (Case

3s); x (case 4s).

R trajectories of points on the interface for case corresponding to A =

2.88 x 1074, Ca = 0.339, Cg = 2.029; trajectory from mobile

interface calculation; — — — trajectory from immobile interface calculation;

A position of tracer particles, case 1b X position of tracer particles, case

2b

R trajectories of points on the interface for case corresponding to A =

2.88 x 107%, Ca = 0.344, Cg = 0.297;

trajectory from mobile
interface calculation; — — - trajectory from immobile interface calculation;

A position of tracer particles, case 3b X position of tracer particles, case

4b

Drag ratio versus sphere position for the case A = 2.88 x 10~%, Ca =

0.344, Cg = 0.297;

results from mobile interface calculations; - — -
results from immobile interface calculations. O (Case 3b); x (Case 3s);

A (Case 4b); O (Case 4s); o (Berdan’s data).

Drag ratio versus sphere position for the case A = 2.88 x 1074, Ca =

0.339, Cg = 2.029; results from mobile interface calculations; — — -

results from immobile interface calculations. O (Case 1b); x (Case 1s);

A (Case 2b); I (Case 2s); o (Berdan’s data).
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Appendix A
Derivation of the linear system for the Motion of a Sphere

Normal to a Deformable Surfactant Film Interface

This section gives, in detail, the derivation of the linear system used in the
numerical scheme for the motion of a sphere normal to a deformable fluid-fluid
interface which, due to the presence of surfactants, allows no tangential motion. In
section III, the governing equations and boundary conditions for the system were

given in Eq. (2)-(9). From Ladyzhenskaya, (1963), a solution to Stokes equation for

the velocity of an element of fluid II on the interface is:

1, 3 Irr 1 I rr I
= = - — dSr + — - Ty -nd
2 () 4m Jg, RS ‘ulndsy+ 8 [R + R3} 'Ry
1 I orr p
/s [R+R3] T; -ndSp, x€8; (A1)

where the jump condition for the double layer integral has already been applied.

On the surface of the sphere, the double layer integral vanishes so the result for the

velocity is:

3 Y
p _ I
u’(x) = yp s, 75 cuf ndSI—f———/ {R R3} - T, -ndS;y
1 I rr P
'é; [R+R3] T ndSp, XGSP (AZ)

Noting that u(x) as x — S; from fluid I equals u(x) as x — S; from fluid II

(continuity of velocity at the interface, Eq. (5)), we can consider the interface from

the fluid I side.

1. 4 3 rrr
1 1 rr
é;l'_ [R_*—RS] >\T2 ndS;y, x€8; (A3)
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Adding Egs. (A1) and (A3) and using the continuity of velocity condition as well
as the fact that the normal for the two fluids at the interface point in opposite

directions, the result is Eq. (12)

%(A+1)uf(x)=4 (/\——1)/3 O wl ndS;+ — [I+rr] . TP .ndSp

. RS 8 R R3
_L L, o). (/\n T! -n. TI)dS x €Sy (A4)
87 R R3 T !

Eq. (7) gives a relation for the stress jump in terms of the interface shape function,

and after making the substitution of Eq. (7) into (A4), the equation reads:

rrr 1 I r
(A+1) ”“7“‘”/5, Tl nds+ o [ [R RS] TP - ndS
1 I rr
Py :{E E}:] F(f)dSr , xe€5; (45)

where the function F(f) is the stress difference at the interface whose exact form

depends on the coordinate system used to represent the interface shape.

F(f)=xn-T! —n.T]

2
F(fl):_i(_z__ 1 h 1 dh 1 (_%))nl

Ca \ kyr  k3r2 962  kyr2 06 k3r3 \ 96
1
+ Eg;znl + B(x1)ty, for x€ SII (A6aq)
1 1 /1 18%f 1
F - =97 I
(f2) = Cata (r B2 6z2> n; + ngn2 , for xe€8, (A6b)

11 [13f 1 8% 1
F = e —_— —_— - I
(fs) Caks (r or + k32 Brz)na + ngng , for x€ 5 (48c)



where

- 11/2

_ E 1/ 98fs,
ks = l+<8r> ’ n3‘“k3<1" ar1'>

Egs. (A1), (A2), and (A5) along with the condition of constant sphere velocity,

u(x) = 1;, x € Sp, give 4 integral equations for the 4 unknowns: uf, u?, T!.

n, TP . n, provided the interface shape and sphere position are known

The problem of normal motion is axisymmetric, so the surface integrals can

be greatly simplified by integrating in the azimuthal direction. The result of that

integration for Egs. (A1), (A2), and (A5) along with the equation for no tangential

velocity gives the system of linear integral equations we must solve.

31| = ot [ s oyan,

f L Mxm-T5 ne(1+ %) V3dg
81[' ] Té r r

1 T
+ — B(x, 0) - " 1sin@d®, x¢e S
87 Sp ( ) [TEJ

u,’.’(x) — 3 £ 1211/2
[uf(x)jl = Z;l'_' ( ,77) ‘: £:\ r(1+f ) d’?r
TI
+ = an [ % } 1+f'2 1/2d77
8 SI 2n-

+ — { ]sm@d@ xe SF

(48)



%(A+ 1) [Z;gg] - :1-3-(/\+1) [Sl C(x,n) - {Zi] ne(L+ f'2)1/2dn,

F-1

1 F, 12y1/2
il B . (1 dn,
+ 5 S, (x,n) {FJ"( + f%)%dn
+ = B(x,0) - Ty}:' sin@d® , xe S’ (49
87 Sp Tnz
te(x)ul(x) +t(x)ul(x)=0 xes8; (A10)

Here

Bt = |57 5] maceon = (37 G

The elements of B and C are given in Lee and Leal (1982)

To solve Egs. (A7)-(A10) numerically, the collocation assumption is applied.
Integration over the interface and sphere surface is broken down into integrals over
segments of the surface with the values of the unknowns, u;, Ty,, and §;, in that
segment assumed to be constant. As a result, the unknowns can be taken outside
the integrals and a system of linear equations results. For example, given NI points

on the interface and NP on the sphere, Eqs. (A7)-(A9) become:

Lul(x,) = 3NII [ (™ 12Y1/2 -
Fur () == 4—;;"'("‘) /ﬂ  Corlxgsmne 1+ 1) 2,
g NI C ;
Ry Z“i(xs’) / Crz(x5,1)n-(1 + f'2)/%dn,
=1 LY -1 i
1 NI [ fn
o T | [ B"(xa"")ﬂr(l+f’2)1/2dnr]
i= [/ i1
L C o
t & ZTzﬂ.(xf) /n 1 B2 (x;,m)n.(1 +f’2)1/'~’dn,}
i=1 [/ i

1 NP e;
+ =Y TI(x) / B,.(x;,0)sin ©dO
8« ©i_1
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e;
+ i Z Tr{z(xi) / Brz(xj, @) sin ©dO y X5 € ST (All)
8 =1 OF
1 3 NI [ pm b
_uﬁ(xj) = - — Z 'u,,I_(x,-) / Czr(xj,n)nr(l + fl2)1/2d7lr
2 4r =1 [ Y Ni-1 |
3 NI ey -
~ o 2 ux) / Caz(%5,n)nr (1 + f'2)1/24n,
am =1 LY Mi-1 |
1 NI r ne 1
e Z TZIM (x:) Bzr(xj’ 77)?7r(1 =+ f’2)1/2dn,
8 =1 LY Ni-1 |
L NI [ s -
* g;r.ZTZI’"(xi) BzZ(xj,TI)nr(l +f’2)1/2d7],.
1=1 LY Ni-1 |
1 NP ey -
+ <= Tr{r (X,‘) / Bzr(xj, @) sin ©d0
8 i=1 |V ©Oi-1 |
1 NP [ Lo, -
+ 8r Z TIz(xi) B:2(x;,0)sin0@dO| |, X; € 51 (412)
1=1 L 9, ]
3 NI 9 ni -
ur () == 1= 3wl () Crr (%5, m)ns (1 + £12) /24y,
d i=1 | Y i-1 |
3 NI ( n: -
g 2 xi) / Cre(xj,n)n.(1 + f'2)1/2dy,
an i=1 | ¥ Ni—1 ]
1 NI [ om _
T & 2 T4, (x) Brr (x5, m)ne (1 + f72)1/2dy,
i=1 KRG/
1 NI [ i .
+ 87 Z 2, (i) / Brz(x5,m)n. (1 + f'2)/ 24y,
i=1 LY i1 |
1 NF 7 ( 9; 7
+ -8—71' Zan(X{) / Brr(xj, @) sin @d@
=1 (VO ]
1 NP ( o, .
T & D Taa(xi) / Br2(x;,0)sin@d0| , x;€Sp (A13)
4 i=1 | VO ]
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NI [ . -
3 m
uf(xJ) =T o ui{(xi) / Czr(xj,n)'r]r(l -+ f,2)1/2dnr
n

1=1 L i—1

NI C ne 1
A =(x:) / Czz(X5,m)n, (1 + £'2)"/ 2dn,

=1 L i—1

7
%m,(HWW%J

-1

1 n:
R

1—1

NP o,

+$Zﬂ@o/

B..(x;,0)sin @d@]
es 1

NP o:

il I .
+ |7 Tnz(xi) /

esl

IS

B..(x;,0 sm@d@} , X; €Sp (A14)

(A + Dur (x5) == f;(A +1) ) uf(x) f " Corlogy e (14 £17) 2,
1= Ni-1

N

r

__,\+1 n C . 1 72 1/2d
uz (i) rz(X5,m)nr (1 + f%)2dn,

-1

-

N

NIT . ]

1
+gz / Byr(%5,n) Fene (1 + f'2)!/2dn,

i=1 LY Ti—1

1 U [ )
+ gz / Brz(xJ"n)anr(l + fl2)1/2dnr

=1 L i—1

1 NP [ . ©; h
+§ZT,{,(x,-) / B.(x;,0)sin ©dO
NP =Y ]

1 I .
+ Fy ;Tnz(xi) /6;—1 B.:(x;,0)sin@dO| , x; € Sy (A15)

[N

=1

3 NI ni
A+ Dur(xs) == (A +1) Y ul(x) [ f Car (X5, m)nr(1+ f'2)Y/2dn,
1=1 n



- 157 -

=(A+1) Zu (x:) [/

=1

zz(xj,n)nr(]- + f/2)1/2d77r}

1 NI T .m
" / Ber(xj,n) Frne(1 + f'z)l/zdn’}
T =1 LY M-t
1 NI emi
+ .8_7r Z / Bzz(Xj, n)FzT]r(l -+ f,2)1/2dnr:|
=1 LY 1Mi—-1
1 NP ey
+ 'é’; Z Ty{r(xi) / Bzr(xj, @) sin @d@}
=1 LY ©i-1
1 NP ey
i=1 i1

These equations can be rewritten in the form:

NI
1
5 ul(x;) =) —(CRR):uf(x:) + Z (CRZ)iuk(x:)
=1
NI NI
+ Y (ACOS + BRR); T{ (xi) + Y _(BRZ): T (x:)
1=1 =1
NP NP
+ Y (ACOS + BRR):TL.(x:) + Y (BRZ); TL(x;)  (A17)
1=1 $=1
1 NI
5u;(x,-) =Y —(CRZC);ul(x:) + Z (CZ2Z)iuk(x;)
1=1
NI NI
+ > (BRZC), T} (xi) + Y (ACOS + BZZ); T (x.)
1=1 1=1
NP NP
+ ) (BRZC);TH(x:) + Y (ACOS + BZZ); TL(x;) (A18)
1=1 t=1
NI NI
uf (x;) =) —(CRR)iul(x:)) + Y —(CRZ):iuk(x:)
1=1 1=1
NI NI
+ (ACOS + BRR):T{ (xi)+ Y (BRZ): T ()
i=1

1=1
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NP NP
+ Y (ACOS + BRR); T}, (xi) + D _(BRZ):TE(xi)  (A19)

NI
wP(x;) =Y —(CRZC);ul(x;) + Z (CZ2);ul(x;)
=1
NI NI
+> (BRZC);Tf (x:)+ > (ACOS + BZZ); T}, (x:)
1=1 =1
NP
+ Y (BRZC);TE(x:) + Z ACOS+BZZ) TE (x;)  (A20)
=1 1=1
1 NI NI
5+ Duflx;) =) (A= 1)(CRR)iu](xi) + ) (A — 1)(CRZ)i uf(x)
1=1 =1
NP NP

+ ) (ACOS + BRR); TS, (x;) + > _(BRZ): T, (x)
1=1 =1
NI

+ Y [(ACOS + BRR);t, + (BRZ);t,] TSJ(x;)
1=1

— [(ACOS +BRR);F,(X,') + (BRZ),‘Fz(X,')] (A2l)
1 NI NI
3+ Duzlxg) =3 (A~ 1)(CRZC);uf(x:) + >_(A=1)(CZ2)suf(xy)
NP NP )
+ > (BRZC);TE(x:) + Y _(ACOS + BZZ); T, (x:)
v i
+ Y [(BRZC);t, + (ACOS + BZ2);t.]TSJ(x;)

- [(BRZC),‘F,-(X,‘) + (ACOS + BZZ),' Fz(xi)] (A22)
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In these equations, the substitution has been made:

3 i
CRR‘ - C""(xj’ 77)771'(1 + flz)l/zdrlr
27 Ni—-1
3 U
CRZ; =-2—- C,-z(xj,n)n,(l + f’2)1/2dnr
Q Ni—1
CZZ;= 3 [™ Crz(X; 12y1/2
t T 22(X5,m)n. (1 + f'%) "/ “dn,
27 Ni—1
3 ni
CRZC: =a- Czr(xj, ’7)777'(1 + flz)l/zdnr
27 Ni—1
1 i
BRZi=, |  Bra(xj,m)ne(1+ f%)"/2dn,
4 Ni—1
1 ni
BRZCi= [ Ba(xjn)ne(1+ f'%)!/2dn,
Ni—1

1 mi
(4COS + BRR): = — / Brr(x;,m)ne(1 + f'%)"/2dn,
n

-1

1 ni
(ACOS +BZZ)i =~ / B.o(x;,n)n-(1+ f'%)"/?dn,
n

i—1

’ TSJ(X,') =ﬂ(x,—)

Egs. (A17)-(A22) each involve4 NI+2 N P unknowns [NIxul(x;)+NIxui(x;)+NI

XT{ (x)+NI x Tf (x;)+NP x TE.(x;)+NP x TE,(x;)], and Egs.(A21) and

(A22) include NI additional unknowns for the values of T'SJ(x;). Thus there

are 5NI + 2 NP unknowns. By applying Eqs. (A17), (A18), (A21), (A22), and

(A10) to each segment of the interface, and Egs. (A19) and (A20) to the NP points

on the sphere, 5 NI + 2 NP linear equations result for a well posed linear system.

In matrix form, the system can be represented A-z =%
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0 (x)rsi)
1 g 4
0 9L
0 = " |,
0 “fL
|4 (zzq + s00V) + 4 DzYa}~ m
ﬁ [ zyg + 4 (Hyg + s0OV) - ) " )
\ o 0 0 0 (]
0 (zza + soov) ozyd (zza + s00v) ozyd
0 zud (Hug + soov) zug (4ud +soov)
0 (zzd + soov) ozug (zzg +s00v) ozug
0 zydg (yug + soov) zyd (yd +s00V)
*1{zz4 + s0ov)+“10z4g (z2d +S00V) ozHd 0 o
\ ‘1Z48 + 1 (HYd + S00OY) zud (444 + soov) o 0
IN dN dN IN IN

bt |
2720
ZYyo-
ZZO0~-
ZYyOo-

IN

” 4

JDZYO—
- £ fo o
0Z¥40-
YO~

zzo{t-x) ozyo(1-x)
zyo(i—v) Sri.u«:

IN

IN
dN
dN
IN
IN
IN
IN
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The symbols above and to the left of the matrix in Eq. (A23) indicate the
number of times each column or row is to be repeated. In each row, the columns
must include an element for each surface point, so there are 5 NJ + 2 NP columns.
Each row stands for the NI or NP equations for each surface point. This linear

system is solved by Gaussian elimination for the unknown vector giving the velocity

and stress at the interface and sphere surface.
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Appendix B

Data From Experimental Runs

This appendix presents the data from the eight experimental runs performed for

this work. Both dimensional and non-dimensional forms for this data are included.

TABLE BI. Time-Position Data and Calculated Sphere Velocity

Position  Time At U (cm/sec) % Error*
21 950.5 - - -
22 953.2 2.70 0.370 1.33
27 966.7 13.50 0.370 1.33
30 974.7 8.00 0.375 -
37 993.3 18.60 0.376 0.267
42 1006.5 13.20 0.379 1.067
43 1009.2 2.70 0.370 1.333
44 1011.8 2.60 0.385 2.667
*avg.=0.375

a) Case 1s
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TABLE BI. Time-Position Data and Calculated Sphere Velocity

Position  Time At U (cm/sec) % Error*
21.0 13.8 - - -
22.5 18.0 4.20 0.357 3.775
25.0 24.7 6.70 0.373 0.539
27.0 30.2 5.50 0.364 1.887
31.0 41.0 10.80 0.370 0.270
32.5 45.0 4.00 0.375 1.078
36.0 54.5 9.50 0.368 0.809
40.0 65.1 10.60 0.377 1.617
42.5 71.8 6.70 0.373 0.539
45.0 78.4 6.60 0.379 2.156

*avg.=0.371

b) Case 1b

TABLE BI. Time-Position Data and Calculated Sphere Velocity

Position = Time At U (cm/sec) % Error*
22.0 416.6 - - -
27.0 430.2 13.60 0.368 3.774
30.0 438.2 8.00 0.375 1.078
37.0 457.1 18.90 0.370 0.270
42.0 470.4 13.30 0.376 1.348
43.0 473.2 2.80 0.357 3.774
44.0 475.8 2.60 0.385 3.774

*avg.=0.371

¢c) Case 2s
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TABLE BI. Time-Position Data and Calculated Sphere Velocity

Position  Time At U (cm/sec) % Error*
21.0 71.1 - - -
22.5 75.3 4.20 0.357 2.192
25.0 82.2 6.90 0.362 0.822
27.0 87.8 5.60 0.357 2.192
31.0 98.7 10.90 0.367 0.548
32.5 102.9 4.20 0.357 2.192
36.0 112.3 9.40 0.372 1.918
40.0 123.1 10.80 0.370 1.370
42.5 129.9 6.80 0.368 0.822
45.0 136.6 6.70 0.373 2.192

*avg.=0.365

d) Case 2b
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TABLE BI. Time-Position Data and Calculated Sphere Velocity

Position  Time At U (cm/sec) % Error*
19.0 473.0 - - -
21.0 478.3 5.30 0.377 0.266
22.5 482.4 4.10 0.366 2.666
25.0 489.0 6.60 0.379 0.798
27.5 495.7 6.70 0.373 0.798
29.5 500.9 5.20 0.385 2.394
33.0 510.2 9.30 0.376 0.000
35.5 517.0 6.80 0.368 2.120

*avg.=0.376

e) Case 3s

TABLE BI. Time-Position Data and Calculated Sphere Velocity

Position  Time At U (cm/sec) % Error*
18.0 42.6 - - -
19.5 46.8 4.20 0.357 2.989
23.0 56.4 9.60 0.365 0.815
25.0 61.8 5.40 0.370 0.543
29.0 72.6 10.80 0.370 0.543
30.5 76.6 4.00 0.375 1.902
34.0 86.1 9.50 0.368 -
36.5 92.9 6.80 0.368 -

*avg.=0.368

f) Case 3b
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TABLE BI. Time-Position Data and Calculated Sphere Velocity

Position  Time At U (cm/sec) % Error*
19.5 15.3 - - -
23.0 24.7 9.40 0.372 0.535
25.9 30.0 5.30 0.377 0.802
29.0 40.7 10.70 0.374 -
30.5 44.7 3.90 0.385 2.941
34.0 53.9 9.30 0.376 0.535
35.5 57.9 4.00 0.375 0.267

*avg.=0.374

g) Case 4s

TABLE BI. Time-Position Data and Calculated Sphere Velocity

Position  Time At U (cm/sec) % Error*
18.0 23.3 - - -
19.5 27.3 4.0 0.375 3.350
23.0 36.3 9.00 0.389 0.258
25.0 41.4 5.10 0.392 1.031
29.0 51.7 10.30 0.388 -
30.5 55.5 3.80 0.395 1.804
34.0 64.5 9.00 0.389 -

*avg.=0.388

h) Case 4b
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TABLE BII. Interface Shape Data (in 1/10"” boxes)

[ =0.9494 I =0.4747 [ = 0.000 [ = —0.4747

R F R F R F R F
0.0 6.0 0.0 9.7 0.0 11.5 0.0 15.3
2.0 5.7 2.0 9.3 3.0 11.0 1.0 14.7
5.0 5.0 4.0 8.6 5.0 10.3 2.0 14.3
8.0 4.2 6.0 8.0 8.0 9.3 4.0 13.8
10.0 3.5 8.0 7.2 10.0 7.6 6.0 12.7
13.0 2.8 10.0 6.0 12.0 5.7 8.0 11.2
15.0 2.0 11.0 5.3 13.0 5.0 10.0 9.2
17.0 1.0 12.0 5.0 14.0 4.8 12.0 7.0
21.0 0.0 15.0 4.0 16.0 3.4 14.0 5.5
17.0 2.3 18.0 2.4 16.0 4.0
20.0 2.2 20.0 1.7 18.0 3.2
22.0 1.5 23.0 1.0 20.0 2.5
25.0 0.0 27.0 0.3 24.0 1.3
30.0 0.0 26.0 1.0
32.0 0.4 35.0 0.0

a) Case 1s
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TABLE BII. Interface Shape Data (in 1/10” boxes)
[ =0.9494 [ =0.4747 [ =0.000 [l = —-0.4747
R F R F R F R F
0.0 4.5 0.0 8.2 0.0 10.7 0.0 15.0
5.0 4.0 5.0 7.7 2.0 10.5 2.0 14.8
7.0 3.8 7.0 7.0 3.0 10.0 4.0 13.3
9.0 3.5 9.0 6.0 4.3 9.5 5.0 12.8
11.0 3.1 10.0 5.5 5.0 9.0 7.0 11.5
13.0 2.5 11.9 5.0 6.5 8.0 9.0 10.0
17.0 1.6 14.0 4.0 8.0 7.2 11.0 8.2
18.0 24 10.0 5.7 13.0 6.3
20.0 1.3 11.0 5.2 15.0 5.4
22.0 0.5 13.0 4.3 17.5 4.0
15.0 3.5 19.0 3.0
20.0 2.0

b) Case 2s
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TABLE BII. Interface Shape Data (in 1/10” boxes)
[ =2.5394 [ =1.2697 [ = 0.000 I = —1.2697
R F R F R F R F
0.0 4.7 0.0 10.6 0.0 17.8 8.0 25.0
5.0 4.0 3.0 10.2 3.7 17.0 10.0 24.0
7.0 3.4 5.0 9.4 5.0 16.4 11.0 23.0
10.0 3.0 7.0 8.2 7.2 15.0 12.5 21.0
14.0 2.8 10.0 6.9 10.0 13.5 14.0 19.1
18.0 2.3 12.0 6.1 12.0 12.0 15.0 17.0
22.0 14 14.0 5.4 15.0 10.3 16.0 15.0
26.0 0.6 17.0 4.5 17.0 9.2 17.0 13.0
20.0 3.7 20.0 7.6 18.5 11.0
22.3 3.0 22.0 6.4 19.0 9.0
25.0 2.3 24.0 5.3 20.0 7.5
30.0 1.0 26.6 5.0 21.3 6.0
28.3 3.0
30.0 2.0

c) Case 3s
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TABLE BII. Interface Shape Data (in 1/10” boxes)

[ =2.5394 [ =1.2697 [ =0.000 = —-1.2697

R F R F R F R F
0.0 5.7 0.0 11.0 8.5 15.7 10.0 25.0
4.0 5.3 5.0 10.5 10.0 13.3 11.0 23.8
8.0 5.1 7.0 9.2 12.0 11.9 12.5 22.0
10.0 4.9 9.0 8.3 13.0 11.0 13.3 21.0
13.0 4.6 11.0 7.4 14.5 10.0 14.5 19.0
15.0 4.0 13.0 6.4 16.0 8.8 16.0 16.5
20.0 3.3 15.0 5.5 18.0 7.3 17.0 15.0
23.0 3.0 17.0 4.5 21.0 5.0 18.0 12.8
19.0 3.4 25.0 2.4 19.0 10.0
21.0 2.4 20.0 8.2
25.0 2.0 23.0 5.3
25.0 4.0
30.0 2.0

d) Case 4s
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In dimensionless form these results are:

TABLE BIII. Dimensionless Interface Shape Data
[ =2.00 [ =1.00 [ =0.00 [ =-1.00
R F R F R F R F
0.00 1.09 0.00 1.76 0.00 2.09 0.00 2.78
0.36 1.04 0.36 1.69 0.55 2.00 0.18 2.67
0.91 0.91 0.73 1.56 0.91 1.91 0.36 2.60
1.45 0.76 1.09 1.45 1.45 1.69 0.73 2.51
1.82 0.64 1.45 1.31 1.82 1.38 1.09 2.31
2.36 0.51 1.82 1.09 2.18 1.04 1.45 2.04
2.73 0.36 2.00 0.96 2.36 0.91 1.82 1.67
3.09 0.18 2.18 O.él 2.55 0.87 2.18 1.27
3.82 0.00 2.73 0.73 291 0.62 2.55 0.98
3.09 0.60 3.27 0.44 2.91 0.73
3.64 0.40 3.64 0.31 3.27 0.58
4.00 0.27 4.18 0.18 3.64 0.45
4.55 0.18 4.91 0.05 4.36 0.24
5.45 0.00 4.37 0.18
5.82 0.05 6.36 0.00

a) Case 1s
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TABLE BIII. Dimensionless Interface Shape Data

[ =2.00 [ =1.00 [ =0.00 l=-1.00
R F R F R F R F
0.000 0.817 0.000 1.489 0.000 1.942 0.000 2.723
0.908 0.726 0.908 1.398 0.363 1.906 0.363  2.687
1.271  0.690 1.271  1.271 0.545 1.815 0.726 2.414
1.634 0.635 1.634 1.089 0.781 1.725 0.008 2.324
1.997 0.563 1.815 0.998 0.908 1.634 1.271  2.088
2.360 0.454 2.069 0.908 1.180 1.452 1.634 1.815
3.086 0.290 2.541 0.726 1.452 1.307 1.997 1.489
3.267 0.436 1.815 1.071 2.360 1.144
3.631 0.236 1.997 0.944 2.723 0.980
3.994 0.091 2.360 0.781 3.177 0.726

2.723 0.634 3.449 0.545

3.631 0.363

b) Case 2s
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TABLE BIII. Dimensionless Interface Shape Data

[ =2.00 [ =1.00 [ =0.00 [=-1.00

R F R F R F R F
0.000 0.362 0.000 0.815 0.000 1.369 0.615 1.923
0.385 0.308 0.231 0.785 0.285 1.308 0.769 1.846
0.538 0.262 0.385 0.723 0.385 1.262 0.846 1.769
0.769 0.231 0.538 0.631 0.554 1.154 0.962 1.615
1.077 0.215 0.769 0.531 0.769 1.038 1.077  1.469
1.385  0.177 0.923 0.469 0.923 0.923 1.154 1.308
1.692 0.108 1.077 0.415 1.154 0.792 1.231 1.154
2.000 0.046 1.308 0.346 1.308 0.708 1.308 1.000
1.538 0.262 1.538 0.585 1.423 0.846
1.715 0.231 1.692 0.492 1.462 0.692
1.923 0.177 1.846 0.408 1.538 0.577
2.308 0.077 2.046 0.385 1.638 0.462

2.177 0.231
2.308 0.154

¢) Case 3s
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TABLE BIII. Dimensionless Interface Shape Data

[ =2.00 [ =1.00 [ =0.00 [ =-1.00
R F R F ' R F R F
0.000 0.438 0.000 0.846 0.654 1.208 0.769 1.923
0.308 0.408 0.385 0.808 0.769 1.023 0.846 1.831
0.615 0.392 0.538 0.708 0.923 0.915 0.962 1.692
0.769 0.377 0.692 0.638 1.000 0.846 1.023 1.615
1.000 0.354 0.846 0.569 1.115 0.769 1.115 1.462
1.154 0.308 1.000 0.492 1.231 0.677 1.231 1.269
1.538 0.254 1.154 0.423 1.385 0.562 1.308 1.154
1.769 0.231 1.308 0.346 1.615 0.385 1.385 0.985

1.462 0.262 1.923 0.185 1.462 0.769
1.615 0.185 1.538 0.631
1.923 0.154 1.769  0.408

1.923 0.308
2.308 0.169

d) Case 4s
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The results of the tracer particle experiments are given in Table BIV:

TABLE BIV. Tracer Particle Data (in 1/10” boxes)

1 a b c d e f g h
41.8 26.2 28.0 223 25.5 38.2 249 39.6 27.2
422 269 285 229 26.0 38.8 259 40.2 28.0
42.5 27.5 29.3 23.7 26.8 39.2 26.6 40.6 28.2
428 28.2 299 24.2 27.5 39.8 272 41.0 29.6
43.0 28.2 302 25.0 28.2 400 279 415  30.0
43.3 30.0 31.4 27.1 29.3 41.9 28.8 41.9
43.5 30.5 31.8 27.6 29.9 29.8

a) Case 1b

TABLE BIV. Tracer Particle Data

(in 1/10” boxes)

1 a b c d
41.8 26.4 32.3 24.4 31.8

42.0 27.0 32.7 24.9 323
42.2 277 33.2 25.2 32.8
42.5 28.2 33.6 25.7 33.1
42.7 28.7 34.1 26.2 33.8
43.0 29.1 34.5 26.9 344

43.5 31.8 36.9 29.7 36.8
b) Case 2b
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TABLE BIV. Tracer Particle Data (in 1/10"” boxes)

1 a b c d e f g h 1
30.7 20.5 243 35.2 31.6 26,0 181 36.8 287 21.0
31.5 21.2 251 359 32.7 27.1 19.0 38.1 29.8 22.0
320 219 259 364 33.5 2800 199 389 30.8 229
32.5 228 268 37.3 34.5 290 206 399 31.8 239
33.0 24.0 28.2 38.2 354 29.8 21.8 40.3 32.8 250
33.5 25.7 294 38.7 36.3 30.8 238 41.0 33.7 265
340 278 31.0 29.0 37.2 25.5 41.8 35.0 28.6
345 29.7 32.0 394 37.8 32.3 35.9 30.2
35.0 31.2 33.0 40.0 39.2 33.5 36.4 315
35,5 31.7 334 404 39.7 34.2

c) Case 3b
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TABLE BIV. Tracer Particle Data

(in 1/10” boxes)

1 a b c d
30.7 13.0 26.5 23.1 285
31.5 13.7 28.0 246 31.5
320 144 29.0 25.5 329
32.5 15.2 29.9 26.7 34.5
33.0 16.5 31.2 27.9 35.8
33.5 17.8 32.7 294 38.2
34.0 34.2 31.2 40.1
34.5 35.3 33.0 41.2
35.0 36.0 34.0 41.8
35.5 34.4
d) Case 4b
In dimensionless form these results are:
TABLE BV. Dimensionless Tracer Particle Data
1 a b c d e f g h
3.00 1.54 1.64 1.31 1.50 2.24 1.46 2.32 1.60
2.26 1.58 1.67 1.34 1.52 2.28 1.51 2.36 1.64
1.63 1.62 1.72 1.39 1.57 2.30 1.56 2.38 1.65
1.00 1.65 1.75 1.42 1.61 2.34 1.60 241 1.74
0.57 1.69 1.77 1.47 1.65 2.35 1.64 2.44 1.76
-0.05 1.76 1.85 1.59 1.72 2.46 1.69 2.46
-0.47 1.79 1.87 1.62 1.76 1.75

a) Case 1b
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TABLE BV. Dimensionless Tracer

Particle Data

1 a b c d
3.00 1.38 1.70 1.28 1.67
2.68 1.42 1.72 1.31 1.70
2.15 1.45 1.74 1.32 1.72
1.63 1.48 1.76 1.35 1.74
1.10 1.51 1.79 1.37 1.77
0.57 1.53 1.81 1.41 1.81
047 167 194  1.56 1.93

b) Case 2b

TABLE BV. Dimensionless Tracer Particle Data

1 a b c d e f g h i
3.00 0.91 1.08 1.56 1.40 1.15 0.80 1.63 1.27 0.93
2.33 0.94 1.11 1.59 1.45 1.20 0.84 1.69 1.32 0.97
1.94 0.97 1.15 1.61 1.48 1.24 0.88 1.72 1.36 1.01
1.55 1.01 1.19 1.65 1.53 1.28 0.91 1.77 141 1.06
1.15 1.06 1.25 1.69 1.57 1.32 0.96 1.79 1.45 1.11
0.76 1.14 1.30 1.72 1.61 1.36 1.05 1.82 1.49 1.17
0.36 1.23 1.37 1.73 1.65 1.13 1.85 1.55 1.27

-0.02 1.32 1.42 1.75 1.68 1.43 1.59 1.34
-0.41 1.38 1.46 1.77 1.74 1.48 1.61 1.40
-0.81 1.40 1.48 1.79 1.76 1.52

¢) Case 3b
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TABLE BV. Dimensionless Tracer
Particle Data
1 a b c d
3.00 0.51 1.03 0.90 1.11
2.33 0.53 1.09 0.96 1.23
1.94 0.56 1.13 1.00 1.29
1.55 0.59 1.17 1.04 1.35
1.15 0.64 1.22 1.09 1.40
0.76 0.69 1.28 1.15 1.49
0.36 1.34 1.22 1.57
-0.02 1.38 1.29 1.61
-0.41 141 1.33 1.63
-0.81 1.34

d) Case 4b
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Chapter IV

The Effect of London-van der Waals Dispersion Forces on the Motion
of a Sphere Normal to a Deformable Fluid-Fluid Interface
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1. Introduction

Previously in this work, several aspects of the problem of a sphere moving
normal to a deformable fluid-fluid interface hve been studied by a numerical tech-
nique. Two different types of sphere motion were considered in Chapter II, and
two limiting cases for the dynamics of the interface were given in Chapter III. All
these solutions have in common the fact that even without the limitations imposed
by difficulties in achieving convergence for the numerical scheme, none could solve
for the flow of a fluid reaching zero thickness. This final stage of the breakthrough
process is fundamentally a molecular process, and so, cannot be treated in the con-
tinuum framework of the previous chapters. In this chapter, however, we begin

consideration of molecular forces in a numerical scheme used previously.

Specifically, we begin by treating London-van der Waals dispersion forces; this
is a force which results from the induced dipoples between two separated molecules.
Although calculations of tile exact quantitative force between bodies requires a de-
tailed understanding of the molecular environment, researchers have used a single
parameter, A, the London-van der Waals constant, to describe the attraction be-
tween particles from induced dipoles. Hamaker (1937) used this approach to find
the attraction between two spheres and the attraction of a sphere to an infinite
plane wall, all in a vacuum. By devising a mixing rule for combining the A’s for
the various materials, Hamaker also solved the problem for bodies separated by
a continuous medium. Hamaker’s results have been widely applied to problems
involving colloidal forces, for exampl, Spielman and Cukor (1973), Zeichner and
Schowalter (1977), to name only two. These solutions apply integrated forms of
the London-van der Waals point force to discrete bodies, but applications also exist
for dispersion forces acting on infinite interfaces between two fluids. Maldarelli and
Jain (1982) provide a review of the work done on thin films in the regime where

London-van der Waals forces are significant. Although the dispersion force is a body-
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force depending on the entire volume of the materials involved, some workers in the
field treat this force, which only exists when at least two interfaces exist between
materials, as an interfacial effect. Maldarelli and Jain outline two approaches to
treating London-van der Waals effects. The first is the “body force method” in
which the dispersion forces are included in the differential equations of motion as
the gradient of the London-van der Waals potential. Felderhoff (1968) treats the
problem of a thinning liquid film via this method. An alternative approach, and
the one that proves more convenient for application in our problem, is termed the
disjoining pressure approach. In the disjoining pressure treatment, an additional
term, the disjoining pressure, is added to the normal stress boundary condition to
account for the attraction across two liquid boundaries. There is no added force
from two materials separated by a single boundary, that is, in contact. Interfacial
tension is defined to include all excess thermodynamic properties from materials in

contact. Ivanov, Radoev, Manev, and Scheludko (1969) apply this technique to the
stability of thin liquid films.

Just as lubrication analysis is able to provide an accurate solution to the film
drainage problem with better numerical convergence than the boundary integral
technique we employ, the thin film analysis performed by Ivanov et al., among
others, using either the body force or disjoining pressure approach is able to give
an accurate representation for the collapse of these thin films under the action of
dispersion forces. In the context of particle/interface interactions, however, the
problem with studying thin films through any of these thin film analyses is that
there is no “a priori” basis to determine whether a thin film will actually occur, for

a given physical system, due to the motion of a sphere toward the interface from

“far out” in the fluid.

It is therefore fortunate that the problem of sphere motion toward an interface

in the presence of London-van der Waals forces can be studied without necessity
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for any assumptions about the interface shape. This is because the description of
London-van der Waals forces through a disjoining pressure contribution to the nor-
mal stress balance can be adapted directly to the same boundary integral solution
scheme that was described in the preceeding chapters. In particular, the attrac-
tion of fluid I to the sphere from dispersion forces causes an added discontinuity in
the stress across the interface. By adding the dispersion force to the normal stress
jump, the differential equations of motion remain unaffected by the inclusion of
London-van der Waals forces, and the point force solutions of the previous chapters
still apply; it is only the boundary conditions which are applied to the integral form
of the solution that are altered. In the present work, the local dispersion force on

the interface is evaluated by analytically integrating over the volume of fluid behind

the interface for a given sphere-interface configuration.

This chapter reports on the derivation of the dispersion force at a deformed
interface near a solid sphere, and the modifications to the numerical technique of
Chapter II that are necessary to include the disjoining pressure in the normal stress
Jump boundary condition. Six sample numerical calculations were performed; three
for the case of a constant sphere velocity, and three for a constant applied body
force on the sphere. The cases chosen are for the situation where characteristic in-
terfacial tension, gravity, viscous forces, and the disjoining pressure are all of equal

magnitude. The range of viscosity ratios chosen for calculation, 0 — 10, essentially

spans all variation associated with changes in .

II. Mathematical Formulation

In order to include the effect of London-van der Walls dispersion forces on the
motion of the sphere-interface system, we modify the numerical method described in

Chapter II to include these attractive forces in the normal stress boundary condition
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through the so-called “disjoining pressure approach.” As was the case in the previous
chapters, the Reynolds number, Re = p;Ua/;, is small enough that Stokes equation

describes the flow in both fluids. The governing equations and boundary conditions

are:
0= -—Vp1 -+ szul
0=V -u in fluid 1, (1)
0= -—Vpg + Vzllz
0=V. ug in fluid 2. (2)
with
uj,uz — 0 as |x| — o0 (3)

and at the interface x € Syu; = uy ,(4)

1 9f

. s . ID e e o 5
n-u; =n-u VH| ot (5)
Here the interface shape is denoted as z = f(r,t), and the outward pointing normal
n at the interface is n = VH/|VH| with H = z — f(r,t) = 0. On the sphere, we

apply either the boundary condition for constant velocity,
Ug = iz X E SP ) (6a)

or the constant force condition which will be given after the form for the disjoining
pressure has been derived. All of the equations and boundary conditions above
are the same as those for the problems treated in Chapters II and III. The final

boundary condition, the stress jump at the interface, though, now takes the form:

Mm-T1—n-T3)=—(V-n)n+(p2 — p1)ga® fn +I(~A)n . (7
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II(h) is the disjoining pressure at a point on the interface (whose distance to the
center of the sphere is h for the given sphere-interface configuration) due to the
London-van der Waals attraction between the sphere and the mass of fluid I beyond
the fluid I-fluid II interface. In order to get an expression for II(h), we begin by
considering the London-van der Waals potential between two points of matter. The

potential for a molecule at position r given a molecule at the origin is

_ —Ai2

B(r)= 2 . (®

Where A2 is the van der Waals constant whose value depends on the two materials
involved and the intervening medium. If molecules 1 and 2 are separated by a third
material rather than a vacuum, a mixing rule such as the one given by Hamaker
(1937) must be used to get the value of A;;. The force between these two molecules

is then given by the negative gradient of the potential.

F(r) = -VE() = 52, (9)

To get the force at a point r due to a sphere of radius a and molecular density g1,

whose center is located at the origin, Eq. (9) is integrated over the volume of the

sphere. With ' = (R —r)

Py = [ Zhlag
|R|<a iT ‘

_ mA2q; 1 1 r? + a? N r? + a? (10)
2r2 |(r—a)? (r+a)? 2(r—a)t 2(r+a)t|’
The disjoining pressure on a differential segment of the interface located a distance

lc from the sphere center is the attractive force from the mass of fluid I lying behind

this differential area of the interface divided by its area. In spherical coordinates,

this can be written:
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10,) = JiF qar?F(r)sin ¢ dg df dr

12sin¢p d¢ db
A 1 1
_ 21291927 _ n a + a
4 r+a r—a (r+a)? (r-—a)?
2a2 1 22 1 |-

3 (r+a)3+ 3 (r—a)3| r (11)

The upper limit of integration, ., will be co for points on the interface above the
center of the sphere, and the point where the line Ol, meets the interface again for
l; below the sphere center. Letting the area on the interface go to 0 by d¢, df — 0,
and substituting Eq. (11) into the normal stress boundary condition, and non-dim-
ensionalizing with respect to the characteristic length a, and the characteristic stress

pU/a, we obtain the final form for the normal stress jump is

_ I I 1 1 1
= T —n. - (V. il ~II. 12
F(fy=(A-T;{-n-T3) Ca(V n)n+Cgfn+ClH n , (12)
where Cl = 4uUa?/mA12¢192 and TI(,) is
1 1 1 1 1
M) = rrl r-1 Gr1? =12
1
2 1 2 1 °.
_2 2 . 13
3G +1° 30 -17|, " (13)

The term Aj2¢;1¢27? is known as the Hamaker constant, and is of the order 10~ 12-
10713 erg. The new form of the normal stress jump, Eq. (12), applies to both
the problem of a constant applied body force on the sphere, and a sphere moving
with constant velocity. Unlike the modification to the stress jump for an immobile

interface of Chapter III, no additional variables or constraints are added by including

the disjoining pressure.

In this chapter, Egs. (1) and (2) are solved subject to the boundary conditions

Eq. (3), (4), (5), (6), and (12) using the boundary integral technique described
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in Chapter II. The collocation assumption that is applied in Chapters II and III
to the unknowns u and T - n and the interface shape functions V -n and f is
applied here to the disjoining pressure as well. II(l.) is calculated at the center
of each interface segment, and this value is assumed to be the disjoining pressure
over the entire portion of the interface. This allows us to withdraw F(f) from the

integral and maintain the system of linear equations which were derived for the

earlier problems.

The attractive London-van der Waals force acts on the sphere as well as fluid
I; so the total force on the sphere is now the sum of the stress due to fluid II and
the body force resulting from attraction to fluid I. In dimensionless terms, the force
which must be applied in the positive z direction to the sphere so that the velocity

remains constant is

1 " R Nu 18 >
Fugnare = =5 [ TEsingds = 22 [ Tni)n, 1+ 1220, . (19
0 0

With the gradient of the interface shape function, f’, and the position on the
interface, 7., defined as in Chapter II, Eq. (14) is used to get the total force on the
sphere for constant velocity calculations, and also forms the basis for application
of the constant force condition on the sphere when that is relevant. The basis
for calculation in the constant force problem is that without the presence of the
interface, the normalized force on the sphere is 1. For the case of a particle settling
in a constant gravitational field, the normalization constant is Stokes drag for the
settling velocity. In the problem under consideration here, where in addition to the
constant body force force on the sphere, there is the variable dispersion force, the

constant body force condition on the sphere surface is:
™ o
—/ Th.singdé =3 + NuDiap/ () ne (1+ )Y dy, . (6b)
0 0

This equation completes the system of equations for the constant force calculations.

The details of applying the boundary integral method and solving the resulting sys-



- 196 ~

tem of linear algebraic equations is essentially identical to the procedure described

in Chapter II, and so is not repeated here.

I11. Numerical Results

Numerical results for the problem of a sphere moving normal to a deformable
interface subject to a London-van der Waals type dispersion force are presented in
this section for cases with a dimensionless dispersion number equal to unity, that
is, Cl = 4uaUa?/7wA12¢q192 = 1. This value is typical of micron sized particles
in water settling under gravity. However, C! = 1 was not chosen to represent a
particular physical system, but because when coupled with Ca = Cg = 1, we have
a system with all characteristic restoring forces at the interface equal in magnitude
to the force of deformation. Furthermore, referring to the results in Chapter II, the
Ca = Cg =1 cases in the absence of London-van der Waals forces, resulted in tails
behind the sphere of various widths, and a range of behavior of the film in front of the
sphere from a stable thick film for A = 0, to a continuosly thinning film for A = 10.
These factors combine to create a situation where the presence of dispersion forces
could increase the rate of film drainage to the point where breakthrough occurs
before tails form. In the present study, calculations were performed for three values
of A; as discussed in Chapter II, this is the parameter which controls the thickness
of the film in front of the sphere, and is hence most likely to illustrate a changing
role for Cl. A complete span of the parameter space will be presented in Geller and
Leal (1986). In order to obtain experimentally a value of Ca = 1 simultaneously
with C! = 1 and a particle in the range 10 um, the interfacial tension would have
to be extremely small. Alternatively for v ~ O(10), the particle diameter must
be in the range 1 — 0.1um. However the results reported accurately represent the

physics of a system where capillary effects are of the same order as dispersion forces
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acting over a distance O(10). The same numerical parameters, sphere and interface
segment distribution, time step, and starting sphere position, used in Chapter II
are employed for the calculations performed for this chapter. This way any changes

associated with the different numerical scheme will be minimzed.

We begin with a discussion of the constant velocity results. In Chapter II, the
case A = 1, Ca =1, Cg = 1 formed the basis of comparison for the calculations
which followed. The interface shapes for this calculation are again presented here
for reference, Fig. 1. Now, however, the set of parameters reads (1,1,1,c0) for
(A, Ca, Cg, Cl) with Cl added to the set. As shown clearly in Fig. 1, this is a
case which displays a long, slender tail behind the sphere. In Fig. 2 we compare the
interface shapes for the two cases (1,1,1,1) and (1,1, 1, 00). For the early stages, the
sphere is far enough from the interface, | = 1,2, that London-van der Waals forces
have a negligible effect. However, when the sphere stradles the interface, [ = 0, the
London-van der Waals attraction between the sphere and interface is large enough
that the interface lies closer than to the sphere than was observed for the Cl = co
calculation. This reduction in interface motion is observable out to a distance of
R ~ 3 on the interface (mainly as an indirect consequence of the change in shape
closer to the centerline, though). As the sphere continues to move, the attractive
forces grow rapidly and the interface dips down at the centerline to contact the
sphere. Breakthrough in this case occurs shortly after the sphere is in the position
of the last interface shape, ! = —0.375. Breakthrough is defined here as the point in
the calculation which gives a positive sphere-interface separation but for which the
next time step results in the interface crossing the surface of the sphere. In fact,
for any choice of C!, there will be a point in the caculation where London-van der
Waals forces will be of equal magnitude to capillary forces, and then grow larger as
the fluid film thins. The capillary forces remain O(Ca) throughout the calculation

whereas the dispersion force is of O(Cl1/e),e = 1 — I, as the sphere moves, €
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approaches 0 and thus these forces will always come to dominate the system. For
these preliminary calculations, it was thought best to choose a value for C! which
would lead to effects distinct from the Cl = oo calculations easily resolved by our
numerical method, even though the set of parameters chosen might not represent a

typical physical system.

Of course, the numerically calculated breakthrough point must not depend on
the numerical parameters of the calculation. Given our definition of breakthrough,
the parameter likely to have the most impact on the calculated breakthrough point
is the time step for values of the time step, At, typically used in the calculations. For
the (10,1,1,1) calculation discussed later in this section, breakthough was predicted
to occur at [ = 0.525 with At = 0.05. As a test case the calculation was repeated
for At an order of magnitude smaller than the usual value, At = 0.005, and again
breakthrough took place at | = 0.525. The A = 10 calculation was chosen for this
trial because it produced the most rapid collapse of the fluid film. Thus, the time
scale associated with the growth of disjoining pressure effects, a/(dl./dt), will be
shortest for this calculation, and in the region near breakthrough where dispersion

forces dominate, this situation will require the smallest At.

In Chapter II, it was explained that calculations for Cl = co with a constant
sphere velocity will always exhibit tails behind the sphere provided the calculation
continues for long enough time. The combination of purely hydrodynamic forces
plus constant interfacial tension in these cases cannot result in breakthrough as
there is no mechanism to overcome the force in the lubrication layer between the
sphere and interface which becomes infinitely large as the film thickness goes to
0. The action of dispersion forces present in the Cl # oo case provides such a
mechanism to overcome the lubrication forces: first through the variation in II(/.)
along the interface which causes a pressure driven outflow of fluid from the film; and

second, through the London-van der Waals attraction of the sphere to the interface
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reduces the total force on the sphere as it drives fluid from the gap. Fig. 3 shows the
hydrodynamic drag and total force on the sphere for the (1,1,1,1) calculation, and
the drag on the sphere for the (1,1,1,0) calculation for reference. This figure shows
that the drag on the sphere grows rapidly as the separation between the sphere and
interface decreases. This drag force on the sphere, however, is more than offset by
the London-van der Waals attraction between the body and the interface. Shortly
before breakthrough, the total force even becomes negative indicating London-van
der Waals forces more than overcome the hydrodynamic drag. To maintain constant

velocity, a force must be applied opposite to the direction of sphere motion.

Figs. 4 and 5 show the same type of behavior for the A = 10 calculation. Again,
breakthrough occurs via a film drainage mechanism before tails can be formed
behind the sphere. The larger fluid I viscosity in this calculation slows the motion
of the interface away from the approaching sphere. This results in the more rapid
growth of the disjoining pressure, and sudden collapse of the fluid film. At the
sphere position [ = 1.5, there is only a slight difference in the force on the sphere
with or without dispersion forces. Even as close to the interface as [ = 1.0, the
force in the Cl = 1 calculation is only ~ 20% lower than for the calculation where
disjoining pressure was not included; in addition, the interface shapes for the two
calculations are virtually identical. As the sphere continues to move toward the
interface, however, London-van der Waals forces rapidly dominate the flow, lowering

the drag on the sphere and accelerating the rate of film drainage until breakthrough

occurs at | = 0.525.

The final constant velocity calculation was for an inviscid upper fluid. This
case A = 0, produced the widest gap between the sphere and interface for each
sphere position in the Cl = oo calculation as shown in Fig. 6 of Chapter II. Once
established, this film was sho;avn by calculation to be stable and to thin only very

slowly. The calculations performed here for Cl = 1, A =0, Ca =1, Cg = 1
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and illustrated in Fig. 6 show that even this relatively thick film could not reduce
the London-van der Waals attraction to the point where film thinning was retarded
enough to allow tails to form. Once the film in front of the sphere begins to collapse,

this case closely resembles the previous two constant velocity calculations.

The results for the set of calculations performed for decreasing A leads us to
hypothesize about London-van der Waals effects for more realistic values of Cl, i.e.,
Cl = 10%2-108. For cases with Cl in this range, the contribution to the normal stress
jump from the disjoining pressure will be very small, and the solution will resemble
the Cl = oo results until the sphere-interface separation reaces O(r~!). From that
point in the calculation, the London-van der Waals force will grow rapidly, and the
point on the interface nearest the sphere will quickly make contact for breakthrough.
In most calculations, this point on the interface will be at the centerline, but for
some sets of the dimensionless parameters, e.g., A = 0.022, Ca = 0.465, Cg = 0.089,
the closest point moves from the centerline to a dimple away from R = 0. In such
cases, if teh magnitude of C! is large enough that London-van der Waals froces
do not become relevant until after the dimple has formed, breakthrough will occur
around a ring away from the centerline. In some cases, C! may be so large that the
disjoining pressure is not significant until the film drainage process is well under
way and a thin film has formed. Then random disturbances in the film wil cause a
point on the interface to fall close enough that London-van der Waals forces become
significant for that point only and breakthrough occurs through what appears to
be a growing instability

Calculations were also performed for the same sets of parameters for the con-
stant force type problem. In Chapter II, we were unable to calculate near the point
of breakthrough owing to dificulties with convergence of the numerical scheme par-
ticularly with the time stepping procedure, for small boundary separations. This

problem is removed for the Cl = 1 calculations as the dominant term is now the
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attractive dispersion force rather than the hydrodynamic drag in the thin film. The
interface shape results displayed in Figs. 8, 9, and 10 for the three constant force
calculations Ca =1, Cg =1, Cl =1; A =0, 1, 10 respectively show the same
qualitative behavior as the constant velocity results; early deformation of the inter-
face is followed by rapid collapse of the fluid film under the force of the disjoining
pressure. As was the case for the constant velocity calculations, the viscosity ratio
does influence the position of the sphere at breakthrough, shortening the distance
from [ = —0.7129 for A = 0 to | = —0.5886 for A = 1 to the position farthest out in
fluid II, /| = 0.5807 for A = 10. Although the sphere breaks through further out in
fluid II for larger values of A, the time required for breakthrough actually increases
as ) is increased in the calculations. This is explained through reference to the data
shown in Figs. 11, 12, and 13. The sphere velocity decreases with increasing viscos-
ity ratio and the time added to acheive breakthrough due to the increased slowing of
the sphere for higher A is not offset by the more rapid growth of the London-van der
Waals dispersion force resulting from smaller sphere-interface separations in these
systems. Finally, the total force on the sphere is shown in Fig. 14. This force is
equal to the constant body force due to the bouyancy of the sphere, equal to 1, and
the growing London-van der Waals dispersion force. The force remains near unity

in all cases until the sphere is near the interface after which the force grows rapidly.

IV. Conclusions

The results of this chapter demonstrate that when dispersion forces are equal in
magnitude to viscous, capillary and gravitational forces, no tails are formed behind
the sphere; breakthrough always occurs at the front of the sphere. However, unlike
film drainage results from Chapter II and the theories described in Chapter I, the

breakthrough process for the Cl = O(1) systems is a relatively rapid one, with
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London-van der Waals dispersion forces causing a pressure driven outflow of fluid
from the film and an attraction of the interface to the sphere both accelerating the
process. For cases v > 1, the London-van der Waals effects will be delayed until the
sphere-interface separation is O(Cl™1), after this point, the growth of the disjoining
pressure will lead to rapid breakthrough. The constant force calculations do not
produce the same deceleration of the sphere which leads to large effective values
for Ca and Cg in the Cl = oo calculations of Chapter II. In the results from the
calculations with C! = 1, the sphere does not slow down to a large extent, and as

it approaches the interface, rapidly speeds up to breakthrough.
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Interface shape as a function of sphere position (drawn in a reference frame
in which the sphere is fixed) for A =1, Ca =1, Cg =1, Cl = co. Sphere

initially at g = 3. Constant velocity case.

Interface shape as a function of sphere positionfor A =1, Ca=1, Cg = 1;

shapes for C! = 1; — — = Cl = oo Sphere initially at [ = 3. Constant

velocity case.

Drag ratio as a function of sphere position for A =1, Ca =1, Cg = 1;
——— hydrodynamic stress for Cl = 1; - — — hydrodynamic stress and total

force for Cl = co; - - - total force on sphere for Cl = 1.

Interface shape as a function of sphere position for A =10, Ca=1, Cg =
L

shapes for Cl = 1; - — = Cl = oo Sphere initially at lg = 3.

Constant velocity case.

Drag ratio as a function of sphere position for A = 10, Ca =1, Cg = 1;
—— hydrodynamic stress for Cl = 1; — -~ — hydrodynamic stress and total

force for Cl = oo; - - - total force on sphere for Cl = 1.

Interface shape as a function of sphere positionfor A =0, Ca =1, Cg = 1;

shapes for Cl = 1; - — — Cl = oo Sphere initially at [ = 3. Constant

velocity case.

Drag ratio as a function of sphere position for A =0, Ca =1, Cg = 1;
—— hydrodynamic stress for Cl = 1; - — — hydrodynamic stress and total

force for Cl = oo; - - - total force on sphere for Cl = 1.

Interface shape as a function of sphere positionfor A =0, Ca=1, Cg =1,

Cl = 1. Sphere initially at lo = 3. Constant force problem.



Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:
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Interface shape as a function of sphere positionfor A =1, Ca=1, Cg =1,

Cl = 1. Sphere initially at lo = 3. Constant force problem.

Interface shape as a function of sphere position for A = 10, Ca =1, Cg =

1, Cl = 1. Sphere initially at l; = 3. Constant force problem.

Sphere velocity as a function of sphere positionfor A =0, Ca =1, Cg = 1;

—Cl=1;---Cl = co.

Sphere velocity as a function of sphere positionfor A =1, Ca=1, Cg = 1;

—Cl=1;---Cl =oc0.

Sphere velocity as a function of sphere position for A = 10, Ca=1, Cg =

1, —Cl=1;---Cl = co.

Total force on sphere as a function of sphere position for A =0, 1, and 10

Ca=1, Cg=1, Cl=1. Constant force problem.
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