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ABSTRACT

This thesis is a contribution to the theory of measurable actions of discrete groups
on standard probability spaces. The focus is on nonamenable acting groups. It is
organized into two parts. The first part deals with a notion called weak equivalence,
which describes a sense in which such actions can approximate each other. The
second part deals with the concept of entropy for measure preserving actions of

sofic groups.
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Chapter 0

INTRODUCTION

We introduce the various topics in the thesis in the order they appear.

0.1 Part I: Weak containment of measure preserving group actions

Fix a standard probability space (X, u). We will denote by Aut(X, u) the group of
all measure preserving transformations of (X, u). In [45], P.R. Halmos defined two
topologies on this group, called the weak topology and the uniform topology. The
uniform topology strictly refines the weak topology. With these topologies the space
Aut(X, u) provides a framework to develop a global theory of Z-systems, allowing
one to formulate questions about approximation, genericity, and classification. Sim-
ilarly, one can consider the space A(G, X, u) of measure preserving actions of an
arbitrary countable discrete group G. This space carries two topologies correspond-
ing to the two topologies on Aut(X, i), and thus opens the door to analyzing global
aspects of G-systems. It turns out that there is a rich interplay between properties
of G and the structure of A(G, X, u). This is the subject of the book [53].

An important tool in analyzing Z-systems is the Rokhlin Lemma, which asserts
that for any Z-system (X, u, T') and any € > O there exists n € N and a measurable
set A C X such that the shifted sets A, TA, T?A,...,T"A are pairwise disjoint and
U(AUTAU---UT"A) > 1—e€. More abstractly, this asserts that any measure preserv-
ing transformation can be approximated by periodic transformations arbitrary well
in the uniform topology on Aut(X, u). Since it is easy to see that any two periodic
transformations with the same period are conjugate, it follows that the conjugacy
class of any aperiodic transformation is dense in the set of aperiodic transformations

with respect to the uniform topology.

For any G, the group Aut(X, u) acts on A(G, X, i) by conjugation: for 7 € Aut(X, u)
let (T - a)(g) = Ta(g)T~', where a(g) is the transformation corresponding to g € G
under the action a € A(G, X, u). We refer to the orbits of this action as conjugacy
classes. Analogs of the Rokhlin Lemma were developed for actions of amenable
groups by Ornstein and Weiss in [67] and in [36] M. Foreman and Weiss used them

to show that when G is amenable the conjugacy class of every free action is dense in
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the set of free actions with respect to the uniform topology on A(G, X, u). Moreover,

by the results of [55] this condition characterizes amenability.

In [53] Kechris defined a notion of ‘weak containment’ for measure preserving
G-systems: an action a is said to be weakly contained in an action b if a lies in
the weak closure of the conjugacy class of b. We denote thisbya < b. Ifa <b
and b < a we say that a is weakly equivalent to b. Then the Rokhlin Lemma
can be interpreted as saying that all free actions of an amenable group are weakly

equivalent.

Chapter 1: Invariant random subgroups and action versus representation
maximality

Associated to a measure-preserving action a € A(G, X, i), one has the Koopman
representation k? of G on L?(X, u). It is more natural to consider the restriction
kg of this representation to the orthogonal complement of the constant functions.
There is a notion of weak containment for unitary representations analagous to
weak containment of actions (see Appendix F of [8] for the definition). It is obvious
that weak containment of actions implies weak containment of the corresponding
Koopman representations, and it is not too hard to construct examples where the
converse fails. However, these easy counterexamples come from non-ergodic actions
and it remained an open problem to find ergodic examples. In this chapter, we prove
the following theorem, showing in a strong way that weak containment of free
ergodic actions is different from weak containment of the corresponding Koopman

representations in the case of F, the free group on infinitely many generators.

Theorem 0.1.1 (Burton-Kechris, [24]). There exists a free ergodic action a of
F. which is not maximal in the order of weak containment of actions such that
the corresponding Koopman representation «{ is maximal in the order of weak

containment of representations.

The proof of Theorem 0.1.1 is probabilistic, relying on the construction of a partic-
ular invariant random subgroup of F,. If G is a discrete group, an invariant random
subgroup (IRS) of G is a conjugation-invariant probability measure on the space of
subgroups of G. The notion of an IRS was introduced by Abért, Y. Glasner and
B. Virdg in [4] as a stochastic generalization of normal subgroups. The IRS we
build to prove Theorem 0.1.1 is supported on the subgroups H of G such that the

G/H

corresponding generalized Bernoulli shift action of G on [0, 1] is maximal in the



order of weak containment (for both actions and representations).

This chapter is joint work with with Alexander Kechris.

Chapter 2: Topology and convexity in the space of actions modulo weak equiv-
alence

In this chapter, we analyse the structure of the quotient of the space of actions by
the relation of weak equivalence. In [3] M. Abért and G. Elek introduced a compact
Polish topology on the set of weak equivalence classes of G-systems. We will
denote this space by A.(G, X, u). Freeness is an invariant of weak equivalence,
and we denote the subspace of free weak equivalences classes by FR_(G, X, ).
Thus FR.(G, X, u) represents the extent to which the Rokhlin Lemma fails for
G, and studying its structure provides an approach to understanding measure pre-
serving actions of nonamenable groups. In [74], R.D. Tucker-Drob introduced a
slightly modified notion called ‘stable weak containment” which avoids certain mi-
nor technical pathologies of weak containment. We denote the space of stable weak
equivalence classes by A* (G, X, ) and the subspace of free stable weak equivalence
classes by FR® (G, X, ).

A_(T, X, u) carries a natural operation of convex combination. We introduce a
variant of an abstract construction of Fritz which encapsulates the convex combi-
nation operation on A (T, X, u). This formalism allows us to define the geometric
notion of an extreme point. We also discuss a topology on A (T, X, u) due to Abert
and Elek in which it is Polish and compact, and show that this topology is equivalent
others defined in the literature. We show that the convex structure of A (T, X, u) is
compatible with the topology, and as a consequence deduce that A (T, X, u) is path
connected. Using ideas of Tucker-Drob we are able to give a complete description
of the topological and convex structure of A_(T, X, ¢) for amenable I' by identifying
it with the simplex of invariant random subgroups. In particular we conclude that
A_(T, X, u) can be represented as a compact convex subset of a Banach space if and
only if I is amenable. In the case of general I' we prove a Krein-Milman type the-
orem asserting that finite convex combinations of the extreme points of A (T, X, u)
are dense in this space. We also consider the space A. (T, X, 1) of stable weak
equivalence classes and show that it can always be represented as a compact convex
subset of a Banach space. In the case of a free group Fy, we show that if one

restricts to the compact convex set FR. (Fy, X, 1) € A. (Fy, X, u) consisting of the
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stable weak equivalence classes of free actions, then the extreme points are dense in
FR. (Fn, X, p).

Chapter 3: A topological semigroup structure on the space of actions modulo
weak equivalence.

In this chapter, we introduce a topology on the space of actions modulo weak
equivalence finer than the one previously studied in the literature. We show that the
product of actions is a continuous operation with respect to this topology, so that

the space of actions modulo weak equivalence becomes a topological semigroup.

Chapter 4: Weak equivalence of stationary actions and the entropy realization
problem

In this chapter, we introduce the notion of weak containment for stationary actions
of a countable group and define a natural topology on the space of weak equivalence
classes. We prove that Furstenberg entropy is an invariant of weak equivalence, and
moreover that it descends to a continuous function on the space of weak equivalence

classes.

This chapter is joint work with Martino Lupini and Omer Tamuz.

0.2 Part II: sofic entropy

In this part, we study entropy theory for actions of nonamenable groups. Given
a standard probability space (K, k), the Bernoulli shift of G over the base space
(K, k) is the action of G on (K¢, k%) given by shifting indices. If K is countable
we may refer to it as the ‘alphabet’. One of the first major problems in ergodic
theory was to determine whether the Bernoulli shift of Z over a two-point space
with uniform measure is isomorphic to the Bernoulli shift of Z over a three-point
space with uniform measure. This problem was answered in the negative by A.N.
Kolmogorov in [64] through the introduction of an isomorphism invariant for Z-
systems with a finite generating partition. Known as entropy, the invariant was
extended to arbitrary Z-systems by Y.G. Sinai in [73]. The entropy of the shift of
Z over two points is log 2, while the entropy of the shift of Z over three points is
log 3. As such these systems are not isomorphic. In the subsequent decades the
entropy theory of Z-systems developed into a vast panoply of mathematics, with
the outstanding achievement being D.S. Ornstein’s proof in [66] that two Bernoulli
shifts of Z are isomorphic if and only if their base spaces have the same Shannon
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entropy. For an account of the entropy theory of Z-systems, see [33] or Part 2 of [42].

The core of entropy theory was extended from Z-systems to actions of amenable
groups by Ornstein and B. Weiss in [67]. However, their approach is based on
taking limits over Fglner sequences, and so until recently it was not at all clear how
to define entropy for more actions of general groups. In his groundbreaking papers
[14] and [22], L. Bowen introduced a notion of entropy for G-systems when G is
a free group, and then a family of entropy notions for G-systems when G is a sofic
group and the G-system admits a finite generating partition. He used these invariants
to prove that Bernoulli shifts of sofic groups over finite alphabets are classified by
the Shannon entropy of their base. The class of sofic groups includes all amenable
groups and all residually finite groups. It is a major open problem to determine
whether every group is sofic. Informally, a group G is sofic if it admits sequence
of approximate actions on finite sets which are, asymptotically, good replicas of the
translation action of G on itself. Such a sequence is called a ‘sofic approximation’.
A precise statement appears as Definition 1 in [14]. The book [26] and the survey

[68] provide more abstract perspectives.

Bowen’s sofic entropy is constructed relative to a choice of a sofic approxima-
tion and while it is known that the entropy of a system can depend on this choice,
the extent and nature of this dependence is poorly understood. However, in [17]
Bowen showed that when G is amenable, sofic entropy relative to any approximation
always agrees with classical Komogorov-Sinai entropy. Sofic entropy was defined
for arbitrary G-systems by D. Kerr in [58]. In [61] Kerr and H. Li defined topo-
logical entropy for actions of sofic groups by homeomorphisms of compact metric
spaces and proved a variational principle relating it to measure-theoretic entropy.
The theory of sofic entropy has proved very fruitful, with papers on the subject
including [6], [7], [15], [16], [17], [18], [20], [27], [39], [48], [47], [49], [50], [51],
[59], [60], [62], [63] and [78]. The article [77] provides a survey of the area.

Chapter 5: Naive entropy

In this chapter, we study an invariant of dynamical systems called naive entropy,
which is defined for both measurable and topological actions of any countable group.
We focus on nonamenable groups, in which case the invariant is two-valued, with
every system having naive entropy either zero or infinity. Bowen has conjectured

that when the acting group is sofic, zero naive entropy implies sofic entropy at most
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zero for both types of systems. We prove the topological version of this conjecture
by showing that for every action of a sofic group by homeomorphisms of a compact
metric space, zero naive entropy implies sofic entropy at most zero. This result and
the simple definition of naive entropy allow us to show that the generic action of
a free group on the Cantor set has sofic entropy at most zero. We observe that a
distal I'-system has zero naive entropy in both senses, if I' has an element of infinite
order. We also show that the naive entropy of a topological system is greater than or
equal to the naive measure entropy of the same system with respect to any invariant

measure.

Chapter 6: Uniform mixing and completely positive sofic entropy

Let G be a countable discrete sofic group. In this chapter, we define a concept of
uniform mixing for measure-preserving G-actions and show that it implies com-
pletely positive sofic entropy. When G contains an element of infinite order, we use
this to produce an uncountable family of pairwise nonisomorphic G-actions with
completely positive sofic entropy. None of our examples is a factor of a Bernoulli
shift.

This chapter is joint work with Tim Austin.



Part I

Weak equivalence of measurable

group actions



Chapter 1

INVARIANT RANDOM SUBGROUPS AND ACTION VERSUS
REPRESENTATION MAXIMALITY

Peter Burton and Alexander S. Kechris !

1.1 Introduction

Let G be a countably infinite group and (X, u) a standard non-atomic probabil-
ity space. We denote by A(G, X, u) the space of measure preserving actions
of G on (X, u) with the weak topology. If a,b € A(G, X, i), we say that a is
weakly contained in b, in symbols a < b, if a is in the closure of the set of iso-
morphic copies of b (i.e., it is in the closure of the orbit of b under the action of the
automorphism group of (X, u) on A(G, X, u); see [53]). We say that a € A(G, X, u)
is action-maximal if for all b € A(G, X, i) we have b < a. Such a exist by a result
of Glasner-Thouvenot-Weiss, Hjorth; see [53, Theorem 10.7]).

Now let H be a separable, infinite-dimensional Hilbert space and denote by Rep(G, H)
the space of unitary representations of G on H with the weak topology (see [53,
Appendix H]). For m, p € Rep(G, H) we denote by 7 < p the usual relation of
weak containment of representations (see [8], [53, Appendix H]). We say that
7 € Rep(G, H) is representation-maximal if for all p € Rep(G, H) we have p < .

It is easy to check that such r exist.

For any action a € A(G, X, u), let ¥ be the associated representation on L*(X, ),
called the Koopman representation, and by «{ its restriction to the orthogonal of

the constant functions (see [53, page 66]). Then we have

a<b = « =< Kg
but the converse fails; see [53, pages 66 and 68] and also [28, page 155] for examples.
However in all these examples the actions a, b were not both ergodic and this led to

the following question.

IResearch partially supported by NSF Grant DMS-1464475



Problem 1.1.1. Ifa,b € A(G, X, u) are free, ergodic, does ki < Kg implya <b?

We provide a negative answer below. The proof is based on a result about invariant
random subgroups of G = F,, the free group on a countably infinite set of generators,

which might be of independent interest.

If I is a countable set and « is an action of a countable group G on I, we will
write s, for the corresponding generalized shift action on 2/ with the usual product
measure, given by (so(g) - £)(i) = f(a(g)™ -i). If I = G/H, for some H < G,
we will write 7,y for the left-translation action of G on G/H and s,y instead of

Stg,y- 1f H is trivial, we write s¢ instead of sg/p.

We also let A, be the representation on £%(I) given by (14(g) - £)(i) = f(a(g)™!-i).
Note that A, -

we will denote by Ag/p.

is the usual quasi-regular representation of G on £>(G/H), which

We call a subgroup H < G with [G : H] = co action-maximal if s,y is action-
maximal and representation-maximal if s,y is representation-maximal. It was
shown in [54] that there are H which are action-maximal and also H which are

representation-maximal, for any non-abelian free group G.

An invariant random subgroup (IRS) of G is a probability Borel measure on
Sub(G), the compact space of subgroups of G, which is invariant under the (contin-
uous) action of G on Sub(G) by conjugation. Denote by Mg C Sub(G) the set of
all H < G that are both action-maximal and representation-maximal. We show the

following:

Theorem 1.1.1. Let G = F. Then there exists an IRS of G which is supported by
Mg.

Using this and the result of Dudko-Grigorchuk [34, Proposition 8], we then prove
the following:

Theorem 1.1.2. Let G = Fo,. Then there exists a free, ergodic a € A(G, X, u) such

that a is not action-maximal but k) is representation-maximal.

Let a be as in Theorem 1.1.2. Since G = F, does not have property (T), the free,
ergodic actions b € A(G, X, u) are dense in A(G, X, u) (see [53, Theorems 12.2 and
10.8]), so there is a free, ergodic b € A(G, X, i) such that b £ a. On the other hand
K(l)) < kg, and thus we have a negative answer to Problem 1.1.1.
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We employ below the following notation:

Ifeisanactionof Gon/and S C G, we write a(S) = {a(g) : g € S} € Sym(/). For
G = Fo, we let go, g1, . . . be free generators of G and let G, = {go, g1, ..., &n) < G.

If x is a real number, we write | x| for the largest integer less than or equal to x.
If x, y are real numbers and € > 0, we write x ~, y to mean |x — y| < €. Finally,
N={0,1,2,...}and N* = {1,2,3,...}

For the rest of the paper, G = F...

1.2 Proof of Theorem 1.1.1

The structure of the proof is as follows. In Subsection 1.2 we state three lemmas.
Temporarily assuming these lemmas, in Subsection 1.2 we give the main argument
establishing Theorem 1.1.1. Then in Subsection 1.2 we prove the lemmas from

Subsection 1.2.

Recall that for a € A(G, X, u), we have a < b if and only if a lies in the closure
of the isomorphic copies of b. In particular, b is action-maximal if and only if the
isomorphic copies of b are dense in A(G, X, 1). We will use these equivalences

without comment several times in the sequel.

Statements of lemmas
The first lemma provides a general method for constructing invariant random sub-

groups.

Lemma 1.2.1. Let @ be an action of G on a countably infinite set 1. Suppose there is
an increasing sequence of non-empty finite subsets ()", of I suchthat\J,_ F, = 1
and F, is a(Gy)-invariant. Let 6, be the probability measure on Sub(G) given by
the pushfoward of the uniform measure on F, under the map v + stab,(v) (where
stab, (v) is the stabilizer of v in «). Let 6 be any weak-star limit point of the 0,,.

Then 6 is an invariant random subgroup of G.

In order to state the second lemma, we need the following definition.

Definition 1.2.1. Let « be an action of G on a finite set V and let n be such that
all a(gy), k > n, act trivially. Let 3 be an action of G on a countably infinite set
I. Let Q C I be a finite set. We will say that « (relative to n) appears in 3 within
Q if there is a B(G,)-invariant set W C Q and a bijection ¢ : V. — W such that
o(a(g)-v)=pB(g)  ¢(v)forallv € Vand g € G,. We will say that « appears in 3

if it appears within some finite subset of I.
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Note that if @ appears in 3 as above, then s, ¢, is a factor of sgg, .

(o)

o With V.| — oo, and

Lemma 1.2.2. There exists a sequence of finite sets (V;,)
actions (an);'l"=1 of G, where «ay, acts transitively on V, so that all gi,k > n, act
trivially in ay,, such that if B is a transitive action of G on a countably infinite set
and ay (relative to n) appears in 3 for each n, then sg is action-maximal and Ag is

representation-maximal.

Fix a sequence of finite sets V, and actions «, of G on V,, n > 1, as in Lemma

1.2.2. Given f : N — N*, m > 0, write Cpu(f) = X' (IVy(| + 1). We will need a

function f with the following properties.
Lemma 1.2.3. There exists a function f : N — N* such that:
(i) for every n > 1 there exists positive integer K = K, such that for all j there is
Lwith | £ = | ] and f(1) = n,
(ii) for every € > 0, there exists t > 0, such that for all m > 0 we have

1
Cn(f)

Dl + - [{j {0 .om=1}: f()=n}|> 1-e.
n=1

Main argument

Let, forn > 1, @, and V,, be as in Lemma 1.2.2 and let f be as in Lemma 1.2.3.
Choose a pairwise disjoint sequence of finite sets Wy, n > 0, such that [W,,| = [V/(|.
Define an action of @ of G on U, , W, by identifying W, with V/(, and letting G
act on W, according to a(,). Let {u,}, , be an enumeration of a countably infinite
set disjoint from the W,. We now modify « to obtain a new action S of G on
I = (UpZgWa) U {u,}2,,. We will have that B(gy) agrees with a(gx) on W, when

ke{o,... f(n)

For each n, choose a point w, € W, and let B(g (s)+1) transpose w, with u,. Let
(In), ., be a strictly increasing sequence of indices such that max(n, f(0),. .., f(n +

1)) +1 < [,. Let B(g;,) transpose w, and wy1.

Fix n > 1. We now define how S(g,) acts on {uj};';o. For k € N, consider the
discrete interval
Dyx=1k-n....,(k+1)-n—1}.
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We would like to have S(g,) make a cycle out {u;, j € D, } for each k. Unfortu-
nately, we cannot achieve that exactly since there may by some j € D, for which
f(j)+1 = n, and in this case we will have already used g, to link W; with u;. Thus

for each k, we will let B(g,) make a cycle out of the set
{uj : j € Dyy and f(j)+ 1 # n},

making no modification to the action of 5(g,) on those u; for which f(j) + 1 = n.
We will call these cycles the top cycles of 3(g,). We have the following picture of

B, where n = f(3) + 1 = 6 and we consider the interval Dg .

86

e N

upe Ul e ur e Us e Ug e Uuse

gf(0)+II gf(1)+lI gf(2)+1I gaI gf(4)+II gf(5)+II
— — — — —
. 8lo . 8h . 8l 813 . 8ly .

Finally g is defined trivially for all other points. Clearly g acts transitively. Write
form > 0, (U’,?:_O1 Wk) U{ug,...,um—1} = T, and for m > 0, T,,,, = F,,. Thus F,,
is invariant under B(G,,). For each m, define a measure 6,, on Sub(G) be letting
6, be the pushforward of the uniform measure on F,, under the map v ~ stabg(v).
Let 6 be a weak-star limit point of 6,,. By Lemma 1.2.1, 6 is an invariant random
subgroup of G.

We claim that 6 is supported on Mg. Let (Q);-, be an increasing sequence of
finite subsets of G with ;. ,Qx = G. For H < G, let Qx/H = {gH : g € O}
Write, forn > 1,k € N,

Ak = {H < G : @, appears in 7g;y within Qk/H}.
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By definition, if H € (J;_, Ak, then a, appears in 75,5. Therefore by Lemma

ﬁ O An,k C Mg.
n=1 k=0

Thus it suffices to show that for each n > 1 we have sup, _., 8(A,x) = 1. Fix n and

1.2.2, we have

e > 0. Since the set A, is clopen for each k, it is enough to show the following:

Claim 1.2.1. There is some k € N, such that for allm > 0, we have 6,,(A,x) > 1—€.

Let 7 be large enough that Lemma 1.2.3(ii) holds for our chosen €. We now define
five finite subsets of G.

* Let S € G consist of {15} together with every word in the generators
80, - - ., & with length at most max<;< |V;|. If f(j) < t, this choice will allow

us to pass between points in W; using an element of S;.

* Let S, = {lg, 80, ..., 8+1}. If f(j) < ¢, this choice will allow us to pass to u;

from some point in W; using an element of S,.

* Let S5 consist of all words in the generators gg, g2k, g3k of length at most 3K,
where K = K, is the number provided by Lemma 1.2.3(i) for our fixed n. We

will explain this choice later.

o Let S4 = {gn+1}. If f(I) = n, we will use g,+ to pass from u; to some point
in W,.

* Let Ss consists of all words in the generators g, . . ., g, of length at most |V,,|.
If f(I) = n, this choice will allow us to pass between any two points of W;

using an element of Ss.
Let k be large enough that O, contains Ss-S4-S3-5,-S1. We assert that the following
implies Claim 1.2.1.

Claim 1.2.2. Ifv € W; U{u;} and f(j) < 1, then a, appears in TG staby(v) Within
Qi /stabg(v).
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Indeed, suppose Claim 1.2.2 holds and let m > 0. Note that C,,(f) defined as in

Lemma 1.2.3 is exactly |7,:|. Thus we have

Om(Any) = — |{v € Ty : stabg(v) € Aui )| (1.1)

> lTL [{v € Ty : v € W; U{u;} and £(j) < t}| (1.2)

E

:TLZ|V|+1).|{je{0,...,m!—1}1f(j):”}| (1.3)
n=1

>1-—¢ (1.4)
where

* (1.1) follows from the definition of 6,,,
* (1.2) follows from (1.1) by Claim 1.2.2,
* (1.3) follows from (1.2) since |W;| = [V(;)l,

* (1.4) follows from (1.3) by Lemma 1.2.1(ii).

Thus it remains to establish Claim 1.2.2.

Fix j with f(j) < t. By our choice of K, there is some [ such that | j/K| = |//K | and
f()=n. Fixv e W; U{u;}. Write H = stabg(v) and let P = {gH : B(g)-v € W;}.
Since B(G,) acts on W; according to ay, it follows that «;,, appears in 7,y within P.
Therefore it is enough to show that P C Qy/H, or equivalently W; C B(Qk) - v. The
idea is that we have chosen k large enough that we can reach any point in W; from

v using the $ action of a word from Q.

By our choice of Sy, if v € W; there is an element y € S; such that S(y) - v = w;
where w; is the point in W; connected to u;. The connection between w; and u; is
made by B(g(j)+1)- We have g¢jy+1 € Sz since f(j) < t. Thusu; = B(y) - v, where
v eSS

Note that our assumption on [ guarantees that / lies between the same pair of
multiples of K as j does. We would like to say that this allows us to pass from u;
to u; using B(gg)’ for some i € [-K, K]. However, there is the minor issue of the
points u; which are skipped the top cycles of B(gx). We can easily overcome this
obstacle by noting that for any d, at most one of SB(gx), B(g2k), and B(gsx) skips
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over u4, and therefore there is a word y’ in gk, g2k, g3k of length at most 3K such
that S(y’) - u; = u;. We have y’ € S3.

Since f(I) = n, we see that u; is connected to W; by B(g s(1y+1) = B(gn+1). Therefore

B(gn+1Y'y) - v € W,. Since W; C B(Ss) - B(gn+1Y"y) - v, we have that W; C B(Qx) - v
and we are done.

Proofs of lemmas
Proof of Lemma 1.2.1. Let hy,...,h, ky,...,ky,g € G and let € > 0. Let m be
large enough that hy, ..., hy, ki, ..., k;,, g are words in the generators {go, ..., gm}-
Write

C={H<G:hy...,hye Hand ky,...,k; ¢ H}.

Note that C is a clopen set and therefore there is some n > m such that

0(C) ~e 0,(C) and 6(gCg™") ~c 6,(gCg ™). (1.5)

Noting that F, is a({g, hy, ..., h;, ki, . . ., k;/)) invariant we have

1
On(gCg™") = m . |{v eF,: a/(ghjg_l) -v=vforall je{l,...,[}
and a(gkjg_l) -v#vforall je{l,.. .,l’}}|
1
= m . |{v eF,: a/(hj)a/(g_l) v=a(g ) -viorallje{l,...,1}
n

and a(k;)a(g™") v £ a(g™!) - viorall j € {1,...,I'}}|

:m-|{wan:a(hj)~w:wforauje{1,...,1}
n

and a(kj)-w # wforall j € {1,.. .,l’}}|
= 0,(0).
Then from (1.5) we have 8(C) ~». 6(gCg™1). O

Proof of Lemma 1.2.2. 1t is clearly enough to find such V,, @, such that for any  as
in that lemma, sg is action-maximal and another sequence, also denoted below by
Vi @y, such that for any S as in that lemma, Ag is representation-maximal. Then by

interlacing these two sequences, we have a sequence that achieves both goals.

Case 1. We first find the sequence for which the appropriate sg is action-maximal.

By [54, Theorem 5.1], there is a countably infinite set J and a transitive action « of
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G on J such that s, is action-maximal. Identify (X, u) with 2’ carrying the usual

product measure. For a finite set 7 C J and p € 27, write
N, = {x €2/ x(v) = p(v) forall v € T}.

Forn > 1, € > 0 and a finite set T C J, let U, be the set of all ¢ € A(G, X, u)
such that

N(Sa(gk) "Ny N No-) e /J(C(gk) "Ny N N(r),VO',P €2l ke {0,...,n—1}.

Observe that the collection of all U, ¢ r is a neighborhood basis at s, € A(G, X, u).
Let (T,Z);":1 be an increasing sequence of finite subsets of J with ;> T, = J. Write
U,=U,

eachn > landeachk € {0,...,n—1}, wecanextend a(gy) | (T,, U U’;;é a(g)) - Tn)

to a permutation of J which is trivial on the complement of a finite set containing

2l 7, - Then the sets U, form a neighborhood basis at s,. Note that for

T,V U;.’;(l) a(g;) - T,. Hence for each n > 1, we can find an action @, of G on J with

the following properties:

M) a,(gr)-v=algy) v,ifke{0,...,n—1}andv € T,.
(ID) @,(gx) acts trivially if k > n.

(IIT) There is a @,-invariant finite set V,, C J such that @,, ' (J \ V,,) is trivial and

@, 'V, is transitive.

By (I) we see that s (gk) - N, = sa(gk) - N, forall p € 27 and k € {0,...,n - 1}.
Therefore s; € U,. Write a, = @, [ V,. By (I) all gx, k > n, act trivially in .
Observe that (III) implies that s; ='s,, X ¢, where ¢ is the trivial action of G on a
nonatomic standard probability space. Thus for each n > 1 there is an isomorphic

copy of sy, X ¢ in U,.

Suppose S is a transitive action of G on a countably infinite set such that a,, appears
in B for each n > 1. Note that sz is ergodic (see, e.g., [55, 2.1]). Then s, ¢, is a
factor of sgg, and hence s, g, X (¢t I G,) is a factor of sg;g, X (¢ [ G,). Using
the fact that the definition of U, depends only on G,, this implies that for each
n > 1 there is an isomorphic copy of sg X ¢ in U,,. Therefore there is a sequence
of isomorphic copies of sg x ¢ in A(G, X, u) which converges to s,. Since the
isomorphic copies of s, are dense in A(G, X, ), this implies that the isomorphic

copies of sg X ¢ are dense in A(G, X, p).
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By [74, Theorem 3.11], we see that any ergodic action d of G is weakly contained in
almost every ergodic component of sg X ¢. In particular, any ergodic action d of G
is weakly contained in sg and therefore the isomorphic copies of sg are dense in the
ergodic actions. Since G does not have Property (T), [53, Theorem 12.2] implies
that the isomorphic copies of sg are dense in A(G, X, u).

Case 2: We next find a sequence V,,, a,,, for which the appropriate Ag is representation
maximal. We start with a transitive action a of G on a countably infinite set J such
that A, is representation-maximal (see [54, Theorem 5.5]. Then proceed as in the
proof of Case 1 to find Vj,, @, such that for some isomorphic copy o, of 44, ® colg,
(0,,) converges to A,, where 1 is the trivial one-dimensional representation of G
and ool the direct sum of countably many copies of 1, i.e., the trivial represen-
tation on a separable, infinite-dimensional Hilbert space. Let now 8 be as above.
Then the isomorphic copies of Ag & colg converge to A,. By a result of Hjorth,
see [53, H.7], the irreducible representations are dense in Rep(G, H). Every irre-
ducible representation 7 is < A, and thus <z 1, <z Ag ® olg, where <7 is weak
containment in the sense of Zimmer. Recall that o <z p iff o is in the closure
of the isomorphic copies of p. Also o <z p = o < p and for o irreducible,
o <z p < o =< p(seel8, page 397] and [53, page 209]). Then by [1, Proposi-
tion 3.5] 7 is a subrepresentation of an ultrapower of Ag @ ool¢, which is of course
of the form /l; @®n”, where A" is an ultrapower of Ag and n* a trivial representation of
G on a Hilbert space H*. Let H; be the space on which this subrepresentation acts,
which is a G-invariant subspace of the direct sum of the space of /12 and H*. Then if
v € H* and v, is its projection on Hy, v; is G-invariant, so as 7 is irreducible, v; = 0,
i.e., H* L Hy. Thus H is contained in the space of A}, i.e., 7 is a subrepresentation
of /l;, so m <z Ag. Thus the isomorphic copies of Az are dense in Rep(G, H), i.e.,

Ag is representation-maximal. ]

Proof of Lemma 1.2.3. Note that letting for n > 1, A, = f~!({n}) the statement
of the lemma is equivalent to the existence of a partition N = | |, A, with the

following properties:

(i) For each n > 1 there is positive integer K,, such that A, intersects each interval
I' = [iK,, (i + DK,),i =0,1,2,. ...

(ii) Let g : N* — N be defined by g(n) = |V,| + 1, where V,, is as in Lemma 1.2.2.
Then we have that for each € > 0, there is # > 0, such that for all m > 0:
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SeilAn Ol gn)
(1A, vl g )~ ©

where we identify here m with {0, 1,...,m — 1}.

To construct A, K, first chose a, < a3 < ... to be large enough so that q, is
divisible by 3 and

= 1 1 pX
Z <—and@>ﬂ.
day---ap 3 3 gn-1)

n=

We let A| = {2i:i € N} and also put Ky = 2, K, = 2ay -~ a, for n > 2. We will
then inductively define pairwise disjoint Aj, A3, ..., which are also disjoint from
A’, to satisfy (ii) above and so that for n > 2, A, has exactly one member in each

interval I"" as above, and finally we put A; = N'\ 2, A,.

So assume that A’l, Ay, ..., A,—1 have been constructed (this is just A’, if n = 2). To
find A, so that (i) above is satisfied, it is enough to have for each i,

30 4
K, > §|(A1UA2U---A,1_1)OIZ-"|.
But
|(A’1UAZU---An_l)ﬂIl-"|:az---an—f—ag---an+---+an_1an+an,

00 1

so this follows from }.~ , oan
A, in [0,K,) to be > Ko,

< % Also for i = 0, we can choose the element of

We finally check that (ii) is satisfied. Fix € > Oand chooser > 1sothat Y2, 27" < €.

n>t

Consider now any m > O and n > .

Case 1. m > K,. Then for some s > 1, we have that m € I’ | and |A, N m| < s,

while
D lAnniml-g(n) 2 [Apr vml - g(n=1) 2 (s = Da, - g(n— 1)

SO
[ A ml - g(n) _ s - g(n) L5

SalAnniml-gn) = (s—1)-gn—1) a,

Case 2. m < K,,. Then either m < % and |[A,Nm|=0o0rm > % and [A,Nm| < 1,
in which case also

a
|A—1 Nm| > ?n
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So for any m < K,,,

[Anml-g(n) &) <o
ZnlAnm|-g(n) = (3)g(n—1) '

Thus for any n > t, we have

|An Nm| - g(n)

< 2™
2 lAn ml - g(n)

and so
Zusi(|An Ym| - g(n))

2n([An Nml - g(n))

1.3 Proof of Theorem 1.1.2
We note that if Ag/y is representation-maximal, then H is not amenable. This is

because 1g < Ag,y implies 7,y is amenable (see [55, Theorem 1.1]).

We will use the notion of a random Bernoulli shift over an invariant random sub-
group; we refer the reader to [74, Section 5.3] and [4, Proposition 45] for details.
Let 6 be the invariant random subgroup constructed in Theorem 1.1.1 and let sy be
the #-random Bernoulli shift. Note that for almost every ergodic component b of sy,
almost all stabilizers of b lie in M and hence the type of b is supported on M.
Fix such an action b. Let (Y, v) be the underlying space of b.

For y € Y write H, = staby(y). By [34, Proposition 8] we have Ag/py, < K(l)) for
v-almost every y € Y. Since the type of b is supported on Mg, for v-almost every y
we have that Ay, is representation-maximal and so K(l)’
Let a = b X sg. Then a is free and ergodic and « is representation-maximal.

is representation-maximal.

Suppose, toward a contradiction, that a were action-maximal.

Let S C G? be the collection of all pairs (g, ) such that (g, 1) is nonamenable.
Since Ag/n, is representation-maximal for v-almost every y € Y, and so Hy, is not
amenable, we see that S N Hy2 is nonempty for v-almost every y. Let ¢ : N — S be
an enumeration of S. For y € Y let ¢, = min{n : ¢(n) € Hyz,}. Then there is some
k € N such that v({y : ¢, = k}) > 0. Write A = {y : ¢, = k} and let N be the
subgroup of G generated by the coordinates of ¢(k). Note that for y € A, we have
N C Hy,andsob ' N is trivial on A. By [53, Page 74], since a is action-maximal
for G, we have that a | N is action-maximal for N. Observe that

alN=Mb N)Xx(sg N =N x(@sy) =] N)xsy.
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So writing ¢ = (b [ N) X sy, we have that ¢ is action-maximal for N.

By [74, Theorem 3.11], this implies that any ergodic action d of N is weakly
contained in almost every ergodic component of ¢. Note that if y € A, then
Ly} X Sy = sy is an ergodic component of ¢, where by ¢(,, we mean the trivial
action of N on the one-point space {y}. Therefore d < sy. Since N does not have
property (T), the ergodic actions of N are dense in A(N, X, u) (see [53, 12.2]), so
the isomorphic copies of sy are dense in A(N, X, u). But by [53, Proposition 13.2]

this contradicts the fact that N is nonamenable.

Remark 1.3.1. For G = F, let a be as in Theorem 1.1.2. Then for any irreducible

7 we have m < KS,

1 <z K& for all n. Thus there is a free ergodic action b such that k® <z kg but

so <z k. Thus, as the irreducible representations are dense,

b £ a, which is a somewhat stronger negative answer to Problem 1.1.1.

Remark 1.3.2. It is possible that one could use the techniques developed in this
paper to show that Theorem 1.1.2 also holds for the free groups with finitely many

generators n > 1 but we have not verified that.
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Chapter 2

TOPOLOGY AND CONVEXITY IN THE SPACE OF ACTIONS
MODULO WEAK EQUIVALENCE

Peter Burton!

2.1 Introduction

By a probability space we mean a standard Borel space Y with a Borel probability
measure v. If v is nonatomic, we say the pair (Y, v) is a standard probability space.
If v is nonatomic then ¥ must be uncountable and thus by Theorem 17.41 in [56]
every standard probability space is isomorphic to the unit interval with Lebesgue
measure. Let I' be a countable discrete group. By a measure-preserving action of
I" on (Y, v) we mean a Borel action a : I' X Y — Y which preserves the measure
v. We write ' ~“ (Y, v). In accordance with the standard conventions of ergodic
theory, we identify two actions which agree almost everywhere. Thus a measure-
preserving action of I" on (Y, v) is equivalently a homomorphism from T into the
group Aut(Y, v) of measure-preserving automorphisms of (Y, v), where again two

such automorphisms are identified if they agree almost everywhere.

We fix a standard probability space (X, u) throughout the remainder of the paper.
As in [53] we can define the Polish space A(T, X, i) of measure-preserving actions
of I'. Kechris defines the following relation of weak containment among measure-
preserving actions of I', by analogy with the standard notion of weak containment

for representations.

Definition 2.1.1. [53] If T ~% (X, u) and T ~% (Y,v) are measure-preserving
actions of I on probability spaces, we say a is weakly contained in b and write
a < b if for any finite sequence Ay, . . ., A, of measurable subsets of X, finite F C I"
and € > O there exist measurable subsets By, . . ., B, of Y such that for all y € F and

alli, j < nwe have

b
lu(y*Ai N Aj) = v(y"Bi N Bj)| < €.
IResearch partially supported by NSF grant DMS-0968710
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We say a is weakly equivalent to b and write a ~ bifa < band b < a.

We may assume in this definition that Ay, ..., A, form a partition of X. Note that
we do not require (X, u) and (Y, v) to be standard, that is to say we include the case
where they might be countable. The relation of weak containment is G, so the
quotient A (T, X, u) of A(T, X, u) by weak equivalence is well-behaved.

We also consider a generalization of weak containment, due to Tucker-Drob. For
<i<m

probability spaces (Y, v;),1 < i < m and positive real numbers «;, 1
with 3", @; = 1 we let | |12, a;¥; be the probability space formed by endowing
the disjoint union of the ¥; with the measure Y, ;v; given by (X7, @;v;) (A) =
2 aivi(ANY;). T ~% (Y;, v;) are measure-preserving actions, then 3™ | a;a; is

the action on |_|l."i | @;Y; given by letting I" act like a; on ¥,.

Definition 2.1.2. [74] If T ~% (X, u) and T ~Y (Y, v) are measure-preserving
actions, we say a is stably weakly contained in b if for all Ay, ..., Ay € MALG,,
all finite F C T and all € > 0 there exist ay, ...,y such that 3", ay = 1 and sets
Bi,..., By C |IY, &Y such that

m
H(Y'AiNAj) - Z ;v (72?;1 @bp.n Bj) < €.
i=1

We write a <5 b if a is stably weakly contained in b and a ~; b for a <; b and
b < a.

When we wish to distinguish between an action and its equivalence class, we write
[a] for the weak equivalence class of a and [a], for the stable weak equivalence class.
The quotient of A(T, X, i) by the relation of stable weak containment is denoted
A_ (I, X, u). The goal of this paper is to analyze the topological and geometric
structure of A_(I', X, u) and A_ (I, X, p) .

More specifically, unlike A(T’, X, u), the spaces A-(I', X, u) and A (I, X, u) carry a
well-defined operation of convex combination. This is inherited from the operation
of endowing the disjoint union of two probability spaces with a convex combination
of their respective measures. In Section 2 we introduce a variation of a construction
of Fritz [37] which abstracts the idea of convex combinations. Fritz’s objects are
referred to as ‘convex spaces’; we weaken the definition in order to encompass the

convex structure on A_(T, X, i), obtaining the notion of ‘weak convex space’. We
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show that this relates naturally to other ideas of convexity, define a notion of convex
function, and generalize the important geometric notions of ‘convex hull’, ‘extreme
point’, and ‘face’ from the classical situation of vector spaces to this abstract frame-
work. We also define ‘topological weak convex spaces’ as weak convex structures

which are appropriately compatible with an underlying topology.

In Section 3 we consider methods of topologizing A_(I', X, u). The first topol-
ogy defined on this space was in [1], and a second formulation was given in [74].
These are equivalent, Polish, compact and finer than the quotient of the weak topol-
ogy on A(T, X, u). We discuss a third topology, implicit in [1] and pointed out to us
by Kechris. This is shown to be equivalent to the previous two. We also consider a

natural topology on A (T, X, p).

In Section 4 we describe how to endow A_(T, X, u) with the structure of a weak con-
vex space and show that it is in fact a topological weak convex space. Furthermore,
we show that the metric giving A.(T, X, u) its Polish topology is compatible with
the convex structure in the sense that the distance function to any compact convex

set is a convex function.

In Section 5 we analyze the structure of A_(T, X, u) for amenable I'. The main
tool is the following idea. Let Sub(I") be the space of subgroups of I, regarded as
a subspace of {0, 1} with the product topology. Sub(T') is then a compact metric
space on which I" acts by conjugation.

Definition 2.1.3. An invariant random subgroup of U is a conjugation-invariant

Borel probability measure on Sub(I").

Invariant random subgroups have been studied in numerous recent papers, including
[4], [11], [13] and [35]. If ' ~* (X, u) is a measure-preserving action, then the
pushforward measure (stab, ). u is an invariant random subgroup of I called the type

of a. We extend ideas of Tucker-Drob from [74] to show the following.

Theorem 2.1.1. If I is amenable, then A_.(T', X, u) is isomorphic to IRS(I') as
a topological convex space. In particular, if T is amenable then A_(T, X, u) is

isomorphic to a compact convex subset of a Banach space.

In Section 6 we consider the structure of A_(I, X, i) for general I'. If T is non-

amenable, the existence of strongly ergodic actions of I' implies that the convex
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structure on this space has the pathology that the convex combination of a point x
with itself might be different from x. This is why we need to consider weak convex
spaces instead of just convex spaces. The main result of this section is the following

Krein-Milman type theorem.

Theorem 2.1.2. A (T, X, u) is equal to the closed convex hull of its extreme points.
In other words, finite convex combinations of the extreme points of A.(T', X, u) are
dense in A_(T, X, p).

Given this result, it seems interesting to describe the extreme points of A_(T, X, u).
In the amenable case, the identification with IRS(I") provides a complete such
description, since the extreme points of IRS(I") are known to be the ergodic measures
and consequently the extreme points of A_(I', X, i) for amenable I" are exactly those
actions with ergodic type. In the nonamenable case this description does not suffice.
It is clear that any strongly ergodic action is an extreme point. We are able to show

the following.

Theorem 2.1.3. Suppose [a] € A_(T, X, u) is an extreme point. Let a = /Z a,dn(z)
be the ergodic decomposition of a. Then there is a measure-preserving action b of

" such that for n-almost all z € Z we have [a,] = [b].

Let FR_(T, X, u) denote the subspace of A_(T, X, u) consisting of the weak equiva-

lence classes of free actions. We prove:

Theorem 2.1.4. Let Fy be a free group of finite or countably infinite rank. Then the

weak equivalence classes containing a free ergodic action are dense in FR .(Fy, X, p).

In Section 7 we use a characterization of convex subsets of Banach spaces from [25]

to show the following.

Theorem 2.1.5. For any I, the space A. (I, X, u) is isomorphic to a compact

convex subset of a Banach space.

We characterize the extreme points of A. (I, X, u) as precisely those stable weak
equivalence classes which contain an ergodic action. This result was obtained by
Tucker-Drob and Bowen independently of the author. Tucker-Drob and Bowen have
also shown that A (I', X, u) is a simplex, and the set FR. (I', X, u) of stable weak

equivalence classes of free actions is a subsimplex. Recall that a Poulsen simplex
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is a simplex such that the extreme points are dense. Thus from Theorem 2.1.4 we

have:

Corollary 2.1.1. Let Fy be a free group of finite or countably infinite rank. Then
FR_ (Fyn, X, ) is a Poulsen simplex.
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2.2 Weak convex spaces

We first describe the formalism realized by A (T, X, u).

Convex spaces and weak convex spaces.

Convex spaces were introduced in [37] and further developed in [25] as an abstract

setting to study the notion of convex combination.
Definition 2.2.1. [37] A convex space is a set X together with a family V of binary
operations cc; for each t € [0, 1] such that for all x,y,z € X and all s,t € [0, 1]

(1) ccolx, y) = x,

(2) cci(x, x) = x,

(3) ceilx, y) = cer-(y, x),

(4) cci(ces(x,y), 2) = ¢ (x, CCiy 6 z)).

We will usually write tx +« (1 — 1)y for cc,(x, y), omitting the subscript V when the
convex structure being considered is clear. Note that (4) allows us to unambiguously
define 37| A;x; for (x;)”.; € X and (4;)"_, € [0, 1] such that 3, 4; = 1. We will
need to weaken the definition of a convex space to cover the situation where a convex

combination of a point x with itself could be different from x.

Definition 2.2.2. An weak convex space is a set X with a family cc; of binary
operations for t € [0, 1], satisfying (1), (3), and (4) of Definition 2.2.1.
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Definition 2.2.3. A topological (weak) convex space is a topological space X
carrying a (weak) convex structure such that the ternary operation cc : [0, 1]xX? —

X given by cc(t, x,y) = cci(x, y) is continuous.

Extreme points and faces
We can define extreme points in a weak convex space in exactly the same way as in

a vector space.

Definition 2.2.4. If A is a convex set in a weak convex space, we say x € A is an
extreme pointif x = ty+(1—1t)zfor0 <t < 1 and some y, z € A implies y = 7 = X.
Write ex(A) for the set of extreme points of A. If A is a compact convex subset of
a topological weak convex space, we say a face of A is a nonempty closed subset

F C Asuchthatifx,y € A,0<t<landtx+ (1 —t)y€ Fthenx,y¢€F.

2.3 Topology on the space of weak equivalence classes
Let I' be a countable group and A_(T, X, i) be its space of actions modulo weak

equivalence. We consider a metric on A (T, X, i) which is implicit in [1].

Fix an enumeration (y;):2, of I'. If A = {Aj,..., A} is a partition of X into
k pieces, a € A(I,X,u) and n € N, let Mny}{(a) e [0, 1]™**k be the point
whose p, g,r coordinate is u(y,A; N Ay), where p < n and ¢,r < k. Let

Cui(a) = {M}f}c(a) : A is a partition of X into k pieces.} Then we can define a
pseudometric d on A(T, X, i) by the formula

- 1
d(@b)= ) 5pdi(Cui(@). Ci(b)).
nk=1

where dy is the Hausdorff distance in the hyperspace of compact subsets of
[0, 1]k Tt is easy to see that a ~ b if and only if d(a, b) = 0, so d descends to a
metric on A_(T, X, i), which we also denote by d. Let 7| be the topology induced
by d. We note that this definition extends to actions on countable spaces. We will

write A* (I") for the space of all actions of I' on probability spaces.
We now describe a different construction of the topology on A_(T, X, i) due to
Tucker-Drob [74] in order to show it agrees with the one we have just introduced.

(Tucker-Drob shows in [74] that his formulation agrees with the one from [1]).

Let S be a compact Polish space, and consider ST, which is also a compact Pol-
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ish space. T acts on S' by the shift action s given by (y*f)(6) = f(y~'6). Let

M(S") be the compact Polish space of shift-invariant probability measures on S*
and let Ks = K(M,(S")) be the hyperspace of compact subsets of M,(S") equipped
with the Hausdorff topology. Then Ky is again compact and Polish. Now con-
sider an S-valued random variable ¢ € L(X, u, S) on X, that is to say a measurable
map ¢ : X — S. For each measure-preserving action a € A(T, X, u) we get a map
d)?’a : X — ST by letting (I)?“(x)(y) = ¢((y~1)?x) and consequently a shift-invariant
measure ((D?a)* won S'. Then define a subset E(a, S) of M(S") by

E(a,S) = {(CD?C’)*,u ¢ : X — S is measurable}.

Let @g : AT, X, u) — K be given by Og(a) = E(a, S). When S = K is the Cantor
set, we omit the subscript S on the notations just introduced. By Proposition 3.5
in [74], we have a ~ b if and only if ®(a) = ®(b) so we can consider the initial
topology on A (I, X, i) induced by ®. Call this 7,. We now work towards showing
71 agrees with ;. There will be a series of preliminary steps. This entire argument

can be regarded as a ‘perturbed’ version of Proposition 3.5 in [74].

We first fix a compatible metric on M(K r). Let Ak be the collection of clopen
subsets of K" of the form ;! (Hye F Ay) where A, C K an element of some fixed
countable clopen basis for K, F C T is finite and 7 : K' — KT is the projection
onto the F-coordinates. Since the elements of Ag generate the Borel o-algebra of
K", for (Vu)oey S M(K") we have v, — v in My(K") if and only if v,(A) — v(A)

for every A € Ak. So, enumerating the elements of Ak as (Al.K )21 Ok given by

(o)

5k0p) = " 2 AK) = (D)
i=1

is a compatible metric on My (K").

Lemma 2.3.1. For any € > 0 there exists k € N such that every a and every
¢ € L(X, i, K) there is y € L(X, u, K) with 5g((®%%), p, (®¥4), 1) < € such that
the range of Y has size < k. Note that k depends only on €, not on a or ¢.

Proof. Fix €. Choose N large enough that }}° % < €. Foreachi < N, write

A = ! (HyeF,» Aiy) for AL, C K clopen and F; C T finite. We have for all
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a € A(l, X, ) and ¢,y € L(X, u, K),

|0(A) — DV(4)] = |0* - e

-1 -1
Tr, Tr,

[]4

YEF;
|u({x 1 @*(x)(y) € A, forall y € Fi})

- pu({x 1 @"(x)(y) € A} forall y € F})|
|u({x 2 ¢((y™)'x) € A} forall y € Fi})

= p({x 1y ((y™)"x) € A forall y € F})

Il (ﬂ 7“¢‘1(A§)) - (ﬂ Y (A))

YEF; YEF;

[ 4

YEF;

. 2.1

Now, fix ¢ € L(X, u, K). Let (B /)jle be the finite partition of K given by the atoms
of the Boolean algebra generated by (A’)i<n,yer;- Note that k depends only on €.
For each j < k, let y; be any point in B;. Define a map  : X — K by letting
Y(x) = y; for the unique j such that x € ¢_1(Bj). Then w_l(Bj) = gb_](Bj) for each
j»and hence ¢~'(A!) = y~!(A}) for each i < N and y € F;. Therefore the value of
the expression (1) is 0 and Sx (%), u, (D¥9),.u) < €. o

Lemma 2.3.2. If E(a,, L) — E(a,L) in K(My(L")) for every finite set L then
E(an, K) — E(a,K) in K(My(K")).

Proof. Fix € > 0 in order to show that eventually d (E (an, K), E(a, K )) < €, where
dy is the Hausdorff distance in K (M (K")) constructed from §x. For k € N and
be AT, X, u) let

Ei(b,K) = {(®%%),u: ¢ : X — K is measurable and the range of ¢ has size < k}.

By Lemma 2.3.1 we can choose k € N such that E(b, K) C Be(Ey(b, K)) for every
b e A(T, X, u) where B.(A) = {v € My(K") : 6x(v, p) < r for some p € A}. Notice

that Ex (b, K) = ULck, E(b, L). Fix aset L of size k and choose N large enough such
|L|=k

thatif n > N then dy;, (E (an, L), E(a, L)) < ; where dy, is the Hausdorff distance

in K(My(L")). Since the construction is independent of the set chosen to realize L,

we have in fact dx;, (E (au, L), E(a, L)) < § for every finite set L of size k. For a
fixed finite L C K let E; (b, K) = {(®*?).,u : ¢ : X — K measurable, ¢(X) C L}.
Then for any b, c € A(T, X, i) we have

dyc (EL(b, K). EL(c, K)) = dy, (E(b, D). E( L)) ,
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so that whenn > N,

dic (Exlan K), Ex(@ K)) = duc| | ) Etan D), | ) B D)

LCK LCK

|LI=k |L|=k
< Sup dq([, (E(an, L)’ E(a’ L)) < E
g *

Therefore whenn > N,

dyc (E(a,,, X). E(a. K)) < dy (E(a,,, X). Ex(ay, K)) + dy (Ek(a,,, X), Ex(a. K))

+dy (Ek(a, K),E(a, K))
3e

< —.
4

O

Lemma 2.3.3. Let L be a finite set of size k. Then for each finite set (Ap);i=1 of basic
clopen sets A, C L' and € > O there is § > 0 such that if d(a, b) < & then for all ¢ €
L(X, u, L) there exists ¢ € L(X, u, L) such that |(CI)aL’¢)*p(Ap) - (d)[z’w)*,u(ApN <e€
forall p < q.

Proof. Write Ap = (cF, ﬂ;l(]p(y)) for some F), C T finite, j : F, — k and fix
€ > 0. Choose a finite F' C I" with (Fp)2 C F for all p < g. We may assume the
identity e € F. Suppose d(a, b) < W;
fix$ : X — k and let B; = ¢~'(i). Givenpy : F — k, let By = Nyer ¥/ By(y)- We

can then find a partition {Dj},cx+ such that

we will specify a value for ¢ later. Now

\u(y*By, N By,) — u(y* Dy, N D)l < 6

for all 71,7, € k¥ and y € F. Define ¢ : X — k, by y(y) = [ if y € D, for
some 1 with n(e) = I. Furthermore, for each [ < k let D; = | |{D,, : n € k¥ and
n(e) =1} = y~Y(I). Foreach J C F and o € k’ let D, = LI{D, :n € k¥ and

o C i}, where o C 5 means 7 extends o and let D, = MNyes y’D Furthermore

o(y):
ifyel,JCTando € k/ lety-o € k?’ be given by (y - 0)(6) = o(y~'6). For

oceKfandy e F, we have

|ﬂ(7bD0' N Dy-a') - /v‘('yaBa' N By-(r)l

< > > lu&"Dy 0 Dy) = u(y“By 0 By))
(nek¥:oCn) (0’ €kt :y-ocCn’)

< 5(kIFHy?,
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In particular, setting y = e we see |u(By) — u(Dy)| < 6k3F! for every o : F, = k.
Since y“B, = By., = y“B, N By, we have

|(Do) = p(y* Dy N Dy.)| < |p(D) — p(y*Byr)|
+ |1(y*Bs N By.g) = u(y" Dy N Dy )|
= |u(De) — u(By)|
+|u(y*By N By.or) = u(y" Dy N Dy.r)|
< 26k2IF]

and also

1(Dy.¢) = (" Dir N Dy.o)| < |u(Dy.) = (B
+ |u(y*Bs N By.o) — u(y" Dy N Dy
< 26K2F1,

Therefore

#(y* D) A(Dy.)) = u(y* D) + p(Dy.r) = 2p4(y" D N Dy.7)
< |/1(Dy-cr) - ﬂ(beU N Dy-O')l + |/1(Dy-cr) - M(beG N Dy-O')l
< 45k (2.2)

Since (Dy)),exr is a partition of X and (Fp)2 C F, we have

D,=||Dy=() || Po=() || Dyo

nekF YEF, gek¥Fp YEF, gekfr
JpEN a(y)=)p(¥) a(e)=)p(y)

Now, by (2),

I ﬂ |_| Dy, | ﬂ |_| v'Dy || < (F KPPy asKH ). (2.3)

YEFp oekfr Y€Fp  oekfp
0-(8):](7) 0—(6):]]) )

) || ¥Pr=()7"Dye =D,

YEF, oekfp YEF),
a(e)=jp(¥)

Note that

so (3) reads
\u(D,,) — u(D,,)| < (IFp|kFrhyask?").
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Moreover,

(@), u(Ap) = u({x : D2 (x) € A,))
= u({x 1 @2 (x)(y) = jp(y) forall y € F,})
= u({x : ¢ ((y™")’x) = jp(y) forall y € F,})
= u({x : x € Yy (jp(y)) for all y € F,})

_ b
=H ﬂ YD)
veF,

= IU(DJP)-
Similarly, ((IDZ"’>)>k u(Ap) = u(B,,). So we finally have

(@2).pt(Ap) = (@F ) pt(Ap)] = |u(D,,) — u(B,,)]
< |u(D,,) = (D)) + |u(D,,) — u(B,,)|
< (|F, | kPl (4812 4 26137,

Since k is fixed in advance, |F,| < |F| and F depends only on (AP)Z=1’ it is clear
that 6 can be chosen so (|Fp|k|ﬂ’|)(4<‘>’k2|F|) + 26kl < eforall p < q. O

We can now prove the main result of this section.

Theorem 2.3.1. 7] = 1.

Proof. Suppose that a, — a in 7;. We need to prove ®(a,) — ®(a) in K(M,(K")).
By Lemma 2.3.2 it suffices to fix a finite set L and show E(a,, L) — E(a,L) in
K(My(LY)). Let k = |L|. Write E, = E(ay,, L) and E = E(a, L). As before, if we let
AL = (A})2, be the collection of clopen subsets of L' of the form (N, ¢f 7, (j,)
for a finite ¥ C I" and j, < k, then

o0

510 p) = 3" AR = (A}
i=1
is a compatible metric on M,(L"). Fix € > 0 in order to show that eventually
di(E,, E) < €, where d; is the Hausdorff distance in K(M,(LF)) constructed from
d1. Choose N sufficiently large that } % < 5. By Lemma 2.3.3 there is 6 > 0
such that if d(a, b) < ¢ then for each i < N and all ¢ € L(X, i, L) there exists
W € L(X, u, L) such that |(CDZ’¢)*AL(AZ.L) - ((DIZ‘/’)*AL(AZ.LH < 5. Thus if M is large
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enough that d(a,, a) < 6 forn > M, we have d;(E,, E) < €.

Now suppose ®(a,) — P(a) in K(My(K")). Fix r,q and € > 0 in order to show
| € K and
let (Dp)z: , be a family of disjoint clopen subsets of K with x, € D,. Now let M

that eventually dy(C, 4(ay), Cy4(a)) < €. Choose ¢ distinct points (XP)Z=

be large enough that all sets of the form 7,'(D,) N 7;'(D;) for s < r and p,1 < ¢
appear as some AlK for i < M in our previously chosen clopen basis Agx. Then
choose N large enough that when n > N, dy(®(an), ®(a)) < 55. Then for each
¢ € L(X, u. K) we have ¢ € L(X, p, K) such that 5x((®“?).u, (@*Y).p1) < 55. So
in particular, if n > N then for each ¢ € L(X, y, K) there exists € L(X, u, K) such
that

(@), (! (Dp) N g (D) = (@)l (D) N, (D) < €

forall p,t < gands <r.

Now suppose n > N and let (Bp)g:1 be a partition of X. Define ¢ : X — K

by taking ¢(x) = x, for the unique p < g with x € B, so by the previous paragraph
we have a corresponding . Observe that for all y € I' we have
u(y™ B, N By) = uly™ ¢~ (Dp) N ¢~ (Dy))
= p({x : p((y*)"'x) € D, and ¢(x) € D;})
= p({x : ®**(x)(y) € D, and ®**(x)(e) € D,})
= u({x : ®**(x) € x,'(Dp) and ®**(x) € 7, (Dy)})
= p({x : @**(x) €, (Dy) N (D))})
= (@), u(my, ' (Dp) N 77 ' (Dy)).

Similarly letting H, = ¥ ~'(D,) we have
u(y*Hy, N Hy) = (@7, u(n; (D) 0wy (Dy)).

Thus for all p,t < gand s <r,

|,U(7?"Bp N B;) - ﬂ(?’?Hp N H;)
= [(@*), u(m,{ (Dp) O 7, (D) = (@P).pu(m; (D) N 7, (D))

y+s

< E.

We have shown that when n > N, C, ,(a,) € Bc(C,4(a)). The argument that

eventually C, ,(a) C B:(C, 4(a,)) is identical. O



33

Topology on the space of stable weak equivalence classes

Let A_ (T, X, 1) be the space of stable weak equivalence classes and let ¢ be the
trivial action of I' on an standard probability space. By Lemma 3.7 in [74], we
have a <; b if and only if a < ¢ X b. Moreover, Theorem 1.1 in [74] says that
E(ax,K) = cch(E(a, K)), where My(K") carries its natural topological convex
structure as a compact convex subset of a Banach space. Letting ¥ : AT, X, u) —
K(My(K")) be the map a — cch(E(a, K)) we have W(a) = ¥(b) if and only if
a ~g b. Tucker-Drob gives A (I', X, u) the initial topology induced by ‘¥, in which
it is a compact Polish space. Thus we have a,, — a in the topology of A_ (T, X, p) if
and only if @, Xt — a X in the topology of A_(T, X, u). Therefore we can introduce
ametric d; on A (T, X, p) by setting dg(a, b) = d(a X ¢, b X v).

2.4 The space of weak equivalence classes as a weak convex space

We now describe how to give A_(T, X, u) the structure of a weak convex space.
Givent € [0,1]and a,b € A(I, X, u) weletc € A(T', X1 U X, tuy + (1 — t)up) be
the disjoint sum of representative actions a and b on the disjoint union of two copies
X1 and X, of X with the first copy carrying a copy of the measure y weighted by # and
the second copy carrying a copy of u weighted by (1—¢). To getan actionin A(T, X, u)
we need to choose an isomorphism of (X, u) with (X; U Xp, tu; + (1 — 1)), but
the weak equivalence class of ¢ does not depend on this or on the representatives
we chose. So we have a well-defined binary operation A (T, X, #)2 - AT, X, p).
Call this cc;. It is clear that (1), (3) and (4) of Definition 2.2.1 are satisfied, so

A_(T, X, u) is a weak convex space. Moreover, we have the following.

Proposition 2.4.1. A (T, X, ) is a topological weak convex space.

Proof. We must show that cc is continuous. Suppose that ¢; — ¢ in [0, 1] and
aj — a and b; — b in the topology of A_(I',Y, u). Write ¢; = tja; + (1 —t;)b; and
¢ =ta+ (1 —1)b. Fixing [,m € N write C(d) for Cy,,(d). We need to prove that for
every € > 0 there is J so that if j > J then we have dy(C(c;), C(c)) < €, where dy
is the Hausdorff distance in [0, l]lxmz.

First we must show that for sufficiently large j, for every partition By, ..., B; of
Y there is a partition Dy, ..., D; of Y depending on j such that for all s,# < [ and
p=m,

|u(y, Dy N D) — u(y5Bs N By)| < e.



34

Choose Ji so that if j > J; then [t; — 1| < g. Choose J, > J; soif j > J, then

dH(Caj, Ca) < ¢ and dH(ij, Cp) < §. Fix j > Jp. Writing 6 for the isomorphism
from (Y) UYa, tp+ (1 —t)u) to (Y, u) and 6; for the isomorphism from (Y LY, ¢ +
(1 —tj)u) to (Y, p) we have a partition (Bs,,-)éz1 of ¥; given by B,; = 67'(B,)NY,. So
we can find a partition (Ds,i)i _, of ¥; such that for all p < m and all 5,7 < [ we have
€

vy Ds.1 0 D) = iy Bsi N Bi)l <

and
b; b €
|u(yy' Ds2 N Dra) = u(y,Bsa N Bio)| < 2
Now, let D; = 6;(Dy,1 U Dy). Note that since each 6;(Y;) is ¢; invariant,
p(yp Ds 0 D1) = u(yy) 6;(Ds1) 0 6;(Dy1)) + p(yy) 6;(Dy2) N 6,(Dy2))
= w(0;(y,' Ds1 N Dy1)) + 1(0;(y, D52 N Dy 2))
. b
= t;u(yy’ Dy N Dy1) + (1 = tj)u(y,’ Dso N Dyo).

Similarly since 6(Y;) is c-invariant we have

u(ypBs N By) = u(y,0(Bs1) N O(B.1)) + u(y,0(Bs2) N O(B,2))
= ((O(y3Bs1 N By1)) + u(6(yhBsa N By2))
= tpu(ys N By N Bi1) + (1 = )u(y) N Beo N Byo).

Note that if |x; — xp| < ¢ and |y; — y2| < 6 then |x;y; — x2y2| < 36. So our

assumptions guarantee that we have

. €
11y Dot 0V Duy) =ty 0 By O Bl < 5

and
(1= 1)y, D2 N D2) = (1= Dy} 0 Bea N Buo)l < 5,
and hence
\u(y,' Dy N Dy) = u(y5Bs N By)| < €
as claimed.

Now we must show that for sufficiently large j, every partition By,...,B; of Y
there is a partition Dy, ..., D; of Y depending on j such that for all s,# < [ and
p < m we have

|u(ysDs N Dy) — u(y; Bs N By)| < €.

The argument is similar to the previous step, so we omit it. O
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Corollary 2.4.1. A_(T',Y, w) is path connected.

Corollary 2.4.2. A_(T,Y, u) is uncountable.

We now record a lemma which will be useful later, guaranteeing that the metric on

A_(T, X, u) behaves nicely with respect to the convex structure.

Lemma 2.4.1. ForanyconvexsetK C A_(I', X, u) the function d(-, K) = infpeg d(-, b)

s convex.

Proof. Letx,y € A.(T', X, u) and consider rx + (1 —t)y. Fix n, k and write C(a) for
C,.x(a). It suffices to show that

inf dy(Clex+ (1= 1y), C(5) < H{inf dy(C(x), C(B) + (1 = ) inf dy(C(y). CB))

where dy is the Hausdorff distance in the space [0, 1]”sz. Fix € > 0. It suffices to
find a € K with

dp(Ctx+(1-0)y), C(a)) < t(inf dy(C(x), C(B))+€)+(1-1)(inf du(C(y), C(b))+e).
(2.4)

Choose ¢ € K with dy(C(x), C(c)) < infpegx dy(C(x), C(b)) + € and choose d € K
with dy(C(x),C(d)) < infpeg dy(C(y), C(b)) + €. Note that since K is convex,
tc+ (1 —1t)d € K. We claim

dy(C(tx + (1 = 1)y), C(tc + (1 - 1)d)) < tdy(C(x), C(c)) + (1 = )du(C(y), C(d)),

which implies (4). Let 6 > 0, it then suffices to show

du(C(tx+(1-1)y), C(tc+(1-1t)d)) < t(du(C(x), C(c))+0)+(1-t)(du(C(y), C(d))+9).
(2.5)

Let X; and X, be two copies of X and v be the measure on X; LI X, given by
tu X))+ =0)(u | Xp). LetP = (P,-)f‘:1 be a partition of X U X5. This induces a
partition P = (Pl.1 )le of X given by Pl.1 = P;N X and similarly we have a partition
P, = (Pl.z)l‘.":1 of X,. We can find a partition Q; = (Ql.l)l’.":1 of X; such that form < n

and i, j < k we have
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u(ymP} O P}) = pu(y5,0} N Q)] < du(C(x), C(c)) + 6

and similarly we can find a partition Q, = (Qiz)f: , of X5 such that for m < n and

i, j < k we have

|u(yinP? N P7) = p(ya Q7 N 07| < du(C(y), C(d)) + 6.

Let Q = (Qi)llle be the partition of X; U X, given by Q; = Ql.1 L Qiz. Write
t(dy(C(x),C(c)) +6) + (1 —t)(dy(C(y),C(d)) + 6) = r. Then for all m < n and

i, j < k we have

1- —-t)d
vy VP A Py — vy 01 0))

< |tu(yy P! 0 P)) = tu(y5,0) 0 QD)
+1(1 = Dy P? O P2 = (1 = Dulys0? N 02)

<r.

We have shown that C(tx + (1 — 1)y) € B,(C(tc + (1 — t)d)). The argument that
C(tc+(1-1)d) C B, (C(tx+(1—-1)y))is identical, so we omit it. Thus we conclude
dy(C(tx + (1 = t)y),C(tc + (1 —1)d)) < r and (5) holds. ]

We note that A_(I', X, u) in fact has additional structure in that it admits convex
combinations of infinitely many elements. We first consider the case of a countable
convex combination. If A; € [0, 1] are such that 3;°, 4; = 1 and ¢; € A(T', X, p)
then we can naturally define an action >, A;a; on the disjoint sum | |2, X; with
the i copy of X weighted by A;. It remains to check that this is independent of the

choice of representatives q;.

Proposition 2.4.2. If a; < b; for all i, then 3,2, dia; < X2, Aib;.

Proof. Let Ay,...,Ax C |_|fn°:1 Xm, € > 0and F C T finite be given. Choose N
such that 3> A, < % For each m < N, consider the partition A", .. ., A? of X,
given by AY" = A; N X,,. We can find for each m < N a partition B, ..., B;" such

that for all y € F and i, j < k we have

. . €
|u(y“ A" A™) — u(y" B N B™)| < =.
j j )
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Let B; = | |;,_; B". Then

u ()/Z;.:z:] Amlm A Aj) — (),2221 Ambm B A Bj)

<| Z bty A7 0 AT) - Z Anpt(y" B 0 B}

m=1 m=1

1D Dl AT 0 AT - Z Aty B 01 BY)
m=M

Ay AT O AT = p(y" B 0 B + 5

=1
A+ = <e€.
(1)26

It is in fact possible to define integrals of weak equivalence classes of actions over a

IA
N m EMZ
m

O

probability measure. Let (Z, ) be a probability space and suppose that for each z we
have a probability space (Y, v;) and a measure-preserving action I’ ~% (Y., v;) such
that the map z — [a;] from (Z,n) to A*(T') is measurable, where [a;] is the weak
equivalence class of a,. Note that we do not require (X, v,) or (Z, ) to be standard.
LetY = | |,z Y and put a measure v on Y by taking v(A) = /Z v.(A N Yz)dn(z).
Y will be a standard probability space isomorphic to (X, u) if (Z,n) is standard or
n-almost all (Y, v,) are standard. Let ' ~“ (Y, v) be given by letting I" act like a,
on Y,. We write a = fZ a,dn(z). We then have a map ¢ : Y — Z given by letting
#(y) be the unique z such that y € Y. This is clearly a factor map from a to ¢z, and
v = fz v,dn(z) is the disintegration of v over n via ¢. Thus Theorem 3.12 in [74]
guarantees that if b, are actions of I' on (Y,, v,) with b, ~ a, then if b = fZ b.dn(z)
we have a ~ b. Therefore this construction gives a well-defined weak equivalence
class of actions of y. If we restrict (Y,, v;) to be standard, then we in fact have a
mapping from the space M(A (T, X, u)) of probability measures on A_(T’, X, u) to
AT, X, p).

Lemma 2.4.2. For any n, k, and (Z, n) and measurable assignment 7 — a,, we have

Cn,k (‘/Z azdn(z)) C cch (UzeZ Cn,k(az))-

Proof. Fixn, k andleta = fZ a,dn(z). Let (X, u;) by the underlying measure space
of a,. Let £ be a countable dense subset of MALG (|_|z€Z X, /Z ,uzdn(z)), so that
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L% is dense in the space of k-partitions of | I,ez X;. Then {M#(a)}aecsn is dense in
Crk (fz azdn(z)), so it suffices to show that each M#(a) € cch (U,c, C(a;)). For
each A, the function fz : Z — Rk given by z —» M 2, (a) is a Borel function,
where A is the partition of X, given by (ANX;)scn. Thus M#(a) = fZ fa(a)dn(z).
We may assume that Z carries a Polish topology such that f# is continuous for all
A € L". Choose a sequence of measures (v;):2, such that v; has finite support and
v; — n in the topology of M(Z), the space of all Borel probability measures on Z.
If we write v; = Zj(zl)l @;o,, then

()
Lfﬂ(z)dvi(z) = Z a’jfy((Zj) € ch
j=1

| cta)

Z€EA

Since v; — n, we have

/ fa(z)dvi(z) — / fa(z)dn(z)
V4 4

which proves the lemma. m|

2.5 The structure of the space of weak equivalence classes for amenable acting
groups

When T is amenable, the structure of A_(T, X, i) can be completely described using

the notion of an invariant random subgroup. We begin with the following, the

following extends Theorem 1.8 in [74]. Recall that if ' ~* (X, i) is a measure-

preserving action, we have a map stab, : X — Sub(I') given by x > stab,(x). The

type of a is the invariant random subgroup of I" given by (stab, ). u.

Proposition 2.5.1. If T is amenable and a, b € A(T, X, u) then type(a) = type(b) if
and only if a ~ b.

Proof. By [1]type is an invariant of weak equivalence so suppose type(a) = type(b).

Let X4 = {x € X : [T : stab,(x) = o]} and X2 = {x € X : [T : staby(x)] = oo}.
Notice that X¢ is a-invariant and X2, is b-invariant and since type(a) = type(b),
w(X%) = u(X%). Suppose that u(X%) > 0 and let ae, = a | X% with normalized
HIXE
MXS)
concentrated on the infinite index subgroups of I', therefore a., ~ bo by Theorem

measure and define b, similarly. Then type(as) = type(bs) and these are

1.8 (2) in [74]. Thus to prove the proposition it suffices to show the following. Note

that for this we do not require I' to be amenable.
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Lemma 2.5.1. Suppose a,b € A(T, X, u) are actions such that type(a) = type(b)

and these are concentrated on the finite-index subgroups of I'. Then a ~ b.

Proof. We may assume that 6 = type(a) = type(b) is concentrated on the subgroups
of index n for some fixed n. Consider an a-orbit C. For each linear ordering <iC
of C, we get a homomorphism WC : I' = Sym(n), where Sym(n) is the symmetric
group on 7 letters. Place a Borel linear order C on Sym(n)'. Let then <“C:<ig be
the linear order such that wico is C-least among all the z//é. Write ¢ for wico. Use
this same construction to choose homomophisms q% for each b-orbit D. Write ¢¢

a fat b b
for ¢[X]Ea and similarly ¢7 for ¢[x]Eb'

For a homomorphism ¢ : I' — Sym(n) let js be the corresponding action of T’
on {l,...,n}. Say ¢ is transitive if j, is transitive. Each transitive homomor-
phism ¢ : ' — Sym(n) determines a conjugacy class Hy of index n subgroups
of I' as the stabilizers of js. For each a-orbit [x]g, the stabilizers of the action
of I on [x]g, also determine a conjugacy class H¢ of index n subgroups of I.
Let ¢ be the action of Sym(n) on Sym(n)' by (f - #)(y)(k) = fé(y)f ' (k). Then

[¢¢]E. = {l/li <! is a linear ordering of [x]g, } Let £ be the set of all tran-

[xleq * T[xlEq
sitive homomorphisms ¢ : I' — Sym(n) such that ¢ is C-least in [¢]g,. It is clear

that for ¢ € £, ¢¢ = ¢ if and only if H? = H,. Similarly ¢2 = ¢ if and only if
H? = Hy. Thus for any A € L, we have
u({x : ¢ € A}) = u({x : Hy = H, for some ¢ € A})
= u({x : stab,(x) is conjugate to an element of
Hy for some ¢ € A})
= 0({H € Sub(I') : H is conjugate to an element of
H, for some ¢ € A})
= u({x : stabp(x) is conjugate to an element of
Hy for some ¢ € A})
= u({x: ¢} € A}).
Now, fix a finite set ¥ C I' and a partition Ay,..., A, of X. For each map
w:F — Sym(n)let X¢ = {x € X : ¢* | F = w} and similarly X? = {x € X :

¢ | F = w}. Then (X&) wesym(nyr and (X(l;)wesym(n)F are finite decompositions of
X with u(X2) = u(X”). For k < n let

Xox = {x € X! : x is in the k-position with respect to <?X]Ea}
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and define X f) , Similarly. We claim that for each k there is a measure-preserving

bijection §7 , of X¢ , with X¢ |. Let C; be a wellordering of I'. For each y € I let

XZJW = {x € Xz’k : the C; -least 6 € I" with 6%x € Xff)’l is equal to y} .
Put then S7, I X{ = y". In particular, this shows that (X ) = —”(f‘%). We
b
can perform the same construction for » and we see that ,u(Xf) Q) = Brw (}’f‘*’). So

u(X? ) = u(X i’) ,) and hence there is a measure-preserving bijection 7y, of each
XZ,I with X Z,l. Define a measure-preserving bijection T, of X¢ with X” by let-
ting 7,,(x) = (Sf)k)_lTSzk(x) for x € X?,. Letthen T = U ,esymny* Tw SO
T € Aut(X, u).

We claim that for all y € F and all x € X, we have T(y*x) = y*T(x). Indeed,

a
[x]E

the ¢ (y)(k) = w(k) position with respect to <?X]E so T(y¢) is in the w(k) position

of the Ep-class D such that 7,,;S? , (x) € D, where D has the canonical order <

suppose x € X so that x is in the k-position with respect to < . Then y“x is in
b

D
On the other hand, T'(x) = T,,(x) is in the k-position of D with respect to <’I”). Hence
y"T(x) is in the ¢?(x)(y)(k) = w(k) position of D and we have the claim. Now, for

i < mputting B; = T(A;) we have for any y in F and i, j < m,

u(y"B; 0 B;) = u(y"T(A) N T(A)))
= u(T(y*A) NT(A))
= u(T(y*Ai N Aj))
= u(y*Ai N Aj)

and therefore a ~ b. m]

In [74], Tucker-Drob shows that for amenable I', the space A. (I, X, u) of stable
weak equivalence classes is homeomorphic to the space IRS(I") of invariant random
subgroups of I'. Indeed, type(a) = type(b) if and only if @ ~; b and the map
A (I, X, u) — IRS(T') given by a + type(a) is a homeomorphism. So we have the

following.

Corollary 2.5.1. For amenable T', a ~ b if and only ifa ~ b.
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Moreover, let x € X, t € [0,1] and a,b € A(I, X, u) and consider the action
ta+ (1 —1t)bontX; U (1-1)X>. We have stab,,,(1_, = stabs(x) if x € X; and
staby,(x) if x € X5. Thus for any H < I', {x : stab;,,1-pp(x) = H} = {x € X; :
stab,(x) = H} U {x € X3 : staby(x) = H} so for any A C Sub(I") we have

(tpr + (1 = )p2)({x : stabyg(1-np(x) € A})
= (tun + (I —)ua)({x € Xy : stab,(x) € A}
LI {x € X5 : staby(x) € A})
=tu({x : staby(x) € H}) + (1 — t)u({x : staby(x) € A}).

Therefore type(ta + (1 — t)b) = t(type(a)) + (1 — t)(type(b)) and Theorem 2.1.1 fol-
lows. Note in particular that if I is amenable then ta + (1 —t)a ~ a, so for amenable

groups A_(T, X, ) is actually a convex space, not just a weak convex space.

It is known (see for example [35]) that IRS(T) is a simplex in C(Sub(I"))*, the dual
of the Banach space C(Sub(I")) of continuous functions on Sub(I"). So by the clas-
sical Krein-Milman theorem we have that for amenable I', cch(ex(A-(T, X, u))) =
A_(T, X, u). We will prove an analogous result for general I" using other means.
Moreover, ex(IRS(I")) is precisely the ergodic measures in IRS(I') so when I is
amenable, ex(A (T, X, w)) is the set of actions with ergodic type.

2.6 The structure of the space of weak equivalence classes for general acting
groups

Recall from [53] that Ej is the equivalence relation given by eventual equality on

2" and if E is an equivalence relation on X and F is an equivalence relation on Y

then a Borel homomorphism from E to F is a Borel map f : X — Y such that

x1Ex, implies f(x1)F f(x2). A equivalence relation £ on a measure space is said

to be strongly ergodic (or Ep-ergodic) if for any homomorphism from E to Ey, the

preimage of some Ep-class is conull. By Proposition 5.6 in [29] if a is strongly
1
2
%a + %a is not weakly equivalent to @ when a is strongly ergodic. By Theorem 1.2
in [55], the Bernoulli shift ' ~ ([0, 1]", A7) with 1 Lebesgue measure on [0, 1] is

strongly ergodic when I' is nonamenable. Thus when I' is nonamenable, A (T, X, u)

ergodic then every b with b ~ a is ergodic. In particular, %a + 5a is not ergodic, so

is not a convex space, only a weak convex space. We now prove Theorem 2.1.2

Proof. (of Theorem 2.1.2) Write A = A_(T, X, u). Let B = cch(ex(A)) and suppose

toward a contradiction that there exists x € A \ B. Since B is compact, d(x, B) > 0.
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Let @ = supyc, d(y, B) and let C = {y € A : d(y, B) = a}. Then C is nonempty,

disjoint from B and C is a face of A.

Let ¥ be the family of faces of C, ordered by reverse inclusion. Suppose {F;}ies
is a linearly ordered subset of F and consider (;c; F;. If x,y e Cand 0 <t < 1
are such that tx + (1 — t)y € ;s Fi, then x,y € F; for each i since each F; is a
face. Hence ();¢; F; is a face. It is nonempty by compactness. So Zorn’s Lemma

guarantees there exist minimal elements of #. Let F' be such a minimal element.

Choose y € F and suppose toward a contradiction that there exists y' € F
with y* ¢ cch({y}). Then cch({y}) is a compact convex set, so letting G =
{z € F : d(z,cch({y})) = sup,,cr d(w, Cch({y}))}, G is a nonempty face of F dis-
joint from cch({y}), contradiction the minimality of F. So for all y € F we have
F C cch({y}). Fix such a y. Note that cch({y}) = ch({y}). We claim that
y is an extreme point of C. Assuming this, since C is a face of A we have that y

is an extreme point of A and we have a contradiction to the hypothesis that CNB = 0.

Suppose first that there do not exista, b € Cand 0 < ¢ < 1 suchthaty = ra+(1—t)b.
Then y is an extreme point of C be definition. Soleta, b € C and 0 < ¢ < 1 be such
that y = ta+ (1 —t)b. We must show that y ~ a ~ b. Since F is a face of C, we have
a,b € F. Thus we can write a = }," | s;y and b = Zle riy for s;,r; € [0,1]. By
Proposition 2.4.2 and associativity we have y ~ (Z?:l ts;y + Zle(l - t)r,-y). Since
0 <t < 1, iterating this argument we find that for any 6 > 0, there is m € N and
(4™, € [0,1] such that 4; < ¢ foralliand y ~ 372, A;y.

We claim that this implies y ~ xy + (1 —«)y forall « € [0, 1]. Note that xy + (1 — «)y
is isomorphic to ¢, 1, X y, where ¢, 1 is the trivial action of " on ({0, 1}, m,) where
m,({0}) = k and m,({1}) = 1 — k. Hence y is a factor of ky + (1 — x)y and it thus
suffices to show ky + (1 — k)y < y.

Let X1, X» be two copies of X, let n,k € N, ¢ > 0 and a partition P = (P,-)l’.":1
of X; LU X, be given. As before, we get a partition P = (P} )l{‘:l with P! = P, N X,
of X1 and similarly a partition P = (P?)~_ with P? = P; N X, of X5. Now, choose
6 < 5. Then we can find m and (/lp);’lzl such that y ~ Z;’le Apy and for some [ < m
we have k — 5 < Zﬁ,:l Ap < k. Let now X}, be a copy of X for each p < m, and for
g € {0,1} let ng be the corresponding copy of P! sitting in X/. Let Q = (Qy)%_, be
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thepartitionofl_l 1 X}, given by Q; —( e 1P1 )u( e l+1P ) Then for s < n

andi,j < k we have

m
1 21 Apy
(kp+ (1= )PP 0 Py) = E}WJQJIPQHQJ

IA

ku(y P 0 Pl - Zapu(nyl npPl)

el oz a P -| 3 aueiez,nr)
p=Il+1

l
ku(yy Pl Pl - Zﬂp (Pl O Pl

m

+ | =0uI PP AP = > A|u(PEOPY)
p=Il+1

= K—Z/lp ,u(ySyPilﬁP})
p=1

+a—@—ngmﬁﬁn@)

p=I+1
l m
<le=D | +a-0- > 4
p=1 p=l+1

€L €
<-+-=¢€

2 2

Since y ~ Z;’;:l Apy, ky + (1 = k)y <y and we are done. O

We note that a metrizable topological vector space V is locally convex if and only
if its topology is induced by a countable family of seminorms (| - M ):o:l Then
pv,w) =37 5 Liy— w|Y is a compatible metric on V, which is easily seen to obey
Lemma 2.4.1. Thus the technique used to prove Theorem 2.1.2 works to prove the
metrizable case of the classical Krein-Milman theorem using only the convex and

metric structure of V, not the vector space structure in the form of linear functionals.

Before proving Theorem 2.1.3, we briefly discuss the ergodic decomposition in the
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context of weak equivalence classes. Suppose a € A(I', X, u) and a = /Z a,dn(z) is
the ergodic decomposition of a, that is to say we have a factor map 7 : (X, u) —
(Z,n) such that if u = fZ u-dn(z) is the disintegration of u over (Z,n) via & then
u(mY(z)) = 1 and T ~* (77!(z), u.) is isomorphic to a.. Furthermore, the
assignment z — u, from (Z,n) — M,(X) is Borel, where M,(X) is the space of
a-invariant probablity measures on X (we may assume here that X is a Polish space).
Recall that A” (T') is the space of weak equivalence classes of all measure-preserving
actions of I, including those actions on finite space. A*(I") is topologized using the
exact same metric as we use to topologize A (T, X, u). We would like to conclude
that the assignment z — [a,] is measurable from (Z, ) to A*(I"), where [a,] is the

weak equivalence class of a,. This is a consequence of the following lemma.

Lemma 2.6.1. Let ' ~“* Y be a Borel action of I on a Polish space Y. Then the
map O from M, (Y) to AZ(T') given by v + [a,] is Borel, where [a,] is the weak

equivalence class of the measure preserving action a, = I ~* (Y, v).

Proof. Fix a measure v € M,(Y) and consider ®'(U), where
U ={[a] € AZ(T) : dy(Cpi(ay), Chr(a)) < € forall n,k < N}

for some N € N and € > 0, so U is a basic open neighborhood of ®(v) = a,. Since
=) N 1
U= bl e A(T) : dy(Cpi(ay), Cor(b)) <€ — —1¢,
Uﬂ{[] (1) ¢ du(Cui(ay), Cur(b)) < € m}

it suffices to show ®~!(V) is Borel for a set V of the form
V ={[b] € AZ(I') : du(Cpi(ay), Cox(b)) < r}.

Fixing n and k we write C(b) for C, x(b). Now, let K and L be compact subsets of a
compact Polish space W with metric p, let Dk be dense in K and D be dense in L.
We have

dy(K,L) < r < maxinf p(x,y) < r and max inf p(y,x) <r
xeK yeL yeL xeK

— (Vx € K)(Vo > 0)(Ty € L)(p(x,y) <r+9)
A(Vy e L)V6 > 0)(3x € K)(p(y,x) <r+0)

— (Vx € Dg)(V6 > 0) 3Ty € Dr)(p(x,y) <r+0)
A(Vy € Dp)(V6 > 0)(Ty € Dp)(p(y, x) <r+9).
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If L is a countable algebra generating the Borel o-algebra B(Y) of Y, then L is dense
in MALG(Y, p) for any Borel probability measure p on Y. Regarding a partition
of Y into k pieces as an element of B(Y)" and considering L, we see that there
exists a fixed countable family (Ay,)>_, of partitions of ¥ such that for any Borel
probability measure p on Y, (A,;,),._, is dense in the set of k-partitions of X with
topology inherited from MALG(Y, p). We may further assume that each element of
each A, is clopen. This implies that the set (M ﬂm(ap))fn": | is dense in C(a,) for

any Borel probability measure p. Therefore we have

V= (ﬁ ﬁ O {b e ANI) : | M7 (a,) - M7 (b)| < 7 + ;})
m=1 [=1 i=1
N (ﬁ ﬁ O {b € AN) : | M7 (a,) - MT(b)| < 7 + %}) .

m=1 =1 i=1
Now, |[M7(ay) =M™ (a,)| < s if and only if Iv(y? Al 0 AT — p(y? AL N AL < s
for all AIJ Al € A; and Al A € A,. Since for any pair Ji,J, C Y the set
{p:|v(J1) —v(J2)| < s} is Borel, we see

1
0! ({b e AX(T) : [MPi(a,) — MP(b)| < r + 7})
is Borel and consequently ®~!(V) is Borel. O
We now prove Theorem 2.1.3

Proof. (of Theorem 2.1.3) Let ® : Z — A*(I") be the map sending each point in z
to the weak equivalence class [a;], so ® is measurable by Lemma 2.6.1. Suppose
towards a contradiction that the theorem fails. Then for every set Z’ C Z with
n(Z’) = 1, there is more than one weak equivalence class in the set {[a,] : z € Z’}.
Equivalently, the measure ®.n on A*(I') is not supported on a single point. We can
thus split A* (") into two disjoint sets Y;,Y, such that 0 < @.n(¥;),0.n(Y,) < 1.
Letting A; = 0~(Y)), we get disjoint measurable sets Aj, A» C Z such that

0 <n(Ay),n(Az) < 1andforall z € A and all w € A, we have that 7 » w.

Recall that for a measure-preserving action b of I' and n, k € N the set C,x(a) C
[0, 1]77k*k was defined in Section 2.3.

Lemma 2.6.2. For any action b of I on a probability space (Y,v), we have
cch(Cp k(D)) € Cui(t X b).
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Proof. Write C,x(b) = C(b). Suppose x € cch(C(b)). Then we can find points

(x,-)""1 such that lim; . x; = x and each x; has the form x; = Zj(:l)l ozlj xij for
(x] / (’) C C(b) and (alj )ﬁ) [0, 1] with Z] @D oi = 1 for each i. Without loss
of generality we may assume that each xl. has the form M7 (b) for a partition
= of ¥ Into k pieces. Fixing i consider the action _l a/.. on the space
A] = (A])E | of ¥ into k pieces. Fixing i consider the action ¥/} o7/ on the sp
(l_lj(l) is Z’(l) al VJ) where each (Y}, v;) is a copy of (Y,v). Let 8 = (Bl);y‘:1 be

the partition of |_|j(=)1 Y; given by letting B; = ;S)l A{

5 where A{ ; Sits inside the j
copy of Y. Forany p < nand ,m < k and x € [0, 1]™>%< let (x),,,, be the p,I,m

coordinate of x. We then have

j@) i J@) . j(i)a,j"b
ME( > alb :( olv; (ypzf-‘ ’ B,mBm)
p,l,m
J

= (a vj(yllelJl N AJ ))

= aij (M A (b))
p,l,m

Therefore
j@) J(@)

- ; j

M3 Za{b = Zaij (Mﬂi(b)) = X;.
j=1 j=1

We have shown that x; € C (Zj(:l)l alj b). Since ng)l a/tj b is a factor of b x 1, we have

x; € C(bx ). Since lim; ,« x; = x and C(b X ¢) is closed, the lemma follows. O

It is clear that for any two measure-preserving actions b, ¢ we have b < ¢ if and only
if C,1(b) € Cyx(c) for all n, k. We claim that there are disjoint subsets Az, A4 C Z
of positive measure such that for some pair ng, ko, every z € Az and every w € A4 we
have Cy k,(a;) € cch(Cpyi,(aw)). For z € Az let R, = {w € Ay : a; £ ay,}. Since
a; is ergodic, a, < a,, X ¢ implies a, < a,,. Therefore R, = {w € Ay : a; £ a,, X }.

Assume first that there is a set D3 C A with (D3) > 0 such that for each z € D3 we
have 77(R;) > 0. Write K for cch(K). By Lemma 2.6.2 we can write R, = Unk=1 R” k

where Rg’k = {w €Ay : Cpilay) & m)}. Thus for each z there is a lexicograph-
ically least pair (n_, k;) such that n(RZZ’kZ) > 0. Therefore there is a pair ng, ko and
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a set Dy C D3 such that n(D4) > 0 and for all z € D4 we have n(RZO’kO) > 0. Fixing

np and ko we write C(b) for G, x,(b). Let (w J');il C Aj; be a sequence of points such
that the family (C (awj)) - is dense in the space {m Tw e Az} with respect to
]:

the Hausdorff metric dy on the space on compact subsets of [0, 1]"0*%0%ko_ T et then
Fj, = {w €Ay dy (C(aw), C(awj)) < %},

Fix z € D4 and choose w € RZO’kO. By hypothesis there is € > 0 such that

C(a,) € B (E‘Ta?)) , where B.(K) denotes the ball of radius € around K. Then if we

choose j so that dy (C(awj), (,T(W)) < 5and/so that% < 5wehavew € Fj; C R'g"’k".
Hence there is a subset J C N? such that Rgo’k" = U(j.neq Fj1- So for each z we can
choose a lexicographically least pair (j, /) such that n(F; ;) > Oand F;j_; C Rgo’ko.
There is then a pair (jo, o) and a set E3 C D3 with n(E3) > 0 such that n(Fj,;,) > 0
we have C(a;) ¢ E(’a?). So take A3 = E3 and
Ay = Fj,j,. Thus we are left with the case 17(R;) = 0 for almost all z € A;. Then

and for all z € E3 and all w € Fj,
for almost all w € A, and almost all z € A; we must have a,, £ a;, so a symmetric

argument gives the claim.

Given a (real) topological vector space V, we say a hyperplane in V is a set of
the form Hy, = {v € V : {(v) = a} for some continuous linear functional £ and
a € R. Given disjoint compact subsets Wi, Wo C V we say that Hy,, separates W
fromWyif Wy C{veV:f(v)<aland W, C{veV:L{v)>a}l.

Lemma 2.6.3. Let S C R" be compact. Then there is a countable family (H;):>, of
hyperplanes such that for any x € S and any compact convex W C S there is i so H;

separates {x} from W.

Proof. Let (€ j);?‘;l be a countable set of linear functionals which is dense in the sup
norm on S. Enumerate Q as (¢n),,_, and let H;,, = {s € S : {;(s) = gu}. Given
x and W, by Hahn-Banach find a linear functional £ and @ € R so that H = Hy,

separates x from W. Let r = min (infheH [|x — hl|,infpeq, ||h — wll) sor > 0. Then
weW
choose m s0 |g, — a| < 5 and j so sup,c¢ [€(s) — £;(s)| < 5. Then H; ,, separates x

from W. O

Now take S = [0, 1]"0>*%0%k0 and fix a family (H;);2, of hyperplanes as in the lemma.

Since C(a,,) is compact convex for each w € A4 and for all z € A3 we have

C(a;) € m, for each pair (z, w) € A3 X A4 there is an index i(z, w) and a point
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x,w € C(ag) such that H;, . separates x_,, from m. Fix z € Az. Taking (w J');'il
as before, for (j,1) € N? let G = {w € Ay dy (m, (/m) < %} Choosing
w € Ay, lete = dy (C/'(w\), H,-(Z,W)) so € > 0. Finding j_,, so dy (—C’(W\J), C/'(W)) <3

and [,,, so % < 5 we have w € Gj ., and Hy,, separates x,, from C(u) for

all u € Gj,,,.1.,,- Then we have Ay = U(j,,,.1...): Gj.l., SO We can find wy so
WEAy
that 7 (G 1.0y ) > 0 Letthen G = Gy, 1., %2 = o, and i(2) = i(z, wo) 50

that H;;) separates x; from CT(;) for all u € G;. Since the G, were chosen from a
countable family, we can find a set As C A3 of positive measure such that G, = G
is the same for all z € As. We can then find an index i and a set Ag C As of positive
measure such that for all z € K, H; = H separates x, from 6(5) forallu e G. H
splits [0, 1]"Xk><k into two closed convex sets H, and H_, where H, contains the x,
and H_ contains the C(u).

For S € Z withn(S) > Oletng = Z(—TSS) be normalized measure on S. By Lemma 2.4.2

we have C (/G audnc(u)) C cch (U,eq C(u)) € H-. Write Ag = U;O=1 Ag, where
Al = {z € Ag : dy(x, H) > %} and find p so (A7) > 0. Letting K = A7, for all
z € K, x, is an element of the closed convex set HY = {y € H, : dy(y,H) > 117} and
H? is disjoint from H_. We have fK x,dng(z) € C (fK azdnK(z)) and fK x,dng(z) €
H?. Since C (/G audng(u)) C H_ we see that C (/K azdm((z)) ¢C (/G audnc(u))
and it follows that fK adng(z) + fG aydng(u). Let Ly = K, L, = G then there is
i € {1,2} with /Li azdnr,(z) » a. Since 0 < n(L;) < 1, we can write

a=n(L) ( / azdmz)) +n(Z\ L) ( / . azan\Li(z)),

1

which contradicts our assumption that a is an extreme point. O

We now prove Theorem 2.1.4. Recall that the uniform topology on Aut(X, y) is
given by the metric d,,(T, S) = u({x : Tx # Sx}). If P = {P1,..., P,} is a partition
of a space on which Fy acts by an action a, J C Fy is finite and 7 : J — p let
Py =yes v Priy).

Proof. (of Theorem 2.1.4) Let a be a free action of Fy. By replacing a with a X ¢
if necessary, we may assume that for each n, k the set C, x(a) is closed and convex.

Fix integers np and ko and € > 0. It is enough to find a free ergodic action b of
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Fy such that for all n < np and k < ko we have dy(Cyi(a), C,x(b)) < €. Let
{v1, ... ¥n} = Fo be the finite subset of Fy under consideration. Let s = sg, be
the Bernoulli shift of Fy acting on (2¥, v) where v is the product measure. For any

action ¢ of Fy on (X, u) and y € Fy we have
{(x,y) € X x 2FN -y (x,y) 2y (x, 9)} = {x € X : y°x # ¥ x} XY

and hence
(X V(X y) € X X 2PV 1y (x, ) # ¥y (x,1)}) = p({x € X : y°x # yx}).

Assume d,(y?,y¢) < {¢ for all y € Fy. Then for any measurable partition A =
Al ..., A of X x2FN ally € Fyandall i, j < k we have

€
[(u X VI(yPC A N Aj) — (ux v)(yTA N Aj)| < 6

forally € Fy. Inthe notation of Section 2.3, p (Mrf}c(a X ), Mf}((c X s)) < 1z where
p is the supremum metric on [0, 1]™***_ Choose a finite collection £ of measurable
subsets of X x 2FN such that for every measurable partition A of X x 25N there is
a partition 8 C L such that p (Mrf}{(a X s), M fk(a X s)) < 1¢- Then for every such

A there exists B C L such that p (Mf;{(c X ), Mfk(c X s)) < %.

Fory € Fy let y, : 27N — 2 be projection onto the y coordinate. Fori € {0, 1} let
S; = n;1({i}) and put S = {81, S»}. Choose now a finite partition R = {Ry, ..., R.}
of X and a finite subset F' C Fy containing Fy such that for every A € L there are

sets R; with 1 < j < r and a family of functions (Tj)j.:1 with 7; : F — 2 such that

t
€
. N
J j_lR]xSTj AA <16

Write £ = R xXS. We can identify a function 6 : F — r X2 with a pair (o, 7) where

o:F—-randt:F —> 2s0

yeF yeF yeF

Note that for any j < r, R; X §7 is a finite disjoint union of sets of the form R{. X S7,
hence any A € L is within {% of finite disjoint union of sets of the form P;** for
0:F —rx2.
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Leto = W. Fix an ergodic action ¢ of Fy such that d,, (v, y©) < m for
all y € F. (For example use the fact that the ergodic automorphisms are uniformly
dense in Aut(X, u) to move one of the generators y of Fy so it acts ergodically but
is still sufficiently close to y“). Then clearly dy(Cyx(a), Cui(c)) < 5 forall n < ng
and k < ko. Let b = ¢ X 5. Since c is ergodic and s is free and mixing, b is free
and ergodic. Thus it is sufficient to show dy(C,ik(c), Cox (b)) < 5 for all n < no,
k < ko. Since ¢ < b, it is sufficient to show that for every partition A of X x 2F~
there is a partition C of X such that p (Mﬁ(b), Mrfk(c)) < £. By our previous
reasoning, for each partition A = (Ay, ..., Ax) of X x 2FN there is a partition B

whose pieces are disjoint unions of sets of the form Pé’ for 8 : F — r x 2 such that
0 (Mﬁ(b), Mfk(b)) <<

Claim 2.6.1. There is a partition Q of X indexed by r X 2 such that for every
0:J — rx2withJ C FyF we have |(ux v)(PY) — u(Q5)| < 6.

Suppose the claim holds. Regard Fy as acting on (J;cp, {6 : J — 2 xr} by

shift, v - 8(y") = 6(y~'y’). Thus the domain dom(y - #) = ydom(6). Then for any

0,k : F — 2xrandy e Fy we have
b

y?Pb N Pl = Py
1] if not.

if v - 6 and « are compatible,

and similarly

c

o X _ if ¥ - 6 and « are compatible,
,chZ) N Q; — (Z)yQUK

if not.

Therefore the claim gives |(u X v)(yng N P - u(y“Qy N Q)| < ¢ for all 6, « :
F — rx2. Soif B ={By,...,By} is a partition such that B; = | [_, Pg'(s) for

functions 6;(s) : F — r x 2 and we let C; = |_|§:1 Qg_(s), then we have

t
b pb b
(uXv) ( |_| Y Py N ng(s,))

s,8’=1

t
s ( || 750 ng“’))

s,8'=1

(L x V)(¥*B: N B)) — u(y°Ci N Cj)| =

<125 < rYFls < 2,
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sincet < (2r)/F!. Taking C = (Cl-)l’.":1 we get p (Mfk(b), Mnck(c)) < %, which implies

the theorem.

It remains to show Claim 2.6.1. This part of the argument follows the proof of
Theorem 1 in [2] and the extensions of these ideas developed in [74]. Let G = FyF'.
Assume without loss of generality that G is closed under taking inverses. Note that
it suffices to prove the claim for 6 defined on all of G. In order to find Q we will find
a partition 7" = {T1,To} and set Q; ; = RRNTjfor1 <i <r,1 < j < 2. Thus we
are looking for 7~ = {T},T»} such that for all (r,0) witho : G - randt: G — 2
we have
(1t X v)(Rg X S7) — w(R; N T7)| < 6.

Note that v(S?) = 276! for any such 7 so we are looking for 7~ such that
2719 W(RS) = (RS NTE)| < 6.
The idea is that a random 7~ should have this property.

Without loss of generality we may assume X is a compact metric space with a

compatible metric p. For n > 0 let
D, ={xe X : forally,y" € G,y # vy, implies p(y|x, y5x) > n}
and
E,={(x,x") e D2 : forall y1,y; € G, p(yfx, ygx’) > n}.
Lemma 2.6.4. There is 1 > 0 such that u(Dy) > 1 —

62
1602 21T

To@r )|F|2 and (X% \ E,;) <

Proof. Clearly if 17y < 1, then Dy, C Dy,. We have X \ U0 Dy = {x € X : for
some y; # y2 € G, y{x = y5x}. Now since a is free, if y{x = y5x then we must
have y{x # y{x for some i € {1,2}. Each y € G is a product f; f> for f| € Fy and
f> € F, thus for any ¥ € G we have

c .a a rc a rc¢ 52
du()”?’)<du(f]’f])+du(f2’f2)<W

since f; € F. Therefore

52 52
<
16|F[2(2r)IFP — 16(2r)2IF]

u({x : forsomey € G,y“x # y“x}) < |G|
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62
and hence u (X \ Uyso Dn) < e
satisfies the lemma. Now for any n > 0,

So we can find n = 7o such that D,

D2\ UE,7 = {(x,x') € D}, : forally >0
n>0

there exist y1,y2 € G such that p(yx, y2x") < n}
={(x,x") € D,zl0 . there exist y1,y2 € G such that y;x = y,x’}.

For a fixed x, {(x, x’) € D,270 . there exist y1,y2 € G such that y;x = y,x’} is finite
SO U (D,270 \ Ups0 En) has measure 0 by Fubini and hence we have the lemma for
E,. m|

Let Y = {Y},...,Y,} be a partition of X into pieces with diameter < Z. For x € X
let Y(x) be the unique [ < m such that x € ¥;. Let « be the uniform (= product)
probability measure on 2" and for each w € 2" define a partition Z(w) = {Z}, Z5’}
by letting x € Z* if and only if w(Y(x)) = i. Thus we have a random variable
Z : (2™ k) = MALG(X, u)? given by w — Z(w). Fix now 7 : G — 2 and an
arbitrary subset A C X. We compute the expected value of u(Z(w); N A). Let x5

be the characteristic function of B.

Elu(Z: 0 A)] = /2  u(Z(w): 0 A)d(w)
- / / Yzt o (X))
2m J X
- / / (o, ()dk(@)du(x)
A J2m

= ‘/DnmA ‘/zm XZ(w), (X)dk(w)du(x) + /4\Dn ‘/2m XZ(w), (X)dk(w)du(x).
(2.6)

Now if x € D;, then for all y; # y> € G we have p(y{x,y5x) = n so that Y(y{x) #
Y(y5x) and hence the events w(Y(y{x)) = i and w(Y(y5x)) = j are independent.
We have x € y“Z(w)(,) if and only if w¥((y Hex)) = 1(y), so if x € D,, and
Y1 # 2 € G the events x € Y°Z(w)r(,,) and x € y“Z(w)+(y,) are independent. So

for x € Dy,
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/2 XZ(w), (X)dk(w) = k({w : x € Y Z(w)(y) for all y € G})

=[]« ({o: @@y =rm}) =27 @7
veG

Since u(X \ D;) < we have 27161 (,u(A) - L) < (6) < 2719 4(A) +

62
16(2r)IF 17’ 16(2r)1F
8 _ -lG| 5
oo and thus |[E[u(Z- N A)] - u(A)271°| < TR

second moment of u(Z, N A), in order to estimate its variance.

We now compute the

E 1z A7) = | u(ziw)n AP dx(@)

=LAAmwwmmfww>

:/2 /AZ XZT(w)(xl))(ZT(w)(xz)d/lz(xl,xz)dK(w)

) /AZ /2m XZ,(0) (X1 X 24 0 () dR(@)dp? (x1, 62)

) ./ ./ X2:(0) X)Xz, @) (2)dK(@)dp* (x1, x2)
AZQEU om

+ / / X7.(0)(X1) X 7. (o) (X2)dK(w)dp?(x1, X2).
ANE, J2

m

(2.8)

Now if (x1, x2) € Ej, then for any pair vy, y2 € G we have p(y{xi1,y5x2) > 17 so that
Y(y{x1) # Y(y5x2) and thus for a fixed pair (x1, x2) the events w(Y (yHexy) = 1(y)
for all y € G and w(Y(y~')°x») = 7(y) for all ¥ € G are independent. Hence for a
fixed (x1, x2) € E, we have

/2 sz,(w)(xl )X 2, (w)(X2)dK(w)
= k({w : x1 € Y Z(w)r(y) and x3 € Y Z(w)y(y) for all y € G})
= k({w : 0¥ (y")x1) = 7(y) and (Y ((y~"))x2) = 7(y) for all y € G})
=« ({w: 0¥ () = 1) forall y € G} )

- K ({w cw¥ (Y H)x)) = 7(y) forall y € G})
— 2~2(Gl
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2

W we see

by (7) and the fact that E;, C D;. Since u*(A \ E;) < 16(25
.

2

2 — ———
(u(A) 16(2r) P

W) 272161 < (8) < 27261 u(A)? +
r

and hence |]E[p(ZT NA)?] - ,u(A)22‘2|G|| <2 5. Therefore
16(2r)!F|

Var(u(Z, 0 A)) = E[u(Z, N AP - E[u(Z, N A

[Blu(Ze 0 471 = u(AP27261) + (ap2 20

IA

~ (- [Btu(z. 0 A1 - w219+ a2l
2

2
+ u(A)?27201 - (— + y(A)z"G')

(52
< .
16(2r)IFP — 8(2r)IFP

P RNTAT]
16(2r)IF|
52 4

B -0 -[6]
- 16(2r)IFP  (16(2r)1FP)2 +2u(A)2

16(2r)IFI?

Therefore Chebyshev’s inequality for u(Z; N A) gives

K ({w | u(Ze(w) N A) —E[u(Z: N A)]| > g}) < Var(u(Z; N A))

(%)’
1
< —-.
T 2(2r)IFP
Now since [E[u(Z; N A)] — u(A)27191] < & we have
p ({w : ‘,u(ZT(a)) N A) - u(A)z—iG'( > 5}) < W

Since this is true for each 7 € 2¢ we have

K ({w : ‘,u(ZT(a)) N A) — u(A)2716| > 6 for some 7 : G — 2})
1

< —.
2rlFl

Finally, letting A range over the sets R, for o € r¥ we get

K ({a) : ‘,u(ZT(a)) NR) - ,u(RfT)2_|GI > §forsome7r:G —2ando : G — r}) <

| =
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Then any member of the nonempty complement of
{w : ‘p(ZT(w) NR) - ,u(Rg_)T'G' >¢forsomer:G—2ando : G — r}

works as 7. This completes the proof of Theorem 2.1.4.

We note that the proof of Theorem 2.1.4 goes through for any group I" such that an
arbitrary free action can be approximated in the uniform topology by ergodic actions
- for example any group of the form Z * H. Such an approximation is impossible if
I" has property (T), and in this case the extreme points of FR. (I, X, u) are closed.
Therefore the following question is natural.

Question 2.6.1. Let I" be a group without property (T). Can every free action of T
be approximated in the uniform topology of A(T', X, i) by ergodic actions?

2.7 The space of stable weak equivalence classes

A (I, X, u) can be given the structure of a weak convex space in exactly the same
way as A_(I, X, u). Moreover, it is clear that for any a € A(T, X, u) and ¢ € [0, 1]
we have a ~ ta + (1 — t)a, so A. (T, X, p) is in fact a convex space. Recall that
the metric dy on A. (I, X, u) is defined by d,(a, b) = d(a X t, b X t) where d is the
metric on A (T, X, p).

Proposition 2.7.1. For any a,b,c € A(T', X, u) and t € [0, 1], we have ds(ta + (1 —
t)e,th + (1 —t)c) < tds(a, b).

It is clear that (fa + (1 — t)c) X t ~ t(a X t) + (1 — t)(c X v), so it suffices to show the
following.

Proposition 2.7.2. For any a,b,c € A(I', X, u) and t € [0, 1] we have d(ta + (1 —
t)e,th + (1 —t)c) < td(a, b).

Proof. Fix n, k and write C(a) = Cyx(a) in order to show that dy(C(ta + (1 —
1)c), C(tb + (1 — 1)c)) < tdu(C(a), C(D)). Fix € > 0. Let P = (P;)!"_, be a partition
of X U X, where X and X, are disjoint copies of X. Let Pl.l =P;nX;forl € {1,2}.
Find a partition Q = (Q;)?_, such that for i, j < n and p < k we have

lu(ygP! 0 P}) = u(ypQi 0 Q)| < du(C(a), C(b)) + €.
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Then if we take Q) = Q; U Pl.2 foralli,j < n,

(i + (L= Dy PO P = (i + (L= D)y 7000 07
= |tu(yy P} 0 P + (1= 0u(yy P} 0 PY)
—1u(ypQi N Q) — (1 = u(ysP? 0 P3|
= |tu(ysP! 0 P} +1u(yhQi 0 Q)] < 1(du(C(a), C(b)) + €).

Theorem 2.1.5 now follows from Proposition 2.7.1 and Corollary 12 in [25]. Tucker-

Drob and Bowen have obtained the next result independently of the author.

Proposition 2.7.3. The extreme points of A. (I, X, u) are precisely those stable

weak equivalence classes which contain an ergodic action.

Proof. Suppose that a is ergodic and we have a ~; tb + (1 — t)c for t € (0, 1).
Therefore a < ¢ X (tb + (1 —t)c) ~ t(b X ) + (1 — t)(c X ¢). Since a is ergodic,
Theorem 3.11 in [74] implies that @ < b and a < ¢. Suppose toward a contradiction
that b 4, ¢, so that for some n, k we have C,x(b) € cch(C,k(c)). Fixing n, k
write C(d) for Cyi(d). Let @ = sup,¢c() p(x, cch(C(c))) where p is the metric on
[0, 17™>%*k " Choose xq € C(b) so that p(xg, cch(C(c))) = . Choose yq € cch(C(c))
so that p(xo, yo) = @. Consider the point rxg + (1 — ¢)yg € cch(C(tb + (1 — t)c)). It

is easy to see that

ptx+ (1 —=t)z,ty + (1 —1)z) < tp(y,2)

for any x, y, 7 so we have

p(txo + (1 = t)yo, x0) = p(txo + (1 = t)yo, txo + (1 = )x0)

< (1 =1)p(x0, yo) < @

since 0 < ¢. Since @ = inf yeccn(c(e)) P(X0, y) We see that 1xo + (1 —1)yo ¢ cch(C(c))
and hence cch(C(th + (1 — t)c) € cch(C(c)). Since for any two actions d, e we
have d <; e if and only if cch(C,x(d)) S cch(C,«(e)) for all n, k this implies that
tb+(1—-1t)c 45 c. Buttb+(1—t)c <y a < ¢ by hypothesis, so we have a contradiction

and we conclude b <; c. A symmetric argument shows ¢ < b, so b ~; c. Since
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A (I, X, u) obeys (2) of Definition 2.2.1, we get that a ~; b ~; c. Therefore if
a stable weak equivalence class contains an ergodic action, it is an extreme point
of A. (T, X, u). On the other hand, an argument identical to the proof of Theorem
2.1.3 shows that if the stable weak equivalence class of an action a is an extreme
point of A (I, X, u) then if we write a = fZ a,dn(z) then there is an ergodic action
b such that a, ~; bforall z € Z. Thus a ~; b Xt ~; b and we see that a is stably

weakly equivalent to an ergodic action. O
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Chapter 3

A TOPOLOGICAL SEMIGROUP STRUCTURE ON THE SPACE
OF ACTIONS MODULO WEAK EQUIVALENCE.

Peter Burton

3.1 Introduction.

Let I' be a countable group and let (X, i) be a standard probability space. All
partitions considered in this chapter will be assumed to be measurable. If a is a
measure-preserving action of I on (X, u) and y € I' we write y“ for the element
of Aut(X, u) corresponding to y under a. Let A(T, X, i) be the space of measure-
preserving actions of I" on (X, ). We have the following basic definition, due to

Kechris.

Definition 3.1.1. For actions a,b € A(T, X, u) we say that a is weakly contained
in b if for every partition (A;)!_, of (X, ), finite set F C T and € > 0O there is a
partition (B;)?_, of (X, p) such that

‘,u (y'AinAj)—pu (be,- N Bj)‘ <€

foralli,j <nandally € F. We write a < b to mean that a is weakly contained in
b. We say a is weakly equivalent to b and write a ~ b if we have both a < b and

b < a. ~ is an equivalence relation and we write [a] for the weak equivalence class

of a.

For more information on the space of actions and the relation of weak equivalence,
we refer the reader to [53]. Let A(I', X, u) = A(I, X, u)/~ be the set of weak
equivalence classes of actions. Freeness is invariant under weak equivalence, so the

set FR_(T, X, u) of weak equivalence classes of free actions is a subset of A (T, X, u).

Given [a], [b] € A-(T, X, u) with representatives a and b consider the action a X b
on (X2 u?). We can choose an isomorphism of (X2, %) with (X, u) and thereby
regard a X b as an action on (X, u). The weak equivalence class of the resulting
action on (X, u) does not depend on our choice of isomorphism, nor on the choice of
representatives. So we have a well-defined binary operation X on A (T, X, u). This

is clearly associative and commutative. In Section 3.2 we introduce a new topology
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on A_(T', X, i) which is finer than the one studied in [1], [23] and [74]. We call this
the fine topology. The goal of this note is to prove the following result.

Theorem 3.1.1. X is continuous with respect to the fine topology, so that in this
topology (A(T, X, u), X) is a commutative topological semigroup.

In [74], Tucker-Drob shows that for any free action a we have a X sr ~ a, where sr
is the Bernoulli shift on ([0, 1], 2") with A being Lebesgue measure. Thus if we

restrict attention to the free actions there is additional algebraic structure.

Corollary 3.1.1. With the fine topology, (FR_.(I, X, u), X) is a commutative topo-

logical monoid.

Acknowledgements.
We would like to thank Alexander Kechris for introducing us to this topic and posing

the question of whether the product is continuous.

3.2 Definition of the fine topology.

Fix an enumeration I' = ()77, of I'. Given a € A(T,, X, u), 1, k € N and a partition
= (A; )k of X into k pieces let M . (@) be the point in [0, 117%<k whose s, I, m

coordinate is y (y?A; N A,,). Endow [O, 1]>k*k with the metric given by the sum of

the distances between coordinates and let dy be the corresponding Hausdorff metric

on the space of compact subsets of [0, 1]¥* Let C, x(a) be the closure of the set
{Mﬂ;(a) : A is a partition of X into k pieces } :

We have a ~ b if and only if C x(a) = C;(b) for all ¢, k. Define a metric dy on

AT, X, p) by

dy ([a] = Z 21 (sup dH Ct r(a), C,, k(b)))

This is clearly finer than the topology on A (T, X, u) discussed in the references.
Definition 3.2.1. The topology induced by d; is called the the fine topology.
We have [a,] — [a] in the fine topology if and only if for every finite set F/ C I" and

€ > 0 there is N so that when n > N, for every k € N and every partition (Al)le of
(X, ) there is a partition (Bl);":l so that

DA™ AN Ap) = (B O Byl < €
I,m=1
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forally e Fandl,m < k.

3.3 Proof of the theorem.

We begin by showing a simple arithmetic lemma.

Lemma 3.3.1. Suppose I and J are finite sets and (a;)icr, (bi)ie1, (¢j)jes, (d})jes are
sequences of elements of [0, 1] with Xjc;a; = 1, Xje;dj = 1, Xy |lai — bi| < 6 and
Zje] |CJ — d]| < 0. Then Z(i,j)EIXJ |(1iCj - bldjl < 26.

Proof. Fix i. We have

Z |CliCj - bidj| < Z(Iaicj - aidj| + |dja,- + djbil)
jeJ jeJ
= Z(ai|cj —d;| + djla; — b;|)
jeJ

< oa; + |al- - bzl

Therefore

Z |CliCj - bidjl < Z(di5 + |a; — b;|) < 26.

(i,j)elxJ iel

We now give the main argument.

Proof of Theorem 3.1.1. Suppose [a,] — [a] and [b,] — [b] in the fine topology.
Fix € > O and r € N. Let N be large enough so that when n > N we have

€
max Sgpchl(Clk(an)aclk(a))aSgpfhl(clk(bn),ckk(b» < 4 (3.1)

Fixn > N. Let k € N be arbitrary and consider a partition A = (A);_, of X? into k
pieces. Find partitions (Dl)f:1 and (Diz)?: , of X such that for each [ < k there are

i

pairwise disjoint sets /; € p X g such that if we write D; = {; j)ey, Di‘ X D;T then

€

2
DirA;) < .
w(Dind) < 5

(3.2)

i

Write (y,)._, = F. By (3.1) we can find a partition (E 1)5’21 of X such that for all
v € F we have

(3.3)

p
Z ‘/,L ()/”‘Dl.1 N DJI) - u ()/“”Eil N Ejl)‘ < 2
i,j=1
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and a partition (E?)?_, of X such that for all y € F we have
. €
Z ),u (beiz N Djz) - u (yb"El-2 N Ejz)‘ < T 3.4)
ij=1

Define a partition 8 = (B))_, of X? by setting B; = U ey, E} X EJ2 Fory € F

we now have
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k
Z |12 (y*** Dy N Dyy) = (2 (y“ P By 0 B,y
I,m=1
k
2 b 1 2 1 2
- Z H 7,a>< U Dil XDjl n U Diz XDjz
l,m:l (i],j])ell (iz,j2)€1m
— 12| b U E! xE2 |n U E! xE3 ‘
(iLj)el (i2,2)€lm
k

[

2 1 b2 1 2
L U YD} x¥"D? |n U D} x D?
(i.71)el; (i2.72)€Lm

2 n n 2 2
|| U rELxy™EX || | ELxE}
(i.j)el (i2.)2)€lm

i

2| U (ol xyp3)n (Dl x3)
(i1,j15i2,)2)
elixl,,

2 npl 2 by 1 2
—u U (),a E; X Ejl) N (y E, x Ejz) ‘
(i1,J1i2,j2)

elixly,
k
2 1 1 b2 2
Lm=1 (i1,j152,)2)
el xI,

(i1,J1i2:j2)
elixly,

k
1 1 b2 2
< Z Z "u (y”Dl.l n Diz) H (7 D./l n Djz)

Im=1 (i1,j1,i2,j2)
elixl,,

a, 1l 1 bn 2 2
—,u(y Ei1mEi2)ﬂ(y EjlmEjz)

Y ‘,u (y“D}l N D}z) i («beJZ.1 N Djz.z) —u (y“”El.ll N E}z) y («ybnE}1 N Efz)
(i1,j1582,2)
EPXqXpXq
= Z ‘u ()/“Dl.l1 N Dl.lz) u ()/I’Djz.1 N Djz.z) —u ()/a”Eil1 N Ellz) u ()/}"‘Ejz1 N Ejzz) .
(i1,i2,j1,2)
er’xq’

(3.5)
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Now (3.3) and (3.4) let us apply Lemma 3.3.1 with I = pz, J = q2 and 6 = ;’i to
conclude that (3.5) < 5. Note that for any three subsets Sy, S, S3 of a probability
space (Y, v) we have

[v(S1 N S3) = v(S2 N 83)| = [v(S1 NS> N S3)
+v((S1\ $2) N S3) = v(S1 NS N S3) —v((S2\ S1) N S3)|
< v($1A87),

and hence for any /, m < k and any action ¢ € A (I, X% 1) we have

|12 (“ AL 0 A) = 12(y°Dy 0 Dy

<P A N Ap) = (P Dp N Ap)| + |12 (YD 0 Aw) = 1 (Y°Dy 0 Dyy)|
€

< 1 (Y A8y D)) + pA(ApaDy,) < T

where the last inequality follows from (3.2). Hence for all y € F,

k
D26 A0 Ay) = P B 0 By)

I,m=1

k
< (P64 0 Aw) = 12y Di 0 D)

I,m=1
+ |12y’ Dy 0 Dyy) = (2 (y**""B; 0 By)))
k
€ 2 axb 2 anan
SZ(Z_H+|M(7 Dy N Dy) — u*(y BlﬂBm)l)

I,m=1

< g +(3.5) <e.

Therefore M [g]‘;(a X b) is within € of M ﬁ(an X b,) and we have shown that for all k,
Cix(a x b) is contained in the ball of radius € around C;x(a, X b,). A symmetric
argument shows that if n > N then for all k, C; x(a, X by) is contained in the ball of

radius € around C; x(a X b) and thus the theorem is proved. O
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Chapter 4

WEAK EQUIVALENCE OF STATIONARY ACTIONS AND THE
ENTROPY REALIZATION PROBLEM

Peter Burton, Martino Lupini and Omer Tamuz

4.1 Introduction

Let G be a countable discrete group and let m be a probability measure on G. Letalso
(X, w) be a standard probability space. A measurable action of G on (X, u) is said
to be m-stationary if the corresponding convolution of m with u is equal to . More
explicitly, this means X .. m(g) - u(gA) = u(A) for all measurable subsets A of X.
Stationary actions are automatically nonsingular, and form a natural intermediate
class between measure-preserving actions and general nonsingular actions. We will
write Stat(G, m, X, u) for the set of m-stationary actions of G on (X, u). Given an
action a € Stat(G, m, X, u) we will write g¢ for the nonsingular transformation of

(X, w) corresponding to g.

In [53], Kechris defined a notion of weak containment for measure-preserving
actions of countable groups analogous to the standard notion of weak containment

for unitary representations. The same definition can be given for stationary actions.

Definition 4.1.1. Let a, b € Stat(G, m, X, ). We say that a is weakly contained in
b, in symbols a < b, if the following condition holds. For every € > 0, every finite
F C G and every finite collection Ay, . .., A, of measurable subsets of X, there are

measurable subsets By, . .., B, of X such that
|u(g*Ai N Aj) — u(g"Bi N Bj)| < €

forall g € Fandalli,j € {1,...,n}. We say that a is weakly equivalent to b, in
symbols a ~ b, ifa < band b < a.

Thus a is weakly contained in b if the statistics of a on finite partitions can be sim-

ulated arbitrary well in the action b. Weak equivalence is a much coarser relation
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than isomorphism; for example in [36] it is shown that all free measure-preserving
actions of an amenable group are weakly equivalent. It is also better behaved from
the perspective of descriptive set theory: there is in general no standard Borel struc-
ture on the set of isomorphism classes of m-stationary actions, whereas in Section
4.3 we will define a natural Polish topology on the set of weak equivalence classes

of m-stationary actions for any pair (G, m).

In [38], Furstenberg introduced an invariant 4,,(X, y, a) which quantifies how far an
m-stationary action a is from being measure-preserving. Later termed Furstenberg
entropy, this is defined by

_ . dgu
(X o) = ;Gm@ /X log %2 (5)du().

By Jensen’s inequality, we have that &,,(X, u, a) is nonnegative, and it is zero if and
only if a is measure-preserving. The following problem has been studied in articles
such as [19], [21], [31], [46], [52] and [65].

Problem 4.1.1 (Furstenberg entropy realization problem). For a fixed pair (G, m),

describe the possible values of Furstenberg entropy on ergodic v-stationary systems.

The goal of this paper is to establish the following theorem, which shows that the
above problem can be regarded as a problem about the structure of the space of

weak equivalence classes.
Theorem 4.1.1. Furstenberg entropy is an invariant of weak equivalence and de-

scends to a continuous function on the space of weak equivalence classes.

4.2 A characterization of weak containment

In this section we verify that one obtains an equivalent notion if one alters the

definition of weak containment to allow shifts on both sides of the intersections.

Proposition 4.2.1. Let a, b € Stat(G, m, X, u). Then the following are equivalent.

(i) a is weakly contained b.

(ii) For any finite subset F of G, € > 0, and measurable subsets Ay, ..., A, of X,

there exist measurable subsets By, . . ., B, of X such that

|u(g“Ai N h°Aj) — w(g”B; N h"B))| < € 4.1)
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forallg,h € Fandi,j € {l,...,n}

Proof. Taking h = 1g it is clear that (ii) implies (i). We now show (i) implies
(ii). Suppose that F' = {go, ..., gn} is a finite subset of G, n is a natural number,
and Ao, ..., A, are measurable subsets of X. Without loss of generality, we can
assume that n = m, gop = 1g and Ag = X. Fix € > 0 and choose 0 < § < €/7. Set
Aij = g;‘Ai fori,j € {1,...,n}. In particular we have A;p = A; and A;; = gj.’Al-,o
fori,j € {1,...,n}. By assumption there exist measurable subsets B;; of X such
that
|u(Aij 0 g Ar) — u(Bij N ghBLi)l < 6

forall i, j, k,[,m € {1,...,n}. Since Agp = X and g9 = 1g, we have that u(Bop) >
1 — 6. It follows that

(g8 Ark) — u(ghBri)l <26
form,l, k € {1,...,n}. Therefore

(B} m) + (g5 B o) — 20(Bjm N gL B o)
66 + (Ajm) + 18&mAj0) = 21(Ajm N gmAjo)
60 + /J(Aj,mAgZAj,o) = 60.

u(B;mghB;o)

IA

In conclusion

(gt Aingl Aj) (8o Biongl Bo)l < |p(gf AioN A m)—p(8h BioNBjm)|+65 < 76 < €.

for every i, j, k,m € {1,...,n}. Thus we can take B; = B;( to obtain (4.1). O

4.3 The space of weak equivalence classes

For a € Stat(G,m, X, u) we will write @ for the weak equivalence class of a.
Let (gk);., be an enumeration of G. For a natural number m and an ordered
finite partition A = {Ay,...,A,} of X, we will write M m’z(a) for the point in
[0, 1]™™" whose (k, i, j)-coordinate is u(g{A; N Aj). Let then Cp,(a) be the
closure in [0, 1]™"" of the set

{Mm,Z : A is a partition of X into n pieces.}.
Clearly we have a < b if and only if C,, ,(a) € C,,,(b) for all natural numbers m, n.

Let -
5(a, b) = Z

m,n=1

1
ym+n ’ dH(Cm,n(a)7 Cm,n(b))a
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where dp is the Hausdorff distance on the space of compact subsets of [0, 1]/,
Then for any a, b, c,d € Stat(G, m, X, u) with a ~ ¢ and b ~ d we have d(a, b) =
8(c, d). Thus the quantity 6(d, b) = 6(a, b) is a well-defined metric on the space of
weak equivalence classes. The corresponding topology is easily seen to be Polish.
We denote this space by §t§[(G, m, X, p). As in the measure-preserving case, an

ultraproduct construction shows that Spotj/at(G, m, X, u) is compact.

In addition to its topology, §t§[(G, m, X, u) carries a convex structure. Given
a,b € Stat(G,m, X, u), and ¢t € (0, 1) one can realize a as an action on [0,7) and
realize b as an action on [, 1]. One then defines ta + (1 —1)b to be the action on [0, 1]
which agrees with @ on [0, ) and b on [z, 1]. Itis easy to see that this procedure gives
a well-defined operation on S?a/t(G, m, X, ). As in the measure-preserving case
discussed in [23], the convex structure is better behaved if one instead considers the
relation < of stable weak containment. This is defined by letting a <; b if and only
if a < b X, where ¢ is the trivial action of G on a standard probability space. Write
SFtVatS(G, m, X, i) for the space of stable weak equivalence classes. ¢ gives a Polish
topology on §rats(G, m, X, u) and since h,,(X, u, a xt) = h,(X, u, a), Theorem 4.1.1
continues to hold if we replace weak equivalence by stable weak equivalence. The
arguments from [23] carry over to show that §tvats(G, m, X, u) is isomorphic to a com-
pact convex subset of a Banach space, and that its extreme points are exactly those
stable weak equivalence classes containing an ergodic action. Moreover, the map
a — hyu(X, u, a) respects the convex combination operation. Thus understanding
the convex structure of %S(G, m, X, u) could give new understanding of Problem
4.1.1.

4.4 Proof of Theorem 4.1.1

For each n, let a, € Stat(G, m, X, u); let also a € Stat(G, m, X, u). Assume that a,
converges to d in §tvat(G, m, X, u). Fixing g € G, it is enough to show the following:

for any ¢ > 0 we have

lim u ({x €X: dganﬂ(x) > c}) =u ({x €X: dg“u(x) > c}) .
du du

n—oo

dg’u

Let M be a positive constant such that - S M for any m-stationary action
a. Let w, = % and w, = dg;#. Write C = {x € X : w(x) > ¢}, and

C, = {xeX:w,(x)>c}. We will prove that u(C) < liminf, u(C,). The
proof that ¢ (C) > limsup,, 1 (C,) is analogous. Suppose by contradiction u (C) >
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liminf, u(C,). Thus, after passing to a subsequence, we can assume that there is
6 > 0 such that u (C,) < u(C) - 6 for every n € N. Identify X with [0, 1], so that
we have a Borel linear order on X. Define the Borel linear order C on X by letting
tCsiffw(t) < w(s)orw(t) = w(s)and t < s. Similarly define C, in terms
of w,. Note that if D is a terminal segment of C then we have u(g?D) > u(g*E)
for any E with u(E) = u(D). For n € N write D, for the terminal segment of C
such that w(D,) = u,(C,) and write E, for the terminal segment of T, such that
u(C) = uu(E,). Letalso F;, be the terminal segment of C such that u(F,) = u(C,)+96
and let K, be the terminal segment of C,, such that u,(K,) = u(C,) + 6. Clearly
D,CF,CcCandC, C K, C E,. We have

ﬂ(Fn \ D) = ,u(Fn) - l-l(Dn) =0= ,un(Kn) - ,un(Cn) = ,un(Kn \ Cn) 4.2)
and similarly
u(C\ Fy) = pu(Ey \ Ky). 4.3)
Note that since w(x) > ¢ > wy(y)if x € Cbuty € X \ Cp, (4.3) implies

u(EUC\ Fy)) = pn (8 (En \ Ky)) . (4.4)

Let H be the terminal segment of C such that u(H) = u(C) — ¢ so that by (4.2) we
have 6 = u(C \ H) = uw(F, \ D,). Since F, \ D, € C and C \ H has the lowest
Radon-Nikodym derivative of any subset of C with measure ¢ this implies

u(g(C\ H)) < u(g*(F,\ Dy)). (4.5)

For n € = from (4.2), (4.4) and (4.5) we have

p(8“(C \ Dp)) — p(g“(En \ Cp))

= u(g(C\ Fn)) + u(g*(Fn \ Dn)) — 1 (g (En \ Kp)) — pt (8" (K \ Cn))

> 1 (g (Fu \ Dy)) — (8 (Kn \ Cn)) 2 p(g“(F \ Dp)) — ¢ - pt (K \ Cp)

= (g (Fy \ Dy)) — c6 2 u(g*(C\ H)) — 6. (4.6)

For x € C we have w(x) > ¢ so the last quantity is strictly positive. Choose

1
0<e<—m- “C\ H))—co). 4.7
¢ < sy (HEC\H) - o) @47)
Since d@, — a, for every Borel partition Ay, . . ., A of X thereis a partition By, . . ., By

of X such that |u(A;) — u(B;)| < € and |,u(g“Al~ NA;)—u(g™B;N Bj)| < g for all
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i,j €{l,...,k}. Fixing n, write C' = C,, D = D,, E = E, and C’'=C,,. Note that
from (4.6) and (4.7) we have

204+ M)e < p(g(C\ D)) — n(g™(E\C)). (4.8)
Let Ay = X\ Cand A, = C. Find By, B, C X such that |u(A;) — u(B;)| < € and
|u(g"Ai N Aj) — u(g™Bi N B))| < &
for each i, j € {1,2}. Note that
u(X\ (B1UBy)) < 2e.
We have

n(g“Ar) = u(g"Ar N Ap) + u(g“Ar N Az)
> u(g™Bi N By)+ ug™BiNBy) -2
> (g™ By N By) + u(g™B1 N By) + u(g™ By \ (B1 U By)) — 4e
> u(g™ By) — 4e. 4.9)

Note that

u(B1) = (A1) —e = (X \C) - &.
Write L for the initial segment of C” such that u(L) = u(X \ C) — &. Note that
UX\E)=pu(X\C)andso u(X \ (EUL))=e. We have

u(E™(X\E)) = u(g™L)+u(g™(X\(EUL)))

and therefore
uEgL) = u(g(X\E) - Me. (4.10)

Since u(By) > p(L) and u(g* L) < u(g*J) for any J C X with u(J) > u(L) from
(4.10) we see
w(gB) = n(g™(X \ E)) - Me.

From (4.9) we have
p(gX\C) 2 uE™(X\E) -4+ Me. (4.11)
Now write A = C’ and A, = X \ C’. Find By, B, C X such that

|,u(Al N A]) —u(B;iN B])l <ée&
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and
(g™ Ai N Aj) — u(g“Bi N B))| < &

for each i, j € {1,2}. Arguing as before we have u(g* Ay) < u(g?B;) + 4& and
u(g*By) < u(g?D) + Me so that

w(gC" < u(g*D) + (4 + M)e. 4.12)
From (4.11) and (4.12) we have
pEX\NC)UD)) = pu(g" (X\E)UC))—2(4+ M)e. (4.13)

Note that
Du(C\D)uXxX\C)=X

and
CU(E\CHUX\E)=X.

Thus from (4.8) and (4.13) we have

I=pE"(DUX\O))+u(E(C\D)
> p (g™ (C"U(X\E)) —2(4+ M)z + pu(g*(C\ D))

> pu(g" (C'UX\E))+pu@™(ENC)) =1,

which is the desired contradiction. This concludes the proof of Theorem 4.1.1.
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Chapter 5

NAIVE ENTROPY OF DYNAMICAL SYSTEMS

Peter Burton

5.1 Introduction.

A fundamental aspect of the theory of dynamical systems is the invariant known
as entropy. Defined for both measurable and topological systems, this is a nonneg-
ative real number which quantifies how random the given dynamics are. Entropy
was introduced for measurable Z-systems by Kolmogorov in [64] and Sinai in [73]
and for topological Z-systems by Adler, Konheim and McAndrew in [5]. In [67],
Ornstein and Weiss extended much of entropy theory from Z-systems to I'-systems
for amenable groups I'. More recently, there has been significant progress in cre-
ating ideas of entropy for systems where the acting group is nonamenable. The
most significant aspect of this new work is Bowen’s theory of sofic entropy, initially
developed by him for measurable systems in the papers [14], [15], [18] and [12],
and further developed for both types of systems by Kerr and Li in [61], [63] and
[62] and by Kerr in [58] and [59]. Another thread is the concept of Rokhlin entropy,
developed for measurable systems by Seward in [70], [71] and [72]. In this paper
we begin to study a third notion of entropy for general systems, called naive entropy.
This idea was suggested by Bowen in [12] as the most direct way of generalizing
the definition for Z-systems. While he considered only the measurable context, a

similar definition can be made for topological systems.

Following an observation of Bowen, we show that if I" is a nonamenable count-
able group then any topological or measurable I'-system has naive entropy either
0 or co. Thus for nonamenable groups naive entropy is best understood as a di-
chotomy rather than an invariant. A natural question is to what extent the dichotomy
between zero and infinite naive entropy corresponds to the dichotomy between zero
and positive sofic entropy. Bowen has conjectured in [12] that zero naive entropy

implies sofic entropy at most zero. In Section 5.4 we prove the following topological
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version of this conjecture. Here hP is the naive topological entropy and htzp is the

sofic entropy with respect to a sofic approximation X.

Theorem 5.1.1. Let ' be a sofic group, let ' ~ X be a topological T'-system and
let ¥ be a sofic approximation to T. If R2(I' ~ X) = 0 then htzp(F ~ X)<0.

One advantage of naive entropy is that in many cases it is easy to see that a system
has zero naive entropy. For example in Section 5.2 we observe that if I" has an
element of infinite order, then any distal I'-system has zero naive entropy in both
senses. This gives a partial answer to a question of Bowen. Furthermore, in Section
5.2 we are able show that if I is a free group, then the generic I'-system with
phase space the Cantor set has zero naive topological entropy. More precisely, if
X is a compact metric space and I' a countable group, let A,(I', X) denote the
Polish space of topological I'-systems with phase space X. We say a sequence
(T~ X)2y € Awp(T, X) of T'-systems converges to a system I' ~* X if for
every y € I the sequence of homeomorphisms corresponding to y in a, converges

uniformly to the homeomorphism corresponding to y in a.

Theorem 5.1.2. Let 2 denote the Cantor set and let F be any countable free group.

The set of topological F-systems with zero naive entropy is comeager in A (IF, ZN).

Combining Theorems 5.1.1 and 5.1.2 we have the following corollary.

Corollary 5.1.1. IfF is a countable free group, then the set of E-systems with sofic

entropy at most 0 is comeager in Ay (F,2V).

Another natural question to ask is whether there is a relation between naive measure
entropy and naive topological entropy. In Section 5.2 we show half of such a

variational principle. Let Ay, denote the naive measure entropy.

Theorem 5.1.3. IfT" ~ X is a topological I'-system and u is an invariant measure
forI' ~ X then
(T~ (X, ) < B (T ~ X).

Notational preliminaries.

Throughout the paper I' will denote a countable discrete group. A measurable
I-system I' ~* (X, u) consists of a standard probability space (X, ) and measure-
preserving action on I" on (X, u), equivalently a homomorphism a : I' — Aut(X, w),

where Aut(X, u) is the group of measure-preserving bijections from (X, u) to itself.
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We use Kechris’s convention from [53] and write y“ instead of a(y) for y € TI.
We identify two measure-preserving bijections if they agree almost everywhere,
and thus identify two T-systems I' ~% (X, u) and T ~% (X, u) if y* = y* almost

everywhere for each y € I

A topological I'-system I' ~“ X consists of a compact metrizable space X and
a homomorphism @ : I' - Homeo(X), where Homeo(X) is the group of homeo-
morphisms of X. As in the measurable case, we write y“ instead of a(y). f [ =Z
we use the standard notation and write a(1) = T, denoting the system by (X, T') or
X, 1, T).

For n € N, we let [n] denote the set {1,...,n}.

Acknowledgments.
We thank Alexander Kechris for introducing us to this topic, and Lewis Bowen for
allowing us to read his preprint [12]. We also thank the anonymous referee for

numerous helpful comments. This research was partially supported by NSF grant
DMS-0968710.

Additional note.

After communicating our results to Brandon Seward, he informed us that the mea-
surable case of Bowen’s naive entropy conjecture has been proved independently by
a number of researchers including Miklos Abert, Tim Austin, Seward himself, and
Benjamin Weiss. This together with our Theorem 5.1.3, the variational principle
for sofic entropy and the fact that a topological system with no invariant measure
has sofic entropy —co give an alternate, indirect proof of our Theorem 5.1.1. Our
work was done independently of the (as yet unpublished) work of these authors on

the measurable case.

5.2 Naive entropy.

Naive measure entropy.

In this section we introduce the naive measure entropy of a dynamical system. Fix a
measurable I'-system I’ ~“ (X, u). All partitions considered will be assumed to be
measurable. If @ = (Ay, ..., A,) is a finite partition of (X, u) the Shannon entropy
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H,(a) of @ is defined by

Hy(@) = = ) u(A;) log(u(A).
i=1

If @ and B are partitions of (X, u), the join a V B is the partition consisting of all
intersections A N B where A € @ and B € . We make a similar definition for the
join \/I_; a; of a finite family (;)"_, of partitions. If & is partition and y € " we

let y?a be the partition {y“A : A € a}. For a finite set F C I let " denote the

partition \/,ep y?@. If (X, 1, T) is a Z-system and F = [0, n] we write a; for af.

Recall the classical definition of entropy for Z-systems.
Definition 5.2.1. Let (X, u, T) be a measurable Z-system. The dynamical entropy
hu(a@) of a finite partition « is defined by
h,(a) = inf lH (af)
K neN n HATOS
The measure entropy h(X, u, T) of the system is defined by
h(X, 1, T) = sup{h,(@) : « is a finite partition of X.}
See Chapter 14 of [42] for more information on the entropy of Z-systems. In [12],
L. Bowen has introduced the following analog of Definition 5.2.1.

Definition 5.2.2. LetT" ~ (X, u) be a measurable T'-system. The dynamical entropy
hu(a) of a finite partition « is defined by

o1 F
huy(a) = n}f mHﬂ (a ),

where the infimum is over all nonempty finite subsets F of I'. The naive measure

entropy hy, (I' ~ (X, p)) of the system is defined by

how ('~ (X, p)) = sup{hy(a) : a is a finite partition of X }.
In the case of Z, Definition 5.2.2 agrees with Definition 5.2.1. The next fact was
proven by Bowen in [12].

Theorem 5.2.1. If T is nonamenable then for any measurable I'-system T' ~ (X, u)
we have hy(I' ~ (X, 1)) € {0, oo}
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Proof. Suppose there is a finite partition & with h,(@) = ¢ > 0. Choose r € R.
Since I' is nonamenable, there is a finite set W C I' such that
WF
inf | | > Z,
F |F| c
where the infimum is over all nonempty finite subsets of I'. Then we have

1
w . WF
hu (a ) = Hl}f _| lH# (a )

WF 1
S WEL(L ()
F |F| \|WF|

. IWFIh#(a)

> inf
F|F]|

>r.

Naive topological entropy.

In this section we introduce the naive topological entropy of a dynamical system.
Fix a topological I'-system I' ~“ X. If U is an open cover of a compact metric
space X, let N(U) denote the minimal cardinality of a subcover of U. If U and V
are open covers of X, the join U V V is the open cover consisting of all intersections
UNV where U € U and V € V. We make a similar definition for the join \/]_; U;
of a finite family (24;)_, of open covers. If U is an open cover and y € " we let
y“U be the open cover {y*U : U € U}. For a finite set F C T, write U" to refer to
Vyer Y*U. 1f (X, T) is a Z-system and F = [0, n] we write U] for UT. Again we

recall the definition of entropy for Z-systems.

Definition 5.2.3. Let (X,T) be a topological Z-system. The entropy h®*(U) of a
finite open cover U is defined by

1
tp — i _ n
h'P(U) ;Ielg - log (N (24))),
and the topological entropy h'®(X, T) of the system is defined by

h*(Z ~ X) = sup{h"*(U) : U is a finite open cover of X}.

Following Definition 5.2.2 we make the following definition.

Definition 5.2.4. Let I' ~ X be a topological T'-system. Given a finite open cover
U of X we define the entropy h(U) of U by

W) = inf % log (N (wF)) ,
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where the infimum is over all nonempty finite subsets of I'. We define the naive

topological entropy h"(I' ~ X) of T ~ X by

hflpv(l“ ~ X)= sup{hflpv((lxl) : U is a finite open cover of X }.

A similar concept has been studied in [9], [10] and [40] and is discussed the text
[33]. If I" has a finite generating set S, these authors define the entropy of an open

cover U by the formula
1 n
lim sup — log (N (T/IS ))

n—oo n

and the entropy of the system by taking the supremum over finite open covers.
Clearly a system with zero entropy in this sense has hgz, equal to zero. Hence we
work with h:ﬂ, in order to get the strongest form of Theorem 5.1.1. An identical
argument to the proof of Theorem 5.2.1 shows that if I' is nonamenable then any

topological I'-system has naive topological entropy either O or co.

We record the following observation, which is immediate from the definition.

Proposition 5.2.1. If i (I A% X) > 0 then for every y € T with infinite order we
have h®(X, y%) > 0, where we regard (X, v*) as a Z-system.

Equivalent definitions of naive topological entropy.

We now introduce two standard reformulations of the definition of naive topological
entropy, due originally in the case of Z to R. Bowen. For a metric space (X, d) and
€ > 0 say aset § C X is e-separated if for each distinct pair xj, x; € S we have
d(x1,x) > €. Say that S is e-spanning if for every x € X there is xo € S with
d(x, xg) < €. Define Sep(X, €, d) to be the maximal cardinality of an e-separated
subset of X, and Span(X, €, d) to be the minimal cardinality of an e-spanning subset
of X. Itis clear that

Span(X, €, d) < Sep(X, €, d) < Span (X, g d) . (5.1)
Now, fix a'-system I' ~“ X and a compatible metric d on X. For a nonempty finite
subset F' C I define a metric dr on X by letting dr(x1, x2) = max,cr d (y*x1, y"x2).

The proof of the following is an immediate generalization of the corresponding

statement for Z-systems, which can be found as Proposition 14.11 in [42].

Proposition 5.2.2. Letting F range over the nonempty finite subsets of I' we have

1 1
h;pv (' ~* X) = supinf — log(Sep(X, €, dr)) = sup inf — log(Span(X, €, dr)).
e>0 F |F| e>0 F |F|
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Proof. Fix € > 0and F C T finite. Write F~! for {y~! : y € F}. Let U be an open

cover of X with Lebesgue number €. Let S C X be an e-spanning set of minimal
cardinality with respect to dp-i1. For every x € X thereis s € S withd (y“x, y“s) < €
for all y € F~!. Write B(s) for the ball of radius € around s with respect to d. We
have y“x € Be(y“s) or equivalently x € (y~')“ Be(y®s) for all y € F~!. Therefore
x € MNyepmt (Y1) Be(y“s) and s0 Uses Nyep-t (¥71) Be(y%s) is an open cover of
X. Now, for every s € S and y € F~! we have that B.(y“s) is contained in some
element of U and hence (),cp-1 (y_l)a Bc(y“s) is contained in an element of UF".
It follows that

N (qu) < |S] = Span (X, €, dy1). (5.2)

If V is an open cover of X, let diam(V) denote the supremum of the diameters
of elements of V. Let V be an open cover of X with diam(V) < €. Let R be
an e-separated set of maximal cardinality with respect to dr. An element of V¥

contains at most one point of R, and hence

Sep(X, e, dr) < N ((VF) . (5.3)

By (5.1),(5.2) and (5.3) if U has Lebesgue number € and diam(V) < e we have for
all finite F C I":

HE(U) = inf % log (N (qu))

) 1
< 11}f 7 log (Span (X, €, dr))

) 1
< n}f m log (Sep (X, €, dF))
o1 F
< n;fm log (N ((V ))
= (V)
<K (T AYX). (5.4)

Assume i2 (I A% X) < co. Given k > 0find an open cover U so that &b, (I A% X)—
k < W (U). Then if € is less than the Lebesgue number of U, (5.4) implies that

1
AP (T A% X)—k < ir};f 7| log (Span (X, €, dr))
1
< inf — log (Sep (X, €, dF))

|F|
<hE (T AL X).
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Assume AL (I’ A% X) = oo. Given r € R find an open cover U so that r < hP (U).

Then if € is less than the Lebesgue number of U, we have again by (5.4) that

1 1
r < iI}f Tl log (Span (X, €, dp)) < ir;f Fl log (Sep (X, €, dF)) .

In particular we see from Proposition 5.2.2 that the quantities

1
sup irFlf m log(Sep(X, €, dr))

e>0

and

1
sup inf — log(Span(X, €, dr))
b F ]S

are independent of the choice of compatible metric d.

Proof of Theorem 5.1.3.
Recall that if @ = (Ay,...,Ar) and B8 = (Bj, ..., By,) are finite partitions of (X, u),
the conditional Shannon entropy H(«|S) of a given f is defined by

k m

H(alp) =~ Y 3" u(Ai 0 Bj)log (
1

p(A; N Bj))
i=1 j=

u(By) )
We will use the following well-known facts about Shannon entropy, which appear
in [42] as Propositions 14.16, 14.18.2 and 14.18.4 respectively.

Proposition 5.2.3. (1) H(a|Vaz) = H(ay)+ H(az|ay), in particular H(a1 V a3) >
H(ay),

(2) If B refines B then H(er|B2) < H(| 1),

(3) H(a1 VvV az|p) < H(a1|B) + H(a2|B).

The following argument is a straightforward generalization of the corresponding

proof for Z-systems given as Part I of Theorem 17.1 in [42].

Proof of Theorem 5.1.3. Let u be an invariant measure for the topological I'-system
I~ X. Leta = (A,-)l(‘:1 be a measurable partition of (X, u). Choose closed sets
B; C A; such that u(A;AB;) is small enough so H(«|B) < 1, where S is the partition
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(Bi)fjll and By = X — Ull.‘zl B;. Then for any finite set F C I" by (2) and (3) of

Proposition 5.2.3 we have

H, (a/F|,8F) < >'H, (yaa|,8F)

veF

< > Huy alyB)

yeF
= |F|- Hu(a|B)
< |F|.

Hence by (1) of Proposition 5.2.3 we have
Hﬂ(a/F) SHM((L’FVﬁF)
o) o)
< Hy (B7) + IF|
and consequently

hu(a) = ir}f %Hﬂ (a/F)

< inf%l (Hﬂ (,BF) + |F|)

P
= h,(B) + 1.

(5.5)

Now let U; = B; U Bgy1. Then X — U; = J1<j<, Bj so U; is open and U = (U,-)l’.":l

J#l
is an open cover of X. Note that the only elements of 8 meeting U; are B; and By 1.

Let V(F) be an open subcover of U* with minimal cardinality. We claim that each

element of V(F) meets at most 2/F! elements of 8. Indeed suppose ¢ : F — [k]

is a function such that (,cp y*Ug,) € V(F) and let x € (), cp ¥“Up(,). Then if

Y : F — [k + 1] is any function so that x € [),cp ¥*By(y) € BY we must have

By ) N Uyy) # 0 and hence y(y) € {¢(y), k + 1} for all y € F. Therefore

7| < 2" v ().
It follows that
H, (") < tog (6]
< log (2'” : |(V(F)|)
< |F|log2 + log (|V(F)])
— |F|log2 + log (N (qu))

(5.6)
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and hence by (5.5) and (5.6) we have

hu(a) < hy,(B) + 1

- (ir}f %H# (,BF)) 1

< (inf o7 (1F110g2 +tog(v 2r7)))) 1

= h2(U) + 1 +log2.

Therefore
hoy (T~ (X, ) < B2 (T ~ X) + 1 + log2.

Now observe that the measure x" on X" is invariant for the n'" Cartesian power of

the system I' ~ X. Therefore the same argument shows

By (0~ (X" 1) < P (0D~ X") + 1 + log 2. (5.7)

Immediate generalizations of the proofs of Theorems 14.14 and 14.31 in [42] show
that both forms of naive entropy are additive under direct products. Thus (5.7)
implies

nohy (T~ Xop) <n-h? (T~ X)+1+log?2

for all n > 1 and therefore we must have

hay (T~ (X, ) < hgy (T~ X).

Examples.
Example 5.2.1. Let (Y, v) be a standard probability space. Assume v is not sup-
ported on a single point. Consider the Bernoulli shift T ~ (X, u) where X = Y

r

and u = v'. Let @ = (Ay, Ay) be a partition of (Y, v) with positive entropy and

a = (Al, Az) be the partition of (X, u) given by
Al’ = {w €eX: w(er) € Ai},

where er is the identity of I. Then as in the case of a Z-system distinct shifts of &
are independent and so we have H, (&F) = |F|-Hy(@). Thus

h, (&) = H,(&) = H,(a) > 0.
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By Theorem 5.2.1 we see that if T is nonamenable then hy, (I ~ (X, u)) = co. Thus
Theorem 5.1.3 implies that the corresponding topological systemI" ~ X has infinite

naive entropy.

Example 5.2.2. Let I' ~“% X be a topological system and d a compatible metric on
X. Recall that ' ~“ X is said to be distal if for every pair x1, x, of distinct points
in X we have infycr d (y“x1,y"x2) > 0. In particular, an isometric system such as

a circle rotation is distal.

Now, suppose that I' ~* X is distal and T" has an element vy of infinite order. Then
(X, v%) is a distal Z-system. Theorem 18.19 in [42] implies that distal Z-systems
have zero entropy. Thus Proposition 5.2.1 guarantees that hg\),(l“ ~*X)=0. By
Theorem 5.1.3, hy(I' A% (X, u)) = 0 for any invariant measure p. It is likely that
a distal I'-system has zero naive topological entropy for an arbitrary I, but we were

unable to prove this despite significant effort.

Proof of Theorem 5.1.2

We first show three preliminary lemmas.

Lemma 5.2.1. Let U be a finite open cover of a compact metrizable space X. Fix
a finite set F C " and k € N. Then

Z(U,F, k) = {(r A X) € AT, X) 1 N

\ y“fu) < k}

yeF
is open.
Proof. Write U = (U;)"_,. Let (' ~* X) € Z(U, F, k) and let V be a subcover of

Vyer y*U with cardinality < k. Let d be a compatible metric on X and let d,, be
the metric

du(f,8) = supd(f(x),8(x)).
xeX
Note that to obtain the uniform topology on Homeo(X) we must use the metric
di(f.8) = du(f.8) + du(f7' 7).

However the topology induced by d, on Ay (I, X) is the same as the one induced

by d}, so we will continue to work with the former.
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Let € be a Lebesgue number for V' with respect to d. Let (¢; )j?: , be a sequence of

functions from F to [n] so that

V= (ﬂ Y U¢J(7)

yeF

k

j=1
Let 6 > 0 be small enough that for all y € F and x1, x, € X, d(x1, x2) < § implies
d(y®x1,y%x;) < €. Then for any x € X, (y~!)* B(x) contains Bj ((y‘l)ax),

Suppose d,, ((7‘1)a, (y“)b) < ¢ forall y € F. We claim

k
b
(ﬂ Y Uiy

yer j=1
is a cover of X. Let x € X. Then there is j < k so that Be(x) € (yer Y Up;(y)s
equivalently (y~!)* Be(x) C Ug,(y) for all y € F. Since d ((y‘l)a X, (y_l)bx) <6,

we see that (y_l)b x € Uy,(y). Therefore x € y?Uy () forall y € F. |
Lemma 5.2.2. For any system I ~ X, if (U,);"_, is a sequence of finite open covers

such that lim,_,« diam(U,) = 0, then lim,_o K'P(U,) = K2 (T ~ X).

Proof. 1t is clear that if U refines V then AP(V) < A'P(U). Thus if V is an
arbitrary open cover of X, by choosing n so that diam(),) is less than the Lebegsue
number of V we have h®(V) < h'P(U,). o

Lemma 5.2.3. For any countable group I" and compact metrizable space X, the set

of systems with zero naive topological entropy is G5 in Awp(T', X).

Proof. 1f U is an open cover of X, F' C I is finite and € > 0O set
yeF

Z(U,F,e) = Z(U, F, [exp(e| F])]),

Z(U,F,€) = {(r A~ X) € Agp(T, X) : log

Note that in the notation of Lemma 5.2.1, we have

and hence Z(U, F, €) is open. If (Uy);"., is a sequence of finite open covers with
lim,,—,o, diam(U,) = O then by Lemma 5.2.2, the set of systems with zero naive
topological entropy is equal to the G set

NOUZ (w7,

n=1 k=1 F
where the union is over all nonempty finite subsets of . O
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Proof of Theorem 5.1.2. By Lemma 5.2.3, it suffices to show the set of systems
with zero entropy is dense in A (T, ZN). By Corollary 2.5 in [41], the set of
homeomorphisms with zero entropy is uniformly dense in Homeo (ZN). Therefore
the set of systems in Ap (I, 2N) for which the first generator of I' acts with zero

entropy is dense. The theorem follows from this fact and Proposition 5.2.1. m|

5.3 Sofic groups and sofic entropy.

Sofic groups.

Sofic groups were introduced by Gromov in [44] and Weiss in [75]. Let Sym(n)
denote the symmetric group on n letters. Let u, denote the uniform probability
measure on [n] so that u,(A) = %. In keeping with our convention for dynamical

systems, if o is a function from I to Sym(n) we write y“m for o (y)(m).

Definition 5.3.1. Let I be a countable discrete group. Let X = (07);2, be a sequence
of functions o; : I' — Sym(n;) such that n; — oo. Note that the o; are not assumed
to be homomorphisms. We say X is a sofic approximation to U if for every pair

v1,v2 € I' we have
Tim uy, (m € ] (yry2)om = y{'ygim}) = 1
and for every pair y| # y>» we have
Tim uy, (m € ] y'm # yg'm}) = 1.

We say T is sofic if there exists a sofic approximation to T'.

Thus the first condition guarantees that the o; are asymptotically homomorphisms,
and the second condition guarantees that the corresponding approximate actions on
[n;] are asymptotically free. The standard examples of sofic groups are residually
finite groups and amenable groups. It is unknown whether every countable group

is sofic.

Topological sofic entropy.

In [57] and [62], Kerr and Li developed a topological counterpart to Bowen’s theory
of sofic entropy, based initially on operator-algebraic considerations. We will use
the ‘spatial’ formulation of these ideas. Fix a group I" and a topological I'-system
I' ~“ X. Fix a compatible metric d for X. Define the metrics d> and d* on the set

of maps from [n] to X by

1

P(0.) = (}1 le a(9(m) w(mnz)
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and

d>(¢,¢) = max d(p(m), y(m)).

Definition 5.3.2. Let F C T be finite, 6 > 0 and o : I' — Sym(n). Define
Map(c, F, ) to be the collection of functions ¢ : [n] — X such that d*(¢ o y”,y“ o
¢) < S forally € F.

Definition 5.3.3. Let X = (07):2, be a sofic approximation to I with o; € Sym(n;)".
Define the topological sofic entropy htzp(l" ~* X) of T % X with respect to X as
follows. Letting F range over the nonempty finite subsets of I and 6, € > 0 define

1
htzp(d, F, €) = lim sup — log(Sep(Map(c, F, 6), €, d>)),

tp . tp
hy (F,€) = (1Sr>1£ hs (6, F, €),
tp . tp
hy (€) = II}f hy (F, €),
htzp(F ~Y X) = sup htzp(e).
e>0

5.4 Proof of Theorem 5.1.1

This argument builds on the framework used to prove Lemma 5.1 in [62].

Choosing parameters

In this subsection we set the values of some initial parameters for our construction.
Let X = (0y,);, be a sofic approximation to I', where o, : I' = Sym(n). The case
where o, is a function from I' to [k,] for some k,, # n can be handled with trivial
modifications. Choose « with 0 < « < 1. It suffices to show that hg’ T ~A*X) <k

Choose € > 0, so that it suffices to show that h;p(e) < k. Let

K
n= - (58)
41og (Sep (X, £, d))
and choose k € N such that |
n
- < = 59
k2 (59

By our assumption that % (I" ~“ X) = 0, we can choose a finite set F C I' such

that
K

|—I£|10g (ep (X, 5.dr)) < o (5.10)

Lemma 5.4.1. Let F' C F be such that |F'| > 1. Then
K|F’|
yuik

Sep (X, 2, dp/) < exp (
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Proof of Lemma 5.4.1. Since

Sep (X, 5. dr) < Sep (X. . dr).

4
we have
L (s (Xed))<1l (Sep (%, 5. ar))
0 € s Ty ’ >~ 0) € s o
F'] g\>ep (4, par | g\ >ep\ X oo dF
<k[L1 (Sep (%, 5. ar))
— log | Se -,
AR
K
< -
4
where the last inequality follows from (5.10). O

Write s = |F|. Let 6 > 0 be small enough that

€ 2
5 < (g) , (5.11)
n
s< L 5.12
T 453 ( )

(so in particular s6 < 1) and finally

—(s6log(s6) + (1 — s6)log(1 — s6)) < —. (5.13)

&~ x

For a finite S C I let

O(S)n = {m € [n] : (y1y2)7m = y{"y5"m for all y1,y; € S}
N{m e [n]:y]{"m# yy"mforall y; #y; € S}

Write F for the symmetrization of F. Since ¥ is a sofic approximation, we can find

N so that if n > N then

|0(F)n| > (1 - %) n. (5.14)

Choosing a separated subset

In this subsection we find a large e-separated subset V of Map(o, F, §) such that
every element of V is approximately equivariant on a fixed large subset of [n]. Fix
n > N and write o = 0,,. Let D be an e-separated subset of Map(c, F, ) with
respect to d*° of maximal cardinality. For every ¢ € Map(c, F, ¢) by definition we
have d*(¢ o y7,y% o ¢) < ¢ for all y € F. Explicitly,

2

=Y (o6 m,y 9m)’| <o
m=1
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Hence for each fixed y € F at least (1 — 6)n elements m of [n] have
d (¢ (y7m),y"¢(m)) < Vo.

Hence the set ©4 of all m € [n] such that
d (¢ (y7m),y"¢(m)) < Vo

for all v € F has size at least (1 — sd)n.

By a standard estimate from information theory (see for example Lemma 16.19

in [30]) the number of subsets of [n] of size at most sdn is at most
exp(—n(sdlog(sd) + (1 — s6)log(1 — 59)))

and by (5.13) this is bounded above by exp (). Hence there at at most exp (4)
possible choices for the sets {®4 : ¢ € D} and thus there are at least exp (—4) |D|
elements of D for which ® is the same. So we can find V € D and ® C [n] such
that

Kn

ID| < exp (Z) 4 (5.15)

and for all ¢ € V we have ©4 = ©. Note that since |®| > (1 — sd)n, (5.12) implies

that

nn
452"
Furthermore, by (5.11) and the definition of @, for all ¢ € V and all m € ® we have

n] - ©] < (5.16)

d (¢ (y"m), y"¢(m)) < g (5.17)

Disjoint subsets of the sofic graph

Endow [n] with the structure of the graph G, corresponding to o-, where m; is con-
nected to m; if and only if there is y € F such that (y)"m; = my or (y™)" my = my.
In this section we find a maximal collection of disjoint subsets of G, which resemble

a nontrivial part of F.

By (5.14) and (5.16),
Go ~ (Q(F),NO)] < 2.
2s

Let J be the collection of points ¢ in G, such that the ball of radius 1 around c in
G is contained in Q(F), N ©, and let I be the collection of points ¢ in J such that

the ball of radius 1 around c is contained in J. Then

A n
Go = JI < 5-1Go = (Q(F)yNO)] < 2
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and
Gy 1| <s5-1Gy—J| <2 (5.18)
2

If ¢ € J then the mapping from F to G, given by y — y7c is injective. We now
begin an inductive procedure. Choose ¢; € J and take F; = F. Suppose we have
chosen ¢y, ...,cj € Jand Fy, ..., F; C F such that the sets (Fl.‘Tci)L1 are pairwise
disjoint and % < |F|foralli e {l,...,j}. Write F7¢; = B;

Assume we cannot extend this process further, so that there do not exist c;;; and
Fj 1 satisfying the two conditions. Write W = Ulj.zl B;. Our assumption implies that
for every ¢ € J, at least (1 - %) |F| of the points in F7 ¢ lie in W. Suppose toward

a contradiction that % < |I — W|. For each point b in I, there are exactly |F'| points
c € Jsuchthat b € F7¢, in symbols |{c € J : b € FPc}| = |F|. Indeed b € F7c
if and only if b = y“¢ for some ¢ € F. Since b, ¢ € Q(F),, this is equivalent to
(1) b =c. Since b € Q(F"),, the map y~! ~ (y~!)” bis injective. Therefore

{ceJ:beFoc)|=|{cel:ce (F")Crb}|
= |F7|
_|F].

So we have

[F1- /]

> Heed:beFoel =|F|-|I-W|> p

bel-W
We can write
Z {ceJ:beFoc} = Z Zvac(b),
bel-W bel-W ceJ
where 1y is the characteristic function of Y. So we have

Z Z Lpoe(b) > |F|1;|J|'

celJ bel-W

Since there are |J| terms in the outer sum, there must be some ¢y € J with

S Apeq®) > 2

P
bel-W k
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or equivalently |(I — W) N F7¢y| > |£k| Thus [W N F7¢y| < (1 - %) |F|, which
contradicts our assumption. It follows that for a maximal pair of sequences (c,-){z 1
and (F,-){:l satisfying the relevant conditions, we have

J
I -W| < lk—l (5.19)
Fix such a maximal pair (c,-){:l and (F,-){:l. Note that by our choice of k in (5.9) we
have |
no_nn
L R L 5.20
kK =k~ 2° (5-20)
Therefore if we put P = G, — W then by (5.18), (5.19) and (5.20) we have
|P| < |Gy =1+ |1 -W|
nm-nn
< —+4+ —=1n 21
<3 + > nn (5.21)

Controlling sofic entropy by naive entropy

In this subsection we use the data previously constructed to bound the size of an
appropriately separated subset of Map(c, F, §) in terms of the separation numbers
used to compute naive entropy. For B C [n], let dp’ be the pseudometric on the
collection of maps from [r] to X given by d'(¢,¢) = max,,cp d(p(m), ¥ (m)). Let
i < j and take an §-spanning set V; of V of minimal cardinality with respect to the

pseudometric dp’. We claim

To see this, let U be a maximal 5-separated subset of V with respect to d};‘:. Then U
is also 5-spanning with respect to dy and hence |Vi| < |U|. For any two elements ¢
and ¢ of V we have ¢; € J € ©® = Oy = Q4. Since F; C F it follows from (5.17)
that d (y*¢(c;), ¢ (v7¢;)) < £ for all y € F;, and similarly for . So for all y € F;

we have

d(y'¢(ci), y'w(ci) = d (¢ (y7ci). ¢ (¥ ci))
—d (y'¢(ci) ¢ (¥ ci)) —d (Y (ci) (v ci))
> d(¢(7a). v (7)) - 5 (5.22)

Now, since U is §-separated with respect to d°°, for any ¢, € U we have

dp; (¢, ¢) = max d(¢(b), ¢ (b)) = max d (¢ (r7ec) ¥ (¥7ci)) 2 (5.23)

21 M
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By (5.22) and (5.23),

dr,(¢(ci), ¥ (i) = maXd(?’ ¢(ci), vy (ci)

SN—

> max (d (@ (Y7 c), ¥ (¥ i) - ;i

= (ryneax d(¢(y7ci). ¥ (7"@))) -

NI

>

€
4 .

N m
e
&1 m

It follows that {¢(c;) : ¢ € U} is an Z-separated subset of X with respect to df, of

size |U| and hence by Lemma 5.4.1 we have

F;
|U| < Sep (X, g,dpi) < exp (K|4 l),
and consequently

F
IVi] < exp (KT) . (5.24)

Now, take an §-spanning subset Vp of V of minimal cardinality with respect to d’.

Since a maximal 5-separated subset is also 5-spanning, we have

Vp| < Sep ( d°°) (5.25)

For a compact pseudometric space (Z, p) and r > 0 write Cov(Z,r, p) for the
minimal cardinality of a family of p-balls of radius r which covers Z. It is easy to

see that for any r we have

Cov(Z,r,p) < Sep(Z,r, p) < Cov (Z, %,p) .

Now, let {By, ..., Bj} be a cover of X by balls of radius 7. We can construct a cover
of X" by considering the collection of all sets of the form H;:l Y, where V), is
equal to some B; if p € P and equal to X if p ¢ P. Each of these sets is a d’-ball of

radius % and so we see that

)'P' < Sep (X, ¢ d)|P| . (5.26)

(5.21), (5.25), and (5.26) imply

nn
Vp| < Sep (X, 2, d)
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and hence
Ve < exp (%) (5.27)

by our choice of 7 in (5.8).

Conclusion

Let Z be the set of all maps ¢ : [n] — X suchthat¢ [ P =y | P for some ¢ € Vp
and for each i < j we have ¢ | B; = ; | B; for some ¢; € V;. Note that since we
chose the sets B; = F ¢; to be pairwise disjoint, and the maps y +— y“¢; for y € F;
are bijective, we have Z{:] |F;| < n. Thus by (5.24) and (5.27) we have

J

ﬂ|vl-|

i=1
X (ﬁ) : €X KlEl
’ 4 i=1 b 4

1Z] < |Vpl

IA

j
Kn K
=exp|— + 7 |, IF
( 4 4 i=1
< exp (%) . (5.28)

Note that if ¢ € V, then by the hypothesis that V; is §-spanning for V' with respect
to the metric d;‘z we have that maxyep, d(¢(b), Yi(b)) < 5 for some element ¢; of
V;, and similarly for P and Vp. Hence every element of V is within 4% distance 5
of some element of Z. Define a map f : V — Z by letting f(¢) be any element
of Z within d* distance 5 of ¢. Since V is a subset of D and we assumed that D
was e-separated with respect to d*, it follows that f is injective. Therefore we have
|V| < |Z|. Then it follows from (5.15) and (5.28) that if n > N then

Sep(Map(F, 6, 0y,),€,d”) = |D|

ce (Kn) v
X —
sexp|

Kn
< exp (7) |Z|

Kn

<o (2] (%)
= exp (kn)

This concludes the proof of Theorem 5.1.1.
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Chapter 6

UNIFORM MIXING AND COMPLETELY POSITIVE SOFIC
ENTROPY

Tim Austin and Peter Burton

6.1 Introduction

Let G be a countable discrete sofic group, (X, u) a standard probability space and
T : G ~ X a measurable G-action preserving u. In [14], Lewis Bowen defined
the sofic entropy of (X, u, T) relative to a sofic approximation under the hypothesis
that the action admits a finite generating partition. The definition was extended to
general (X, u, T) by Kerr and Li in [61] and Kerr gave a more elementary approach in
[58]. In [17] Bowen showed that when G is amenable, sofic entropy relative to any
sofic approximation agrees with the standard Kolmogorov-Sinai entropy. Despite
some notable successes such as the proof in [14] that Bernoulli shifts with distinct
base-entropies are nonisomorphic, many aspects of the theory of sofic entropy are

still relatively undeveloped.

Rather than work with abstract measure-preserving G-actions, we will use the
formalism of G-processes. If G is a countable group and A is a standard Borel
space, we will endow AC with the right-shift action given by (g - a)(h) = a(hg)
for g,h € G and a € A®. A G-process over A is a Borel probability measure u
on A® which is invariant under this action. Any measure-preserving action of G
on a standard probability space is measure-theoretically isomorphic to a G-process
over some standard Borel space A. We will assume the state space A is finite,
which corresponds to the case of measure-preserving actions which admit a finite
generating partition. Note that by results of Seward from [71] and [72], the last
condition is equivalent to an action admitting a countable generating partition with

finite Shannon entropy.

In [7], the first author introduced a modified invariant called model-measure sofic

entropy which is a lower bound for Bowen’s sofic entropy. Let X = (0, : G —
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Sym(V,)) be a sofic approximation to G. Model-measure sofic entropy is con-
structed in terms of sequences (uy),. ; where y, is a probability measure on AV,
If these measures replicate the process (A%, u) in an appropriate sense then we say
that (u,);” | locally and empirically converges to p. We refer the reader to [7] for
the precise definitions. We have substituted the phrase ‘local and empirical con-
vergence’ for the phrase ‘quenched convergence’ which appeared in [7]. This has
been done to avoid confusion with an alternative use of the word ‘quenched’ in the
physics literature. A process is said to have completely positive model-measure
sofic entropy if every nontrivial factor has positive model-measure sofic entropy.
The goal of this paper is the to prove the following theorem, which generalizes the

main theorem of [32].

Theorem 6.1.1. Let G be a countable sofic group containing an element of infinite
order. Then there exists an uncountable family of pairwise nonisomorphic G-
processes each of which has completely positive model-measure sofic entropy (and
hence completely positive sofic entropy) with respect to any sofic approximation to

G. None of these processes is a factor of a Bernoulli shift.

In order to prove Theorem 6.1.1 we introduce a concept of uniform mixing for
sequences of model-measures. This uniform model-mixing will be defined formally

in Section 6.3. It implies completely positive model-measure sofic entropy.

Theorem 6.1.2. Let G be a countable sofic group and let (A®, ) be a G-process
with finite state space A. Suppose that for some sofic approximation X to G, there is a
uniformly model-mixing sequence (u,)," | which locally and empirically converges
to pover X. Then (AC, ) has completely positive lower model-measure sofic entropy

with respect to X.

As in [32], the examples we exhibit to establish Theorem 6.1.1 are produced via a
coinduction method for lifting H-processes to G-processes when H < G. If (A7, v)
is an H-process then we can construct a corresponding G-process (A%, u) as follows.
Let T be a transversal for the right cosets of H in G. Identify G as a set with H X T
and thereby identify A® with (A7), Set u = vI'. We call (A, u) the coinduced
process and denote it by CIndg(v). (See page 72 of [53] for more details on this

construction.) When H = Z this procedure preserves uniform mixing.

Theorem 6.1.3. Let G be a countable sofic group and let (A%, v) be a uniformly

mixing Z-process with finite state space A. Let H < G be a subgroup isomorphic
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to Z and identify A with A", Then for any sofic approximation X to G, there
is a uniformly model-mixing sequence of measures which locally and empirically

converges to CIndg(v) over X.

We remark that it is easy to see that if (AC, ) is a Bernoulli shift (that is to say,
u is a product measure), then there is a uniformly model-mixing sequence which
locally and empirically converges to . Indeed, if i = % for a measure 7 on A then
the measures 1" on A" are uniformly model-mixing and locally and empirically
converge to u. Thus Theorem 6.1.2 shows that Bernoulli shifts with finite state
space have completely positive sofic entropy, giving another proof of this case of
the main theorem from [59]. We believe that completely positive sofic entropy for
general Bernoulli shifts can be deduced along the same lines, requiring only a few

additional estimates, but do not pursue the details here.
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6.2 Preliminaries

Notation

The notation we use closely follows that in [7]; we refer the reader to that refer-
ence for further discussion. Let A be a finite set. For any pair of sets W C §
we let myy : AS — AV be projection onto the W-coordinates (thus our notation
leaves the larger set S implicit). Let G be a countable group and let (A®, i) be a
G-process. For F C G we will write yup = mp.u € Prob(A”) for the F-marginal of .

Let B be another finite set and let ¢ : A® — B be a measurable function. If
F C G we will say that ¢ is F-local if it factors through 7r. We will say ¢ is local if
it is F-local for some finite F. Let ¢¢ : A° — B¢ be given by ¢%(a)(g) = ¢(g - a)
and note that ¢ is equivariant between the right-shift on A® and the right-shift on
BC.

Let V be a finite set and let o be a map from G to Sym(V). For g € G and

v € V we write o8 - v instead of o(g)(v). For F C G and S C V we define

of(§)={0% -s:g€F, seS}.
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For v € V we write o (v) for o¥({v}). We write I for the map from AV to AT
given by H‘VT,F(E)(g) =a(c® -v)fora € AY and g € F. We write I19 for HZG.
With ¢ : A° — B as before, we write ¢ for the map from A to BV given by
7 @) = ¢(I17@).

If D is a finite set and n is a probability measure on D then H(n) denotes the

Shannon entropy of 7, and for € > 0 we define
cove(n) = min{|F| : F C Dissuchthatn(F)>1- e}.
If ¢ : D — E is a map to another finite set then we may write H,(¢) in place of

H(¢.u). For p € [0, 1] we let H(p) = —plogp — (1 — p)log(1 — p).

We use the o(-) and < asymptotic notations with respect to the limit n — oo.
Given two functions f and g on N, the notation f < g means that there is a positive
constant C such that f(n) < Cg(n) for all n.

An information theoretic estimate

Lemma 6.2.1. Let A be a finite set and let (V)| be a sequence of finite sets such

that |V,,| increases to infinity. Let j1,, be a probability measure on AY». We have

1
< sup liminf — log cove(uy,).
l >0 o |V

Proof. Let u be a probability measure on a finite set F and let E C F. By
conditioning on the partition { E, F'\ E } and then recalling that entropy is maximized

by uniform distributions we obtain

H(w) = p(E) - H(u(- | E)) + p(F \ E) - H(u(- | F \ E)) + H(u(E))
< p(E) - log(|E|) + (1 = w(E)) - log(|F \ E]) + H(u(E)). (6.1)

Now let y, and Vj, be as in the statement of the lemma. Let € > 0 and let S, € A"

be a sequence of sets with u,(S,) > 1 — € and |S,| = cove(u,). By applying (6.1)
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with F = A and E = S,, we have

H(un
lim inf (#n)

n—oo |V,

(1(Sn) - 1og(| Sal)

+ (1 = p(Sy)) - Tog(IA" \ S,]) + H(u(S,)))

(108015, + € - Tog(| %)) + He)

< liminf
n—oo | n|

< liminf
n—oo

< [liminf

n—oo

1
v log cove (pn) | + € - log(]Al).

|Val

Now let € tend to zero to obtain the lemma. O

6.3 Metrics on sofic approximations and uniform model-mixing

Let us fix a proper right-invariant metric p on G: for instance, if G is finitely
generated then p can be a word metric, and more generally we may letw : G —
[0, 00) be any proper weight function and define p to be the resulting weighted word
metric. Again let V be a finite set and let o be a map from G to Sym(V). Let H, be
the graph on V with an edge from v to w if and only if 04 - v = wor o4 - w = v for

some g € G. Define a weight function W on the edges of H, by setting
W, w) = min{p(g, lg):08-v=woros -w= v}.

If v and w are in the same connected component of H, let p, be the W-weighted

graph distance between v and w, that is

k=1
pr(v,w) = min{z W(pi, pi+1) :(v = po, p1s - - > Pk-1, Pk = W)
i=0

is an H,-path from v to w}.

Having defined p, on the connected components of H,, choose some number M
much larger than the p,-distance between any two points in the same connected
component. Set p,(v,w) = M for any pair v, w of vertices in distinct connected
components of H,. Note that if (o, : G — Sym(V},,)) is a sofic approximation to G
then for any fixed r < oo once n is large enough the map g — o - v restricts to an

isometry from B,(1¢,7) to By, (v,r) for most v € V.

In the sequel the sofic approximation will be fixed, and we will abbreviate p.,

to p,. We can now state the main definition of this paper.
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Definition 6.3.1. Let (V,)>> | be a sequence of finite sets with |V,| — oo and for
each n let o, be a map from G to Sym(V,)). Let A be a finite set. For each n € N
let u, be a probability measure on AY». We say the sequence (kn), is uniformly
model-mixing if the following holds. For every finite F C G and every € > (O there

is some r < oo and a sequence of subsets W, C V,, such that
[Wal = (1 = o(1)|[Vi|
and if S € W, is r-separated according the metric p, then

H (7, (5)ettn) = 18] - (H(ur) - €.

This definition is motivated by Weiss’ notion of uniform mixing from the special
case when G is amenable: see [76] and also Section 4 of [32]. Let us quickly
recall that notion in the setting of a G-process (AG, w). First, if K C G is finite
and S C G is another subset, then S is K-spread if any distinct elements sy, 52 € S
satisfy 5155 I'¢ K. The process (A%, p) is uniformly mixing if, for any finite-valued
measurable function ¢ : A° — B and any € > 0, there exists a finite subset K C G
with the following property: if § € G is another finite subset which is K-spread,
then
H((¢¢)s) 2 S| - (Hu(9) - €).

Beware that we have reversed the order of multiplying s; and s; Uin the definition of
‘K-spread’ compared with [32]. This is because we work in terms of observables
such as ¢ rather than finite partitions of A®, and shifting an observable by the action

of g € G corresponds to shifting the partition that it generates by g='.

The principal result of [69] is that completely positive entropy implies uniform
mixing. The reverse implication also holds: see [43] or Theorem 4.2 in [32]. Thus,

uniform mixing is an equivalent characterization of completely positive entropy.

The definition of uniform mixing may be rephrased in terms of our proper met-
ric p on G as follows. The process (A%, y) is uniformly mixing if and only if, for
any finite-valued measurable function ¢ : A® — B and any € > 0, there exists an

r < oo with the following property: if S C G is r-separated according to p, then

H((¢ )s) 2 1| - (Hu(9) - €).

This is equivalent to the previous definition because a subset S C G is r-separated
according to p if and only if it is B,(1g,r)-spread. The balls B,(1g,r) are finite,
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because p is proper, and any other finite subset K C G is contained in B,(1¢, r) for

all sufficiently large r.

This is the point of view on uniform mixing which motivates Definition 6.3.1.
We use the right-invariant metric p rather than the general definition of ‘K-spread’

sets because it is more convenient later.

Definition 6.3.1 is directly compatible with uniform mixing in the following sense.
If G is amenable and (F;)’” , is a Fglner sequence for G, then the sets F,, may be
regarded as a sofic approximation to G: an element g € G acts on F, by translation
wherever this stays inside F;, and arbitrarily at points which are too close to the
boundary of F,. If (A, p) is an ergodic G-process, then it follows easily that the
sequence of marginals ur, locally and empirically converge to u over this Fglner-set
sofic approximation. If (A®, y) is uniformly mixing, then this sequence of marginals

is clearly uniformly model-mixing in the sense of Definition 6.3.1.

On the other hand, suppose that (A, i) admits a sofic approximation and a locally
and empirically convergent sequence of measures over that sofic approximation
which is uniformly model-mixing. Then our Theorem 6.1.2 shows that (A%, u) has
completely positive sofic entropy. If G is amenable then sofic entropy always agrees
with Kolmogorov-Sinai entropy [17], and this implies that (A, u) has completely

positive entropy and hence is uniformly mixing, by the result of [69].

Thus if G is amenable then completely positive entropy and uniform mixing are
both equivalent to the existence of a sofic approximation and a locally and empir-
ically convergent sequence of measures over it which is uniformly model-mixing.
If these conditions hold, then we expect that one can actually find a locally and
empirically convergent and uniformly model-mixing sequence of measures over any
sofic approximation to G. This should follow using a similar kind of decomposition
of the sofic approximants into Fglner sets as in Bowen’s proof in [17]. However, we

have not explored this argument in detail.

Definition 6.3.1 applies to a shift-system with a finite state space. It can be trans-
ferred to an abstract measure-preserving G-action on (X, u) by fixing a choice of
finite measurable partition of X. However, in order to study actions which do not

admit a finite generating partition, it might be worth looking for an extension of
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Definition 6.3.1 to G-processes with arbitrary compact metric state spaces, similarly

to the setting in [7]. We also do not pursue this generalization here.

6.4 Proof of Theorem 6.1.2

We will use basic facts about the Shannon entropy of observables (i.e. random
variables with finite range), for which we refer the reader to Chapter 2 of [30]. Let
T = (0, : G = Sym(V,)), (A%, u) and (Un);, be as in the statement of Theorem
6.1.2. The following is the ‘finitary’ model-measure analog of Lemma 5.1 in [32].

Lemma 6.4.1. Let F C G be finite. Let B be a finite set and let ¢ : A° — B be an
F-local observable. Let S, C 'V, be a sequence of sets such that |S,| = |V,|. Then

we have

1
H(ur) = <= H(x 5, tn) 2 Hy() -

N H(ﬂSn*(b*n/ln) —o(1).

1
ISl
Proof of Lemma 6.4.1. Let 6 : A¥ — B be a map with @ o rp = ¢. Fixn € N
and S C V,. Leta = 7 r(g : A — A7) and let B = 75 0 ¢7n : AV — BS.
Fors € Sleta, =75 : A — A" and let By = 6 o 117} : A — B. Then we

have @ = (ay)ses and B = (Bs)ses. Enumerate S = (sk)’:=l and write @, = ax. All

entropies in the following display are computed with respect to y,,. We have

H(a) = H(ay, . .., an)

m—1
= H(ay) + Z H(ag+1lai, ..., ax)
=1
m—1
= H(ay, 1) + Z H(ags1, Brstlan, ..., ak)
k=1
m—1 m—1
= H(B1) + H1l1) + D HBrsilon,..oex) + Y Hl@ws|Brst e, )
=1 =1
m—1 m
<H(B) + Y HBralBrs ... i)+ Y HlawlBi)
=1 k=1

= H(B) + ) | H(ax|B0).
k=1
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Let ¢ be the identity map on AF. Then

S| - H(ur) = H(mF (s)uttn) = |S| - Hyp (0) — Hy, (@)
> |S| - Hy-(6) + [S] - Hy, (¢|6)

—H,,(8) - > Hy,(a1B,)

seS

= |S| - Hu(¢) = H(ms:pI" n)
1S Hyp (10) = Y Hy (aslBy). (6.2)

s€S
Now allowing n to vary, let S, C Vj, be a sequence of sets such that |S,| = |V,|.
Write v, = 7, F (s, ) tn- Let s € S, be such that the obvious map from F' to al(s)is
injective. Then the function a — Hz”F(E) provides an identification of A% ) with
AF . This identification sends a; to ¢ and S, to 6. When # is large the o/ (s) marginal
of u, will resemble ur for most s € S,. Since a; and S are T (s5) measurable
this implies that H,.(¢|6) = H,, (a,|B;) for most s. More precisely, we can find a

sequence of sets C, C §,, with
|Gl = (1= 0(1))[Sn]
such that
max [y, (16) = Hy, (418, = o(D).
Thus
[Sal - Hup (1160) = > Hy, (alBo)| < D [Hyue(116) — Hy, (|5

sES, seCy

- Z [y (16) = Hy, o)

s€S,\Cp
= o(|Sul)-

The lemma then follows from (6.2) and the above. |

Recall that for a measure space (X, u) and two observables a and 8 on X the Rokhlin

distance between « and g is defined by

d}(a, B) = Hu(e|B) + Hu(Bla).

This is a pseudometric on the space of observables on X. An easy computation

shows that if a1, ..., @, and B, . . ., B, are two families of observables on X then

M@, ) (B Ba)) < ) di™ (ks Bi).
k=1
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Lemma 6.4.2. Let ¢, : A° — B be two local observables. Let S, C V, be a

sequence of sets with |S,| 2 |V,|. Then we have

< dR(¢,y) + o(1).

n

ISI

Proof. Leta, = nt5, 0 ¢7n : AV — BS» and let 8, = mg, oy AV — BS. Let F
be a finite subset of G such that both ¢ and y are F-local. Let 6 : A"’ — B be a map
such that @omr = ¢ andlet k : A¥ — Bbe amap suchthat kony = . Fors € S, let
s = HOHZ; : A" — Bsothata, = (ay)ses,. Alsolet Bys = KOHS} : A" - B.

Then we have

|S | O'n |S ||Hl~1n(an) H,Un(ﬁn)|
1
— |S | dROk(an’ ﬁn)
1
= |S | 'dR:k((an,s)seSna (,Bn,s)sesn)

o (s, Brs)- (6.3)

5€S

If the map g — o7 - 5 is injective on F, we can identify A% ) with AF and thereby

identify a,, ; with 8 and 3, ; with «. Note that
dyp (6, 6) = d™(8,1).

It follows that for any € > 0 we can find a weak star neighborhood O of u such that
if s € S, is such that (TI1J"),u, € O then

‘dﬁ:k(an,s’ ﬁn,s) - dllek((b, lp)) < E.
Thus, since u, locally and empirically converges to u, there are sets C, C S, with

IC,| = (1 = 0(1))|S,]| such that

max | a8 @y ) = dRK(8, )| = o(D). (64

seCy
The lemma now follows from (6.3) and (6.4). m|

Corollary 6.4.1. Let (¢, : A° — B)'_| be a sequence of local observables and
let $ : A° — B be a local observable. Let S, C V, be a sequence of sets with
1Sul 2 [Val. Then if (my);? | increases to infinity at a slow enough rate we have

1
IS, |H(ﬂ5n*¢f"ﬂn) - H(”S,,*‘P;%,*/lnﬂ < dEOk((ﬁ, ¢mn) + o(1).
n
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Proof of Theorem 6.1.2. Let B be a finite set and let ¢ : A° — B be an observable
with Hy,(¥) > 0. Let (¢);,_, be an AL approximating sequence for i rel u (see
Definition 4.4 in [7]). Then the sequence ¢,, converges to ¢ in dl}f"k. In particular,

¢m is a Cauchy sequence and so we can find M € N so that for all m > M we have

Hy(y)
™ (bmo o) <~ (6.5)
We will also assume M is large enough that
H,(y)
H,(¢um) > "2 : (6.6)

Let F be a finite subset of G such that ¢, is F-local. Then Definition 6.3.1 provides
an r < oo and a sequence of subsets W,, C V,, such that |W,| = (1 — o(1))|V,| and if
S € W, is r-separated then

H,u(‘pM).

> (6.7)

H(ur) - ﬁH(ﬂo{(S)*/Jn) <
Let K = |B,(1g,r)|. Since oy, is a sofic approximation there are sets W, C V,, with
|[W;| = (1 —0(1))|V,| such that if w € W), then the p, ball of radius r around w has
cardinality at most K. Write ¥, = W,,NW, and note that we have |Y,,| = (1-0(1))|V,|.
For each n let S, be an r-separated subset of ¥, with maximal cardinality. Then
Y, € Uses, Bp, (s, 1) so that

|Yn| | nl

1S, > — (6.8)
By Lemma 6.4.1 and (6.7) we have
H, (01 = - H s, 057 ) — o) < 20
so that from (6.6) we have
H”Y) —o(1) < | Sn|H(nSn*¢;’;*un). (6.9)

By Proposition 5.15 in [7] if (m,);" | increases to infinity at a slow enough rate then
(¢ )+ ptn Will locally and empirically converge to wCu. Since A is finite, by the
same argument as for Proposition 8.1 in [7] we have

e>0 T | |

> 11m1nf ﬁ H((¢m" )i ttn)s (6.10)
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where the second inequality follows from Lemma 6.2.1. We also assume that (m,,) |

increases slowly enough for Corollary 6.4.1 to hold. By (6.5) we have

1 1 H,(¥)
_H x On __H . On . < H
e Paietn) = g H s (9o pn) < 5

+ o(1).
Combining this with (6.9) we see that

! v 1o H®)
s ) 2 0

o(1).

By the above and (6.8) we have that for all sufficiently large n,

. B

> 8K+1|Vn|' (6.11)

H((¢5 )« pin)

Theorem 6.1.2 now follows from (6.10) and (6.11). O

6.5 Proof of Theorem 6.1.3

Let (A%, v) be a uniformly mixing Z-process, and for each positive integer [ let v
be the marginal of v on A!. Let X = (0, : G — Sym(V,)) be an arbitrary sofic
approximation to G. Let 4 € G have infinite order and write H = (h) = Z. We
construct a measure u, on A" for each n € N. We will later show that the sequence

(Un);7 is uniformly model-mixing and locally and empirically converges to  over X.

We first construct a measure u\ on A" for each pair (n,[) with [ much smaller
than n. For a given n, the single permutation o" partitions V,, into a disjoint union
of cycles. Since 4 has infinite order and X is a sofic approximation, once n is large
most points will be in very long cycles. In particular we assume that most points
are in cycles with length much larger than /. Partition the cycles into disjoint paths
so that as many of the paths have length [ as possible, and let P = (Pfl’ oo Pi , kn)
be the collection of all length-/ paths that result (so P! is not a partition of the
whole of V,,, but covers most of it). Fix any element g € A" and define a random
element @ € A" by choosing each restriction @ | P independently with the distri-

bution of v; and extending to the rest of V, according to @g. Let u, be the law of this a.

Now let (,);7 , increase to infinity at a slow enough rate that the following two

conditions are satisfied:

(a) The number of points of V,, that lie in some member of the family P,i" is
(1 = o(1)[Val.
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(b) Whenever g, g’ € G lie in distinct right cosets of H, so that g~!hPg’ # 14 for
all p € Z, we have

(v eVa: (@) (oo v =vforsome p € {~l....Ix}}| = o|Vu])
Set u, = ,uﬁ,”. We separate the proof that (u,);”, has the required properties into

two lemmas.

Lemma 6.5.1. (u,); | locally and empirically converges to y over X.

Proof of Lemma 6.5.1. Since (A%, 1) is ergodic, by Corollary 5.6 in [7] it suffices to
show that 1, locally weak star converges to u. Foraset I C Z write h! = {h' : i € I}.
Fix a finite set F C G. By enlarging F if necessary we can assume there is an interval
I € Z such that F = UZ’ZI hlt, forty, . .., t, in some transversal for the right cosets
of Hin G. For each g € F let j, be a fixed element of A. Let B C A% be defined by

B = {aeAG:a(g):jgforallgeF}
and let € > 0. Then sets such as
O = {n € Prob(A%) : 1(B) ~c pu(B)}

form a subbasis of neighborhoods around p. It therefore suffices to show that when

0-71

n is large we have (I1,").u, € O with high probability in the choice of v € V,,.

For k € {1,...,m} let
Bi = {x € A% : x(i) = jy,, foralli € I}.

Note that u is defined in such a way that u(B) = Hle v(By). Now, let W, be the set
of all points v € V,, such that the following conditions hold.

(i) The map g — o7 - v is injective on F.

(i) o' -y = (chYol v foralli e Iand k € {1,...,m}.

(iii) For all pairs g, g’ € F, 0% - v is in the same path as 0';2” -v if and only if g and
g’ lie in the same right coset of H. In particular, each of the images o5 - v for

g € F is contained in some member of P,ﬁ”.



105

We claim that |W,| = (1 —o0(1))|V,|. Clearly Conditions (i) and (ii) are satisfied with
high probability in v, and so is the last part of Condition (iii), by Condition (a) in
the choice of (/,)7” ;.

Fix g,¢’ € F and suppose that g and g’ are in the same coset of H, so that we
have ¢ = hity and g = W'ty for some k € {1,...,m} and i,i’ € I. If v satisfies

Condition (ii) then we have
(0',?)’ ol oy = (0'2’)’ _‘(O',f’)’O',t," e (0',’])’ 0',?‘ v=o08 v

so that 0% - v and 0% - v will lie in the same path assuming that o - v is not one of

the first or last |/| elements of its path. Note that for any v € V,, we have
|{w sk w =y for some k € {1,...,m}}| < m.

It follows that the number of points v € V,, such that o - v is one of the first or last
|I| elements of a path is at most 2mp,|I| + o(|V,|) where p, is the total number of
paths in V,,. By Condition (a) in the choice of (/,)” |, most of V,, is covered by paths
whose lengths increase to infinity. Since also p, = o(V,), it follows that o5 - v lies
in the same path as o5 " v with high probability in v.

On the other hand, suppose that g and g’ are in distinct cosets of H. Assume
that o - v and O'f/ - v are in the same path. Then there is p € {-/,,...,[,} with
o8 v = (ohPaf v, and hence (05)~1(c")Pof - v = v. By Condition (b) in the
choice of (/,)} | there are only o(|V,|) vertices v for which this holds. Thus we have

established the claim.

Now let v € W,,. We have
("), pn(B) = i ({@ € A" :a(a§ -v) = j, forall g € F}).

For each k € {1,...,m} the set {(c}) ok - v : i € I} is contained in a single path.

Since the marginal of y, on each path is v;, the probability that
E(CALARYES/

for all i € I is equal to v;, (Bx) = v(Bi). On the other hand, the marginals of y, on
distinct paths are independent, so the probability that a(c; - v) = Jgforall g € Fis
actually equal to Hf‘:l v(Bg). O
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If (A%, v) is weakly mixing, then so is the co-induced G-action. In particular, this
certainly holds if (A%, v) is uniformly mixing. Therefore we may immediately pro-
mote Lemma 6.5.1 to the fact that (i) | locally and doubly empirically converges
to p over X, by Lemma 5.15 of [7]. In fact, we suspect that local and double

empirical convergence holds here whenever (A%, v) is ergodic.

Lemma 6.5.2. (u,);’ | is uniformly model-mixing.

Proof of Lemma 6.5.2. Let F C G be finite and let € > 0. Again decompose
F = 21:1 h't, for some interval I C Z and elements 7, € T. Note that the
restriction of the metric p to H is a proper right invariant metric on H = Z, even
though it might be different from the usual metric on Z. Thus since v is uniformly
mixing we can find some ry < oo such that if (/ j)?zl is a family of intervals in Z
which are each of length |I| and are pairwise at distance at least ry then writing
K =Uj_, 1; we have

H(vk) > q - (H(vl) - %) . (6.12)

Let r < oo be large enough that for all g, g’ € G if p(g, g") > r then p(fg, f'g’) = ro
forall f, f* € F. Such a choice of r is possible since by right-invariance of p we have

o(fg. g)=p(f,1g)and p(f'g’, g") = p(f’, 15). Let W,, be as in the proof of Lemma
6.5.1 andrecall that |W,,| = (1—0(1))|V,|. LetS C W, be r-separated according to p,,.

Fix a path P € P and let Sp be the set of points v € S such that o - v € P
for some k(v) € {1,...,m}. Since § C W,,, Condition (iii) from the previous proof
implies that

ar 0P =|J{ehal viier.

veSp
Each of the sets in the latter union is an interval of length |/| in P and by our choice
of r these are pairwise at distance ry in p, restricted to P. Since the marginal of y,

on P is equal to v,,, (6.12) implies that

€
HOT(f sy bn) = [Sp] - (HOD = = ).

Since the marginals of p, on distinct paths are independent, this implies that

€
Hg 90 2 | D 150 (HOD-2). (6.13)
Pep,
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By Condition (iii) in the definition of W, each v € § appears in Sp for exactly m
paths P. Therefore

> ISpl=m-|S|. (6.14)
Now H(ug) = m - H(vy) so from (6.13) and (6.14) we have

H(x (50 ) = 1] - (H(ur) - €)

as required. m|

Proof of Theorem 6.1.3. Theorem 6.1.3 now follows from Theorem 6.1.2 and Lem-
mas 6.5.1 and 6.5.2. O

6.6 Proof of Theorem 6.1.1

Proof of Theorem 6.1.1. This part of the argument is essentially the same as the
corresponding part of [32]. Consider the family of uniformly mixing Z-processes
{(4%,v,) : w € 2"} constructed in Section 6 of [32]. Fix an isomorphic copy H of
Zin G and let y,, = CIndIG{(vw). By Theorems 6.1.2 and 6.1.3 the process (4, u1,,)
has completely positive model-measure sofic entropy. Note that the restriction of
the G-action to H is a permuted power of the original Z-process in the sense of
Definition 6.5 from [32]. Thus by Proposition 6.6 in that reference, the processes

{(4%, u,) : w € 2N} are pairwise nonisomorphic.

Suppose toward a contradiction that for some w, (4%, u,,) is a factor of a Bernoulli
shift (Z¢,n%) over some standard probability space (Z, 7). Let v : Z¢ — 4% be an
equivariant measurable map with ¥,7¢ = u,,. Note that the restricted right-shift ac-
tion H ~ (Z%,1%) is still isomorphic to a Bernoulli shift and v is still a factor map
from this process to the restricted action H ~ (4%, u,,). Thus the latter Z-process
is isomorphic to a Bernoulli shift and so is its factor (4%,v,,). This contradicts
Corollary 6.4 in [32]. O
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