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ABSTRACT

We present a method for selecting a unique and natural probability distribution
function (PDF) which satisfies a given number of known moments and apply it
for use in the closure of moment-based schemes for approximately solving the

Boltzmann equation in gas dynamics.

The method used for determining the PDF is the Maximum Entropy Reconstruction
(MER) procedure, which determines the PDF with maximum entropy which satisfies
a given set of constraining moments. For the five-moment truncated Hamburger
moment problem in one dimension, the MER takes the form of the exponential of
a quartic polynomial. This implies a bimodal structure which gives rise to a small-
amplitude packet of PDF-density sitting quite far from the mean. This is referred to as
the Itinerant Moment Packet (IMP). It is shown by asymptotic analysis that the IMP
gives rise to a solution that, in the space of constraining moments, is singular along
a line emanating from, but not including, the point representing thermodynamic
equilibrium. We use this analysis of the IMP to develop a numerical regularization
of the MER, creating a procedure we call the Hybrid MER (HMER). Compared
with the MER, the HMER is a significant improvement in terms of robustness and
efficiency while preserving accuracy in its prediction of other important distribution

features, such as higher order moments.

We apply the one-dimensional HMER to close a fourth order moment system derived
from the Boltzmann equation by using a specific set of moment constraints which
allow the full, three-dimensional velocity PDF to be treated as a product of three
independent, one-dimensional PDFs. From this system, we extract solutions to
the problem of spatially homogeneous relaxation and find excellent agreement with
a standard method of solution. We further apply this method to the problem of
computing the profile within a normal shock wave, and find that solutions exist
only within a finite shock Mach number interval. We examine the structure of this
solution and find that it has interesting behavior connected to the singularity of
the MER and the IMP. Comparison is made to standard solution methods. It is
determined that the use of the MER in gas dynamics remains uncertain and possible

avenues for further progress are discussed.
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Chapter 1

INTRODUCTION

1.1 Gas Dynamics Away from Equilibrium

The dynamics of fluid flows are, for situations of common experience, well-modeled
by the Navier-Stokes equations or the Euler equations [4]. Even many complex en-
gineering flow problems, such as those encountered in commercial aviation [3],
combustion engine design [32], and weather and climate forecasting [31], can be
represented, at least in principle, by recourse to these equations, augmented with
necessary features to handle chemistry, turbulence, and computational cost. How-
ever, both simple and complex flows well-described by such physical models deal
necessarily with mild gradients of flow properties (e.g., velocity and temperature)
relative to the scales associated with the microscopic behavior of the gas [6]. There
exist many types of flows in which this is no longer the case and recourse must be
made to a more fundamental description of a gas in order to properly account for its

behavior.
When are flow gradients considered "large" with respect to microscopic scales in

the gas? The best measure of this is given by the Knudsen number,

Kn (1.1)

I~

where A is the mean free path of a gas molecule between collisions and L is a
representative length scale of the flow. In the limit Kn — 0, particles undergo many
collisions before moving any appreciable distance in the flow, and so the flow takes
on its equilibrium state at every point, which corresponds to the Euler equations. For
small but finite Kn, the Navier Stokes equations are appropriate. When Kn 3 0.1,
as a rough rule, the flow will be significantly affected by its underlying molecular
nature, and any accurate model must account for this [6]. Such flows can arise due
to gas rarefaction, as in reentry flows [34], or due to flow scale reduction, whether
by physical problem size as in microflows [17] or by gradient steepening as in the
interiors of shock waves [38] and hypersonic boundary layers [48]. In cases of
extremely large Kn, the flow’s behavior is completely dominated by the molecular

model, and particle or statistical methods are best used to capture this [13].



1.2 Equilibrium and Non-Equilibrium

The basic problem with the extension of the Navier-Stokes equations into the mid-
high Kn regime is that fluxes in the Navier-Stokes equations are modeled as functions
of state variables in a way that is consistent with near-equilibrium gas behavior but, in
this regime, the gas may persist for a non-trivial fraction of the domain of interestin a
significantly non-equilibrium state. Equilibrium is characterized by a distribution of
molecular velocities corresponding to the famous Maxwell-Boltzmann distribution,
whose probability distribution function (PDF), fz(c), is given by

Anc? 2

QarTyE "

S

Je(e) =

where c is the peculiar speed of a molecule, given by ¢ = |£ — u|, with & the
velocity and u the bulk or mean velocity of a molecule in this distribution, R is
the specific gas constant, given by R = k/m with k the Boltzmann constant and m
the mass of a molecule, and 7T is the equilibrium thermodynamic temperature [6].
Only the speed distribution of the molecules is given, as the direction is uniformly
isotropic. It can be shown, as in [6] and [12], that the use of (1.2) as a model for the
velocity distribution function everywhere in a gas leads to the Euler equations, while
using a slight perturbation of (1.2) known as the Chapman-Enskog distribution can
be seen to be consistent with the Navier-Stokes equations. This explains both the
success of these near-equilibrium methods as well as their failure in non-equilibrium
settings where these distributions are not good approximations of the true velocity
distribution. Important controllers of flow evolution, such as energy and momentum
fluxes, are miscalculated by these approaches due to a limited representation of the

possible flow configurations [37].

The Mott-Smith Model

A good link between the kinetic models which will be the subject of this work and
the near-equilibrium models useful in low-Kn regimes is the model of Mott-Smith
[45] for molecular velocity distribution functions in the interior of shock waves.
Mott-Smith’s idea was to use as a model distribution a summed pair of Maxwellian
distributions corresponding to the upstream and downstream equilibrium distribu-
tions, unequally weighted by a parameter which varied through the shock wave
such that at the upstream and downstream points only the corresponding distribu-
tion function was used. Notionally, the idea is a linear interpolation between two

equilibria. This results in strongly bimodal distributions in the interiors of strong
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shock waves which do a better job of approximating the actual distribution than the
Navier-Stokes [6].

1.3 The Boltzmann Equation

While an improvement over Navier-Stokes in the specific case of the shock wave
example, Mott-Smith’s model is not very general since it relies on a priori knowledge
of the boundary states in a particular flow. General methods for gas dynamics
problems in the mid-high-Kn regime must rely on the Boltzmann equation, discussed
at some length in [6], [12], and [15] and introduced in the next chapter. The
Boltzmann equation describes the evolution of the velocity distribution function in
space, time, and in terms of the molecular velocity (often called velocity-space);
this makes it a seven-dimensional, partial-differential equation. It accounts for
molecular movement by velocity, and for intermolecular interference via isolated,
binary collision events. The restriction to binary collisions is an assumption, valid
when the gas is dilute, in the sense that intermolecular spacing is large compared
with the interaction range. In cases where this assumption does not hold, ternary
and even more complex collisions must be considered (as they are in dense gas
kinetic theory, see [12]). The effect of collisions on the distribution is a result of the
consideration of collisions between particles of one velocity with particles of every
other velocity in the distribution, in every possible collision geometry, and thus
takes the form of an integral, known as the collision integral, making the Boltzmann

equation an integro-differential equation.

The high dimensionality and presence of the collision integral, which is itself of high
dimension, in the Boltzmann equation make it very computationally expensive, so
much so that little practical calculation has been made using it in full form, though
useful theoretical results can be derived from it, including the aforementioned
derivation of the Navier-Stokes and Euler equations from kinetic theory [6] [12],
boundary conditions near a wall in rarefied flows which demonstrate the existence
of a slip velocity at the wall as opposed to the no-slip condition standard in near-
equilibrium flows [21], and results on relaxation to equilibrium from an initially
disturbed state [33]. Computational results are limited to the simplest cases, such
as the shock structure problem, which has its dimensionality reduced considerably
due to symmetry, [46], [40].

The two main methods by which progress is made towards performing practical

numerical calculations for problems where the Boltzmann equation is required are



moment methods and direct simulation Monte Carlo (DSMC).

1.4 Moment Methods

Moment methods are closer in spirit to the familiar Navier-Stokes equations, which
can actually be derived as a special case of a moment method [6], [15]. The
basic idea behind moment methods, described in detail in Chapter 3, is to use the
Boltzmann equation to derive conservation-like equations for various moments of
the velocity distribution function. It will be seen that when doing this it is impossible
to form a closed system of equations for any set of chosen moments, since there
will always be a dependence on higher order moments to compute the fluxes, as
well as a dependence on the full velocity distribution function which appears in the
collision integral. The problem is to develop a scheme by which to reconstruct an
approximate velocity PDF which can be used to compute the unclosed terms. An
example can be found in [19], wherein calculated moments define a velocity PDF
construction using Hermite polynomials with a Maxwell-Boltzmann distribution as
a weight, which can then be used to compute necessary closing terms. The moment
approach seems straightforward, but usually gives rise to artificial features in the
shock structure solution for high Mach numbers due to limited characteristic speeds
captured by the closure [55]. Recently, some interest has developed in the use of
more natural closure schemes, such as the Principle of Maximum Entropy [24],
[25]. Examples of applications to kinetic theory include [35], [36], [41], and [42].
McDonald developed approximations to the Maximum Entropy closure which were
functional, but these schemes have been either impractical or intentionally more
approximate than would seem necessary. In this work we will show how difficult
features of the true form of this closure scheme and its interaction with the moment

equations likely explain why this is the case.

1.5 Direct Simulation Monte Carlo

The dominant approach to solving the Boltzmann equation is known as direct
simulation Monte Carlo [8]. The basic method is relatively straightforward, as
laid out in [6]. In this scheme, information about the solution is carried in the
form of a small number of simulated molecules which represent a huge number
of real molecules. The simulated molecules can move and collide with other
simulated molecules, and averages are taken over time or over multiple instances of
a simulation to compute mean values of important flow properties. The procedure

involves generating random initial conditions for the particles according to initial
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and boundary conditions of the problem at hand and then accurately simulating the
physics for each particle thereafter, with randomness again playing a role in the
computation of the effect of collisions where particle collision geometry parameters
(mainly the scattering angle and transfers of energy between kinetic and internal
modes) are randomized. When implemented carefully, this approach can achieve
high accuracy in terms of the actual averages of flow properties and their comparison
with solutions of the Boltzmann equation [54], although computing them accurately
requires many samples in order to accumulate a high signal-to-noise ratio in the
computed results [30]. This results in calculations that are inherently more expensive
than equivalently-sophisticated Navier-Stokes methods when they are also valid,
although DSMC of course is capable of working accurately throughout the Knudsen
number range, even if it would be prohibitively expensive, due to the huge numbers
of collisions required, to perform calculations deep into the low-Kn regime where

Navier-Stokes is accurate [47].

DSMC is extremely robust, owing to its explicitly physical nature which makes it
inherently stable; a solution will be produced regardless of the satisfaction of the
usual constraints like the CFL number [14]. DSMC does, however, require that
certain convergence criteria be met. Specifically, collision cells (used for sorting
particles into local groups for collision selection) should be significantly smaller
than the mean free path, and cells must be populated with a sufficient number of
molecules, usually around ten or fewer per cell, depending on the specific application
[7], [47]. One stumbling block for DSMC appears to be the correct handling of
angular momentum in collisions [44]. Since particles are chosen from a range of
positions within a collision cell, collisions can transfer angular momentum non-
conservatively, even as linear momentum and energy are conserved. With care, it
seems, this can be mitigated somewhat, at the cost of a more elaborate collision
scheme [53].

1.6 Objectives

In the the present work, our objectives are focused on moment methods and specif-
ically the Maximum Entropy closure. We will examine the Maximum Entropy
Principle and develop from it a suitably robust scheme for reconstructing a proba-
bility distribution function from a small number of moments. We will see in the
next chapter that the Boltzmann H-theorem suggests a link between such Maximum
Entropy Reconstructions and gas dynamics, and we will proceed to develop a mo-

ment method closure based on our Maximum Entropy Reconstruction. Finally, we
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will analyze the usefulness of the closure by applying it to canonical problems of

gas dynamics and examining features of the solution.



Chapter 2

KINETIC THEORY

2.1 The Boltzmann Equation
The Boltzmann Equation is both a fundamental result and starting point in gas-
kinetic theory. For the case of a single-species monatomic gas with no body force,

Bird [6] gives its form as

d(pf) . 0(pf) p° G .
o aeZ D2 [ (5f = i) rer sintdedidgn, @0

Where the integral of the velocity distribution function, f (£, x, t), is normalized to
unity over the space Q of all atomic velocities, &. p(x,¢) is the mass density at
position x and time z. o (¢, €, ) is the cross section for a collision between particles
with relative velocity ¢, = & — € and a given deflection of the relative velocity
of particles at impact given by the spherical angles for azimuth, €, and colatitude,
X, relative to the original relative velocity vector. The subscript 1 indicates that a
quantity is in reference to its value for a particle with velocity &; and the primed
quantities are evaluated with post-collision atomic velocity, £ or £]. The details of
the calculation of post-collision velocities are determined by the specific molecular
interaction model chosen for the problem, with common examples including hard-

sphere interaction and power-law force potentials.

Physically, the left hand side of (2.1) represents transport of the velocity distribution
by the motion of particles, and the right hand side represents the effect on the
distribution of binary collisions between particle pairs. The collision term in this
case is specified for the regime of dilute gases where binary collisions dominate and

collision pair velocities are uncorrelated, i.e. the assumption of "molecular chaos"

[6].

Interpretation of the Collision Integral

The left hand side is uncontroversially derived from kinematic and statistical con-
siderations, but the right hand side is more nuanced. It was used by Boltzmann
himself to prove his famous H-theorem [10], which was considered by some to be

a sort of proof of the Second Law of Thermodynamics concerning ever-increasing
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entropy. In the absence of spatial gradients, the H-theorem shows clearly that the

entropy, given in [24] by

S=- / £(€)log f(£)de. 2.2)
Q

is ever-increasing towards its equilibrium value in a gas (the actual function Boltz-
mann used is inconsequentially different from this expression) [6], [15]. It wasn’t
until much later that it was determined that the H-theorem is descriptive but not
causative in relation to the Second Law, a result of investigating Loschmidt’s paradox
[39].

The paradox arises when considering that the underlying physical processes which
the collision integral accounts for are completely time reversible, i.e. reversing all
particle velocities at time ¢ and proceeding with the calculation until time 2¢ should
result in all particles returning to their initial configuration. The H-theorem, on
the other hand, predicts an ever-increasing entropy, regardless of the form of the
velocity distribution function. This results in a contradiction since entropy clearly
must decrease if particles reverse their paths under conservative forces while entropy

is increasing.

Upon examination, the products ff’ and fi f appear in the collision integral due
to the molecular chaos assumption. Under this useful simplification, the velocities
of collision partners are independent, meaning that the joint density function for
the probability of finding a given particle pair, f>(c,cy), can be factorized into
a product of the single-particle distribution function for each velocity, f(c)f(cy).
This of course cannot be strictly true in general once collisions have taken place
in a gas, as previous collision partners must have some interdependence due to
their interaction under conservation laws. This reveals the theoretical flaw in using
the H-theorem as an explanation of the Second Law; by discarding correlational
information after each collision, entropy increases irreversibly, but if correlations are
preserved states can be constructed in which entropy decreases, since no information
is lost and the original state can be recalled from any future state simply by reversing
all particle velocities. The gas state will then evolve exactly backwards along its
original trajectory, meaning that if entropy was increasing previously, it must now
be decreasing. It is the molecular chaos assumption which enforces irreversibility

by simply "forgetting" the required information to construct the reverse case.
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Nevertheless, while much mental effort can be expended debating the interpretation
of this form of the collision integral, its usefulness cannot be denied in practice.
Our concerns in this work will be with the solution of the Boltzmann equation for
practical purposes more than with its ultimate validity and meaning, so we accept
the form (2.1).

2.2 Direct Solution Methods for the Boltzmann Equation

Direct Numerical Simulation (DNS)

There are very few examples of practically-sized DNS computations, owing to the
fact that the Boltzmann equation has solutions which exist in a seven-dimensional
space (physical space, particle velocity space, and time), ensuring that computa-
tional effort scales sharply with increasing simulation size and resolution. More-
over, the collision integral which makes up the right hand side is, in its general
form, a five-dimensional integral which must be calculated for each point in that
seven-dimensional space. Naturally, such extreme computational demands render

infeasible all but the simplest solutions.

One such problem which is meaningful but simple enough to be amenable to nu-
merical simulation is the normal shock structure. Some solutions exist for fully
numerical investigations of this problem, e.g. [46]. The solution is enabled due
to its one-dimensional (in space) and axi-symmetric (in velocity) nature, as well as
being a steady solution. This results in a three-dimensional problem. The collision
integral is often also simplified in this case taking advantage of the symmetry in

velocity space in a careful way.

Direct Simulation Monte-Carlo (DSMC)

Currently, the most widely used method for non-equilibrium flows is Direct Simu-
lation Monte-Carlo (DSMC) [6]. The method essentially consists of the simulation
of the dynamics of a small fraction (very roughly of order 1072 in a typical calcu-
lation) of the gas molecules in a flow, including collisions, free flight, and surface
interactions. The molecules are embedded in a grid of cells, and the properties
of molecules in each cell are averaged to estimate gas properties within the cell.
Free flight of particles is simple to solve directly, and the effect of collisions be-
tween particles is implemented via a probabilistic approach, wherein molecules are
randomly selected to undergo a collision with other nearby molecules. As in the
Boltzmann equation, only binary collisions are considered in most implementations,

as the interest is usually in dilute gases where these interactions strongly dominate
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more complicated and rare collisions of three or more particles.

This simple, bookkeeping approach allows for several attractive advantages, such as
simple schemes to ensure conservation laws are satisfied at each step, which implies
robustness. The main driver of computational cost is the method of handling the
collisions, which demands that the cell size used for sorting particles into local
groups for choosing collision partners must remain significantly smaller than the
mean free path (typically the mean free path ~ 3Ax). The requirement that each cell
be populated with a sufficient number of molecules to accurately model the collision

process then implies a very high cost of computation [47].

The method has been very successful for certain classes of problems, particularly
stable, steady flows for which time-averaging may be employed to converge the
result from the statistically noisy instantaneous simulation. Stable but unsteady
flows are also amenable to ensemble-averaging, whereby multiple instances of the
same simulation may be averaged. In these cases, storage requirements may be as
low as ten simulated molecules per cell or fewer with more sophisticated sampling
techniques, and the simulation may be iterated as long as desired to achieve a well-
resolved solution. In the case of unstable flows however, such methods are no longer
applicable in general and statistics must be gathered instantaneously (the stochastic
noise in the simulation will cause divergence of different instances of the solution)
[47], [51] . Such cases require larger populations of simulated molecules in each
cell if smooth results are desired. In any case, solutions are ultimately limited to
converge statistically, or approximately as the inverse square root of the number of

simulated molecules [30].

2.3 Conservation Equations

Boltzmann’s H-theorem, mentioned previously, is one example of the many useful
results which can be derived from (2.1). The most general, and a first step in many
other important results, is a form for conservation equations for quantities which

represent expected values calculable from f(&).

Following Section 3.3 of [6] (see also [12] and [15]), we begin by multiplying both
sides of (2.1) by ¥ (&, x,t) and integrating over all €, the transport equation for

moments of the velocity distribution function may be written as

R ANRAGIANN AW
D) ) e
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where the bracket operator is defined as

W) = p /Q (€. x.0f () dE, 2.4)

and ¥ is the moment collision integral,

T 2 2
Y= ./Q/Q/o /0 %1// (fif = fif) ocrsin x dedydédE. (2.5)

This can be simplified to a more instructive form if we take advantage of a pair of
symmetries in (2.5). The first is the equivalence of interchanging &1 with &, repre-
senting the fact that the two particles are indistinguishable. We call this the "partner
symmetry". The second is more interesting, relying on the existence of inverse
collisions (reversing particle velocities and repeating a collision before reversing
velocities again returns particles to their original state) to allow the interchange of
&1 with §’. We call this the "collision symmetry". To use these, we first expand
(2.5) into

/g 2 2
¥ = / / / / By fl e, sin y dedydé dé
oJaJo Jo m

b/d 2 p2
_/// / —y fifoc,sin y dedydérdé.
oJadJo Jo m

We then use the collision symmetry on the first of these two integrals before recom-

(2.6)

bining to arrive at

,02 n 2r ,
y= 2 / / / / (w - w) fifoe, sin y dedydé dE. 2.7)
m JoJaJo Jo

This makes it clear that the integral calculates the average difference in the quantity
i caused by collisions in a gas represented by f. We then use the partner symmetry

on (2.7) to write

2 T 2r
y=£ / / / / (¢ — 1) ffioe, sin x dedydédE. (2.8)
mJaJaJo Jo

Finally, we average the two equivalent expressions (2.7) and (2.8) to arrive at our

point,
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1 2 b8 2
\P:E&//// (W' =y +y) =) ffioe sin y dedydérdé. (2.9)
mJaJaJo Jo

The form of (2.9) makes it readily apparent that the collision term vanishes for any
quantity conserved in collisions, that is any y for which ¢ + 1 = ¢ + wi. Examples
are the functions ¥ = 1, ¥ = &, and ¢ = &;&;, representing mass, momentum, and
energy conservation. Noting this and letting ¢ = 1 in (2.3) then yields the mass

conservation equation,

op Opu;
E+ axi

=0, (2.10)

letting ¥ = &; yields the momentum conservation equations,

dpui 9 (pij + puiu;)

=0, 2.11
ot (9Xj ( )

where u; = % (&) and p;; = (c,-c]->, with ¢; = & — u; denoting the peculiar velocity,

and letting ¥ = %f,fi yields the energy equation,

0 (%pujuj + pe) 0 (q,- + %p,-juj + peu; + pu,-ujuj)
+ =0, (2.12)
ot ox;

where g; = (%ci cjc j> represents the heat flux and e = (%cic,) represents the internal

energy, in this case consisting only of kinetic thermal energy.

We notice immediately a point which will be a theme in this work—terms appear,
in this case the terms p;;, and g;, for which we do not have equations. Closing the
system requires some method of connecting these quantities to the primary variables

P, u;, and e.

2.4 Moment Methods

Basic Approach

The procedure used to derive (2.10), (2.11), and (2.12) may be used to derive a
transport equation for any moment, of any order or type, of the velocity distribution
by an appropriate choice of . While any moment may be used to generate such

conservation equations, the quantities of interest in a solution to the Boltzmann
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equation are usually particular moments of the velocity distribution corresponding
to physically meaningful quantities (e.g., the velocity, u;, pressure tensor, p;;, and
heat flux vector, ¢; = <%c,~cz>). It is easy to imagine an ideal method which
computes only these physically relevant quantities, using equations of the type (2.3).
This approach is appealing in its economy; the engineer is less often interested in,
say, the exact velocity distribution or the Fourier coefficients of the distribution
function than in the drag coefficient.

However, these equations, as seen in our example of the mass (2.10), momentum
(2.11), and energy (2.12) conservation laws, will invariably include references to
quantities involving higher-order moments than those requested by choice of i, such
as p;j and ¢g;. This is due to the flux term in (2.3), which includes an extra factor
of & in the expression for the flux in the i-direction. Additionally, the collision
terms, which in all cases apart from those represented by (2.10), (2.11), and (2.12)
will be present, depend on the full velocity distribution function, f. This results in
a closure problem, wherein the unknown higher-order moments and the collision
terms, potentially even f itself, must be connected in some way to the values of the
primary variables [9].

Closure Schemes

A closure scheme is an algorithm for determining the collision terms and unclosed
moments from the computed moments. One physically intuitive approach would
be to simply choose a canonical distribution and match it to the known moments.
For the case of known density, velocity, and total kinetic energy, a Maxwellian
velocity distribution is an appropriate choice, which can be shown to result in a
system of equations for those quantities equivalent to the Euler equations [29],
having no heat flux or shear stress supported. Breaking up the kinetic energy into
the six pressure tensor terms in conjunction with the density and velocity defines
a Gaussian distribution, which includes shear stress but, being symmetric in all
directions about the mean, does not account for heat flux via diffusion [36]. Both
of these reconstructions are, as will be shown later, actually special cases of the

Maximum Entropy closure scheme [35].

Some previous works attempted to improve upon these simple closures by propos-
ing some ansatz form for the distribution function, often projecting it onto a set of
orthogonal polynomials. Grad’s original attempt used Hermite polynomials [19]

with a Maxwellian weight to match certain higher-order moments in the hopes of
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capturing more detail in the distribution function. The famous Chapman-Enskog
distribution results from expanding the Boltzmann equation as a series in terms
of a non-equilibrium parameter and truncating that series to produce a distribution
which depends on the local velocity and temperature gradients in the gas as well
as the conserved moments [9]. This approach has been quite successfully used in
theoretical endeavors, making itself useful in connecting the microscopic descrip-
tion of gases captured by the Boltzmann equation to the macroscopic description
represented by the Navier-Stokes equations. It is a well known result that, taking
the appropriate limits, the Chapman-Enskog form of the distribution reduces the
Boltzmann equation to the Navier Stokes equations, providing a clear way to con-
nect bulk gas properties such as viscosity and thermal conductivity to microscopic

parameters of the gas such as collision cross section and molecular mass [12].

A major problem with these polynomial fit approaches is that they are not guaranteed
to be positive, and choosing such a form for the velocity distribution represents ad
hoc assumptions which are not driven by the information present in the flow. This can
lead to non-physical solutions. As a specific example, for the case of a normal shock
wave the Grad 13-moment system with the Hermite closure displays discontinuities
in quantities in the shock profile. In [55], Weiss explains that this is due to the
limited wave speeds represented by the closure, forcing sub-shocks to accommodate

disparate solutions up- and downstream with no way of communicating.

The Principle of Maximum Entropy as a Closure Scheme

All closure schemes need not be ad hoc, however, at least in the view of some. In
[24], Jaynes propounds quite convincingly the idea that the Principle of Maximum
Entropy should be the natural way to proceed in cases where limited information
is present. The Principle of Maximum Entropy is that the least-biased estimate (a
"working value", one could say) of a probability distribution is that distribution from
the set of candidate distributions satisfying all known information (the constraints)
and which has maximum entropy within that set. Entropy here is defined in the

one-dimensional case as the functional

S(f) = —/Qf(x)logf(x) dx, (2.13)

where Q is again used as a symbol for the full domain of the problem, e.g., the real
line. The use of this principle is motivated similarly to that of Bayesian reasoning,

owing to many interesting mathematical similarities, although the two approaches
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Figure 2.1: Comparing sample PDFs from various points in the interior of a Mach
2.5 normal shock wave. Black: DSMC. Black-dashed: Gaussian fit. Red: Five-
Moment Maximum Entropy Reconstruction

are different philosophically and in their focus. Bayes’ theorem requires a prior
belief, while the Maximum Entropy Principle estimates a probability distribution

given incomplete knowledge [25].

The naturalness of this closure scheme is attractive, as it should avoid imposing ar-
tificial restrictions on the form of the distribution based on the construction chosen.
To illustrate, Figure 2.1 shows PDFs of normalized, shock-normal velocity, com-
puted with DSMC by the method of Bird [6], described later in more detail. These
PDFs are sampled from various points in the interior of a normal shock wave, and
compared with their Gaussian and five-moment Maximum Entropy Reconstruction
approximations. The Maximum Entropy Reconstruction captures the general shape
of the underlying PDF using only its third and fourth moments. The procedure to
compute the Maximum Entropy Reconstruction will be described fully in Chapter
3.
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Initially, some early attempts at using the Maximum Entropy closure to extend the
simple Euler and Gaussian moment closures to higher orders encountered some
difficulty with its use. Particularly, it was shown that the closure is singular in a sub-
space of its domain of definition, and moreover that that singular region included the
state of thermal equilibrium on its border [26]. Attempts to avoid this singularity by
use of different constraining moments developed problems of their own, eliminating
basic features of the solution such as Galilean invariance [29]. Other attempts to
regularize the procedure and avoid the singularity without loss of fundamental solu-
tion features met with some success, but also included their own discontinuities and
sub-shocks due to low characteristic speeds [41]. Eventually, McDonald developed
a method involving an analytic closing flux function inspired by but not closely
matching the form of the closing flux obtained from using the Maximum Entropy
Principle [42]. This scheme does produce smooth shock wave profiles owing to
its embrace of the singular behavior, and therefore infinite characteristic speeds, of
the closure near equilibrium. There is to date, however, no convincing solution
available to the problem using the closure scheme derived directly from the actual
Maximum Entropy. Later, in Section 6.4, we will show why this is the case based on
our own investigations into the Maximum Entropy Principle and its preferred form

of the velocity distribution.

2.5 The Maximum Entropy Reconstruction (MER) as a Closure

The natural closure based on Bayesian reasoning for a moment method is to use
the Principle of Maximum Entropy to compute an approximate distribution function
which recognizes our knowledge of the true distribution (represented by the moments
and their conservation equations) and incorporates no additional, ad hoc constraints

on the distribution function. The principle of maximum entropy is, stated plainly:

The least biased estimate of a distribution satisfying a number of
constraints is the distribution with maximum entropy from the set of

distributions which satisfy all constraints. [24]

This approach, suitably specified to the problem at hand, is useful in uncertainty
estimation, and in estimation in the face of uncertainty, in many fields, including
robotics [11], economics [16], and imaging [20]. A general mathematical derivation
of the Maximum Entropy Recontruction (MER) procedure, given a set of moment

constraints, is found in [52].
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We do not pretend to justify here the validity of the Maximum Entropy Principle, but
the following is a notional explanation of the logic behind the choice: the principle
rests on the idea that entropy is a measure of the uncertainty, or perhaps one could say
the "mundaneness” of a distribution function. Functions with sharp spikes and many
peaks tend to have low entropy, while broad, smooth functions tend to have higher
entropy. If we accept this for the time being without argument (not to say there is
none to be had!), it then makes intuitive sense that we should choose the distribution
with maximum entropy satisfying our present knowledge of the actual distribution.
Suppose we have some information about a one-dimensional distribution—say,
its first three velocity moments in x. Call f3 the maximum entropy distribution
matching these constraints. Now imagine we are given additional information,
namely the value of the fourth and fifth moments, <x3> and <x4>. If we then
compute the maximum entropy distribution according to our principle with this
new information, fs, then the entropy (or uncertainty, or "mundaneness") of our
distribution, S(f5) < S(f3), with equality only in the case that the two moments
were already those predicted by f3, in which case we gained no information to
update our estimate. Had we not chosen the maximum entropy distribution for our
candidate distribution but rather chosen some ad hoc function, then it is possible
that there would exist a function, f;, which matches the five constraints and has
more entropy than our estimate of the function given only three constraints. With
our understanding of the meaning of the entropy, it is inconsistent for our estimate

of the distribution to become less specialized with increasing information.

Despite this and other attractive properties of using the Maximum Entropy Principle
to deal with uncertainty, one may be concerned, given the difficulties had when
applying it to gas dynamics [29], that the principle may not always provide a
suitable closure. It has been shown by Junk, in [26] and in [27], that a suitable
MER always exists for any set of moment constraints which match any positive
distribution function, except for a zero-volume subspace of otherwise valid moments
which exists only in the infinite domain case. Junk’s work demonstrates that this
solutionless subspace, while problematic, is not pervasive within the domain of
possible problems, and comparison with results by McDonald [42] seems to indicate

that, at least in practice, this subspace is avoided naturally.

The computation of the MER with appropriate constraints is fairly numerically in-
tensive, owing to the need to compute many integrals over the problem domain in

order to follow the iterative solution procedure outlined in [52]. Note that in gas
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dynamics, the velocity distribution is in general a three-dimensional function, mean-
ing that the problem domain is R? and the required integrals are three-dimensional.
This can make the calculation of the MER impractical, and is a major reason that
McDonald chose an analytical model for the closing flux over using the true MER
[42]. Slight improvements can be made to the procedure to improve performance,
but to date there seems to be no known way to truly avoid the ballooning computa-
tional cost as the velocity distribution becomes higher dimensional [1]. In Section
4.2 we will propose a way to avoid three-dimensional integrals entirely while still

computing a fully valid MER for a given set of moments.

The final feature of the MER procedure which is of note is the behavior of the closing
flux as the singular subspace is approached. Junk explores this in passing, going
as far as to sketch the mechanism by which the singular subspace arises, namely
the inability of the entropy functional to control the presence of tiny perturbations
in the distribution function at extreme distances from the mean of the distribution
[28]. These small perturbations take the form of tiny, rapidly-moving (in terms of
how they move as the moments vary) packets in the one-dimensional, five-moment
reconstruction case. These packets have a negligible effect on the lowest order
moments, but a significant effect on the third and fourth moments, and are dominant
when computing the fifth moment, which is required as the closing flux in gas
dynamics applications of this order. Their presence and significance at large x
means that the MER Problem must truly be solved on the infinite domain if it is
to be accurate, and not on some finite-width interval around the origin, as there is
important information about the function at large x which, if discarded, corrupts
the solution, especially when computing the closing moments. In Section 2.4 we
present an analysis of this feature of the solution, and will show that the magnitude
and location of this small perturbation can be accurately predicted analytically,

allowing for a great increase in the ease of computing the full MER.
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Chapter 3

THE MAXIMUM ENTROPY RECONSTRUCTION PROBLEM

3.1 Statement of the problem

Background: The Problem of Moments

The Maximum Entropy Reconstruction (MER) Problem is related to the general
problem of moments, detailed in [2] and [50], which is to determine whether a

given sequence, u;, represents a sequence of moments of a probability distribution
function (PDF), f(x), i.e.,

Ui = / x' f(x)dx, i=(0,1,2..), f(x) > 0. (3.1)
Q

To avoid repetition and to emphasize generality of results, we will use Q to refer to
the relevant problem domain. The canonical one-dimensional problems in this area
are divided by the domain of support of the PDF; the Hamburger moment problem
deals with PDFs on the real line, x € (—oo, 00), the Stieltjes moment problem deals
with the half-line, x € [0, o), and the Hausdorff moment problem deals with the
closed interval, x € [0,1]. The problem can, of course, be extended to higher

dimensions, but much of the theory and formulation remains unchanged.

More practically interesting is the truncated moment problem, where only a finite
number of moments are known and a corresponding distribution function sought [2].
While in general there exist an infinite number of PDFs which satisfy a valid finite
set of moment constraints, useful results can be derived from this rather ill-posed
problem. The main thrust of the analysis is to define the allowable set of moment

constraints for which an answer is possible.

Consider a system like (3.1), but with a finite number, N, of moments provided,

i €(0,1,2,..,N —1). Consider the matrix J;; = p;4 -2, which can be written as

. N-1
Jij = / vivjf(x)dx, v = x1 i € (1, 2, ... T) . (3.2)
Q

The matrix of moment integrands, v;v;, is positive definite, owing to its form as
the dyadic product of a vector with itself [23], and this implies that J;; is therefore

positive definite if f(x) is always positive. Therefore, a sequence of moments
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u; only admits valid solutions if J;; = p;4 ;> is positive definite. By performing
row reduction on J;; to reduce it to an upper triangular matrix, we realize that
each diagonal component of the matrix yields a constraint on the admissible set of

moments [42]. For the case of N = 5 this gives the transformation

1w M2
Jo| 0 m—pm H3 — M1 , (3.3)
2 _ (m—pm)?
0 0 ot o=y

which must have uniformly positive diagonal entries. It should be noted that adding
additional moments to J does not change the previous diagonal entries, so all
constraints derived from this 5-moment case apply to higher-moment cases as well.
The first diagonal entry is automatically positive by definition since f(x) has unit
weight, the second entry’s positivity requires that the variance is positive, but the
third and higher entries yield quadratic inequalities in pairs of consecutive moments,

starting with

5 (3 — pn)*

27 H

Later it will be convenient to refer to this expression for the special case where the

moments are normalized such that (o, 11, o) = (1,0, 1), which is

pa > 1+ . (3.5)

This relation defines strict limits on the allowable constrained moments which are
applicable even under more specific forms of the moment problem, as shown in the

parabolic, outer boundary of Figure 3.1.

Another useful result can be found specifically for the Hausdorff moment problem.

Examine the form

x"(1-x)". (3.6)

It is clear that over the range x € [0, 1] (3.6) is positive semi-definite. Computing
the expected value of this form for a given positive f(x), therefore, is guaranteed to

produce a positive result. This gives us the moment constraint
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6 < Region |

2 Solvable

Unphysical

Figure 3.1: Restrictions on the solvability and features of the MER problem in
(u3, ua)-space. Blue region: Moments for which the problem can be solved numer-
ically. Red region: Singular asymptotic solution valid (Region I). Green region:
Regular asymptotic solution approximately valid (Region II). White region: Unphys-
ical moment space. Red boundary: Physical realizability boundary. Thick black
boundary: Region I empirical boundary. Yellow line: Junk singular subspace. Blue
X: Equilibrium point.

1
(1) (A" p), = / X"(1=x)"dx >0 (3.7)
0

with (Au),, = pn+1 — py- This condition is called "complete monotonicity" and is

an important constraint in the Hausdorff version of the moment problem [43].

Statement of the MER Problem
We first address the problem of the MER in one independent variable on the real
line. Let f (x), —oo < x < oo be a PDF. Typically this could be the PDF of velocities
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in a one-dimensional velocity space with x — ¢ where c is the molecular velocity
relative to the mean. The problem at hand is to reconstruct an analytic approximation
to f(x) subject to a specified set of moment constraints denoted by the vector u with
components y;, i = 0,1,2,..., N — 1, where N is the total number of moments. In
the Hamburger moment problem case, N should be odd so that the highest moment

is even.

In this work, we will take the entropy to be the Shannon entropy [49],

S(f) = - /Q £ () log [ (x)] d. (3.8)

The most general statement of the MER Problem is as follows [43]:

Find f(x) of the set of probability distribution functions with first N

moments given by y;,i =0, 1,2, ..., N—1, which has maximum entropy.

The only known properties of the distribution are the computed moments, y, so the

maximum entropy principle calls for the maximum-entropy distribution f such that

/Q W () f () dx = (3.9)

where ¥ (x) is a vector of moment kernels. In the simplest case, ¥;(x) = x' (the
notation is cleaner if a convention is adopted that vector components are indexed
beginning with 0), though this is not necessary. In fact, using certain forms for ¥ (x)
can greatly improve the numerical conditioning of the reconstruction algorithm as

we shall see later.

3.2 The Maximum Entropy Distribution
Using the method of Lagrange and following the derivation by [52] for constraint

optimization problems, define

HFA) =S () + 4, ( /Q () fdx — ). (3.10)

summation implied, with A the vector of Lagrange multipliers of the same length
as u. This function is so constructed that its maximum in f and A will coincide

with both the maximum of the entropy functional (3.8) and the satisfaction of the
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moment constraints (3.9). We begin by finding a form for f(x), the maximal form
of f(x), by seeking a fixed point in H with respect to f(x). We take the f functional
derivative of H and set it to zero to obtain

6H »
5 " —1 —log f + Aii(x) = 0. (3.11)

This results in a form for the function itself,

N-1
f(x) = exp (Z Ai(x) — 1) : (3.12)
i=0

Since we require a constraint on the total probability density, we enforce ¥y = 1
always and absorb the —1 term in the exponent into Ay, leading to the cleaner

expression with equivalent properties,

fx) = eMil), (3.13)

with summation over like subscripts implied.

Finding a fixed point for each A; simply returns the constraint satisfaction require-

ment:

/z//,-e)‘f‘”fdx = 1, i=0,1,2..,N-1. (3.14)
Q

The reconstruction depends on the coefficients A;, which may be determined by solv-
ing the N nonlinear equations in (3.14). Even in this general case with unspecified
domain and moments, when solvable, this problem is guaranteed to have a unique
solution and can be shown [26] to be convex in the 4;, making the Newton-Raphson

method [22] an effective choice for finding solutions in practice.

Centered, Scaled Moments

The canonical version of the reconstruction problem has the simple form of y; = x/,
or monomial moments. This form is useful in order to analyze the properties of the
solution, and any moment problem using polynomial moments can be converted to
a problem of this form simply by computing the relevant monomial moments from

the polynomial moments and imposing them as constraints.
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We require that f(x) is a unit-normalized PDF, so uy = 1. Further, the mean,
U1, and second moment, u», can be set to zero and unity, respectively and without
loss of generality, by shifting and scaling the independent variable. If we let &
be the independent variable for some general PDF, f:(£) with moments m;, i =
0,1,2,..., N — 1, the problem is then shifted into centered, scaled coordinates by

means of the transformation

E=o0x+m, X = , (3.15)

where o = +./my — m?, recalling that my = 1. This allows the computation of the
centered, scaled moments from the general moments and visa-versa by inserting the
appropriate choice from (3.15) into the definitions of the moments and expanding

the resulting expressions.

= /f’fg(é)dé = L(a’x +m1)if§(0'x +my)odx = /Q(O'x +m) f(x)dx

/ (l) (ox)F mil_kf(x)dx
Q%0

- (k)o—k pem' =k, (3.16)
k=0

/ i P = /(f ml)f(f ml)df /(f ml)fg(f)df

(o
[> (1) e

Q=0

i . i—k
(;)M (3.17)

i
k= o

o

One can confirm that (3.17) gives (uo, 1, u2) = (1,0, 1) for any possible m;.

Consider for now the truncated Hamburger moment problem in the case N = 5,
and take m = (mg, my, my, m3, mq) — pu = (1,0, 1, u3, ug) following rescaling. The
reconstruction problem may then be expressed as finding the five A; such that

/ eV dx — =0, i=01,234. (3.18)

(o8]
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Solutions will be discussed in the plane defined by (u3, t4). A special case is
p =(1,0,1,0,3), which gives the standard normal or thermal equilibrium solution
Je(x), where A = (—log(27)/2,0,-1/2,0,0),

2

1 x

fe(x) = me z. (3.19)
The result can be checked by hand. It is a degenerate case which reduces to a three-
moment maximum entropy problem for (uo, u1, u2) = (1,0, 1), which is analytically
tractable owing to the ready integrals for Gaussian moments. This reduction in
order happens because 0 and 3 are the third and fourth order moments, respectively,
of the standard normal distribution, which is the maximum entropy solution for any
three-moment maximum entropy problem (scaled and centered). We subsequently
refer to (u3, ug) = (0,3) as the thermal equilibrium point, E. Note that a vector
distribution with each component having a velocity distribution like (3.19), with the
same average variance in all three components, gives rise to the Maxwell-Boltzmann

velocity distribution.

The truncated Hamburger moment problem has a solution (that is, there exists some
distribution matching the given moments) so long as the target moments correspond
to those of some possible positive distribution. The maximum entropy version of
this problem, however, is not uniquely solvable for a zero-volume set of moments
within this domain. In the case of N = 5, this situation occurs when u3 = 0 and
ug > 3, which is a ray extending from the equilibrium point in the (u3, u4) plane
[26].

This singularity arises in the Hamburger moment problem because of the unbounded
domain, and is fundamental to the behavior of the maximum entropy problem.
Intuitively, the problem arises because increasing the fourth moment of a distribution
of the form (3.13) with N = 5, while maintaining zero odd moments, means that the
tails of the distribution must be increased at large x. However, since the exponential
function is monotonic, A>x? is dominated only by A;x* at large x. This means that
increasing A, will not have the desired effect, as 44 must decrease in order to control
the growth of both moments (and A4 must always be non-positive or the distribution
will become unbounded). Decreasing 14 necessarily reduces the weight of the tails
of the distribution and prevents any growth of w4 relative to u, beyond a certain

point.
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Figure 3.2: Ay (black), A (red), and A4 (blue) values of the MER on the infinite
domain vs. u4. u3 = 0 is held constant. The values diverge as u4 approaches 1.

Figure 3.2 shows how the range of u4 is bounded between 1 and 3 for even dis-
tributions of the type (3.13). It can be seen that as u4 tends to 3, A4 tends to

Z€10.

This singular line would not be so significant if the solution were well-behaved
elsewhere, but in fact it will be seen that as the singular line is approached, mo-
ments of higher order than the constraining moments become unbounded. Given
that this behavior causes extreme numerical instability, limiting the robustness of
any algorithm designed to solve the Maximum Entropy moment problem, and the
region of higher order moment unboundedness extends to the neighborhood of the
equilibrium point, it becomes important to understand the nature of this singularity

in order to fully tackle the problem.

The analysis of the maximum entropy solution near this singular line is more con-
veniently done by working with p = A — Ag, the deviation in A from the equilibrium

solution, Ag. These become

1 1
po = Ao+ 3 log(2r), pi=A41, pa=Ar+ 3 P3= A3, pa=As, (3.20)
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and (3.14) becomes

1
Vor

For given (u3, us), (3.21) gives five nonlinear equations for p. We define the

(o) . x2 X
/ xe TePi¥dy=p;, i=0,1,2..,N-1. (3.21)

maximum entropy polynomial (MPE) by

1 1
g(pi,x) = ) log(27) + po + p1x + (p2 — E)Xz + p3x® + paxt, (3.22)

being the natural logarithm of the MER, (3.13). An acceptable solution requires
pa < 0 (except at equilibrium which is a degenerate case where p = 0) so that
the reconstructed f vanishes exponentially as x approaches +co and all moments
are finite. The extrema of the fourth-order polynomial g(x) must then consist of
either a single, global maximum, or else two maxima and one minimum. Since the
exponential function is strictly monotonic and always positive, this implies that f
must also be either unimodal or bimodal. This detail will become important as the

problem is analyzed further.

3.3 Numerical Solutions

Using a quadrature scheme for the x-integrations together with a suitably robust
Newton-Raphson scheme, (3.21) can be solved numerically to high accuracy within
a finite region of the moment space for the given problem. As an illustration, a simple
MATLAB code was written to solve the MER problem for general sets of monomial
moments. The integrals required to compute the Jacobian for the Newton’s step
were performed using a composite Simpson’s rule [56] on the infinite domain,
mapped onto a finite interval with the change of variables x = tan#, using 1200
integration points. The Newton’s step is made robust by employing a backtracking
scheme, whereby unacceptably high errors or undefined components in the Jacobian
are detected and the Newton’s increment for 4; is reduced by a factor of 5 and the
solution error is recalculated. Figure 3.3 shows a sequence of such solutions for
increasing numbers of moment constraints. In this figure, a true distribution supplies
the target moments and is constructed as a summation of two Gaussian expressions,
one with weight 0.4, mean —0.93394, and standard deviation 0.45, the other with
weight 0.6, mean 0.62263, and standard deviation 0.75. The moments to eighth order
are u = (1,0, 1,0.2243,2.2222, 1.4699, 7.5929, 9.2924, 35 .895)T. Reconstructions

including all moments to second, fourth, sixth, and eighth order are shown. In
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Figure 3.3: Example of increasing fidelity of the MER with increasing numbers of
moments.Black line: True function from which moments are calculated to serve as
constraints in the MER. Other lines represent the MER using the first N moments;
black-dashed: N = 3, red: N =5, blue-dashed: N = 7, magenta-dashed: N = 9.

this benign and well-behaved case, the higher-order reconstructions demonstrate
increasing fidelity of approximation to the true function with increasing numbers
of moments, but we shall see that naive reconstruction procedures such as these are
of little practical use owing to the numerical difficulty of the reconstruction in a

particular region of (3, u4)-space.

When |u3| becomes small with fixed u4 > 3, it is found that naive solution schemes
become increasingly ill-conditioned in the sense that the distribution becomes ex-
tremely sensitive to the values of A;, to such a degree that numerical error precludes
finding a suitable solution. A partial reason for this is apparent from Figure 3.4.
As |us| reduces, the MEP, g(p;, x), obtained with the simple MATLAB MER code,
shows two maxima and a deep minimum. The black line represents the naive nu-
merical solution, and the dashed lines represent its approximation by the Hybrid
Maximum Entropy Reconstruction (HMER) which we will describe in detail at the
end of the following chapter. In the MEP, one maximum is always near x = 0 while

the second (or left maximum for 3 < 0) moves to increasingly large x. Further, the
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Figure 3.4: Black: True solution, Red: Hybrid Model IMP, Blue: Hybrid Model
Central Component. A particular case of the five-moment MER Problem with
uz = —0.04 and g4 = 3.01. The Hybrid model, HMER, and the IMP are explained
in detail in Chapter IV.

size of the left peak in f(x) becomes progressively smaller. Without some under-
standing of the nature of g(p;, x) in this region, the only way to produce solutions is
to use a very large number of integration points, so that sufficient range and resolu-
tion is achieved to capture the contribution to the required moments of the region
around each maximum. This leads to an inevitable numerical ill-conditioning of the
problem as literally infinite range and resolution are required using this approach
as u3 — 0. This results in an unacceptable computational burden and degraded
accuracy as the singular line is approached, necessitating a better understanding of

the solution in this region.

This bimodal character of f(x) near the singular line, with peaks that are widely
separated in x leads to numerical values of higher-order moments s, g - - - that
become increasingly large when |u3| — O at fixed p4 > 3. This is also noticed by
Junk [28], and will be demonstrated and discussed in more detail subsequently. The
interpretation is clear: the capability of the ME reconstructed f(x) to produce given

(u3, pg) with (uo, 11, o) = (1,0, 1) fixed is severely constrained by the properties of
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the fourth-order g(p;, x). With the given moment constraints, the available solution
is of a wide-separation, bimodal form containing peaks of increasingly disparate

amplitude. This character suggests a singular limit when u3 — 0 with p4 > 3.

In what follows it is shown that separate analytic expansions can be constructed in
two regions near the moment axes. The regions are illustrated in Figure 3.1. The first,
denoted Region I, lies adjacent to that part of the co-ordinate axis |u3| << 1, ugq > 3,

while the second, presently denoted Region II, additionally requires |4 — 3| < ,u%.
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Chapter 4

ASYMPTOTIC SOLUTION TO THE MER PROBLEM

4.1 Two-PDF Model in Region I

We first consider the asymptotic solution for the MER when pu3 — 0 with pg >
3 (Region I). This will be seen to be singular. Solutions are anticipated to be
antisymmetric in the odd-indexed p; variables and also in odd-indexed moments,
and so presently it is sufficient to discuss u3 < 0. Motivated by inspection of
many numerical solutions similar to Figure 3.4 showing bimodal distributions, our

approach is to build a two-PDF model for f(x) of the form

fx)=€fi+1-ef. (4.1)

In (4.1), fo will be modeled as a perturbed Gaussian centered on x = 0, approx-
imating the central maximum, and f; as a shifted Gaussian approximation to the
left-hand maximum in g(p;, x) shown in Figure 3.4. The left-hand maximum center
is at x; (to be determined in this analysis) and its contribution to the zeroth-moment
of f(x)is € < 1, subsequently referred to as its amplitude (also to be determined).
The analysis will seek analytical approximations to xj, € , the p; and moments
Ui, > 4 as functions of (us, ug) for |usz| < 1. Numerical solutions suggest, and
this is later verified, that asymptotic solutions in the sense of |u3| — 0, ug > 3 exist

with, to leading order, po, p2, pa = O(,u%) and py, p3 = O(u3).

4.2 Position of the Itinerant Moment Packet (IMP)
The left peak is centered on the local maximum of g(x) defined by the left-most (for

w3 < 0) or right-most (u3 > 0) x for which

d
d_;gc:P1+2(p2—%)X+3p3x2+4P4x3:0- (4.2)

Numerical investigation suggests that the location, xi, is nearly proportional to ,ugl.
Since the left maximum rapidly carries important moment information towards
infinity in a compact packet as uz3 — 0, and because of its small amplitude and
disproportionate role in causing the difficulties encountered when naively solving
the MER problem, we aptly name it the Itinerant Moment Packet (IMP). Proceeding

with the ansatz (which will be verified later) that x| o ,ugl as u3 becomes small, a
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dominant balance argument suggests that p; and p; in (4.2) may be neglected which

gives the estimate of the IMP’s position as

—3p3+,/9p§+16p4

8 p4

x| = 4.3)
A more precise analysis including the neglected p; and p; gives a more complicated
but consequentially indifferent expression for x| in terms of all p;, so for the sake of

neatness we will proceed with the approximation (4.3).

The osculating parabola approximating the IMP is given by

1 14
~ g (x—x1)%, (4.4)

gp(Pi’ .X) =gt )

where g; = g(x = x1) and g;' = d?g/dx*(x = x1) < 0. Near x = x1, we then have

2r

- 4.5
< () ()

€fi(pi, x) = explgy(pi, x], € = expl[g1(pi)]
Because |x;| > 1 and is therefore many times larger than the variance of fi(p;, x),
we will approximate the contribution from fi(p;, x) to the k-th moment of f about

x=0ase x{‘ . Henceforth, for the present analysis, we need be concerned only with
e(pi).

The quantities g; and gr are obtained by direct substitution of (4.3) into both (3.13)
and its second derivative, and are respectively

3 (92
27P§ 9[7% 9p2p§ 1 ) 2] 3p1p3 + 9]73 9p3 + 16p4

512p  64p2  32p2  16ps 4ps  8ps 512p]
P3y/9p3 + 16p4 3pzp3\/9p3 + 16p4 p1\/9p3 + 16p4
log [27], (4.6)
32p4 32p4
, 9p3 + 16(1 + p2)pa — 3p3/9p3 + 16p4
g (pi) = 2 : 4.7)
P4

It can be seen that the complicated form of (4.6) contains terms of order p;l.
Since we anticipate pj, ps = 0(,u§) these terms, unless canceled, will lead to the

unacceptably singular form € ~ exp[pgz], uz — 0. This can be mollified by
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requiring the leading order relation ps = (-1/2 + @) p%. Substituting into (4.6) and
expanding to order « then gives
p2  p1_a(l+8py+4pip3)

gL~po+—=5+—+ > — 1 log[2 ). (4.8)
p; P3 P3

The singularity is relieved by the choice @ = 0. This gives the leading-order closure
relation
ps=—3pi+HOT. (4.9)

Using (4.9) in (4.3) we find that x; = p;l to leading order. Surprisingly, it will be
seen that this result together with (4.9) is all that is required from the analysis of f;

to obtain the leading-order behavior when uz — 0.

Moment equations
We now address the contribution to moments from fy modeled as a perturbed

Gaussian. First, fj is written in the form

1
V21

We seek a perturbation expansion of the p; of the form

J
fo(pp, x) = exp (—% xz) exp(Z2) ,Z= Z Dj x/ (4.10)
j=0

p0=a0,u§+---,
pr=aipz+bi;+--,
P2=az,u§+"',
p3=azus+bypy+ o,
p4:a4,u§+---,

E:e4y§+e6ug+---, 4.11)

where the a;, b; are functions of p4 to be determined. For pg, p» and p4 higher-order
terms are expected to be of the form ,ug‘ (b; + ¢; log(Jusl)), i = 0,2,4. These are
omitted here because they do not affect the present expansion to order( ,ng). The given
form for € will be later shown to be required for self-consistency. The reconciliation
of the algebraic expansion € with the apparent exponentially small form suggested
by the second of (4.5) will be discussed subsequently and will shown to associated

with an order ,u‘3t log[|u3|] correction to pj.

Next, the quantity exp(Z) in (4.10) is expanded as a Taylor series in Z about Z = 0
to third order and Z(p;, x) is then substituted, followed by further substitution of the
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expansion (4.11). This gives an expression that represents the model f as a Gaussian
times a high-order polynomial in x in which the coefficients are combinations of
powers of the a;, b; and u3. The third-order expansion can be shown to be sufficient
to capture all contributions to order ,u%. We note in passing that this expansion has
not been proven to be convergent for some range of u3 nor can it be guaranteed to
give positive fy. Nonetheless, k-th-order moments of the model fy exist for any
k > 0 and can be determined analytically by integration in (—co < x < o0). The
calculated moments for k = 0, - - - 4 may now be determined by integration and added
to the contributions from f; discussed above to give the five moment equations, as

power series in u3, to order ,ug

(ap + % a +ay+3aaz+ 2 + 3ay) ,u3 (4.12)

(a1+3a3),u3+(a0a1+ a +3a1a2+3a0a3+ aa3+15a2a3

+ 1(2)5 aj a + 355 a3 + 15ay a4 + 105 a3z a4 + by + 3173,),1,13

+ (ea 5 + eo pS)az p3 + b3 3) ' =0, (4.13)
(ap + %(a% +2ap +10aj az + 35 a% + 10a4)),u§
+ (ea i + €6 p3)as s + b3 p3) > = 0, (4.14)
(- l+3a1+15a3),ug+(3a0a1+15 3+1501a2+15a0a3+105 2

945 3465
+ 5 ag a + =

1a3+105a2 a3
a3 +105a; as + 945 a3 as + 3 by + 15 b3) 3
+ (ea 3 + e6 pu3)(az 3 + b3 p3) > = 0, (4.15)
3—us+Bap+ %(a% +2ay+ 14a; a3 +63a§ + 14a4)),u§
+(es 5 +eo ) (a3 3 + b3 p3) ™+ = 0. (4.16)
In the above, the last term in the last four moment equations are the contributions
from the IMP evaluated as ex =€/ pk k=1,---4,using x| = pgl. The equation

set contains cubic nonlinearities in the coefficients and are not closed. Nonetheless

they can be solved simply and efficiently.

First, equating the O(u3) term to zero in (4.13) immediately gives
ay = —3613. (4.17)

Next, the last term in (4.15) is expanded as a Taylor Series in u3 and terms of order

w3 retained. The first order term in w3 in (4.15) then gives

es = —a3 (~1 +6as3). (4.18)
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Substituting the expressions for a; and e4 into (4.16) and again expanding the last

term in a Taylor series to order ,u% then gives, equating the order one term to zero,

as = 1/(,[14 + 3). (4.19)

This then gives
es = (ks —3) (ua +3)7". (4.20)

Substituting the results in hand, (4.17) through (4.20), into the order ,u% terms in
(4.12),(4.14), (4.16), and into the order ug terms in (4.13),(4.15) and equating these
to zero then leads to

3
+ay+3as+ —— =0, 4.21
ap+ax+3ay (s + 37 4.21)
1
by +3bs +a PO L T S 4.22)
M4 +3 pa+3 (g +3)°
18+,u4
a0+3a2+15a4+—2:0, (4.23)
(s +3)
6 60 630 720
3by + b3 (8 — wy) + + + + 3P+ —— =0
1+ b3 (8- wa) e e Rl b e6 (g + 3) G2+ 3)
4.24)
, . 225
3a0+15a2+105a4+4b3(9—,u4)+66(,u4+3) +—2=O. (4.25)
(g +3)

These are five linear equations for the six unknowns (ag, az, as, by, b3, eg). It can be
seen that a consistent power series expansion is possible only if € takes the form
given in the last of (4.11). Any alternative form, for example a leading-order term
of lower order, can be shown lead to unbalanced terms of zeroth order. Further,
the order ,ug‘ as the leading order in the IMP amplitude, considering (4.2) placing
the IMP at a location that scales as My ! is consistent with the form of perturbation
used by Junk to demonstrate the existence of the singular region [28]. Note that
where IMP-like packets of equivalently scaling amplitude and position are used to
explain the existence of the singular line in Region I, Junk supplied no justification

or precise prediction of these packets.

Equations (4.21-4.25) can now be solved using the closure relation (4.9). This gives

__(ug 3)_2.

5 (4.26)

)
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Solving (4.21-4.25) and substituting into (4.11) provides the solution

6+us
Po= s M3+
2(us +3)2) 2
3 189 — 33u4 + 2445
= — + + ...
P m+3h DS
O+ 5
e ——— +...
P 32
1 L 36m-19) ,
P3= 31 (3 + ua)* #
I S
PTG )
-3 6 (57 — 84 py + 11 112)
e= 1 ug 4 ,ug (4.27)
(g + 3)* (pa +3)7

An example of these values used to predict the full distribution function is shown
in Figure 4.1. Excellent agreement is found near the central component of the
distribution, but near the IMP location there are necessarily many cancellations,
degrading accuracy of an approximate approach such as this. The distribution is
very sensitive to small changes in the p;, as the relative error from the true p; in
this case is less than 3 x 1073 for all values of p; predicted, despite the significant
resulting error in the distribution function itself. It is interesting to note, however,
that the model for the central component qualitatively resembles the full solution
near the IMP, despite this portion of the distribution having negligible influence
on the central component’s moments. The IMP model nicely approximates the left

peak of the distribution.

Moments u, k > 5 are given by €/ p’; with no contribution from fy. To leading
order these are

= 3 (s = 3)(ua + 3% k=5, (4.28)

These are singular when 3 — 0. The odd-order moments change sign as 3 passes
through zero. Note in particular the fifth-order moment,
e

Hs = , (4.29)
M3

which will become important later in this work. This moment is singular and
multivalued around the point E. If approaching E along a line with angle w with

respect to the uz-axis, then us becomes

us =tanw (ug + 3), (4.30)
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Figure 4.1: Comparison of the logarithm of the full MER solution with the asymp-
totic solution given by (4.27) in Region I with y3 = —0.04 and pu4 = 3.01. Black:
Full MER solution. Red: IMP model Blue: Central component of Region I asymp-
totic solution.

which clearly has a different limit at £ for different w.

Asymptotic solution for f;

The solution is completed by obtaining the asymptotic form of f;, defined by (4.4)
and (4.5) when puz — 0. The quantity gi' is estimated by substituting the leading-
order expressions for the p; from (4.27) and x; = 1/p3 (see discussion following
(4.9)) directly into the second derivative of g defined by (3.22), followed by Taylor
series expansion in u3 about pu3 = 0. The algebra can be done with Mathematica
and gives gi' = -1+ 0(/,%). Thus, the IMP component of the solution has unit

variance.

The quantity g = g(x = x) is more delicate and requires care. First, the p; are
written as p; = pjo + b; where the p;o are given by the respective first terms in each
of (4.27) and the b; are higher-order corrections, two of which (b1, b3) are given
in (4.27). It is then assumed that by, by, and b4 are at worst of order ,ug log[|usl]-
When g; = g(x = x) is then expanded for small |u3| and then the limit u3 — 0
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examined, it is found that only surviving terms are contained in

(us +3)* 15+ pg +log[2 7] .

g1 = by 4.31)
T 2
This suggests the choice
u
by = — 2 (@ log[-us] +loglB(ua) + K(ua)), 3 <0 (432)
(g +3)

The constant @, and the functions B(u4), K(u4) are now chosen such that € given
by the second of (4.5) (with gi' = —1) matches the leading order ,ug term of the last
equation of (4.27). This is satisfied by the choice

M4 —3 % 15+ py

=4, =) = . 4.33
. (s + 37 2 #39
The final form for the IMP is then a normalized Gaussian centered on x = x;
(Ma=3)uy 1 L .
€fi(pi, x) = e 2 (4.34)
(p4 +3)* V2w
and b4 is given by
i
by = —2 (4 log(~jus) + log(sus — 3) — 4 log(ua + 3) + $ (15 + ) . (4.35)
(ua +3)

An example of the resulting two-PDF model of the MER in Region I can be seen
in Figure 3.4. The two-PDF model with the IMP matches quite well over the
ranges of x where the true solution is not extremely attenuated. Capturing the
IMP analytically allows for a treatment of the near-equilibrium behavior that is
much better conditioned by avoiding the appearance of singular moments in the

Reconstruction Jacobian.

It can be seen from (4.35) that b4 is logarithmically singular when ps — 3 from
above with u3 fixed. This suggests that, for any small but finite |u3|, a different
approach is required for sufficiently small |4 — 3|. This is supported by numerical
solutions very near the line u4 = 3, that indicate that here g(p;, x) defined by (3.22)
has only one extremum that is near x = 0. We call this region of (u3, u4)-space near
equilibrium with unimodal maximum entropy distributions Region II, as shown in

Figure 3.1.
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4.3 Perturbation Expansion in Region I1

Here we use a double expansion in both p3 and 7 = s —3. The analysis is simplified
by the absence of an IMP at a distance, but is complicated by the inclusion of a
zero-th order term in the expansion for the even-subscripted p; which represents the
solution for puz = 0, where us < 3 orn < 0. The perturbation expansion takes the

form

po=Ao+Bop+--,

pir=Aips+Big+--,
pr=Ay+Byys+---,

p3=Asps+ B+,
pa=Ag+Bapi+--, (4.36)

where here the A;, B; coeflicients are expected to be functions of . The analysis
proceeds as previously. First exp(Z) in (4.10) is expanded as a Taylor series in Z
followed by substitution of Z defined by the second of (4.10), and then the p; given
by (4.36). This allows the moment integrals to be evaluated. The moment equations
can then be constructed up to order u3, ,ug for the odd-order moment equations and
to order ,ug =1 and ,u% for the three even-order moments. Equating the respective
coeflicients of powers of uj3 to zero in each of the five moment equations then gives
ten equations for the ten coeflicients A;, Bj,i = 0,...,4. These are quadratically
nonlinear but are more complex than the similar equation set obtained previously
for Region I owing to the inclusion of zeroth-order terms in the even-indexed p;
coeflicients in (4.36). As a consequence, without further simplification, these

cannot be directly solved sequentially as was done above.

Progress can be made by use of a second expansion in terms of 7 of the form

2

Ap=apn+apn -,
2

Ay =ann+ann -,

Ao =asyn+anpnt--. (4.37)

This allows sequential solution in terms of powers of 7 first for the a;; defined in
(4.37), then for A1, A3 and finally for the B;. The calculation is straightforward but

algebraically cumbersome and is not reproduced in detail. The solutions for the p;
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Po=§ (s =3) = § G =32+ 43 (=35 + 58 ua = 3) - B8 (s = 37) 4+,
p1= 13 (—l 5 (ua —3) - 52 (u4—3)2) + 14 ( + 1885 (s — 3) - 281D (u4—3)2)
2=} (s =3)+ & (ua =307 + 22 (——@w—snm(ﬂ 34
P3=H3 (-—-(ﬂ4—3)+ (u4—3)2)+,u§ (72 10 (4 — 3)+%(M4—3)2)+---,

Pa= gy (s =3) = (e =37 + 42 (~4+ 8 (e - 3) - B (e - 37 +

(4.38)

Higher-order moments can now be calculated. The fifth moment is

+

s = py (10410 (pta = 3) = G (ua = 3) + o] (=35 + S22 (g = 3) = 29825 (ug = 37 4+

(4.39)

The resulting expression demonstrates that in Region II, higher-order moments are

non-singular due to the absence of the IMP.

Summary of Asymptotic Analysis

The results of our efforts are asymptotically correct solutions for the MER problem
near the singular line (singular solution in Region 1) and near equilibrium but away
from the singular line (regular solution in Region II). A major issue with the results in
terms of applying them to a generally valid solution is that there is no asymptotically
correct solution which interpolates between the two regions, and there is no analysis
of the exact boundary between the two regions or the way the two solution forms

interpolate themselves along this boundary.

Nevertheless, we can make practical progress by defining an approximate but useful
boundary and interpolation scheme for Region I which can analytically predict
and account for the difficult-to-calculate IMP solution, while handling the central
component of the solution numerically. Most useful in the following work then will
be the results for us and the IMP in Region I, represented by x; and € given in
(4.34). In the following, we will examine the accuracy of the predictions for the

IMP’s contribution and incorporate them into a more robust version of the MER.

4.4 The Hybrid Maximum Entropy Reconstruction (HMER) Method
With the model of the IMP in Region I, it is possible to design a robust algorithm

for computing the MER for a given set of five moments which avoids the problems
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encountered with resolving integrals on the infinite domain. To facilitate this, we
seek to determine an approximate boundary and an interpolation function for the
IMP’s contribution to the moments when they are found to be in Region I. Within
this boundary we will model the IMP as in (4.34). Our approach is to subtract the
contribution of the IMP from the given moments and solve numerically only for the
central portion of the distribution. Since this central distribution is compact, we can
approximate it with a solution on a finite domain, eliminating the resolution issues
encountered with the infinite domain and making the algorithm robust. Since we
combine analytic and numerical solutions to achieve a more robust result, we call
this procedure the Hybrid Maximum Entropy Reconstruction (HMER). We detail

the procedure throughout the following sections.

4.5 Approximation of the Region I Boundary

The Region I boundary can be identified with the location of a very sharp transition
in the slope of the closing moment us with respect to u3. Figure 4.2 shows how the
fifth moment of the full, infinite domain reconstruction behaves as a function of us,
in addition to the Region I and Region II asymptotic solutions for u5 and the HMER
result of the following development. The solution shows a rapid change of derivative
as it transitions from being dominated by the singular IMP to the regular central
component. When us3 is sufficiently large, the distribution ceases to be bimodal
and the central component of the solution takes over. The full numerical solution
becomes badly conditioned as u3 approaches zero, resulting in noticeable noise-like

deviations at small w3, but the HMER gives a smooth variation in us for any valid
M3 Or fg.

This region boundary appears to become asymptotic to a line at large w3, and is
well fit by a quartic, hyperbola-like curve. It is difficult to see how to determine
the curve analytically, as the asymptotic solutions in Regions I and II become poor
approximations farther from equilibrium. For this reason, an empirical fit which
seems to give good agreement with the location of the transition in comparing us is

used, given by

(us +3)* = 6* (1 + 1645 + %,u%) . (4.40)

An interesting note is that this form of the region boundary intersects the physical

realizability boundary given by

pa =5+, (4.41)
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Figure 4.2: Comparison of HMER (Red) with Region I (Blue), Region II (Black
dashed) asymptotic solutions, and numerical MER on the infinite domain (Black)
for p4 = 3.01. The full numerical result ends at u3 = —0.02 because it frequently
fails at small p3.

at approximately (+11.659, 136.93), implying that the IMP is always important for
very high values of p4. This is little more than a curiosity in the context of this
work, however, as this level of non-equilibrium is quite extreme and unlikely to be

encountered in the types of flows we will examine.

4.6 The Itinerant Moment Packet (IMP) Model

Having identified the region in which the IMP should be included in our calculation
of the MER, we can now apply the appropriate model from the Region I asymptotic
solution, given by (4.34) and illustrated in Figure 3.4. For clarity, we again note that
€ and x; are

-3 +3
B g=BT2 (4.42)

X M3

The contributions of the IMP to the constrained moments are approximated by

/li,B = fxli’ (443)

and can be subtracted from the constrained moments to determine the moments of
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the central portion of the distribution, to be solved numerically, as

Hic = Mi — MiB- (4.44)

This serves as a first approximation, but as the contribution of the IMP in this
scheme is non-zero at the Region I boundary, using the IMP as is would cause a
discontinuity in the solution in (u3, u4)-space, both in the determined values of A;
and in us. This is undesirable as it is both inaccurate (no such discontinuity appears
in the true MER solution) and presents problems when attempting to couple this
reconstruction to a scheme for solving conservation equations, essentially creating
a discontinuity in calculated fluxes. This is alleviated by including an attenuation
function in the calculation of y; p,

fip = w3, fa) €x]. (4.45)

This w(u3, 14) should ideally be a correction factor to cause our scheme to perfectly
match the value of us with the full distribution, but as no analytical solution exists
for s as a function of u3 and g4 in general, the best that can be done is to use an

approximate expression.

The expression used for w(us, p4) must satisfy the following conditions:

1. w(us, ug) must equal zero on the Region I boundary for continuity.

2. w(us, ug) must have a positive slope in p3 and py4 on the Region I boundary
to simulate the "kink" seen in the full solution for us.

3. w(us, ug) must approach 1 as y3 — 0 and as pq4 — oo as the IMP dominates

the solution for us in these limits.

4. w(us, ug) must approach 1 more rapidly as (us, ug) — (0,3), to accurately

simulate the behavior of us in the full solution.

A reasonable choice that satisfies these terms is

Ha = 3)] , (4.46)

1
w(us, pa) =1 —exp [5(1 T3

with y; given by the u4 coordinate of the Region I boundary at the given u3, which

can be solved for from the expression for the Region I boundary curve, (4.40), as
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2
w—-3=6 (+{‘/1 3 Qu3)* + Qus3)* - 1], (4.47)

using the positive fourth root. w is clearly zero on the Region I boundary (where
us4 = py) and approaches unity as 4 — 3 becomes large relative to u; — 3. As u3
approaches zero, u; approaches 3, so that for any p4 > 3, the denominator in (4.46)
approaches zero, causing w to approach 1. This also has the effect of increasing
the rate at which w transitions from zero to unity as equilibrium is approached.
Thus, the expression satisfies the terms outlined above. The detailed parameters are
chosen to give a simple form and good fit of (4.45) to the value of us calculated by
the full reconstruction.

Central Component of the Distribution

Having computed the required moments of the central component of the distribution
with (4.44), the central portion of the distribution can be computed in a straight-
forward and robust way. Because the central portion of the distribution is always
compact, a finite and consistent domain can be chosen for the required integrations.
The domain is chosen such that the error in computing the highest required moment,
Han—-2, due to truncating the domain to finite size is less than the error due to the

discretization of the integral, estimated using a standard normal distribution.

The pure exponential form of the MER eliminates the possibility of using high-order
global quadratures for the computation of the moments, as the distribution necessar-
ily departs from any chosen weighting function in a way not well approximated by a
polynomial factor. Therefore, composite, low-order quadratures are preferred. The
composite Simpson’s rule is a simple and effective choice. In this work, both Simp-
son’s rule and standard Mathematica integration routines are used for computation

of these integrals and the domain of solution for the central component is [—14, 14].

The procedure for computing the central portion of the distribution consists of
choosing an initial guess for the A; and proceeding with Newton’s method until
converging on a solution which matches the constraint moments. The required

Jacobian is given in (3.2) as J;;. The Newton’s step is

A1 = Ay + T (= ). (4.48)

It is useful to improve the Newton’s method by detecting large excursions due to

the sensitive nature of the distribution function which can cause overflows leading
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to program failure. The remedy is simply to include a backtracking function which
catches large excursions and overflows in the calculation of the Jacobian or in the
error at each step. When detected, this procedure backtracks along the previous
increment in 4; by reducing the increment magnitude by a constant factor, 5 in this
work, and recalculating the offending terms. Occasionally this procedure must be

iterated in very sensitive regions of the solution.

One further improvement can be made to improve the numerical stability of the
method and increase convergence speed and hence overall computational efficiency.
If the constraint moments are converted to moments of Chebyshev polynomials of
equivalent order (specifically Chebyshev polynomials of the first kind, or so-called
T polynomials), the reconstruction procedure is much better conditioned since the
Chebyshev polynomials are much more independent over the domain compared to
simple powers of x. The Chebyshev polynomials used are given by a recurrence

relation:

To(x) = 1,
Ti(x) = x, (4.49)
Toi1(x) = 2xTy(x) = Ty-1.

The transformation from standard moments, y;, to Chebyshev moments, 7;, is given

i T, = / Tn(ﬁ) dx (4.50)
o "\ww

where W is the chosen width of the solution domain for the central component,
typically W = 10 to 14. Essentially, s is used in place of x' in the Chebyshev
polynomials. The inverse of this transformation can be calculated by constructing

the transformation matrix from (4.50) and taking its inverse.

While transforming the problem into its equivalent in Chebyshev moments requires
some additional complexity in transforming the problem back and forth between
Chebyshev and standard moments, but in testing it has shown to be an overall
efficiency increase, speeding up typical HMER calculations by a factor of up to
two. The cause of this speedup is the mollification of ill-conditioned Jacobian
matrices, which has the effect of increasing the accuracy of each Newton’s step and
reducing the number of steps required overall. While this represents a useful time-

saving technique, it is not necessary to compute the HMER robustly if highly non-
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equilibrium solutions, such as those found near the physical realizability boundary,

are not sought.

4.7 Results

The HMER procedure outlined here is an excellent approximation to the full nu-
merical reconstruction. Figures 4.3, 4.4, 4.5, and 4.6 show how the HMER scheme
compares with the full MER and the asymptotic solution in Region I. The full
numerical MER becomes badly conditioned as u3 approaches zero, resulting in
noticeable deviation in predicted higher moments at small u3, even though p; values
are seemingly smooth, because of the extreme sensitivity of higher moments to the
values of some p;. In fact, the full numerical solution on the infinite domain often
fails for | u3| below some limit determined by the location of the quadrature points in
the numerical integrations required for its computation. The hybrid scheme, on the
other hand, is extremely robust owing to the elimination of the need for numerically
computing the shape of the highly-sensitive IMP. Compare Figures 4.3, 4.4, and 4.5
with the transition point (the "kink") in Figure 4.6 to see that disturbances in some
hybrid p; values are due to the onset of the weighting function which interpolates
along the boundary of Region 1. Specifically, the even p; display the greatest dis-
turbance. This is not problematic since the values of the closing moments remain
in good agreement with the infinite domain MER solution, but could possibly be
improved upon with a different model of the IMP’s behavior near the Region I

boundary.

Figures 4.2 and 4.7 show a comparison of the two numerical methods, full and
Hybrid, with Region I and II analytics. The HMER neatly interpolates between
the two analytic solutions in a similar manner as the full numerical solution, but is
completely smooth and unaffected by numerical difficulties present in attempting
the full solution (the numerical noise in the full MER is evident in panel A of Figure
4.7), even in regions in which the full numerical solution fails completely (the black
line in Figure 4.2 ends at u3 = —0.02). This smoothness and robustness allows
computations to be performed which would be impossible without addressing the
analytic structure of the IMP, specifically allowing the procedure to handle a case in

which a gas approaches or departs equilibrium from within Region I.

In practice, the only known limits to producing solutions with this procedure have
been caused by the fact that, as the constrained moments approach the boundary of

physical realizability, the MER degenerates into two very sharp peaks. In fact, in the
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limit as the boundary is reached, the actual solution is a pair of delta functions. This
causes issues with the fixed resolution of the numeric integration procedures, and
eventually the singular nature of the near-delta functions produces problems even
with adaptive integration schemes like Mathematica’s in-built routines. Fortunately,
this happens only very close to the physical realizability boundary. In the case of
using the MER as part of a gas dynamic closure scheme, this region is not expected
to be encountered. As an example, the lower limit for w4 in even distributions
(u3 = 0) is 1, and solutions can easily be calculated down to us = 1.0005 before

ill-conditioned Jacobians become problematic.

The full procedure is also relatively fast, considering its task. Even with an inten-
tionally poor initial guess, such as a uniform distribution, convergence to machine
precision usually takes fewer than seven steps. In practice, in gas dynamics usage, a
very good initial guess is available from the previous time step or a neighboring cell
or grid point. With such initial guesses, convergence usually takes only two or three
iterations. The full numerical MER solution procedure on the infinite domain takes
much longer, both due to the greater number of points needed to achieve sufficient
resolution near the IMP, and due to the ill-conditioning encountered when in Region
L
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Figure 4.3: Comparison of pg and p; values at three values of u4. From top to
bottom row, p4 = 3.01, g = 3.1, and ug = 4. Red lines: analytic result in (4.27),
blue lines: HMER, black symbols: full MER on the infinite domain. w3 axes are
logarithmic.
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Figure 4.7: Comparison of first unconstrained moment, s, on a circle around the
equilibrium point in the (u3, ug)-plane (blue circle in panel D). The radius of the
circle, r, is different for each panel: A:0.05, B and E: 0.25, C and F: 1.3. The angle,
« is measured from the singular line as illustrated in panel D. Panels E and F are
details of panels B and C, respectively. In all panels except D, Black: full MER on
the infinite domain, Blue solid line: HMER, Blue dashed line: Region II analytic
solution, Red dashed line: Region I analytic solution. Note that the bottom panel
does not include the Region II solution as it is well outside of its domain of validity
here.
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Chapter 5

A MAXIMUM ENTROPY GAS-DYNAMIC CLOSURE

5.1 The Boltzmann and BGK Equations
Recall that the Boltzmann Equation for a single-species monatomic gas with no

body force (2.1) was developed in Section 1.1.

The Bhatnagar-Gross-Krook, or BGK, collision model first proposed in [5] is a

simplifying approximation of the collision integral:

%2 ///Q /0 ' /0 ’ (£ = fif) oersinydedydér ~ E(fe = ). .0)

Here, 7 is a relaxation timescale which can be connected to bulk fluid parameters in
the near-equilibrium limit by use of the Chapman-Enskog Distribution to be
7

m (5.2)

T

where yu is the dynamic viscosity of the gas, not to be confused with a standard

moment. For a hard sphere gas, [6] gives the viscosity as

5pA
’= %\/2#RT, (5.3)

where A is the equilibrium mean free path of the gas, not to be confused with the
Lagrange multipliers in the MER, which is proportional to the inverse of the density,

p. This means that for a hard sphere gas

TS \/i 5.4)

which will be useful later when computing 7 in practice.

Using the BGK collision model in place of the full Boltzmann collision integral in
(2.3) yields

W o (5.5)
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where m;, is the thermodynamic equilibrium value of m;. When the BGK collision
model is used in place of the integral collision operator from the original Boltzmann

equation, the equation being solved is referred to as the BGK equation, given by

(pf) ﬁ(pf) _P

ot *éi X

—(fe= 1) (5.6)

The full transport equation for an arbitrary moment in € in the BGK approximation

becomes
0w IEw) _ We= W)
ot dx T '

(5.7)

5.2 Moment Equations
In order to relate these equations to our understanding of the MER problem, it is

necessary to define

mije = (€16€5) (5:8)

and

Nijklp = <§i§£§§§p> = M(i45,1)(j+6p2) (k+83)- (5.9)

These are related to the centered, scaled moments (from here on referred to as

standard moments) by

V(& -m\ (&-w) (& -us)
ﬂljk—<Xy >_; o o1 o1

Jj k i .
- l+j+k Z Z Z ( )( ) ]lj) <§iﬂ§g§§> (_ul)i_m (_MZ)j_n (_”3)k_p
m=0 n=0

n=0 p=0

i

ik Ny
- l+]+k Z Z (m) (i) f,)mmnp (—u)) ™" (—u2) ™" (~uz)* . (5.10)

0 n=0 p=0
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The inverse of this transformation is

mijk = <§1§2§3> <(01x+M1)i(01)’+uz)j(0'12+u3)k>
i koo
3 (B e
= i ii()()() m+n+pﬂmnpuzi—mu12'—"u’3‘—l" (5.11)

The equations for the evolution of these moments from (2.3) are

am,-jk 4 6n,-jk|p

=y 12
or | ox, ©.12)

These equations reveal the dependence of the fluxes of the highest order m;;; on
even higher moments, such as n;jx1 = m(11)jx, and, in the case of the full Boltz-
mann collision operator, the dependence of the collision terms on the full velocity
distribution function. This results in a closure problem, wherein the system remains
unclosed unless some method is imposed for determining the unclosed fluxes and

collision terms from the primary moments.

5.3 The Hybrid Maximum Entropy Reconstruction Closure (HMERC) Scheme
In our case, we propose the use of the HMER to approximate the full velocity
distribution function, which is then used to compute the unclosed fluxes and the
collision terms (in the case of the Boltzmann collision operator only). This approach
has the benefit of being fully extensible to any set of moments, including non-
polynomial moments such as trigonometric moments or any generalized functions,

though at present we focus on polynomial moments.

Additionally, as discussed in Section 3.2, the constraints on the domain of the mo-
ments are forgiving. Indeed, a solution to the maximum entropy problem exists for
any set of moments that could possibly arise from a physical probability distribution,
save for a zero-volume subset extending from, but not including, equilibrium [26].
Thus, so long as the closure scheme does not drive the system into an unphysical
state or into a zero-density subset of physical states, the scheme should be able
to proceed. We further expect that the absence of ad hoc or ansatz forms of the
distribution will provide some benefit in reducing the paths for artificial features

to develop in the solution, and indeed it will be seen that small discontinuities, or
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sub-shocks, present in methods using such schemes are not present when using the

HMER, though the solution is not without its own artifacts.

The collision terms are only unclosed in the full Boltzmann collision integral, in
which case they may be calculated using the HMER distribution by any desired
method, such as direct integration or Monte Carlo integration. The fluxes appear, of
course, in derivative form, so the flux Jacobian may be required depending on the
scheme used. It arises from use of the chain rule in calculating (for the x-flux only,

in this case)

dni _Omydm _ Omy 9y 94 op dm (5.13)
dx dm dx  Ov dAdudm dx’ '

where v here signifies the centered-scaled moments required to compose the uncen-
tered moments n|. This looks daunting, but some terms become clear upon further
inspection. The transformation Jacobians from n;j; to v;jx and from y;;x to m; ;i are
simply moment conversion matrices as in (5.10), and the Jacobian of 4 with respect
to u is the inverse of the Jacobian of g with respect to A, which is (3.2), and so can
be directly computed from the HMER. The final part is the Jacobian of fluxes v with
respect to A, which is another moment Jacobian similar to (3.2). Many of the terms
in this Jacobian should already be computed during the reconstruction procedure
and so do not require integration, but some will be higher order and will require
further integrations. When using the HMER, this Jacobian has both analytically
and numerically calculated parts, so it is best to compute these two components
separately. Once each component is constructed, the full flux Jacobian is available
for calculation/estimation of eigenvalues and eigenvectors or other requirements of

a specific numerical scheme.

Later it will become necessary to examine the one-spatial-dimensional case with
moments arising from functions of a single velocity component and assumed sym-
metry about the x-axis; we will call this the velocity-factorizable moments case.

Simplifying (2.3) for this case gives

am{ 6n{ i
e (5.14)

where nlJ = <§;§1 > Here j € (&4, &) is used to differentiate &, and &, = /fyz + &2

moments.
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The equations may also be written in quasi-linear form, which is of use for many

numerical schemes which require calculation of the flux-Jacobian,

om! . oml
ot Ay = (5.15)

where the flux-Jacobian is
on/  dn G}, 9.4, O

amf( ovl, 04 éuf, émf(

j
Aik_

(5.16)

Some rows of A/ are simple, since fori < N; — 1, N; being the number of moments
in direction j, nl] is equal to ml] .1~ Also, it will be seen that when using this choice
of moments, the HMER procedure gives the simplified flux for & moments as
nf’ = umf’. Other rows, such as Ag}‘{ for the truly unclosed term n? = <§5 ), are
general and cannot be simplified but must be computed, either numerically or by

the analytic expression

s on! ov! oAl o, _ onl ( ]-—1) o,
©avi od ol oml vy, " w am!

where J/ is the Jacobian of the reconstruction’s moments g/ with respect to A/

To illustrate the structure of the flux-Jacobian for the velocity-factorizable moments
case, it is simplest to expand it in matrix form for each j, leaving in derivative form

the entries which have no simple expression.

Factorizable A* and A”:

O 1 0 0 0
o 0 1 0 0

Af= 0 0 0 1 0 | A= go). (5.17)
o 0 0 0 1 “
Bng‘ E)ng‘ ang 6n§ Bng‘
m (9m§ omsy  Omgy  Omsy

Note that, although the form of (5.17) seems simple, solving for the eigenvalues
analytically still requires the solution of a fifth-order polynomial and must be done

numerically.
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5.4 Relaxation to Equilibrium

As an illustration of the use of the HMER closure scheme, we examine the case of
a spatially homogeneous gas undergoing relaxation to equilibrium from an initially
non-equilibrium state. The obvious modification to (2.3) is that the spatial derivative
term is uniformly zero, so fluxes are not needed. The distribution evolves solely
due to the influence of the collision integral, which involves the velocity distribution
function, f. Since f is not known, we impose the HMER closure, which uses the
HMER to approximate the needed values of f based on the constraining moments.
In this case we will focus on symmetric distributions with y; = 0 for all odd i, so we
can avoid any issue with the singular subspace so long as we maintain w4 below the
singular line. This will not test the analytic portion of the HMER procedure, but it

will demonstrate the MER as a closure scheme where it is well-behaved.

Finding a Suitable Test Problem
Using the full Boltzmann collision operator, there is no analytic solution in general.

For the special case of a radially symmetric velocity distribution with

oc =K, (5.18)

where « is a constant, ¢, is again the relative speed of the two molecules, and o
is the same collision cross section from (2.1), an analytic solution is possible as
detailed in [33]. However, the solution for the fourth moment py = <c4>, and indeed
all moments of even power, can be computed analytically, assuming an isotropic
scattering. The final differential equations are closed, i.e., the equation for o,
depends on p2,-2, ton-4, and so on to wo, and so no closure scheme is needed.
Since the closure scheme is unnecessary, this is not a good test of the HMER closure

scheme and no comparison can be made with an analytic result.

Instead, we can examine the case for a hard sphere collision cross-section with

or = 470 = constant, (5.19)

where o7 is the total cross section. To demonstrate that this problem is unclosed, it
is necessary to begin with the collision integral for y4, given by (2.9) with ¢ = ¢*.
Without loss of generality, we impose that the density, p = 1, and the velocity

variance, 0'02 = up = 3. We non-dimensionalize the time, ¢, by introducing the time

4 H2
= — —, 5.20
Ve ﬁwn,/ 3 (5.20)

parameter T = v.f, where
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which can be identified with Equation (4.53) in [6] as the mean frequency of
collisions for particles in an equilibrium gas of hard spheres. Also, by symmetry,
only moments which arise from the speed of a particle, not its velocity in any
direction, need be considered. With these modifications, the equation for the change

in y; with 7 is

di ) 00 2r T i .
d‘i :‘/g///_m //[m/() /0 A(c’)fﬁ:—ﬂsm)(d/\/dedcldc, (5.21)

where y is the angle of deflection of the relative velocity vector during collision, €

is the angle between the plane in which this deflection occurs and a reference plane,
and
A (ci) =) -c + (c'l)i - c’i. (5.22)

We can simplify the integrals by noting a few features of (5.21).

Following Section 2.5 in [6], to compute post collision speeds for hard sphere
collisions we need only the mean and relative particle speeds, ¢, and ¢,, and the
angle between them following the collision. Using vector addition, the mean and
relative speeds are given by

2 2
¢

c ccy
C,%,l: Z+z+7COS€,
cr2 =2+ C12 —2ccycos b, (5.23)

with 6 the angle between ¢ and ¢1. Note that, since the directions of ¢ and ¢y are
independent and isotropic, we can choose 6 as a standard polar angle without loss
of generality.

The post collision speeds are then given by

2

c
(c")? = e+ Z’ + CuCr COS X,
r\2 2 Ci%
(c])" =cp + o CmCreos x. (5.24)

We note that post collision scattering is isotropic and does not affect ¢, or ¢,, so we

can choose y to be the angle between ¢, and ¢, without loss of generality.

Combining (5.24) with (5.23), inserting into (5.21), converting the velocity inte-

grals to spherical coordinates, and performing the trivial integrals (over the three
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azimuthal angles and over the polar angle of ¢) which do not affect the integrand

reduces the differential equation for y; to

du;
” - (2 )2 / / / / FAiesc2cE sin y sin Odydodede. (5.25)

Note that the post collision speed expressions from (5.24), and therefore 6 and y,
appear in the expanded form of A. Expanding the integrand and performing the

angular integrals analytically leaves, in the case i = 4, the double integral

d
dlf 210/ / (A(+) A( ))fflczc dcidc, (5.26)
where 5
A(2) = (13(:2 + 30cc; + 13(:%) eFal” (5.27)
cCq

The expression A is clearly not directly a function of w4, being of sixth-order in
velocity, so the problem is unclosed and the MER can be used to represent f for the

purposes of numerically computing the integral.

For comparison, we use DSMC'’s collision procedure to calculate the evolution of
u4. Essentially, the gas is represented by a number N, of representative particles,
in our case N, = 2 X 10°. Each is given a random initial velocity with an initial
distribution different from equilibrium. For each time step, a number of particles
are chosen to undergo collisions, the scattering angle is randomly determined, and
the particle velocities are updated. After each time step, the average value of 4 is

computed over all particles, and the simulation proceeds.

The choice of particles for collisions at each time step is made according to Bird’s
"NTC" method, described in Section 11.1 of [6]. The method uses an acceptance
rejection scheme which we describe simplified for hard-sphere molecules and the
homogeneous relaxation case. First, a number, N, of collision partners are chosen
at random, where

At

1
N, = ENZFWT(cr)maXVC. (5.28)

Here, Fyy is the ratio of real particles to simulated particles in the cell, (¢, )max is the
maximum encountered value of relative particle speed, At is the time step, and V, is

the spatial volume under consideration. Clearly, if # is the number density, then

nv,
Fy = —. 5.29
N N, (5.29)
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The time step can be written in terms of the step in the time parameter v = v,

using the expression (5.20) and noting that up = 3 as

_ rAr

At .
dorn

(5.30)

The value of (¢, )max is updated in the event that a larger value of ¢, is encountered
than the currently used value, and because of this, its initial value can be set to a
reasonable value without affecting the results. In our simulations we use an initial
value of (¢, )max = 6v2.

Using (5.29) and (5.30) in (5.28), we get

pis
N = \/?_Np(cr)maxAT (5.3D)
as the number of collision partners. In order to choose collision pairs with the
proper joint distribution, each of these potential collisions is then either accepted

and performed on the particles or ignored, with the probability of acceptance given

by Cr /(Cr )max .

The H-theorem ensures that equilibrium is the end state of the gas. At equilibrium,

the even y; are

2n+1)!

=1,3,15,105,945, . ... (5.32)
2'n!

tone =2n+ ! =

The initial state can be chosen from a constructed velocity distribution with radial
symmetry, such as a shell or a sphere (a three-dimensional "top-hat" distribution).

In our case, we use a pair of shells, with a PDF given by

5 6 2
fle)= 55 (5 (c— \/;) +5(c—3\/;))cz, (5.33)

where §(c) is the Dirac delta function. It can be verified that this represents an
isotropic gas with one quarter of particles having speed ¢ = \/% and the remainder
having speed ¢ = 3 \/% , and this is indeed the method of assigning particle speeds in
the DSMC calculation. The fourth moment of (5.33) represents the initial condition
for the MERC case and is u4(7 = 0) = 252/25.
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Figure 5.1: Relaxation comparison of the five-moment, spherically-symmetric MER
closure with the DSMC prediction for the case of hard spheres. Black lines: Nor-
malized DSMC p4. Red lines: Normalized MER solution for p4

HMER Results

To compare, we institute a simple Euler step to handle the time integration in (5.26).
Given the solution’s decaying-exponential form, this should ensure stability for a
small enough time step. In our example, we use At = 0.05. The integration
of the collision integral itself is handled by the same composite Simpson’s rule
which is used in the MER, with 100 equally spaced points between speed zero and
ten, above which the likelihood of a collision is far too small for such particles to
have an appreciable effect on the overall collision integral. We emphasize that this
procedure results in a direct numerical solution for the full Boltzmann equation with

no approximation, apart from the MER closure itself.

The case for ug = 1, up = 3, and u4(0) = 252/25 for the MER is shown in Figure
5.1. The results demonstrate excellent agreement between the MER closure scheme
and DSMC solutions, especially considering the crude initial approximation of the
distribution function by the MER, illustrated in Figure 5.2.
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Figure 5.2: Initial distribution of relaxation example in Figure 5.1. Black bars: Per-
centage of particles in shell in true initial distribution. Red line: MER representation
of true initial distribution.
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Chapter 6

THE PLANAR SHOCK WAVE

6.1 One-dimensional Shock Wave Equations

In the case of a planar shock wave, the velocity distribution can be assumed to
be axisymmetric in velocity space about the normal vector to the shock plane.
All moments should be constructed of shock-normal, or streamwise, coordinate
velocity ¢ and shock-parallel, or lateral, coordinate radial velocity . We will
consider moments to fourth-order. We will use z to represent the spatial coordinate
in the axis of symmetry direction, x to represent scaled, centered axial velocity, and

r to represent scaled, centered radial velocity.

X = , r=—=. 6.1)

o here is the velocity variance in the shock-normal direction.

Further, in the frame of reference which moves with the shock, we seek a steady
solution, so that all time derivatives vanish. What remains is a balance between the
flux terms and the collision terms. Due to the use of the MER, it is useful to here to

work with the primitive variables

U = (p, U, 01, 1430, 11405 102> 112> 122, H04)" » (6.2)

with y;; = (xi r/ > These moments represent all polynomial moments to fourth-
order in velocity which are not trivially zero in axisymmetric flow. Their evolution
equations are obtained by taking the corresponding uncentered moment integrands
(the expression in angle brackets, with uncentered, unscaled velocity, &'/ for y; i)
for ¢ in (5.7) to first arrive at

é?ml-j (911,‘]' ml-jE—mij
= , 6.3
ot - 0z T ©.3)

where n;; = my;,1); and m;; g is the thermodynamic equilibrium value of the moment
m;; determined by p, u, and T = o1+/(1 + 1£92)/(3R).

We then use (5.10) to expand these uncentered moments in terms of our chosen

primitive variables and eliminate time derivatives to obtain
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d
=, (o) =0, (6.4)
Z
d 2, 2)) _
e (p (0'1 +u )) =0, (6.5)
d 2p 07 (o2 = 1)
P (p (u3 + 3uo’12 + ,U3()0'3)) = ?p%’ (6.6)
d 2u - 1)+ uzp0o
— (p (u4 + 61420'12 + 4I/t/.l300'13 + ,u400'f)) = 2,00'12 (o2 = 1) + 30 1, (6.7)
dz T

d
d_z (p (u5 + 10u30'12 + 10u2,u300'13 + 5up400'f + ,usoo'ls))

6.8
po? 120 (o2 — 1) — 12upzo0ry + o} (1 + 4 + 4 (to2)* — 3#40) (65)
3 T ’
d o (1 - po2)
— (P (Woz“lz + ﬂ1203)) = Bl—, (6.9)
dz 3 T
d o2 u(l - ) -3
a (p (uz,ttozdlz + Quppo? +'u220_4)) _ POy u(l - pog) K01 (6.10)
dz 3 T
d
e (P (M3/1020'12 + 33Ut a0 + Supnoy + #320'15))
6.11
po? 3u (1 — poo) — 18upinoy + o} ((1 +2p02)* — 9#22) @10
) T ’
d A 5 P o} ((1 + 2up)* - 3#04)
= (o (wrosert + macf)) = £ .61
Z 3 T

The equations are in conservative form with source terms arising due to non-
conservative collision integrals. The unclosed terms which must be related to the

primary variables in (6.2) are usg, 132, and 4.
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Boundary Conditions

The boundary conditions are given at z = oo by the shock-jump relations for a
given Mach number, M, and ratio of specific heats, y = % for monatomic gases.
In this context it is convenient to normalize such that the upstream conditions are
equilibrium (39 — 0 and ;1‘3‘ — 3) with density, temperature (7'), and most probable
mean speed (87! = V2RT) equal to unity at x = —co. Under these conditions, the
specific gas constant R = %, and the boundary conditions can be summarized as

p(z— —o0) =1, (6.13)

M*(y+1)  4M?
2+ M2(y—-1) 3+M?¥

U(z — —c0) = M\/g = M\/g, (6.15)

_u(z—>—c><>)_\/§3+M2
”(Z_’+°°)_—p(z_>+oo)‘ FRTYEE (6.16)

p(z > +o0) = (6.14)

0% (z > —00) = > (6.17)
2yM? —(y — 1 -1)M?+2
0'12(z—>+00):(y (y ))((72) +2)
2M2%(y + 1) , (6.18)
_ (5M?% 1) (M? +3)
B 32M2 ’
u3o (z = £00) =0, (6.19)
Hap (z = *00) =3, (6.20)
Ho4 (2 — *00) =8, (6.21)
Ho2 (Z - iOO) =2, (622)
Uiz (z = +00) =0, (6.23)
U (z — +00) = 2. (6.24)

At this point, the equations, along with the HMER closure for the terms uso, w32,

and uy4, form a closed system of nine equations which can be solved. The basic
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idea is to take an initial state for the primitive variables in (6.2), use this to calculate
the HMER and thus obtain the three unclosed terms, uso, u32, and ui4, compute
derivatives and then solve to update the primitive variables for the next time step (in

an unsteady solution) or the next grid point (in a steady state solution).

However, we can simplify the equations further. Since there is no source term in
the continuity and momentum equations, (6.4) and (6.5), these can be integrated
directly. The similar source terms in the two energy equations, (6.6) and (6.9),
differ by a factor of —2, meaning the source terms in these two equations can be
eliminated and the resulting equation integrated directly. These three integrals
of motion correspond to mass, momentum, and energy conservation in the shock

problem.

Using these results, three equations and three unknowns can be eliminated by

integration, giving

k
p(u) = =, (6.25)
u

o1(u) = + ka u?, (6.26)
p(u)

k: 3 3 2 3
= - MH1207 — H3007| — 31/‘0-1 —u

Ho2(us p30, H12) = 5 ; (6.27)
uo-

with the k; being constants of motion, determinable at the upstream boundary

condition as

k1 = pouo, (6.28)

1
ky = k? + 5 (6.29)
ky = ki (ko +2). (6.30)

Here, pg and ug are the upstream density and velocity, respectively.

With these simplifications, only six unknowns remain: (u, (30, 1440, 4125 4225 [04)-
The necessary equations are (6.6), (6.7), (6.8), (6.10), (6.11), and (6.12). The

unclosed moments all remain as before.

Note that all canonical variables (p, T = %012 (1 + ug2)) are parameterized by the
velocity, u, while all other variables refer only to the characterization of the shape

of the MER and the difference from equilibrium.
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6.2 The Velocity-Factorizable Moment Approach

While (6.6) through (6.12) with the elimination equations and the HMER closure
would represent a closed system, they rely on a multidimensional version of the
HMER which has not been developed. We must specialize the shock wave problem
to a case which can use the one-dimensional HMER we have developed in Chapter
3. We can do this by choosing a special set of moments which we call Velocity-
Factorizable Moments (VFM).

First, take the example of computing a plane shock wave profile. This problem has
symmetries which make all odd moments arising from transverse velocity compo-
nents identically zero. We may choose two separate velocity integrand vectors, call
them ¢, (¢1) and ¥, (£2). We define

Wi = &, i€(0,1,2,3,4), (6.31)

and

U=, jE29), (6.32)

so that ¢, contains powers of & alone, and ¢, contains even powers of & alone.
With this choice of moments, the maximum entropy reconstruction distribution (in

the standardized moment context with centered, scaled moments) is

far) = it thart st (6.33)

Since the terms in the exponential depend only on either x or r, but never both,
the distribution is factorizable into an x and an r distribution which are indepen-
dent. In this case, each set of Lagrange multipliers, 4, and A4,, may be solved for

independently using the constraint equations

W,) =my, (6.34)

and

W,y =m, (Iy=1. (6.35)

Lastly, the flux term for each moment is calculated thus: For the moment m, ;, the

flux is simply the subsequent moment, m, 1), except in the case of the highest
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moment, m, s in which case it is calculated from <§15>. In the case of the moments

m,, due to the separability of the integral, the fluxes are simply um”.

This approach reduces the computational effort of the MER closure by eliminating
expensive three-dimensional integrals from the reconstruction process. The only
difference from the fully three-dimensional, mixed moment MER is the guarantee of
independence of each velocity component in the reconstructed velocity distribution.
This would seem to guarantee a flow with zero shear everywhere, making use of
this method for other than very simple one-dimensional flows dubious, however the
shear stresses may be included as moments in a VFM formulation of the problem
if the distribution reconstruction is performed in the principal frame of the pressure

tensor.

In order to use this approach, the moments 00, 020, H002, H110> Ho11, and fio
must all be calculable from the constraint moments chosen. These form the pressure

tensor as

H200 HM110 HMi101
H110  Ho20 HMoi1 |» (6.36)
M101  Mo11 Mooz

which should remain positive definite if the solution is physical. We then calculate
the eigenvalues and eigenvectors of this tensor. Since the pressure tensor is real
and symmetric, the eigenvectors, suitably normalized, form a rotation matrix which
allows us to rotate velocity components into the principle frame of the gas, where the
pressure tensor becomes diagonal with the eigenvalues representing the principal
stresses. In this frame shear is zero and once all moments are rotated into this frame,
interpreting higher-order moments as flux vectors, we can perform the MER with
our factorized approach, remembering to rotate the resulting flux vectors back into

the original coordinate system.

To illustrate, take a fully three-dimensional flow and consider velocity-factorizable

moments up to fourth order. After converting to the standard moments, these are

wi=(d),  je23,  ic©1234) (6.37)

plus the three shear stresses
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Hi10 = {(X1x2), Hot1 = {X2x3), Hi01 = {X3X1) . (6.38)
The pressure tensor is
HM12  HM110 Mi01

P=| wio t2 pon | (6.39)
M101  HMo11l M32

and it can be decomposed into a diagonal matrix and a transformation matrix as

M, 0 0
P=0Ql 0 1, 0 |07, (6.40)
0 0 w3

where Q is the matrix of unit eigenvectors of P. Interpreting the three moments of
each order as components of a flux vector, we can use Q to rotate each flux into the

principal frame by

/JL,' M1,
My [= Q| mi | (6.41)
/1/3’,' M3,

for each i € (1, 3,4). We then solve for the maximum entropy reconstruction using
the rotated moments and then de-rotate the required fluxes back into the original

frame as

H15 /1/1,5
ws =07 s |- (6.42)
M35 M35

If the full distribution function is required, say, to compute the collision terms in
the full Boltzmann collision integral, it can be computed by simply pre-rotating the

requested velocities into the principal frame similarly to (6.41).

This approach offers a massively reduced computational cost, by reducing the in-
tegrals required for computing the reconstruction Jacobian from three-dimensional

to one-dimensional. The drawback of this approach is a loss of cross-correlational
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information regarding the distribution function, represented in the normal shock
case by the mixed moments > and uz>. These moments appear in the fluxes of
their x-inferior neighbor moments. Their most important role is in representing
interactions between the shape of the distribution in x and the flux of radial velocity
energy, represented by ug. It is important to note that ug, features prominently
in the collision terms for all equations (see the right hand sides of (6.6) through
(6.12)).

6.3 The Velocity-Factorizable Planar Shock Wave

Velocity-Factorizable Moment (VFM) Equations

For the case of a planar shock wave, the full set of equations to be solved in the
VEFM case, using the same notation and procedure as in the axi-symmetric case,

mio

are obtained by combining Equations (5.7) and (5.11) with p = mgp, u = ,

0
0‘12 = % — u?, and 0'22 = /1020'12 to find
d
e (pu) =0, (6.43)
d 2, .2
= (p (0'1 +u )) =0, (6.44)
d 2002 — o2
— (p (u3 + 3uo-12 + /1300'3)) =P ! , (6.45)
dz 3 T
d 20u (02 - 02) - o3
= (p (u4+6u20_12+4u/1300_13 +,U400'4)) _ P ( 2 T1) PH30 L (6.46)
d 5 3 2 2 3 4 5
e (p (u + 10w’ o + 10u” u3o0 + Supsooy + ,usoo'l))
6.47
_ 4pu? ((722 — 0'12) — 4pu,u300'13 + ’33 (of1 + 40‘120'22 + 403) - /o,u40(7ft ( )
= . ,
d 2\ _ P 0'12 - 0'22
2 ) 5125
d ot + 4020k +40F - 3,uo40'4
d_ (pu,llo40'2) — B 1 172 2 2 (649)
Z 3 T
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For the hard sphere molecular model, assuming the upstream equilibrium mean free
path is the unit length in z, we obtain from (5.2), (5.3), and (5.4)

5 [n 1
~ =, 6.50
8\ 2 po ( )

T

where o is the equilibrium velocity variance, 30 = o} (l + p(z)z).

We note here that the first five of these equations are identical to (6.4) through (6.8).
Here, s is an additional unknown term which must be computed from the HMER.
Including this there are eight unknowns, p, u, o1, 02, 30, M40, 150, and tos in these
seven equations, (6.43) through (6.49).

Boundary Conditions

The boundary conditions are given at z = +oo by the shock-jump relations for a
given Mach number, M, and ratio of specific heats, y = % for monatomic gases.
In this context it is convenient to normalize such that the upstream conditions are
equilibrium (u39 — 0 and w49 — 3) with density, temperature, 7', and most probable

mean speed (8! = V2RT) equal to unity at x = —co. Under these conditions, the

1

specific gas constant R = 3,

through (6.22).

and the boundary conditions are identical to (6.13)

These equations can be solved as a system of seven, but are more conveniently
reduced to three equations by first eliminating three variables. The first step is to
use the same approach as in the full axisymmetric case, taking advantage of the
conservation of mass, momentum, and energy to directly integrate (6.43), (6.44),

and a combination of (6.45) and (6.48). The elimination rules are

k
p(u) = =, (6.51)
u

1) = 44|22, (6.52)
p(u)

207 ~ #3007 () = Buc (u) - u’

Ho2(u, p30) = (6.53)

u0'12(u)
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The k; are again constants of motion, determinable at the upstream boundary con-

dition as
k1 = pouo, (6.54)
ky = ki + % (6.55)
ky = ki (ka +2), (6.56)

where pg and ug are again the upstream density and velocity, respectively.

The remaining equations are (6.45), (6.46), (6.47), and (6.49). Due to the indepen-
dence of the x-velocity distribution from the r-velocity distribution, however, it can
be seen that (6.49) is decoupled, since po4 appears nowhere in any of the other three
equations, and also cannot affect the value of usy produced by the reconstruction
since uso depends on the x-velocity distribution and w4 affects only the r-velocity

distribution.

Therefore, the VFM approach reduces the problem to solving equations (6.45),
(6.46), and (6.47) for the unknowns u, u3g, and w49, using the HMER to close the

system by giving us0 as a function of the other three unknowns.

6.4 Perturbations Around Equilibrium

Motivation

Recall from Figure 3.1 that the equilibrium point is on the boundary of a singular
subspace flanked by asymptotically infinite values of the closing flux. In the case
which we have best analyzed, that of the five-moment (fourth-order) one-dimensional
reconstruction, the closing moment near this singular subspace is dominated by the

IMP’s contribution,

pz =9

M5B = (6.57)

This term, as part of the flux in (6.47), must be differentiated. Notice that partial
derivatives of (6.57) with respect to u4 and 3 are both singular as u3 — 0, resulting
in unbounded terms in the flux Jacobian along any approach to equilibrium in
Region 1. This results in one or more unbounded eigenvalues in the flux Jacobian
and therefore unbounded wave speeds and an inherently unstable calculation in

unsteady simulations.

Because of this inevitable ill-conditioning, and because perturbed solutions will be

needed for boundary conditions to produce a shock profile, since equilibrium is a
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fixed point, if we are to examine solutions which approach or depart equilibrium
with 49 > 3, it is necessary to analyze the behavior of the system in this region.
Ideally, we would be able to understand the behavior of the system close to equi-
librium well enough to compute valid boundary conditions that can be imposed
sufficiently far from equilibrium to avoid the otherwise inevitable unstable behavior
whenever equilibrium is approached from within Region I. We will proceed with
an examination of the solution near equilibrium from a perturbation perspective
and show that there exists only a finite Mach number window in which a consistent
solution can be found that departs from the upstream equilibrium point producing a

steady shock solution.

Perturbative Form of the Equations

Beginning with the reduced equations for a planar shock wave we have (6.45),
(6.46), and (6.47) in the VEM case. We recall the boundary conditions, Equations
(6.13)-(6.22). Both the full and velocity-factorizable sets of equations are of the

form

dU
AU~ =F(U). (6.58)

In order to proceed with the analysis, the HMER closure must be approximated by an
analytical form for the closing moment, uso. This is approximated by the asymptotic
results for both Region I and for Region II. In Region I, the IMP is dominant in the
calculation of uso as equilibrium is approached, so its analytic form is substituted

as an approximation for usg. The relation is

M50 = ) (6.59)

which is singular and requires care in analysis. In Region II, there is no IMP and

the closure to leading order is the more straightforward

M50 = 10u30. (6.60)

We substitute into (6.45), (6.46), and (6.47) perturbation expressions for each of the
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three unknowns,

u(z) = ue + €up(2),
H30(2) = 30 + €H30|p(2); (6.61)

H40(2) = Maole + EMao|p(2),

with values with subscript e denoting an equilibrium point, upstream or downstream,
and values with subscript p denoting perturbation from the equilibrium state. The
perturbation parameter € is taken to be very small, and Taylor expansions are
performed for each term. We then collect terms in the equations for each order of
€. For the Region II case, the €” term is automatically satisfied, but for the Region I

case there is a residual term which must be set to zero, given by

H0ip(2) ), (2) = Haolp(2)H50,(2) 0

(6.62)
H30,(2)

Here, () = iz). This requires that

V.
Ha0)p(2) = ﬂ1130|p(Z), (6.63)
V30

where v3g and vy are constants whose meaning will become clear later. The solution
must leave equilibrium along a straight line in the (u30, pa0) plane, consistent with
a real-eigenvalued solution of a linearized ODE around equilibrium. If it does so
with positive uyg),, it will be in Region I, and with negative w4, in Region II,
which is inconsistent with the presumption of using Region I closure. Therefore,
in Region I, we seek solutions with real eigenvalues and eigenvectors which point
the solution toward positive w40, when u is perturbed in the direction of the other
boundary condition. It must be so, then, that we seek solutions in the Region II case
which point towards negative p40, when u is perturbed in the direction of the other

boundary condition.

The first order in perturbation quantities gives a full system of equations to be solved

for the perturbation values. For Region I, those equations are
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50vaM (9 - 5M?) 75M\2n 0 u(2)
V30r (9 +30M% - 25M*) 20M*V1I5x I5SM~T || Hy,(2)
A3z A3 Asz3 Ky, (2)
lp (6.64)
80V30 (M? - 1) -16V15 0 p(2)
= 240M (M? - 1) —48MV2 0 H30p(2) |
160V30 (SM* - 2M? —3) —96V15 (5M? +1) —240M |\ wao)y(2)
where
Asi = 500M (9 - 25M4)+30\/15 (9 25M%) 0 Haolp. (6.65)
:u30|p

Asy = 1250V22M3 — 75 M2 —2P 40"’ ~30VI5n (9 25M2) DO (6.66)

ﬂ30|,, “30|p
u
Ass = 125V307 M2 + 150M V27 20 4 304157 (9 _ 25M2) P (667
H30|p H30|p

A3y, Az, and Aszz contain terms which become singular as 3, — 0 if (6.63) is

not imposed. To continue in Region I, we seek exponential solutions of the type

u(z) 1
wop(2) | =] vio | (6.68)
Hao|p(z) 121

with v;; the eigenvector component of a linearized solution around the equilibrium
state corresponding to y;;. Clearly this satisfies the zero condition with real solutions
if there are real solutions in v3p, v49, and A. The resulting equations for these

quantities once (6.68) is inserted into (6.64) are
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The equations (6.69), (6.70), and (6.71) are three nonlinear, inhomogeneous equa-
tions for the three unknowns, v3g, v49, and A. The exact solution of this system can
be obtained algebraically, but the resulting expression for the unknowns is a highly
complicated function of M and is better examined graphically. Following the same
steps above with the Region II closure, and with both closures with downstream
equilibrium values for u,, gives similar perturbation equations for exponential so-
lutions in those cases. Using the Region II closure, no order zero term survives
and (6.62) is not required, but seeking solutions which do not enter Region I still

restricts us to seeking real-valued solutions to the resulting equations.

The equations for Region I downstream perturbation eigenvectors and eigenvalues
are produced by repeating the above analysis with the downstream boundary values

used in place of upstream values and are given by
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where

3
B = \/SM2 Y7 + 14. (6.75)

The equations for Region II upstream perturbation eigenvectors and eigenvalues are

the same except for (6.71), which now contains the Region II closure relation and is
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Finally, the equations for Region II downstream perturbation eigenvectors and eigen-
values are the same as (6.72), (6.73), and (6.74) for the Region I case, except again
for (6.74) which contains the Region II closure relation and is now

5Bv30 (SM? +3)  5(M2 +3) (55M* — 30M? - 9)
+
384V2 96M?2

5\/§V40 (M2 +3)% (1-5M2)%\ |2 B2viM (25M* + 30M* - 7)
+ +
1024M3 40 (M2 + 3)

By (1-5M2)> 4 =BM (3 +2M? - 5M*)
+ =
1607 M?+3

(6.77)

Figures 6.1 and 6.2 show solutions (real only) for the eigenvalue, A, as a function of
Mach number for the various cases. The departure angle inradians is w = Arg(+v3p+
iv4o), where Arg(re) = @ mod2r is the principal argument function and the +
sign is positive for downstream equilibrium and negative for upstream equilibrium,
as u perturbations from equilibrium values are positive downstream and negative
upstream. Solutions which use Region I analytics but depart from equilibrium in the
negative-uy direction are inconsistent and represent false solutions, as do Region II
solutions which depart towards positive-u4g. We seek solutions with positive A at
the upstream point and negative A at the downstream point in order to give decaying

behavior in the corresponding limits.

Figure 6.1 reveals that at very low Mach numbers there is a Region II solution which
is consistent for the upstream boundary, but most importantly there is the Region
I solution which has a divergent eigenvalue at nearly M = 2. The actual value is
approximately M¢c = 1.992. Beyond this Mach number there exist no consistent
solutions which depart from upstream equilibrium, or equivalently, there are no
solutions for M > M¢ which decay as 7 — —oo. Notice that while the eigenvalue
diverges and returns from negative infinity, the departure angle is smooth, as the
eigenvectors do not vary strongly in this region. This, unfortunately, indicates that
there is no solution for this set of equations which satisfies the upstream boundary

condition above the critical Mach number.

Figure 6.2 reveals that there are consistent Region II solutions at the downstream
bondary for all Mach numbers in this range, and there are consistent Region I

solutions up to a Mach number of approximately 1.53. In practice, the Region I
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Figure 6.1: Upstream equilibrium linearized solutions for Region I (red) and Region
IT (blue). Shown are the most positive eigenvalues (in this case, these are the only
positive, real eigenvalues), their departure angle from equilibrium in the (u30, ta0)
plane in degrees (assuming negative velocity perturbation), and the value of vy,
which should be negative for consistency in Region I and positive for consistency
in Region II.

solutions are preferred by the numerical solution as they can connect with incoming

solutions from the upstream boundary which pass through a peculiar singularity.

6.5 Mach Number Solution Window
It is an unfortunate revelation of these results that for Mach numbers above M¢ =
1.992 in the VFM case no consistent solution exists which corresponds to departure

from equilibrium in a steady state. This is certainly a major fault of the method,
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Figure 6.2: Downstream equilibrium linearized solutions for Region I (red) and
Region II (blue). Shown are solutions for the most negative eigenvalues (solid lines)
and the second-most negative eigenvalues (dashed lines). The departure angle from
equilibrium in the (w30, u40) plane is in counterclockwise degrees from the u3p-axis
and positive velocity perturbations are assumed from the downstream equilibrium
point). vy is the eigenvector component for w49, which should be positive for
consistency in Region I and negative for consistency in Region II.
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effectively eliminating it (in current form) as a general method for gas dynamic

simulation. Nevertheless, the result raises interesting questions.

Why does a method based on what would seem the naturally-assumed velocity
distribution not allow physical solutions? The MER is the most unbiased estimate
of the velocity distribution, and in some sense is linked to the Boltzmann H-Theorem.
In fact, given the H-theorem, one would expect the maximum entropy distribution
to be exactly the distribution achieved in an actual gas if higher moments could
somehow be physically constrained analogously to those constrained by physical
conservation laws, since the collision integral in that case would always be working

to bring the distribution to its maximum entropy form given the constraints.

Nevertheless, we have shown that the MER has the peculiar IMP, which seems
entirely artificial. It is possible that our choice of third and fourth order moments as
additional constraints on the distribution itself is the artificial element. It is difficult
to understand how this could be the case however, as it seems the most natural choice
of additional constraints, and [27] shows that polynomial moments are necessary to

preserve certain physical features of the moment system.

One can conceive of a thought experiment wherein the moments to fourth order of
velocity distribution are very accurately measured everywhere in a gas and then the
MER is used to compute the velocity distribution everywhere. From this distribution
we compute the fluxes and effect of collisions and advance a simulation forward
some time. Given that we have shown good evidence for the non-existence of steady
solutions for certain cases, this approach would likely not yield the correct or even
any steady state solution in all cases. This would seem to indicate that there is
some information not being carried by the constrained moments that is vital to the
physical behavior of the system. What is this information and where is it stored in

the distribution? These and other puzzles we leave to future work on this problem.

It is possible that the solution window is an artifact of the VFM approach itself. In
eliminating the two cross-moments, w7 and uo> from the solution, it is possible
that the solution is constrained in an unnatural manner. A thorough investigation of
this, however, must wait until a similar asymptotic analysis can be made to give a
sensible estimate of the additional closing fluxes, u3; and 4, in the axisymmetric
MER.
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6.6 Factorized Plane Shock Wave Solution

In the case of a planar shock wave with velocity-factorizable moments, the equations
to be solved are (6.45), (6.46), and (6.47), with (6.25), (6.26), and (6.53). The
ultimate boundary conditions are given by (6.13), (6.14), (6.17), (6.18), (6.23),
(6.24), (6.19), and (6.20), however, since the actual boundary conditions are fixed
points, and also due to the singularity in the maximum entropy reconstruction,
it is necessary to start with an approximate boundary condition derived from the
form (6.68) which is some distance from the equilibrium point in state space. In
this case, the solution chosen at the upstream boundary corresponds to the most
positive eigenvalue, A, with eigenvectors forcing the solution into Region I. The
initial z location in (6.68) is our choice, and we choose such that exp(Az) = 0.0001.
This provides us enough standoff distance in our computational domain to see the

upstream tail of the shock clearly.

To give an example, for a shock with M = 1.5, the appropriate solution is approxi-

mately

u(0) 1
wo(0) | =-0.0001| 2.30378 |. (6.78)
/J4()(0) —1.11807

The system is a set of three non-linear ODEs which can be solved using standard
numerical packages. In all following examples, Mathematica’s NDSolve routine
is used with absolute and relative error tolerances fixed at 108, A Mathematica
version of the HMER procedure detailed in Chapter IV was written to provide the
unclosed terms. Figure 6.3 demonstrates the shock profile generated by the method
at M = 1.5. The factorized method shows an eye-smooth profile with no subshocks
and a peak in streamwise temperature as predicted by theory. Notice that the profiles
for p and o> are very similar. This is because in the velocity-factorizable case, only
the collision terms and bulk transport affect o due to the lack of cross-correlation

between shock-normal and shock-parallel velocities.

6.7 The Pseudo-equilibrium Point

Although the shock profile in Figure 6.3 looks smooth to the eye, it was not obtained
by direct integration from the upstream boundary condition to the downstream
condition. There exists a nearly imperceptible discontinuity in the derivatives of the

profile at approximately z = 1.7. These discontinuities are visible in the profiles of
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Figure 6.3: Shock profile for M = 1.5 using the HMERC. Black line: p. Black
dashed line: T. Red line: 0. Blue line: o». All values are normalized over their
range from upstream to downstream quantities. The dashed-dotted line indicates
the location of a defect in the solution called the pseudo-equilibrium point.

the velocity derivative plotted in Figure 6.4. The point at which this occurs coincides
with a premature return to equilibrium for p30 and p40, best visualized by Figure 6.5,
which shows g4 plotted against u3p over the full shock wave. In this (u30, p40)-plane
plot, the trajectory follows the upper portion of the left lobe, and then returns to
equilibrium along the lower portion before departing and returning along almost the
same vector in the right-half plane. Comparing profiles of w30, w40, and u in Figure
6.6 reveals that at the point that pseudo-equilibrium is reached in terms of u3p and
a0, u has yet to reach its downstream equilibrium state, driving the solution away
from equilibrium again. In light of this, we call this point the pseudo-equilibrium
point. It will be shown that the behavior of this point is connected to the singular
structure of the IMP. Careful handling of this point is important to obtain a full
shock profile, as any attempt at direct integration will likely fail as it reaches this

point due to the singular nature of the closing flux.

The HMER at this point is a Gaussian in the shock normal direction. We note again

the multivalued nature of the closing flux, us0, at the point E. Consider a solution
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Figure 6.4: Top: u/(z) in the M = 1.5 shock profile. Bottom: Detail of top figure
around the pseudo-equilibrium point. Note the discontinuity at z = 1.7.
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Figure 6.5: Top: Shock profile for M = 1.5 in (u30, nap)-space. Bottom: Detail
of top figure. The solution begins on the top-left curve, then returns to pseudo-
equilibrium along the bottom-left curve before again leaving and returning to equi-
librium along the right loop, which is too thin to display at this scale.
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Figure 6.6: Top: Shock profiles for M = 1.5. Black line: u. Red line: u3zg. Blue
line: p49. The dashed-dotted line indicates the location of the pseudo-equilibrium
point.

on a trajectory consistent with (6.62) in Region I as it approaches or departs the
equilibrium point. Plugging in the form (6.63) to the IMP contribution to the closing
flux, (6.57), gives

(6.79)

_ (pa0 = 3)(pa0 +3)  vap (V4o )
M50.B = =— .

H30 V30 %ﬂm o
As uzp — 0, this approaches a constant value of 6 tan w, where w is the departure
angle. This means that, if a solution enters the point (0, 3) and then leaves, it must
either do so in Region II, develop a discontinuity in the closing flux, or depart along
exactly the same path by which it arrived. Clearly the third option is impossible as
it would imply the ODE drives the system both inward and outward along the same
trajectory at a single point in state space. Also, the first option is immaterial as the
arrival at the pseudo-equilibrium point will be seen to occur within Region I in all
cases. This means that there is a necessary discontinuity in the closing flux across
the pseudo-equilibrium point, visible in Figure 6.7, and, except for the unlikely and,
in practice, unobserved case of the derivative of u5y remaining continuous across the

pseudo-equilibrium point, this causes a discontinuity in the derivatives of the state
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Figure 6.7: Top: Shock profile for M = 1.5 in usp.

variables. Unlike those discontinuities discussed in [55], however, this discontinuity
is only in the derivatives of the primitive variables, and appears to occur for a quite
different reason than the lack of sufficiently high wave speeds, as wave speeds on
approach to this point are unbounded. It occurs because of the multivaluedness of

the closing flux caused by the IMP.

The most intuitive method to handle the existence of the pseudo-equilibrium point,
since it cannot be integrated through directly, is to begin integrating backwards from
the downstream boundary, choosing an approximate boundary condition based on
the linearized solution in (6.68), and continue backward until meeting the same
pseudo-equilibrium point, hoping that the values of u from both solutions will
match. In fact, this is easily done once the correct downstream boundary condition
is chosen, which turns out to be the Region I solution which departs into the first
quadrant, the (+u30, +u40) direction. A problem with this matching procedure is that
the values of u do not match precisely at the pseudo-equilibrium point, meaning not
only its derivative but its value is discontinuous there. Attempts have been made to
subtly adjust the approximate boundary conditions in order to match both « and u’ at
the pseudo-equilibrium point, but unfortunately the value of «” at this point is almost

insensitive to the choice of boundary condition and little improvement can be had
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beyond laboriously matching the values of u on both sides of the pseudo-equilibrium

point.

Another more crude but simpler and arguably more effective method is to detect
when the solution has reached the pseudo-equilibrium point, then reflect the final
solution point about the w4 axis, scale the distance from the E point, (0,3), to
some acceptable value, and then continue the integration from the new point. This
ensures u remains continuous, and it is found in practice that the basin of attraction
for the final downstream equilibrium point is quite large, meaning that the solution
will find its way back to equilibrium once u approaches its downstream value. This
reflection method is used in the examples shown. Using this scheme, profiles can

be constructed for any Mach number in the valid range.

This feature of the solution is perplexing, but does seem to have some possible moti-
vation. Consider again the basic moment equations for the shock wave, irrespective
of the closure used. Three variables were eliminated, p, o, and ug, but these
need not have been our choice. We could have kept pg, and instead eliminated u,
reducing the unknowns to the normalized moments gy, 30, and wg0. These have
the same values at both boundaries, which means that our eliminating expression
for u must be multi-valued. Each value of u exists on a different branch of the
eliminating expression, but if we are to have a continuous shock profile, there must
be some point within the shock at which some of these branches overlap. This
suggests that within a steady shock there are already one or more special points at
which the eliminating expression for u has repeated roots. It is hypothesized that

the pseudo-equilibrium point is related to such a point.

6.8 Comparison With Standard Methods

Lastly, we should compare the Maximum Entropy Method to other well-established
methods. We first demonstrate shock profiles for M = 1.3, 1.5, and 1.7. Figure 6.8
shows u, 39, and pag profiles, Figure 6.9 shows shock profile in (30, pa0)-space,
Figure 6.10 shows u’ profiles, and Figure 6.11 shows the closing flux, usg. We
comment that the pseudo-equilibrium point moves downstream as M decreases,
thus it is not visible in the M = 1.3 profile, since u has already sufficiently relaxed
to its downstream value at the pseudo-equilibrium point that the solution can be
considered complete. Figures 6.9 and 6.10 show that the profile for M = 1.7
contains significant artifacts other than the pseudo-equilibrium point. These are due

to crossing the Region I boundary, (4.40), at which point there is a discontinuity in
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Figure 6.8: From top: Shock profiles of normalized u, 3o, and u49. Black lines:
M =1.3. Red lines: M = 1.5. Blue lines: M = 1.7.
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Figure 6.9: M = 1.3 (black), 1.5 (red), and 1.7 (blue) shock profiles in (w30, pa0)
plane. Black-dashed line: singular line extending from the equilibrium point,
tao = 3. The bottom figure is a detail of the top, showing the M = 1.3 profile
and the small excursion on the right half plane after passing through the pseudo-
equilibrium point for the other Mach number profiles.
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Figure 6.10: M = 1.3 (black), 1.5 (red), and 1.7 (blue) shock profiles of u’(z) and
detail. Attention is drawn to the lower plot, showing that the derivative of velocity
has a slight discontinuity as the solution passes through the pseudo-equilibrium
point.
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Figure 6.11: Mach 1.3 (black), 1.5 (red), and 1.7 (blue) profiles of the closing flux,
Uso, as calculated by the HMER.

the derivative of usg by design, in order to match the HMER and MER values and
behavior of usg at this interface. We now look to compare these solutions to those

produced by other methods.

For shock waves and many other non-equilibrium gas flows, DSMC is well suited.
Due to the low Mach number range wherein solutions may be constructed using
the Maximum Entropy Method, Navier—Stokes is another point of comparison as
it is still somewhat accurate at predicting broad features of weak shock waves.
When using DSMC, we follow the example of [6] and use the simple but robust
method outlined there. Particle trajectories are simulated through the shock wave,
including movement and collisions, and are used to collect statistical information
about the flow. Hard sphere molecules are used to match the viscosity exponent
from our expression for the BGK relaxation time (6.50). The domain for M = 1.5
was 65 times the upstream mean free path length, with 390 evenly spaced collision
cells. The average number of molecules in the simulation was 18525, and this
was maintained by using a version of Bird’s STABIL algorithm. STABIL shifts
all particles forward or backward when the total number of particles in the domain

diverges from the intended mean by a small amount, in this case the number was
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chosen such that the usual shift required was approximately one quarter of a cell.
STABIL is necessary to avoid the shock "smearing" due to a random walk in its
position over the averaging window. The simulation was allowed to relax to its
steady state over 10 mean transit times through the domain of an average particle,

and then was averaged over 20 mean transit times for smoothness.

Apart from the DSMC method as presented in the text, a subtle modification was
required to tailor the method to very weak shocks; the number of particles escaping
the domain through the upstream boundary, usually an extremely rare event at high
Mach numbers, becomes significant as the Mach number becomes close to 1 and
must be tracked so that the total can be added to the number of particles emitted
from the upstream boundary. Neglecting this balancing flux of particles makes little
difference at Mach numbers of 2 and higher, but at low Mach numbers the effect of

lost particles can reduce the inflow by a few percent or more.

The Navier-Stokes solution is simpler. The problem reduces to an ODE [18] and
can be simulated directly using a numerical integrator such as MATLAB’s ode45

routine, which was the choice in this case.

Solutions are compared in Figures 6.12-6.14. Maximum Entropy clearly underesti-
mates shock thickness compared to the other two methods, but produces a smooth
profile (at least to the eye, recall the discussion of the pseudo-equilibrium point
and resulting discontinuous derivatives of flow properties, such as in Figure 6.10).
The reason for the thin shock profile using the Maximum Entropy Method is likely
because of the limited power of the distribution to accommodate information about
both the central and IMP components of the distribution. Extension to higher or-
ders should help, but the analytical work necessary to understand the shape of the
distribution at higher order is significantly more challenging than for fourth order as

explored in Chapter 2.

Navier-Stokes does not produce meaningful predictions of the higher moments used
in the HMERC, but comparison can be made with DSMC. Figures 6.15, ??, and ??
show how the higher moments compare with DSMC for M = 1.5. Qualitatively,
it is clear that there is no pseduo-equilibrium point in the DSMC calculation, as
a0 drops below its equilibrium value of 3 while p3zg < 0. Because of this, uso
computed using the HMERC is necessarily substantially different from its DSMC
value due to reaching a finite limit at equilibrium, unlike the zero value seen in
DSMC. Also, usp is not discontinuous. sy computed with DSMC begins to deviate

from its equilibrium value much earlier than the HMERC solution, has different
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behavior in the interior of the shock wave, and following the discontinuity at the
pseudo-equilibrium point, the derivative of uso changes sign and no longer agrees
even qualitatively with the DSMC solution. The singularity in the HMERC is linked

to all of these features.

In Figures 6.18-6.20, velocity distribution functions are compared at equivalent
density in the Maximum Entropy and DSMC shock solutions. The Maximum
Entropy method does a good job of approximating the PDF to the eye, but slight
differences compared with DSMC become apparent in the relative error plot. These
subtle differences are due to the central component of the distribution being unable to
fully accommodate the information present in the moments because of the sensitive
IMP, which satisfies a non-trivial portion of the two important moments, p3p and 9.
The IMP carries away all of the excess 49 and a fraction of the value of u3¢, resulting
in the central component of the distribution being significantly more Gaussian than
the DSMC distribution for small x. Essentially, satisfying the demands of the IMP
has robbed some of the adaptive power of the central component. If an analytic
version of the singular behavior of higher order moment reconstructions could
be attained, better approximation of the central region of the velocity distribution
function would be possible, as more degrees of freedom would be available to the
solution after satisfying the singular portion. In effect, the MER behaves more like

a reduced-order Maximum Entropy central distribution with an IMP.

6.9 A Note on Computational Cost

The HMERC method has a significant computational burden associated with the cost
of performing the HMER procedure, which involves computing, for each Newton’s
step, a number of moment integrals proportional to the order of the reconstruction to
compute the Jacobian of the constraint equations. This immediately means that the
method cannot be competitive with the Navier-Stokes equations in terms of speed.
Indeed, the Navier-Stokes solutions for the various shock waves presented in this
chapter can be produced almost instantaneously, while the HMERC solutions take
on the order of a few minutes. However, Navier-Stokes is unable to handle problems
like the relaxation problem. For these explicitly non-equilibrium problems, other,

more expensive methods are required.

When compared with the other non-equilibrium method used here, DSMC, the ques-
tion of desired solution fidelity becomes important, as crudely averaged DSMC solu-

tions that are marginally converged in the statistical sense can be performed quickly
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Figure 6.12: Normalized M = 1.3 shock density and temperature profiles. Black:
DSMC, blue: Navier-Stokes, red: HMERC.
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Figure 6.15: Comparison of M = 1.5 primitive solution variables u (black, normal-
ized), uzg (red), and pg9 — 3 (blue), between HMERC (lines) and DSMC (black)
solutions.

compared with HMERC solutions, but the HMERC method produces smooth PDFs
and moments, whereas such marginal DSMC computations would be noisy and
carry poor statistical information about the higher moments and the tails of the
velocity PDFs. A relatively smooth DSMC solution with comparable information
content to an HMERC solution would be very intensive, as vast numbers of particles
must be sampled in order to obtain converged statistics about particles in the tails of
the velocity distribution, which have an outsized effect on higher moments relative
to their population. Such well-converged DSMC solutions take much longer than
HMERC, on the order of hours for the shock wave solutions and several minutes for
the relaxation problem, compared to minutes and seconds for HMERC, respectively.
It is important to note that more sophisticated DSMC procedures do exist which
enhance computational efficiency, but it is not believed that the reduction in cost is
of the order required to make DSMC solutions comparable to HMERC when higher

moments and PDF tails are of interest.
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Figure 6.18: Velocity distributions comparison at a point within the M = 1.3 shock.
Black: DSMC, Red: HMERC. Black Dashed: Maxwell-Boltzmann Distribution.
Due to the varying shock thicknesses, the z location of the comparison point in each
case is chosen at points with equal density. Normalized p here is 0.4893. Upper
figure: Velocity distribution function values. Lower figure: Relative deviation from
the Maxwell-Boltzmann distribution.
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Figure 6.19: Velocity distributions comparison at a point within the M = 1.5 shock.
Black: DSMC, Red: HMERC. Black Dashed: Maxwell-Boltzmann Distribution.
Due to the varying shock thicknesses, the z location of the comparison point in each
case is chosen at points with equal density. Normalized p here is 0.4893. Upper
figure: Velocity distribution function values. Lower figure: Relative deviation from
the Maxwell-Boltzmann distribution.
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Figure 6.20: Velocity distributions comparison at a point within the M = 1.7 shock.
Black: DSMC, Red: HMERC. Black Dashed: Maxwell-Boltzmann Distribution.
Due to the varying shock thicknesses, the z location of the comparison point in each
case is chosen at points with equal density. Normalized p here is 0.4893. Upper
figure: Velocity distribution function values. Lower figure: Relative deviation from
the Maxwell-Boltzmann distribution.
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Chapter 7

CONCLUSIONS

We have considered the Maximum Entropy Reconstruction (MER) as a solution to
the problem of approximating a distribution function from a finite number of known
moments. We focused on the case using polynomial moments of order four and
lower of a one-dimensional probability distribution function (PDF). It was known
[26] that the MER on the real line has a singular line, of zero measure in terms of the
prescribed moments but extending in moment space from the case corresponding
to thermodynamic equilibrium, in which there is no solution to the MER problem.
Near the singular line there is a region, which we call Region I, in which the
MER is bimodal and the effect of the singular line is dominant. We constructed
an asymptotically valid analytic solution to the singular MER problem in Region
I, which predicts the existence of an extremely small-amplitude, near-Gaussian
component of the MER solution which runs away to infinity as the singular line is
approached. We call this component the Itinerant Moment Packet (IMP). The IMP
is found to dominate the computed values of higher order moments, predictions
of the MER based on the given values of the lower order moments. We used this
IMP model to construct a hybrid analytic-numerical model of the MER, which we
call the Hybrid Maximum Entropy Reconstruction (HMER). The HMER is found
to accurately reproduce the predictions of higher order moments by the MER, and
to significantly improve upon the MER in terms of robustness and computational

efficiency.

We used the HMER to examine the problem of relaxation to equilibrium in a
spherically symmetric, hard-sphere gas. The HMER was used to represent the
velocity PDF in the calculation of the collision integral of the Boltzmann equation
to high accuracy, providing a near perfect match when compared to the widely-
accepted Direct Simulation Monte-Carlo (DSMC) method of Bird [6].

We also examined the use of the HMER as a closure scheme for moment-based
approaches to solving the Boltzmann equation. We call this the HMER closure
(HMERC). We determined that the one-dimensional HMER was sufficient to con-
struct a closure scheme for the full three-dimensional moment equations if an ap-

propriate choice of moments is used, and if the HMER is performed in a rotated
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frame of reference given by the principal frame of the gas based on the local stress
tensor. We call the appropriate choice of moments velocity-factorizable moments
(VFEM).

We employed the HMERC and the VFM approach in the problem of computing
the profile of a normal shock wave. Perturbation solutions were constructed near
upstream and downstream equilibrium, and it was found that solutions exist only
for a finite range of Mach numbers. In the VFM case, solutions do not exist above
a critical Mach number of approximately 1.992. When solutions do exist they
are continuous, but the derivatives are not. There exists a point which we call
the pseudo-equilibrium point where the solution returns to equilibrium in terms of
its moments in the shock-normal direction, but the shock-parallel components of
the solution have not reached their downstream equilibrium values yet. Since the
equilibrium point is strongly singular and the closing flux is multi-valued, this causes
a discontinuity in the closing flux across this point, which leads to a discontinuity in
the derivatives of the state variables. We developed a method to integrate through
this pseudo-equilibrium point, but the discontinuities are preserved and represent a
subtle defect in the shock profile solution.

We compared the HMERC results for the shock wave with solutions from DSMC
and Navier-Stokes, and found that, while the HMERC produces many qualitatively
correct features in the shock profile, the overall shock thickness is under-predicted

compared to both alternative methods.

7.1 Asymptotic Analysis of the MER

In Section 2.4 we developed a model for the MER. In Region II, being the region
near equilibrium but away from the singular line defined by u3 = 0 and u4 > 3, the
reconstruction is well-behaved and continuous even in the limit of equilibrium as
(u3, pg) — (0,3). In Region I, being the region of moment space near the singular
line, the true solution was found to be bimodal and to consist of a central component,
well-approximated by a perturbed Gaussian sitting very near x = 0, and an Itinerant
Moment Packet (IMP) with rapidly decreasing amplitude and rapidly increasing
distance from the origin. The model was found to be self-consistent and to solve
the MER problem to leading order in the limit as u3 — 0 for 4 > 3. Further,
the IMP model predicts, in (4.45), the contribution of the IMP to each moment of
the distribution, both constrained and computed moments. The contribution to the

first three moments, uo, (1, and wo, is essentially negligible, the contribution to
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U3 is an appreciable fraction of w3, and the contribution to w4 is always us — 3,
or the excess in u4 above that of a standard normal distribution. This behavior is
reminiscent of the symmetric packets proposed in [27], although where Junk used
packets with a similar relationship between amplitude and distance from the origin
in order to demonstrate the existence of the singular subspace, we have computed
analytic forms for the packets which are predictive given u3 and 4 and applicable

throughout Region I, as opposed to only on the singular line itself.

The IMP was found to dominate the value of us, the closing flux in our gas dynamics
application. us grows as ,ugl in Region I, which is important as it causes multi-
valuedness in this flux as the system approaches or departs equilibrium, depending
on the exact direction in (u3, pg)-space it travels. This inverse dependence of the
fifth and third moments is in contrast to the interdependence of these two quantities

/3. 1t is believed that this difference has a significant

in [42], which has us oc /J;Z
effect on the existence of solutions to the steady normal shock structure problem

which approach equilibrium in the upstream or downstream limit.

7.2 The Hybrid Maximum Entropy Reconstruction Method

In Section 2.5 we constructed a new, highly robust and efficient method for comput-
ing the MER. Instead of directly solving for the distribution on the infinite domain,
we first used our newfound understanding of the IMP to calculate and subtract away
its contribution to the constrained moments before passing them to a numerical solu-
tion method working on a finite domain. Due to the IMP’s effects, this means that the
finite domain solution sees much more benign moments, never in Region I, which
produce well-behaved and well-conditioned solutions which converge quickly. In
order to link this solution in Region I with solutions outside the singular region
smoothly, the boundary between the regions was defined by detecting the transition
point when the closing flux rapidly changes its u3 derivative. As it is not clear how
to analytically predict the locus of this boundary, and in the absence of a uniformly
valid asymptotic solution around the equilibrium point, an empirical fit was used
consisting of a quartic version of a hyperbola (4.40). A weighting function, (4.46),
which preserves the sharp transition between the two regions was developed and
implemented to ensure continuity in the closing flux and all other moments of the

reconstruction across the boundary.

Finding analytical estimates for both the Region I boundary and the weight function

are the only remaining problems in the HMER, though the current empirical fits
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are good approximations at present. While the HMER does an excellent job of
predicting the closing fluxes (see Figure 4.6), it does not accurately predict the
Lagrange multipliers, 4;, for all cases, especially near the transition between the
two regions. This is made clear in Figures 4.3, 4.4, and 4.5. It is believed that
improving the boundary location and weight functions will improve agreement in

these quantities.

7.3 Maximum Entropy Gas Dynamics—Relaxation to Equilibrium

The Hybrid Maximum Entropy Reconstruction was used as a closure to compute
collision integrals for the spatially homogeneous, spherically symmetric distribution
relaxation to equilibrium of a monatomic gas with a Maxwell molecule collision
cross section. Comparison was made with the exact solution computed in [33].
These results show excellent agreement, demonstrating the effectiveness of the
reconstruction in representing the key features of the velocity distribution function

required to properly compute the collision integral.

7.4 The Velocity-Factorizable Moments Approach

In Section 4.2 we introduced the idea of velocity-factorizable moments for reducing
the computational cost of producing a Maximum Entropy Reconstruction solution
by eliminating three-dimensional integrals from the reconstruction algorithm. The
key step is the elimination of cross-moments from the list of moment constraints
that we must match with the Maximum Entropy Reconstruction. The exception are
the shear values, which can be incorporated into the reconstruction by rotating the
axes of the velocity space into the principal frame of the gas, and then performing
the reconstruction in this context where the pressure tensor will be purely diagonal.

Higher-order moments are treated as fluxes

7.5 Limited Mach Number Range in the Shock Structure Problem

The analytic expressions for the closing flux in the two regions from Section 2.4
were used to produce linearized versions of the normal shock structure equations
near the upstream and downstream equilibrium states. Care had to be taken to ensure
that solutions found were consistent, which required that they be real, and that they
depart/arrive from/to equilibrium in the proper direction so that they remained in the
space where the chosen closing flux model was valid. The results are summarized

in Figures 6.1 and 6.2.

The results reveal that there are no consistent solutions which depart from upstream
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equilibrium for M > 1.992, and that the positive eigenvalue associated with depart-
ing solutions below this Mach number diverges here, returning as a strongly negative
eigenvalue. It is believed that this is related to the multi-valuedness of the closing
flux us with respect to the departure angle, since solutions at higher Mach numbers
still occur under McDonald’s approximate closure with a less severe dependence on

w3 [42]. This certainly represents a failure of the closure scheme and needs remedy.

The question that remains is whether accuracy should be abandoned and the singu-
larity altered to have us scale with 3 for some 0 < a < 1, or should something
more fundamental be altered. Noting that the high-order polynomial terms in the
exponent of the MER cause the tails of the distribution to rapidly vanish, much faster
than the near-Guassian tails of test distributions, perhaps a split domain is worthy
of consideration. By modifying the constraining moment integrands (the chosen
values of ¢ in (2.3)) such that they measure only over a finite range, and then adding
additional, lower-order moment integrands which span the remainder of the space,
one could conceive of a piece-wise MER which falls off at large x more realistically,
perhaps modifying the singular behavior of the closure. The possibility is intriguing
but it is also possible that this would have the effect of removing the singularity and
thus limiting characteristic speeds, again causing subshocks to appear in the shock

profile.

7.6 Shock Profiles using the HMERC

The shock profiles produced by using the Hybrid Maximum Entropy Reconstruction
to calculate the unclosed moment, p50, in the case of the velocity-factorizable shock
structure problem are qualitatively acceptable, with nearly smooth profiles. The only
obviously artificial defects are the kinks produced by derivative discontinuities at
an interesting point in the solution, the pseudo-equilibrium point, and those present

in the M = 1.7 case where the boundary of Region I is crossed.

The presence of the pseudo-equilibrium point is interesting. The solution is drawn
back to thermal equilibrium—in the x-direction only, while the energy present in the
r-component of particle velocity is still below the downstream equilibrium value.
It was speculated that this could be occurring because of the fact that the system of
equations (6.45), (6.46), and (6.47) could have taken uq, in place of u as a primary
variable, which would result in a multi-valued elimination function, since u;, along
with 30 and 40 has identical values at the upstream and downstream equilibrium

states. The pseudo-equilibrium point could be the unique point required to connect
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the two values of u. Whether this is true or not, the pseudo-equilibrium point is also
noteworthy because it represents a discontinuity in usg as well as Zl—z, as well as a

slight obstacle to computing complete shock profiles.

In order to compute the shock profiles through the pseudo-equilibrium point, the
most practical method found was to detect when the solution has reached the point
by detecting when 3o > b, where b is a small, negative value which is set dependent
on the precision of the calculation to ensure the pseudo-equilibrium point is detected
before it is crossed which could potentially result in undefined behavior. The point
at which this state is detected is then reflected across the wu3g axis, and w3 and pyg
are scaled by a suitable fraction to ensure they are not too close nor too far from
equilibrium for the calculation to continue. The required range is usually satisfied
by scaling the values back by a factor of 1072, When the simulation continues from
this point, the strong attraction of the downstream equilibrium point overcomes the
small errors in the trajectory and the shock profile is completed. By using the same
values of u and z as before the pseudo-equilibrium point was reached, this method
ensures continuity in the u profile, even if continuity in its derivative is impossible

to achieve due to the discontinuity in 5.

The shock profiles may be continuous and near-smooth, but they are not without
flaws. Apart from the discontinuous derivatives mentioned above, the profiles are
also considerably thinner than the equivalent profiles computed with DSMC, and
slightly thinner even than profiles computed with Navier-Stokes. This is a departure
from the behavior encountered when using regularized and modified versions of the
MER, in which closures based on the Maximum Entropy Principle produced shocks
of comparable thickness to the true BGK solution, and certainly much thicker than
Navier-Stokes [41], [42]. Again, this must be due to the effect of the multi-valued

Uso closing flux and its particular singular form.

Velocity distribution functions, compared between DSMC and the Maximum En-
tropy Method at equivalent density values in the interior of shocks, show that the
Maximum Entropy Method predicts slightly more Gaussian distributions where the
distribution is large. This is believed to be the result of the IMP’s contribution
to the constrained moments making the computed central component significantly
nearer to a Gaussian than it would otherwise be, as well as the effect of the pseudo-
equilibrium point which drives the solution towards a Gaussian distribution faster
than in the more realistic DSMC calculation. It is possible that this has the effect

of causing the shock solution in the Maximum Entropy Method case to behave
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somewhat more like an Euler or Gaussian solution, which would have an infinitely
thin shock. While u4q is significantly affected by the presence of the IMP, 3o and
lower-order moments are not very strongly affected, and this could be allowing the

lower moments to behave more like they would in the Euler or Gaussian cases.

7.7 A Final Assessment

The five-moment MER is surprisingly and highly singular but this singularity has
been well-examined and is thoroughly captured by the IMP model. Nevertheless,
this singularity represents a significant stumbling block for applying the MER to gas
dynamic problems. In the case of the HMERC, there are stark errors in its predictions
where available and restrictive limits on the existence of solutions in at least the shock
structure problem. It does, however, perform quite well in the relaxation problem,

accurately predicting the rate of relaxation compared with theory.

The Hybrid Maximum Entropy Reconstruction and its enabling analysis of the
singular region of the full Maximum Entropy Reconstruction represent the ma-
jor contribution of this work. No similar analytic results for Maximum Entropy
problems of order higher than quadratic have been found, and it is believed that
the HMER is the most robust and globally-accurate version of the five-moment
Maximum Entropy solution yet published. Improvements could yet be made in
analytically predicting the boundary of Region I, and in developing an analytic

justification for an appropriate form of the weight function (4.46).

Beyond these improvements, we must look towards extending the analysis of the
singularity present in the five-moment MER to higher-order MERs and multi-
dimensional MERs. Extension to multiple dimensions is made difficult by the
interplay of cross-terms in the expression for the MER, meaning that a simple Gaus-
sian form for the IMP is invalid for the general case. Extension to higher-order is
complicated by the fact that the singular line in these higher-order MER problems
is still present, but in higher-order cases its actual shape is a function of the lower
moments which can no longer be standardized by adjusting coordinate axes. It is
possible that some manipulation of the moment constraints in the MER problem can

be made to eliminate this difficulty, allowing further progress to be made.
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