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ANALYSIS AND CONTROL OF CHAIN MOBILITY                             
IN PROTEIN HYDROGELS 

1.1 Abstract 

Coiled-coil domains can direct the assembly of protein block copolymers into physically 

crosslinked, viscoelastic hydrogels. Here we describe the use of fluorescence recovery after 

photobleaching (FRAP) to probe chain mobility in reversible hydrogels assembled from 

engineered proteins bearing terminal coiled-coil domains. We show that chain mobility can 

be related to the underlying dynamics of the coiled-coil domains by application of a 3-state 

“hopping” model of chain migration. We further show that genetic programming allows the 

effective mobility of network chains to be varied 500-fold through modest changes in protein 

sequence. Destabilization of the coiled-coil domains by site-directed mutagenesis increases 

the effective diffusivity of probe chains. Conversely, probe mobility is reduced by expanding 

the hydrophobic surface area of the coiled-coil domains through introduction of the bulky 

leucine surrogate homoisoleucine. Predictions from the 3-state model imply asymmetric 

sequential binding of the terminal domains. Brownian Dynamics simulations suggest that 

binding asymmetry is a general feature of reversible gels, arising from a loss in entropy as 

chains transition to a conformationally restricted bridged state. 

1.2 Introduction 

Protein engineering enables the design and synthesis of monodisperse polymers with 

functional domains drawn from nature or created de novo (1). Because protein polymers are 
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made by expression of artificial genes, they can be modified easily and systematically by 

editing of their DNA coding sequences. In this manner, proteins have been engineered with 

binding domains that drive them to self-assemble into physically crosslinked networks (2). 

The non-covalent nature of domain association in these networks permits the constituent 

proteins to exchange binding partners. Such processes are common in polymeric systems; 

for example, block copolymer micelles in solution exchange chains at rates that are highly 

dependent on the architectures of the individual blocks (3, 4), and telechelic polymers with 

hydrophobic endgroups form micellar networks that relax via chain disengagement from 

interconnected micelles (5). Exchange of polymeric strands also plays essential roles in 

biological processes, including repair of double-stranded DNA breaks by homologous 

recombination (6, 7). 

Strand exchange dynamics are particularly important in governing the viscoelastic properties 

of hydrogels assembled from proteins that carry amphipathic α-helical domains (2, 8, 9). 

Amphipathic helices are ubiquitous in nature, and often function by driving protein 

aggregation through the formation of coiled-coil bundles (10-12). Hydrogels assembled from 

coiled-coil proteins are reversible: they can disassemble and reassemble rapidly in response 

to external stimuli such as temperature changes or mechanical shear (2). These hydrogels are 

also shear thinning, injectable and potentially useful for delivery of cellular or molecular 

therapeutics (13). Because strand exchange underlies the physical behavior of the network, 

tuning the strand exchange rate is essential for optimizing hydrogel performance. 

Characterization of strand exchange in coiled-coil systems has largely been limited to 
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chromatographic analyses of equilibrium solutions (10, 14, 15), stopped-flow spectroscopy 

(16), and fluorescence dequenching experiments (9, 17). These techniques are most useful 

for analysis of dilute solutions, and cannot be applied directly to hydrogels. In contrast, 

fluorescence recovery after photobleaching (FRAP) is routinely used to assess 

macromolecular diffusion and binding in crowded environments such as the cellular milieu 

(18). For example, FRAP has been used to measure rates of binding of leucine-zipper 

transcription factors to chromatin in live cells (19). The method requires only minor 

perturbation of the system of interest through sparse labeling with fluorescent dyes, and is 

amenable to analysis by models that permit simultaneous determination of diffusion 

coefficients and binding constants (18, 20). Although FRAP has been used to probe chain 

mobility in polymer networks, strand exchange has either not been important in these systems 

(e.g. in covalently crosslinked networks) (21, 22), or has not been quantified (23-26). The 

technique is commonly used only to estimate effective chain diffusivity, and when interchain 

binding is present, it is typically assessed qualitatively.  

This chapter describes the use of FRAP to characterize the interplay between strand exchange 

and chain mobility in associative protein hydrogels. The gels were formed from an 

engineered triblock protein (designated “PEP”) composed of two identical coiled-coil 

domains (“P”) at the N- and C-termini, flanking a water-soluble midblock (“E”) consisting 

of elastin-like polypeptide repeats (Supplementary Table 1.1). The P domain is derived 

from the N-terminal fragment of rat cartilage oligomeric matrix protein (COMP), and has 

been reported to form homopentameric coiled-coil bundles (8, 27). Association of the P 

domains drives the reversible assembly of PEP into optically transparent, physically 
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crosslinked networks. The viscoelastic behavior of PEP networks is analogous to that of other 

networks assembled by association of coiled-coil domains (13). 

Here we use FRAP to determine diffusion coefficients and equilibrium binding constants of 

fluorescently labeled PEP chains in PEP hydrogels. We find that the mobility of PEP chains 

is significantly reduced by reversible network association. To gain insight into the 

mechanism of chain mobility, we elaborate a previously developed 2-state reaction-diffusion 

model for FRAP into a 3-state “hopping” model of chain migration (18, 20). We find 

experimentally and in coarse-grained Brownian Dynamics simulations of gel-forming 

telechelic polymers that binding of one of the P domains in PEP reduces binding of the 

second. Finally, we show that tracer chain mobility is highly sensitive to structural changes 

in the coiled-coil endblocks. Taken together, our results furnish a new framework for 

understanding and controlling chain mobility in reversible polymer networks. 

1.3 Experimental 

1.3.1 Hydrogel Preparation 

All protein concentrations are reported in % (w/v). To prepare a 10% (w/v) gel, 100 μL of 

phosphate buffer (100 mM, pH 7.2 – 7.4) was added directly to 10 mg of lyophilized PEP 

and the suspension was placed on ice to promote gelation. After 2 – 4 h on ice, hydration was 

usually complete as evidenced by the formation of an optically clear gel. In order to ensure 

network homogeneity, gels were typically heated above the gel-sol transition temperature 

(~75 °C for a 10% gel) by submerging them in boiling water for 30 – 60 s. Upon heating, 

even concentrated solutions of PEP (up to 30%) became viscous liquids. After heating, 
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samples were immediately placed back on ice to allow gels to reform. Alternatively, samples 

could be left on ice for 24 – 48 h without heating in order to obtain completely homogenous 

gels. Fluorescent hydrogels were prepared by adding low concentrations (typically mass 

ratios of 1:50 or 1:100 were used) of fluorescein-labeled probe chains to PEP networks.  

1.3.2 Fluorescence Recovery after Photobleaching 

Fluorescent hydrogels were placed between two glass slides separated by 120 μm spacers 

(Secure-Seal spacer, 9 mm × 0.12 mm, Life Technologies). Photobleaching experiments 

were performed on a Zeiss LSM 5 Exciter inverted confocal microscope equipped with the 

following laser lines: 458, 488, 514, 543 and 633 nm. All lasers were typically applied during 

the bleaching period. Cylindrical bleach volumes of defined radius were created using the 

bleach applet in the Zen 2009 confocal microscopy software suite (Zeiss). A 20X objective 

was used for the large spot size experiments (a = 12.5 – 25 μm). 2000 iterations at a scan rate 

of 1.61 μs per pixel resulted in a well-resolved cylindrical bleach volume that penetrated the 

entire gel. Fluorescence recovery in the photobleached spot was monitored between 500 and 

530 nm with a wide pinhole on a single z-slice in the center of the hydrogel. Images were 

typically collected at a rate of 1 s-1 and at a resolution of 256 × 256 pixels. Fluorescence 

intensities within the photobleached spot were quantified using the Zen region-of-interest 

“mean ROI” applet. To account for non-specific photobleaching caused by image acquisition 

during spot recovery, all curves were normalized to the fluorescence intensity of a region far 

from the photobleached spot. Quantitative analysis of the fluorescence recovery curves was 

performed in MATLAB.  
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1.4 Results and Discussion 

1.4.1 Reversible PEP hydrogels show fluorescence recovery after photobleaching 

To probe chain mobility in PEP hydrogels, we generated a series of fluorophore-labeled 

probes that would associate with network junctions in a defined manner, without affecting 

the rheological behavior of the network. We first performed site-directed mutagenesis on 

PEP to introduce a single cysteine residue into the elastin-like midblock, resulting in PECP 

(Supplementary Table 1.1). The absence of other cysteines in the protein enabled site-

specific conjugation of fluorescein-5-maleimide (f5m) to the central thiol via Michael-type 

addition (Figure 1.1A and Supplementary Figure 1.1). The PECP-f5m conjugate yielded 

homogeneous, fluorescent gels when added at low concentrations into PEP networks 

(typically PECP to PEP ratios of 1:50-100 were used). Using oscillatory shear rheometry, we 

verified that the rheological behavior of PEP gels was minimally perturbed by this labeling 

strategy (Supplementary Figure 1.2). 

Next we prepared fluorescent PEP hydrogels of defined thickness (~120 μm), and 

photobleached cylindrical volumes in each gel using a standard confocal microscope. In 10% 

weight-to-volume (w/v) gels, we observed steady recovery of fluorescence intensity within 

the photobleached spot (Figure 1.1B). Fluorescence recovery results from diffusion of 

unbleached fluorophore into the photobleached region, and confirms that PECP chains are 

mobile within PEP networks. Consistent with our hypothesis that PECP is associated with 

the network, we observed accelerated rates of fluorescence recovery in networks solubilized 

with 8 M urea, a common protein denaturant.  
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Figure 1.1. Fluorescence recovery after photobleaching in labeled PEP hydrogels. (A) Labeling 

of PEP hydrogels was achieved by addition of a fluorescent PEP analogue (PECP-f5m) at low 

concentrations. (B) FRAP in 10% w/v PEP hydrogels as monitored by confocal microscopy. A 

circular bleach spot with a radius of 12.5 μm recovers slowly over a period of 30 min (blue curve). 

The same network solubilized in 8 M urea shows accelerated fluorescence recovery (red curve). Scale 

bar 100 μm.

 



8 
 

 

1.4.2 Quantitative analysis of chain mobility. 

Gels were prepared at protein concentrations ranging from 2% to 10% w/v (gelation in PEP 

solutions occurs near 3%). As expected, the rate of fluorescence recovery after 

photobleaching decreased with increasing protein concentration (Figure 1.2A). To quantify 

chain mobility, we fit the experimental FRAP curves to a model that attributes fluorescence 

recovery to diffusion only (see Supplementary Equations 23, 25 and 30). Such an analysis 

is similar to standard FRAP analyses of diffusion in polymer networks (22, 23, 25, 26, 28), 

and results in a single parameter termed Deff, the effective diffusion coefficient (18). In the 

case of PEP networks, fluorescence recovery represents diffusion slowed by binding; Deff 

provides a measure of the mobility of polymer chains for which Brownian motion is 

constrained by reversible network association. The effective diffusion model yielded good 

fits to the fluorescence recovery curves (Figure 1.2), enabling us to estimate Deff for each 

gel. Deff decreases steeply with increasing protein concentration, dropping from 1.3 × 10-8 

cm2 s-1 in viscous 2% solutions to 2.3 × 10-10 cm2 s-1 in 10% gels (Figure 1.2B). 

We attribute the slower recovery at higher protein concentrations primarily to the increased 

concentration of binding sites, although changes in network topology such as loop 

suppression and chain entanglement may also suppress chain release from junctions (5, 8, 

29). To explore whether the effective diffusivity is controlled by reversible endblock binding, 

we measured chain mobility as a function of the concentration of the protein denaturant urea. 

At a fixed protein concentration of 10%, the rate of fluorescence recovery increased abruptly 

with increasing concentration of urea (Figure 1.2C); addition of 2 M urea increases Deff by 

9-fold (Figure 1.2D). The abruptness of the change suggests that modest concentrations of  
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Figure 1.2. Quantitative analysis of chain mobility. The rate of fluorescence recovery after 

photobleaching in PEP hydrogels depends on gel density and concentration of denaturant. (A) FRAP 

curves generated from gels prepared at protein concentrations ranging from 2% to 10%, showing that 

the recovery rate decreases with increasing gel density. (B) Quantification of effective chain mobility 

as a function of gel density. Deff varies inversely with gel density. (C) FRAP curves generated from 

10% protein solutions prepared in increasing concentrations of urea. Fluorescence recovery rates 

increase with increasing amounts of urea, indicating disruption of interchain binding. (D) 

Quantification of the urea recovery curves. Deff rises with increasing concentrations of urea, 

eventually reaching a plateau above 3 M. Error bars represent mean ± standard deviation (n ≥ 3 

recovery curves from at least two gels). Dashed curves in A and B represent fits generated from the 

effective diffusion model.
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urea are sufficient to inhibit association of the N- and C-terminal domains of PEP. Disruption 

of interchain binding destroys network integrity; samples prepared in high concentrations of 

urea (greater than 2 M) were viscous liquids. 

1.4.3 3-state “hopping” model of chain migration in reversible hydrogels 

Although the preceding analysis provides a useful description of chain mobility in PEP 

networks, it does not separate the effects of diffusion and interchain association. We sought 

to distinguish the roles of diffusion and binding in PEP networks. To this end, we formulated 

a model that captures both the diffusive and reactive elements of strand exchange in a 

physical molecular network. Our model is an extension of a 2-state reaction-diffusion model 

originally developed by Sprague et al., which relates the rate of fluorescence recovery to an 

equilibrium between two states: one free and one bound (18). Because each PEP chain has 

two terminal P domains, we chose to model network association as an equilibrium involving 

three sequential states (represented schematically in Figure 1.3A): 

 1 2K K
f d b     (Eq. 1) 

In the free state (f) neither P domain is bound to another and the chain can diffuse throughout 

the network with a self-diffusivity Df. If both P domains on the chain join coiled-coil bundles, 

the chain enters the bound state (b) and becomes fully network-associated. We also consider 

an intermediate dangle state (d) in which only one of the P domains is tethered to the network. 

We distinguish the diffusion coefficient of free chains Df from the effective diffusion 

coefficient Deff, which represents diffusion slowed by binding. Because Df represents free 

diffusion in the absence of binding, Deff will be smaller than Df whenever binding interactions 
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are significant. We now make several simplifying assumptions. First, we assume that both 

binding processes ( f d  and d b ) achieve equilibrium, and that both are 

governed by the same equilibrium constant (K1 ≈ K2 = kon
*/koff). Note that kon

* = konSeq is a 

pseudo-first-order rate constant calculated from the true association rate constant kon
 (a 

second-order rate constant) by assuming a constant concentration of binding sites Seq (18). 

We also assume that each P domain has a single binding mode, and that chain mobility in 

either of the two associated states (d or b) is negligible (Dd = Db ≈ 0). The physical picture is 

therefore one in which chains are constrained to migrate by “hopping” from site to site, but 

are otherwise fixed in space (Figure 1.3B). The distance a chain travels during such a 

transition (the “hopping radius”) is: 

 *
*

f

on

6D
R

k
    (Eq. 2) 

A material balance on Eq. 1 results in a system of three coupled reaction-diffusion equations 

that can be used to model experimental FRAP curves and to estimate the three parameters in 

the model (kon
*, koff and Df). We sought an analytical solution to the 3-state reaction-diffusion 

model. Following Sprague et al. for the 2-state model (18), Laplace transformation of Eq. 1 

yielded an analytical solution involving modified Bessel functions in Laplace space (see 

Supporting Information for details). When binding is neglected (kon
* → 0 and koff → ∞), 

the new solution reduces to the previously reported closed-form solution for free diffusion in 

a circular bleach spot (18, 30). Numerical inversion of the Laplace-domain solution using 

the MATLAB routine invlap.m produces the time-domain response (31), providing estimates 
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of model parameters by comparison with experimental curves. FRAP curves simulated using 

the 3-state model were fit to experimental curves using the MATLAB routine nlinfit.m, as 

well as a custom curve-fitting algorithm that gave comparable results (Supplementary 

Figure 1.5). With this approach, we found it difficult to obtain reliable estimates of all three 

model parameters from a single curve. Therefore, we simplified our curve-fitting procedure 

by first estimating Df in a separate FRAP experiment using a non-binding elastin-like probe 

where the P domain endblocks were replaced by an irrelevant “A” peptide that does not form 

coiled-coils (see Supplementary Table 1.1 for sequence) (32, 33).  

Recovery rates observed with the non-binding “AECA” probe were 20- to 50-fold faster than 

those observed with the PECP probe (Figure 1.3C and Supplementary Figure 1.6). This 

provides further evidence that chain mobility is substantially reduced by reversible 

association of the coiled-coil domains. By attributing the recovery of AECA to diffusion 

alone, we estimated that Df for an unbound PEP chain is approximately 1.59 × 10-8 cm2 s-1 

in a 10% gel (assuming Df ~ M-3/5 for a polymer chain in good solvent) (28). This value is 

similar to Deff in dilute solutions of PEP (Figure 1.2C), and is within range of the diffusivities 

reported for macromolecules in other hydrogels. For example, dextran probes of similar 

molecular weight diffuse through dextran solutions and gels at approximately 10-7 cm2 s-1, 

and unbound globular proteins diffuse through poly(ethylene glycol) gels at rates of 10-7 – 

10-9 cm2 s-1, depending on the hydrodynamic radius of the protein and the mesh size of the 

network (22, 28, 34 – 36).  

Next we sought to estimate kon
* and koff for PECP. A grid of all possible (kon

*, koff) values was 
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Figure 1.3. A 3-state reaction-diffusion analysis of chain migration in reversible hydrogels. (A) 

Illustration of the 3-state “hopping” model. (B) After a chain dissociates from an initial binding site 

(at a rate determined by koff), it reassociates with a new junction at a rate determined by kon
*. The 

average distance a free chain diffuses (“hops”) before rebinding is R*. (C) AECA, a non-binding probe 

without terminal coiled-coils shows rapid fluorescence recovery compared to the associative probe 

PECP (vertical text shows fold-change ± standard deviation, n = 3 recovery curves measured in one 

gel preparation for each probe). (D) The 3-state model yields excellent fits to the normalized recovery 

curves for a bleach spot radius (a) of 12.5 μm. (E) Contour map showing normalized residuals of a 

representative 3-state model fit to a recovery curve from a 10% gel (a = 12.5 μm) for a wide range of 

kon
* and koff values. Points on the map represent (kon

*, koff) pairs obtained from independent 

photobleaching experiments performed in multiple gels (a = 12.5 μm, n = 12). Shaded symbols are 

experiments performed with a larger spot size (a = 25 μm, n = 6). The values of kon
* obtained from 

5% gels were multiplied by 2 in order to compare them with values from 10% gels on the same map. 
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sampled in log space (typically in increments of 100.1 between 10-5 and 105 s) in order to find 

the pair that minimized the residuals between the simulated and experimental curves. This 

pair was then supplied as the initial guess in the MATLAB algorithm nlinfit.m, which finally 

produced a unique (kon
*, koff) pair corresponding to the best fit (18). Excellent fits to 

experimental FRAP curves were obtained with this procedure (Figure 1.3D). Within the 

range of bleach spot radii that we explored (a = 1 – 25 μm), the quality of the fit was relatively 

insensitive to the individual values of the rate constants, but strongly dependent on their ratio 

(Figure 1.3E). For a 10% gel and spot radius of 12.5 μm, the data lie along a line with slope 

kon
*/koff = 7.4 ± 0.9, whereas kon

* itself ranges from 0.2 s-1 to 3.6 × 103 s-1. 

To obtain estimates of the individual values of the rate constants, we made the assumption 

that koff corresponds to the network relaxation rate measured by oscillatory shear rheometry 

(Supplementary Figure 1.2, koff ≈ ωc), and used the ratio of kon
* to koff to obtain kon

*. This 

provides koff = 0.51 ± 0.02 s-1 and kon
* = 3.8 ± 0.5 s-1, suggesting a relatively weak binding 

equilibrium for the P domain. Strand exchange rates (koff) reported for coiled-coils vary 

widely, e.g., 3 × 10-3 s-1 (GCN4) (37), 3 × 10-4 s-1 – 0.7 s-1 (model leucine zippers) (16), 0.2 

s-1 (Fos/Jun) (38), 1 × 10-4 s-1 (α-tropomyosin) (39), 6 × 10-7 s-1 – 5 × 10-3 s-1 (4-helix bundle 

proteins) (9, 40, 41). Refolding and association rates (kon
*) are typically much faster (e.g., for 

Fos/Jun and GCN4, roughly 1 s-1 even at low μM concentrations, resulting in dissociation-

limited exchange kinetics with Kd on the order of 0.01 – 1 μM for these zippers) (16, 38, 42). 

By comparison, all fits in Figure 1.3E give an average dissociation constant of Kd = 173 ± 

29 μM. This leads to a free energy of network association ∆Ga = -5.1 ± 0.1 kcal mol-1. This 

number is within range of the Gibbs free energy of pentamer formation for native P (∆G° = 
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-4.3 kcal mol-1) estimated from thermal denaturation curves using circular dichroism 

spectroscopy, and is similar in magnitude to folding energies for other weakly associating 

coiled-coil structures (43, 44).  

Sprague et al. showed that, for the 2-state reaction-diffusion model, the full model may be 

simplified to the single-parameter effective diffusion model (i.e., Deff alone gives good fits) 

whenever the dimensionless constant kon
*a2/Df is significantly greater than unity (18). This 

constraint ensures that binding is rapid relative to the characteristic diffusion time of the 

experiment. An important characteristic of this regime is that the rate of fluorescence 

recovery is insensitive to the individual values of kon
* and koff, and depends only on their ratio. 

Using the above estimates for kon
* and Df, we find that kon

*a2/Df ~ 102 when a = 12.5 μm. 

This suggests that all of the FRAP experiments reported here lie in the effective diffusion 

regime. This explains the imprecision in the estimates of kon
* and koff derived from our FRAP 

experiments (Figure 1.3E), and our ability to generate good fits of our FRAP curves using 

Deff alone (Figure 1.2A). 

1.4.4 Predicting the hopping mobility with the 3-state model 

Given that kon
*a2/Df >> 1 (see the above discussion), we can assume local equilibrium during 

the fluorescence recovery process. Under this assumption, it can be shown that for a chain 

with N associative domains (i.e., for an “N+1”-state hopping model, see Supporting 

Information), the ratio Df/Deff is given by 

 
1

1
Nf

1 1 2 i
ieff

D
K K K K

D 
       (Eq. 3) 
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This allows us to predict the hopping mobility Deff for a chain with any number of associative 

domains, provided Df and the equilibrium constants are known. In the case of the 3-state 

model (Eq. 3, N = 2) if only one of the equilibrium constants is known, it is possible to make 

inferences about the relative magnitudes of K1 and K2 by comparing predictions from Eq. 3 

to experimental mobilities. We therefore designed a “PEC” probe that could associate with 

the network only once. The recovery curve of PEC should reflect the equilibrium between 

free and dangling chains, thus providing an independent measurement of K1. We also refined 

our estimates of Df by measuring the recovery rate of a non-binding “EC” probe comprising 

only the elastin-like midblock. As before, we assume Df ~ M-3/5 in order to estimate Df for 

the larger, associative probes. 

The fluorescence recovery curves for these probes are shown in Figure 1.4A. From the EC 

probe we estimated Df for PECP as 2.94 ± 0.35 × 10-8 cm2 s-1. This is roughly 2-fold larger 

than the value estimated from the recovery rate of AECA, and suggests a slight tendency for 

the A domain to self-associate. Fitting the PEC recovery with a 2-state model (Eq. 3, N = 1) 

provides K1 = 26.5 ± 4.5. Under the assumption that K1 = K2, this estimate can be applied 

directly to the 3-state model (Eq. 3, N = 2) in order to predict Deff for PECP. This approach 

substantially under-predicts the observed mobility (Figure 1.4B, Dobs = 5.1×Dpred). 

Moreover, fitting the PECP recovery with a 3-state model without prior knowledge of K1 

(again assuming equivalence of K1 and K2) provides K1 = K2 = 11.7 ± 1.8. These data are 

summarized in Table 1.1. 

We hypothesized that the disparity in the values of K1 obtained from the PEC and PECP 
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probes might reflect a difference in the values of the equilibrium constants for sequential 

binding of the two P domains of PECP (Figure 1.3A), with K1 greater than K2. To test this 

hypothesis, we performed coarse-grained Brownian Dynamics simulations of gel-forming 

telechelic polymers (see Supporting Information for details). We used a Kremer-Grest 

bead-spring model with “sticky” beads at the chain ends interacting through an attractive 

Lennard-Jones potential (45). Figure 1.4C shows a representation of a gel comprised of 

chains with a length of 100 beads. The stickers cluster to form distinct network junctions, 

which we define as groups of neighboring stickers. By analogy to the 3-state model, we 

define the state of a simulated chain by specifying whether its stickers are both free from 

junctions (f) or both attached to junctions (b), or if only one sticker is bound (d). K1 and K2 

are then obtained by computing the fraction of chains in each state. 

We find that a majority of the chains in our simulation are fully bound ([b]eq = 0.86, see also 

Supplementary Figure 1.7), in good agreement with the fraction of bound PEP chains 

estimated by FRAP (Table 1.1, [b]eq = 0.91). Importantly, asymmetry in the two binding 

constants is apparent in the simulation, with K1 = 21.2, K2 = 6.3, and K1/K2 = 3.4. We can 

also isolate K1 and K2 from our FRAP data by assigning the kon
*/koff ratio obtained from PEC 

to K1, and then resolving the discrepancy between Dpred and Dobs for PECP by treating K2 as 

an adjustable parameter (Eq. 3). Interpreting the FRAP data in this way provides K1 = 26.5 

± 4.5, K2 = 6.0 ± 2.1, and K1/K2 = 4.4 ± 1.7, in good agreement with the simulation. These 

observations are consistent with the hypothesis that reversible binding of a telechelic polymer 

to a macromolecular network is inherently asymmetric: the second binding event is 

disfavored relative to the first.  
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Figure 1.4. Predictions from the 3-state model imply binding asymmetry in PEP hydrogels. (A) 

FRAP experiments on EC and PEC probes provide independent estimates of Df and K1 that, together 

with Eq. (3), predict Deff and the recovery rate of PECP (blue dashed line). The experimentally 

observed recovery rate is higher than predicted, suggesting asymmetric sequential binding where K1 

> K2. Fits to the EC and PEC curves were generated with 1-state (Eq. 3, N = 0) and 2-state (Eq. 3, N 

= 1) effective diffusion models, respectively (black dashed lines). (B) Assuming K1 = K2 under-

predicts the observed Deff for PECP by roughly 5-fold (mean ± SD, n ≥ 2 gel preparations per probe). 

(C)  Snapshot of a simulated gel with stickers (blue) connected by non-sticker beads (grey). The non-

sticker beads of only 10 chains are shown for clarity.  (D) Origin of the binding asymmetry. The radial 

distribution function of network junctions g(R) is shown together with the chain end-to-end 

distributions P(R) for the three states (bins of ΔR = 0.67 were used in computing the distributions). 
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Free and dangling chains can adopt a substantial set of conformations at distances R < Rmesh, the 

location of maximum junction density. These conformations are lost upon entry into the bridge state. 

 

We propose that the inequality of K1 and K2 arises from a difference in the entropic penalties 

associated with successive binding events. In transitioning from the free to the dangle state, 

a chain becomes restricted to a fraction of the system volume, and loses entropy in proportion 

to the change in accessible volume. The subsequent transition from dangle to bridge causes 

a similar entropic loss, but with the additional constraint that the volume accessible to the 

remaining chain end also depends on the junction spacing. Gelation promotes a depletion of 

neighboring junctions below the characteristic mesh size of the gel. Dangling chains must 

discard the rich set of conformations accessible below this length scale when they bridge 

neighboring junctions. 

The effects of network structure on chain conformation are apparent in our simulation. 

Figure 1.4D compares the distributions of chain end-to-end distances P(R) for the three 

major states to g(R), the junction radial distribution function. Free and dangling chains can 

access a substantial set of conformations at distances R < Rmesh, the location of maximum 

junction density. In contrast, bridged chains are restricted to a narrower set of end-to-end 

distances that correspond closely to Rmesh. Mild chain stretching in the bridged state is also 

apparent, which may enhance the degree of binding asymmetry we observe (the average end-

to-end distance of bridged chains Rb exceeds that of dangling chains Rd by a factor of 1.2). 

However, substantial conformational freedom may still be lost in transition from dangle to 

bridge, even in the absence of chain stretching. 
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An intriguing possibility is that, in addition to hopping, the diffusivity of a PECP probe may 

be enhanced by “walking”; i.e., by cycling between the dangle and bound states d and b. In 

this process, the chain migrates through the network in discrete steps that correspond to the 

average distance between binding sites. A simple scaling analysis argues that this diffusive 

mode is not significant in PEP gels. Consider a chain with both ends bound to the network. 

The characteristic diffusivity of this chain can be estimated as Db ~ Rb
2/τb, where τb ≈ koff

-1 is 

the average lifetime of the bound state. The expected contribution of this state to Deff is 

[b]eqDb. As before, we obtain kon
* and koff for each state by setting koff equal to the relaxation 

rate obtained from rheometry (Supplementary Figure 1.2), then using the kon
*/koff ratios 

calculated from FRAP (Table 1.1). Independent estimates of Rb from Flory theory (R ~ bN3/5) 

(28), light-scattering measurements on unstructured amino acid midblocks (46), and a 

geometric argument based on binding site density suggest Rb = 7.8 – 13.7 nm for an ideal 

PEP network. These estimates provide [b]eqDb ≈ 0.0023Deff for bound chains and [d]eqDd ≈ 

0.0029Deff for dangling chains, whereas [f]eqDf ≈ 1.00Deff. Other modes of bound mobility, 

including diffusion of chains in large-scale clusters, are excluded by a similar analysis.  

We can appreciate why hopping dominates the mobility of PEP chains by considering the 

hopping radius R* in relation to Rb ≈ Rmesh. From Eq. 2 we estimate that the average distance 

of a hop is R* = 1100 ± 240 nm, roughly 100-fold larger than Rmesh. Hence an escaped chain 

can diffuse many times its own length (past multiple potential binding sites) before rebinding. 

This result is consistent with a conceptual picture of a network linked together through well-

formed coiled-coil junctions, in which most potential binding sites are fully occupied. 

Recently, Tang et al. invoked a non-zero bound state mobility in order to explain anomalous 
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self-diffusion behavior observed by forced Rayleigh scattering (FRS) in a reversible protein 

hydrogel assembled from chains with four coiled-coil P blocks per chain (47). Bound 

mobility (possibly in the form of large clusters) is likely to be more significant in these gels, 

due to the much smaller fraction of free chains. 

1.4.5 Tuning chain mobility with protein engineering 

Reversible network association of the P domain reduces the effective diffusivity of PEP 

chains by two orders of magnitude. Given the programmability of coiled-coil assembly (48), 

we imagined that it should be possible to control the effective diffusivity of a PEP chain by 

tuning the binding affinity of the P domain. In solution, coiled-coil assembly is driven by 

hydrophobic interactions between P domains (43). In the pentameric bundle, 48% of the total 

solvent-accessible area arising from the five individual helices is buried, demonstrating the 

critical role played by hydrophobic interactions in stabilizing the pentamer (27). We 

hypothesized that the hydrophobic leucine (Leu) contacts known to direct oligomerization of 

the P domain are also critical for reversible network association of a PEP chain. 

Site-directed mutagenesis was performed on both ends of the original PECP probe to examine 

whether replacement of critical Leu residues would increase chain mobility. Guided by 

previous mutagenesis studies on the P domain (43), we made a single Leu → Ala mutation 

(L37A) within each terminal coil, which we predicted would reduce the thermodynamic 

driving force for oligomerization of the probe. L37 occupies the a-position of one of the 

heptad repeats of P (Figure 1.5A). Residues at the a-positions line the hydrophobic interior 

of the pentameric helical bundle, and their mutation to Ala destabilizes the assembly (43). 
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We observed more rapid fluorescence recovery in PEP networks labeled with PECP-L37A 

as compared to unmodified PECP (Figure 1.5A). We attribute the faster recovery behavior 

to a reduction in the strength of association of the mutant probe with network junctions, 

consistent with the previously reported low helicity and monomeric oligomerization state of 

P domains carrying the L37A mutation (43). 

The enhanced mobility of the PECP-L37A probe illustrates the importance of hydrophobic 

interactions in network assembly, and suggests that increasing the hydrophobic character of 

the P domain should reduce chain mobility by increasing the strength of network association. 

We previously reported that replacement of Leu by (2S,4S)-2-amino-4-methylhexanoic acid 

(homoisoleucine, Hil), a leucine surrogate with expanded hydrophobic surface area, 

significantly increases the thermostability of dimeric coiled-coil assemblies (49). We 

hypothesized that replacement of the Leu residues in PECP by Hil (Figure 1.5A) might 

reduce probe mobility. 

To test this hypothesis, we prepared PECP-Hil probes in which ca. 92% of all Leu residues 

were replaced by Hil (see Supplementary Figures 1.8, 1.9 and Supplementary Table 1.2 

for details). In contrast to the accelerated recovery behavior of the PECP-L37A mutant probe, 

recovery of the PECP-Hil probe was slower than that of PECP (Figure 1.5B). Moreover, 

probes containing both Hil and Leu exhibited intermediate rates of recovery (ca. 53% 

replacement, Supplementary Figure 1.10). This confirms that the reduced rate of 

fluorescence recovery derives from a differential association of the PECP-Hil probes with the 

PEP network junctions. 
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Figure 1.5. Genetic manipulation of the P domain controls the effective mobility of PECP 

probes. (A) PyMOL rendering of a single P domain α-helix showing the location of key Leu residues 

(purple). An Ala mutation at position 37 (red) is known to destabilize binding, and was predicted to 

increase probe mobility. Global replacement of Leu with the non-canonical amino acid Hil was 

predicted to increase the hydrophobic surface area of the probe and decrease its mobility. (B) FRAP 

of the engineered probes. PECP-L37A shows accelerated fluorescence recovery relative to PECP, 

whereas PECP-Hil shows slower recovery. Dashed lines depict fits generated from the effective 

diffusion model.
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Table 1.1. Summary of FRAP results determined from engineered probes  in 10% PEP 

hydrogels. Values represent mean ± standard deviation (a = 10 – 12.5 μm, n ≥ 4 recovery curves 

from at least two gel preparations per probe). Results for the PEC probe are determined from the 2-

state model (Eq. 3, N = 1); kon
*/koff for this probe reflects K1. Results for PECP-type probes are 

calculated from the 3-state model (Eq. 3, N = 2) with Df = 2.9 ± 0.4 × 10-8 cm2 s-1, and assuming K1 

= K2 = kon
*/koff. 

Probe 
Mw 

(kDa) 

Df, Deff 

(10-10 cm2 s-1) 
kon

*/koff
 [f]eq [b]eq Kd (µM) 

∆Ga 

(kcal mol-1) 

AECA 20.9 270 ± 190 - 1.000 - - - 

EC 17.7 420 ± 50 - 1.000 - - - 

PEC 25.4 12.3 ± 1.4 26.5 ± 4.5 0.036 - 47 ± 5 -5.9 ± 0.1 

PECP pred 32.2 0.4 ± 0.1 26.5 ± 4.5 - - - - 

PECP obs 32.2 2.1 ± 0.5 11.7 ± 1.8 0.007 0.914 108 ± 13 -5.4 ± 0.1 

PECP-L37A 32.1 51 ± 17 1.9 ± 0.7 0.174 0.531 720 ± 190 -4.3 ± 0.2 

PECP-Hil 32.4 0.68 ± 0.09 20.3 ± 1.4 0.002 0.951 62 ± 4 -5.7 ± 0.04 

1.5 Conclusion 

We have reported a FRAP-based method for characterizing strand exchange and polymer 

self-diffusivity in associative protein hydrogels. The application of this method relies on a 

novel 3-state reaction-diffusion model of the strand exchange process. In this model, polymer 

chains move by a process called “hopping”: the chains are free to diffuse spatially throughout 

the polymer network, unless trapped by reversible association with network junctions. This 

model fits our experimental FRAP curves well, and permits extraction of diffusion 

coefficients and equilibrium constants. We find that reversible network association exerts 

significant control over the effective mobility of individual chains. This allows the effective 
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mobility “Deff” to be tuned over a 500-fold range for probes that are all nominally the same 

size (Table 1.1), via simple changes in chain sequence. The formalism of the 3-state model 

also enables explicit prediction of Deff from an underlying knowledge of the binding strength 

kon
*/koff and the free diffusivity Df. The hopping mobility predicted by this formalism 

significantly underestimates the observed mobility. We interpret this discrepancy as 

indicating inequality of the equilibrium constants that control sequential binding to the 

network. Brownian Dynamics simulations support this interpretation, and suggest that the 

asymmetry in binding arises from an entropic constraint on the association of dangling chains 

due to local network structure. Importantly, such binding asymmetry is likely to be a general 

feature of reversible gels. Rigorous testing of this hypothesis is described in Chapter 2. Taken 

together, our results demonstrate that FRAP is well-suited to probing diffusion and binding 

in protein hydrogels, and that facile protein engineering techniques afford a remarkable level 

of control over chain mobility in these systems. 
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1.7 Supporting Information 

1.7.1 Materials and Methods 

Plasmids. PEP was encoded on a pET15b vector (50). Insertion mutagenesis was 

performed on pET-15b-PEP at the center of the elastin-like midblock to yield pET15b-

PECP, i.e. PEP with a cysteine in the elastin domain. To construct the PECP-L37A mutant, 

site-directed mutagenesis was performed on both “L37” residues in pQE15b-PECP using 

“QuikChange” mismatch primers amplified by PfuUltraII HS Fusion Polymerase (Agilent 

Technologies). The L37A mutations in both P blocks were confirmed by forward and 

reverse sequencing, and by MALDI-MS on trypsinized PECP-L37A. Incorporation of 

homoisoleucine (Hil) was achieved by placing PECP into a modified pQE80L vector 

(pQE80L-LeuRS), containing a copy of the leuRS gene flanked by NheI sites downstream 

of the multiple-cloning site in pQE-80L. The pQE80L-LeuRS vector drives constitutive 

overexpression of leucyl-tRNA synthetase. Protein PEC encoded in pQE-80L was the kind 

gift of Larry Dooling. AECA was the kind gift of Dr. Wenbin Zhang, and EC was prepared 

by QuikChange mutagenesis on a pQE80L plasmid encoding the E domain only.  All 

plasmids used and their corresponding coding sequences are presented in Supplementary 

Table 1.1. 

Protein Expression and Purification. Plasmids coding for the proteins of interest were 

transformed into either BL21 (DE3) competent E. coli or the leucine auxotroph DH10B 

(for Hil incorporation). In order to express the polymers, cells transformed with the relevant 

vectors were cultured overnight, and the overnight cultures (typically 10 mL) were used to 
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inoculate 1 L flasks containing Terrific Broth (TB) supplemented with 100 – 200 mg ml-1 

ampicillin. Cells were grown to an OD600 of 0.7 – 1.0 and then induced with 1 mM 

isopropyl β-D-1 thiogalactopyranoside (IPTG). After 4-5 h, bacterial cultures were 

harvested by centrifugation for 5-10 min at 10,000g, and cells were lysed with 8 M urea. 

Cell lysates were freeze-thawed at least once before being subjected to high-power tip 

sonication for homogenization (50 mL of lysate from a 1 L culture was typically treated 

with 30-50 W for 10 min in 0.5 - 1 s pulses). Homogenized lysate was clarified by high-

speed centrifugation (30,000g for 1 h) and then subjected to standard His-tag purification 

over Ni-NTA agarose beads (Qiagen). His-purified lysate was dialyzed against 4 L of 

distilled water at 4 °C. The water was changed repeatedly (5-6 times) over the course of 

several days. Typically the onset of cloudiness inside the dialysis bag was used as the 

dialysis endpoint, after which point the aqueous suspensions were lyophilized. 

Synthesis of homoisoleucine (Hil, 2-amino-4-methylhexanoic acid, CAS 3570-21-6) was 

performed following a previously reported procedure (49). For expression of proteins 

containing Hil, we performed a medium-shift with the E. coli leucine auxotroph DH10B 

into Leu-depleted medium supplemented with Hil. Hil is activated by the E. coli leucyl-

tRNA synthetase (LeuRS) at lower rates than Leu (49). In order to achieve high levels of 

substitution, we prepared a new expression cassette that encoded a constitutively expressed 

copy of LeuRS downstream of an inducible PECP gene (Supplementary Figure 1.8). This 

pQE-80L-PECP-LeuRS plasmid enabled high levels of LeuRS expression when 

transformed into the E. coli leucine auxotroph DH10B. Expression of PECP was then 

induced from this plasmid in minimal media supplemented with different ratios of Hil to 
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Leu. Single colonies of DH10B transformed with pQE-80L-PECP-LeuRS were used to 

inoculate 5 mL overnight cultures of M9 minimal medium containing glucose (0.4% w/v), 

thiamine HCl (35 mg L-1), 1 mM MgSO4, 0.1 mM CaCl2, and all 20 amino acids (40 mg 

L-1) supplemented with 200 mg L-1 ampicillin. In large-scale (1 L) expressions, overnight 

cultures were inoculated into fresh M9 + 20 AA media and grown with agitation at 37 °C 

until the OD600 reached 0.8 – 1.0. Cells were pelleted at 6,000g for 5-10 min at 4 °C, washed 

3 times in ice-cold NaCl (0.9% w/v) and resuspended in fresh M9 media containing 500 

μM of (2S,4S)-Hil with or without Leu. Cultures were then shaken at 37 °C for 15 min 

before induction with 1 mM IPTG. After 5 h, cells were harvested and the proteins purified 

as described above. The extent of replacement of Leu by Hil was estimated by MALDI 

mass spectrometry (Supplementary Figure 1.9 and Supplementary Table 1.2). For PECP 

expressed in Leu-depleted medium supplemented with 500 μM Hil, the extent of 

replacement was ca. 92%. The replacement level was reduced to 53% by including 100 μM 

Leu in the expression culture (see column “Leu + Hil” in Supplementary Table 1.2). 

Labeling of Probes with Fluorescein-5-Maleimide. Fluorescent hydrogels were prepared 

by adding low concentrations of a fluorescently labeled PEP analogue to normal PEP 

networks. For example, PEP containing a single cysteine residue in its elastin-like 

midblock (PECP) was site-specifically conjugated to fluorescein. For conjugation, 100 μM 

PECP was typically dissolved in 8 M urea, pH 7.5 – 8, supplemented with 100 mM 

NaH2PO4. Tris-(2-Carboxyethyl)phosphine Hydrochloride (TCEP, ThermoFisher 

Scientific) was added to a final concentration of 2 mM, giving a 20:1 ratio of reducing 

agent to protein. This solution was reduced for 30 min before addition of fluorescein-5-
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maleimide (f5m, Pierce) to a final concentration of 1 mM. Fluorophore was incubated with 

protein for 2 – 4 h at room temperature in order to label free thiols. Afterward, 

iodoacetamide (IAM) was added to a final concentration of 2 mM to alkylate remaining 

thiols. Alkylation with IAM was typically performed overnight at 4 °C. Labeled polymer 

was separated from unreacted dye by purification over Ni-NTA agarose. The extent of 

polymer labeling was estimated to be roughly 0.5 moles label per mole of polymer based 

on absorption measurements at 488 nm and comparison to free fluorescein-5-maleimide in 

a solution of dilute (1% v/v) 2-mercaptoethanol. A small amount of PECP-f5m was mixed 

with solutions of unlabeled PEP. Solutions with PECP:PEP mass ratios of 1:50 or 1:100 

were typically prepared. These solutions were dialyzed against distilled water and 

lyophilized. Similar to unlabeled networks, addition of phosphate buffer to lyophilized 

protein containing fluorescent PECP-f5m resulted in optically clear, fluorescent hydrogels 

after several hours on ice. 

Rheological Measurements. Oscillatory shear rheometry was conducted on labeled and 

unlabeled PEP hydrogels using an ARES-RFS strain-controlled rheometer (TA 

Instruments) equipped with parallel-plate and cone-and-plate geometries. The outer edge 

of the plate was coated with mineral oil to minimize evaporation. Sample temperature was 

maintained at 25 °C. Strain sweeps identified a linear regime between 0.1 and 10% strain 

at 10 rad s-1. Frequency sweeps were performed at a fixed strain amplitude of 1% between 

0.1 and 100 rad s-1. 



30 
 

 

Fluorescence Recovery After Photobleaching. After retrieval of the raw fluorescence 

recovery data from the Zen 2009 software, the data were typically normalized using two 

separate transformations. The following function normalizes the recovery curve to a range 

of [0, 1]: 

 

Following this first normalization, the data were typically scaled such that f(t0) = 0 in order 

to enable fitting of the experimental curves to the simulated curves (which all begin at f = 

0). This scaling was accomplished using 

 

In some instances, the experimental curve given by scaled f(t) appeared to not be recovering 

to its maximum value of 1, even after long times. This may be due to a small fraction of 

immobile probes in the network. In instances where full recovery was not observed, the 

simulated fluorescence recovery (generated by the model) was sometimes multiplied by a 

scalar constant m representing the total fraction of mobile network chains in order to 

produce better fits to the data. In cases where this “mobile fraction” fit was required, m was 

typically found to be between 0.8 and 1.0 (i.e. less than 20% of the chains were treated as 

immobile). 

In experiments with the non-binding probes (AECA and EC), we frequently observed 

normalized fluorescence recovery values that moderately exceeded the pre-bleach spot 
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intensity (see Supplementary Figure 1.6 below for an example). In these cases, the [min, 

max] scaling above was essential for properly experimental modeling. 

1.7.2 Simulation Details 

To explore possible binding asymmetry (differences between K1 and K2), we performed 

coarse-grained Brownian Dynamics simulations of gel-forming telechelic polymers. As 

described above, we used a standard Kremer-Grest model with beads at the ends of the 

chains (“stickers”) interacting through a Lennard-Jones (LJ) potential that was truncated 

and shifted to zero at 2.5ߪ௅௃ (such that the stickers experience the attractive portion of the 

potential) and assigned a well depth of ߳௦ (45). The LJ potential for all other bead pairs 

was truncated and shifted at 2ଵ/଺ߪ௅௃ (such that the potential is purely repulsive) and 

assigned a well depth of ߳ ൌ ݇ܶ (where ݇ ܶ is the thermal energy). All lengths are expressed 

in units of the LJ diameter ߪ௅௃ which we set to unity. The chain connectivity is described 

with a FENE potential using a spring constant of k = 30 and a fully stretched bond length 

of R0 = 1.5 (both of which are expressed in terms of reduced LJ units ϵ = σLJ = 1). We used 

a system box size of V = L3 with L = 4.1Rf, where Rf ≈ 15.3 is the equilibrium end-to-end 

distance of free chains. We imposed periodic boundary conditions in all directions. The 

bead number density was ρ = 0.12, ensuring that the solution is semi-dilute (ρ ≈ 1.6ρ*, 

where ρ* is the overlap concentration). 

We used Langevin dynamics to evolve the system: 

ሷݎ݉  ൌ ௣݂ ൅ ௕݂ െ ሶݎߞ  
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where ݎ and ௣݂ are, respectively, the particle position and interparticle force, and the 

particle mass ݉ is set at unity. The damping coefficient was set to ߞ ൌ 1 to ensure 

overdamped dynamics. The Brownian force ௕݂ was taken to be white noise with a mean of 

0 and a variance of 2݇ܶߞ. We integrated using a timestep of ݐߜ ൌ 0.003. To reach the 

equilibrium state for ߳௘ ൌ 4.5, the sample was annealed at a temperature of ݇ܶ ൌ 4.5 for 

a duration of 2߬ோ (where ߬ோ is the Rouse time of the system), followed by quenching to 

݇ܶ ൌ 1 over a period of 5߬ோ. We then further equilibrated each sample for 5߬ோ. The data 

(e.g. state fractions, ܲሺܴሻ, and ݃ሺܴሻ) were then collected over a period of 20߬ோ. 

To characterize the state of a chain (e.g. free, bound, etc.) we must first define the junctions 

of the gel. We define junctions as groups of two or more associating stickers. Stickers 

within a cutoff distance of 1.5 (capturing the attractive portion of the LJ potential-well) are 

deemed associating and grouped into the same junction.  

1.7.3 Derivation of the analytical solution to the 3-state model 

The 3-state reaction-diffusion model of strand exchange considers three sequential states 

in equilibrium that describe the process of network association for PEP chains: 

 1 2K K
f d b    (Eq. S1) 

In this model, the free chain f must undergo two separate association events in order to 

become fully bound b or network associated. An intermediate dangle state d appears in 

which only one of the two P domains participates in a network junction. This situation is 

depicted graphically in Figure 1.3 and Supplementary Figure 1.3. Sprague et al. 
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developed a FRAP model for analyzing probe diffusion when the probe itself undergoes a 

single binding reaction (2-state), or two independent binding reactions with structurally 

unrelated binding sites (alternative 3-state) (18). We sought to extend their analysis of a 2-

state system to a 3-state system with sequential binding reactions. The analysis below 

closely follows their development of an analytical solution for the 2-state system (see 

especially their Appendix). In our case, a material balance on (Eq. S1) results in the 

following system of coupled reaction-diffusion equations, where [A] denotes the molar 

concentration of a given species A: 

 

 (Eq. S2) 

 

Here we use are using the pseudo-first-order rate constant kon
*, which is equal to the true 

second-order rate constant kon, multiplied by the equilibrium molar concentration of 

binding sites [S]eq (see Eq. S26 and S27 below). Immediately following a photobleach, 

visible fluorophore is depleted in all three states within a cylinder of radius a that extends 

through the entire sample. Outside the radius of this cylinder, visible fluorophore remains 

at its equilibrium concentration. Because the photobleach is symmetric along the z-axis of 

the cylinder, only lateral diffusion in a single 2D plane needs to be considered.  The initial 
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 (Eq. S3) 

 

It is convenient to normalize the equilibrium concentrations of each species with the 

requirement 

 (Eq. S4) 

At equilibrium, the concentration of each species may be found using the steady-state 

condition 

 

Applying this condition to (Eq. S2) together with (Eq. S4) results in the following relations 

for the equilibrium concentration of each species: 
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We can also define a pseudo equilibrium constant Keq as the ratio of gel-bound/free chains, 

which from the steady-state assumption can be shown to be: 

 (Eq. S6) 

It is convenient to make the following variable transformations: 

 

 (Eq. S7) 

 

Using (Eq. S7), we can transform the system of equations in (Eq. S2) as follows. 
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 (Eq. S9) 

 

With this change of variables, we are now in a position to apply the Laplace transformation 

to the system in (Eq. S8). This transformation is given by 

 

After transformation into Laplace space, the new system of equations becomes: 

 (Eq. S10) 

 (Eq. S11) 

 (Eq. S12) 

Here ū has been used to distinguish the Laplace-domain variable from the time-domain 

variable u. In order to solve this system, at least one of the above expressions needs to be 

written in terms of a single variable. This can be achieved with (Eq. S10) by expressing w 
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 (Eq. S13) 

where  

 (Eq. S14) 

Next (Eq. S13) can be substituted into (Eq. S12) to get w in terms of u 

 (Eq. S15) 

 where 

 (Eq. S16) 

Finally, (Eq. S16) can be substituted into (Eq. S10) which yields a differential equation in 

terms of u only. This equation has the simplified form 

 (Eq. S17) 

where qu and V are defined as 

 (Eq. S18) 
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Here a “nested function” approach has been used to simplify the forms of (Eq. S17 – S19). 

This conceals the underlying algebraic complexity of (Eq. S17). Despite this complexity, 

the equation has a known solution of the form 

 

 

where I0 and K0 are modified Bessel functions of the first and second kind, respectively. 

To determine the constants α1 and α2, we require that u and its first derivative be continuous 

at the bleach spot boundary r = a. Using this continuity requirement and the Bessel function 

relationships I0’ = I1 and K0’ = -K1, we arrive at the following expression for α1 

 (Eq. S20) 

In the time domain, what is actually measured is the average fluorescence intensity of all 

three states within the circular spot, i.e. 

 

The Laplace transformation of this profile is 

 (Eq. S21) 
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The only term that depends on r in (Eq. S21) is u, so it suffices to compute the average for 

u. This can be done with the integral: 

 

 (Eq. S22) 

Finally, we can combine all the preceding expressions into the final form 

 

 (Eq. S23) 

where 

 (Eq. S24) 

We now consider the case in which binding is negligible, i.e. when kon
* → 0 and koff → ∞. 

In this case, it is immediately apparent from (Eq. S14) and (Eq. S16) that qv and qw 

approach zero. A similar analysis of (Eq. S24) under the same constraint also leads to the 

conclusion that Qwv approaches zero. Furthermore, qu
2 and V approach s/Df and 1/Df 

respectively. These reductions greatly simplify (Eq. S23), which can now be written as 

 (Eq. S25) 
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Sprague et al. show that this relation is identical to the relation obtained by Soumpasis for 

a chain diffusing freely in a circular bleach spot (18, 30). To further validate our solution, 

we compared curves obtained by inversion of (Eq. S23) with those obtained by numerical 

simulation of (Eq. S8) and (Eq. S9) using a finite-difference method. FRAP curves 

simulated analytically and numerically showed good agreement across multiple values of 

kon, with only minor differences at long times which could be attributed to the finite mesh 

size used in the difference algorithm (Supplementary Figure 1.4). 

As discussed in the main text, the parameter kon
* is a pseudo-first-order association rate, 

calculated from the true (second-order) association rate kon by assuming a constant 

concentration of binding sites Seq. The true second-order association rate is: 

 (Eq. S26) 

The maximum molar concentration of equilibrium binding sites can be calculated from the 

network mass density ρ by assuming that all P domains are active in pentameric bundle 

formation. In this ideal case, Seq is given by the following relation, where M is the molar 

mass of a single PEP chain (~32 kDa, Supplementary Table 1.1). 

 (Eq. S27) 

Use of (Eq. S26) and (Eq. S27) also permits determination of the dissociation constant Kd, 
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 (Eq. S28) 

Sprague et al. use the following parameter to describe rate constant parameter space, 

which is helpful for determining whether fluorescence recovery is primarily governed by 

either diffusion or binding, or a combination of both. 

 (Eq. S29) 

1.7.4 invlap.m: a MATLAB script for inverse Laplace transformation  

The following algorithm may be used to numerically invert the Laplace domain solution in 

(Eq. S23) in order to obtain simulated fluorescence recovery curves in the time domain. 

The algorithm was originally written by Karl Hollenbeck and should be cited as shown 

below. The original web link to the algorithm is no longer active. 

 
Hollenbeck, K. J. (1998) INVLAP.M: A MATLAB function for numerical inversion 
of Laplace transforms by the de Hoog algorithm. 
http://www.mathworks.com/matlabcentral/answers/uploaded_files/1034/invlap.m 
 

% INVLAP  numerical inverse Laplace transform 
% 
% f = invlap(F, t, alpha, tol, P1,P2,P3,P4,P5,P6,P7,P8,P9); 
%          
% F       laplace-space function (string refering to an m-file),  
%           must have form F(s, P1,..,P9), where s is the Laplace 
parameter, 
%           and return column vector as result 
% t       column vector of times for which real-space function values 
are 
%           sought 
% alpha   largest pole of F (default zero) 
% tol     numerical tolerance of approaching pole (default 1e-9) 
% P1-P9   optional parameters to be passed on to F 
% f       vector of real-space values f(t) 
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% 
% example: identity function in Laplace space: 
%   function F = identity(s);                    % save these two lines 
%            F = 1./(s.^2);                      % ...  as "identity.m" 
%   invlap('identity', [1;2;3])                  % gives [1;2;3] 
% 
% algorithm: de Hoog et al's quotient difference method with 
accelerated  
%   convergence for the continued fraction expansion 
%   [de Hoog, F. R., Knight, J. H., and Stokes, A. N. (1982). An 
improved  
%    method for numerical inversion of Laplace transforms. S.I.A.M. J. 
Sci.  
%    and Stat. Comput., 3, 357-366.] 
% Modification: The time vector is split in segments of equal magnitude 
%   which are inverted individually. This gives a better overall 
accuracy.    
  
%  details: de Hoog et al's algorithm f4 with modifications (T->2*T and  
%    introduction of tol). Corrected error in formulation of z. 
% 
%  Copyright: Karl Hollenbeck 
%             Department of Hydrodynamics and Water Resources 
%             Technical University of Denmark, DK-2800 Lyngby 
%             email: karl@isv16.isva.dtu.dk 
%  22 Nov 1996, MATLAB 5 version 27 Jun 1997 updated 1 Oct 1998 
%  IF YOU PUBLISH WORK BENEFITING FROM THIS M-FILE, PLEASE CITE IT AS: 
%    Hollenbeck, K. J. (1998) INVLAP.M: A matlab function for numerical  
%    inversion of Laplace transforms by the de Hoog algorithm,  
%    http://www.isva.dtu.dk/staff/karl/invlap.htm  
  
function f = invlap(F, t, alpha, tol, P1,P2,P3,P4,P5,P6,P7,P8,P9); 
  
if nargin <= 2, 
  alpha = 0; 
elseif isempty(alpha), 
  alpha = 0; 
end 
if nargin <= 3, 
  tol = 1e-9; 
elseif isempty(tol), 
  tol = 1e-9; 
end 
f = []; 
  
% split up t vector in pieces of same order of magnitude, invert one 
piece 
%   at a time. simultaneous inversion for times covering several orders 
of  
%   magnitudes gives inaccurate results for the small times. 
  
allt = t;               % save full times vector 
logallt = log10(allt); 
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iminlogallt = floor(min(logallt)); 
imaxlogallt = ceil(max(logallt)); 
for ilogt = iminlogallt:imaxlogallt,    % loop through all pieces 
   
  t = allt(find((logallt>=ilogt) & (logallt<(ilogt+1)))); 
  if ~isempty(t),           % maybe no elements in that magnitude 
  
    T = max(t)*2; 
    gamma = alpha-log(tol)/(2*T); 
    % NOTE: The correction alpha -> alpha-log(tol)/(2*T) is not in de 
Hoog's 
    %   paper, but in Mathematica's Mathsource (NLapInv.m) 
implementation of  
    %   inverse transforms 
    nt = length(t); 
    M = 20; 
    run = [0:1:2*M]';    % so there are 2M+1 terms in Fourier series 
expansion 
  
    % find F argument, call F with it, get 'a' coefficients in power 
series 
    s = gamma + i*pi*run/T; 
    command = ['a = ' F '(s']; 
    if nargin > 4,              % pass on parameters 
      for iarg = 1:nargin-4, 
        command = [command ',P' int2str(iarg)]; 
      end 
    end 
    command = [command ');']; 
    eval(command); 
    a(1) = a(1)/2;              % zero term is halved 
  
    % build up e and q tables. superscript is now row index, subscript 
column 
    %   CAREFUL: paper uses null index, so all indeces are shifted by 1 
here 
    e = zeros(2*M+1, M+1); 
    q = zeros(2*M  , M+1);          % column 0 (here: 1) does not exist 
    e(:,1) = zeros(2*M+1,1); 
    q(:,2) = a(2:2*M+1,1)./a(1:2*M,1); 
    for r = 2:M+1,                  % step through columns (called 
r...) 
      e(1:2*(M-r+1)+1,r) = ... 
      q(2:2*(M-r+1)+2,r) - q(1:2*(M-r+1)+1,r) + e(2:2*(M-r+1)+2,r-1); 
      if r<M+1,                     % one column fewer for q 
    rq = r+1; 
    q(1:2*(M-rq+1)+2,rq) = ... 
     q(2:2*(M-rq+1)+3,rq-1).*e(2:2*(M-rq+1)+3,rq-1)./e(1:2*(M-
rq+1)+2,rq-1); 
      end 
    end 
  
    % build up d vector (index shift: 1) 



44 
 

 

    d = zeros(2*M+1,1); 
    d(1,1) = a(1,1); 
    d(2:2:2*M,1) = -q(1,2:M+1).'; % these 2 lines changed after niclas 
    d(3:2:2*M+1,1) = -e(1,2:M+1).'; % ... 
  
    % build up A and B vectors (index shift: 2)  
    %   - now make into matrices, one row for each time 
    A = zeros(2*M+2,nt); 
    B = zeros(2*M+2,nt); 
    A(2,:) = d(1,1)*ones(1,nt); 
    B(1:2,:) = ones(2,nt); 
    z = exp(i*pi*t'/T);     % row vector  
    % after niclas back to the paper (not: z = exp(-i*pi*t/T)) !!! 
    for n = 3:2*M+2, 
      A(n,:) = A(n-1,:) + d(n-1,1)*ones(1,nt).*z.*A(n-2,:);  % 
different index  
      B(n,:) = B(n-1,:) + d(n-1,1)*ones(1,nt).*z.*B(n-2,:);  %  shift 
for d! 
    end 
  
    % double acceleration 
    h2M = .5 * ( ones(1,nt) + ( d(2*M,1)-d(2*M+1,1) )*ones(1,nt).*z ); 
    R2Mz = -h2M.*(ones(1,nt) - ... 
    (ones(1,nt)+d(2*M+1,1)*ones(1,nt).*z/(h2M).^2).^.5); 
    A(2*M+2,:) = A(2*M+1,:) + R2Mz .* A(2*M,:); 
    B(2*M+2,:) = B(2*M+1,:) + R2Mz .* B(2*M,:); 
  
    % inversion, vectorized for times, make result a column vector 
    fpiece = ( 1/T * exp(gamma*t') .* real(A(2*M+2,:)./B(2*M+2,:)) )'; 
    f = [f; fpiece];            % put pieces together 
  
  end % if not empty time piece 
   
end % loop through time vector pieces 
  
 
1.7.5 Fitting procedures for experimental FRAP curves 

In order to fit simulated curves to experimental curves, the following curve fitting 

procedures were employed. For the effective diffusion model (Figure 1.2), the full model 

(Eq. S23) was used but with the values of kon
* and koff fixed at 10-5 s-1 and 105 s-1 

respectively. This was found to be numerically equivalent to fitting the curves with the 

form derived by Soumpasis (30): 
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 (Eq. S30) 

where  

 

As discussed by Sprague et al., both (Eq. S25) and (Eq. S30) are solutions to the simple 

diffusion equation without any binding. When used to fit curves influenced by binding (i.e., 

in the effective diffusion regime), the diffusivity resulting from the fit is Deff. Curves were 

fit using the method described in the main text, as well as by the following custom 

algorithm which gave similar results: (i) a guess for the parameter of interest (Deff, Df, kon
*, 

koff) was drawn from a normal distribution (generated by the MATLAB command randn) 

having a mean and standard deviation equal to an initial seed guess, (ii) based on the guess, 

a new FRAP curve was simulated from (Eq. S23) and compared to the experimental curve, 

(iii) the guess was accepted if it lowered the root-mean-square residual of the fit relative to 

the previous guess, and (iv) the next guess was drawn from a new normal distribution 

having a mean and standard deviation equal to the value of the new best guess for the fitting 

parameter. This procedure was typically iterated 1000 times, after which point a very good 

fit had usually been obtained. For fits using the full model, Df was fixed in an independent 

experiment (by modeling recovery curves of the EC probe with the pure diffusion equation), 

and then guesses for kon
* and koff were simultaneously drawn from independent normal 

distributions with means and standard deviations equal to the value of the current guess for 

each rate constant. As with the fits for Df alone, new guesses were accepted whenever they 
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lowered the root mean square residual of the fit, and this procedure was iterated 1000 times. 

Examples of fits resulting from this approach are shown in Supplementary Figure 1.5. 

1.7.6 Derivation of Equation 3 

Consider a generalized version of (Eq. 1), in which there are N associative “sticky” 

domains and therefore N + 1 total states (including the free state f). Assume that the f state 

has a free diffusivity given by Df, and that the mobility of chains in each of the remaining 

N states is given by a single non-zero value designated Db for “bound mobility”.  

* * * */ / / /on off on off on off on offk k k k k k k k
i i 1 N 1 Nf d d d b            (Eq. S31) 

If binding is fast relative to the time it takes to diffuse across the bleach spot, then we can 

assume local, instantaneous chemical equilibrium at each time throughout the course of 

fluorescence recovery (51). Under this assumption, it is trivial to show that 
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 (Eq. S32) 

Proceeding to write out the reaction-diffusion equations for each state and then summing 

them together (all reaction terms disappear during this operation) gives: 

 

Supplying (Eq. S32) into the above relation gives 

 

Letting  simplifies this to 

 

where we have defined Deff as 

 (Eq. S33) 

Setting Db = 0 (assume no mobility in the bound state) finally gives 

 (Eq. S34) 
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which is equation (5) reported in the main text. Note that (33) can be used to estimate the 

bound state mobility Db if one relaxes the assumption that Db = 0. In the above analysis, 

we have assumed symmetric sequential binding such that K1 = K2 = … = KN = kon
*/koff. This 

assumption is easily relaxed by redefining α as αi where 

 (Eq. S35) 

for i = 1…N 

The state fractions become , which when supplied into the mass balance gives 

 

We can now define a new Deff as 

 (Eq. S36) 

which returns us to simple Fickian diffusion governed by the new Deff, and the ratio Df/Deff 

is (neglecting bound mobility by setting Db = 0) 
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Eq. S37 allows each equilibrium constant to be treated as an adjustable fitting parameter, 

and is used above to detect binding asymmetry (K1 > K2) by setting Deff = Dobs for PECP, 

after fixing K1 with the measurement from the PEC probe. 

1.7.7 Fraction of elastically effective chains estimated from Phantom Network Theory 

At 10% (w/v) the number density of chains is 

 

and the number density of bundles, assuming every endblock ends up in a pentamer, is  

 

From Phantom Network Theory, the fraction of elastically effective chains at 10% is 

given by (f = 5 for pentameric chain junctions): 

 

This set of equations can be used to estimate G’ for gels prepared at different protein 

concentrations, as is shown in Supplementary Figure 1.7.  
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1.7.8 Supplementary Tables 

Supplementary Table 1.1. Plasmids and sequence information for FRAP probes. Each “P” 

domain is highlighted in blue, and key mutations (Leu→Ala) or insertions (Cys) are highlighted in 

red and underlined. All protein coding sequences were confirmed by DNA sequencing. 

 

Plasmid Protein Molecular Weight (Da)

pET15b-PEP PEP 32047

pET15b-PE C P PECP 32151

pQE80L-PE C P-LeuRS

pET15b-PE C P-L37A PECP-L37A 32066

pQE80L-AE C A AECA 20941

pQE80L-E C EC 17706

pQE80L-PE C PEC 25352

MKGSHHHHHHHVDGSGSGSGSGSGSGAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESD
ASGSGSGSGSGSGSGLDGHGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPG
VGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGELYAVTGRGDSPASSAPIATSVPGVGVPGVGVPGE
GVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGGL
LDGPQGIWGQLECM*

MKGSSHHHHHHVDGHGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVP
GVGVPGVGVPGVGVPGEGVPGVGVPGVGELYAVTGRGDSPACSAPIATSVPGVGVPGVGVPGEGVPG
VGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGGLLEW
KKM*

MKGSHHHHHHHVDGSGSGSGSGSGSGAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESD
ASGSGSGSGSGSGSGLDGHGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPG
VGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGELYAVTGRGDSPASSAPIATSVPGVGVPGVGVPGE
GVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGGL
LDGSGSGSGSGSGSGAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASGSGSGSGSG
SGSGLEMHHHHHHK*

MKGSHHHHHHHVDGSGSGSGSGSGSGAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESD
ASGSGSGSGSGSGSGLDGHGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPG
VGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGELCYAVTGRGDSPASSAPIATSVPGVGVPGVGVPG
EGVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPG
GLLDGSGSGSGSGSGSGAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASGSGSGSG
SGSGSGLEMHHHHHHK*

MKGSHHHHHHHVDGSGSGSGSGSGSGAPQMLREAQETNAALQDVRELLRQQVKEITFLKNTVMESD
ASGSGSGSGSGSGSGLDGHGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPG
VGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGELCYAVTGRGDSPASSAPIATSVPGVGVPGVGVPG
EGVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPG
GLLDGSGSGSGSGSGSGAPQMLREAQETNAALQDVRELLRQQVKEITFLKNTVMESDASGSGSGSG
SGSGSGLEMHHHHHHK*

MKGSSHHHHHHVDAHIVMVDAYKPTKLDGHGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGV
GVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGELYAVTGRGDSPACSAPIATSVPGVG
VPGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGEGVPGVGV
PGVGVPGGLLDAHIVMVDAYKPTKLEWKK*
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Supplementary Table 1.2. Quantification of Hil substitution level from MALDI-MS. Based on 

the above MALDI spectra, the degree of Hil substitution was calculated for different expression 

conditions (lanes 5-7 in Supplementary Figure 1.8B). In cultures containing Hil and depleted of 

Leu, a substitution level of 91.8 ± 4.5% was obtained. In cultures containing 500 μm Hil and 100 μm 

Leu, the substitution level was 53.2 ± 10.6%. Cultures grown without Hil contained only Leu. The 

incorporation levels were determined by integration of MALDI peaks for three peptide fragments. 

 

% of Hil-substituted residues

 μM          Leu     Leu + Hil  Leu → Hil 
Expected 
MW (Da) 

[Leu] 300 100 0

Peptide + Leu + Hil [Hil] 0 500 500

ELLR 529.6 557.7 - 65.5% 94.3%
EITFLK 749.9 763.9 - 46.9% 94.5%
ELQETNAALQDVR 1486.6 1514.6 - 47.1% 86.6%

  avg 53.2% 91.8%
 std 10.6% 4.5%
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1.7.9 Supplementary Figures 

 

 

Supplementary Figure 1.1. Site-specific labeling of PECP. SDS-PAGE analysis of unpurified and 

purified PEP and PECP constructs. (Top) Colloidal blue staining reveals the following bands: L, 

ladder; FT, flow-through from His-purification; PEP, elution of purified protein from Ni-NTA 

column; PECP, analogous elution of purified PECP-f5m (labeled with fluorescein-5-maleimide). 

(Bottom) Fluorescence analysis of the same gel shows that fluorophore is conjugated to PECP-f5m.
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Supplementary Figure 1.2. Low probe concentrations do not affect network rheology. Labeling 

with PECP-f5m (1:5 or 1:50) minimally affects the rheological behavior of 10% PEP networks. (A) 

Strain sweeps at 10 rad s-1 show minimal variation in the elastic (G’) and loss (G’’) moduli in a linear 

regime between 0.1 and 10% strain. (B) Frequency sweeps at 1% strain show similar frequency-

dependent behavior for labeled and unlabeled gels. Data were collected on a parallel plate rheometer 

(15 mm plate diameter) and a gap width of 250 μm. The crossover frequency ωc, which also remains 

unchanged upon labeling, can be taken as an approximation of the off rate koff (see discussion above).
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Supplementary Figure 1.3. Graphical representation of the 3-state reaction-diffusion model. 

Free polymer chains f diffuse with diffusion coefficient Df within the network. A chain with one arm 

bound enters the dangle state d. Upon binding of both arms, the chain is in the bound state b and, like 

the dangling chains, assumed to have no spatial mobility because interchain crosslinks constrain its 

motion. Interconversion between these three states is governed by the equilibrium constants K1 and 

K2. In developing the analytical solution below, we assume that K1 ≈ K2 = kon
*/koff. This assumption 

is considered in detail in Section 1.4, and can be relaxed (see Eq. S33 – S37).   
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Supplementary Figure 1.4. Validation of the analytical solution to the 3-state model. Simulated 

fluorescence recovery curves obtained by using a finite difference method (FDM, black) and by 

numerical inversion of (Eq. S23), (blue). The parameters used to obtain the simulated curves were a 

= 10 μm, Df = 1 μm2 s-1 and koff = 0.1 s-1. The values used for kon are displayed above their 

corresponding curves. All simulations were performed in MATLAB. The code used to numerically 

invert the Laplace-domain solution was invlap.m, which is included below. The small divergence 

between curves at higher values of kon (close to ~1 s-1) is a result of the finite space discretization in 

the numerical FDM implementation. The divergence disappears when finer mesh sizes are chosen. 

Furthermore, simulations out to 60 min indicate that the divergence does not continue to grow at long 

times. 

  

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (min)

N
o

rm
al

iz
ed

 R
ec

o
ve

ry
kon = 0.01 s-1 

0.1 s-1 

0.2 s-1 

0.5 s-1 

1 s-1 

3-state analytical solution 
 

numerical simulation using FDM 



56 
 

 

 

Supplementary Figure 1.5. Simulated FRAP curves fit to experimental data (shown for a 10% 

PEP gel labeled with PECP). The experimental recovery curve shows excellent agreement with both 

the full model simulation (blue) and the simplified, effective diffusion model (red). The key 

parameters extracted from these fits are also listed (Top). A residuals analysis of the two curves 

shows that the full model results in a slightly better fit in this case. In both cases, RMS of all the 

residuals is < 1 (Bottom). 
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Supplementary Figure 1.6. Fluorescence recovery curves for AECA and PECP in 10% PEP 

networks.The final fluorescence intensity for AECA bleach spots often exceeded the original 

intensity before the bleach. As a result, AECA (and EC) recovery curves were typically rescaled 

before curve fitting such that the maximum fluorescence intensity was equal to 1. Curves for AECA 

and PECP were fit to the 1-state effective diffusion model (Equation S23 with kon
*/ koff ≈ 0, or 

Equations S25 and S30) in order to get Df for and Deff for PECP. This unusual recovery behavior 

is attributed to the LCST behavior of elastin-like polypeptides, and is characterized further in 

Chapter 3.  
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Supplementary Figure 1.7. Fraction of elastically effective chains estimated from phantom 

network theory (G’/Gphantom = 0.69 at 10%). Chains in the bound state include both bridges (B) and 

loops (L), such that [b]eq = [B] + [L]. The simulation described above gives [B] = 0.70, similar to the 

experimental G’/Gphantom.  

1 10
100

101

102

103

104

0.0

0.2

0.4

0.6

0.8

1.0

Protein Concentration (% w/v)

G
' (

P
a)

G
'/G

p
h

an
to

m

G'/Gphantom

G'



59 
 

 

 

Supplementary Figure 1.8. Validation of expression cassette for incorporation of Hil into PECP. 

(A) To prepare the plasmid pQE80-LeuRS-PECP, the PECP gene was PCR amplified and ligated into 

pQE-80L-LeuRS between BamHI and HindIII restriction sites. The gene coding for LeuRS is 

downstream of PECP flanked by NheI restriction sites. Its expression is constitutively controlled by 

its endogenous E. coli promoter, whereas PECP is under T5 control and is inducible with IPTG. (B) 

1 L expression cultures of strains carrying pQE80-PECP-LeuRS in M9 minimal media supplemented 

with Hil: 1-4, pre-induction cultures grown in 19AA + Leu; 5-7, cultures were shifted into M9 media 

containing 19AA and the indicated amounts of Leu and Hil. Protein expression was induced with 1 

mM IPTG and the cultures collected after 5 h; 8, non-induced control. Strong PECP expression can 

be seen after 5 h. 
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Supplementary Figure 1.9. MALDI-MS of tryptic peptides containing Hil. PECP was purified 

from Hil expression lysates and subject to trypsin digestion followed by MALDI-MS. The spectra 

corresponding to three quantified peptides are presented above. A Hil substitution may be identified 

by a m/z shift of 14 Da arising from the presence of an additional methylene group. The peptides and 

their expected masses with and without Hil are listed in Supplementary Table 1.2. Spectral analysis 

indicates a maximum Leu → Hil replacement level of 91.8 ± 4.5%.  
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Supplementary Figure 1.10. Tuning the fluorescence recovery rate with Hil by controlling the 

level of incorporation of Hil. Fluorescence recovery curves of a 10% PEP gel labeled with 

fluorescent PECP-Hil probes at a mass ratio of 1:5 PECP to PEP (i.e. 20% of the network consists of 

fluorescent probe). The blue curve (Leu + Hil) shows the recovery curve for 53% Hil substitution, 

and the magenta curve (Leu → Hil) shows the recovery curve for 92% substitution (see 

Supplementary Table 1.2 for exact incorporation levels). The degree of substitution provides a 

means of tuning the fluorescence recovery rate.  
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