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Enantioselective Ni-Catalyzed Borylation of Secondary Benzylic Chlorides†  
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3.1 Introduction		

While palladium catalysis has been at the forefront of multiple advancements in 

cross coupling, nickel catalysis has recently proved to furnish complementary and 

equally powerful reactivity.1  The broad expansion of nickel-catalyzed coupling 

reactions can be attributed to the utility imparted by the unique properties of nickel.  

For example, the accessibility of Ni(0), Ni(I), Ni(II), and Ni(III) oxidation states 

facilitates versatile modes of reactivity, including radical mechanisms.1  In addition, 

β-hydride elimination is considered to be slower for nickel than for palladium.2  

These features have rendered Ni catalysts particularly efficient for cross coupling 

historically challenging substrates such as secondary alkyl halides.3  In 2003, the Fu 

group reported the first example of a Ni- or Pd- catalyzed cross coupling of β-

hydrogen-containing, unactivated, secondary alkyl halides. 4   The use of a 

Ni(COD)2/s-Bu-Pybox catalyst system opened the door to the possibility of 

developing asymmetric variants (Scheme 3.1).  

 

Scheme 3.1 Ni-catalyzed cross coupling of unactivated secondary alkyl halides 
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organometallic reagents (Scheme 3.2).3   These reactions and related systems are 

postulated to proceed through a single electron transfer pathway for cleavage of the 

alkyl halide C–X bond resulting in an alkyl radical intermediate.5,6,7,8,9   

 

Scheme 3.2 Stereoconvergent Ni-catalyzed cross coupling of secondary alkyl halides 

 

 

In terms of an overall catalytic cycle, the enantioselective Negishi arylation of 

propargylic bromides is proposed to proceed via a bimetallic oxidative addition, 

radical chain pathway in which the catalyst resting state is an arylnickel(II) species 

(Figure 3.1).6a  In the case of unactivated alkyl halides, it has been postulated that the 

mechanism involves transmetallation followed by an inner-sphere electron transfer 

pathway for oxidative addition (Figure 3.2).10  It is likely that the reaction mechanism 

varies depending on the specific ligand, coupling partners, and reaction conditions.   
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Figure 3.1 Postulated radical chain mechanism for Ni-catalyzed Negishi arylation of propargylic 

bromides 

 

 

Figure 3.2 Outline of a possible mechanism for nickel-catalyzed coupling of unactivated alkyl 

halides 
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-zirconium reagents.3  Despite these advancements, an enantioselective coupling 

reaction of a secondary alkyl halide has yet to be established with a heteroatom 

nucleophile.   

 It has been reported that unactivated primary, secondary, and tertiary alkyl 

halides are effective coupling partners in Miyaura-type borylation reactions using a 

NiBr2�diglyme/i-Pr-Pybox catalyst system (Scheme 3.3).9a  A NiBr2�diglyme/achiral 

terpyridine catalyst system has also been shown to effect borylation of unactivated 

secondary alkyl bromides.13  Several other transition metals have been used to 

achieve Miyaura-type borylation of secondary alkyl halides, including copper,14 

zinc,15 iron,16 manganese,17 and iridium;18 however, no catalytic asymmetric variant 

has been established.19   

 

Scheme 3.3 Ni-catalyzed borylation of unactivated alkyl halides 
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Pinacol, neopentyl-, and catechol boronic esters are commonly used due to their 

relative stability, reactivity, and ease of preparation (Figure 3.3).22  Enantioenriched 

secondary and tertiary boronic esters have garnered recent interest as substrates for 

stereospecific coupling reactions.23 

 

Figure 3.3 Relative stability of commonly used boronic esters  
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enantiotopic-group-selective Suzuki coupling of achiral germinal 

bis(pinacolboronates) (Scheme 3.4C).34  Recent advances include the Fu group’s 

stereoconvergent Ni-catalyzed cross coupling reactions of α-haloboronates.10   

 

Scheme 3.4 Recent examples of stereoselective synthesis of benzylic boronic esters  
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Scheme 3.5 Enantioselective borylation of benzylic halides: preliminary studies 

 
 
 
3.2 Results and Discussion 	
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Scheme 3.6 Effect of pybox ligands on the borylation of a benzylic chloride 
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low to moderate enantioselectivity.  Ligands with either an electron-donating or an 

electron-withdrawing substituent on the pyridine ring (L7 and L8, respectively) were 

also detrimental to yield and/or enantioselectivity. 

 

Scheme 3.7 Effect of indane-pybox derivatives on Ni-catalyzed borylation of a benzylic chloride 
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borylation, while an electron-rich benzylic chloride (52g) furnishes the boronic ester 

in low yield and moderate enantioselectivity.  Decreased enantioselectivity is also 

observed in the case of a benzylic chloride with a naphthyl substituent (52h) and 1-

chloroindane (52i).    

 

Scheme 3.8 Effect of electrophile structure on yield and enantioselectivity under optimized 

conditions 
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Scheme 3.9 Effect of diboron structure on yield and enantioselectivity under optimized 

conditions 

 
 

3.3 Conclusion 	
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3.4 Experimental Procedures 

3.4.1 General Information 

 The following reagents were purchased and used as received: NiCl2�glyme 

(Aldrich), ligand L1 (Aldrich), 1,4-dioxane (anhydrous, 99.8%; Aldrich), DME 

(anhydrous, 99.5%, inhibitor-free; Aldrich), KOt-Bu (Strem), 1-hexanol (anhydrous, 

≥99%; Aldrich).  Diboron reagents were purchased from Frontier Scientific or 

Combi-Blocks.  Benzylic chlorides 35  and bromides6b were prepared from the 

corresponding alcohols according to literature procedures.  All reactions were carried 

out in oven-dried glassware under an atmosphere of nitrogen. 

 1HNMR spectroscopic data were collected on a Varian 500 MHz spectrometer 

at ambient temperature.  GC analyses were obtained on an Agilent 6890 Series GC 

system with a DB-1 column (length 30 m, internal diameter 0.25 mm).  HPLC 

analyses were carried out on an Agilent 1100 Series system with Daicel 

CHIRALPAK columns (internal diameter 4.6 mm, column length 25.0 cm, particle 

size 5 µm).   
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3.4.2 Ni-Catalyzed Borylation of Benzylic Chlorides 
 
General procedure for evaluating benzylic chloride scope on a small-scale: To a 

4-mL vial A open to air was added NiCl2�glyme (2.2 mg, 0.010 mmol, 0.10 equiv) 

and L1 (5.2 mg, 0.013 mmol, 0.13 equiv).  Vial A was then brought into a nitrogen-

filled glovebox and 0.5 mL dioxane were added.  (Note: Due to the poor solubility of 

L1 in ethereal solvent, a stock solution of Ni/L1 cannot be made. The procedure for 

A was repeated n times for the number of reactions in the screen.)  The Ni/L1 

solution was then stirred for 45 min.  A stock solution of diboron reagent and base 

was then prepared in a separate 4-mL vial B.  To vial B was added KOt-Bu (15.7n 

mg, 0.140n mmol, 1.40n equiv), 1-hexanol (17.5n µL, 0.140n mmol, 1.40n equiv), 

and 0.2n mL DME.  The contents of B were stirred for 1 minute, then a solution of 

B2pin2 (40.6n mg, 0.160n mmol, 1.60n equiv) in 0.2n mL DME was added.  The 

contents of B were then stirred for 45 min, after which the solution was diluted to a 

total volume of 0.5n mL with DME.  To vial A was then added the benzylic chloride 

(0.100 mmol, 1.00 equiv) followed by 0.5 mL of the stock solution in vial B.  Vial A 

was then sealed with a PTFE-lined cap and removed from the glovebox.  After 1.5 h, 

the vial was opened to air and dodecane (17.0 mg, 0.100 mmol, 1.00 equiv) was 

added.  The mixture was then filtered through a small silica plug, eluting with diethyl 

ether.  An aliquot of the eluate was then removed for GC determination of the yield 

with respect to dodecane as an internal standard.  The remaining eluate was then 

concentrated by rotary evaporator and oxidized with NaBO3�4H2O (~20 mg) in 1:1 

H2O/THF (2 mL) at room temperature for 30 min.  The mixture was extracted with 

Et2O, the combined organic phases were dried over Na2SO4 and concentrated by 
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rotary evaporator, and the residue was purified by preparative TLC (Et2O/hexanes).  

The purified alcohol was then dissolved in hexanes for HPLC analysis on a 

CHIRALPAK OD column (2–3% IPA/hexanes, 1.0 mL/min).   
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