
A Study of Communication Networks through the Lens
of Reduction

Thesis by
Ming Fai Wong

In Partial Fulfillment of the Requirements for the
degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2017
Defended May 24, 2017

ii

c© 2017

Ming Fai Wong
ORCID: 0000-0002-9191-1277

All rights reserved.

To my family
and

Mengyao

iv

ACKNOWLEDGMENTS

The material in this thesis is based upon work supported by the National Sci-
ence Foundation under Grant Numbers 1018741, 1038578, 1321129, 1527524,
and 1526771, and by the Israel Science Foundation under Grant Number
480/08.

I would like to thank Prof. Effros for being such a wonderful research advisor
throughout the course of my studies. Her wisdom and experience have helped
me tremendously in my development towards an independent researcher. Her
patience and kindness have enabled me to truly enjoy the learning experience
at Caltech.

I would like to thank Prof. Langberg for being such a great mentor. It is a
privilege and my pleasure to be able to work with him. Prof. Langberg has
provided me with very valuable insights and feedback, which enabled me to
make steady progress during my doctoral research.

I would like to thank Prof. Bruck, Prof. Ho, Prof. Low, and Prof. Umans for
serving on my committee and for the useful suggestions.

I would also like to acknowledge Howard and Jan Oringer for their continuous
generous support of the lab.

Throughout the years at Caltech, I have met many exceptional people and
friends. I have had the fortune to meet Ruizhe, Donglei, Ding, and Yingrui
during my first year at Caltech. I thank them for being such wonderful travel
companions and for the unforgettable hiking adventures. To Parham, thank
you for being such a great friend and a great lab-mate; I have thoroughly
enjoyed the discussions with you, both research related and otherwise. Special
thanks to Boyu, Lucy, Qiuyu, Wentao and Yang for making the everyday life
at Caltech fun and exciting, and for introducing me to my fiancée, Mengyao. I
would also like to thank Matthew for being such an understanding roommate
and a good friend. To Carlos and Kishore, thanks for making going to class
fun. I have also learned a lot through my interactions with Chris, Derek,
Mayank, Hongyi, Howard, Sahin, Shirin, Ted, and Wael; I thank them for
making the lab so enjoyable.

Finally, I must express my heartfelt gratitude to my parents and to my fi-
ancée, Mengyao, for providing me with unyielding support and encourage-

v

ments throughout. Mengyao, this thesis would not have been possible without
you. Thank you.

vi

ABSTRACT

A central goal of information theory is to characterize the capacity regions
of communication networks. Due to the difficulty of the general problem,
research is primarily focused on families of problems defined by various clas-
sifiers. These classifiers include the channel transition function (i.e., noisy,
deterministic, network coding), demand type (i.e., single-source, 2-unicast),
network topology (i.e. acyclic network coding, index coding). To date, the
families of networks that are fully solved remain limited. Moreover, results
derived for one specific family often do not extend easily to other families of
problems.

Our work shifts from the traditional focus on solving example networks to one
that builds connections between problem solutions so that we can say where
and when solving a problem in one domain would also solve a corresponding
problem in another domain. Central to our approach is a technique called
“reduction”, in which we connect the solutions and results of communication
problems. We say that problem A reduces to problem B when A can be solved
by first transforming it to B and then applying a solution for B. We focus on
two notions of reduction: reduction in code design and reduction in capacity
region.

Our central results demonstrate reductions with respect to a variety of classi-
fiers. We show that finding multiple multicast network capacity regions reduces
to finding multiple unicast network capacity regions both when capacity is de-
fined as the maximal rate over all possible codes and when capacity is defined
as the optimal rate over linear codes. As a corollary to this result, we show
that the same capacity reduction holds for when network types are limited to
either network coding networks or index coding networks. In several instances,
we show that a reduction in code design extends to a reduction in capacity
region if and only if the edge removal conjecture holds. Here, the edge removal
conjecture states that removing an edge of negligible capacity from a network
does not change its capacity region.

One of the key challenges in network coding research is how to handle net-
works containing cycles. As a result, many papers on network coding restrict
attention to acyclic networks and some results derived for acyclic networks

vii

do not extend to networks containing cycles. We consider a streaming model
for network communication where information is streamed to its destination
under a constraint on maximal delay at the decoder. Restricting our attention
to this scenario enables us to prove a code reduction from network coding to
index coding in both acyclic and cyclic networks. Since index coding networks
are acyclic, a consequence of this reduction is that under the streaming model,
there is no fundamental difference between acyclic and cyclic networks.

viii

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] M. F. Wong, M. Effros, and M. Langberg, “A code equivalence between
streaming network coding and streaming index coding,” in To appear
in Information Theory, 2017 IEEE International Symposium on, IEEE,
2017,
M. F. Wong participated in the conception of the project and prepared
the manuscript.

[2] M. F. Wong, M. Effros, and M. Langberg, “On tightness of an entropic
region outer bound for network coding and the edge removal property,”
in Information Theory, 2016 IEEE International Symposium on, IEEE,
2016, pp. 1769–1773. doi: 10.1109/ISIT.2016.7541603,
M. F. Wong participated in the conception of the project and prepared
the manuscript.

[3] M. F. Wong, M. Effros, and M. Langberg, “On an equivalence of the
reduction of k-unicast to 2-unicast capacity and the edge removal prop-
erty,” in Information Theory, 2015 IEEE International Symposium on,
IEEE, 2015, pp. 371–375. doi: 10.1109/ISIT.2015.7282479,
M. F. Wong participated in the conception of the project and prepared
the manuscript.

[4] M. F. Wong, M. Langberg, and M. Effros, “Linear capacity equivalence
between multiple multicast and multiple unicast,” in Information The-
ory, 2014 IEEE International Symposium on, IEEE, 2014, pp. 2152–
2156. doi: 10.1109/ISIT.2014.6875214,
M. F. Wong participated in the conception of the project and prepared
the manuscript.

[5] M. F. Wong, M. Langberg, and M. Effros, “On a capacity equivalence be-
tween multiple multicast and multiple unicast,” in Communication, Con-
trol, and Computing, 2013 51st Annual Allerton Conference on, IEEE,
2013, pp. 1537–1544. doi: 10.1109/Allerton.2013.6736710,
M. F. Wong participated in the conception of the project and prepared
the manuscript.

[6] M. F. Wong, M. Langberg, and M. Effros, “On a capacity equivalence
between network and index coding and the edge removal problem,” in
Information Theory Proceedings, 2013 IEEE International Symposium
on, IEEE, 2013, pp. 972–976. doi: 10.1109/ISIT.2013.6620371,
M. F. Wong participated in the conception of the project and prepared
the manuscript.

http://dx.doi.org/10.1109/ISIT.2016.7541603
http://dx.doi.org/10.1109/ISIT.2015.7282479
http://dx.doi.org/10.1109/ISIT.2014.6875214
http://dx.doi.org/10.1109/Allerton.2013.6736710
http://dx.doi.org/10.1109/ISIT.2013.6620371

ix

TABLE OF CONTENTS

Acknowledgments . iv
Abstract . vi
Published Content and Contributions viii
Table of Contents . ix
Chapter I: Introduction . 1

1.1 Contributions . 2
Chapter II: Network Models . 6

2.1 Canonical Communication Network 6
2.2 Network Coding Networks . 11
2.3 Index Coding Networks . 12

Chapter III: Preliminaries . 15
3.1 Reductions in Networks . 15
3.2 The Edge Removal Statement 19

Chapter IV: Capacity Reduction from Multiple Multicast to Multiple
Unicast . 24
4.1 Reduction Mapping Φ1 . 24
4.2 Main Result . 26
4.3 Implications for Network Coding Networks 27
4.4 Implications for Index Coding Networks 28
4.5 A Linear Code Reduction from Lossy Network Coding to Loss-

less Network Coding . 29
4.6 Proof of Theorem 4.2.1 . 32

Chapter V: From Code Reduction to Capacity Reduction 36
5.1 Acyclic Network Coding . 36
5.2 Dependent Sources . 40
5.3 Code Reduction Results . 40
5.4 Representative Topologies for The Edge Removal Statement . . 45
5.5 A sufficient Condition for Capacity Reduction 46

Chapter VI: Capacity Reduction from Multiple Unicast to 2-Unicast . 48
6.1 Reduction Mapping Φ2 . 49
6.2 Main Result . 50
6.3 Insufficiency of Linear Coding in 2-Unicast Network Coding . . 51
6.4 A Linear Code Reduction from Lossy Source Coding to Lossless

Network Coding . 51
6.5 Proof of Theorem 6.2.1 . 53

Chapter VII: Reduction from Network Coding to Index Coding 59
7.1 Reduction Mapping Φ3 . 59
7.2 Main Result . 61
7.3 Proof of Theorem 7.2.1 . 61

x

Chapter VIII: The Tightness of the Yeung Network Coding Outer Bound 67
8.1 Entropic Regions . 67
8.2 The Yeung Outer Bound Rout 69
8.3 Main Result . 70
8.4 Proof of Theorem 8.3.1 . 71

Chapter IX: Zero-error Versus Epsilon-error Capacity Region 74
9.1 Zero Versus Epsilon-Error Linear Network Coding Capacity Region 74
9.2 An Implicit Characterization for the Zero-Error Capacity Region 76

Chapter X: Code Reduction from Streaming Network Coding to Stream-
ing Index Coding . 80
10.1 Streaming Network Coding Model 80
10.2 Reduction Mapping Φ5 . 83
10.3 Proof of Theorem 10.2.1 . 85

Chapter XI: Summary . 90
Bibliography . 92

1

C h a p t e r 1

INTRODUCTION

The question of how to derive capacity region characterizations for communi-
cation networks remain a central open problem in information theory. So far,
the capacity region is known only for a limited collection of networks, most
of which are quite small. Examples include the point-to-point channel [1] and
the multiple access channel [2], [3]. Knowledge of how to design good codes
is even more limited. The difficulty of both capacity characterization and
code design grows quickly with the number of terminals and demands. For
example, the problem of determining the capacity regions of both the relay
channel (which differs from the point-to-point channel in the addition of a
relay node) and the broadcast channel (which differs from the point-to-point
channel in the addition of a receiver) remains open. Due to the complexity of
the general problem, research is primarily focused on subclasses of problems.
These subclasses are defined by classifiers restricting network properties such
as the channel transition function, demand type, network topology and so on.
Results derived for one subclass do not extend easily to other subclasses in
general.

In this work, instead of solving example networks, we study the taxonomy of
communication problems by building connections between problem solutions
using the reduction technique. We say that problem A reduces to problem B
if A can be solved by first transforming it to B and then solving B. Reductions
can be proven even when solutions to both problems are unavailable; when a
solution for B is known, a reduction form A to B enables the propagation of
results from B to A. Thus, understanding these connections expands tools and
results.

We employ two notions of reduction: reduction in code design (“code reduc-
tion”) and reduction in capacity region (“capacity reduction”). Roughly speak-
ing, a reduction in code design refers to a mechanism for designing codes for
a network in class A using a code design algorithm for networks in class B.
Similarly, a reduction in capacity region refers to a mechanism for obtaining
the capacity region of a network in class A using an algorithm for deriving the

2

capacity region of a network in class B. We derive code reduction and capac-
ity reduction results with respect to various classifiers. We also study known
code reduction results and show that these code reductions can be extended
to similar reductions in the capacity region if and only if the asymptotic edge
removal statement (AERS) holds. The edge removal statement studies how
incremental changes in network topology affect the network coding capacity
region. It is directly connected to the vanishment conjecture [4] which states
that the network coding capacity region remains unchanged when an edge of
negligible capacity is added to the network.

We next give a summary of the contributions of this thesis.

1.1 Contributions

We study code design and the characterization of the capacity region for gen-
eral memoryless networks. The general class of memoryless networks contains
traditional memoryless channel models for point-to-point and multi-terminal
channels as well as network coding and index coding networks. Full details of
our communication model are given in Chapter 2.

Central to our approach is reduction and the edge removal statement, which
enable us to connect the results of communication problems. Chapter 3 intro-
duces these two concepts. We derive code reductions and capacity reductions
between subclasses of problems with respect to network demands and topolo-
gies. In some instances, we also connect code reduction to capacity reduction,
demonstrating that the extension from code reduction to capacity reduction
hinges on the edge removal statement. The tools and techniques that are used
to derive these connections are documented in Chapter 5. In what follows,
we describe our contributions in the regime of various taxonomies.

Network Reductions Related to Network Topology

Network coding networks are memoryless networks comprised of independent,
noiseless, directed point-to-point channels. A network coding problem is spec-
ified by a directed graph comprised of capacitated edges and a set of network
demands. Both the demand type and the network topology play an important
role in the code design and the characterization of the capacity region. We
here differentiate between general network coding networks and acyclic net-
work coding networks, which differ only in that the former allow for directed
cycles in the underlying graph while the latter do not. The class of index

3

coding networks introduced by [5] is a subset of the class of acyclic network
problems which restricts the network topology to a simple setting in which
a single node with access to all the sources broadcasts a common message
to all receivers, each of which has access to a subset of the sources as side
information.

The authors of [6], [7] prove a code reduction from acyclic network coding to
index coding. This reduction is proved under the assumptions of both general
codes and linear codes. This result is intriguing because it shows that the
complexity of acyclic networks is completely captured by the simple topology
of index coding networks in which encoding is required at only one node in the
network. Our work extends this idea by showing that under the same reduction
mapping, capacity region for acyclic network coding reduces to index coding
if and only if the edge removal statement holds (Chapter 7). We show this
connection for both general and linear capacity regions. Since the edge removal
statement holds for linear capacity regions [8], we obtain as a corollary a linear
capacity reduction from acyclic network coding to index coding.

While many of the results derived in the field of network coding are derived
only for acyclic networks, it is unknown whether the same results hold for
networks with cycles or whether, instead, acyclic and cyclic networks are fun-
damentally different [9]. In acyclic networks, a valid network code can be char-
acterized by assigning a single function of the sources to each edge such that
each of these functions can be computed locally by internal nodes. However,
such a simple characterization does not exist for networks containing cycles.
As such, proofs that rely on this single-function characterization do not imme-
diately extend to networks containing cycles. Our work considers a streaming
network coding model [10], [11] in which each demand has to satisfy both
rate and reconstruction delay constraints. Motivated by the goal of extending
tools and results derived for acyclic networks to the more practically relevant
domain of cyclic networks, we derive a code reduction from general network
coding to index coding under the streaming model (Chapter 10), which en-
ables us to overcome the key challenges for the cyclic case. A consequence
of this reduction is that under the streaming model, there is no fundamental
difference between acyclic and cyclic networks.

4

Network Reductions Related to Demand Type

In the realm of network communication, one may also distinguish between
networks based on different demand types. Examples include single unicast,
single multicast, multiple unicast and multiple multicast networks. A single
unicast network is a network in which there is exactly one source and ex-
actly one terminal demanding that source. A multiple unicast network is a
network containing one or more sources and exactly one terminal demanding
each source. A single multicast network is a network in which there is exactly
one source and there are one or more terminals demanding that source. A
multiple multicast network is a network in which there are one or more sources
and one or more terminals demanding each source. The most general of these
demand types is the multiple multicast case.

The work of [12] shows that code design for multiple multicast network coding
reduces to code design for multiple unicast network coding; that is, solving a
code design problem for any multiple multicast network can be achieved by
solving a related code design problem for a related multiple unicast network.
Similarly, the work of [13] shows that solving the linear code capacity region
for any multiple multicast index coding network reduces to solving the lin-
ear code capacity region for a related multiple unicast index coding network.
Thus, there is no loss of generality in restricting attention to multiple unicast
demands in the above scenarios.

In this work we tackle capacity derivation in a more general setting. We show
deriving the capacity region for multiple multicast networks reduces to deriving
the capacity region for multiple unicast networks. We derive this reduction
for both general codes and linear codes (Chapter 4). As a corollary, the
reduction results for both the general and linear capacity regions apply to
network coding as well as index coding. Thus, our work unifies some of the
existing results.

In network coding networks, the capacity region of a single unicast network are
fully characterized by the max flow of the underlying directed graph, and code
design is well understood. The code design problem is open for networks with
two or more sources. A surprising result of [14] shows that under the assump-
tion of zero-error codes, the code design problem for multiple unicast network
coding reduces to the code design problem for 2-unicast network coding. This
implies that 2-unicast network coding problems are representative of network

5

coding problems with general demands. Our work connects the code reduction
in [14] to a capacity reduction by showing that the capacity region for multiple
unicast network coding reduces to the capacity region for 2-unicast network
coding if and only if the edge removal statement holds (Chapter 6). We prove
this connection for both general and linear capacity regions. Again, we obtain
a linear capacity reduction from multiple unicast network coding to 2-unicast
network coding as a corollary since the edge removal statement holds for the
linear capacity region [8].

Reduction Related to Entropic Vectors Characterizations of Net-
work Capacity Region

The Yeung outer bound on the network coding capacity region is derived in [15,
Theorem 15.9] under the notion of entropic vectors. Although a characteriza-
tion of the capacity region is already known [16], due to the relative simplicity
of the Yeung outer bound, it is well-studied in the literature [17], [18].

While the tightness of the Yeung outer bound remains open, the authors of [17]
show that the Yeung outer bound is tight if the edge removal statement holds.
We extend the result of [17] to an if-and-only-if relationship. That is, we show
that the Yeung outer bound is tight if and only if the edge removal statement
holds (Chapter 8). If the Yeung outer bound is tight, it provides us with
another characterization of the network coding capacity region.

Zero-Error Versus Epsilon-Error Capacity Region

We study the zero-error network coding capacity region. The zero-error net-
work coding capacity region equals the epsilon-error capacity region for super-
source networks and networks with co-located sources [17], [19] but remains
open in general. The authors of [19] show that whether or not the zero-error
capacity region equals the epsilon-error capacity region is closely related to the
edge removal question. Bounds for the zero-error capacity region are derived
by relaxing the edge capacity constraint from a strict (worst case) requirement
to an average requirement [20].

In Chapter 9, we derive a full characterization of the zero-error network cod-
ing capacity region using a dense subset of the entropic region. Our approach
is inspired by [16]. Further, we show that the zero-error capacity region is
equal to the epsilon-error network coding capacity region when restricted to
linear codes.

6

C h a p t e r 2

NETWORK MODELS

In this chapter, we give the formal definition of our main network model.
We consider communication over general multi-terminal memoryless channels
which we refer to as communication networks. The full model of a canonical
communication network is given in Section 2.1, which also defines code and
capacity region.

General network coding networks and index coding networks are sub-classes of
general communication networks; these are defined in Sections 2.2 and 2.3, re-
spectively. The acyclic network coding model is introduced in Chapter 5. The
streaming network coding and index coding model is introduced in Chapter 10.

2.1 Canonical Communication Network

Here, we describe a canonical model for communication networks. We assume
all networks are canonical unless stated otherwise.

For a positive i, let [i] denote {1, · · · , die}. Following the canonical model
in [13], we specify k by l communication network instance I by a vector of
network parameters

I = (S, T, U,H, p(Y|X)).

We define each of the terms in that vector below. The sets S and T represent
the k source nodes S =

⋃
i∈[k]
{si} where source messages originate and the kl

terminal nodes T =
⋃
i∈[k]

⋃
j∈[l]
{ti,j} that demand those messages. We use si

to represent the source node of the ith message and ti,j to represent the jth
terminal node of message i. Thus, terminal node ti,j demands message from
source node si. We require source nodes and terminal nodes to be unique
(i.e., |S ∪ T | = k + kl). When l = 1, we refer to the instance as a k-unicast
communication network. For ease of notation, when l = 1, the second subscript
of the terminal node is dropped (i.e., ti = ti,1).

The set U represents the relay nodes of the network, these nodes do not have
any demands and do not generate any source messages (i.e., U ∩ (T ∪S) = ∅).
Any source messages that are available as side information to a relay node or

7

terminal node are captured by the “has” sets

H =
⋃

v∈U∪T

{Hv},

where Hv ⊆ S for each v ∈ U ∪ T . For each v ∈ U ∪ T and each s ∈ Hv,
we model the direct availability of the source using an infinite capacity link
going from node s to node v. These infinite capacity links are used not to
represent real physical channels but instead to capture the notion that source
information is available a priori to some subset of nodes in the network 1 . For
each v ∈ U ∪ T , we denote by

WHv = (Ws : s ∈ Hv) ∈
∏
s∈Hv

Ws =WHv

the vector of source random variables available to node v.

We consider a channel model where all nodes except the source nodes S are
operated simultaneously in every time step. We refer to this as a “simultane-
ous” code schedule. That is, for n channel uses, the channel is operated over
the same n time steps τ ∈ [n]. Each relay node u ∈ U transmits a channel
input variable Xu,τ ∈ Xu and receives a channel output variable Yu,τ ∈ Yu at
each time step τ ∈ [n]. Each terminal node t ∈ T receives a channel output
variable Yt,τ ∈ Yt at each time step τ ∈ [n] but transmits no network input.
The transition probability p(Y|X) is a function that describes the probability
at each time τ of observing the channel output variables

Y = Yτ = (Yv,τ , v ∈ U ∪ T)

given that the channel input variables are

X = Xτ = (Xv,τ , v ∈ U);

this probability is independent of τ by assumption. It is also assumed to be
memoryless, so the channel output at time τ is conditionally independent of
both the channel inputs and the channel outputs at prior times, given the
channel input at time τ . An example appears in Figure 2.1.

Given a rate vector R = (R1, . . . , Rk) and a blocklength n, a (2nR, n) com-
munication code C is a mechanism for simultaneous transmission of a rate Ri

1Making sources directly available to those nodes would be technically equivalent but
notationally less convenient for our purposes.

8

Xu1;τ Yt1;τ

Yu1;τ

Yu2;τ

Xu2;τ Yt2;τ

t1

t2

p(YjX)

u1

u2

s1 s2

Figure 2.1: A 2 by 1 communication network with S = {s1, s2}, T = {t1, t2},
U = {u1, u2} and Hu1 = {s2}, Hu2 = {s1}, Ht1 = {s2}, Ht2 = ∅.

message from each source si ∈ S to its corresponding terminals ti,1, · · · , ti,l
over n uses of the network I. Each source node s ∈ S holds an nRs-bit source
message random variable

Ws ∈ FnRs2

that is uniformly distributed over its alphabet and independent of all other
sources.

The communication code

C = ({fu,τu ∈ U, τ ∈ [n]}, {gt, t ∈ T})

consists of a set of encoders {fu,τ} and a set of decoding functions {gt}. Code
C assigns n encoding functions {fu,τ , τ ∈ [n]} to each relay node u ∈ U , one
for each time step τ ∈ [n], and a single block decoding function dt for each
terminal t ∈ T . For v ∈ T ∪ U and for each s ∈ Hv, we assume the entire
source message Ws is available to v, thus no encoding function is required for
source nodes.

The time-τ output at any node can rely only on inputs to the same node at
prior timesteps. Thus, for each u ∈ U and τ ∈ [n], the relay node encoding
function

fu,τ : Yτ−1u ×
∏
s∈Hu

FnRs2 → Xu

9

maps the previously received symbols Yτ−1
u = (Yu,1, · · · , Yu,τ−1) and the avail-

able source messages WHu = (Ws, s ∈ Hu) to the message Xu,τ transmitted by
node u at time τ .

For each t ∈ T , the decoding function

gt : Ynt ×
∏
s∈Ht

FnRs2 → FnRt2

maps the complete vector of received symbols at the end of n channel uses and
the available source messages WHt = (Ws, s ∈ Ht) to a reproduction Ŵt of the
message Wt desired by terminal t.

For any non-source node v ∈ U ∪ T , denote by

Zv = (Yn
v ,WHv) ∈ Ynv ×WHv = Zv

the total information available to node v at the end of n channel uses. Through-
out, when s = si, we use notation Ws and Wi, Ws and Wi, and Rs and Ri

interchangeably; that is Ws = Wi, Ws = Wi, and Rs = Ri when s = si.
Similarly, when t = ti,j, Wt =Wi, Rt = Ri, and Wt = Wi.

The performance of a communication code is characterized by its rate vector
R and error probability P (n)

e , where

P (n)
e = Pr

(⋃
t∈T

{Ŵt 6= Wt}

)

is the probability that one or more terminal node decodes its desired source
in error.

Remark 1. There is no loss of generality in restricting attention to the canon-
ical form of [13] used here. For any terminal t that sends a network input or
demands q sources where q > 1, we add q new terminal nodes t′1, · · · t′q such
that each new terminal node t′i receives the same channel output as t and has
the same set of sources messages available to t. The ith new terminal t′i now
demands the ith source originally demanded by t; node t no longer demands
any source and becomes a relay node. Similarly, if there is a source message
Wi demanded by 0 < m < l terminals ti,1, · · · , ti,m, we add l − m + 1 new
terminals t′1, · · · , t′l−m+1 such that each new terminal node t′i receives the same
channel output as ti,m and has the same set of sources messages available to
ti,m. Each new terminal node t′i demands Wi; node ti,m no longer demands any

10

source and becomes a relay node. If m = 0, the message Wi is removed from
the network. These modifications do not change the amount of information
that is available to any of the old terminal nodes. Further, no new informa-
tion is available to any of the new terminal nodes; hence the capacity region,
defined below, remains unchanged.

Code Feasibility and Capacity Regions

A communication network instance I is said to be (R, ε, n)-feasible if there
exists a code C with blocklength n such that operation of code C on source
message random variables W = (Ws : s ∈ S) uniformly distributed on W =∏

s∈SWs =
∏

s∈S F
nRs
2 yields error probability P (n)

e ≤ ε.

We apply the notion of feasibility to define two notions of capacity. Here A
denotes the closure of a set A. The ε-error capacity region of I, denoted by
Rε(I), captures the asymptotic notion of reliability as

Rε(I) = {R : ∀ε > 0, I is (R, ε, n)-feasible infinitely often in n}.

The 0-error capacity region of I, denoted by R0(I), captures the notion of
perfect reliability as

R0(I) = {R : I is (R, 0, n)-feasible infinitely often in n}.

Since any code with P (n)
e = 0 also satisfies P (n)

e ≤ ε for all ε > 0,

R0(I) ⊆ Rε(I).

Linear Codes and Capacities

It is sometimes useful for practical reasons to restrict attention to low com-
plexity coding modalities. In the discussion that follows, we consider both the
general case, where codes may be arbitrary, and the case of linear codes, which
are here defined to be codes with linear encoders and general decoders. In this
work, we consider linearity over F2. Thus for a linear code, we require all input
and output alphabets to be vectors over F2. Each encoder fu,τ is represented
by a matrix over F2, giving

Xu,τ = (Y τ−1
u ,WHu)fu,τ .

The decoding functions {gt, t ∈ T} are arbitrary (i.e., not necessarily linear)
functions.

11

A network instance I is (R, ε, n) linearly-feasible if it is (R, ε, n) feasible using
a linear code. The linear capacity regions are defined as

RL
ε (I) = {R : ∀ε > 0, I is (R, ε, n) linearly-feasible infinitely often in n}

RL
0 (I) = {R : I is (R, 0, n) linearly-feasible infinitely often in n}.

2.2 Network Coding Networks

A network coding network is a communication network instance where nodes
are connected by independent, point-to-point, noiseless communication links.
These links are directed and each has a capacity value which describes the
maximal rate of communication across each link. For a directed link (u, v) of
capacity c bits that connects node u to node v, the channel input alphabet
Xu, channel output alphabet Yv and the channel transition function p(Yv|Xu)

are given by

Xu = Fc2,

Yv = Fc2,

p(Yv = yv|Xu = xu) = δ(xu − yv).

A network coding network is therefore a communication network such that
the channel transition function is a product of channel transition functions of
point-to-point, noiseless links. We first give a description of a network coding
instance before formally describing the restriction on the channel transition
function.

By representing each of these directed links as an edge of a directed graph, a
network coding network can be described by I = (G,S, T) where the graph
G = (V,E,C) is defined by a set of vertices V representing the nodes of
the network, a set of directed edges E ⊆ V 2 representing communication links
between these devices, and a vector C = (ce : e ∈ E) specifying the capacity for
each edge. sets S, T ⊂ V are the source nodes and terminal nodes, respectively.
Each edge e is a noiseless channel of integer2 capacity ce from the edge’s input
node, here called In(e), to its output node, here called Out(e); for example, if
e = (u, v) and Ce = 1, then information travels from node In(e) = u to node
Out(e) = v at a rate of Ce = 1 bit per transmission. Figure 2.2 shows an

2For an non-integral ce, we may model each link to transmit b(τce)c − b(τ − 1)cce bits
of information per time step. The same proofs presented in our work suffice to treat these
cases.

12

example. Denote by Sc = V \ S the set of non-source nodes in I and by

ESc = {e ∈ E : In(e) ∈ Sc}

the set of edges that do not originate from source nodes. Similarly, denote by

ES = {e ∈ E : In(e) ∈ S}

the set of source edges. Similar to the setup of communication networks, any
source edge e ∈ ES are infinite capacity edges.

A network coding network is therefore a communication network with a chan-
nel transition function that can be described by I = (G,S, T) and takes the
following form: The relay nodes are given by U = V \ (S ∪ T). The channel
alphabets (Xu, u ∈ U) and (Yv, v ∈ T ∪ U) are given by

Xu =
∏

v∈U∪T :(u,v)∈ESc

X(u,v),

Yv =
∏

u∈U :(u,v)∈ESc

Y(u,v),

where for e = (u, v), each X(u,v) = Y(u,v) = Fce2 . The “has” sets (Hv, v ∈ U ∪T)

and channel transition function p(Y|X) are given by

Hv =

{
s : (s, v) ∈ ES

}
p(Y|X) =

∏
(u,v)∈ESc

δ(x(u,v) − y(u,v)).

Again, there is no loss of generality in restricting attention to the canonical
form. More specifically, in a canonical k by l network coding network, there
are kl terminal nodes and each terminal ti,j, i ∈ [k], j ∈ [l] has no outgoing
edge and demands Wi (see Remark 1).

2.3 Index Coding Networks

An index coding network is network coding network with a graph G falling
in a restricted class of possible network coding topologies. A k by l multiple
multicast index coding network is a network coding network with a set of k
source nodes S = {s1, · · · , sk}, kl terminal nodes T =

⋃
i∈[k]

⋃
j∈[l]
{ti,j} and two

relay nodes U = {u1, u2}. Following our convention from canonical network
coding instances, each si holds the ith source message variable and each ti,j is

13

e1e2

v1

s2

t1t2

s1

e3

v2

Vertex set V = {s1, s2, t1, t2, v1, v2}
Edge set E = {(s1, v1), (s2, v1),

(s1, t2), (s2, t1), (v1, v2),
(v2, t2), (v2, t1)}

Capacity vector C = (∞,∞,∞,∞, 1, 1, 1)
Source node S = {s1, s2}
Terminal nodes T = {t1, t2}

Figure 2.2: A network reminiscent of the “butterfly” network. All edges are
of infinity capacity except for e1, e2, and e3, which are of capacity 1. Each
terminal ti demands sources from si.

s1 s3

t3t1

u1

u2

s2

t2

Source nodes S = {s1, s2, s3}
Terminal nodes T = {t1, t2, t3}
Has set Ht1 = {s2},

Ht2 = {s1}, Ht3 = {s2}
Broadcast capacity cB

Figure 2.3: Representation of an index coding instance (S, T,H, cB) as a net-
work coding problem (left). Node u2 broadcasts a common message of rate cB
to all terminal nodes. For each terminal node t and each source node s in the
has set Ht of t, there is an edge going from node s to node t. Edges (u1, u2),
(u2, t1), (u2, t2), and (u2, t3) have capacity cB. All other edges have infinite
capacity.

the jth receiver of the ith source message. When expressed in the form of a
network coding network, we have

V = {u1, u2} ∪ S ∪ T.

The set of links includes an infinite-capacity link from each source node to
node u1, a capacity cB “bottleneck link” B from node u1 to node u2, a capacity

14

cB link from node u2 to each terminal, and a collection of infinite-capacity
links from source nodes to terminal nodes. The source nodes connected to a
given terminal node t ∈ T are described by the “has” set Ht of terminal t.
Thus,

E =

[⋃
s∈S

{(s, u1)}

]
∪ {(u1, u2)} ∪

[⋃
t∈T

{(u2, t)}

]
∪

[⋃
t∈T

⋃
s∈Ht

{(s, t)}

]

ce =

{
cB if In(e) ∈ {u1, u2}
∞ otherwise.

Given these restrictions, an instance I = (G,S, T) of a k by l canonical network
coding network that falls in the sub-class of k by l index coding problems can be
entirely described by a set of source nodes S = {s1, · · · , sk}, a set of terminal
nodes T =

⋃
i∈[k]

⋃
j∈[l]
{ti,j}, a set of has sets H = {Ht, t ∈ T}, and the capacity

cB of the bottleneck link. We therefore alternatively describe instance I as
I = (S, T,H, cB). An example appears in Figure 2.3.

Note that by [13] there is no loss of generality in restricting to index cod-
ing instances in canonical form (i.e., there are k sources, and each source is
demanded by l terminals and each terminal only demands one source).

15

C h a p t e r 3

PRELIMINARIES

In this chapter, we introduce two key concepts to our work: reduction and the
edge removal statement.

In this work, we use reduction to understand when solutions and results for one
type of network information theory can be used for another type of network
information theory problem. In Section 3.1, we formally describe reduction
in two different settings: reduction in code design and reduction in capacity
region. We also discuss some of the existing work in these two regimes.

One of the major contributions of our work is to show that in some cases the
connection between code reduction and capacity reduction hinges on the edge
removal statement. Determining whether of not the edge removal statement
holds may be considered a canonical open problem in information theory and
is shown to be connected to other open problems in information theory. We
introduce the edge removal statement in Section 3.2 and give some background
on its development. We also introduce the cooperation facilitator and the
broadcast facilitator, which are important components in the proofs of our
work.

3.1 Reductions in Networks

Our work relies on a technique called reduction. When a problem A reduces
to problem Ã, it means that problem A can be solved by first mapping it to a
corresponding problem Ã, then applying a solution for Ã, and finally mapping
the solution for Ã back to a solution for A (See Figure 3.1.)

Reduction is a very powerful technique because it allows us to draw connections
between problems even when the solutions to both A and Ã are unknown; if
A reduced to Ã, then solving problem A suffices to find a solution to A.
Reduction can be used to show that a communication problem is easy if it
can be reduced to other problems for which solutions are well understood.
Reduction can also be used to show that a problem Ã is hard by showing that
a difficult open problem can be reduced to Ã.

We employ two distinct notions of reduction in this work. In each, some class

16

A

S ~A

SA

Problem Solution

~A

ΦsΦp

Figure 3.1: In this figure, two different problems and their respective solu-
tions are represented by different shapes. If A reduces to Ã, then there exist
mappings Φp and Φs such that A can be solved by first mapping it to a corre-
sponding problem Ã = Φp(A), solving Ã, and then mapping the solution SÃ
for Ã back to a solution SA = Φs(SÃ) for A.

of problems on a family P of network coding instances is shown to be solvable
through solution to the same class of problems on a different family P̃ of
network coding instances. We begin by describing both types of reductions
and then give a brief background of the edge removal statement, which plays
a central role in our derivation of new reduction results.

Code and Capacity Reduction

Consider two families of network coding instances, P and P̃ .

Definition 1 (Code Reduction). We say that code design for P reduces to
code design for P̃ if there exist the following two mappings:

1. a mapping from any instance I ∈ P and code parameter triple (R, ε, n)

to an instance Ĩ ∈ P̃ and triple (R̃, ε̃, ñ) such that I is (R, ε, n)-feasible
if and only if Ĩ is (R̃, ε̃, ñ)-feasible.

2. a mapping from any (R̃, ε̃, ñ)-feasible solution for Ĩ to a corresponding
(R, ε, n)-feasible solution for I.

Thus if code design for P reduces to code design for P̃ , then solution of the
code design problem for all networks in P̃ would solve the code design prob-
lem for all networks in P . Further, only one code design for one parameter
vector is required in P̃ to yield one code design for one parameter vector in
P . Theorems 3.1.1–3.1.3 give examples of code reductions. If the mappings

17

described in 1) and 2) of Definition 1 are efficient then we say that the code
reduction is efficient.

Multiple multicast networks are networks in which every source message is
required by one or more receivers. Multiple unicast networks are a sub-class
of multiple multicast networks in which every source is required by exactly one
receiver. A network with k unicasts is also called a k-unicast network. Theo-
rem 3.1.1 from [12] proves a code reduction from multiple multicast networks
(P) to multiple unicast networks (P̃). This result proves that code design for
the class of multiple multicast networks (P) can be solved by solving code
design for a subset of that class (P̃ ⊆ P).

Theorem 3.1.1 (Code Reduction fromMultiple Multicast to Multiple Unicast
Network Coding[12, Theorem II.1]). Multiple multicast network code design
reduces to multiple unicast network code design.

In some cases, code reduction results are known under restrictive assump-
tions on the parameters of either or both families of networks. For example,
Theorem 3.1.2 describes both the linear [6] and general [7] forms of the code re-
duction from network coding to index coding. While Theorem 3.1.3 describes
the reduction from k-unicast to 2-unicast network coding when ε = 0, giving
a zero-error code reduction result.

Theorem 3.1.2 (Code Reductions from Network Coding to Index Coding).

1. [6, Theorem 5] Linear acyclic network code design reduces to linear index
code design.

2. [7, Theorem 1] Acyclic network code design reduces to index code design.

Theorem 3.1.3 (Zero-error Code Reduction from k-Unicast to 2-Unicast Net-
work Coding [14, Theorem 1]). Zero-error k-unicast network code design re-
duces to zero-error 2-unicast network code design.

Other examples also include the code reduction from network error correction
to multiple-unicast network coding [21], [22], and the code reduction from
secure network coding to multiple-unicast network coding [23].

Definition 2 (Capacity Reduction). We say that capacity characterization
for P reduces to capacity characterization for P̃ if there exists a mapping from

18

any instance I ∈ P and rate vector R to an instance Ĩ ∈ P̃ and rate vector
R̃ such that

R ∈ R(I)⇔ R̃ ∈ R(Ĩ).

Here R(·) is used as notational shorthand to describe a capacity region or
bound for a capacity region; the type used in any particular result is specified
in the result. Capacity reduction fromA to Ã demonstrates how characterizing
the capacity regions for all networks in Ã would characterize the capacity
regions for all networks in A. Further, solving a single question of the form
“Is R in set R(I)?” requires the solution of only a single question of the form
“Is R̃ in set R(Ĩ)?”. Similarly, if the mappings described in Definition 2 are
efficient then we say that the capacity reduction is efficient. In some cases,
reduction results are known under restrictive assumptions on the parameters
or capacity regions of either or both families of networks. Theorem 3.1.4 proves
a linear capacity reduction from multiple multicast index coding to multiple
unicast index coding.

Theorem 3.1.4 (Linear Capacity Reduction from Multiple Multicast to Mul-
tiple Unicast Index Coding[13, Theorem 2]). Multiple multicast index coding
linear capacity calculation reduces to multiple unicast index coding linear ca-
pacity calculation.

Does Code Reduction Imply Capacity Reduction?

The study of capacity reduction is motivated by the goal of understanding
an efficient way to compute the capacity of I based on knowledge of how to
compute the capacity region of Ĩ. So far, we have seen quite a few reductions
in code design [6], [7], [12], [14], but not all of these reductions have a corre-
sponding known capacity reduction. A central question of this work is whether
code reductions can be used to derive corresponding capacity reductions.

Consider the following region:

R∗ε(I) = {R : ∀ε > 0, I is (R, ε, n)-feasible infinitely often in n}.

By definition of the capacity region, Rε(I) = R∗ε(I). If code reduction holds,
then the knowledge of R∗ε(Ĩ) would imply the knowledge of R∗ε(I), whose
closure is Rε(I). It is therefore tempting to believe that code reduction from
A to Ã implies capacity reduction from A to Ã, yet, no such result is known

19

in general. One key obstacle is that the knowledge of Rε(Ĩ) does not provide
enough information about R∗ε(Ĩ): R may get mapped to an R̃ that falls on
the boundary of R(Ĩ), which then leaves open the question of whether or not
R̃ is in R∗ε(Ĩ).

As a result, reductions in capacity characterization exist (see, for example, [24,
Theorem 3]), but they remain relatively rare. Our work shows that for the
scenarios to date where code reductions were not accompanied by correspond-
ing capacity reductions, bridging the gap between code reduction and capacity
reduction relies in some fundamental way on understanding how small changes
in a network coding instance affect the capacity of that instance. The next sec-
tion describes the edge removal statement, determining whether this statement
holds in general is an example question in that domain.

3.2 The Edge Removal Statement

Iλ I

e

s1 sk

t1

s1

tk

sk

t1tk

Figure 3.2: Networks I and Iλ differ by an edge e of capacity λ.

In this section, we focus on acyclic network coding instances1. The edge re-
moval question studies the change in network coding capacity that results
when a single edge of capacity λ is removed from a network coding instance [8].
Specifically, let Iλ = (Gλ, S, T) be a network coding instance containing an
edge eλ of capacity λ. Let I = (G,S, T) be the network coding instance that
results when edge eλ is removed from graph Gλ. The edge removal statement
compares the capacity regions R(I) and R(Iλ). In particular, the literature
explores a variety of questions of the form

Does R ∈ R(Iλ) imply R− f(λ) ∈ R(I)?
1An acyclic network coding instance is a network coding instance with an underlying

graph that does not contain any directed cycle.

20

Here, f(·) is some function of λ. This question has an increasingly rich his-
tory [4], [8], [19], [25]–[30], but remains unsolved in general. While this problem
seems deceptively simple, it is deeply connected to many other fundamental
properties of the capacity region. For example, in [19], the authors connected
the edge removal statement with the “dependent source coding problem,” which
studies the change in capacity region when we allow the source messages to be
dependent. In [25], the same authors show that determining whether or not
the edge removal statement holds is equivalent to the “zero vs epsilon error
problem,” which studies the change in the capacity region when we require
the source messages to be communicated without error. It is also known to be
related to the strong converse problem [28].

Further, as we show in this work, the edge removal statement is also connected
to a series of reduction results. Thus, deciding whether or not the edge removal
statement is true may be considered a canonical problem in network coding in
the sense that obtaining the answer to any one of them would yield answers
to the rest. Results to date include complete solutions for a variety of special
cases. Examples of two such results follow.

The edge removal question is solved in the case of linear codes on both acyclic
networks and networks containing cycles [8]. In this case, f(λ) = λ; that is,
f(λ) is a vector with λ in every dimension, giving the following result.

Theorem 3.2.1 ([8, Section V.D]). For any acyclic network coding instance
Iλ,

R ∈ RL
ε (Iλ) ⇒ R− λ ∈ RL

ε (I).

For this work, we focus on an asymptotic version of the edge removal state-
ment, where we seek to understand whether an edge of negligible capacity can
have a non-negligible impact on network coding capacity. This variation is
directly related to the vanishment conjecture [4], which studies the continuity
of the capacity region with respect to the capacity of edges at value 0.

Definition 3 (Asymptotic Edge Removal Statement (AERS)). For any acyclic
network coding instances Iλ and I differing in a single edge eλ of capacity λ,

R ∈ lim
λ→0
Rε(Iλ)⇔ R ∈ Rε(I).

The limit in the AERS is guaranteed to exist by Theorem 3.2.2.

21

Theorem 3.2.2. The limit lim
λ→0
Rε(Iλ) exists.

Proof. Let {λn}∞n=1 be a monotonically decreasing sequence tending to zero,
then

lim
λ→0
Rε(Iλ) = lim

n→∞
Rε(Iλn).

Since λ1 > λ2 > · · · implies Rε(Iλ1) ⊇ Rε(Iλ2) ⊇ · · · ⊇ Rε(Iλn), we have

limsup
n→∞

Rε(Iλn) =
⋂
n≥1

⋃
j≥n

Rε(Iλj) =
⋂
n≥1

Rε(Iλn)

and
liminf
n→∞

Rε(Iλn) =
⋃
n≥1

⋂
j≥n

Rε(Iλj) =
⋂
j≥1

Rε(Iλj).

Therefore limsup
n→∞

Rε(Iλn) = liminf
n→∞

Rε(Iλn), and the limit exists and equals⋂
n≥1
Rε(Iλn).

The asymptotic edge removal question is solved in the case of super-source
networks and networks with co-located sources. A network with co-located
sources is a network where all sources originate from a single source node2. A
super-source network is one whose sources are not co-located but there is a
super-node in the network that has both full knowledge of all the information
present at the sources and low capacity outgoing edges connecting it with each
and every one of the source nodes [26], [30] (See Figure 3.3). In the following,
we define two variations of super source networks.

Cooperation Facilitator

Instance Icfλ = (Gcf
λ , S

cf , T cf) is obtained from I = (G,S, T,) by adding a co-
operation facilitator to the network (Figure 3.3). GraphGcf

λ = (V cf , Ecf , Ccf
λ =

{ccfe , e ∈ Ecf}) is obtained from G = (V,E,C) by adding k new source nodes
s′1, · · · , s′k, a super source node ssu, a relay node sre, 2k infinite capacity links
{(s′i, si), (s′i, ssu)}i∈[k], k links {(sre, si)}i∈[k] and a bottleneck link b = (ssu, sre)

of capacity λ. The source edges of the original instance I are replaced with
2While a network with co-located sources is not considered canonical, it can be easily

converted to an equivalent canonical network [13, Footnote 5].

22

I

s
0

1
s
0

k

t1 tk

s1 sk

ssu

sre

I

s
0

1
s
0

k

t1 tk

s1 sk

ssu

sre

Figure 3.3: The left network shows I augmented with a cooperation facilitator
(Icfλ). The right network shows I augmented with a broadcast facilitator (Ibfλ).

links of capacity
∑

e′∈ESc ce′ . Thus, the resulting graph is defined by

V cf = V ∪ {ssu, sre} ∪
[⋃
i∈[k]

{s′i}
]

Ecf = E ∪ {(ssu, sre)} ∪
[⋃
i∈[k]

{(s′i, ssu), (s′i, si), (sre, si)}
]

ccfe =



ce if e ∈ ESc∑
e′∈ESc ce′ if e ∈ ES

λ if In(e) ∈ {ssu, sre}

∞ otherwise.

The old source nodes no longer hold any source random variable; hence,

Scf =
⋃
i∈[k]

{s′i}.

The set of terminal nodes remains the same; hence,

T cf = T.

Each terminal ti now demands s′i instead of si.

Broadcast Facilitator

Instance Ibfλ = (Gbf
λ , S

bf , T bf) is obtained from I = (G,S, T) by adding a
broadcast facilitator (Figure 3.3). Similar to the cooperation facilitator, the
broadcast facilitator is a supersource node that receives all source messages

23

and computes a function of them; however, instead of sending the computed
value to the source nodes in S, it broadcasts it to all the nodes in V . Thus,
Ibfλ can also be also be obtained from Icfλ by adding |V |− k broadcast links of
capacity λ. Therefore, defining the instance Ibfλ that contains the broadcast
facilitator by comparison to the instance Icfλ that contains the cooperation
facilitator, we have

V bf = V cf

Ebf = Ecf ∪
[⋃
v∈V

{(sre, v)}
]

cbfe =

ccfe if e ∈ Ecf

λ otherwise.

For a fixed bottleneck rate λ, the capacity region of Ibfλ is a superset of that
of Icfλ . Theorem 3.2.3 summarizes what is known about the edge removal
question in these scenarios.

Theorem 3.2.3 (Asymptotic Edge Removal Property for Co-located Source
and Super-source Networks [26, Theorem 2, Proposition 5]). For any acyclic
network coding instances Iλ and I differing in a single edge eλ of capacity λ,
if I is a co-located source or super-source network, then

R ∈ lim
λ→0
Rε(Iλ)⇔ R ∈ Rε(I).

While [4, Definition 3.10] and [26, Conjecture 2] conjecture that the asymp-
totic edge removal statement is always true, even this very limited case of the
edge removal question remains unproven in general. The question turns out
to be intertwined with a variety of other open questions. For example, [19]
shows that solving the asymptotic edge removal question would suffice to prove
whether asymptotic and zero-error definitions of network coding capacity ever
yield different rate regions. Similarly, [25] shows that solving the same ques-
tion would determine whether asymptotically negligible source dependence can
change the network capacity region.

24

C h a p t e r 4

CAPACITY REDUCTION FROM MULTIPLE MULTICAST
TO MULTIPLE UNICAST

The materials in this chapter are published in part as [31], [32].

In this chapter, we explore the question: how central is the demand type of a
given network to the difficulty of characterizing its capacity region. For general
networks, even the single unicast case remains open. For example, the single
unicast relay channel [33] has only been solved for the degraded case [34]. For
network coding, the single multicast capacity region has been solved [35]–[37],
but the general capacity region remains elusive. Our work aims to identify a
restrictive demand type that is representative of the general case in the realms
of memoryless networks, network coding networks, and index coding networks.

Using the notion of capacity reduction, we show that multiple multicast de-
mands reduce to multiple unicast demands. Our result implies that it suffices
to study the capacity regions of multiple unicast networks to obtain full under-
standing of the capacity regions of multiple multicast networks. Our results
hold for both general and linear coding capacity. As a corollary of our main
result, we also obtain capacity reductions in the settings of network coding and
index coding. As such our work generalizes and unifies previous works [12],
[13] (Section 3.1.)

In what follows, we first describe the reduction mapping for the capacity re-
duction from multiple multicast to multiple unicast networks. The reductions
for both the general capacity and the linear capacity region use the same re-
duction mapping. We present our main result in Section 4.2. The proof of
the main theorem appears in Section 4.6. Our proof relies on a random linear
channel outer coding argument; this technique is presented in Section 4.5.

4.1 Reduction Mapping Φ1

One of the key challenges in proving a reduction result is to design a mapping
from each instance I ∈ A and rate vector R to its corresponding instance
Ĩ ∈ Ã and rate vector R̃ in a way that preserves the properties needed for
the desired reduction. For our purposes, those conditions are described in

25

Definition 2 in Section 3.1.

We begin by describing our mapping a multiple multicast instance I and its
rate vector R to a multiple unicast instance Ĩ and its rate vector R̃. We use
tildes on all variables corresponding to the multiple unicast communication
network instance in order to distinguish the two instances from each other.
Our reduction mapping is inspired by but not identical to the constructions
found in [12], [13]. The multiple unicast communication network instance

Ĩ = (S̃, T̃ , Ũ , H̃, p̃(Ỹ|X̃))

is constructed by augmenting I = (S, T, U,H, p(Y|X)) with “butterfly” like
structures. This is achieved by replacing source nodes S in I with kl new
source nodes S̃ in Ĩ and replacing has set H in I with new has set H̃ in Ĩ. In
the following, we describe the formal construction of (Ĩ, R̃) and provide some
intuition. An example appears in Figure 4.1.

Define an index mapping function β(i, j) = (i−1)l+j. For R = (R1, · · · , Rk),
each old source node si is replaced by l new source nodes s̃β(i,1), · · · , s̃β(i,l),
where each s̃β(i,1) carries a rate-Ri independent source message variable W̃β(i,j).
Thus

S̃ =
⋃
i∈[k]

⋃
j∈[l]

{
s̃β(i,j)

}
.

Each old terminal node ti,j in I is relabeled as t̃β(i,j) in Ĩ, it now demands
source message W̃β(i,j); thus

T̃ =
⋃
i∈[k]

⋃
j∈[l]

{
t̃β(i,j)

}
.

and
R̃ = (Rl

1, · · · , Rl
k),

where each Rl
i = (Ri, · · · , Ri) is an l-dimensional vector with Ri in each com-

ponent. Each relay node u ∈ U is relabeled as ũ in Ĩ; thus,

Ũ =
⋃
u∈U

{
ũ

}
.

26

The channel transition function for Ĩ remains unchanged apart from the nodes
being relabeled, it is defined as follows,

Ỹũ = Yu, ∀u ∈ U

Ỹt̃β(i,j) = Yti,j , ∀i ∈ [k], j ∈ [l]

p̃(Ỹ = y|X̃ = x) = p(Y = y|X = x), ∀x ∈
∏
u∈U

Xu,y ∈
∏

v∈T∪U

Yv.

The remainder of Ĩ is designed to enable it to “reuse” the encoders and decoders
from I. For each relay node u ∈ U and each source si ∈ Hu available to
node u, node u first combines the l independent sources (W̃β(i,1), · · · , W̃β(i,l))

into a single “mixed source” variable W̃ sum
i before applying the encoder from

I to the “mixed sources” variable W̃ sum
i . To enable the the combination of

(W̃β(i,1), · · · , W̃β(i,l)) into W̃ sum
i , for each relay node u ∈ U that has access to

source from node si in I, the corresponding relay node ũ in Ĩ is given access
to the source from nodes s̃β(i,1), · · · , s̃β(i,l) in Ĩ, giving

H̃ũ =
⋃

i:si∈Hu

⋃
j∈[l]

{s̃β(i,j)}.

In the decoding phase, each terminal t̃ ∈ T̃ uses the decoder from the cor-
responding node t ∈ T to reconstruct the “mixed source.” In order to en-
able node t̃β(i,j) to extract from the mixed source W̃ sum

i its desired compo-
nent W̃β(i,j), we provide each terminal t̃β(i,j) with just enough “side informa-
tion,” (W̃β(i,j′), j

′ ∈ [l] \ {j}), to solve for message W̃β(i,j). Thus, for each
t̃ = t̃β(i,j) ∈ T̃ ,

H̃t̃ =

[⋃
i′:si′∈Ht̃

⋃
j′∈[l]

{s̃β(i′,j′)}
]
∪
[⋃
j′′∈[l]\{j}

{s̃β(i,j′′)}
]
.

4.2 Main Result

Here, we state our main capacity reduction result for both the general and
the linear capacity regions. The theorem relies on the mapping Φ1 defined in
Section 4.1.

Theorem 4.2.1 (Capacity Reduction from Multiple Multicast to Multiple
Unicast Communication Networks).

27

~tβ(1;1)
~tβ(1;2)

~tβ(2;2)

~sβ(1;1)

~sβ(1;2)

~sβ(2;1)

~sβ(2;2)

~tβ(2;1)

t1;1

t1;2

t2;1

t2;2

u
s1

s2

I ~I

u

(a) (b)

p(YjX) p(YjX)

Figure 4.1: (a) A 2 by 2 communication network I. (b) A 4-unicast commu-
nication network Ĩ corresponding to I in (a).

1. Calculating the multiple multicast communication network capacity re-
gion reduces to calculating the multiple unicast communication network
capacity region. That is, under mapping Φ1, for any communication
network instance I and rate vector R,

R̃ ∈ Rε(Ĩ)⇔ R ∈ Rε(I).

2. Calculating the multiple multicast communication network linear capacity
region reduces to calculating the multiple unicast communication network
linear capacity region. That is, under mapping Φ1, for any communica-
tion network instance I and rate vector R,

R̃ ∈ RL
ε (Ĩ)⇔ R ∈ RL

ε (I).

Proof. See Section 4.6.

4.3 Implications for Network Coding Networks

Recall that a network coding network I = (G,S, T) is a communication net-
work instance consisting of independent point-to-point noiseless links. There-
fore, Theorem 4.2.1 may be applied directly to any multiple multicast network
coding problem I to obtain a corresponding multiple unicast network Ĩ.

Corollary 4.3.1 (Capacity Reduction from Multiple Multicast to Multiple
Unicast Network Coding).

1. Calculating the multiple multicast network coding capacity region reduces
to calculating the multiple unicast network coding capacity region. That
is, under mapping Φ1, for any network coding instance I and rate vector
R,

R̃ ∈ Rε(Ĩ)⇔ R ∈ Rε(I).

28

2. Calculating the multiple multicast network coding linear capacity region
reduces to calculating the multiple unicast network coding linear capacity
region. That is, under mapping Φ1, for any network coding instance I
and rate vector R,

R̃ ∈ RL
ε (Ĩ)⇔ R ∈ RL

ε (I).

Proof. Since the construction in Section 4.1 only modifies source nodes S and
has sets H, I is a network coding instance then Ĩ is also a network coding
network instance. Theorem 4.2.1 thus gives a reduction in capacity region (and
linear capacity region) from multiple multicast network coding to multiple
unicast network coding.

4.4 Implications for Index Coding Networks

An index coding network I = (S, T,H, cB) is a network coding network with a
graph G falling in a restricted class of possible network coding topologies and
is therefore a communication network. We therefore apply Theorem 4.2.1 to
obtain the following corollary.

Corollary 4.4.1 (Capacity Reduction from Multiple Multicast to Multiple
Unicast Index Coding).

1. Calculating the multiple multicast index coding capacity region reduces
to calculating the multiple unicast index coding capacity region. That is,
under mapping Φ1, for any index coding instance I and rate vector R,

R̃ ∈ Rε(Ĩ)⇔ R ∈ Rε(I).

2. Calculating the multiple multicast index coding linear capacity region re-
duces to calculating the multiple unicast index coding linear capacity re-
gion. That is, under mapping Φ1, for any index coding instance I and
rate vector R,

R̃ ∈ RL
ε (Ĩ)⇔ R ∈ RL

ε (I).

Proof. Since mapping Φ1 only modifies the “has” set of I, applying mapping Φ1

to a multiple multicast index coding network I yields a multiple unicast index
coding network Ĩ. Thus, Theorem 4.2.1 holds for index coding networks.

29

4.5 A Linear Code Reduction from Lossy Network Coding to Loss-
less Network Coding

The following result extends ideas from [24, Theorem 2] and [38, Section V.B].
Precisely, Lemma 4.5.1 shows that a lossy code can be mapped to a lossless
code with a reduced rate using channel outer coding. Lemma 4.5.1 differs
from [24, Theorem 2] and [38, Section V.B] in that we show the existence of
a linear outer code rather than one that may be non-linear. The term lossy
network code is here used to describe a set of blocklength-n encoders {fu,τ , u ∈
U} for the relay nodes of a communication network. Rather than considering
a sequence of codes that meets a certain asymptotic error constraint as in
lossless network coding, we here consider a code that meets a constraint on the
mutual information. Specifically, we consider the scenario where operation of
the encoders {fu,τ , u ∈ U} on a set of independent sources W yields a mutual
information I(Wt;Zt) ≥ nRt for each terminal t and its desired source Wt

where Zt = (Y n
t ,WHt) is the channel output for terminal node t.

Lemma 4.5.1. Let
I = (S, T, U,H, p(Y|X))

be a k by l communication network instance where the alphabet of the received
information at ti,j is Zti,j = Fnqi,j2 , for all (i, j) ∈ [k]× [l]. Suppose that there
exist blocklength-n encoding functions {fu,τ}τ∈[n] for each relay node u ∈ U

such that if sourcesWi are uniformly distributed onWi = Fnmi2 for each i ∈ [k],
then under the operation of {fu,τ}τ∈[n]u∈U , the channel output Zti,j = (Y n

ti,j
,WHti,j

)

for the each of the terminals satisfies

I(Wi;Zti,j) ≥ nRi

for each terminal ti,j, (i, j) ∈ [k] × [l]. Then for any rate vector R′ =

(R′1, ..., R
′
k) such that R′i < Ri, for all i and any ε′ > 0, there exists a block-

length n′ such that I is (R′, ε′, n′)-feasible. Further, if the encoders {fu,τ}τ∈[n]u∈U

are linear functions, then I is (R′, ε′, n′)-linearly feasible.

Proof. As in [24], [38], this result is proved using a random channel outer
coding argument, we extend this idea by applying a random linear outer coding
argument instead to prove a linear code reduction when the encoders {fu,τ , u ∈
U} are linear. This is achieved by applying the random linear outer coding
argument for point-to-point channels from [39] simultaneously to all pairs of
demands in I.

30

In the following, we show that the multicast (R′1, · · · , R′k) rates can be achieved
by a linear random channel outer coding argument. We begin with an outline
of the proof before providing the details. We first maps source message W ′

i ,
i ∈ [k], to a random blocklength N codeword WN

i (W ′
i) using a set of random

linear outer encoding functions. Each terminal ti,j, (i, j) ∈ [k]×[l] then decodes
a reconstruction Ŵ ′

i = w′i if wi is jointly typical with the received symbol ZN
ti,j

.
The overall blocklength is therefore nN . We show that there exists a set of
linear outer encoding functions that yields a small error probability as N tends
to infinity.

1. Random linear code generation. For a blocklength N , a random code-
word WN

i (w′i) for each source message realization w′i ∈ FnNR
′
i

2 is gener-
ated according to

WN
i (w′i) = w′iMi,

where w′i is a length-nNR′i row vector over F2 and Mi is an nNR′i by
nNmi random matrix such that each entry is selected independently and
uniformly at random from F2.

2. Codeword distribution analysis. Let rj be the jth row of Mi. Then each
rj is a random row vector over F2. Denote by w′i,j the jth component of
w′i and denote by B(w′i) the positions of 1’s in w′i; thus

B(w′i) =

{
j ∈ [nNR′i] : w′i,j = 1

}
,

w′iMi =
∑

j∈B(w′i)

rj.

Thus, for any w′i 6= 0nNR
′
i = (0, ..., 0), the codeword for each w′i is uni-

formly distributed over FnNmi2 . For any distinct, non-zero w′i and w∗i ,
consider the following decomposition:

w′iMi =
∑

j∈B(w′i)∩B(w∗i)

rj +
∑

j∈B(w′i)\B(w∗i)

rj.

w∗iMi =
∑

j∈B(w′i)∩B(w∗i)

rj +
∑

j∈B(w∗i)\B(w′i)

rj.

Since
∑

j∈B(w′i)\B(w∗i)
rj and

∑
j∈B(w∗i)\B(w′i)

rj are independent and uni-
formly distributed in FnNmi2 , the codewords for any distinct, nonzero pair
of wi and w′i are therefore also (pairwise) independent and uniformly dis-
tributed in FnNRi2 .

31

3. Encoders for each u ∈ U . Each relay node u first applies the random
linear outer code in 1) to obtain (WN

i (W ′
i), si ∈ Hu). For each i ∈ [k],

divide codewordWN
i into N chunks, i.e., (Wi,1, · · · ,Wi,N) such that each

Wi,q is in Fnmi2 for each q ∈ [N]. Next, apply the blocklength n encoders
{fu,τ}τ∈[n] sequentially to each of the N chunks, namely, (Wi,q, si ∈ Hu)

for each q ∈ [N]. This takes a total of nN time steps.

4. Joint typicality decoder. At each terminal ti,j, the decoded message
estimate Ŵ ′

i,j equals w′i if w′i is non-zero (we address the case when
w′i = 0 separately since 0Mi = 0) and is the only source realization
whose codeword is ηi,j-jointly typical with ZNti,j , otherwise, the decoded
message Ŵ ′

i,j equals the "error" symbol. Here, we pick ηi,j such that
3ηi,j < Ri −R′i.

5. Error analysis. Each source messageW ′
i is drawn according to a uniform

distribution over FnNR
′
i

2 . We use the jointly typical decoding as described
above. Let W ′

i = w′i where w′i is a non-zero source message. Define the
following events for (i, j) ∈ [k]× [l] and w′i ∈ FnNR

′
i

2 :

Ei,j(w
′
i) = {w′iMi is ηi,j-jointly typical with ZNti,j}.

Let Ei,j = {Ŵ ′
i,j 6= W ′

i} denote the event that an error occur at ti,j; then

Ei,j = Ec
i,j(w

′
i) ∪

[⋃
w∗i ∈F

nNR′
i

2 \{ 0,w′i}

Ei,j(w
∗
i)

]
.

We therefore have

Pr(Ei,j|W ′
i = w′i) = Pr

(
Ec
i,j(w

′
i) ∪

[⋃
w∗i ∈F

nNR′
i

2 \{ 0,w′i}

Ei,j(w
∗
i)

]∣∣∣∣W ′
i = w′i

)

≤ Pr(Ec
i,j(w

′
i)) +

∑
w∗i ∈F

nNR′
i

2 \{ 0,w′i}

Pr(Ei,j(w
∗
i)|W ′

i = w′i).

The strong coding theorem for discrete memoryless channels [15, Theo-
rem 5.6.2] upper bounds Pr(Ec

i,j(w
′
i)) by 2−nNγi,j and Pr(Ei,j(w

∗
i)|W ′

i =

w′i) by 2
−I(WN

i ;ZNti,j
)+nN3ηi,j , which gives

Pr(Ei,j|W ′
i = w′i) ≤ 2−nNγi,j + 2

nNR′i−I(WN
i ;ZNti,j

)+3nNηi,j).

Note that this bound is independent of w′i and is true for any non-zero
w′i. The error probability averaged over all code books is then computed

32

as follows:

Pr(Ei,j) =
∑

w′i∈F
nNR′

i
2

1

2nNR
′
i

Pr(Ei,j|W ′
i = w′i)

=
2nNR

′
i − 1

2nNR
′
i

Pr(Ei,j|W ′
i = w′i) +

1

2nNR
′
i

Pr(Ei,j|W ′
i = 0nNR

′
i)

≤ Pr(Ei,j|W ′
i = w′i) +

1

2nNR
′
i
.

By the union bound and for some positive constant η, the expected error
probability for all kl decoders is at most kl2−nNη, which goes to zero as
N goes to infinity. This guarantees the existence of a good codebook
that satisfies any error probability constraint.

4.6 Proof of Theorem 4.2.1

The proof of Theorem 4.2.1 relies on the mapping Φ1 described in Section 4.1.
We begin with a high level description of the proof.

The reductions for both the general capacity region and the linear capacity
region use the same reduction network Ĩ, which depends only on I. To prove
the “if and only if” statement in our theorem, we show that if a rate vector
R = (R1, · · · , Rk) is in the capacity region of I, then the corresponding rate
vector R̃ = (Rl

1, · · · , Rl
k) is in the capacity region of Ĩ. We then show the

converse.

The proof employs a code reduction, in which we transform an (R, ε, n) net-
work code C for I into a rate (R̃(1 − ρ), ε̃, ñ) network code C̃ for Ĩ and vice
versa. The loss in rate, δ, tends to zero as the blocklength, n, tends to infin-
ity. By taking the closure of these rates, we get the desired results. We now
present the proof of the assertion R ∈ Rε(I) ⇔ R̃ ∈ Rε(Ĩ). The proof for
linear capacity follows from that presented since our code reductions in both
directions preserve linearity.

R ∈ Rε(I) ⇒ R̃ ∈ Rε(Ĩ): Fix any ε, δ > 0. Our starting point is an
(R(1 − ρ), ε, n)-feasible network code C for I. Our goal is to transform this
code into an (R̃(1 − ρ̃), ε̃, ñ)-feasible network code C̃ for Ĩ. The idea is to
augment C with a “butterfly” outer code. The outer code we use is linear.
Thus, if we start with a C that is linear, the resulting C̃ will also be linear. We

33

formally describe C̃ as follows (recall that β(i, j) = i(l − 1) + j and for any
integer i, [i] = {1, · · · , i}):

1. For each u ∈ U and si ∈ Hu, relay node u combines the l sources
(W̃β(i,j), j ∈ [l]) by applying an element-wise binary sum (denoted by
operators + and

∑
). We denote each “combined” source by

W̃ sum
i =

∑
j∈[l]

W̃β(i,j).

2. For the subsequent time step, each relay node in Ĩ operates the corre-
sponding encoders from C using (W̃ sum

i , i ∈ [k]) as the source message in
place of Wi. More precisely, if the encoders of C are⋃

u∈U

⋃
τ∈[n]

{
fu,τ

}
,

then the encoders of C̃ for each ũ ∈ Ũ = U and each τ ∈ [n] are defined
by

X̃ũ,τ = fu,τ (Ỹ
τ−1
ũ , (W̃ sum

i , si ∈ Hu)).

3. At the end of n channel uses, each terminal t̃ = t̃β(i,j) ∈ T̃ first obtains

a reconstruction ̂̃Wi

sum
of W̃ sum

i using the decoders of t ∈ T from C.
Then terminal t̃ extracts the reconstruction ̂̃W β(i,j) from ̂̃Wi

sum
using

side information (W̃β(i,j′), j
′ ∈ [l] \ j) and mixed sources (W̃ sum

i , si ∈ Ht).
More precisely, if the terminal decoders of C are{

gt, t ∈ T
}
,

then for each t̃ = t̃β(i,j) ∈ T̃ , the decoder for terminal t̃ is given by

̂̃W β(i,j) = dt(Y
n
t , (W̃

sum
i , si ∈ Ht)) +

(∑
j′∈[l]\{j}

W̃β(i,j′)

)
.

The resulting blocklength for C̃ is ñ = n. Since C has error at most ε and
source vector (W̃ sum

i , i ∈ [k]) is drawn from the same distribution and has
the same support set as the source vector (Wi, i ∈ [k]) in C, each terminal

t̃ ∈ T̃ can reconstruct ̂̃Wi

sum
with error probability at most ε. Further, since

the reconstruction of each ̂̃W β(i,j) from ̂̃Wi

sum
introduces no error, the error

34

probability of C̃ is thus bounded from above by the error probability ε̃ = ε

from C. Hence, Ĩ is (R̃(1− ρ), ε, n)-feasible. Since the rate of this code tends
to R̃ as δ tends to zero, we get the desired result.

R ∈ Rε(I)⇐ R̃ ∈ Rε(Ĩ): Fix any ε̃, ρ̃ > 0. We start with an (R̃(1− ρ̃), ε̃, ñ)-
feasible network code C̃ for Ĩ. Again, our goal is to transform C̃ into an
(R(1 − ρ), ε, n)-feasible network code C for I by augmenting it with a linear
channel outer code.

We begin by defining some notation. Denote by B̃i,j the side information
source variables available to terminal t̃β(i,j) that share the same i subscript;
thus

B̃i,j =

(
W̃β(i,j′), j

′ ∈ [l] \ j
)
.

Denote by D̃i ∈ FñlRi2 the l source message variables associated with si, giving

D̃i =

(
W̃β(i,j′), j

′ ∈ [l]

)
.

Let Ãi,j denote the vector of output variables available at terminal t̃β(i,j) less
the side information source variables B̃i,j at the end of ñ transmissions, giving

Z̃t̃β(i,j) = (B̃i,j, Ãi,j).

Consider network I, suppose that each source originating at si is the variable
Wi = D̃i. Consider applying the encoders from C̃ to each relay node in I.
Since both I and Ĩ have the same channel transition function, the mutual
information between each Wi and the variables received by terminal ti,j is
then given by I(D̃i; Ãi,j). Note that

I(D̃i; Ãi,j) = I(B̃i,j; Ãi,j) + I(W̃β(i,j); Ãi,j|B̃i,j)

≥ I(W̃β(i,j); Ãi,j|B̃i,j)

= I(W̃β(i,j); Ãi,j|B̃i,j) + I(W̃β(i,j); B̃i,j) (4.1)

= I(W̃β(i,j); B̃i,j, Ãi,j)

≥ ñRi(1− ρ′), (4.2)

where equation (4.1) follows from the fact that W̃β(i,j) and B̃i,j are independent,
and equation (4.2) follows from Fano’s inequality, with ρ going to zero as ε̃
and ρ̃ go to zero.

35

By Lemma 4.5.1, we have that for any rate Ri(1− ρ) < Ri(1− ρ′) and ε > 0,
there exists blocklength n such that I is (Ri(1 − ρ), ε, n)-feasible. Hence, by
closure of the capacity region, R ∈ Rε(I). Furthermore, since linearity is
preserved, R̃ ∈ RL

ε (Ĩ) implies that R ∈ RL
ε (I).

36

C h a p t e r 5

FROM CODE REDUCTION TO CAPACITY REDUCTION

The materials in this chapter are published in part as [40].

In this chapter, we describe some of the tools that enable us to derive capacity
reduction results and to connect code reductions to their corresponding ca-
pacity reductions. In particular, we describe the tools that enable us to show
that the code reduction from multiple unicast to 2-unicast network coding,
and the code reduction from acyclic network coding to index coding, extend
to corresponding capacity reductions if and only of the AERS holds. These
tools also enable us to show that an entropic region outer bound for acyclic
network coding is tight if and only if the AERS holds.

Since the above mentioned connections are derived for acyclic network cod-
ing networks, we first introduce the model for acyclic network coding in Sec-
tion 5.1, which differs from the general network coding model in the descrip-
tion of a network code. We then introduce the concept of dependent sources in
Section 5.2. Dependent sources are employed as a tool to study the change in
capacity region when sources are correlated [25]. In [25], the authors show that
the same rates achievable by sources with an asymptotically small correlation
can be achieved by independent sources if and only if the AERS holds. Due
to its close connection to the AERS, the concept of dependent sources serves
as an important intermediate step in connecting reduction to the AERS.

In Section 5.3, we present techniques and useful lemmas that are used to prove
our reduction results. In Section 5.4, we derive two equivalent formulation of
the AERS by identifying a network that is representative of the edge removal
statement. This enables us to study a particular network topology when ex-
ploring the AERS without losing generality. By focusing on these critical
network topologies, we derive a sufficient condition for a capacity reduction to
be equivalent to the AERS. This result is presented in Section 5.5.

5.1 Acyclic Network Coding

An acyclic network coding instance I = (G,S, T) is a network coding instance
in which we restrict the underlying graph G to be acyclic.

37

The model for acyclic network coding differs from that of general network cod-
ing in the definition of network codes. Instead of the “simultaneous” schedule
of encoders given in Section 2.2 where encoders are operated simultaneously
at each time step, network codes for acyclic network coding networks are often
given as block network codes where we assign a single block encoding function
to each edge e. Under the schedule of block codes, the encoders operate in an
order that ensures each node v operates only after all “upstream” nodes (nodes
that have a directed path to v in G) have completed their operations, taking
up to n|E| time steps in total. As a result of this schedule, a valid sequence of
transmissions exists if the function for each edge e can be computed locally by
each node In(e). This provides us with a clean single-function characterization
of valid codes.

Since G is acyclic by assumption, any code under the “simultaneous” schedule
can be converted to an equivalent block network code. While not all block
codes can be converted to precisely equivalent codes (i.e., codes with the same
blocklength) under a simultaneous schedule, they can be converted into re-
lated codes with asymptotically equivalent performance [41]. As a result, the
capacity region does not depend on the schedule of the code [41]. For ease of
notation and analysis, we use block network codes when dealing with acyclic
network coding instances.

In the following, we give the notation of block codes for acyclic network coding
as well as for index coding instances.

Block Network Code

Given a rate vector R = (R1, . . . , Rk) and a blocklength n, a (2nR, n) block
network code C is a mechanism for simultaneous transmission of a rate Ri

message from each source si ∈ S to its corresponding terminal ti ∈ T over n
uses of the network G.

Similar to communication codes, for each s ∈ S, we use

Ws ∈ Ws = FnRs2

to represent the source message originating at node s. Each element of Fm2
is represented by a length-m row vector over F2. Source messages are carried
through the network using edge messages. The blocklength n message carried
by edge e ∈ ESc is

Xe ∈ Xe = Fnce2 .

38

Each source edge e = (s, v) ∈ ES is of infinite capacity. Again, infinite capacity
edges are used to capture the notion that sourceWs is available apriori to node
v; thus,

Xe = Ws.

For any non-source node v ∈ S, the information available to node v after all
such transmissions is

Zv = (Yv,WHv) ∈ Yv ×WHv = Zv.

Here, Yv is the vector of messages delivered to node v on its incoming edges
and WHv is the vector of sources available to node v. Thus,

Yv =

(
Xe′ , e

′ ∈ ESc ∧ (Out(e′) = v)

)
Yv =

∏
e′∈ESc∧(Out(e′)=v)

Xe′

WHv = (Ws, s ∈ Hv)

WHv =
∏
s∈Hv

Ws

Each terminal t ∈ T uses its available information Zt to reproduce its desired
source. We use

Ŵt ∈ Wt = FnRt2

to represent the reproduction.

A (2nR, n) network code C comprises an encoding function fe for each edge
e ∈ ESc , and a decoding function gt for each terminal t ∈ T , giving C =

({fe}, {gt}). For each e ∈ ESc , encoder fe is a mapping

fe : ZIn(e) → Xe

from the vector ZIn(e) ∈ YIn(e) ×WHIn(e) of information available to node In(e)

to the value Xe ∈ Xe carried by edge e over its n channel uses; thus

Xe = fe(ZIn(e)).

By our assumption of the schedule of block network codes, the encoders operate
in an order that ensures that the encoders for all edges incoming to node v
operate before the encoders for all edges outgoing from the same node; this is
possible since the network is acyclic by assumption.

39

We call fe a local encoding function since it describes the local operation used
to map the inputs of node In(e) to the output Xe transmitted across edge e.
Since the network is deterministic, Xe can also be expressed as a deterministic
function of the network inputs W = (Ws : s ∈ S). The resulting global
encoding function

Fe :
∏
s∈S

Ws → Xe

takes as its input the source vector W and maps it directly to Xe. For each
source edge e ∈ ES, the global encoding function is given by

Fe(W) = Ws.

Following the partial ordering on E, the global encoding function for each
subsequent e ∈ E is then a function of the global encoding functions for its
inputs, giving

Fe(W) =

 WIn(e) if e ∈ ES

fe

(
Fe′(W) : e′ ∈ E ∧ (Out(e′) = In(e))

)
if e ∈ ESc .

Each decoder gt, t ∈ T , is a mapping

gt : Zt →Wt

from the vector Zt ∈ Yt × WHt of information available to node t to the
reproduction Ŵt of its desired source, giving

Ŵt = gt(Zt).

Block Index Code

An index code C is a block network code for the index coding network. Recall
that an index coding problems is described by I = (S, T,H, cB) in which a
bottleneck link B = (u1, u2) that has access to all the sources broadcasts
a common rate-cB message to all the terminals. We assume without loss
of generality that any edge with sufficient capacity to carry all information
available to its input node carries that information unchanged; thus

fe(ZIn(e)) = ZIn(e) for all e ∈ E ∧ In(e) = u2.

As a result, specifying an index code’s encoder requires specifying only the
encoder fB for its bottleneck link.

40

5.2 Dependent Sources

In the classical network coding setting, independent sources are considered.
We employ dependent sources [25] to understand the rates achievable when
dependent sources are allowed.

For a blocklength n, a vector of nδ-dependent sources of rate R = (R1, ..., R|S|)

is a random vector W = (W1, · · · ,Wk), where Wi ∈ FnRi+nδ2 such that∑
i∈[k]

H(Wi)−H(W) ≤ nδ

and H(Wi) ≥ nRi for all i ∈ [k]. For δ = 0, the set of nδ-dependent sources
only includes random variables that are independent and uniformly distributed
over their supports.

We also consider linearly dependent sources [42, Section 2.2]. A vector of
nδ-linearly-dependent sources are nδ-dependent sources that are pre-specified
linear combinations of underlying independent processes [42]. We denote such
an underlying independent process by U , and we assume that U is uniformly
distributed over FnRU2 . Thus, each Wi can be expressed as

Wi = UTi,

where each Ti is an nRU × n(Ri + δ) matrix over F2.

We now define communication with nδ dependent sources. Network I is
(R, ε, n, δ)-feasible if there exists a set of nδ-dependent source variables W

and a network code C = {{fe}, {gt}} with blocklength n such that opera-
tion of code C on source message random variables W yields error probability
P

(n)
e ≤ ε. When the feasibility vector does not include the parameter for

dependence (i.e., (R, ε, n)), we assume that the sources are independent.

5.3 Code Reduction Results

In Lemma 5.3.1, below, we present code reduction results that are useful in our
proofs. In what follows, we map an epsilon-error code for dependent sources
to a zero-error code for independent sources by introducing a cooperation
facilitator to the network (Lemma 5.3.1(1),(3)). Similarly, we map an epsilon-
error code for a network augmented with a broadcast facilitator to a zero-error
code that can operate without the broadcast facilitator by using dependent
sources (Lemma 5.3.1(2)).

41

Lemma 5.3.1. For any network I and rate vector R,

1. [43, Corollary 5.1] For any blocklength n and any ε, δ ≥ 0, if I is
(R, ε, n, δ)-feasible, then by adding a cooperation facilitator, the network
Icfλ is (R−ρ, 0, n, 0)-feasible, where λ and ρ tend to zero as ε and δ tend
to zero and n goes to infinity.

2. For any blocklength n and any ε, λ, δ ≥ 0, if Ibfλ is (R, ε, n, δ)-feasible,
then for dependent sources, I is (R− ρ, 0, n, δ′)-feasible, where δ′ and ρ
tend to zero as ε, λ, δ tend to zero.

3. For any blocklength n and any ε, δ ≥ 0, if I is (R, ε, n, δ)-linearly-feasible
for an nδ-linearly-dependent source, then by adding a cooperation facili-
tator, the network Icfλ is (R − ρ, ε, n, 0)-feasible, where λ and ρ tend to
zero as δ tend to zero.

Proof. (2) Let Ibfλ be (R, ε, n, δ)-feasible. By Lemma 5.3.1(1), Ibfλ+λ∗ is (R −
ρ∗, 0, n, 0)-feasible, where λ∗ and ρ∗ tend to zero as ε and δ tend to zero and n
tends to infinity. (Adding a λ∗ cooperation facilitator to Ibfλ is equivalent to
increasing the bottleneck capacity of Ibfλ from λ to λ + λ∗.) Let λ′ = λ + λ∗,
and let C be an (R, 0, n, 0)-feasible network code for Ibfλ′ .

Define Zb to be the value being sent on the bottleneck edge (ssu, sre) of the
broadcast facilitator in Ibfλ′ under the operation of C. The conditional entropy
H(W|Zb) can be expanded as

H(W|Zb) =
∑

γ′∈Fnλ′2

p(Zb = γ′)H(W|Zb = γ′).

By an averaging argument, there exists a γ such that H(W|Zb = γ) ≥
H(W|Zb). We therefore have the following inequalities:

H(W|Zb = γ) ≥ H(W|Zb)

≥ H(W)−H(Zb)

≥ H(W)− nλ′. (5.1)

42

For each i ∈ [k],

H(Wi|Zb = γ) ≥ H(W|Zb = γ)−H((Wj, j ∈ [k] \ {i})|Zb = γ)

≥ H(W)− nλ−
∑

j∈[k]\{i}

(
nRj

)
(5.2)

= H(Wi)− nλ′.

Inequality (5.2) follows from bound on the support size of Wj and equa-
tion (5.1).∑

i∈[k]

H(Wi|Zb = γ)−H(W|Zb = γ) ≤
∑
i∈[k]

(nRi)−H(W) + nλ′ (5.3)

≤ nλ′

Inequality (5.3) follows from bound on support size of W.
Define the conditional random variable W∗ = W|Zb=γ. The alphabet size of
W∗ is the same as W, where for each i ∈ [k], |Wi| = 2nRi . We then have an
nλ′-dependent source W∗ such that I is (R− λ′, 0, n, λ′)-feasible.

(3) Let W = (W1, · · · ,Wk) denote the nδ-linearly dependent source (See Sec-
tion 5.2) with U as the underlying random process. Therefore, the source is
the result of a linear transformation of U , namely,

LU : FnRU2 →
∏
i∈[k]

FnRi2 .

In particular, we can express each source Wi as

Wi = ULi,

where each Li is an nRU by nRi matrix over F2.

For any matrix M , denote by M(i) the ith column of M and by CS(M) the
column space of M . For a row vector Wi, denote by Wi,j the jth element of
Wi. For vector spaces V and W , let V + W denote the direct sum of V and
W , (i.e., {v + w|v ∈ V,w ∈ W}). Let Bi ⊆ [nRi] be index sets such that for
B = {(i, j) : i ∈ [k], j ∈ Bi}, ⋃

(i,j)∈B

{Li(j)}

is the minimum spanning set of the vector space
∑

i∈[k]CS(Fi). Thus the rank
of LU equals |B|.

43

Let B̄i = [nRi]\Bi, then for each (i, j) such that i ∈ [k], j ∈ B̄i, we can express
ULi(j) as linear combinations of the spanning set, i.e.,

ULi(j) =
∑
i′∈[k]

∑
j′∈Bi′

ηiji′j′ULi′(j
′),

where each ηiji′j′ is a coefficient in F2.

I

s
0

1
s
0

k

t1 tk

s1 sk

ssu

sre

W
0

1
W

0

k

W
∗

1
W

∗

k

Xα

Figure 5.1: A schematic for generating dependent variables using a cooperation
facilitator.

Next, we describe a scheme to turn the dependent source code for I into
a code for Icfδ that would operate on independent sources at the cost of a
small loss in rate. Let W′ = (W ′

1, · · · ,W ′
k) be a set of independent sources

for Icfδ where each W ′
i is uniformly distributes in F|Bi|2 . With the help of the

cooperation facilitator, we first transform W′ into a set of dependent variables
W∗ = (W ∗

1 , · · · ,W ∗
k) using a full rank linear transformation

L∗ :
∏
i∈[k]

Fn|Bi|2 →
∏
i∈[k]

FnRi2

before applying the encoders of I (See Figure 5.1). Due to the topology of
Icfδ , we need a distributed scheme to apply L∗. We therefore need a two-step
procedure to generate W∗. At the first step, the cooperation facilitator first
broadcast a common message Xα = fα(W),

fα :
∏
i∈[k]

Fn|Bi|2 → Fnδ2 ,

44

to each of the old source nodes s1, · · · , sk in Icfδ . In the second step, each si
apply a local linear transformation

L∗i : Fn|Bi|2 × Fnδ2 → FnRi2 ,

that maps (W ′
i , Xα) to W ∗

i .

To ensure correct operation of the code, L∗ is designed such that the distri-
bution and the support set of W∗ equals that of W. By assumption of the
validity of the code, each terminal ti will be able to reconstructW ∗

i with overall
error probability less than ε. Finally, to allow for each terminal to reconstruct
W ′
i fromW ∗

i , we also requireW ′
i to be a function ofW ∗

i . Thus, an appropriate
choice of L∗ and λ will yield an (R− δ, ε, n, 0)-linearly-feasible code for Icfδ .

In what follows, we give the definitions of fα and {Li} that satisfy the require-
ments.

• Let B̄ = {(i, j) : i ∈ [k], j ∈ B̄i}. Recall that Wi,j denotes the jth bit of
Wi. The function fα is defined such that Xα = fα(W′) = (αi,j, (i, j) ∈
B̄), where

αi,j =
∑
i′∈[k]

∑
j′∈B′i

ηiji′j′W
′
i′,j′ .

The rate of the CF required to broadcast this function can be bounded
as follow,

|B̄| =
∑
i∈[k]

|Bi| −H(W) ≤
(∑
i∈[k]

nRi

)
−
(∑
i∈[k]

nRi

)
+ nδ = nδ.

• For each i ∈ [k], fix an arbitrary ordering of elements in Bi. define an
index mapping function

βi : Bi → [|Bi|]

that maps j to i if j is the ith element in Bi. The linear transformation
L∗i that maps W ′

i to W ∗
i is defined as follows:

W ∗
i,j =

W ′
i,βi(j)

j ∈ Bi

αi,j j ∈ B̄i.

It can be verified that there exists a inverse map fromW ∗
i toW ′

i for each
i ∈ [k], and the resulting L∗ is full rank.

45

Finally, we show that W∗ and W has the same distribution and support set.
Observe that W is uniformly distributed over its support since it is a linear
function of U which is uniformly distributed over FnRU2 . This is due to the fact
that the pre-image of any element in the co-domain of LU has the same size.
Similarly, since W′ is uniformly distributed, W∗ is also uniformly distributed
over its support. Let w = (w1, · · · , wk) ∈ Wsp, then w′ = (w′1, · · · , w′k) defined
as follows satisfies L∗U(w′) = w,

w′i,j =

wi,j j ∈ Bi∑
i′∈[k]

∑
j′∈B′i

ηiji′j′wi,j j ∈ B̄i.

Thus, the support set of W is contained in that of W∗. Finally, since both LU
and L∗ has the same rank, the support set of W equals W∗. Icfδ is therefore
(R− δ, ε, n, 0)-linearly-feasible.

5.4 Representative Topologies for The Edge Removal Statement

In Section 3.2, we introduce the cooperation facilitator (CF) and broadcast
facilitator (BF) from [30] which can turn any network into a super-source net-
work. Since the AERS is known to be true for networks super-source networks,
adding any negligible edge to a super-source network will not impact its ca-
pacity region. This implies that the key to understanding the AERS is to
understand the effect of adding a CF or BF to a network. Indeed, there is no
loss in generality in restricting ourselves to special network topologies when
studying the AERS. This observation is described in Theorem 5.4.1, which
gives two equivalent formulations of the AERS.

Theorem 5.4.1. The following statements are equivalent for any acyclic
network I.

(a) R ∈ lim
λ→0
Rε(Iλ)↔ R ∈ Rε(I).

(b) R ∈ lim
λ→0
Rε(Ibfλ)↔ R ∈ Rε(I).

(c) R ∈ lim
λ→0
Rε(Icfλ)↔ R ∈ Rε(I).

Proof. This proof relies on Lemma 5.3.1.

(b) → (a): Let R ∈ lim
λ→0
Rε(Iλ). Since the broadcast facilitator in Ibfλ can

compute edge e in Iλ and broadcast it to all nodes, we have R ∈ lim
λ→0
Rε(Ibfλ).

46

By assumption of (a), this implies R ∈ Rε(I). Since Rε(I) ⊆ lim
λ→0
Rε(Iλ), (b)

is true.

(a) → (c): Let R ∈ lim
λ→0
Rε(Icfλ). Let Ic be obtained from Icfλ by removing

the rate-λ bottleneck link in Icfλ , then Rε(I) = Rε(Ic). By assumption of
(a), this implies R ∈ Rε(Ic), and therefore, R ∈ Rε(I). Since Rε(I) ⊆
lim
λ→0
Rε(Icfλ), (c) is true.

(c) → (b): Let R ∈ lim
λ→0
Rε(Ibfλ), then for any ε, λ, ρ > 0, Ibfλ is (R −

ρ, ε, n, 0)-feasible for some blocklength n. By Lemma 5.3.1(2), for all ρ′, δ′ >
0, there exists blocklength n′ such that I is (R − ρ′, 0, n′, δ′)-feasible. By
Lemma 5.3.1(1), for all ρ′′, λ′′ > 0, there exists blocklength n′′ such that Icfλ′′
is (R− ρ′′, 0, n′′, 0)-feasible. Thus, R ∈ lim

λ→0
Rε(Icfλ). By assumption of (c), we

have R ∈ Rε(I). Since Rε(I) ⊆ lim
λ→0
Rε(Ibfλ), (b) is true.

Roughly speaking, equivalent form (b) in Theorem 5.4.1 describes the obser-
vation that the bottleneck edge in a broadcast facilitator is the strongest edge
since it can compute any function of the sources and deliver it to any node,
it is therefore representative of any other edge in a network. Equivalent form
(c) in Theorem 5.4.1 describes the observation that even though the coopera-
tion facilitator is not as strong as a broadcast facilitator, their difference (with
respect to capacity region) becomes negligible when the bottleneck capacity
becomes asymptotically small. Thus, studying the effect of the removal of
the bottleneck edge of a cooperation facilitator (or broadcast facilitator) is
representative of the AERS.

5.5 A sufficient Condition for Capacity Reduction

In this section, we derive sufficient conditions for a capacity reduction to be
equivalent to the AERS or Linear AERS. The sufficient condition is presented
in Theorem 5.5.1, below. One key observation of the capacity reductions
mentioned in this paper is that they are only known to be true for super-
source networks. Roughly speaking, Theorem 5.5.1 shows that if a broadcast
facilitator allows one to prove a capacity reduction from Ibfλ to Ĩ, then the
capacity reduction from I to Ĩ is equivalent to the AERS. Similarly, if one
can prove a linear capacity reduction from Ibfλ to Ĩ, since edge removal is true
for linear capacity regions (Theorem 3.2.1), a linear capacity reduction from
I to Ĩ holds. This result is captured in Theorem 5.5.1.

47
R 2 Rǫ(I)

~R 2 ~R(~I)R 2 limλ!0 Rǫ(I
b

λ
)

AERS CR

SC

R 2 R
L
ǫ
(I)

~R 2 R
L
ǫ
(~I)R 2 limλ!0 R

L
ǫ
(Ib

λ
)

Linear AERS Linear CR

Linear SC

Figure 5.2: The figure depicts the proof of Theorem 5.5.1 which proves a
sufficient conditions for the equivalence between capacity reduction and AERS
for both the general and linear case.

Theorem 5.5.1. For a acyclic network coding instance I, rate vector R and a
reduction mapping Φ, let Ĩ and R̃ be the corresponding network coding instance
and rate vector; then

1.
[
R̃ ∈ R(Ĩ)⇔ R ∈ lim

λ→0
Rε(Ibfλ)

]
implies

[(
R̃ ∈ R(Ĩ)⇔ R ∈ Rε(I)

)
⇔ AERS

]
.

2.
[
R̃ ∈ RL

ε (Ĩ)⇔ R ∈ lim
λ→0
RL
ε (Ibfλ)

]
implies

[
R̃ ∈ RL

ε (Ĩ)⇔ R ∈ RL
ε (I)

]
.

Proof. The proof idea is illustrated in Figure 5.2. Suppose that the sufficient
condition (SC) is true; we show that capacity reduction (CR) is equivalent
to the AERS. There are two directions to be proven. For the first direction,
assume that the CR is true. By CR, R ∈ Rε(I) if and only if R ∈ R̃(Ĩ). By
the SC, we have R ∈ R̃(Ĩ) if and only if R ∈ lim

λ→0
Rε(Ibfλ). This implies that

AERS is true. For the second direction, assume that AERS is true. By AERS,
R ∈ Rε(I) if and only ifR ∈ lim

λ→0
Rε(Ibfλ). By the SC, we haveR ∈ lim

λ→0
Rε(Ibfλ)

if and only if R ∈ R̃(Ĩ). This implies that CR is true. The proof for the linear
case is similar.

48

C h a p t e r 6

CAPACITY REDUCTION FROM MULTIPLE UNICAST TO
2-UNICAST

The materials of this chapter are published in part as [40].

Demand type plays a central role in characterizing the capacity region of net-
work coding networks. For single-source network coding problems, the maxi-
mum rate at which information can be multicast has a simple characterization
via the maximum flow of the underlying graph of the network coding problem.
However, the k-source network coding problem is a non-trivial extension of
the single-source case.

In the literature, results for k-source network coding problems are derived
for various values of “k”. For example, the authors of [44] show that for k
equals 5, linear codes are insufficient to achieve the network coding capacity.
The authors of [45] show that the linear programming outer bound [46] is
loose when k equals 6. We have already seen from Chapter 4 that multiple
multicast networks reduce to multiple unicast networks. One may ask the
question how the difficulty of a k-unicast network coding problem depends on
k. It is tempting to believe that the k-unicast problems are inherently easier
for small values of k. For example, the authors of [47] show that the cut-set
bound is tight for undirected k-unicast network coding problems for k = 2.

A surprising result in [14] proves a code reduction from k-unicast network
coding to 2-unicast network coding. The authors of [14] pose the question
of whether the reduction mapping in [14] (here we refer to as mapping Φ2)
can be used to prove a capacity reduction. We resolve this question partially
by showing that under mapping Φ2, the linear capacity calculation reduces
from k-unicast to 2-unicast. Furthermore, the general capacity reduction from
k-unicast to 2-unicast holds if and only if the AERS holds.

In the next section, we first describe mapping Φ2. Our capacity reduction re-
sult is formally captured in Theorem 6.2.1 of Section 6.2, and its proof is given
in Section 6.5. A useful lemma that maps a lossy code for dependent sources
to a lossless network code for independent sources is given in Section 6.4.

49

6.1 Reduction Mapping Φ2

We begin by describing the mapping Φ2 used to prove the code reduction from
k-unicast network coding to 2-unicast network coding in [14], modified slightly
to fit our model.

Let I = ((V,E,C), S, T) and R = (R1, · · · , Rk). The corresponding network
Ĩ = ((Ṽ , Ẽ, C̃), S̃, T̃) and rate R̃ is given below. The construction in [14] first
combines demands {(s1, t1), · · · , (sk, tk)} of I into a single demand (s̃1, t̃1) in
Ĩ. The instance Ĩ employs a modified butterfly structure for each demand
(si, ti), i ∈ [k]. The construction is illustrated in Figure 6.1.

These butterflies are connected to network I so that terminal node ti in I acts
as the right-side “source” of the ith butterfly in Ĩ. The left-side source node, ai,
of the same butterfly is connected to s̃2, which carries an independent source
W̃2. We therefore have

S̃ = {s̃1, s̃2}.

Finally, the left-side and right-side “terminal nodes” of the ith butterfly are
connected to terminal nodes t̃1 and t̃2 of Ĩ, respectively, giving

T̃ = {t̃1, t̃2}.

Since we are combining k sources, the new rate vector for Ĩ is

R̃ =

(∑
i∈[k]

Ri,
∑
i∈[k]

Ri

)
.

The resulting graph is given by

Ṽ = V ∪ S̃ ∪ T̃ ∪
{
u1, u2

}
∪
[⋃
i∈[k]

{ai, bi, ci, fi, hi}
]

Ẽi = {(u1, si), (u2, ai), (fi, t̃1)(hi, t̃2), (ti, bi), (ai, bi),

(aifi), (bi, ci), (ci, hi), (ci, fi), (si, hi)}

Ẽ = E ∪
{

(s̃1, u1), (s̃2, u2)

}
∪
[⋃
i∈[k]

Ẽi

]

c̃e =


∞ if In(e) ∈ {s̃1, s̃2}

Ri if e ∈ Ẽi ∨ In(e) ∈ S

ce if e ∈ E.

50

Note that Ĩ depends on both I in its topology and R in its edge capacities.
Here, for each i ∈ [k], edges (u1, si), (u2, ai) and each edge in Ẽi is of capacity
Ri. Infinite capacity edges (s̃1, u1) and (s̃2, u2) are added to capture the notion
that the sources are available a priori to u1 and u2. Sources from s̃1 and s̃2

are demanded by nodes t̃1 and t̃2, respectively.

b1

c1

f1 h1

a1

~t1~t2

u1u2

I

s1

tkt1

ak

bk

ck

hkfk

sk

~s1~s2

~I

Figure 6.1: Graphical representation of corresponding network Ĩ. Network
Ĩ contains I as a sub-network and is augmented with k “butterfly” network
structures.

6.2 Main Result

Theorem 6.2.1 gives a partial solution to the question of whether Φ2 can be
used to derive a reduction in capacity region, which is left open by authors
of [14].

Theorem 6.2.1 (Capacity Reduction from k-Unicast to 2-Unicast).

1. Linear capacity characterization for k-Unicast network coding reduces to
linear capacity characterization for 2-Unicast network coding. That is,
under mapping Φ2, for any acyclic network coding instance I and rate

51

vector R,
R̃ ∈ RL

ε (Ĩ)⇔ R ∈ RL
ε (I).

2. Capacity characterization for k-Unicast network coding reduces to capac-
ity characterization for 2-Unicast network coding under mapping Φ2 if
and only if the AERS holds. That is, for any acyclic network coding
instance I and rate vector R,(

R̃ ∈ Rε(Ĩ)⇔ R ∈ Rε(I)

)
if and only if the AERS holds.

Proof. See Section 6.5.

6.3 Insufficiency of Linear Coding in 2-Unicast Network Coding

One application of capacity reduction results is to generate new results from
existing ones that are proven for a different class of networks. In [44], the au-
thors construct a 5-source multiple multicast network (call it I) to demonstrate
the insufficiency of linear coding in network coding networks. One application
of capacity reduction is to reduce this example network to a 2-unicast network
Ĩ. The result in [44] proved that there exists R∗ such that R∗ ∈ Rε(I) but
R∗ /∈ RL

ε (I).

In the proof of Theorem 6.2.1 (2), we show that

R ∈ lim
λ→0
Rε(Ibfλ)↔ R̃ ∈ Rε(Ĩ),

which gives
R ∈ Rε(I)→ R̃ ∈ Rε(Ĩ).

By Theorem 6.2.1 (1), we have

R ∈ RL
ε (I)← R̃ ∈ RL

ε (Ĩ).

Thus, the resulting network Ĩ preserves the gap between linear and optimal
codes. That is, R̃∗ ∈ Rε(Ĩ), but R̃∗ /∈ RL

ε (Ĩ). This yields a 2-unicast network
coding network demonstrating the insufficiency of linear coding.

6.4 A Linear Code Reduction from Lossy Source Coding to Lossless
Network Coding

We consider a lossy source coding scenario that is similar to that described in
Section 4.5, except that the sources in this case are not independent. That is,

52

we consider the scenario where operation of the encoders {fu,τ , u ∈ U} on a
set of dependent sources W yields a mutual information I(Wt;Zt) ≥ nRt for
each terminal t and its desired source Wt where Zt = (Y n

t ,WHt) is the channel
output for terminal node t.

Since the sources are dependent, Lemma 4.5.1 cannot be applied directly be-
cause the random coding argument in its proof requires the sources to be
independent. Lemma 6.4.1, below, describes a scheme that maps the lossy
source code to a lossless network code by first applying linear Slepian-Wolf
(SW) encoding scheme[48] (which enables terminals to reconstruct the sources
losslessly) and then applying Lemma 5.3.1 (which enables independent sources
of a reduced rate to be transmitted when I is augmented with a cooperation
facilitator.) When the sources are linearly dependent and the encoders are
linear, Lemma 6.4.1 yields a linear lossless network code.

Lemma 6.4.1. Let I = (G,S, T) be a k-unicast network coding network.
Let {fe, e ∈ E} be a set of blocklength n encoders and let W be a vector of
rate R = (R1, · · · , Rk), nδ-dependent source message random variables such
that under the operation of {fe, e ∈ ESc} on W, the information variable
Zt = (Y n

t ,WHt) received by each terminal t ∈ T (See Figure 6.2(b)) satisfies

γ = max
t∈T

1

n
H(Wt|Zt).

Then for any ε′ > 0, there exists a blocklength n′ such that Icfλ′ is (R −
ρ′, ε′, n′, 0)-feasible, where λ′ and ρ′ are positive numbers tending to zero as
δ and γ tend to zero. Further, if W is linearly dependent and {fe, e ∈ ESc}
are linear encoders, then for any ε′ > 0, there exists blocklength n′ such that
Icfλ′ is (R − ρ′, ε′, n′, 0)-linearly-feasible, where λ′ and ρ′ are positive numbers
tending to zero as δ and γ tend to zero.

Proof. Consider the distributed Slepian-Wolf source coding set-up in Fig-
ure 6.2(b). Here SW coding is employed to describe sources drawn i.i.d ∼
p(Zt,Wt), where p(Zt,Wt) is the distribution induced by the operation of
{fe, e ∈ E} on W. For a blocklength N , each terminal t has side-information
ZNt and would like to reconstruct WN

t . By [48, Theorem 1], there exists a
linear encoder

ft,sw : FnNRt2 → FnNR
∗
t

2 for each t ∈ T

53

such that for any R∗t > nγ, each t can reconstruct WN
t from the received code-

word ft,sw(WN
t) (using a minimum entropy decoder [48]) with error probability

ε∗ which tends to zero as N tends to infinity.

Consider the following communication scheme for I to transmitWN
t = (Wt,j, j ∈

[N]) to each t ∈ T :

1. For the first nN time steps, apply the blocklength n encoders {fe, e ∈
ESc} a total of N times. For each j ∈ [N], during the jth block of
n timesteps, {fe, e ∈ ESc} is applied on (Wt,j, t ∈ T). This yields the
information variable ZNt that is received by each terminal t ∈ T at the
end of time nN .

2. For the rest of the time steps, compute and route each SW codeword
ft,sw(WN

t) from source node s to terminal t. Do this sequentially for
each (s, t) ∈ {(si, ti), i ∈ [k]} before each terminal reconstructs WN

t .
Assuming we can send a single unicast rate of at least R′t (via routing)
across each source-destination pair (s, t), the total number of time steps
needed for this phase is

nNα =
∑
t∈T

NR∗t
R′t

,

where α =
R∗t
nR′t

tends to zero as γ tends to zero.

This yields an (R
1+α

, ε∗, nN(1 + α), δ)-feasible code for I. By Lemma 5.3.1(1),
Icfλ is (R

1+α
− ρ, 0, nN(1 + α), 0)-feasible, where α, λ and ρ tend to zero as

ε∗,γ and δ tend to zero and nN tends to infinity. If {fe, e ∈ ESc} are linear
encoders and W is an nδ-linearly-dependent, then the scheme above yields an
(R
1+α

, ε∗, nN(1 + α), δ)-linearly-feasible code for I. By Lemma 5.3.1(3), Icfλ is
(R
1+α
− ρ, ε∗, nN(1 + α), 0)-linearly-feasible, where α, λ, and ρ tend to zero as

ε∗,γ, and δ tend to zero and nN tends to infinity.

6.5 Proof of Theorem 6.2.1

Proof. We use variables without tildes for I and variables with tilde for Ĩ. It
suffices (Theorem 5.5.1) to show the following two “if and only if” statements:

R̃ ∈ Rε(Ĩ)⇔ R ∈ lim
λ→0
Rε(Ibfλ) and R̃ ∈ RL

ε (Ĩ)⇔ R ∈ lim
λ→0
RL
ε (Ibfλ).

54

I

s1

tkt1

sk

W1 Wk

Zt1
Ztk

W
N
t

Z
N
t

cWN
t

rate = R
∗

t

(a)

(b)

b1

c1

f1 h1

a1

~t1~t2

u1u2

I

s1

tkt1

ak

bk

ck

hkfk

sk

~s1~s2

~I

~W1
~W2

~Za1
~Zak

bZa1

bZak

~Zs1 ~Zsk

~Zt1
~Ztk

bZt1

bZtk

~B1
~Bk

(c)

Figure 6.2: (a) A channel used to illustrate the channel in Lemma 6.4.1. (b)
A Slepian-Wolf coding scheme for I to convert a lossy code to a lossless one.
(c) Figure of Ĩ labeled with edge information variables.

We prove each statement in two parts, first showing that if a rate vector
R = (R1, · · · , Rk) is in the capacity region of Ibfλ , then the corresponding rate
vector R̃ = (Rsum, Rsum), where Rsum =

∑
i∈[k]

Ri, is in the capacity region of Ĩ,

and then showing the converse.

We now present the proof of the assertion R̃ ∈ Rε(Ĩ) ⇔ R ∈ lim
λ→0
Rε(Ibfλ).

The proof for linear capacity follows from that presented since it uses the
same reduction network Ĩ and our code reductions preserve code linearity.
Parallel arguments for the proof for linear capacity are contained in square
brackets (i.e., [...]).

R̃ ∈ Rε(Ĩ) ⇒ R ∈ lim
λ→0
Rε(Ibfλ): Fix any ε̃, ρ̃ > 0. We start with an

(R̃ − ρ̃, ε̃, ñ, 0)-feasible network code C̃ for Ĩ. Under the operation of C̃ on
network Ĩ, let the edge information variables be denoted (capital letters) as in
Figure 6.2(c). In particular, let each Z̃s be the information variable received

55

by the old source node s ∈ S and each Z̃t be the information variable received
by the old terminal node t ∈ T in Ĩ.

By Lemma 6.5.1, to be stated shortly, for each source-destination pair of I,
(s, t) ∈ {(si, ti), i ∈ [k]}, we have

H(Z̃s|Z̃t) ≤ ñγ̃,

where γ̃ tends to zero as ρ̃ and ε̃ tend to zero.

Next, we bound the dependence among the variables (Z̃s, s ∈ S). We have

I(W̃1; (Z̃s, s ∈ S))
(a)

≥ I(W̃1; (Z̃t, t ∈ T))
(b)

≥ ñ(Rsum − ρ̃− γ̃′)

for some γ̃′ that tends to zero as ε̃ tends to zero, where (a) is due to the data
processing inequality and (b) is due to Fano’s inequality. This gives

H(Z̃s, s ∈ S) ≥ ñ(Rsum − ρ̃− γ̃′) +H(Z̃s, s ∈ S|W̃1) = ñ(Rsum − ρ̃− γ̃′).

Further, since each link carrying Z̃s has a capacity of Rs, the support size of
each Z̃s is bounded above by 2ñRs , giving H(Z̃s) ≤ ñRs for each s ∈ S. Hence

H(Z̃s) ≥ H(Z̃s′ , s
′ ∈ S)−

∑
s′∈S\{s}

H(Z̃s′) ≥ ñ(Rs − ρ̃− γ̃′),

(∑
s∈S

H(Z̃s)

)
−H(Z̃s, s ∈ S) ≤ ñ(ρ̃+ γ̃′).

If we consider (Z̃s, s ∈ S) as source message variables, those source message
variables would be ñδ̃-dependent for δ̃ = ρ̃+ γ̃′.

By Lemma 6.4.1, for any ε > 0, there exists a blocklength n such that Icfλ is
(R−ρ, ε, n, 0)-feasible where ρ and λ tend to zero as ρ̃ and ε̃ tend to zero. This
implies that R ∈ lim

λ→0
Rε(Ibfλ) as desired. [Note that if C̃ were a linear code,

then (Z̃s, s ∈ S) would be ñδ̃-linearly-dependent with W̃1 as the underlying
random process (See Section 5.2). Lemma 6.4.1 therefore yields a linear code
for Icfλ which in turn implies that R ∈ lim

λ→0
RL
ε (Ibfλ).]

R̃ ∈ Rε(Ĩ) ← R ∈ lim
λ→0
Rε(Ibfλ): Fix any ε, ρ, λ > 0. We start with an

(R− ρ, ε, n, 0)-feasible network code C for Ibfλ . By Lemma 5.3.1(2), I is (R−
ρ′, 0, n′, δ′)-feasible (under code C ′) for some δ′ and ρ′ that tend to zero as
ε, λ, and ρ tend to zero. Let W = (W1, · · · ,Wk) be the corresponding set

56

of nδ′-dependent sources. [If R ∈ RL
ε (Ibfλ), then R − ρ ∈ RL

ε (I) for some ρ
that tends to zero as λ tends to zero (Theorem 3.2.1). Using the fact that
RL
ε (I) = RL

0 (I) (Theorem 9.1.1), there exists a blocklength n′ such that I is
(R − ρ′, 0, n′, 0)-linearly-feasible (under code C ′), where ρ′ tends to zero as λ
tends to zero.]

Since C ′ is a zero error code, any source realization in the support set Wsp of
W can be transmitted to the terminals without error. Using this fact, consider
the following communication scheme for Ĩ, in which we transmit independent
source messages W̃1 and W̃2:

1. At source node s̃2, the source message W̃2 ∈ Fn′Rsum
2 is split into k chunks,

giving W̃2 = (Z̃a1 , · · · , Z̃ak), where each

Z̃i ∈ Fn
′Ri

2

is transmitted on edge (u2, ai) and forwarded to nodes bi and fi.

2. We set W̃1 to be in Fn
′(Rsum−kρ′−δ′)

2 . At source node s̃1, the encoder

fs̃1 : Fn
′(Rsum−kρ′−δ′)

2 →Wsp

maps the ith element in Fn
′(Rsum−kρ′−δ′)

2 to the ith element in the support
set ofW, with respect to an arbitrary but fixed ordering of Fn

′(Rsum−kρ′−δ′)
2

and Wsp. Note that this mapping is well defined since

log2 |Wsp| ≥ H(W) ≥
(∑
i∈[k]

H(Wi)

)
− n′δ′ ≥ n′(Rsum − kρ′ − δ′).

3. Consider operating C ′ on the sub-network I that is contained in Ĩ. That
is, treating

fs̃1(W̃1) = (W̃1,1, · · · , W̃1,k)

as the dependent sources and applying encoders of C ′ on nodes V \ T
and the decoders on each of the terminals t ∈ T . By assumption of
the zero-error code C ′, each terminal ti is able to obtain an error-free
reconstruction of W̃1,i.

4. The rest of the network applies a “butterfly” network code. For each
i ∈ [k], node ti forwards W̃1,i to node bi, which computes the element-
wise binary sum (denoted by operator “+”)

W̃1,i + W̃2,i

57

and forwards it to nodes ci, fi, and hi.

5. Finally, each hi receives variable W̃1,i from si and extracts W̃2,i from
W̃1,i + W̃2,i, then transmits it to t̃2. Similarly, each fi computes W̃1,i and
transmits it to t̃1.

Since the butterfly network code introduces no error, this scheme yields a code
C̃ that is (R̃ − kρ′ − δ′, 0, n′, 0)-feasible for Ĩ. Since ρ′ and δ′ tend to zero as
ε, ρ and λ tend to zero, R̃ ∈ Rε(I). [Note that if we start with a linear code
C ′ that is feasible for independent sources, the corresponding support set then
becomes Wsp =

∏
i∈[k] F

n′(Ri−ρ′)
2 , the encoding function fs̃1 described in Step

2) of the scheme can then be made linear. Further, since the butterfly network
code described in steps 4) and 5) is also linear, this yields a linear network
code C̃ for Ĩ. Thus R̃ ∈ RL

ε (I).]

Lemma 6.5.1. (Based on [14]) Let R̃ = (
∑k

i=1Ri,
∑k

i=1Ri). If Ĩ is (R̃ −
ρ̃, ε̃, ñ, 0)-feasible, then for all i ∈ [k], H(Z̃si |Z̃ti) ≤ ñγ̃, where γ̃ goes to zero as
ρ̃ and ε̃ goes to zero.

Proof. This proof follows the proof idea from [14] and uses variables from
Figure 6.2(c). We bound I(B̃i; W̃2) as follows,

I(B̃i; W̃2)

= I(B̃i; W̃1, W̃2)− I(B̃i; W̃1|W̃2) By chain rule of mutual information.
= I(B̃i; W̃1, W̃2)− I(B̃i, W̃2; W̃1) Independence of W̃1 and W̃2

= I(B̃i; W̃1, W̃2)− I(B̃i, Ẑti , W̃2; W̃1) Ŷi is a function of W̃2, B̃i

≤ ñRi − I(Ẑti ; W̃1)

= ñRi − I((Ẑtj , j ∈ [k]); W̃1)

+I((Ẑtj , j ∈ [k] \ {i}); W̃1|Ẑti) By chain rule of mutual information.
≤
∑

j∈[k] ñRj By decoding condition
−((
∑

j∈[k] ñRj)− ñδ̃i) = ñδ̃i and Fano’s inequality.

58

Next, we bound I(B̃i; W̃2, Z̃si),

I(B̃i; W̃2, Z̃si)

≥ I(B̃i; W̃2|Z̃si)
= I(B̃i, Z̃si ; W̃2) Independence of W̃2 and Z̃si .
= I(B̃i, Z̃si , Ẑai ; W̃2) Ẑai is a function of B̃i, Z̃si
≥ I(Ẑai ; W̃2)

= I((Ẑaj , j ∈ [k]); W̃2)

−I((Ẑaj , j ∈ [k] \ {i}); W̃2|Ẑai) By chain rule of mutual information.
≥ (

∑
j∈[k]

ñRj − ñδ̃i) By decoding condition

−
∑

j∈[k]\{i}
ñRj = ñRi − ñδ̃i and Fano’s inequality.

Finally we bound H(Ỹsi |Ỹti),

H(Z̃si |Z̃ti)
= H(Z̃si |Z̃ti , W̃s̃2 , (Z̃aj , j ∈ [k])) By independence of

(W̃s̃2 , (Z̃aj , j ∈ [k]) with (Z̃si , Z̃ti)

= H(Z̃si |Z̃ti , W̃2, (Z̃aj , j ∈ [k]), B̃i) Since B̃i is a function of Z̃ai , Z̃ti .
≤ H(Z̃si |B̃i, W̃2) Conditioning reduces entropy.
= H(Z̃si |W̃2)− I(B̃i; Z̃si |W̃2) Expansion of I(B̃i; Z̃si |W̃2).

= H(Z̃si |W̃2)

−I(B̃i; W̃2, Z̃si) + I(B̃i; W̃2) By chain rule of mutual information.
≤ 2ñδ̃i

Here each δ̃i goes to zero as ρ̃ and ε̃ goes to zero. It suffices to set γ̃ =

max
i∈[k]

2δ̃i.

59

C h a p t e r 7

REDUCTION FROM NETWORK CODING TO INDEX
CODING

The materials of this chapter are published in part as [49].

The index coding problem [5] is a special case of the network coding problem
that can be interpreted as a “broadcast with side information” problem: a
broadcast node has access to all sources and wishes to communicate with
several terminals, each having and desiring to reconstruct potentially different
sets of sources.

A code reduction from acyclic network coding to index coding is derived in [7].
Thus, any efficient scheme that solves all index coding problems would yield
an efficient scheme that solves all acyclic general network coding problems.
Although the connection between network coding and index coding presented
in [7] is very general, it does not resolve the question of whether the network
coding capacity region can be obtained by solving the capacity region of a
corresponding index coding problem.

In this work, we show that the capacity reduction from acyclic network coding
to index coding is equivalent to the AERS. Section 7.1 describes the mapping
Φ3 from an acyclic network coding instance to an index coding instance. We
describe the main result in Section 7.2 and give its proof in Section 7.3.

7.1 Reduction Mapping Φ3

We begin by describing the reduction from I to Ĩ employed in [6], modified
slightly here in order to fit our model. Note that in the reduction of [6], the
instance Ĩ depends only on I (and not on the parameters n and ε as permitted
by Definition 1).

Given network coding instance I = (G,S, T) with topology G = (V,E,C) and
given any rate vector R, we define index coding problem Ĩ = (S̃, T̃ , H̃, c̃B)

and rate vector R̃ as follows. The source set S̃ contains one source node s̃s for
each source node s ∈ S and one source node s̃e for each edge e that is not a

60

~ss1 ~ss2

~tt1
~tt2

v1

v2

~se1 ~se2

~te1
~te2

~se3

~te3

~I

Source Nodes S̃ = {s̃s1 , s̃s2 , s̃e1 , s̃e2 , s̃e3}
Destination Nodes t̃ = {t̃t1 , t̃t2 , t̃e1 , t̃e2 , t̃e3}

Side H̃t̃t1
= {s̃s2 , s̃e1}

Information H̃t̃2 = {s̃s1 , s̃e2}
Sets H̃e3 = {s̃s1 , s̃s2}

H̃e1 = {s̃e3}, H̃e2 = {s̃e3}
Broadcast Capacity c̃B = 3

Rate R̃ = (R, 1, 1, 1)

Figure 7.1: The index coding network corresponding to the “butterfly” like
network in Figure 2.2 in Section 2.2.

source edge, giving

S̃ = {s̃s : s ∈ S} ∪ {s̃e : e ∈ ESc}.

Similarly, terminal set T̃ has one terminal t̃t for each terminal t ∈ T and one
terminal t̃e for each edge e that is not a source edge, giving

T̃ = {t̃t : t ∈ T} ∪ {t̃e : e ∈ ESc}.

The “has” set H̃t̃ for terminal t̃ varies with the terminal type. When t̃ = t̃e for
some edge e ∈ ESc , H̃t̃ includes the source nodes s̃e′ for all edges e′ incoming
to e and source nodes s̃s for all source edge e′ = (s, In(e)) ∈ E incoming to e
in G; when t̃ = t̃t for some terminal t ∈ T , H̃t̃ includes the source nodes s̃e′ for
all edges e′ incoming to t and source nodes s̃s for all source edge e′ = (s, t) ∈ E
incoming to t in G. Thus

H̃t̃ =

{
{s̃e′ : Out(e′) = In(e)} ∪ {s̃s : (s, In(e)) ∈ E} if t̃ = t̃e for some e ∈ ESc
{s̃e : Out(e) = t} ∪ {s̃s : (s, t) ∈ E} if t̃ = t̃t for some t ∈ T .

The bottleneck capacity c̃B is set to the sum of all finite edge capacities in I,
giving

c̃B =
∑
e∈ESc

ce.

The rate vector R is mapped to

R̃ = (R, (ce : e ∈ ESc)).

An example is shown in Figure 7.1, which gives the index coding network Ĩ
corresponding to the butterfly network from Figure 2.2 of Chapter 2.

61

7.2 Main Result

The authors in [7] pose the question of whether code reduction Φ3 can be used
to derive a corresponding capacity reduction. Theorem 7.2.1 gives a partial
solution to that question.

Theorem 7.2.1 (Capacity Reduction from Network Coding to Index Coding).

1. Linear capacity characterization for network coding reduces to linear ca-
pacity characterization for index coding. That is, under mapping Φ3, for
any acyclic network coding instance I and rate vector R,

R̃ ∈ RL
ε (Ĩ)⇔ R ∈ RL

ε (I).

2. Capacity characterization for network coding reduces to capacity charac-
terization for index coding under mapping Φ3 if and only if the AERS
holds. That is, for any acyclic network coding instance I and rate vector
R, (

R̃ ∈ Rε(Ĩ)⇔ R ∈ Rε(I)

)
if and only if the AERS holds.

Since the question of whether the edge removal statement is always true or
sometimes false is unresolved, the question of capacity reduction between net-
work coding and index coding remains open in the general case. However,
our result provides another way to understand the capacity region of network
coding problems via the edge removal statement.

7.3 Proof of Theorem 7.2.1

Proof. We first give a high level description of the proof. Throughout this
proof, we use “untilded” variables for I and “tilded” variables for Ĩ. It suffices
(Theorem 5.5.1) to show the following two “if-and-only-if” statements:

R̃ ∈ Rε(Ĩ)⇔ R ∈ lim
λ→0
Rε(Ibfλ) and R̃ ∈ RL

ε (Ĩ)⇔ R ∈ lim
λ→0
RL
ε (Ibfλ).

To prove each of the above two statements, we present two proof “directions”.
In the first direction, we show that if a rate vector R = (R1, · · · , Rk) is in the
capacity region of Ibfλ , then the corresponding rate vector R̃ = (R, (ce, e ∈
ESc)) is in the capacity region of Ĩ. We show the converse in the second
direction.

62

The proof uses the idea of code reduction, in which we transform an (R(1 −
ρ), ε, n) network code C for Ibfλ into a rate (R̃(1− ρ̃), ε̃, ñ) network code C̃ for
Ĩ and vice versa. The ρ̃-loss in rate tends to zero as ρ, ε tends to zero and the
blocklength ñ tends to infinity. By taking the closure of these rates, we get the
desired result. We now present the proof of the assertion R̃ ∈ Rε(Ĩ) ⇔ R ∈
lim
λ→0
Rε(Ibfλ). The proof for linear capacity follows from that presented since

it uses the same reduction network Ĩ and our code reductions preserve code
linearity. Parallel arguments for the proof for linear capacity will be contained
in square brackets (i.e., [...]).

First direction: R̃ ∈ Rε(Ĩ) ⇒ R ∈ lim
λ→0
Rε(Ibfλ). Define W̃S = (W̃s, s ∈ S)

and W̃ESc = (W̃e, e ∈ ESc). Fix any ε, ρ > 0, we start with a code C̃ that is
(R̃(1− ρ̃), ε̃, ñ)-feasible for Ĩ. For any non-source node v ∈ S, denote by

W̃Hv =

(
(W̃e′ , e

′ ∈ E : Out(e′) = v), (W̃s′ , s
′ ∈ S : (s′, v) ∈ ES)

)
the vector of source and edge messages in the has set H̃v of v in Ĩ. Let the
broadcast encoder be denoted by

f̃B(W̃S,W̃ESc)

and the decoders be denoted by,

g̃t̃e(X̃B,WHIn(e))

g̃t̃t(X̃B,WHt).

We design a code C that operates on Ibfλ in two phases, reusing these functions:

1. In the first phase, the super-node ssu broadcasts an overhead message

Xα = f̃B(W, FESc (W))

to nodes in S of Ibfλ , where

FESc :
∏
s∈S

FñRs(1−ρ̃)2 →
∏
e∈ESc

Fñce(1−ρ̃)2

is a suitable function that maps a realization of W̃S to a realization of
W̃ESc .

63

2. In the second phase, the sources W are transmitted through the rest of
Ibfλ by having the following encoding function for each e ∈ ESc ,

fe(ZIn(e)) = g̃t̃e(Xα, ZIn(e)).

Each terminal t implements the decoding function

Ŵt = g̃t̃t(Xα, Zt).

Note that if the original index code operates without error on a message
realization (W̃S,W̃ESc) = (w̃S, FESc (w̃S)), then by induction on the
topological order of G, C will also be able to operate without error on
message realization W = w̃S.

By Lemma 7.3.1, stated shortly, there exists a function fESc so that the super-
node in Ibfλ can broadcast the overhead messageXα using only a small alphabet
Σ and that the coding scheme described above operates with error at most
2ε̃, where ñ−1 log |Σ| goes to zero as ñ goes to infinity and ρ̃ goes to zero.
Therefore, ∀λ, ρ̃, ε̃ > 0, Ibfλ is (R(1 − ρ̃), 2ε̃, ñ)-feasible for large enough ñ,
which also means that R ∈ lim

λ→0
Rε(Ibfλ). [Note that if C̃ were linear, then

Lemma 7.3.2 implies a linear encoder FESc (of a rate that tends to zero as ρ̃
tends to zero) for the broadcast facilitator, which will yield a linear C. Hence
R ∈ lim

λ→0
RL
ε (Ibfλ).]

Second direction: R̃ ∈ Rε(Ĩ) ⇐ R ∈ lim
λ→0
Rε(Ibfλ). Fix any ε, ρ > 0. We

start with an (R(1− ρ), ε, n)-feasible code for Ibfλ . Denote this code by

Cλ = ({fe}e∈Eλ , {gt}t∈T),

where Eλ is the set of edges in instances I and Ibfλ , respectively. Let Ĩ be
the corresponding index coding instance for I and let Ĩλ be the index coding
instance obtained from Ĩ by adding an extra λ to the capacity of the bottle-
neck link. Let {Fe}e∈Eλ be the set of global encoding functions corresponding
to Cλ and let α be the bottleneck edge of the broadcast facilitator in Ibfλ .
Following [7], we construct an index code C̃ for Ĩλ by reusing the code for I,
concatenating it with a linear outer code as follow.

1. Let “+” denote the element-wise binary addition operator. We decom-
pose the broadcast encoder f̃B(WS,WESc) = X̃B into components and

64

define each component,

X̃B = (X̃B,e, e ∈ ESc ∪ {α})

X̃B,e =

W̃e + Fe(W̃S) e ∈ ESc

Fα(W̃S) e = α.

2. At the decoders, for each edge terminal t̃ = t̃e, each decoder g̃t̃ first
computes Fe(W̃S) using its side information and the broadcast message,

Fe(W̃S) = fe((X̃B,e′ + W̃e′ , e
′ : Out(e′) = In(e)),W̃HIn(e))

and then finally obtains ̂̃W e = X̃B,e + Fe(W̃S). Similarly, for each t̃ = t̃t

that demands W̃s, each decoder d̃t̃ outputs a reconstruction of W̃t by
applying the decoders from Cλ̂̃W s = gt((X̃B,e′ + W̃e′ , e

′ : Out(e′) = t),W̃Ht).

Note that this index code operates without error on inputs (W̃S,W̃ESc) =

(w̃S, w̃ESc) if and only if the original network code operates without error
on inputs W = w̃S.

Therefore, for all λ, ρ, ε > 0, there exists blocklength n such that Ĩλ is (R̃(1−
ρ), ε, n)-feasible. Thus, R̃ ∈ Rε(Ĩλ). By Lemma 7.3.3, stated shortly, we have
R̃(1− λ

cB
) ∈ Rε(Ĩ) for all λ. Since capacity regions are closed, R̃ ∈ Rε(Ĩ). [If

we start with a linear Cλ, the resulting C̃λ will also be linear since the outer
code described above is linear. Thus Ĩλ is (R̃(1−ρ), ε, n)-linearly-feasible. By
Theorem 3.2.1, Ĩ is (R̃(1 − ρ̃), ε, n)-linearly-feasible where ρ̃ tends to zero as
ρ and λ tends to zero, which implies R̃ ∈ RL

ε (Ĩ).]

Lemma 7.3.1. ([7, Claim 1]) Let I = (G,S, T) be a network coding instance
and let Ĩ = (S̃, T̃ , H̃, c̃B) be its corresponding index coding instance according
to Φ3. For any index code that is (R̃(1− ρ̃), ε̃, ñ)-feasible on Ĩ, there exists a
function

FESc :
∏
s∈S

FñRs(1−ρ̃)2 →
∏
e∈ESc

Fñce(1−ρ̃)2

and a set Σ ⊂ Fñc̃B2 satisfying |Σ| ≤ 4ñ(1− ρ̃)(
∑

s∈S Rs)2
nρ̃c̃B such that at least

a (1− 2ε̃) fraction of source realizations w̃S ∈
∏

s∈S F
ñRs(1−ρ̃)
2 satisfy

f̃B(w̃S, FESc (w̃S)) ∈ Σ

65

and the index code operate without error on message realization

(W̃S,W̃ESc) = (w̃S, FESc (w̃S)).

Lemma 7.3.2. Let I = (G,S, T) be a network coding instance and let Ĩ =

(S̃, T̃ , H̃, c̃B) be its corresponding index coding instance according to Φ3. For
any linear index code that is (R̃(1− ρ̃), 0, ñ)-feasible on Ĩ, there exists a linear
transformation matrix FESc ,

FESc :
∏
s∈S

FñRs(1−ρ̃)2 →
∏
e∈ESc

Fñce(1−ρ̃)2 ,

and a linear subspace Σ ⊂ Fñc̃B2 satisfying dim(Σ) ≤ ñρ̃c̃B such that all w̃S ∈∏
s∈S F

ñRs(1−ρ̃)
2 satisfy

f̃B(w̃S, w̃SFESc) ∈ Σ.

Proof. Let
f̃B(w̃S, w̃ESc) = w̃S f̃S + w̃ESc f̃ESc ,

where f̃S and f̃ESc are
∑

s∈S ñRs(1− ρ̃)× ñc̃B and ñc̃B(1− ρ̃)× ñc̃B matrices
over F2, respectively.

For any matrix M , denote by M(i) row i of M and by RS(M) the rowspace
of M . For vector spaces V and W , let V + W = {v + w|v ∈ V,w ∈ W}. Let
B̃ESc ⊆ [ñc̃B(1− ρ̃)] such that {F̃ESc (i)}i∈B̃ESc forms a basis for RS(f̃ESc). Let
B̃S1 ⊆ [

∑
s∈S ñRs(1− ρ̃)] such that[⋃

i∈B̃S1

{f̃S(i)}
]
∪
[⋃
i∈B̃E

{f̃ESc (i)}
]

forms a basis for RS(f̃S) + RS(f̃ESc). Since the index code is assumed to be
zero-error, f̃ESc is full rank, we must have |B̃S1| ≤ ñρ̃c̃B or we would have more
than ñc̃B independent vectors in Fñc̃B2 . Therefore, f̃S(i) can be decomposed as
follows:

f̃S = f̃S1 + f̃S2,

where for each j ∈ [
∑

s∈S ñRs], f̃S1(j) is in the linear span of {f̃S(i)}i∈B̃S1 and
f̃S2(j) ∈ RS(f̃ESc).

We observe that rank(f̃S1) ≤ ñρ̃c̃B. Since RS(f̃S2) ⊆ RS(f̃ESc), we can find a
matrix FESc that satisfies

FESc f̃ESc = −f̃S2.

66

We therefore have for any w̃S ∈
∏

s∈S F
ñRs(1−ρ̃)
2

f̃B(w̃S, w̃SFESc) = w̃S f̃S + w̃SFESc f̃ESc = w̃S f̃S1.

Lemma 7.3.3. [24, Lemma 4] For any 0 < κ < 1 and network coding instance
I, let I(κ) be obtained from I by multiplying the capacity value of each edge
of I by κ. Then for any rate vector R, R ∈ Rε(I) implies Rκ ∈ Rε(I(κ)).

67

C h a p t e r 8

THE TIGHTNESS OF THE YEUNG NETWORK CODING
OUTER BOUND

The materials of this chapter are published in part as [50].

An outer bound [15, Theorem 15.9] and an exact characterization [16] of the
capacity region for network coding are known, whether these regions differ
remains an open problem. These bounds are derived based on the notion of
entropic vectors and the entropic region Γ∗ (Section 8.1). So far, and there
exists no full characterization on the entropic region Γ∗, there is no known
algorithm to evaluate these bounds. Hence these results are known as implicit
characterizations.

Throughout the paper, we shall refer to the network coding outer bound de-
veloped in [15, Theorem 15.9] as the Yeung outer bound. The Yeung outer
bound is tight when all sources are colocated [17] and for single-source network
coding. Whether the outer bound is tight in general remains open. Computa-
tionally efficient outer bounds are developed in [18].

The tightness of the Yeung outer bound can be expressed in a form that is
similar to the definition of a capacity reduction (Theorem 8.3.1). We apply
tools from Chapter 5 and show that the Yeung outer bound is tight if and only
of the AERS holds. Before describing these bounds, we begin by defining the
entropic region.

8.1 Entropic Regions

An approach to characterize the network coding capacity region is to find all
information inequalities. For a long time, the knowledge of information in-
equalities are limited to the basic inequalities due to Shannon [1] (Shannon
inequalities). Shannon inequalities has the advantage of being able to be veri-
fied by a linear program [46]. Discovery of non-Shannon inequities [51] calls for
the definition of the entropic region, which in principle is capable of verifying
all information inequalities. Unfortunately, this region cannot be computed
explicitly.

In the following, we first define the entropic region Γ∗(·). For consistency, we

68

employ notation from [15], [16]. For a given network coding problem I, let

N (I) = {Ws, s ∈ S;Xe, e ∈ E} = {WS,XE}

be a collection of discrete random variables corresponding to the source mes-
sage random variables and the edge information random variables. When the
underlying network I is clear, we simply denote N (I) by N . Let HN be the
|2|N | − 1|-dimensional Euclidean space where h ∈ HN consists of entries hA
labeled by A ⊆ N , for A 6= ∅. A vector h ∈ HN is called an entropic vector
(or an entropic function) if there exists a set of |N | random variables such that
∀A ⊆ N , A 6= ∅,

hA = H(A).

The set of entropic vectors corresponding to N is denoted by Γ∗(N). When
the set N is implied, we simplify Γ∗(N) to Γ∗.

Quasi-uniform and Individually-uniform Entropic Region

In this section, we introduce two subsets of the entropic region, namely the
quasi-uniform and the individually-uniform entropic region. The quasi-uniform
entropic region is employed in [17] to show that the Yeung outer bound is tight
when sources are collocated. Our definition of individually-uniform entropic
region is inspired by [17]. The individually-uniform entropic region enables us
to derive an implicit characterization of the zero-error capacity region (Chap-
ter 9).

We first give the definitions of quasi-uniform entropic vectors and entropic
region. A set of random variable {X1, ..., Xn} is quasi-uniform if for any subset
α ⊆ [n], (Xα) = (Xi, i ∈ α) is uniformly distributed over its support (sp(Xα)),
or equivalently,

H(Xα) = log |sp(Xα)|. (8.1)

Define Γ∗Q(N) to be the set of all entropic vectors that correspond to random
vectors N that are quasi-uniform. When the set N is implied, we simplify
Γ∗Q(N) to Γ∗Q.

The requirement of (8.1) allows a quasi-uniform variable Xi to be transmitted
across an edge of capacity H(Xi) by sending the indices of sp(Xi). This is a
useful property in mapping an entropic vector directly to a network code in
the proof of Theorem 8.3.1.

69

In the derivation of the zero-error network coding region, one crucial step in
the proof is to map a particular network code to a vector in the entropic region.
Since not all network code corresponds to a quasi-uniform random variable,
we relax the condition in (8.1) and define individually uniform variables. A
set of random variables {X1, ..., Xn} is individually-uniform if for any i ∈ [n],
the random variable Xi is uniform over its support, or equivalently,

H(Xi) = log |sp(Xi)|.

Define Γ∗U(N) to be the set of all entropic vectors that correspond to random
vectors N that are individually-uniform. When the set N is implied, we
simplify Γ∗U(N) to Γ∗U .

The definition of individually-uniform random variables relaxes that of quasi-
uniform random variables by allowing variables with joint distributions that
are not uniform. Since Γ∗Q ⊆ Γ∗U ⊆ Γ∗, [17, Proposition 2] implies that Γ∗U is
also dense in Γ∗ (and Γ∗) in the sense that for every element h ∈ Γ∗ and every
ε > 0 there is an element h′ ∈ Γ∗U within Euclidean distance ε of h.

8.2 The Yeung Outer Bound Rout

We define the following sub-spaces that will be used to describe the Yeung
outer bound [15] and the zero-error capacity region in Chapter 9. We denote
linear sub-spaces of HN by Li and the intersection of L1, L2, ..., Lm by L12...m.
For A,B ⊂ N , define hA|B = hA∪B − hB.

• The sub-space

L1(I) =
{
h ∈ HN : hWS

−
∑
s∈S

hWs = 0
}

describes the set of entropic vectors that corresponds to independent
source message variables {hWs , s ∈ S}.

• For e ∈ E, define ZIn(e) = (Xe′ , e
′ ∈ E,Out(e′) = In(e)). The sub-spaces

L2(I) =
{
h ∈ HN : ∀e = (s, v) ∈ E, s ∈ S, hXe|Ws = 0

}
L3(I) =

{
h ∈ HN : ∀e ∈ E, In(e) /∈ S, hXe|ZIn(e) = 0

}
describe the set of entropic vectors whose edge information variables
match the topology of I. That is, the edge information sent on edge e
must be a function of the edge variables entering In(e) or of the source
message variable originating at In(e).

70

• The sub-space
L4(I) =

{
h ∈ HN : ∀e, hXe ≤ ce

}
describes the set of entropic vectors whose edge information variables
satisfy each edge capacity constraint (i.e., ce).

• For t ∈ T , define Yt = (Xe′ , e
′ ∈ E,Out(e′) = t). The sub-space

L5(I) =
{
h ∈ HN : ∀ti ∈ T, hWsi |Zti = 0

}
describes the set of entropic vectors whose edge information variables
satisfy the decoding condition at each terminal t. That is, the edge
information variables entering t must contain enough information to re-
construct its desired sources.

The authors of [17] observed a connection between the tightness of the Yeung
outer bound and the AERS. They proved that the outer bound is tight if the
AERS holds. Inspired by their work, we extend the result to an “if-and-only-if”
relationship. We begin by defining the Yeung outer bound.

Theorem 8.2.1 (Yeung Network Coding Entropic Function Outer Bound [15,
Theorem 15.9]). For a given network coding problem I, an outer bound to its
capacity region is given by

Rout = Ω(ProjWS
(D(Γ∗) ∩ L12345))).

The definitions of the functions appearing in the above expression are given by

Convex combination with origin D(B) = {αh : 0 ≤ α ≤ 1,h ∈ B}
Projection function ProjWS

(B) = {{hWs}s∈S : h ∈ B}
Inferior set function Ω(B) = {h : 0 ≤ h ≤ h′,h′ ∈ B}

8.3 Main Result

Theorem 8.3.1 (Tightness of the Yeung Outer Bound). The Yeung entropic
region outer bound is tight if and only if the AERS holds. Namely, for any
acyclic network coding instance I and rate vector R,(

R ∈ Rout(I)⇔ R ∈ Rε(I)

)
if and only if the AERS holds.

71

Proof. The tightness of the Yeung outer bound can be expressed in a form
that is similar to capacity reduction, namely

R ∈ Rout(I)⇔ R ∈ Rε(I). (8.2)

We show that (8.2) holds if and only if the asymptotic edge removal statement
holds. The proof of this result is given in Section 8.4.

A full characterization of the capacity region R(I) appears in [16] and is equal
to

Ω(ProjWS
(D(Γ∗ ∩ L123) ∩ L45))).

Nevertheless, due to its relative simplicity, Rout has seen various studies. A
variant of the outer bound Rout is shown to be equal to the ε-error capacity
region of a network when dependence is allowed among the sources [52].

8.4 Proof of Theorem 8.3.1

Proof. This proof uses notation from Section 8.2. By Theorem 5.5.1, it suffices
to show that R ∈ Rout(I)⇔ R ∈ lim

λ→0
Rε(Ibfλ). Here the mapping from (I,R)

to (Ĩ, R̃) is the identity map (i.e., Ĩ = I and R̃ = R). To prove this “if and
only if” statement, we present two proof directions,

R ∈ Rout(I)⇒ R ∈ lim
λ→0
Rε(Ibfλ) and R ∈ Rout(I)⇐ R ∈ lim

λ→0
Rε(Ibfλ).

First direction: R ∈ Rout(I) ⇒ R ∈ lim
λ→0
Rε(Ibfλ). Let R′ ∈ Rout(I), then

there exists an entropic vector h ∈ D(Γ∗) ∩ L12345 and a rate vector R such
that

R′ ≤ R = ProjWS
(h).

By Lemma 8.4.1, stated shortly, there exists a sequence of quasi-uniform ran-
dom variables {(W(m)

S ,X
(m)
E)} with corresponding entropic vector h(m) ∈ Γ∗Q,

a sequence of integers {nm}, and a sequence of positive numbers {δm} such
that the following are satisfied:

L2(I) : ∀e ∈ ES, h(m)
Xe|WIn(e)

= 0,

L3(I) : ∀e ∈ ESc , h(m)
Xe|ZIn(e)

= 0,

L5(I) : ∀t ∈ T, h(m)
Wt|Zt = 0,

Dependence :
∑

s∈S h
(m)
Ws
− h(m)

W ≤ nmδm,

Edge capacity : ∀e ∈ E, h(m)
Xe
≤ nm(ce + δm),

Rate : ∀s ∈ S, h(m)
Ws
≥ nm(Rs − δm),

72

where lim
m→∞

nm =∞, lim
m→∞

δm = 0, and lim
m→∞

h(m)

nm
= h.

Since the sequence of variables are quasi-uniform, the edge capacity constraint
implies that

h
(m)
Xe

= log |sp(X(m)
e)|,

a code can be obtained by sending the indices of sp(X(m)
e) for each e, where

each index is an element of [Fcenm+δmnm
2] by our convention. For a block length

of nm, an edge of capacity ce can only carry 2nmce messages, to account for the
larger message size of 2cenm+δmnm , we increase the block length by nmδm

c∗
, where

c∗ is the smallest edge capacity in I (i.e., h(m)
Xe
≤ nm(ce+ δm) ≤ nm(1 + δm

c∗
)ce).

For small enough δm,
1

1 + δm/c∗
> 1− δm/c∗,

I is therefore (R(1−δm/c∗), 0, nm(1+ δm
c∗

), δm)-feasible. Since δm tends to zero,
by Lemma 5.3.1(1), ∀ρ, λ > 0 there exists n such that Icfλ is (R − ρ, 0, n, 0)-
feasible.

SinceR0 is closed and ∀λ′ < λ,R0(Icfλ′) ⊆ R0(Icfλ), we haveR ∈ R0(Icfλ),∀λ >
0. This implies that R ∈ lim

λ→0
R0(Icfλ). Finally, since R0(Icfλ) ⊆ R0(Ibfλ) and

R0(Ibfλ) ⊆ Rε(Ibfλ), we have R ∈ lim
λ→0
Rε(Ibfλ).

Second direction: R ∈ Rout(I)⇐ R ∈ lim
λ→0
Rε(Ibfλ) Let R ∈ lim

λ→0+
Rε(Ibfλ).

For any λ, ρ, ε > 0, there exists a blocklength n such that Ibfλ is (R−ρ, ε, n, 0)-
feasible. By Lemma 5.3.1(2), there exists a monotone sequences of positive
numbers {δm} tending to 0 and positive integers {nm} tending to infinity such
that for each m, there exists an (R− δm, 0, nm, δm) code for hence I. For each
m, the code induces random variables N = {W (m)

s , s ∈ S;X
(m)
e , e ∈ E} with

entropic vector h(m) satisfying:

Dependence :
∑

s∈S h
(m)
Ws
− h(m)

W ≤ nmδm.

Encoding 1 : ∀e ∈ ES, h(m)
Xe|WIn(e)

= 0.

Encoding 2 : ∀e ∈ ESc , h(m)
Xe|ZIn(e)

= 0.

Decoding error : ∀t ∈ T, h(m)
Wt|Zt = 0.

Edge Capacity : ∀e ∈ E, h(m)
Xe
≤ nmce.

Rate requirement : ∀s ∈ S, h(m)
Ws
≥ nm(Rs − δm).

73

Let h(m)∗ = n−1m h(m), then h(m)∗ ∈ D(Γ∗). Since h(m)∗ is bounded and δm →
0, there is a converging subsequence {h(mi)∗}∞i=1 with limit such that h =

limi→∞ h(mi)∗ ∈ D(Γ∗) ∩ L12345 = Rout(I).

Lemma 8.4.1 ([17, Proposition 2]). For any h ∈ Γ
∗
n, there exists a sequence

of quasi-uniform random variables {N (m)} and corresponding h(m) ∈ Γ∗ and
a sequence of positive integers nm such that
1) limm→∞ nm =∞,
2) limm→∞ h(m)/nm = h,

3) For all positive integers m, h(m)
β|α = 0 for all β ⊂ N (m) and α ⊆ N (m) such

that hβ|α = 0.

74

C h a p t e r 9

ZERO-ERROR VERSUS EPSILON-ERROR CAPACITY
REGION

The materials in this chapter are published in part as [50].

In this chapter, we study the potential gap between the zero-error and the
epsilon-error network coding capacity region. For the single multicast scenario,
it is known that the cut-set bound can be achieved using zero-error linear
codes [36], [53]. Thus, these two notions of capacity region are equal in this
setting. In fact, due to the structured properties of linear functions, it can be
shown that the zero-error network coding capacity region equals the epsilon-
error capacity region under the restriction of linear codes. We give the formal
proof of this observation in Section 9.1.

Since linear codes are insufficient to achieve the general capacity region, this
observation does not resolve the question of whether there is a gap between the
zero-error and epsilon-error capacity region for general codes. This potential
gap remains an intriguing open question. In [19], the authors show that this
question is closely related to a variation of the edge removal statement.

Motivated by the work of [16] which presents an implicit characterization of
the epsilon-error capacity region using notions of entropic vectors, we follow
a similar approach and derive an implicit characterization of the zero-error
capacity region for acyclic network coding networks. Our characterization is
based on a dense subset of the entropic region, which is defined in Section 8.1.
This result is given in Section 9.2.

9.1 Zero Versus Epsilon-Error Linear Network Coding Capacity
Region

In the theorem below, we show that zero-error linear codes achieve the epsilon-
error linear capacity region of network coding networks.

Theorem 9.1.1. For any network coding network I = (G,S, T), RL
ε (I) =

RL
0 (I).

Proof. Fix any 0 < ε < 1/2, we start with an (R, ε, n)-linearly-feasible code C

75

for I. We show that replacing the decoder of C with a maximum likelihood
decoder will yield an (R, 0, n)-linearly-feasible code for I, thus proving our
assertion.

We denote by Wt the source message variable demanded by t and by Wt the
remaining source message variables. Then for any terminal t ∈ T , the received
information variable Zt (under the operation of C) can be written as a function
of the sources W = (Wt,Wt). Thus,

Zt = WF = WtFt +WtFt,

where Zt and W = (Wt,Wt) are row vectors and F =

[
Ft

Ft

]
are matrices

over F2.

Denote by Nt and Nt the left null space of Ft and Ft, respectively (i.e., Nt =

{wt ∈ Wt|wtFt = 0}.) For any v ∈ Vt, wt ∈ Wt, we have

Pr(Wt = wt|WtFt = v) =
1

2rank(Nt)
.

If rank(Nt) > 0, the probability of error for any terminal receiving WtFt will
be at least 1− 2−rank(Nt). Since

Wt → WtFt → Zt

forms a Markov chain, a decoder receiving WtFt will perform no worse than
one that receives Zt if a maximum likelihood decoder is used in both scenarios.
Therefore Ft must be full rank.

With the assumption that rank(Nt) = 0, denote by Vt, Vt the row spaces of Ft
and Ft, respectively. Denote by Vt∩t the intersection of Vt and Vt. Let Pt ⊂ Wt

denote the pre-image of Vt∩t with respect to Ft, (i.e., Pt = {wt ∈ Wt|wtFt ∈
Vt}). Then for any vt ∈ Pt, the set

S(vt) = {(vt, wt) ∈ Wt ×Wt|vtFt + wtFt = 0}

has cardinality equal to 2rank(Nt). Let N and Nt denote the left null space of
F and Ft, respectively. Thus, for any wt ∈ Wt, wt ∈ Wt and vt ∈ Pt,

Pr(Wt = wt + vt|Yt = wtFt + wtFt)

=
|{(wt + vt, w

′
t
) ∈ Wt ×Wt|(wt + vt)Ft + w′

t
Ft = wtFt + wtFt}|

|{(w′t, w′t) ∈ Wt ×Wt|w′tFt + w′
t
Ft = wtFt + wtFt}|

=
|S(vt)|
2rank(N)

=
2rank(Nt)

2rank(N)
.

76

The decoding error of a maximum likelihood decoder at t then equals 1 −
2rank(Nt)−rank(N). For any ε < 1/2, we therefore require rank(N) = rank(Nt),
giving

Pr(Wt = wt|Yt = wtFt + wtFt) = 1,

which implies that using the encoders in C and a maximum likelihood decoder
at each of the terminals yields an (R, 0, n)-linearly-feasible code for I.

9.2 An Implicit Characterization for the Zero-Error Capacity Re-
gion

In [20], bounds for the 0-error capacity region are derived by relaxing the
edge capacity constraint from a strict (worse case) requirement to an average
requirement. In this section, we provide an exact (implicit) characterization
for the 0-error network coding capacity region using a dense subset of the
entropic region under a strict edge capacity constraint.

We derive this result in a form that is similar to a capacity reduction. More
precisely, we show that for any acyclic network coding instance I,

R̃(Ĩ) = R0(I),

where we will describe R̃(Ĩ) and the mapping from I to Ĩ shortly. We rely
on definitions of the individually uniform entropic vectors from Section 8.1.

We first describe mapping Φ4 that maps any acyclic network coding instance I
to a corresponding network coding instance Ĩ. Given a network I = (G,S, T),
network Ĩ = (G̃, S̃, T̃) is obtained from I, described below.

Graph G̃ = (Ṽ , Ẽ, C̃) is obtained from G by adding a new source node s′ and,
for each edge e = (u, v) ∈ ES, a pair of new edges (s′, u), (s′, v) with infinite
capacity. Thus,

S̃ = S ∪ {s′}

Ṽ = V ∪ {s′}

Ẽ = E ∪ {(s′, v), v ∈ S}

C̃e =

ce if e ∈ ES
∞ otherwise.

Source s′ provides a common randomness to all nodes in the network and is
not demanded by any node. The demands for the rest of the network and the
set of terminal nodes remain the same, and thus T̃ = T .

77

Theorem 9.2.1 gives a characterization of the zero error network coding capac-
ity region. The linear subspaces Li are based on the definitions given for the
Yeung outer bound in Section 8.2.

Theorem 9.2.1. For any acyclic network coding instances I,

R̃(Ĩ) = R0(I),

where R̃(Ĩ) = Ω(ProjWS̃\{s′}
(D(Γ∗U ∩ L12345))) and the mapping from I to Ĩ

is given by Φ4.

Proof. In Theorem 9.2.1, we wish to show that the existence of an entropic
vector for N (I) implies the existence of a 0-error code for I of the same rate
(achievability proof). Compared to the methodology of [16], new argument is
required here since the random coding argument in [16] does not necessarily
imply a 0-error code. Building on the idea of constructing 0-error codes from
quasi-uniform random variables [17], we rely on Γ∗U , which is a relaxation of
the quasi-uniform entropic region (Γ∗Q) with similar desirable properties. Any
random vector N with an entropic vector that falls in Γ∗U and satisfies func-
tional constraints L12345 can be used to construct a 0-error code. Specifically,
a code can be constructed by sending the index of Xe in the support set of
Xe (sp(Xe)), since the size of the support satisfies the edge capacity constraint
log |sp(Xe)| ≤ 2cen+γn.

The use of Γ∗U in the achievability result creates a problem in the converse.
Any entropy vector in Γ∗U ∩ L12345 corresponds to a zero-error code, but not
all zero-error code corresponds to a random vector N with an entropic vector
in Γ∗U . We overcome this challenge by augmenting I to form Ĩ, which allows
us to convert any code in I to one whose entropic vector is in Γ∗U . We follow
techniques from [16].

Achievability (R̃(Ĩ) ⊆ R0(I)): Let R′ ∈ R̃(Ĩ). Then there exists a vector

h ∈ D(Γ∗U ∩ L12345)

such that
R′ ≤ R = ProjWS̃\{s′}

(h).

There exists a sequence of entropic vectors {αmh(m)}, a sequence of coefficients
{αm}, αm ∈ [0, 1], a sequence of blocklengths {nm = d 1

αm
e}, and a sequence of

78

slackness parameters {εm} such that

L1(Ĩ) :
∑

s∈S̃ h
(m)

W̃s
− h(m)

W̃S̃

= 0,

L2(Ĩ) : ∀e ∈ Ẽ, In(e) ∈ S̃, h(m)

X̃e|W̃In(e)
= 0,

L3(Ĩ) : ∀e ∈ Ẽ, In(e) /∈ S̃, h(m)

X̃e|Z̃In(e)
= 0,

L4(Ĩ) : ∀e ∈ Ẽ, h(m)

X̃e
≤ nmce,

L5(Ĩ) : ∀t ∈ T̃ , h(m)

W̃t|Z̃t
= 0,

Rates : ∀s ∈ S̃ \ {s′}, h(m)

W̃s
≥ nm(Rs − εm),

where h(m) ∈ Γ∗U ∩ L12345, lim
m→∞

αmhm = h and lim
m→∞

εm = 0.

Since edge variables are uniform over their supports (i.e., h(m)

X̃e
= log |sp(Xe)|)

for each e, we obtain a sequence of codes for Ĩ that are (R−εm, 0, nm)-feasible
by sending the indices of the alphabets of Xe over each edge.

Each of these codes for Ĩ can be further converted to a code for I with the
same rate by fixing a source realization W̃s′ = w̃s′ . Now we apply the same
encoding and decoding functions to I by assuming that W̃s′ = w̃s′ . Every node
in I may therefore compute the message being sent on the outgoing links of
node s′ in Ĩ even though these links are not available in I. Thus, we get
a sequence of codes for I that is (R − εm, 0, nm)-feasible. This implies that
R ∈ R0(I).

Converse (R̃(Ĩ) ⊇ R0(I)): Let R ∈ R0(I), there exists a sequence of codes
{Cm} so that for each m, Cm is (R − εm, 0, nm)-feasible code for I. Let Xe

be the edge message sent in code Cm for each e ∈ E. Next we convert each
Cm into a code C̃m for Ĩ in which each individual edge message X̃e in Ĩ is
uniformly distributed over its support. Note that the alphabet of each edge e
is the set Fcenm2 .

For each edge e = (u, v) ∈ ES, the new code C̃m sends a random variable Me

that is uniformly distributed in Fcenm2 via edges (s′, u) and (s′, v) to both node
u and node v. For the rest of the edges (u, v) ∈ ES, C̃m sends a uniformly
distributed message X̃e = Xe ⊕Me on each edge e.

The decoding function of C̃m for each t ∈ T̃ first subtractsMe from X̃e for each
e such that Out(e) = t, and then applies the same decoding function from Cm.

Each edge message X̃e is therefore uniformly distributed on the set Fcenm2 .
Each C̃m therefore induces a set of entropic vectors h(m) ∈ Γ∗U such that

79

L1(Ĩ) :
∑

s∈S̃ h
(m)

W̃s
− h(m)

W̃S̃

= 0,

L2(Ĩ) : ∀e ∈ Ẽ, In(e) ∈ S̃, h(m)

X̃e|W̃In(e)
= 0,

L3(Ĩ) : ∀e ∈ Ẽ, In(e) /∈ S̃, h(m)

X̃e|Z̃In(e)
= 0,

L4(Ĩ) : ∀e ∈ Ẽ, h(m)

X̃e
≤ nmce,

L5(Ĩ) : ∀t ∈ T̃ , h(m)

W̃t|Z̃t
= 0,

Rates : ∀s ∈ S \ {s′}, h(m)

W̃s
≥ nm(Rs − εm),

and lim
m→∞

εm = 0. Therefore, ∀m, h(m) ∈ Γ∗U ∩ L12345 and n−1m h(m) ∈ D(Γ∗U ∩
L12345). Since {n−1m h(m)} is a bounded sequence, by the Bolzano-Weierstrass
theorem, there exists a convergent sub-sequence {n−1m h(mi)}∞i=1 converging to
h ∈ D(Γ∗U ∩ L12345).

80

C h a p t e r 10

CODE REDUCTION FROM STREAMING NETWORK
CODING TO STREAMING INDEX CODING

The materials of this chapter are published in part as [54].

While the network coding problem [35], [53] has been studied extensively in
recent years, it remains a challenging problem even when restricted to acyclic
networks. In this chapter, we consider a streaming network coding model [10],
[11], where each demand has to satisfy both rate and streaming delay con-
straints. Motivated by the goal of extending tools and results derived for
acyclic networks to the more practically relevant domain of cyclic networks,
and inspired by [6], which demonstrates a code equivalence between network
coding and index coding problems, we here derive a code equivalence between
general network codes and index codes under the streaming model.

The reduction of [6] and its extensions [7], [49] are proven for acyclic network
problems and do not easily extend to networks containing cycles. A first step
towards addressing this challenge is to understand scenarios where this reduc-
tion can be extended. Restricting our attention to the streaming case enables
us to overcome the key challenges for the cyclic case and apply techniques
similar to those in [6] to prove a code equivalence between streaming network
coding and streaming index coding problems for both acyclic and cyclic net-
works. A consequence of this reduction is that under the streaming model,
there is no fundamental difference between acyclic and cyclic networks. We
can therefore restrict our attention to index coding problems when working
with the streaming variant of the network coding problem.

10.1 Streaming Network Coding Model

The instance description for streaming network coding is identical to that of
the classical network coding from Section 2.2. Recall that an instance is given
by I = (G,S, T), where sets S, T ⊂ V are the source nodes and terminal
nodes, respectively. We assume a canonical model where there are k sources
S = {s1, · · · , sk} and kl terminal nodes T = {t1,1, · · · , t1,l, · · · , tk,l} and each
source si is demanded by exactly l terminal nodes {ti,1, · · · , ti,l}. The graph

81

G = (V,E,C) is defined by a set of vertices V representing communicating
devices, a set of directed edges E ⊆ V 2 representing communication channels
between these devices, and a vector C = (ce : e ∈ E) describing the maximal
rate of communication across each edge.

Each non-source edge e ∈ ESc = {e′ ∈ E : In(e′) ∈ V \ S} is a noiseless
channel of integer capacity ce from the edge’s input node, here called In(e),
to its output node, here called Out(e); for example, if e = (u, v) and Ce = 1,
then information travels from node In(e) = u to node Out(e) = v at a rate
of Ce = 1 bit per transmission. Each edge e ∈ ES = {e′ ∈ E : In(e′) ∈ S}
has infinite capacity. Again, these source edges are used to capture the notion
that source message variables from In(e) are streaming to node Out(e). For
each time step τ , each node v ∈ V \ (S ∪T) receives a ce–bit edge information
variable Xe,τ ∈ Fce2 for each edge e ∈ E such that Out(e) = v. Denote by
Xe,τ the information variable on each edge e at time τ . For a rate vector R =

(R1, · · · , Rk), each source node s ∈ S holds a stream of source message random
variables [Ws,τ]τ∈N where each Ws,τ is uniformly distributed in Ws = FRs2 . We
assume each Rs is an integer. Given a source delay requirement function

dS : S × (V \ S)→ Z≥0,

each node v ∈ V \ (S ∪ T) receives an Rs–bit time-delayed source message
variable

Ws,τ−dS(s,v) ∈ FRs2

for each time step τ and for each s ∈ S such that (s, v) ∈ E.

For v ∈ V \ S, denote by SG(v) = {s ∈ S : (s, v) ∈ E} and EG(v) =

{e′ ∈ ESc : Out(e′) = v} the set of sources and non-source edges entering
v. For a set A, denote by XA = (Xa, a ∈ A) the vector of variables of
X with subscript in A. The edge information and source message variables
received by v at time τ is therefore given by XEG(v),τ = (Xe′,τ , e

′ ∈ EG(v)).

and WSG(v),τ = (Ws,τ−dS(s,v) : s ∈ SG(v)), respectively.

For time indices τ1 and τ2, denote by [X]τ2τ1 = (Xτ1 , · · · , Xτ2) the vector of
variables of Xτ from time index τ1 to τ2. Given rate vector R = (R1, · · · , Rk),
a source delay requirement function dS, a decoding delay requirement function

dT : T → Z≥0,

82

and a memory parameter q, a streaming network code (F ,G,K) for I in-
cludes a set of encoding functions F = {fe}e∈ESc , a set of decoding functions
G = {gt}t∈T and a set of constants K = {[xE]0−dmax−q, ([wS]0−dmax−q)} for ini-
tialization, where dmax denotes the maximum delay requirement in dS and
dT .

We assume that there is a single unit time delay at each node. The network
code therefore operates under a strict causality constraint where each encoding
and decoding function can only be a function of the past q received message.
At each time step τ , each edge (or terminal) applies a single function fe (or dt)
over a “sliding window” of size q (explained in detail below). Input variables
in the first q sliding windows are initialized by K at each time step τ .

The network code is said to satisfy decoding delay requirements dT if the
following are true:

• For each e ∈ ESc and each time index τ ∈ N,

fe : Fceq2 ×
(∏
e′∈EG(In(e))

Fce′q2

)
×
(∏
s′∈SG(In(e))

FRs′q2

)
→ Fce2

is a sliding window encoding function that takes as input the past q
source message variables [WSG(In(e))]

τ−1
τ−q, the past q edge variables [XEG(In(e))]

τ−1
τ−q)

received by In(e) and the past q edge variables [Xe]
τ−1
τ−q transmitted across

edge e and transmits as output the information variable

Xe,τ = fe([Xe]
τ−1
τ−q, [XEG(In(e))]

τ−1
τ−q, [WSG(In(e))]

τ−1
τ−q)

at time τ on edge e.

• For each demand pair (s, t), let dT (s, t) be the corresponding delay con-
straint. For each time index τ > dT (t),

gt :Wq
s ×

(∏
e′∈EG(t)

Fce′q2

)
×
(∏
s′∈SG(t)

FRs′q2

)
× →Ws

is a sliding window decoding function that takes as input the past q
source message variables [WSG(t)]

τ−1
τ−q, the past q edge variables [XEG(t)]

τ−1
τ−q

received by terminal t and the past q source variables [Ws]
τ−dT (t)−1
τ−dT (t)−q de-

coded at node t and outputs the source message variable

Ws,τ−dT (t) = gt([Ws]
τ−dT (t)−1
τ−dT (t)−q, [XEG(t)]

τ−1
τ−q, [WSG(t)]

τ−1
τ−q), (10.1)

83

Streaming Index Coding Model

A streaming index coding network is a streaming network coding network
I with graph G falling in a restricted topology as described in Section 2.3.
A k by l multiple multicast streaming index coding instance is a streaming
network coding instance with S = {s1, · · · , sk}, T = {t1,1, · · · , t1,l, · · · , tk,l}
and V = {u1, u2}∪S ∪T . Node u1 is the broadcast node and has access to all
the source node. Node u2 is the relay node and has no connection to any of
the sources. The source nodes connected to a given terminal node t ∈ T are
described by the “has” set Ht of terminal t, giving

E =

[⋃
s∈S

{(s, u1)}

]
∪ {(u1, u2)} ∪

[⋃
t∈T

{(u2, t)}

]
∪

[⋃
t∈T

⋃
s∈Ht

{(s, t)}

]

ce =

{
cB if In(e) ∈ {u1, u2}
∞ otherwise.

We therefore alternatively describe instance I as

I = (S, T,H = {Ht, t ∈ T}, cB).

We assume without loss of generality that any edge with sufficient capacity to
carry all information available to its input node at a certain time step carries
that information unchanged; thus

Xe,τ = fe([XEG(In(e))]
τ−1
τ−q, [Xe]

τ−1
τ−q) = XEG(In(e)),τ−1 for all e ∈ ESc \ {(u1, u2)}.

As a result, specifying an index code’s encoder requires specifying only the
encoder fB for its bottleneck link.

Streaming Code Feasibility

We define a zero-error streaming code here. A network I is (R, dS, dT)–
streaming feasible if there exists a streaming network code (F ,G,K) with some
memory parameter q ∈ N such that when (F ,G,K) is operated on I under a set
of streaming sources satisfying the rate requirements R and streaming delay
requirements dS, each of the terminals is able to output the source messages,
satisfying the delay requirements dT with error probability 0.

10.2 Reduction Mapping Φ5

We begin by describing our mapping Φ5 Given a streaming network coding
instance I = (G,S, T), the construction of Ĩ = (S̃, T̃ , H̃, c̃B) is given by

84

mapping Φ3 of Section 7.1. We describe the code parameter (R̃, d̃S, d̃T) that
corresponds to (R, dS, dT).

The rate for Ĩ is R̃ = (R, (ce)e∈ESc), where each w̃s,τ is set to Rs, while the
rate for each w̃e,τ for each e ∈ ESc is set to ce.

The source delay requirement d̃S̃ is defined as follows:

d̃S̃(s, v) =


0 if v = u1

dS(s, t) + 3 if v = t̃t for some t ∈ T

3 otherwise.

The decoding delay requirement for each t̃t is set to dt + 3 and the rest is set
to 3, thus

d̃T̃ (t̃) =

dT (t) + 3 if v = t̃t for some t ∈ T

3 otherwise.

Main Result

Theorem 10.2.1. Streaming code design for network coding reduces to stream-
ing code design for index coding. That is, under mapping Φ5, for any network
coding instance I and code parameter (R, dS, dT),

1. I is (R, dS, dT) streaming-feasible if and only if Ĩ is (R̃, d̃S̃, d̃T̃) streaming-
feasible.

2. Any (R̃, d̃S̃, d̃T̃) solution for Ĩ may be efficiently mapped to an (R, dS, dT)

solution for I.

Proof. Proof of 1) is given in Section 10.3. The proof is 2) is implied by the
proof of 1).

This result shows that under the streaming model, the network coding and
index coding problems are equivalent. The result holds even when the network
coding instance contains cycles. This implies that under the streaming model,
the complexity of a general network coding instance is completely captured by
an index coding network, which is acyclic and has a much simpler topology.
While the question of whether networks containing cycles can be reduced to
acyclic networks under the classical setting without delays remains open, this
result allows us to better understand the gap between these two cases.

85

10.3 Proof of Theorem 10.2.1

Proof. Consider a streaming network coding instance I = (G,S, T) and an
(R, dS, dT)-streaming code. Let Ĩ = (S̃, T̃ , H̃, c̃B) and the corresponding fea-
sibility parameters (R̃, d̃S̃, d̃T̃) be as described above. There are two directions
to be proven.

Direction 1: If I is (R, dS, dT) streaming feasible then Ĩ is (R̃, d̃S̃, d̃T̃) stream-
ing feasible.

Consider an (R, dS, dT) streaming code (F ,G,K) for I. Let the memory pa-
rameter for this code be q, the encoding functions be F = {fe}e∈ESc , the
decoding functions be G = {gt}t∈T and the initialization variables be

K = {[xESc]
0
−dmax−q, [w̃S]0−dmax−q}.

We first define a set of initialization constants K̃ = {[x̃B]0−d̃max−q
, [w̃S̃]0−d̃max−q

}.
These constants will ensure suitable inputs are provided to the encoding func-
tions for the initial time steps. We break down each X̃B,τ into |ESc| compo-
nents (X̃B(e),τ)e∈ESc . Let [w̃S]d̃max+q

1 be any source realization for [W̃S]d̃max+q
1 .

Let [xESc]
d̃max+q
1 be the corresponding edge information realization for I when

the code is operated on the sources [w̃S]d̃max+q
1 and the initialization constants

K = {[xESc]0−dmax−q, [w̃S]0−dmax−q} for I. Assign the initialization constants for
K̃ as follows.

[X̃B(e)]
0
−d̃max−q = [xe]

d̃max+q
0 ∀ e ∈ ESc ,

[w̃S]0−d̃max−q = [w̃S]d̃max+q
0 ,

[w̃ESc]
0
−d̃max−q = 0.

For v ∈ V \ S, define w̃Sd(v),τ = (w̃s,τ−dS(s,v), s ∈ SG(v)). Next, we define
a single sliding-window broadcast function f̃B for Ĩ with memory parameter
q + 1 in terms of the edge encoding functions F = {fe}e∈ESc for I.

X̃B,τ = f̃B([w̃ESc]
τ−1
τ−q−1, [w̃S]τ−1τ−q−1, [X̃B]τ−1τ−q−1) (10.2)

= (X̃e,τ−1 ⊕ w̃e,τ−1)e∈ESc ,

X̃e,τ = fe([X̃e]
τ−1
τ−q, [X̃EG(In(e))]

τ−1
τ−q, [(w̃SG(In(e))]

τ−1
τ−q). (10.3)

Finally, we show that each of the terminals can decode its request using the
broadcast function defined above; recall that d̃T̃ (t̃e) = 2, d̃T̃ (t̃t) = dT (t) + 2

and d̃S̃(s̃s, t̃t) = dS(s, t) + 2 and d̃S̃(s̃e, t̃t) = 2.

86

• For each e ∈ ESc , at time step τ , terminal t̃e can use the following
information for decoding

([w̃e]
τ−4
τ−q−4, [w̃EG(In(e))]

τ−4
τ−q−4, [w̃SG(In(e))]

τ−4
τ−q−4, [X̃B]τ−2τ−q−2).

It first extracts ([X̃EG(In(e))]
τ−4
τ−q−3) from [X̃B]τ−3τ−q−2 according to (10.2)

and then computes X̃e,τ−3 according to (10.3). Finally, it extracts w̃e,τ−3
from X̃B,τ−2 using (10.2).

• For each demand pair (s, t) with delay dT (t) in I, terminal t̃t has infor-
mation

([w̃s]
τ−dT (t)−4
τ−dT (t)−q−4, [w̃EG(t)]

τ−4
τ−q−4, [w̃SG(t)]

τ−4
τ−q−4, [X̃B]τ−2τ−q−2).

It first extracts [X̃EG(t)]
τ−4
τ−q−3 from [X̃B]τ−3τ−q−2 according to (10.2). The

terminal then obtains w̃s,τ−dT (t)−3 by applying the decoding function gt
on the values of ([w̃s]

τ−dT (t)−4
τ−dT (t)−q−3, [w̃SG(t)]

τ−4
τ−q−3, [X̃In(t)]

τ−4
τ−q−3). This must

be true by the feasibility assumption of the network code and (10.1).

Note that by the feasibility assumption of the streaming network code, the
initialization for K̃ will ensure the first q time steps to operate properly.

Direction 2: If Ĩ is (R̃, d̃S̃, d̃T̃)–feasible then I is (R, dS, dT)-streaming fea-
sible. Consider an (R̃, d̃S̃, d̃T̃)–feasible code (F̃ , G̃, K̃) for Ĩ, let the memory
parameter of this code be q.

We want to show that there exists source realizations such that the broadcast
link always sends some constant value. To do this we first show that the broad-
cast variable X̃B,τ is “tight” in a sense that there is no redundancy in the code.
We start by expanding I(W̃ESc ,τ−3; X̃B,τ−2|[W̃S]τ−4τ−q−3, [W̃ESc]

τ−4
τ−q−3, [X̃B]τ−3τ−q−1)

in two different ways using the chain rule:

I(W̃ESc ,τ−3; X̃B,τ−2|[W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−4
τ−q−3, [X̃B]τ−3τ−q−1)

= H(X̃B,τ−2|[W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−4
τ−q−3, [X̃B]τ−3τ−q−1)

−H(X̃B,τ−2|[W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−3
τ−q−3, [X̃B]τ−3τ−q−1) (10.4)

= H(W̃ESc ,τ−3|[W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−4
τ−q−3, [X̃B]τ−3τ−q−1)

−H(W̃ESc ,τ−3|[W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−4
τ−q−3, [X̃B]τ−2τ−q−1). (10.5)

87

The complete set of side information variables available at all the terminals at
time step τ equals ([W̃S,W̃ESc]

τ−4
τ−q−3, [X̃B]τ−2τ−q−1), by the decoding conditions

that these node have to decode w̃ESc ,τ−3 at time step τ , we have

H(W̃ESc ,τ−3|[W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−4
τ−q−3, [X̃B]τ−2τ−q−1) = 0.

Next, since W̃ESc ,τ−3 is independent of ([W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−4
τ−q−3, [X̃B]τ−3τ−q−1),

we have

H(W̃ESc ,τ−3|[W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−4
τ−q−3, [X̃B]τ−3τ−q−1) = c̃B.

Therefore by (10.4), we have

H(X̃B,τ−2|[W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−4
τ−q−3, [X̃B]τ−3τ−q−1)

−H(X̃B,τ−2|[W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−3
τ−q−3, [X̃B]τ−3τ−q−1) = c̃B. (10.6)

Since H(X̃B,τ−2|[W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−4
τ−q−3, [X̃B]τ−3τ−q−1) ≤ c̃B, we have

H(X̃B,τ−2|[W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−3
τ−q−3, [X̃B]τ−3τ−q−1) = 0.

Namely, the broadcast information X̃B,τ−2 is a function of

([W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−3
τ−q−3, [X̃B]τ−3τ−q−1).

From (10.6), we also have

H(X̃B,τ−2|[W̃S]τ−4
τ−q−d̃max−3

, [W̃ESc]
τ−4
τ−q−3, [X̃B]τ−3τ−q−1) = c̃B. (10.7)

The above equations have the following implications: for any fixed realization
([w̃S]τ−4

τ−q−d̃max−3
, [w̃ESc]

τ−4
τ−q−3, [x̃B]τ−3τ−q−1), if we evaluate X̃B,τ−1 using

([w̃S]τ−4
τ−q−d̃max−3

, [w̃ESc]
τ−4
τ−q−3, [x̃B]τ−3τ−q−1)

and 2c̃B possible values for w̃ESc ,τ−3 as inputs, the values for X̃B,τ−2 cycle
through all 2c̃B possible values in Fc̃B2 and eventually hit 0. This must be true or
we would haveH(X̃B,τ−2|([w̃S]τ−4

τ−q−d̃max−3
, [w̃ESc]

τ−4
τ−q−3, [x̃B]τ−3τ−q−1)) < c̃B, which

is a contradiction of (10.7). This implies that for any realization

([w̃S]τ−4
τ−q−d̃max−3

, [w̃ESc]
τ−4
τ−q−3, [x̃B]τ−3τ−q−1),

there exists a corresponding edge message realization for w̃ESc ,τ−3 such that
X̃B,τ−2 evaluates to 0 given these inputs.

88

Let K̃ = {[x̃B]0−d̃max−q
, [w̃S]0−d̃max−q

, [w̃E]0−d̃max−q
} be the initializing constants

for Ĩ. By induction on the time indices, for any source message realization
(w̃S,τ ′)

τ ′∈N, there exists a corresponding edge message realization (w̃ESc ,τ ′)
τ ′∈N

such that if these were the realizations for the index code and K̃ were the
initializing constants, the broadcast information X̃B,τ would be 0 for all τ ∈ N.
By the feasibility assumption of the index code, all terminals must decode
correctly when the message realizations are (w̃S,τ ′ , w̃ESc ,τ ′)

τ ′∈N. Therefore, the
following is true when each terminal decodes at time step τ > q:

• For any e ∈ ESc ,

w̃e,τ−3 = g̃t̃e(0[w̃EG(In(e))]
τ−4
τ−q−3, [w̃SG(In(e))]

τ−4
τ−q−3, [w̃e]

τ−4
τ−q−3).

• For any demand pair (s, t) and delay dT (t) in I,

w̃s,τ−dt−3 = g̃t̃t(0, [w̃EG(t)]
τ−4
τ−q−3, [w̃SG(t)]

τ−4
τ−q−3, [w̃s]

τ−dT (t)−4
τ−dT (t)−q−3).

For a suitable choice of initializing constants, a network code for I can therefore
be obtained as follows:

• For any e ∈ ESc ,

fe([XEG(In(e))]
τ−1
τ−q, [WSG(In(e))]

τ−1
τ−q, [Xe]

τ−1
τ−q)

= g̃t̃e(0, [XEG(In(e))]
τ−1
τ−q, [WSG(In(e))]

τ−1
τ−q, [Xe]

τ−1
τ−q).

• For any demand pair (s, t) and delay dT (t) in I,

gt([XEG(t)]
τ−1
τ−q, [WSG(t)]

τ−1
τ−q, [Ws]

τ−dT (t)−1
τ−dT (t)−q)

= g̃t̃t(0, [XEG(t)]
τ−1
τ−q, [WSG(t)]

τ−1
τ−q, [Ws]

τ−dT (t)−1
τ−dT (t)−q).

Finally, we select the initializing constants for I from suitable realizations of
(w̃S,τ , w̃ESc ,τ) for Ĩ. We need realizations (w̃S,τ , w̃ESc ,τ) that yield x̃B,τ = 0
for a long enough time period. Start with the constants

K̃ = {[x̃B]0−d̃max−q, [w̃S]0−d̃max−q, [w̃E]0−d̃max−q}

for Ĩ, let [w̃S]dmax+2q+1
1 be any source realizations and [x̃B]dmax+2q+1

1 = 0. Let
[w̃E]dmax+2q+1

1 be the edge message realizations computed as follow:

w̃e,τ−3 = g̃t̃e(0[w̃EG(In(e))]
τ−4
τ−q−3, [w̃SG(In(e))]

τ−4
τ−q−3, [w̃e]

τ−4
τ−q−3).

89

The reason for taking variables for dmax + 2q+ 1 time steps is that [x̃B]0−d̃max−q
might not be all 0. A suitable assignment for K is therefore

[wS]0−d̃max−q = [w̃S]dmax+2q+1
q+1 ,

[xESc]
0
−d̃max−q = [w̃ESc]

dmax+2q+1
q+1 .

90

C h a p t e r 11

SUMMARY

In this work, we explore reductions in various settings.

In the study of reduction with respect to network demands, we show all mul-
tiple multicast demands reduce to multiple unicast demands for both linear
and general capacity regions. When restricted to linear codes, multiple unicast
network coding further reduces to 2-unicast network coding. We also prove
that the code reduction of [14] (from multiple multicast to 2-unicast) extends
to a capacity reduction if and only if the AERS1 holds. These results help
identify the demand type that is representative in each scenario.

In the study of capacity reduction with respect to network topology, we show
that acyclic network coding reduces to index coding under the restriction of
linear codes. For general codes, we show that the code reduction in [6], [7]
extends to a capacity reduction if and only if the AERS holds. Further, we
show that under a streaming model, the code reduction from [6] extends to a
code reduction from general network coding to index coding. This result shows
that under the streaming model, there is no fundamental difference between
acyclic networks and networks containing cycles. A summary of the reduction
results is given in Figure 11.1.

We also study characterizations of the network coding capacity region. We
show that the Yeung outer bound yields an alternative characterization for the
network coding capacity region if and only if the AERS holds. If the Yeung
outer bound is tight, it not only gives a potentially simpler characterization
of the capacity region but also resolves a series of problems connected to the
AERS. Following a similar approach to the one used to prove the Yeung outer
bound [15], we derive a characterization of zero-error network coding capacity
region using a dense subset of the entropic region. We also show that under
the assumption of linear encoders, there is no difference between epsilon-error
and zero-error network coding capacity regions.

For future work, it would be useful to understand the implications of the
1Asymptotic edge removal statement

91

streaming model to the network coding capacity region as well as to extend
results proven for acyclic networks to networks containing cycles. We have
linked several capacity reductions to the edge removal statement, identifying
addition problems that are connected to the edge removal statement will help
us gain insights to this group of connected problems.

MM:Multiple Multicast

MU:Multiple Unicast

reduction

MM

Comm.

Network

MM

Network

Coding

MM Index

Coding

MU Comm.

Network

MU

Network

Coding

2U

Network

Coding

MU Index

Coding

2U:2 Unicast

AERS implies

general capacity reduction

Linear capacity

reductionGeneral capacity

x

x

x

x

x

x

x

x

x

MM

Streaming

Network

Coding

MM

Streaming

Index

Coding

x

reductionGeneral code

Figure 11.1: A summary of reduction results with respect to demand and net-
work types. Solid arrows represent reductions in the general capacity region.
Dashed arrows represent reductions in the linear capacity region. Dash-dotted
arrows represent general capacity reductions that hold when the AERS holds.
Dash-dot-dotted arrows represent general code reductions. Our contributions
are marked with an “x”.

92

BIBLIOGRAPHY

[1] C. E. Shannon, “A mathematical theory of communication,” ACM SIG-
MOBILE Mobile Computing and Communications Review, vol. 5, no. 1,
pp. 3–55, 2001.

[2] R. Ahlswede, “Multi-way communication channels,” in Second Interna-
tional Symposium on Information Theory: Tsahkadsor, Armenia, USSR,
Sept. 2-8, 1971, 1973.

[3] H. H.-J. Liao, “Multiple access channels.,” DTIC Document, Tech. Rep.,
1972.

[4] W. Gu, M. Effros, and M. Bakshi, “A continuity theory for lossless
source coding over networks,” in Communication, Control, and Comput-
ing, 2008 46th Annual Allerton Conference on, IEEE, 2008, pp. 1527–
1534.

[5] Z. Bar-Yossef, Y. Birk, T. Jayram, and T. Kol, “Index coding with side
information,” IEEE Transactions on Information Theory, vol. 57, no. 3,
pp. 1479–1494, 2011.

[6] S. El Rouayheb, A. Sprintson, and C. Georghiades, “On the index coding
problem and its relation to network coding and matroid theory,” IEEE
Transactions on Information Theory, vol. 56, no. 7, pp. 3187–3195, 2010.

[7] M. Effros, S. El Rouayheb, and M. Langberg, “An equivalence between
network coding and index coding,” IEEE Transactions on Information
Theory, vol. 61, no. 5, pp. 2478–2487, 2015.

[8] S. Jalali, M. Effros, and T. Ho, “On the impact of a single edge on
the network coding capacity,” in Information Theory and Applications
Workshop, 2011, IEEE, 2011, pp. 1–5.

[9] N. J. Harvey, R. Kleinberg, C. Nair, and Y. Wu, “A “chicken & egg” net-
work coding problem,” in Information Theory, 2007 IEEE International
Symposium on, IEEE, 2007, pp. 131–135.

[10] C.-C. Wang and M. Chen, “Sending perishable information: Coding
improves delay-constrained throughput even for single unicast,” IEEE
Transactions on Information Theory, vol. 63, no. 1, pp. 252–279, 2017.

[11] C. Chekuri, S. Kamath, S. Kannan, and P. Viswanath, “Delay-constrained
unicast and the triangle-cast problem,” in Information Theory, 2015
IEEE International Symposium on, IEEE, 2015, pp. 804–808.

[12] R. Dougherty and K. Zeger, “Nonreversibility and equivalent construc-
tions of multiple-unicast networks,” IEEE Transactions on Information
Theory, vol. 52, no. 11, pp. 5067–5077, 2006.

93

[13] H. Maleki, V. R. Cadambe, and S. A. Jafar, “Index coding-an interference
alignment perspective,” IEEE Transactions on Information Theory, vol.
60, no. 9, pp. 5402–5432, 2014.

[14] S. Kamath, N. David, and C.-C. Wang, “Two-unicast is hard,” in Infor-
mation Theory, 2014 IEEE International Symposium on, IEEE, 2014,
pp. 2147–2151.

[15] R. W. Yeung, A first course in information theory. Springer Science &
Business Media, 2012.

[16] X. Yan, R. W. Yeung, and Z. Zhang, “An implicit characterization of the
achievable rate region for acyclic multisource multisink network coding,”
IEEE Transactions on Information Theory, vol. 58, no. 9, pp. 5625–5639,
2012.

[17] T. H. Chan and A. Grant, “Network coding capacity regions via entropy
functions,” IEEE Transactions on Information Theory, vol. 60, no. 9,
pp. 5347–5374, 2014.

[18] S. Thakor, A. Grant, and T. Chan, “Network coding capacity: A func-
tional dependence bound,” in Information Theory, 2009 IEEE Interna-
tional Symposium on, IEEE, 2009, pp. 263–267.

[19] M. Langberg and M. Effros, “Network coding: Is zero error always pos-
sible?” In Communication, Control, and Computing, 2011 49th Annual
Allerton Conference on, IEEE, 2011, pp. 1478–1485.

[20] L. Song, R. W. Yeung, and N. Cai, “Zero-error network coding for acyclic
networks,” IEEE Transactions on Information Theory, vol. 49, no. 12,
pp. 3129–3139, 2003.

[21] W. Huang, M. Langberg, and J. Kliewer, “Connecting multiple-unicast
and network error correction: Reduction and unachievability,” in Infor-
mation Theory, 2015 IEEE International Symposium on, IEEE, 2015,
pp. 361–365.

[22] W. Huang, T. Ho, M. Langberg, and J. Kliewer, “Single-source/sink
network error correction is as hard as multiple-unicast,” in Communica-
tion, Control, and Computing, 2014 52nd Annual Allerton Conference
on, IEEE, 2014, pp. 423–430.

[23] ——, “On secure network coding with uniform wiretap sets,” in Network
Coding, 2013 International Symposium on, IEEE, 2013, pp. 1–6.

[24] R. Koetter, M. Effros, and M. Médard, “A theory of network equivalence-
part i: Point-to-point channels,” IEEE Transactions on Information The-
ory, vol. 57, no. 2, pp. 972–995, 2011.

[25] M. Langberg and M. Effros, “Source coding for dependent sources,” in
Information Theory Workshop, 2012 IEEE, IEEE, 2012, pp. 70–74.

94

[26] T. Chan and A. Grant, “On capacity regions of non-multicast networks,”
in Information Theory, 2010 IEEE International Symposium on, IEEE,
2010, pp. 2378–2382.

[27] M. Langberg and M. Effros, “On the capacity advantage of a single bit,”
ArXiv preprint arXiv:1607.07024, 2016.

[28] O. Kosut and J. Kliewer, “On the relationship between edge removal
and strong converses,” in Information Theory, 2016 IEEE International
Symposium on, IEEE, 2016, pp. 1779–1783.

[29] T. Ho, M. Effros, and S. Jalali, “On equivalence between network topolo-
gies,” in Communication, Control, and Computing, 2010 48th Annual
Allerton Conference on, IEEE, 2010, pp. 391–398.

[30] P. Noorzad, M. Effros, M. Langberg, and T. Ho, “On the power of co-
operation: Can a little help a lot?” In Information Theory, 2014 IEEE
International Symposium on, IEEE, 2014, pp. 3132–3136.

[31] M. F. Wong, M. Langberg, and M. Effros, “On a capacity equivalence be-
tween multiple multicast and multiple unicast,” in Communication, Con-
trol, and Computing, 2013 51st Annual Allerton Conference on, IEEE,
2013, pp. 1537–1544. doi: 10.1109/Allerton.2013.6736710,

[32] M. F. Wong, M. Langberg, and M. Effros, “Linear capacity equivalence
between multiple multicast and multiple unicast,” in Information The-
ory, 2014 IEEE International Symposium on, IEEE, 2014, pp. 2152–
2156. doi: 10.1109/ISIT.2014.6875214,

[33] E. Van der Meulen, “A survey of multi-way channels in information the-
ory: 1961-1976,” IEEE Transactions on Information Theory, vol. 23, no.
1, pp. 1–37, 1977.

[34] T. Cover and A. E. Gamal, “Capacity theorems for the relay channel,”
IEEE Transactions on Information Theory, vol. 25, no. 5, pp. 572–584,
1979.

[35] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on information theory, vol. 46, no. 4, pp. 1204–
1216, 2000.

[36] S.-Y. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Transactions on Information Theory, vol. 49, no. 2, pp. 371–381, 2003.

[37] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B.
Leong, “A random linear network coding approach to multicast,” IEEE
Transactions on Information Theory, vol. 52, no. 10, pp. 4413–4430,
2006.

[38] S. Jalali and M. Effros, “Separation of source-network coding and channel
coding in wireline networks,” IEEE Transactions on Information Theory,
vol. 61, no. 4, pp. 1524–1538, 2015.

http://dx.doi.org/10.1109/Allerton.2013.6736710
http://dx.doi.org/10.1109/ISIT.2014.6875214

95

[39] P. Elias, “Coding for noisy channels,” in Proceedings of the Institute of
Radio Engineers, vol. 43, 1955, pp. 356–356.

[40] M. F. Wong, M. Effros, and M. Langberg, “On an equivalence of the
reduction of k-unicast to 2-unicast capacity and the edge removal prop-
erty,” in Information Theory, 2015 IEEE International Symposium on,
IEEE, 2015, pp. 371–375. doi: 10.1109/ISIT.2015.7282479,

[41] M. Bakshi and M. Effros, “On network coding capacity under on-off
scheduling,” in Information Theory, 2012 IEEE International Sympo-
sium on, IEEE, 2012, pp. 1667–1671.

[42] T. Ho, “Networking from a network coding perspective,” PhD thesis,
Doctoral dissertation, Massachusetts Institute of Technology, 2004.

[43] M. Langberg and M. Effros, “The edge removal problem as a canonical
problem in network coding,” Submitted to IEEE Transactions on Infor-
mation Theory,

[44] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding in
network information flow,” IEEE Transactions on Information Theory,
vol. 51, no. 8, pp. 2745–2759, 2005.

[45] R. Dougherty, C. Freiling, and K. Zeger, “Networks, matroids, and non-
shannon information inequalities,” IEEE Transactions on Information
Theory, vol. 53, no. 6, pp. 1949–1969, 2007.

[46] R. W. Yeung, “A framework for linear information inequalities,” IEEE
Transactions on Information Theory, vol. 43, no. 6, pp. 1924–1934, 1997.

[47] T. C. Hu, “Multi-commodity network flows,” Operations research, vol.
11, no. 3, pp. 344–360, 1963.

[48] I. Csiszár, “Linear codes for sources and source networks: Error expo-
nents, universal coding,” IEEE Transactions on Information Theory, vol.
28, no. 4, pp. 585–592, 1982.

[49] M. F. Wong, M. Langberg, and M. Effros, “On a capacity equivalence
between network and index coding and the edge removal problem,” in
Information Theory Proceedings, 2013 IEEE International Symposium
on, IEEE, 2013, pp. 972–976. doi: 10.1109/ISIT.2013.6620371,

[50] M. F. Wong, M. Effros, and M. Langberg, “On tightness of an entropic
region outer bound for network coding and the edge removal property,”
in Information Theory, 2016 IEEE International Symposium on, IEEE,
2016, pp. 1769–1773. doi: 10.1109/ISIT.2016.7541603,

[51] Z. Zhang and R. W. Yeung, “A non-shannon-type conditional inequality
of information quantities,” IEEE Transactions on Information Theory,
vol. 43, no. 6, pp. 1982–1986, 1997.

http://dx.doi.org/10.1109/ISIT.2015.7282479
http://dx.doi.org/10.1109/ISIT.2013.6620371
http://dx.doi.org/10.1109/ISIT.2016.7541603

96

[52] W. Kim, M. Langberg, and M. Effros, “A characterization of the capac-
ity region for network coding with dependent sources,” in Information
Theory, 2016 IEEE International Symposium on, IEEE, 2016, pp. 1764–
1768.

[53] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 782–795,
2003.

[54] M. F. Wong, M. Effros, and M. Langberg, “A code equivalence between
streaming network coding and streaming index coding,” in To appear
in Information Theory, 2017 IEEE International Symposium on, IEEE,
2017,

	Dedication
	Acknowledgments
	Abstract
	Published Content and Contributions
	Table of Contents
	Introduction
	Contributions

	Network Models
	Canonical Communication Network
	Network Coding Networks
	Index Coding Networks

	Preliminaries
	Reductions in Networks
	The Edge Removal Statement

	Capacity Reduction from Multiple Multicast to Multiple Unicast
	Reduction Mapping 1
	Main Result
	Implications for Network Coding Networks
	Implications for Index Coding Networks
	A Linear Code Reduction from Lossy Network Coding to Lossless Network Coding
	Proof of Theorem 4.2.1

	From Code Reduction to Capacity Reduction
	Acyclic Network Coding
	Dependent Sources
	Code Reduction Results
	Representative Topologies for The Edge Removal Statement
	A sufficient Condition for Capacity Reduction

	Capacity Reduction from Multiple Unicast to 2-Unicast
	Reduction Mapping 2
	Main Result
	Insufficiency of Linear Coding in 2-Unicast Network Coding
	A Linear Code Reduction from Lossy Source Coding to Lossless Network Coding
	Proof of Theorem 6.2.1

	Reduction from Network Coding to Index Coding
	Reduction Mapping 3
	Main Result
	Proof of Theorem 7.2.1

	The Tightness of the Yeung Network Coding Outer Bound
	Entropic Regions
	The Yeung Outer Bound Rout
	Main Result
	Proof of Theorem 8.3.1

	Zero-error Versus Epsilon-error Capacity Region
	Zero Versus Epsilon-Error Linear Network Coding Capacity Region
	An Implicit Characterization for the Zero-Error Capacity Region

	Code Reduction from Streaming Network Coding to Streaming Index Coding
	Streaming Network Coding Model
	Reduction Mapping 5
	Proof of Theorem 10.2.1

	Summary
	Bibliography

