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ABSTRACT 
 

Integral membrane protein characterization is limited by the low levels of protein 

obtainable from heterologous overexpression in hosts such as Escherichia coli. Differences 

in the efficiencies of subdomains of the co-translational integration processes of membrane 

proteins into the membrane could explain the observed variation in the experimental 

expression of closely related homologs in E. coli. We have developed a method to predict 

and increase the expression of individual membrane proteins by optimizing the efficiency 

of their translocon-mediated integration into the membrane. The integration efficiency of 

each component of a membrane protein is calculated using a coarse-grained co-

translational simulated integration model. The results of model simulations, experimental 

expression levels quantified by integral membrane protein-GFP fusion fluorescence, and a 

novel antibiotic survival test that reports on misintegration in vivo are applied to test the 

relationship between the integration efficiency of specific domains and experimental 

expression. Changes in simulated integration efficiencies due to sequence modifications 

agree with the effects on experimental expression in vivo. In the case of the TatC protein 

family, misintegration of the C-tail is found to be a major contributor to expression failure 

in E. coli. Beneficial sequence modifications that improve both simulated integration 

efficiency and experimental expression levels can be identified using the model. 

Preliminary evidence shows that simulated integration efficiency could potentially predict 

the effects of mutations on Haemophilus influenzae GlpG experimental expression in E. 

coli. The process described herein allows for the rational overexpression of integral 

membrane proteins through the identification and mitigation of inefficiencies in the 

underlying co-translational membrane integration process.  
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C h a p t e r 1 
 

INTRODUCTION 
 

Integral Membrane Proteins Are Important Research Targets 

Integral membrane proteins (IMP) act as key relays between the interior and 

exterior of a cellular or subcellular environment, facilitating the passage of information, 

cargo, and energy. They represent approximately 26% of human genes and 60% of current 

drug targets [1, 2]. Though IMPs are attractive targets for structural characterization, they 

represent only 2% of structures deposited in the PDB [3]. A major contributor to the limited 

number of membrane protein structures is the difficulty in obtaining sufficient amounts 

from heterologous overexpression.  

There are two types of IMPs found in bacteria: alpha helical membrane proteins 

that reside in the inner membrane and beta barrel membrane proteins found in the outer 

membrane [4]. They have distinct structural motifs and biogenesis pathways and inhabit 

different subcellular environments. The majority of polytopic alpha helical membrane 

proteins integrate into the inner membrane with assistance of the translocon, while beta 

barrel proteins are translocated across the inner membrane through the translocon to be 

inserted in the outer membrane. Hereafter, IMPs will be used to indicate only polytopic 

alpha helical membrane proteins.  

The domains that make up an IMP can be categorized as either loop or 

transmembrane domains (TMD). TMDs are alpha helices that reside within the membrane 

and are enriched in hydrophobic residues. In contrast, loop domains are found in the 

cytoplasmic or periplasmic space in bacteria and are more hydrophilic. The different 
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natures of these domains contribute to the delivery and final fold of the IMP through their 

interactions with processing machinery including the SRP and the translocon. 

 

Membrane Protein Biogenesis in Escherichia coli 

 A key hypothesis made here is that the integration efficiency of an IMP directly 

affects its expression levels in E. coli. Experimental expression represents the amount of 

protein that is translated and properly folded within the inner membrane. IMP biogenesis 

requires the placement of the constituent loops and TMDs with the correct orientation 

relative to the membrane. Ribosomes translating IMPs in bacteria are targeted to the 

translocon in the inner membrane via interaction with the signal recognition particle (SRP) 

and its receptor (SR) [5, 6]. The SRP recognizes a hydrophobic signal sequence on a 

nascent IMP early in its translation. Contact of an SRP with the SR leads to the handoff of 

the ribosome-nascent chain complex to the translocon. At the core of the translocon is the 

SecYEG complex, a channel with a unique structure, containing both a pore that can allow 

passage of substrates across the membrane and a lateral gate that can open to allow cargo 

within the channel to directly interact with and insert into the membrane [7-10]. The 

translocon aids in the integration of the TMDs into the membrane by the opening of its 

lateral gate when a TMD is within the channel, facilitating passage of the TMD into the 

membrane. Loop domains are either translocated through the channel into the periplasm or 

retained in the cytoplasm by passing through a space between the translocon and the 

ribosome.  

It is important to note that the targeting and integration of IMPs usually occurs co-

translationally; only a portion of the polypeptide is exposed beyond the exit tunnel of the 
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ribosome to interact with the SRP and translocon [6, 7]. Therefore, it is sequentially early 

hydrophobic domains that interact with the SRP [5, 6]. As well, the translocon is proposed 

to integrate TMDs soon after their emergence from the exit tunnel such that TMDs are 

integrated into the membrane in their order on the primary sequence of the IMP (i.e. TMD 

1 integrates first, TMD 2 integrates second, etc.) [10-12]. Notable exceptions to the co-

translational and sequential model of IMP integration have been found, including examples 

of large-scale reorientation of IMP domains [13-15]. 

The establishment of the correct topology is important for the proper folding and 

function of an IMP integrated by the translocon and is influenced by the biophysical 

characteristics of the nascent chain. The topology of an IMP refers to the orientation of the 

TMD and loop domains with respect to the cytoplasm. For example, an IMP with three 

TMDs and four loops can be integrated with two orientations: the N-terminal loop in the 

cytoplasm and the C-terminal loop in the periplasm or the N-terminal loop in the periplasm 

and the C-terminal loop in the cytoplasm. Interactions between the nascent chain, the 

translocon, and the surrounding microenvironment are key to establishing topology. Two 

of the most prominent features of the nascent chain that contribute to topogenesis are the 

hydrophobicity of the TMDs and the distribution of positive charges on cytoplasmic and 

periplasmic loops. The hydrophobicity of a TMD correlates with its membrane insertion 

efficiency [10, 16]. Cytoplasmic loops are highly enriched in positively charged residues 

as compared to periplasmic loops [17]. Changing the placement of positively charges along 

the IMP sequence can affect the final topology of the IMP [14, 18, 19]. A failure to establish 

the correct topology due to low integration efficiency prevents proper folding and function 

of the IMP and leads to its degradation [20]. 
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In the studies described here, the process of the orientation of a loop domain 

through interaction with the translocon to establish topology is referred to as its integration. 

Misintegration indicates improper retention or translocation of a loop, ending with its 

placement in the incorrect subcellular location. Integration efficiency of a loop or TMD 

represents the proportion of IMPs expressed with the domains in the correct location after 

interaction with the translocon has ended. Optimization of the integration efficiency 

through modification of loops or TMDs provides a method of improving expression of an 

initially inefficiently integrated IMP. 

 

The Membrane Protein Expression Problem 

Heterologous expression levels of IMPs in E. coli are often insufficient for 

characterization by structural or biochemical methods, requiring researchers studying a 

specific protein to test a number of homologs until one provides sufficient yields, often 

encountering widely different expression values even among closely related proteins with 

high sequence homology [21-23]. The hydrophobic stretches that make up the TMDs are 

unstable and prone to aggregation outside of the membrane from which they cannot be 

easily refolded, and overexpression of IMPs is often toxic and can inhibit cell replication 

and lead to less final cell mass [24]. These issues contribute to the significant time and 

resource costs associated with the study of IMPs [20]. 

One of the methods developed to increase the throughput of IMP expression 

quantification involves the addition of a C-terminal GFP to the IMP coding sequence [25, 

26]. Fluorescence levels from IMP-GFP fusions have been found to correlate strongly with 

the level of folded protein available for purification [26-31]. Therefore, measuring the 
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fluorescence of GFP molecules in the whole cell, in the cell lysate, or on a band on an SDS-

PAGE gel can be used to quantify expression without IMP purification. The use of C-

terminal GFP fusions greatly increases the number of IMPs that can be tested for 

expression yield.  

There is no universally successful method for improving IMP expression and many 

of the strategies do not identify the cellular mechanism of the initial expression failure. An 

analysis of a large-scale expression trial of Escherichia coli IMP-GFP fusions was unable 

to identify a single feature that significantly correlated with expression yield [31]. 

Strategies for improving IMP expression in E. coli can be classified as either, (a), a 

modification of the IMP nucleotide and/or amino acid sequence to optimize its processing 

by the cellular machinery, or, (b), a change to the organism in which the IMP is 

overexpressed to improve the efficiency of the biogenesis pathway. In regard to (a), 

performing error-prone PCR to find mutations that increase stability and yield have been 

applied with some success [32, 33]. In the case of (b), one of the most successful and widely 

adapted methods for improving IMP expression involves reducing the amount of mRNA 

of the non-native IMP produced in the cell, which suggests that higher levels in some way 

overload the normal capacity for producing IMPs [34, 35]. Given the complex biogenesis 

process IMPs must undergo that is not required for soluble protein expression, inefficiency 

within the pathway is a likely contributor to poor expression. Both of these methods do not 

identify the source of expression failure. Researchers would benefit from an approach that 

would allow for improvement in expression through the understanding and improvement 

of the underlying suboptimal processes that lead to poor expression. 
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 A coarse-grained molecular dynamics simulation model of translocon-facilitated 

integration of IMPs (CG model) provides a view of IMP integration and can be used to 

identify the source of expression failure [36]. The CG model is derived from over 16 µs of 

molecular dynamics simulations of the translocon, membrane bilayer, and a substrate 

sequence. The simplified, coarse-grained nature of the model allows for a large number of 

simulations over biologically relevant timescales to assess the efficiency of the integration 

process for an IMP and the domains thereof. The proportion of CG model trajectories that 

terminate with a domain in the correct topological location provides a measure of the 

efficiency with which it is oriented by the translocon with the correct final topology 

(simulated integration efficiency). Use of the CG model allows for understanding the 

underlying mechanism that leads to observed experimental results due to interactions of 

the nascent IMP with the membrane-translocon-ribosome environment. 

 The concept explored in later chapters is that the amount of folded, recoverable 

protein following the overexpression of an IMP in E. coli is directly influenced by the 

integration efficiency of individual domains and can be predicted by simulated integration 

efficiency calculated using the CG model. In Chapter 2, expression tests of TatC sequences 

with mutations limited to the C-tail demonstrate that the integration efficiency of the C-

terminal loop (C-tail) is a key predictor of experimental expression as misintegration of the 

C-tail contributes to the poor expression of some TatCs, confirmed using an in vivo 

ampicillin assay. The effect of C-tail sequence changes on experimentally observed 

expression levels strongly correlates with the simulated integration efficiency obtained 

from the CG model. Likewise, mutations that improve the simulated integration efficiency 

increase the experimentally observed expression levels. In Chapter 3, the concept was 
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expanded to attempt the prediction of the effect of sequence modifications of any loop of 

TatC. Simulated integration efficiencies, calculated using a coarse-grained simulation 

approach, robustly predict expression for a set of 140 sequence modifications on TatC 

homologs, including loop-swap chimeras and single-residue mutations distributed over 

much of the protein sequence. The simulated integration efficiency and experimental 

expression of double-loop-swap chimeras is shown to be multiplicative and largely 

independent with respect to the component single-swap mutations. The evidence again 

indicates misintegration of the TatC C-tail is a factor in cases poor expression and mutation 

of the IMP sequence far from the C-terminus can improve the integration efficiency of the 

C-tail. In Chapter 4, a library of mutated Haemophilus influenzae (Hi) GlpG sequences is 

created using error-prone PCR and tested for experimental expression levels. HiGlpG 

contains loop domains with simulated integration efficiencies that could be predictive of 

experimental expression improvement. The combined studies demonstrate that 

experimental expression of IMPs can be improved by using sequence modification to 

manipulate the integration efficiency of specific subdomains and these effects can be 

predicted by analyzing CG model simulations of the co-translational integration process. 

Future development and testing of the strategy will aim to broaden the applicability and 

simplify the use of the model on new sequence spaces. 
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C h a p t e r 2 
 

A LINK BETWEEN INTEGRAL MEMBRANE PROTEIN EXPRESSION 
AND SIMULATED INTEGRATION EFFICIENCY FOR TATC C-TAIL 

MUTANTS 
 

Adapted from Stephen S. Marshall*, Michiel J. M. Niesen*, Axel Müller, Katrin Tiemann, 
Shyam M. Saladi, Rachel P. Galimidi, Bin Zhang, William M. Clemons, Jr., and 
Thomas F. Miller, III. A Link between Integral Membrane Protein Expression and 
Simulated Integration Efficiency. Cell Reports, 2016. 16(8): p. 2169-2177. doi: 
10.1016/j.celrep.2016.07.042 
 
*Stephen S. Marshall and Michiel J.M. Niesen are co-first authors. 
 

Abstract 

Integral membrane proteins control the flow of information and nutrients across 

cell membranes, yet mechanistic studies of membrane proteins are hindered by difficulties 

in expression. We investigate this issue by addressing the connection between membrane 

protein sequence and observed expression levels. For homologs of the integral membrane 

protein TatC, observed expression levels vary widely and are affected by small changes in 

protein sequence. The effect of sequence changes on experimentally observed expression 

levels strongly correlates with the simulated integration efficiency obtained from coarse-

grained modeling, which is directly confirmed using an in vivo assay. Furthermore, 

mutations that improve the simulated integration efficiency likewise increase the 

experimentally observed expression levels. Demonstration of these trends in both 

Escherichia coli and Mycobacterium smegmatis suggests that the results are general to 

other expression systems. This work suggests that integral membrane protein integration 

is a determinant for successful expression, raising the possibility of controlling expression 

via rational design.  
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Introduction 

The central role of integral membrane proteins (IMPs) in many biological functions 

motivates structural and biophysical studies that require large amounts of purified protein, 

often at considerable costs in terms of both materials and labor. A key obstacle is that only 

a small percentage of IMPs can be overexpressed (i.e., heterologously produced at levels 

conducive to further study) [23]. While extensive efforts have shown promising results for 

individual IMPs, including those focusing on expression conditions, host modification, and 

directed evolution [35, 37, 38], none of these has proven broadly applicable, even among 

homologs of a given IMP. In general, the determinants for IMP expression are poorly 

understood, leading to the prevailing opinion that problems in membrane protein 

expression must be addressed on a case-by-case basis. 

Closely related IMP homologs can vary dramatically in the amount of protein 

available after expression [23], which raises a fundamental question: what differentiates 

the expression of IMP homologs? The hypothesis raised here is that the efficiency with 

which an IMP is integrated into the membrane is a key determinant in the degree of 

observed IMP expression. 

A fundamental step in the biosynthesis of most IMPs involves their targeting to and 

integration into the membrane via the Sec protein translocation channel [7]. Integration of 

IMP transmembrane domains (TMDs) into the membrane is facilitated primarily through 

interaction between the nascent chain and SecY, which forms the core of the protein 

translocation complex, or translocon. Following the co-translational or post-translational 

insertion of nascent protein sequences into the translocon channel, hydrophobic segments 

pass through the lateral gate of SecY into the membrane to form TMDs. Factors such as 
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TMD hydrophobicity [10, 16] and loop charge [17, 39] have been shown to affect the 

efficiency of TMD integration and topogenesis. For example, TMD hydrophobicity is 

directly related to the probability with which TMDs partition into the lipid bilayer, while 

positively charged residues in the loop alter TMD orientation by preferentially occupying 

the cytosol [10, 17, 39]. 

In this study, we investigated the connection between observed IMP expression 

levels and Sec-facilitated IMP integration efficiency (i.e., the probability of membrane 

integration with the correct multi-spanning topology). Systematic investigation of chimeras 

within an IMP family led to the identification of sequence elements that modulate 

expression levels. In silico modeling of IMP integration at the Sec translocation channel 

found that the sequence modifications that increase the calculated IMP integration 

efficiency correlate with in vivo overexpression improvements, suggesting that IMP 

integration efficiency is a determinant for successful expression. The result was found to 

be general across distinct expression systems (E. coli and M. smegmatis). Furthermore, an 

in vivo assay based on antibiotic resistance in E. coli experimentally confirmed the model 

that the integration efficiency of an individual TMD correlates with the observed IMP 

expression levels. The strong link between the effects of sequence modifications on 

simulated integration efficiency and experimentally measured expression levels offers 

future promise for the rational design of IMP systems with increased expression levels. 
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Results 

As a detailed case study, the TatC IMP family was employed for all experimental 

and computational results reported here. A component of the bacterial twin-arginine 

translocation pathway, TatC plays a key role in the transport of folded proteins across the 

cytoplasmic membrane [40]. The employment of TatC was well suited for this study as it 

is reasonably sized (only six TMDs; Figure 2.1A), non-essential, and found broadly 

throughout bacteria; furthermore, TatC homologs previously have been observed to exhibit 

widely varying expression levels in E. coli [41], suggesting the importance of sequence-

level details in the expression of this IMP. 

 
Figure 2.1: Variation in the Expression of TatC Homologs in E. coli. (A) A topology 
representation of TatC with a GFP C-terminal tag, as used in the expression studies. TMDs 
and loops are indicated in colors and gray, respectively, and are numbered. (B) Expression 
levels of various TatC homologs in E. coli, measured by TatC-GFP fluorescence, with 
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expression levels normalized to AaTatC (blue). Error bars indicate the standard errors of 
the mean. 
 

Wild-Type and Chimeric TatC Expression in E. coli 

We first demonstrated that homologs of the IMP TatC exhibit large variance in 

observed expression levels in E. coli. For a quantitative measure of IMP expression, we 

employed a C-terminal fusion tag of a GFP variant [42] (Figure 2.1A) and measured whole-

cell fluorescence by flow cytometry. Whole-cell fluorescence intensity of this fusion tag 

has been validated in numerous previous studies to correlate strongly with the amount of 

folded IMP, rather than the total level of IMP translated [26-31]. We further validated the 

expression levels measured from whole-cell fluorescence (Figure 2.1B) using in-gel 

fluorescence (Figures 2.1C, 2.2B, and 2.2C; Pearson correlation coefficient, r = 0.9) and 

western blot analysis (Figure 2.2A). With this approach, expression levels in E. coli were 

experimentally measured for TatC homologs from a variety of bacteria, including Aquifex 

aeolicus (Aa), Bordetella parapertussis (Bp), Campylobacter jejuni (Cj), Deinococcus 

radiodurans (Dr), Escherichia coli (Ec), Hydrogenivirga species 128-5-R1 (Hy), 

Mycobacterium tuberculosis (Mt), Staphylococcus aureus (Sa), Vibrio cholera (Vc), and 

Wolinella succinogenes (Ws). 
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Figure 2.2: Validation of Expression of TatC Variants in E. coli. (A) Anti-GFP western 
blot results for TatC homologs and the corresponding Aa-tail swap chimeras. Two bands 
were observed for all lanes where TatC-GFP was at high relative concentrations with the 
lower bands active by in-gel fluorescence and therefore determined to be folded protein. 
(Waldo et al., 1999) (B) In-gel fluorescence of SDS-PAGE for TatC homologs and the 
corresponding Aa-tail swap chimeras. Bands that exhibit fluorescence represent folded 
protein. The results exhibit the same trends in expression yield as seen by flow-cytometry. 
(C) Average in-gel fluorescence quantified across four separate gels. Ws and Ws(Aa-tail) 
could not be detected (n.d.) by in-gel fluorescence. Values for each band are normalized to 
the AaTatC band and values in parentheses indicate the standard error of mean. 
 

Figure 2.1B shows the wide range of expression levels that are exhibited by the 

TatC homologs in E. coli. Previous expression trials of TatC homologs identified that 

AaTatC is readily produced at high levels in E. coli, which enabled the solution of its 

structure [41, 43]. In contrast, low expression is found for both the MtTatC, hereafter 
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referred to as MtTatC(Wt-tail), and a modified sequence truncating the un-conserved 38-

residue sequence of the C-terminal loop, hereafter referred to as MtTatC [41]. 

 

 
Figure 2.3: Effect of the C-tail on TatC Expression in E. coli. (A) Measured expression 
levels of the AaTatC and MtTatC chimera proteins, normalized to AaTatC. Shaded bars 
represent wild-type TatC homologs and mutants with C-tail modifications. (B) Domain 
definitions used in generating the swap chimeras, with TMDs highlighted, are shown. (C) 
A ribbons diagram of the structure of AaTatC (RCSB PDB: 4HTS). TMDs are colored 
according to the highlights used in (B). (D) For each homolog, the ratio of the measured 
expression level for the Aa-tail chimera to that of the corresponding wild-type sequence is 
shown. (E) TatC wild-type and charge mutant C-tail sequences. Positive residues are in 
blue and negative residues are in red. The net charge is shown to the right of each sequence. 
Error bars indicate the standard errors of the mean. 
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To examine the parts of the protein sequence that affect expression, swap chimeras 

were generated by exchanging entire loops and TMDs between AaTatC and MtTatC. The 

TMDs and loops were defined by comparing sequence alignments and membrane topology 

predictions (Figure 2.3B) [44, 45]. The swap chimeras exhibited a wide range of expression 

results (Figure 2.3A). The C-terminal loop sequence, referred to as the C-tail and labeled 

as loop 7 in Figure 2.1A, was found to have a significant effect on expression levels (shaded 

bars in Figure 2.3A). Removal of the MtTatC C-tail improved expression. Removal of the 

C-tail from the AaTatC sequence led to a corresponding decrease in expression. Strikingly, 

swapping the AaTatC C-tail (Aa-tail) into the MtTatC sequence led to a significant 

improvement in expression. 

The positive effect of the Aa-tail on MtTatC expression raises the question of 

whether expression can be similarly improved in other TatC homologs by substituting the 

corresponding C-tail sequence (Figure 2.3E) with that of AaTatC. Swapping the C-tail of 

the various TatC homologs with the Aa-tail improved expression in seven of nine cases 

(Figure 2.3D). Taken together, the results in Figure 2.3 indicate that the C-tail is a 

significant factor in determining TatC expression across homologs. 

 

In Silico Modeling of TatC Integration 

To investigate the mechanistic basis for the experimentally observed effect of the 

C-tail on expression, we employed a recently developed in silico coarse-grained (CG) 

approach that models co-translational translocation on unbiased biological timescales [36]. 

The CG model, which is derived from >16 µs of molecular dynamics simulations of the 

Sec translocation channel, the membrane bilayer, and protein substrates [46, 47], has been 
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validated for the description of Sec-facilitated membrane integration, including 

experimentally observed effects of amino acid sequence on the membrane topology of 

single-spanning IMPs [36] and multi-spanning dual-topology proteins [18]. IMP sequences 

were mapped onto a Brownian dynamics model of the ribosome/translocation 

channel/nascent protein system, and the Sec translocon-facilitated integration of the IMP 

into the lipid bilayer was directly simulated in 1,200 independent minute-timescale 

trajectories for each TatC (Figure 2.4; Figure 2.5A). This implementation of the CG model 

did not distinguish between expression systems. 
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Figure 2.4: Simulated Integration Efficiencies Among All Loops TatC Wild-types and Aa-
tail Chimeras. For each considered TatC homolog, the simulated integration efficiency for 
the individual loops for both the wild-type sequence (black bars) and the Aa-tail chimeras 
(grey bars). It is seen that the Aa-tail generally leads to a significant effect on the integration 
efficiency of loop 7 (highlighted), with smaller effects on the other loops. Error bars 
indicate the standard error of mean. 
 

Using the results of the CG model, Figure 2.5B presents the simulated integration 

efficiency, defined to be the fraction of trajectories that led to the correct membrane 

topology, for several TatC sequences. Unless otherwise specified, we defined membrane 
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topology in terms of the final orientation of the C-tail. The AaTatC homolog exhibited 

significantly higher simulated integration efficiency than the MtTatC homolog, which is 

consistent with the relative experimental expression levels for the two homologs in Figure 

2.5C. Figure 2.5B shows that the Mt(Aa-tail) chimera recovered the high levels of 

simulated integration efficiency seen for the AaTatC homolog, further mirroring the 

experimental trends in IMP expression (Figure 2.5C). Figure 2.5D presents an analysis of 

the orientation of each loop, indicating that only loop 7 was significantly affected swapping 

the C-tail in the simulations. As is shown schematically in Figure 2.5E, the simulations 

found that MtTatC exhibits a large fraction of trajectories in which the C-tail resides in the 

periplasm, such that the C-terminal TMD (TMD 6) fails to correctly integrate into the 

membrane. 
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Figure 2.5: Calculation of TatC Integration Efficiencies. (A) Schematic illustration of the 
CG simulation model that is used to model co-translational IMP membrane integration. 
The amino acid sequence of the IMP is mapped onto CG beads, with each consecutive trio 
of amino acid residues in the nascent protein sequence mapped to an associated CG bead; 
the underlying properties of the amino acid residues determine the interactions of the CG 
beads, as described in the text. (B) Simulated integration efficiency of the AaTatC, MtTatC, 
and Mt(Aa-tail) sequences is shown. Error bars indicate the standard errors of the mean. 
(C) Experimental expression of the AaTatC, MtTatC, and Mt(Aa-tail) sequences is shown. 
Error bars indicate the standard errors of the mean. (D) The simulated integration efficiency 
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for individual loops of both the wild-type MtTatC sequence (black bars) and the Aa-tail 
swap chimera (gray bars), with loop 7 highlighted, is shown. Error bars indicate the 
standard errors of the mean. (E) Schematic of the correct and incorrect TatC topologies 
observed in the simulations. Misintegration of loop 7 and translocation of TMD 6 lead to 
an incorrect final topology for MtTatC. (F) For each homolog, comparison between the 
experimental expression levels in E. coli and M. smegmatis and the simulated integration 
efficiencies, reporting the ratio of the Aa-tail chimera result to that of the corresponding 
wild-type sequence. Ratios exceeding unity are highlighted in green, indicating 
enhancement due to the Aa-tail. Values in parentheses indicate the standard errors of the 
mean. 
 

Additional simulations were performed for the full set of the experimentally 

characterized TatC homologs (Figures 2.4 and 2.5F), allowing comparison of the 

computationally predicted shifts in IMP integration with those observed experimentally for 

IMP expression. For each homolog, Figure 2.5F compares the effect of swapping the wild-

type C-tail with the Aa-tail on both the experimental expression level and the simulated 

integration efficiency. With the exception of VcTatC and EcTatC, Figure 2.5F shows 

consistent agreement between the computational and experimental results in E. coli upon 

introducing the Aa-tail. 

 

Confirmation of the Predicted Mechanism Using a Translocation Assay 

The comparison between simulation and experiment in the previous sections 

suggests a mechanism in which translocation of the C-tail of TatC into the periplasm leads 

to a reduction in the observed expression level. To validate this, an experimental in vivo 

assay based on antibiotic resistance in E. coli was employed. The C-terminal GFP tag was 

replaced by β-lactamase, such that an incorrectly oriented C-tail would confer increased 

resistance to β-lactam antibiotics (Figure 2.6A); an inverse correlation between antibiotic 

resistance and GFP fluorescence was thus expected. AaTatC, Mt, and Mt(Aa-tail) 
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constructs containing the β-lactamase tag were expressed using the same protocol as 

before. Following expression, the cells were diluted to an optical density 600 (OD600) of 

0.1 in fresh media without inducing agent, and they were grown to an OD600 of ∼0.5 at 

which point ampicillin was added. Then 1.5 hours after ampicillin treatment, equal amounts 

of the media were plated on Luria-Bertani (LB) agar plates without ampicillin (Figure 

2.6B). The number of observed colonies was used to quantify the relative cell survival 

(Figure 2.6C, bottom). The survival rate of Mt(Aa-tail), Mt, and AaTatC inversely 

correlated with the simulated integration efficiency of the C-tail (Figure 2.6C), validating 

the proposed mechanism. 
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Figure 2.6: Correlation of Antibiotic Resistance to Membrane Topology. (A) Schematic of 
the cytoplasmic and periplasmic topologies of the TatC C-tail with the fused β-lactamase 
enzyme. Misintegration of loop 7 leads to periplasmic localization of the β-lactamase, 
resulting in enhanced antibiotic resistance and cell survival. (B) Representative plates from 
the ampicillin survival test are shown. (C) Comparison of the simulated integration 
efficiency (top) and relative ampicillin survival rate (bottom) for AaTatC, MtTatC, and 
Mt(Aa-tail). The reported cell survival corresponds to the ratio of counted cells post-
treatment versus prior to treatment with ampicillin; all values are reported relative to 
MtTatC. Error bars indicate the standard errors of the mean. 
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Tail Charge as an Expression Determinant: Experimental Tests of Computational 

Predictions 

To further establish the connection between the simulated integration efficiencies 

and the experimentally observed expression levels, we examined the effect of C-tail 

mutations. We focused on modifications of the C-tail amino acid sequences that involve 

the introduction or removal of charged residues, which are known to affect IMP topology 

and stop-transfer efficiency [14, 36, 39]. 

We began by investigating the generic effect of the C-tail charge magnitude on 

TatC-simulated integration efficiency. Figure 2.7A presents the results of CG simulations 

in which the magnitude of the charges on the C-tail of the Mt(Aa-tail) sequence were scaled 

by a multiplicative factor, χ, keeping all other aspects of the protein sequence unchanged. 

The simulations revealed that reducing the charge magnitude on the C-tail led to lower 

simulated integration efficiency. 

To examine the corresponding effect of C-tail charge magnitude on expression 

levels, Figure 2.7B plots the ratio of experimentally observed expression for each wild-

type homolog relative to its corresponding Aa-tail swap chimera versus the total charge 

magnitude on the wild-type C-tail. Without exception in these data, the expression of wild-

type homologs with weakly charged C-tails (relative to the Aa-tail) was improved upon 

swapping with the Aa-tail, whereas the expression of homologs with strongly charged C-

tails was reduced upon swapping with the Aa-tail (i.e., all data points in Figure 2.7B fall 

into the unshaded quadrants). 
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Figure 2.7 Mechanistic Basis Associated with Charged C-tail Residues. (A) Simulated 
integration efficiency of the Mt(Aa-tail) chimera, as a function of scaling the charges of the 
C-tail residues, is shown. (B) Correlation of the ratio of the measured expression for the 
Aa-tail swap chimeras to that of the corresponding wild-type sequence versus the charge 
magnitude of the wild-type C-tail (data from Figure 2.3E). (Pearson correlation coefficient 
of r = 0.8 ± 0.2) (C) Correlation of the ratio of the measured expression for the Aa-tail(−) 
swap chimeras to that of the corresponding wild-type sequence versus the charge 
magnitude of the wild-type C-tail, where the Aa-tail(−) swap chimeras include a variant of 
the Aa-tail with net negative charge and the same overall charge magnitude, is shown. (D) 
Experimental expression levels in E. coli (blue, left axis) and simulated integration 
efficiency (black, right axis) for a series of mutants of the Mt(Aa-tail) sequence, in which 
positively charged residues in the Aa-tail are mutated to alanine residues. Reported values 
are normalized to Mt(Aa-tail). (E) Relative ampicillin survival rate in E. coli (red, left axis) 
and simulated integration efficiency (black, right axis) for a series of mutants of the Mt(Aa-
tail) sequence, in which positively charged residues in the Aa-tail are mutated to alanine 
residues. Simulation results are normalized as in (D), while ampicillin survival is 
normalized to the highest survival rate (i.e., with zero charge magnitude). Error bars 
indicate the standard errors of the mean. 

 

Figure 2.7C further illustrates the effect of charge magnitude on expression by 

presenting the experimentally observed expression levels for Aa-tail(−) swap chimeras, in 
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which the introduced C-tail sequence preserved the charge magnitude of the Aa-tail 

sequence while reversing the net charge (see Figure 2.3E for the C-tail sequences). Despite 

the complete reversal of the C-tail charge, the observed correlation between expression and 

C-tail charge magnitude for these two sets of chimeras was strikingly similar (compare 

Figures 1.7B and 1.7C). 

Finally, we considered a series of mutants of the Mt(Aa-tail) chimera, in which the 

charge magnitude of the Aa-tail was reduced by mutating positively charged residues to 

alanine residues (see Figure 2.3E for the C-tail sequences). For this series of mutants, 

Figure 2.7D (black) shows that the simulated integration efficiency decreased with the 

charge of the C-tail, which predicted a corresponding decrease in the experimental 

expression levels; indeed, the subsequent experimental measurements confirmed the 

predicted trend (Figure 2.7D, blue). Again using the antibiotic resistance assay to validate 

the connection between simulated integration efficiency and observed expression, Figure 

2.7E confirms that the simulation results correlated with the relative survival of the Mt(Aa-

tail) alanine mutants with a β-lactamase tag (Figure 2.7E, red). In addition to providing 

evidence for the connection between simulated integration efficiency and observed 

expression levels, the results in Figure 2.7 suggest that this link can be used to control IMP 

expression. 

 

Transferability to M. smegmatis 

Beyond the E. coli overexpression host, we examined the transferability of the 

relation between simulated integration efficiency and experimental expression levels. We 

employed M. smegmatis, a genetically tractable model organism that is phylogenetically 
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distinct from E. coli. All coding sequences were transferred into an inducible M. smegmatis 

vector, including the linker and C-terminal GFP, and expressed; expression levels were 

then measured by flow cytometry and validated by western blot. 

 

 
Figure 2.8: M. smegmatis Expression Tests. (A) Expression levels of various TatC 
homologs in M. smegmatis were measured by TatC-GFP fluorescence, with expression 
levels normalized to AaTatC (blue). (B) Simulated integration efficiency (blue, left axis) 
and measured expression levels in M. smegmatis (black, right axis) for a series of mutants 
of the Mt(Aa-tail) sequence, in which positively charged residues in the Aa-tail are mutated 
to alanine residues. Error bars indicate the standard errors of the mean. 

 

Figure 2.8A shows that, as in E. coli, the experimentally observed expression levels 

vary widely among the wild-type TatC homologs in M. smegmatis. However, comparison 

of Figure 2.8A with Figure 2.1B reveals that the total expression levels for the homologs 

in M. smegmatis are different from those seen in E. coli, although for both systems the 

AaTatC homolog expresses strongly and MtTatC expresses poorly (which is perhaps 

surprising, given the close evolutionary link between M. smegmatis and M. tuberculosis). 

Figure 2.5F also shows that replacing the wild-type C-tail with the Aa-tail in M. smegmatis 

generally increased the experimentally observed expression levels, in general agreement 

(six of nine homologs) with the previously discussed simulated integration efficiency 

results. 
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Figure 2.5F further shows that the subset of homologs, for which the Aa-tail swap 

chimeras led to increased levels of expression in M. smegmatis, was overlapping but 

different from the subset associated with the E. coli results. This emphasizes that, although 

the computed levels of simulated integration efficiency agree with the observed changes in 

expression levels in both expression systems, the observed expression levels depend on the 

expression system, while the simulated integration efficiencies calculated using the current 

implementation of the CG model are independent of the expression system. In short, 

simulated integration efficiency is a predictor of the expression levels in both systems, but 

it is not the only factor contributing to the observed expression levels. 

Continuing with the M. smegmatis expression system, Figure 2.8B repeats the 

comparison between the simulated integration efficiency and the observed expression 

levels for the series of mutants of the Mt(Aa-tail) chimera, in which the positive charge of 

the Aa-tail was reduced by mutating positively charged residues to alanine residues. The 

simulated integration efficiencies, identical to those in Figure 2.7D, were predicted to 

decrease as charges were removed. The experimental expression levels for M. smegmatis 

in Figure 2.8B likewise showed a decrease. Taken together, the results obtained for the M. 

smegmatis expression system suggest that the connection between simulated integration 

efficiency and observed expression levels may be generalizable beyond E. coli.  
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Discussion 

The mechanistic picture that emerges from the experimental and theoretical 

analysis of the TatC IMP family is that the efficiency of Sec-facilitated membrane 

integration, which is impacted by the IMP amino acid sequence, is a key determinant in 

the degree of observed protein expression. We observed that TatC homologs had varying 

levels of expression (Figures 2.1B and 2.8A). Swap chimeras between AaTatC and MtTatC 

revealed a significant effect of the C-tail in determining expression yields (Figure 2.3A), 

with the Aa-tail having a largely positive effect that was transferrable to other homologs 

(Figure 2.3F). CG modeling predicted a large, sequence-dependent variation of the 

simulated integration efficiency for the C-tail (Figure 2.4), suggesting the underlying 

mechanism by which the Aa-tail enhances the expression of other TatC homologs. 

Validation of this mechanism was experimentally demonstrated using an antibiotic 

resistance assay (Figure 2.6). Additional point-charge mutations in the C-tail were shown 

to change the simulated integration efficiency, which in turn predicted changes in the IMP 

expression levels according to the proposed mechanism; these predictions were 

experimentally confirmed in both E. coli (Figure 2.7) and M. smegmatis (Figure 2.8).  

The observed correlation between IMP integration efficiency and observed 

expression levels presented here is consistent with earlier observations that expression can 

be modulated by mutations of the sequence [48-50], as well as recent work in which 

misintegrated dual-topology IMPs were shown to be degraded by FtsH [13], However, 

these earlier studies did not provide a clear mechanistic basis for the relation between IMP 

sequence modifications and observed expression levels. In the current work, we 

demonstrate the relation between integration efficiency and observed expression levels, 
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and we demonstrate a tractable CG approach for computing the simulated integration 

efficiency and its changes upon sequence modifications. This work also raises the 

possibility of using simulated integration efficiencies to optimize experimental expression 

levels, which has been demonstrated here via the computational prediction and subsequent 

experimental validation of individual charge mutations in the C-tail. 

A few comments are worthwhile with regard to the scope of the conclusions drawn 

here. First, our study focused on comparing protein expression levels among IMP 

sequences that involve relatively localized changes, such as single mutations or loop-swap 

chimeras, as opposed to predicting relative expression levels among dramatically different 

IMP sequences. Second, our study examined experimental conditions for the 

overexpression of IMPs using the same plasmids, which may be expected to isolate the role 

of membrane integration in determining the relative expression levels of closely related 

IMP sequences. The prediction of expression levels among IMPs that involve more 

dramatic differences in sequence may well require the consideration of other factors, 

beyond just the simulated integration efficiency. Moving forward, we expect that a useful 

strategy will be to systematically combine the simulated IMP integration efficiency with 

other sequence-based properties to predict IMP expression levels [31]. 

The experimental and computational tools used here are readily applicable to many 

systems, potentially aiding the understanding and enhancement of IMP expression in many 

other systems, as well as providing fundamental tools for the investigation of co-

translational IMP folding. By demonstrating inexpensive in silico methods for predicting 

protein expression, we note the potential for computationally guided protein expression 

strategies to significantly impact the isolation and characterization of many IMPs.  
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Methods 

Designing and Cloning of TatC Chimeras 

The parent plasmid used for cloning, pET28(a+)-GFP-ccdB, was derived from an 

IMP-GFP vector used by [51]. TatC homologs and chimeras were prepared from genomic 

DNA, with the exception of wild-type M. tuberculosis and A. aeolicus TatC genes that 

were synthesized by primer extension as applied in DNAWorks (NIH) [52]. In most cases, 

the Gibson assembly cloning protocol was used for cloning [53]. Expression of a vector 

containing AaTatC with an N-terminal ten-His tag and without the GFP fusion-tag was 

used as a negative control for in-gel fluorescence, western blot analysis and flow 

cytometry. For constructs containing the β-lactamase tag, the GFP sequence was removed 

and replaced with a β-lactamase sequence using Gibson cloning. For generation of M. 

smegmatis compatible plasmids, the entire coding region of the TatC homologs including 

the entire GFP sequence and the poly-His tag were PCR amplified out of their respective 

pET28(a+)-GFP-ccdB vector using primers with compatible regions for placement into the 

pMyNT vector using Gibson assembly [54]. For β-lactamase constructs, the GFP sequence 

was replaced by a β-lactamase sequence using Gibson assembly.  

 

E. coli Expression  

Plasmids were transformed into BL21 Gold (DE3) cells and transferred onto LB 

agar plates containing 50 µg/ml kanamycin plates after one-hour incubation. After 

overnight incubation at 37°C, colonies were scraped off the plates into 5 mL of LB, 

resuspended, and the OD600 was determined. These samples were then diluted into 50 mL 

2xYT containing 50 µg/ml kanamycin in 125 mL baffled flasks to a starting OD600 of 
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approximately 0.01. Cultures were grown in an orbital shaker at 37°C until they reached 

an OD600 of 0.15. The temperature of the orbital shaker was then reduced to 16°C. Upon 

reaching an OD600 of 0.3, IPTG was added to final concentration of 1mM to induce 

expression. Cultures were grown for a further 16 hours prior to analysis.  

 

β-Lactamase Survival Test 

Plasmids containing the β-lactamase tag were expressed overnight at 16°C as 

previously described. Cells from each overnight culture were washed with phosphate 

buffered saline (PBS) to remove IPTG then diluted into fresh 50 mL 2xYT media 

containing 50 µg/ml kanamycin to a starting OD600 of 0.1 in 125 mL baffled flasks. 

Cultures were grown at 37°C to an OD600 of approximately 0.5 where a control sample 

from each culture was taken, diluted 10,000 times in PBS, and 50 µL was plated onto LB 

agar plates containing 50 µg/ml kanamycin. To each culture, 50 µg/ml ampicillin was 

added and shaken at 37°C for a further 90 minutes. A sample from each culture was taken 

and diluted 200 times in PBS, and 50 µL was plated onto LB agar plates containing 50 

µg/ml kanamycin. Plates were grown overnight (~16 hours) and the number of colonies on 

each plate was counted. Colony counts from the second plating were normalized by the 

colony counts from the first plating to account for variation in the OD600 at which 

ampicillin was added to determine relative survival. The procedure was performed in 

triplicate and standard errors of normalized values were calculated. For each plot of relative 

survival, the values are normalized to the highest survival rate of the samples in the figure.  

 

 



33 

M. smegmatis Expression 

For M. smegmatis overexpression, constructs were transformed into mc2155 cells 

using electroporation and transferred onto Middlebrook 7H11 plates (10.25 g Middlebrook 

7H11 Agar Base, 1 vial ADC growth supplement, 2.5 g glycerol, 1 mM CaCl2, 50 µg/mL 

carbenicillin, 10 µg/mL cyclohexamide, 50 µg/mL hygromycin, and water to 500 mL) after 

a three hour incubation in 1 mL Middlebrook 7H9 culture media (2.35 g Middlebrook 7H9 

Broth Base, 1 vial ADC growth supplement, 0.5 g Tween-80, 1 mM CaCl2, 50 µg/mL 

carbenicillin, 10 µg/mL cyclohexamide, and water to 500 mL). Plates were grown for three 

to four days until colonies formed. Single colonies were picked into 5 mL Middlebrook 

7H9 culture media containing 50 µg/mL hygromycin. The following day, 50 mL cultures 

of Middlebrook 7H9 expression media (2.35 g Middlebrook 7H9 Broth Base, 0.25 g 

Tween-80, 1 g glycerol, 1 g glucose, 1 mM CaCl2, 50 µg/mL carbenicillin, 10 µg/mL 

cyclohexamide, 50 µg/mL hygromycin, and water to 500 mL) were inoculated at a starting 

OD600 of 0.005. Cultures were grown at 37°C and expression was induced with 0.2% 

acetamide at an OD600 of 0.5. Cultures were grown for six hours after induction prior to 

analysis.  

 

Flow Cytometry 

A 200 µL sample of each expression culture was centrifuged at 4000g for 3 minutes 

to pellet the cells and then the supernatant was removed. Cells were resuspended in 1 mL 

of PBS and 200 µL of each were dispensed into 96-well plates and kept on ice for analysis. 

Whole-cell GFP fluorescence was determined using a MACSQuant10 Analyzer. Forward 

scattering, side scattering, and total fluorescence at 488 nm were considered during 
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analysis. Measured events were gated based on the negative control sample to contain the 

lowest 90% of both forward and side scattering values to remove anomalous particles, such 

as dead or clumped cells. Mean cell fluorescence was calculated for the gated population 

as a measure of folded TatC. At least four independent expression trials were performed 

for each sequence tested to ascertain expression variance. Flow cytometry data analysis 

was performed with FlowJo Software. Flow cytometry data is normalized to a standard for 

each day data was collected. For example, for ‘Aa-tail/wild-type’ data points, the mean 

fluorescence values of the Aa-tail swap chimeras were normalized by the mean 

fluorescence of their respective homologs containing the wild-type tail for that day’s trial. 

Similarly, for relative fluorescence data points in which wild-type AaTatC was the 

standard, the mean fluorescence of each sample was normalized by the mean fluorescence 

of the AaTatC sample for that day’s trial. In both cases, final calculated values are averages 

of the normalized values over at least four trials with error bars representing standard errors 

of the mean for those normalized values.  

 

In-Gel Fluorescence and Western Blot Analyses  

In-gel fluorescence and western blot analyses were used as an alternative measure 

of total expressed proteins. 5 mL of expression samples were centrifuged and supernatant 

discarded. Samples were resuspended to an OD600 of 3.0 in PBS. 1 mL of each sample 

was collected and 250 µL lysis buffer (375 mM Tris-HCl pH 6.8, 6% SDS, 48% glycerol, 

9% 2-Mercaptoethanol, 0.03% bromophenol blue) was added. Samples were lysed via 

freeze fracturing by three rounds of freezing using liquid nitrogen and thawing using room 

temperature water. 20 µL of each lysed sample was subjected to SDS-PAGE. SDS-PAGE 
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gels were imaged for fluorescence using a UV gel imager with a filter for GFP fluorescence 

to determine in-gel fluorescence.  

For western blot analysis, the samples were transferred from the gel onto a 

nitrocellulose membrane using the Trans-Blot Turbo System. The membranes were 

washed three times with 15 mL TTBS (50 mM Tris pH 7.6, 150 mM NaCl, 0.05% Tween-

20), incubated one hour with 15 mL 5% milk powder in TTBS, washed three times with 

15 mL of TTBS, and then incubated with 1:5000 anti-GFP Mouse primary antibody (EMD 

Millipore, Lot # 2483215) in 15 mL 5% milk powder in TTBS overnight. Membranes were 

washed three times with 15 mL TTBS, incubated with 1:15000 IRDye® 800CW Donkey 

anti-Mouse secondary antibody (LI-COR, Lot # C31024- 04) in 15 mL 5% milk powder in 

TTBS for one hour, washed three times with 15 mL TTBS, and then visualized using a 

Licor IR western blot scanner. ImageJ was used to process the images [55].  

 

The CG Model Overview 

The CG model is employed with only minor modifications from [46], all of which 

are specified below. Key features of the CG model and its implementation are provided 

here; for a full discussion of the CG model, the reader is referred to [36].  

As described in [46], the CG model explicitly describes the configurational 

dynamics of the nascent-protein chain, conformational gating in the Sec translocon, and 

the slow dynamics of ribosomal translation. The nascent chain is represented as a freely 

jointed chain of beads, where each bead represents three amino acids and has a diameter of 

8 Å, the typical Kuhn length for polypeptide chains [56, 57]. Bonding interactions between 

neighboring beads are described using the finite extension nonlinear elastic (FENE) 
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potential [58], short-ranged nonbonding interactions are modeled using the Lennard-Jones 

potential, electrostatic interactions are modeled using the Debye-Hückel potential, 

periplasmic binding is included as described in [36] for BiP, and solvent interactions are 

described using a position-dependent potential based on the water-membrane transfer free 

energy for each CG bead; all parameters are the same as used previously [36], unless 

otherwise stated. The time evolution of the nascent protein is modeled using overdamped 

Langevin dynamics, with the CG beads confined to a two-dimensional subspace that runs 

along the axis of the translocon channel and between the two helices of the lateral gate 

(LG). Conformational gating of the translocon LG corresponds to the LG helices moving 

out of the plane of confinement for the CG beads, allowing the nascent chain to pass into 

the membrane bilayer. The rate of stochastic LG opening and closing is dependent on the 

sequence of the nascent protein CG beads that occupy the translocon channel. Ribosomal 

translation is directly simulated via growth of the nascent protein at the ribosome exit 

channel; throughout translation, the C-terminus of the nascent protein is held fixed, and 

new beads are sequentially added at a rate of 24 residues per second. Upon completion of 

translation, the C-terminus is released from the ribosome. It has been confirmed that the 

results presented in the current study are robust with respect to changes in the rate of 

ribosomal translation (Pearson correlation coefficient between Wt/Aa-tail ratios obtained 

using a rate of translation of 24 residues/sec and 6 residues/sec, r = 0.99±0.06).  

 

The CG Model Implementation Details 

Two changes to the protocol for the CG simulation model were introduced in the 

current study, with respect to the protocol used in[36]. These modifications were included 
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to remove unphysical artifacts in the simulations, although it is emphasized that 

conclusions in the main text are qualitatively unchanged by these modifications (Pearson 

correlation coefficient between Wt/Aa-tail ratios obtained with and without the 

modifications to the simulation protocol, r = 0.97±0.09).  

The first change in the CG model is that the ribosome is assumed to remain 

associated with the translocon following translation of the nascent protein. In the 

previously implementation of the model, the ribosome was assumed to dissociate from the 

translocon immediately following stop-translation, which was found in the current study 

to lead to artifacts for nascent proteins with extremely short C-terminal domains. 

Furthermore, this modification is consistent with experimental evidence that indicates that 

the timescale for ribosomal dissociation is slower than the trajectories simulated here [59, 

60].  

The second change in the CG model relates to the potential energy cost of flipping 

hydrophilic nascent-protein loops across the lipid membrane at significant distances from 

the translocon. The Wimley-White water-octanol transfer free energy scale [61] that was 

used to parameterize the interactions of the CG beads with the membrane is appropriate for 

describing the transfer of amino acids between an aqueous region and either the 

phospholipid interface or the region of the membrane interior that is close to the translocon 

lateral gate [62]. However, the flipping of hydrophilic nascent-protein loops across the 

membrane at significant distances from the translocon involves moving CG beads through 

the hydrophilic core of the membrane interior, which will incur a large potential energy 

barrier [62]. To account for this effect, and to avoid unphysical flipping of short hydrophilic 

loops across the membrane, an additional potential energy term was included in the 
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potential energy function that describes the interactions between the CG beads and the 

membrane. We emphasize that this new term has no noticeable effect on the potential 

energy function for the CG beads at distances within 8 Å to the translocon channel; it 

simply affects unphysical flipping of the TM domains across the membrane at larger 

distances from the channel. This artifact was not observed in the earlier study using the CG 

model, since only processes involving the translocation or membrane integration of a single 

TM domain were considered.  

 

The CG Model Bead Mapping 

In the current study, amino-acid sequences for the TatC homologs are mapped onto 

sequences of CG beads as follows. Each consecutive trio of amino acid residues in the 

nascent protein sequence is mapped to an associated CG bead. The water-membrane 

transfer free energy for each CG bead is taken to be the sum of the contributions from the 

individual amino acids; these values are taken from the experimental water-octanol transfer 

free energies for single residues [61]. The charge for each CG bead is taken to be the sum 

of the contribution from the individual amino acids. As in [36], positively charged residues 

(arginine and lysine) were modeled with a +2 charge to capture significant effects on 

topology due to changes in the nascent protein sequence. Histidine residues were modeled 

with a +1 charge to account for the partial protonation of these residues, and negatively 

charged residues (glutamate and aspartate) were modeled with a charge of -1. The mapping 

procedure for AaTatC is depicted in Figure 2.5A as an example.  
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The CG Model Calculation Details 

The co-translational membrane integration for each TatC sequence is simulated 

using 1200 independent CG trajectories. As in [36], each CG trajectory is performed with 

a timestep of 100 ns. All trajectories were terminated 30 seconds after the end of translation 

for the protein sequence.  

 

Analysis of Simulation Results.  

To determine whether a given trajectory leads to integration in the correct 

multispanning topology, the topology of a nascent protein configuration can be 

characterized by the location of the soluble loops that connect the TMD. We thus specify 

a collective variable λi associated with each loop, with i=1 corresponding to the loop that 

leads TMD 1 in the sequence (i.e. the N-terminal sequence) and i=7 corresponding to the 

loop that follows TMD 6 (i.e. the C-tail). If loop i is in the cytosol, then λi = 1; if loop i is 

in the periplasm, then λi = -1; otherwise, λi = 0. Whether a given loop is in the cytosol, in 

the membrane, or in the periplasm is determined by the tracking position of a representative 

bead in that loop (Table 2.1). Representative beads were chosen based on having the lowest 

probability of being inside the lipid region compared to other beads in that loop. A given 

trajectory is determined to have reached correct IMP integration (λi = -1 for periplasmic 

loops and, λi = 1 for cytosolic loops) if a configuration with the loops in the correct 

orientation is sampled during a time window of 6 seconds taken 25 seconds after the end 

of translation; the time window of 25 seconds was found sufficient to allow the nascent 

protein to finish the integration/translocation of TMD 6.  
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Table 2.1: Loop Definitions Used in Simulation Trajectory Analysis. Each loop is specified 
in terms of the amino-acid residue sequence numbers (end-points inclusive) associated with 
the wild-type sequence.  
 

Figure 2.4 shows the fraction of trajectories that exhibit the correct topology for 

each individual loop for all TatC homologs and chimeras considered in this study. It is 

clear from Figure 2.4 that the changes to the amino-acid sequence considered in this study 

largely only impact the topology of the domain where the changes to the amino acid 

sequence were introduced; the topology of the rest of the protein is not predicted by the 

CG simulation model to be significantly affected by the sequence changes. The calculated 

results are robust with respect to the details of the definition of simulated integration 

efficiency (Pearson correlation coefficient between Wt/Mutant ratios obtained analyzing 

only the loop that was modified and those obtained analyzing all loops, r = 0.85±0.16); to 

minimize statistical error, for all simulation results presented in the main text, the topology 

of the IMP is thus characterized in terms of only the loop of interest.   

Table	S3.	Loop	definitions	used	in	simulation	trajectory	analysis.	
	

		 Loop	1	 Loop	2	 Loop	3	 Loop	4	 Loop	5	 Loop	6		 Loop	7	
AaTatC	 7-9	 43-45	 88-90	 145-147	 181-183	 202-204	 238-239	
Mt	 7-9	 61-63	 112-114	 151-153	 193-195	 220-222	 244-246	
Mt(Aa-tail)	 7-9	 61-63	 112-114	 151-153	 193-195	 220-222	 244-246	
Bp	 25-27	 64-66	 112-114	 160-162	 196-198	 220-222	 253-255	
Bp(Aa-tail)	 25-27	 64-66	 112-114	 160-162	 196-198	 220-222	 250-252	
Cj	 13-15	 55-57	 100-102	 139-141	 187-189	 208-210	 238-240	
Cj(Aa-tail)	 13-15	 55-57	 100-102	 139-141	 187-189	 208-210	 238-240	
Dr	 28-30	 73-75	 118-120	 166-168	 202-204	 229-231	 262-264	
Dr(Aa-tail)	 28-30	 73-75	 118-120	 166-168	 202-204	 229-231	 247-249	
Ec	 10-12	 55-57	 103-105	 142-144	 190-192	 211-213	 244-246	
Ec(Aa-tail)	 10-12	 55-57	 103-105	 142-144	 190-192	 211-213	 244-246	
Hy	 7-9	 40-42	 94-96	 139-141	 184-186	 205-207	 232-234	
Hy(Aa-tail)	 7-9	 40-42	 94-96	 139-141	 184-186	 205-207	 232-234	
Sa	 7-9	 43-45	 91-93	 142-144	 178-180	 199-201	 229-231	
Sa(Aa-tail)	 7-9	 43-45	 91-93	 142-144	 178-180	 199-201	 229-231	
Vc	 16-18	 52-54	 103-105	 145-147	 190-192	 211-213	 247-249	
Vc(Aa-tail)	 16-18	 52-54	 103-105	 145-147	 190-192	 211-213	 241-243	
Ws	 10-12	 61-63	 97-99	 148-150	 181-183	 205-207	 241	
Ws(Aa-tail)	 10-12	 61-63	 97-99	 148-150	 181-183	 205-207	 235-237	

	
The	amino-acid	residues	used	for	analysis	of	loop	topology	in	the	coarse-grained	
simulations.	The	analysis	of	the	loop	topology	is	described	in	the	Materials	and	Methods.	
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C h a p t e r 3 
 

A LINK BETWEEN INTEGRAL MEMBRANE PROTEIN EXPRESSION 
AND SIMULATED INTEGRATION EFFICIENCY OF THE C-TAIL FOR 

AN EXPANDED POOL OF TATC MUTANTS 
 

Abstract 

The heterologous overexpression of integral membrane proteins in Escherichia coli 

often yields insufficient quantities of purifiable protein for applications of interest. The 

current study leverages a recently discovered link between co-translational membrane 

integration efficiency and protein expression levels to predict sequence modifications that 

improve expression. Membrane integration efficiencies, obtained using a coarse-grained 

simulation approach, robustly predict expression for a set of 140 sequence modifications 

on the integral membrane protein TatC, including loop-swap chimeras and single-residue 

mutations distributed throughout the protein sequence. Mutations that improve simulated 

integration efficiency are found to be almost four-fold enriched with respect to improved 

experimentally observed expression levels. Furthermore, the effect of double mutations, 

on both simulated integration efficiency and experimentally observed expression levels, is 

shown to be largely independent, suggesting that multiple mutations can be introduced to 

yield higher levels of purifiable protein. This work provides a foundation for a general 

method for the rational overexpression of integral membrane proteins based on 

computationally simulated membrane integration efficiencies.  
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Introduction 

Integral membrane proteins (IMPs) play crucial roles in the transport of molecules, 

energy, and information across the membrane and are an important focus of structural and 

biophysical studies. However, the production of sufficient levels of IMPs is a limiting 

factor in their characterization [23]. Even among homologous IMP sequences, expression 

levels can vary widely [22, 23, 63-65], and the mechanistic basis for this variability is often 

unclear. Extensive efforts have been committed to identify IMP sequences, expression 

conditions, and host modifications that yield IMP expression at sufficient levels for further 

study [20, 37, 38]. Despite these efforts, general guidelines for successful overexpression 

for IMPs of interest are lacking. 

Heterologous overexpression of IMPs in E. coli involves multiple steps during 

biogenesis that are potential bottlenecks for overexpression, including the correct targeting 

to the inner membrane[5, 6], integration [7, 9, 36, 66-68], and folding [13, 18, 27]. For a 

given sequence, understanding how each of these steps affects observed expression levels 

may lead to improved strategies for IMP overexpression.  

Previous work indicates that the Sec-facilitated membrane integration step of 

biogenesis is a limiting factor in the overexpression of the TatC IMP [22]. Sequence 

changes that alter the efficiency of membrane integration efficiency, determined either 

from coarse-grained simulations or experimentally, correlate with experimentally observed 

IMP expression levels. Further work is necessary to explore the generality of this link and 

its potential for enabling the rational enhancement of IMP expression.  

The current study demonstrates the predictive capacity of simulated integration 

efficiency for experimental expression by examining a wide range of sequence 
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modifications and TatC homologs. The studied sequence modifications include point 

mutations, loop-swap chimeras, and double-loop-swap chimeras, and it is shown that the 

simulated integration efficiency – as predicted by coarse-grained simulations – broadly 

correlates with IMP expression. An antibiotic-resistance assay is employed to directly 

validate the simulated integration efficiencies and to confirm the mechanistic 

interpretation. We further demonstrate multiplicative and largely independent nature of the 

effect of multiple mutations on both the simulated integration efficiency and the 

experimentally observed expression levels. Finally, we provide a methodology that can be 

used to generally identify sequence regions in other IMPs that may exhibit correlations like 

those elucidated here for TatC, yielding a broadly applicable tool for the computational 

prediction of sequence modifications that improve IMP overexpression. 
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Results 

TatC Expression Levels Are Changed by Loop Swaps  

TatC is an IMP with six transmembrane domains (TMD) and a cytoplasmic N- and 

C-terminus (Figure 3.1A) that is a component of the bacterial twin-arginine translocation 

pathway [40]. A representative pool of 111 loop-swap chimeras was generated by replacing 

a single loop in one of ten wild-type TatC homologs (Aquifex aeolicus (Aa), Bordetella 

parapertussis (Bp), Campylobacter jejuni (Cj), Deinococcus radiodurans (Dr), 

Escherichia coli (Ec), Hydrogenivirga species 128-5-R1 (Hy), Mycobacterium 

tuberculosis (Mt), Staphylococcus aureus (Sa), Vibrio cholera (Vc), and Wolinella 

succinogenes (Ws)) with the corresponding loop from one of the other nine homologs 

(Figures 3,1A and 3.2). Loop domains were identified by sequence alignment and 

membrane topology predictions [45]. Both mutant and wild-type expression levels were 

determined using a C-terminal GFP tag [26] (see Methods), and the relative effect of each 

mutation on expression was quantified in terms of the ratio  

Exp. Expression =
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 mutant

𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 wild − type ,											(1) 

Values greater than unity (>1.0) indicate improvement in expression due to the sequence 

modification. The set of loop swaps exhibit a wide range of values for this experimental 

expression ratio, as shown in Figure 3.1B. The effects of single loop swaps range from 

0.02- to 40-fold changes, with 43% of the studied loop swaps yielding improved 

expression. Control studies were performed to confirm that the C-terminal GFP tag does 

not substantially alter the experimentally measured expression levels. A set of 11 single-

loop-swap chimeras and their corresponding wild-type sequences were cloned into an 

alternative construct containing an N-terminal Strep tag (WSHPQFEK) with no C-terminal 
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tag (see Methods). The experimental expression ratio in Equation 1 was measured for each 

N-terminal Strep tag construct and compared against quantification via C-terminal GFP 

fluorescence. Figure 3.1C shows this comparison, revealing agreement for all studied cases 

between measured expression levels using either tag. This result, which is in agreement 

with extensive studies where IMP-GFP fluorescence was used to quantify expression [26, 

27], indicates that the experimental expression outcomes are robust with respect to the 

means of quantifying the expression levels.  

 

 
Figure 3.1: TatC Loop-Swap Chimeras Demonstrate a Range of Expression Outcomes. (A) 
A schematic of a wild-type (left) and loop-swap chimera (right) for the TatC IMP sequence 
with a C-terminal GFP tag. Homologous loop domains are swapped between TatC 
homologs to create loop-swap chimera mutants; the figure illustrates a loop-swap chimera 
of loop 4. (B) The distribution of experimental expression values (mutant/wild-type) 
representing the pool of 111 single-loop-swap TatC chimeras that are created by swapping 
loop domains between homologs. Loop-swap mutations have a wide range of effects on 
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experimental expression. Vertical dashed lines indicate two-fold change, and no change in 
experimental expression. (C) Correlation between experimental expression levels 
quantified using a C-terminal GFP tag (Exp. Expression) or using an N-terminal Strep tag 
(N-strep). This demonstrates that experimental expression outcomes are not influenced by 
the location or size of the probe.  
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A	

B	
>AaTatC 
PLTEHLRELRYRLIISIIAFLIGSGIAFYFAKYVFEILKEPILKSYPEVELITLSPTEPLFILIK
ISLAVGFIIASPVILYQFWRFIEPALYSHEKRAFIPLLLGSILLFMLGALFAYFIVLPLALKFLL
GLGFTQLLATPYLSVDMYISFVLKLVVAFGIAFEMPIVLYVLQKAGVITPEQLASFRKYFIVIAF
VIGAIIAPDVSTQVLMAIPLLLLYEISIFLGKLATRKKKEIQKA 
>MtTatC 
SLVDHLTELRTRLLISLAAILVTTIFGFVWYSHSIFGLDSLGEWLRHPYCALPQSARADISADGE
CRLLATAPFDQFMLRLKVGMAAGIVLACPVWFYQLWAFITPGLYQRERRFAVAFVIPAAVLFVAG
AVLAYLVLSKALGFLLTVGSDVQVTALSGDRYFGFLLNLLVVFGVSFEFPLLIVMLNLAGLLTYE
RLKSWRRGLIFAMFVFAAIFTPGSDPFSMTALGAALTVLLELAIQIARVH 
>BpTatC 
VSQDASNDNPDQQQDSFISHLVELRSRLLKAAGAVVAVFIVLFLYPGASAIYDVLAQPMLASLPE
GTRMIATGVITPFMVPVKVTMMAAFVVALPVVLYQAWAFVAPGLYKHEKRLALPLILSSTLLFII
GMAFCYFFVFRTVFHFIATFAPQSITPAPDIEAYLSFVMTMFMAFGITFEVPVAVVLLVKTGIVE
VAKLRAARGYVVVGAFVIAAVVTPPDVVSQFMLAVPLCLLYEVGLLCARLVTPRRRGEEESEDDQ
ALTERH 
>CjTatC 
MFEELRPHLIELRKRLFISVACIVVMFIVCFALRSYILDILKAPLIAVLPEVAKHVNVIEVQEAL
FTAMKVSFFAAFIFSLPVIFWQFWKFVAPGLYDNEKRLVVPFVSFASIMFAFGACFCYFVVVPLA
FKFLINFGLNEDFNPVITIGTYVDFFTKVVVAFGLAFEMPVIAFFFAKIGLIDDSFLKRHFRIAV
LVIFVFSAFMTPPDVLSQFLMAGPLCGLYGLSILIVQKVNPAPKDKESDE 
>DrTatC 
TQLPPPEQTVLKPAPPELASAPLFDHLEELRRRLILSVVFLAVGMVIAFTYRVQLIELVKVPLTY
SELYTTGKVQLVTTKLASQLLLSFNLAFWAGLTLALPFIVWQIWAFIAPGLYPQERRWGLPFILG
AGFAFAAGVVFGYKLVLPTMVPFLIEFLAGTVTQMQDLQEYIGTVVTFLVAFGVAFELPILAVIL
TRLGIVNHTMLRQGWRFALIGIMILAAVITPTPDPANMALVAVPLYALYELGVVLSRVFRVIAPE
EQERPAPMS 
>EcTatC 
MSVEDTQPLITHLIELRKRLLNCIIAVIVIFLCLVYFANDIYHLVSAPLIKQLPQGSTMIATDVA
SPFFTPIKLTFMVSLILSAPVILYQVWAFIAPALYKHERRLVVPLLVSSSLLFYIGMAFAYFVVF
PLAFGFLANTAPEGVQVSTDIASYLSFVMALFMAFGVSFEVPVAIVLLCWMGITSPEDLRKKRPY
VLVGAFVVGMLLTPPDVFSQTLLAIPMYCLFEIGVFFSRFYVGKGRNREEENDAEAESEKTEE 
>HyTatC 
MPLTEHLRELRTRLIRSIIAFLIAAGGSFYFARYVFEFLKEPVVKSYPDVELITLSPTEPLFILI
KISLTVGLIIASPVILFEIWRFVEPALYPQEKKLFIPLLLSSVLLFVMGGVFAYAVVLPMALKFL
LGLGFSQLAATPYLSVNLYVSFVLKMLIAFGIAFEMPIFLYMLQRAGVVSQQQLKKFRRYFIVVA
FLVGALIAPDVATQVLMAIPLLVLYEVSILLGRTVRKGEKEKALARVEEEETRE 
>SaTatC 
MGVHFSELRHRLVKILLSFVVTVIVVYVSSFWWMTPFITYITRAHVSLHAFSFTEMIQIYVMIIF
FIAFCFISPVMFYQLWAFIAPGLHNNERQFIYKYSFFSVLLFCAGVAFAFYVGFPIIIQFALKLS
LTLNISPVIGFKAYLVELIRWLFTFGILFQLPILFIGLAKFGLIDITSLKHYRKYIYFACFVLAS
IIAPPDLTLNILLTLPLILLFEFSMFIVKFTCRGKPPTH 
>VcTatC 
MSSVEQTQPLISHLLELRNRLLKAVAAVVVIFIGLIYFSNEIYEFVSKPLVERLPAGATMIATDV
ASPFFTPLKLTLIAAVFLAVPFILYQVWAFVAPGLYKHERRLIFPLLVSSSLLFYCGVAFAYFVV
FPLVFGFFTAISLGGVEFATDIASYLDFVLALFLAFGIAFEVPVAIILLCWTGATTPKSLSEKRP
YIIVGAFVVGMLLTPPDMISQTLLAIPMCLLFEVGLFFARFYTRDEADEGQEEEE 
>WsTatC 
MFEELKPHIQELRKRLINAVVALFIAFFICFFFWEGILDWMIAPLKAALPAGSNVIFTEVGEAFF
TAIKVSFFSAFMFSLPVIFWQVWLFVAPGLYQNEKMLVLPFVFFGTLMFVTGALFAYYVVFPFGF
TYLINFGSTLFTALPSVGFYVTFFAKLMIGFGIAFELPVVTFFLAKLGLVTDKTLRDFFKYAIII
IFIVAAILTPPDVITQFMMAIPLTFLYWVSILIAKMVNPETSPNEE 
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Figure 3.2: TatC Transmembrane and Loop Domain Definitions. (A) A ribbons diagram 
of the structure of AaTatC (RCSB PDB: 4HTS). (B) Domain definitions used in generating 
the swap chimeras, with TMDs highlighted, are shown as used in (A).  
 

Simulated Integration Efficiency is Predictive of TatC Expression  

Correlation between simulated integration efficiency and experimentally observed 

expression levels was previously identified in TatC based on a limited set of mutations 

[22]; here, we systematically test the predictive capacity of simulated integration efficiency 

for expression in a diverse set of 111 loop-swap chimeras. CG simulations were performed 

for each chimera and wild-type sequence (see Methods), and the relative effect of each 

mutation on simulated integration efficiency was quantified in terms of the ratio  

Sim. Integration = EFGH(IJKLMK)
EFGH(NOPQRKSTU)

,            (2) 

where PCin corresponds to the fraction of simulated trajectories for which the C-tail domain 

is correctly localized with respect to the cell membrane for each sequence. In a later Results 

section, we investigate the use of sequence features other than the C-tail for quantifying 

integration efficiency. Receiver operator characteristic (ROC) curves (Figure 3.3A) [69] 

provide a statistical measure of the predictive capacity of simulated integration efficiency, 

with values in excess of 0.5 for the area under the ROC curve (AUC) [69] indicating 

predictive capacity. 

ROC curves in Figure 3.3A are shown for datasets corresponding to all 111 loop-

swap chimeras (blue) and to the subset of 82 loop-swap chimeras that exclude C-tail swaps 

(green). This plot demonstrates the predictive capacity of simulated integration efficiency 

for experimental expression, with AUC values exceeding 0.5 with 95% statistical 

confidence. The similarity of the two curves indicates that the predictive capacity of the 
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simulated integration efficiency is relatively insensitive to whether the loop-swap involves 

the C-tail domain.  

Also, indicated in Figure 3.3A (blue and green dots) are the points along the ROC 

curve that correspond to the cut-off value (defining positive prediction) for the simulated 

integration efficiency ratio in Equation 2 that offers the greatest predictive capacity for 

experimentally observed expression; for both datasets, this optimal value is found to be 

1.0, indicating that increases or decreases in the simulated integration efficiency 

straightforwardly predict the corresponding changes in experimental expression levels. 

 

 
 
Figure 3.3: C-Tail Localization Is Predictive of Experimental Expression Outcome. (A) 
The predictive capacity of simulated integration efficiency for experimental expression 
assessed using a ROC curve for all single-loop-swap chimeras (blue, N=111) and all single-
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loop-swap chimeras excluding those in which the C-tail was swapped (green, N=82). 
Significant predictive capacity is observed for both sets. (B) Comparison of simulated 
integration efficiency with survival for TatC loop-swap chimeras. A negative correlation 
between survival and simulated integration efficiency indicates that the C-tail topology 
predicted by the CG simulations occurs in vivo. One sequence tested had a non-observable 
survival level and was not included in the plot, this datapoint was included in the accuracy 
calculation. (C) Comparison of experimental expression with relative ampicillin resistance 
(survival) for TatC loop-swap chimeras. A negative correlation between survival and 
experimental expression indicates that the C-tail mislocalizes in poorly expressing 
chimeras, consistent with the mechanism predicted by the CG simulations. One sequence 
tested had a non-observable survival level and was not included in the plot, this datapoint 
was included in the accuracy calculation. (D) The predictive capacity of simulated 
integration efficiency for experimental expression assessed using a ROC curve for TatC 
point mutants (N=29). Simulated integration efficiency (blue) outperforms prediction of 
experimental expression by the positive inside rule (purple).  
 

Experimental Confirmation of Simulated Integration Efficiency Values 

To experimentally confirm that the in vivo integration efficiency is correctly 

described by the CG simulations, we apply a previously developed antibiotic resistance 

assay [22] (see Methods). Ampicillin resistance imparted by the expression of TatC 

sequences containing a C-terminal β-lactamase tag correlates positively with the quantity 

of proteins integrated with their C-tail in the periplasm (i.e. mislocalized). Therefore, a 

negative correlation between ampicillin survival and simulated integration is expected if 

mislocalization of the C-tail occurs in vivo, as predicted by CG model simulations. 

The survival metric reported in Figure 3.3B is the ratio of colonies observed 

following ampicillin treatment between a loop-swap chimera and the corresponding wild-

type TatC sequence. For a set of 14 loop-swap chimeras, Figure 3.3B compares the relative 

survival to simulated integration efficiency. For 11 of these 14 cases, the corresponding 

data points in Figure 3.3B fall into the diagonal quadrants of the plot, indicating good 

agreement between the experimental and simulated measures of integration efficiency 

(Accuracy = 0.8±0.2, 95% confidence interval). 
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Figure 3.3C plots the correlation between ampicillin survival and experimental 

expression for the same set of loop-swap chimeras. As expected (given the positive 

correlation between simulated integration efficiency and experimental expression in Figure 

3.3A, and given the negative correlation between the simulated integration efficiency and 

the survival assay in Figure 3.3B), Figure 3.3C indicates strong negative correlation 

between ampicillin survival and experimental expression, with 11 of the 14 data points 

falling in the diagonal quadrants (Accuracy = 0.8±0.2, 95% confidence interval). Taken 

together, Figures 3.3B and C demonstrate that simulated integration is a reliable predictor 

of the C-tail orientation, which is in turn a reliable predictor of experimental expression. 

 

The Effect of Point Mutations on Integration Efficiency Is Predictive for Expression 

Rather than loop-swap mutations, we now consider the effect single-point 

mutations on both experimental expression and simulated integration efficiency. Point 

mutants introduce minimal changes to the wild-type sequence and are often used in a 

protein-sequence design context [70-72]. The blue curve in Figure 3.3D shows the ROC 

curve for a set of 29 point mutants; each exhibits a single mutation at a position in the wild-

type sequence that is not universally conserved across homologs, with the mutation either 

increasing or decreasing the charge at that position. The blue curve in Figure 3.3D indicates 

that the simulated integration efficiencies from the coarse-grained method have predictive 

capacity (AUC = 0.89) that is even higher than was found in Figure 3.3A for loop-swap 

mutations (AUC = 0.65).  

For comparison, the purple curve in Figure 3.3D explores the predictive capacity 

of a simpler measure of integration efficiency based only on the positive inside rule, which 
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observes that positively charged residues are more likely to be localized to the cytosolic 

side of the cell membrane [17] and that modification of the positively charged residues can 

change IMP topology [13, 18, 22, 27]. As employed here, the positive inside rule simply 

predicts that a mutation will have increased integration efficiency (and thus a positive effect 

on expression) if it increases the net charge of the cytosolic loops minus the net charge of 

the periplasmic loops, and vice versa. It is clear from the Figure 3.3D that in contrast to the 

prediction of the coarse-grained model (blue), the positive inside rule has little predictive 

capacity for expression when employed in this way. These results emphasize that the 

molecular processes and interactions that govern IMP integration are more complex, and 

they are more completely described using the coarse-grained simulations than by simple 

analysis of charged residues. 

 

The Effects of Sequence Mutations on Simulated Integration Efficiency and 

Experimental Expression Are Additive 

To determine whether multiple sequence modifications have a combinatory effect 

on expression and simulated integration efficiency, a set of 12 double-loop-swap chimeras 

was generated and tested against the corresponding effect of the constituent single-loop-

swap mutations. Figure 3.4 shows that for both simulated integration efficiency (part A) 

and experimental expression (part B) comparison of the fold-change (Equations 1 and 2) 

observed for the double-loop-swap chimera is strongly correlated with to the product of 

fold-changes for the corresponding single-loop-swap chimeras (Pearson’s correlation 

coefficient, r = 0.9). Linear fits of the data are plotted as solid lines. The slope of the linear 

fits for both simulated integration efficiency (Figure 3.4A, slope = 0.8) and experimental 
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expression (Figure 3.4B, slope = 0.7) deviate only slightly from unity, which indicates that 

the effect of each mutation is largely independent. The results in Figure 3.4 indicate that 

introducing multiple mutations is a viable strategy for enhancing expression, and that 

simulated integration efficiency largely captures the effect of these multiple mutations. 

 

 
Figure 3.4: Effects of Sequence Modifications on Simulated Integration and Experimental 
Expression Are Nearly Independent. (A) The simulated integration efficiency of double-
loop-swap chimeras (vertical axis) compared to the product of the simulated integration 
efficiencies of the constituent single-loop-swap chimeras (horizontal axis). There is a 
strong correlation, with a slope of 0.8, indicating that the effect of loop-swap mutations on 

0 1 2 3 4
0

1

2

3

4
r = 0.9±0.1

(S
im

. I
nt

.) A
+B

(Sim. Int.)A  × (Sim. Int.)B

0 1 2 3 4
0

1

2

3

4
r = 0.9±0.1

(E
xp

. E
xp

r.)
A

+B

(Exp. Expr.)A × (Exp. Expr.)B

A

B



54 

simulated integration efficiency is multiplicative and largely independent. (B) The 
experimental expression of double-loop-swap chimeras (vertical axis) against the product 
of the experimental expression values of the constituent single-loop-swap chimeras 
(horizontal axis). Again, there is strong correlation, with a slope of 0.7, indicating that the 
effect of loop-swap mutations on experimental expression is multiplicative and largely 
independent. 
 

TatC Topology Features, Other Than C-tail Localization, Are Not Predictive for 

Expression 

Using the fraction of coarse-grained trajectories for which the TatC C-tail reaches 

correct localization with the respect to the membrane as the measure of successful IMP 

integration, the results in Figure 3.3, along with previous work [22], support the conclusion 

that simulated integration efficiency reliably predicts experimental expression in TatC. 

However, other features of the TatC topology (such as the localization of other soluble 

loops) could have been employed to quantify IMP integration from the coarse-grained 

simulations. We now investigate the predictive capacity of the coarse-grained simulations 

for experimental expression, using alterative measures of IMP integration. 

The alternative measures of IMP integration that are considered include, (1), p(i), 

the fraction of coarse-grained trajectories for which soluble loop i reaches correct 

localization with the respect to the membrane, (2), p(All), the fraction of coarse-grained 

trajectories for which all soluble loops reach correct localization, and, (3), p(N), the fraction 

of coarse-grained trajectories for which correct localization is achieved for the soluble loop 

that includes the mutation. In this notation, the previously discussed measure of IMP 

integration based on the C-tail is given by p(7). 

Using each of these measures of IMP integration, we obtained ROC curves that 

compare the simulated integration efficiency with observed experimental expression, and 
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the corresponding AUC values are presented in Figure 3.5A. In all cases, the ROC curves 

were obtained for the datasets corresponding to all 140 TatC loop-swap and point mutations 

discussed in the preceding sections. The AUC for the C-tail measure (p(7)) is 0.73, 

indicating the strong predictive capacity using this measure. However, it is clear that all 

other measures of integration efficiency fail to offer predictive capacity (yielding AUC 

values that are within 95% confidence of 0.5). Even when the measure of integration 

efficiency is based on the localization of the loop in which the mutation occurs (i.e., p(N)), 

the predictive capacity is significant worse than using the C-tail (i.e., p(7)).  

The results in Figure 3.5A raise the question of the underlying mechanism for the 

predictive capacity of the C-tail localization for TatC. One hypothesis is that the C-tail acts 

as “aggregator” of all preceding errors in the IMP integration, providing a cumulative 

report on the TatC topology. A second hypothesis is that the C-tail is akin to a “canary in 

the coal mine,” particularly sensitive to mutations, regardless of where in the sequence the 

mutation occurs. Finally, a third hypothesis is that the unique features of the C-tail could 

make it more amenable to accurate description by the coarse-grained method than the other 

TatC loops. 

We directly test the aggregator hypothesis by investigating the degree to which the 

C-tail measure of integration efficiency is predictive of the alternative measures. Figure 

3.5B presents the resulting AUC values, obtained from ROC curves for p(7) versus the 

alternative measures, using the full dataset of 140 TatC loop-swap and point mutations. It 

is clear from the figure that there is no significant correlation between p(7) and the other 

measures, a finding that is inconsistent with the aggregator hypothesis. Both Figures 3.5A 
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and B emphasize that the C-tail is a unique reporter of TatC integration efficiency, at least 

among the diverse set of measures considered here. 

 

 
Figure 3.5 Simulated Integration Efficiency of the C-Tail Is the Only Topology Feature 
That Is Predictive of Experimental Expression for TatC. (A) AUC of the ROC curves for 
the metrics p(7), p(1), p(2), p(3), p(4), p(5), p(N), and p(All) (defined in the text) predicting the 
experimental expression of all loop-swap chimeras and point mutants. P(7) (C-tail simulated 
integration efficiency as used in Figures 3.3 and 3.4) is the only metric that is found have 
a statistically significant predictive capacity for experimental expression. (B) AUC of the 
ROC curves for p(7) (C-tail simulated integration efficiency as used in Figures 3.3 and 3.4) 
predicting p(1), p(2), p(3), p(4), p(5), p(N), and p(All) for all loop-swap chimeras and point 
mutants. p(7) is not significantly predictive of the localization for any other loop, it is 
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therefore unlikely an aggregator of upstream mislocalization. Error bars indicate 95% 
confidence intervals on the AUC value.  
 

The second hypothesis reasons that the C-tail of TatC is particularly sensitive to 

sequence modification and is thus a useful reporter of integration efficiency, regardless of 

where in the sequence the mutation occurs. Although this hypothesis is difficult to directly 

test, it is consistent with the results from the antibiotic resistance assay, which found that 

C-tail localization was substantially impacted by mutations in other parts of the TatC 

sequence, even for mutations in other loops. Possibly contributing to the conformational 

sensitivity of the C-tail is that the preceding TM domains (TM5 and TM6) are relatively 

short, do not fully span the cell membrane, and are connected by a short turn between the 

TMDs, for which loop residues are difficult to assign [41, 43]. Furthermore, 

conformational sensitivity of the C-tail is consistent with the fact that this sequence domain 

is not conserved across TatC homologs and that it was not resolvable in reported TatC 

crystal structures [41, 43], indicating flexibility.  

With regard to the third hypothesis, we note that the coarse-grained model does not 

explicitly describe sequence-specific interactions and packing effects among the TM 

domains; the model is thus expected to be most reliable for describing the topology of TM 

domains with weak tertiary interactions, such as the C-tail of TatC [41]. This explanation 

leaves open the possibility that improvements to the coarse-grained model in terms of its 

description of tertiary IMP interactions could lead to more robust measures of simulated 

integration efficiency for other loops 

The analysis in this section is central to the question of how generally the coarse-

grained simulations will be able to predict membrane protein expression for IMPs other 
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than TatC. It is very possible that for other IMPs, the C-tail localization will not be the 

most useful measure of IMP integration for predicting expression levels. In the next 

section, we thus describe a simple strategy for identifying a useful measure of IMP 

integration, on the basis of limited experimental expression data. 

 

Predictors for Expression Can Be Identified from Training Data 

Utilization of simulated integration efficiency to predict IMP expression in other 

systems requires knowledge of a useful measure of IMP integration to compute from the 

coarse-grained simulations. The results in Figures 3.3 and 3.4 in this work use the measure 

of C-tail localization (p(7)) for this purpose, but, as is illustrated in Figure 3.5, other 

reasonable measure of simulated integration efficiency are not predictive for expression. 

For the study of an arbitrary IMP, we are thus faced with determining, as efficiently as 

possible, a useful measure of simulated integration efficiency to compute from the coarse-

grained method. 

Training on a limited dataset could provide one general method for the 

identification of topology features that are predictive for expression. Here we demonstrate 

this methodological framework in the context of the previously described set of TatC loop-

swap chimeras and point mutants. The predictive capacity (AUC) of topology features is 

assessed for training sets of varying size, and the feature with the highest AUC is identified. 

For each training dataset size, 1,000,000 independent samples were taken and the most 

predictive metric for each of these samples was determined. For each topology feature, i, 

the probability that it is most predictive, 𝑃 W , can then be determined as a function of 
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training set size, x. We also report the expectation value of the AUC, AUC , on the full set 

of 140 sequence modifications calculated using Equation 3.  

AUC 𝑥 = 	
1
𝑁\]

𝑃 W 𝑥 	AUC W ,
W∈\]

															(3) 

where Ntf is the number of topology features, and tf is the full set of topology features. The 

expectation value of the AUC gives an indication of the predictive capacity one can expect 

given a training set size. 

Figure 3.6A plots the probability of choosing each simulated integration efficiency 

metric as the most predictive, 𝑃 W , over different training set sizes. The C-tail localization 

metric, p(7), is correctly identified as most predictive for more than half of the training sets 

for training set sizes of more than approximately 20. Figure 3.6B shows the expectation 

value of the AUC for predicting experimental expression on the full dataset, shaded regions 

indicate 67% (dark) and 95% (light) confidence intervals obtained using bootstrapping. For 

TatC, as the size of the tested sequence pool increases, there is a greater probability of 

choosing the simulated integration efficiency of the C-tail as the most important metric 

(Figure 3.6A) and the significance of the AUC for simulated integration of the C-tail 

increases with pool size (Figure 3.6B). It is apparent that the full pool tested is not necessary 

to identify the most predictive metric. These results suggest that for expression data for a 

small test set of sequence modifications to an IMP sequence can be used to identify 

simulated integration efficiency features predictive of expression.  

The strategy in Figure 3.6 illustrates that for cases in which limited IMP expression 

data is available, a useful measure of IMP integration from the coarse-grained simulations 

can be identified without other prior knowledge, thus yielding a general strategy for 

enhancing IMP expression in systems other than TatC. However, there will be cases in 
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which even limited IMP expression data is not available. For these cases, a reasonable 

strategy is to use a measure of IMP integration that involves a sequence domain that is 

expected to be prone to mislocalization with respect to the cell membrane. Analyses of 

sequence conservation [73] and residue co-evolution [74] provide reasonable strategies for 

identifying such sequence domains. 

 
Figure 3.6: Topology Features Predictive of Expression Can Be Determined Based on 
Limited Training Data. (A) The probability that a topology feature is most predictive (𝑃 W , 
highest AUC) for expression based on performance on training data of variable size. p(7) 
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(simulated integration efficiency of the C-tail) has a high likelihood of being chosen as the 
simulated integration efficiency feature with the greatest predictive capacity, even at low 
training set sizes (𝑃 `a >0.5 at training set size 18, and the probability of identifying p(7) as 
a predictor increases with the training set size. For clarity only features with values of 𝑃 W  
greater than 0.1 for any training set size are shown in the plot. Not shown but included in 
the analysis are; p(3), p(4), p(N), and p(All). (B) The expectation value of the AUC, AUC , for 
predicting experimental expression versus training data size. Confidence intervals are 
displayed at 67% (light blue) and 95% (darker blue).   
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Discussion 

Heterologous expression of closely related IMP homologs in E. coli can provide a 

wide range of yields. IMP misintegration is one source of poor expression outcomes. Here, 

we utilize the link between the effect of sequence modification on the integration efficiency 

and experimental expression outcomes [22] to predict sequence modifications that improve 

expression for the IMP TatC. The integration efficiency of a given domain is determined 

by performing CG molecular dynamics simulations of the co-translational integration of 

the IMP via the Sec-translocon [36]. Simulated integration efficiency of the C-tail as 

determined by the CG model, and subsequently confirmed in vivo, is demonstrated to 

accurately predict experimental expression outcomes for diverse a set of 140 sequence 

modifications including loop-swap chimeras and point mutants. When simulated 

integration efficiency is used to predict experimental expression of the combined the point 

mutant and loop-swap chimera datasets, a sequence predicted to increase in integration 

efficiency is almost four times more likely to increase in experimental expression than a 

sequence predicted to decrease in integration efficiency, as determined from the diagnostic 

odds ratio [75] taken over the set of 140 sequences. 

The relationship between changes in simulated integration efficiency and IMP 

experimental expression due to sequence mutations provides a promising tool for 

predicting expression. Integration into the cell-membrane in the correct multi-spanning 

topology is a key step in IMP biogenesis. Our work demonstrates that the efficiency of 

integration in the correct topology can be affected by sequence modification, with a 

corresponding effect on IMP expression. In particular, for the IMP TatC, localization of 

the C-tail, quantified both using CG simulations and in vivo, is found to be sensitive to 
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sequence modifications throughout the coding sequence, and is shown to be predictive of 

experimental expression. The effect of sequence modifications on simulated integration 

efficiency and expression levels was found to be largely independent, enabling the design 

of larger sequence modifications with further enhanced expression. Broad applicability of 

simulated integration efficiency as a predictor of expression for other IMPs has yet to be 

established. However, we demonstrate that a small pool of test-data would have been 

sufficient to identify the predictive capacity of the C-tail for TatC, and similar methodology 

could be used to identify predictive topology features in other IMPs. The workflow 

established here enables IMP expression via rational improvement of co-translational 

integration, a key step in IMP biogenesis. 

For any IMP that has a domain prone to mislocalize in vivo, simulating the effect 

of sequence modifications on the domain can be used as a forward predictor of expression 

outcomes and sequence modifications that aid localization may improve expression. In 

contrast to previous attempts to boost the expression of IMPs [20, 32, 37], the current study 

is able to identify and improve a specific step in IMP biogenesis. By simulating and 

enhancing the process of translocon-mediated integration in silico, the determinant of 

expression enhancement can be identified and directly addressed in vivo.   
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Methods 

Cloning 

 All TatC coding sequences were created using either primer extension or were 

synthesized by Twist Bioscience. Loop-swap chimeras were limited to those swapping 

loops 1-5 and 7, avoiding the short loop 6. The pool of 111 loop-swap chimera sequences 

were chosen from all 540 possible combinations. Each wild-type homolog is used between 

6 to 15 times as a parent, between 7 to 19 times as a source for the mutant loop, and each 

loop is mutated between 8 to 29 times. Point mutants were chosen to affect a change in 

charge through mutation of neutral residues to charged residues or through mutation of 

charged residues to the opposite charge. Each loop-swap chimera coding sequences was 

cloned into the pET28(a+)-GFP-ccdB vector [22, 51] using the Gibson cloning protocol 

[53], resulting in each IMP possessing a C-terminal GFP tag. For constructs containing the 

β-lactamase tag, the GFP sequence was replaced with a β-lactamase sequence using Gibson 

cloning. For constructs containing the N-terminal Strep tag, the GFP and poly-His 

sequence was removed during PCR and the Strep tag was added using primer extension; 

the final vectors were constructed using Gibson cloning. 

 

Heterologous Expression in E. coli 

 Heterologous expression of IMPS in E. coli was performed as previously described 

[22]. In short, IMPs were expressed in BL21 Gold (DE3) cells at 16°C for approximately 

16 hours prior to either flow cytometry, western blot, or ampicillin survival analysis. 
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Flow Cytometry 

 Flow cytometry was performed as previously described [22]. In short, cultures of 

cells expressing TatC IMPs with a C-terminal GFP tag were resuspended in PBS and 

subjected to flow cytometry. Whole cell fluorescence from the B1/FITC channel was 

measured using a MACSQuant10 Analyzer. Mean fluorescence values are calculated using 

FlowJo. 

 

Western Blot 

 All samples of cells expressing IMPs with an N-terminal Strep tag were subjected 

to the following protocol for western blot analysis. Samples were normalized to an OD600 

of 3.0 in PBS and subjected to three freeze thaw cycles using liquid nitrogen and applied 

to 10% SDS-PAGE followed by western blotting. Relative protein levels were determined 

by incubation of the western blot membrane with an anti-Strep tag primary rabbit antibody 

followed by incubation with an IRDye® 800CW Donkey anti-rabbit secondary antibody 

and visualization using a LI-COR IR western blot scanner. Relative band intensities were 

quantified using ImageJ [55]. 

 

Description of the CG Simulations 

 We apply a previously developed coarse grained simulation approach [22, 36], 

capable of simulating the minute-timescale dynamics of co-translational integration via the 

Sec translocon. The CG model is applied and implemented exactly as described in [22], 

and key features of the CG model are provided here; for more a more extensive description, 

the reader is referred to [22].  
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The CG simulations explicitly describe the configurational dynamics of the nascent 

chain (NC), conformational gating of the Sec translocon lateral gate, and ribosomal 

translation (at 24 residues/second). The nascent chain (NC) is represented as a freely 

jointed chain of CG beads, where each CG bead represents three amino acids and has a 

diameter of 8Å, equal to the Kuhn length of a polypeptide chain [56, 57]. To avoid a 

frameshift in the mapping of amino acids to CG beads upon a loop-swap sequence 

modification, dummy atoms were introduced to keep mapping consistent, as done 

previously [22]. Bonding interactions between neighboring CG beads are described using 

the finite extension nonlinear elastic (FENE) potential [58], short-ranged non-bonding 

interactions are modeled using a Lennard-Jones potential, and electrostatic interactions are 

modeled using the Debye-Hückel potential. Periplasmic binding is included as described 

in [36, 47] for BiP, and solvent interactions are described using a position-dependent 

potential based on the water-membrane transfer free energy for each CG bead [22].  

The configuration of the NC is time evolved using overdamped Langevin 

dynamics, with the CG beads confined to a two-dimensional subspace that runs along the 

axis of the translocon channel and between the two helices of the LG. Conformational 

gating of the LG corresponds to the LG helices moving out of the place of confinement for 

the NC, allowing the NC to pass into the membrane bilayer. The rate of stochastic LG 

opening and closing is dependent on the sequence of the CG beads that occupy the 

translocon channel [36, 47]. Ribosomal translation is directly simulated via growth of the 

NC at the ribosomal exit channel; throughout translation, the C-terminus of the NC is held 

fixed, and new beads are sequentially added at a rate of 24 residues per second. Upon 

completion of translation, the C-terminus is released from the ribosome. 
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Trajectories use a step-size of 100 ns for time integration and are terminated 31s 

after the end of translation. For each protein sequence, at least 400 independent trajectories 

are calculated.  

 

Determination of Topology Features  

 The topology features for a protein sequence are determined as described 

previously [22]. The topology of a protein is analyzed over the last 6s of the CG simulation 

trajectories, starting 25s after the end of protein translation by the ribosome. For each loop, 

i, the location of the loop during this time-window is described by a variable λi, where λi=1 

if the loop is in the cytosol, λi=-1 if the loop is in the periplasm, and λi=0 otherwise. For 

each trajectory we assess if, during the analysis time-window, a given topology feature is 

observed. The topology features used in this work are either; (p(1)- p(7), p(N)) localization of 

single loops consistent with the known TatC topology (Figure 3.1A), or (p(All)) 

simultaneous localization for all loops consistent with the known topology. 

 

Ampicillin Survival Assay 

 The ampicillin survival assay was performed as previously described [22]. In short, 

cells that had expressed IMPs with a C-terminal β-lactamase-tag overnight at 16°C were 

resuspended to an OD600 of 0.1 and grown to an OD600 of 0.5, after which ampicillin was 

added and cells were incubated for a further 1.5 hours, followed by plating on kanamycin 

LB agar plates. The relative number of observed colonies between loop-swap chimera and 

wild-type was used to determine the change in C-tail translocation, with a ratio greater than 
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one representing an increase in translocation of the C-tail to the periplasm due to the 

sequence modification. 

 

Statistical Significance Calculations 

 Experimental expression, survival, and N-Strep values reported represent average 

values over at least 3 independent trials, error bars indicate the standard error of the mean 

unless otherwise noted. Simulated integration values represent the average outcome of at 

least 400 independent CG simulations trajectories, error bars indicate the standard error of 

the mean. Confidence intervals on AUC values are determined by bootstrapping [76]. 

1,000,000 samples of simulated integration and expression pairs, with size equal to the set 

of sequence modification, are drawn with replacement from the set of sequence 

modifications. An AUC value is calculated for each sample, and the relevant percentile of 

the resulting AUC value distribution determines the confidence intervals. 
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C h a p t e r 4 
 

APPLICATION OF SIMULATED INTEGRATION EFFICIENCY TO 
THE PREDICTION OF ERROR-PRONE MUTANT HAEMOPHILUS 

INFLUENZAE GLPG EXPERIMENTAL EXPRESSION 
 

Abstract 

Integral membrane proteins are key targets for biochemical and structural 

characterization, but heterologous overexpression often provides insufficient yield, in 

many cases without an indication as to the source of the failure. Our earlier work shows 

that we can improve the expression of TatC proteins in E. coli by increasing the efficiency 

of topogenesis, as predicted by a coarse-grained co-translational integration simulation 

model, by preventing misintegration of the TatC C-tail (Chapters 2 and 3). To assess the 

predictive power of the model which respect to changes in expression levels due to 

sequence mutation in a different protein family, a library of mutated Haemophilus 

influenzae (Hi) GlpG sequences is created using error-prone PCR and tested for 

experimental expression levels of membrane protein-GFP fusions and simulated 

integration efficiency effects. HiGlpG, like TatC, contains loop domains with simulated 

integration efficiencies that may be predictive of experimental expression improvement, 

with the reservation that the cutoff most predictive of expression improvement is not 

consistent and not always 1.0 as expected. Preliminary evidence suggests that the 

application of model can be expanded to predict the expression of GlpG and other integral 

membrane proteins, but further testing is needed to clarify the existing issues.   
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Introduction 

 For the integral membrane protein (IMP) TatC, C-tail integration efficiency was 

determined using in silico coarse-grained modeling of IMP integration at the translocon 

(CG model) and changes in the simulated integration efficiency of the C-tail due to 

sequence modifications, including loop-swap chimeras and point mutants, was predictive 

of experimental expression. A number of questions remained unresolved. Could the CG 

model predict the expression effects of mutations on another IMP? Would simulated 

integration efficiency of the C-tail be predictive for another IMP family or would another 

loop be more predictive? Our previous work demonstrated that simulated integration 

efficiency was a strong predictor of experimental expression (Chapters 2 and 3), but a study 

utilizing an alternative IMP was needed to determine its broader relevancy. 

To expand upon previous links between simulated integration efficiency and 

experimental expression, GlpG, a rhomboid protease widely found in bacteria that 

catalyzes intramembrane proteolysis [77], was chosen for analysis. It represents an ideal 

choice due to its size of only six transmembrane domains (TMD), the absence of large N- 

or C-terminal loop domains, and the availability of in vivo assays for measuring activity 

[77]. Instead of point mutants and loop swaps between homologs as previously used, a 

single homolog, Haemophilus influenzae (Hi) GlpG, is chosen for error-prone PCR 

mutagenesis and subsequent expression testing due to the ambiguity of loop and TMD 

domain identification. The error-prone PCR HiGlpG library exhibits a wide range of 

sequence modifications and resulting experimental expression levels. The area under the 

curve (AUC) of the receiver operating characteristic (ROC) curve for the simulated 

integration efficiency of loop 4 is significant but p(4) predicts poorly at a cutoff of 1.0, while 
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loop 1 simulated integration efficiency AUC is not significant but p(1) predicts better than 

p(4) at a cutoff of 1.0. Further experiments are needed to clarify the relationship between 

simulated integration efficiency features and experimental expression, determine if 

HiGlpG activity is uncompromised by mutations that increase integration efficiency, and 

assess whether the simulated integration efficiencies of the same loops are predictive of 

sequence modification in other GlpG homologs. Confirmation of all these outstanding 

issues will provide convincing proof of the utility of simulated integration efficiency in 

predicting and improving heterologous overexpression of a wider range of IMPs in E. coli.   
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Results 

Wild-type Expression Levels 

Figure 4.1B shows the measurement of the expression levels of five GlpG 

homologs compared to AaTatC, which has been previously identified as a high-expressing 

IMP, needed to identify an ideal target for integration optimization that has low starting 

experimental expression. Experimental expression is quantified by the mean whole-cell 

fluorescence measured using flow cytometry as previously applied [22]. Unlike for TatC 

(Figure 2.1B), expression is consistently high among all GlpG homologs.  

 

 
Figure 4.1: HiGlpG Experimental Expression. (A) A ribbons diagram of the structure of 
HiGlpG (RCSB PDB: 2NR9) with TMDs colored. (B) Experimental expression levels of 
wild-type GlpGs normalized to AaTatC expression levels. Expression levels for all wild-
type GlpGs tested are relatively high and consistent compared to the range observed for 
TatCs. (C) The distribution of experimental expression values (mutant/wild-type) for the 
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HiGlpG error-prone PCR library. The majority of mutations have a negative effect on 
expression. (D) The distribution of the number of nucleotide mutations in the error-prone 
PCR library, excluding sequences with stop codons. (E) The distribution of the number of 
amino acid mutations in the error-prone PCR library, excluding sequences with stop 
codons. Those that do not affect a change in amino acid sequence are shown here but not 
included for further analysis. 

 

Figure 4.2 indicates that, for TatC homologs, improvement in experimental 

expression (mutant/wild-type > 1.0, data from Chapter 3) is negatively correlated with the 

wild-type expression levels (wild-type/AaTatC) (Pearson correlation = -0.2±0.2, Spearman 

rank correlation = -0.4±0.2), indicating that high expressing IMPs have a lower capacity to 

improve in expression. If the condition holds for GlpG homologs, it is expected that using 

any of the wild-type GlpG homologs tested in Figure 4.2B for the generation of a mutant 

library will lead to a smaller proportion of mutants improving in expression due to the high 

initial expression levels. This could be due to the high in vivo integration efficiency of the 

wild-type IMP subdomains, which may provide less opportunity for improvement by 

sequence mutation. HiGlpG was chosen as the best candidate for expression enhancement, 

even given the high starting experimental levels observed, because a high-resolution 

structure is available (Figure 4.1A) [78] and it is among the lowest expressing GlpGs 

tested. 
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Figure 4.2: Correlation Between Expression Improvement and Wild-type Expression 
Levels for TatC. Wild-type expression levels (Wt/AaTatC) and loop-swap chimera 
experimental expression levels (Mutant/Wt) are negatively correlated (Pearson correlation 
= -0.2±0.2, Spearman rank correlation = -0.4±0.2). Similarly, as wild-type expression 
increases, the proportion of mutants for a given homolog that increases in expression 
decreases. Experimental expression (mutant/wt) values greater than 1.0 indicate an 
increase in expression while those that are less than 1.0 represent a decrease in expression 
due to mutation. 
 

HiGlpG Error-Prone PCR Library Generation and Expression 

 The loop domains of HiGlpG are difficult to define given that the loops identified 

by the OPM database lie at least partially within the membrane [78], making the synthesis 

of loop-swap chimeras among multiple homologs difficult. As an alternative, error-prone 

PCR is used to create a library of HiGlpG mutants with one or more point mutations that, 

in contrast to loop-swap chimeras and other mutants created for testing TatC in Chapters 2 

and 3, are not limited to the loop domains but can also occur in TMDs. A library of over 

100 error-prone PCR mutated HiGlpG sequences provides expression data that could be 

used to determine which simulated integration efficiency features (e.g. the localization of 

soluble loops) correlate with experimental expression. Figures 4.1D and 4.1E show the 

distribution of number of nucleotide and amino acid mutations, respectively, in the library, 
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excluding sequences that contained internal stop codons. Figure 4.1C displays the 

distribution of the experimental expression levels of the mutant sequences normalized to 

wild-type HiGlpG levels. The majority of mutations exhibit drop in experimental 

expression compared to the wild-type sequence. This could be due to a higher initial 

integration efficiency for HiGlpG, observable by the initial high wild-type expression level. 

In this case, mutations are not limited to loop domains and are observed in all domains of 

the sequence and, as seen in the library expression distribution (Figure 4.1C), there are 

significant perturbations to the wild-type expression yield by the introduced mutations. 

 

Evaluating Simulated Integration Efficiencies for Predicting Expression 

 The receiver operating characteristic (ROC) curves of the two most predictive 

features for experimental expression: the simulated integration efficiency of loop 1 (Figure 

4.3A) and of loop 4 (Figure 4.3B) provide a measure of the capacity for the simulated 

integration efficiency of loop 1 and loop 4 to predict mutant HiGlpG experimental 

expression over a range of simulated integration efficiency cutoffs. Cutoffs are labeled 

inside the curve. The simulated integration efficiency of the wild-type and HiGlpG 

sequences are determined using the CG model as previously described [22] and compared 

to the experimental expression data to find which simulated integration efficiency features 

correlate with experimental expression. As was the case for TatC, the integration efficiency 

of the HiGlpG loop 6 was not calculated due to its small size [22, 78] 

The area under the curve (AUC) of the ROC curves for the full set of simulated 

integration efficiency features in Figure 4.3C establishes that loop 1 (p(1)) and loop 4 (p(4)) 

are most predictive of experimental expression effects. The alternative measures of IMP 
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integration that are considered include p(i), the fraction of coarse-grained trajectories for 

which soluble loop i reaches correct localization with the respect to the membrane, and 

p(All), the fraction of coarse-grained trajectories for which all soluble loops reach correct 

localization. The simulated integration efficiency of loop 1 appears to be predictive at a 

simulated integration efficiency cutoff of 1.0, but the AUC of the ROC curve is not 

statistically significant. Conversely, the AUC of p(4) is statistically significant at a 95% 

confidence interval, but at a cutoff of 1.0 it does not appear to have predictive power, 

apparent by the proximity of the ROC curve to the midline at the 1.0 cutoff. The cutoff of 

1.0 for simulation integration efficiency would be epected if the CG model correctly 

idetnfies cases of experimental expression success or failure, as a change in simulated 

integration effiency would signal a corresponding change in expeirmetal expression in the 

same direction (increase or decrease), though not necessarily with the same magnitude. 

The presence of loops that have the potential to be predictive of integration efficiency in 

another IMP demonstrates that there is opportunity for a broader application of the CG 

model for the prediction of the effects of sequence mutation on experimental expression 

by optimizing integration efficiency, but the evidence is not as conclusive and consistent 

at that seen for the TatC C-tail. 
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Figure 4.3: Predictive Capacity of Simulated Integration Efficiency Features on HiGlpG 
Experimental Expression. (A) An ROC curve displaying the capacity for the simulated 
integration efficiency of loop 1 (p(1), blue) to predict HiGlpG mutant experimental 
expression over a range of simulated integration efficiency cutoffs. Cutoffs are labeled 
inside the curve. (B) An ROC curve displaying the capacity for the simulated integration 
efficiency of loop 4 (p(4), red) to predict HiGlpG mutant experimental expression over a 
range of simulated integration efficiency cutoffs. Cutoffs are labeled inside the curve. (C) 
AUC of the ROC curves for the features p(1), p(2), p(3), p(4), p(5), p(7), and p(All) predicting 
HiGlpG mutant experimental expression effects. p(1) and p(4) are the most significantly 
predictive features. Error bars represent 95% confidence intervals for each AUC value. The 
sequences considered contained at least one amino acid mutation and did not contain 
internal stop codons 
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Discussion 

The results of comparing experimental expression and CG model derived simulated 

integration efficiencies demonstrate a link between the effects of random mutagenesis on 

the simulated integration efficiencies of loops 1 and 4 and the amount of HiGlpG correctly 

folded. However, the AUC of p(1) is not significant at a 95% confidence interval and the 

cutoff of 1.0 is not predictive for p(4). These issues make it difficult to interpret the observed 

relationship. The relatively high expression level of wild-type HiGlpG could limit the 

potential increase in expression and indicate high initial integration efficiency, limiting the 

potential for improvement. This is supported by the observation that HiGlpG exhibits a 

smaller proportion of mutated sequences that improve in expression (19%) than the average 

of the TatCs single-loop-swap chimeras tested (45%). The small proportion of improved 

expression levels for the tested HiGlpG library limits the statistical significance of the 

predictive capacity of simulated integration efficiency features.  

In the future, several changes could be implemented to better assess the predictive 

power of simulated integration efficiency for experimental expression of IMPs other than 

TatC. More GlpG homologs or another protein family could be tested to determine if there 

is a different wild-type homolog that expresses poorly, ideally due to a lower starting 

integration efficiency that can be more predictably improved through mutation. 

Additionally, we could create a library of mutated sequences for a different GlpG and 

determine if the simulated integration efficiency of loop 1 and loop 4 are consistently 

predictive of experimental expression even though they are suspect in HiGlpG. We expect 

that further investigation will provide additional evidence to support the link between IMP 
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simulated integration efficiency and experimental expression established in Chapters 2 and 

3 and the generalizability to other IMP families.  
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Methods 

Design and Synthesis of HiGlpG Wild-type Sequences and Error-Prone Library 

 Wild-type GlpG sequences were created by PCR amplification of the genes from 

genomic DNA followed by Gibson assembly for insertion into pET28(a+)-GFP-ccdB [42]. 

The HiGlpG sequence was subjected to error-prone PCR using the GeneMorph II kit from 

Agilent, which allows for the average number of nucleotide mutations to be tuned by 

adjusting the template concentration. To create a pool of sequences with a moderate 

number of mutations as shown in Figures 4.1D and 4.1E, 50 ng of the template, pET28(a+)-

GFP containing the wild-type HiGlpG sequence (approximately 6500 nucleotides or 2000 

kDa), was used. Error-prone HiGlpG mutant sequences were cloned into the pET28(a+)-

GFP-ccdB plasmid [22, 51] using Gibson assembly[53], which resulted in a pool of 

approximately 3600 unique sequences. 

 

E. coli Expression 

 The plasmid library was transformed into BL21 Gold (DE3) cells and grown 

overnight on LB agar plates containing 50 µg/ml kanamycin after one-hour incubation. 

After overnight growth at 37°C, individual colonies were picked into a starter culture 

containing 200 µL 2xYT media (16 g Tryptone, 10 g Yeast Extract, and 5 g NaCl per liter 

H20) with 50 µg/ml kanamycin in a 96 well plate (2.0 mL deep well block) and grown at 

37°C with shaking. After the OD600 of the cultures reached approximately 1.0, 20 µL of 

each starting culture was added to an expression culture containing 1 mL 2xYT with 

kanamycin in a 96 well block. 200 µL of sterile 50% glycerol was added to each starter 

culture well and the block was saved at -80°C. The expression culture was grown to an 
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OD600 of 0.15 at 37°C with shaking, then grown at 16°C to an OD600 of 0.3, after which 

IPTG was added to a final concentration of 1 mM to induce IMP expression. Induced 

cultures were grown overnight for a further 16 hours prior to IMP quantification via flow 

cytometry. Expression of each mutant sequence was performed and quantified alongside 

the wild-type HiGlpG sequence and a negative control expressing AaTatC with no C-

terminal GFP tag. 

 

Flow cytometry 

A 96 well plate was filled with 150 µL of 1x PBS in each well, to which 20 µL of 

overnight expression culture was added and subjected to flow cytometry. Whole cell 

fluorescence was measured using a MACSQuant10 Analyzer. Fluorescence at 488 nm was 

used as the measure of expression yield. Flow cytometry data analysis was performed with 

FlowJo Software. Expression values used for experimental expression calculation are mean 

whole cell fluorescence from flow cytometry. 

 

Plasmid Purification  

 Stabbings from the saved -80°C starter culture were used to inoculate 1 mL 2xYT 

with kanamycin in a 96 well block and grown overnight for 16 hours at 37°C with shaking. 

Cells were pelleted via centrifugation and plasmid was purified via the Macherey-Nagel 

96 well NucleoSpin plasmid purification kit using a Tecan Freedom EVO liquid handling 

robot prior to sequencing. Sequences were analyzed to assure they contained at least one 

amino acid mutation and did not contain internal stop codons. Only sequences fitting these 

criteria were considered for analysis in Figure 4.3. 
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Data Analysis 

 Experimental expression values (mutant/wild-type) were calculated by dividing the 

mutant fluorescence value by the wild-type HiGlpG fluorescence value for that experiment 

on that day. Confidence intervals were calculated using bootstrapping [76]. ROC curves 

and associated AUCs were calculated using the ROCR package in R [79]. 

 Coarse-grained simulations and simulated integration efficiency calculations are 

performed using the same protocol described in Chapter 3 Methods [22].  
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FUTURE DIRECTIONS 

 
The combined results of Chapters 2, 3, and 4 demonstrate that simulated integration 

efficiency calculated from a coarse-grained co-translational simulated integration model 

(CG model) can be used to predict changes in experimental expression resulting from 

mutation of an integral membrane protein (IMP) sequence; those that prevent 

misintegration enhance expression. However, the process we used to determine the 

simulated integration efficiency feature with significant predictive capacity, such as the C-

tail for TatC, requires a large testing set of experimental outcomes to which integration 

features are compared ex post. Changes in simulated integration efficiency due to sequence 

modification correlate with the effect on relative experimental expression (mutant/wild-

type) but do not agree with the absolute change in expression levels, indicating the CG 

model may not be properly calibrated to calculate these effects. These shortcomings limit 

the potential wider application of the model but provide an opportunity for further 

development.  

Ideally, simulated integration efficiency could be adapted to yield three additional 

functions: the ability to, (a), predict the wild-type expression level of an IMP as compared 

to other homologs, (b), to determine which integration features are significantly predictive 

without the need experimental expression levels from a set of mutant sequences, and, (c), 

provide that the degree of the change in simulated integration efficiency scales with the 

fold change in experimental expression. Previous efforts to find a method to reach these 

goals have been unsuccessful. For example, analysis of the IMP structure could not be used 

to identify the most predictive loop a priori for TatC and GlpG [41, 43, 78]. While the 

short loop 6 of TatC is a possible source of the predictive capacity of the simulated 
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integration efficiency of loop 7, no such obvious adverse conformation is apparent in 

HiGlpG that could be the source of the sensitivity of loops 1 and 4. HiGlpG contains a 

short loop 6 that is similar to the short TatC loop 6, but the simulated integration efficiency 

of loop 7 is not predictive in HiGlpG. Wild-type TatC C-tail integration efficiency does 

not correlate with the predictive capacity of the C-tail for that homolog and wild-type 

simulated integration efficiencies do not correlate with wild-type expression levels. 

Nonetheless, the current method provides a rational approach to increase the expression of 

IMPs through the identification and improvement of weak underlying processes in co-

translational IMP integration and the predictive power of the CG model indicates that it 

does significantly capture the effects of mutations on expression through integration 

effects. 

A deeper understanding of the precise molecular interactions that lead to 

misintegration is needed to perform predictions using the CG model without any 

experimental results available with which to interpret the effects of mutations on simulated 

integration efficiency. The addition of new features to the CG model could accomplish 

this. Currently, the movement of beads within the CG model as implemented herein is 

mostly limited to two dimensions. Development is underway to create a CG model that 

simulates co-translational integration in a 3-dimensional space. This will allow for a more 

detailed modeling of the ribosome and translocon shape and for the nascent chain to move 

in two dimensions within the plane of the membrane, instead of the one currently allowed. 

A complementary parameter that assesses the effect of mutations on the targeting of the 

IMP to the membrane would help form a more complete view of the biogenesis pathway. 

Also, while the SecYEG complex represents the core of the translocon and is necessary for 
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the integration of many IMPs, other chaperones such as YidC and SecDF can assist in co- 

and post-translational folding and effects can be implicitly or explicitly incorporated into 

the CG model [80-82]. The simplifications inherent to the current CG model can also be 

simulated in a more accurate manner, including the explicit modeling of the solvent and 

the membrane, using a less coarse-grained approach such as single amino acids per bead, 

using a more precise model of SecYEG and the ribosome, and incorporating co- and post-

translational IMP folding. Further development of the CG model and more experimental 

data with which to test its effectiveness have the potential of further expanding the CG 

model and allow for computational methods to drive and predict mutations for the purpose 

of improving expression of an IMP, rather than using the CG model to assess the 

mechanism behind previously determined experimental expression levels. 
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