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ABSTRACT

Integral membrane protein characterization is limited by the low levels of protein
obtainable from heterologous overexpression in hosts such as Escherichia coli. Differences
in the efficiencies of subdomains of the co-translational integration processes of membrane
proteins into the membrane could explain the observed variation in the experimental
expression of closely related homologs in E. coli. We have developed a method to predict
and increase the expression of individual membrane proteins by optimizing the efficiency
of their translocon-mediated integration into the membrane. The integration efficiency of
each component of a membrane protein is calculated using a coarse-grained co-
translational simulated integration model. The results of model simulations, experimental
expression levels quantified by integral membrane protein-GFP fusion fluorescence, and a
novel antibiotic survival test that reports on misintegration in vivo are applied to test the
relationship between the integration efficiency of specific domains and experimental
expression. Changes in simulated integration efficiencies due to sequence modifications
agree with the effects on experimental expression in vivo. In the case of the TatC protein
family, misintegration of the C-tail is found to be a major contributor to expression failure
in E. coli. Beneficial sequence modifications that improve both simulated integration
efficiency and experimental expression levels can be identified using the model.
Preliminary evidence shows that simulated integration efficiency could potentially predict
the effects of mutations on Haemophilus influenzae GlpG experimental expression in E.
coli. The process described herein allows for the rational overexpression of integral
membrane proteins through the identification and mitigation of inefficiencies in the

underlying co-translational membrane integration process.
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Chapterl

INTRODUCTION

Integral Membrane Proteins Are Important Research Targets

Integral membrane proteins (IMP) act as key relays between the interior and
exterior of a cellular or subcellular environment, facilitating the passage of information,
cargo, and energy. They represent approximately 26% of human genes and 60% of current
drug targets [1, 2]. Though IMPs are attractive targets for structural characterization, they
represent only 2% of structures deposited in the PDB [3]. A major contributor to the limited
number of membrane protein structures is the difficulty in obtaining sufficient amounts
from heterologous overexpression.

There are two types of IMPs found in bacteria: alpha helical membrane proteins
that reside in the inner membrane and beta barrel membrane proteins found in the outer
membrane [4]. They have distinct structural motifs and biogenesis pathways and inhabit
different subcellular environments. The majority of polytopic alpha helical membrane
proteins integrate into the inner membrane with assistance of the translocon, while beta
barrel proteins are translocated across the inner membrane through the translocon to be
inserted in the outer membrane. Hereafter, IMPs will be used to indicate only polytopic
alpha helical membrane proteins.

The domains that make up an IMP can be categorized as either loop or
transmembrane domains (TMD). TMDs are alpha helices that reside within the membrane
and are enriched in hydrophobic residues. In contrast, loop domains are found in the

cytoplasmic or periplasmic space in bacteria and are more hydrophilic. The different



natures of these domains contribute to the delivery and final fold of the IMP through their

interactions with processing machinery including the SRP and the translocon.

Membrane Protein Biogenesis in Escherichia coli

A key hypothesis made here is that the integration efficiency of an IMP directly
affects its expression levels in E. coli. Experimental expression represents the amount of
protein that is translated and properly folded within the inner membrane. IMP biogenesis
requires the placement of the constituent loops and TMDs with the correct orientation
relative to the membrane. Ribosomes translating IMPs in bacteria are targeted to the
translocon in the inner membrane via interaction with the signal recognition particle (SRP)
and its receptor (SR) [5, 6]. The SRP recognizes a hydrophobic signal sequence on a
nascent IMP early in its translation. Contact of an SRP with the SR leads to the handoff of
the ribosome-nascent chain complex to the translocon. At the core of the translocon is the
SecYEG complex, a channel with a unique structure, containing both a pore that can allow
passage of substrates across the membrane and a lateral gate that can open to allow cargo
within the channel to directly interact with and insert into the membrane [7-10]. The
translocon aids in the integration of the TMDs into the membrane by the opening of its
lateral gate when a TMD is within the channel, facilitating passage of the TMD into the
membrane. Loop domains are either translocated through the channel into the periplasm or
retained in the cytoplasm by passing through a space between the translocon and the
ribosome.

It is important to note that the targeting and integration of IMPs usually occurs co-

translationally; only a portion of the polypeptide is exposed beyond the exit tunnel of the



ribosome to interact with the SRP and translocon [6, 7]. Therefore, it is sequentially early
hydrophobic domains that interact with the SRP [5, 6]. As well, the translocon is proposed
to integrate TMDs soon after their emergence from the exit tunnel such that TMDs are
integrated into the membrane in their order on the primary sequence of the IMP (i.e. TMD
1 integrates first, TMD 2 integrates second, etc.) [10-12]. Notable exceptions to the co-
translational and sequential model of IMP integration have been found, including examples
of large-scale reorientation of IMP domains [13-15].

The establishment of the correct topology is important for the proper folding and
function of an IMP integrated by the translocon and is influenced by the biophysical
characteristics of the nascent chain. The topology of an IMP refers to the orientation of the
TMD and loop domains with respect to the cytoplasm. For example, an IMP with three
TMDs and four loops can be integrated with two orientations: the N-terminal loop in the
cytoplasm and the C-terminal loop in the periplasm or the N-terminal loop in the periplasm
and the C-terminal loop in the cytoplasm. Interactions between the nascent chain, the
translocon, and the surrounding microenvironment are key to establishing topology. Two
of the most prominent features of the nascent chain that contribute to topogenesis are the
hydrophobicity of the TMDs and the distribution of positive charges on cytoplasmic and
periplasmic loops. The hydrophobicity of a TMD correlates with its membrane insertion
efficiency [10, 16]. Cytoplasmic loops are highly enriched in positively charged residues
as compared to periplasmic loops [17]. Changing the placement of positively charges along
the IMP sequence can affect the final topology of the IMP [14, 18, 19]. A failure to establish
the correct topology due to low integration efficiency prevents proper folding and function

of the IMP and leads to its degradation [20].



In the studies described here, the process of the orientation of a loop domain
through interaction with the translocon to establish topology is referred to as its integration.
Misintegration indicates improper retention or translocation of a loop, ending with its
placement in the incorrect subcellular location. Integration efficiency of a loop or TMD
represents the proportion of IMPs expressed with the domains in the correct location after
interaction with the translocon has ended. Optimization of the integration efficiency
through modification of loops or TMDs provides a method of improving expression of an

initially inefficiently integrated IMP.

The Membrane Protein Expression Problem

Heterologous expression levels of IMPs in E. coli are often insufficient for
characterization by structural or biochemical methods, requiring researchers studying a
specific protein to test a number of homologs until one provides sufficient yields, often
encountering widely different expression values even among closely related proteins with
high sequence homology [21-23]. The hydrophobic stretches that make up the TMDs are
unstable and prone to aggregation outside of the membrane from which they cannot be
easily refolded, and overexpression of IMPs is often toxic and can inhibit cell replication
and lead to less final cell mass [24]. These issues contribute to the significant time and
resource costs associated with the study of IMPs [20].

One of the methods developed to increase the throughput of IMP expression
quantification involves the addition of a C-terminal GFP to the IMP coding sequence [25,
26]. Fluorescence levels from IMP-GFP fusions have been found to correlate strongly with

the level of folded protein available for purification [26-31]. Therefore, measuring the



fluorescence of GFP molecules in the whole cell, in the cell lysate, or on a band on an SDS-
PAGE gel can be used to quantify expression without IMP purification. The use of C-
terminal GFP fusions greatly increases the number of IMPs that can be tested for
expression yield.

There is no universally successful method for improving IMP expression and many
of the strategies do not identify the cellular mechanism of the initial expression failure. An
analysis of a large-scale expression trial of Escherichia coli IMP-GFP fusions was unable
to identify a single feature that significantly correlated with expression yield [31].
Strategies for improving IMP expression in E. coli can be classified as either, (a), a
modification of the IMP nucleotide and/or amino acid sequence to optimize its processing
by the cellular machinery, or, (b), a change to the organism in which the IMP is
overexpressed to improve the efficiency of the biogenesis pathway. In regard to (a),
performing error-prone PCR to find mutations that increase stability and yield have been
applied with some success [32, 33]. In the case of (b), one of the most successful and widely
adapted methods for improving IMP expression involves reducing the amount of mRNA
of the non-native IMP produced in the cell, which suggests that higher levels in some way
overload the normal capacity for producing IMPs [34, 35]. Given the complex biogenesis
process IMPs must undergo that is not required for soluble protein expression, inefficiency
within the pathway is a likely contributor to poor expression. Both of these methods do not
identify the source of expression failure. Researchers would benefit from an approach that
would allow for improvement in expression through the understanding and improvement

of the underlying suboptimal processes that lead to poor expression.



A coarse-grained molecular dynamics simulation model of translocon-facilitated
integration of IMPs (CG model) provides a view of IMP integration and can be used to
identify the source of expression failure [36]. The CG model is derived from over 16 ps of
molecular dynamics simulations of the translocon, membrane bilayer, and a substrate
sequence. The simplified, coarse-grained nature of the model allows for a large number of
simulations over biologically relevant timescales to assess the efficiency of the integration
process for an IMP and the domains thereof. The proportion of CG model trajectories that
terminate with a domain in the correct topological location provides a measure of the
efficiency with which it is oriented by the translocon with the correct final topology
(simulated integration efficiency). Use of the CG model allows for understanding the
underlying mechanism that leads to observed experimental results due to interactions of
the nascent IMP with the membrane-translocon-ribosome environment.

The concept explored in later chapters is that the amount of folded, recoverable
protein following the overexpression of an IMP in E. coli is directly influenced by the
integration efficiency of individual domains and can be predicted by simulated integration
efficiency calculated using the CG model. In Chapter 2, expression tests of TatC sequences
with mutations limited to the C-tail demonstrate that the integration efficiency of the C-
terminal loop (C-tail) is a key predictor of experimental expression as misintegration of the
C-tail contributes to the poor expression of some TatCs, confirmed using an in vivo
ampicillin assay. The effect of C-tail sequence changes on experimentally observed
expression levels strongly correlates with the simulated integration efficiency obtained
from the CG model. Likewise, mutations that improve the simulated integration efficiency

increase the experimentally observed expression levels. In Chapter 3, the concept was



expanded to attempt the prediction of the effect of sequence modifications of any loop of
TatC. Simulated integration efficiencies, calculated using a coarse-grained simulation
approach, robustly predict expression for a set of 140 sequence modifications on TatC
homologs, including loop-swap chimeras and single-residue mutations distributed over
much of the protein sequence. The simulated integration efficiency and experimental
expression of double-loop-swap chimeras is shown to be multiplicative and largely
independent with respect to the component single-swap mutations. The evidence again
indicates misintegration of the TatC C-tail is a factor in cases poor expression and mutation
of the IMP sequence far from the C-terminus can improve the integration efficiency of the
C-tail. In Chapter 4, a library of mutated Haemophilus influenzae (Hi) GlpG sequences is
created using error-prone PCR and tested for experimental expression levels. HiGlpG
contains loop domains with simulated integration efficiencies that could be predictive of
experimental expression improvement. The combined studies demonstrate that
experimental expression of IMPs can be improved by using sequence modification to
manipulate the integration efficiency of specific subdomains and these effects can be
predicted by analyzing CG model simulations of the co-translational integration process.
Future development and testing of the strategy will aim to broaden the applicability and

simplify the use of the model on new sequence spaces.



Chapter?

A LINK BETWEEN INTEGRAL MEMBRANE PROTEIN EXPRESSION
AND SIMULATED INTEGRATION EFFICIENCY FOR TATC C-TAIL
MUTANTS

Adapted from Stephen S. Marshall*, Michiel J. M. Niesen*, Axel Miiller, Katrin Tiemann,
Shyam M. Saladi, Rachel P. Galimidi, Bin Zhang, William M. Clemons, Jr., and
Thomas F. Miller, IIl. 4 Link between Integral Membrane Protein Expression and
Simulated Integration Efficiency. Cell Reports, 2016. 16(8): p. 2169-2177. doi:
10.1016/j.celrep.2016.07.042

*Stephen S. Marshall and Michiel J.M. Niesen are co-first authors.

Abstract

Integral membrane proteins control the flow of information and nutrients across
cell membranes, yet mechanistic studies of membrane proteins are hindered by difficulties
in expression. We investigate this issue by addressing the connection between membrane
protein sequence and observed expression levels. For homologs of the integral membrane
protein TatC, observed expression levels vary widely and are affected by small changes in
protein sequence. The effect of sequence changes on experimentally observed expression
levels strongly correlates with the simulated integration efficiency obtained from coarse-
grained modeling, which is directly confirmed using an in vivo assay. Furthermore,
mutations that improve the simulated integration efficiency likewise increase the
experimentally observed expression levels. Demonstration of these trends in both
Escherichia coli and Mycobacterium smegmatis suggests that the results are general to
other expression systems. This work suggests that integral membrane protein integration
is a determinant for successful expression, raising the possibility of controlling expression

via rational design.



Introduction

The central role of integral membrane proteins (IMPs) in many biological functions
motivates structural and biophysical studies that require large amounts of purified protein,
often at considerable costs in terms of both materials and labor. A key obstacle is that only
a small percentage of IMPs can be overexpressed (i.e., heterologously produced at levels
conducive to further study) [23]. While extensive efforts have shown promising results for
individual IMPs, including those focusing on expression conditions, host modification, and
directed evolution [35, 37, 38], none of these has proven broadly applicable, even among
homologs of a given IMP. In general, the determinants for IMP expression are poorly
understood, leading to the prevailing opinion that problems in membrane protein
expression must be addressed on a case-by-case basis.

Closely related IMP homologs can vary dramatically in the amount of protein
available after expression [23], which raises a fundamental question: what differentiates
the expression of IMP homologs? The hypothesis raised here is that the efficiency with
which an IMP is integrated into the membrane is a key determinant in the degree of
observed IMP expression.

A fundamental step in the biosynthesis of most IMPs involves their targeting to and
integration into the membrane via the Sec protein translocation channel [7]. Integration of
IMP transmembrane domains (TMDs) into the membrane is facilitated primarily through
interaction between the nascent chain and SecY, which forms the core of the protein
translocation complex, or translocon. Following the co-translational or post-translational
insertion of nascent protein sequences into the translocon channel, hydrophobic segments

pass through the lateral gate of SecY into the membrane to form TMDs. Factors such as
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TMD hydrophobicity [10, 16] and loop charge [17, 39] have been shown to affect the
efficiency of TMD integration and topogenesis. For example, TMD hydrophobicity is
directly related to the probability with which TMDs partition into the lipid bilayer, while
positively charged residues in the loop alter TMD orientation by preferentially occupying
the cytosol [10, 17, 39].

In this study, we investigated the connection between observed IMP expression
levels and Sec-facilitated IMP integration efficiency (i.e., the probability of membrane
integration with the correct multi-spanning topology). Systematic investigation of chimeras
within an IMP family led to the identification of sequence elements that modulate
expression levels. In silico modeling of IMP integration at the Sec translocation channel
found that the sequence modifications that increase the calculated IMP integration
efficiency correlate with in vivo overexpression improvements, suggesting that IMP
integration efficiency is a determinant for successful expression. The result was found to
be general across distinct expression systems (E. coli and M. smegmatis). Furthermore, an
in vivo assay based on antibiotic resistance in E. coli experimentally confirmed the model
that the integration efficiency of an individual TMD correlates with the observed IMP
expression levels. The strong link between the effects of sequence modifications on
simulated integration efficiency and experimentally measured expression levels offers

future promise for the rational design of IMP systems with increased expression levels.
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Results

As a detailed case study, the TatC IMP family was employed for all experimental
and computational results reported here. A component of the bacterial twin-arginine
translocation pathway, TatC plays a key role in the transport of folded proteins across the
cytoplasmic membrane [40]. The employment of TatC was well suited for this study as it
is reasonably sized (only six TMDs; Figure 2.1A), non-essential, and found broadly
throughout bacteria; furthermore, TatC homologs previously have been observed to exhibit
widely varying expression levels in E. coli [41], suggesting the importance of sequence-

level details in the expression of this IMP.
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Bp - Bordetella parapertussis
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Figure 2.1: Variation in the Expression of TatC Homologs in E. coli. (A) A topology
representation of TatC with a GFP C-terminal tag, as used in the expression studies. TMDs
and loops are indicated in colors and gray, respectively, and are numbered. (B) Expression
levels of various TatC homologs in E. coli, measured by TatC-GFP fluorescence, with
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expression levels normalized to 4aTatC (blue). Error bars indicate the standard errors of
the mean.
Wild-Type and Chimeric TatC Expression in E. coli

We first demonstrated that homologs of the IMP TatC exhibit large variance in
observed expression levels in E. coli. For a quantitative measure of IMP expression, we
employed a C-terminal fusion tag of a GFP variant [42] (Figure 2.1A) and measured whole-
cell fluorescence by flow cytometry. Whole-cell fluorescence intensity of this fusion tag
has been validated in numerous previous studies to correlate strongly with the amount of
folded IMP, rather than the total level of IMP translated [26-31]. We further validated the
expression levels measured from whole-cell fluorescence (Figure 2.1B) using in-gel
fluorescence (Figures 2.1C, 2.2B, and 2.2C; Pearson correlation coefficient, r = 0.9) and
western blot analysis (Figure 2.2A). With this approach, expression levels in E. coli were
experimentally measured for TatC homologs from a variety of bacteria, including Aquifex
aeolicus (Aa), Bordetella parapertussis (Bp), Campylobacter jejuni (Cj), Deinococcus
radiodurans (Dr), Escherichia coli (Ec), Hydrogenivirga species 128-5-R1 (Hy),
Mycobacterium tuberculosis (Mt), Staphylococcus aureus (Sa), Vibrio cholera (Vc), and

Wolinella succinogenes (Ws).
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D
P D 2 D D P
4 4 4 (4

C
In Gel Fluorescence

Aa 1 Hy 0.4(2)

Bp 0.06(6)  Hy(Aa-tail) | 0.4(2)

Bp(Aa-tail) | 0.07(7) Mt 0.29(3)

Cj 0.43(3)  Mt(Aa-tail) |0.528(4)

Cj(Aa-tail) | 0.46(3) Sa 0.05(3)

Dr 0.5(1)  Sa(Aa-tail) | 0.13(5)

Dr(Aa-tail) | 0.5(2) Ve 0.6(1)

Ec 0.63(7)  Vc(Aa-tail) | 0.63(5)

Ec(Aa-tail) | 0.4(2) Ws n.d.
Ws(Aa-tail) n.d.

Figure 2.2: Validation of Expression of TatC Variants in E. coli. (A) Anti-GFP western
blot results for TatC homologs and the corresponding Aa-tail swap chimeras. Two bands
were observed for all lanes where TatC-GFP was at high relative concentrations with the
lower bands active by in-gel fluorescence and therefore determined to be folded protein.
(Waldo et al., 1999) (B) In-gel fluorescence of SDS-PAGE for TatC homologs and the
corresponding Aa-tail swap chimeras. Bands that exhibit fluorescence represent folded
protein. The results exhibit the same trends in expression yield as seen by flow-cytometry.
(C) Average in-gel fluorescence quantified across four separate gels. Ws and Ws(Aa-tail)
could not be detected (n.d.) by in-gel fluorescence. Values for each band are normalized to
the AaTatC band and values in parentheses indicate the standard error of mean.

Figure 2.1B shows the wide range of expression levels that are exhibited by the
TatC homologs in E. coli. Previous expression trials of TatC homologs identified that

AaTatC is readily produced at high levels in E. coli, which enabled the solution of its

structure [41, 43]. In contrast, low expression is found for both the M¢TatC, hereafter
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referred to as M¢TatC(Wt-tail), and a modified sequence truncating the un-conserved 38-

residue sequence of the C-terminal loop, hereafter referred to as M¢TatC [41].
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Figure 2.3: Effect of the C-tail on TatC Expression in E. coli. (A) Measured expression
levels of the 4aTatC and M¢TatC chimera proteins, normalized to 4aTatC. Shaded bars
represent wild-type TatC homologs and mutants with C-tail modifications. (B) Domain
definitions used in generating the swap chimeras, with TMDs highlighted, are shown. (C)
A ribbons diagram of the structure of 4aTatC (RCSB PDB: 4HTS). TMDs are colored
according to the highlights used in (B). (D) For each homolog, the ratio of the measured
expression level for the Aa-tail chimera to that of the corresponding wild-type sequence is
shown. (E) TatC wild-type and charge mutant C-tail sequences. Positive residues are in
blue and negative residues are in red. The net charge is shown to the right of each sequence.
Error bars indicate the standard errors of the mean.
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To examine the parts of the protein sequence that affect expression, swap chimeras
were generated by exchanging entire loops and TMDs between AaTatC and M¢TatC. The
TMDs and loops were defined by comparing sequence alignments and membrane topology
predictions (Figure 2.3B) [44, 45]. The swap chimeras exhibited a wide range of expression
results (Figure 2.3A). The C-terminal loop sequence, referred to as the C-tail and labeled
as loop 7 in Figure 2.1A, was found to have a significant effect on expression levels (shaded
bars in Figure 2.3A). Removal of the M¢TatC C-tail improved expression. Removal of the
C-tail from the 4aTatC sequence led to a corresponding decrease in expression. Strikingly,
swapping the AaTatC C-tail (A4a-tail) into the M¢TatC sequence led to a significant
improvement in expression.

The positive effect of the Aa-tail on M¢TatC expression raises the question of
whether expression can be similarly improved in other TatC homologs by substituting the
corresponding C-tail sequence (Figure 2.3E) with that of 4aTatC. Swapping the C-tail of
the various TatC homologs with the Aa-tail improved expression in seven of nine cases
(Figure 2.3D). Taken together, the results in Figure 2.3 indicate that the C-tail is a

significant factor in determining TatC expression across homologs.

In Silico Modeling of TatC Integration

To investigate the mechanistic basis for the experimentally observed effect of the
C-tail on expression, we employed a recently developed in silico coarse-grained (CQ)
approach that models co-translational translocation on unbiased biological timescales [36].
The CG model, which is derived from >16 ps of molecular dynamics simulations of the

Sec translocation channel, the membrane bilayer, and protein substrates [46, 47], has been
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validated for the description of Sec-facilitated membrane integration, including
experimentally observed effects of amino acid sequence on the membrane topology of
single-spanning IMPs [36] and multi-spanning dual-topology proteins [18]. IMP sequences
were mapped onto a Brownian dynamics model of the ribosome/translocation
channel/nascent protein system, and the Sec translocon-facilitated integration of the IMP
into the lipid bilayer was directly simulated in 1,200 independent minute-timescale
trajectories for each TatC (Figure 2.4; Figure 2.5A). This implementation of the CG model

did not distinguish between expression systems.
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Figure 2.4: Simulated Integration Efficiencies Among All Loops TatC Wild-types and Aa-
tail Chimeras. For each considered TatC homolog, the simulated integration efficiency for
the individual loops for both the wild-type sequence (black bars) and the Aa-tail chimeras
(grey bars). It is seen that the 4a-tail generally leads to a significant effect on the integration
efficiency of loop 7 (highlighted), with smaller effects on the other loops. Error bars
indicate the standard error of mean.

Using the results of the CG model, Figure 2.5B presents the simulated integration

efficiency, defined to be the fraction of trajectories that led to the correct membrane

topology, for several TatC sequences. Unless otherwise specified, we defined membrane
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topology in terms of the final orientation of the C-tail. The 4aTatC homolog exhibited
significantly higher simulated integration efficiency than the M¢TatC homolog, which is
consistent with the relative experimental expression levels for the two homologs in Figure
2.5C. Figure 2.5B shows that the Mt(Aa-tail) chimera recovered the high levels of
simulated integration efficiency seen for the 4aTatC homolog, further mirroring the
experimental trends in IMP expression (Figure 2.5C). Figure 2.5D presents an analysis of
the orientation of each loop, indicating that only loop 7 was significantly affected swapping
the C-tail in the simulations. As is shown schematically in Figure 2.5E, the simulations
found that M¢TatC exhibits a large fraction of trajectories in which the C-tail resides in the
periplasm, such that the C-terminal TMD (TMD 6) fails to correctly integrate into the

membrane.
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Figure 2.5: Calculation of TatC Integration Efficiencies. (A) Schematic illustration of the
CG simulation model that is used to model co-translational IMP membrane integration.
The amino acid sequence of the IMP is mapped onto CG beads, with each consecutive trio
of amino acid residues in the nascent protein sequence mapped to an associated CG bead;
the underlying properties of the amino acid residues determine the interactions of the CG
beads, as described in the text. (B) Simulated integration efficiency of the 4aTatC, M¢TatC,
and Mt(Aa-tail) sequences is shown. Error bars indicate the standard errors of the mean.
(C) Experimental expression of the 4aTatC, M¢TatC, and Mt(Aa-tail) sequences is shown.

Error bars indicate the standard errors of the mean. (D) The simulated integration efficiency
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for individual loops of both the wild-type M¢TatC sequence (black bars) and the Aa-tail
swap chimera (gray bars), with loop 7 highlighted, is shown. Error bars indicate the
standard errors of the mean. (E) Schematic of the correct and incorrect TatC topologies
observed in the simulations. Misintegration of loop 7 and translocation of TMD 6 lead to
an incorrect final topology for M¢TatC. (F) For each homolog, comparison between the
experimental expression levels in E. coli and M. smegmatis and the simulated integration
efficiencies, reporting the ratio of the Aa-tail chimera result to that of the corresponding
wild-type sequence. Ratios exceeding unity are highlighted in green, indicating
enhancement due to the 4a-tail. Values in parentheses indicate the standard errors of the
mean.

Additional simulations were performed for the full set of the experimentally
characterized TatC homologs (Figures 2.4 and 2.5F), allowing comparison of the
computationally predicted shifts in IMP integration with those observed experimentally for
IMP expression. For each homolog, Figure 2.5F compares the effect of swapping the wild-
type C-tail with the Aa-tail on both the experimental expression level and the simulated
integration efficiency. With the exception of VcTatC and EcTatC, Figure 2.5F shows

consistent agreement between the computational and experimental results in E. coli upon

introducing the Aa-tail.

Confirmation of the Predicted Mechanism Using a Translocation Assay

The comparison between simulation and experiment in the previous sections
suggests a mechanism in which translocation of the C-tail of TatC into the periplasm leads
to a reduction in the observed expression level. To validate this, an experimental in vivo
assay based on antibiotic resistance in E. coli was employed. The C-terminal GFP tag was
replaced by B-lactamase, such that an incorrectly oriented C-tail would confer increased
resistance to B-lactam antibiotics (Figure 2.6A); an inverse correlation between antibiotic

resistance and GFP fluorescence was thus expected. AaTatC, M¢, and Mt(Aa-tail)
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constructs containing the P-lactamase tag were expressed using the same protocol as
before. Following expression, the cells were diluted to an optical density 600 (OD600) of

0.1 in fresh media without inducing agent, and they were grown to an OD600 of ~0.5 at

which point ampicillin was added. Then 1.5 hours after ampicillin treatment, equal amounts
of the media were plated on Luria-Bertani (LB) agar plates without ampicillin (Figure
2.6B). The number of observed colonies was used to quantify the relative cell survival
(Figure 2.6C, bottom). The survival rate of Mit(Aa-tail), Mt, and AaTatC inversely
correlated with the simulated integration efficiency of the C-tail (Figure 2.6C), validating

the proposed mechanism.
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Figure 2.6: Correlation of Antibiotic Resistance to Membrane Topology. (A) Schematic of
the cytoplasmic and periplasmic topologies of the TatC C-tail with the fused B-lactamase
enzyme. Misintegration of loop 7 leads to periplasmic localization of the B-lactamase,
resulting in enhanced antibiotic resistance and cell survival. (B) Representative plates from
the ampicillin survival test are shown. (C) Comparison of the simulated integration
efficiency (top) and relative ampicillin survival rate (bottom) for AaTatC, M¢TatC, and
Mt(Aa-tail). The reported cell survival corresponds to the ratio of counted cells post-
treatment versus prior to treatment with ampicillin; all values are reported relative to
MiTatC. Error bars indicate the standard errors of the mean.
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Tail Charge as an Expression Determinant: Experimental Tests of Computational
Predictions

To further establish the connection between the simulated integration efficiencies
and the experimentally observed expression levels, we examined the effect of C-tail
mutations. We focused on modifications of the C-tail amino acid sequences that involve
the introduction or removal of charged residues, which are known to affect IMP topology
and stop-transfer efficiency [14, 36, 39].

We began by investigating the generic effect of the C-tail charge magnitude on
TatC-simulated integration efficiency. Figure 2.7A presents the results of CG simulations
in which the magnitude of the charges on the C-tail of the M#(A4a-tail) sequence were scaled
by a multiplicative factor, x, keeping all other aspects of the protein sequence unchanged.
The simulations revealed that reducing the charge magnitude on the C-tail led to lower
simulated integration efficiency.

To examine the corresponding effect of C-tail charge magnitude on expression
levels, Figure 2.7B plots the ratio of experimentally observed expression for each wild-
type homolog relative to its corresponding Aa-tail swap chimera versus the total charge
magnitude on the wild-type C-tail. Without exception in these data, the expression of wild-
type homologs with weakly charged C-tails (relative to the Aa-tail) was improved upon
swapping with the Aa-tail, whereas the expression of homologs with strongly charged C-
tails was reduced upon swapping with the Aa-tail (i.e., all data points in Figure 2.7B fall

into the unshaded quadrants).
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Figure 2.7 Mechanistic Basis Associated with Charged C-tail Residues. (A) Simulated
integration efficiency of the M#(Aa-tail) chimera, as a function of scaling the charges of the
C-tail residues, is shown. (B) Correlation of the ratio of the measured expression for the
Aa-tail swap chimeras to that of the corresponding wild-type sequence versus the charge
magnitude of the wild-type C-tail (data from Figure 2.3E). (Pearson correlation coefficient
of r = 0.8 £ 0.2) (C) Correlation of the ratio of the measured expression for the Aa-tail(—)
swap chimeras to that of the corresponding wild-type sequence versus the charge
magnitude of the wild-type C-tail, where the Aa-tail(—) swap chimeras include a variant of
the Aa-tail with net negative charge and the same overall charge magnitude, is shown. (D)
Experimental expression levels in E. coli (blue, left axis) and simulated integration
efficiency (black, right axis) for a series of mutants of the M#(4a-tail) sequence, in which
positively charged residues in the Aa-tail are mutated to alanine residues. Reported values
are normalized to Mt(Aa-tail). (E) Relative ampicillin survival rate in E. coli (red, left axis)
and simulated integration efficiency (black, right axis) for a series of mutants of the M#(Aa-
tail) sequence, in which positively charged residues in the Aa-tail are mutated to alanine
residues. Simulation results are normalized as in (D), while ampicillin survival is
normalized to the highest survival rate (i.e., with zero charge magnitude). Error bars
indicate the standard errors of the mean.

Figure 2.7C further illustrates the effect of charge magnitude on expression by

presenting the experimentally observed expression levels for 4a-tail(—) swap chimeras, in
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which the introduced C-tail sequence preserved the charge magnitude of the Aa-tail
sequence while reversing the net charge (see Figure 2.3E for the C-tail sequences). Despite
the complete reversal of the C-tail charge, the observed correlation between expression and
C-tail charge magnitude for these two sets of chimeras was strikingly similar (compare
Figures 1.7B and 1.7C).

Finally, we considered a series of mutants of the M#(Aa-tail) chimera, in which the
charge magnitude of the Aa-tail was reduced by mutating positively charged residues to
alanine residues (see Figure 2.3E for the C-tail sequences). For this series of mutants,
Figure 2.7D (black) shows that the simulated integration efficiency decreased with the
charge of the C-tail, which predicted a corresponding decrease in the experimental
expression levels; indeed, the subsequent experimental measurements confirmed the
predicted trend (Figure 2.7D, blue). Again using the antibiotic resistance assay to validate
the connection between simulated integration efficiency and observed expression, Figure
2.7E confirms that the simulation results correlated with the relative survival of the Mt(A4a-
tail) alanine mutants with a B-lactamase tag (Figure 2.7E, red). In addition to providing
evidence for the connection between simulated integration efficiency and observed
expression levels, the results in Figure 2.7 suggest that this link can be used to control IMP

expression.

Transferability to M. smegmatis
Beyond the E. coli overexpression host, we examined the transferability of the
relation between simulated integration efficiency and experimental expression levels. We

employed M. smegmatis, a genetically tractable model organism that is phylogenetically



26

distinct from E. coli. All coding sequences were transferred into an inducible M. smegmatis
vector, including the linker and C-terminal GFP, and expressed; expression levels were

then measured by flow cytometry and validated by western blot.
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Figure 2.8: M. smegmatis Expression Tests. (A) Expression levels of various TatC
homologs in M. smegmatis were measured by TatC-GFP fluorescence, with expression
levels normalized to 4aTatC (blue). (B) Simulated integration efficiency (blue, left axis)
and measured expression levels in M. smegmatis (black, right axis) for a series of mutants
of the Mt(Aa-tail) sequence, in which positively charged residues in the 4a-tail are mutated
to alanine residues. Error bars indicate the standard errors of the mean.

Figure 2.8 A shows that, as in E. coli, the experimentally observed expression levels
vary widely among the wild-type TatC homologs in M. smegmatis. However, comparison
of Figure 2.8A with Figure 2.1B reveals that the total expression levels for the homologs
in M. smegmatis are different from those seen in E. coli, although for both systems the
AaTatC homolog expresses strongly and M¢TatC expresses poorly (which is perhaps
surprising, given the close evolutionary link between M. smegmatis and M. tuberculosis).
Figure 2.5F also shows that replacing the wild-type C-tail with the 4a-tail in M. smegmatis
generally increased the experimentally observed expression levels, in general agreement

(six of nine homologs) with the previously discussed simulated integration efficiency

results.
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Figure 2.5F further shows that the subset of homologs, for which the Aa-tail swap
chimeras led to increased levels of expression in M. smegmatis, was overlapping but
different from the subset associated with the E. coli results. This emphasizes that, although
the computed levels of simulated integration efficiency agree with the observed changes in
expression levels in both expression systems, the observed expression levels depend on the
expression system, while the simulated integration efficiencies calculated using the current
implementation of the CG model are independent of the expression system. In short,
simulated integration efficiency is a predictor of the expression levels in both systems, but
it is not the only factor contributing to the observed expression levels.

Continuing with the M. smegmatis expression system, Figure 2.8B repeats the
comparison between the simulated integration efficiency and the observed expression
levels for the series of mutants of the M#(Aa-tail) chimera, in which the positive charge of
the Aa-tail was reduced by mutating positively charged residues to alanine residues. The
simulated integration efficiencies, identical to those in Figure 2.7D, were predicted to
decrease as charges were removed. The experimental expression levels for M. smegmatis
in Figure 2.8B likewise showed a decrease. Taken together, the results obtained for the M.
smegmatis expression system suggest that the connection between simulated integration

efficiency and observed expression levels may be generalizable beyond E. coli.
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Discussion

The mechanistic picture that emerges from the experimental and theoretical
analysis of the TatC IMP family is that the efficiency of Sec-facilitated membrane
integration, which is impacted by the IMP amino acid sequence, is a key determinant in
the degree of observed protein expression. We observed that TatC homologs had varying
levels of expression (Figures 2.1B and 2.8 A). Swap chimeras between 4aTatC and M¢TatC
revealed a significant effect of the C-tail in determining expression yields (Figure 2.3A),
with the Aa-tail having a largely positive effect that was transferrable to other homologs
(Figure 2.3F). CG modeling predicted a large, sequence-dependent variation of the
simulated integration efficiency for the C-tail (Figure 2.4), suggesting the underlying
mechanism by which the Aa-tail enhances the expression of other TatC homologs.
Validation of this mechanism was experimentally demonstrated using an antibiotic
resistance assay (Figure 2.6). Additional point-charge mutations in the C-tail were shown
to change the simulated integration efficiency, which in turn predicted changes in the IMP
expression levels according to the proposed mechanism; these predictions were
experimentally confirmed in both E. coli (Figure 2.7) and M. smegmatis (Figure 2.8).

The observed correlation between IMP integration efficiency and observed
expression levels presented here is consistent with earlier observations that expression can
be modulated by mutations of the sequence [48-50], as well as recent work in which
misintegrated dual-topology IMPs were shown to be degraded by FtsH [13], However,
these earlier studies did not provide a clear mechanistic basis for the relation between IMP
sequence modifications and observed expression levels. In the current work, we

demonstrate the relation between integration efficiency and observed expression levels,
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and we demonstrate a tractable CG approach for computing the simulated integration
efficiency and its changes upon sequence modifications. This work also raises the
possibility of using simulated integration efficiencies to optimize experimental expression
levels, which has been demonstrated here via the computational prediction and subsequent
experimental validation of individual charge mutations in the C-tail.

A few comments are worthwhile with regard to the scope of the conclusions drawn
here. First, our study focused on comparing protein expression levels among IMP
sequences that involve relatively localized changes, such as single mutations or loop-swap
chimeras, as opposed to predicting relative expression levels among dramatically different
IMP sequences. Second, our study examined experimental conditions for the
overexpression of IMPs using the same plasmids, which may be expected to isolate the role
of membrane integration in determining the relative expression levels of closely related
IMP sequences. The prediction of expression levels among IMPs that involve more
dramatic differences in sequence may well require the consideration of other factors,
beyond just the simulated integration efficiency. Moving forward, we expect that a useful
strategy will be to systematically combine the simulated IMP integration efficiency with
other sequence-based properties to predict IMP expression levels [31].

The experimental and computational tools used here are readily applicable to many
systems, potentially aiding the understanding and enhancement of IMP expression in many
other systems, as well as providing fundamental tools for the investigation of co-
translational IMP folding. By demonstrating inexpensive in silico methods for predicting
protein expression, we note the potential for computationally guided protein expression

strategies to significantly impact the isolation and characterization of many IMPs.
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Methods
Designing and Cloning of TatC Chimeras

The parent plasmid used for cloning, pET28(a+)-GFP-ccdB, was derived from an
IMP-GFP vector used by [51]. TatC homologs and chimeras were prepared from genomic
DNA, with the exception of wild-type M. tuberculosis and A. aeolicus TatC genes that
were synthesized by primer extension as applied in DNAWorks (NIH) [52]. In most cases,
the Gibson assembly cloning protocol was used for cloning [53]. Expression of a vector
containing 4aTatC with an N-terminal ten-His tag and without the GFP fusion-tag was
used as a negative control for in-gel fluorescence, western blot analysis and flow
cytometry. For constructs containing the f-lactamase tag, the GFP sequence was removed
and replaced with a B-lactamase sequence using Gibson cloning. For generation of M.
smegmatis compatible plasmids, the entire coding region of the TatC homologs including
the entire GFP sequence and the poly-His tag were PCR amplified out of their respective
pET28(at+)-GFP-ccdB vector using primers with compatible regions for placement into the
pMyNT vector using Gibson assembly [54]. For f-lactamase constructs, the GFP sequence

was replaced by a B-lactamase sequence using Gibson assembly.

E. coli Expression

Plasmids were transformed into BL21 Gold (DE3) cells and transferred onto LB
agar plates containing 50 pg/ml kanamycin plates after one-hour incubation. After
overnight incubation at 37°C, colonies were scraped off the plates into 5 mL of LB,
resuspended, and the OD600 was determined. These samples were then diluted into 50 mL

2xYT containing 50 pg/ml kanamycin in 125 mL baffled flasks to a starting OD600 of
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approximately 0.01. Cultures were grown in an orbital shaker at 37°C until they reached
an OD600 of 0.15. The temperature of the orbital shaker was then reduced to 16°C. Upon
reaching an OD600 of 0.3, IPTG was added to final concentration of 1mM to induce

expression. Cultures were grown for a further 16 hours prior to analysis.

p-Lactamase Survival Test

Plasmids containing the B-lactamase tag were expressed overnight at 16°C as
previously described. Cells from each overnight culture were washed with phosphate
buffered saline (PBS) to remove IPTG then diluted into fresh 50 mL 2xYT media
containing 50 pg/ml kanamycin to a starting OD600 of 0.1 in 125 mL baffled flasks.
Cultures were grown at 37°C to an OD600 of approximately 0.5 where a control sample
from each culture was taken, diluted 10,000 times in PBS, and 50 puL was plated onto LB
agar plates containing 50 pg/ml kanamycin. To each culture, 50 pg/ml ampicillin was
added and shaken at 37°C for a further 90 minutes. A sample from each culture was taken
and diluted 200 times in PBS, and 50 pL was plated onto LB agar plates containing 50
pg/ml kanamycin. Plates were grown overnight (~16 hours) and the number of colonies on
each plate was counted. Colony counts from the second plating were normalized by the
colony counts from the first plating to account for variation in the OD600 at which
ampicillin was added to determine relative survival. The procedure was performed in
triplicate and standard errors of normalized values were calculated. For each plot of relative

survival, the values are normalized to the highest survival rate of the samples in the figure.
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M. smegmatis Expression

For M. smegmatis overexpression, constructs were transformed into me®155 cells
using electroporation and transferred onto Middlebrook 7H11 plates (10.25 g Middlebrook
7H11 Agar Base, 1 vial ADC growth supplement, 2.5 g glycerol, 1 mM CaCl2, 50 ug/mL
carbenicillin, 10 pg/mL cyclohexamide, 50 pg/mL hygromycin, and water to 500 mL) after
a three hour incubation in 1 mL Middlebrook 7H9 culture media (2.35 g Middlebrook 7H9
Broth Base, 1 vial ADC growth supplement, 0.5 g Tween-80, 1 mM CaCl2, 50 ug/mL
carbenicillin, 10 pg/mL cyclohexamide, and water to 500 mL). Plates were grown for three
to four days until colonies formed. Single colonies were picked into 5 mL Middlebrook
7HY culture media containing 50 pg/mL hygromycin. The following day, 50 mL cultures
of Middlebrook 7H9 expression media (2.35 g Middlebrook 7H9 Broth Base, 0.25 g
Tween-80, 1 g glycerol, 1 g glucose, | mM CaCl2, 50 pg/mL carbenicillin, 10 pg/mL
cyclohexamide, 50 pg/mL hygromycin, and water to 500 mL) were inoculated at a starting
OD600 of 0.005. Cultures were grown at 37°C and expression was induced with 0.2%
acetamide at an OD600 of 0.5. Cultures were grown for six hours after induction prior to

analysis.

Flow Cytometry

A 200 pL sample of each expression culture was centrifuged at 4000g for 3 minutes
to pellet the cells and then the supernatant was removed. Cells were resuspended in 1 mL
of PBS and 200 pL of each were dispensed into 96-well plates and kept on ice for analysis.
Whole-cell GFP fluorescence was determined using a MACSQuant10 Analyzer. Forward

scattering, side scattering, and total fluorescence at 488 nm were considered during



34

analysis. Measured events were gated based on the negative control sample to contain the
lowest 90% of both forward and side scattering values to remove anomalous particles, such
as dead or clumped cells. Mean cell fluorescence was calculated for the gated population
as a measure of folded TatC. At least four independent expression trials were performed
for each sequence tested to ascertain expression variance. Flow cytometry data analysis
was performed with FlowJo Software. Flow cytometry data is normalized to a standard for
each day data was collected. For example, for ‘4a-tail/wild-type’ data points, the mean
fluorescence values of the Aa-tail swap chimeras were normalized by the mean
fluorescence of their respective homologs containing the wild-type tail for that day’s trial.
Similarly, for relative fluorescence data points in which wild-type AaTatC was the
standard, the mean fluorescence of each sample was normalized by the mean fluorescence
of the AaTatC sample for that day’s trial. In both cases, final calculated values are averages
of the normalized values over at least four trials with error bars representing standard errors

of the mean for those normalized values.

In-Gel Fluorescence and Western Blot Analyses

In-gel fluorescence and western blot analyses were used as an alternative measure
of total expressed proteins. 5 mL of expression samples were centrifuged and supernatant
discarded. Samples were resuspended to an OD600 of 3.0 in PBS. 1 mL of each sample
was collected and 250 pL lysis buffer (375 mM Tris-HCI pH 6.8, 6% SDS, 48% glycerol,
9% 2-Mercaptoethanol, 0.03% bromophenol blue) was added. Samples were lysed via
freeze fracturing by three rounds of freezing using liquid nitrogen and thawing using room

temperature water. 20 pL of each lysed sample was subjected to SDS-PAGE. SDS-PAGE
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gels were imaged for fluorescence using a UV gel imager with a filter for GFP fluorescence
to determine in-gel fluorescence.

For western blot analysis, the samples were transferred from the gel onto a
nitrocellulose membrane using the Trans-Blot Turbo System. The membranes were
washed three times with 15 mL TTBS (50 mM Tris pH 7.6, 150 mM NaCl, 0.05% Tween-
20), incubated one hour with 15 mL 5% milk powder in TTBS, washed three times with
15 mL of TTBS, and then incubated with 1:5000 anti-GFP Mouse primary antibody (EMD
Millipore, Lot # 2483215) in 15 mL 5% milk powder in TTBS overnight. Membranes were
washed three times with 15 mL TTBS, incubated with 1:15000 IRDye® 800CW Donkey
anti-Mouse secondary antibody (LI-COR, Lot # C31024- 04) in 15 mL 5% milk powder in
TTBS for one hour, washed three times with 15 mL TTBS, and then visualized using a

Licor IR western blot scanner. ImageJ] was used to process the images [55].

The CG Model Overview

The CG model is employed with only minor modifications from [46], all of which
are specified below. Key features of the CG model and its implementation are provided
here; for a full discussion of the CG model, the reader is referred to [36].

As described in [46], the CG model explicitly describes the configurational
dynamics of the nascent-protein chain, conformational gating in the Sec translocon, and
the slow dynamics of ribosomal translation. The nascent chain is represented as a freely
jointed chain of beads, where each bead represents three amino acids and has a diameter of
8 A, the typical Kuhn length for polypeptide chains [56, 57]. Bonding interactions between

neighboring beads are described using the finite extension nonlinear elastic (FENE)
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potential [58], short-ranged nonbonding interactions are modeled using the Lennard-Jones
potential, electrostatic interactions are modeled using the Debye-Hiickel potential,
periplasmic binding is included as described in [36] for BiP, and solvent interactions are
described using a position-dependent potential based on the water-membrane transfer free
energy for each CG bead; all parameters are the same as used previously [36], unless
otherwise stated. The time evolution of the nascent protein is modeled using overdamped
Langevin dynamics, with the CG beads confined to a two-dimensional subspace that runs
along the axis of the translocon channel and between the two helices of the lateral gate
(LG). Conformational gating of the translocon LG corresponds to the LG helices moving
out of the plane of confinement for the CG beads, allowing the nascent chain to pass into
the membrane bilayer. The rate of stochastic LG opening and closing is dependent on the
sequence of the nascent protein CG beads that occupy the translocon channel. Ribosomal
translation is directly simulated via growth of the nascent protein at the ribosome exit
channel; throughout translation, the C-terminus of the nascent protein is held fixed, and
new beads are sequentially added at a rate of 24 residues per second. Upon completion of
translation, the C-terminus is released from the ribosome. It has been confirmed that the
results presented in the current study are robust with respect to changes in the rate of
ribosomal translation (Pearson correlation coefficient between Wt/A4a-tail ratios obtained

using a rate of translation of 24 residues/sec and 6 residues/sec, r = 0.99+0.06).

The CG Model Implementation Details
Two changes to the protocol for the CG simulation model were introduced in the

current study, with respect to the protocol used in[36]. These modifications were included
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to remove unphysical artifacts in the simulations, although it is emphasized that
conclusions in the main text are qualitatively unchanged by these modifications (Pearson
correlation coefficient between Wt/4a-tail ratios obtained with and without the
modifications to the simulation protocol, r = 0.97+0.09).

The first change in the CG model is that the ribosome is assumed to remain
associated with the translocon following translation of the nascent protein. In the
previously implementation of the model, the ribosome was assumed to dissociate from the
translocon immediately following stop-translation, which was found in the current study
to lead to artifacts for nascent proteins with extremely short C-terminal domains.
Furthermore, this modification is consistent with experimental evidence that indicates that
the timescale for ribosomal dissociation is slower than the trajectories simulated here [59,
60].

The second change in the CG model relates to the potential energy cost of flipping
hydrophilic nascent-protein loops across the lipid membrane at significant distances from
the translocon. The Wimley-White water-octanol transfer free energy scale [61] that was
used to parameterize the interactions of the CG beads with the membrane is appropriate for
describing the transfer of amino acids between an aqueous region and either the
phospholipid interface or the region of the membrane interior that is close to the translocon
lateral gate [62]. However, the flipping of hydrophilic nascent-protein loops across the
membrane at significant distances from the translocon involves moving CG beads through
the hydrophilic core of the membrane interior, which will incur a large potential energy
barrier [62]. To account for this effect, and to avoid unphysical flipping of short hydrophilic

loops across the membrane, an additional potential energy term was included in the
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potential energy function that describes the interactions between the CG beads and the
membrane. We emphasize that this new term has no noticeable effect on the potential
energy function for the CG beads at distances within 8 A to the translocon channel; it
simply affects unphysical flipping of the TM domains across the membrane at larger
distances from the channel. This artifact was not observed in the earlier study using the CG
model, since only processes involving the translocation or membrane integration of a single

TM domain were considered.

The CG Model Bead Mapping

In the current study, amino-acid sequences for the TatC homologs are mapped onto
sequences of CG beads as follows. Each consecutive trio of amino acid residues in the
nascent protein sequence is mapped to an associated CG bead. The water-membrane
transfer free energy for each CG bead is taken to be the sum of the contributions from the
individual amino acids; these values are taken from the experimental water-octanol transfer
free energies for single residues [61]. The charge for each CG bead is taken to be the sum
of the contribution from the individual amino acids. As in [36], positively charged residues
(arginine and lysine) were modeled with a +2 charge to capture significant effects on
topology due to changes in the nascent protein sequence. Histidine residues were modeled
with a +1 charge to account for the partial protonation of these residues, and negatively
charged residues (glutamate and aspartate) were modeled with a charge of -1. The mapping

procedure for AaTatC is depicted in Figure 2.5A as an example.
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The CG Model Calculation Details

The co-translational membrane integration for each TatC sequence is simulated
using 1200 independent CG trajectories. As in [36], each CG trajectory is performed with
a timestep of 100 ns. All trajectories were terminated 30 seconds after the end of translation

for the protein sequence.

Analysis of Simulation Results.

To determine whether a given trajectory leads to integration in the correct
multispanning topology, the topology of a nascent protein configuration can be
characterized by the location of the soluble loops that connect the TMD. We thus specify
a collective variable Ai associated with each loop, with i=1 corresponding to the loop that
leads TMD 1 in the sequence (i.e. the N-terminal sequence) and i=7 corresponding to the
loop that follows TMD 6 (i.e. the C-tail). If loop 1 is in the cytosol, then Ai = 1; if loop i is
in the periplasm, then Ai = -1; otherwise, A = 0. Whether a given loop is in the cytosol, in
the membrane, or in the periplasm is determined by the tracking position of a representative
bead in that loop (Table 2.1). Representative beads were chosen based on having the lowest
probability of being inside the lipid region compared to other beads in that loop. A given
trajectory is determined to have reached correct IMP integration (Ai = -1 for periplasmic
loops and, A1 = 1 for cytosolic loops) if a configuration with the loops in the correct
orientation is sampled during a time window of 6 seconds taken 25 seconds after the end
of translation; the time window of 25 seconds was found sufficient to allow the nascent

protein to finish the integration/translocation of TMD 6.
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Loop 1 Loop 2 Loop 3 Loop 4 Loop 5 Loop 6 Loop 7

AaTatC 7-9 43-45 88-90 145-147 181-183 202-204 238-239
Mt 7-9 61-63 112-114 151-153 193-195 220-222 244-246
Mt(Aa-tail) |7-9 61-63 112-114 151-153 193-195 220-222 244-246
Bp 25-27 64-66 112-114 160-162 196-198 220-222 253-255
Bp(Aa-tail) |25-27 64-66 112-114 160-162 196-198 220-222 250-252
Cj 13-15 55-57 100-102 139-141 187-189 208-210 238-240
Cj(Aa-tail) |13-15 55-57 100-102 139-141 187-189 208-210 238-240
Dr 28-30 73-75 118-120 166-168 202-204 229-231 262-264
Dr(Aa-tail) |28-30 73-75 118-120 166-168 202-204 229-231 247-249
Ec 10-12 55-57 103-105 142-144 190-192 211-213 244-246
Ec(Aa-tail) |10-12 55-57 103-105 142-144 190-192 211-213 244-246
Hy 7-9 40-42 94-96 139-141 184-186 205-207 232-234
Hy(Aa-tail) |7-9 40-42 94-96 139-141 184-186 205-207 232-234
Sa 7-9 43-45 91-93 142-144 178-180 199-201 229-231
Sa(Aa-tail) |7-9 43-45 91-93 142-144 178-180 199-201 229-231
Vc 16-18 52-54 103-105 145-147 190-192 211-213 247-249
Vc(Aa-tail) |16-18 52-54 103-105 145-147 190-192 211-213 241-243
Ws 10-12 61-63 97-99 148-150 181-183 205-207 241

Ws(Aa-tail) |10-12 61-63 97-99 148-150 181-183 205-207 235-237

Table 2.1: Loop Definitions Used in Simulation Trajectory Analysis. Each loop is specified
in terms of the amino-acid residue sequence numbers (end-points inclusive) associated with
the wild-type sequence.

Figure 2.4 shows the fraction of trajectories that exhibit the correct topology for
each individual loop for all TatC homologs and chimeras considered in this study. It is
clear from Figure 2.4 that the changes to the amino-acid sequence considered in this study
largely only impact the topology of the domain where the changes to the amino acid
sequence were introduced; the topology of the rest of the protein is not predicted by the
CG simulation model to be significantly affected by the sequence changes. The calculated
results are robust with respect to the details of the definition of simulated integration
efficiency (Pearson correlation coefficient between Wt/Mutant ratios obtained analyzing
only the loop that was modified and those obtained analyzing all loops, r = 0.85%0.16); to
minimize statistical error, for all simulation results presented in the main text, the topology

of the IMP is thus characterized in terms of only the loop of interest.
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Chapter3

A LINK BETWEEN INTEGRAL MEMBRANE PROTEIN EXPRESSION
AND SIMULATED INTEGRATION EFFICIENCY OF THE C-TAIL FOR
AN EXPANDED POOL OF TATC MUTANTS

Abstract

The heterologous overexpression of integral membrane proteins in Escherichia coli
often yields insufficient quantities of purifiable protein for applications of interest. The
current study leverages a recently discovered link between co-translational membrane
integration efficiency and protein expression levels to predict sequence modifications that
improve expression. Membrane integration efficiencies, obtained using a coarse-grained
simulation approach, robustly predict expression for a set of 140 sequence modifications
on the integral membrane protein TatC, including loop-swap chimeras and single-residue
mutations distributed throughout the protein sequence. Mutations that improve simulated
integration efficiency are found to be almost four-fold enriched with respect to improved
experimentally observed expression levels. Furthermore, the effect of double mutations,
on both simulated integration efficiency and experimentally observed expression levels, is
shown to be largely independent, suggesting that multiple mutations can be introduced to
yield higher levels of purifiable protein. This work provides a foundation for a general
method for the rational overexpression of integral membrane proteins based on

computationally simulated membrane integration efficiencies.
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Introduction

Integral membrane proteins (IMPs) play crucial roles in the transport of molecules,
energy, and information across the membrane and are an important focus of structural and
biophysical studies. However, the production of sufficient levels of IMPs is a limiting
factor in their characterization [23]. Even among homologous IMP sequences, expression
levels can vary widely [22, 23, 63-65], and the mechanistic basis for this variability is often
unclear. Extensive efforts have been committed to identify IMP sequences, expression
conditions, and host modifications that yield IMP expression at sufficient levels for further
study [20, 37, 38]. Despite these efforts, general guidelines for successful overexpression
for IMPs of interest are lacking.

Heterologous overexpression of IMPs in E. coli involves multiple steps during
biogenesis that are potential bottlenecks for overexpression, including the correct targeting
to the inner membrane([5, 6], integration [7, 9, 36, 66-68], and folding [13, 18, 27]. For a
given sequence, understanding how each of these steps affects observed expression levels
may lead to improved strategies for IMP overexpression.

Previous work indicates that the Sec-facilitated membrane integration step of
biogenesis is a limiting factor in the overexpression of the TatC IMP [22]. Sequence
changes that alter the efficiency of membrane integration efficiency, determined either
from coarse-grained simulations or experimentally, correlate with experimentally observed
IMP expression levels. Further work is necessary to explore the generality of this link and
its potential for enabling the rational enhancement of IMP expression.

The current study demonstrates the predictive capacity of simulated integration

efficiency for experimental expression by examining a wide range of sequence



43

modifications and TatC homologs. The studied sequence modifications include point
mutations, loop-swap chimeras, and double-loop-swap chimeras, and it is shown that the
simulated integration efficiency — as predicted by coarse-grained simulations — broadly
correlates with IMP expression. An antibiotic-resistance assay is employed to directly
validate the simulated integration efficiencies and to confirm the mechanistic
interpretation. We further demonstrate multiplicative and largely independent nature of the
effect of multiple mutations on both the simulated integration efficiency and the
experimentally observed expression levels. Finally, we provide a methodology that can be
used to generally identify sequence regions in other IMPs that may exhibit correlations like
those elucidated here for TatC, yielding a broadly applicable tool for the computational

prediction of sequence modifications that improve IMP overexpression.
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Results
TatC Expression Levels Are Changed by Loop Swaps

TatC is an IMP with six transmembrane domains (TMD) and a cytoplasmic N- and
C-terminus (Figure 3.1A) that is a component of the bacterial twin-arginine translocation
pathway [40]. A representative pool of 111 loop-swap chimeras was generated by replacing
a single loop in one of ten wild-type TatC homologs (Aquifex aeolicus (Aa), Bordetella
parapertussis (Bp), Campylobacter jejuni (Cj), Deinococcus radiodurans (Dr),
Escherichia coli (Ec), Hydrogenivirga species 128-5-R1 (Hy), Mycobacterium
tuberculosis (Mf), Staphylococcus aureus (Sa), Vibrio cholera (Vc), and Wolinella
succinogenes (Ws)) with the corresponding loop from one of the other nine homologs
(Figures 3,1A and 3.2). Loop domains were identified by sequence alignment and
membrane topology predictions [45]. Both mutant and wild-type expression levels were
determined using a C-terminal GFP tag [26] (see Methods), and the relative effect of each
mutation on expression was quantified in terms of the ratio

expression(mutant)

Exp. Expression = (D

expression(wild — type)’
Values greater than unity (>1.0) indicate improvement in expression due to the sequence
modification. The set of loop swaps exhibit a wide range of values for this experimental
expression ratio, as shown in Figure 3.1B. The effects of single loop swaps range from
0.02- to 40-fold changes, with 43% of the studied loop swaps yielding improved
expression. Control studies were performed to confirm that the C-terminal GFP tag does
not substantially alter the experimentally measured expression levels. A set of 11 single-
loop-swap chimeras and their corresponding wild-type sequences were cloned into an

alternative construct containing an N-terminal Strep tag (WSHPQFEK) with no C-terminal
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tag (see Methods). The experimental expression ratio in Equation 1 was measured for each
N-terminal Strep tag construct and compared against quantification via C-terminal GFP
fluorescence. Figure 3.1C shows this comparison, revealing agreement for all studied cases
between measured expression levels using either tag. This result, which is in agreement
with extensive studies where IMP-GFP fluorescence was used to quantify expression [26,
27], indicates that the experimental expression outcomes are robust with respect to the

means of quantifying the expression levels.
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Figure 3.1: TatC Loop-Swap Chimeras Demonstrate a Range of Expression Outcomes. (A)
A schematic of a wild-type (left) and loop-swap chimera (right) for the TatC IMP sequence
with a C-terminal GFP tag. Homologous loop domains are swapped between TatC
homologs to create loop-swap chimera mutants; the figure illustrates a loop-swap chimera
of loop 4. (B) The distribution of experimental expression values (mutant/wild-type)
representing the pool of 111 single-loop-swap TatC chimeras that are created by swapping
loop domains between homologs. Loop-swap mutations have a wide range of effects on
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experimental expression. Vertical dashed lines indicate two-fold change, and no change in
experimental expression. (C) Correlation between experimental expression levels
quantified using a C-terminal GFP tag (Exp. Expression) or using an N-terminal Strep tag
(N-strep). This demonstrates that experimental expression outcomes are not influenced by
the location or size of the probe.
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Figure 3.2: TatC Transmembrane and Loop Domain Definitions. (A) A ribbons diagram
of the structure of 4aTatC (RCSB PDB: 4HTS). (B) Domain definitions used in generating
the swap chimeras, with TMDs highlighted, are shown as used in (A).
Simulated Integration Efficiency is Predictive of TatC Expression

Correlation between simulated integration efficiency and experimentally observed
expression levels was previously identified in TatC based on a limited set of mutations
[22]; here, we systematically test the predictive capacity of simulated integration efficiency
for expression in a diverse set of 111 loop-swap chimeras. CG simulations were performed

for each chimera and wild-type sequence (see Methods), and the relative effect of each

mutation on simulated integration efficiency was quantified in terms of the ratio

Sim. Integration = —cninutant)

2)

Pcin(wild—type)’
where P¢;, corresponds to the fraction of simulated trajectories for which the C-tail domain
is correctly localized with respect to the cell membrane for each sequence. In a later Results
section, we investigate the use of sequence features other than the C-tail for quantifying
integration efficiency. Receiver operator characteristic (ROC) curves (Figure 3.3A) [69]
provide a statistical measure of the predictive capacity of simulated integration efficiency,
with values in excess of 0.5 for the area under the ROC curve (AUC) [69] indicating
predictive capacity.

ROC curves in Figure 3.3A are shown for datasets corresponding to all 111 loop-
swap chimeras (blue) and to the subset of 82 loop-swap chimeras that exclude C-tail swaps
(green). This plot demonstrates the predictive capacity of simulated integration efficiency
for experimental expression, with AUC values exceeding 0.5 with 95% statistical

confidence. The similarity of the two curves indicates that the predictive capacity of the
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simulated integration efficiency is relatively insensitive to whether the loop-swap involves
the C-tail domain.

Also, indicated in Figure 3.3A (blue and green dots) are the points along the ROC
curve that correspond to the cut-off value (defining positive prediction) for the simulated
integration efficiency ratio in Equation 2 that offers the greatest predictive capacity for
experimentally observed expression; for both datasets, this optimal value is found to be
1.0, indicating that increases or decreases in the simulated integration efficiency

straightforwardly predict the corresponding changes in experimental expression levels.
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Figure 3.3: C-Tail Localization Is Predictive of Experimental Expression QOutcome. (A)
The predictive capacity of simulated integration efficiency for experimental expression
assessed using a ROC curve for all single-loop-swap chimeras (blue, N=111) and all single-
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loop-swap chimeras excluding those in which the C-tail was swapped (green, N=82).
Significant predictive capacity is observed for both sets. (B) Comparison of simulated
integration efficiency with survival for TatC loop-swap chimeras. A negative correlation
between survival and simulated integration efficiency indicates that the C-tail topology
predicted by the CG simulations occurs in vivo. One sequence tested had a non-observable
survival level and was not included in the plot, this datapoint was included in the accuracy
calculation. (C) Comparison of experimental expression with relative ampicillin resistance
(survival) for TatC loop-swap chimeras. A negative correlation between survival and
experimental expression indicates that the C-tail mislocalizes in poorly expressing
chimeras, consistent with the mechanism predicted by the CG simulations. One sequence
tested had a non-observable survival level and was not included in the plot, this datapoint
was included in the accuracy calculation. (D) The predictive capacity of simulated
integration efficiency for experimental expression assessed using a ROC curve for TatC
point mutants (N=29). Simulated integration efficiency (blue) outperforms prediction of
experimental expression by the positive inside rule (purple).

Experimental Confirmation of Simulated Integration Efficiency Values

To experimentally confirm that the in vivo integration efficiency is correctly
described by the CG simulations, we apply a previously developed antibiotic resistance
assay [22] (see Methods). Ampicillin resistance imparted by the expression of TatC
sequences containing a C-terminal B-lactamase tag correlates positively with the quantity
of proteins integrated with their C-tail in the periplasm (i.e. mislocalized). Therefore, a
negative correlation between ampicillin survival and simulated integration is expected if
mislocalization of the C-tail occurs in vivo, as predicted by CG model simulations.

The survival metric reported in Figure 3.3B is the ratio of colonies observed
following ampicillin treatment between a loop-swap chimera and the corresponding wild-
type TatC sequence. For a set of 14 loop-swap chimeras, Figure 3.3B compares the relative
survival to simulated integration efficiency. For 11 of these 14 cases, the corresponding
data points in Figure 3.3B fall into the diagonal quadrants of the plot, indicating good

agreement between the experimental and simulated measures of integration efficiency

(Accuracy = 0.8+0.2, 95% confidence interval).
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Figure 3.3C plots the correlation between ampicillin survival and experimental
expression for the same set of loop-swap chimeras. As expected (given the positive
correlation between simulated integration efficiency and experimental expression in Figure
3.3A, and given the negative correlation between the simulated integration efficiency and
the survival assay in Figure 3.3B), Figure 3.3C indicates strong negative correlation
between ampicillin survival and experimental expression, with 11 of the 14 data points
falling in the diagonal quadrants (Accuracy = 0.8+0.2, 95% confidence interval). Taken
together, Figures 3.3B and C demonstrate that simulated integration is a reliable predictor

of the C-tail orientation, which is in turn a reliable predictor of experimental expression.

The Effect of Point Mutations on Integration Efficiency Is Predictive for Expression

Rather than loop-swap mutations, we now consider the effect single-point
mutations on both experimental expression and simulated integration efficiency. Point
mutants introduce minimal changes to the wild-type sequence and are often used in a
protein-sequence design context [70-72]. The blue curve in Figure 3.3D shows the ROC
curve for a set of 29 point mutants; each exhibits a single mutation at a position in the wild-
type sequence that is not universally conserved across homologs, with the mutation either
increasing or decreasing the charge at that position. The blue curve in Figure 3.3D indicates
that the simulated integration efficiencies from the coarse-grained method have predictive
capacity (AUC = 0.89) that is even higher than was found in Figure 3.3A for loop-swap
mutations (AUC = 0.65).

For comparison, the purple curve in Figure 3.3D explores the predictive capacity

of a simpler measure of integration efficiency based only on the positive inside rule, which
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observes that positively charged residues are more likely to be localized to the cytosolic
side of the cell membrane [17] and that modification of the positively charged residues can
change IMP topology [13, 18, 22, 27]. As employed here, the positive inside rule simply
predicts that a mutation will have increased integration efficiency (and thus a positive effect
on expression) if it increases the net charge of the cytosolic loops minus the net charge of
the periplasmic loops, and vice versa. It is clear from the Figure 3.3D that in contrast to the
prediction of the coarse-grained model (blue), the positive inside rule has little predictive
capacity for expression when employed in this way. These results emphasize that the
molecular processes and interactions that govern IMP integration are more complex, and
they are more completely described using the coarse-grained simulations than by simple

analysis of charged residues.

The Effects of Sequence Mutations on Simulated Integration Efficiency and
Experimental Expression Are Additive

To determine whether multiple sequence modifications have a combinatory effect
on expression and simulated integration efficiency, a set of 12 double-loop-swap chimeras
was generated and tested against the corresponding effect of the constituent single-loop-
swap mutations. Figure 3.4 shows that for both simulated integration efficiency (part A)
and experimental expression (part B) comparison of the fold-change (Equations 1 and 2)
observed for the double-loop-swap chimera is strongly correlated with to the product of
fold-changes for the corresponding single-loop-swap chimeras (Pearson’s correlation
coefficient, » = 0.9). Linear fits of the data are plotted as solid lines. The slope of the linear

fits for both simulated integration efficiency (Figure 3.4A, slope = 0.8) and experimental
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expression (Figure 3.4B, slope = 0.7) deviate only slightly from unity, which indicates that
the effect of each mutation is largely independent. The results in Figure 3.4 indicate that
introducing multiple mutations is a viable strategy for enhancing expression, and that

simulated integration efficiency largely captures the effect of these multiple mutations.
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Figure 3.4: Effects of Sequence Modifications on Simulated Integration and Experimental
Expression Are Nearly Independent. (A) The simulated integration efficiency of double-
loop-swap chimeras (vertical axis) compared to the product of the simulated integration
efficiencies of the constituent single-loop-swap chimeras (horizontal axis). There is a
strong correlation, with a slope of 0.8, indicating that the effect of loop-swap mutations on
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simulated integration efficiency is multiplicative and largely independent. (B) The
experimental expression of double-loop-swap chimeras (vertical axis) against the product
of the experimental expression values of the constituent single-loop-swap chimeras
(horizontal axis). Again, there is strong correlation, with a slope of 0.7, indicating that the
effect of loop-swap mutations on experimental expression is multiplicative and largely
independent.

TatC Topology Features, Other Than C-tail Localization, Are Not Predictive for
Expression

Using the fraction of coarse-grained trajectories for which the TatC C-tail reaches
correct localization with the respect to the membrane as the measure of successful IMP
integration, the results in Figure 3.3, along with previous work [22], support the conclusion
that simulated integration efficiency reliably predicts experimental expression in TatC.
However, other features of the TatC topology (such as the localization of other soluble
loops) could have been employed to quantify IMP integration from the coarse-grained
simulations. We now investigate the predictive capacity of the coarse-grained simulations
for experimental expression, using alterative measures of IMP integration.

The alternative measures of IMP integration that are considered include, (1), p(i),
the fraction of coarse-grained trajectories for which soluble loop i reaches correct
localization with the respect to the membrane, (2), p““", the fraction of coarse-grained
trajectories for which all soluble loops reach correct localization, and, (3), p(N), the fraction
of coarse-grained trajectories for which correct localization is achieved for the soluble loop
that includes the mutation. In this notation, the previously discussed measure of IMP
integration based on the C-tail is given by p*”.

Using each of these measures of IMP integration, we obtained ROC curves that

compare the simulated integration efficiency with observed experimental expression, and
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the corresponding AUC values are presented in Figure 3.5A. In all cases, the ROC curves
were obtained for the datasets corresponding to all 140 TatC loop-swap and point mutations
discussed in the preceding sections. The AUC for the C-tail measure (p”)) is 0.73,
indicating the strong predictive capacity using this measure. However, it is clear that all
other measures of integration efficiency fail to offer predictive capacity (yielding AUC
values that are within 95% confidence of 0.5). Even when the measure of integration
efficiency is based on the localization of the loop in which the mutation occurs (i.e., p™"),
the predictive capacity is significant worse than using the C-tail (i.e., p”).

The results in Figure 3.5A raise the question of the underlying mechanism for the
predictive capacity of the C-tail localization for TatC. One hypothesis is that the C-tail acts
as “aggregator” of all preceding errors in the IMP integration, providing a cumulative
report on the TatC topology. A second hypothesis is that the C-tail is akin to a “canary in
the coal mine,” particularly sensitive to mutations, regardless of where in the sequence the
mutation occurs. Finally, a third hypothesis is that the unique features of the C-tail could
make it more amenable to accurate description by the coarse-grained method than the other
TatC loops.

We directly test the aggregator hypothesis by investigating the degree to which the
C-tail measure of integration efficiency is predictive of the alternative measures. Figure
3.5B presents the resulting AUC values, obtained from ROC curves for p” versus the
alternative measures, using the full dataset of 140 TatC loop-swap and point mutations. It
is clear from the figure that there is no significant correlation between p”’ and the other

measures, a finding that is inconsistent with the aggregator hypothesis. Both Figures 3.5A
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and B emphasize that the C-tail is a unique reporter of TatC integration efficiency, at least

among the diverse set of measures considered here.
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Figure 3.5 Simulated Integration Efficiency of the C-Tail Is the Only Topology Feature
That Is Predictive of Experimental Expression for TatC. (A) AUC of the ROC curves for
the metrics p'”, p, p@, p@, p, p®®, p™, and p*" (defined in the text) predicting the
experimental expression of all loop-swap chimeras and point mutants. P’ (C-tail simulated
integration efficiency as used in Figures 3.3 and 3.4) is the only metric that is found have
a statistically significant predictive capacity for experimental expression. (B) AUC of the
ROC curves for p'” (C-tail simulated integration efficiency as used in Figures 3.3 and 3.4)
predicting p”, p?, p?, p®, p®, p™, and p“" for all loop-swap chimeras and point
mutants. p” is not significantly predictive of the localization for any other loop, it is
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therefore unlikely an aggregator of upstream mislocalization. Error bars indicate 95%
confidence intervals on the AUC value.

The second hypothesis reasons that the C-tail of TatC is particularly sensitive to
sequence modification and is thus a useful reporter of integration efficiency, regardless of
where in the sequence the mutation occurs. Although this hypothesis is difficult to directly
test, it is consistent with the results from the antibiotic resistance assay, which found that
C-tail localization was substantially impacted by mutations in other parts of the TatC
sequence, even for mutations in other loops. Possibly contributing to the conformational
sensitivity of the C-tail is that the preceding TM domains (TMS5 and TM6) are relatively
short, do not fully span the cell membrane, and are connected by a short turn between the
TMDs, for which loop residues are difficult to assign [41, 43]. Furthermore,
conformational sensitivity of the C-tail is consistent with the fact that this sequence domain
is not conserved across TatC homologs and that it was not resolvable in reported TatC
crystal structures [41, 43], indicating flexibility.

With regard to the third hypothesis, we note that the coarse-grained model does not
explicitly describe sequence-specific interactions and packing effects among the TM
domains; the model is thus expected to be most reliable for describing the topology of TM
domains with weak tertiary interactions, such as the C-tail of TatC [41]. This explanation
leaves open the possibility that improvements to the coarse-grained model in terms of its
description of tertiary IMP interactions could lead to more robust measures of simulated
integration efficiency for other loops

The analysis in this section is central to the question of how generally the coarse-

grained simulations will be able to predict membrane protein expression for IMPs other
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than TatC. It is very possible that for other IMPs, the C-tail localization will not be the
most useful measure of IMP integration for predicting expression levels. In the next
section, we thus describe a simple strategy for identifying a useful measure of IMP

integration, on the basis of limited experimental expression data.

Predictors for Expression Can Be Ildentified from Training Data

Utilization of simulated integration efficiency to predict IMP expression in other
systems requires knowledge of a useful measure of IMP integration to compute from the
coarse-grained simulations. The results in Figures 3.3 and 3.4 in this work use the measure
of C-tail localization (p'”) for this purpose, but, as is illustrated in Figure 3.5, other
reasonable measure of simulated integration efficiency are not predictive for expression.
For the study of an arbitrary IMP, we are thus faced with determining, as efficiently as
possible, a useful measure of simulated integration efficiency to compute from the coarse-
grained method.

Training on a limited dataset could provide one general method for the
identification of topology features that are predictive for expression. Here we demonstrate
this methodological framework in the context of the previously described set of TatC loop-
swap chimeras and point mutants. The predictive capacity (AUC) of topology features is
assessed for training sets of varying size, and the feature with the highest AUC is identified.
For each training dataset size, 1,000,000 independent samples were taken and the most
predictive metric for each of these samples was determined. For each topology feature, i,

the probability that it is most predictive, P, can then be determined as a function of
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training set size, x. We also report the expectation value of the AUC, (AUC), on the full set

of 140 sequence modifications calculated using Equation 3.

(AUC)(x) = Z PO (x) AUCD, (3)

1
Ner ictr
where N is the number of topology features, and #fis the full set of topology features. The
expectation value of the AUC gives an indication of the predictive capacity one can expect
given a training set size.

Figure 3.6A plots the probability of choosing each simulated integration efficiency
metric as the most predictive, P, over different training set sizes. The C-tail localization
metric, p”, is correctly identified as most predictive for more than half of the training sets
for training set sizes of more than approximately 20. Figure 3.6B shows the expectation
value of the AUC for predicting experimental expression on the full dataset, shaded regions
indicate 67% (dark) and 95% (light) confidence intervals obtained using bootstrapping. For
TatC, as the size of the tested sequence pool increases, there is a greater probability of
choosing the simulated integration efficiency of the C-tail as the most important metric
(Figure 3.6A) and the significance of the AUC for simulated integration of the C-tail
increases with pool size (Figure 3.6B). It is apparent that the full pool tested is not necessary
to identify the most predictive metric. These results suggest that for expression data for a
small test set of sequence modifications to an IMP sequence can be used to identify
simulated integration efficiency features predictive of expression.

The strategy in Figure 3.6 illustrates that for cases in which limited IMP expression
data is available, a useful measure of IMP integration from the coarse-grained simulations

can be identified without other prior knowledge, thus yielding a general strategy for

enhancing IMP expression in systems other than TatC. However, there will be cases in
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which even limited IMP expression data is not available. For these cases, a reasonable
strategy is to use a measure of IMP integration that involves a sequence domain that is
expected to be prone to mislocalization with respect to the cell membrane. Analyses of
sequence conservation [73] and residue co-evolution [74] provide reasonable strategies for

identifying such sequence domains.
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Figure 3.6: Topology Features Predictive of Expression Can Be Determined Based on

Limited Training Data. (A) The probability that a topology feature is most predictive (P,
highest AUC) for expression based on performance on training data of variable size. p'”
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(simulated integration efficiency of the C-tail) has a high likelihood of being chosen as the
simulated integration efficiency feature with the greatest predictive capacity, even at low
training set sizes (P®7)>0.5 at training set size 18, and the probability of identifying p'” as
a predictor increases with the training set size. For clarity only features with values of P(®
greater than 0.1 for any training set size are shown in the plot. Not shown but included in
the analysis are; p(3), p(4), p(N), and p(AH). (B) The expectation value of the AUC, (AUC), for
predicting experimental expression versus training data size. Confidence intervals are
displayed at 67% (light blue) and 95% (darker blue).
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Discussion

Heterologous expression of closely related IMP homologs in E. coli can provide a
wide range of yields. IMP misintegration is one source of poor expression outcomes. Here,
we utilize the link between the effect of sequence modification on the integration efficiency
and experimental expression outcomes [22] to predict sequence modifications that improve
expression for the IMP TatC. The integration efficiency of a given domain is determined
by performing CG molecular dynamics simulations of the co-translational integration of
the IMP via the Sec-translocon [36]. Simulated integration efficiency of the C-tail as
determined by the CG model, and subsequently confirmed in vivo, is demonstrated to
accurately predict experimental expression outcomes for diverse a set of 140 sequence
modifications including loop-swap chimeras and point mutants. When simulated
integration efficiency is used to predict experimental expression of the combined the point
mutant and loop-swap chimera datasets, a sequence predicted to increase in integration
efficiency is almost four times more likely to increase in experimental expression than a
sequence predicted to decrease in integration efficiency, as determined from the diagnostic
odds ratio [75] taken over the set of 140 sequences.

The relationship between changes in simulated integration efficiency and IMP
experimental expression due to sequence mutations provides a promising tool for
predicting expression. Integration into the cell-membrane in the correct multi-spanning
topology is a key step in IMP biogenesis. Our work demonstrates that the efficiency of
integration in the correct topology can be affected by sequence modification, with a
corresponding effect on IMP expression. In particular, for the IMP TatC, localization of

the C-tail, quantified both using CG simulations and in vivo, is found to be sensitive to
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sequence modifications throughout the coding sequence, and is shown to be predictive of
experimental expression. The effect of sequence modifications on simulated integration
efficiency and expression levels was found to be largely independent, enabling the design
of larger sequence modifications with further enhanced expression. Broad applicability of
simulated integration efficiency as a predictor of expression for other IMPs has yet to be
established. However, we demonstrate that a small pool of test-data would have been
sufficient to identify the predictive capacity of the C-tail for TatC, and similar methodology
could be used to identify predictive topology features in other IMPs. The workflow
established here enables IMP expression via rational improvement of co-translational
integration, a key step in IMP biogenesis.

For any IMP that has a domain prone to mislocalize in vivo, simulating the effect
of sequence modifications on the domain can be used as a forward predictor of expression
outcomes and sequence modifications that aid localization may improve expression. In
contrast to previous attempts to boost the expression of IMPs [20, 32, 37], the current study
is able to identify and improve a specific step in IMP biogenesis. By simulating and
enhancing the process of translocon-mediated integration in silico, the determinant of

expression enhancement can be identified and directly addressed in vivo.



64

Acknowledgments

I would personally like to thank Michiel J. M. Niesen, William M. Clemons, Jr.,
and Thomas F. Miller, III for contributing to the project. Work for this project was
supported by NIH-NIGMS grant 1R01GM125063 to TFM and WMC. Work in the
Clemons lab was supported by an NIH Pioneer Award to WMC (5DP1GM105385) and
funds from Caltech’s Center for Environmental Microbial Interactions and an NIH training
grant (NIH/NRSA training grant 5T32GMO07616) to SSM. Work in the Miller group is
supported in part by the Office of Naval Research (N00014-10-1-0884) and computational
resources were provided by the National Energy Research Scientific Computing Center
(NERSC) a DOE Office of Science User Facility (DE-AC02-05CH11231) and the Extreme
Science and Engineering Discovery Environment (XSEDE), which is supported by

National Science Foundation grant number ACI-1053575.



65

Methods
Cloning

All TatC coding sequences were created using either primer extension or were
synthesized by Twist Bioscience. Loop-swap chimeras were limited to those swapping
loops 1-5 and 7, avoiding the short loop 6. The pool of 111 loop-swap chimera sequences
were chosen from all 540 possible combinations. Each wild-type homolog is used between
6 to 15 times as a parent, between 7 to 19 times as a source for the mutant loop, and each
loop is mutated between 8§ to 29 times. Point mutants were chosen to affect a change in
charge through mutation of neutral residues to charged residues or through mutation of
charged residues to the opposite charge. Each loop-swap chimera coding sequences was
cloned into the pET28(a+)-GFP-ccdB vector [22, 51] using the Gibson cloning protocol
[53], resulting in each IMP possessing a C-terminal GFP tag. For constructs containing the
B-lactamase tag, the GFP sequence was replaced with a B-lactamase sequence using Gibson
cloning. For constructs containing the N-terminal Strep tag, the GFP and poly-His
sequence was removed during PCR and the Strep tag was added using primer extension;

the final vectors were constructed using Gibson cloning.

Heterologous Expression in E. coli
Heterologous expression of IMPS in E. coli was performed as previously described
[22]. In short, IMPs were expressed in BL21 Gold (DE3) cells at 16°C for approximately

16 hours prior to either flow cytometry, western blot, or ampicillin survival analysis.
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Flow Cytometry

Flow cytometry was performed as previously described [22]. In short, cultures of
cells expressing TatC IMPs with a C-terminal GFP tag were resuspended in PBS and
subjected to flow cytometry. Whole cell fluorescence from the B1/FITC channel was
measured using a MACSQuant10 Analyzer. Mean fluorescence values are calculated using

FlowJo.

Western Blot

All samples of cells expressing IMPs with an N-terminal Strep tag were subjected
to the following protocol for western blot analysis. Samples were normalized to an ODggo
of 3.0 in PBS and subjected to three freeze thaw cycles using liquid nitrogen and applied
to 10% SDS-PAGE followed by western blotting. Relative protein levels were determined
by incubation of the western blot membrane with an anti-Strep tag primary rabbit antibody
followed by incubation with an IRDye® 800CW Donkey anti-rabbit secondary antibody
and visualization using a LI-COR IR western blot scanner. Relative band intensities were

quantified using ImagelJ [55].

Description of the CG Simulations

We apply a previously developed coarse grained simulation approach [22, 36],
capable of simulating the minute-timescale dynamics of co-translational integration via the
Sec translocon. The CG model is applied and implemented exactly as described in [22],
and key features of the CG model are provided here; for more a more extensive description,

the reader is referred to [22].
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The CG simulations explicitly describe the configurational dynamics of the nascent
chain (NC), conformational gating of the Sec translocon lateral gate, and ribosomal
translation (at 24 residues/second). The nascent chain (NC) is represented as a freely
jointed chain of CG beads, where each CG bead represents three amino acids and has a
diameter of 8A, equal to the Kuhn length of a polypeptide chain [56, 57]. To avoid a
frameshift in the mapping of amino acids to CG beads upon a loop-swap sequence
modification, dummy atoms were introduced to keep mapping consistent, as done
previously [22]. Bonding interactions between neighboring CG beads are described using
the finite extension nonlinear elastic (FENE) potential [58], short-ranged non-bonding
interactions are modeled using a Lennard-Jones potential, and electrostatic interactions are
modeled using the Debye-Hiickel potential. Periplasmic binding is included as described
in [36, 47] for BiP, and solvent interactions are described using a position-dependent
potential based on the water-membrane transfer free energy for each CG bead [22].

The configuration of the NC is time evolved using overdamped Langevin
dynamics, with the CG beads confined to a two-dimensional subspace that runs along the
axis of the translocon channel and between the two helices of the LG. Conformational
gating of the LG corresponds to the LG helices moving out of the place of confinement for
the NC, allowing the NC to pass into the membrane bilayer. The rate of stochastic LG
opening and closing is dependent on the sequence of the CG beads that occupy the
translocon channel [36, 47]. Ribosomal translation is directly simulated via growth of the
NC at the ribosomal exit channel; throughout translation, the C-terminus of the NC is held
fixed, and new beads are sequentially added at a rate of 24 residues per second. Upon

completion of translation, the C-terminus is released from the ribosome.
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Trajectories use a step-size of 100 ns for time integration and are terminated 31s
after the end of translation. For each protein sequence, at least 400 independent trajectories

are calculated.

Determination of Topology Features

The topology features for a protein sequence are determined as described
previously [22]. The topology of a protein is analyzed over the last 6s of the CG simulation
trajectories, starting 25s after the end of protein translation by the ribosome. For each loop,
i, the location of the loop during this time-window is described by a variable 4;, where 4,=1
if the loop is in the cytosol, 4=-1 if the loop is in the periplasm, and 4=0 otherwise. For
each trajectory we assess if, during the analysis time-window, a given topology feature is

(1.

observed. The topology features used in this work are either; (p p?, p™) localization of

single loops consistent with the known TatC topology (Figure 3.1A), or (p“*")

simultaneous localization for all loops consistent with the known topology.

Ampicillin Survival Assay

The ampicillin survival assay was performed as previously described [22]. In short,
cells that had expressed IMPs with a C-terminal B-lactamase-tag overnight at 16°C were
resuspended to an ODggp of 0.1 and grown to an ODgg of 0.5, after which ampicillin was
added and cells were incubated for a further 1.5 hours, followed by plating on kanamycin
LB agar plates. The relative number of observed colonies between loop-swap chimera and

wild-type was used to determine the change in C-tail translocation, with a ratio greater than
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one representing an increase in translocation of the C-tail to the periplasm due to the

sequence modification.

Statistical Significance Calculations

Experimental expression, survival, and N-Strep values reported represent average
values over at least 3 independent trials, error bars indicate the standard error of the mean
unless otherwise noted. Simulated integration values represent the average outcome of at
least 400 independent CG simulations trajectories, error bars indicate the standard error of
the mean. Confidence intervals on AUC values are determined by bootstrapping [76].
1,000,000 samples of simulated integration and expression pairs, with size equal to the set
of sequence modification, are drawn with replacement from the set of sequence
modifications. An AUC value is calculated for each sample, and the relevant percentile of

the resulting AUC value distribution determines the confidence intervals.



70

Chapterd

APPLICATION OF SIMULATED INTEGRATION EFFICIENCY TO
THE PREDICTION OF ERROR-PRONE MUTANT HAEMOPHILUS
INFLUENZAE GLPG EXPERIMENTAL EXPRESSION

Abstract

Integral membrane proteins are key targets for biochemical and structural
characterization, but heterologous overexpression often provides insufficient yield, in
many cases without an indication as to the source of the failure. Our earlier work shows
that we can improve the expression of TatC proteins in E. coli by increasing the efficiency
of topogenesis, as predicted by a coarse-grained co-translational integration simulation
model, by preventing misintegration of the TatC C-tail (Chapters 2 and 3). To assess the
predictive power of the model which respect to changes in expression levels due to
sequence mutation in a different protein family, a library of mutated Haemophilus
influenzae (Hi) GIlpG sequences is created using error-prone PCR and tested for
experimental expression levels of membrane protein-GFP fusions and simulated
integration efficiency effects. HiGlpG, like TatC, contains loop domains with simulated
integration efficiencies that may be predictive of experimental expression improvement,
with the reservation that the cutoff most predictive of expression improvement is not
consistent and not always 1.0 as expected. Preliminary evidence suggests that the
application of model can be expanded to predict the expression of GlpG and other integral

membrane proteins, but further testing is needed to clarify the existing issues.
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Introduction

For the integral membrane protein (IMP) TatC, C-tail integration efficiency was
determined using in silico coarse-grained modeling of IMP integration at the translocon
(CG model) and changes in the simulated integration efficiency of the C-tail due to
sequence modifications, including loop-swap chimeras and point mutants, was predictive
of experimental expression. A number of questions remained unresolved. Could the CG
model predict the expression effects of mutations on another IMP? Would simulated
integration efficiency of the C-tail be predictive for another IMP family or would another
loop be more predictive? Our previous work demonstrated that simulated integration
efficiency was a strong predictor of experimental expression (Chapters 2 and 3), but a study
utilizing an alternative IMP was needed to determine its broader relevancy.

To expand upon previous links between simulated integration efficiency and
experimental expression, GlpG, a rhomboid protease widely found in bacteria that
catalyzes intramembrane proteolysis [77], was chosen for analysis. It represents an ideal
choice due to its size of only six transmembrane domains (TMD), the absence of large N-
or C-terminal loop domains, and the availability of in vivo assays for measuring activity
[77]. Instead of point mutants and loop swaps between homologs as previously used, a
single homolog, Haemophilus influenzae (Hi) GlpG, is chosen for error-prone PCR
mutagenesis and subsequent expression testing due to the ambiguity of loop and TMD
domain identification. The error-prone PCR HiGlpG library exhibits a wide range of
sequence modifications and resulting experimental expression levels. The area under the
curve (AUC) of the receiver operating characteristic (ROC) curve for the simulated

integration efficiency of loop 4 is significant but p predicts poorly at a cutoff of 1.0, while
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loop 1 simulated integration efficiency AUC is not significant but p" predicts better than
p™ at a cutoff of 1.0. Further experiments are needed to clarify the relationship between
simulated integration efficiency features and experimental expression, determine if
HiGlpG activity is uncompromised by mutations that increase integration efficiency, and
assess whether the simulated integration efficiencies of the same loops are predictive of
sequence modification in other GlpG homologs. Confirmation of all these outstanding
issues will provide convincing proof of the utility of simulated integration efficiency in

predicting and improving heterologous overexpression of a wider range of IMPs in E. coli.
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Results
Wild-type Expression Levels

Figure 4.1B shows the measurement of the expression levels of five GlpG
homologs compared to 4aTatC, which has been previously identified as a high-expressing
IMP, needed to identify an ideal target for integration optimization that has low starting
experimental expression. Experimental expression is quantified by the mean whole-cell
fluorescence measured using flow cytometry as previously applied [22]. Unlike for TatC

(Figure 2.1B), expression is consistently high among all GlpG homologs.
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Figure 4.1: HiGlpG Experimental Expression. (A) A ribbons diagram of the structure of
HiGlpG (RCSB PDB: 2NR9) with TMDs colored. (B) Experimental expression levels of
wild-type GlpGs normalized to AaTatC expression levels. Expression levels for all wild-
type GlpGs tested are relatively high and consistent compared to the range observed for
TatCs. (C) The distribution of experimental expression values (mutant/wild-type) for the
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HiGlpG error-prone PCR library. The majority of mutations have a negative effect on
expression. (D) The distribution of the number of nucleotide mutations in the error-prone
PCR library, excluding sequences with stop codons. (E) The distribution of the number of
amino acid mutations in the error-prone PCR library, excluding sequences with stop
codons. Those that do not affect a change in amino acid sequence are shown here but not
included for further analysis.

Figure 4.2 indicates that, for TatC homologs, improvement in experimental
expression (mutant/wild-type > 1.0, data from Chapter 3) is negatively correlated with the
wild-type expression levels (wild-type/4aTatC) (Pearson correlation = -0.2+0.2, Spearman
rank correlation = -0.4+0.2), indicating that high expressing IMPs have a lower capacity to
improve in expression. If the condition holds for GlpG homologs, it is expected that using
any of the wild-type GlpG homologs tested in Figure 4.2B for the generation of a mutant
library will lead to a smaller proportion of mutants improving in expression due to the high
initial expression levels. This could be due to the high in vivo integration efficiency of the
wild-type IMP subdomains, which may provide less opportunity for improvement by
sequence mutation. HiGlpG was chosen as the best candidate for expression enhancement,
even given the high starting experimental levels observed, because a high-resolution

structure is available (Figure 4.1A) [78] and it is among the lowest expressing GlpGs

tested.
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Figure 4.2: Correlation Between Expression Improvement and Wild-type Expression

Levels for TatC. Wild-type expression levels (Wt/AaTatC) and loop-swap chimera
experimental expression levels (Mutant/Wt) are negatively correlated (Pearson correlation
= -0.2+0.2, Spearman rank correlation = -0.4+0.2). Similarly, as wild-type expression
increases, the proportion of mutants for a given homolog that increases in expression
decreases. Experimental expression (mutant/wt) values greater than 1.0 indicate an
increase in expression while those that are less than 1.0 represent a decrease in expression
due to mutation.
HiGlpG Error-Prone PCR Library Generation and Expression

The loop domains of HiGlpG are difficult to define given that the loops identified
by the OPM database lie at least partially within the membrane [78], making the synthesis
of loop-swap chimeras among multiple homologs difficult. As an alternative, error-prone
PCR is used to create a library of HiGlpG mutants with one or more point mutations that,
in contrast to loop-swap chimeras and other mutants created for testing TatC in Chapters 2
and 3, are not limited to the loop domains but can also occur in TMDs. A library of over
100 error-prone PCR mutated HiGlpG sequences provides expression data that could be
used to determine which simulated integration efficiency features (e.g. the localization of

soluble loops) correlate with experimental expression. Figures 4.1D and 4.1E show the

distribution of number of nucleotide and amino acid mutations, respectively, in the library,
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excluding sequences that contained internal stop codons. Figure 4.1C displays the
distribution of the experimental expression levels of the mutant sequences normalized to
wild-type HiGlpG levels. The majority of mutations exhibit drop in experimental
expression compared to the wild-type sequence. This could be due to a higher initial
integration efficiency for HiGlpG, observable by the initial high wild-type expression level.
In this case, mutations are not limited to loop domains and are observed in all domains of
the sequence and, as seen in the library expression distribution (Figure 4.1C), there are

significant perturbations to the wild-type expression yield by the introduced mutations.

Evaluating Simulated Integration Efficiencies for Predicting Expression

The receiver operating characteristic (ROC) curves of the two most predictive
features for experimental expression: the simulated integration efficiency of loop 1 (Figure
4.3A) and of loop 4 (Figure 4.3B) provide a measure of the capacity for the simulated
integration efficiency of loop 1 and loop 4 to predict mutant HiGlpG experimental
expression over a range of simulated integration efficiency cutoffs. Cutoffs are labeled
inside the curve. The simulated integration efficiency of the wild-type and HiGlpG
sequences are determined using the CG model as previously described [22] and compared
to the experimental expression data to find which simulated integration efficiency features
correlate with experimental expression. As was the case for TatC, the integration efficiency
of the HiGlpG loop 6 was not calculated due to its small size [22, 78]

The area under the curve (AUC) of the ROC curves for the full set of simulated
integration efficiency features in Figure 4.3C establishes that loop 1 (p) and loop 4 (p*)

are most predictive of experimental expression effects. The alternative measures of IMP



77

integration that are considered include p®, the fraction of coarse-grained trajectories for
which soluble loop i reaches correct localization with the respect to the membrane, and
p™". the fraction of coarse-grained trajectories for which all soluble loops reach correct
localization. The simulated integration efficiency of loop 1 appears to be predictive at a
simulated integration efficiency cutoff of 1.0, but the AUC of the ROC curve is not
statistically significant. Conversely, the AUC of p') is statistically significant at a 95%
confidence interval, but at a cutoff of 1.0 it does not appear to have predictive power,
apparent by the proximity of the ROC curve to the midline at the 1.0 cutoff. The cutoff of
1.0 for simulation integration efficiency would be epected if the CG model correctly
idetnfies cases of experimental expression success or failure, as a change in simulated
integration effiency would signal a corresponding change in expeirmetal expression in the
same direction (increase or decrease), though not necessarily with the same magnitude.
The presence of loops that have the potential to be predictive of integration efficiency in
another IMP demonstrates that there is opportunity for a broader application of the CG
model for the prediction of the effects of sequence mutation on experimental expression
by optimizing integration efficiency, but the evidence is not as conclusive and consistent

at that seen for the TatC C-tail.
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Figure 4.3: Predictive Capacity of Simulated Integration Efficiency Features on HiGlpG
Experimental Expression. (A) An ROC curve displaying the capacity for the simulated
integration efficiency of loop 1 (p'", blue) to predict HiGlpG mutant experimental
expression over a range of simulated integration efficiency cutoffs. Cutoffs are labeled
inside the curve. (B) An ROC curve displaying the capacity for the simulated integration
efficiency of loop 4 (p¥, red) to predict HiGlpG mutant experimental expression over a
range of simulated integration efficiency cutoffs. Cutoffs are labeled inside the curve. (C)
AUC of the ROC curves for the features p'”, p@, p, p¥, p®, p'”, and p“" predicting
HiGlpG mutant experimental expression effects. p" and p'* are the most significantly
predictive features. Error bars represent 95% confidence intervals for each AUC value. The
sequences considered contained at least one amino acid mutation and did not contain
internal stop codons
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Discussion

The results of comparing experimental expression and CG model derived simulated
integration efficiencies demonstrate a link between the effects of random mutagenesis on
the simulated integration efficiencies of loops 1 and 4 and the amount of HiGlpG correctly
folded. However, the AUC of p'” is not significant at a 95% confidence interval and the
cutoff of 1.0 is not predictive for p™*. These issues make it difficult to interpret the observed
relationship. The relatively high expression level of wild-type HiGlpG could limit the
potential increase in expression and indicate high initial integration efficiency, limiting the
potential for improvement. This is supported by the observation that HiGlpG exhibits a
smaller proportion of mutated sequences that improve in expression (19%) than the average
of the TatCs single-loop-swap chimeras tested (45%). The small proportion of improved
expression levels for the tested HiGlpG library limits the statistical significance of the
predictive capacity of simulated integration efficiency features.

In the future, several changes could be implemented to better assess the predictive
power of simulated integration efficiency for experimental expression of IMPs other than
TatC. More GlpG homologs or another protein family could be tested to determine if there
is a different wild-type homolog that expresses poorly, ideally due to a lower starting
integration efficiency that can be more predictably improved through mutation.
Additionally, we could create a library of mutated sequences for a different GlpG and
determine if the simulated integration efficiency of loop 1 and loop 4 are consistently
predictive of experimental expression even though they are suspect in HiGlpG. We expect

that further investigation will provide additional evidence to support the link between IMP
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simulated integration efficiency and experimental expression established in Chapters 2 and

3 and the generalizability to other IMP families.
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Methods
Design and Synthesis of HiGIpG Wild-type Sequences and Error-Prone Library
Wild-type GlpG sequences were created by PCR amplification of the genes from
genomic DNA followed by Gibson assembly for insertion into pET28(a+)-GFP-ccdB [42].
The HiGlpG sequence was subjected to error-prone PCR using the GeneMorph II kit from
Agilent, which allows for the average number of nucleotide mutations to be tuned by
adjusting the template concentration. To create a pool of sequences with a moderate
number of mutations as shown in Figures 4.1D and 4.1E, 50 ng of the template, pET28(a+)-
GFP containing the wild-type HiGlpG sequence (approximately 6500 nucleotides or 2000
kDa), was used. Error-prone HiGlpG mutant sequences were cloned into the pET28(a+)-
GFP-ccdB plasmid [22, 51] using Gibson assembly[53], which resulted in a pool of

approximately 3600 unique sequences.

E. coli Expression

The plasmid library was transformed into BL21 Gold (DE3) cells and grown
overnight on LB agar plates containing 50 pg/ml kanamycin after one-hour incubation.
After overnight growth at 37°C, individual colonies were picked into a starter culture
containing 200 pL 2xYT media (16 g Tryptone, 10 g Yeast Extract, and 5 g NaCl per liter
H,0) with 50 pg/ml kanamycin in a 96 well plate (2.0 mL deep well block) and grown at
37°C with shaking. After the OD600 of the cultures reached approximately 1.0, 20 pL of
each starting culture was added to an expression culture containing 1 mL 2xYT with
kanamycin in a 96 well block. 200 pL of sterile 50% glycerol was added to each starter

culture well and the block was saved at -80°C. The expression culture was grown to an
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OD600 of 0.15 at 37°C with shaking, then grown at 16°C to an OD600 of 0.3, after which
IPTG was added to a final concentration of 1 mM to induce IMP expression. Induced
cultures were grown overnight for a further 16 hours prior to IMP quantification via flow
cytometry. Expression of each mutant sequence was performed and quantified alongside
the wild-type HiGlpG sequence and a negative control expressing 4aTatC with no C-

terminal GFP tag.

Flow cytometry

A 96 well plate was filled with 150 pL of 1x PBS in each well, to which 20 pL of
overnight expression culture was added and subjected to flow cytometry. Whole cell
fluorescence was measured using a MACSQuant10 Analyzer. Fluorescence at 488 nm was
used as the measure of expression yield. Flow cytometry data analysis was performed with
FlowJo Software. Expression values used for experimental expression calculation are mean

whole cell fluorescence from flow cytometry.

Plasmid Purification

Stabbings from the saved -80°C starter culture were used to inoculate 1 mL 2xYT
with kanamycin in a 96 well block and grown overnight for 16 hours at 37°C with shaking.
Cells were pelleted via centrifugation and plasmid was purified via the Macherey-Nagel
96 well NucleoSpin plasmid purification kit using a Tecan Freedom EVO liquid handling
robot prior to sequencing. Sequences were analyzed to assure they contained at least one
amino acid mutation and did not contain internal stop codons. Only sequences fitting these

criteria were considered for analysis in Figure 4.3.



85

Data Analysis

Experimental expression values (mutant/wild-type) were calculated by dividing the
mutant fluorescence value by the wild-type HiGlpG fluorescence value for that experiment
on that day. Confidence intervals were calculated using bootstrapping [76]. ROC curves
and associated AUCs were calculated using the ROCR package in R [79].

Coarse-grained simulations and simulated integration efficiency calculations are

performed using the same protocol described in Chapter 3 Methods [22].
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FUTURE DIRECTIONS

The combined results of Chapters 2, 3, and 4 demonstrate that simulated integration
efficiency calculated from a coarse-grained co-translational simulated integration model
(CG model) can be used to predict changes in experimental expression resulting from
mutation of an integral membrane protein (IMP) sequence; those that prevent
misintegration enhance expression. However, the process we used to determine the
simulated integration efficiency feature with significant predictive capacity, such as the C-
tail for TatC, requires a large testing set of experimental outcomes to which integration
features are compared ex post. Changes in simulated integration efficiency due to sequence
modification correlate with the effect on relative experimental expression (mutant/wild-
type) but do not agree with the absolute change in expression levels, indicating the CG
model may not be properly calibrated to calculate these effects. These shortcomings limit
the potential wider application of the model but provide an opportunity for further
development.

Ideally, simulated integration efficiency could be adapted to yield three additional
functions: the ability to, (a), predict the wild-type expression level of an IMP as compared
to other homologs, (b), to determine which integration features are significantly predictive
without the need experimental expression levels from a set of mutant sequences, and, (c),
provide that the degree of the change in simulated integration efficiency scales with the
fold change in experimental expression. Previous efforts to find a method to reach these
goals have been unsuccessful. For example, analysis of the IMP structure could not be used
to identify the most predictive loop a priori for TatC and GlpG [41, 43, 78]. While the

short loop 6 of TatC is a possible source of the predictive capacity of the simulated
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integration efficiency of loop 7, no such obvious adverse conformation is apparent in
HiGlpG that could be the source of the sensitivity of loops 1 and 4. HiGIpG contains a
short loop 6 that is similar to the short TatC loop 6, but the simulated integration efficiency
of loop 7 is not predictive in HiGlpG. Wild-type TatC C-tail integration efficiency does
not correlate with the predictive capacity of the C-tail for that homolog and wild-type
simulated integration efficiencies do not correlate with wild-type expression levels.
Nonetheless, the current method provides a rational approach to increase the expression of
IMPs through the identification and improvement of weak underlying processes in co-
translational IMP integration and the predictive power of the CG model indicates that it
does significantly capture the effects of mutations on expression through integration
effects.

A deeper understanding of the precise molecular interactions that lead to
misintegration is needed to perform predictions using the CG model without any
experimental results available with which to interpret the effects of mutations on simulated
integration efficiency. The addition of new features to the CG model could accomplish
this. Currently, the movement of beads within the CG model as implemented herein is
mostly limited to two dimensions. Development is underway to create a CG model that
simulates co-translational integration in a 3-dimensional space. This will allow for a more
detailed modeling of the ribosome and translocon shape and for the nascent chain to move
in two dimensions within the plane of the membrane, instead of the one currently allowed.
A complementary parameter that assesses the effect of mutations on the targeting of the
IMP to the membrane would help form a more complete view of the biogenesis pathway.

Also, while the SecYEG complex represents the core of the translocon and is necessary for
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the integration of many IMPs, other chaperones such as YidC and SecDF can assist in co-
and post-translational folding and effects can be implicitly or explicitly incorporated into
the CG model [80-82]. The simplifications inherent to the current CG model can also be
simulated in a more accurate manner, including the explicit modeling of the solvent and
the membrane, using a less coarse-grained approach such as single amino acids per bead,
using a more precise model of SecYEG and the ribosome, and incorporating co- and post-
translational IMP folding. Further development of the CG model and more experimental
data with which to test its effectiveness have the potential of further expanding the CG
model and allow for computational methods to drive and predict mutations for the purpose
of improving expression of an IMP, rather than using the CG model to assess the

mechanism behind previously determined experimental expression levels.
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