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ABSTRACT

Existing Earthquake Early Warning (EEW) algorithms use waveform analysis for
earthquake detections, estimation of source parameters (i.e., magnitude and hypocenter
location), and prediction of peak ground motions at sites near the source. The latency of
warning delivery due to data collection significantly restricts the usefulness of the system,
especially for users in the vicinity of the earthquake source, as the warning may not arrive
before the strong shaking. This presentation discusses several methods to reduce the
warning latency, while maintaining reliability and robustness, so that the warning time can
be maximized for users to take appropriate actions to reduce causalities and economic

losses.

Firstly, we incorporated the seismicity forecast information from Epidemic-Type
Aftershock Sequence (ETAS) model into EEW as prior information, under the Bayesian
probabilistic inference framework. Similar to human’s decision-making process, the
Bayesian approach updates the probability of the estimations as more information becomes
available. This allows us to reduce the required time for reliable earthquake signal detection
from at least 3 seconds to 0.5 second. Furthermore, the initial error of hypocenter location
estimation is reduced by 58%. The performance of the algorithm is further improved during

aftershock sequences and swarm earthquakes.

Secondly, we introduce the use of multidimensional (KD tree) data structure to organize
seismic database, so that the querying time can be reduced for the nearest neighbor search
during earthquake source parameter estimation. The processing time of KD tree is
approximately 15% of the processing time of linear exhaustive search, which allows the

potential use of large seismic databases in real-time.
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EEW is an interdisciplinary subject that involves collaboration among different scientific
and engineering communities. Only by optimizing the warning time, such a unified system
could be successful in taking protective actions before, during, and after earthquake natural

disasters.
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Chapter 1

Introduction

1.1 Motivation

An earthquake is a natural disaster that develops over a very short time frame; the time
interval between the initial of rupture to the end of damaging ground motion arriving at a
site could be from the order of seconds to a minute. However, the aftermath damage that an
earthquake brings could be permanent and significant. Scientists, the government and the
private sector have put in tons of effort in mitigating earthquake losses. Although
earthquake prediction is a challenging task, the development of Earthquake Early Warning
(EEW) systems has progressed rapidly over the past few decades (Allen, Gasparini, et al.
2009).

The advancement of Earthquake Early Warning systems has been driven by the growth of
information technology and the increase of awareness of seismic hazard. The goal of
Earthquake Early Warning is to provide alerts to the community about the incoming
ground shaking and take appropriate actions to save lives and reduce losses. Strauss and
Allen 2016 have estimated that EEW could decrease the number of injuries during an
earthquake by more than 50%, and reduce millions of dollars in economic savings from fire
damage, semiconductor plant danger, and train collisions, with statistically three lives
rescued annually. The obvious benefits of the application have brought the attention of

researchers worldwide to develop and implement EEW systems.

The success of an EEW system is often measured by the accuracy and time of the delivered

alerts. Although the existing EEW algorithms can provide reliable and accurate information



in the final updates (unfortunately, sometimes come after the arrival of the strongest
shaking), the uncertainties in the earliest alerts could be largely due to the lack of available
ground motion data (Bose, Allen, et al. 2014). In principal, there is a trade-off between
accuracy and time: as more data is collected from the observation of the on-going
earthquake with the progress of time, the analysis can produce more accurate estimations.
However, warnings would be delayed if significant time was necessary for data collection.
The earliest alerts are the most critical outcomes of the system because the strongest
shaking is generally experienced near the earthquake hypocenter where the propagated
seismic waves arrive earliest. To overcome the challenge of latency and accurate
predictions, in this thesis we propose several methodologies to maximize warning time (for

earliest alerts) while guaranteeing a robust accuracy level of the messages.
The latency for warning times in EEW, Aty4¢ency, 1s defined as:

Atlai:ency = Atdata + Atest + Ati:rans [11]

where Aty,:, 18 the time necessary to collect sufficient ground motion stream data, At 1s
the time needed to estimate parameters about the earthquake (such as magnitude, location
or predicted ground motion), and At;..,s 1S the time required to transmit the alert
information to the community. Since At;,.q,¢ highly depends on the hardware device and
the allowable bandwidth of information transmission, it is out of the research scope for
seismologists. In fact, At;.,ns can be minimized to the order of fraction of seconds
because of the rapid advancement in electronic information flow. Relatively, At;,., and
At contribute to the majority of the latency concern. The time needed for data collection
and estimation might require seismic wave arrival at multiple stations before issuing the
first alert (Kuyuk and Allen 2014), and some could range from 3sec to over 10 sec
depending on the algorithm and station distribution (Wu and Kanamori 2005) (Satriano, et
al. 2011). In this study, I aim to shorten At,,, and At,g; through different techniques. To



minimize At;,:,, | propose to incorporate prior information data, so that additional data
can be collected simultaneously. As data from various independent sources are obtained in
parallel, required observations can be gathered with less time. Chapters 2 through 4 of the
thesis focus on the formulation and collection of prior information from earthquake
forecasting; and then apply the Bayesian probabilistic approach to combine the seismic
knowledge from different sources under an ensemble model to provide final predictions. To
reduce At,g, I present a data structure organization method, multidimensional binary

search (KD Tree) to efficiently query desired estimations in order in Chapter 5.

From hardware deployment to algorithm development, from decision making to public
education, EEW involves contributions among different scientific and engineering
communities. As an earthquake engineer, my goal is to reduce the damage brought by
disasters to the minimum through the efforts to develop intelligent algorithms. Only by
improving the accuracy and speed of the future alert, can the system reach its full potential

in performance.

1.2 Background on Earthquake Early Warning System (EEW)

1.2.1 EEW concept and development

With the development of information technology, Earthquake Early Warning (EEW)
systems are able to analyze ground motions in real-time and provide alerts before the onset
of the destructive wave at specific facilities. An earthquake nucleates at a point under the
surface of the earth, and excites many types of ground motion waves, including P-wave, S-
wave, and surface wave. The P-wave is the fastest wave with less destructive power, while
the S-wave and the surface wave are slower in traveling speed with substantially large
destructive power. EEW is based on the principle that the damaging earthquake ground

motions propagate slower than electronic information, so warnings can be successfully



delivered immediately after detecting the first earthquake signals at a seismic station. The
speed of the more damaging S-waves from earthquakes is about 3.5km/s, whereas
electrically transmitted signals from the seismic network sensors travel at about
3.0x10°km/s. As the seismic waves propagate, the seismometers observe more streams of
the real-time ground motion data. As a result, the real-time analysis of the earthquake
parameters becomes more precise. The characterized information on the event is then
delivered to the users of EEW. The warning time, as defined by the duration between the
EEW alert received by the user and the arrival of strong shaking at the user’s site, needs to
be sufficient to respond with appropriate actions. In general, the warning time increases as
the latency time decreases. In addition to the scientific effort to reduce the warning latency,
many inevitable geological factors that could dominate the latency include the distance
between the site and the hypocenter, depth of the earthquake source, and soil properties,

etc.

The application of EEW alerts can reduce hazard risks through public awareness,
automated decisions, and emergency responses. Public awareness increases the safety of
society, with the personal preparation of “drop, cover, and hold on” to avoid minor injuries
resulting from falling objects, especially in schools and public areas with a vulnerable and
dense population (Horiuchi 2009) (Fujinawa and Noda 2013). Automated decisions include
interrupting hazardous nuclear or chemical processes in manufacturing systems; this
prevents secondary or cascading unsafe failures to protect personnel (Wu, Beck and Heaton
2012) (Ionescu, et al. 2007) (Wu, Beck and Heaton 2013). Lastly, EEW alerts can provide
alerts to the rescuing groups for faster emergency response, including hospitals, police, and
fireman, etc. Simply by providing alerts in advance, various groups and government can
better facilitate resources and assign rescuing responsibilities, particularly during
aftershock sequences when telecommunication is unstable. Nevertheless, errors in the

system (including false alert and missed events) could potentially lead to serious



consequences in the societal adoption of EEW. It is critical for scientists and engineers to
collaborate in developing robust and reliable EEW systems that provide timely alerts with

guaranteed accuracy.

1.2.2 Overview of earthquake early warning systems around the world

Although the concept of earthquake early warning has been around for awhile (since
(Cooper 1868)), the implementation of the systems has been achieved only over the past
few decades with the development of necessary instruments, computational power, and
network communications. EEW systems have been in operation in several regions around
the world (Normile 2004). Figure 1.1 shows a seismic hazard map and countries where

EEW is in operation or being tested (Allen, Gasparini, et al. 2009).
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Figure 1.1 Seismic hazard map and countries where EEW is in
operation or being tested under development by May 2009 (Allen,
Gasparini, et al. 2009)



Japan has implemented one of the first applications of EEW. In the late 1960s, the Japan
Railway (JR) has started monitoring ground shaking by deploying seismometers near their
Bullet Train, also named as Shikansen, train tracks. The power of the Bullet Train is
automatically shut off if the ground shaking intensity achieves a threshold of 40 gals.
(Nakamura and Tucker 1988). The system was upgraded to the Urgent Earthquake
Detection and Alarm System (UrEDAS) in the 1980s. Additional seismometers are
deployed along the costal lines to provide more warning time for the trains (Nakamura
1984). The system worked well during the Niigata Chuestu earthquake in 2004, applying
brakes to the Bullet Train within 3 sec after the detection of p-wave arrival (Nakamura, et
al. 2006). Currently, the Japan Meteorological Agency is able to broadcast national wide
public warnings of on-going earthquakes by television, cellphone, and other means of

telecommunications (Doi 2003).

The Seismic Alert System (SAS) for Mexico City was established after the 1985 Michoaca
earthquake (J. Espinosa-Aranda, et al. 1995). The SAS was the first public warning system
in the world. Seismometers are deployed along the coastal line, located about 300km
southwest of Mexico City, to detect subduction earthquake. The system is effective because
the subduction zone is a few hundreds of kilometers away from Mexico City, so warnings
can be provided to the city about 60 sec prior to the arrival of the damaging seismic waves
(Lee and Espinosa-Aranda 2003) (J. Espinosa-Aranda, et al. 1996). Due to the high
population density and soft soil properties of Mexico City, the SAS system provides very

useful information for the departments in charge of emergency services.

Taiwan has an earthquake early warning system created by the Taiwan Central Weather
Burea (CWB) (Wu, Shin and Tsai 1998). The system takes the waveform information from
real-time seismometers, and determines EEW parameters, including the predominant

period (t.) and peak amplitude displacement in the initial 3 sec of the P-wave (P,), to



estimate the earthquake magnitude (Wu, et al. 2006). Studies have shown that the system
could provide 20 s of warning time to Taipei if the 1999 Chi-chi earthquake reoccurs (Wu
and Kanamori 2005).

The California Integrated Seismic Network (CISN) research group has developed the CISN
ShakeAlert System in California. The system combines estimations and uncertainties from
three independent algorithms, 7.-P; Onsite Algorithm, Virtual Seismologist, and Elarms,
and a Decision Module calculates the probability of earthquake source parameters:
magnitude and hypocenter location. A user display delivers the warning messages by
display the shaking information on a map in real-time. The current system is under
development in the beta-testing phase in California, and plans to deliver to the public in the
near future. With the collaborations of universities, government agencies, and private
sectors, the group is also planning to expand the demonstration system to the entire west

coast of the United States. Figure 1.2 shows the frame of ShakeAlert system.
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Figure 1.2 Framework of CISN ShakeAlert. The bold modules

with solid lines are the existing system that is currently running.
The dashed lines show components under development. (Bose,

Allen, et al. 2014)

EEW has been proven to be beneficial in both reducing causalities and minimizing
economic losses through many major earthquake events, especially during the M9 Japan
Tohoku earthquake in March 2011. An increase of interest in earthquake early warning has
been expressed around the world, particularly in seismic active regions. Southern Italy,
Istanbul, China, Chile, Bucharest, and many other countries are trying to develop

earthquake early warning systems to mitigate seismic damages.



1.2.3 Bayes’ Theorem for EEW

Bayesian Probabilistic approach to Earthquake Early Warning was first introduced in the

Virtual Seismologist method (Cua 2005). The application of Bayes’ theorem the

probability of source characterization at any given time of the on-going earthquake, is a

combination results from prior information and contributions from the available ground

motion observations. The main differentiation of the Bayesian approach from other EEW

algorithms is the exploitation of knowledge from previous experience or judgments that are

not generally incorporated in automated decision-making process. A flow chart of Bayesian

approach for EEW is shown in Figure 1.3. This methodology mimics the human ability to

process many types of information simultaneously, combining the analyzed results to make

a final decision at the end, and updating the decision over time as additional information is

collected.
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Figure 1.3 Flow Chart of Bayesian framework in EEW
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The inspiration of such a decision making process in earthquake early warning comes from
human beings’ judgments on weather. For example, if a person needs to decide on bringing
an umbrella outside, one would look at the weather forecast information and check if there
are water drops outside the window. During this process, the person’s brain is performing a
Bayesian calculation: the weather forecast information provides a prior information of how
probable the region is going to rain in general, and the actual observation water drop is a
likelihood collection of the rain probability. The goal of my thesis is to apply a similar
approach of this elegant concept to earthquake early warning, so information from multiple

heterogeneous sources can be processed in parallel to make fast and reliable decisions.

The prior information in earthquake early warning systems includes recent seismicity rates,
distribution of seismometer network, health status of the stations, and regional seismic
hazard risk, etc. For example, earthquakes tend to be active near geologic faults, so for
long-term predictions, the probability of earthquake occurrence is higher near the
recognized faults. Also, earthquakes tend to cluster in space and time, forming a foreshock-
mainshock-aftershock sequence, so recent seismic activities are good indications of near
future seismicity. In Chapter 2 of this thesis, I present a detailed formulation of an

earthquake forecasting model.

The general Bayes’ theorem for EEW can be expressed as a product of the prior probability
density function, P(A), multiplied by the likelihood probability density function, P(B|A),

and normalized by the evidence function, P(B), shown as the follows:

P(B|A)P(4) [1.2]

P(A|B) = P(B)

« P(B|A)P(A)
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where A is the parameter we are interested in estimate (in EEW, this includes signal
discrimination of earthquake source vs. noise source, regression estimation of source
parameters such as magnitude and hypocenter location, prediction of peak ground motion
intensities at users’ sites, etc.), and B is the given incoming observations (in EEW, this
includes on-going ground motion observation data, such as time-series data of waveforms,
GPS displacement, etc.). P(A|B) is the posterior probability density function, meaning the
probability of A given the observation data B. The evidence function P(B) is the
probability of the observation data that is independent of the estimating parameter A. This
term is normalization constant, which does not affect the estimation of the parameter A, so
the posterior function is proportional to the product of the likelihood function and the prior

function.

Depending on the prediction task, the Bayesian framework can be applied to different
estimating parameter and the predictive term A is replaced with the parameter of interest. In

the earthquake detection problem, Eq [1.2] becomes:
P(Y = EqIS(t) « P(S(t)|Y = Eq)P(Y = Eq) [1.3]

where Y = Eq is estimating the signal source being an earthquake event, and S(t) is the

avalaible ground motion observation at time ¢t.
Similarly, in estimating the hypocenter location, the Eq [1.2] becomes:

P(Lat,Lon|S(t)) « P(S(t)|Lat, Lon)P(Lat,Lon) [1.4]

where (Lat, Lon) is estimating the coordinate location of the earthquake source, and S(t)

is the avalaible ground motion observation at time t.
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Although the framework for different tasks is similar, the detailed constructions for the
predictive functions vary dramatically. In Chapter 3 and 4 of this thesis, I present detailed

approaches in answering both of the questions.

1.3 Research goal and Thesis plan

In order to construct an early warning system with faster initial alerts while maintaining the
accuracy of the predictive information, we introduce methodologies from the seismology
domain knowledge and computer science techniques to incorporate additional useful
predictive information and efficiently organize large seismic database, respectively. The

objectives of this thesis include:

- Reduce latency time for first early warning alert
- Improve accuracy of the earthquake parameter estimations

- Minimize process delays of large databases

This thesis is outlined as follows: Chapter 1 gives an overview of the research and
developments of earthquake early warning systems. Chapter 2 discusses earthquake
forecast models that could be incorporated into earthquake early warning. Chapters 3
through 4 provide applications of earthquake forecasting information to improve on the
performance of earthquake early warning predictions; Chapter 3 focuses on the rapid
earthquake detection algorithm, and Chapter 4 focuses on improvements of the hypocenter
location estimation. Chapter 5 presents a method to reduce process delays of big data
search for real-time seismology. Chapter 6 concludes the thesis with final remarks and

suggestions of future work.
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Chapter 2

Earthquake Forecasting Methods

2.1 Background on Foreshock-Mainshock-Aftershock Sequences

Many seismologists have observed the temporal and spatial clustering properties of
earthquakes (Kagan and Jackson 1991) (M. Bouchon, et al. 2013) (Gerstenberger, et al.
2005). This clustering pattern is often referred as foreshock — mainshock — aftershock
sequences. The term “aftershock™ is often defined as a series of smaller earthquakes
following a “mainshock”, which is an earthquake with larger magnitude. “Foreshock™ is
the smaller earthquakes that occurred prior to the mainshock in time. Of course, sometimes
the predefined mainshock could produce aftershocks for years and the aftershocks
produced may be larger than the mainshock (Lomnitz 1966), while other times, not all
premonitory events are observed prior to large earthquakes (Abercrombie and Mori 1996).
In addition, another type of seismic activity with location clustering pattern is the swarm

earthquake (Shearer 2012), which occurs repeatitively over time at the same location.

Over the years, scientists are still trying to find explanations for the occurrences of
earthquake sequences. While some researchers argue that triggering of near field
earthquakes is due to the sudden change of dynamic and static stresses (Gomberg, et al.
2001), others believe that aftershock sequences are driven by physical mechanisms such as
fluid flow, magnetic, or creep events (Hainzl and Ogata 2005) (Lohman and McGuire
2007). There are also theories that explain that foreshock occurrences are due to the

interplate or heterogeneity of the Earth’s crust (M. Bouchon, et al. 2013) (Mogi 1963).
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Although the science behind earthquake formulation is complex and controversial, most
scientists agree on the clustering properties of earthquake occurrences. No matter what the
true explanation is behind the science of earthquake sequences, one conclusion is
indisputable: the recent seismicity is a good indication of seismic activities of the near

future.

2.2 Earthquake Forecasting and Earthquake Early Warning

As proposed in the Bayesian approach to earthquake early warning system, prior
information can be incorporated to provide faster and more accurate warnings. Earthquake
early warning, earthquake forecasting, and seismic hazard maps all provide a forecast of
future earthquake occurrences, evaluated for different time frames. Figure 2.1 shows the

relative time frame for the three earthquake information products.

Earthquake Earthquake Earthquake
Early Warning forecasting hazard map

l DS
4 % N
. : - 1
| & N a

Time line

NOW  seconds minutes days months years decades

Figure 2.1 Time frame of various earthquake information products

Earthquake early warning, the focus of this thesis, provides earthquake information of the

next few seconds to minutes. Even though the “heads-up” time is short, the intention is to



15

make automated decisions and take immediate action to avoid losses from the disaster, as
shown in Chapter 1. The conventional concept of EEW is to send out warnings after
detecting an initial seismic wave, so the analysis sorely depends on the observation of the

on-going earthquake and not previously observed seismicity.

Earthquake forecasting tends to predict regional seismicity activities in the near future
based on the recent seismicity. In this model, the recent change in seismicity is the major
influence of model predictions. Scientists often use the forecasting models to predict
aftershock patterns of a particular seismic sequence. However, they can be applied for any
region or time of interest in general. This model is often created for the prediction range of

the next few hours to months.

Lastly, seismic hazard maps are intended to provide insight to the general public and
guidance in development. The input of this model is based on the long-term historical
seismic occurrence that has lasted for years. The information provided from hazard maps is
essential in creating and updating seismic designs provisions of building codes and
facilitate government on urban planning. In general, the seismic hazard maps forecast the

regional hazard level for the next few years to decades.

Up to now, the three earthquake information products provide independent information and
were created separately for different audiences. However, it is not difficult to make the
connections between them: the long-term predictions (forecasting and hazard maps) can be
useful inputs for the short-term predictions. As mentioned in Chapter 1, the forecasting
information can be applied as the prior information under the Bayesian framework, and the
waveform analysis serves as the likelihood function. For the conventional waveform
analysis of earthquake early warning, a minimum of time-series data is required to be
collected before any decisions are made (e.g. 3 sec for Onsite, (Bose, Hauksson, et al., A

Trigger Criterion for Improved Real-Time Performance of Onsite Earthquake Early
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Warning in Southern California 2009)), and this process is repeated for every earthquake
event. However, in the cases when we are expecting high seismicity, such as during
aftershock sequences or swarm earthquakes, it is unnecessary to redundantly wait until the
end of the data collection process to send out the alert because the new trigger is probably

due to another aftershock earthquake in the sequence.

In such cases, the alerts can arrive much faster to the users near the source to mitigate
potential dangers from the disaster. Table 2.1 shows the decision-making scenarios under
Bayesian inference, where immediate decisions can be made when consistent predictions
from waveform analysis and seismic forecast are observed. The earthquake forecasting
models can provide the expected seismicity information necessary in the early warning
system. Of course, the large earthquakes do not always occur when the expected seismicity

is high; waiting is still required to collect additional data in these cases.

High earthquake probability
from waveform analysis

Low earthquake probability
from waveform analysis

High earthquake probability
from seismic forecast

Send alert immediately

Wait for additional
waveform analysis

Low earthquake probability
from seismic forecast

Wait for additional
waveform analysis

No alert immediately

Table 2.1 EEW decision-making scenarios under Bayesian

framework
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Since EEW system aims to provide information to all earthquakes causing ground motions
that could be dangerous, alerts should be issued faster for all earthquakes during the entire
sequence including aftershocks, and not only emphasize the system performance during a
large magnitude mainshock. During aftershocks, the repetitive ground shaking
continuously deteriorates already weakened infrastructure components. Additional natural
disasters, such as landslides and tsunami, can also be triggered from aftershocks as a
consequence. The seismic damage can be even more significant if the aftershocks occur
close to a populated urban area. The benefits of a rapid and reliable EEW system during the
aftershocks of a large earthquake are equally (or more, in some cases) important than the
mainshock, as rescue and repair personals are continuously working in then already
damaged and fragile epicentral region (Bakun, et al. 1994). For example, over 200
aftershocks occurred after the single mainshock during the Northridge earthquake
sequence. There is also a chance that what seemed like a recent mainshock turns out to be
foreshock activity of another large event (Reasenberg and Jones, Earthquake Hazard After
a Mainshock in California 1989), like the 1992 M6.5 Big Bear Earthquake occurring three
hours after the M7.3 Landers Earthquake. If the prior information can assist in sending out
faster alerts for all the aftershock events, then system performance would be improved for

over 99% of all events.

2.3 General Epidemic-Type Aftershock Sequence (ETAS) model

Epidemic-Type Aftershock Sequence (ETAS) model simulates the entire sequences based
on statistical relationships of earthquakes (Vere-Hones 1966) (Y. Ogata 1988) (Kagan and
Knopoff 1981). The aftershocks are generated based on well-established empirical
stochastic models derived from seismicity observations. Most importantly, in addition to
the direct aftershocks produced by a mainshock, the generated aftershocks could produce

aftershocks of its own, forming an epidemic-type effect, which differentiates this approach
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from other aftershock simulation methods. These secondary aftershocks are true
observations in the real earthquake sequences (Felzer, Becker, et al. 2002). This statistical
method quantitatively describes the clustering property in earthquake sequence processes
and the generated earthquakes that have the probability of generating secondary
earthquakes. The construction of the model suggests that the distribution of aftershocks
follows the Omori’s Law in time (Utsu 1961), Gutenberg-Richter relationship in magnitude

(Gutenberg and Richter 1944) and mainshock-aftershock distance relationships.

Taking the ETAS simulation created by Felzer (K. Felzer, Stochastic ETAS aftershock
simulator 2007) as an example, the magnitude and location of the aftershocks are sampled
from the distributions, and the primary aftershocks are fed back into the model to produce
the secondary aftershocks; this process repeats. The generated aftershocks that match the
time period and region of interested are selected to create a report of aftershock catalog.
Every run of the simulation will produce different results due to the randomness of the
sampling procedure. The maximum likelihood estimation (MLE) of aftershock locations
can be calculated by running the simulation hundreds or thousands of times and taking the

average results of all the simulations.

The simulation results of the Northridge aftershock for a 24-hour period of January 18 -19,
1994 calculated by Felzer’s ETAS model, are as follows. Note here that each simulation
result produces different sequences, show in Figure 2.2. There is always a small probability
that a simulated aftershock is large enough that it initiates an unexpected sequence, so the

seismicity clusters are slightly different in every simulation.
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Figure 2.2 Four simulation results of the Northridge aftershock for
a 24-hour period of January 18 -19, 1994 calculated by Felzer
ETAS model

Figure 2.3 and Figure 2.4 are the average results of the Felzer ETAS model simulation after
50 and 500 runs, respectively. Although the average of 500 runs has more smoothing
boundaries showing transition of change in seismic rates due to the averaging effect, the
chance of producing outliers is much higher with more runs. Note here in the 500-run
scenario that the diagonal lines show that the aftershocks might trigger additional

seismicity on the fault lines that propagated outwards.
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We can run the simulation repetitively and then get an average result for the earthquake-
forecasting map. However, the computational delay introduced is not tolerable for real-time
seismicity application of Earthquake Early Warning system. For example, a 50-run takes
about 1 min on Matlab platform; the 500-run takes about 5 minutes. Started with the
fundamental concept of ETAS simulation by (K. Felzer, Stochastic ETAS aftershock
simulator 2007), I created an ETAS forecasting model that produces a MLE of earthquake
forecasting map with a single run of negligible computational delay time about a single
second. The real-time ETAS model can be incorporated into EEW upon the instantaneous

requirements.

2.4 Modified Epidemic-Type Aftershock Sequence (ETAS) model

The forecast earthquake probability calculated using an ETAS seismicity model is based on
the premise that the location of future earthquakes is significantly influenced by the
accumulation of previously observed earthquakes. The concept of the ETAS seismicity
model has been well established in the earthquake-forecasting field and the forecasting
results have been validated through many earthquake sequences (Y. Ogata 1998) (K. Felzer
2009). The future earthquake occurrence process is modeled as a nonhomogeneous Poisson
process in time; the probability of one or more earthquakes occurring above M,,;, at

location (lat, lon) within the time range At is:

t+At

probgras(lat,lon) =1 —exp j A(t, lat, lon)dt [2.1]
t
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where A(t, lat, lon) is the forecast rate of earthquake at current time ¢ and location (/at,
lon). Tt is composed of the long-term background seismicity p(lat, lon) and the short-term

observed seismicity.

A(t, lat, lon) = u(lat,lon) + Z A;(t, lat, lon) [2.2]
J

I model earthquake sequences following Omori’s Law in time (Utsu 1961), Gutenberg-
Richter's relationship in magnitude (Gutenberg and Richter 1944) and Felzer and Brodsky's
relation (Felzer and Brodsky 2006) in space. The short-term seismicity rate caused by each
of the historical earthquakes in the catalogue is first calculated as a function of a distance
from the hypocenter source, A;(t,r), and then mapped to latitude and longitude,
A;(t, lat, lon), using a numerical transformation based on the distance-to-location mapping
on the earth surface. The formulation for the seismicity rate by jth earthquake at the current

time t and distance r km is:

Ko 10“(Mj_Mmin)

(t -t + c)pr"
where K, = 0.008,a = 1,c = 0.095,p = 1.34,n = 1.37 are ETAS model parameters of
California obtained from (K. Felzer 2009) and lat;, lon;, M; are source parameters of the
jth earthquake from the observed seismicity catalog. M,,;, is the minimum magnitude of
the forecast earthquakes. In the application of this proposed method to EEW, I assume that
the EEW system has the access to the seismicity catalog record that continuously updates
with time. As time passes, all the newly occurred events should automatically concluded in

the catalog for the forecasting of future events.

In order to validate the accuracy of the ETAS predictions, Figure 2.5 to Figure 2.11 are

examples of the earthquake probability forecasting maps produced from the modified
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ETAS model and the true observation of seismicity for 1) Chino Hills earthquake sequence
on 29 July 2008, 2) Northridge earthquake sequence on 17 April 1994, 3) Cucapah El
Mayor Sequence on 9 April 2010, and 4) a seismic dormant region during 13 May 2015,
respectively. The forecasting results not only match the location estimations of various
seismic activation sequences, but also predict well during the seismic quiescence period.

The size of the red circle scale, with observed magnitude of the earthquake records.
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Figure 2.5 Modified ETAS forecast map for Chino Hills

earthquake sequence on 29 July 2008
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Sequence on 9 April 2010
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during 13 May 2015. The size of the red circle scale with

observed magnitude of the earthquake records.
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2.5 Summary

This chapter discusses the earthquake clustering properties in time and space, forming
foreshock-mainshock-aftershock sequences. Furthermore, I presented methods to forecast
near future earthquakes, especially the Epidemic-type Aftershock Sequence (ETAS) model.
ETAS model predicts future seismicity based on statistical models of aftershock
relationships. The seismic forecasting information brings significant insights to early
warning systems. Despite the size of the earthquakes, most of the seismicity activities we
observe are aftershocks of a sequence. Therefore, the previously observed earthquakes are
good indications of near future events. I implemented an ETAS forecast model that

provides real-time solution while maintaining the accuracy.

In the following two chapters I will present methodologies to apply the information
provided by the modified real-time ETAS model into Bayesian approach to EEW to

improve on the accuracy and speed of the earliest alerts.
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Chapter 3

3. ETAS Prior application one: Rapid Earthquake

Discrimination

3.1 Introduction

Due to the rapid advancement of digital seismic networks, Earthquake Early Warning
(EEW) systems are currently able to analyze the real-time ground motion information and
have the potential to provide warnings to potential users before strong shaking begins
(Heaton 1985) (Allen and Kanamori 2003). We desire these EEW systems to provide both
reliable and fast alerts, however, the goals of accuracy and speed are often in conflict with
each other. Since the arrival of the destructive S-wave follows closely after the arrival of
the P-wave in the epicentral region, processing delays must be minimized if we hope to

provide warnings of the potentially damaging S-waves near an earthquake’s epicenter.

A popular strategy for EEW is to identify the P-wave at a station and then warn of an
impending S-wave. Unfortunately, systems reliant on these short windows of data are also
commonly triggered by teleseisms and non-earthquake sources. The incorrect identification
of the earthquake signals in EEW may cause false alarms or large uncertainties in source
parameters. The negative impacts of the ‘cry-wolf” syndrome can be critical in the societal
adoption of EEW (Kuyuk et al., 2015), so speed may be sacrificed for improved accuracy
in current systems. The first task to perform promptly after observing a shaking at a

seismic station is to automatically make a decision on whether or not the shaking is caused
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by an earthquake source, and different criteria have been imposed to filter out the non-
earthquake triggers: the single-station Onsite algorithm collects and analyzes a fixed
window of 3s before declaring an event (Bose, Hauksson, et al., A Trigger Criterion for
Improved Real-Time Performance of Onsite Earthquake Early Warning in Southern
California 2009); network-based algorithms require a minimum number of triggered
stations for warning confirmation (e.g. Elarms-2 requires 4 stations for California (Kuyuk
and Allen 2014), and Presto requires 3-5 stations for Southern Italy (Satriano, et al. 2011)).
These methods can introduce a significant delay, especially in regions with low station

density.

In this chapter, three predictive models are presented to identify earthquake source signals.
First, a waveform analysis model uses a logistic regression method to predict the
probability of incoming signals being generated by earthquake or non-earthquake sources.
Then, two Bayesian models are presented that employ earthquake forecasting results (from
Chapter 2) in addition to the waveform analysis model. One model uses the peak ETAS
probability of the region as the Bayesian prior, and the other uses a derived earthquake

probability from the ETAS model and noise distribution as the Bayesian prior.

3.2 Method and Data

We firstly collected local earthquake and non-earthquake strong-motion waveform data to
train the model parameters in the waveform analysis. We also utilized earthquake catalog
information for the ETAS forecasting analysis. The proposed model is then validated
through different methods to demonstrate its reliability and robustness: 1) the performance
of the proposed model is evaluated at every 0.5 sec since the triggered time up to 3.0 sec to

estimate the speed-accuracy trade-off; 2) the leave-one-out cross validation test is
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performed to demonstrate the robustness of the model in future predictions; 3) the proposed
method is compared with the existing t.-P; method to assess speed and accuracy gains;
and 4) we demonstrate the application of the method in several test cases: an earthquake

mainshock, an aftershock, an ambient noise false trigger, and a teleseismic event.
3.2.1 Data

We collected three component strong-motion waveforms from local crustal earthquake and
non-earthquake records in the southern California region to train the prediction model to
identify earthquake signals. The non-earthquake records include ambient noise signals and
teleseismic events that were detected by STA-LTA-type triggering at single seismic
stations. All the strong-motion traces, 2,481 three-component records in total, are
downloaded from the Southern California Earthquake Data Center. The station trigger
times are provided by the Onsite algorithm (Kanamori 2005) (Y. Wu, et al. 2007) and are
calculated using the modified characteristic function developed by R. Allen, 1978.

An important goal of EEW is to identify earthquakes that cause a significant level of
ground shaking. Ground motion intensity depends on many factors including magnitude,
hypocenter distance, local site conditions, details of source radiation, and wave
propagation. We consider only records with observed Peak Ground Acceleration (PGA)
greater than 2cm/s® (equivalent to Modified Mercalli Intensities > II) in the seismic
network of Southern California during 2010 to 2015 (Wald, et al. 1999). With this
threshold, our database consists of a total of 1,128 earthquake records. Ground motions
with PGA less than 2cm/s® are not felt by humans and are unlikely to damage buildings
(Cheng, et al. 2014). Figure 3.1 shows the distribution of the MMI shaking intensities of
the earthquake records in our database. Mid- and large- size earthquakes contribute to a
significant fraction of the records, since larger magnitude events cause MMI II shaking to

greater distances. The data set includes records from the M7.2 El Mayor-Cucapah (4 April
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2010), the M5.4 La Habra (28 March 2014) and the M5.4 Borrego Springs (7 July 2010)
earthquakes. The majority of the records in the study created weak to light shaking.
Although these records are minor concerns for the purpose of large earthquakes or human
sensitivity, it is necessary to include them for a complete description of the statistical
population of observations of an EEW system, since low PGA values are more often
recorded due to the natural distribution of earthquake occurrence and ground motion
attenuation with distance. A better identification of the low PGA earthquake records

improves the overall performance of the earthquake detection.
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Figure 3.1 MMI shaking intensity distributions of the 1,128
earthquake records collected for the study



The data set of non-earthquake records consists of, 1000 noise and 353 teleseismic records.

The noise signals include calibration pulses, jumps in electric current, glitches induced by

machinery, ambient noise, etc. Since the total number of false triggers is on the scale of

millions per year, the noise records were uniformly sampled from the top 100 noisiest

stations in the CI network during 2015 (as observed by the Onsite algorithm STA-LTA

triggering) to capture the general characteristics of noise disturbances most likely to

mistakenly trigger the seismic network. The teleseism data set comprises records from 14

teleseismic events that triggered the Southern California seismic stations between 2008 and

2015. Table 3.1 shows the list of teleseismic events obtained in this study.

Time Region Latitude Longitude | Depth (km) | Magnitude

2008-02-21 | Nevada,USA 41.15 -114.87 6.7 6.0

2010-02-27 | Offshore Bio- | -35.9 -72.73 35 8.8
Bio, Chile

2010-08-18 | Mariana Islands | 12.2 141.51 10 6.3

2011-03-11 | Tohoku, Japan | 38.30 142.37 30 9.0

2012-04-12 | Gulf of | 28.79 -113.14 10.3 6.9
California

2012-08-14 | Sea of Okhotsk | 49.78 145.13 625.9 7.7

2012-12-14 | Offshore Baja | 31.09 -119.66 13 6.3
California

2013-02-06 | Solomon -10.80 165.114 24 8.0
Islands

2013-05-24 | Sea of Okhotsk | 54.89 153.22 598.1 8.3

2014-03-05 | Vanuate -14.42 169.54 648 6.3

2014-04-01 | Iquique, Chile -19.6 70.77 25 8.2

2014-06-23 | Raoul Island, | -29.98 177.73 20 6.9
New Zealand

2014-06-29 | New  Mexico, | 32.582 -109.17 6.4 53
USA

2014-06-29 | Samoa Islands -14.9 -175.4 10 6.5

2015-05-30 | Chichi-shima, 27.84 140.5 664 7.8
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Japan

Table 3.1 The teleseism events obtained in this study. Strong-

motion sensors in Southern California record all these events.

3.2.2 Data Processing and Feature Extraction

For each baseline-corrected record, the acceleration and velocity in the vertical and
horizontal directions are processed. The acceleration records are directly obtained after
removal of the trend and bias of the raw data; the velocity records are obtained by
integrating the acceleration data in the time domain, and then applying a fourth-order
causal Butterworth high pass filter with a corner frequency of 0.075Hz. This filter is
applied recursively in the time domain, so the processed time is negligible. The horizontal
records are calculated using the square root of the sum of the squares of the two horizontal

components.

We extract the peak values of each ground motion in every half-second window from 0.5s
to 3.0 sec after the triggered time for the training of model parameters. Figure 3.2 shows
the distribution of the extracted ground motion amplitude features for noise, teleseismic,
and earthquake data. We took the logarithm of the model features because the ground
motion amplitudes span several orders of magnitude (Bose, Heaton, and Hauksson 2012).
The distributions show clear differences between the earthquake and non-earthquake (noise
and teleseismic) groups, although there are overlaps between the group distributions. The
amplitudes of the high-frequency motions decay faster with distance (Hanks and McGuire
1981), so acceleration and velocity quantities are intuitively selected as indications of local
earthquakes. Displacement records are excluded in the feature selection because the double
integration required to obtain the displacement record from the acceleration data recorded
from the strong motion sensors can lead to waveform artifacts (significant long-period

trends are amplified during multiple integrations, DC shifts are obscured, etc.). Various
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sophisticated Bayesian model selection methods can be also applied to extract the useful

features; this is beyond the scope of this study.

These features of the ith record at the kth half-second time window after the triggered time

are combined into a vector
Xix = [1, loglo(Zai'k), loglO(Hai,k),loglo(Zvi'k), loglO(Hvi,k)] , where H and Z
denote horizontal and vertical component, and A and V denote acceleration and velocity,
respectively. We also label ith record Yi =1 or Yi = —1 for earthquake and non-
earthquake records, respectively. Note both noise and teleseismic records are considered as

non-earthquake records.

Ground Motion Amplitude Distributions
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Figure 3.2 Maximum ground motion amplitude distributions

collected for every half-second window within the initial 3.0s

after the trigger time of all 2,481 three-component records used

for this study. The labeled earthquake data are earthquake records

with PGA greater than 2cm/s%; noise data are false triggers
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including calibration pulses, jumps in electric current, glitches
induced by machinery, and ambient noise; the teleseism data
include 353 records from 14 teleseismic events. The lines are the
fitted Gaussian distributions to earthquake (solid), noise (dash)
and teleseism (dot dash) data. The notations are A=acceleration,

V=velocity, Z=vertical, H=horizontal.

3.3 Waveform Analysis

In waveform analysis, the goal is to predict the probability of the observed signal being
caused by an earthquake source given only the available waveform information,
prob(Yi|Xl-_t1:tn). We defined the classification result for station i as ¥; =1 as an
earthquake record and Y; = —1 as a non-earthquake record. X; . .. is the waveform input

of station i recorded during time t;to t,. In general, t;is the p-wave arrival time at the

station; this is when the model starts to record the ground motion data for the predictions.

By assuming that the observed data X;. . follows an independent and identically

distributed random variable, the Bayesian equation can be written as:

n

prob(Y; = 1|X;; ... ) & Hprob(Yi = 11X, [3.1]
k=1
A standard approach in binary classification is to define the predictive probability applying
the logistic sigmoid function ¢(t) = 1/(1 + e~*) to a linear function t = f(x) (Yamada,
Heaton and Beck 2007). The sigmoid function is a real-valued, differentiable, non-
negative, and monotonically increasing function. Since the sigmoid function transforms
linear inputs to a nonlinear output that is bounded between 0 and 1, it can be
mathematically interpreted as probability. The predictive probability as a function of the

observed ground-motion amplitudes is constructed using the sigmoid function:
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1

prob(Y; = 11X;,,) = ¢(X;) = 3.2]

1+ e_f(xi'tk)

where

m
f(Xie,) = CoXiog, + CiXing, + -+ CnXime, = Z 0;Xije, =0 X[p, [3.3]
j=0

Xijt, 1s the jth measurement of log of the ground motion during the kth half-second time
window after triggered time at the ith station, m is the total number of measurements, and
0; is the jth model parameter. Let X;; = [xlo,tk'xil,tk'xiz,tk' ...,xim'tk], and 0 =
|C) €1y v r Cm|. The model parameters are determined from the training data set described
earlier. In our study, we focus on four measurements of ground motion: vertical
acceleration, horizontal acceleration, vertical velocity, and horizontal velocity. The best

combination of features is chosen for X; ;, are based on the performance of model selection,

details in the following section. According to this convention, as f (X i'tk) deviates further
from 0 in the positive direction; the signal is more likely to be cause by an EEW-relevant
earthquake source. The predicted probability of Eq[3.2] approaches one indicates that the
event is very likely to be caused by an earthquake source; it also implies that the probability
of detecting a non-earthquake source approaches zero, and vice versa in the opposite

direction as f (X;) deviates from 0 to the negative direction.

Figure 3.3 shows an example of the chosen input features in the vertical acceleration at
every half-second (red circle), where predictions are delivered at every half-second interval
during the first 3 seconds. The predictions are updated based on the newly arrived

waveform information
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3.3.1 Determination of the Model Parameters

Although the framework of the model is determined, the appropriate model parameters 6 in
the predictive formula from Eq[3.3] need to be specified to be useful to make predictions.
To focus attention on the parameters of the likelihood function, we apply the Maximum
Likelihood Estimation (MLE) method to determine the coefficients of the logistic
regression that classifies earthquake and non-earthquake data. Classification methods such
as Fisher’s linear discriminant analysis (LDA) and the Least Squares estimates are
alternative approaches to obtain the model coefficients. However, unlike the MLE method,
these classification models do not provide a probabilistic interpretation to its predictive

classes, which makes it challenging to measure the degree of uncertainties.

The MLE method can be interpreted as searching for an estimation of 6 that best fit of the

training data we collected. Assuming that all D;;, are sampled independently and identically
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from the distribution, the optimal model parameters # conditioned on the data D,,, =

{(Xi,tk, Yi,tk): i=1.mk=1 n} can be expressed as:

m

n
6 = argmax prob(D,,,|0) = argmax 1_[ Hprob(DikW) [3.4]

i=1 k=1
where

1

rob(D;|0) =
p ( lkl ) 1+e—Yif(Xi’tk|9)

[3.5]

where m = 2481 is the total number of waveform records in the training, including
earthquake, noise, and teleseism; n = 6 is the number of half-second windows in the

initial 3.0 sec after triggered time.
3.3.2 Model Selection

Applying the MLE method, we determined the model parameter coefficients for all 15
combinations of the four ground motion features using the training dataset. Table 3.2
demonstrates the model parameters and performance of all the candidate models. We focus

on two performance measures for the model selection given the following definitions:

e True Positives (TP): true predicted earthquake data

e True Negatives (TN): true predicted non-earthquake data

e False Positives (FP): false predicted earthquake data, also referred to as false
alerts

e False Negatives (FN): false predicted non-earthquake data, also referred to as

missed events

First, we emphasize the initial precision rate of the predictions, defined as:
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Precision (%) = — [3.6]
recision (1) —TP+FP .

at 0.5 sec after the trigger. A higher precision rate indicates a lower false alerts rate. This
avoids modifications or cancelations of events that could potentially confuse the system

and users. Secondly, we evaluate the final accuracy rate, defined as:

| oy TPETN 37
CoUracy t) = rp TN + FP + FN '

at the end of 3.0 sec. This measure is the representation of the final and overall
performance of the predictions after all the prediction updates. As indicated in Table 3.2,
model 1 satisfies both of the requirements, which demonstrates constancy in the highest

accuracy and precision in both initial and final predictions.

Model Model Parameters Initial Prediction - 0.5 s | Final Prediction — 3.0 s

after TT after TT
Co logio(Za) logo(Ha) logio(Zv) logio(Hv) Accuracy Precision Accuracy Precision

(%) (%) (%) (%)

1 6.884 4.8665 -2.2965 0.2497 2.5895 89.24 90.88 97.70 96.85

2 8.0876 - 1.8542 3.3586 -0.086 87.26 90.28 97.38 96.34

3 6.7442 2.7436 - 1.6677 0.9254 88.27 89.74 97.46 96.34

4 10.183 - - 3.1113 1.645 88.19 91.30 96.37 94.51

5 6.7889 5.0952 -2.4736 - 2.7924 89.24 90.73 97.70 96.85

6 7.1637 - 1.8846 - 2.6002 80.94 86.43 96.01 93.94

7 5.4392 3.516 - - 1.7861 86.38 87.76 97.26 95.85

8 9.3083 - - - 4.1202 82.22 89.08 95.41 93.33

9 5.9532 3.1927 -0.2574 2.2888 - 88.03 88.58 97.30 96.33

10 8.1628 - 1.8177 3.3123 - 87.22 90.19 97.42 96.42

11 6.0643 2.9228 - 2.3139 - 88.07 88.73 97.26 96.17

12 9.1132 - - 4.4027 - 87.71 88.57 95.49 93.27

13 1.7111 5.3014 -0.3945 - - 85.33 84.85 96.49 95.38

14 2.3296 - 3.7818 - - 76.99 79.85 93.23 91.59

15 1.8063 4.9229 - - - 86.17 85.12 96.41 95.06

Table 3.2 Coefficient parameters calculated using the MLE
method, as well as accuracy and precision measures for all

candidate models.

The model chosen for Eq [3.2] is:
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1
prob(Y; = 11X, ) = ¢(X;) = [3.8]
1+ e/ Xiee)
where
f(Xir,) = 6.884 + 4.8665 * log10(Za) — 2.2965 * log10(Ha) + 0.2497 3.9

* log10(Zv) + 2.5895 log10(Hv)

3.3.4 Model Performance

Through the model selection process, we chose model 1, by the combining of all 4 features,
based on the performance measures. In order to demonstrate the time-accuracy of the
model we performed, we evaluate the likelihood and posterior predictions at every time
increments (0.5s window collected ended at 0.5s, 1.0s, 1.5s, 2.0s, 2.5s, 3.0s after the pick

time at the station) on the entire dataset.

Available Data | Predicted class True Classes Precision Accuracy
Earthquake Non-Earthquake

0.5s Earthquake 957 96 90.9% 89.2%
Non-Earthquake | 171 1257

1.0s Earthquake 1035 61 95.9% 93.7%
Non-Earthquake | 93 1292

1.5s Earthquake 1070 46 95.9% 95.8%
Non-Earthquake | 58 1307

2.0s Earthquake 1094 41 96.4% 96.9%
Non-Earthquake | 34 1312

2.5s Earthquake 1105 40 96.5% 97.4%
Non-Earthquake | 23 1313

3.0s Earthquake 1107 36 96.8% 97.7%
Non-Earthquake | 21 1317

Table 3.3 Waveform Analysis mode performance at time
increments: 0.5s, 1.0s, 1.5s, 2.0s, 2.5s, 3.0s after the triggered

time at the station
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Table 3.3 shows the confusion matrix for the classification of earthquake versus non-
earthquake records based waveform analysis. The decision boundary is set at 50%, and
infers if the data is classified as an earthquake event if the predictive probability reaches
above 50%; otherwise it is classified as a non-earthquake event. A summary of the results

will be presented at a later section for comparison.

3.4 Bayesian Approach

(Cua 2005) and (Cua and Heaton, The Virtual Seismologist (VS) method: A Bayesian
approach to earthquake early warning 2007) proposed that EEW could be made faster and
more reliable by employing prior information in a Bayesian framework to estimate likely
data interpretations. They suggested that seismicity information could be involved. In this
paper, we show how this can be accomplished in the existing system. We propose a
Bayesian probabilistic approach to rapidly identify earthquake source signals as quickly as
0.5 sec after the detection of a P-wave at a single station, and update the results every 0.5
sec up to 3.0 sec. This method analyzes both the waveform and the seismicity forecast
information in parallel, and then combines the probabilistic results through a Bayesian
framework. The idea is simple: triggers at a seismic station are more likely to have been
caused by local earthquakes when 1) strong tremors are observed in the high frequency
components of the ground motion and 2) recent seismic activities have been recorded in the

proximity of the station.

Most existing earthquake detection algorithms focus only on waveform information, as
explained in Chapter 3.3; that is, what is the likelihood an earthquake would produce the
real-time waveform just recorded? However, the short time window for data collection in

rapid earthquake signal identification can lead to high uncertainties. Also, such waveform
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analysis ignores the fact that seismic risks vary consistently with time and location. Adding
the seismic forecast information distinguishes the proposed method from any other current
EEW detection/classification algorithm. As shown in Chapter 2.1, many studies have
shown that seismic activity clusters in time and space, such as foreshock-mainshock-

aftershock sequences and swarms earthquakes.

We apply a real-time Epidemic-Type Aftershock Sequences (ETAS) statistical model to
forecast near-future seismicity rate as a function of location. This forecast is based on the
spatial and temporal clustering properties of the recent earthquakes. For large earthquakes
in California, roughly 40% of mainshocks have recorded foreshocks (Abercrombie and
Mori 1996), and the forecast results demonstrate promising performance during seismicity
sequences, such as all aftershocks and mainshocks following foreshocks. In these cases, the
earthquake detection algorithm becomes extremely fast. Of course, not all strong
earthquakes are preceded by foreshocks. For the cases without foreshock activity, the
ETAS prior is non-informative on the solution due to the probabilistic formulation; the
system proceeds just the way it does without any prior information. As sufficient waveform
information is available with time, the posterior prediction is dominated by the observation.
Combining the heterogeneous data sources using a Bayesian framework thereby improves

rapidity and reduces uncertainty to detect of earthquake sources.

Using Bayesian framework, the algorithm aims to provide the probability that a station has
been triggered by EEW-relevant earthquake source. Given the observed ground motion at
ith station immediately following detecting an event, the Bayes’ theorem can be expressed

as:

prob(Yi = 1|Xi,t1:tn) x prob(Xi,tl:tn|Yi = 1)pr0b(Yi =1) [3.10]
where Y; is the classification result at ith station, X; t1.tn, = [Xi¢,, -, Xit, ] is @ vector of the

logs of the maximum ground-motion amplitudes observed at ith station from time t; to t,
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after the triggered time, the detailed definition is explained in the 3.2.1 Data section. The
posterior probability, prob(Yi = 1|X;, 1:tn)’ is the predictive probability of the observed
signal being caused by an earthquake source given the available ground motions. The
likelihood function, prob(Xi'tlzthi = 1), describes the predictive probability that the
trigger at the ith station is due to an earthquake source based on the characteristic similarity
of the historical data, also referred to as the training set. The prior information, prob(Y; =
1), describes the relative probability in earthquake occurrence that may be helpful to

identify EEW-relevant earthquake triggers.

By assuming that the observed data X; .. follows independent and identically distributed

random variable, the Bayesian equation can be written as:

n
prob(¥Y, = 1Xpsen) | | prob(X,el¥; = 1)prob(¥ = 1 (3.11]

k=1

3.4.1 Bayesian approach with a Simple Prior
Likelihood Function

The definition of the likelihood function is given the signal source (e.g.Y; =1 as
earthquake source or Y; = —1 as non-earthquake source), that is the probability of
recording the available waveform information prob(Xi,tk|Yi). In other words, the
predictions are made sorely based on the observed ground motions from the waveforms,

and the waveform analysis model trained in the previous section can be directly applied.

The likelihood function is described as:
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1
prob(X;. |V; = 1) = ¢(X;) = 3.12]
1+ e_f(xi'tk)
where
f(Xir,) = 6.884 + 4.8665 * log10(Za) — 2.2965 * log10(Ha) + 0.2497 3.3

* log10(Zv) + 2.5895 log10(Hv)

Prior Information

Prior information represents a hypothesis statement regarding to our best knowledge about
earthquake identification before examining the waveform data from the on-going rupture.
The Bayesian prior, prob(Y; = 1), provides a relative probability of earthquake occurrence
observed in the vicinity of the station. A uniform prior implies that any station in the
network is equally likely to observe an earthquake signal versus a noise signal at any given
time. The assumption of a uniform prior simplifies the calculation, but it is an overly biased
representation of the seismic state. For example, large earthquakes are typically followed
by aftershocks in the immediate spatial and temporal vicinity; as a result of the sudden
increase of seismic activity during an aftershock sequence, the chance of having triggered

signal due to earthquake is much higher than a triggered signal from noise.

The short-term earthquake forecast model aims to quantify the probability of earthquake
occurrence. We define the Bayesian prior information as the maximum probability of the

ETAS forecast model in the surrounding region of the triggered station:

prob(Y; = 1) = maxprobgr,s(lat,lon)
[3.14]
with |lat — lat;| < 0.5, |lon — lon;| £ 0.5
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probgras(lat,lon) is the earthquake probability resulted from an ETAS seismicity
forecast model and (lat;, lon;) is the location of the triggered station. With the assumption
that earthquake source should be in the proximity of the earliest triggered stations, Eq[3.14]
constrains the maximum forecast earthquake probability within the 0.5degree proximity
(approx. 50km) of the station. Since observed seismicity activities tend to correlate highly
with the results from the forecasting models, the Bayesian prior uses the ETAS probability
as an indication of possible earthquake occurrence. A trigger at the i™ seismic station is
more likely to be created by an earthquake source when the ETAS forecast earthquake
probability is large; this occurs during seismically active periods such as during an
aftershock sequence. The method to calculate ETAS probability is presented in Chapter
2.3.

3.4.1.1 Model Performance

In order to demonstrate the time-accuracy of the Bayesian model, we compare the
likelihood and posterior predictions at every time increments (0.5s window collected ended
at 0.5s, 1.0s, 1.5s, 2.0s, 2.5s, 3.0s after the pick time at the station) on the entire dataset.
The likelihood prediction is the results from waveform analysis model presented in Chapter
3.3 and the posterior prediction is the result from the Bayesian model described in the

previous section.

Table 3.4 shows the confusion matrix for the classification of earthquake versus non-
earthquake records based on the Bayesian approach under likelihood function and posterior
function. The decision boundary is set at 50%, which is if the data is classified as an
earthquake event if the predictive probability reaches above 50%; otherwise it is classified
as a non-earthquake event. For the 0.5 sec analysis, the number of predicted earthquakes is

reduced from 1053 (957 TP and 96 FP) in the likelihood prediction to 738 (727 TP and 11



47

FP) in the posterior probability, because the posterior function is more conservative in
making predictions as it evaluates both the waveform and the prior seismicity information.
As a result, the false alarm rate at the earliest prediction of 0.5 sec is significantly reduced
in posterior prediction from 96 to 11. The seismicity prior model catches the dynamic
change in the spatial-temporal clustering phenomenon in seismicity occurrences. For the
same type of signals, the model tends to provide relatively higher probability results during
a seismically active period, and predict a lower probability during seismically dormant
period. For example, during a seismically active period such as an aftershock sequence, the
relatively higher probability in prediction allows a quicker convergence to earthquake
prediction for earlier alert delivery. On the other hand, when no seismic activity have been
observed in the recent past, the system would take more time to identify the event to
guarantee the level of accuracy in the prediction. As time progresses to 3.0sec, the posterior
prediction also shows a decrease in the missed events, because the likelihood prediction

dominates the solution as more available waveform data is collected.

Available | Predicted True Classes Precision Accuracy
Data class
Likelihood prob (X;|Y;) Posterior prob(Y;|X;) Likelihood | Posterior | Likelihood | Posterior
Earthquake | Non- Earthquake | Non-
Earthquake Earthquake

0.5s Earthquake 957 96 727 11 90.9% 98.5% 89.2% 83.4%
Non- 171 1257 401 1342
Earthquake

1.0s Earthquake 1035 61 939 14 95.9% 98.5% 93.7% 91.8%
Non- 93 1292 189 1339
Earthquake

1.5s Earthquake 1070 46 1010 18 95.9% 98.2% 95.8% 94.5%
Non- 58 1307 118 1335
Earthquake

2.0s Earthquake 1094 41 1049 23 96.4% 97.8% 96.9% 95.8%
Non- 34 1312 79 1330
Earthquake

2.5s Earthquake 1105 40 1076 25 96.5% 97.7% 97.4% 96.9%
Non- 23 1313 52 1328
Earthquake

3.0s Earthquake 1107 36 1089 27 96.8% 97.5% 97.7% 97.3%
Non- 21 1317 39 1326
Earthquake
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Table 3.4 Model performance of the Bayesain model with a
simple prior at time increments: 0.5s, 1.0s, 1.5s, 2.0s, 2.5s, 3.0s

after the triggered time at the station

The objective of likelihood function is to minimize the loss function of the sum of missed
and false alerts by analyzing the incoming waveform. However, the goal of the Bayesian
posterior prediction prioritizes the minimization of false alerts since false alerts could
confuse the decision making process of the entire seismic network while the initial missed
alerts can be successfully identified (including with alternative existing algorithms) with
more time and data. Similarly in Chapter 3.3.2 model selection, we focus on the precision
and accuracy measures. Also shown in Table 3.4, the posterior prediction consistently
provided a high precision rate, meaning low false alarm rate in the predictions. Although
adjusting the decision boundary could reduce false alarms, it would be subjective as to how
to adjust the value to achieve optimized results. The Bayesian approach is able to reduce
the number of false alarms with the additional prior information. The initial accuracy is
lower in posterior prediction than likelihood prediction because the initial high uncertainty
in some of the earthquake records requires more time for discrimination; after the final

update in the predictions, the accuracy rate at 3.0 s reaches to 97.3%.

The Likelihood prediction uses peak amplitudes recorded from the waveforms; the
posterior prediction combines the Likelihood probability with ETAS forecast probability.
The posterior probability shows 1) consistent high precision percentage-an indication of
low false alarm rate, and 2) high final accuracy percentage-an indication of low missed

alarm rate.

As shown in Figure 3.4, the predicted probability for all PGA ranges increases with time
because as more data become available the uncertainties in the prediction are reduced.

Also, the records with larger PGA range are predicted with a higher probability at an earlier
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time. This indicates that the discriminant function performs well for the large events. To
optimize the speed-reliability trade-off, we would recommend utilizing the classification

starting at 0.5s after the trigger.

1 i - T

i . 50cm/s?
09T e 30-50cm/s? ™=
10-30cmv/s?
0.8 —10cm/s?

o
3

0.6

posterior probability
o
[¢,]

O 1 1 1 1
0.5 1 1.5 2 25 3

time after Trigger (s)

Figure 3.4 Average posterior prediction probabilities for

earthquake records with various PGA range
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3.4.2 Bayesian approach with a Modified Prior

How to appropriately define the prior information in a Bayesian framework has been a
challenging issue. Although using the maximum ETAS probability has significantly
improved the initial precision of the predictions (that is the false alarm rate from the rapid
predictions is low, and thus reliability of early alerts is improved), it is a tuning parameter
that I have chosen based on the empirical analysis. I started to formulate a new prior

information function from the fundamental.

Under Bayesian framework, the prior information in this particular question of identifying
earthquake signals is expressed as prob(Y; = 1). Based on the observed triggering
information at the seismometer stations, the probability that a trigger is due to an
earthquake should be the fraction of expected earthquake trigger out of the total number of
the expected triggers observed at the station (including earthquake and non-earthquake
triggers), the equation can be formulated as:

A
prob(Y; =1) = =

Agq t Anonkq [3.15]

where Ag, is the expected rate of earthquake triggers and A,,ongq is the expected rate of

non-earthquake triggers.

In general, the prior information is defined as the knowledge collected before seeing any of
the observation data. However, in the problem of EEW, the predictive model is activated
only if a trigger has been observed at a seismometer station. A trigger is detected when the
ratio of short-term average to long-term average (STA-LTA) of the real-time incoming
waveforms has exceeded a threshold. Quantitatively, this implies that sudden ground

shaking amplitude, X;, must be higher than the ambient noise level in the ground shaking or
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an amplitude threshold (amp). With the triggering amplitude information, we can further
express Eq[3.15] as follows:

Eq> amp

+ A

prob(Y; = 1) = prob(Y; = 1|X; > amp) = [3.16]

AEq> amp NonEqs amp

Aggs amp is the expected rate of earthquake triggers that can create an amplitude greater
than the observed value; A,onpq. amp is the expected number of non-earthquake triggers

that can create an amplitude greater than the observed value.

First, let’s focus on the calculation of 1,54, amp

Anonzas amy = PTOD(AMPronzq > AMP obs) * Anonsg

[3.17]
where prob(ampnonEq > ampobs) is the percentage or fraction of recording non-
earthquake ground motion amplitudes greater or more extreme than the observed ground
motion amplitude, and A,ongq i the expected total rate of non-earthquake triggers. As
observed in the waveform amplitude information, the vertical velocity waveform amplitude
is chosen for the ground motion amplitude here because the initial p-wave motion is more
evidently shown in the vertical channel, and velocity waveform is often used for STA-LTA
triggers for stability. A,,ngq can be approximated by the average non-earthquake
triggering rate observed at the station. Assuming that ambient noise, traffic, and regular
surrounding activities, cause most of the non-earthquake triggers, the rate of non-
earthquake triggers should be relatively stable per geographical locations. For example, one
can keep track of station specific triggers over one month or six months period of time, and
use the daily false triggers as the A,,ngq . The station specific parameter is particularly

important because the number of triggers varies significantly across the seismic network.
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For instance, stations in the urban area, such as Downtown Los Angeles, could observe
over 100 triggers daily, whereas stations in suburbs, such as near the Mojave Desert,
sometimes observe less than a single trigger annually. Information on how likely a trigger
is due to noise can directly be obtained from the location of the stations. Since it is
challenging to obtain records of the number of false triggers with the current EEW system,
I chose an estimation of A,,,5; = 10 per day across all the stations in the network for
simplicity. For future investigation, it is important to keep track of station specific

information for the entire seismic network.

To calculate 'prob(ampnonEq > ampobs), the distribution of the noise amplitude needs to
be statistically analyzed using p-value concept. Figure 3.5 is a histogram of the vertical
log(PGV) at the 0.5 sec after trigger from the 1000 noise data randomly sampled from 100
most noisiest stations across the net