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ABSTRACT 

Existing Earthquake Early Warning (EEW) algorithms use waveform analysis for 

earthquake detections, estimation of source parameters (i.e., magnitude and hypocenter 

location), and prediction of peak ground motions at sites near the source. The latency of 

warning delivery due to data collection significantly restricts the usefulness of the system, 

especially for users in the vicinity of the earthquake source, as the warning may not arrive 

before the strong shaking. This presentation discusses several methods to reduce the 

warning latency, while maintaining reliability and robustness, so that the warning time can 

be maximized for users to take appropriate actions to reduce causalities and economic 

losses. 

Firstly, we incorporated the seismicity forecast information from Epidemic-Type 

Aftershock Sequence (ETAS) model into EEW as prior information, under the Bayesian 

probabilistic inference framework. Similar to human’s decision-making process, the 

Bayesian approach updates the probability of the estimations as more information becomes 

available. This allows us to reduce the required time for reliable earthquake signal detection 

from at least 3 seconds to 0.5 second. Furthermore, the initial error of hypocenter location 

estimation is reduced by 58%. The performance of the algorithm is further improved during 

aftershock sequences and swarm earthquakes.  

Secondly, we introduce the use of multidimensional (KD tree) data structure to organize 

seismic database, so that the querying time can be reduced for the nearest neighbor search 

during earthquake source parameter estimation. The processing time of KD tree is 

approximately 15% of the processing time of linear exhaustive search, which allows the 

potential use of large seismic databases in real-time. 
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EEW is an interdisciplinary subject that involves collaboration among different scientific 

and engineering communities. Only by optimizing the warning time, such a unified system 

could be successful in taking protective actions before, during, and after earthquake natural 

disasters. 
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C h a p t e r  1  

Introduction 

1.1 Motivation 

An earthquake is a natural disaster that develops over a very short time frame; the time 

interval between the initial of rupture to the end of damaging ground motion arriving at a 

site could be from the order of seconds to a minute. However, the aftermath damage that an 

earthquake brings could be permanent and significant. Scientists, the government and the 

private sector have put in tons of effort in mitigating earthquake losses. Although 

earthquake prediction is a challenging task, the development of Earthquake Early Warning 

(EEW) systems has progressed rapidly over the past few decades (Allen, Gasparini, et al. 

2009).  

The advancement of Earthquake Early Warning systems has been driven by the growth of 

information technology and the increase of awareness of seismic hazard.  The goal of 

Earthquake Early Warning is to provide alerts to the community about the incoming 

ground shaking and take appropriate actions to save lives and reduce losses. Strauss and 

Allen 2016 have estimated that EEW could decrease the number of injuries during an 

earthquake by more than 50%, and reduce millions of dollars in economic savings from fire 

damage, semiconductor plant danger, and train collisions, with statistically three lives 

rescued annually. The obvious benefits of the application have brought the attention of 

researchers worldwide to develop and implement EEW systems. 

The success of an EEW system is often measured by the accuracy and time of the delivered 

alerts. Although the existing EEW algorithms can provide reliable and accurate information 
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in the final updates (unfortunately, sometimes come after the arrival of the strongest 

shaking), the uncertainties in the earliest alerts could be largely due to the lack of available 

ground motion data (Bose, Allen, et al. 2014). In principal, there is a trade-off between 

accuracy and time: as more data is collected from the observation of the on-going 

earthquake with the progress of time, the analysis can produce more accurate estimations. 

However, warnings would be delayed if significant time was necessary for data collection. 

The earliest alerts are the most critical outcomes of the system because the strongest 

shaking is generally experienced near the earthquake hypocenter where the propagated 

seismic waves arrive earliest. To overcome the challenge of latency and accurate 

predictions, in this thesis we propose several methodologies to maximize warning time (for 

earliest alerts) while guaranteeing a robust accuracy level of the messages.   

The latency for warning times in EEW, ∆𝑡!"#$%&', is defined as: 

 ∆𝑡!"#$%&' = ∆𝑡!"#" + ∆𝑡!"# + ∆𝑡!"#$% [1.1] 

where ∆𝑡!"#" is the time necessary to collect sufficient ground motion stream data, ∆𝑡!"#is 

the time needed to estimate parameters about the earthquake (such as magnitude, location 

or predicted ground motion), and ∆𝑡!"#$% is the time required to transmit the alert 

information to the community. Since ∆𝑡!"#$% highly depends on the hardware device and 

the allowable bandwidth of information transmission, it is out of the research scope for 

seismologists.  In fact, ∆𝑡!"#$% can be minimized to the order of fraction of seconds 

because of the rapid advancement in electronic information flow. Relatively, ∆𝑡!"#" and 

∆𝑡!"# contribute to the majority of the latency concern. The time needed for data collection 

and estimation might require seismic wave arrival at multiple stations before issuing the 

first alert (Kuyuk and Allen 2014), and some could range from 3sec to over 10 sec 

depending on the algorithm and station distribution (Wu and Kanamori 2005) (Satriano, et 

al. 2011). In this study, I aim to shorten ∆𝑡!"#" and ∆𝑡!"# through different techniques. To 
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minimize ∆𝑡!"#", I propose to incorporate prior information data, so that additional data 

can be collected simultaneously. As data from various independent sources are obtained in 

parallel, required observations can be gathered with less time. Chapters 2 through 4 of the 

thesis focus on the formulation and collection of prior information from earthquake 

forecasting; and then apply the Bayesian probabilistic approach to combine the seismic 

knowledge from different sources under an ensemble model to provide final predictions. To 

reduce ∆𝑡!"#, I present a data structure organization method, multidimensional binary 

search (KD Tree) to efficiently query desired estimations in order in Chapter 5. 

From hardware deployment to algorithm development, from decision making to public 

education, EEW involves contributions among different scientific and engineering 

communities. As an earthquake engineer, my goal is to reduce the damage brought by 

disasters to the minimum through the efforts to develop intelligent algorithms. Only by 

improving the accuracy and speed of the future alert, can the system reach its full potential 

in performance.  

1.2 Background on Earthquake Early Warning System (EEW) 

1.2.1 EEW concept and development 

With the development of information technology, Earthquake Early Warning (EEW) 

systems are able to analyze ground motions in real-time and provide alerts before the onset 

of the destructive wave at specific facilities. An earthquake nucleates at a point under the 

surface of the earth, and excites many types of ground motion waves, including P-wave, S-

wave, and surface wave. The P-wave is the fastest wave with less destructive power, while 

the S-wave and the surface wave are slower in traveling speed with substantially large 

destructive power. EEW is based on the principle that the damaging earthquake ground 

motions propagate slower than electronic information, so warnings can be successfully 
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delivered immediately after detecting the first earthquake signals at a seismic station. The 

speed of the more damaging S-waves from earthquakes is about 3.5km/s, whereas 

electrically transmitted signals from the seismic network sensors travel at about 

3.0x105km/s. As the seismic waves propagate, the seismometers observe more streams of 

the real-time ground motion data. As a result, the real-time analysis of the earthquake 

parameters becomes more precise. The characterized information on the event is then 

delivered to the users of EEW. The warning time, as defined by the duration between the 

EEW alert received by the user and the arrival of strong shaking at the user’s site, needs to 

be sufficient to respond with appropriate actions. In general, the warning time increases as 

the latency time decreases. In addition to the scientific effort to reduce the warning latency, 

many inevitable geological factors that could dominate the latency include the distance 

between the site and the hypocenter, depth of the earthquake source, and soil properties, 

etc.  

The application of EEW alerts can reduce hazard risks through public awareness, 

automated decisions, and emergency responses. Public awareness increases the safety of 

society, with the personal preparation of “drop, cover, and hold on” to avoid minor injuries 

resulting from falling objects, especially in schools and public areas with a vulnerable and 

dense population (Horiuchi 2009) (Fujinawa and Noda 2013). Automated decisions include 

interrupting hazardous nuclear or chemical processes in manufacturing systems; this 

prevents secondary or cascading unsafe failures to protect personnel (Wu, Beck and Heaton 

2012) (Ionescu, et al. 2007) (Wu, Beck and Heaton 2013). Lastly, EEW alerts can provide 

alerts to the rescuing groups for faster emergency response, including hospitals, police, and 

fireman, etc. Simply by providing alerts in advance, various groups and government can 

better facilitate resources and assign rescuing responsibilities, particularly during 

aftershock sequences when telecommunication is unstable. Nevertheless, errors in the 

system (including false alert and missed events) could potentially lead to serious 
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consequences in the societal adoption of EEW. It is critical for scientists and engineers to 

collaborate in developing robust and reliable EEW systems that provide timely alerts with 

guaranteed accuracy. 

 

1.2.2 Overview of earthquake early warning systems around the world 

Although the concept of earthquake early warning has been around for awhile (since 

(Cooper 1868)), the implementation of the systems has been achieved only over the past 

few decades with the development of necessary instruments, computational power, and 

network communications. EEW systems have been in operation in several regions around 

the world (Normile 2004). Figure 1.1 shows a seismic hazard map and countries where 

EEW is in operation or being tested (Allen, Gasparini, et al. 2009). 

 

Figure 1.1 Seismic hazard map and countries where EEW is in 
operation or being tested under development by May 2009 (Allen, 
Gasparini, et al. 2009) 
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Japan has implemented one of the first applications of EEW. In the late 1960s, the Japan 

Railway (JR) has started monitoring ground shaking by deploying seismometers near their 

Bullet Train, also named as Shikansen, train tracks. The power of the Bullet Train is 

automatically shut off if the ground shaking intensity achieves a threshold of 40 gals. 

(Nakamura and Tucker 1988). The system was upgraded to the Urgent Earthquake 

Detection and Alarm System (UrEDAS) in the 1980s. Additional seismometers are 

deployed along the costal lines to provide more warning time for the trains (Nakamura 

1984). The system worked well during the Niigata Chuestu earthquake in 2004, applying 

brakes to the Bullet Train within 3 sec after the detection of p-wave arrival (Nakamura, et 

al. 2006). Currently, the Japan Meteorological Agency is able to broadcast national wide 

public warnings of on-going earthquakes by television, cellphone, and other means of 

telecommunications (Doi 2003). 

The Seismic Alert System (SAS) for Mexico City was established after the 1985 Michoaca 

earthquake (J. Espinosa-Aranda, et al. 1995). The SAS was the first public warning system 

in the world. Seismometers are deployed along the coastal line, located about 300km 

southwest of Mexico City, to detect subduction earthquake. The system is effective because 

the subduction zone is a few hundreds of kilometers away from Mexico City, so warnings 

can be provided to the city about 60 sec prior to the arrival of the damaging seismic waves 

(Lee and Espinosa-Aranda 2003) (J. Espinosa-Aranda, et al. 1996). Due to the high 

population density and soft soil properties of Mexico City, the SAS system provides very 

useful information for the departments in charge of emergency services. 

Taiwan has an earthquake early warning system created by the Taiwan Central Weather 

Burea (CWB) (Wu, Shin and Tsai 1998). The system takes the waveform information from 

real-time seismometers, and determines EEW parameters, including the predominant 

period (𝜏!) and peak amplitude displacement in the initial 3 sec of the P-wave (𝑃!), to 
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estimate the earthquake magnitude (Wu, et al. 2006). Studies have shown that the system 

could provide 20 s of warning time to Taipei if the 1999 Chi-chi earthquake reoccurs (Wu 

and Kanamori 2005). 

The California Integrated Seismic Network (CISN) research group has developed the CISN 

ShakeAlert System in California. The system combines estimations and uncertainties from 

three independent algorithms, 𝜏!-𝑃! Onsite Algorithm, Virtual Seismologist, and Elarms, 

and a Decision Module calculates the probability of earthquake source parameters: 

magnitude and hypocenter location. A user display delivers the warning messages by 

display the shaking information on a map in real-time. The current system is under 

development in the beta-testing phase in California, and plans to deliver to the public in the 

near future. With the collaborations of universities, government agencies, and private 

sectors, the group is also planning to expand the demonstration system to the entire west 

coast of the United States. Figure 1.2 shows the frame of ShakeAlert system. 
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Figure 1.2 Framework of CISN ShakeAlert. The bold modules 

with solid lines are the existing system that is currently running. 

The dashed lines show components under development. (Bose, 

Allen, et al. 2014) 

EEW has been proven to be beneficial in both reducing causalities and minimizing 

economic losses through many major earthquake events, especially during the M9 Japan 

Tohoku earthquake in March 2011. An increase of interest in earthquake early warning has 

been expressed around the world, particularly in seismic active regions. Southern Italy, 

Istanbul, China, Chile, Bucharest, and many other countries are trying to develop 

earthquake early warning systems to mitigate seismic damages. 
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1.2.3 Bayes’ Theorem for EEW 

Bayesian Probabilistic approach to Earthquake Early Warning was first introduced in the 

Virtual Seismologist method (Cua 2005). The application of Bayes’ theorem the 

probability of source characterization at any given time of the on-going earthquake, is a 

combination results from prior information and contributions from the available ground 

motion observations. The main differentiation of the Bayesian approach from other EEW 

algorithms is the exploitation of knowledge from previous experience or judgments that are 

not generally incorporated in automated decision-making process. A flow chart of Bayesian 

approach for EEW is shown in Figure 1.3. This methodology mimics the human ability to 

process many types of information simultaneously, combining the analyzed results to make 

a final decision at the end, and updating the decision over time as additional information is 

collected.  

 

Figure 1.3 Flow Chart of Bayesian framework in EEW 
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The inspiration of such a decision making process in earthquake early warning comes from 

human beings’ judgments on weather. For example, if a person needs to decide on bringing 

an umbrella outside, one would look at the weather forecast information and check if there 

are water drops outside the window. During this process, the person’s brain is performing a 

Bayesian calculation: the weather forecast information provides a prior information of how 

probable the region is going to rain in general, and the actual observation water drop is a 

likelihood collection of the rain probability. The goal of my thesis is to apply a similar 

approach of this elegant concept to earthquake early warning, so information from multiple 

heterogeneous sources can be processed in parallel to make fast and reliable decisions. 

The prior information in earthquake early warning systems includes recent seismicity rates, 

distribution of seismometer network, health status of the stations, and regional seismic 

hazard risk, etc. For example, earthquakes tend to be active near geologic faults, so for 

long-term predictions, the probability of earthquake occurrence is higher near the 

recognized faults. Also, earthquakes tend to cluster in space and time, forming a foreshock-

mainshock-aftershock sequence, so recent seismic activities are good indications of near 

future seismicity.  In Chapter 2 of this thesis, I present a detailed formulation of an 

earthquake forecasting model. 

The general Bayes’ theorem for EEW can be expressed as a product of the prior probability 

density function, 𝑃 𝐴 , multiplied by the likelihood probability density function, 𝑃 𝐵 𝐴 , 

and normalized by the evidence function, 𝑃 𝐵 , shown as the follows: 

	
𝑃 𝐴 𝐵 =

𝑃 𝐵 𝐴 𝑃(𝐴)
𝑃(𝐵)  

              ∝ 𝑃 𝐵 𝐴 𝑃(𝐴) 

[1.2]	
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where 𝐴 is the parameter we are interested in estimate (in EEW, this includes signal 

discrimination of earthquake source vs. noise source, regression estimation of source 

parameters such as magnitude and hypocenter location, prediction of peak ground motion 

intensities at users’ sites, etc.), and 𝐵 is the given incoming observations (in EEW, this 

includes on-going ground motion observation data, such as time-series data of waveforms, 

GPS displacement, etc.). 𝑃 𝐴 𝐵  is the posterior probability density function, meaning the 

probability of A given the observation data B. The evidence function 𝑃 𝐵  is the 

probability of the observation data that is independent of the estimating parameter 𝐴. This 

term is normalization constant, which does not affect the estimation of the parameter 𝐴, so 

the posterior function is proportional to the product of the likelihood function and the prior 

function.  

     Depending on the prediction task, the Bayesian framework can be applied to different 

estimating parameter and the predictive term 𝐴 is replaced with the parameter of interest. In 

the earthquake detection problem, Eq [1.2] becomes: 

	 𝑃 𝑌 = 𝐸𝑞 𝑆(𝑡) ∝ 𝑃 𝑆 𝑡 𝑌 = 𝐸𝑞 𝑃(𝑌 = 𝐸𝑞) [1.3]	

where 𝑌 = 𝐸𝑞 is estimating the signal source being an earthquake event, and 𝑆 𝑡  is the 

avalaible ground motion observation at time 𝑡. 

Similarly, in estimating the hypocenter location, the Eq [1.2] becomes: 

	 𝑃 𝐿𝑎𝑡, 𝐿𝑜𝑛 𝑆(𝑡) ∝ 𝑃 𝑆 𝑡 𝐿𝑎𝑡, 𝐿𝑜𝑛 𝑃(𝐿𝑎𝑡, 𝐿𝑜𝑛) [1.4]	

where (𝐿𝑎𝑡, 𝐿𝑜𝑛) is estimating the coordinate location of the earthquake source, and 𝑆 𝑡  

is the avalaible ground motion observation at time 𝑡. 
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Although the framework for different tasks is similar, the detailed constructions for the 

predictive functions vary dramatically. In Chapter 3 and 4 of this thesis, I present detailed 

approaches in answering both of the questions. 

1.3 Research goal and Thesis plan 

In order to construct an early warning system with faster initial alerts while maintaining the 

accuracy of the predictive information, we introduce methodologies from the seismology 

domain knowledge and computer science techniques to incorporate additional useful 

predictive information and efficiently organize large seismic database, respectively. The 

objectives of this thesis include: 

- Reduce	latency	time	for	first	early	warning	alert	

- Improve	accuracy	of	the	earthquake	parameter	estimations	

- Minimize	process	delays	of	large	databases	

This thesis is outlined as follows:  Chapter 1 gives an overview of the research and 

developments of earthquake early warning systems. Chapter 2 discusses earthquake 

forecast models that could be incorporated into earthquake early warning. Chapters 3 

through 4 provide applications of earthquake forecasting information to improve on the 

performance of earthquake early warning predictions; Chapter 3 focuses on the rapid 

earthquake detection algorithm, and Chapter 4 focuses on improvements of the hypocenter 

location estimation. Chapter 5 presents a method to reduce process delays of big data 

search for real-time seismology. Chapter 6 concludes the thesis with final remarks and 

suggestions of future work. 
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C h a p t e r  2  

Earthquake Forecasting Methods 

2.1 Background on Foreshock-Mainshock-Aftershock Sequences 

Many seismologists have observed the temporal and spatial clustering properties of 

earthquakes (Kagan and Jackson 1991) (M. Bouchon, et al. 2013) (Gerstenberger, et al. 

2005). This clustering pattern is often referred as foreshock – mainshock – aftershock 

sequences. The term “aftershock” is often defined as a series of smaller earthquakes 

following a “mainshock”, which is an earthquake with larger magnitude. “Foreshock” is 

the smaller earthquakes that occurred prior to the mainshock in time. Of course, sometimes 

the predefined mainshock could produce aftershocks for years and the aftershocks 

produced may be larger than the mainshock (Lomnitz 1966), while other times, not all 

premonitory events are observed prior to large earthquakes (Abercrombie and Mori 1996). 

In addition, another type of seismic activity with location clustering pattern is the swarm 

earthquake (Shearer 2012), which occurs repeatitively over time at the same location.   

Over the years, scientists are still trying to find explanations for the occurrences of 

earthquake sequences. While some researchers argue that triggering of near field 

earthquakes is due to the sudden change of dynamic and static stresses (Gomberg, et al. 

2001), others believe that aftershock sequences are driven by physical mechanisms such as 

fluid flow, magnetic, or creep events (Hainzl and Ogata 2005) (Lohman and McGuire 

2007). There are also theories that explain that foreshock occurrences are due to the 

interplate or heterogeneity of the Earth’s crust (M. Bouchon, et al. 2013) (Mogi 1963). 
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Although the science behind earthquake formulation is complex and controversial, most 

scientists agree on the clustering properties of earthquake occurrences. No matter what the 

true explanation is behind the science of earthquake sequences, one conclusion is 

indisputable: the recent seismicity is a good indication of seismic activities of the near 

future.  

2.2 Earthquake Forecasting and Earthquake Early Warning 

As proposed in the Bayesian approach to earthquake early warning system, prior 

information can be incorporated to provide faster and more accurate warnings. Earthquake 

early warning, earthquake forecasting, and seismic hazard maps all provide a forecast of 

future earthquake occurrences, evaluated for different time frames. Figure 2.1 shows the 

relative time frame for the three earthquake information products. 

 

Figure 2.1 Time frame of various earthquake information products 

Earthquake early warning, the focus of this thesis, provides earthquake information of the 

next few seconds to minutes. Even though the “heads-up” time is short, the intention is to 
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make automated decisions and take immediate action to avoid losses from the disaster, as 

shown in Chapter 1. The conventional concept of EEW is to send out warnings after 

detecting an initial seismic wave, so the analysis sorely depends on the observation of the 

on-going earthquake and not previously observed seismicity. 

Earthquake forecasting tends to predict regional seismicity activities in the near future 

based on the recent seismicity. In this model, the recent change in seismicity is the major 

influence of model predictions. Scientists often use the forecasting models to predict 

aftershock patterns of a particular seismic sequence. However, they can be applied for any 

region or time of interest in general. This model is often created for the prediction range of 

the next few hours to months. 

Lastly, seismic hazard maps are intended to provide insight to the general public and 

guidance in development. The input of this model is based on the long-term historical 

seismic occurrence that has lasted for years. The information provided from hazard maps is 

essential in creating and updating seismic designs provisions of building codes and 

facilitate government on urban planning. In general, the seismic hazard maps forecast the 

regional hazard level for the next few years to decades. 

Up to now, the three earthquake information products provide independent information and 

were created separately for different audiences. However, it is not difficult to make the 

connections between them: the long-term predictions (forecasting and hazard maps) can be 

useful inputs for the short-term predictions. As mentioned in Chapter 1, the forecasting 

information can be applied as the prior information under the Bayesian framework, and the 

waveform analysis serves as the likelihood function. For the conventional waveform 

analysis of earthquake early warning, a minimum of time-series data is required to be 

collected before any decisions are made (e.g. 3 sec for Onsite, (Bose, Hauksson, et al., A 

Trigger Criterion for Improved Real-Time Performance of Onsite Earthquake Early 
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Warning in Southern California 2009)), and this process is repeated for every earthquake 

event. However, in the cases when we are expecting high seismicity, such as during 

aftershock sequences or swarm earthquakes, it is unnecessary to redundantly wait until the 

end of the data collection process to send out the alert because the new trigger is probably 

due to another aftershock earthquake in the sequence.  

In such cases, the alerts can arrive much faster to the users near the source to mitigate 

potential dangers from the disaster. Table 2.1 shows the decision-making scenarios under 

Bayesian inference, where immediate decisions can be made when consistent predictions 

from waveform analysis and seismic forecast are observed. The earthquake forecasting 

models can provide the expected seismicity information necessary in the early warning 

system. Of course, the large earthquakes do not always occur when the expected seismicity 

is high; waiting is still required to collect additional data in these cases. 

	 High	earthquake	probability	
from	waveform	analysis	

Low	 earthquake	 probability	
from	waveform	analysis	

High	earthquake	probability	
from	seismic	forecast	

Send	alert	immediately	
Wait	for	additional	
waveform	analysis	

Low	 earthquake	 probability	
from	seismic	forecast	

Wait	for	additional	
waveform	analysis	

No	alert	immediately	

Table 2.1 EEW decision-making scenarios under Bayesian 

framework 
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Since EEW system aims to provide information to all earthquakes causing ground motions 

that could be dangerous, alerts should be issued faster for all earthquakes during the entire 

sequence including aftershocks, and not only emphasize the system performance during a 

large magnitude mainshock. During aftershocks, the repetitive ground shaking 

continuously deteriorates already weakened infrastructure components. Additional natural 

disasters, such as landslides and tsunami, can also be triggered from aftershocks as a 

consequence. The seismic damage can be even more significant if the aftershocks occur 

close to a populated urban area. The benefits of a rapid and reliable EEW system during the 

aftershocks of a large earthquake are equally (or more, in some cases) important than the 

mainshock, as rescue and repair personals are continuously working in then already 

damaged and fragile epicentral region (Bakun, et al. 1994). For example, over 200 

aftershocks occurred after the single mainshock during the Northridge earthquake 

sequence. There is also a chance that what seemed like a recent mainshock turns out to be 

foreshock activity of another large event (Reasenberg and Jones, Earthquake Hazard After 

a Mainshock in California 1989), like the 1992 M6.5 Big Bear Earthquake occurring three 

hours after the M7.3 Landers Earthquake. If the prior information can assist in sending out 

faster alerts for all the aftershock events, then system performance would be improved for 

over 99% of all events. 

2.3 General Epidemic-Type Aftershock Sequence (ETAS) model 

Epidemic-Type Aftershock Sequence (ETAS) model simulates the entire sequences based 

on statistical relationships of earthquakes (Vere-Hones 1966) (Y. Ogata 1988) (Kagan and 

Knopoff 1981). The aftershocks are generated based on well-established empirical 

stochastic models derived from seismicity observations. Most importantly, in addition to 

the direct aftershocks produced by a mainshock, the generated aftershocks could produce 

aftershocks of its own, forming an epidemic-type effect, which differentiates this approach 
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from other aftershock simulation methods. These secondary aftershocks are true 

observations in the real earthquake sequences (Felzer, Becker, et al. 2002). This statistical 

method quantitatively describes the clustering property in earthquake sequence processes 

and the generated earthquakes that have the probability of generating secondary 

earthquakes. The construction of the model suggests that the distribution of aftershocks 

follows the Omori’s Law in time (Utsu 1961), Gutenberg-Richter relationship in magnitude 

(Gutenberg and Richter 1944) and mainshock-aftershock distance relationships.  

Taking the ETAS simulation created by Felzer (K. Felzer, Stochastic ETAS aftershock 

simulator 2007) as an example, the magnitude and location of the aftershocks are sampled 

from the distributions, and the primary aftershocks are fed back into the model to produce 

the secondary aftershocks; this process repeats. The generated aftershocks that match the 

time period and region of interested are selected to create a report of aftershock catalog. 

Every run of the simulation will produce different results due to the randomness of the 

sampling procedure. The maximum likelihood estimation (MLE) of aftershock locations 

can be calculated by running the simulation hundreds or thousands of times and taking the 

average results of all the simulations. 

The simulation results of the Northridge aftershock for a 24-hour period of January 18 -19, 

1994 calculated by Felzer’s ETAS model, are as follows. Note here that each simulation 

result produces different sequences, show in Figure 2.2. There is always a small probability 

that a simulated aftershock is large enough that it initiates an unexpected sequence, so the 

seismicity clusters are slightly different in every simulation. 
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Figure 2.2 Four simulation results of the Northridge aftershock for 

a 24-hour period of January 18 -19, 1994 calculated by Felzer 

ETAS model 

Figure 2.3 and Figure 2.4 are the average results of the Felzer ETAS model simulation after 

50 and 500 runs, respectively. Although the average of 500 runs has more smoothing 

boundaries showing transition of change in seismic rates due to the averaging effect, the 

chance of producing outliers is much higher with more runs. Note here in the 500-run 

scenario that the diagonal lines show that the aftershocks might trigger additional 

seismicity on the fault lines that propagated outwards.  
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Figure 2.3 Average result of the Felzer ETAS model simulation 

after 50 runs 

 

Figure 2.4 Average result of the Felzer ETAS model simulation 

after 500 runs 
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We can run the simulation repetitively and then get an average result for the earthquake-

forecasting map. However, the computational delay introduced is not tolerable for real-time 

seismicity application of Earthquake Early Warning system. For example, a 50-run takes 

about 1 min on Matlab platform; the 500-run takes about 5 minutes. Started with the 

fundamental concept of ETAS simulation by (K. Felzer, Stochastic ETAS aftershock 

simulator 2007), I created an ETAS forecasting model that produces a MLE of earthquake 

forecasting map with a single run of negligible computational delay time about a single 

second. The real-time ETAS model can be incorporated into EEW upon the instantaneous 

requirements.  

 

2.4 Modified Epidemic-Type Aftershock Sequence (ETAS) model 

The forecast earthquake probability calculated using an ETAS seismicity model is based on 

the premise that the location of future earthquakes is significantly influenced by the 

accumulation of previously observed earthquakes. The concept of the ETAS seismicity 

model has been well established in the earthquake-forecasting field and the forecasting 

results have been validated through many earthquake sequences (Y. Ogata 1998) (K. Felzer 

2009). The future earthquake occurrence process is modeled as a nonhomogeneous Poisson 

process in time; the probability of one or more earthquakes occurring above 𝑀!"# at 

location 𝑙𝑎𝑡, 𝑙𝑜𝑛  within the time range Δ𝑡 is:  

	
𝑝𝑟𝑜𝑏!"#$ 𝑙𝑎𝑡, 𝑙𝑜𝑛 = 1− 𝑒𝑥𝑝 𝜆 𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛 𝑑𝑡

!!∆!

!

 [2.1]	
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where 𝜆 𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛  is the forecast rate of earthquake at current time t and location (lat, 

lon). It is composed of the long-term background seismicity 𝜇 𝑙𝑎𝑡, 𝑙𝑜𝑛  and the short-term 

observed seismicity.  

	 𝜆 𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛 =  𝜇 𝑙𝑎𝑡, 𝑙𝑜𝑛 + 𝜆! 𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛
!

 [2.2]	

I model earthquake sequences following Omori’s Law in time (Utsu 1961), Gutenberg-

Richter's relationship in magnitude (Gutenberg and Richter 1944) and Felzer and Brodsky's 

relation (Felzer and Brodsky 2006) in space. The short-term seismicity rate caused by each 

of the historical earthquakes in the catalogue is first calculated as a function of a distance 

from the hypocenter source, 𝜆! 𝑡, 𝑟 , and then mapped to latitude and longitude, 

𝜆! 𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛 , using a numerical transformation based on the distance-to-location mapping 

on the earth surface. The formulation for the seismicity rate by 𝑗th earthquake at the current 

time 𝑡 and distance 𝑟 km is: 

	
𝜆! 𝑡, 𝑟 =

𝐾!10! !!!!!"#

𝑡 − 𝑡! + 𝑐
!
𝑟!

 [2.3]	

where 𝐾! = 0.008,𝛼 = 1, 𝑐 = 0.095,𝑝 = 1.34,𝑛 = 1.37 are ETAS model parameters of 

California obtained from (K. Felzer 2009) and 𝑙𝑎𝑡! , 𝑙𝑜𝑛! ,𝑀! are source parameters of the 

𝑗th earthquake from the observed seismicity catalog. 𝑀!"# is the minimum magnitude of 

the forecast earthquakes. In the application of this proposed method to EEW, I assume that 

the EEW system has the access to the seismicity catalog record that continuously updates 

with time. As time passes, all the newly occurred events should automatically concluded in 

the catalog for the forecasting of future events. 

In order to validate the accuracy of the ETAS predictions, Figure 2.5 to Figure 2.11 are 

examples of the earthquake probability forecasting maps produced from the modified 



23 

 

 

ETAS model and the true observation of seismicity for 1) Chino Hills earthquake sequence 

on 29 July 2008, 2) Northridge earthquake sequence on 17 April 1994, 3) Cucapah El 

Mayor Sequence on 9 April 2010, and 4) a seismic dormant region during 13 May 2015, 

respectively. The forecasting results not only match the location estimations of various 

seismic activation sequences, but also predict well during the seismic quiescence period. 

The size of the red circle scale, with observed magnitude of the earthquake records. 
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Figure 2.5 Modified ETAS forecast map for Chino Hills 

earthquake sequence on 29 July 2008 

 

Figure 2.6 Observed seismicity of Chino Hills earthquake 

sequence on 29 July 2008. The size of the red circle scale with 

observed magnitude of the earthquake records. 
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Figure 2.7 Modified ETAS forecast map for Northridge 

earthquake sequence on 17 April 1994 

 

Figure 2.8 Observed seismicity of Northridge earthquake 

sequence on 17 April 1994. The size of the red circle scale with 

observed magnitude of the earthquake records. 
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Figure 2.9 Modified ETAS forecast map for Cucapah El Mayor 

Sequence on 9 April 2010 

 

Figure 2.10 Observed seismicity of Cucapah El Mayor Sequence 

on 9 April 2010. The size of the red circle scale with observed 

magnitude of the earthquake records 
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Figure 2.11 Modified ETAS forecast map for a seismic dormant 

region during 13 May 2015 

 

Figure 2.12 Observed seismicity of a seismic dormant region 

during 13 May 2015. The size of the red circle scale with 

observed magnitude of the earthquake records. 



28 

 

 

2.5 Summary 

This chapter discusses the earthquake clustering properties in time and space, forming 

foreshock-mainshock-aftershock sequences. Furthermore, I presented methods to forecast 

near future earthquakes, especially the Epidemic-type Aftershock Sequence (ETAS) model. 

ETAS model predicts future seismicity based on statistical models of aftershock 

relationships. The seismic forecasting information brings significant insights to early 

warning systems. Despite the size of the earthquakes, most of the seismicity activities we 

observe are aftershocks of a sequence. Therefore, the previously observed earthquakes are 

good indications of near future events. I implemented an ETAS forecast model that 

provides real-time solution while maintaining the accuracy.  

In the following two chapters I will present methodologies to apply the information 

provided by the modified real-time ETAS model into Bayesian approach to EEW to 

improve on the accuracy and speed of the earliest alerts. 
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C h a p t e r  3  

3. ETAS Prior application one: Rapid Earthquake 

Discrimination 

 

3.1 Introduction 

Due to the rapid advancement of digital seismic networks, Earthquake Early Warning 

(EEW) systems are currently able to analyze the real-time ground motion information and 

have the potential to provide warnings to potential users before strong shaking begins 

(Heaton 1985) (Allen and Kanamori 2003). We desire these EEW systems to provide both 

reliable and fast alerts, however, the goals of accuracy and speed are often in conflict with 

each other. Since the arrival of the destructive S-wave follows closely after the arrival of 

the P-wave in the epicentral region, processing delays must be minimized if we hope to 

provide warnings of the potentially damaging S-waves near an earthquake’s epicenter. 

A popular strategy for EEW is to identify the P-wave at a station and then warn of an 

impending S-wave. Unfortunately, systems reliant on these short windows of data are also 

commonly triggered by teleseisms and non-earthquake sources. The incorrect identification 

of the earthquake signals in EEW may cause false alarms or large uncertainties in source 

parameters. The negative impacts of the ‘cry-wolf’ syndrome can be critical in the societal 

adoption of EEW (Kuyuk et al., 2015), so speed may be sacrificed for improved accuracy 

in current systems.  The first task to perform promptly after observing a shaking at a 

seismic station is to automatically make a decision on whether or not the shaking is caused 
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by an earthquake source, and different criteria have been imposed to filter out the non-

earthquake triggers: the single-station Onsite algorithm collects and analyzes a fixed 

window of 3s before declaring an event (Bose, Hauksson, et al., A Trigger Criterion for 

Improved Real-Time Performance of Onsite Earthquake Early Warning in Southern 

California 2009); network-based algorithms require a minimum number of triggered 

stations for warning confirmation (e.g. Elarms-2 requires 4 stations for California (Kuyuk 

and Allen 2014), and Presto requires 3-5 stations for Southern Italy (Satriano, et al. 2011)). 

These methods can introduce a significant delay, especially in regions with low station 

density. 

In this chapter, three predictive models are presented to identify earthquake source signals. 

First, a waveform analysis model uses a logistic regression method to predict the 

probability of incoming signals being generated by earthquake or non-earthquake sources. 

Then, two Bayesian models are presented that employ earthquake forecasting results (from 

Chapter 2) in addition to the waveform analysis model. One model uses the peak ETAS 

probability of the region as the Bayesian prior, and the other uses a derived earthquake 

probability from the ETAS model and noise distribution as the Bayesian prior. 

 

3.2 Method and Data 

We firstly collected local earthquake and non-earthquake strong-motion waveform data to 

train the model parameters in the waveform analysis. We also utilized earthquake catalog 

information for the ETAS forecasting analysis. The proposed model is then validated 

through different methods to demonstrate its reliability and robustness: 1) the performance 

of the proposed model is evaluated at every 0.5 sec since the triggered time up to 3.0 sec to 

estimate the speed-accuracy trade-off; 2) the leave-one-out cross validation test is 
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performed to demonstrate the robustness of the model in future predictions; 3) the proposed 

method is compared with the existing 𝜏!-𝑃! method to assess speed and accuracy gains; 

and 4) we demonstrate the application of the method in several test cases: an earthquake 

mainshock, an aftershock, an ambient noise false trigger, and a teleseismic event.  

3.2.1 Data 

We collected three component strong-motion waveforms from local crustal earthquake and 

non-earthquake records in the southern California region to train the prediction model to 

identify earthquake signals. The non-earthquake records include ambient noise signals and 

teleseismic events that were detected by STA-LTA-type triggering at single seismic 

stations. All the strong-motion traces, 2,481 three-component records in total, are 

downloaded from the Southern California Earthquake Data Center. The station trigger 

times are provided by the Onsite algorithm (Kanamori 2005) (Y. Wu, et al. 2007) and are 

calculated using the modified characteristic function developed by R. Allen, 1978.  

An important goal of EEW is to identify earthquakes that cause a significant level of 

ground shaking. Ground motion intensity depends on many factors including magnitude, 

hypocenter distance, local site conditions, details of source radiation, and wave 

propagation. We consider only records with observed Peak Ground Acceleration (PGA) 

greater than 2cm/s2 (equivalent to Modified Mercalli Intensities > II) in the seismic 

network of Southern California during 2010 to 2015 (Wald, et al. 1999). With this 

threshold, our database consists of a total of 1,128 earthquake records. Ground motions 

with PGA less than 2cm/s2 are not felt by humans and are unlikely to damage buildings 

(Cheng, et al. 2014). Figure 3.1 shows the distribution of the MMI shaking intensities of 

the earthquake records in our database. Mid- and large- size earthquakes contribute to a 

significant fraction of the records, since larger magnitude events cause MMI II shaking to 

greater distances.  The data set includes records from the M7.2 El Mayor-Cucapah (4 April 
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2010), the M5.4 La Habra (28 March 2014) and the M5.4 Borrego Springs (7 July 2010) 

earthquakes. The majority of the records in the study created weak to light shaking. 

Although these records are minor concerns for the purpose of large earthquakes or human 

sensitivity, it is necessary to include them for a complete description of the statistical 

population of observations of an EEW system, since low PGA values are more often 

recorded due to the natural distribution of earthquake occurrence and ground motion 

attenuation with distance. A better identification of the low PGA earthquake records 

improves the overall performance of the earthquake detection. 

 

Figure 3.1 MMI shaking intensity distributions of the 1,128 

earthquake records collected for the study 
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The data set of non-earthquake records consists of, 1000 noise and 353 teleseismic records. 

The noise signals include calibration pulses, jumps in electric current, glitches induced by 

machinery, ambient noise, etc. Since the total number of false triggers is on the scale of 

millions per year, the noise records were uniformly sampled from the top 100 noisiest 

stations in the CI network during 2015 (as observed by the Onsite algorithm STA-LTA 

triggering) to capture the general characteristics of noise disturbances most likely to 

mistakenly trigger the seismic network. The teleseism data set comprises records from 14 

teleseismic events that triggered the Southern California seismic stations between 2008 and 

2015. Table 3.1 shows the list of teleseismic events obtained in this study. 

Time Region Latitude Longitude Depth (km) Magnitude 
2008-02-21 Nevada,USA 41.15 -114.87 6.7 6.0 
2010-02-27 Offshore Bio-

Bio, Chile 
-35.9 -72.73 35 8.8 

2010-08-18 Mariana Islands 12.2 141.51 10 6.3 
2011-03-11 Tohoku, Japan 38.30 142.37 30 9.0 
2012-04-12 Gulf of 

California 
28.79 -113.14 10.3 6.9 

2012-08-14 Sea of Okhotsk 49.78 145.13 625.9 7.7 
2012-12-14 Offshore Baja 

California 
31.09 -119.66 13 6.3 

2013-02-06 Solomon 
Islands 

-10.80 165.114 24 8.0 

2013-05-24 Sea of Okhotsk 54.89 153.22 598.1 8.3 
2014-03-05 Vanuate -14.42 169.54 648 6.3 
2014-04-01 Iquique, Chile -19.6 70.77 25 8.2 
2014-06-23  Raoul Island, 

New Zealand 
-29.98 177.73 20 6.9 

2014-06-29 New Mexico, 
USA 

32.582 -109.17 6.4 5.3 

2014-06-29 Samoa Islands -14.9 -175.4 10 6.5 
2015-05-30 Chichi-shima, 27.84 140.5 664 7.8 
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Japan 
Table 3.1 The teleseism events obtained in this study. Strong-

motion sensors in Southern California record all these events. 

3.2.2 Data Processing and Feature Extraction 

For each baseline-corrected record, the acceleration and velocity in the vertical and 

horizontal directions are processed. The acceleration records are directly obtained after 

removal of the trend and bias of the raw data; the velocity records are obtained by 

integrating the acceleration data in the time domain, and then applying a fourth-order 

causal Butterworth high pass filter with a corner frequency of 0.075Hz. This filter is 

applied recursively in the time domain, so the processed time is negligible.  The horizontal 

records are calculated using the square root of the sum of the squares of the two horizontal 

components. 

We extract the peak values of each ground motion in every half-second window from 0.5s 

to 3.0 sec after the triggered time for the training of model parameters. Figure 3.2 shows 

the distribution of the extracted ground motion amplitude features for noise, teleseismic, 

and earthquake data. We took the logarithm of the model features because the ground 

motion amplitudes span several orders of magnitude (Bose, Heaton, and Hauksson 2012). 

The distributions show clear differences between the earthquake and non-earthquake (noise 

and teleseismic) groups, although there are overlaps between the group distributions. The 

amplitudes of the high-frequency motions decay faster with distance (Hanks and McGuire 

1981), so acceleration and velocity quantities are intuitively selected as indications of local 

earthquakes. Displacement records are excluded in the feature selection because the double 

integration required to obtain the displacement record from the acceleration data recorded 

from the strong motion sensors can lead to waveform artifacts (significant long-period 

trends are amplified during multiple integrations, DC shifts are obscured, etc.). Various 
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sophisticated Bayesian model selection methods can be also applied to extract the useful 

features; this is beyond the scope of this study. 

These features of the ith record at the kth half-second time window after the triggered time 

are combined into a vector 

𝑋!,! = [1, 𝑙𝑜𝑔!" 𝑍𝑎!,! , 𝑙𝑜𝑔!" 𝐻𝑎!,! , 𝑙𝑜𝑔!" 𝑍𝑣!,! , 𝑙𝑜𝑔!" 𝐻𝑣!,! ] , where 𝐻 and 𝑍 

denote horizontal and vertical component, and 𝐴 and 𝑉 denote acceleration and velocity, 

respectively. We also label ith record 𝑌𝑖 = 1 or 𝑌𝑖 = −1 for earthquake and non-

earthquake records, respectively. Note both noise and teleseismic records are considered as 

non-earthquake records. 

 

 

Figure 3.2 Maximum ground motion amplitude distributions 

collected for every half-second window within the initial 3.0s 

after the trigger time of all 2,481 three-component records used 

for this study. The labeled earthquake data are earthquake records 

with PGA greater than 2cm/s2; noise data are false triggers 
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including calibration pulses, jumps in electric current, glitches 

induced by machinery, and ambient noise; the teleseism data 

include 353 records from 14 teleseismic events. The lines are the 

fitted Gaussian distributions to earthquake (solid), noise (dash) 

and teleseism (dot dash) data. The notations are A=acceleration, 

V=velocity, Z=vertical, H=horizontal. 

3.3 Waveform Analysis  

In waveform analysis, the goal is to predict the probability of the observed signal being 

caused by an earthquake source given only the available waveform information, 

𝑝𝑟𝑜𝑏 𝑌!|𝑋!,!!:!! . We defined the classification result for station 𝑖 as 𝑌! = 1 as an 

earthquake record and 𝑌! = −1 as a non-earthquake record. 𝑋!,!!:!! is the waveform input 

of station 𝑖 recorded during time 𝑡!to 𝑡!. In general, 𝑡!is the p-wave arrival time at the 

station; this is when the model starts to record the ground motion data for the predictions. 

By assuming that the observed data 𝑋!,!!:!!follows an independent and identically 

distributed random variable, the Bayesian equation can be written as: 

	
𝑝𝑟𝑜𝑏 𝑌! = 1|𝑋!,!!:!! ∝ 𝑝𝑟𝑜𝑏 𝑌! = 1|𝑋!,!!

!

!!!

 [3.1]	

A standard approach in binary classification is to define the predictive probability applying 

the logistic sigmoid function 𝜙 𝑡 = 1 1+ 𝑒!!  to a linear function 𝑡 = 𝑓 𝑥  (Yamada, 

Heaton and Beck 2007). The sigmoid function is a real-valued, differentiable, non-

negative, and monotonically increasing function. Since the sigmoid function transforms 

linear inputs to a nonlinear output that is bounded between 0 and 1, it can be 

mathematically interpreted as probability. The predictive probability as a function of the 

observed ground-motion amplitudes is constructed using the sigmoid function: 
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	 𝑝r𝑜𝑏 𝑌! = 1|𝑋!,!! = 𝜙 𝑋! =
1

1+ 𝑒!! !!,!!
 [3.2]	

where  

	
𝑓 𝑋!,!! = 𝑐!𝑥!!,!! + 𝑐!𝑥!!,!! +⋯+ 𝑐!𝑥!",!!  = 𝜃!𝑥!",!! = 𝜃 ∙ 𝑋!,!!

!
!

!!!

 [3.3]	

𝑥!",!! is the 𝑗th measurement of log of the ground motion during the kth half-second time 

window after triggered time at the 𝑖th station, 𝑚 is the total number of measurements, and 

𝜃! is the 𝑗th model parameter. Let 𝑋!,!! = 𝑥!",!! , 𝑥!!,!! , 𝑥!!,!! ,… , 𝑥!",!! , and 𝜃 =

𝑐!, 𝑐!,… , 𝑐! . The model parameters are determined from the training data set described 

earlier. In our study, we focus on four measurements of ground motion: vertical 

acceleration, horizontal acceleration, vertical velocity, and horizontal velocity. The best 

combination of features is chosen for 𝑋!,!!are based on the performance of model selection, 

details in the following section. According to this convention, as 𝑓 𝑋!,!!  deviates further 

from 0 in the positive direction; the signal is more likely to be cause by an EEW-relevant 

earthquake source. The predicted probability of Eq[3.2] approaches one indicates that the 

event is very likely to be caused by an earthquake source; it also implies that the probability 

of detecting a non-earthquake source approaches zero, and vice versa in the opposite 

direction as 𝑓 𝑋!  deviates from 0 to the negative direction.  

Figure 3.3 shows an example of the chosen input features in the vertical acceleration at 

every half-second (red circle), where predictions are delivered at every half-second interval 

during the first 3 seconds. The predictions are updated based on the newly arrived 

waveform information 

 



38 

 

 

 

Figure 3.3 First and updated predictions at the initial 3 sec of the 

p-wave arrival 

3.3.1 Determination of the Model Parameters 

Although the framework of the model is determined, the appropriate model parameters 𝜃 in 

the predictive formula from Eq[3.3] need to be specified to be useful to make predictions. 

To focus attention on the parameters of the likelihood function, we apply the Maximum 

Likelihood Estimation (MLE) method to determine the coefficients of the logistic 

regression that classifies earthquake and non-earthquake data. Classification methods such 

as Fisher’s linear discriminant analysis (LDA) and the Least Squares estimates are 

alternative approaches to obtain the model coefficients. However, unlike the MLE method, 

these classification models do not provide a probabilistic interpretation to its predictive 

classes, which makes it challenging to measure the degree of uncertainties. 

The MLE method can be interpreted as searching for an estimation of 𝜃 that best fit of the 

training data we collected. Assuming that all 𝐷!" are sampled independently and identically 
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from the distribution, the optimal model parameters 𝜃 conditioned on the data 𝐷!" =

𝑋!,!! ,𝑌!,!! : 𝑖 = 1…𝑚, 𝑘 = 1…𝑛  can be expressed as: 

	
𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝𝑟𝑜𝑏 𝐷!"|𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝𝑟𝑜𝑏 𝐷!"|𝜃

!

!!!

!

!!!

 [3.4]	

where  

	 𝑝𝑟𝑜𝑏 𝐷!"|𝜃 =  
1

1+ 𝑒!!!! !!,!!|!
 [3.5]	

where 𝑚 = 2481 is the total number of waveform records in the training, including 

earthquake, noise, and teleseism; 𝑛 =  6 is the number of half-second windows in the 

initial 3.0 sec after triggered time. 

3.3.2 Model Selection 

Applying the MLE method, we determined the model parameter coefficients for all 15 

combinations of the four ground motion features using the training dataset. Table 3.2 

demonstrates the model parameters and performance of all the candidate models. We focus 

on two performance measures for the model selection given the following definitions: 

• True Positives (TP): true predicted earthquake data 

• True Negatives (TN): true predicted non-earthquake data 

• False Positives (FP): false predicted earthquake data, also referred to as false 

alerts 

• False Negatives (FN): false predicted non-earthquake data, also referred to as 

missed events 

First, we emphasize the initial precision rate of the predictions, defined as: 
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	 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 % =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 [3.6]	

at 0.5 sec after the trigger. A higher precision rate indicates a lower false alerts rate. This 

avoids modifications or cancelations of events that could potentially confuse the system 

and users. Secondly, we evaluate the final accuracy rate, defined as: 

	 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 % =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 [3.7]	

at the end of 3.0 sec. This measure is the representation of the final and overall 

performance of the predictions after all the prediction updates. As indicated in Table 3.2, 

model 1 satisfies both of the requirements, which demonstrates constancy in the highest 

accuracy and precision in both initial and final predictions. 

Model Model Parameters Initial Prediction - 0.5 s 
after TT 

Final Prediction – 3.0 s 
after TT 

 c0 log10(Za) log10(Ha) log10(Zv) log10(Hv) Accuracy 
(%) 

Precision 
(%) 

Accuracy 
(%) 

Precision 
(%) 

1 6.884 4.8665 -2.2965 0.2497 2.5895 89.24 90.88 97.70 96.85 
2 8.0876 - 1.8542 3.3586 -0.086 87.26 90.28 97.38 96.34 
3 6.7442 2.7436 - 1.6677 0.9254 88.27 89.74 97.46 96.34 
4 10.183 - - 3.1113 1.645 88.19 91.30 96.37 94.51 
5 6.7889 5.0952 -2.4736 - 2.7924 89.24 90.73 97.70 96.85 
6 7.1637 - 1.8846 - 2.6002 80.94 86.43 96.01 93.94 
7 5.4392 3.516 - - 1.7861 86.38 87.76 97.26 95.85 
8 9.3083 - - - 4.1202 82.22 89.08 95.41 93.33 
9 5.9532 3.1927 -0.2574 2.2888 - 88.03 88.58 97.30 96.33 
10 8.1628 - 1.8177 3.3123 - 87.22 90.19 97.42 96.42 
11 6.0643 2.9228 - 2.3139 - 88.07 88.73 97.26 96.17 
12 9.1132 - - 4.4027 - 87.71 88.57 95.49 93.27 
13 1.7111 5.3014 -0.3945 - - 85.33 84.85 96.49 95.38 
14 2.3296 - 3.7818 - - 76.99 79.85 93.23 91.59 
15 1.8063 4.9229 - - - 86.17 85.12 96.41 95.06 

Table 3.2 Coefficient parameters calculated using the MLE 

method, as well as accuracy and precision measures for all 

candidate models. 

The model chosen for Eq [3.2] is: 



41 

 

 

	 𝑝r𝑜𝑏 𝑌! = 1|𝑋!,!! = 𝜙 𝑋! =
1

1+ 𝑒!! !!,!!
 [3.8]	

where  

	 𝑓 𝑋!,!! = 6.884+ 4.8665 ∗ log10 Za − 2.2965 ∗ log10 Ha + 0.2497

∗ log10 Zv + 2.5895 log10(Hv) 
[3.9]	

 

3.3.4 Model Performance 

Through the model selection process, we chose model 1, by the combining of all 4 features, 

based on the performance measures. In order to demonstrate the time-accuracy of the 

model we performed, we evaluate the likelihood and posterior predictions at every time 

increments (0.5s window collected ended at 0.5s, 1.0s, 1.5s, 2.0s, 2.5s, 3.0s after the pick 

time at the station) on the entire dataset.  

Available Data Predicted class True Classes Precision Accuracy 
  Earthquake Non-Earthquake   
0.5s Earthquake 957 96 90.9% 89.2% 
 Non-Earthquake 171 1257 
1.0s Earthquake 1035 61 95.9% 93.7% 
 Non-Earthquake 93 1292 
1.5s Earthquake 1070 46 95.9% 95.8% 
 Non-Earthquake 58 1307 
2.0s Earthquake 1094 41 96.4% 96.9% 
 Non-Earthquake 34 1312 
2.5s Earthquake 1105 40 96.5% 97.4% 
 Non-Earthquake 23 1313 
3.0s Earthquake 1107 36 96.8% 97.7% 
 Non-Earthquake 21 1317 

Table 3.3 Waveform Analysis mode performance at time 

increments: 0.5s, 1.0s, 1.5s, 2.0s, 2.5s, 3.0s after the triggered 

time at the station 
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Table 3.3 shows the confusion matrix for the classification of earthquake versus non-

earthquake records based waveform analysis. The decision boundary is set at 50%, and 

infers if the data is classified as an earthquake event if the predictive probability reaches 

above 50%; otherwise it is classified as a non-earthquake event. A summary of the results 

will be presented at a later section for comparison. 

 

3.4 Bayesian Approach 

(Cua 2005) and (Cua and Heaton, The Virtual Seismologist (VS) method: A Bayesian 

approach to earthquake early warning 2007) proposed that EEW could be made faster and 

more reliable by employing prior information in a Bayesian framework to estimate likely 

data interpretations. They suggested that seismicity information could be involved. In this 

paper, we show how this can be accomplished in the existing system. We propose a 

Bayesian probabilistic approach to rapidly identify earthquake source signals as quickly as 

0.5 sec after the detection of a P-wave at a single station, and update the results every 0.5 

sec up to 3.0 sec. This method analyzes both the waveform and the seismicity forecast 

information in parallel, and then combines the probabilistic results through a Bayesian 

framework. The idea is simple: triggers at a seismic station are more likely to have been 

caused by local earthquakes when 1) strong tremors are observed in the high frequency 

components of the ground motion and 2) recent seismic activities have been recorded in the 

proximity of the station.  

Most existing earthquake detection algorithms focus only on waveform information, as 

explained in Chapter 3.3; that is, what is the likelihood an earthquake would produce the 

real-time waveform just recorded? However, the short time window for data collection in 

rapid earthquake signal identification can lead to high uncertainties. Also, such waveform 
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analysis ignores the fact that seismic risks vary consistently with time and location. Adding 

the seismic forecast information distinguishes the proposed method from any other current 

EEW detection/classification algorithm. As shown in Chapter 2.1, many studies have 

shown that seismic activity clusters in time and space, such as foreshock-mainshock- 

aftershock sequences and swarms earthquakes.  

We apply a real-time Epidemic-Type Aftershock Sequences (ETAS) statistical model to 

forecast near-future seismicity rate as a function of location. This forecast is based on the 

spatial and temporal clustering properties of the recent earthquakes. For large earthquakes 

in California, roughly 40% of mainshocks have recorded foreshocks (Abercrombie and 

Mori 1996), and the forecast results demonstrate promising performance during seismicity 

sequences, such as all aftershocks and mainshocks following foreshocks. In these cases, the 

earthquake detection algorithm becomes extremely fast. Of course, not all strong 

earthquakes are preceded by foreshocks. For the cases without foreshock activity, the 

ETAS prior is non-informative on the solution due to the probabilistic formulation; the 

system proceeds just the way it does without any prior information. As sufficient waveform 

information is available with time, the posterior prediction is dominated by the observation. 

Combining the heterogeneous data sources using a Bayesian framework thereby improves 

rapidity and reduces uncertainty to detect of earthquake sources. 

Using Bayesian framework, the algorithm aims to provide the probability that a station has 

been triggered by EEW-relevant earthquake source. Given the observed ground motion at 

𝑖th station immediately following detecting an event, the Bayes’ theorem can be expressed 

as:  

	 𝑝𝑟𝑜𝑏 𝑌! = 1|𝑋!,!!:!! ∝ 𝑝𝑟𝑜𝑏 𝑋!,!!:!!|𝑌! = 1 𝑝𝑟𝑜𝑏 𝑌! = 1  [3.10]		

where 𝑌! is the classification result at 𝑖th station, 𝑋!,!!:!" = [𝑋!,!! ,… ,𝑋!,!!] is a vector of the 

logs of the maximum ground-motion amplitudes observed at 𝑖th station from time 𝑡! to 𝑡! 



44 

 

 

after the triggered time, the detailed definition is explained in the 3.2.1 Data section. The 

posterior probability, 𝑝𝑟𝑜𝑏 𝑌! = 1|𝑋!,!!:!! , is the predictive probability of the observed 

signal being caused by an earthquake source given the available ground motions. The 

likelihood function, 𝑝𝑟𝑜𝑏 𝑋!,!!:!!|𝑌! = 1 , describes the predictive probability that the 

trigger at the 𝑖th station is due to an earthquake source based on the characteristic similarity 

of the historical data, also referred to as the training set. The prior information, 𝑝𝑟𝑜𝑏 𝑌! =

1 , describes the relative probability in earthquake occurrence that may be helpful to 

identify EEW-relevant earthquake triggers.  

By assuming that the observed data 𝑋!,!!:!!follows independent and identically distributed 

random variable, the Bayesian equation can be written as: 

	
𝑝𝑟𝑜𝑏 𝑌! = 1|𝑋!,!!:!" ∝ 𝑝𝑟𝑜𝑏 𝑋!,!"|𝑌! = 1 𝑝𝑟𝑜𝑏 𝑌! = 1

!

!!!

 [3.11]	

 

3.4.1 Bayesian approach with a Simple Prior 

Likelihood Function 

The definition of the likelihood function is given the signal source (e.g. 𝑌! = 1 as 

earthquake source or 𝑌! = −1 as non-earthquake source), that is the probability of 

recording the available waveform information 𝑝𝑟𝑜𝑏 𝑋!,!"|𝑌! . In other words, the 

predictions are made sorely based on the observed ground motions from the waveforms, 

and the waveform analysis model trained in the previous section can be directly applied. 

The likelihood function is described as: 
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	 𝑝r𝑜𝑏 𝑋!,!!|𝑌! = 1 = 𝜙 𝑋! =
1

1+ 𝑒!! !!,!!
 [3.12]	

where  

	 𝑓 𝑋!,!! = 6.884+ 4.8665 ∗ log10 Za − 2.2965 ∗ log10 Ha + 0.2497

∗ log10 Zv + 2.5895 log10(Hv) 
[3.13]	

 

Prior Information 

Prior information represents a hypothesis statement regarding to our best knowledge about 

earthquake identification before examining the waveform data from the on-going rupture. 

The Bayesian prior, 𝑝𝑟𝑜𝑏 𝑌! = 1 , provides a relative probability of earthquake occurrence 

observed in the vicinity of the station. A uniform prior implies that any station in the 

network is equally likely to observe an earthquake signal versus a noise signal at any given 

time. The assumption of a uniform prior simplifies the calculation, but it is an overly biased 

representation of the seismic state. For example, large earthquakes are typically followed 

by aftershocks in the immediate spatial and temporal vicinity; as a result of the sudden 

increase of seismic activity during an aftershock sequence, the chance of having triggered 

signal due to earthquake is much higher than a triggered signal from noise. 

The short-term earthquake forecast model aims to quantify the probability of earthquake 

occurrence. We define the Bayesian prior information as the maximum probability of the 

ETAS forecast model in the surrounding region of the triggered station: 

	 𝑝𝑟𝑜𝑏 𝑌! = 1 = max𝑝𝑟𝑜𝑏!"#$ 𝑙𝑎𝑡, 𝑙𝑜𝑛  

with |𝑙𝑎𝑡 − 𝑙𝑎𝑡!| ≤ 0.5 , |𝑙𝑜𝑛 − 𝑙𝑜𝑛!| ≤ 0.5 
[3.14]	
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𝑝𝑟𝑜𝑏!"#$ 𝑙𝑎𝑡, 𝑙𝑜𝑛  is the earthquake probability resulted from an ETAS seismicity 

forecast model and 𝑙𝑎𝑡! , 𝑙𝑜𝑛!  is the location of the triggered station. With the assumption 

that earthquake source should be in the proximity of the earliest triggered stations, Eq[3.14] 

constrains the maximum forecast earthquake probability within the 0.5degree proximity 

(approx. 50km) of the station. Since observed seismicity activities tend to correlate highly 

with the results from the forecasting models, the Bayesian prior uses the ETAS probability 

as an indication of possible earthquake occurrence. A trigger at the 𝑖th seismic station is 

more likely to be created by an earthquake source when the ETAS forecast earthquake 

probability is large; this occurs during seismically active periods such as during an 

aftershock sequence. The method to calculate ETAS probability is presented in Chapter 

2.3. 

 

3.4.1.1 Model Performance 

In order to demonstrate the time-accuracy of the Bayesian model, we compare the 

likelihood and posterior predictions at every time increments (0.5s window collected ended 

at 0.5s, 1.0s, 1.5s, 2.0s, 2.5s, 3.0s after the pick time at the station) on the entire dataset. 

The likelihood prediction is the results from waveform analysis model presented in Chapter 

3.3 and the posterior prediction is the result from the Bayesian model described in the 

previous section. 

Table 3.4 shows the confusion matrix for the classification of earthquake versus non-

earthquake records based on the Bayesian approach under likelihood function and posterior 

function. The decision boundary is set at 50%, which is if the data is classified as an 

earthquake event if the predictive probability reaches above 50%; otherwise it is classified 

as a non-earthquake event. For the 0.5 sec analysis, the number of predicted earthquakes is 

reduced from 1053 (957 TP and 96 FP) in the likelihood prediction to 738 (727 TP and 11 
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FP) in the posterior probability, because the posterior function is more conservative in 

making predictions as it evaluates both the waveform and the prior seismicity information. 

As a result, the false alarm rate at the earliest prediction of 0.5 sec is significantly reduced 

in posterior prediction from 96 to 11. The seismicity prior model catches the dynamic 

change in the spatial-temporal clustering phenomenon in seismicity occurrences. For the 

same type of signals, the model tends to provide relatively higher probability results during 

a seismically active period, and predict a lower probability during seismically dormant 

period. For example, during a seismically active period such as an aftershock sequence, the 

relatively higher probability in prediction allows a quicker convergence to earthquake 

prediction for earlier alert delivery. On the other hand, when no seismic activity have been 

observed in the recent past, the system would take more time to identify the event to 

guarantee the level of accuracy in the prediction. As time progresses to 3.0sec, the posterior 

prediction also shows a decrease in the missed events, because the likelihood prediction 

dominates the solution as more available waveform data is collected. 

Available 
Data 

Predicted 
class 

True Classes Precision Accuracy 

  Likelihood 𝑝𝑟𝑜𝑏 𝑋!|𝑌!   Posterior 𝑝𝑟𝑜𝑏 𝑌!|𝑋!  Likelihood Posterior Likelihood Posterior 
  Earthquake Non-

Earthquake 
Earthquake Non-

Earthquake 
0.5s Earthquake 957 96 727 11 90.9% 98.5% 89.2% 83.4% 
 Non-

Earthquake 
171 1257 401 1342 

1.0s Earthquake 1035 61 939 14 95.9% 98.5% 93.7% 91.8% 
 Non-

Earthquake 
93 1292 189 1339 

1.5s Earthquake 1070 46 1010 18 95.9% 98.2% 95.8% 94.5% 
 Non-

Earthquake 
58 1307 118 1335 

2.0s Earthquake 1094 41 1049 23 96.4% 97.8% 96.9% 95.8% 
 Non-

Earthquake 
34 1312 79 1330 

2.5s Earthquake 1105 40 1076 25 96.5% 97.7% 97.4% 96.9% 
 Non-

Earthquake 
23 1313 52 1328 

3.0s Earthquake 1107 36 1089 27 96.8% 97.5% 97.7% 97.3% 
 Non-

Earthquake 
21 1317 39 1326 
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Table 3.4 Model performance of the Bayesain model with a 

simple prior at time increments: 0.5s, 1.0s, 1.5s, 2.0s, 2.5s, 3.0s 

after the triggered time at the station 

The objective of likelihood function is to minimize the loss function of the sum of missed 

and false alerts by analyzing the incoming waveform. However, the goal of the Bayesian 

posterior prediction prioritizes the minimization of false alerts since false alerts could 

confuse the decision making process of the entire seismic network while the initial missed 

alerts can be successfully identified (including with alternative existing algorithms) with 

more time and data. Similarly in Chapter 3.3.2 model selection, we focus on the precision 

and accuracy measures. Also shown in Table 3.4, the posterior prediction consistently 

provided a high precision rate, meaning low false alarm rate in the predictions. Although 

adjusting the decision boundary could reduce false alarms, it would be subjective as to how 

to adjust the value to achieve optimized results. The Bayesian approach is able to reduce 

the number of false alarms with the additional prior information. The initial accuracy is 

lower in posterior prediction than likelihood prediction because the initial high uncertainty 

in some of the earthquake records requires more time for discrimination; after the final 

update in the predictions, the accuracy rate at 3.0 s reaches to 97.3%.  

The Likelihood prediction uses peak amplitudes recorded from the waveforms; the 

posterior prediction combines the Likelihood probability with ETAS forecast probability. 

The posterior probability shows 1) consistent high precision percentage-an indication of 

low false alarm rate, and 2) high final accuracy percentage-an indication of low missed 

alarm rate. 

As shown in Figure 3.4, the predicted probability for all PGA ranges increases with time 

because as more data become available the uncertainties in the prediction are reduced. 

Also, the records with larger PGA range are predicted with a higher probability at an earlier 
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time. This indicates that the discriminant function performs well for the large events. To 

optimize the speed-reliability trade-off, we would recommend utilizing the classification 

starting at 0.5s after the trigger. 

 

Figure 3.4 Average posterior prediction probabilities for 

earthquake records with various PGA range 
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3.4.2 Bayesian approach with a Modified Prior 

How to appropriately define the prior information in a Bayesian framework has been a 

challenging issue. Although using the maximum ETAS probability has significantly 

improved the initial precision of the predictions (that is the false alarm rate from the rapid 

predictions is low, and thus reliability of early alerts is improved), it is a tuning parameter 

that I have chosen based on the empirical analysis. I started to formulate a new prior 

information function from the fundamental. 

Under Bayesian framework, the prior information in this particular question of identifying 

earthquake signals is expressed as 𝑝𝑟𝑜𝑏(𝑌! = 1). Based on the observed triggering 

information at the seismometer stations, the probability that a trigger is due to an 

earthquake should be the fraction of expected earthquake trigger out of the total number of 

the expected triggers observed at the station (including earthquake and non-earthquake 

triggers), the equation can be formulated as: 

	
𝑝𝑟𝑜𝑏 𝑌! = 1 =

𝜆!"
𝜆!" + 𝜆!"!#$

 
	

[3.15]	

where 𝜆!" is the expected rate of earthquake triggers and 𝜆!"!#$ is the expected rate of 

non-earthquake triggers. 

In general, the prior information is defined as the knowledge collected before seeing any of 

the observation data. However, in the problem of EEW, the predictive model is activated 

only if a trigger has been observed at a seismometer station. A trigger is detected when the 

ratio of short-term average to long-term average  (STA-LTA) of the real-time incoming 

waveforms has exceeded a threshold. Quantitatively, this implies that sudden ground 

shaking amplitude, 𝑋!, must be higher than the ambient noise level in the ground shaking or 
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an amplitude threshold (𝑎𝑚𝑝). With the triggering amplitude information, we can further 

express Eq[3.15] as follows: 

	
𝑝𝑟𝑜𝑏 𝑌! = 1 = 𝑝𝑟𝑜𝑏 𝑌! = 1|𝑋! > 𝑎𝑚𝑝 =

𝜆!"! !"#  
𝜆!"! !"#  + 𝜆!"!#$! !"#  

 
	
[3.16]	

𝜆!"! !"# is the expected rate of earthquake triggers that can create an amplitude greater 

than the observed value; 𝜆!"!#$! !"# is the expected number of non-earthquake triggers 

that can create an amplitude greater than the observed value. 

First, let’s focus on the calculation of 𝜆!"!#$! !"# . 

	 𝜆!"!#$! !"# = 𝑝𝑟𝑜𝑏 𝑎𝑚𝑝!"!#$ > 𝑎𝑚𝑝 !"# ∗ 𝜆!"!#$  	
[3.17]	

where 𝑝𝑟𝑜𝑏 𝑎𝑚𝑝!"!#$ > 𝑎𝑚𝑝!"#  is the percentage or fraction of recording non-

earthquake ground motion amplitudes greater or more extreme than the observed ground 

motion amplitude, and 𝜆!"!#$  is the expected total rate of non-earthquake triggers. As 

observed in the waveform amplitude information, the vertical velocity waveform amplitude 

is chosen for the ground motion amplitude here because the initial p-wave motion is more 

evidently shown in the vertical channel, and velocity waveform is often used for STA-LTA 

triggers for stability. 𝜆!"!#$  can be approximated by the average non-earthquake 

triggering rate observed at the station. Assuming that ambient noise, traffic, and regular 

surrounding activities, cause most of the non-earthquake triggers, the rate of non-

earthquake triggers should be relatively stable per geographical locations. For example, one 

can keep track of station specific triggers over one month or six months period of time, and 

use the daily false triggers as the 𝜆!"!#$ . The station specific parameter is particularly 

important because the number of triggers varies significantly across the seismic network. 
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For instance, stations in the urban area, such as Downtown Los Angeles, could observe 

over 100 triggers daily, whereas stations in suburbs, such as near the Mojave Desert, 

sometimes observe less than a single trigger annually. Information on how likely a trigger 

is due to noise can directly be obtained from the location of the stations. Since it is 

challenging to obtain records of the number of false triggers with the current EEW system, 

I chose an estimation of 𝜆!"!#$ = 10 per day across all the stations in the network for 

simplicity. For future investigation, it is important to keep track of station specific 

information for the entire seismic network. 

To calculate 𝑝𝑟𝑜𝑏 𝑎𝑚𝑝!"!#$ > 𝑎𝑚𝑝!"! , the distribution of the noise amplitude needs to 

be statistically analyzed using p-value concept. Figure 3.5 is a histogram of the vertical 

log(PGV) at the 0.5 sec after trigger from the 1000 noise data randomly sampled from 100 

most noisiest stations across the network during 2015. The line of best fit shown on top of 

the histogram shows that the data follows a normal distribution. The mean of the 

distribution is -2.8815, and the standard deviation is 0.5128. 



53 

 

 

 

Figure 3.5 Histogram of the vertical log10(PGV) at the 0.5s after 

trigger from the 1000 noise data randomly sampled from 100 most 

noisiest stations across the network during 2015 

p-value  

     Assuming that the log10(PGV0.5) of noise triggers follows the normal distribution 

above, every newly recorded log10(PGV0.5) will be evaluated to see how likely the 

data belongs to the noise distribution. Intuitively, the recorded log10(PGV0.5) is very 

likely to a noise trigger if it is close to the mean the distribution since most of the 

noise observations are recorded around the center region in a normal distribution. On 
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the other hand, the observation does not very likely belong to the distribution if the 

log10(PGV0.5) recorded is much higher or lower from the mean. Mathematically, p-

value is a terminology to quantify the statistical significance of an observation under 

null hypothesis. The definition of p-value is the probability of finding the observed 

data (or more extreme data) assuming the null hypothesis is true; graphically, it is 

computed by summing the area under the normal curve from the observed data point 

to the infinities (extremes), as shown in Figure 3.6 for the example of noise 

identification. As an example, if the observed 𝑙𝑜𝑔!"(𝑃𝐺𝑉!.!) falls around the center of 

the normal distribution near the mean, the p-value approaches 100% implies that the 

triggered signal most likely belongs to the noise distribution. On the other hand, an 

observation that falls near the tails of the curve indicates low p-value. Even in the 

cases with very low p-value, the evidence can only suggest very low probability of 

being noise, but cannot reject the signal being caused by alternative sources (e.g. low 

p-value can not suggest the observation indicates earthquake signal). Since 

𝑝𝑟𝑜𝑏 𝑎𝑚𝑝!"!#$ > 𝑎𝑚𝑝!"#  serves a similar purpose, the calculated p-value is used 

to approximate 𝑝𝑟𝑜𝑏 𝑎𝑚𝑝!"!#$ > 𝑎𝑚𝑝!"# : 

𝑝𝑟𝑜𝑏 𝑎𝑚𝑝!"!#$ > 𝑎𝑚𝑝!"# ≈ p-value 
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Figure 3.6 Visual explanation of two-tailed p-value computation 

under Normal Distribution 

In summary, the expected rate of non-Earthquake triggers, 𝜆!"!#$! !"# , is calculated based 

on the probability of having such amplitude noise trigger and the total number of false 

triggers observed at the specific station. This takes into consideration both the specific 

triggering information and the particular geological location data. 

Now, let’s focus on the calculation of 𝜆!"! !"# , which is derived from ground motion 

prediction equations (GMPE) and seismicity forecasting models presented in Chapter 2. 
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The idea is clear: the goal is to calculate the total rate of seismicity that could produce the 

waveform amplitude recorded at the seismic station. Firstly, taking the vertical 

log10(PGV0.5), a question is raised: what kind of earthquake source could create such 

observed waveform amplitude? The GMPE by (Cua and Heaton, 2007) can help answer 

the question. Mathematically, this GMPE is a function that takes into account of soil 

properties, hypocenter distance, and magnitude, type of wave phase (p-wave or s-wave), 

type of waveform (velocity or acceleration), and produces peak ground motion. By 

assuming that the observed PGV0.5 is the peak ground velocity of the p-wave (a reasonable 

assumption because earliest triggers in EEW tend to cause by near-site earthquake sources), 

the magnitude of the earthquake source can be calculated for any given location by inverse 

the GMPE model. Next, the region surrounding the station is discretized into grids of 

(𝑙𝑎𝑡, 𝑙𝑜𝑛), the distance between each of the point on the grid to the triggered station can be 

calculated, calculates the minimum magnitude. As a sanity check, due to the wave-

attenuation property, the calculated magnitude increases with distance for the same 

observed PGV. Then, the location of (𝑙𝑎𝑡, 𝑙𝑜𝑛) and the calculated magnitude needs to into 

the ETAS model in eq[2.2] to predict the expected rate of seismicity at each of the 

discretized grid. The ETAS seismicity forecast model presented in Chapter 2 calculates the 

all of the expected rate of earthquakes with a minimum magnitude and above at every point 

on the earth surface. Since the ETAS are produced in real-time, the regional seismicity rate 

can be directly pulled out with minimum computational effort (creating no delay in the 

EEW alerts), the calculation of 𝜆!"! !"#(𝑙𝑎𝑡, 𝑙𝑜𝑛,𝑀!"#) becomes simple. Lastly, the total 

seismicity rate is calculated by summing the discretized seismicity rate in the vicinity of the 

triggered station, mathematically it follows 𝜆!"! !"# = 𝜆!"! !"#(𝑙𝑎𝑡, 𝑙𝑜𝑛,𝑀!"#)!"#,!"! . 

For simplicity, the region of [−0.5,+0.5] latitude degree by [-0.5, +0.5] longitude degree 

area centered at the triggered seismic station is considered as the region of interest in this 

study instead of applying a circular region with radius r km. For practical implementations, 
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the region to be considered should depend on the station density of the network due to the 

propagation of seismic waves, the earthquake source tend to locate very close to the first 

triggered station in the network. For a perfect seismic network with no malfunctioning 

stations, the concept of voronoi cell can be considered. 

The concept follows the flow chart in Figure 3.7. 

 

Figure 3.7 Seismicity rate calculation in a flow chart 

To visually demonstrate the calculation of 𝜆!"! !"#, consider the M4.3 La Habra 

earthquake as an example, as shown in Figure 3.8 to Figure 3.10. On March 29, 2014, 

4:11:14 am a M4.3 La Habra earthquake triggered station CI.FUL along with other the near 

by local seismic stations. The recorded log10(PGV0.5) is -1.1217 (about PGV0.5 = 0.61 

cm/s). Figure 3.8 shows the source to station distance map; the calculation is based on the 

great-circle distance between the discretized location and the station location.  Figure 3.9 

shows the minimum magnitude intensity that could produce such amplitude; this 

calculation is done by applying the inverse GMPE by (Cua and Heaton, 2007). Figure 3.10 

shows the seismicity rate expected at each location from the ETAS model. Since the 

forecasted seismicity varies significantly depending on the previously observed seismic 
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activities, the same waveform amplitude would reflect dramatically different seismicity rate 

recorded at a different time or location. For this particular event, since three foreshocks 

with M2-M3 were observed near the station less than 24hr prior, the expected seismicity 

rate is relatively higher in the northwest region about 5km away from the station.  

 

Figure 3.8 Source to station Distance Calculation based on the 

initial p-wave amplitude observed at the station 
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Figure 3.9 Magnitude calculation at the sources based on the 

initial p-wave amplitude observed at the station 

 

Figure 3.10 Seismicity rate calculation obtained from the ETAS 

model 
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After obtaining the seismicity rate map from Figure 3.10, the total seismicity rate 

𝜆!"! !"#is calculated by summing all seismicity rates in the region. In this particular trigger 

at CI.FUL for the M4.3 La Habra earthquake, 𝜆!"! !"# = 18.6. 

3.4.2.1 Model Performance 

In order to demonstrate the time-accuracy of the Bayesian model, we compare the 

likelihood and posterior predictions at every time increments (0.5s window collected ended 

at 0.5s, 1.0s, 1.5s, 2.0s, 2.5s, 3.0s after the pick time at the station) on the entire dataset. 

The likelihood prediction is the result of the waveform analysis model presented in Chapter 

4.3, and the posterior prediction is the result of the Bayesian model described in the 

previous section. 

Table 3.5 shows the confusion matrix for the classification of earthquake versus non-

earthquake records based on the Bayesian approach under likelihood function and posterior 

function. The decision boundary is set at 50%, meaning that the data is classified as an 

earthquake event if the predictive probability reaches above 50%; otherwise it is classified 

as a non-earthquake event.  

Available 
Data 

Predicted 
class 

True Classes Precision Accuracy 

  Likelihood 𝑝𝑟𝑜𝑏 𝑋!|𝑌!   Posterior 𝑝𝑟𝑜𝑏 𝑌!|𝑋!  Likelihood Posterior Likelihood Posterior 
  Earthquake Non-

Earthquake 
Earthquake Non-

Earthquake 
0.5s Earthquake 957 96 843 17 90.9% 98.0% 89.2% 87.8% 
 Non-

Earthquake 
171 1257 285 1336 

1.0s Earthquake 1035 61 944 20 95.9% 97.9% 93.7% 91.8% 
 Non-

Earthquake 
93 1292 184 1333 

1.5s Earthquake 1070 46 1013 24 95.9% 97.7% 95.8% 94.4% 
 Non-

Earthquake 
58 1307 115 1329 

2.0s Earthquake 1094 41 1052 28 96.4% 97.4% 96.9% 95.8% 
 Non-

Earthquake 
34 1312 76 1325 
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2.5s Earthquake 1105 40 1081 25 96.5% 97.5% 97.4% 97.0% 
 Non-

Earthquake 
23 1313 47 1325 

3.0s Earthquake 1107 36 1095 28 96.8% 97.5% 97.7% 97.5% 
 Non-

Earthquake 
21 1317 33 1325 

Table 3.5 Model performance of the Bayesian model with a 

modified prior at time increments: 0.5 s, 1.0 s, 1.5 s, 2.0 s, 2.5s, 

3.0 s after the triggered time at the station 

3.5 Comparison Results of Waveform Analysis vs. Bayesian models 

Following the definitions of TP (True Earthquake predictions), FP (False earthquake 

predictions), FN (missed earthquake predictions), and TN (True non-earthquake 

predictions), the results from the three proposed models at 0.5sec, 1.5sec, and 3.0sec are 

presented plot in Figure 3.11 to Figure 3.13, respectively. The results of the accuracy and 

precision metrics as functions of time are plotted in Figure 3.14 and Figure 3.15. 

The predictive results for all three models vary the most at 0.5 sec, while the results are 

almost indifferent with no preference at 3.0 sec. This shows that the Bayesian approach 

with prior information has a much stronger influential initially when the waveform is not 

sufficient. In rapid detections of EEW, the algorithm aims to minimize the accuracy ratio, 

which is the rate of False Earthquake predictions and the rate of missed Earthquake 

predictions. As shown in Figure 3.11, waveform analysis has the highest number of false 

prediction, while the Bayesian framework with the simple prior has the highest number of 

missed predictions. The Bayesian framework with the modified prior compromises the 

benefits of moderate false and missed predictions. As time progresses, the waveform 

analysis component dominates the results because the model is able to observe more 

available on-going data. Therefore, the prediction results are similar at the 3.0sec analysis. 
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Figure 3.11 Comparison of the predictive results from waveform 

analysis, Bayesian model with simple prior, and Bayesian model 

with modified prior at 0.5sec after station trigger. 

 

Figure 3.12 Comparison of the predictive results from waveform 

analysis, Bayesian model with simple prior, and Bayesian model 

with modified prior at 1.5sec after station trigger. 
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Figure 3.13 Comparison of the predictive results from waveform 

analysis, Bayesian model with simple prior, and Bayesian model 

with modified prior at 3.0 sec after station trigger. 

In addition to the analysis of the raw categorical records, the precision and accuracy 

metrics from Eq [3.6] and Eq [3.7] are also considered. In reality, an earthquake is a 

localized rare event. Therefore, if all stations in the network are considered, the number of 

non-earthquake stations will dominate in the total number of triggers. The accuracy 

measure is sensitive to this unbalanced data records. As shown in Figure 3.14, accuracy 

measures for all three models improve with time. The waveform analysis demonstrates 

better accuracy over all 6 predictions because waveform analysis has much lower missed 

predictions. However, accuracy (the sum of all tree predictions) is not the only goal of 

performance measure. In fact, in the challenge of rapid earthquake identification, low false 

alarm rate is more important than missed alarms (false alarm leads to confusion in the 

system, while temporary missed alarm might be adjusted with more in-going data), so 

precision analysis also needs to be emphasized. 
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Figure 3.14 Accuracy rate (%) for waveform analysis, and 

Bayesian model with simple prior, Bayesian model with modified 

prior as a function of time. 



65 

 

 

 

 

Figure 3.15 Precision rate (%) for waveform analysis, Bayesian 

model with simple prior, and Bayesian model with modified prior 

as a function of time. 

In the precision analysis of Figure 3.15, both of the Bayesian models outperform over the 

waveform analysis over 5% in the first alert. The reason is that the rates of false predictions 

are extremely low for the Bayesian models. As more data comes in, the precision rates of 

all three models converge.  

All three models demonstrate high accurate predictions. By compromising the precision 

and accuracy requirements for the EEW purposes, the Bayesian model with the modified 

prior is recommended. The predictions from this model are further validated through cross-

validation for robustness and comparing with existing algorithms. To summarize the signal 

discrimination process (classifying earthquake versus noise) for real-time implementation 

for EEW, the steps in the proposed model follow the flow chart in Figure 3.16. 
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Figure 3.16 Flow chart of the proposed signal discrimination 

process for real-time implementation 

3.6 Cross-validation Results 

To examine the robustness of the model for future performance, we also performed the 

leave-one-out cross validation method on the data set for predictions at every time step. 

The leave-one-out method divides the data into two subsets, using all the data except one to 

train the model, and then validates the prediction on the left out data point to evaluate the 

performance of the model. The process is repeated until all the data has been assessed as 

the validation data, which in our case is 2,481 data points. The idea of the method is to use 

the validation set as ‘new’ data to test the performance of the trained model; the mis-

classification rate on the validation data set is a good indication of how well the model will 

predict in the future.  

The cross-validation performance is similar to the training performance. Note that Table 

3.6 Cross-validation confusion matrix shows the prediction result on the validation set only. 
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The precision rate of earthquake detection is above 98%, which is similar in the training 

evaluation in Table 3.5. This confirms the robustness of the model performance for future 

earthquake data. 

 Predicted class True Class   
  Earthquake Non-Earthquake Precision Accuracy 
0.5 s Earthquake 843 18 97.91% 87.79% 

None 
Earthquake 

285 1335 

1.0 s Earthquake 943 20 97.82% 91.74% 
Non-Earthquake 185 1333 

1.5 s Earthquake 1013 24 97.69% 94.4% 
Non-Earthquake 115 1329 

2.0 s Earthquake 1052 28 97.41% 95.81% 
Non-Earthquake 76 1325 

2.5 s Earthquake 1081 29 97.39% 96.94% 
Non-Earthquake 47 1324 

3.0 s Earthquake 1095 28 97.51% 97.54% 
Non-Earthquake 33 1325 

Table 3.6 Cross-validation confusion matrix 

Figure 3.17 shows the MMI shaking intensity of the missed earthquake events at 0.5s and 

3.0s after the triggered time. At 0.5 s after the triggered time, 80% of the 401 missed events 

are within the weak shaking intensity range; at 3.0s after the triggered time, all the 39 

missed events are within the weak shaking intensity (less than 14cm/s2). The consequence 

of the remaining missing events is negligible for the purpose of EEW. For a rapid 

discriminant algorithm that is activated promptly after the trigger time at a single station, 

the priority is to minimize the false alarm rate that could lead to confusion in the entire 

system, where as the temporary missed events can be identified slightly later using more 

available data. The cross-validation result is consistent with the training result in Table 2; it 

provides us with more confidence in the reliability of the algorithm in making predictions 

in the future. 
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a)  

b)  

Figure 3.17 MMI Shaking Intensity for the missed earthquake 

events at a) 0.5 s and b) 3.0 s after triggered time 
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3.7 Comparison to the 𝝉𝒄 − 𝑷𝒅trigger criterion 

The result of the new method is also compared with a 𝜏! − 𝑃! trigger criterion applied with 

3.0 s data. 𝜏! and 𝑃! are well-established EEW parameters observed during initial ground 

motion, which are used to predict the final magnitude of an ongoing earthquake (Kanamori 

2005). The period parameter 𝜏! is defined as 𝜏! = 2𝜋 𝑟 where 

𝑟 = 𝑢! 𝑡 𝑑𝑡!!
! 𝑢! 𝑡 𝑑𝑡!!

! , 𝑢 𝑡  is the vertical displacement, and 𝜏! is the time 

window used. 𝜏! is set at 3 s in the current Onsite algorithm implemented in California. 

The 𝜏! − 𝑃! trigger criterion was proposed by (Bose, Heaton and Hauksson 2012) to 

reduce the number of false alerts from non-earthquake signals. The 𝜏! − 𝑃! criterion 

quantizes the quality of each trigger by assigning a parameter Q to the pair value of 𝜏! − 𝑃! 

determined from the initial 3.0 s of P-wave data. The parameter Q is assigned with one of 

three values: 0, 0.5, and 1. Q=0.5 and Q=1 mean that the detected events are considered 

moderate to good quality data that are relevant to EEW, and Q=0 means that the trigger is 

due to a non-earthquake source. Figure 3.18 shows the 𝜏! − 𝑃! plot of all earthquake and 

non-earthquake (noise and teleseism) data in our data set using a 3.0 s window following 

the P-wave trigger, Q=1 is the region between the 2 solid lines, and Q=0.5 is the region 

between the solid line and the dashed line. All the points outside of the dashed lines are 

assigned to be Q=0. 
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Figure 3.18 𝜏! − 𝑃! plot of all earthquake and non-earthquake 

(noise and teleseism) data in our data set using a 3.0 s window 

following the P-wave trigger for measurement. The solid line and 

dashed line are the decision boundaries of the parameter Q=1 and 

Q=0.5, respectively.  The color intensity of the earthquake data 

represents the PGA observed 

The predictive result of the new method at 0.5 s and 3.0s is compared to the result of the 

𝜏! − 𝑃! trigger criterion with the decision boundary at Q=1 and Q=0.5. The confusion 

matrix of the predicted result is shown in Table 3.7. 

 Predicted Class True Class    
  Earthquake Non-

Earthquake 
Total 
Predictions 

Precision Accuracy 

0.5s Earthquake 843 17 860 98.0% 87.82% 
 Non-

Earthquake 
285 1336 1621 

3.0s Earthquake 1095 28 1123 97.5% 97.4% 
 Non- 33 1325 1358 
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Earthquake 
Tc-Pd 
3.0s 
Q=1 

Earthquake 793  52 845 93.85% 84.40% 

 Non-
earthquake 

335 1301 1636 

Tc-Pd 
3.0s 
Q=0.5 

Earthquake 955 206 1161 82.26% 84.72% 

 Non-
earthquake 

173 1147 1320 

 Total 
Observations 

1128 1353    

Table 3.7 Comparison results of the proposed method with 

𝜏! − 𝑃! method. 

Our proposed method has a higher accuracy rate compared to the 𝜏! − 𝑃! method. This 

might be the result of several factors: 1) calculation of 𝜏! and 𝑃! uses the integration of 

displacement and velocity amplitudes, where long-period trends could be significantly 

amplified during multiple integration from the acceleration record, while the proposed 

method directly uses peak amplitudes to reduce processing artifacts; 2) 𝜏! − 𝑃! uses the 

vertical component of ground motion data only, where the proposed method uses all three-

component data and catalog data; 3) the proposed method is empirical and directly data-

driven, which better characterizes the actual recorded observations. Most importantly, the 

proposed method provides confident results at 0.5 s after the trigger time, whereas 𝜏! − 𝑃! 

currently for a fixed-window of data collection of 3 s. Of course, it can be modified for 

different time windows, but it requires further testification and calibration. 

3.8 Examples 

    The application of the algorithm is demonstrated for four events, including ambient noise 

false triggers on 24 March 2015, a M3.7 Chino Hills aftershock on 29 July 2009, a M4.7 
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Los Angeles mainshock on 18 May 2008, and a M7.8 Japan teleseismic earthquake on 29 

May 2015. All four events were excluded from the training data set, so the performance of 

these examples reflects the true behavior of the prediction of new data in the future. For 

each event, the analyses of the two near-field stations are presented.  

24 March 2015 – ambient noise false triggers in Southern California   

False picks are triggering the seismic networks hundreds to thousands times daily, 

especially in the urban areas. As an example, two false triggers at CI.CFS and CI.NEN 

stations occurred near Lancaster and San Bernardino on 24 March 2015, respectively. 

Although a sudden increase in acceleration has been observed at both stations, the PGA 

ground motions are less than 2cm/s2, as shown in Figure 3.19. The benefits of the Bayesian 

approach are clearly demonstrated through these examples. If waveform analysis is the 

only model used for predictions, the large triggering amplitudes indicating high earthquake 

probability (over 60% being earthquake in both cases) could lead to incorrect alerts 

delivered. Although the conventional EEW method might correctly predict that the trigger 

is due to a non-earthquake source (less than 2% being earthquake in both cases), the 

decision is made after a fixed time window of 3.0 s after triggering. Alternatively, the 

posterior probability from the proposed method of Bayesian analysis makes the decision 

that the signal is non-earthquake immediately at 0.5 s after trigger, which optimize both the 

leading time for alerts and accuracy in the prediction. This is because 1) the forecasted 

earthquake probability in the prior information is low since no seismic activities were 

observed in the recent past and 2) the relatively high amplitude of ground shaking 

diminishes after less than a second which dissimilar to the patterns and characteristics of an 

ongoing earthquake. The two false triggers could be caused by busy traffic, collisions, or 

trains passing by. 
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Figure 3.19 initial 3.0 sec vertical acceleration waveform and 

prediction results for stations CI.CFS and CI.NEN during ambient 

noise false triggers on 24 March 2015 

29 July 2008 - M3.7 Chino Hills aftershock  

     A M3.7 Chino Hills aftershock occurred on 29 July 2008, about 11 hours following the 

M5.5 mainshock. Immediately after the Chino Hills mainshock, the ETAS prior probability 

calculated at the stations located near the mainshock increased significantly due to the 

high-expected seismic activity during the aftershock sequence. Figure 3.20 indicates the 

location of the hypocenter and triggered stations. As shown in Figure 3.21, although the 
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amplitudes of P-wave reduced after the first trigger resulting in lower probability in the 

likelihood prediction, the posterior probability remains high with the assistance of the high 

prior seismicity probability. The PGA is recorded in the later phase after the arrival of S-

wave. 

 

Figure 3.20 Map of M3.7 Chino Hill Aftershock: hypocenter in 

the yellow star and locations of CI.OLI and CI.LBW1 in red 

triangles 
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Figure 3.21 initial 3.0 sec vertical acceleration waveform and 

prediction results for stations CI.OLI and CI.LBW1 during M3.7 

Chino Hill aftershock on 27 July 2008  
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18 May 2009 - M4.7 Los Angeles earthquake  

     The M4.7 Los Angeles earthquake occurred on 18 May 2009. No recent seismicity was 

observed in the region prior to the event, so the prior probability of this event shows low 

probability of earthquake occurrence. Figure 3.22 indicates the location of the hypocenter 

and triggered stations. In Figure 3.23, the waveforms collected at the stations closest to the 

hypocenter, CI.WNS and CI.MIS, show strong on-going earthquake characteristics. 

Although the prior probability is low, the convincing indication of earthquake event from 

the likelihood probability dominates the posterior probability. This example demonstrates 

that if sufficient evidence from the arrival data shows earthquake characteristics, the effect 

of prior probability becomes negligible.  

 

 

Figure 3.22 Map of M 4.7 Los Angeles earthquake: hypocenter in 

the yellow star and locations of CI.WNS and CI.MIS in red 

triangles 
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Figure 3.23 initial 3.0 sec vertical acceleration waveform and 

prediction results for stations CI.WNS and CI.MIS during M4.7 

Los Angeles earthquake on 18 May 2009.  
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30 May 2015 - M7.8 Japan teleseismic earthquake 

     Teleseismic events are large earthquakes that occur at far distances, but are still 

observed by the local network. It is expected that the sensors will be sensitive (and 

triggered) by these signals, but the shaking does not affect the local region, and thus they 

should be classified as not EEW-relevant earthquake signals. The high frequency feature 

inputs in the proposed method aim to successfully discriminate teleseismic events from 

local earthquakes. As shown in Figure 3.24, CI.SMR and CI.SMW stations were triggered 

by the teleseismic event, but the amplitudes in acceleration records are small enough that 

they do not disturb the local community. The initial likelihood probability is relatively high 

due to the high uncertainty in the short data collected. Since no local seismicity was 

observed in the recent past, the ETAS prior probability was low, resulting in low posterior 

probability as well. The triggers from this teleseismic event would be ignored under the 

prediction of the proposed model. 
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Figure 3.24 Initial 3.0 sec vertical acceleration waveform and 

prediction results for stations CI.SMR and CI.SMW during M7.8 

Japan Teleseismic earthquake on 30 May 2015. 
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3.9 Discussion and Conclusion 

We present a Bayesian probabilistic approach for single station rapid discrimination of 

EEW-relevant earthquake signals. The precision rate of earthquake classification at 0.5 sec 

after the P-wave achieves 98.5%. Waveform data from past earthquakes, noise, and 

teleseismic records are used in training the likelihood function. The prior information is 

constructed from the catalog information based on an ETAS seismicity forecast probability 

at the time of station trigger. Rapid earthquake detection becomes feasible due to the 

advancement in information technology, so that both waveform analysis and earthquake 

forecasting can be carried out in real-time. 

The use of three component velocity and acceleration data extensively explores all the 

recorded information from the seismic sensors. Both accelerometer and broadband sensor 

data can be used with one-step integration or differentiation. The absolute amplitude is 

directly used to avoid computational errors accumulated through data processing. 

The use of the seismicity Bayesian prior information differentiates the proposed method 

from other conventional earthquake discrimination methods that analyze waveforms only. 

It mimics human behavior in the decision-making process during an ongoing earthquake, 

especially the expectation that earthquake occurrence rises after a moderate earthquake. 

The forecasting process automatically applies to all the earthquake events in the catalog, 

with no need to label each individual event as foreshock, mainshock, aftershock, or 

aftershock of aftershock. 

The practical benefits of the proposed method are revealed especially during aftershock and 

swarm sequences. During aftershock sequences, the repetitive ground shaking continuously 

deteriorates the already weakened infrastructure components. Seismic damage can be even 

more significant if the aftershocks occur close to a populated urban area, so the demand for 
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a fast EEW system becomes more significant during this time period to the rescue teams 

and residents. In addition, roughly 40% of earthquakes are preceded by smaller events 

known as foreshock-mainshock sequences (Abercrombie & Mori, 1996), and in such cases, 

the forecasting information can contribute to rapid identification of the large mainshock in 

our method. In all of the above cases, the proposed method can provide optimally fast alerts 

to users near the triggered station. 

Unfortunately, it is recognized that the seismicity-based prior does not always give the 

‘correct’ prediction, because not all mainshocks are preceded by foreshocks. If no previous 

seismic activity is recorded, the algorithm behaves similarly to the existing methods. As 

long as the catalog contains at least one prior observed seismic activity, the Bayes prior 

becomes important and influential when not enough waveform observations are available 

to fully constrain the uncertainty of the predicted result. When sufficient observations are 

collected, predictions can be fully determined by the waveform data. The proposed method 

does not replace the existing earthquake discrimination algorithms that clearly have 

important features arising from the use of longer data windows and/or network-based 

triggers. Moreover, the proposed method provides the potential benefit of faster, more 

reliable alerts for regions in the vicinity of the epicenter, where the severest shaking is 

experienced. 

The simple model for the likelihood function guarantees rapid processing and alert 

delivery; the addition of Bayes’ prior in seismicity forecast ensures the reliability of the 

posterior prediction. This method is the first algorithm that bridges the gap between 

earthquake forecast and earthquake early warning. The probabilistic approach allows users 

to customize the threshold based on the tolerance of uncertainties towards various 

applications. The straightforward implementation of the model suggests that it could be 

incorporated in real-time analysis.  
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C h a p t e r  4  

3 ETAS Prior application two: Location 

Estimation 

 

4.1 Introduction 

Due to the rapid advancement of digital seismic networks, Earthquake Early Warning 

(EEW) currently uses real-time waveform information to rapidly estimate source 

parameters such as the magnitude and location of an earthquake (Heaton 1985) (Allen and 

Kanamori 2003). The source parameters are then used to predict ground motion 

characteristics at various sites. This waveform analysis approach for source parameter 

characterization typically requires collecting a few seconds of data after the first detection 

of P-waves. Since the arrival of S-waves follows immediately after the arrival of P-waves 

in the epicentral region, processing delays must be minimized if we are to have any hope of 

providing warnings of potentially damaging S-waves near an earthquake’s epicenter.      

(Cua 2005) and (Cua and Heaton, The Virtual Seismologist (VS) method: A Bayesian 

approach to earthquake early warning 2007) described a framework for deriving the 

probabilities of predicted ground shaking based on information that is available at any 

given instant for an EEW system. They suggested that the Bayesian probabilistic approach 

could be used to simulate the type of common-sense analysis that is performed by human 

experts if they had the time to intervene in EEW. As explained in Chapter 1, Bayesian 

probabilistic inference provides a natural framework to quantify uncertainties in combining 
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heterogeneous sources of information. In addition to waveform analysis in the conventional 

EEW algorithms, they suggested using the fact that many earthquakes occur close to the 

locations of past earthquakes that occurred in prior minutes to days. If a seismic station 

detects shaking, then it is natural to inquire whether that station is close to previous activity. 

In order to use this concept in a working EEW system, we must develop this simple idea 

into a practical and reliable algorithm that estimates the probabilities of potential 

earthquake locations, given the seismic data available from the network and the eathquake 

catalog records, for the time immediately preceding the detected shaking (Gerstenberger, et 

al. 2005). 

We begin with Bayes’ theorem, which states that the probability magnitude 𝑀 and station-

epicenter-distances 𝑅, given seismic data 𝑆(𝑡) available at time 𝑡 is formulated: 

	 𝑃 𝑀,𝑅 𝑆(𝑡) ∝ 𝑃 𝑆(𝑡) 𝑀,𝑅 𝑃(𝑀,𝑅) [4.1]	

𝑃 𝑀,𝑅 𝑆(𝑡)  is usually referred as the Bayesian posterior function, 𝑃 𝑆(𝑡) 𝑀,𝑅  is called 

the likelihood function and 𝑃(𝑀,𝑅) is called the Bayesian prior. Most existing EEW 

algorithms focus on the likelihood function; that is, what magnitude and station-epicenter-

distances produce seismic data similar to the data just recorded? For the purposes of this 

study, we assume that the likelihood function is provided by the Gutenberg Algorithm 

(Meier, Heaton and Clinton 2015). The Gutenberg Algorithm (GbA) uses a filterbank to 

decompose a real-time waveform into different frequency bands, and then efficiently 

searches an extensive waveform database to identify past records with similar time-

frequency characteristics and uses them to compute probabilistic source parameter 

estimates for the real-time waveform. The GbA is designed to be optimally fast, first 

estimates are available using only 0.5 s of data from the closest station. However, earliest 

estimations could be poorly resolved due to trade-offs between earthquake magnitude and 

epicenter distance. Introducing prior information to assign relative probability based on 
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established empirical relationships can reduce this issue. There are several choices for 

Bayesian prior: perhaps the most general choice is to assume that seismic activity obeys the 

Gutenberg-Ritcher frequency-magnitude law (GR law), in which case the prior probability 

can be approximated by 𝑝𝑟𝑜𝑏 𝑀,𝑅 = 10!!!"𝑅, where 𝑎 and 𝑏 are GR law parameters 

and 𝑅 is the scalar distance amplitude. This proposed prior information simply states that 

the earthquake frequency decreases exponentially with magnitude and the area of a ring at 

distance 𝑅 grows linearly with 𝑅. 

In this chapter, we focus on earthquake location parameter estimation. We propose a 

Bayesian prior that is based on the principle that earthquake sequences tend to cluster in 

time and space. In particular, we use Epidemic-Type Aftershock Sequence (ETAS) Models 

to derive a location distribution with far more spatial-temporal information than the simple 

prior mentioned previously (Y. Ogata 1998). We show how an ETAS prior can provide 

more accurate source-parameter estimates at short warning times with minimal seismic 

waveform data. In fact, the use of an ETAS seismicity forecast model as a Bayesian prior 

often provides accurate estimates of the epicenter location that are available simultaneously 

with the detection of an event. Even in cases with a highly uncertain ETAS prior, the 

accurate location estimation is converged immediately with sufficient data processed by 

GbA. 

We collected all 504 M4+ earthquakes in southern California between 1990 an 2015. We 

evaluated the location estimation performance of Bayesian analysis techniques making use 

of the GbA as the likelihood function combined with an ETAS model for the Bayesian 

prior. We also present the earliest estimations for examples of a M5.2 Lone Pine 

Earthquake and a M5.4 Chino Hills Earthquake in detail. The two examples demonstrate 

the importance of Bayesian prior and likelihood interaction to ensure the optimum results 

in different seismic environments. 
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4.2 Method 

4.2.1 Bayesian Inference in EEW Location Estimation 

To focus on location estimation only, Bayes’ Theorem from Eq [4.1] can be simplified to: 

	 𝑃 𝐿𝑎𝑡, 𝐿𝑜𝑛 𝑆(𝑡) ∝ 𝑃 𝑆(𝑡) 𝐿𝑎𝑡, 𝐿𝑜𝑛 𝑃(𝐿𝑎𝑡, 𝐿𝑜𝑛) [4.2]	

where (𝐿𝑎𝑡, 𝐿𝑜𝑛) are the epicenter location of the earthquake. In this formulation, 

𝑃 𝐿𝑎𝑡, 𝐿𝑜𝑛 𝑆(𝑡)  is the Bayesian posterior function, 𝑃 𝑆(𝑡) 𝐿𝑎𝑡, 𝐿𝑜𝑛  is the likelihood 

function and 𝑃(𝐿𝑎𝑡, 𝐿𝑜𝑛) is the Bayesian prior. The following describes how each of the 

terms is derived. 

4.2.2 Prior Information – ETAS seismicity model 

The Bayesian prior information is a spatial distribution of earthquake probability produced 

by ETAS models, where each of the observed earthquakes stochastically generates 

potential earthquakes in the future. The ETAS model is simply the results calculated in 

Chapter 2.3. The forecast map for the ETAS model demonstrates the relative probability of 

expected earthquake occurrences of a region, which provides guidance on where is more 

likely to have an earthquake nucleation. Thus, normalization is not necessary in the 

process, as it vanishes in the proportionality property in Eq[4.2]. 

4.2.3 Likelihood Function– The Gutenberg Algorithm 

The GbA is a probabilistic approach to estimate EEW source parameters using real-time 

waveform information. During an ongoing earthquake, GbA performs real-time time-

frequency analysis on the collected waveform using minimum-phase-frequency filter 

banks, then efficiently search within a catalog of events for similar characteristics. At every 

time increment after the P-wave arrival, each triggered station computes the relative 
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probability of magnitude and epicenter distance estimations. The focus is to explore 

maximum available information during the EEW process. For details of the algorithm, we 

refer to (Meier, Heaton and Clinton 2015). 

In single station location inference, we convert the station-to-source distance probability 

density function from GbA onto a 2-dimensional spatial distribution that is most likely to 

produce the recorded waveform 𝑆(𝑡), 𝑃!(𝑆(𝑡)|𝐿𝑎𝑡, 𝐿𝑜𝑛), according to the distance 

between the station 𝑗 to the location (𝐿𝑎𝑡, 𝐿𝑜𝑛). Combining location estimation from 

multiple 𝐾 stations is straightforward, as the probabilistic formulation of the algorithm 

simply requires that we multiply the single-station spatial probability functions: 

	
𝑃 𝑆(𝑡)|𝐿𝑎𝑡, 𝐿𝑜𝑛 = 𝑃!(𝑆(𝑡)|𝐿𝑎𝑡, 𝐿𝑜𝑛)

!

!!!

 
[4.3]	

Eq [4.3] describes the likelihood function as suggested in Eq [4.2]. 

4.3 Data  

We collected all 506 M4.0+ earthquakes in Southern California from 1990 to 2015; from 

which the catalog locations of the events are then compared to the estimated location 

parameters at every half-second interval after the event detection. The locations of all the 

events are shown in Figure 4.1. The data set includes 03 October, 2009 M5.2 Lone Pine 

Earthquake, located at (-117.86, 36.39); and 29 August, 2008 M5.4 Chino Hills 

Earthquake, located at (-117.76, 33.95). The details of the two events are provided in Table 

4.1. The two events represent two characteristic setting: the Lone Pine earthquake 

demonstrates the accuracy and speed estimations due to Bayesian prior information during 

a seismic sequence, while the Chino Hill earthquake demonstrates the importance of 

Bayesian likelihood function to reduce prior uncertainty during a seismic dominant period. 
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Figure 4.1 Catalog location of the 506 target M4.0+ earthquakes 

in Southern California from 1990 to 2015. Including 2009 Lone 

Pine M5.2 Earthquake in red star and 2008 Chino Hills M5.4 

Earthquake in yellow star.  

Name	 Time	 Magnitude	 Latitude	 Longitude	

Lone	Pine	Earthquake	 2009/10/03	
01:16:00	

5.2	 -117.86	 36.39	

Chino	Hills	Earthquake	 2008/08/29	
18:42:15	

5.4	 -117.76	 33.95	

Table 4.1 The detailed Information on Lone Pine Earthquake and 

Chino Hills Earthquake 
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The catalog data used in Bayesian prior information was downloaded from the Southern 

California Earthquake Data Center (http://data.scec.org/). It includes source parameter 

information, such as origin time, hypocenter location, and magnitude of 567258 historic 

seismic events in Southern California from 1981 to 2015. 

The waveform data set is collected from the global database of waveforms compiled in 

Meier (2015).  All the waveforms have been preprocessed to eliminate poor quality 

records, including missing channel records, low signal-to-noise ratios, low sampling rates, 

and clipped records. The subset of events used in this study includes 50750 three-

component waveform records from a total of 3523 events.  

 

4.4 Results  

4.4.1 M5.2 Lone Pine Earthquake 

At 01:16:00 on October 03, 2009, the M5.2 Lone Pine earthquake first triggered the 

vertical channel of station CI.CGO 3.5 seconds after the origin time. The station is about 

20km northeast of the catalog event location. The location estimation in GbA resulted in a 

high initial uncertainty which decreased with time; the location error reaches 18km at 14 

seconds after the origin time, as shown in Figure 4.3 a) b) and c).  

At the moment of the first P-wave arrival at CI.CGO, the ETAS seismicity forecast map 

developed an earthquake probability with peak distribution at 15km southwest of the 

triggered station, shown in Figure 3.2. This was a consequence of the foreshock series 

recently accumulated in the area. By including the ETAS seismicity map as a Bayesian 

prior, the maximum posterior location estimation immediately converged to the location 

error of 2km, as shown in Figure 4.3 b) d) and f).  
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     At every time increment during the ongoing event, the location error estimated from 

GbA fluctuates around 10 to 20km; with the ETAS seismicity map included as the 

Bayesian prior, the location error reduced to less than 3km, as shown in Figure 4.4. 

 

Figure 4.2 Seismicity Forecast Map for Lone Pine M 5.2 

Earthquake. It was produced immediately after the first station 

trigger at CI.CGO. The intersection of the two blue lines is the 

catalog location 
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a b  

c d  

e f  

Figure 4.3 Probabilistic location estimation map of the M5.2 Lone 

Pine Earthquake at various times after the first station trigger. a) 

c) and e) are results of Gutenberg Algorithm at 0.5 sec, 5.5 sec, 

and 10.5 sec after the first trigger, respectively. b) d) and f) are 
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posterior results of Gutenberg Algorithm with Prior at 0.5 sec, 5.5 

sec, and 10.5 sec after the first trigger, respectively. The 

intersection of the two blue lines is the catalog location. 

 

Figure 4.4 M5.2 Lone Pine Earthquake location error as a function 

of time after the origin time. The blue and red lines are the 

location error results of the Gutenberg Algorithm, and the 

Gutenberg Algorithm with ETAS Prior, respectively. 
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4.4.2 M5.4 Chino Hill Earthquake 

At August 29, 2008 18:42:15, the M5.4 Chino Hills earthquake first triggered the vertical 

channel of station CI.CHN 3 seconds after the origin time. The station is 5 km northeast of 

the catalog event location. Due to high station density in the area, sufficient waveform data 

was quickly collected, and GbA initial location estimation shows high accuracy with only 

12km error, as shown in Figure 4.6 a) c) and e). 

Because there was no observed seismic cluster in the region, the background seismicity 

greatly influenced the ETAS forecast, shown in Figure 4.5. Although the seismicity prior 

indicates relatively high earthquake probabilities around 40km east of the station, the 

hypothesis was immediately updated by the GbA results with the incoming waveforms, 

shown in Figure 4.6b) d) and f). At 1.0 sec after the first trigger, with 5 triggered stations 

data, the spatial distribution shows a clear shift from the ETAS to the GbA results. And a 

half second after that, with 9 stations triggered, the posterior probability is dominated by 

the GbA results.  

Figure 4.7 shows that although the initial location error with the Bayesian prior is 42 km, it 

quickly reduces to 8 km within the following 1.5 sec, and the error remains low thereafter. 

At every time step, the posterior results update with the available waveform data.  
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Figure 4.5 Seismicity Forecast Map for Chino Hills M 5.4 

Earthquake. It was produced immediately after the first station 

trigger at CI.CHN. The intersection of the two blue lines is the 

catalog location 

 



94 

 

 

a) b)  

c) d)  

e) f)  

Figure 4.6 Probabilistic location estimation map of the M5.4 

Chino Hills Earthquake at various times after the first station 

trigger. a) c) and e) are likelihood probabilities, results of GA at 

0.5 sec, 1.0 sec, and 1.5 sec after the first trigger, respectively. b) 
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d) and f) are posterior probabilities, results of the GbA with Prior 

at 0.5 sec, 1.0 sec, and 1.5 sec after the first trigger, respectively. 

The intersection of the two blue lines is the catalog location. 

 

Figure 4.7 M5.4 Chino Hills Earthquake location error as a 

function of time after the origin time. The blue and red lines are 

the location error results of the GbA and GbA with ETAS Prior, 

respectively. 

3.4.3 Overall Performance 

We evaluated the location error, the distance between the catalog location and the location 

of maximum probability, as a function of time after the first trigger for all 506 M4+ 

earthquakes in Southern California from 1990 to 2015, as shown in Figure 3.8. In Figure 

3.8 a), only the waveform information is considered, the GbA median location error is 28.7 

km, 20 km and 17 km at 0.5 sec, 5 sec, and 10 sec after the first P-wave detection. As 

expected, the error is initially large and reduced with time when more waveform data is 

collected. In Figure 4.8b), the location error is calculated using Bayesian Inference by 

combining waveform and catalog information; the median location error is 12 km, 8 km, 

and 5 km at 0.5 sec, 5 sec, and 10 sec after the first trigger. The median error reduction has 
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improved substantially, especially in the first few seconds, reaching a 58% improvement. 

The distance error at all percentile levels consistently decreased at every time increment. 

 

a)  

Median=28.7km 

Median=22.1km 
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b)  

Figure 4.8 Location Error as a function of time after first trigger 

for 506 M4+ earthquakes in Southern California 1990-2015 a) 

likelihood performance: GA results b) posterior performance: GA 

with Prior results. The errors are specified at the 25th, 50th, 75th, 

and 95th percentile 

4.5 Discussion  

Many of the previous studies have shown that earthquakes tend to occur in places where 

there has been observed seismic activities; especially so with incidence of foreshocks often 

observed preceding large earthquakes (P. Reasenberg 1999). While most of the current 

EEW algorithms focus on time-series analysis of waveforms, they fail to acknowledge that 

previous events are clearly related to subsequent larger earthquakes. ETAS Bayesian priors 

exploit the seismicity catalog information to provide optimally fast location approximation, 

logically using the spatial-temporal clustering property of earthquakes to ensure a higher 

the level of accuracy. 

Median=12.8k

Median=8.3km 
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More significant positive impacts of ETAS Bayesian prior are reflected during aftershock 

and swarm earthquake sequences. During aftershock sequences, the repetitive ground 

shaking continuously deteriorates the already weakened infrastructure components. Seismic 

damage can be even more significant if the aftershocks occur close to a populated urban 

area. In these cases, the location estimations that use the ETAS Bayesian prior guarantee 

the delivery of fast and accurate alerts immediately after the first P-wave detection, 

allowing EEW to offer more alerting time to rescue teams and residences for evacuation 

during aftershocks.   

For the events with no obvious prior seismic activity in the proximity, ETAS produces a 

smooth spatial distribution of earthquake probability. In such case, the estimations are 

quickly dominated by the likelihood function of the waveform analysis, as demonstrated in 

the Chino Hills earthquake. The Bayesian probabilistic approach in this study mimics 

human behavior in the decision making process during an ongoing earthquake. It first uses 

scientific intuition of the seismic knowledge to make a quick and rational approximation, 

and then analyzes real-time waveforms with the assistance of powerful computational 

tools. The Bayesian framework conveniently combines results from any independent 

probabilistic algorithm, such as the GbA with ETAS prior. For future development, 

additional algorithms can be incorporated in this ensemble framework to further enhance 

the posterior results.  

Station topology constraints can be imposed as an additional Bayesian prior in an ideal 

network with no malfunctioning stations. The concept of the voronoi diagram of a network 

distribution implies that an earthquake must occur within the voronoi cell of the first 

triggered station, as the P-wave travel time from any of the points in this voronoi cell to the 

station is minimized (Rosenberger 2009). However, in our offline study, due to missing 

records and inconsistency station performance, station topology concept led to poor results.  
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4.6 Conclusion  

We proposed a probabilistic approach to obtain faster and more accurate EEW location 

estimations. We investigated EEW performance combining the GbA and ETAS seismicity 

models under Bayesian inference. Our results show that Bayesian inference with seismicity 

priors can reduce overall median location error by 58% for the first few seconds after P-

wave arrival at the closest station to the epicenter. In most of the cases evaluated, accurate 

location estimation is available immediately after the first P-wave detection. 

In the current technology, scientists are investigating sophisticated methods to exploit 

waveform information to estimate source parameters, while neglecting the most 

fundamental clustering pattern of seismic sequences. In this study, we demonstrated that 

both the Bayesian seismic prior and waveform likelihood are essential in EEW; only by 

analyzing various heterogeneous information, could the location estimation in EEW 

potentially achieve fast results with high confidence.  
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C h a p t e r  5  

Reducing EEW parameter search delays  

5.1 Introduction 

EEW provides useful alerts during earthquakes causing a significant level of ground 

shaking, so the alert speed is critical to provide a warning to the most strongly affected 

areas close to the epicenter. Additionally, for high-cost user actions (such as halting 

industrial processes), the accuracy of ground motion predictions at user sites is important 

for the widespread adoption and use of EEW (Hoshiba, 2013). In general, the conventional 

algorithms use trained models to estimate earthquake source parameters (such as magnitude 

and hypocenter distance) from station ground motion observations, and then apply ground 

motion prediction equations to estimate the peak ground motion experienced at different 

user sites (Wu et al., 2007) (Zuccolo et al., 2016) (Kuyuk et al., 2014). The predictive 

models tend to compress the observed information into a few source parameters, which can 

overly simplify the behavior of wave propagation through the Earth. Significant error in 

final prediction results can be accumulated through the uncertainties in the underlying 

models (Bose et al., 2009) (Allen et al., 2009). As a result, for the purposes of a real-time 

EEW system, it is a challenge to create a simple model that fully captures all the attributes 

that influence the peak ground motion in a recorded waveform, such as magnitude, 

location, depth, soil type, local site condition, directivity, and source radiation.  

Fingerprint searching and template match methods are alternative approaches to EEW and 

have also recently been employed in other areas of seismology (Yoon et al., 2015). In the 

fingerprint searching method, important waveform characteristics are extracted from each 

earthquake record to form an extensive database of  “earthquake fingerprints”. During the 
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occurrence of an on-going earthquake, the algorithm searches among the database for the 

most similar “earthquake fingerprints”, and then estimates the source parameters or peak 

ground motions of the new event based on the searched records. A recently developed 

method, called the Gutenberg Algorithm (GbA) (Meier et al., 2015), applies the 

fingerprint-searching concept to EEW by abstracting the time-frequency amplitude 

information of the real-time seismic signal for various filter bands to create a large-scale 

database, and then estimates the earthquake source parameters such as magnitude and 

hypocenter distance for on-going earthquakes.  In addition, the template-matching method 

in FinDer (Böse et al., 2012) compares observations with a database of theoretical spatial 

ground motion patterns to estimate earthquake source parameters and peak ground shaking 

at various sites. Both methods share the common approach of searching among a pre-

processed database.  

One of the most important factors required of search algorithms is that the searched 

database needs to be sufficiently large in order to cover a wide range of potential 

earthquakes. In other words, if similar data to the target query are not included in the 

database, the searched result could be significantly off from the true value. As an example, 

the records in the databases should represent the natural distribution of earthquake 

occurrence as described by the Gutenberg-Richter relationship; there should be many more 

small events than large ones because small size earthquakes occur more often than large 

earthquakes, so the search returns should reflect real earthquake likelihoods. Of course, the 

best strategy is to include all worldwide earthquakes recorded over a long period of time.  

While increasing the database promises to improve estimation accuracy, the trade-off is 

that the processing time of searching among a large database increases significantly due to 

the rise in comparison operations. A simple search of the ANSS catalog  

(http://www.quake.geo.berkeley.edu/anss/) reveals that 2090 shallow crustal earthquakes 

(depth <30km) over magnitude 2 occurred in California during 2015. Similar results are 
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also indicated with searches on USGS/ComCat, Southern California Earthquake Data 

Center and other similar earthquake databases. If one wants to include all records from the 

network over years for all the earthquake events worldwide, the size of the database scales 

exponentially (Yu, 2016). As a result, the processing delay of the real-time search will 

significantly increase because the time required to query databases sequentially is 

proportional to the size of the database. While advances have been made in the 

development of such algorithms in EEW, very little attention has been paid to optimizing 

the processing time of large databases. 

Database searching is often an application of the Nearest Neighbor (NN) search problem 

with the Euclidean metric. The problem is commonly encountered in many computational 

techniques such as event detection, pattern recognition, and data analysis (Bhatia, 2010). In 

general, we seek for a point in the database that minimizes the Euclidean distance to the 

target point (sometimes referred as the least square distance). The problem states that for 

the target point 𝑥 = 𝑥 ! ,… , 𝑥 !  and the ith training point in the database 𝑦! =

𝑦! ! ,… ,𝑦! ! , we define the distance between x and yi to be  

	

𝑑 𝑥,𝑦! = 𝑥 ! − 𝑦! !
!

!

!!!

!
!

 [5.1]	

NN searches for the 𝑦 with the closest distance to the target point, mathematically 

represented as 𝑦 = 𝑎𝑟𝑔𝑚𝑖𝑛!! 𝑑 𝑥,𝑦! . In most cases, the k-Nearest-Neighbor (k-NN) 

search method is applied by finding the k closest training points to the target point; this 

method provides a more robust estimation that avoids outliers in the database. The 

corresponding parameters associated with the 𝑦 are used to classify or estimate the 

parameters of interest for the target point. 
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In this study, we use a data structure, multidimensional binary search tree (KD tree) NN 

searching concept, to organize the seismic data, and evaluate the reduction of NN searching 

time for large datasets. KD-tree is a binary tree data structure that links the relative position 

of all the data points, so data with similar patterns cluster, thereby allowing the search 

procedure to become faster (Bentley J. L., 1975). Although it requires initial effort to 

construct the tree data structure, the searching process is quick. The goal is to introduce the 

concept of data structures in EEW to minimize the processing time for waveform record 

searching without loss of accuracy, and thereby earthquake alerts can be delivered to the 

sites of interest much earlier. The effectiveness of fast alerts is especially valuable in the 

proximity of the epicenter where the strongest damage occurs very quickly after event 

onset. In this study, we describe a searching procedure that uses the KD tree NN search 

method that identify the EEW fingerprints characterized by the Gutenberg Algorithm. We 

1) evaluate the influence of database size on the prediction accuracy of the earthquake 

source parameters (magnitude and hypocenter distance) and peak ground motion 

parameters (PGA, PGV, PGD), 2) estimate the processing efficiency of the KD tree 

searching for databases with different sizes and extrapolate the future performance by 

scaling to larger data sets. The KD tree is a well-established NN searching algorithm that 

has been implemented in a wide range of engineering and database applications (Bentley J. 

, 1979). Only by overcoming the computational challenges in the processing time can EEW 

start to adopt the databases for real-time seismology applications, and the fingerprint 

searching algorithms with big data reveal their full practical potential. 

5.2 Data 

Theoretical analysis of the KD tree searching shows the performance complexity being 

O(log N) verses O(N) for the linear sequential search, where N is the number of data points 

in the database (Friedman et al., 1977). Although the theoretical average search time of KD 
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tree is much shorter than the linear sequential search, the performance varies depending on 

the distribution of the data. Our goal is to determine the searching efficiency of the KD tree 

method for our GbA seismic database. We ran a series of offline tests on the earthquake 

filterbank database to mimic potential performance of EEW using true seismic records. The 

dataset used is pre-processed by (Meier et al., 2015) for the GbA. The database consists of 

182,805 near-site records with 9 feature dimensions in each record. Each of the feature 

dimensions represents the peak ground velocity in octave-wide frequency bands for a given 

ground motion record with a fixed time window. The frequency bands used in GbA 

features are shown in Table 1. GbA creates such a dataset table for every half-second 

increment in time after the P-wave arrival. In general, EEW tends to consider at least 3 to 4 

sec data after the P-wave arrival for the trade-off of accuracy and time delay. For the 

purpose of this investigation we selected the database for a 10-sec time window because 

the predictions are stabilize with more data collection. The collected earthquakes cover a 

large range of magnitude, spanning from M 2.0 to M 8.0, compiled from shallow crustal 

earthquakes collected from Japan, Southern California, and Next Generation Attenuation-

West 1 (Chiou and Youngs, 2008). 

 

Feature Dimension No. Frequency Band (Hz) 
1 0.09375 – 0.1875 
2 0.1875 – 0.375 
3 0.375 – 0.75 
4 0.75 – 1.5 
5 1.5 – 3 
6 3 – 6 
7 6 - 12 
8 12 - 24 
9 24 - 48 
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Table 5.1 Frequency bands for feature input in Gutenberg 

Algorithm. The GbA database consists of 9 feature dimensions. 

Each feature takes the observed peak ground velocity in the given 

frequency band. 

5.3 KD Tree and Method 

5.3.1 KD Tree 

KD tree is a binary tree structure that stores the finite set of database points with k-

dimensional feature space. In our case, we have 9 variables corresponding to 9-dimensions. 

The method involves two steps. First, we construct the tree to organize the information in 

the database. Then, the NN algorithm is applied on the KD tree to search to the most 

similar point to the target record during an on-going earthquake. In KD tree 

implementation, a point in the database is also called a node in the tree. 

• Construction	of	KD-tree	

     The construction of the KD-tree is a recursive process. Starting with the root of the tree, 

the first feature dimension (frequency band: 0.09375 – 0.1875Hz) is chosen as the splitting 

hyperplane. All nodes are ordered with respect to the value in this feature dimension, and 

the node with the median value is inserted into the root of the tree. All nodes with 

coordinates less than the median in the splitting hyperplane create the left subtree, and the 

nodes with coordinates larger than the median in the splitting hyperplane create the right 

subtree. All the feature dimensions rotate in becoming the splitting hyperplane to create the 

next level of subtrees.  

• Nearest	Neighbor	Search	in	KD-tree	
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Starting with the root node of the tree, the nearest distance is initialized to be the distance 

between the target node to the root. Then recursively move down to the next level in the 

tree, and checks if the splitting hyperplane intersects with the hypersphere centered at the 

target record with a radius of the current nearest distance. If the node falls outside of the 

hypersphere created by the current nearest node (indicating the point is further to the target 

node than the current nearest node), then this node and any extended child nodes further 

away can be eliminated from the investigation. The process is repeated, recursively moving 

down to the next level in the tree until reaching the leaves of the tree. The searching time is 

reduced since large subsets of the database are not visited. Therefore, the average searching 

time in a KD tree is significantly lower, especially when the size of the database is large.  

To better visualize the concept, Figure 5.1 demonstrates a KD tree structure for a 2-

dimensinal featured database with 10 earthquake records described by the velocity and 

acceleration at initial 3 sec after triggering a station. The goal is to predict magnitude of the 

new event based on the velocity and acceleration recorded at the first 3 sec of the p-wave. 

We start the search process of the nearest neighbor of the target data (the yellow star) with 

node E, which is the root of the tree. The radius of the initial hypersphere is set between the 

target data and node E. In a 2D feature space, the hypersphere is simply a circle. Since the 

left branch (link between node A and E) does not cross the hypersphere, indicating all the 

nodes in the left subtree (node C, A, B, D) can be eliminated from the search because their 

Euclidean distance to the target point is clearly further than node E. This eliminates the 

computational effort of going through almost half of the database at the first step. Since the 

target node is closest to node H, the magnitude associated with node H (M=4.0) is the 

prediction result for the target node. 

The algorithm can be easily extended to 𝑘 nearest neighbor (k-NN) search to find 𝑘 most 

similar points to the target point in order to give a more probabilistic estimate of target 

parameters. It requires two modifications. First, we need to keep track of all the current 



107 

 

 

nearest points in an ordered queue with length k; if the queue contains fewer than 𝑘 points, 

the subtrees on both sides need to be visited. Second, instead of comparing the splitting 

hyperplane with the hypersphere of the nearest point, we should check if the hyperplane 

intersects with the hypersphere of the last nearest point in the queue. If they intersect, the 

new node is inserted into the queue of 𝑘-nearest neighbors to the target point. At the end of 

the search, the algorithm returns 𝑘 points from the database that are located with minimum 

distances to the target point. 
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a)  

b)  

Figure 5.1 A 2-dimensional KD tree example: a) visual 

distribution of the database in feature dimensions, b) tree structure 

of the database. A database of 10 earthquake records (A - J) is 

organized using KD tree data structure (grey lines are the 

branches of the tree). As a new waveform is recorded, the target 
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record (yellow star) only needs to visit 5 of the data points (red 

points) to find the record with the most similar record with respect 

to the select features: initial 3 sec velocity and acceleration of the 

p-wave. In the KD tree method, only the data points with branches 

that intersect the hypersphere (shaded circle) are possible 

candidates; being closer than the current nearest node, other nodes 

(blue points) can be ignored. As a comparison, the linear 

sequential search requires going through all 10 records, which 

doubles the computation effort. 

5.3.2 Method 

Since one of the ultimate goals of EEW aims to predict ground shaking, we extracted 500 

records from the entire database to validate the prediction of earthquake source and ground 

motion parameters.  The validation set was sampled uniformly with even spacing on the 

Peak Ground Acceleration (PGA) of the records. The reason is to cover the full spectrum of 

ground shaking intensity, in order to mimic all circumstances that could be encountered in 

the future. The performance of parameter estimations is evaluated with different dataset 

sizes. The estimated seismic parameters include station-specific ground motions: Peak 

Ground Acceleration (PGA), Peak Ground Velocity (PGV), Peak Ground Displacement 

(PGD), and earthquake source parameters: magnitude, hypocenter distance. The procedure 

first requires a 30-NN search in the Euclidean distance defined in Eq[5.1] and then a 

prediction using the Gaussian mean of the corresponding parameters from the 30-NN 

matched records. The value 30 is chosen to match the original model parameter in the GbA. 

Later, we compared the searching time of the KD-tree search to the Linear Sequential 

search, in both the CPU time and the number of operations. 
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5.4 Results 

     We computed the earthquake parameter estimation error of the validation set for 

databases with different sizes. Figure 5.2 to Figure 5.4 shows the 100th, 75th, 50th, 25th, and 

0th percentile residual errors for the estimated PGA, PGV, and PGD of the 500-validation 

dataset, respectively. The residual error is defined as the absolute difference between the 

true observed parameter and the predicted parameter. The 50th percentile is the average 

residual errors; the 100th and 0th percentile indicate the maximum error and minimum error, 

respectively. As expected, the residual error decreases as the database size increases on 

average. The 50th percentile is not flattened near the largest given database size showing 

that the residual errors might not yet reached the global minimum; this suggests that the 

estimation accuracy could further be improved by increasing the size of the database. The 

maximum error residual appears to be uncorrelated to the database size, because there is 

always the possibility of outlier targets regardless how large the database gets. Statistically, 

there will always be residual on the estimations, unless the features are truly uniquely 

diagnostic. Of course, if a sufficiently large database were compiled, the probability of 

encountering outliers would decrease.  
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Figure 5.2 Ground motion residuals for the 500-validation dataset 

with different database sizes. Peak Ground Acceleration residuals 

are given in absolute ground motion units. The lines show the 

percentile according to the legend. The 50th percentile is the 

average residual error; the 100th and 0th percentiles indicate the 

maximum and minimum errors respectively. 

 

 

 

 

median 
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Figure 5.3 Ground motion residuals for the 500-validation dataset 

with different database sizes. Peak Ground Velocity residuals are 

given in absolute ground motion units. The lines show the 

percentile according to the legend. The 50th percentile is the 

average residual error; the 100th and 0th percentiles indicate the 

maximum and minimum errors respectively. 

 

 

median 
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Figure 5.4 Ground motion residuals for the 500-validation dataset 

with different database sizes. Peak Ground Displacement residuals 

are given in absolute ground motion units. The lines show the 

percentile according to the legend. The 50th percentile is the 

average residual error; the 100th and 0th percentiles indicate the 

maximum and minimum errors respectively. 

We also estimated the earthquake source parameters using the databases: magnitude and 

hypocenter distance. Although ground motion parameters are more useful outputs for EEW 

alerts, predicting source parameters is the conventional approach in real-time seismology 

(Minson et al., 2017). Figure 5.5 and Figure 5.6 show that the size of the database has less 

impact on hypocenter distance than magnitude estimation. Since hypocenter distance 

predictions from the observed waveform are a result of source energy and soil properties, 

median 
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the additional constraints might be necessary. For example, seismicity location forecast 

could be introduced as prior knowledge to reduce the uncertainties in earthquake location 

estimation (Yin et al., 2017). This analysis implies that it is essential to select data features 

intelligently to characterize the parameters we are aiming to predict. Frequency band 

features might be more suitable to predict the ground motions than source parameters, since 

local site effects may be implicitly being accounted for.  

 

 

Figure 5.5 Source parameter residual for the 500-validation 

dataset with different database size. Magnitude residuals are given 

in absolute units. The lines show the percentile according to the 

legend. The 50th percentile is the average residual error; the 100th 

median 
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and 0th percentiles indicate the maximum error and minimum 

error respectively. 

 

Figure 5.6 Source parameter residual for the 500-validation 

dataset with different database size. Hypocenter distance residuals 

are given in absolute units. The lines show the percentile 

according to the legend. The 50th percentile is the average residual 

error; the 100th and 0th percentiles indicate the maximum error and 

minimum error respectively. 

Through the performance analysis for databases with different sizes, we conclude that large 

databases can help to provide more accurate ground motion estimations for EEW. Next, we 

compare the computational time difference for the 30-NN search using the KD tree 

median 
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methods for each validation test. The implementation is in Matlab. For comparison, a 

Linear Sequential search method is also implemented as a base case. The Matlab function 

follows the pseudo code concept from the Appendix with optimization modules that 

efficiently process the data. In Figure 5.7, the solid lines show that the average CPU search 

time of a database with 130, 000 points is about 0.2 sec for the Linear Sequential search 

method and 0.03 sec for the KD tree search method; the significant reduction in time 

reduces computational effort by 85%. Although the Linear Sequential search is capable of 

handling the real-time processing with limited delay using the current size of the database, 

a significant delay would be introduced as the database size rapidly increases in the future. 

The dashed lines show extrapolated computational time up to double of the current 

database size. The results anticipate that the advantages of the KD tree application would 

be emphasized in the future as global seismic databases are growing significantly (Yu, 

2016). 
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Figure 5.7 CPU searching time for different database sizes using 

linear sequential search and KD tree search. The implementation 

is in Matlab. 

The measured operational time for the searching process varies significantly between 

different software languages and implementations; different optimization modules with 

parallelization might also bias towards one method over another. Implementations in C++ 

tend to be much faster than Matlab. In order to compare the true efficiency of the method 

across all platforms, we further compared the number of data points visited for both NN 

search algorithms. Since the majority of the searching time is made up by the visit to each 

data point to compute the Euclidean distance to the target point, the fewer data points 

visited ensures less time effort. In the Linear Sequential search, the operation is required for 
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all the data in the database in a serial manner. However, in KD tree, subsections of the 

database can be eliminated depending on the distribution of the tree structure and location 

of the target point. As shown in Figure 5.8, the number of data points visited in the KD tree 

for each validation varies; on average, the KD tree approach only visits about 10% of the 

entire database to find the closest data point to the target, confirming the performance in 

CPU searching time in Matlab. In the worst-case scenario, all the data points are visited, 

which leads to the same operational complexity as the exhaustive approach (linear 

sequential search). 

 

 

Figure 5.8 Number of data points visited for linear sequential 

search and KD tree search. The dashed lines are extrapolated to 

estimate the performance for larger database in the future. 
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5.5 Discussion and Conclusion 

In this study, we evaluated the viability of earthquake fingerprint searching methods for 

EEW, using database structure to reduce searching time for large databases. Specifically, 

we evaluated the GbA as an example of the EEW fingerprint search algorithm. We found 

that database size is a critical factor in providing reliable predictions of ground motion 

(PGA, PGV, PGD) and source parameters (magnitude and hypocenter distance) for EEW. 

We also present the KD tree approach to reduce the searching time, so that large database 

searching is feasible for real-time implementations in EEW.  By empirical validation, we 

demonstrated that the searching time using KD tree is about 85% less than the exhaustive 

approach for the GbA EEW earthquake database.  

One of the potential applications of the database searching method is to directly estimate 

peak ground motions from the observed ground motions for any given site in real-time 

seismology application such as EEW; it avoids the multi-step modeling errors that could be 

accumulated through source parameter estimation and the ground motion attenuation 

relationship, since the final errors can lead to significant uncertainties in the final shaking 

information. Ideally, the goal of EEW is to serve as an alarm for severe ground shaking in 

real-time rather than source characterization. The fingerprint searching methodology could 

also be extended to tackle other challenges in EEW, such as event detection (i.e. 

earthquake/noise discrimination). In such a problem, characteristics of additional ambient 

noise and teleseismic records need to be incorporated in the database. This would vastly 

increase the database size, since incorporating many different types of noise, teleseisms, 

regional events, and calibration/maintenance signals could potentially be huge. The vision 

is to be able to accomplish efficient searching for large databases, so that these novel EEW 

methods are feasible in real-time in the future. 



120 

 

 

Although we emphasized the importance of having a large number of data, a question is 

often raised about what should be the minimum size of database in order to get reasonable 

accurate solutions. Assuming the standard deviation of log10(PGV) estimation of 0.309 by 

(Kanamori, 2007) is acceptable, the database size needed to achieve this marginal error of 

ground motion in EEW is about 70 000 to 100 000 data points, as shown in Figure 5.3. The 

(Kanamori, 2007) study focuses on two EEW parameters, 𝜏! and 𝑃!, that are extensively 

used in the existing EEW algorithms, such as Onsite (Bose et al., 2009). The minimum 

database size calculated varies with geological region, event types, predictive parameters, 

etc. 

Creating a database for real-time seismology is not simple. In addition to the sizes of 

databases, feature engineering also significantly affects the prediction results. Selecting 

parameters that correlate to the predictive results requires extensive scientific domain 

knowledge. In the observation of local earthquake records, the higher frequency band 

features are more informative than the low frequency features because the high frequency 

amplitude of ground motion decays rapidly with distance (Hanks & McGuire, 1981) (Kong 

& Zhao, 2012). A weighted Euclidean distance might be more applicable to emphasize the 

high frequency information as the significant attributes in the feature space. Continuous 

monitoring and modifying of the features will help to improve the performance of the 

system. As the number of features increases, the process time saved by KD tree search 

decreases (Andoni & Indyk, 2008). For features over 20 or 30 dimensions, alternative 

approximation to approaches high dimensional searching, such as Locality Sensitive 

Hashing, would be more appropriate [e.g. (Yoon et al., 2015)]. 

The accuracy and speed of rapid earthquake source parameter algorithms has significantly 

improved over the past decade, but are potentially limited by the simplification involved in 

model parameterization. The earthquake fingerprint searching techniques have the capacity 



121 

 

 

to guide the development of EEW to a new phase with the assistance of better 

computational power and data mining techniques. 
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C h a p t e r  6  

Conclusion 

6.1 Final remarks 

Since devastating earthquakes grow rapidly over the time frame of seconds, immediate 

responses (including automatic alerts and interruption of activities) are essential to mitigate 

the losses due to the destructions of ground shaking. With this motivation, many scientists 

and engineers have been continuously focusing on the improvement of faster and more 

accurate Earthquake Early Warning systems. Particularly, this thesis presents methods to 

reduce alert latency of EEW system for the earliest alerts while maintaining the accuracy 

requirements of the estimated earthquake information. This final chapter summarizes the 

thesis and proposes suggestions for possible directions of the extension research on 

earthquake early warning. 

In Chapter 2, I presented previous studies of the science of earthquake sequences and the 

modeling earthquake forecasting, especially Epidemic-type Aftershock Sequence (ETAS) 

modeling, a statistical approach to forecast near future probability of seismic activities. I 

developed a real-time ETAS algorithm that takes historical seismic catalog and outputs the 

forecast probabilistic seismic map for near future. The predicted results of the ETAS 

algorithm are compared to the observed seismic activities for validation. The outputs of 

earthquake forecasting information are useful to be incorporated into EEW under the 

Bayesian framework as a source of prior information. The applications for signal 

discrimination and hypocenter location estimations were presented in Chapter 3 and 4. 
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In Chapter 3, I presented a classification algorithm that distinguishes near-field earthquake 

source signals from noise and teleseismic arrivals. This method uses the three-component 

acceleration and velocity waveform data and Epidemic-Type Aftershock Sequence (ETAS) 

seismicity forecast information in parallel, producing a posterior prediction by combining 

the predictions from the heterogeneous sources using a Bayesian probabilistic approach. I 

collected 2,481 three-component strong-motion records for training and testing. The rapid 

prediction is available as quickly as 0.5 sec after the trigger at a single station and updates 

every 0.5 sec up to 3.0 sec, achieving a precision rate of 98% at the first prediction with the 

classification accuracy increasing with time. The leave-one-out validation method also 

demonstrates confidence of robust performance for future earthquake signal detections. I 

compared the method with the 𝜏! − 𝑃! EEW classification criterion and find that our 

prediction is 83% faster with 5% higher precision rate. Since the method evaluates two 

independent sources of information simultaneously under an ensemble model, the new 

strategy has shown fast predictions with promising results, and the implementation of this 

methodology could provide significantly faster and more reliable EEW warnings to regions 

near the earthquake’s epicenter where the strongest shaking is observed. 

In Chapter 4, I applied the ETAS results under the Bayesian probabilistic framework to 

provide optimally fast estimates of earthquake hypocenter location; in many cases, the 

earthquake location is available as soon as the first P-wave arrival at the station located 

closest to the epicenter. In order to provide reliable warning as quickly as possible before 

the arrival of damaging ground shaking, the Bayesian prior of ETAS seismicity forecast 

model provide a intuitive initial approximation; the analysis of seismic waveform 

information is incorporated into the solution as data becomes available over time. I have 

evaluated the algorithm for all 504 M4+ earthquakes in Southern California from 1990 to 

2005. For the earliest epicentral location estimation at 0.5 sec after P-wave detection, the 

median location error using seismicity forecast with waveform analysis improved by 58% 
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relative to results using waveform analysis only. I also presented location estimations of a 

M5.2 Lone Pine Earthquake and a M5.4 Chino Hills Earthquake in detail, which highlights 

the importance of Bayesian seismic prior and waveform likelihood interaction. The new 

strategy has shown promising results and implementation of this methodology should 

significantly enhance the performance of EEW systems.  

In Chapter 5, I proposed to use a multidimensional binary search tree (KD tree) data 

structure to organize large seismic databases to reduce the processing time in nearest 

neighbor search for predictions. Earthquake parameter estimations using nearest neighbor 

searching among a large database of observations can lead to reliable prediction results. 

However, in the real-time application of Earthquake Early Warning (EEW) systems, the 

accurate prediction using a large database is penalized by a significant delay in the 

processing time. I evaluated the performance of KD tree on the Gutenberg Algorithm, a 

database-searching algorithm for EEW. I constructed an offline test to predict peak ground 

motions using a database with feature sets of waveform filter-bank characteristics, and 

compare the results with the observed seismic parameters.  I concluded that large database 

provides more accurate predictions of the ground motion information, such as peak ground 

acceleration, velocity, and displacement (PGA, PGV, PGD), than source parameters, such 

as hypocenter distance. Application of the KD tree search to organize the database reduced 

the average searching process by 85% time cost of the exhaustive method, allowing the 

method to be feasible for real-time implementation. The algorithm is straightforward and 

the results will reduce the overall time of warning delivery for EEW. 

6.2 Future work 

From the first documentation on Earthquake indicator by (Cooper 1868) to the proposal of 

seismic computerized alert network by (Heaton 1985) to the suggestion of real-time 

seismology by (Kanamori 2005), scientists have already taken giant steps towards 
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advancing the technology of seismic early warning and post- earthquake response. While 

we recognize the contrasting needs for speed and accuracy of information, we still aim to 

provide reliable estimates (earthquake identification, source parameters and distribution of 

shaking) with the minimum latency, so users can gain warning time to prepare for the 

incoming strong shaking. A few of my suggestions for future investigation to extend my 

studies in this thesis are as follows: 

- In order to incorporate the ETAS results into EEW system for practical use, real-

time streaming of earthquake catalog database is necessary. Currently, there are 

delays in updating the earthquake catalog provided by the authorized agencies due 

to the validation of information. An ideal approach to this is to directly use the 

previous earthquake source parameter outputs from EEW as the catalog input to 

ETAS. Of course, it will be achievable only if the EEW results become reliable and 

robust in the future. 

- Additional data source can also be incorporated into the Bayesian framework of 

EEW, such as GPS data or gravity-based sensor (Harms, et al. 2015). Although 

interpreting the information from heterogeneous data sources under the same metric 

is challenging, converting all information into probability and then combining 

under Bayesian framework can be straightforward and convenient. 

- The current real-time ETAS model is based on point source event, the extension to 

finite fault implementation for large events can better reflect the true observation 

of seismic activities. This requires the input of geometric information from the 

known faults. Due to the complication of finite fault calculation, some processing 

delay might be introduced to improve the accuracy of the predictions. 
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- In Chapter 3, I collected noise amplitudes from stations across the entire network to 

develop the noise model for earthquake-versus-noise discriminator. However, each 

specific station would experience different ambient noise level depending on their 

geographic locations. The stations in an urban area often observes a high noise level 

due to the busy traffics, while stations on the Mt Wilson might record a low noise 

level. Figure 6.1 shows the ambient noise amplitudes recorded by various stations 

in the Community Seismic Network. If noise models can be developed based on 

geometric constraints, instrument conditions and station specifications, the analysis 

of the signals can be more precise. 

 

Figure 6.1 Noise amplitude records from a few selected 

Community Seismic Network stations (provided by the CISN 

research group) 

- In this thesis, I have applied knowledge of prior seismicity to solve the challenges 

of earthquake detection and hypocenter location estimation. However, it is not 

possible to directly estimate earthquake magnitude    with the assistance of prior 
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seismic information, since the size of each event is independent and not related to 

previous seismicity. The vision of this project is to use prior information to get an 

initial approximation of hypocenter locations, and then characterize the magnitude 

of the event from the estimated hypocenter and observed waveform amplitudes. As 

more data becomes available with time, the estimations can be updated accordingly. 

With the powerful computing power, grid search method and parallelization can 

be applied to optimize the efficiency in calculating the maximum likelihood 

estimations. Computational power can be prioritized to the grid locations with 

higher prior probability.  

EEW is an interdisciplinary project that involves collaboration among different scientific 

and engineering communities. Only with the contribution of all seismologist, engineers, 

computer scientists, educators, media and many others’ involvements, such a unified 

system would be successful every time in taking appropriate actions before, during, and 

after earthquake natural disasters.  
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