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ABS TH.ACT 

A fluid consisting of Molecules interacting with the 

Lennard-Jones intermolecular potential but with ri gid cores 

is treated by the Kirkwood and the Born-Green statistical­

:-1echanical forr:mlations. The integr a l equation for the 

radial distribution function of t his fl~id is solved nwJeri­

cally by a series expansion of all temperature dependent 

quantities in the reciprocal of the temperature . The first 

three terms of this series for the radial distribution func­

tion have been evaluat~d over a wide range of densities ~or 

the Born-Green integral equation. 

The distribution functions so obtained have been used 

to calculate the equation of state, t he excess i nternal 

energy, and the excess entropy of this fluid. The two phase 

region of t h is equation of state is determined. For reason­

able values of the parameters in the potential, these calcu­

lated quantities a gree within 10~ to 20% with experimental 

data available for argon. 

At one density a cor.nparison between the Kirkwood and 

t he J orn-Green theories shows tha t the two formulaticms agree 

close l y . 

A molecula r t heor y of the coeffi cient of heat conduc­

tivity of monatoRic liauids is deve loped on the basis of the 

general theory of transport processes presented by Kirkwood 

in 1946. The coefficient is expressed in terms of the inter­

r:ioleci; lar force and the equilibrium radial distribution func­

tion. Substituting for these
1
respectively, the Lennard-Jones 



potential and a reasonable analytic approximation to the 

experi::iental radial distribution function, the product of the 

therual conductivity and the friction constant has been eval­

uated l for liquid argon at 89°K. ~Jith a preliDinary es t imate 

of the friction constant , the value of the coefficient of 

tirnr''.lal conductivity is then given. 



I THE RADIAL DIS'l'HL3TJTIOY li'tLC'.l.'IOj\ Airn THE TEEl·CTO-. . . . 1 

1 Introduction • • • • a • • • • • • 

Derivation of the Equations for the Radial 
Distribution Function • • • • • • • • • 6 

Derivation of Born-Green System of 
Integral Equations • • • • • • . . 8 

Derivation of Kirkwood's System of 
Integral Equations • • • . • • • • • • 13 

IIethods of Solution of the Equation • 17 

Radial Distribution Functions . . . • 28 

Calculation of '.2hermodynarnic Functions . . • 54 

Comparison with Experi~ents and Conclusions 69 

Cor'.'1.i)nrison of 'l'hernodynanic Data ••• 69 

Comnarison of the Radial Distr i bution 
Function • • • • • • • • • 76 

Appendix .A • • . . • 90 

Details in the Derivation of the Integral 
Equations • • • • • • • • • • • • • • • 90 

Dorn-Green Equation • 90 

Kirkvrnod Eqna ti on • • • • 8 • • 
(_)".( . ./ .... ) 

Appendix 3-1 • • • . 95 

Other Llethods Tried . . . . . 9 i::: . / 

Appendix J-2 • • • . . . . . .101 

I .B .II. Procedure . . . . . . . . . • .101 

Introduction • . . . . . . . . . .101 

Convolution Reeded for Inhomo-
~eneous Part •••••••• 101 

Iteration • .105 



I (con.tinned ) 

Appendix D-3 • • . • 

Uiring Diagra~s f or 
Calculations • • • 

. . . . . . . . . 
I.D .II . IIachine . . . . . 

Hates to Wiring Diagr arJ for I . B.E . 

PAGE 

115 

115 

~achine Calculations • • • • . • • • 123 

Appendix C . . . . . 
Conparison of the Born-Green and 
Kirkvwod :theories ••••• 

. . . 

. . . 
Appendix D . . . . . . . . . . . . . 

f\e nr ::Ln t o f t h e pare i~ 11::.ia6ia l Distri­
tl~, tior1 ~1 1 .. r1ctio:o.s e. ric1 t l-:.e Ec11Jat ti on 
of S tD. to of a :? l uid Co:-Jposed of ~ \.icid 

124 

124 

1; r: 
_) .) 

Spherical T.'.olecules 11 • • • • • • 135 

. . . . 144 

Interpolation For:".1ulne . . . . . . . 144 

Heferences . . . . . . . . . . . . . 146 

II 11. S'lli ;lIS '.2I C i~I.; =~~~C } .~2.l'.ICb.L 'J.1 l~Ico:·\~L 01~ ~1 lili COEli, :·;'lCI::~I ;T 

OJ:' 'J:IlE.lt; '. l~L CCEDUCTIVI1Y O:i·' :.:OI:A;S:Ol.IIC LIQUIDS • 147 

Introduction • • • . . . . . . . . . . 147 

General Preliminaries . . . . . . . . . . 150 

Momentum Contr ibution to the Heat Current 
Density .••••.• . . . . . . . 156 

Int ermolecular Force Contribution to the 
Ilea t Current Density • • • • • . • • 111 • • 162 

Evaluation of the Coeff icient of Thermal 
Conductivity • . . . . . . . . . 173 

b.p pcmdix I . . . . . . . 182 

Glossary • • • • • • • • • • e • • • 

Heferences . ~ ~ . . . . 
Vi10POSITIOFS . . . . . . . . . . . . . . . 188 



A.Im TEE l'l-IEWIODYEA~'IC 

PHOPEH'l'IES OF I.IOIJAT Ol.iIC LIQUIDS 



-1-

TEE HADIAL DI .S.LiU iX'TIOl'J Ft :tTC'l'IOIJ li.1 '. D TEE TEEHlIODYTULIIC 

PHOPEH'l'I:SS OF I.lOlJATOlIIC LHiLIDS 

Although statistical nechanics has had considerable 

success in the interpretation of properties of rarefied 

gases and of crystalline solids, practical difficulties have 

retarded its application to dense gases and to liquids. 

Theories for the condensed fluid phase have recently been 

developed by Kirkwood(l), Born and Green( 2 ), Eayer(3), and 

Yvon( 4 ) in almost equivalent faro. In the first part of 

this thesis vre will r; ive a brief resume' of these statisti-

cal mechanical treat2ents of fluids, and subsequently apply 

the theory to evaluate the ther:JocJ.yna~ic functions of the 

conc"lensed state. 

These nett ods assDJne that clas sical statistical mech-

anics is competent to describe the dependence of the thermo-

dynamic functions of fluids upon inter·moleci.1lar force. 'l'his 

as si:w1ption is justified nhen certnin conditions involving 

ma sses, monents of inertia, the intermol ecular potential, 

and te~perature are satisfied. Furtheruore, early in the 

derivation of the theory, we restrict ourselves to fluids 

composed of molecules with a potential of intermolem1lar force 

de pending only on the relative distar1ce, Rik, of Molecular 

pairs, 

., 
V"' = 2.. V ( R.:"-) ( 1) 

-::: I 
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The restriction of the potential to the form of equat ion 

(1) implies that the molecules of the fluid are spherical. 

The fluids, then, with which experimental comparisons are 

justified are the single-component condensed rare- gases, and 

other liquids satisfying the lav1 of corresponding states, at 

temperatures high enough so t ha t quantum effects can be ne-

glected. Liau id metals and polar liquids can not be treated 

by this theory since their potentials of intermolecular force 

are not adequately represented by (1). 

Under the above restrictions we will evaluate the im-

portant radial distribution function, g (d ), w~li ch characterizes 

the liquid structure, as a solution to an integral equation. 

g (R) Is so defined that ~ g (H) is th€; average local mole­

cular density at a distance R from a specified molecule in 

a system of 1J :nolecules occupying a volume v. Kirkwood(l) 

has called attention to the close relation which exists be-

tween the distribution function and the potential of average 

for ce. 

?f ( R) ) ( 2) 

(. 1.) 

where W (R) is the potential of mean force acting on the 

.~nolecular pair, the res1}l tant of their direct interaction 

and the average interaction with the other (N-2) molecules 

of the liquid. 'l' is t ~ie tenpera ture and k ir; the Dol tz:nann 
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By these th eories ( l , 2 ) , the t l:e::T1odynar:1i c :f.'unct icn1s of 

a l iqu id can be expressed in ter~s of t he radial ~ i str ihution 

i'nnction and t ~~e pot en. tial of i nt err.10lecular force~ V ( H) G 

The equa t ion of state is gi ven by 

pv -- -;: tVRI 
I-

00 

2rrN J.R3;!_y: (R)c('R 
3v P. T . ~R 3 J 

and t he i nteina l ener[y , E , h: 

E 
Nb.T 

(3) 

( 4 ) 

The se therr1J.odynanic f Fnctions mc:ty be ca lculated VIhen the 

radial d:Lstribution f unction has been evaluated fror<J the 

int egral eau a tion which determi nes it. The major problem 

resolved in the first part of t his t hesis is t he nurnerical 

solution of t h is equa tion f or the r adial distribution func-

tion over a wide range of density and temperature. 

For t he noble gas fluids the potential of intermolecu-

lar force 

v ('R) = 
A - 'B 

R' ( 5) 

due to Lennard-Jones(5) is genero.lly substituted in t h e inte-

gral equation as well a s i n ( J) and (4). A and L are con-

stants characteristic of t he substance. ~he attractive part 

of the interaction energy is taken to be proportional to 
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R-6 in 2ccordance ni tl: the I-~ei tler-London t'r;eory of inter-

noleculur force. From a comparison between t~eorctical and 

expcriLlental values of the second virial coefficient, the 

value of the repulsive power exponent,as well as A and B, 

can be determined for each substance. 

':::'he non-equilibrium properties of the fluid state may 

also be expressed in terms of the equilibrium radial distri­

bution function and the potential of intermolecular forceC6). 

The general theory of transport processes has already been 

applied to the coefficient of viscosity by Kirkwood, Buff, 

and Green (?), and in t he second part of this thesis, the 

detailed derivation of the coefficient of therLlal conductivity 

is developede 

In addition to the above applicat ions of the radial dis-

trihution function, it is also of particular interest since 

it can be de termined experimentally from the angular distri­

bution of x-ray scattering. If x-rays of wave length ~ are 

scattered by an array of atons which are separated by distances 

Rik' the intensity of radiation , I, at the scatterinc angle 

2 e is given by(8): 

r -; (6) 

vvhere j is the atomic structure factor and S = 
If vre assune a continuous distribution of a single kinC. of 

a tor1, I reduces to : 

( 7) 

0 
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'rhe radial distribution function can then be calculated 

fron the observed intensities by a Fourier inte gral trans-

for~ation of (7): 

The basic t heory was developed by Zernicke and Prins C9), 

and Debye and J' Ienc ke (8 ), and has been applied extensively 

by ~arren(lO) and Eisenstein and Gincrich(ll) to ~any liquidsc 

Of particular interest in the present work d.re t he x-ray 

scattering data available for argon(ll), vvhich ar e used in 

the co~parison with the theoretically determined radial dis-

tribution function. 
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Function 

The radial distribution function is calculable fron a 

system of integro-differential equations developed in equi­

valent .:orr:1 by Kirkwood(l) ? Born and Green( 2 ), nayer(3), 

and Yvon( 4 ). The starting point in a ll these derivations 

is the canonical enseoble of Gibbs, nhich gives an expres-
. - (ti') ... ..., ........ ) 

sion for the equilibrium probability density, f (R ,···R,.,~ p, p,.,, 
in phase space for a syste~ of N mo lecules~ 

J (I") - - - -r ( R ,· ·· Rw_, 'P, · "P"") ( 9) 

.... 
where R, is the distance vector from some origin to particle 

~ I 
1, p, is the mo:1entu.:n of particle 1, and (' : -;;T Also 

H is the classical lla::1iltonian, and A is the nor:nalization 

cc:m.s tant, whic:1 is determined so that 

(10) 

A j_s :!:'urtherro.ore identified \'Ii t h the Eelmhol tz free energy. 

Integrat ion over monent1un space after substitution of the 

Eamiltonian 

,., - 2 

I { W) (- - ' p It ~ :-V 'R,···'R.J .. L .2'1?112 
~ ::.1 

( 11) 

c"''(.. R ) results in the equilibrium probability density, 1> 'R,· ·· "6 , 

i n configuration space. 
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'llof) -. -'P ( R, ···'Riv) ::: e fl [A - v("''( R, ... Rw~ 
,J 

(12) 

nhere v ( ,.,, ( 'RI . . . R w ) is the intercolecular potential 

and rYn It is the nass of particle k. A is t he nev,r normali-

zation constant. The probability density 'P , ... , ( 'R I • • • R -) 
of n mo lecules in a system of N mole cules is in the sub-

space of the entire configuration space and is obtained by 

intecration over the space of N-n nolecule s . 

( 13) 

As a special case of this, integration over N-2 particles 
'~ - - ) yields the i r:iportant probability density 'P ('R,,, 'R... in 

the configuration space of '.nolecular pairs, to which the 

radial distribution f~nction is si~ply related: 

The exact mF1erical value of this uul tiple j_ntegra l can not 

be o. ::. rectly co:r1p1.ted by present ~-1 ethoc.s except for t he very 

'"')( - -simple case of the pnrfect gas where V R, ··· 'Rrv) is 

independent of the distances. In all other cases integration 

ove:c t he coordinates of a lar;::;e nun~Jer ol' noloci.:les hE~s to 

:·1ethocl 1oe.ds to in-\~G .'..'J'Ctl cqua tions in vo l vine; in tcf;ra ti on ovor 

fewc:c nole c1cl es . In -0oti1 the Kirk~'.Tood and the ::Jorn-Green 
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der iva tions a parti cular cas e of the variation of t he paten-

tia l is ta ken . 

~. De~ 9f 13orn-Grg_~:q System of Integral Equations 

The Born-Green equation, ·which is to be numer ically 

solved here, utilizes a potential of t he form: 

v 'R,··: 'R.,.) -= 
(W)(- - t v (ii~) 

.. " " ( 15) 

: I 

The particular variation is the gradient with respect to 

t he position of any molecule in the set of n molecules. 

This molecule is arbitrarily chosen here as molecule one. 

( 16) 

=-(3C ,,__,) ['Va. v c R . .>] -r'~'( R, .. R"') -
- f3 (Al-"" )j [ v~ V ( R.3 U ~ '""·•> ( R. ··· R .... ) J fl . 

The last equality follows since the gradient of the paten-

tial can be broken up into two partse 

Upon substitution of this expression, the first term of ~'~ 

g~adient of the potential can be taken outs ide of the 

integral. The sum over k gives n-1 identical terms, so 

t hat k can be ar bitrarily called 2. Tte second term of 
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the gradient of the potential, when substitut ed, can also 

be reduced as a result of the fa c t that for any k the inte-

sral is the same. k is here arbitrari l y called 3. 

The solution of this set of integro-differentia l equa-

ti ons(l6) woul d probab l y be as difficult as the evaluation 

of the inteeral itsel f , if it we r e not eas ier t o introduce 

an a:)proxima tion in t his new fornula tiono The root of the 

difficul t y irr the solution of t he set of equation ( 16) i s 

that the nth equation depends on the (n•l)st. Thus, to 
'i) U.) 'i) (J) 

solve for I a knowledge of I is essential, and in this 

fas hion a whole chain is set up. This can be broken if f' 3
' 

,,u.J 
could somehow be related to 1 by an add i tional expressiono 

Substitution of such an expression would result in an 
'i)O) 

integro-differential expression involving 1 only. Kirkwood 1 s 

superposition approximat i on ac complishes precisely that. 

Its p~ysical foundation as well as its naoe rests es s ent i ally 

on the proposition tl:.a t the I)robabili ty G.ensi ties in triplet 

space are independent. They can therefore be expressed in 

~erm s of probability de~sities in pair s pace. A more precise 

states ent can be given if the followinE theorem is recalled: 

("') - -
-(3\N ('R,···faR) e ,,, 

v .) 
(18) 

\ I(.,.) 

where ~ is the potent i al of mean force acting on the system 

of n molecules and v is the volume of the system. The approxi-

~ation can now be stated in the form that the mean force 
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a ct in~ on mole cule three due to molecule one and t wo in its 

vicini t~.r, is equal to the s"Lun of the :::ean forces if r:1olecu les 

one and two were each present alone. Or, in ter3s of proba-

bilities: 

This means that the probability density of siMul taneous - - -occurrence of a triple of molecules 1, 2, and 3 at 'R ... 'R.a._,+-1'>,.) , 

relative to the probability density that the 2olecules be 

singly at those positions, is just the r elat ive probability 

density of independent occurrence of each of the three pairs 

involved. 

For convenience, vie introduce the nur:iber densi ty and 

the radial distribution f1mction. The mr:."'lber density differs 

from the probability density by the indistinguishability of 

the pnrticles, and is therefore given by: 

(~)( - - ) f R,···'R- ( 20) 

The advantage of introducing this definition into (16) is 

tho.t 4} ( ,.,,. ) n t c 1e ~-n 1ac or is removed, if t he approximation is 

-r:iade that OJ-n ) = n. The radial distribution function or 
(.a)(~ i ) 

Dair correla tion :fr.nction, ~ R,, •>- , is related to the 

number density t hrough the definition: 

( 21) 
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where 'R •a. = R. - 'Ra. ''"( -l'or a fluid, by definition, f R) 

is c:.msider ed to he uniform and equa l t.o t he reciproca l of 

t he volllli1e per mo lecule. 

(/) Iv' 
f - -v ( 22) 

The restriction i mp osed by t his homogeneous singlet density 

qui te obviously l eaves the crysta lline state out of t he con-

sideratior~ of this t heory. The m1ifo2:''."!i singlet density also 

has an effect on the two-phase re Eion be t ween t he gas and 

liquid states r.ihere the equi libril.m density is not uniform. 

The solutions of t he equation under the above restraint can 

only be interpreted as cor responding to t he uniform metastable 

density of t he supersaturated vapor or t he superheated liquid. 

The statemen t of the super position approximation in 

te:cms of forces i mr'.lediately follows \ nor1 , since ~ by (18), we 

can write (19) as: 

Taking the g~adients of (23) results in 

It is quite evident ho~ an e quivalent superposition 

approximation could be written in a e enera l n-dimensional 
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configuration space. It is also reasonable from the physical 

nature of the aJproximation that, the higher the dimensionality 

of the space in which the approximation is used, the more 

closely the resultine probability density corresponds to the 

correct one. In connection with t his, it is interesting to 

note that f~irknood was able to show(l2 ) that the use of super -

posj_tion in sin6let space lends to the simple free volume 

t heory of liquids. 

We restrict our considerations further to an isotropic 

homogeneous liquid, that is to the bulk of a fluid. This 

- 1. f . t. l OJ ~ t. 1 f t' 1 t. simp l · ica ion r.w .. {e s '1 a 1u11c ion on y o_ ne re n ive 

distance between mo lecular pairs, and independent of the abso-

lute location and direction in t he fluid : 

( 25) 

Vtilization in (16), written in pair space, of the superpo-

sition approximot ion and the definitions given by (20) and 

(21 ) yie l ds : 

V't. [~ i 'a1(R,~) + (3V(1?,L)J = 

- f p"/[~ v (R' ·»ll ,., (R ,, ) 8' " ( R ... ) ol R •. 
( 26) 

Equation ( 16) in sin~let space beco~es : 

( 27 ) 
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111) ' 

since = ~ is a constant. For convenience ( 27 ) is 

subtracted frou (2 6 ), so that: 

'VR.[ ...e-.r t '" ( R .. ) .,. (3 V('R .. il = < 28) 

- (' ~ '" /[v;;, V ( R ,.)] g "' ( 'R.,) fj '"( R..} -r] d ~. 
A great number of ria t hema tical operations 21;e now porforr:ied 

on (28) including a change to bipolar coordinates. The de-

t a ils of t he se are given in Appendix A. ?he final result , 

is the f ollowing equation: 

fa'~ a- (R) :: - '1 V( R) + TIL'f o.R ('R- r-) r-f3(r-J-71 o( t" 
----~fl l R _a. 11 :! .1(29) 

where 'Ru. ha s been called R 9 and where the kernel of the 

integral equa tion,K (~), is given by: 

(30) 

B. Deri va ti on of Kirkwood'~ §..Y~'?..fil of~ Integral Eq,y.a tions 

Kirkwood , on the other hand, proceeds fro~ a potential 

of t he form 

~· 
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r(nere the j ~ are coupling para··1eters . They alJ01:j the force 

be tween any two 3olecule s to be continuously changed frou no 

force at a ll when T is zero, to the full value of the force 

v1hen J eq1Jals unity . For exarirqle, i.f all noleculos are 

fully coupled except nolecule one (i.e. 3 f~ : f
3 
= · ·· ~ lw :: I ) , 

the potential nould correspond to 

v(N)CR.··· R"'J r.) (32) 

The int roduction of such a potential qui te obviously ~akes 

~_l,1e ·01· · 0 1'~~i· 1i'tv c1 on~i·tv +he rac~ ~ ~ 1 <~i·stri~l1+ion· Dl1 11c+ ~ on u - :.. u 1.:J. IJ . ~ . u.) . - ·-- ~-' lJ ~ .. c \.. ...L 0 . ...I-. · ·~ v -- k - u .._ - J_ I. - " l; -1. ' -a:i:-1d a lso A,,, in ( 12)? :Lunctj_ons of thesE.'! couplinf'. pare.:11eters o 

1he particular variation of the potential carried out 

is the dii'fere~1tiation Fi t L respect to the couplin[ :~:ara;"1.eter 

of. one of the set of n nole cu les. ':C~~iis n olecule is again 

arbitrar:i..ly labe1ecl ~:aoJ_ecnlc one . Su1Js ti.tl.J.tion of (31) into 

\'!here tr:e potential has bE.-;(m broken up into two parts. Spec-

ialization to the pair proba"f:,ili ty d:LstrHmtion fu:'l.ction for 

:nolecule one 1.'.'i th an arbitrary no lecule 2 tr ansfor:ns (33) to 

tl· 1e followinc ~ 



-d 'P ( ~) ( f., R ~ ~ ~) ~ /3r~ AH ( r) -v ( 'R, ~ 'D ~~'(f - - )-) s ( & f >!J r J R,_, R> C .34) 

- f3 ( N-1} r v (i .. ) 1'' "( r .. R ~ R.)~~) ol ~ 
V1here .f. = 'f_; 'J1 =- J::: · ·· ='f w = I . '.:.'L:i_s ::;L1plification 

:w. :rns all the l"-2 j_n~c c: ro.ls o: lc.s t ter 1 ic cm tj_ca.1. 

~he representative integral is ;qritten for ~2 lecule three o 

l'he proceclnre :t'ro1·1 here on j_s the so.me as :Ln tl:~e l3 orn-

Green c.eri va ti on. ~};e onl:T exception i s ti.J.a t the ter::1 

(>Aw i· n ( 3&) 1,11 1 s ·t first be eliminated . "C>'f • ' ... U 

?>'A~ 
by subs ti tu ting t he expr e ssion f or "'C) J 

~his is accomplished 

obtained from (33) 

when it is restricted to the singlet space. Tha t is , 

= 0 

where again 
~~ _I 
r is presumed uniform and equal to v 

Tho s&me proble~ of the cyclic char acter of the set of 

i nte gro-differential equations is faced . hcain it is re-

solved by the superposition of the probability de nsity (19). 

Eowever, the pro ba bili ty C.c~nsi ties concerned wit~., ::1o lecu le 

one inv:ol ve t"e coupling parEn::etec. "1 hus , the . su:-.)cl')OSi tion 

approxi~ation is i n troduced differently. 7he error caused 

by it will consequently not be tte sane in the Kirkwood and 

th; :3orn-G-roen derivations 7 oven -~}-:.cnr;L t h e ori~;L1al sets of 

:L ;'}. te LrO-d.11· ::or or1 tia J_ eql~Ct t iDJ1.S c1r·e i.C:ierl tJ_ cal e 

For an :Lsotropic ho''JOf;eneous 1iq11 id tf:e co1 1bination of 

(34) 2nd (35), ~i t~ t~e introd~ction of ( 19 ) 

i n : 

nnd ( 21) re::rn l ts 
• 
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in t :-:e Born-Green case co11verts t>.i;; ecjl:ation into tl'.e fol-

loninE integral u~uation: 

' '{·.1 tl81'\(~ 

'.'lOlO Cl le 0!18 is coupleC as in t~e actual physical 

s :i_ tuD. ti on o 'i':'.ie J orn-Green ec;1~a tions inplici tly !:ave the 

position approxi~ation Das introduced . 



of ::3olution of the -- --.,,_-.-

It i s conven ient before proceeding to solve (29) t o 

convert it to a non-d iT,1cnsional o:c r educed for·lo It ,_-:ill 

be s'. ~oim tltn t the solutions then ap;)ly cern::ral1y to all 

substances v;l : o~>e potentL:ils of interaction dif'fer only in 

the value of tDo pnraueters . The tDo characteristic values , 

£ and ~ 9 occurr1ng i n the potent:Lal have the uni ts of 

energy and d1stance respectively, since the potential itself 

has the d:Lmensions of ene r gy and is a function of the distance 

o:L separat ion of the t wo '1ole cule s. In reduced uni t s 

V (R) -

11 hc-~r ei-.01)e 

wl1ere 

and 

R 
Q. 

(40) 

( 41) 

:po tential assumed influences the solution for g (x). The 

one adopted crui te genei,all:r (or the fluids under cons iderat ion 

is tLe Lennard-Jones potential(5) 



(42) 

where n is an exponent in tbe neig;c1borhood of L~. 'i'he expon-

ent C in the attract:i.ve part of the potential is ·well esta-

iJlished cp.:antu·1 med1anicc~l2_y . I~oY1ever, theTe exists so~:1e 

uncertainty on hovJ to take i:n.to accormt the repulsion of the 

a toms. 'l.'herefore n is e:.-Jpirically fixed? as are E' and Cc. 9 to 

cive best acree~ent with the experimentally deter~inad second 

virial coefficient and otlw:c d.2,tao \'H th the potential (42) 3 

f c'.eterr:lines the cleptL of the potentJ.al uell 9 and ct. is the 

finite value of R for B~ich the potential vanishes . 

The ']athernn ti cal solution of the inte&;ro.l equation ( 40) 

~-..7i tl;. t11e Lennard-Jones potential bv direct ) ~ 
iteration or by 

To obtain integral equatibns whicL could be 

solved 9 tLe Le:1nard-J.ones potential v!as 1Jod ii'ied, and g(x) 

was expanded in powers of the reciprocal of teDpcrature . 

The :.106 if ied Len'.w.rd-J ones notent:Lal has the for;~1: 

)(( x) = '<(,( "') + '(.' ( x) 

'fo(X) ::: D YocxJ I 'K/ "'" I 
(43) 

{'>C/"?/ :: OQ 

./ 

~ ( x.) 
I+ 4- I x/ ., I ¥. ( 'K) = D l"K/~I,., = --x ,.,,, _x& 

'.i'he repulsive part of the Lennard-Jones potentlal, whj_ch is 

uncertain anyway, h2s been altered in ( 43) in tho region 

' v1llero j_t is positive. Tho stee11 ;z;.a ri;:;e has been replc:ced 

by an a'orupt step. The ef:Z'ect of t~1j_s chance J.s tLat the 



-19-

potential~ and therefore the radial distribution function, 

is discontinuous at that point. Since the point of cross-

over for the potential has '.Joen c::--osen as the unit of dis-

tance Cl , the discontinuity occurs .;;. t x = l. 'i'here is also 

a d:Lscontinui ty at x = 2 in the distribution function. Hov•J-

ever, the net effect on the properties of the fluid, calcu-

lated under these circumstances, srwuld be slight except 

perhaps at very high compression, where the repulsive part 

of the potentia l plays a more important role. 

The series expansion in powers of t~e reciprocal of 

tenperat1Jre is carried out on 'f ( x ). 

whe re l/" (x ) is defined by 

- f f ¥o < ~) + <.f(x) Ix 
= e 

(44 ) 

( 45) 

Therefore 
1 
t he radial distribution function can also be e:z-

pressed by a series in inverse powers of T. 

where 

( 47 ) 
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.')ubstitution of ( 43 ) and (45) into the inte~ra l equation (40) 

results in ~ 

where 

'.L'he second i n te gr a l in the lrnrnel ( 49) can be sinplified 

by utilizing the properties of ~ (x). Since 

( 50) 

1,vhere cf (S -1) represents the Dirac delta fu.n.ction. Thus, 

upon introducing (50~ 

where 

l~ o ( l) : t '" - I 

l~o{t) = 0 

( 49) t hen takes the form 

( 52) 
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Substitution of the temperature expansion (44) into (48) 

results in: 

R ( t-) -= (f 'i) t~, l'=) + (f f:) 2 '"& li:) + · ·· + 

.. co.( I) [ I + ([3 f)'r. ( I J .. (f f). [ 'P. ~I) + \¥,.{~ ~ . .J W.M; 5 5i 

where 

I { [ ~. ). t J.) ( ol Y. ( ~) -<, tJ • \S - <Jd S) _1 
I~ ~ S 

cl s 
.J 

Cb 

~'1.(t:):: ( (s .. -t&) g,;,(S) 
) /l;J 

Cf, (SJ d Y, ( .s) 

s ds ds. 
( 56) 

If equal pm'Iers of (3 (' are collected, the terms in C(.l [. ) 0 

give the hard-sphere integral equation already solved(l:?:) 

(see Appendix D) 

~(><) = t r:j,(.(x-s>[s~(•J-~ofs_, 
( 57) 

1vhere A = ';\ 0 ff
0
<-•) . 

1 
~he terms in ( fE ) ~ake up the following integral equation: 

<+: ( X) =- - 'X )(, ( X) + ~ (I) ~ ( x.) i-

\ ~ ( 58) 
+ ~ [J~' ( ~ -.s) s la o cs> - I~ 1 s + i\ ( I ,- - L ~ 'J &r 4-J.0o ~o(x-s)90 'r, els. 

This equation is of the same general form as all succeeding 

equ2 tions in higher powers of ('f : 

~ f Clllio CP,. ( ~) = /°)")'\ ( X) + lt,.. (I) If.: ( x) + LL. d s f.(o( '< -s) q 0 (s) jl;rsJ. 
,. ,... r -Qi:> O (59) 
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7he equation (58) for r = 1 -'- . coni.,ains the very large term 

-x ~ (x) in its inhomogeneous part. It should therefore 

express the principal effect of adding the Lennard-Jones 

potential to tl: e hard-sphere core. i:·'or higher values of r, 

IW\,..( ')t) involves more and ::nore terms. Thus for r = 2 ~ 

rrn ) <.r,'l.(I) L/ Aof «'b r:. i7 
a<.>c :: .<, To(")+ Ji: _J~>(><-S) SJ_9{s)-ljdS+ 

+ ~ 1:(~, (x-s) ~o(s) 4{ (SJ d S +- (60) 

+ ; f- l~ o ( x -s) 'jo( sJ <P, '"cs) cl s + 
-- :Zs 

+ ~[~ lf:l•J 1< .. c)('-sJ ~<~J Y:<sJ els . 
.,.. --Only the last term has been evaluated previously in the 

equation for r = 1. '.L'hus the v1ork involved in calculating 

'tn.,. (x) from previously determined functicms becornes more 

complicated ~ith increasing r; but the form of the integral 

equation renains the same. 

'1'he ecuations for ~ (x) ( 59 ) depend only upon the choice 

of the reduced voh.u:.1e, tba t j_s, on the parameter A . Once 

the terus in the series are known for some value of the 

volume, the r~dial distribut :Lon fl~nction can be evaluated 

for any desired temperature (i.e., value of the paraoeter 

(J f:) at that volume. '.L'hus the expansion has the advantage 

that the radial distribution function can be calculated for 

a v:.rhole net of tenperatures and volumes, knowing only the 

expansion terms for several volumes. Unfortunately, how-

ever, no ~athematical test on the convergence of the series 

is available. We must await the numerical results of the 
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nex t section to t e ll us how soon t he t er n s in t he series 

become negli gi bly soall. But we know we can not depend on 

powers of f f to r;ia ke t he terms in the series decrease rapidly, 

sin ce f3 f is around unity or hi gher f or conditions corres -

pond i ng to t~e liquid statee 

The s chemes developed for t he numerical solution oi' the 

i n t eg r a l e quations ( 59) and (57) a re i den tica l and deoend 

qrd te decisive ly on t he propertie s of t he ha rd-s phere kernelo 

The F1e t hod we,~ s devised wi th the ah1 of a llowin~~ t lrn nse of 

I . B.n . nach:i.::ies. ':L'hus, nny iterative proced11r e sh01..i_l cl i n-

vo l ve only siop l e steps , even thouGh possibl y t he conver gonc e 

per i t er2t i on is no t ra:;J i d . 'i'he t r.e orem. upon wh i ch t h i s 

:-·1e t h od is ba sed ha s unfortuna t ely not been put i n to r i gorous 

mathema tica l f orm. It can, however, be stated tha t in t he 

~ean t he true s olu tion lies between t he input a nd t he ou tpute 

fha t is, on t h e averace t he so lut i on can be bounded between 

iterates. The r eason for t his becomes a pparent i f we suppose 
C" ) 

that the i nput 8.... differs by c.v (x) from the true solution 
ft) 

fj' ( x) ; 

a,.;..., 
0 ( x) 

/~) 

::- CJ (X) + C..0()4;) (61) 

or 

{I/ ( ~) 
I (x) = 

( v ( t:) 
7 ( X) 

I 
+ C..O ( X) ( 6 2) 
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C.O'/ 

I U>(. ~) )C e / )( · vvhere \..u ()() -= ttJ if the exponential can be t ( )C) ft-) 

linearized. Since x and 'l (x) 

and (...u (x) have the sar:ie sign. 

are always positive, c..u' (x ) 
It-) 

On the average, g (~) = I 
so that 

It) lf/ (X) + )( C..O(X) (63) 

Substituting (61) into the hard-sphere integral equation 

(57) yields: 

Cb 

It) ~ [ 'f' (x) + 't- f.lo(x-s) Sc.o(s)o/s. 
~Cb 

(64) 

~olt) has its ninir:mm value of -1 at t = 0 and rises paraboli-

cally to zero at t = "! l. In so far as this f1-1.nction can be 

represented as a del ta-fu.1.'1.ction at t = 0, or x = s, ( 64) 

becomes: 

(..L) (o-:l.) <~J A 
T ( ~) = "// (X} _, - 'X U>(X) 

3 .) 

using the fact that 

£: l~.{t)dt =- f '<t~-1) dt = 
-1 

- .!!:. 
3 

(65) 

(66) 

This is, of course, a very crude approximation, but 

comparison of (63 ) and (65) does support the idea that the 

true solution lies between the input and the output. It 
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furthermore illustrates how the solutions behave for various 

values of ~ . Certainly for ~~ 3 (roughly), direct iteration 

should fail. This has already been noted. The case of X = 5, 

treated later, showed that rapid convergence was obtained if 

the output and input were averaged. This is also indicated 

by (65) and (63). For values of ~ = 20 to ~ = 30 , per-

taining to the liquid state, the averaging of input and out-

put should fai1 to converge. This was found to be the case. 

Instead one had to take 80 to 90~ of the input and only 20 

to 10% of the output in order to approach the true solution. 

The procedure is equally applicable to the integral 

equat ion (5) ) for t he higher terms in the expansionQ 'l'he 

inhomo geneous part in no way alters the arguments.As a f irs t 

approxir1a ti on, t he 'f',.. (I) 'Y. ( x) term can be included in the 

:Lnhooogeneous part, since lf',.. (1) can be consj_dered a constant 

over a period of a few iterations. Hence, if we defj_ne w,:, (x) 

by: 

(~) 

<f',_ ( x) = 

then 

(°"4J 
Y,. ( 'X) 

( L~ ( ~) ' 
T,.. ( X) + c.o,.. ( ~) 

J 

(~) 

'f: (x) -

(67) 

The linearizatj_on of the exponent is not necessary here. 

Qualitatively (6 8) behaves similarly to (65) since again the 

average value of Cj
0

(x) can be set equal to one0 'I'he nth 
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iteration is expressed by the followin~ equation: 

, ..... , ( i..) 
and the next trial ~ by: 

(70) 

( ..... ) 
Here rA is a consto.nt who se cho:Lce deper1ds on the value of 

~ • It is safest to pick, at first, too low a value of ~ 

and increase it if the convergence pro ceeds too slowly. 

The details of this procedure and the set up of the I.B.LI. 

ma chines are described in the Appendix (B-2 and B-3) 

With the above method 'f. (x) and '+'z.. (x) ·were calculated 

for several values of ~ The proble~ arises now of how 

t he radial distribution functions can then be improved in 

the original u.nexpanc' ed integral equation (40) so as to 

avoid the great labor of calculating higher terms in tr1e 

series. The kernel (41) is usually positive and has two 

maxi:na, so that the solution is no longer necessarily bound-

~d. be t neen input and output. A further difficulty is that 

the kernel depends also on the distribution function. Since 

the dependence is not too sensitive , t his cooplicat ion can 

be overcome. The kernel can be ca l culated with the distri-

bution ftmction correct to ten1s in '-l'~ ( x), and (40) can 

be solved vdth this kernel kept fixed. l'he.p a new kernel 

can be evaluated and kept fixed till a new solution is 
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· obtained . 711is double series should eventually converge 

to tl~e point v'lhere t he cUstributj_on ftmction u s ed to calcu-

late the kernel is the sa~e as the next iterated output. 

The kernel (41) is sainly necative for low vnlues of 

~ and ~E . Thus t he value of ~ is certa in to be positive 

and can be used to cor:abir1e t he input and output till itera-

tion converces upon a solution in each of the series of fixed 

kernel integral equations. With the radial distribution 

function corre ct to terms in 'fa. (x), the first kernel vras 

calcu l a ted f or X = 5, ~F = .60 and a value of ~ = .50 was 

used to iterate. Two changes of t he kernel brought the 

rad ial distribution f unction wi thin t he desired accuracy. 

At }\ = l and f3 f = .60 and ~~· = 1. 00 t his 1~1ethod convereed 
-(1£ ¥,CJCJ 

even though t he procedure was started with 'f ( x ) = e 0 

For ~ = 5" ~ f' = l.OO, hmvever, t he kerne l is posit ive and 

t herefore the value of al is uncertain. ciC can be calcu-

l a ted so as to :rn iniLlize t t e sun of the square of the differ-

ences between direct iterates, as explained in Appendices D- 1 

and D. \Jhe t hcr this procedure would converge will have to 

be tr i ed in the future since t ime did not per~it us to in-

vestigate t he me thod thorouehly o 
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i.-tadial D~stlj:;..~l_tioq Functions 

As outlined in the previous section, the solutiont of 

t he Dorn-Green integra l equation depend s upon the radial 

di s t ribu tion function for a ho.rd-sphere inter:r:1olecular poten-

tial. These solu tions for the hard-sphere radial distribution 

function have been published (Appendix D). The solutions 

cover a wide range of the parameter ~ , i.e., of densities. 

However, before t he Lennard-Jones intermolecular potential 

was introducedJ t he accuracy of t he solutions was i mproved 

by method (70). In addition the solution for ~ = 1 was 

obtained b~· direct iteration. The r'lore precise solutions 

are t abulated in Table I. The a ccuracies ar e such t hat 

direct iteration causes a discrepancy in the radial distri­

bution function of r . 002 betv1een input and output for ~ = 1, 

5, 10, 20, and 27.4 and t .01 for A = 336 

VJ i th t hes e distribution function s t he inh o".1.ogene ous 

part of ( 58 ) was evaluated and t he e c~ 1;_at ion wa s solved f or 

~ (x) on I .B .E. :nach:Lnes (!ippend ices B- 2 and 13-3 ). The 

accuracy demanded 1:ms that direct itera tes of ~ agree 

within t .002 f or X :: 5, lO>and 20>and t .004 for ~ = 27.4. 

The series was carried one step further by t he eva luation 

of ~ • The Ie B . l.J. ~ ma chine s we r e told to stop when 'I{ (x) 

was wi t hin ! . 002 of its direct iterate for ~ = 5 and 10, 

t . co3 f or ~ = 20' and t . 004 for x = 27. 4. ':i'hese f1mcti ons 

are a lso tabulated in Table I. 

Figures 1 and 2 are repr esentative graphs of the radial 

distribution functi on correct to terr'.1 s in ~ Figure 1 
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illustrates the variation of t he radial distribution function 

vd th density at fixed tenpera ture ( f) f = • 80) • Curves A, B 

a.nd C correspond respectively to A = 27. 4 ~ 20, and 5. Figure 1 

shows clearly that the amplitude in t~e oscillat ion is larger 

for higher 0ensities, indicating rare orderly pa c king of the 

3olecules of the fluid. As Figure 2 demonstrates, the peaks 

in the radial distribution function are also higher when the 

temperature is - decreased at fixed density ( ~ = 20). Curve 

c, having the largest svJings, corresponds to ~£ = 1.20; curves 

I3 and C are at ~ £ = • 60 and • 00 respectively. 

It turns out that ~ (x) is sratifyingly Sr'la l l compared 

to o/, (x ) even if X ¥, (x) is subtracted from 'r. ( x) to make 

a fairer test. Eow large tl-::e effect of the ner;lected ter::Js 

in the series n i ,sht be can be ch e c ked by substitution of the 

a :;_)proxi1:.1ate radial distribution f1_,i_nction in the integral 

equat i on (40). A calculation was carried out for ~ = 5, 

~£ = l.OO, usinc the first two and then also the first three 

terns of the series. For the radial distribution function 

correct to t~e ~ term, the right hand side was greater than 

the left hnnd side by .163 at x = 1.00 and by .171 a t x = 1.12. 

IncJ_udi:r.g the nex t tern of t he series hardly i::1provec1 the 

deviation between direct iterates ( .147 at x = 1.00 and .159 

at x = 1.12). For l:.igher values of ~ and ff = 1. 00 the 

difference between direct iterates ~as of the san e sign and 

nature but so:1ewl~a t s ;:wllc:r in magnitude. For A = 10, 

~E = l.Oo, and x = l.OO , the difference wa s .111 while f or 

X = 27.4, {Jf = l .OO , at x = l.OO, it was .110. This 
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:Lndicates that the sol"!..7ti.ons are probably Dore accurate for 

h igher values of }\ , both because t!1e differences are s f11 aller 

e.nd bec~ , use t h e eqva tioYJ.s are n10re sensitive du e to t he factor 

~ (6 ~ ). ~he difference be tween direct iterates diminishes 

greatly as ~f is lowered, as would be expected fron the 

expansion (44), since the terns containing higher powers of 

(3 E decrease rapidly. T!1us at A = 5 ~ f E = e 60 J the difference 

was only .033 . at x = 1.00 and .035 at x = 1.12. 

In the above conpar ison the radial distribution function 

(45), where r (x) was calculated by (44 ) , was substituted on 

the right hand s:Lde. This g ( x ) is not strictly correct if 

only t erus up to the second pov1er in (3E are to be included, 

since t h8 above formula for t he radial distribution f unction 

incl1.1des the terE1s in h ip;her pm11er;3 of (3E. containing only 

'Y. and c.r,, . Eov·:ever t tis procedure is jus t ified if, as one 

hope s, 'f, (x) and h i r her terms are snall. 'i'he difference 

between (45) and the strictly correct radial distrib11tion 

function (46) is s oall at large distance s. The values are 

different only ne a r x = 1, where '-t; (x) is 12rge. 

The soli:ctions do not appear as accnrate as is desirable, 

since t h e e cuation of state and t h e trans port proper ities are 

sensitive to t he radial distribution function. To calcu late 

t l1e next ter ':1 in tl"',e series, <f3 (x), does no t see::i worth.:while 

becc::n:,se of the large a :::1ount of labor involved with no guarantee 

of greatly increasing the agreement of direc t iterates. How-

ever it is hoped t hat the soll~tions including terms up to 
J 
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~ are close enough to the true solutions to be i mproved 

by other 'Ti et~1o d s. (See pa ge s 26 and 27, t his t hesis.) 

Such a ne t hod was successf~l in iMproving the radial 

distribution function at A = 5, ($ E = . Go . The radial distri­

bution funct ion, tabulated in Table II, and its iterate 

a gree within ! .005 when substituted into ( 40). Also in­

c luded in t his table are the exa ct solutions f or ~ = 1. 00 , 

(3E = . 60 and/>E = l.OO, ~ = LOO obtained by t he same r.'.lethod. 

(See pages 26 and 27, t his thesis.) Again direct iterates 

agree within ! . 00 5. 
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;I'ABLE I 

The functions 't' which deteJ:>mine t:r10 radial di s tribut ion 

functi on as a funct ion of x f or ~rnv eral value s of the 

parameter ~ in the Born and Gr een equat :i..on; o/(x) = X ~ 8l..,..J 
({I'(~) '=' '+'. (~) .,.(/' t:J<r, l'l'J ... <;& t:) :a ~ex.) )( '>- I 

'/ 

~=I ~ :: S- X : t'O. 

x ~ 'Y. <I-( ~ 
1.00 .095 .368 -. 586 .078 .587 -.789 .025 

1. 04 .092 ·- .349 .099 .075 .552 -. 095 .024 

1.08 .088 .329 .414 .073 .515 .230 .024 

1.12 .083 . 305 .529 .069 .4'76 .353 .023 

1.16 .079 .283 .534 .067 .436 • 367 • 021 

1.20 .074 .260 . 486 .065 .392 .330 .019 

1. 24 .069 .236 .411 .063 .350 .266 .018 

1.28 . 064 .212 .330 .061 .305 .196 .017 

1. 32 .059 .188 .250 .058 .261 .127 .015 

1.36 . 1 64 .175 .055 .218 .063 .014 

1.40 .141 .109 .Oti 3 .174 .008 .013 

1.44 .042 .115 .053 .050 . 130 - . 0 ~)6 . 01 2 

.037 .091 . 00 6 .048 .Of:39 -.074 .011 

1.52 .032 .072 -.034 .045 .049 -. 101 .010 

1.56 . 027 .048 -.064 .045 .013 -.123 .010 

1.60 . 022 . 02 9 -.088 .044 -.022 -.135 .010 

1.64 .01'7 .011 - .105 .044 - . 0 52 - .142 .010 

1.68 .013 -.006 -.116 .043 - .080 - .142 .011 

1.72 .009 -.020 -.123 .044 -.101 -.139 .012 

1.76 .005 -.034 -.124 .044 -.120 -.129 .013 
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'i·.ABLE I (cont.) 

X = I )\:. .~ h ~ /0 

x 'I: '+:. w lf:. ~ Cf: <;-: 
1.80 . 002 -.u41 -.120 . 046 -.131 -.117 .015 

1.84 .ooo -. 048 -.111 . 047 -.136 - .102 . 017 

1.88 -. 002 -.051 -. 101 . 049 -.133 -. 084 . 020 

1.92 -.003 -. 055 -. 086 . 0 52 -.123 -. 066 .023 

1.96 -. 004 -. 0 51 -. 070 .055 -.106 - • 0 "'.1c6 . 027 

2.00 - . 004 -. 040 -. 0 53 .059 -. 077 -. 026 . 030 

2.04 -.003 -.032 -. 030 . 063 -.051 . 003 . 031 

2.08 -. 003 -. 022 -. 007 .066 -. 027 . 036 . 032 

2.12 -.002 -.016 .014 .069 -.007 .063 . 033 

2 . 16 - .002 - .011 . 031 .069 . 010 . 082 .034 

2.20 - .002 -.003 . 041 . 067 .021 .094 . 0 33 

2.24 -. 001 . 001 .048 .064 .030 . 0 96 .029 

2 .~~8 - . 0 01 • 00 ~') . 0 51 . 0 57 .037 . 0 92 . 023 

2. ~'52 - . 001 . 005 . 053 . 050 . 04 0 . 085 . 016 

2.36 -. 0 01 .007 . 051 . 042 . 041 . 073 .009 

2.40 .ooo . 008 . 04 5 0 0 ~311 . 041 .060 . 001 

2 .4·1 . 0 08 . 040 • 0~~6 . 0 ~) 9 .044 -. 005 

2.48 .009 o·~·· . .._,;) .017 . 0 35 .030 -.010 

2.52 . 008 . 029 .011 . 0 30 .017 -. 015 

2. 56 . 007 . 023 .006 . 025 .004 -.01 9 

2.60 . 006 . 017 .001 . 01 9 -. U08 - .021 

2.64 . 0 05 .011 -. 004 . 013 -. 017 -. 011 

2.68 . 004 .006 -. 006 .008 -.026 - .002 
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TABLE I (cont.) 

\:. I \; .s- ~ ::/D 

x V{ 'ft '({ 'ft. Y-: '/{ ~ 
2.72 .ooo .004 .001 -.u07 • 00~"5 -.031 .003 

2.76 .003 -.003 - • 00[3 -.003 -. 0 35 .007 

2. 8 0 .002 -.005 -.007 -.v06 -.037 .009 

2.84 .001 -.007 -.007 -.010 -. 037 .009 

2.88 .ooo -.008 -.006 -.011 -.035 .008 

2.92 .ooo -.009 -.005 -.012 -.033 .U05 

2.96 -.001 -.010 -. 003 -.013 -.028 . 002 

3.00 -. 001 -.009 -.001 -.014 -. 022 .uOl 

3.04 -.001 -.008 .001 -.013 -.015 .005 

3.08 -.002 -. 007 .003 -.011 -.010 .007 

3. 12 -.002 -.006 .005 -.010 -.004 .009 

3.16 -.002 -.004 . 00 7 -.008 .003 .010 

3.20 -.001 -.00 3 .009 -.006 .007 .011 

3.24 -.001 -. 002 .010 -.003 .010 .012 

~) .28 -.001 -.001 .011 -.002 .015 .011 

3.32 -.001 .ooo .011 .ooo .016 .ulO 

3.36 .00 0 . 0 01 .011 .001 .018 .009 

3.40 .002 .010 .002 .017 .007 

3.44 .003 .01') • 00~5 .016 . 0 05 

~).48 . 003 . 0 0 9 .004 .014 .000 

3.52 .003 .OOB .005 .012 .001 

3.56 .004 . 0 07 .004 .009 -.001 

3.60 .004 .006 .004 . u 07 -.000 

3.64 .003 .005 . 003 . 0 05 -.005 
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TABLE I (cont.) 

~:: I ~; .s- x = /0 

x ~ ~ er: ~ <f/o ~ ~ 
3.68 .ooo .ooo .003 .004 .003 .002 -.006 

3.72 .003 .003 .002 .001 -.006 

3.76 .002 .002 .002 -.002 -.004 

3. 80 .002 .002 .001 -.003 -.002 

3.84 .001 .001 .uOl -.005 .ooo 

3.88 .001 .ooo .ooo -.005 .002 

.3.92 .001 .000 .ooo -.00? .002 

3.96 .001 -.001 .ooo -.006 .002 

4.00 .001 -.001 - .001 -.006 .oo~ 

4.04 .001 -.001 -.001 -.005 .001 

4.08 .001 -.001 -.001 -.004 .001 

4.12 .ooo -.001 -.001 - .004 .ooo 

4.16 .ooo -.001 -.003 .ooo 

4.20 .ooo -.001 -.002 .001 

4.24 .ooo -.001 -.001 .002 

4.28 .ooo .uOO - . ocn .002 

4.32 .001 .001 .002 

4.36 .001 .001 .002 

4.40 .001 .002 .002 

4.44 .001 .002 .003 

4.48 .001 .003 .002 

4. 52 .001 .002 .002 

4.So .002 .002 .002 

4.60 .002 .002 .001 



X; I 

x Vo 
4.64 .uoo 

4.68 

4.72 

4.76 

4.80 

4.84 

4.88 

4.92 

4.96 

5.00 

5.04 

5.08 

5.12 

5.16 

5.20 

5.24 

5.28 

5.32 

5.36 

5.40 

5.44 

5.48 

5.52 

5.56 

~ 
.ooo 
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TABLE I (cont.) 

~:: S" 

'f( Yi 
.vOO .002 

.002 

.001 

.001 

.001 

.001 

.001 

.001 

.001 

.001 

.001 

.001 

.ooo 

\ ~/D 

'K <If ~ 
.ooo .002 .001 

.001 .001 

.001 .ooo 

.001 .ooo 

.ooo .ooo 

.ooo 

-.001 

- .001 

-.001 

-.001 

-.001 

-.001 

-.001 

-.001 

-.uOl 

-.001 

-.001 

.ooo 

.ooo 

.001 

.001 

.001 

.001 

.001 



x 

5.60 .vUU 

5.64 

5.68 

5.?2 
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TABLE I (cont.) 

.ooo .ooo .ooo 
~ 'I: ~ 

.ooo .ooo .001 

.001 

.001 

.ooo 



-~8 -__, 

TABLE T (cont.) ..L 

'X::. 20 ). = 2 7. 4- °)\.:: 33 
x t.r. 9{ '-f'~ ~ V1 ~ </--: 

1.00 .859 -.920 -.038 .980 -.956 -.048 1.040 

1 .04 .808 -.218 - .034 .933 -.247 -.044 1.016 

1.08 .751 . 119 - .031 .879 .095 -.041 • ~180 

1.12 .691 .253 -.028 .817 .236 -.038 .928 

1.16 .627 .-280 -.025 .745 .268 -.036 . 861 

1 .20 .556 .255 - • 02~5 .665 .245 -.034 .778 

1.24 .483 .203 -.021 .575 .196 -.033 . 673 

1.28 .406 .143 -.019 . 476 .138 -.030 .552 

1.32 .329 .081 -.017 . 371 .0?9 -.028 . 4 14 

1. 36 .250 .026 -.015 .261 .026 -.025 .264 

1 .40 .l?O -.019 -.013 .148 -.019 -.022 .108 

1.44 .090 -.056 -.010 .034 -.055 -.018 - .04? 

1.48 .014 -.085 -.008 -.077 -.082 -.013 -.204 

1. 5 2 -.060 -.104 -.005 -.185 -.098 -.008 - . 354 

1.56 -.128 -.115 - .002 -.281 -.109 -.001 -.491 

1. 6 0 -.188 -.121 .001 -. 368 -.110 .004 -. 610 

1.64 -.240 -.120 .003 - • 4 1±1 -.108 .010 -.709 

1.68 -.283 -.114 .006 -.49(3 -.098 .017 -.78 3 

1.72 -.313 -.105 .00 9 -.536 -.08 6 .024 -.828 

l.?6 - . 332 -.092 .013 -.554 -.07 0 .03 2 -. 822 

1 .80 1-, r2 r~ 
- • o,_)o -.077 .018 -·. 548 -.055 .040 -.816 

1. 84 - • ~'529 -.060 .024 -.51? -.04 1 .04'7 -.723 

1. 88 -.301 -.045 .029 -. 46 0 -.027 .054 - .657 

1.92 -.256 -.031 .034 -. 376 -.017 .061 -.518 
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TABLE I (c ont.) 

\:: ~ 0 X=:27.Lf )\:: 33 
x ~ ~ ~ ~ </--: ~ '-f/. 

1.96 -. 1 94 -. 019 .039 -.264 -.011 .069 - .31n 

2. 0 0 -.110 -.OJ.0 . 043 -. 122 -.009 . 074 -.125 

2. o~~ -.030 . 0 22 .034 .021 .01 9 .056 . u94 

2.08 . u ZS 7 .068 . 024 . 1 37 .077 . 036 .270 

2. 1 2 .089 .106 .020 • 2 ~~ '7 . 1 27 .025 .412 

2.16 .l~-50 .128 .019 .292 .154 .020 .514 

2.20 .155 .137 .017 .333 .159 .015 . 58 0 

2.24 . 170 .131 .014 .353 .146 .008 .607 

2.28 .175 .116 .010 .354 .118 -.002 .600 

2 .~)2 .172 .093 .003 .337 .082 -.013 .559 

2.36 .161 . 066 -. U0 5 .305 .043 -.024 .493 

2.40 .143 .038 -.013 .261 .003 -. 0 32 .406 

2. 4 4 .124 .ooe -.017 .207 -.033 -.039 .302 

2.48 .096 - .015 - .020 .148 -.066 -.044 .181 

2.52 .069 -.036 -. 0 22 .083 -.091 -.046 . 061 

2.56 .040 -. v 54 -.023 .019 -.110 -.044 - .061 

2.60 .013 - • 067 -.023 -.042 -.123 -.038 - .1'r3 

2.64 - .• 014 -.076 -.021 -.099 -.128 -.031 -.277 

2.68 -.037 -.082 -.ul7 -.150 -.125 -.022 -.369 

2.72 - . 0 58 - .083 - .012 -. 1 9 0 -.118 -.Ull -d=43 

2.76 -.074 -.08 0 -.008 -.221 - . 105 .001 -.495 

2.oO -.086 -.074 -.003 -.240 -.088 .012 - • 524 

2.84 -.093 -.064 .003 -.247 -.066 .022 - . 522 

2.88 -.094 -.053 .u09 -.241 -.043 .031 -.499 



-40-

TABLE I (cont.) 

h ': .<o )\ -: 27. 4- X:3~ 
x 'Po <f: ~ '11 "11 <r:. Cf/. 

2.92 -. u90 -. u41 .013 -.222 -.019 .039 -.44c3 

2.96 - .081 - • 026 .Ul7 -.190 .uu7 .046 - .374 

3.00 - .071 -.009 .020 -.155 . 032 .048 -.283 

3. 04 -.056 .007 .022 -.110 .057 .048 -. 1 ? 7 

3.08 - .03'::1 .0~2 .0~3 -.061 . 08 0 . 046 - .067 

3.12 - .023 .037 . 023 -.013 .099 .041 .040 

3.16 -.OOo .047 . 022 .033 .112 .036 .142 

3.20 .009 . 056 .019 .074 .118 .028 .230 

3.24 . 021 . 0 62 .016 .108 .117 .01 9 .303 

3. 28 . u31 . 060 . 011 .134 .108 .010 .358 

3.32 . 040 .059 .006 .151 .093 -.001 . 388 

0.36 . 044 . 0 54 .002 .159 .074 -.012 . 399 

3.40 .048 . 044 -.002 .160 . 049 -.022 .385 

3.44 .047 .Oo4 -. 006 .151 .023 -.031 .351 

3.413 . 046 .022 -.010 .135 -.002 -. u3e .299 

3.52 . 040 .012 -.01 3 .114 -.027 -.042 .236 

3.56 .036 -.001 -.015 .087 -. u49 -.040 .16'.J: 

3.60 .027 -.010 - .017 .061 -.O?O - . u43 . 083 

3.64 . 021 - . 021 -.018 .030 -. 083 -.040 .001 

3.68 . 011 -. 027 -. ul ci . ooo -.u93 -. 036 - .073 

3.72 .004 - .034 -.014 -.028 -.u9'7 -. 0;::: 8 -.1'±7 

3.76 -. 005 -.035 -.011 -.053 -. 097 -.018 -.210 

3.80 - .011 -.038 -.008 -.075 -.090 -.008 -.261 

3.84 -.01 6 -.038 -.004 -.091 -.080 . 002 -.296 
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TABLE I (cont.} 

x~-< o ). ":: 2 7. '+ A~ 33 
x <flo ~ ~ ~ Y;" ~ St: 

3.88 - . 01 9 - • 037 -. 001 -. 102 -. 066 . 01 2 -.31 9 

3.92 -.023 -. 0 32 .ooo -. 1 07 -. 049 .020 -.327 

3.96 -. 025 -. 026 . 002 -.106 - . 0 30 . 0 27 -.314 

4. 0 0 -.024 -.021 .005 -.100 -.011 . 0 33 -.282 

4.04 - . 023 -.014 .008 -.08 9 . 0 07 .03? - .245 

4. 08 -.020 -.OOB .010 -.074 .025 .039 -.190 

4.12 -.01 7 -.001 .011 -.057 .043 .039 -.130 

4. 1 6 -. 01 3 . 006 . 01 2 -.038 . 0 58 .037 -.066 

4.20 -.009 .01 2 .01 3 -.018 . 070 . 033 .005 

4 .211 -.005 .01 7 .01 2 . 0 02 .07'7 .027 .067 

4.28 -.003 . 023 .010 .020 . 080 .020 .120 

4.32 . ocn .025 . 0 07 .037 .077 . 012 .170 

4.36 .004 .025 . 0 05 .051 .071 .004 .208 

4.40 .007 .024 .002 .061 .061 - .005 .236 

4.44 .010 .022 .ooo .068 .047 -.013 .245 

4.48 . 011 .020 .ooo .070 .032 -.020 .246 

4.f52 .012 .01 6 -.002 .068 .018 -.026 .230 

4.56 .012 .01 3 -. 003 .064 . Ov2 -.031 .203 

4.60 .011 .008 -.005 .056 -.01 2 - .0;32 .1'72 

4.64 . 011 .003 -.006 .046 -. 0 26 - .033 .130 

4.68 .009 -. 001 -.006 .035 -. 0 38 -.033 . 083 

4.,72 .00'7 -.004 -.006 .022 -.048 -.029 .035 

4.76 .006 -.008 -.006 .009 - .055 -.026 -.018 

4. 8 0 .004 -.011 -.006 - .004 -.058 -.020 -.061 
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TJl ... BLE I (c ont.) 

~-= :2 0 h~ 27.4- :X-= 33 
x 

~ 'k y.-3,.. Y-1. 'I-: ~ ~ 
4 .8LJ: .002 -.013 -.005 - . en s -.058 -.013 -.103 

4.B8 - . 001 - .013 -.003 - .026 -.056 -.006 -.139 

4.92 -.002 -.014 -.001 - • 0~54 -.050 .001 -.167 

4. 9 6 -.003 -.014 .ooo -.040 -.042 .008 - .H39 

5.00 - .004 -.013 .ooo - .043 -.032 .015 -. 1 98 

5.04 - .005 -.011 .ooo -. 044 -.024 .020 -.195 

5.08 -.006 -.00 9 .001 -. 0 43 -.013 .024 -.18 3 

5. 1 2 -.007 -.006 .002 -. 0 40 -.002 .026 -.16 5 

5. 1 6 -.006 -.004 .003 -.034 .010 .028 -.13 3 

5 .20 -.005 - .002 .004 -.027 .02 0 .028 -.104 

!) .24 -.005 .ooo .00-4 -.019 .028 .026 -.064 

5.28 - .004 .003 .004 -.012 .036 .023 - .027 

5. 32 -.003 .005 .003 -.005 .04 3 .019 .014 

5 .36 -.002 .006 .002 .003 .044 .014 .052 

5 . 4 0 -.001 .007 .001 .010 .04 4 .008 .083 

5.44 .ooo .007 .ooo .01 7 .041 .002 .113 

5. 48 .001 .007 . ooo .022 .0~56 - • 004 . .134 

5.52 . 002 .007 .000 .025 .03 0 -.009 .14 6 

5 . 56 .002 .007 .ooo .02 7 .023 - .014 .152 

5. 60 .002 .006 .ooo .02'7 . 01 5 -.017 .148 

5.64 .003 .004 .ouo . 02 6 .004 -.020 .13D 

5 . 68 .003 .004 .000 .024 -.002 -.022 .126 

5.72 .003 .003 .ooo .020 -.00 9 - • 02~) .100 

5 o76 .003 .001 -.001 .01 6 - • Ul f) -.021 . 074 



_ 4:( _ _ , 

'1'1\..BLE I (c ont .) 

\-:20 ~-:. '2 7. 4- )..,. 33 
x w Cf: <r:. <p. Cl{ ~ "Po 

5 . 80 .002 .ooo -.001 .013 -.021 - .020 o 0 LJ: 7 

5.84 .002 -.001 -.001 .008 -.026 -.017 .017 

t). 88 .002 -.002 -.001 .00 2 -. 027 -.013 - .013 

5.92 .001 -.003 -.001 -.003 -. 029 -.008 - .041 

5.96 .ooo -.00 3 .OOJ -.007 -.030 -.003 - .066 

6.00 .ooo -.003 .ooo -.011 -.027 .000 - .084 

6 .04 .ooo -.003 .ooo -.014 -.02 3 .005 -.105 

6.08 .ooo -.004 '.ooo - .015 - .01 9 .009 - .122 

6 .12 -.001 -.003 .ooo -.016 -.015 .012 -.126 

6 .16 - .001 -.003 .ooo -.016 -.010 .015 -.121 

6.20 -.001 -.00 3 .000 -.015 -.004 .016 -.llU 

6. 2 11 -.001 -.002 .ooo -.014 .001 .017 -.096 

6.28 .ooo - 0 002 .001 - .012 .005 .017 -.075 

6 .32 -.001 .001 -.009 .009 .016 - .057 

6. 36 - . uOl .001 -.007 .014 .01 5 -.0;J3 

6.40 .ooo .001 - .004 .016 .012 -.008 

6.44 .ooo .001 -.001 .018 .009 .014 

6.48 .oou .ooo .001 .020 .006 .036 

G. 52 .ooo .004 .01 9 .002 .055 

6.56 .001 . 006 .018 -.001 .069 

6.60 .001 .007 .016 - . 004 .079 

6 . 6-4 • O ~)l . 009 .012 -.00 7 o Ot37 

6 068 .001 .009 .009 -.010 .090 

6 .'7 2 . 001 .009 • OC)o - .011 . OE,9 
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'l'ABLE I (cont.) 

~~20. "h~ 27. 4- \::. =33 
x 9{ 'H lh w '+: ~ 'H. 

6 .76 .ooo .001 .ooo .009 .004 -.012 .Q(-30 

6.80 .001 .008 .ooo - .012 .072 

6.84 .002 .007 -.004 -.012 .060 

E5 . f38 .001 .005 - .006 -.011 .044 

6.92 .001 .004 -.007 -. 009 .026 

6.96 v.001 .002 -.009 -.008 .009 

7.00 .001 -.001 -. 009 -.006 -.009 

7.04 .ooo -. 001 -.011 - .003 -. 026 

7.08 - .ocn -.013 -. 001 -.040 

.7 .12 -.002 -.012 .001 - .052 

7.16 -.003 -.011 .004 - .059 

7.20 -.004 -.008 .006 - • 0 6~') 

7.24 -.005 -.006 .00? -.066 

7.28 -.005 - .005 .008 -. 06 5 

7. ;')2 - .005 -.003 .009 -.057 

7. ;55 - .005 .ooo .009 -.050 

7.40 -. 005 .002 .008 - .044 

7.44 - .00<± .004 .007 Or' " - e t...J '-') 

7.48 -.003 .005 .006 -.020 

7.52 -.002 .006 .005 -.007 

7.56 -. 001 .007 .004 .007 

7.60 .ooo .OO? .002 .018 

7. 64 .001 .007 .ooo .029 

7.68 .002 .OO? -.001 .035 



_ /1_ h"_ ·-
TABLE I (cont.} 

x~20 \:: 2 7.lt ~: ss 
x 

~ 'I.-: ~ w 'k </( 'r. 
7.72 .ooo .ooo .ooo .002 .006 -.003 .038 

7.76 .002 .005 -.004 .042 

7.80 .002 .004 -.004 .043 

7.84 . 002 .003 -.006 .044 

7.88 .003 .002 -.006 .043 

7.92 . 002 .ooo - .006 .038 

7.96 .002 -.001 -.006 .031 

8 . 00 .002 -.002 -.005 .019 

8 .04 .002 -.004 -.005 .015 

8 .08 .001 -.004 -.003 .012 

8.12 .001 -.005 -.002 .007 

8 .16 . 001 -. 005 -.001 -.006 

8 .20 .001 -.005 -. 001 -.020 

8.24 .ooo -.004 .ooo -.025 

8 .28 - .001 -.004 .002 -.026 

8.32 -.001 -.003 .003 -.028 

8.36 -.001 -.003 .003 -.029 

8.40 -.001 -.002 .003 - .031 

8 ~44 -.001 -.001 .004 -.030 

8.48 -.001 -.001 .004 -.028 

8.52 -.002 .ooo .003 -.022 

8.56 -.002 .001 .003 - .017 

8 .60 -.001 .001 .003 - .009 

8.64 - .001 .002 .002 -.003 
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TABLE I (cont.) 

}. : 2o )p 27. 4 )p~ 33 
x <f{. Cf-: ~ 'I{ '!-;' ~ Y: 

8 .68 .ooo .ooo .ooo -.001 .002 . 002 .ooo 
8 .'72 -.001 .003 .001 .004 

8 . '76 .ooo .002 .ooo .009 

8 . 8 0 .ooo .002 -.001 .013 

8 . 84 .ooo .003 -.001 .015 

8 . 88 .001 .001 -.001 .016 

8.92 .001 .001 -. 002 .017 

8 . 96 .001 .001 -.002 .018 

9 .00 .001 . 001 -.002 .021 

9 .04 .ooo . 001 -. 002 . 016 

9.08 . 001 -.002 .012 

9.12 .001 -. 002 .00'7 

9.16 .ooo -.002 .003 

9 . 20 . ooo -.002 .002 

9 .24 -.001 -.001 .001 

9.28 -.001 -. 001 - . 001 

9 .32 -.001 .ooo -.004 

9 .36 -.001 .ooo -.008 

9 .40 .ooo .001 -.009 

9 .44 -.001 .001 - .012 

9.48 -.001 .001 -. 010 

9.52 -.001 . 001 -.009 

9 .56 -.001 .001 -.008 

9.60 -.001 .001 -.007 

9.64 .ooo .001 -.003 
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TABLE I (cont.) 

)\~20 )\:: 27.Lf :X-::33 
x 

~ v-: ~ er: ~ ~ ~ 
9.68 .ooo .ooo .ooo .ooo .ooo .ooo - .002 

9.72 -.001 

9.76 .ooo 

9.80 .ooo 

9.84 .001 

9.88 .001 

9.92 .002 

9.96 .002 

10.00 .003 

10.04 .004 

10.08 .005 

10.12 .003 
.~. 

10.16 .002 

10.20 .001 

10.24 .001 

10.28 .ooo 
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TABLE II 

Exact radial distribution functions for several values of 

the parameters ~ and f~ • 

g(x) as a function of x. 

x ~:I ~-::-/ >..:. .s- x ~-::./ ~=I )\ ~ .s-
(J'i =. b ~r ::::/, o ($$:-:.., ~'& =· b f''-:/.0 (SG -:. 6 

l.OO l.022 l.162 1.092 1.80 1.042 1.201 .965 

1.04 1.512 2.230 1.585 1.84 l.036 1.190 .965 

1.08 1.764 2.868 1.824 1.88 1.032 1.182 .968 

1.12 1.825 3.034 1.853 1.92 1.030 1.178 .972 

1.16 1.782 2.910 1.'783 1.96 1.031 1.180 .981 

1.20 1.692 2.673 1.674 2.00 1.031 1.182 .992 

1.24 1.590 2.418 1.554 2.04 1.031 1.184 1.004 

1.28 1.495 2.184 1.449 2.08 1.031 1.186 1.017 

1.32 1.412 1.977 1.355 2.12 1.031 1.188 1.026 

1.36 1.339 1.821 1.274 2.16 1.030 1.191 1.034 

1.40 1.280 1.697 1.208 2.20 1.030 1.191 1.040 

1.44 1.232 1.576 1.151 2.24 1.028 1.186 1.043 

1.48 1.192 1.490 1.105 2.28 1.026 1.179 1.044 

1.52 1.159 l.420 1.070 2.32 1.025 1.170 1.044 

1.56 1.132 1.367 1.039 2.36 1.024 1.162 1.042 

1.60 1.109 1.325 1.015 2.40 1.022 1.155 1.038 

1.64 1.089 1.288 .998 2.44 1.021 1.145 1.035 

1.68 1.073 1.256 .982 2.48 1.020 1.138 1.031 

1.72 1.060 1.233 .972 2.52 1.019 1.129 1.027 

l.?6 1.049 1.216 .965 2.56 1.018 1.122 1.023 
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TABLE II (cont.) 

x )... =I ">\ ~ I )\ ~ s-- )\-=- I ').. = I )\':I .s-x 
(JE ~.' ~'i -::1.0 ~e :.6 ~E ~.G (JS.-:;. I. 0 (SE -=. 6 

2.60 1.016 1.116 1.020 3.56 1.003 1.040 1.006 

2.64 1.015 1.110 1.017 3.60 1.003 1.038 1.006 

2.68 1.014 1.104 1.015 3.64 1.003 1.037 1.006 

2.72 1.013 1.098 1.014 3.68 1.003 1.035 1.006 

2.'76 1.012 . 1.092 1.012 3.72 1.003 1.034 1.006 

2.80 1.011 1.086 1.010 3.76 1.002 1.032 1.006 

2.84 1.010 1.081 1.009 3.80 1.002 1.031 1.006 

2.88 1.009 1.079 1.008 3.84 1.002 1.029 1.005 

2.92 1.009 1.076 1.007 3.88 1.002 1.028 1.005 

2.96 1.008 1.0'72 1.007 3.92 1.002 1.027 1.005 

3.00 1.008 1.070 1.006 3.96 1.002 1.026 1.005 

3.04 1.007 1.067 1.007 4.00 1.002 1.025 1.004 

3.08 1.007 1.064 1.006 4.04 1.002 1.024 1.004 

3.12 1.006 1.062 1.007 4.08 1.002 1.023 1.004 

3.16 1.006 1.060 1.007 4.12 1.001 1.022 1.004 

3.20 1.006 1.058 1.007 4.16 1.001 1.021 1.004 

3.24 1.005 1.055 1.007 4.20 1.001 2.020 1.003 

3.28 1.005 1.053 1.007 4.24 1.001 1.020 1.003 

3.32 1.005 1.051 1.007 4.28 1.001 1.019 1.003 

3.36 1.004 1.049 1.007 4.32 1.001 1.018 1.003 

3.40 1.004 1.047 1.007 4.36 2.001 1.018 1.003 

3.44 1.004 1.045 1.007 4.40 1.001 1.017 1.003 

3.48 1.003 1.043 1.007 4.48 1.001 1.016 1.003 

3.52 1.003 1.041 1.007 4.48 1.001 1.016 1.003 
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TABLE II (cont.) 

x ~~1 )\~I '>\ :.S- x '>\: I ).. : I >t=S" (.Us.<; f)€-=1.~ (SE-:. & (f 'i :-.(; ~' :t.o .f.G: .<;. 
4.52 1.001 1.015 1.002 5.48 1.000 .006 .001 

4.56 1.001 1.015 1.002 5.52 1.006 2.001 

4.60 1.001 1.014 1.002 5.56 1.005 1.001 

4.64 1.001 1.014 1.002 5.60 1.005 1.001 

4.68 1.001 1.013 1.002 5.64 1.005 1.001 

4.72 1.001 2.012 1.002 5.68 1.005 1.001 

4.76 1.001 1.012 1.002 5.72 1.004 1.001 

4.80 1.001 1.011 1.002 5.76 1.004 1.001 

4.84 1.001 1.011 1.002 5.80 1.004 1.001 

4.88 1.001 1.011 1.002 5.84 1.004 1.001 

4.92 1.001 1.010 1.002 5.88 1.004 1.001 

4.96 1.001 1.010 1.002 5.92 1.004 2.001 

5.00 1.001 1.010 1.002 5.96 1.003 1.001 

5.04 1.001 1.009 1.002 6.00 1.003 1.001 

5.08 1.001 1.009 1.002 6.04 1.003 1.001 

5.12 1.000 1.008 1.002 6.08 1.003 1.001 

5.16 1.008 1.002 6.12 1.003 2.001 

5.20 1.008 1.002 6.16 1.003 1.000 

5.24 1.008 1.001 6.20 1.003 

5.28 1.007 1.001 6.24 1.003 

5.32 1.007 1.001 6.28 1.002 

5.36 1.007 1.001 6.32 1.002 

5.40 1.006 1.001 6.36 1.002 

5.44 1.006 1.001 6.40 1.002 



).. -:. / 
x 

~~ :, ' 
6.44 1.000 

6.48 

6.52 

6.56 

6.60 

6.64 

6.68 

6.72 

6.'76 

6.80 

6.84 

6.88 

6.92 

6.96 

7.00 

7.04 

'7.08 

7.12 

7.16 

7.20 

7.24 

7.28 

'7.32 

'7.36 

TABLE II 

>.: I )\:: .s-
pE:l.O ~l=,6 
1.002 1.000 

1.002 

1.002 

1.002 

. 1.002 

1.002 

1.002 

2.002 

1.002 

1.002 

1.001 

1.001 

1.001 

1.001 

1.001 

1.001 

1.001 

1.001 

1.001 

1.001 

1.001 

1.001 

1.001 

1.001 
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(cont.) 

x 
7.40 

7.44 

7.48 

).~I )\::.I )\=r 

f3~ -::. ' (S<i -::1. o rs~=., 
1.000 1.001 1.000 

1.001 

2.000 
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Figure 1. The variation of the radial distribution 

function correct to ~ with volur:ie for (3 E = • 80 on the 

Born-Green basis. 

A for ~ = 27. 4 

3 for ~ = 20e 

C for ~ = 5. 
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Figure 2. The variation of t he r adial distribution 

f·i;_nction correct to ~ '\'.' i t h te:J)CTa ture f or A = 20 on the 

J orn-Green basis: 

A for (3£ = .00 

13 for (3f = . 60 

c for fE =l.20 
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Cr1cc tl1c c1ist ~citn1ti o 11 f11.ncti~_;r•.s cLcv0;lo·0ec1 ir1 tl~e -;Jre --

co nc_ i tions is an easy Da tt er. ~30th the J orn.-U-reen theory and 

t l':.e Kirkwood tl1eory leac1 to the f ollov.'ing equation of state: 

1v 
-- - I -/Vh.T (?l) 

If t he modified Lennard-Jones potential (48) is substituted 

then (71) becomes: 

f v - =I+ 
N~T 

The internal ener gy, E , is given by: 

E 
NRT 

(72) 

(7J) 

The knowledge of the equa tion of' state and the internal 

enerr;y allows t he calculation of all other therE1.odynamic 

quantities through thermodynamic relations. Nevertheless, 

it is desirable to have explicit statistical mechanical 

expressions for t he other thernodynamic quantities. Kirk-

wood's theory yield s such an expression for the chemical 

potential~ ~ '1 : 
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this leaves open the choice of the paraneters ~ and E in 

the potential. ~he reduced variables used are: 

In ter:-ns of 

v* = 
v -A/a.1 _,I 

,.. ~ RT 
T = ~E =--;;€ 

n* . ' v* and T*, the calculated 

( ?5) 

equation of state 

applies for any fluid u_r1der corr es pondh1e;-s ta te conditions e 

In Table III, p* is tabulated for various values of v* and 

T*, and for various ap;::iroxinations to the radial distribution 

function. The values of v* for v~hich p* can be evaluated 

are restricted to t hose vc.~lues :·or which the radial c~istri-

butionf.vm s obtained. I:o;:1ever, clue to the e:~)ansion ( 44 ) , p* 

can be calculated for any T*. ~he r adial distribution f C45), 

ville re 't' (x ) is gi ven by ( 44), vvere cc:.lcula tecl for values 

of {Jf fron 0 to 1.20 by steps of .20. They were t~en sub­

stituted into the integra l in ( 72). AEain we have not kept 

strictly vii tl·:in the pov!ers of (3 f to vvhich v.i e know the radial 

distribution function& 

~he interval in x found necessary for the effaluation 

of t he integral was .04 throughout except near x = 1, where 

~ b"Ci> . T;;- is a very rapidly changing funct ion. g (x) was there inter-

polate~ to a .01 interval in x be t ween x = 1.00 and 1.12 



It is convenient to work with reduced variables. since , 

this leaves open the choice of the para~eters ~ and E in 

the potential. The reduced variables used are: 

( 75) 
,,. ' T =(if =-

In terms of p*, v* and T* , the calculated equation of state 

applies for any f luid under correspondh1e;-sta te ccmd i tions e 

In Table III, p* is tabulat ed for various values of v* and 

T*, and for various approxinations to the radial distribution 

function. The values of v* for whi ch p* can be evaluated 

are restricted to t hose vc.1_lue.s f'or vvhich the rc:di_al cl.is tri-

butiont was obtained. due to the e~pansion ( 44 ) D* ' -
can be calcula ted for any T*. 1hc r adial distribution f C4 5), 

where 'r' (x) is gi ven by ( 44), v1e1'e calculated f or values 

of (J f fron 0 t o 1. 20 by steps of • 20. They were tl:.en sub­

s ti tnted into the integral in ( 72 ). ri.t;ain 1111e have not kept 

strictly within the pm"!ers of (3 f to which 1i1e know the radial 

distribution function. 

The interval in x found necessary for the effaluation 

of tte integr al was .04 throughout except near x = 1, where 
t.(~(l) . h is a very rapidly changing funct ion. g ( x) was t her e inter-

polatef to a .01 interval in x ~e tween x = 1.00 and 1.12 
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Tli.ELE III 

The reduced pressure , p·~, as a fvnction of t h e red1iced 

te:1pera ti.J. re, 'l'*, and rcc~ 1.:i. cec1 volume, v*. 

( 'i. ) 1.i it}:_ a ,...., .,..... r1 ·i ~ 1 
.L ("'). \....~ -'-Ci. ..L di stri lmtion fnnct ion correct to terms 

in ~ for the Born-Green equation. 

- - ~ r.: 10 20 27.4 ..I 

T* ~ f. v* 3.633 ,, '/{ 1 
C_ c C.-V -L l.484 1.223 

5.000 'I 1. 998 4.418 10. ~rt3 17.30 • r__ 

2.s:oo , .4 .727 1.460 ) (, ') r.: 
J 0 \..- ....) .,/ 5.906 

1.667 .6 .301 . 472 1.190 2.091 

1. 250 .e .084 -.028 -. 041 .169 

1.000 1.0 -.048 -.332 ,.,n;: 
-.9°3 - • I co / __ 

C:J) ';J j_ t~1 a rc.1.c31a1 clis tri ~m.tion ~.'unc ti:Jn correct to tcr.·1s 

for U:e ~Jorn-Green ec:11a ti on. 

~ r.;- 10 20 27.4 , / 

'l' * '3 f v* 3.6'._3 ~.261 l . 11,84 1.223 
~' .coo ' ) 'I (} ('· r:' Ll.4~1 10.)30 17. 26 5 ' - . '--· (_ G ..../,_,.:) 

2. 500 .4 '7") ') 
O I __ } r:_ l. 4-66 ?, r n') 

~ , Q ~· vc... 
r:' o -) / 
.. . .: 0 l;_;tJ 

J_ .()67 .6 • '.<0'7 
·- I 

. 478 1.144 2.001 

l '') i::-;0 
- 0 "- / v . 2 • C·9 J.. -.021 -.098 c 0:;3 

1. 000 l.O - . CL:-3 ) I) r' 
- o .. )L . .. / -Q [~~:~. -1. 130 

n'.n l ') - f. r---:i., -1 • ") 66 ~l. )128 0 ........ · -J -- Ii '· - - o J . ..:_~O -. ,,, ~ ,,; c_ - _ _, 
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(C) ·,.;ith the exact radial distribvtion f\;nction for tte 

~orn-Ureen equ ation . 

h l r:: 
/ 

T* ~'i v* -: ~ 0 23 -I~ __ . () u ~ o G--< 3 ...J ..._) .. _ 

:L667 .6 .106 • '-< 14 _, 

1.000 1.0 .046 



1• 
l. ~:e 

l· n err~\ -- ,_,)• 

r·'() 
- ~;·c.:-

. ' ~ ] 
sa~e in~ervais, va . . ues 

~he ro s~lts are f iv0n in lable IV. 

3RT 
:: 

2 Iv'£ 

:2Le quantity 

r2Cial ~istri~ution func ti ons is r ~ lative ly s~alJ. I: ue 

tLe 

cli~;t:c :l. 1r1: tion 2'1m cLL)ns correct to <t-: ( X) , to C/{(xJ , C!.nc": the 

1· JO·'"' ~r1,:·t , • . .: I ' c;. _,_ 
" :i lt -~ (.=> ,, i"\(~ ,--. -J- -.L· ve l 1r 
I.... o ~-' i' ' .L ._,. ..._') .... : · .,; ..._.. ,,,,: ....- ~·- e 

.:. s f>f i:;,c-~'':::2.~.3c's, .o ::· co;;-,,:~t:, '.::Le ::c-: .~,le c·~l':c! t er··;s j_n ( f:-4 ) oo­

c:o:.1e •_1oro L1'.JOrta;rt, ;:;~_::ice t>e >i ,_·lwr por.' e:ts of (S £ increase 

c: .t~1 :in '_::fc: a rather lo.rge c~i±'fercmcc h1 tre cor.der-:.sat:i.on 

re>~ ion, sin cE-: p* for t~1oso v::: lues of the po.r::n:ieters is tile 

diff0rence ~et~een t~o large quantities an~ is tterefore very 

sensitive to suall change s in the radial distribution function& 

Of t~roa t tn t;3res t is tLe es tc. b li;3L:1ent ol' tl:e c:C' i tics.l 

point a11d the con~ensation r2L ion for a fluid Dith this 
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radial ~istribution ~~1ction. ~~is ratio uas ~irst calc~-

t~w radial d.istriimtion 1'1mct:Lon. correct to ter_~-: s in ~ ( )(..) • 

I n order to carry out thj_::; Cc.>.lc11 lntion~ the ec:_uc.i.tion of 

stnt e ~us fitted Tith an e~pirical equution, u sing t~e fact 

t:n t p >:< is to a very ~;ood a:;proxi~ .<::~ti on a linear fnnction of 

T* , and fitting the coefficients of the linear isometrics as 

a f1:nction of volume. ·~~ he cr:i tical po.:Lnt ca::i be deter·'l i ned 

i,;y cU.ffereu.tia tint; this e:'lpir ical ecp~a ti on. ,Set ting 

and 

yiel.ded: p* ::: 0197' 
c 

V~' : 3 • 0'77? 

• 4 14 I , 

to tl~e 

( DU "" "ffi2"r Jc. - • 303 for argon. 

The sane jot rms repeo.tcd r 1ith the equation of state 

v1hich results fro :J the rac'U.al distribution function correct 

to ter·1s in ~ (x) . '1i i th linear isonetrics the e 'lpirical 

equ& tion of state given in Appendix E, e~uation (157) resulted. 

At the critical point 

v: = 2 . 674 
J 

'j_' * :::: J. • .318 ' ) ( P~' Y.:':'..) = 
T* ' 

.371 

" ,_, - 1 0 I -
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~he iso~etrics are hoveve r not quite linear; the ~axi-

:-.mn c'.eviation is 1 per cen t in p* neai~ tl1t:; r:riti cal r ecion . 

ancl therefore t:~"e critical point itself 9 are sensit:ive to 

c: ·,:-1R ll Cl- lc'1!U.::e .. c~ i·n <: 1 •r«r·0 +1 ' r e Cf"'J!> O"r· at' l. C l. SOT"'''-r i 0~ 1" E''"8 ,-,1 SO .._, ,,,,.....,..,__ -· '-- - ~ - .....,. -·- J. _,.l,,. vCA .. UV~ ' :J,..L.ct - _ .l .. 1CV -- ~ ..._, .·J ..,,.i.,, CA~i.. 

e zc-~ ctly Ji ts the po~Lnts at (!>£ = . 60, . 80_. and. 

1.00 f or A = -5, 10, 20~ and 27.4. 

The disadvantage of t his equati on of state is that for 

(3E ~ - . 40 the f i t is i ·1perfect . 'I'11e '.·1a~::irmn percentage 

error in p ~' at (3 f :: . f O is 2;J 8. t ~ = 10. :'he cr itical 

po int given by ( ] t.:;(Q) -; s 0 
- ./ _, ...L \ .. 

D* = .199 J. - c 

_._':· j_s r~:tio is pro0o.bly :Jore relia-ole tLan tLo ornj rJ i th 

linear iso!1etrics, si~cc the critical point lies within the 

exactly fitted rnnce. The difference is not ver~ creat . 

( 158) was u sed to C.et r:-: r~nine the trw :::>La::-:e reg ion of the 

phase diaLrou a ~o make a couple te deteruin2 t ion of this 

re>:."·ion 1 ·1 o"J"VP·r· i-•1e ec: 1 ·i;;i+i'or" o f' ,,+a-'--e f:>J.. C)I' \' ....... '-~ -- ..... _' I.~ V· I.""; ~, . ' .J.1..._ • ;. L ... \A u ..... - .._) u u (\ 5 i s required 

a lso. For t his purpose 9 the solut ions at h ::: 1 are alrendy 

ava ilable , but another point is desirable for even lower ~ 

i:Vi.thout solving f or any more radial distribution functions 

- we c an make use of the infor~ation the second virial coeffi­

c: J.ent fur nishes at ~ = O. However, first, the second virial 

coefficient has to be calculated v1 i th the ::1odified Lennard-

Jones potentia l to which the equation of state correspondse 
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The second virial coefficient, B(5), is civen by: 

B- ( 77) 

I n troducinc the potential (43): 

.:rrr i C78) 
-+ -~ 3 

A switch of variables and expansion of one of the exponen-

tials in the integrand s akes it possible to express the 

integra l in tGriil S of incomplete 1:~8."'.lna functions, rrcJ /;,) ~ SO 

that 

13 = ~ "~~ v;[rr(_! r;J- J_ £: £ r( 2 .,._, rv'1 
3 y '1-J y 't- Ti:.1 'T'! 'r- .J "t lj + 

( 79) 

2Tr l -'/"' 
+Ta. eJ 

where 
y ~ 2 ~ f3 £,) 

R.nd v1here 

(80) 

B 
r., he ouantj ty b :: - 3 is tabulated rJelov.r for the same -'--- ., "~ . I 'f 1/t:t 

values or pE that ner e u sed previously. \lso tabula ted for 

co 11parj_son is t~:e corresponding b~ for the COPlplete Ler1narc1-

Jones potential (42). 



TAi3LE V 

(3 f b, I>. 
.20 .0735 .0406 

.40 -. 0290 - . 0521 

.60 -.1426 -.1607 

.80 -.2689 -.2840 

1.00 - .4100 -.4231 

These da ta a t (3f = .60, . 80, and 1.00 were now conbined 

v..1ith the dnta a t X = 1 and ~ = 5 previously cited , and an 

equat ion of state in the virial forn was fitted to agree 

with all t his information (see Appendix E, equation (159))0 

It is interesting to note t hat t he t hird virial coeff icient 

o bta inecl in t h is f ashion a e;rees very closely at (3 'i = • 60 

and .80 with t he one calculated b7 Bird, Spotz, and Hirsch­

felder(l5) with the complete Lennard-Jones potential (42)o 

With t hese emp irica l equati8ns of state (158 , 159) 

i;ve are novv able to fi nd t he conditions under which t he liquid 

and ga s phas e ar e in equilibrium . The t hermodynamic condi-

tions for t his ecruilibriurn 8T8 t ho. t the pres s 11r e 5 the tempe r -

a t ure ? and t he chen ical pot en ti al of the ti:1 0 phases be id en-

tical. We proceed by f i xing our attention on an isotherm 

below t he critical point and try to find t he two volumes for 

which t he f luid has the same pre s sure and chemica l potential~ 
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The f orm1Jla f or t he chemica l potential is obta ined t hrough 

integra t ion of the equation of state . Defining t he chemical 

notential on a volume basis: 

.. ;V -t- RT~ v .,. ;V.,~(T} =- [_ eo( p- liI) J... v .,. 1>v - RT 
v v r .,.1 

~;r (T) = ~"?';.;. ( /V .,_ RT~ v}. 
(81) 

It was convenient to find the t vrn volumes at a given temper-

ature with equal values of 

~I 

-- == RT 
/" -~ .... .r(T) +RT~ ir7r 

RT (82) 

I 
'l'Lis is permissible since/" and f"' differ only by a constant 

at a given teoporature . The table below gives t he values of 

P*, T\ and f or the t wo reduced volumes. 
' 

TABLE VI 

Cond itions for Equilibriu..rn between Gas and Liquid. 

T* P* 

1. 43 .199 

1.39 .163 

1 ') ~ . .) / .12'7 

1.30 .102 

1.25 .0'74 

e:_ 
RT 

.032 

-.113 

-. 285 

-.511 

(v*) liquid (v"~) gas 

2.589 2. 589 

1. 860 4.649 

1.634 6.798 

1.407 8.608 

1.193 12 . 566 



-65-

At ~* = 1.23 it is no longer possible to find two volumes 
I 

which will make p* and f' equal, since Y! e do not hnve a 

radial distrjJ:mtion function for low enm.J.f:l:: volumes. 

Figure III shows the attainable two phase region, with sev-

eral isotherms in that region as well as some isotherms 

slightly above the critical point. ~he dome representing 

the states of vapor and liquid in equilibrium is plotted 

and extrapolated to l ow values of p* on the liquid side by 

the dotted curve. On the gaseous side the dome, if extended, 

would gradually approach p* = 0 at very large valuss of v*. 

Figure III qual itatively at least strongly resembles the 

experimental equations of state of many flui ds. 

To find the internal energy of transition, the excess 

internal energy was fitted e~pirically as a f~nction of 

voli...:me a.!.ld te::-'.lpera t1J.re (s ee Lppe:::-1dix 2, CQU.S: ti on ( 160)). 

Putting in t:h.e \. and (l>f values for the liquid and. gas 
A E' ... 1 

phase, we find the energy of vaporization, /N£ , to be 

the fo llowing: 

TABLE VII 

Energy of Vaporization 

A E'v 
T* IV€ 

1. 25 -5. 704 

1.30 -4.1~8 J_ 

le35 -3.305 

1.39 -2.283 
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Finally, the entropy was also calculated with the aid 

of the equation of st2te and is tabulated in Table VIII, 

for the same values of ~ and ~ f for wh:Lch the internal 

energy and the pressure were evaluated. The table actually 

gives the excess entropy defined on a volume basis as 

follows: 

(83 ) 

where 

s: (T) - (84) 
v- q, 

and where 

(85) 

For the equa t ion of state in the interval of ~E between .60 

2nd LOO, ( 158) and (159) were used. For fE = .20 and .40 9 

( 157 ) ·was used for ~ > 5. For X ' 5 the equation of state 

was calculated frou the ~ = 5 point and the second virial 

coefficients tabulated previously ( see AQpendix E, equation 

( 161))" 
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'.L ABLE VIII 

The Excess Entropy 

E 
+ S.., T - , ;:,~s a function of the reduced t e::1pe ra ture, * , 

R 
and v* with a radial distribution f unction correct to terms 

in ·~~ • 

rf * v* 13.823 3.633 2.261 1.484 1.223 

5.000 -.168 -.729 -1-317 -2.343 - 3.123 

2. 500 - .• 168 -.729 -1.317 -2.343 -3.123 

1. 667 -.066 - .. 275 - • 852 -10862 -2.638 

1.250 -.308 -1.211 -1.816 -2. 8 59 -3. 651 

1.000 -.273 -1. 089 -1.712 -2.774 -3.576 

' ~: 
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Figure 3. The reduced equa tion of state showing the 

t wo phase re gion with several isotherms. 
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In t~~ is section the theory for the thermodynamic func-

tions and the radial distribution f unction developed pre-

viously will be co~pared with experiments. The radial dis-

tribution function will be compared near l atm. with the 

data of Eisenstein and Gingrich (l l ~ I n the ther2odynamic 

cooparison, the equation of state and the internal energy 

1,-.1ill be the two key quantities to analyze. From them, all 

other equilibriun properties can be evaluated through thermo-

c_ynm:1ic rel.a tions (e. g. the vapor pressure c1Jrve tabulated 

in t ~is section). Argon has been chosen as the f luid with 

whi ch ex::;-ierinental co:·1pnr isons are to be made , since it is 

a rJona tornic fluid for which classical statistical mechanics 

ought to be applicable, and since a great deal of data has 

been gathered about it. The comparison, however, would 

work out equally we l l for any other fluid obe ying the law of 

corresponding states with res pect to argon. 

The therr1odyna~nic crn:iparison depends upon the choice of 

a. and f whi ch are to be substituted into ( 75) o Three sets 

of t hese paraneters were thought to be significant, and the 

com:;:iari son has beGn carried t hrough f or all three. One of 

t hese sets is that Given by Ll ichelsCl6) for the complete 

- ~ J t t • ] (3° 4~)· Lennaro.- ones po en ia.. _ /, e- • 

c s- -1~ 
, 1. : I ~ . 3 " Io ~· 

Q,_ = - i' 3. '+OS" >c /o c..-. 

(86) 

These two paraneters were adjusted so that, for a recion 
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near roo~ te~perature, t he cal~ulated and experimental second 

virial coefficients for argon a gree, where the second virial 

coefficient was calculated with the complete Lennard-Jones 

potential (39~42) and wher'e the data ·we-re brought into corres-

:Gondence b:;" the rc1ethoc1 of least squares. However, due to 

t he modified Lennard-Jones potential (43) used in our theory, 

the calculated second virial coefficient is different (78). 

Thus, the more . significant parameters, Q."1 and c M , would 

be the ones vvhere the modified second virial coefficients are 

brought into agreement with experimental data. What was 

actually done is almost equivalent to the above suggestione 

a.... and e,.., were determined so that at ('£ = • 60' • E3o' and l $ 00 

the two theoretical virial coefficients coincide as well as 

the criterion of least s~uares pernits. By plotting log b 

against log (3£ , the shift necessary to make the two curves 

coincide determines the ratio of 
{!:!. q llf 

and 

-: I. I 11 
) -= /. 0 6'6 (87) 

These two ratios, as a matter of fact, bring the two curves 

in good agreerJent all t he ·way down to (3E = .20e 

The third set of parameters is fixed by the requirement 

that the theoretical and exnerimental critical volume and .. . 

teuperature be brought into agreement. This causes the cal-

culated critical pressure to be in error (56.6 instead of 

413 atm) e Hot too much reliance, ho11'!ever ~ can be placed upon 

these values, ~~ and f, , because the error introduced by 
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the incomplete knowledge of the radial distribut i on function 

and the uncertainty in the method of location of the criti-

cal point micht shift the t~eoretical critical point consi-

derably. ~he table below compares the three sets of valuese 

~ tlBLE IX 

Different Choices f or the Parameters ~ and £ 

IV 4 1 
C(. /./ f cJ. 

I.::i. che 1 s' complete , 
Nf~ Lennard-Jones potential fv' a.-. - 23.777 = 23'?.84 -

l:Iodif ied 
Na! we,.. Lennard-Jones potential = 18. 569 = 278. 56 

Critical 
Ala! "'~ point adjustment ::: ~0$298 = 209.37 

A comparison of pv/NkTjcalculated and experimental> is 

illustrated below for two te6peratures and the t hree sets 

of para~eters. (Ta ule X) 
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rr i~ljLl~ ~~ 

DV /lTI~" .l. ",r.._J. Conpari son 

.' ) .~~ Liichel s.1 ( £~, Cfa.. ) 

0 0 

T - 0 c T = 150 c -

~ calc. (16) 
'" diff. calc. expt. ct diff. expt. /u 1 ·) 

5 • 982 .925 ~ 6 .2 1.290 1.161 llol 

10 1.186. Ll22 r:: 7 ./• 1.714 1.486 15.3 

20 1.907 2.138 -10.8 2.'776 2. 556 8.6 

27.4 2. 586 3. 661 -29.8 3.644 

B) IJodif ied Lennard-Jones potential ( (',.._,qft.f ) 

0 0 

T - 0 c 'I1 = 150 c -

A calc. ex1Jt e 
C: diff. calc. expt. ( ·· dif'f .. 1> I~ 

,.... 
. 841 .984 -14.5 1.199 1.281 -6.4 ) 

10 .943 1. 510 -37.6 1. 557 1.937 -19.6 

C) Critical point ad ;i us t:cnen t ( f c.) ct, ) 

• 0 

T = 0 c IT :: 150 c 
~ calc. expt. 

,.. .1' 

di ff. calc. expt. 
,. diff., >J /':> 

5 1.092 .909 20ol 1.361 1.09? 24.l 

10 1.374 . 978 40.5 1.834 1.271 44.3 

20 2.217 1.362 62.8 2 .974 1 '7'76 .L • I 67.5 

27.4 2. 952 1.915 54 .2 3.889 2.345 65. 9 
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;i' h e Eiche ls C\~ a n d f" a gree best. 'l' h e cur ve ce-lcula ted 

with his parameters ha s to be moved in the direction of the 

para~eters for t he Lennard-Jones potential ~ith t he hard 

core ( q,.,.1 E,.. ) • f.~t ~ relative' 1h i gh te:·;i ~; er2tures (lovv fl E ) 

t he rad i 2_l di stribu tion flmctions ought to be ver y ~ oocl and 

t he deviations can be attributed to t he super position a pprox{-

mnt ion, but also pa r tly at least to t he form of the potential 

used. At hi gh temperatures, molecules with the ~odified 

Lennard-Jones potential behave essentially as a van der Waals 

gas with only t he volmJe of t he molecL.1.les t hernse 1 ves excluded. 

Probabl y at t hese temperatures the collisions are actually 

i n terpenetr:.=i tin:.; , a nd t r ~us the modified Lennard-J o::J.es pot en-

tial does not r e:)rcsent the actv.al si tuati'.Yn. Therefore, it 

appears reasonable t t at the best a and f for the equation of 

st a te s ~1ould lie s o:".e1.'1here between q~_, f.. and QH.) f 11t • 

A coBparison of vapor pressure data nas also carried 

ou t. Data r;re [).ven :i.n Table XI for log p vs. l/T for the 

expe r inental points and the ttree ca lculated cases. 
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TA:':3LE XI 

expt. (14) Uichels 1 Iodified Critical 

1000/T log p 1000/'1' log p 1000/T log p 1000/'r log p 

6.635 1.681 . 50796 1.914 4.984 2.090 6.632 1.771 

6.772 1.628 5.962 1.828 5.127 2.004 6.822 1.685 

6 .977 1. 554 6.144 1.721 5.284 1.897 7.030 1 C178 . / ' 

7.223 1.466 6.376 1.G26 " tt83 / .. 1.801 7.296 1.483 

7.555 1.346 6 .633 1.488 5. 705 1.664 7.590 1.345 

8.157 1.137 

8.934 0. 871 

11.429 o.ooo 

The calcu lated curves are all straight lines, roughly in 

agreement with experiment. The critical point adjust~ent 

a grees best here, since we are comparing data near t he criti-

cal point. 

A comparison of the excess 1nternal energy in u ... '1.i ts of 

cal. is illustrated in Table XII for two teoperaturGs and 

the three se parate values of t h e parameters. 



Excess Internal EnerGY Comparison 

A.) LTi chels ( £~) qL ) 

• • 2: = 0 c T = 150 c 

~ calc. expt~l'l) l-:',' diff. calc. expt. c:· diff. I~ 1J 

5 445 399 11.4 431 y"o )7 20.,3 

10 729 625 16.5 717 560 28.0 

20 1163 918 26.5 1153 782 47.4 

'') i.) ~'. odified Lennard-Jones potential ( f' MJ q,.. ) 

0 
1 r:,0° c r., = 0 

,.. f: l = .l. \J j_ 
./ 

~ calc. expt. ( diff. calc. expt. r1 di ff. I ' t·' 

r:: i::' '.)O 504 / ./ .. ) 5.0 5'10 Ll r.~3 
' ,) ]_2. 5 

10 860 788 G 1 844 694 ') 1 r-" 
/ ....... (_..I-. 0 ,,,: 

C) Critical po:Lnt adjustr:ient ( f c,, qc ) 

• • !TI - 0 c T = 150 c J_ -
,x calc. expt. ( ". diff. calc. expt. (:-t diff. /D /0 

~ ~ R 7 317 22.0 377 28 5 32.6 ,) _,u 

10 638 497 28.3 629 447 40.7 

20 1020 740 37.8 1013 656 54.3 

2'7. 4 1282 882 45.3 1273 764 66.7 
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The ~odified Lennard-Jones adj us tmen t brings t heory and 

experiment into closest agreement t his time. The Michels 

Q .. and f,_ follow closely behind, whereas the agreenent is 

worst for t he critica l q, and fc • Significantly again, the 

discrepancy is largest at t he higher temperatures with the 

hard core potential of interaction, confirming the suspicion 

t ':lat the form of t he potential is inadequate. 

It would be desirable to have a radial distribution 

f unction near one a t uosphere to conparc wi t h t he Eisenstein­

Gingrich(ll ) experimenta l detern ino.tion of t his fu.nction by 

means of x-rays. 5 owever , as Figure III s hows , solutions 

have not ; een obt2ined for sr,1all enough volumes. 'J:'he solu-

tion at n* =. 074 uas t he last one ~1ich per~itted t he calcu-

l <.-: tion of a liquid voh12''1e . ~2Le p ,~ corr es:_:io.ndinf~ to one 

a t~osphere can be calculat ed once a c~oice of f and ~ is 

made. This p* is very small for any reasonable choice of 

parame ters. 1:,or exarnj'lle, f or q., and f.. , p* = • 003 corres-

ponds to one atn os phere. 

In order to have a radial distribution function at one 

· a t~os phere, it wa s de cided to extrapolate to the ~ value 

which corres ponds to p* = .003. This value of ~ could not 

be determined fro m a power series extrapolation of t he dome 

of the two- pha se re gion to low p* values, since the points 

of the done do not f orm a smooth curve . The alternative 

procedure adopted wa s to make t he ratio of the cr itical 

volume to the norma l liquid volune t he sa ~ne in t he t heoretical 
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and experimental. P c_•1.a ti~on. s of ~+vRte. 'I·1 ~i·s vi~elds \ - 13 128 • _,, <--~ - ~~- LI. v . 1\. - ··-

for the liquid at one atmosphere. As Figure III shows 9 this 

value does not disagree with a reasonable extrapolation of 

the dome. 

Y1, ? <ff , and ~ at this value of A0 were then obtained 

at each value of x by separate analytic extrapolations with 

a cubic polynomial in X0 .. This polynomial was so deternined 

that it had the correct value of the 'r f1u1ctions at A :: 5, lCO, 

20 9 and 27.4. The extrapolation formula vm s checked for 'flo 

at ~ = 33 and proved to be in error by a maxinmm amount of 

b t loc1 a. OU ;Jo The extrapolation of ~ at x = 1.00 t hen allowed 

the ~ value to be determined as 37.297. For this value of 

s phe re in-'.::eQ:ral ec-~ua tion is above its ej_cenvalue, 

The fun ctions '/{, , <f: , and ~ are recorded in 

'"I ' ., -·,·111 d ·.Lab ..1.e A >c..n it can be see:(1 t:w. t s·Lcceecling pee.;. ks in the 

u1 f'1°-r1c'·io11'" T ... ~ -t. ... t..;_ -- ,_, 

h i rd-1 \ 'Tc"' l U·G·· ..1.~- r:._:i J. .. I\ \i ;::_l,._ 

l~r r1,....+ c-,·e c··~e 00 i· ., , ... ,. ··,r rc.-"'"r _.,"· " ·'- -:na" -i. C '-' 1~1·ve o.P " 2 ..... d - V \...I ~- ..- , .J.. a..:) 1 .i.. c_-, ·~ ,_, .1 ~; J. u. 0 li ' -L - ..:.;;. \...i ·-- .L 0 . 

and possibly non-integrability of the radial 

distribution function . 

It t}1en bec2.:1e neces sary to det r~ r1ine the (1 £ value 

rih1d:. rortld correspond to t he one atr:1os-ohere isotherm. By 

adopting several (3 £ value s and forming the corresponding 

radial distribution function~ a radial distribution function 

was found whi ch gave p* = .003 when substituted in t he equa-

tion of state ('72). 'l'he appropriate va l ue of (1E was .843. 

Table XIII gives the radial distribution fun ction for the 

value of {J £ =- • 8 50, which is near enough to the correct one" 
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TABLE XII I 

The extrapolated functions 'f' which determine the radial 

distribution function as a function of x for the A. value 

of 13.13 in the Born and Green equation and the correspond­

ing radial distribution function for ~E: .85. 

'f'(><) = x ~ ~(K); ><>1 I. 
~(tc.) '= CY.('1') +(.(!.?) 'ff(Y.J +(tif)a. <f'..('1.) 

x ~ er: ~ g 

1.00 

1.04 

1.08 

1.12 

1.16 

1.20 

1.24 

1.28 

1.32 

1.36 

1.40 

1.44 

1.48 

1.52 

1.56 

1.60 

1.64 

1.68 

1.72 

1.044 -1.015 .021 

1.045 -.284 .013 

1.043 .059 .009 

1.012 .212 .004 

.949 .242 -.014 

.878 .207 -.024 

.775 .151 -.035 

.639 .088 -.035 

.469 .037 -.044 

.292 -.018 -.042 

.100 -.078 -.042 

-.094 -.114 -.043 

-.292 -.146 -.031 

-.490 -.153 -.026 

-.642 -.187 -.009 

-.805 -.165 -.002 

-.930 -.168 .018 

-1.024 -.142 .041 

-1.083 -.120 .061 

1.217 

2.185 

2.769 

2.907 

2.683 

2.373 

2.030 

1.713 

1.427 

1.198 

1.002 

.85'7 

.744 

.657 

.596 

~553 

.524 

.515 

.516 
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TABLE XIII (cont.) 

x ~ ~ ~ ~ 
1.76 -1.103 -.083 .081 .532 

1.80 -1.060 -.066 .094 .559 

1.84 -.962 -.064 .095 .597 

1.88 -.833 -.035 .107 .660 

1.92 -.647 -.028 .118 .737 

1.96 -.412 -.021 .139 .845 

2.00 -.131 -.015 .144 .980 

2.04 .177 -.007 .109 1.130 

2.08 .419 .083 .071 1.297 

2.12 .615 .166 .038 1.44'7 

2.16 .740 .211 .022 1.542 

2.20 .820 .209 .006 1.577 

2.24 .853 .179 -.024 1.552 

2.28 .848 .112 -.068 1.480 

2.32 .783 .049 -.098 1.384 

2.36 .684 -.016 -.119 1.281 

2.40 .568 - .078 -.127 1.186 

2.44 .393 -.116 -.152 1.077 

2.48 .251 -.183 -.167 .990 

2.52 .063 -.213 -.177 .907 

2.56 -.103 -.231 -.168 .848 

2.60 -.272 -.249 -.135 .800 

2.64 -.417 -.239 -.059 .778 
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TABLE XIIJ (cont • ) 

x ({/. Cl( yt ~ 
2.68 -.554 -.207 .005 .763 

2.72 -.644 -.174 .053 .758 

2.76 -.724 ' -.134 .111 .760 

2.80 -.753 -.088 .143 .772 

2.84 -.756 -.036 .154 .788 

2.88 -.715 .022 .154 .816 

2.92 -.640 .078 .154 .853 

2.96 . -.545 .135 .148 .897 

3.00 -.406 .173 .128 .946 

3.04 -.257 .222 .128 1.008 

3.08 -.095 .259 .114 1.069 

3.12 .064 .277 .091 1.124 

3.16 .199 .302 .071 1.174 

3.20 .336 .283 .050 1.211 

3.24 .453 .242 .024 1.232 

3.28 .530 .202 .005 1.240 

3.32 .568 .149 -.024 1.226 

3.36 .586 .085 -.061 1.200 

3.40 .565 .012 -.096 1.160 

3.44 .524 -.067 -.125 1.116 

3.48 .443 -.127 -.142 1.069 

3.52 .372 -.203 -.149 1.026 

3.56 .242 -.244 -.147 .980 

3.60 .161 -.304 -.139 .946 
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TABLE XIII (cont.) 

x ~ V1 (/{ ~ 
3.64 .023 -.301 -.121 .916 

3.68 -.073 -.325 -.116 .889 

3.'72 -.186 -.298 -.084 .8'74 

3.'76 -.261 - .302 -.039 .865 

3.80 -.34'7 -.242 .005 .865 

6.84 -.401 -.191 .042 .870 

3.88 -.446 -.11'7 .087 .883 

3.92 -.443 -.066 .126 .902 

3.96 -.422 .002 .152 .925 

4.00 -.399 .073 .163 .947 

4.04 -.343 .12'7 .lb9 .971 

4.08 -.2'79 .190 .155 .999 

4.12 -.203 .241 .142 1.026 

4.16 -.124 .278 .121 1.049 

4.20 -.039 .305 .095 1.0'71 

4.24 .047 .311 .0'72 1.089 

4.28 .140 .281 .047 1.101 

4.32 .208 .25'7 .022 1.108 

4.36 .266 .222 -.009 1.108 

4.40 .301 .176 -.037 1.101 

4.44 .318 .092 -.064 1.082 

4.48 .322 .043 -.109 1.064 

4.52 .302 -.012 -.128 1.045 

4.56 .2'79 -.082 -.151 1.021 
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TABLE X'III (cont. ) 

x Cf/o Cf: 'ft. ~ 
4.60 .240 -.124 -.146 1.006 

4.64 .182 -.166 -.144 .986 

4.68 .133 -.209 -.144 .969 

4.72 .073 -.244 -.123 .954 

4.76 .005 -.254 -.106 .941 

4.80 -.055 -.252 -.071 .935 

4.84 -.lu9 -.236 -.038 .933 

4.88 -.144 -.224 -.017 .931 

4.92 -.183 -.182 .ooa .935 

4.96 -.210 -.135 .041 .942 

5.00 -.219 -.084 .082 .955 

5.04 - .217 -.053 .111 .965 

5.08 -.204 -.005 .126 0977 

5.12 -.178 .036 .132 .990 

5.16 -.151 .090 .135 1.004 

5.20 -.118 .132 .127 1.017 

5.24 -.071 .163 .116 1.029 

5.28 -.039 .186 .098 1.037 

5.32 -.006 .212 .087 1.046 

5.36 .033 .209 .066 1.049 

5.40 .066 .202 .043 1.051 

5.44 .099 .184 .016· 1.050 

5.48 .120 .155 -.019 1.044 

5.52 .130 .120 -.048 1.036 
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TABLE XIII (cont.) 

x ~ <.r: ~ ~ 
5.56 .142 .079 -.077 1.028 

5.60 .142 .040 -.095 1.019 

5.64 .128 -.008 -.112 1.00'7 

5.68 .116 -.043 -.124 .998 

5.72 .093 -.076 -.134 .988 

5.'76 .070 -.080 -.115 ~ .986 

5.80 .060 -.123 -.109 .979 

5.84 .031 -.144 -.091 .9'73 

5.88 -.004 -.142 -.068 .9'71 

5.92 - • .,_025 -.146 -.039 .971 

5.96 -.041 -.151 -.018 .970 

6.00 -.064 -.134 .ooo .971 

6.04 -.082 -.111 .029 .975 

6.08 - . 088 -.079 .053 .981 

6.12 -.085 -.064 .070 .985 

6.16 -.085 -.035 .088 .992 

6.20 -.080 .ooo .093 .998 

6.24 -.074 .022 .099 1.003 

6.28 -.070 .045 .091 1.005 

6.32 -.053 .060 .085 1.009 

6.36 -.041 .090 .080 1.015 

6.40 -.023 .093 .062 1.016 

6.44 -.006 .105 .045 1.018 

6.48 .006 .117 .035 1.020 
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TABLE XIII (cont.} 

x Cf/. ~ ~ r 
6.52 .023 .111 .012 1.019 

6.56 .035 .097 -.006 1.017 

6.60 .041 .085 -.023 1.015 

6.64 .053 .062 -.041 1.011 

6.68 .053 .045 -.058 1.007 

6.72 .053 .027 -.064 1.004 

6.76 .053 .015 -.070 1.002 

6.80 .047 -.008 -.070 .999 

6.84 .041 -.039 -.070 .994 

6.88 .029 -.043 -.064 .992 

6.92 .023 -.049 -.053 .992 

6.96 ' .012 -.060 -.047 .990 

7.00 -.006 -.060 -.035 .988 

7.04 -.006 -.064 -.018 .990 

7.08 -.006 .... 076 -.006 .989 

7.12 -.012 -.070 .006 .991 

7.16 -.018 - .064 .023 .992 

7.20 -.023 -.047 .035 .995 

7.24 -.029 -.035 .041 .996 

7.28 - .029 -.029 .047 .997 

7.32 -.029 -.018 .053 .999 

7 .36 -.029 .ooo .053 1.001 

7.40 -.029 .012 .047 1.002 

7.44 . -.023 .023 .041 1.003 
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TABLE X'III (cont.) 

x </{, v-: Y:. r7 
7.48 -.018 .029 .035 1.004 

7 .52 -.012 .035 .029 1.005 

7.56 -.006 .041 .023 1.006 

7.60 .ooo .041 .012 1.006 

7.64 .006 .041 .ooo 1.005 

7.68 .012 .041 -.006 1.006 

7.72 .012 .035 - .018 1.004 

7.76 .012 .029 -.023 1.003 

7.80 .012 .023 -.023 1.002 

7.84 .012 .018 -.035 1.000 

7.88 .018 .012 -.035 1.000 
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'i'he value of fl£ of • g4 3 seems badly off. If the iso-

t~erms in the two phase region, Figure III, were to be 

extrnpola ted to t h.is low p*, n value of aro-u .... '1d 1. 00 vmuld 

result. This discrepancy can not be due to the fact that 

the ~ value of 37.297 is higher than the eigenvalue of the 

hard sphere intecral equa tion, since an eztraDolation of 

t h e radial distribution fur1ction to the eigenvalue itself, 

34.(), v1ould E1ClKG the (JE value at nornal condi tions even 

lower. It must bo concluded that no great reliancE? can be 

p l aced on tl :e extrapolation, since t h e rate c:>f change of 

the 'f' funct~ons is deter::1ined f ro:°'l the loner ~ values s 

Fear the eigenvalue one n ight expect a very ::rm.ch faster 

change in the distribut ion functions t han the previous 

values at lo'.ner ~ would indica.te. He thus have lir;iited our 

experi:nental co:J, D.rison wi t h the r :modyna:Jic d.a ta to the 

h j_gher pressures where t h e radial distribution fu.J1ctions 

have been coaputed. 

Figure IV co:'1pares this extra polated radial distribution 

f unction with experi~ental r adia l distribution functions 

neo.r one at1os phere(ll). The value of the characteristic 

distance, a, was so adjusted that the first peaks coincide; 
0 

t hat is, a = 3.274 A. The agree3ent is fair if t he scatter-

ing of the experinental data and the extrapolation used are 

taken into accourit. 

All these radial distribution functions for fluids with 

intermole c1;.lar poten.tials of the Len!1arc~-Jones t ype ( L!-2 ) 

exh i bit t heir first nnd larc;est l;ea k at t h e :1iniE1ur:1 of this 

t t • - l l r' ' po en ial near x =-·-~·As x increCJ.ses, t he curve goes 
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t hrough osciJ_J.a tions of diminishing a ;:1pli tude. SucceeC.ine 

peaks represent next nearest and further neighboring mole­
W 

cules ) since c (x) is so defined that ~ g(x) speci f ies the 

local molecr•lar clens i ty nt a c~j_stance x fro,,1 a S])ecified 

molec~le. At large distances the function approaches unity, 

indicating no corre lation at all. J:.'or :x ~ 1, g ( x) is zero 

since the herd-s phere core of t he ~olecule at the cen ter 

excluc.es a second no lecrJ_o. It is o,lso c:mrc1ctoristic that 

t ll o peaks are sllarpel" for lower tE? .. :~po:co. tures ( higher (3 E ) 

and s "c1n l.lE::r •:,:olc;,r voll.Jne s (hic;her X ) • Figure I illustrates 

l·'' i·r·~ +- "0..,'1.+· ,;,;·, i· 1e. p.;(~ • 1 ra TI -iJJ · ,c-+r~- i-es - v .:_.; J.... ... u' "'-""' ...:... ... ..1..bv ..... v ...J... ..;.. _ _ Lt • .> u ...... tu the second . 

l:'·J·n·0 J_ lv 'l~-' OV"' ,··o·,·1e u._·l 11p o·F' )\ no .;;1 ·'- er::y• ,01~1,.., so l u_+ -ion .-ls 
w C..l. -- c_.' 9 <. •• >....· • ,_. ;....) J, _ VCl. ~L,_,._....,. \.. ...._ - ·'" J.._ \_, e_, ~ c.c.W ..... t::.: ~.,, _.._ t..J_,_ _ 

obtainable Q This point is identified nit~ u chanse of sta te~ 

Lis the n" -,, a' ie' -~·-Pr \ cl :a '1"· 0 "' L"(...~ lc .>. ~ ... u . .,, I\ ~ ... . Jo '-~ ..., fro~:: val.v.es corres~Jonc~.in i~ to c;. 

c;as to tL'.)se corres~)oncHnz; to 0. lic:uic., no abrnp t cha11ge 

cai1 be o·;.;servsd j_n tho rad ial distribt:.tion flmction be cc;.nse ~ 

as -~·:as pointed out, t he restraint of ho::1oceneol.1s de;1si ty Y!as 

DUI: on ~ 

In conclu~don it ca~1 be Sc.id ':;hat the theory developed 

represents the exper i~enta l equation of state and internal 

energy of ar[.:; on nodE~ra tc l y v1e J_l over a v.lide range of volm:r1e 

anC temDcrat~ro . IG is hoped that ttis ncree~ent vil l be 

even be tter once t h o e~act radinl dist~ibution functions 

cluc~e ir1provin~; the racUal dis tr ilmtion functions , c\t t h e 

"'J.."" ·r··o"' a'''·~..L-~1 ·1~·,le 1·J" 7 -;- ; ,P. "1e ·t:-- oa·:c.: c.:' 1 '"''-'·ec:tDcl i ·n se·ctJ~ on ITI C..::.. ':;: ... l \. • · \It.... .. -U ;....,1 -- ...- ' t... .._. v ... __ , _,.. . .. ;.. t • ..._.. ....... ~ . .. c_) u J,_. \.:;; • -· • ·· • · -'"' 

( pD.ge 17 
9 

t his t~1E'Jsis ), a:nc~ coq:pletion of the solut ion at 
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:>:nctioru o.re ., 6 r-, .. ·~ · 1on:t:;: icu. 

p~ete Lenna:cd-J. ones potential" The rc:cHal dis :r i but ion func­
. 1 

tions available OU8ht to ~ake very cood first approximations 

in any of the procedures discus sed in Section III (page 1 17, 

~~i· 0 ~he~i·s) arid fi nne·n~i·x ~ 1 ~ J..1 ...J Lu. u c .. J. • '-1..t l · l u .L. D - " 
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Figure 4. A co~p2rison of the extrapolated radial 

,, ·i "'1-r i· ·h 1 , + i '"' '1. -", 11-, "+ ·i r.y1 ( "'* = ory:i A c :: 
...__ -- ....; v !J ~ • u - '-' - ..L \.... ,. ~. \..., v ·- v .... j,._..J Q \,., ....) ' ,- c;. 

~cntal radia_ distribution f~nctions. 
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( A) Jorn-Gr_~ Equation 

To trans f orm (28)· into c~a) r. _ / ' t he procedure followed is 

to rewrite t he gradient i n (28) : 

R,a .£!.. f1t>r~0'(R.") -t (3 V(R,&)_] _ 
R,:l ctR,L - ( 88 ) 

C'~f . '( ) R 13 J: O.>( ;-") , ... ,/" ) R-(31' v R 13 R IJ L! R,J) _ ,j ~ \. R,3 4 3. 

Equation ( 88 ) is dotted i~co t he unit ve ctor in t he J..-2 

'.' · ' · tl t · · t R," 1 C!J.rec ·cion , 1a i s , i n o R- • On t1e J.ef t hand si<J.e , t he 
·~ 

vec tor dotte0 into i t self On the 

side t f':.e lmi t vector in 1- 2 dire c tion dotteC into the 

one in ~he 1-3 dire ction is : -R.~ - a. a. na. R,2. ~ R,, - 1, 2,J 

2 'R ,,. 'R '1 J 

-.!he1,e t~ :o lm'.' O J~ cosi::1es <1.as oe cn ar.mliec.. In tho above 

rnolocul es one and t wo are f i xed and an integr at ion 

ove r a movable molecule t hr ee is performed. The ellipt i ca l 

or t he bi pola r coord i nate systems ar e , t herefore , na tur a l 

· choices. In elliptica l coord j_na tes, molecules one and t wo 

would be at t h e foci of t he ellipse. For bipola r coordinates, 

t he followin g drawing illustrates the positions of the 

molecules: 



llS e~1 

l'lms 

I 
I 

I 

:·~ R,. t ~a, 
I • 

volume i'or t~~is 

here, is e~~al to: 

V (x ) nus t be c~~tended . 

ch2ngc of li1 , j_ ts is cnr-riec1 out: 

( 90 ) 

( 92 ) 
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~~inally ~ un i nte :;:cc:d:; :i ;)n over R,,_ is n<:;ce s so.r~r, so ti: .a t tl:.e 

left ~:o.nc~ side be co;·w s ~ lor; 1''" ( 'R,a.) t- ~ V C Ru.) , p1,oviC:l ecl 

i~ t infinity tLe left hanc~ side vanishes s :Lnce 
0) 

Cf is unity 

s.m1 V is zero o '"11 1~. i· c: J...! n. J.-.e,r.,I' c"'··.~-i· o ·.n O'.T 0,. r R,, C''"' .. , c+"a 1 J \ 7 1) ,., .~ _ _ ~ _ - ~ v 1 ~ ' _ • c,.i l c" v '- '-C ..L ·J· •. c; 

carried out on the ri cht hand side if the order of integra-

so t'.-1at 1J~' j_ntG?.:~chanzing tl~c order o:: integr2. tion: 

R ... 

R,, 

( 95) 

of t':.'o integrals in. ( 95). ..:.'tms by chan L, in;; t!1e variable 

R .z3 to - 'Ri3 in on e o :L' the lntq~rals 
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Qi:t 

..t7 :J'""(R,.) + f3 VCR,.)= -Tf/$ /'j_ol.'R.3 

R~3 [~"'( R,.) -Q[; 'R,, '!',,CR,.) V'< R .• (·~·:: 'R:; -R,~ c~6L 
IR,._-R13 I o 'R,2. . 

"'2. 

The integration over R,~ is carried out next. ~he result-

ing equation is identical with (29 ) if R~1 is identified 

as t" , Ru. as R , and finally R,1 as 'j . 

Starting with ( 36) , a . change to 1;ipolar coorcl.ina tes, as 

illustrated previously, is called for in order to obtain (37). 

This is followed by an integration over the coupling parameter 

between the liDits zero and f $ At 1 = o, the left hand side 

vanishes, since, if there is no coupling between molecule one 

and the rest of the mole cules, there can be no correlation; 

that is, g '~ is one and of course the potential of interaction 

is zero. Thus 

~ ~ ,,.)( 'R,'*-' I) + (3 'f V( 'R.~) =-

2 -(! "J(i'f ~ r: r'Rn•Rz1I ( O?) 

- -
1~ .. f j

0 0 

d 1cl'R,3 L7' w( R,.)-~ 'R,'}J R,, R., VCR,,) ~'( f?.~ 1 J. 
I R ... -R23I 

A change of linits analogous to the one illustrated in (93) 

results in: 
~ ~ c,.'( R~ 1) t- (1 'f V ( 'R) ~ 

. -
2 iff f"Jd: {?"f r)-q 11 yff ds s Vrsi g-"(s,f J{.I: s Vc~~8i'"(s, f ~ 

'R lo' o L!1 ~-..f R..,., ~ 
where Ru. has been called R , R 11 = 1 , and 'Ro = ,_ • (37) 

is obtained fro~ (98) if the variable r is changed to -r 
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in one of tl10 intecrals. ~he t~o integrals can then be com-

bined Que to the parity c~nciitions (92). 
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ii.-pt~endix :J -1 

ti. solu tioL of tLc non-lL1e<l.!., intG[~ru.l eq1::.a tion ( 40) 

Has first atten:Jted rJith the po t ential (42). Si:::1ce no 

i :w t lle !~1a t ica l t :C:eory r1.s.s knoYm to a t t .:::c :;;: t h e problem, 

t he sim:J1e nu'"Jeric a l device o.f' a direct iterative procedure 

was first tried. Va l ue s of the t~o para8eters ~ere chosen 

appropriate to the liquid state. The process of direct 

iteration starts with a trial radial distribution function, ,., 
~lR-> ( x ) . '.i.'he kernel is calculated with it, and the convo­

CoJ 
lution is perf'orned so as to obtain 7J~ ( x ), the radial 

1•) 

distribution function on tl".e loft side. This 9'6. ( x ) is now 
(I) 

~;ubs ti tuted in t h e rir;ht hand s ido of ( 40) as 'tR. , to 
l'• 

obtain '( ... (x) on tb.e left hand side. ~C t is process is re-

peated till the solution is found; that is, till the 

function s1 _bstituted on the right hand side r e produces it-

self on t h e left Lane, sic~e. "Gnfortuna tely hol'Jever, this 
' 

procedure divere;es for values oi' the paraneters significant 

to t he liquid state. If the first trial distribut i on func-

ti on is very ne2rly the true solution, it m:Lght be sur,~1ised 

that such a procedure should co~verge. Bone of the initial 
-(JE If;<•} 

trials substituted (i.e.: G = l; g = e ; the radial 

distributi on function tsed by Kirkv1ood nnd Buff(7); or the 

experLnental radial distrib1 1.tion function ( ll)) proved to be 

within the region of convergence. It became thus evident 
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that the radio.l distribution function occurs in a very 

sensitive nay in t he ri[:~t hand side o:f (40). 

The only hope for convergence of a direct iterative 

proced~re, therefore, lies in rearranging the equation in 

such a fashion that the right hand side is relatively in-

sensitive to the radial distribution function. Such a 

possibility arises if one recalls the convolution theorem 

of Fourier analysis, which converts (40) to: 

FCRl = ~ YC~l G(~) . ( 99) 

The Fourier transforms are defined as follows: 

(100) 

(101) 

( 103) 

These Fourier transforms were calculated with t he aid of 

I.D.Il. equipuent and the file of punched cards used for 

electron diffraction procedures. Direct iteration amounts to 
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(104) 

That is, a trj_al g(t ) is us e d. to evaluate t [ g (t)-1] , 

K(t), and their respective transforms. Dy (104), F(k) can 

be calculated. The cyc le is repeated after an inverse 

transform of F(k) yields a new trial g(t ). This procedure 

failed to converge. Direct iteration also failed for (105), 

(107), and (108), three other forms of (99) derived below: 

Y 
(-...+•)( 

k) ~ 
'-t- F c -J ( k) 

Ao G <··.,(~) 

F( I>.) - YCR) - ~ Y(k) GCk)- YCR) 

: . yc-Tk) - y ,_,( k)- F(~J ( k) 

' r lt · 1 . " ~o G ( k) . 1·,~u ip yinc oy -;;: . 

l - ~ G' _, ( R) · 
'I-

( 105) 

(106) 

( lO'l) 

(o) 

(105) was expected to be less sensitive to f t han (104). 

The sensitivity in (107) and (108) lies in the denominator. 



-9£3-

It approaches zero for certain values of k and for values 

of "· significant to liquids. Indeed, for the case of a 

hard s phere liquid JrCirkvwod ( 18 ) has sho'<m that the denomi­

nator vanishes for vc..lues of A. slightly higher t han those 

corresponding to the liquid state. This means that a non-

inte grable radial distribution function is obtained. The 

s r1allest va lue of X0 at any value of k for which I- ~C(k) = 0 

is t hen interpreted as a transition point. 

A new a ttac t on the problen had to b e devised and t he 

~e tho~ of s t ee pest descen ts looked ~ost pro~i s ins . 

:2i r st t his ·.".o t >oc'. rms sot up in i ts ~:iost [;enc:ral forn . Let 

u s de f ine 

(109 ) 

t h e difference i n the r adia l dis t ribution D!nct i on het~een 

l e ft and ri ;.)1t hand side of ( 40) - a s t he rosl:l t of one 
l-...) 

direct i tcr2.t ion ':1ith t he i :ri i tirrl trL1l ~R • The object 

then is to introduce a nen radial distribution function 
l--, 

~R (x} so o.s to r:mke the total n bsolu te difference decrease 

wost :c apidly; that is , 

( _, J Qii, l. 'X = o'-) ot )( 
. o ( X) 

( 110) 

s hould become as snall as possible. The method of steepest 
,..,..., l'ft) 

descents states that '(R differs from '/R by an ar:1ount 
'""' 

proportional to the slope of X 
c._, 

crR. ( x.> = 
l-...) 

~ (x) + Y .) ( 111) 
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where r is some appropr iate constant. 
<-> 

If X were a mono-

tonic function of g~-, ( x ) , t his method should converge. How-

ever, to calculate the above derivative proved to be a very 

cumbersome procedure~ Furthermore, to find the best value 

of ~ would essenti~lly be a trial and error operation. To 

be precise, even r should be a function of x if the descent 

is to be truly the steepest . 

Since it. is not possible to set up the nethod of steep-

est descents entirely rigorously anyway, procedures were 

sought which might be adaptable to I.13$M& machines. We 

must introduce at least one para~eter which can be adjusted 

so as to decrease X . The more parar'.1.eters are introduced, 

the more complicated the procedure becomes, but the more 

rapidly will the solution be approa ched per cycle. The 

speed of convergence is not as essential as simplicity if 

t::.e procedure :Ls to be put on I .D .L. machines. Thus a one 

parameter systera was first explored as f ollows: 

(112) 

(113) 

(114) 
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It can ue shovm tha t t his ~'lethod conver£_;es ez cept in some 
', .... , 

singular case s. If t hi s opti:mrnn value of °' is substituted . 
<-> X:"'' into the expression for.:;c:.. we get, substituting , 

x ('91) = x <---~ f 
( - r. , ...... , c "") ] '? 2. 

l.:1 o' .... '«x) LD ()() - D (x) rl>cS 

1 C'b /, <-+•) , .... , 7 z.d 
0 L D ( ~) - D (. X) J ~ 

(115) 

Since t he last term in (115) is positive, 

o~ x (~) xc~., 

(116) 

This ;:1eans that the distribution function has been improved. 
(..._) (..,..., 

It must be recognized that Cf.._ , the iterate of <j'R. , is 

only ap)roximately equal. to: 

(117) 

This is tl1e method of solution actually employed. However, 

it proved possible to simplify the scheme even further by 

not having to calculate an ol.. value. 

The above scheQe is alnost identical with the one 

developed in the paper given in Appendix (D). The method 

given there might however be i Mproved by not using the 

entire inhomogeneous term as the first trial. Such a 

starting function 111ight prove too crude or possibly make 

the convergence too slow. If no suitable initial guess can 

be found, the sure way to solve this linear integral equation 

(A ppendix D, equation (32)) is to use t he method of Fourier 

transforms (99). 
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l:!tilizinG tl:e expa~0. sion ( 44) :Ln }lowers of (J'i. , it is 

to be noted that only three bas ic operations are required 

to calc1~J_ate all terr-;: s in the series for <//' ( x ). It proved 

possible to adapt I .B . H. machines to all three. Hov1c-:ver, 

there still remain a number of operations simple and easy 

enough to carry out on desk calculators, although they 

could have been ~echanized also. Dhe t her to do a problen 

on tte desk calculator or the I.B.II. ~achines was dictated 

ma i n ly b::' consider2 tions of h0\7 tedious the calc1.~la tion was 

and h ow often it had to be performed. ~hus, for example, 

in t_ie inho:aoseneous p2,rt of the integral equation ( 58 ) 

convolutions hnve to be carriec.'. out, besides such trivial 

op;:)rations as rnul tiplying a f1-nction b? a cons t;3.nt and adding 

up all the various functions. All t l1e si~ple o~erations in-

cludinr; the preparation of the two fnncti ons l'laking up the 

convoluti::m are best done on closk mnchines, since tr_e p:.mching 

of tl;.e I • .8 .! ·: . c<.~ rcls and the subseq1;.ent intee;ration to get 

t h e kerne l on I. :J . 7". . nachines 1.':01,.ld consuJ:ie nb10st as r~mch 

tirn.e G.S the entire he.nd opera ti on. However, the corivol1.1tion 

itself is ve ry tedious and occurs rereatedly in tho inhomo-

0·e~eo1-~' 'P"'r·ts o.c· ' thc i·-1J-e'J'ra ' "'CUatio,,.,s b d·, -'·" '·- ~- '-·· .l \,,'-' -. .L t;;;;l '- , __ "". It therefore paid 

to <Jork it out on I.:J .L: . ~Ja chinc_:s. 
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Once knowing the inho~oceneous part, the iterative pro-

cedure described previouslv \rt-in7,.~;0) can be star·ted. <:< i""'ce - ~ l..l .u. 

one c~ycle of t~Lis iteration Jastc r~YLJr" 'f1 lv "halr~ a" '·, 01J.r i·-~ • ~ - -o - - 'f./ J.,l . J..L J ~'- i... ' l.r 

would have been awkward and very inefficient to stop the 

machines so often and make sooe hand calculations before 

proceeding to the next cycle. Thus the entire operation from 
~(-) ........ ) 

r- Cx> to ~ lx> vras vdred up for the Fiachines. '!'hi S ·wi· I" l
0 ng· 

~-- - · ,, . ' 
due to the l~sited number of operations that these machines 

can perform at any tiDe, was split into two parts . The first 

part involves convoluting the herd sphere kernel. This kernel 

fl '.nct~Lon never chances; but it is convoluted vii tL a f1mction 

·w::tich cl·!anr;es from i tera ti on to i tera ti on. Due to tile simple 

nature of this kernel, this convolution could be done by a 

~ore efficient method than the convolution occurring in the 

inhoDogeneous part. The seco~d nart of the iterative pro-

cedure consists of algebraic operations to obtain the ne~t 

trial function. 

~he details of the actual wiring for the plugboa r ds 

which per f orm t he above calculations are included in Appendix 

B-3. It seems worthwhile? however, to descrj_be briefly the 

principles involved in setting up the wiring diagramso rri" i.De 

convolution in the inhomogeneous part of the integral equation 

is o: the form: 
~ . 

5- Qi, f.( cs - x> E ( s) cl s = j i< r tJ £ ( x +- t) d /;_ 
.. Cll:> (118) 
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a r e prepared by desk calculators and 

pu..11.ched out on I . D .Tl. cards at an interval of • 04 in t he 

red1cc ec1 uni ts. Th is choice of spacing depend s on the desire 

to ~w.ve the di str :Lbution function at such cl ose points. Also, 

with this interval, the trapezoidal rule of integration is 

accv rate enough in t~e above convolut i on. As an additional 

factor, t he hard sphere distribution fr.nction, •al-1i ch is in-

vol ved in th~ _ hii;her ter:ns i n t he expansion, had already been 

evaluated at this interval. ~he .04 interval was chosen in 

the hard s phere radial cl i s tri bu ti on :fvnction for' t J~ ~= s2.me 

reasons pl u s t he fa ct that t he Fourier analysis cards use& 

there v1ere convE-:nient for suc h a spacing. 

-,-""' C}'l. Y)e ,en ke '' i~hE>~'e J_-"'1 'nC_,_l_l. OY) S Kr(+-) ,... 1C~1- _..L ll. C.\ -- 0 ...,~ _ _, ._) •.-<'. J_ .i.. J. 9 V and E(s)? and 

f or each value of x, at .04 intervals, carries out t he inte-

grat ion indicated in (118). Thi s convo lution or integration 

has to be per fo~med only for x ~ 1, since the distribution 

funct ion, due to the hard sphere core, is zero i ns ide oneo 

We proceed by reproducing one function~ let us say t.he kerne l, 

as 1:iany times as t!lere are values of x f or i.aLich one needs 

t~e convolution . ~hen , to perforn the inteeration for any 

one value of x , the t~o frn1ct i ons arc ~ultiplied a t corres-

pondinc values of the ar gument, t he product i s printed on 

the card s containing the kernel, and finall~ the products 

CJ.re sumued. This is e E>~;entially the procedure fol10 1Ned 

except t hat it proved possible to economize by doin~ four 

of x simultaneously. '11 '·'·L·1c· tl-'e c::,.,,,.-'ls cor1'-airi·r;c" the -~--.. ~ U 9 ~ ~ ... A..L.\....:_ - V - _J. ··b 

kernc~l have that func t ion punchec:i on t hem four times in the 



foll oDing fash ion: 

I·lepresen ta ti ve 

Card 7f-

1 

2 

3 

4 

etc. J 

First 
field 

t 

t+.04 

t+.08 

t-r.12 
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c a rds L1 t he 

Second 
h' -· .... , 
.L l8J_G 

K(t) ~ 

Third 
Field 

convolut ion of the inhorno-

I·'o ... rth 
?ield 

Fifth 
Fie ld 

K (t t-.04 )~ I:( t) ~ 

K(t+.08), K(tt-.04 )~K(t) ~ 

K(t+.12) K(t•.08) K(t+.04) K(t) 

"' "" "' K(t•.16) K(t•.12) K(t~.08 ) K(tt- .04) 

v1here t starts at that ?:Jart 0 1° tbe negative t axis i.7her e the 

kerne l van ishes. The above ope ration, called spreadine , ends 

when t he kernel becomes negligibly small a t the positiVe t 

axis. This spreading is ac C"' orJp l j_shed by cang punchin§..; E( t) 

on the nei ghborinc ca rds as indicated above by arrows. 

is t~is set of kerne l ca~d s, called a dee!:, w~ich i s renro-

d1lced r.mny tiues. It is la. be led eac.'.'1 tir:1e by a succeeding 

deck rn.:tNber starting vii t h deck nur.11:.: e r one. l'his identifica-

tion :,1ar k nllovJS the :;iachir:e to knovv wi t h which va lue of 

E ( s) t he kerne 1 ha s to b e multi plied. '.lhe. t is, the corres-

pon(1 ing arf,LJ!!'J.ent of E (s) is ob to.ined by ad d ine; [ o.16(Dec k 7;f-l)+~ 
to t };.e vo.J ues i n the first fie ld. ·:Chus , for de ck number one, 

one is added to the entry in the first field. So, i n the 

SE.~cond fi eld, t h e convolution (118) is perfor!:ied for x = 1.00; 
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in t he t h i r d field, t he one for X•= 1.04 ; in the fourth, 

t he one :for x = 1 Oo0 • •on e' -in t >-- ,.., - • J C. • • .l... ~ _,_ - .1. '; 
,.~ l· I~t i--. -1- h n .;- -
_,_ ···' , v ile O ... e .!. or x = 1.12. 

I n t he second deck, a ccordin.s to t he nbove f or:-nula, 1.16 is 

a dded on to t h e f irst field in order t o find t he ar gument of 

E(s ), so t ha t the second field will intecrate for x = 1.16; 

and so on, t i ll all t he des i red values of x are covered. 

The arg1ment of E ( s) obta i ned .b y t he above for~nula is punched 

into t he cards containing the kernel as they a r c pr eparedo 

Tt.e one set of cards ri-i_mched with E ( s) is next matched up 

with this number by t he collator for all decks of t he kernel 

cards simultaneously . That is , each E(s) card is sorted rlith 

all t he kernel cards in all t he dec ks con taining t he identi-

fic a tion s. ~ he 604 ca J.cu lator t hen carries out f our nultipli-

cations per card and punc:-ies t Le ~~·our prodl.•ct s i nto t he kernel 

ca rds. A sort on U :e deck rnu1ber a nd a run t hrough t he ta bu-

l ab or and sw~~ary punch yields t he f i nal r e s ~ lt by 9rinting 

and ·:;u!'. c hin;~ ±.':::mr sun s a t t l-:o end of e n. ch C'.eck~ 

(C) I te ration ____ ...__,,_,_ 

7he convolutions oc cur ring i n the ite r a tive procedure 

v1i t t t ll e i ~ard-s phere '.rnrnel cou ld be handled in a way similar 

t o t he one j ust described. 1:owever, t he above :::ethod is 

wastef~l of bott tiMe and cards. An effort to improve it 

~as successful be cause of t he sicp le nature of t he kernel. 

l' he advan t.s. ; e t ~-ie hard-sphere kernel off ers is that, b y 

partial i ntegrations, t he convolrtion 9 L( x ), can be reduced 

to t he forma t i on of integrals of t he function, l(s), to be 

""'' convoluted with t he kernel. 1 ( s ) is of t he for m ,-. t:. The 
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partial integrations are carried out as follows: 

~ 

L c x) = f [c x-s>), - ij .,e rs) ds.J 
- OQ 

(119) 

whE::re x-s is restricted to l '<-s( <-1. 

Therefore 

l l ><l "" ([c x -s)' - 1] ,( csJ d s. ( 120) 

Integrating by parts yields: 

( 121) 

where 

The first term vanishes at the li~its, so: 

( 122) 

Again integrating by parts yields : 

u x.) -= 2- ( x - s) I~-f (.) c:~ :i. rr ':f ( S) cl s 
)( _, 

== -.:i. I;). ...e ( '>< .. ,) - 2 I z.. ,e, ( )t -I) -4-

(123) 

-t 11 3 
...€ (')(+I) - 2 .l. 3 

-{ ('I< -1) 
where J 

(124) 
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The evaluation of these multiple integrals is nuch more 

adaptable to I. D$EG machines t han the direct procedure fo r 

the convolution, as can be seen fr om the following integra-

tion rules. Let us define t h e following operators: 

( _f (. X) :: .,,e ( X. - I~ 

6. ~ c. 'K) = (1- E)..f (X) :: _,( ('IC) _..£ ( )( -/) 
..J 

~ _e ("K) = ±- .-( <. "") = I £ l ~) = 
. u 1-E ( 125) 

(I + t T E \ ... ) ~ ( lC) :: ~ l "K) .... ....e ( x - I) .,. ... .J 

D .£. ~xJ = jx .,e <. ~J 

U sl~g ~l~e" ; ,e 11 k;rn.e; ~~o 110": qua t ion 

C::- -C> 
c = e = I - 6. 

or 
-D = ~(1-~) 

and expanding the logarithm > 

D-= 6. + 
~).. 

.2 

6-:l 
+ -+ 

3 

we get 

= A[ A. A~ 
Q , .. .l. 1-3+···] 

Carrying out the 6ivis ion, results in: 

IC/b..,. ... f. 
72.0 + J 

(126) 

( 127) 

(128) 

(129) 
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~y squaring the above) 

--
J y cL.i.bing I > 

I~= L: 3 [i- ~ ~ + t;_'- + 0 -i- ~'t -t-. ··] 
2. lf-D 

'i' hus 

"' L~ frr- ~)(1 - ~)J +A = L3 E( I+ E> + 
2.. ~ .i 't-o .<.. 

(130) 

( 131) 

~ 
2 l+D 

L • -N x) = -f ,_ [L: £~ <~> + ;~~j + 0 { t!.'"~09 )_; 

I~cx> = -{-
3

{i°Lf
1

:_ec,.>+ Li-~-ecx!}+ ofo~:; 
.) 

where his the interval. By (129), I beco~es, 

accurate up to second difrerences: 

I = ~ - .!.. - ~ - A 
1 

' I 1-E ( 1- r:-)Z. L 2 12. 2l;.···-:L_--;:--- ~ . 
IA. .2. ft- ~ (133) 

I-t6<) = .f.[r.-e {><) .. - 1s-.e('<, + '+--<'t" -~J --N><-2-t->J 
2lf- . 

r2 is evaluated by neglecting terms in the second differences 

and r3 by ne glecting terms in t he fir s t differences in l(x). 

The formula for I itself is not needed explicitly except for 

values of x less than one. Because of the factor <); (x ) , ~~e 

function l(x) goes discontinuously to zero at x = 1, and stays 

zero till x = o. 'l'hus' for x :; 1, the formula for r2 simply 

reduces to adding the integral of a constante 
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I2-.e'( X= 1-,,.,..f) =-Ii.~()(=/)+- 't\_.e I .,,e(x :;I) ( 134) 
...J 

where n is the integral number of intervals of h away from 

x = 1. For 13 the above is integrated again, so that: 

11-f ( x = t-~--"-)::: I:t( "-=-') ... m £ Il../( x = 1) -r 

.,.. rn), ~ l T ~ ( \( =- 1) 
( 135) 

It is quite essential for numerical reasons to start inte-

grating fro~ the largest value of x towards x = O. If we 

commence at x = o, L(x) would be inaccurate for large x, 

since the difference of large quantities would have to be 

taken in the triple integral ( 124) e Slight nlli:i.erical errors 

vmuld thus be greatly magnified. These cc:,n creep in not only 

due to the neglect of higher differences in (132), but also 

due to the discontinuity at x = 1, if the integration were 

started at x = O. To take into account nuJ:wrica lly the dis-

continuity occurring at x = 1, the forrrula. for Il (x) ( 1J3) 

is used for tDo points below x = 1 in (134). Subsequent 

to these two points, l(x-h) and l(x-2h) are zero
1
and Il(x) 

is a constant. 

It turns ou t tlw t a choice of an interval in reduced 

uni ts of • 02 is extrenely conven i ent. 'i' lle rea son :for t his 

i s t: ~o.t V;' ith t~is inte:cv~ l t ::e coci'f icieii..t i n fror.:. t oi" t:~o 

- 2 ' ( 1 3 r) \) 'or' c- -.1,.," A - r :i__o- 4 1 ' 1 -'- 1 
• ,-. 4 l - ·c0r ~:1 .L_ .__ _,_, u .. 0~, '!- J~ _ 1. '1ni _ e G~1e ono in r ron c of the 

by ~erely an a~just8ont of tho d0c~nal poi n t . Thus all i n-

~ooo gcneous parts ca lculated at a .04 interval in x were 
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interpolated to an interval in x of .02. The br ief table 

below is intended to make clear r~ow the r'lUl tiple integr .... ls 

were evaluo. ted. l'he procedure star ts with the maxir:mlll 

value of x f or which l( x ) does not vanish. 

Formation of 1Iultiple Integrals 

l(x) x 
I9 ?:" 2 2:22: 

a x max ? a ~ a 

b --r -. 02 at-b 2ai-b 3a+b ·"7nax, 

c y 
~'":'1.ax. - • Ot:- a-!-b-!-C 3at-2bt-c 6at-3b~ c 

ThereforP by (132) and (133): 

J: -e ( x~. - . o 4-) -= . o .z [a. + & + c + - 's c + 4-b - ct] 
.:2. '+ 

1 i.--e ( x:.___-. 04-) -= C: oi.)1. [c ,l4 + b) + ,~] 
-~ ( 31(/ 

j_ -( x~. -. Olf-) = ( o'l) ~LS 3ec + b) + ~J , 
The operations to form 212 and 213 were wired up on a plug-

boarC. Hi t ~1 58 program cyclGs out of a naxinurn possible 60o 

The actual wirin~ diacram is c iven in Appendix 3-3. 

Due to thG fact t~at al~ost all of the possible program 

cycles had been used up above, t:1e i teratiye procedure had 

to be transferred to an additiona l pluEboard. Again , the 

wiring diarrnrn is attached in Appendix B-3 and the de t ails 

~re briefly described below. }3efore going in to that hov1-. ) 

ever, an intermediate step i s necessary to form L(x). The 
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calculation ended up so t 11"'t- on ""'a- c'r·' c·~rc" (t 1-·1a,_ --G . u - ...._,. ,,.J. .. Ci. <'- '9' lJ.. Li is, 

for a given valuB 
2. /.7 3 

of x), lI -< (xJ and '.<I '.tc Y.J v10.s rnr::whec1. It 

is necessary also to punch into each card the nml tiple inte-

grals one unit removed in x in both the positive and negative 

direction in order to form L(x) (123)0 This is accomplished 

by a "backwards" sort on the m1i ts position followed by an-

other sort on the tenths po sition. This brings adjacent to 

each card wi t h a given value of x , the ones containing x-1 

TABLE XVI 

Illustration of .SortinG Procedure 

x 
originally 

-~. 98 

3.90 

3.88 

3.86 

x 
first sort 

4.00 

.3.90 

3 . 80 

OoOO 

3.92 

3 02 
0 0 -

J 7'"> ..) 0 L-

second sort 

4 000 

2.02 

l o02 

3.04 
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,..,,, Lo"' I--, · - h. l!le O + o .b.Le r:iac J_n0; then allo1:'1s one to punch the numbers 

on adjacent cards onto the one in the n iddle (see arrons). 

~.1-, J ]. ], - J:l-
'l uo s e cards with zero in c"1e 11undreus posj_ tj_on are then 

punched vii th unnecessary in:orr:m tion, but these cards are 

not used in subsequent steps. The cards iCT~ed iately follow­
n 

ing the cards wi t1.:. a zero in the hundreds position Lave 

nothing punched into the::1 fror::i t :1is previous card: 
I 

that is, 

"" this operation is suppressed. -A sort on the hundre~9osition 

itself restores the cards to their nornal sequence in x. On 

t11ese cc:J.rds, besides the various multiple integrals, "VY'\..- (x) 

is punchec' 
cu'""' 

as wel:!_ as the kr10wn functions CJ-0 Cx), 'Y. (x), and 

1,.. (x) so 
\ 

(--.+1) 

that all the c_a ta for tr~e opera ti on to forrri l(,., ( x) 

are present ( ~9). '.2he difficnlty now encountered is t~wt 

not enough space is left on the cards to perr·1i t th_e calcu-

lntions. A net~od had to be devised to trans:er sane of the 

information and the result of tho calculation to another card~ 

T~is procedure involves the collator, Tihich intersperses 

two blank car(s between each pair of printed cards. L~t us 

no~ consider the repra3entative trio: 

Pv_ncLed co.rd l~ 

sent -1-hro-L•r·l-1 tl1e 6nt_ lJachine. l.,;. • ~ •..:.· J, ... ..,.,, ' ,/ each card 

c;oes throur;h three cycles in the :;-~olJ_ mJin , , o:c'c_i(-n~: Cl :first 

reat~nc station, a 

-~!J1m: ca:::-'6 A is at E1e fj_rst rcadinc stc.:tion o.nc'. card one is 
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LU'C t~r.: . 11si'e:rreC: to c2rc~ l fro:_; cc.~.ccl '". t l.t t:JC~S tL1c the ·l<:lchine 

(; ·j ,.,,. -i -1-
'" - c.,, -L v 

CD.rd 1. Lot:,lin[; is ::rnnchcd c~·L:ring t!::Ls cyc1G ~ but in the 

t ~ 1.ird cycle, \'.'he:: c 2rd. 2 is at tho IJ1.~n c~1 s to. ti on and ce:;. r d A 

2, t the soc:)nd read s ta ti on, the ans17ers a.re printed in to 

card 2~ In this same cyc1e1 cnrd 2 r eceive s fr om card A the 

v alues o f x, <j
0
( x ), lf'., ( x ), and IY>'t,.. (x ) and has , them punched 

in . I t i s card 2 now vtl1ich becomes card A in the next iter-

a tion after t::.e 118\'j nu l tip l e integrals i~ave also been punched 

in it . 

value o~ ~ around . 1 was c autio~sly chosen to start crut with . 

(cpi:;ndoc: so<':ev1ha t 0.:.1 tLe choice o:c· t:w j_ni t:ial tri2.L '.:he 
lo! 

inj_tial c'.istri. 1-.i.tion f 1mction , 'J ( x ) , ri<:~ s u s t!.2.lly <:ff~Jitra1' ily 



-lJ_1;.-

:~,--' :_1 • ... •• CY> ~ ·f' ·'-he ::>1"' 1''"' <- i· on '.· .-r" "] ,,n"c·:v 1 ''" "' ' ~1 _ ... _ ..i. ' -•-..:.. v ..... .... ... :;. ... ~~ <..~ v ~- ... ~ C...t\ ... :. (., ~ _ ...._ vv. '"c.-' v~ .. '-' .... 

-.Lile ~o do a fe,; Tou;)-1 convolutj_on c~rcles on a des;:;: cDlcu-

lc-1. to::.~ to inprovc t::!o so luJcion ~;0 : 10r.1 !1e. t ~!ei'ore lctt~Ln:_; I . D .I~. 

~achines start ~ith t~o iteration procedure . 



( ,.., \ 
r~) 

(3) 

(L'.. ) 

T _..,. ;- -:-

-~!~i.·l,.~ ~.:a.cl:'.:Lne -=-- ..,.....·---· _._.. .. 

P:rer:~:-:.~.t ion of the :.·:1tl t:'-)le 
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~ '.r<. ch.inc 
--·~-··-·~ ,,_----~ ... 

il.O. ~ea~~ read ou~. 

D.S . ~eans Ctgit enit. 

idfitional notes to (2). 

T\1 1 1'1 c'·~ C Q 1 70 J._,/ \ . __ oH ~J.. ~ • Q 7 ( x ::f C> ()) 
1t .,.: c: o I ,ead C ~~a ( v - Rr;· ) TE,~(~ ..-~-<....._ - .... ~ O \..~\... -- _,__... .... ze1~0 

+-o ( ') \ 
v ...) / " 

·, ,- ·r 177 ~. ; 0 o .J.\.- e 



of t~e 3orn-Green c.nd - --- ------· --"-"'..,·--· ----~-

@ 

In Soction II, derivations Tie re siven for t~e ~ orn-Green 

(')o ")o) 
~ / '.) 

( ')'7 '1 8) and Kirkwood ~ ,5· · integra l equation~, differing in 

'2o LLn( out Lo',11 tlte rn.di~ll dis trilmtion functions differ v1hen 

~::~e Lennard-~Tcmcs potential is us eel, a solution to the Eirln·1oocl 

t~:eory nlonc o 1)te,:.ins, is c.1.sed to rolc~te ~ to tlle :cod1:ced 

V e) 1 ,,J..-.•.1e ( see (' c·- -~ 1 .1- -i C)"' l '),, · "' ··) '"'er1c" i· "\...... 7'"-1 ) • 
v - - , ·· , . -~ " '· c.. '~ - J " . ' o . l _, . : • "- ;._,, • 

v (136) 

inte:;ro.:L equ~·,_ ti on '..:i.sed ::u: t:~c BoTn-Green case, the poten tial 

tJ:e LE::1marc:'-Jones })ol..;ential. '.::'hen, an e~~ ·Jansioil L'1 (3£ l is 

1 "1 orc'r.r tc) "!)81'-·'l. t S"'V" •C>T' '>tr.o. conr\ 1 i~'r'' of' the hacd-snhere l -- •"· .: ~.'.! ; c_;Jc.;._,,< ·-· v •. )f~-· "'-o 

coro and tY:e Lonnurc1-Jor.es poteritj_ci.l? ~r:o c01. 1.)l.int_; ~;are.:leters ~ 

i'o 11ovJinc: ,,, 
(0) (.I)) -e Y. 'XO!~ j (O) r Cl) l r: ,-, \V ( >s 1... j = -~ f t x , c x > + -;:;:. I~ ( )( -~ .> J s 1J cs>-!J d s . 

'Qo "_.) 

( 137 ) 



Lem~.a i~d-Jonss poten tial is added on. In other Hords: 

(JA O) 

'l hi s i s e qua 1 to : 

s .. · ncc for s~I tho int(;grGnc~ is zero clue to the Yc,(s) factor $ 

~ 
-et•) 
J - 0 

-eto} 
- ~ E .t ~( S) 

e ::r I 
(14~) 
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'''"'C~"' ~e .!C'o r . ,,-.; ..-c. ... i.· ... S '? ..L couplin~~ cons ta.nt of zoro 

i~plies no potential o! interaction and tterefore no corre-

-.-·"'·. +- i· on ~ "J' 
0

' ._ v _ 1?01) ar~.:l other I 

- (3 f 1'0

> Yor S) 

e =- o ¥ s~ I. ( 144) 

~ta introduction of 

1(0) 

-(3 f YocsJ 
(.( = e I ( , Ll_I:;') 

J.. ' ,I 

c )-, "' 'l ".''"" s ( 1 Ll.,, ) ~ ;~ t 0 .~ -C~J. t:.V ...._ 1C._ J... ... i 

1 / !~/ (Lj( 4f#COJ 

1'< .. ( ~ 1 ~> o) = 2 d s du s e r. f.. J J o) Is 
/~/ 0 

le/< 1. 
) 

( 146) 

rCO) 

. " 
"' nen = ( 

't' C•J 
0 ' ~ H t_, j J 0) is trivially equal to zero, ( 142), 

due to the li~its of integra~ion. ror any other value of 

tl-::e couplint, parameter tJ:.e kernel and <.fo are inc'.ependent 
If"') 't (OJ 

of J (144). lherefore, arbitrarily calling J =land 

integrating over u results in: 

[,

1 W(sJ~O)~ 
I~" { t. I o) = - 2. d s s e s-

J ./ /l;f ( 147) 

( 1 81 1_:;'ollo\·1i:.1g tl1e procedure develo~1ed j_n a previous paper -'- ;,. , 
~<s_ ~o..>/s 

e is ta~cn out of t~e intecru l by replacing it by 

its avora[~e value in tLe intervo:il of integratj_on, ( e ""Is>: 
I 

f~ N ( /:..1 /J 0) = - 2 < 'j 0 ) f S c/ ~ = < '1., J (~ • ( t-J . 
fl:./ (148 ) 
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HS ::.·or the second to:r'r', i~1 -~:1c :~e:~nol? ~1.( I; 'f ';J f 0
)) 

.I 

'f 
(IJ . 

( ,-:(C) +ho '""·.,-,,.,-1'"'·..L' O '', o-f' q, 1--'"' -1)Q 1: 1 e -1~ c· 0 -.L" /3( -~c S 111)Sti1- ll-i- 8C, .L.....) / 9 v ~ '-" 'C_.....L,_J_Jc;;, _ _ ,..J ... L J.. (/ l.l. l.. l.~ ....; 1- -Li:.:> .. v-. _ ·- v U .,. lo 

i"irst, hovwver , the 1°> inc:_ependcnce nlreC:,dy i'ound is intro-

( s j ( 0) j (I)) :" 
~ _, / . 

( s I ie <I)) <t j J l = <ff (SJ r ''.> ).J 

whore ~e have l e f t out, as ~e nill henceforth , the coupling 

C:_one cllso i-1plici.tly in the J orn-Green ec(L~~~tion. o If 

t~:en 

I{{ t.J j<''): < C/o> f~ .. { t) T I<._ { t_J j''') j 

I~'- ( ~ j''') = ( (3f r0
') (~. { t) T ( ~l f ''')J. ~lt)~··· 

0. 

\<,(.c) : _ 2 .f Cj0 ( S) S }(, (S) of~~ 
-r c.\s '"' 

°" I~ l (I:) : - f 1' 0 { s) lP, ( S) ((. ( s) of s. 
,__ -.~//:I 

( 1)1) 

( .., r'."' ") 
.L)j 
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Attention should be drann to the hard s phere part of the 
<((I) 

ke r nel, v.ihere <~ca) is independent of ~ E 1 • Thus, this 

term need not l1e expanc~ed ~ wb.ile in t he Born-Green integral 

equation, a<•) had to be expressed by a series. 'I,., 
It is possible now to restrict ourselves to l = 1, 

the physically occurring potent ia l, so tha t we can also 

expand the jCS) in the i n tegral equation (137) in powers 

of (3 E and co.llect equa l pov11e:rs of f [_ . 'f '::1e equa tion for 

the t er::is in ( f E ) 0 read s: 

~o -. 

~ tf: ( 'J'b)r l<D(><-S) S ~(S) - a of S. 'f.., (>c) 
( 154) 

-co 

'l'his equat ion YJa s solved i n t he paper previously publis hed (l3) 

' Ui.ppendix D). 'i'he te r'."'ls in ( (S £ ) combine to gi ve the inte-

gral equation : eio 

\V, ( X: ) ~· - " ¥, ( x ) -. ~ [ ~, ( >e - S) S [ZJ o( S) - Q ~ S + 

)\ ~ (155) 
+ -f <'iJ•)(~<.(><-s) g-.cs) '+(cs) ds. 

This equat ion, as well as t he equations for higher powers 

in f E , is aga in of the f orm: 

(156) 

so that the same method of solution as for (59) can be em-

ployedo 

( 155) v.1as solved under the condition that Ao (90) = 20., 

<f-i. and higher terms were not calct~. la ted. Ac tually, in 
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order to dea l with s::mller quantities~ the difference between the 

.Born-Green and t he Y.irkvwod integral equnti ons was studiede 

This diffe r ence equation is again an integral equation of the 

sarne type as ( 156) o The accuracy ni th v.1hich the solution was 

ca lculn ted is that direct iterates of 'r. {JC) a:·:ree vri thin + • 003 & 

'lhe rE)snlt s are recorc: ed in 'l'J.ble :-:r=: , anc~ a co:1;::i2rison of 

the rac:_:i_al 6_i strii_-.u tio~1 fn1ctj_ons u sing only the first t wo 

terus in -~ho exj,1ansion of 'f'(.)() is plot tee i.n ;.;raph ·1 . ~L' _is 

= . 60 and .>.. = 10.00 for the Kirk-

wood radial distribution function (corresponds to A = 20) 

and ~. = 10.28 for the Dorn-Green case (corresponds to X = 27.4 ) . 

The agree~ent is remarkable and would ev8n be better for 

{3f = .80 and 1.00. For still higher (Jf and forfE lower 

than .60 the agreerient is 
) 

less exact sinpe in the region of 

{$£ between .60 and 1.00 there is a compensation of the ~(xJ 

and Y, <x) terms. 

The region between ~ 'i. = • 60 and 1. 00, however, is the 

one important to the liquid state. Since the radial distri-

bution functions do not differ greatly there, we can expect 

close agreement between the two theories in the calculated 

properties. ~ he confirma tion of this is Biven below in 

l'ables ~{VII and )C'/III where p* snd the excess internal 

energy, r e spectively , are co:-:ipo.recL1 at alr1ost equal red1Jced 

voluJUe. 
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TADL}~ XVII 

Fl.educed Pressure 

Ao = lo. oo 
Kirlrwood 

1.833 

.218 

7 i;-'l -. 7 

TABLE XVIII 

Excess Internal Energy 

.>,o = lOeOO 
Kirkwood 

5.881 

5.986 

6.102 

Ao = 10e28 
l.3orn=Green 

2.091 

- 0993 

Ao :;: 10.,28 
Born-Green 

6.181 

6.232 

6.280 
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Fi~ure 5o A cosparison of the radial distribution 

functions , cc:irr ect to '-f. 9 for tho I'.:irk't.''.1 ooc~ anc1 Dorn-Green 

intecral equations . 

Ao = 10 . 00 l:i:c'.:r;ooc'. 

~o = 10 . 2£: _3or n - G· rcen 
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TABLE XIX 

The function 'f:' which determines the radial distribution 

function as a. function o:f' x for the parameter ~ ~ 20 in 

the Kirkwood equation; I.ft~} = >< ~'J'C'lt.); )( ~/. 

~ ( .,_ ) "' '+' o( ._.,) + f1 " Cf; (. y:.) 

1.00 -.788 

1.04 -.091 

1.08 .241 

1.12 .363 

1.16 .374 

1.20 .324 

1.24 .242 

1.28 .147 

1.32 .046 

1.36 -.052 

1.40 -.141 

1.44 -.220 

1.48 - .,290 

1.52 -.345 

1.56 -.387 

1.60 -.416 

1.64 -.428 

1.68 -.425 

1.72 -.407 

x ¥. 

1.76 -.371 

1.80 -.321 

1.84 -.256 

1.88 -.181 

1.92 -.093 

1.96 .008 

2.00 .118 

2.04 .244 

2.08 .356 

2.12 .431 

2.16 .465 

2.20 .465 

2.24 .434 

2.28 .380 

2 .32 .307 

2.36 .223 

2.40 .135 

2.44 .043 

2.48 -.039 

x ~ 

2.52 -.11'7 

2.56 -.184 

2.60 -.241 

2.64 -.282 

2.68 -.309 

2.72 -.323 

2.'76 -.322 

2.80 -.306 

2.84 -.276 

2.88 -.234 

2.92 -.184 

2.96 -.125 

3.00 -.058 

3.04 .008 

3 .08 .071 

3.12 .127 

3.16 .172 

3.20 .206 

3.24 .227 
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'11ABLE j~I:{ (cont .) 

x tr, x <./{ x '+-: 
3 . 28 . 233 4 . 28 . 071 5 . 28 . 004 

3 . 32 . 224 4 . 32 . 082 5 . 32 . 012 

3 . 36 . 208 4 . 36 . 087 5 . 36 . 018 

3 . 40 .179 4 . 40 . 088 5 . 40 . 023 

3 . 44 . 146 4 . 44 . 085 5 . 44 . 026 

3 . 48 . 106 4 . 48 . 079 5 . 48 . 028 

3 . 52 . 066 4.52 . 068 5 . 52 . 028 

3 . 56 . 023 4 . 56 . 056 5 . 56 . 028 

3 . 60 -. 016 4 . 60 . 040 5 . 60 . 025 

3 . 64 - . 055 4 . 64 .024 5 . 64 . 021 

3 . 68 -.084 4 . 68 . 009 5 . 68 . 019 

3 . 72 -.112 4 . 72 -.005 5 . 72 . 014 

3 . 76 -.128 4 . 76 .:.020 5 . 76 . 008 

3.80 -.139 4 . 80 - . 032 5 . 80 . 002 

3 . 84 - .142 4 . 84 - . 041 5 . 84 -. 002 

3 . 88 -.140 4 . 88 -. 046 5 . 88 - . 006 

3 . 92 - . 130 4 . 92 - . 051 5 . 92 - . 009 

3 . 96 -.113 4.96 - . 051 5 . 96 -. 011 

4 . 00 - . 094 5 . 00 -.050 6 . 00 - . 013 

4 . 04 -. 069 5 . 04 -. 046 6 . 04 - . 014 

4 . 08 -.044 5 . 08 - . 039 6 . 08 - . 01 6 

4 . 12 -.017 5 .12 -.031 6 . 12 -. 014 

4 . 16 . 008 5 . 16 -. 022 6 . 16 -. 014 

4 . 20 . 032 5 . 20 -.014 6 . 20 - . 01 2 

4 . 24 .052 5 . 24 - . 005 6 . 24 - . 01 0 
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TABLE XI X (cont .) 

x </{ x V1 x <r, 
6 . 28 -.008 6 . 56 .006 6 . 84 . 004 

6 . 32 -.005 6 . 60 . 006 6 . 88 . 002 

6 . 36 -.003 6 . 64 . 006 6 . 92 . 001 

6 . 40 .ooo 6 . 68 .006 6 . 96 .ooo 

6 . 44 . 002 6 . 72 . 005 7. 00 -.002 

6 . 48 . 003 6 . 76 . 006 7 . 04 - . 004 

6 . 52 . 004 6 . 80 . 005 
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Radial Distribution Functions and the Equation of State of a Fluid Composed 
of Rigid Spherical Molecules* 

JOHN G. KIRKWOOD, EUGENE K. MAUN, AND BERNI J. ALDER 
Gates and Crellin Laboratories of Chemistry, Pasadena, California 

(Received March 20, 1950) 

The integral equation for the radial distribution function of a fluid of rigid spherical molecules has been 
integrated numerically in the Kirkwood approximation and in the Born-Green approximation over a wide 
range of densities. The distribution functions so obtained have been used to calculate the equation of state 
and excess entropy of the fluid. The results are compared with those obtained by means of the free volume 
theory of the liquid state. 

I. 

I N the statistical-mechanical theory of liquids com­
posed of molecules possessing a potential of inter­

molecular force of the form, 

N 

v N= I:: V(R·ik), (1) 
i<k~l 

the average density p<2l(R1, R2) in the configuration 
space of molecular pairs plays a central role. In the 
fluid states of aggregation, gas or liquid, it is possible 
to define a function g(R12), called the radial distribution 
function, by the relation, 

p<2l = [pOlJ2g(R12), 

p<l)=N /v, (2) 

· where the average number density pOl in singlet space 
is uniform and equal to the reciprocal of the volume 
per molecule, and R12 is the scalar distance in the 
relative configuration space of a representative mo­
lecular pair. As is well known, the radial distribution 
function may be determined experimentally by the 
x-ray scattering technique. 1 

*This work was carried out under Task Order XIII of Contract 
N6onr-244 between the ONR and the California Institute of 
Technology. 

1 F. Zernike and ]. A. Prins, Zeits. f. Physik 41, 184 (1927); 
P. Debye and H. Menke, Physik. Zeits. 31 , 797 (1930); B. E. 
Warren, J. App. Phys. 8, 645 (1937); A. Eisenstein and N. S. 
Gingrich, Phys. Rev. 62, 261 (1942). 

The thermodynamic functions of a liquid are related 
to the potential of intermolecular force V(R) and the 
radial distribution function by the theories of Kirk­
wood,2 Born and Green,3 Mayer,4 and Yvon,5 which are 
basically equivalent although differing in certain de­
tails. The equation of state is given by 

pv 2rrN fco dV 
-= 1-- R3-g(R)dR, 
NkT 3vkT o dR 

(3) 

the internal energy by 

E 3 2rrNf
00 

-=-+- R2V(R)g(R)dR, 
NkT 2 vkT o 

(4) 

and the chemical potential by 

µ µE µ*(T) 
- - =logp+-- +--; µ*(T)=lim[µ- NkT logp] 
NkT NkT NkT p ... o 

4rrN2ftfco 
µE=- R2V(R)g(R, ~)dRd~ 

v 0 0 
pv 

-NkT log-, (5) 
NkT 

2]. G. Kirkwood, J. Chem. Phys. 3, 300 (1935). 
3 M. Born and H. S. Green, Proc. Roy. Soc. A188, 10 (1946). 
4 J. E. Mayer, J. Chem. Phys. 15, 187 (1947). 
5 J. Yvon, Actualites Scientifiques et _Industr~elles. (Herm'.1-1'.1'. et 

Cie, Paris, 1935), p . 203. Because of its relative maccess1b1hty, 
the pioneering work of Yvon has been largely overlooked by other 
investigators. 
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where g(R, n is the radial distribution function for a 
pair of molecules, one of which, i, is partially coupled 
to those of the rest of the fluid, corresponding to a 
potential of intermolecular force, 

N 

VN(~)= VN-1+~ L V(Rik). (6) 
k~l 

µ*(T) is the ideal gas reference value of the chemical 
potential, depending on temperature alone. 

Systems of integro-differential equations for the 
average densities in the configuration space of subsets 
of n molecules of a liquid have been developed in equiva­
lent forms by Kirkwood,: __ Born and Green,3 Mayer,4 

and Yvon. 5 In general, one has 

N! 1 
p<n)= e-,sw(n) 

(N-n)! vn 

(3= 1/(kT), (7) 

where w<n) is the potential of average force acting on 
the molecular subset n, the resultant of their direct 
interaction and their average interactions with the 
other N-n molecules of the liquid. When W<3l(123) is 
approximated by 

w<3l(l23) = w<2l(l2)+ w<2l(13)+ w<2l(23), (8) 

where 1, 2, 3 denote the coordinates of a molecular 
triplet, the several sets of integro-differential equations 
may be closed to give an integral equation for the 
pair function and thus for the radial distribution func­
tion. This approximation, superposition of mean forces 
between pairs in a set of triplets may be regarded as 
analogous to the Hartree approximation in quantum 
mechanics, applied to the density p(3) in the space of 
triplets as the product of the densities p<2J for the sets 
in the space of molecular pairs. As has been shown by 
one of us, 6 the corresponding Hartree-like approxima­
tion in singlet space leads to the free-volume theory of 
liquids. 

The resulting integral equation for the radial dis­
tribution function for a pair of molecules, one of which 
is · partially coupled to other molecules of the fluid ac­
cording to the potential of Eq. (6), takes the form 

logg(R, ~) = -(3~V(R) 

7rNJ"" +- [K(R-r, ~)-K(R+r, ~)]r[g(r)-l]dr, 
vR o 

~ 00 

K(t,~)=-2(3 f J sV(s)g(s,~)dsd~; K 
o I ti 

00 dV 
K(t, ~) = (3~f (s2 -t2)-g(s, ~)ds; BGY 

· !ti ds 
(9) 

6 J. G. Kirkwood, J. Chem. Phys. 18, 380 (1950). 

where now as henceforth g(r) denotes g(r, 1), with ~= 1. 
The kernel designated by K refers to the Kirkwood 
theory and that designated by BGY refers to the 
Born-Green-Yvon theory. Although the original sets of 
integro-differential equations i:n the two theories are 
exact, the superposition approximation, Eq. (8), leads 
to the two different kernels of Eq. (9) . The numerical 
discrepancies, reflecting the influence of the super­
position approximation are not great and will be dis­
cussed later. Since the essentials of the derivation of 
Eqs. (9) have been given elsewhere2

• 3• 7 they will not 
be reproduced here. 

The potential of intermolecular force V(R) is con­
veniently expressed in the form, 

V(R)=ey(x), 
x=R/a, (10) 

where € is an energy and a is a length characteristic of 
the molecules. Thus for a Lennard-Jones potential, 
we have 

(11) 

where n is an exponent in the neighborhood of 12 and a 
and oo are the two values of R for which V(R) vanishes. 
For rigid spheres, 

lime-iS•'Y<xJ = 0; 0 ~ x::; 1, 
<-->oo = 1; x> 1, (12) 

where a is the diameter of the spheres. If we define a 
function if;(x) by the relation 

g(x, ~) = e-iS~"Y(x)+[if;(x, ~)/x]' 
g(-x)=g(x), 
'Y(-x)='Y(x), 
if;(-x)=-if;(x), (13) 

and extend the definitions of g(x) and 'Y(x) to the nega­
tive real axis by means of the last three of Eqs. (13), 
the integral equation, Eq. (9), becomes 

if;(x, ~)=~ K(x-s, ~)s[g(s)-l]ds X J"" 
4 - oo 

Ao= (47rNa3)/v 

00 ~ 

K(t, ~)= -2(3EJ f S')'(s)g(s, ~)d~ds; K 
I ti o 

J
oo d')'(S) 

K(t, ~)=~(3E (s2-t2)--g(s, ~)ds; 
It' ds 

(14) BGY. 

The solution of Eq. (14) with the Lennard-Jones poten­
tial, Eq. (11), by numerical methods with the use of 
International Business Machine equipment is at present 
under investigation. Since direct iterative operation on 
a sequence of trial functions g(s) with the integral 

7 J. G: Kirkwood and E. M. Bo~gs1 J, Chem._ Phys. 10, 394 
(1942)' . . . . 
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operator f- 00
00dsK(x-s) in general fails to give con­

vergent results for values of Ao appropriate to liquid 
densities, other methods are being developed, which 
depend on starting with a relatively good zero approxi­
mation to g(s). In order to obtain a set of trial functions 
for the zero approximation base, as well as for their 
intrinsic interest, we have undertaken the integration 
of Eq. (14) for fluids composed of rigid spheres. 

For rigid spheres, Eq. (14) becomes, 

A oo 

f(x)=-f Ko(x-s)s[g(s)-l]ds 
4 -00 

g(s) = eo/Cs)/s i .s I?: 1 

=0 isl <1 

Ko(t) = t2 -1 It I ::; 1 

=0 I ti> 1 (15) 

where if;(x) denotes if;(x, 1) . The parameter A is related 
to the density in different ways according to the Kirk­
wood theory and the Born-Green theory (see Appendix). 

A 

[g1(A) J-~ f [g1(A') J-!d)..' = 47rVZv0/v; K 
0 

[g1(A)]-1)..=47rVZ(vo/v); BG 

vo=Na3/V2, (16) 

where v0 is the close-packed volume of the system of 
spheres and g1(A) denotes g(l+e, )..) as e->+O. The 
two systems of integro-differential equations under­
lying the Kirkwood and the Born and Green theories 
are equivalent and exact. However, the superposition 
approximation in the space of triplets leads to different 
equations in the space of pairs. The discrepancy re­
flected in Eq. (16) is thus a measure of the error pro­
duced by this approximation. 

Equation (15), linearized with respect to the function 
if;(x), assumes the form, 

A oo 

if;(x)=-J Ko(x-s)[A! isl - llf(s) 
4 -oo 

-[1-A! isl -ll]s]ds, 

A! t) = 1 t?: 0, 

= 0 t<O, (17) 

where A (t) is the unit step-function. Equation (17) has 
been given approximate analytical solutions by Kirk­
wood and Boggs7 for several values of A. The present 
numerical solutions of the non-linear equation, Eq. 
(15), cover a wider range of the parameter A than those 
of Kirkwood and Boggs. For the same values of )\ in 
the linear approximation, they are found to agree 
with the analytical solutions for large values of x and 
to correct the latter in the neighborhood of the first 
peak of the radial distribution function. 

II. 

We shall now describe the methods employed in 
the numerical solution of Eq. (15), which we write in 
the form 

A oo 

f(x)=-J Ko(x - s)cp(s)ds 
4 -oo 

cp(x) = x[g(x) -1] 

g(x)=A(lxl -l)eo/Cx)/x. (18) 

The resolvent kernel k(t) of Ko(t) may be expressed in 
the form8 

AI00 

G(u) 
k(t) = -- cosutdu 

7r o 1 - )..G(u) 

1 J"' u cosu - sinu 
G(u) = - K 0(t)e iu tdt= . 

4 - oo u 3 
(19) 

By the method of Fourier transforms, we obtain from 
Eq. (18) 

f(x)= - f 00

k(x-s)f(s)ds 
-oo 

f(x) = cp(x) -f (x) (20) 

from which -.f;(x) may be determined for x> 1 when 
f(x) is known. An alternative form of Eq. (20) is 

f(x)=cp(x)+ f 00

k(x-s)f(s)ds. 
- oo 

In the linear approximation, 

cpo(x)=A! lxl-llfo(x)-[1-Aj lxl-llJx 
fo(x)=O; x>l 
cpo(x)= -x; x::; 1 

and Eqs. (20) and (21) become 

+1 

fo(x)= - x+ f k(x - s)fo(s)ds; x<l 
-1 

+1 

ifo(x)= - f k(x - s)fo(s)ds; x>l. 
- 1 

(21) 

(22) 

(23) 

The first of Eqs. (23) determines j 0(x) and the second 
determines the linear approximation if;0(x) for x> 1. In 
this approximation the determination of g(x) thus re­
duces to the solution of a linear integral equation for 
fo(x) on the finite interval -l<x<+l, with the re­
solvent kernel k(t, )..). 

The resolvent kernel k(t, )..) was calculated for a 
suitable range of the parameter, )\=5, 10, 20, 27.4, 
with the use of IBM equipment and the file of punched 
cards of sinut employed in these laboratories for electron 

8 E. C. Titchmarsh, Introduction to the Theory of Fourier Inte­
grals (Oxford University Press. London, 1948), pp. 303-305. 
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TABL1' l." Radial distribution functions for several values 
of parameter A. x[g(x)-1 J as a function of x. 

~ 10 20 27.4 33 

1.00 0.45 0.80 1.36 1.66 1.85 
1.08 0.39 0.66 1.08 1.36 1.62 
1.16 0.32 0.53 0.83 1.04 1.25 
1.24 0.26 0.40 0.59 0.73 0.87 
1.32 0.20 0.29 0.37 0..14 0.47 
1.40 0.15 0.18 0.18 0.16 0.11 
1.48 0.09 0.09 0.01 -0.08 -0.19 
1.56 0.05 0.01 -0.12 -0.26 -0.41 
1.64 0.01 -0.05 -0.22 - 0.39 -0.56 
1.72 -0.02 -0.10 -0.29 -0.46 -0.64 
1.80 -0.04 - 0.13 - 0.31 -0.48 -0.63 
1.88 -0.05 -0.13 -0.28 -0.41 -0.52 
1.96 -0.05 - 0.10 -0.18 -0.25 -0.29 
2.04 -0.03 -0.05 -0.03 0.02 0.10 
2.12 -0.02 -0.01 0.09 0.24 0.44 
2.20 0.00 0.02 0.16 0.34 0.63 
2.28 0.00 0.04 0.18 0.38 0.65 
2.36 0.01 0.04 0.17 0.32 0.52 
2.44 O.Ot 0.04 0.13 0.22 0.30 
2.52 0.01 0.03 0.07 0.09 0.06 
2.60 0.01 0.02 0.01 -0.03 -0.16 
2.68 0 0.01 -0.04 -0.13 -0.32 
2.76 0.00 -0.07 -0.20 -0.42 
2.84 -0.01 -0.09 I -0.24 -0.45 
2.92 - 0.01 -0.09 -0.21 -0.38 
3.00 -0.0t -0.07 -0.15 -0.25 
3.08 -0.01 -0.04 -0.06 -0.03 
3.16 -0.01 0.00 0.03 0.14 
3.24 0 0.02 0.09 0.29 
3.32 0.04 0.15 O..ll 
3.40 0.05 0.17 0.36 
3.48 0.05 0.14 0.28 
3.56 O.o-t 0.09 0.14 
3.64 0.02 0.03 0.00 
3.72 0.00 -0.02 -0.12 
3.80 -0.01 -0.06 -0.23 
3.88 -0.02 -0.10 -0.28 
3.96 -0.02 -0.11 -0.26 
4.04 -0.02 -0.08 -0.20 
4.12 -0.02 -0.05 -0.11 
4.20 -0.Dl -0.02 0.00 
4.28 0.00 0.02 0.11 
4.36 0.00 0.04 0.18 
4.44 0.01 0.06 0.24 
4.52 0.01 0.07 0.22 
4.60 0.01 0.06 0.15 
4.68 0.01 0.0.3 0.08 
4.76 0.01 0.0 1 -0.01 
4.84 0 -0.01 -0.09 
4.92 -0.03 -0.15 
5.00 -0.03 -0.19 
5.08 - 0.03 -0.18 

"'rhe solutions g(x) were checked by direct iter,ation in Eq. (15 ) at in-
tervals of 0.04 in x . The input g(x) checked with the output g(x) to ± 0.005 
for h =5. 10, and 20. and to ±0.02 for ~ = 27 .4 and 33. 

diffraction calculation. 9 For these calculations it was 
transformed by partial integration m the following 
manner, 

"A J""3uG(u)+sinu 
k(t) = -- sinutdu. 

1fl o u2[1-"AC(u)]2 
(24) 

Convolution operations with the kernel k(x-s) in­
volved in the solution of Eqs. (23) were then carried 
out on desk calculators. 

Since, except for small values of "A, the kernel k(t) 

9 Shaffer, Schomaker, and Pauling, J. Chem. Phys. 14, 659 
(1946). 

~ 
5.16 
5.24 
5.32 
5.40 
5.48 
5.56 
5.64 
5.72 
5.80 
5.88 
5.96 
6.04 
6.12 
6.20 
6.28 
6.36 
6.44 
6.52 
6.60 
6.68 
6.76 
6.84 
6.92 
7.00 
7.08 
7.16 
7.24 
7.32 
7.40 
7.48 
7.56 
7.64 
7.72 
7.80 
7.88 
7.96 
8.04 
8.12 
8.20 
8.28 
8.36 
8.44 
8.52 
8.60 
8.68 
8.76 
8.84 
8.92 
9.00 
9.08 
9.16 
9.24 
9.32 
9.40 
9.48 

TABLE !.-Continued. 

10 20 27.4 33 
·~~~~~--~~~~~~~~~~~~~ 

-0.03 
-0.02 

0.00 
0.01 
0.02 
0.02 
0.02 
0.02 
0.01 
0.00 
0.00 
0.00 
0.00 

-0.01 
-0.01 
-0.0t 
-0.01 

0 

-0.13 
-0.06 

0.01 
0.07 
0.12 
0.16 
0.14 
0.10 
0.05 

-0.01 
-0.06 
-0.10 
-0.13 
-0.12 
-0.08 
-0.03 

0.01 
0.05 
0.08 
0.09 
0.08 
0.05 
0.02 
0.00 

-0.02 
-0.07 
-0.07 
-0.06 
-0.05 
- 0.02 

0.00 
0.02 
0.03 
0.04 
0.04 
0.03 
0.02 
0.01 

-0.Ql 
-0.02 
-0.02 
-0.02 
-0.02 
-0.01 
-0.01 

0.00 
0.00 
0.00 
0.01 
0.01 
0.01 
0.01 
O.Ql 
0.0t 
0 

possesses one or more eigenvalues less than unity, 10 

solution of Eq. (23) by direct iteration fails to give 
convergent results (see Appendix). In order to over­
come this difficulty, k(l) is expressed in ·the form 

k(t) = ko(t)+k1(t), 
ko(t) =Ao+ A 1 COS')'1I+ A 2 COS')'2I, (25) 

where the parameters Ao, Ai, A 2, 'Yi, and ')'2 are chosen 
by trial to give fo2k1(1) 2dl a sufficiently small value to 
raise all of the eigenvalues of k1(t) , which may be shown 

io R. Courant and D. Hilbert, Methoden der Mathematischen 
Physik (Interscience Publishers, Inc., New York), Vol. I , pp. 
104--110, 1943. 
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to be bounded below by [2./i?(2- t)k1
2(t)dt]-!, above 

unity. 10 When this condition is fulfilled, fo(x) may be 
represented by the convergent sum 

00 

fo(x)='L,fo,n(x), (26) 
n=O 

where 
.+! 

fo,n(x)=<To,n(x)+ J ko(x-s)fo,n(s)ds, 
-1 

cro,o(x)= -x, 

J
.+l 

cro,n(x)= k1(x -:_ s)fo.n-1(s)ds. 
-! 

(27) 

Since the approximate kernel k0(x-s) is chosen in de­
generate form, the sequence of integral equations, Eq. 
(27), are solvable in closed form, 

fo, n(x) = cro, n(x)+ 2A 1M1, n sin')'1x+ 2A 2M 2, n sin')'2X, 
l 

M1,n= f fo,n(s)sin')'1Sds, 
0 

l 

M2,n= f fo.n(s)sin')'2Sds, 
0 

(28) 

where the Ma, n are to be determined in each case by 
solving a set of two linear equations, following from 
their definition and the first of Eqs. (28) . Several 
iterations, the number increasing with increasing values 
of A., suffice to determine fo(x), which upon substitution 
in Eq. (23) yields the desired solution of the linearized 
problem. 

In the non-linear case, f(x) of Eqs. (20) and (21) no 
longer vanishes outside the interval -1:::; x:::; + 1. 
Nevertheless, we write Eq. (21) in the form 

+! 

f(x)=cr(x)+ f k(x-s)f(s)ds, 
-] 

cr(x)= -x+ f 00

k(x-s)f(s)ds 
l 

+ f- 1
k(x-s)f(s)ds x:::; 1, (29) 

-oo 

and consider the sequence of integral equations, 

+! 

fn(x)=crn(x)+ J k(x-s)fn(s)ds x:::; 1, 
-! 

crn(x)= -x+ J"' k(x-s)fn- 1(s)ds 
1 

+ f- 1

k(x-s)f n-1(s)ds, 
-oo 

J
.+1 ·"' 

t/ln(x)= - k(x-s)fn(s)ds- j k(x-s)fn-i(s)ds 
- l l 

- f-\(x-s)fn- 1(s)ds. (30) 
-00 

Starting with the solution of Eq. (23) as fo(x) with 
cro(x)= -x, and solving each of the linear integral 
equations, Eq. (30), by the method employed in the 
solution of Eq. (23), we find that the sequence t/ln(x) 
converges to the solution tf;(x) of the non-linear integral 
equation, Eq. (18). All solutions are finally tested by 
direct iteration with the kernel K 0(x-s) of Eq. (18). 

For large values of the parameter A., convergence is 
slow by the method of solution described here. How­
ever, when a moderately good approximation tf;0(x) 
has been obtained by this method, it may be refined 
by the following iterative procedure. If we linearize 
Eq. (18) with respect to the error w(x), equal to >/;(x) 
-tf;0(x), we find, 

tf;(x) =if0(x)+w(x), 

w(x) = Lw+O(w2), 

A. oo 

Lw= v(x)+-f Ko(x-s)A 11 sf -1 l 
4 -00 

[
tf;D(s) J 

Xexp -s- w(s)ds 

A.J"' v(x)=- K 0(x-s)cp0(s)ds-tf;0(x) (31) 
4 -oo 

where L is an inhomogeneous linear operator and v(x) 
is the iterative defect of the trial function if;0(x). Let 
us consider the sequence 

A. oo 

L<nlw(n) = v<nl(x)+-J Ko(x-s)A If Sf -1 l 
4 -oo 

[
if;Cn-ll(s) J 

Xexp s wCnl(s)ds 

A. "' 
v<n>(x)=-f Ko(x-s)cp<n-O(s)ds-tf;n-1(x), (32) 

4 -oo 

where w<n> exactly satisfies the linear equation, LCn>w<n> 
=wCn>, and lf0(x) is the first member of the sequence 
tf;<n>. We now define a sequence 
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"' 
D.kk'(n)= J Xk(n)Xk'(nldx; Xk(n)=L(n)Wk(n) -wk(n)_ (33) 

-00 

The value of a which minimizes t.33 <nl is given by 

a<n) = (!loo (n) -t.01 (nl)/ (t.11 (n) + !loo (n) - 2Llo1 (n)) 

Ll33(n) 
--=1-e<n) 
!loo (n) 

1 [Lloo (n) -Llo1 (n) ] 2 

E(n)=----------­
floo(n) fl11(n)+floo(n) -2Llo1(n) 

(34) 

The denominator in the expression for e<nl is positive 
by the Schwarz inequality .. Thus e<nl is positive and 
we have, 

(35) 

Repetition of this cycle will, except in singular cases, 
lead to a sequence wk<nl(x) which converges in the mean 
to the solution w<nl(x) of the linear equation, L<nlw<nl 

=w<n>, of Eq. (32). However, the most economical 
path to a solution of the non linear problem is through 
the sequence 

(36) 

where w3<nl is given by Eqs. (33) and (34). Except in 
singular cases ifi3<nl converges to the solution lfi(x) of 
the non-linear equation Eq. (18). 

III. 

The methods described in Section II have been used 
to calculate g(x, A) for the fluid of rigid spheres for 
values of the parameter A equal to 5, 10, 20, 27.4, and 
33. The results of the calculations are presented in 
Table I and Fig. 1. In Fig. 2, the linear and non-linear 
solutions of Eq. (18) are compared for A-27.4. ·It will be 
observed that they are appreciably different only in 
the neighborhood of x= 1. A comparison of the linear 
solution for A= 27.4, with the approximate analytical 
solution of Kirkwood and Boggs,7 shows the latter to 
be somewhat inaccurate in the neighborhood of x = 1. 

g(>) 

).a 27.4 

2 .0 

0 

FIG. 1. Radial distribution functions for several values 
of the parameter A. 

All radial distribution functions exhibit their first 
peak at x= 1, decreasing monotonically to the first 
minimum, which is followed by oscillations of diminish­
ing amplitude resembling those of the experimentally 
determined radial distribution functions of real liquids. 

From the values of gl(A) obtained from the solutions 
presented in Table I , the densities corresponding to the 
family of distribution functions g(x, A) may be deter­
mined by means of Eq. (16) according to the Kirkwood 
theory and according to the Born and Green theory. 
The densities are presented as a function of A for the 
two theories in Table II. 

For values of A equal to or exceeding 34.8, no solu­
tions of Eq. (15) exist for which x2[g(x)-1] is in­
tegrable. This value of A, corresponding to an expansion 
v/v0 equal to 1.24 on the Kirkwood theory and 1.48 on 
the Born-Green them;y evidently represents the limit 
of stability of a fluid phase of rigid spheres. For greater 
densities, a crystalline phase is the stable phase.11 The 
transition between fluid and crystalline phases cannot 
be discussed quantitatively without an investigation 
of distribution function? in the crystalline phase itself. 
In the case of rigid spheres, it appears likely that the 
transition may be of second order rather than of first 
order, although at present this is no more than a sur­
mise. It is also possible that the crystalline phase 
possesses some intrinsic disorder arising from the in­
ability of rigid spheres to distinguish between next 
nearest neighbors and the likelihood of stacking errors 
leading to structures intermediate between the face­
centered cubic and the hexagonal close-packed ar­
rangements. 

The equation of state, Eq. (3), becomes for rigid 
spheres, 

pv 27rV2 Vo 
--1=- -g1(A), 
NkT 3 v 

(37) 

9(1) 

0 4 

FIG. 2. Radial distribution functions for A=27.4. A, solution 
of non-linear integral equation. B, solution of linear integral 
equation. 

11 J. G. Kirkwood and E. M. Boggs, J. Chem. Phys. 9, 514 
(1941). 
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· TABLE II. Fluid densities as function of X.• 

vi vo (K) v/vo (BG) 

5 
10 
20 
27.4 
33 
34.8 

1.45 
1.80 
2.36 
2.66 
2.85 
2.90 

4.74 
2.83 
1.78 
1.45 
1.29 
1.24 

a. v/vo =ratio of volume to close packed volume of spheres. 

5.15 
3.20 
2.10 
1.73 
1.53 
1.48 

where g1(1') is given as a function of density v/v0 in 
Table II. In Table III, pv/ RT-1 is presented as a 
function of v/v0 for both the Kirkwood and the Born­
Green theories. This function is also plotted in Fig. 3 
together with the free volume12 expression for rigid 
spheres, 

pv 1 
- - 1=---­
RT (v/ v0)s-1' 

(38) 

where Vo is the close-packed volume of a face-centered 
cubic lattice rather than that of the simple cubic lattice 
originally used by Eyring and Hirschfelde1. 

The excess molal entropy, SE, of a fluid phase is de­
fined by the relation, 

S= -R logp+S*(T)+SE 

S*(T) =Jim [S+ R logp]. (39) 
P-+O 

For the fluid of rigid spheres, 

~ = ~~E = -~~ +[;~ -1 l 
SE 27rV'lfv/vo gi[},(y)J [ 27rY'l Vo J 
-=-- dy+log 1+ -- -g1 , 
R 300 y2 3v 

y=v/vo, (40) 

since the excess internal energy EE vanishes. The excess 
entropy in the Born-Green approximation has been 
calculated by numerical integration, with the use of 
the second of Eqs. (40) and the values of g1(1') as a 
function of v/v0 presented in Table II. In the Kirkwood 
approximation, Eq. (5) and the first of Eqs. (40) yield 
the expression, 

SE ;\ 27rV2 v0 [ 27rV2 Vo J 
- = --+-- -g1+log 1+-- -g1 , 
R 3 3 v 3 v 

(41) 

from which the excess entropy has been calculated with 

12 H. Eyring and J. 0. Hirschfelder, J. Phys. Chem. 41, 249 
(1937). 

the aid of the data of Table II. The results of the two 
calculations are presented in Table IV. 

It will be remarked that the agreement between the 
Kirkwood and the Born-Green approximations is 
moderately good both for the equation of state and for 
the entropy. In the case of the equation of state, the 
free volume theory yields a result which does not devi­
ate greatly from either the Kirkwood or the Born­
Green results, the departures becoming smaller as the 
density increases toward close-packing. 

APPENDIX 

1. The relation between the density Na3/v and the parameter X 
may be derived for the Kirkwood theory with the following ther­
modynamic equation, the equation of state, Eq. (37), and the ex­
pression for the chemical potential Eq. (34c) given by Kirkwood 
and Boggs,7 

R1T(~)T = ;T(~)T, (42) 

µ X µ*(T) 
RT= -logv+3+ RT (34c) 

p 1 27rVZ Vo 
RT=~+-3-;pgi(X), (37) 

where g1(X) is g(l +E) as ~+o. By differentiating the last two 
equations with respect to v and equating their derivatives by the 
first expression, we get 

-~+~ dX = -~+27rVZvov[!:__(gi(X))J ·, 
v 3 dv v 3 dv v2 C

43
) 

7 

6 

5 

4 

3 

2 

2 3 4 5 
y 

v. 
FIG. 3. Equation of state: pv/RT-1 as function of v/vo. A, Kirk­

wood basis. B, Born and Green, C, free-volume theory. v=volume 
per mole, v0=volume per mole in close-packed arrangement. . 
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TABLE III. Equation of state of the fluid of rigid spheres. 

v/voa pv/RT-1 (K) pv/RT-1 (BG) 

8.38 0.44 0.44 
4.74 0.91 0.93 
3.48 1.39 1.46 
2.83 1.89 2.04 
2.42 2.40 2.65 
2.15 2.91 3.21 
1.94 3.43 3.75 
1.78 3.93 4.33 
1.64 4.44 4.96 
1.53 4.95 5.54 
1.44 5.46 
1.37 5.99 
1.30 6.50 
1.24 6.93 

a For values of the Kirkwood parameter X =2.5. 5.0, · · ·, except for the 
last point, X =34 .8. 

hence, introducing z=v/[g,(X)]!, 

TABLE IV. Excess entropy of the fluid of rigid spheres 
as a function of density. 

vivo SE/R (K) sE/R (BG) 

8.38 - 0.03 -0.03 
4.74 -0.12 -0.11 
3.48 - 0.24 -0.23 
2.83 -0.39 -0.37 
2.42 -0.55 -0.56 
2.15 -0.73 -0.76 
1.94 -0.92 -1.00-
1.78 -1.14 -1.23 
1.64 -1.37 -1.49 
1.53 -1.60 - 1.77 
1.44 -1.84 
1.37 -2.07 
1.30 -2.32 
1.24 -2.60 

the real symmetric kernel k(x, s) in terms of its orthonormal set 
of eigenfunctions Xi and its eigenvalues Ai, and expanding t:..J<n-1> 
in the form, dl\ dz 

-[ () Ji= -47rNa3
-;;- ; Na3 =Y2vo, 

g1 )\ ' z- (44) k( )=~·x;(x)xi(s) 
x, s i Ai ' 

and integration with the limits (X, v) and (X=O, v= oo) yields 
Eq. (16, K). 

2. The divergence of a direct iteration attempt to solve Eq. 
(23) may be seen by considering 

f(x) = cr(x)+ J." k(x, s)f(s)ds, 

f<">(x) =cr(x)+ J.0
11(x, s)J<n-O(s)ds; 

hence, by subtraction, 

jj,J<">=f-J<">= J.0
k(x, s)jj,J<n-O(s)ds, 

(45) 

(46) 

where f(x) is the exact solution of the linear integral equation 
whose inhomogeneous part is cr(x),j<n-l)(x) is a trial solution, and 
J<n>(x) the iterate of the trial solution. Using a representation for 

jj,f<>.-I>(s) = ~; a;<•.-i>x;(s), 

leads by substitution into Eq. (46) to 

t:..f'">(x) = ~i a;<n-I>x;(x) ~; a; <">x1(x), 
X; 

a·(n-I) 
a;<n>=-'--. 

l\; 

(47) 

(48) 

Thus a;<n- 1> is increased by l / X; after each iteration, hence di­
vergence occurs if for any IX; I < 1 a;<n-1) 9= 0, because then 

I a:~~::) I > 1 

and jj,J<n> increases in magnitude with each iteration. 
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Inte,rnolation Formulae ____ ...... _____ ._ ---= 

The empir ical equation of state valid for ~ ~ 5 whi ch 

results fro rc. the radial distribution function correct to 

(A) With linear isor1etrics p* = ~ T* + b 
I 

22.484 
- ··· v*5 ( 157) 

(D) With quadratic isometrics 
1 

p* = C\ T*2 + b T* + c. 

a = _ .1892 _ ..!..2'.l®- 7 • 68Q_~ __ .J.716 
v*2 v*3 v*4 v*6 

b = • 101.3 + .11.J_j'5-_l 
v* v*2 

. C' 0zt2 c ~-.2...~ o __ 
v*2 

0
;;- • r:u- 530 ( 1"'8) ; 

v*6 

'l.'he follov1ing equation of state is valid for '>- ~ S' and 

for . 6 o ~ (3E ~ I. o : 

b 
- + + v"'a 

+-
. 1W it v ( 15"9) 

b = -18.403T* +18.190 T* 2 

c = -41.925 • 61.449 T* - 20.295 T*2 

251.766T* • 84.665 T*2 

The excess internal energy fitted e·"1pi:C'ic~::. lly as a function 

of volume and ter:perature ~ 

( 160) 
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~ 3 ~ 
- .017277Ao + .0005912 )\0 - .0000197 ~ .. 

e, = - .12393 - .064711 'Ao ~ .011s5s x~ - .0007322 ~! 

= ' • 21407 - • 62844 ~: ~ • 24619 'X - . 006406 ":-
0 

':::'he equa t j_on of state valid for A !- 5 and for (1~ ~ O. 40 ~ 

-o* 'i'* 
~ 

a b = v*2 
+ -·-

v,~ v~d 
( 161) 

a = 2 .212 J~ * G.442 

b = I 1 7'? .) . ~ T~' 2. 520 
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A s::_'A'.i' ISTIC AL HECEAHIC AL TEEOHY 01" TEE COE:?iT, ICI EN'T 

OF ~t:EEHIJAL COlJDlJC TIVITY OF ~·IOIJA'l' rn.:rc LIQUIDS 

H J'TH ODUC'r+_on 

The Eeneral objective of statistical mechanics is to 

express ~acroscopic properties in terms of molecular varia-

bles. With this aim in n ind for the coefficient of heat 

conductivity , a procedure very much like the one for the 

coefficient of viscosity(l) may be followed. ~he equations 

of hydrodynamics provide the phenomenological rela tions for 

the desired transport process. 7hese are : the equation 

of continuity, 

'7. (p u) + (1) 

t h e equa tion of motion, 

-x + '7· !!:" (2) 

and in add ition the equation of energy trans por t which con-

t a ins the heat current density, ~' explicitly: 

(3) 

_. -where p is t h e density , u is the particle ve locity, X is 

the externa l force, ~ is t he stress tensor, and E is the 

internal energy density. Finally a supplementary relat ion 

de f ines the thernal conductivity, )( , as the proportionality 
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factor between the heat current density and the temperature 

gradient; 

(3a) 

These hydrodynamic equations have been derived by means 

of classical statistical mechanics and the proper terms have 

been put into correspondence( 2 ) so that expressions result 

for the heat current density and the stress tensor, in terms 

of mo lecular variables, which are the molecular distribution 

function and the intermolecular force. Just as in the for-

nmla for the s tress tensor, two t~rpes of terms arise in the 

one for the h~at current density. One of these is due to 

r.:ionentum trans:Jort and corresponds to the far'.liliar expression 

in the kinetic theory of gases. The other term, contributed 

by the intermolecular forces, is expressed as a quadrature 

of the potential of intermolecular force and of the density 

and current density in the configuration space of pairs of 

"'lolecules . 

The probability densities involved in the expressions 

for the density and current density are, however, perturbed 

froEl their equilibriurn value due to hydrodynamic flow re-

sulting from the temperature gradient. One would have to 

solve the Liouville equation after integrating it over the 

phase space of N-n molecules in a system of N mo lecules and 

after time smoothing in order to obtain an explicit expres -

sion for the probability density in n-space. This problem, 

hovvevcr, is not unlike the one ·whi ch presents its elf in the 
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solution for the equilibrium distribution function where a 

chain of integro-differential equations has to be solved, 

each of which relates a probability density in a given space 

to tho one in the next higher space. This chain was broken 

there by the so called suneroosition approxi~ation(3), a 

generalization of which has been introduced in the present 

case by Born and GreenC 4 ) to accomplish the same end. Alter-

nate steps taken to close the set of equations are those ex­

plained in SMT I(5) where the theory of Brownian motion is 

utilized to get the differential equation for the probability 

distribution function in the phase space of sets of one, two, 

and three molecules of the liquid. The Born and Green approach 

differs from Kirkwood's only in the representation of the dis-

sipative oechanism which in the latter case is essentially 

contained in the phenoLlenological friction constant. This 

friction constant enters explicitly since the Langevin equa-

tion of motion has to be brought in to describe the move-

ments of a Brownian particle in an environment in statistical 

equilibrium. The Langevin equation however has been derived 

through statistical mechanics and thereby an expression for 

the friction constant restilts. It has not as yet been possible 

to calculate accurately the value of the constant. 

To close the se t of equations for the probability den-

sity therefore Kirkwood assumes l ocal statistical equilibrium 

in order to introduce the above Brownian motion theory. The 

resulting differential equation, which is a generalization of 

the Fokker-Planck equation, then allows the construction of 
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the perturbed probability density to be substituted in the 

expression for the heat current density. The probability 

density is the steady state solution with the proper bound-

ary conditions where only linear terms in the gradient of 

the temperature will be kept in the differential equations. 

GENERAL PRELIMINAIUES 

In statistical mechanics, macroscopic observables are 

set into correspondence with average values determined by 

probability densities 1Cn)(~,~;t) in the phase space (~,~) 

of a subset of n molecules in a system of N molecules. Here 

and 

- ("') - - I ( T C IY) f ( P_, "C{,J i: Q; t ) = T ) 0 J ( f; i ~ Q;, f-t s) d s j ( 5) 

,-> -:t) \P,Q is the phase space of the N-n remaining molecules. 

The time smoothing interval 'J" is determined by the process 

of measurement; that is, T should be long relative to the 

microscopic fluctuations but short compared to the macro-

scopic time resolution, so that observables in the liquid 

effectively do not depend on T . For the representation of 

average values of ftmctions of the configuration coordinates 

( q) only, the nUJ.~ber density p (n)(q;t) is convenient: 

, .... , - tv! f "l < ... , 
f' ( 9-;, t) :::- (tv- ~) ! ~ ( r: q:_; t) pf p. (6) 
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In the singlet configuration space, ( 1 ), this expression 
- ) 

rc r;t), and occurs in reduces to the ordinary mass density, 
~IU-> 

the current density, J (r;t), of the macroscopic equations 

of hydrodynamics: . I - <·J 
p ( ~; t) ~ "l'n fJ '''(~j t) :- '">'n N I ( ;:_,, P; t) dj 

(7) 

• (IJ - (O - 'P ... - -...... f - -(U 

j ( ~; t) :: t.,t f' (,..; t) = N ~ /. ( r-,, p; t) d ~ 
(8) 

(.\.J-+ -

where m is the mas s of the molecules . Similarly, P ( R,_, 'R~; t) , 
__.u,_ - t 

t he pair density, and j, ( R,_, R~.;, ) , the particle current 

density in p~ir space projected on the singlet space of 
... -

molecule 1, are given in the configuration space (R,_,~~) by: 

( 9) 

In a system of molecules for which the intermolecular 

potential ~ can be represented in the form 

( 1 0 ) 

:: I 

where V (R) is a fuction of the distance Rik between the 

ith and kth molecules , this pair number density plays a 

particularly important role. IIowever, it is more conven­

ient to deal ·with the pair Correla ti on function g ( 2 ) c1,R; t) 
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defined, for a fluid with identical particles, by 

(1) ......, - (a.)( -p (R, _,R~jt) =-f' ~;:+R; t)= 

p'''(i.; tJ "'"'(~j tJ ? h)<~ R; tJ. 
(11) 

In the bulk liquid this function, g( 2 )c1,~;t), is insensi­

tive to 1, the macroscopic location, but sensitive torr= - - -Ra - 'R. -= 'R,:a. , the re la ti ve coordinate between molecules. 

Now a liquid with a potential of the form (10) has, at equi-

librium and in the absence of external forces, a correlation 

a_ to:a.J ( f::J • function (f " 

(>) - \ / lO 
where \,,,./ (R } and W are the potentials of mean force 

in pair and singlet space. As has been shown in part I of 
(J.J -

this t hesis, ~o ( R) is a . solution of an integral equation. 

The negative gradient with res pect to molecule one, for 

example, of the potential of mean force is then the equili-

brium avera ge force on molecule one in a set of n molecules, 
0( F, y~) 

(13) 

Therefore, taking the logarithmic gradient of (12 ) with re-

spect to molecules one and two results in: 
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0 - Ca.) Q - C•) ( r. > - ( F, > = ~ T ~ ~ ~t' ( R) 
(14) 

( 15) 

The time dependent distribution functions, as was point­

ed out , satisfy partial differential equations of the type 

derived by Chandrasekhar on the basis of the phenomenolo gica~ 

theory of Brovmian motion. For the momentum part of the heat 

current density of a liquid in a steady state under a temper -
-\,, 

ature gradient, only the singlet equation for f ( ~J P; t J 
is necessary: 

_, (I> - U> 

t\?p·F J = 

'f [- 0'" L f "'] 1 'V1 · 1f.,. T RT \7p r 
-

where - 'P -1T=--c...c. 
l'n'\ } 

_. r ,,, = 
-t 

J 

-T 
F 

(16) 

, and 

f is the friction constant. F is the perturb_,0''t1ng force 
-> 

on a molecule situated at R. For the intermolecular force 

contribution to the heat current density, the pair equation 
-(11.\ - - -

ror f (=P,) R . .J 1~) 'R .. .i t) has to be employed: 

- ( 11.) 

~ 'dt + 

..... (17) 

'Vp: · r· f rr. r~ ~ T Vr: 1 "J + -
'Vr: · J ~'f n; r~· i.. T Vr. :r1, 
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where J is a friction tensor in the six dimensional space 
- -ca> o - ~~> - ta) t F.-, <~Ji 

of pairs , F. :-, ( ~ ) + F, , and is the pertur-

b~ng force acting on molecule l of the fixed pair 1 and 2. 

Due to the potential (10) assumed, only the probability den-

sities in the phase space of singlet and pair molecules are 

significant. 

The solutions of these differential equations for the 

probability densities have to be substituted into the equa-

tion for the heat current densities obtained through the 

statistical mechanical theory of the equations of hydrodyna-

mies. The procedure in the derivation of the macroscopic 

equations of hydrodynamics is to utilize the statistical -mechanical expressions for f' , j , and for all the other 

quantities which have obvious statistical mechanical anal-

agues. The time derivative of these quantities can also be 

calculated through statistical mechanics by means of the 

Liouville equation. ':'he equation of continuity (1) then 

falls out immediately by expressing the conservation of 

particles in terms of these expressions. In the equation 

of motion (2), obvious statistical mechanical expressions 

are available for all terms except the stress tensor. The 

correspondence here is obtained by difference a f ter the 

remaining term has been changed into the form of the grad-

ient of a quantity to be identified with the stress tensor. 

In a similar fashion, the heat current density, in terms of 

microscopic variables for a single component, single phase 
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systeCT with a potential of the type (10 ) can be formed from 

the energy transport Eq. (J)o Let us write 

(18) 

Here, 

(19) 

-'t1rc can easily be seen to :represent the transpor t of thermal 

kinetic energy. The expression can be simplified by substi­

tut :Lng if for [.f-i} : 
- N. r ~ j(l.J 
Cf,~ = ~ a.PI ii I ff r . (20) 

- -
- 'R'R 'R v I ( R )J . 

( 21) 

. [-1(,a.'( - - ~ t) .... ( ... t) {a.Jr.- - ,n t)ll cl 0 
-F, "; ""..,. "_; - u ,.. ; f' ~ ,..,_,., ,_ + )'\; 'J ''· -The expression for 9., is i.nterpre t ed physically by noting 

tha t the ter :n. involving VCR) represents t he current dens i ty 

of potential energy due to ~acr oscopically i mp erceptible ran­

do~ ~otion, whereas t he ter~ involving V~RJ is connected uith 

t he V1!ork: that has to be done for this rando;·1 •Jo ti on to occur. 

-I t is the ter<:1 Cfv Yvhich is dominant in liquids e 

-# * G.-radients v.ri th respect to r hav;,o been neglected in ( 21) 
S ince ~}1° c 1 1anti·+ie~ ~nvolvec~ D'~ ~ ~cl '~ 8 ~E~ rel~~i~velv ~ l; .. \..... 1 I..-- .l . .L v - ...::> -- • ' I C.i,. , .. ... h , c. ........ _,, ... (' lJ \ J 

slow f unctions of this variable. 
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I11Q)jIENTUB CO N'l'RIBUTION TO Tli_:Il; HEAT CUl:giENT DENSI'.rY 

The nomenturn contribution to the heat current density, 
--t - "' 'f" , vlill be evaluated by multi plying the f Fokker-Planck 

_,~ 

equation (16 ) by I TT/ rr and integrati~n,over momentum space, 

according to (20). However, t o ititerpret the rest of the 

terms of the integrated Fokker-Planck equat i on, we need the -relations in which ( 16) is multiplied by ~ and p and then 

integrated over momentum space. 

So let us first integrate (16 ) over momentu.n space . 

Here, as henceforth, we will frequently use Green's theorem 

in both configuration space and momentum space. Whenever 

Green's theor em is us ed , the integrated part will vanish, 

since the probability distribution functions fall off suf­

ficiently rapidly for large momenta or distances. Thus, 

only the first two terms of ( 16) remain unon integration 

over momentum space: 
d llJ 

_e_ + 
)t 

0. (22) 

This is the equation of continuity where the definitions 

(7) and (8) have been introduced. -
Hultiplication of (16) by £;. and integration over p 

yields the follow i ng equation: 

--F co "' p - 0 (23) 

/\,/'YYl 
The right hand side vanishes because subsequent to the use 

of Green's theorem the identity 
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(24) 

occurs. (See (7) and (8)). The second ter6 in (23) can be 

rewritten in terms of macroscopic variables so that an ex­-,,, . 

pression for F results. Consider t he following identity: 

f drlf- ~L!-a] ff(~fcip-f :P i:) rdi f c:;/_,,, 
. 7- '""1 :' 1- )~ ~ (25) 

f 
'P - (I) - fl) 

- dp(;;;;/-ffc/fiu<A/. 
Dy (7) and (8) t he last three terms can be combined . Further--~ore, (~) times the left hand side is approximated as the 

kinetic energy density in one degree of freedom; that is, 

~ r If }{- _,,, 
2 d¥L~-L; !-iJI = 

~ T f' ,,, ,,1_ 

~N 

The total kinetic energy density is then: 

Thus ( 25) becomes 

~Te''' -1._ 
~ Iv -

== r - p ::p 1-- (I} clp - - -
"71'\ "??\ 

which, when substituted into (23), yields 

Now, using (8) and then (22), 

(26) 

(27) 

(28 ) 

(29 ) 



-158-

The tero in the brackets in ( 31) , being the subs tantial deri-

va ti ·vc of -~he v e locity, is of second ore er in the velocj_ ty. 

")it?:.in this a:f.i!Jro)d.-v:.':::ion, (?. 9) beco:..'l es~ 

f ,, ) -= ~ ,,, ""~ [ R T p UJ] . 
DO\'J ready to ::-n: .. ltiply (16) by /rr/2. 1f 

(32 ) 

':10 a re into ;:~rate over 

Introducing: Lt1edia tely t'-ie clef ini ti on of 'f11. , ( 20) 

and also us ing Green's the ore~ Dhere the cradient with respect 

to no<-re"" t- 11°11 o c c1 n~ s i· n -i-'h..o ( lo' ) "·1e o') _j_ ·~; ·r1 • ... _ .1. !l J. lu ... ~... '- ~- _ ... ~ ' , , ·" t V L\.J... e 

2. CJ - f -, &. - z D U.1 ~ )t Cf u + cl p / TT 7T "»1 · ~ 1- -

( -:)_ '.l, ') 
J-..J I 

t~:1e oren again to tLe in-tecrals invol vint; t:1e crac' 5 .. ent i··1i th -res)ect to p and by coJ_lectin; terns: 

6 r -t 

N,,.,, 1 'f~ CJ4) 

_.. 
. ',. J'.'.-10re tJ..1e de{'l..nition of Cf11 o._n( ( 24 ) :12.vE; oce:.1 uscc Ll the 

lnst reduction* 1~ O\'.' in the left h::nc..~ s iC..e of ( --; -:i' the ...;_) I ? 

second ter~ is rewritten to avoi.d thQ unknovm grad:J.ent of 
-", 
/ , and in the third ter~ the 

- ,., 
expression for r found in 

(32) is substituted~ s o that: 
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a~·~- N2f -, = - - - Cf.- - '""" 
,.. 3JdC"·"- bf '0cfc1p(ijf'lflt'~ 

- [dp-f .E..'v.~/ -1.i. -1 
....,.,, R TT 1T ..,. (35) 

+- ;-'~.,, V',;[Hp"j- f dp [t ii( 'f + 2 Ji- if}{" 
Viie must now replace £ by 1f in all integrands by adding 

. """ 
. -and subtract i ng u. The last term is already in that form 

and can be evalua t ed through (26 ) and (27). 

'1:·-3j .ffti"' - ~;"[vofct;;/;r;'iTif-f"'+ 
.. rv:. .. i{} rd p /i!tu r~ !:(. V;t r";; ;;;;"iii: (36) 

-Id pf'" v. L vr.. 1n-1 J v - <;. f d ji rr'V;;., "'1"1 + 

+ :-; T '7ii c~ T f'' '1. 
Carrying out the differentiation indicated f or the last two 

(38) 

/\/'"""' 1. [ ( p (I) ( - (I) 11 
b r Lv• 'Ja. ;;J :;;f ii rr 1- .. J d P j! rr. v:. <:<. [.:2" n:JJ. 

I 

How let us drop second-order terms. Since 1 is small 
- I and since q.k is of order "f (see leading term in (38)), the 
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... 

, t 1~ • • d · 1 · 'lu cerms on 11e ri ght hand si e invo ving T are of the order 
_, - -f and can be ne gl ected . The term containing c..(·"\JR_ U. 

vanishes because it is a non- linear term, and because, under 

t h e condition of the problem only gradients i n the temper -

ature and none in the velocity are allowedo The last inte-

gral is also negligible because it involves the gradient of 
l 

a velocity, and because it is of order I' , as can be shown 

by mul t iplying the Fokker-Planck equation (16) by lT·[CV,. i1]rr Ti -and integrating over P The only remaining terms of (38) 

are thus: 

-

The last term will be evaluated with the aid of (16) . 

First let us rewrite (16), 

[ - j) 0) 'D '"] \7; · 1T 1- + It\ Vp- r -
• F__,"'' o '" . - T "1 . 1- = o. 

after ~~viding through by 
...!__ ~ D ,,, _!_ :p f) ,,, 

'f ~ - ! :;;;- . vi\ r -
(16a) 

I 

Since the last three terms have the coefficient r they give 
I 

a contribution of orderf& in (39), and so are negligible. 

1-; .l.- -Then multi plying ( 16a) by 1T 1T 1T and integrating over p , 
we have: 

J d :p if if I:;; 11. v, · Lff J-"~ ~ T v; ~ "] = o (40) 

By Green 1 s theorem this equals .~';--::· 

2 ( ~ - - -7 [ 1-.,, 0''1 - ~) d. FL' if/.,. i! 1:, ... rr rr rr · i -r h T 'Vp 'F = O,e 41) 
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Applying Green's theorem again, we get: 

By ( 26 ) and ( 27 ) , wB final l y ge t : 

(43) 

"} 
Substituting ( 43) into (39), and treating p as a constant 

when taking the gradient: 

s-k ~ T ,,, 
___ P_ '\?T - 4-h.'pl;T VT: - ,o'l)k ~TV'Tj44) 
6f 6f ~1 

Thus, by the definitions (3a) and (18), the momentum contri -

bution, ~" , to the coefficient of thermal conductivity is: 

(45) 
= 
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INTEHI/iOLECULAR F'OHCE CONTRilJU'.lIOI~ TO JEE EEAT 

cmrn.ErIT. DENSITY 

-In order to evaluate 9~ , as ( 21 ) shows, the relative 
--<•> 
• - <aJ 

current density, f,-u,f , has t o be expressed by means of 

the Fokker-Planck equation ( 17) in pair space, becaus e it 

involves the probabi l ity density in .pair space. The proce-

dure is thus quite s i milar to the one jus t completed. (17) 

is mul tiplied by var i ous powers of p and integrated over 

momentum space till the desired relative current density is 

ferreted out. The onl y difference i s that here six dimen-

sional spaces are dealt with. 

Consequently, :n.ul tiplica ti on of both sides of ( 17) by -7>, , follov1ed by integration over moI'.lentum space of both 

particles, yields: 
d -;- U) - - Ca) 

~ ~ _,. 't""7- r P, -1- _, - ~ o. -N 2 ""d t v ft, . ) 1 ;;:;;- p I Cl( P~ &( I ; 

-F <a, <2.1 
p 

· rr- -C:a.J 

+ '\/ R,. . * p, I cl p; d ,: : .... , .. , 1 -l2J f -C.a.) -C:a.J -(a.)[" - OJ r. . f [rr -t + h. T 'V;: J. 1 J;;: .,( p: = - J, . N 2 - ~~ 
..... ( - (.1.) ~ ,J 

where Green's theorem and (~ and (9) defining f and j, 11
·> 

(46) 

have been a pplied. As a simplification 

(47) 

has been assumed where j is the singlet frict i on constant. 

This ass1.J_r;i.p tion neglects the dependence of the friction 

f
<.:a.J 

tenso~ on the relative configuration of pairs and makes -it1 momentum independent. Since the situation is symrnetrical 



with res pect to tte two molecules, rnul tiplication by T: and 

integration over moDentum space leads to an identical equa-

tion except that the roles of molecules one and two are inter-

changed. The right hand side of (46) is the desired quantity. 

'I'o evaluate the left hand side in terms of known quanti t ies, 

(17) has also to be integrated over momentum space yielding 

the continuity equation in pair space: 

+ 
- -. (2) . (a.\ 

V'.t . A.. + \/".- . .A. • d' Ra. -, ~ 
0 (48) 

Furthernore, the second term on the left hand side of (46 ) 

- -is, as usual, obtained by multiplying (17) by P, J>, and inte-

grating over momentum space. By an argument similar to that 

following (16a), we can see that the contribution of the 

t erms on t he left hand side of (17) to the integral is of 
I 

order fll\ Therefore, only the right hand terms of (17) are 

significant. Multiplying and int egrating the right hand 

side and using Green's theorem once then results in: 

Expanding and applying Green's theorem again leads to 

( 50) 

In order to evaluate the third term of (46), we multiply the - -right hand side of ( 17) by p, r.& ' integrate over momentum 

space, and apply Green's theorem: 
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Rewriting ( 51) by using Green's theorem again, we obtain: 

;e <a.> r (i - Ca.J 

~ · LJfif.{' ot.;;,cf~ -

+ r~rff iU;: ("d iLI ;;; 

- l ':&J] c...<, :a + 
Na. ( 52) -- ! (&.)] 

l..l a. _d_1 - = 0 
N ... 

Taking the gradients of (50) and (52), in order to substitute 

--them into (46), and ne glecting the ju terms, since they are 

non-linear and involve the gradient of the velocity, yields: 

Since we are neglecting second order terms, the time deriva-

tive of the current density can also 
I 

is of order f its elf and is combined 

in front of t his term. 

-:-< ., 
be struck out because 1· 

I 
vvi th the J coefficient 

An equation similar to ( 53) exists for r10 lecule two. 

These two equations are the differential equations for the 

pair probability distribution function. Before they can be 

solved they must be expressed in ter:ms of a common f1mction 

which has been chosen here f or convenience as the correlation 

function defined in ( 11). Thus: 
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V'it. c~ T p ,., < R., R.; tJ] : 
'\7..: [!>. T p'"(R°;; t) f"'(i.;-t) ~01 ( R., R.; tJ] : 

f HJ (ii. j t) { 9 "' ( R, J ii.; t) \7 R; [ h T f "' ( R.) t J] + 

+ "T f ''YR.; tJ V,;, CJ CJ.) (ii . ., RJ.~ t) ~. 
Introducing (32) changes the above into 

( 54) 

Subs ti tut ion of t his into ( 53) , with the additional sirnpli--fication t hat the mean intermolecular force F is replaced by . -
its equilibrium value ('F/ , resul ts in : -
1
. (.\.) - C:L) 

- CA, f -' -

-P?."'f < F,)"' ~ ,., + ~ T Vi; 3 '» - ( f. )"' ;J ,.~. 
( 56) 

By (14 ) therefore: 

(2) 

· It is to be noted that fo , the equilibrium radial distri-

bution function, in t he above equation refers to the condi­
u., 

tions at molecule one. tj'o differs from the time dependent 
(a.) 1(.3.J 

distribution function <J by CJ , the perturbation ter!Il, which 

alone depends on time: 

( 58) 

(~) - -tj' , as has been pointed out, is a function of R, , R.,, , and 
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time; of course, it is also a f unction of temperature and 

pressure. Now, under t he existing temp er ature gradient , the -tempera tures at R. and R .. are different so that really : 

( 59) 

However, (58 ) necessitate s t he determination of a temperature 

at which the equilibrium radial distribution function is to 

be evaluated. The most natural choice is at the average 

temnera ture between TCR.J and T( R'.a.). * Since in liquids 'f caJ is 

a function of the relative distancel~lonly, we can write, if 

pressure is held constant throughout: 

Define 

and 

-

- - (60) T ('R,) -t "') T CR.a)) 1ca1 - - _ 

-<. T <J ( R_, T CR I) J T ( R~) _; t). 

T< R.) +TC R.J 
T- .z 

(61) 

(62) 

-When ta king the gradient of ?·'a> at R, we have to correct for 

the fact t hat the teMperature is not evaluated at that point , 

,., "'' r.,., - 1 'ta • * Defining I ~'J LR, T<1l.) +1 "leads to uns ymmetrical 
equations with res pect to molecules oneand two . The result­
ing differential equation for t he probability density is 
different but t he final result is, of course, t he same. 
See Appendix I . 



so that 

(63) 

Since 

- - -R = R~- 'R, _, 'V'- =- - V:- = v.-R R, R;a 
(64) 

the Taylor expansion keepinc only l inear terJJS cives 

vR. ~,.,= -v" 1;;L>c R.., T)- .~ c;' 0

: .i ~T [ ~3':&'] <65) 
2 ~T r. 

The other terrn on the right hand side of ( 57 ) ? Q'A'. ~ 'i~., [R.,TC i.il 
involves T( R,) only since it refery s to the conditions at 

~olecu le one. It is written non as the difference of two 

quantities, ns verifiable by a linear Taylor expansion, so 
(&) 

that 'J 
0 

is expressed in ter2:1s of the same tenperature through-

il~ ca> T out. Expanding ~1~ abou~ the temperature leads to 

~ t:·' [R.J TC [ lj = 

. UJ/;- -,1 ( 66 ) 
~'J·o' [ii._,.. T( .=>] + [ J-£7- ~o LR-:._ T (R, )JJ [T(t:)- T(l\.)l 

a T ( R~) - 'J .. 
T ( ... J - 'TtR,} =T(i=)_.p 

Similarly expanding r about T ( 'R,) yields 

T( t==) = T C'R.) + ~T· [R.-;]-+ 
(67) 

( - ) ' -T(~) -T 'R. = - l. V-T· R 
Thus 

(68) 

-~ [ .e...,.-1:··c n, T) - ± ( R. 'VT){ fr~ ~:·'rn, T >f] 
so that P 

J 
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~ ~ VT [ ~'!:·') +-
;) T P 

(69) 

h'Iul tiplying 

~ [1;"+ l°]vRf 43 f."'- ~ (R· vTJ[&~~:1n 
(69) out and cancelling the first term results · 

(70) 

where the 

is of second order, involving the product of the perturbation 
, 

and the temperature gradient. When the gradient is taken in 

the last term 
~u., - ca) 1, - £.c, p = 

of (70 ) , one term cancels out, so that 

ov'e.''-' t -1 LT - '7'. r(aJ rO) /)_ _ CJ.) 

j (T,) R .R fJ T CJ Vi ~ 0 1'• -

- i </o (R· VT) Vi ~1'. 

(71) 
I '.&\ .,. rd~ CaJJ ] 

~T P • 
An e1:actly similar equa tion-w holds in the space of molecule 

two except that some signs are reversed, due to (64): 
'":-£:a) - c a1 0 VJ '1.1 r 12 - Ua. f -= - _L e ~ T ~-/j l(a~ q ,,a,r-7 P~~ (a) 

jCT~) R (/ VR --...~ 1'· -
(72) 

- ~ CJ• ( R· ~T 'VR ~f· I o.J -. ) [ ~ J2.-._ <~.JI ] 
dT 'P · 

It would now be possible to evaluate the relative current 
tCa) 

density if the perturbation 1 were known. A differential 
'" 1' ( T,) a nd 1 (Ta.} differ by tern s of second order. 
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equation is obtained f or this quantity if we express the left 

hand side of (71) or (72) in terms of the radial distribution 

function. To accomplish this it is necessary to t ake the 

divergence of both s i des of (71) so t hat the continui ty~ 47) 

can be used t o convert the current dens i ty into a probability 

density. I t is more convenient to carry out this operation 

in t he six dimens i onal space. After taking the divergence and 

adding the two equations, ( 71) and (72), the l eft hand side 

contains: 

\7- • [~(I.) -o f'(L)l '7 [-;'"(3,1 ,-;_ 0 (.1.)1. 
R, 1. - (..(I j -t v R... . 1 ;a - ....... - I 

(73) 

(4r) changes this into 

- ~PO) 

<H - 'Vo: . .[u, f "1 - 9". -(ii. ,o ,.1 : 
~ [t "'( R.~ t) f> (I}( R:;, t) J 0 '( R; t)] 

(74) 

"CJ t 
_ p'IJriii.;tJ '7k .. [cA9,p"tR.;tJ 71<~J(R; tJ]-
- f ''> < -R,; t.J 'Vi., . [u ... '° ""'(Ri./ tJ CJ (~) < R. j t: J] .J 

where the definition of v'"' , ( 11), has been introduced. The 

continui ty equation ( 22 ) and (64 ) transform ( 74 ) to: 

- LJ,,, '''L--;J;y(~) - ~ (a) - ca.>7 
- ,- f d ~ .,. lA, · v r\: 1 +- L-< a. • V1R'a. ~ J -

(75) 

Since onl y the perturbation term depends on the time, and 

since a Taylor expansion can be made up to linear terms of 
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about C::. ( R,) 
J 

- ...... -
~ <R':.. l- l; ( 'R,) = n · "V~ u (76) 

-and since R, -is approximately equal to ~ , 

- -;; ( R~) - c ( R,) = R. ~r: ~ (77) 

(75) is transformed into: 

(78) 

This last term, involving the gradient of the velocity, is 

i mportant in the theory of the coefficient of viscosity. It 

is here zero since the physical conditions permit no velocity 

gradient. Finally by (71), (72), and (78) : 

'Vi\ . [- ( 1.'"- c;, f "') + ( i."'- Z<. p (•) J] = 

f CI) Cl.} dq'C~J c~ II.I <l.J f 
- !' .) f = 'V;. "' f~ e k T l -V';; :( ,., + 

+ 7 fC&J ~~ ~(&'/]. 

(79) 

This is the desired differential equation for the probability 

density expressed in terms of the perturbation. 

The co~plete solution of this equation leads to the mole-

cular interpretation of the relaxation time spectrum due to 

flow caused by a temperature gradient. For the determination 

of the coefficient of thermal conductivity it suffices to 
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consider the steady state solutions. The boundary conditions 

subject to which this equation is to be solved are derived 

from the conditions imposed on the excess probability current 

density in pair space. The vanishing of the pair probability 

current and its divergence at t he origin will certainly satisfy 

~ the requirements that there be no source or sinks of pairs. 

The pair probability current and its divergence should also 

vanish at infinity because of the physical interpretation of 
1<a> 

the current . The . particular solution of ('79) '7- = O 

satisfying these conditions can immediately be found by inspec-

tion. It obviously satisfies the boundary conditions that the -relative current density and its divergence vanish at R = 0 -and R .:: 00 • By ( 79), 

-4 R=O - (80) 

f(&) 

If <j = o, the first and second terms on the right hand side 

of (71) vanish, leaving: 

( 81) 

- ~ c•> - p <a) 0 
. At R = o, ~:a' vanishes exponentially so that 1 1 - <-1, == • 

(A.) 

, when <Jo = I , the boundary condition is also sat-

isfied. Thus, by (21), for a spherically symmetric potential, 
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Now let us use polar coordinates 

-B... = Co-? e 
R 

and choose the z axis along the direction of (il-r , 

-R · -v T =- V" T 'R <:..e-:> G> 

(83) 

(84) 

Then the integration in (82) over 'I cnn be carried out irm:Je-

diately, giving 21f , so that: 

-CJ.v = 

Tf"~Tf?-a. i- 11 (85) 

~ f VT d'R 1v-R ~]au' R~ A IG>~g~;ai] J.J~~Bc..c->,_e 
0 L d'R go dRt Vl JP 

0 

Integration over CJ gives 2/ 3. Therefore the intermolecular 

contribution to the coefficient of therr:ial conductivity which 
.J 

is the negative of the factor multi plying VT , becomes: 

(86) 
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EVALUATION OF THE COEFI<'ICIEHT OF THEHMAL COI'JDUCTIVITY 

The expression for ~~ can be changed into various forms 

more convenient for calculation purposes. By so transforming 

t h is equa tion it has been possible to express some of the 

terms in ~v by means of therr:1odynar:iic quantities . This is 

desirable since it decreases the reliance on the radial dis-

tribution function, which is not accurately known and which 

occurs in a rather s ensitive way in the integrals. 

We •Nri te 

a\&) A_ [ d~ cr:a' ] = 
q. d'R 2>T 'P 

l- I J. [ ~a> 1 I J U) [ d l:t) l 
<t~· t:· :Fri. a-;. 1' - r ";·r c1~ :;J Ii' J. 

(87) 

So (86) becomes by (87) and then by partial integration: 

(I) 

The first part of (89), ~v is evaluated through thermo-

dynar.'lic data as follows. 

Let V(R) be t he Lennard-Jones potential: 

(90) 



Writing X for 

,., 
'IL.,. becomes: 

\~ CIJ -
~v -

x = R 
'l J 
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(91) 

I 3 . 'I <aJ [.,. 7. 3 o'.J 
v ,o <jo - d.x -;; ~o 
~ 0 x • 

(92 ) 

Consider now the equation of sta te and the equation for the 

internal energy as two simultaneous linear equations in the 

t wo unknown integralse Tha t is, the equation of state v-vith 

the potential (90) beco~es: 

re-. 1 J.\I' U) 
d.}( 'X - Q == 

0 "'>( (!• 
(93) 

[
Qi. i:z. ca, f ~ & o,:: if"•k. T -1'] 1 :,·A'.Z. ~ 

- o d X x'• t/o + o d_ }( ')(--; ~ o I < II r _, 
and similarly the thermal equation of state becomes: 

(94) 

[ 

0. ~ 0) Oo 

rl..x ~ - r dx. 
o X ,. Jo 

AE 
... /p''' J 2 1f IV 

where AE' = E"- Fa is the difference be t ween the actual inter-

nal energy and that of the perfect gas. Solving for these 

two integrals in (93) and (94) and substituting the result 

into ( 92) yields~ 

( 95) 
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For a liquid 1' can be neglected compared to pAT in pk T-p , 

since fkT is the pressure that v1ould exist if there were no 

forces between the molecules. Carrying out the differentiation 

with respect to T yields 
cu . [ J 'R (~) 

~"' = 7 S' 2 - Cp -
2 7f Np" 

(96) 

_ ~ [ k ~ T( C>v) ] 
Tr f>i', + N 3T r J 

where c;~> is defined as the heat capacity of the liquid at 

constant pressure. Introduc i ng the thermal expansion coef-

f · · t I - _!_ ( )v} , t · J.cien o- v )T/p , one oo ains 

(97) 

By then adding on the remainder of the intermolecular contri~ 

bution and also the kinetic contribution, (45), the thermal 

conductivity coefficient is evaluated by the following equa-

ti on: 

~ k T ~ ( 1 <~, J ::' ~ f v LR - .i s 2 'R - c p - A f b) + I 6 ( 'R + 'RT b )J -

(98) 
'''.i. Cb 

- lT "T P [ ot'R rR,,. dv - 'RJ vl d ~ tt"<a., [ -;;<t~L'J 
3 'f 0 L' c1 R J o( 'R ~ T 

'P. 

\I) 

In the first term of (98), ~ , we introduce 

because data 2.re usually given in terms of H, the enthalpy, 
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so t hat 

With the follo wing data<6,7) 

~ ,., = 

T = 89°K 

P"' lo 2 atm 

AH= - 1543 cal/mole 

/, ; • 0042 I °K 

v: 28.96 cc. 

(~) 

Cp == 10 .10 cal/ 0 (! 

cal./ cn . sec. oK 

(100) 

(101 ) 

If the repulsive exponent were 11.4 in ( 90) instead of 12, 
'\..# ,,, 

~ becones equal to 

~U): 
. ,,,,.. 

/ . .!>- .s- x /0 

f 
(102) 

For t he integr als in ( 98 ) it is necessary to know the radial 

distribution function and its deri va ti ves 1.vi t h respect to 

distance and te:-;1perature. 'l'he first calculations were per-

formed with a reasonable analytic approxima tion to the exper-

i Yr1ental radial distribution function fom1d useful in the 

calculation for the coefficient of viscosity(l). 

= I 

(103) 
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v1here Q, = 4. 5 A0 and t - 14 

a'tl\ - 3.554 and s = 7.007 

The para~eters Q, and f were adjusted to fit the first peak 

of t~e experi~ental data of Eisenstein and Gingrich for the 

radial distribution function CB) and v1ere found to be re la ti vely 

temperature insensitive. The other two parameters q~ and s were 

t hen de ternined so that this radial distribution function, 

when substituted into the theoretical expression for the 

equation of state and t he internal energy, reproduced the 

experimental data. Now to find the temperature derivative of 

this radial distribution fm1ction in accordance with the above 

findint~s, it is as sumed that only ct.._ and S are temperature-

dependGnt. 'l'o evaluate this dependence the above procedur8 

is repeated, using the temperature derivatives of the expres-

sions for the equation of state and internal energy. That is, 

the tv10 paracr.eters(~7an~;::J, are so adjusted by solving two 

linear sir.ml taneous equations that they are consistent with 

the experi~ental data for the heat capacity and the coupress-

ibility. The two derivatives proved to be equal to: 

(104) 

It is then i;ossible by direct substitution to get 
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'i'hus 

(106) 

It re:'1ains to r; ive a nu1'1erical value for the friction constant 

whi ch is deteL,: ined fro::-J the very ceneral for~n.ula ( 5) 

(107) 

One crude way to evaluate t his expression is to approximate f 

by 

(108 ) 

v;here the integration over s has been replaced by e ' t hus 

defining e as the corre l a tion time. Since this correlation 

""" time is of the order of ::nagni tude of the relaxation time, f , 
(108) becomes upon substitution: 

F{t) = -'7 Vw 
1. -

'f = f!-;[fvv,.,.vv.,e-11 v..v1aj~ 

ily Gre:n~s ~2:L\7V.,. V' e-(JV.,ol Q] · 
r - f-~ [4-tr ,,,, r Oo 

- T f3 e )
0 

R'[v'v] ~:·1 clRJ 
::: 

,_._ 7i" ,,, ~ 

I 1/ p ~ i [ I .... \/ ~ 0\ 2. o( v (~J 
3 o R JR;L + R --aR.] 'Jo ol'R. 

(109) 

(110) 

The radial distribution function (103) gave as a preliminary 

estimate for t his friction constant: 
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(111) 

so that 

-S- ed./ 
}JC = 1. 3 6 )t / o / ?"""· ~. 0 c . (112) 

Due to the experimental difficulties, no measurement has 

been carried out for this quantity, so it is only possible by 

various analocies to sur~ise whether t~is value is correct at 

least in the order of magnitude. One such applicable analogy 

is the principle of corresponding states which hold s for any 

two parame ter inte~molecular potential. As has been pointed 

out in part I of this thesis, the two non-dimensional para-

~eters significant to the Lennard-Jones potential (90) are 

-~ and (5 z , where ~ is v 
some characteristic distance of the 

potential . Fluids possessinz this sane form of the potential 
a.3 

have the sa1:1e properties when V andf f a~e the same. For 

the case at hand , t he only monatomic liquid for which the 

coeffic:Lent of ther::-:ial co.nducti vi ty is expP,rinentally known 

is helium I, for which, unfortunately, quantllJ:i effects are 

not negligible. The available value(9) at 3.3 °K is 6 x 10 5 

c.r;.s. It is al:'lost certain that quantufl effects make this 

value too large since helium II at sti11 lower te2-'.1peratures 

has a.'.1 enor·:,10usly larger conductivity. Any1v-a~1 , if it :is 

as sL:1.:1cd tr~a t tlw conduct::i_ vi ty of argon is the calcula tec.1 

value, the principle of corresponding states gives as the 
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_r::' 
conductivity of helirnn I 1.6 x 10 .J c.g.s. at 4.) °K. This 

is in reas onable agree:ricnt in vier! of the sign of the qua.ntrnn 

effects and the higher corresponding state temperature . In 

order to show what the applica tion of the principle of corres-

ponding states would yi e ld in the case of the viscosity, ~IBre 

alJ. necessary experimental values are known, the f ollowing 

cor.1parison was carried out starting vd t h the experimental 

viscosity of argon at 89° K. At 4.5 °K the calculated viscos-

ity of He is .25 x lo-3 instead of .11 x lo-3 po ises. Again 

quantrn11 effects could cnuse this discrepancy, but in any case 

the significance of t he order of magnitude of such a calcu-

l at ion is demonstrated. It is interesting to note that the 

t herLlal conductivity of ~ost liquids is between lo-3 and 10-4 

and that the rare gas liqui ds have a sma ller value by a factor 

of 10. This nay not be surprising since the rare gase s show 

t he same tendency compared to other gases . 

To eliminate the uncertainty in the friction constant it 

is possible to r1ake an experinental comparison without knowing 

its value since the product of the coefficient of viscosity 

and thermal conductivity is vary nearly independent of J . 
If the small momentum contribution to the viscosity is neglec­

t ed, the viscosity is proport iona l to r while the t hermal 

conductivity, as has been seen, is inversely proportional to 

the friction constant. 'i'hus for heli ur:1 I we v1ould i:;et: 

-7 

= '-t- >< I D c. f . .s. 
(113) 
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where, as is necessary for consistency, the same radial distri-

bution function has been used for the evaluation of both coef-

ficients. 

The uncertainty in the distribution function and therefore 

in t he two integrals (105) evaluated with it might be quite 

large. It is interesting to note that if t hese two integrals 

were neglected entirely, that is if they proved to be negli-
'• ,,, 

gibly small co;;1pared to the ~ term 5 the coefficient of heat 
_i::' 

conduct i vity of argon would be equal to 3.1 x 10 ,J Cag.s . and 

therefore the one for helium I VJOUld be 3.7 ~r io-5 c.g.s., in ·" 

better agreement with experinent. 
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APFEEDIX I 

I f ·we define 

(114) 

equation ( 63 ) and therefore ( 6 5) rer:min unaltered. Hovwver 

t here is then no need to expand ~ ?oca.J( R,J-, (R ,)) about 

T ( ~,) , tht ter1pera ture fo r nolecul e one _, as v;as prev:Lously 

done. ':;_'he ref ore v.re can i r'1!_'1edia tely write down the current 

density in pair space projected on the ]-space of molecule 

one by substitutinc (65) i n to ( 57 ) 
-: \:&.) - P·J 1. - t-4,f =-

( 115) 
(I) UJ 

= - Pr"' k Tf "V', i'~ ('~~/.'"• ~ \7T{.ff1J. 
. 

~or the corresponding equation for ,.,., 01 e c1' 1 e t"10 n o;:.1ever 
l·! - , -"· - \ ; ' •. l .. ' 

(l.)c- - (- l) it is nee es sa17 t ta t ~ ?• 'R_, \ R~ be expanded about 

T ( R,) , so that analocously to ( 66) 

~ ~ ~;~, ( RJ T (Ra..)) == 
(116) 

'\/'ii [ ~ 1·u'( R, TCR, l)- ( R· ~TJ[;fr ~9:" (R, T Cii, ilJP] . 



(79) ~ill now read 
'" ".I f , ( 'ii.} 

"J (lj 'dp''a.' _ 7.-· r e. p_ ~ T - 2 ~-; 7 + 
-ff Jt - fal j 

(a~ s] ( 118) 
IO.J tJ~~ (a.) (J (~} '\l;.., ( R. 'VT J (d~~ Ji 

+ 2? \7;.---t7?" r,. ~ ~T P • 
I (2J 

'.L'he perturbation ? arisin~: frDn departures of equili-

briuB thus satisfies the partial different ial equation 

( 119) 

The solution sati sfyinB the boundary condition is no1!'! of the 

following for m: 

( 120) 

Il.p c-J.?()\) l
0

S C'" l O-c,-l--i ·'- 11tcci i•11to (l'A ) 8(1'''°' 0-~QYl (Cll) I~Q<''·•1 ~- c .._ ~ ..:) L ... U ~ V .. t... L1 \,.. .. _ _ "- ..L Li. 9 . V_c."' L 1- 1...:. (; ....._ ~ -.. ..:J l ._ v.,:;, o 
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GLOSS ~U:l.¥. 

Gl:: distance occurring in the Len ... nard-Jones potential ( 90). 

a_,q,:: constants occurring in an er:lp irical radial distr ibution 
function (103). 

b • coefficient of t hernal expa::i.sion. 

c,~ molar heat ca pacity at constant pressure. 

r ~ internal enerey density, also, t hermodynami c internal 
energy. 

0

( > = specifies equi1ibriun average of a quantity. 
0(f (':: equilibrium avera e;e force on molecule a in a set of n 

c./ molecules. - ("'") E' = perturbation f orce on a molecule a in a set of n mole-
- cules. 
-E'"", 

A total force acting on n olecule a in a set of n molecules. 

total force in the configuration space of n molecules. 

probability density in phase space of N molecules. 
J) (a,) 

time averaged ? • 

time avera ged probability density in the phase space of 
n molecules in a system of N molecules. 

~().) • 1 + • n , • Q =Pair corre_avion runction. 

ao' . qo = equilibrium radial distribution function. 

"a' t b t · t the e ui 1 ibriU"'J radial distribution 4 = pe r ur a ion o _q _ 1: 

I ftmction .. 

H :: enthalpy. -
j·t~, particle current density in the configuration space of 

- n molecules~ 
-:- ( ).) A particle current density in pair space projected on the 
1~ = singlet s pa ce of molecule a. 

k. = Boltzmann constant. 

"""" = mass,. 

IV= total nllj}ber of ~olecules. 



l"t\':' -1' = 

f :: 

- -
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subset of total nmnber of mole cules. 

Elomentum vector in N-n dimensional phase space. 

momentum vector in n - dimensional phase space - or singlet 
space. 

7, >fa :: the 2 momenta in 12-dimensional phase spaceo 

f : -Q = -Cf = 
-Cf ~ -q.14 = 

- -

pressure. 

position vector in N-n dimens ional phase space. 

position vector in n-dimensional phase space. 

hea t current densi t y. 

heat current density due to transport of thermal kinetic 
energy. 

heat current densi t y due to mole cular interactions. 

gas constant 

R 'R,":: relative coordinate of ::1olecules in a pair. , 
~. B :: the two positions in 12-dimensional phase space. , "~ 

,,.-= the positions in singlet conf i gun1 ti on space. 

S ~ constant occurring in an enp irical radial distribution 
function (103). 

T-= absolute temperature . 

t:: tioe. 

t : constant occurring in an e~pirical r adial distribution 
function ( 103). 

u : particle velocity. 

\/: pa ir i n teraction potential. 

Vw:: total intermolecular poten tial of N molecules. 

v ... molar volume. 

v..;< ... : potential of mean force in t he confi gu.r2tion space of 
n-molecules . 

-t 

'>( : external force per unit volune. 

(3 ::: l / kT 
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f:: energy occurring in the Len nard-Jones potential (90). 

"t. = coefficient of viscosity. 

~ = correlation time. 

e,) <f : angles in polar coordinates. 

)( = coefficient of thermal conductivity. 

~K = kinetic part of the coefficient of thermal conductivity. 

}I: v = intersolecular part of the coefficient of thermal c:ionduc­
tivi ty. 

~:' = a part of the intermolecular part of the coefficient of 
thermal conductivity as defined by (92). 

~"' .. a part of the coefficient of thermal conductivity as 
defined by ( 100). 

} -= friction constant. 

f <.i.> = friction tensor. 
,.... 
-c.~J 

'f_ : friction tensor in pair space projected on the singlet 
)._ space of molecule a. · ,_ -1T = 11~ - ~ 
(J :: mass density 

'""' f .., number density in the configuration space of n molecules. 

v = symmetric stress tensor. -
'T -- time srrioothing inter·val. 
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PROPOS rr I OI JS 

1. I pro)'.)ose t hnt a modol tLeory f or the viscosities 
of pure liquids be: 

a ) tAsted by trying to corre l ate the viscosity and 
i ., 1 ' • ' ., •] • t n -I .J.. • • n:ro ro_~r·ci c s ·c1.'l rn .. l - ~.r 01 ce vra s l lJ. ca te s; 

b) usecl to o.ss(;;ss th(0 a;~; §:rer;at io:n sta te of -:1olecl:lo.r 
s )eC~Les in t:w licp.dc~ ; 

c) eztonded j_nto n )e.r 2, cJ1or scl'.0:1e to predict vis co­
sities. 

2. I p::' opose t ha t Cl u odel t heory for t~10 viscosity of 
liquid E1iJ~tures be: 

a) test ed by tryi~g to correla te t he concen tration­
depe ndence of t he viscosity yJi t~1 tl:a t of the t heruodynarr1ic 
f1·:nctions; 

b) used to define a new idea l norn for the viscosity 
of a liquid mi~ture; 

c) used to test t he assump tion that only binary inter­
actions are significant in t h e liqu id. 

~°"t....,,;.,.~ 
3. '.I'he formula for the ~.c~i-<:: viscosi tY. ["l1, in tern s 

of the solecular weight ~ and the constant s K ~nd ~ , 
c.nt] =I< M°' U"eC -!or ""..,l'n1e•~ solution"' ·,co,,v ".:ll co ap-olv ' .0 .. __ yv ~:- ·"'·' ~..L. - ... ....> J l, ... c;4..v c; ___ ,;,:.i • J.: u 

to s one substances of' low t1olecr1lar weicht* 

4e 7he Monte Carlo method can be used to evaluate the 
r adia l distr H ;u tion function of a hard s phere flnid and of 
ha rd sphere fluid mi x t u res. I . '3 . !.I . cquiprnent c an be used for 
the calcr·la tions, a:nd the res~ :: l ts ,nay be co::nnred 1ni t h those 
of t h is the sis~ 

5. ':Lhe genc r Gl inte gral equation for t he radial dis­
tribution f1mction of' a t1"!0 coi'.lPonent fluid mixt u re should 
to set up and solved in the hard sphere approxi~ation. The se 
radial distr:Lbution functions can then be used to study the 
effect of r-1olecuJ.ar size on t h e t hermodyna:nic f unctions of 
fluid :1ixtures. 

6. An electrical analos computer may be used to eval-
1,:ate the t hr eE:-dimensiorw.l Isj_nc ;:_w clel of ferror'.1agnetisrn. 
'1.'his n ethod c an ta ke j_nto a~ count interaction s betvmen other 
t:1an nearest ne:L r;hbors. 

7. An approximat e order-d i sorder t reatment oi a crystal­
line isotonic u i x t u re of ~ and 3 sunnorts t~e conclus ion that 
the e qui li~riru 1 forD ( Tiith res pec t ~; puro A and oure B) is 
a superlattice a t ooK. 
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8. 'I'he . 11 h~a t,. ;_1o~e 11 o~ , a component in. a. r:ml ~icouponent 
·ux-cure :·:w.y oe cLer ir1ect as ci:e molc)cular Yvoight tE'1es the 
ratio of the paTtial enthalpy of the conponent to that of 
the reference com:~') onent. This 11 heat ~.1ole 11 is useful in 
multicomponent distillation cal culations to compensate appro­
ximately for the heat balance. ihis definition of the 
"heat :nole" increnses the accuracy of the calculations but 
none of the tedium usually associated 1ni th a hea t balance 
calculation is involved. 

90 I propose that the radial distribution functions in 
+-' • . t c ·t b 1 o· "" 1 . . . :: . ' ... • . ln + '~ --~ 1., "" ,.;i • ' 1 r ( _,_ '· .• wLe me a.:o 8. e bc<S- lQUlO . .rei~, .LO.l1 0 vl \ e 1,1,0.88 1. l lB.t,l'cL1l wlllS 
thesis) might be used in a theory of cavita t ion. 

10. A critical examination of the Jones-Ray controversy, 
which is con~erned with the chance of surface tension with 
concentration of an electrolyte, yields the conclusion that 
fa El ts can be found for all the rnanv ex-olanations exce·,Jt 
Langmuir' s. ( Langr;iuir, S cienc12 88 ~ u 4 JO~ l 93E3 * ) -




