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ABSTRACT

4 Tluid consisting of molecules interacting with the
Lennard-Jones intermolecular potential but with rigid cores
is treated by the Kirkwood and the Born-Green statistical-
mechanical formulations. The integral equation for the
radial distribution function of this fluvid is solved numeri-
cally by a series expansion of all temperatureAdependent
gquantities in the reciprocal of the temperature. The first
three terms of this series for the radial distribution func-
tion have been evaluated over a wide range of densities for
the Born-Green integral equation.

The distribution functions so obtained have been used
to calculate the equation of state, the excess internal
energy, and the excess entropy of‘this fluid. The two phase
region of this equation of state is determined. or reason-
able values of the parameters in the potential, these calcu-
lated quantities agree within 10% to 20% with experimental
data available for argon.

At one density a comparison between the Kirkwood and
the Born-Green theories shows that the two formulations agree
closely.

S,

4 molecular theory of the coefl

L=}

icient of heat conduc-
tivity of nmonatomic liguids is developed on the basis of the
general theory of transport processes presented by Kirkwood
in 1946. The coefficient is expressed in terms of the inter-
molecular force and the equilibrium radial distribution func-

tion. Substituting for these,respectively, the Lennard-Jones



potential and a reasonable analytic approximation to the
experimental radial distribution function, the product of the
thernal conductivity and the friction constant has been eval-
uatedy for liquid argon at 89°K. With a prelininarv estimate
of the friction conssant, the wvalue of The coeificient of

thernal conductivity is then given.
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THE RADIAL DISTRIGUTION FUHCYION 4RD TEE THERIIODYNALIIC

PROPERTI®ES O LICNATOIIIC LIQUIDS

Introduction

4lthough statistical nechanics has had considerable
success in the interpretation of properties of rarefied
gases and of crystalline solids, practical difficulties have
retarded 1ts application to dense gases and to liquids.
Theorles for the condensed fluid phase have recently been

(2)
’

developed by Kirkwood(l), Born and Green Hayer(3), and

Yvon(4) in almost equivalent form. In the first part of
this thesis we will give a brief resume' of these statisti-
cal mechanical treatments of fluids, and subsequently apply
the theory to evaluate the thermodynanic functions of the
condensed state,

These methods assume that classical statistical mech-
anics is competent to describe the dependence of the thermo-
dynamic functions of fluids upon intermolecular force. This
assumption is justified when certain conditions involving
masses, moments of inertia, the intermolecular potential,
and temperature are satisfied. Furthernore, early in the
derivation of the theory, we.restrict ourselves to fluids
compesed of molecules with a potential of intermolecular force

depending only on the relative distance, Rik, of molecular

pairs,

- V. = % \/(R»L) : (1)

=



The restriction of the potential to the form of equation
(1) implies that the molecules of the fluid are spherical.
The fluids, then, with which experimental comparisons are
Justified are the single-component condensed rare-gases, and
other liquids satisfying the law of corresponding states, at
temperatures high enough so that quantum effects can be ne-
glected., Liguid metals and polar liquids can not be treated
by this theory since their potentials of intermolecular force
are not adequately represented by (1).

Under the above restrictions we will evaluate the im-
portant radial distribution function, g(R!), which characterizes
the liquid structure, as a solution to an integral equation.
g(R) Is so defined that g; g(R) is the average local mole~-
cular density at a distance R from a specified molecule in
a system of N molecules occupying a volume v. Kirkwood(l)
has called attention to the close relation which exists be-
tween the distribution function and the potential of average
force.

-W(L)(R)
g (R)- e /it (2)

3 L €2 ; : ;
where W (R) is the potential of mean force acting on the
molecular pair, the resultant of their direct interaction

and the average interaction with the other (li-2) molecules

he temnerature and k is the Zoltzmann

P

of the liguid., T is



By these theories(l92)9 th

| e s T 3 3
a liquid can be expressed in

function and the potential of intermolecular force, V(R}).

2 (3)

i i)

These thermodynanic functions may be calculated when the
radial distribution function has been evaluated from the
integral equation which determines it. The major problem
resolved in the first part of this thesis is the numerical
solution of this equation for the radial distribution func-
tion over a wide range of density and temperature.

For fhe noble gas fluids the potential of intermolecu-

lar force

A B
VvV (R) = re | R° (5)

due to Len_ard—Jones(5> is generally substituted in the inte-

gral equation as well as in (3) and (4). A and B are con-

tants characteristic of the substance. The attractive part

A

of the interaction energy is taken to be proportional to
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R-6 i rdance wit

in accordance with the Heitler-Londen theory of inter-
molecular force. ¥From a comparison between theoretical and
experimental values of the second virial coefficient, the
value of the repulsive power exponent,as well as 4 and B,
can be determined for each substance.

The non-equilibrium properties of the fluid state may
also be expressed in terms of the equilibrium radial distri-
bution function and the potential of intermolecular iorce(6>

The general theory of transport processes has already been

m

applied to the coefficient of viscosity by Kirkwood, Buff,
and Green(7), and in the second part of this thesis, the
detailed derivation of the coefficient of thermal conductivity
is developed.

In addition to the above applications of the radial dis-
tribvution function, it is also of particulsr interest since
it can be determined experimentally from the angular distri-
bution of x-ray scattering. If x-rays of wave length A are
scattered by an array of atoms which are separated by distances
Rik, the intensity of radiation, I, at the scattering angle

26 is given by(S)a

- ZE A

YT 2w ©
where 1? is the atomic structure factor and S= A o

If we assume a continuous distribution of a single kind of

atom, I reduces to:

T /\/%7‘[/ +f°°:.«-n' R* ;A‘/“(g(R)d) """S“;R dR o




N1

The radial distribution function can then be calculated
from the observed intensities by a Fourier integral trans-

formation of (7):
N _ L. frx ,
v[?(R) q:z.n.:k o(X/—:[’—,) S%Rs O(S' (8)

The basic theorv was develoned by Zernicke and Prins(g)
] I By 9

AT 8 k) © ] .
and Debve and mencke(u), and has been applied extensively

b} °

by Varre and Eilsenstein anc Gingrich(ll> to many liquids.

Of particular interest in the present work dre the x-ray

: . 5 1 ; 5 @
scattering data available for argon(l“>, whichare used in
the comparison with the theoretically determined radial dis-

tribution function.
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‘Derivation of the Equations for the Radial Distribution

Function

The radial distribution function is calculable from a

system of Integro~differential equations cdeveloped in equi-

e

, ] . 3 33 :
valent form by ilzu“ood(*>, Born and Qreen( =y uqyer<3),
(4/

4

and Yvon he starting point in all these derivations
is the canonical ensemble of Gibbs, which gives an expres-
: () P,
9 o ~
sion for the equilibrium probability ueqoltv9%7 (R' R”JP’ {

in phase space for a system of N molecules:

#cm( = ¢[A-HE-R., 5P

Ru, Py Pa) = € J (9)
where R' is the distance vector from some origin to particle

!
tum of particle 1, and (3 " kT.+ Also

o)

o
1, P 1s the mome
H i1s the classical Hamiltonian, and A 1s the normalization

constant, which is determined so that

]lztw)(i'_...ﬁw 7’,”»‘P’~)1l£ AR, d7 = 1. £1m]

)
)

A 1s furthermore identified with the Helmholtz free energy.
Integration over momentum space alfter substitution of the

Hamiltonian
v P2
— — R
H=\V(R,-Rd + Z T (11)

)
results in the equilibrium probability'density5’P (R‘ ?"),

in configuration space.



PR R . o FLAS V(R AR (12)
i

V(R R : : ; .
where R, Ru) is the intermolecular potential

and "™ i 1is the nass of particle k.A is the new normal

©

4
g -
zation constant. The probability density ’Pw,(rR-”' R...)
of n molecules in a svstem of I molecules is 1n the sub-
space of the entire configuration space and is obtained by

integration over the space of Il-n molecules,

KPW(""“'"@«)’f'"fep[x‘v‘m('i'“?")]ﬁdﬁ.,

(13
N> R:wer

L7 i

As a special case of this, integration over N-2 particles
25 N iy
vields the important probability density P (R',R*) in

the configuration space of molecul

Q9
H
Y3
Q3
}._
=
w
B
ct
®)
P
=
(%]
5
ct
=
@

ralial A4 ea 3 5 T C S .
radial distribution function is simply related

)
VR R [ s[A- v (R..R.,)] -
= |... v a8 |
Ry, K, e TR, (14)
NM-2 kR:3 ’
The exact nunerical value of this multiple integral can not
be directly computed by present nethods except for the very

(M7 =
simple case of the perfect gas where \/ (R.’RN) is

indepencdent of the distances. In all other cases integration

A O PG o S 5 i | 1 :

over the coordinates of a large number of nolecules has to
o %

Toon  mayaa sy ek e S3) hea alvdwen et e e 1

ve carriet ouUt. B yer nas snowil Lnat & variatlonsg



-8

derivations a particular case of the variation of the poten-
tial is taken.
A. Derivation of Born-Green System of Intepgral Equations

The Born-Green equation, which is to be numerically

solved here, utilizes a potential of the form:

V(w)(ﬁ‘.._. ﬁv) = Z:. \/(E‘h)

o
.
=/

The particular variation is the gradient with respect t

the position of any molecule in the set of n molecules.

This nmolecule is arbitrarily chosen here as molecule one.

Thus

=z PT(R R.) - ﬁf /[v\/( 9 plA- VW]T‘AR

SM‘I

(16)
A1) [V (R)]P (R, Re) -

—p(/V ) [ [V (R P (Ro- R d Ry

The last equality follows since the gradient of the poten-

tial can be broken up into two parts,.

GV (R = Z G VR s 2 G VIR

kR:»et

Upon substitution of this expression, the first term of tke

gradient of the potential can be taken outside of the

integral. The sum over k gives n-1 identical terms, so
that k can be arbitrarily called 2. The second term of



=0=

the gradient of the potential, when subs

c+

n1so

sy}

ituted, can
be reduced as a result of the fact that for any k the inte-
gral is the same. k i1s here arbltrarily called 3.

The solution of this set of integro-differential equa-
tions (16) would probably be as difficult as the evaluation
of the integral itself, if it were not easier to introduce
an approximation in this new forrulation. The root of the
difficulty in the solution of the set of equation (16) is
that the nth equation depends on the (ns1)st Thus, to

¢2)

3)
solve LOT’P a knowledge ofT’ is essentlial, and in this

. b - . . c3)

fashion a whole chaln is set up. This can be broken ir P
) ‘ . P(Z)

could somehow be related to by an additional expression.

Substitution of such an expression would result in an

?cz) . .
integro-differential expression involving only. Kirkwood's
superposition approximation accomplishes precisely that.
Tts physical foundation as well as its name rests essentially
on the proposition that the probability densities in triplet
space are independent., They can therefore be expressed in
terms of probability densiules in pair space. A more precilse
statement can be given if the following theorem 1s recalled:
('a) e
,)("‘) — —=p _ﬁw "?a)

LIRS (.\
[ ( ,Rl Rm ) = e m (1O>

vV o)

(») . .
where\h/ is the potential of mean force acting on the systen

> 3

of n molecules and v is the volume of the svstem. The approxi-

mation can now be stated in the form that the mean force

QJ



~10=

ting on molecule three due to molecule one

1al to the sum of The mean forces if molecules

h present alone. Or, in terms of proba-

one and two were each pi

[}

“’(ﬁ R.) °“’(§.,ﬁ‘) TURE)

simultaneous

—p = -0
triple of molecules 1, 2, and 3 atR, RarRs

This means that the probability density of

occurrence cf a

relative to the probability density that the molecules be

singly at those positions, is just the relative probability

density of independent occurrence of each of the three pairs

involved.

For convenience, we introduce the number density and

function. The number density differs

the radial distribution
from the probability density by the indistinguishability of

the particles, and is therefore given by:

A Vg
)= W-=)! (Rt R“)- (20)

21

2 (R,

The advantage of introducing this definition into (16)

that the (II-n) factor is removed, if the approximation is

LIilda v

o~ o » s 3 ° ~ °
= I The radial distribution function or

A : R R : .
correlation function, § by MR is related to the

number density through the definition:
()

pRLR) g (R R)
PR P (R) 7 (R, J (21)




- — ),

—p
where Ri = R,=Ra . FYor a fluid, by definition, f’ (R)
is considered to be uniform and egual to the reciprocal of

the volume per molecule.

e = v (22)

T'he restriction imposed by this homogeneous singlet density

o

!

guite obviously leaves the crystalline state out of the con-
sideration of this theory. The uniform singlet density also
has an effect on the two-phase region between the gas and
liquid states where the equilibrium density 1s not uniform.
The solutions of the equation under the above restraint can
only be interpreted as corresponding to the uniform metastable
density of the supersaturated vapor or the superheated liquid.
The statement of the superposition approximation in
terms of forces immediately follows, now,since, by (18), we

can write (19) as:

B3Y/s B o (33723 = s u)(.._.’
W (R, R R) = W RRS) + WR, Ry) oW ARR ) 23)
Taking the gradients of (23) results in

V.\'\/‘”(:R’, ﬁ'{) ﬁ;) - E\'\/(‘)(ﬁu ﬁz)'l'v"".\ﬁ/‘s)(ﬁs)—ﬁ-?). (24)

It is guite evident how an equivalent superpositlion

approximation could be written in a general n-dimensicnal



.,
configuration space. It 1s also reasonable from the physical

nature of the asproximstion that, the higher the dimensionality

D

of the space in which the approximation is used, the more
closely the resulting probability density corresponds to the
correct one. In connection with this, it is interesting to

37 T T Q i | Y, 1(12) {3 T _-_% sl
note that Kirkwood was able to show that the use of super-

position in singlet space leads to the simple free volume

rvy of liguids.

{—h

We restrict our considerations further to an isotropic

homogeneous liquid, that is to the bulk of a fluid. This
) o . 2y o .
simplification makes 9» a function only of the relative

distance between molecular pairs, and independent of the abso-

lute location and direction in the fluid:

(2)

g =9 (R (25)

Utilization in (16), written in pailr space, of the superpo-
sition approximation and the definitions given by (20) and

(21) yields:

Ve [£og g (R fVRI] =
“ﬂﬁwﬂj5:\/(R.;ﬂgu)(’?-;)g(”(st) Aﬁ,

Bguation (16) in singlet space becones:

/[Vﬁ',\/(R.; )]gm(ﬂ'z) AR = O, tm)



=} B
X L ; . . o &
ce o is a constant. For convenience (27) is

from (26), so that:

Vh..[:ﬁ‘?/?“’(ﬂ,,) FBV(R)] = (28)
- AP TR V(Rs)]g Y (Ra) /_}“’(?u) l]AR,.

A great number of mathematical operatior now performed

g,
©

on (28) including a ch

nge to bipolar coordinates. The de-
talls of these are given in Appendix A. The final result.

is the following equation:
Log g (R) = ~V(R) + / R (R-+) r[gtni]dy,

where12u. has been called R, and where the kernel of the

integral equation,K(#), is given by:

R(2)=/‘Ll(>"-i") d(g)y} g(s)dy (30)

B.  Derivation of Kirkwood's System of Integral Equations

Kirkwood, on the other hand, proceeds from a potential

of the form

VIR E R R Z REV(RG),

21

(31)
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-2 integ of
ive integrsl is
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n. The only exception 1s that the term
st first be eliminated. 11s is accomplished

obtained from (33)
to the singlet

dYAL(E)
o= 37

- AV-D[V(R ) PUER,

2

space. That is,

L
v

(35)
R)dR,

]
ial to °) .
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| assumed influences the solution for g(x). The

one adonted guite for the Tluids under consideration
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no
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where n 1s an exponent in the neighborhood of 12, The expon-
ent 6 in the attractive part of the pvotential is well esta-
blished gquantuam mechanicelly. IHowever, there exists some
uncertainty on how to take into account the repulsion of the
atoms. erefore n is empirically fixed, as are € and &, to

Lae

method o©

¥(x)
Y, (x)
Xﬂx)

¥olx) &+ ¥, (x)

oo

ol
Xu. r's

Yo (x)
Yi(x) =

(XI7IJ

Ix{<l)

The repulsive part of the Lennard-Jones potential, which is
uncertain anyvway, has been altered in (43) in the region

, o
where 1t 1s positive. The steep rise has been replaced
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potential, and therefore the radisl distribution function,

is discontinuous at that point. Since the point o

cross~

~_.r
Hy

18 the unit of dis-

a
16}

over for the potential has been chosen

s

tance & , the discontinuity occurs at x 1. There 1is

also

@

a discontinuity at x = 2 in the distribution function. How=-

ever, the net effect on the properties of the fluid, calcu-

ated under these circumstances, snould be slight except

perhaps at very high compression, where the repulsive part
of the notential plays a more important role.

The series expansion in powers of the reciprocal of

terperature is carried out on ¥ (x).

Y(x) = %(x) + (ﬂé’) ¥ ¢ x) +<ﬂ§)‘q{Cn)4- - ”

where ¥ (x) is defined by

-(52 ¥olx) + (//(X)/X
F(x) = e (45)

Therefore,the radial distribution function can also be ex-

pressed by a series in inverse powers of T.

+

e

b

%(X) = 9 =) ]+ ﬁg '"I)LX) Gs ) q/(,() “KCKB'- (46)

S

-3¢ 8o (x) + Yolx2
ge\x} = € x (47)



substitution of (43) and (45) into the integra

results in -

o
Y (x) =-_.ﬂ€Y,(x)+ %_—5 l:(x-u)u.[g(u)—l du
- J

x>

(48)
where

> d ~ Ay,

l{(é)? & (S",é")-——){- (s)a A& (S'Lt") - (S)d:’z;o}

d ds o\ o
/ey 3 Y

The second integral in the kernel (49) can be sinmplified

by utilizing the properties of ¥.(x). Since

-@SYOCK)
e = O Os¢x« |

= | x> [ (50)
d  BE¥s) dY, -p&¥s
6(5 € = JCS“I).’-“’/SE 25 € >

[}

where d (8-1) represents the Dirac delta function. Thus,

upon introducing (50%

© .
/1é1

where

Ro(t) = €= f <
2 (52)
Re(£)= © of 1

(49} then takes the form

%o

R(8)= 5[ T8 T gesron (1) RelE)
/
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Substitution of the temperature expansion (44) into (48)
results in:
Folx )*(PE)(V/(X) + (3 ) Slx) + - =

~BEx Yi(x) + .->l2£ K (x- u)u{Q‘,(u)-—l.'. (54)
+ (3%) Lu)%u) @o" [Z_ig_) ® ] +- i de
K(t) can be e”“wr@ec into the ¢erlesz

(/sf) (R, (&) + ([45) R ¢ -
’ g,(u{u(/as)q/m PO %(T_) Fra

where

Ri(8) = [ 6= guls 2 ds

\n
ON
A

L 2 ('P.(S) AY,(S) (\A
Rzuﬁ:): /;ﬁl(s "t) 90(5) T ds JS',

If equal powers oflei' are collected, the terms in (/?2)0

give the hard-sphere integral ecuation already @o¢ved(~9

(see Appendix D)

Hlw) = —3— [:|<°(x-s) I-;E(s)— q]a(sJ

where A = >\° 3;(.') )
‘he terns in.(,ss)l'make up the following integral equations:
$(x) =-% %i(x)+ FEK) +

s e . (58)

x=5) S - =

$ ) o ) 9‘9(5) l]d{S"' [ ~“|<°(x~s)gosu",$.
This equation is of the same general form as all succeeding
equations in higher powers of/SEs

q/r (X) M (Xx) + Lf () ¥Yix) + ‘7‘ fds No(x-s)?o(s)y/a)tg)
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The eguation (58) for r = 1 contains the very large term

T

-x 8 (x) in its inhomogeneous part. It should therefore

potential to the hard-sphere core. IFor higher values of r,

M. (x) involves more and more terms. Thus for r = 2

¢ *u Ao (T
maay = k) 4 -\,-;f I¥a (x-s) Sl}(s)-l]als+

{ 9, (x~s) Gols) ¥ (o ds + (60)

|>'~

[
+

f Re(x-5) Golsr ¥_ L2 s+

-

[e' Y1) Re(x-s) g.,(.s) @# (s)ds,

Only the last term has been evaluated previously in the

-Fl>’ 1:]:/

equation for r = 1. Thus the work involved in calculating
™M, (x) from previously determined functions becomes more
complicated with increasing rj; but the form of the integral
equation remains the sane.

The eguations for Qi(x) (59) depend only upon the choice
of the reduced volume, that is, on the parameter A . Once
the terms in the series are known for some value of the
volume, the radial distribution function can be evaluated
for any desired temperature (i.e., value of the parameter
[353 at that volume. Thus the expansion has the advantage
that the radial distribution function can be calculated for
a whole net of temperatures and volumes, knowing only the
expansion terms for several volumes. Unfortunately, how-

ever, no mathematical test on the convergence of the series

is available. We must awailt the numerical results of the
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next section to tell us how soon the terms in the series
become negligibly small. But we know we can not depend on
powersof/8€ to make the terms in the series decrease rapidly,
sirumefgf is around unity or higher for conditions corres-
ponding to the liquid state.

The schemes developed for the numerical solution of the
integral equations (59) and (57) are identical and depend
quite decisively on the properties of the hard-sphere kernel.
The method was devised with the aim of allowing the use of

5.1, nachines. Thus, any iterative procedure should in-
volve only simple steps, even though possibly the convergence
per iteration is not rapid. The theorem upon which this
method 1s based has unfortunately not been put into wigorous
mathematical form. It can, however, be stated that in the
mean the true solution lies between the input and the output.

That is, on the average the solution can be bounded between

iterates. The reason for this becomes apparent if we suppose

that the input 3 differs by e (x) from the true solution
(€)
7 (x):
i) /7€)

T (x) =g (x)+ w0 (61)

or

o) (¢€)
(‘/ ‘M(x) = & (x) + < (x) (62)
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w’
[ LOCK o : X
where W2 ()= 375?)—& if the exponential € can be
x) &

. . - . . ’

linearized. Since x and @ (x) are always positive, @ (x)
\ ) - /é)

and e (x) have the same sign. On the average, ? (x) < I

so that

e

() (¢)
¥ (x) =¥ (x)+ X (%) (63)

Substituting (61} into the hard-sphere integral equation
(57) yields:

owt (&) T
w((x; = SV e(x) + ?[@Ro(x—s) Sw(S)o(S_ (64)

Ro“—') has its mininmum value of -1 at t = O and rises paraboli-

(<

cally to zero at t =21, In so far as this function can be

represented as a delta-function at t = 0, or x = s, (64)

becomes:

(ot (¢)
L//(x) = (//(x) -

u4>/

%X co(x 65
)) (65)

using the fact that

<o 7
| Roerdt =/(f‘—:) dt = -2 (66)
- Oo 3
-y "
This is, of course, a very crude approximation, but
comparison of (63) and (65) does support the idea that the

true solution lies between the input and the output. It
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furthermore illustrates how the solutions behave for wvarious
values of N . Certainly for X?b 3 (roughly), direct iteration
should fail. This has already been noted. The case of A = 5,
treated later, showed that rapid convergence was obtained if
the output and input were averaged. This 1s also indicated

by (65) and (63). TFor values of A = 20 to A = 30 , per-

taining to the liguld state, the averaging of input and out-
put should fail to converge. This was found to be the case.

4

Instead one had to take 80 to 90% of the input and only 20

~ I}

to 10% of the output in order to approach the true solution.

The procedure is equally applieable to the integral
equation (59) for the higher terms in the expansion. The
inhomogeneous part in no way alters the arguments.fds a first
approxination, the ¥, (1) ¥(x) term can be included in the
inhomogeneous part, since qy (1) can be considered a constant
over a period of a few iterations. Hence, if we define Wy (x)
by:

Cim) (&) '
‘"H—(x) = (7V,. (x)-rw(x) (67)

then

Caunt) (& )\
W () = ¥ x) - 3 Gov Ol (x) (68)

The linearization of the exponent 1s not necessary here.
Gualitatively (68) behaves similarly to (65) since again the

average value of %} (x) can be set equal to one. The n'th
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iteration is expressed by the following eqguation:

(m=-) © 7
- @ ~ -
(meg) (L
and the next trial ¥ e bys

1) ( imy
% (X) - Ol ‘./)(‘h)(ﬂ-“t) +(l *('\\)) (//(-h)(w) (70)

Tlere & 1is a constant whose choice depends on the value of

$e

M . It is safest to pick, at first, too low a value of &

The details of this procedure and the set up of the I.3.M.
machines are described in the Appendix (B-2 and B-3)

With the above method V{(x) and \Kh(x} were calculated
for several values of A . The problem arises now of how

N

the radial distribution functions can then be improved in
the original unexpanced integral equation (40) so as to
avold the great labor of calculating higher terms in the
series. The kernel (41) is usually positive and has two
maxima, so that the solution 1s no longer necessarily bound-
~@d.. between input and output. A4 further difficulty is that
the kernel depends also on the distribution function. Since
the dependence is not too sensitive, this complication can
be overcome. The kernel can be calculated with the distri-
ution function correct to terms in Vi(x), and (40) can

s

ept fixed. Then a new kernel

N

be solved with this kernel

can be evalvated and kept fixed 1ill a new solution is
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=

" obtained. This double series should eventually converge

i

vt w

ot

iere the distribution funetion used to ealcu-

18
i

to the poil
late the kernel 1s the same as the next iterated output.

The kernel (41) is mainly negative for low values of
)\ and ﬁi’ . Thus the value of &k is certain to be nositive
and can be used to combine the input and output till itera-
tilon converges upon a sclution in each ol the series of fixed

egral eqguations. With the radial distribution

d-

kernel int

?T

unction correct to terms 1n Vi (x), the first kernel was
calculated for A = 5, ﬂf' =.60 and a velue of & = 50 was
used to 1lterate. Two changes of the kernel broug!
radial distribution function within the desired accuracy.
At A= 1 and B€ =.60 and pe = 1.00 this method converged
' -B€ ¥(x)
even though the procedure was started wi ?’(x) =e .
For A = 5) (35’ = 1.00, however, the kernel is positive and
therefore the value of ol is uncertain. < can be calcu-
lated so as to minimize the sum of The square of the differ-
ences between direct iterates, as explained in Apvendices B-1
and D. Whether this procedure would converge will have to

5

he tried in the future since time did not permit us to in-

b

<o

vestigate the method thoroughly.
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As outlined in the previous section, the solutioné¢ of

[}

T .

the Born-Green integral equation depends upon the radial
distribution function for a hard-sphere intermolecular poten-
tial. These solutions for the hard-sphere radial distribution
function have been published (Appendix D). The solutions
cover a wide range of the parameter'k g 1e€sy Oof densities.
However, before the Lennard-Jones intermolecular potential
vas introduced)the accuracy of the solutions was ilmproved

by method (7C). In addition the solution for A= 1 was
obtained by direct iteration. The more precise solutions

are tabulated in Table I. The accuracies are such that
direct iteration causes a discrepancy in the radial distri-

..

bution function of T .002 between input and output for A= I I

pane)

5, 10, 20, and 27.4 and ¥ .OL for A = 33.

With these distribution functions the inhomogeneous
part of (58) was evaluated and the ecuation was solved for
¥ (x) on I.B.l.. machines (4ppendices B-2 and B-3). The
-accuracy denmanded was that direct iterates of Y ag
within *.,002 for A = 5, 10,and 20,and $.004 for A = 27.4.
‘The series was carried one step further by the evaluation
of ¥, . The I.B.HM. machines were told to stop when ¥& (x)
was within *.002 of its direct iterate for A = § and 10,

¥ ,003 for A = 20, and % .004 for A= 27.4. These functions

re zlso tabulated in Table I.

D

Figures 1 and 2 are representative graphs of the radial

distribution funection correct to terms in %ﬁ . FPFigure 1
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illustrates the variation of the radial distribution function
with density at fixed temperature ($€ = .80). Curves 4, B

and C correspond respectively to A = 27.4, 20, and 5. Figure 1
shows clearly that the amplitude in the oseillation is larger
for higher densities, indicating more orderly packing of the
molecules of the fluid. As Figure 2 demonstrates, the peaks

in the radlal distribution function are also higher when the
temperature is decreased at fixed density (X = 20). Curve

C, having the largest swings, corrésponds to(3f = 1.205 curves

B and C are at(3£ .60 and .00 respectively.

%

It turns out that Y x) 1is gratifyingly small compared
to ¥ (x) even if X¥, (x) is subtracted from ¥ (x) to make
a fairer test. How large the effect of the neglected terms
in the series might be can be checked by substitution of the
approximate radial distribution function in the integral

tion (40). 4 calculation was carried out for A =
(35 = 1.00, using the first two and then also the first three
terms of the series. For the radial distribution function
correct to the ¥ term, the right hand side was greater than

-

the left hand side by .163 at x = 1.00 and by .171 at x = 1.12,

4

Including the next term of the seriles hardly improved the

(N

eviation between direct iterates (.147 at x = 1.00 and .159
at x = 1.12). For higher values of N and ff = 1,00 the
difference between direct iterates was of the same sign and
nature but somewhat smaller in magnitude. For A

Ff = 1.00, and x = 1.00,the difference was .11l while for

M = 27.4, € =1.00, at x = 1.00, it was .110. This
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indicates that the solutions ére probably more accurate for
nigher values of )\ , both because the differences are smaller
and bectuse the equatlions are more sensitive due to the factor
A (65)., The difference between direct iterates diminishes
greatly as(gf 1s lowered, as would be expected from the
expansion (44), since the terms containing higher powers of

[55 decrease rapidly. Thus at }\ = 5, Ff = aéO)the difference
was only .033.at x = 1.00 and .035 at x = 1.12.

In the above comparison the radial distribution function
(45), where ¥ (x) was calculated by (44), was substituted on
the right hand side. This g(x) is not strictly correct if
only terms up to the second power in(gf are to be included,
since the above forrmula for the radial distribution function
includes the terms in higher powers of/3€ containing only

. and Yﬁ . However this procedure is justified if, as one
hopes, 9; (x) and higher terms are snall. The difference
between (45) and the strictly correct radial distribution

function (46} is small at large distances. The values are

<

different only near x = 1, where (x) is large.

The solutions do not appear as accurate as is desirable,
since the ecuation of state and the transport properZties are
sensitive to the radial distribution fvnetion. To calculate
the next term in the series, %3 (x), does not seem worthwhile
because of the large amount of labor involved with no guarantee

of greatly increasing the agreement of direct iterates. Kow-

@ve;’it is hoped that the solutions including terms up to
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Hﬁ are close enough to the true solutions to be improved
by other methods. (8ee pages 26 and 27, this thesis.)

Such a method was successful in improving the radial
distribution function at A\ = 5, (€ = .60. The radial distri-
bution function, tabulated in Table II, and its iterate
agree within * .0CY% when substituted into (40). 4lso in-
cluded in this table are the exact solutions for A = 1.00,

P& = .60 and B&= 1.00, N = 1.00 obtained by the same method.
(See pages 26 and 27, this thesis.) Again direct iterates

agree within £ .005.



TABLE I
The functions 9’ which determine the radisl distribution
function as a function of x for several values of the

parameter A in the Born and (reen equation; ¥(x) = x Log g
Pix) = Ux) +@BEIR () + @) % ex) Xl
A =/ A= S A=70.

O K® ¥ Y K"k v ¥

1.00 .095 368 =586 L0078 . 587 -,789 ,025
1.04 092 . .349 .099 .075 «0b82 =-.095 .024
1.08 .088 « 329 414 073 515 230 .024
l.12 .083 505 .529 .069 A6 43563 ,023
1.16 079 285 .534 .087 o436 367 L0021
1.20 074 .260 .486 .065 392 .330 ,019
1.24 . 069 236 .411 .063 .3560 .266 .018
1.28 . 064 212 330 .061 305 196 .017
d«58 059 .188 .250 .058 <861 L12% 015
1.36 058 164 175 .055 218 L0635 ,0l4
1.40 . 048 141 .109 .03 174 008 L0138
1.44 . 042 115 .053 .050 130 ~-.036 .012
1.48 037 091 006 ,048 .089 -,074 011
1.52 . 032 072 -.034 .045 049 -.,101 .010
1.56 . 027 048 -.064 .045 013 -.123 .010
1.60 .022 029 =.088 044 -.022 -.135 .010
1.64 017 011 -.105 .044 -.,052 -.142 .010

1.68 +013 ~-.006 ~-.116 .043 -.080 -.142 .01l
1.72 008 -.020 -.123 .044 -.101 -.139 .012

10‘76 0005 ""003‘4. “03.24: 904.4 ‘-.120 "0129 0015



2.24
2.28
2':62

2.36

~-,002
-.,002
-.001
-.001
-.001
-,001

. 000

TABLE I {(cont.)

¥
= .Udrl

-.048
~.051
- .055
-.051
~ . 040

- .03

U3
A,

X=5
174 Lo
-.120 .046
-.111  .047
~J101 049
-.086 .052
-.070 .055
-.053 .059
-.030 .0865
-.007 ,066
014 ,069
031,069
.041  ,067
048 064
L0581 L0857
+083 L0850
051 .042
045 .034
.040  ,026
.035 .O01%
029 ,011
.023  .006
017 001
,011 -.004
.006 - ,006

%
it ngl

-.136
-+133
-.123
-.106
-.077
-.051
-.027
- 007

.010

+O21

.041
039
035
+ 030
025

019

2\ =

¥
=.117

-,102
- .U84
-.066
-.046
-.026

.003

.073
. 060
044
.030
017
. 004

« 001
-,005
-.010
-.015
-,019

S 0021

.013 ~,017 -.011

« 308

= 0026

-.002



=1
4

. 000

4
.004

.003
.002
. 001
.000
000
-.001
= 01
-.001
-.002

-,002

TARLE I

A=S—
'

001 -
-.003 -
-,005 -
~-.,007 =
-,008 -
-,009 -
-.010 -

"'009 =

e 0008
-.007
o oOO6

_0004

5 W .OOZ)

—0002

L —OOO:L

000
%%k
002
. 003
003
« 003
. 004
.004

.003

A
= L=

{conte)

¥
IO

. 008
007
. 007
.0086
005
003
« O
001
.,003
.005
SO0
s 009
.010

011

4
003

.003
.06
.010
011
<018
013
.014

013

A =70
“ %
-,031 .003
-.035 .007
-.037 .009
-.037 .009
-.035 .008
-.033 .005
-,028 002
-.022 001
~,015 .005
-.010 ,007
-.004 L009
003 L4010
007 L0311
010 ,012
015 .011
.016 .010
.018 .009
017 007
016 ,005
014 .009
012 001
.009 -.001

.005 -.005



3.68

3.72

3476

¥
. 000

%
.000

001
.001
«001
,001
001
001

. 000

“
.004

U003
. 002
.002
. 001
. 000
.000
« 001
.001

.001

%
.003

-.001
-.001
-.001
-,001
-.001
-.001
-.001

+u00

"\ =70
¥ %
.002 -.006
.001 - .006
-,002 ~.004
-,003 =,002
-.005 .000
=005 002

-.006 .002
-.006 002
-.,005 .001
-.004 ,001
-.004 000
-.003 000
-.002 .001
-.001 .002
-.001 .002
.001 .002
.001 .002
002 .002
002 .003

.002 .002
002 .,002
.002 .001
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TABLE I {(cont.)

A= § W\ =70
®“ v w K ¢ %
.000  .u00 .002 .000 .002 .001
.002 .001 .001
.001 .001 .000
.001 .001  .000
.001 .000  .000
.001 .000
<001 =001
.001 o)
.001 -,001
.001 -.001
.001 o NG
001 -.001
.000 - 001
-,001
- U0l
-.001
-.001
.000
+000
001
.001
001
L, 001

«001
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TABLE I (cont.)

A=
% ¥
.000 ,000

e

%
000

¢
.000

/0

>
\

.000

b

.001
001
«001

« 000



1.00
1.04
1.08

1.12

1.80
1.84

1.88

TABLE T

\-; Q0

. o
.859 -.920

808 ~,218

483 203
406 .143
329 .08l

250 .026

-¢313 -.105
-.332 -.092
-.338 -.077
- .329 -.060
- .30l -.045

_'256 -0051

%
"'0058

"0054

-.023
-.021
-.019
-.017
-.015

-.013

6 -,010

-.008
-.005
-.002
.001
. 003
.006
.009
013
.018

.024

-
~/

4

Q
T g

(cont.)

N: 274

¥

*

980 -.956 -.,048

933

- .554
-.548
= s B17
-.460

-.376

= 02427

.095

245
« 196
<138
« 079

.026

-.070
-.0565
-.041
-.027

“'017

-0044

-0041

-.030
-,028

-0025

O
()]
W

H=33

"
1.040

1.016

--554
e ¢491
-.610
-,709

- 783

- 657

"'-518



037
. 089

« 130

TABLE I

A= 20

.020

.022

.023
081
LUL17
012
.008
.003
.003

- V08

-
o)

(&
=

(cont.)
A=27. 4

K v ¥
264 -,011 ,.069
122 -,009 ,074
+LO21L 019 056
137 077 038
soal 27 #0025
292 154 ,020
o000 +15%9 015
e 5D3 146 .008
«554 L1118 ~.002
«B37 082 -.013
«305 043 -.024
261 .003 =~.032
207 -,033 -.039
0148 =,066 -,044
.083 -,091 -.048
L0019 =,110 ~-,044
042 ~.123 ~,038
.099 -,128 ~-,031
«150 =,125 -,022
190 -,118 ~,011
2281 =.106 001
.240 -,088 ,012
247 -.066 .022
241 -.,043 L,031

1

i

«495
. 524
. 522

«499



« 040
. 036

. 027

TABLE

A= 0
“ %
-.041 ,013
-.026 017
-,009 ,020
.007 ,022
022 U3
037 L,023
.047 ,022
.056 019
.062 .016
068 L0011
.059 006
ud4 002
044 - ,002
.084 -,006
+ 022 =.,010
012 -.013
-,001 -.015
-.010 -,017
-,021 -.018
-.027 =.vlo
-,034 -.,014
-.035 -,011
-,038 -,008
-.038 -,004

~40-

(cont.)

AN=2724 A=33

® v o« oy
-.222 -.019 .039

-llgq 0UU7 0046 ”;574
-3155 0052 .U48 “0285

-.110 057 .048 - o177

-,061 .080 .046 -.067
e 0015 0699 QO4‘1 .Uéo
033 .112 .036 142

074 ,118 .028 « 230
«108 117 4O19 « 308
134 .108 .010 « 358
151 093 =.001 « 388

159 .074 -.012 599

180 049 -,022 « 585
151 .023 -.031 « 3551
135 =002 =.uds «299
114 -.027 -.042 0236
087 =.049 -.045 <164
061 -,070 =.043 .083
030 -.083 -,040 001
000 -,093 -,036 -.073

_0028 —.U97 *:OZB -.147
-.053 -,097 -,018 -,210
-,075 -.090 ~.008 =261

"0091 _0080 'OOZ "1296



X

5688

4 .64
4.68
4,72
4.76

4,80

¥

~+019
-.023
-.025
- .024
-.0253
-.020
-, 017
-,013
~-,009
-.005
-.003
.001
.004
. 007
.010
01.0;

012

L -

TABLE I (cont.)

A=20 N=274
¢ w K" ¥ o«
-.037 =,001 .102 -.,066 012
-,032 L000 £ 107 -,049 ,020
~-,026 ,002 106 -,030 ,027
-,021 .,005 .100 ~,011 .033
-,014 ,008 089 007 .037
-,008 ,010 074 ,025 .039
-,001 ,011 057 ,043 039
«006 ,012 L38 L0588 087
.01l2 ,013 w018 070 035
1Y 042 002 077 027
023 .010 020 ,080 .020
.025 L0007 L37 L7 JU18
025 L0058 051 071 .004
024 .002 061 .061 -.008
.022 000 068 047 -,013
.020  .000 070 ,032 -.020
.016 -.002 068 .018 -.026
013 ~,003 064 ,0u2 -.031
.008 -.005 .056 -.,012 -,032
.003 -,006 046 -,026 -,033
-,001 -.006 035 ~-,038 -.033
-.004 -.006 022 -.048 -,029
-,008 -.006 .009 -.055 -.026
-,011 -.006 -.004 -.058 -.020



(92

(o3}

Ot (93]
°

n

“
. 002

001
002
. 003
. 004
. 005
. 006
« 007
. 006
. 005
005

. 004

.003

TARL
N\=R0
A Y
-.013 -.005
-.013 -,003
-.014 -.001
-.014 ,000
~.013 .000
-.011  .000
~.009 .001
-.006 .002
-.004 003
-.002  .,004
.000 .004
003 004
.005 .00
.006 .002
.007 .00l
.007 000
.007 000
L007  .000
.007 000
.006 000
.004 000
.004  ,000
.003  .000
.001 -.001

(cont.)
N: 27.4

“ ¢ %
-.018 ~-,058 -.,013
-.,026 -.056 -.006
~-.034 ~-,050 001
-.040 -.,042 ,008
~,043 -,032 L,015
-,044 -.024 ,020
-,043 ~,013 024
-.040 -,002 .026
-,034 ,010 .028
-,027 .020 .028
-.019 .028 .026
~-.012 .036 .023
-.005 ,043 .01¢
003 044 .014
.010 .044 ,008
017 .041 L0002
022 .036 -.004
025 .030 -.009
027 .023 -.014
027 015 =017
026 ,004 -,020
024 =,002 —.022

.016

~-,015 -.021

« 139
. 126
.100

074



. 002

. 001
+ 000
. 000
« OO0

000

LABLE T
A= 20
v ¥
.000 -.001
~.001 -.001
-.002 -.001
~.003 -.001
-.003 ,000
-.003 000
-.003 .000
-.004 +,000
-.003 .000
-.003 .000
-.003 ,000
-.002 .000
-.,002 ,001
-.001 .001
-.u01 .001
.000  .001
.000 .001
.000  ,000
.000
.001
.001
«001
«+00%L
.001

w

(cont.)

N 74

“

“

.008

.002
-,003
-, 007
-.011
-,014
-.018
-.016

s 0016

-.026
-.029

-,030

.018
016
+I12
+009

+OU06

-.017

.012
015
016
.017
017

.0l6

. 006
.002
-,001
-.004
- .007
-,010

— .Ull

=33

¥
.047

017

acd 0015

. 087
. 090

° O\E‘ 9



mﬂ.ﬁlm
i

$ABLE I {(conb.,)

A=20 N: 274  A=33

* W % ¥ “ % % ¥
6.76 .000  ,001 .000 009  .004 -,012 .080
6.80 .001 ,008 .000 -.012 .072
6.84 .002 JO07 ~,004 ~,019 .060
5.88 .001 .005 -,006 -.011 044
6.92 .001 04 -,007 -.009 .026
6.96 ;601 .002 -.009 -.008 .009
780 .001 -.001 -.009 -.006 =-,009
7,04 .000 ~-,001 -,011 ~.003 =~.026
7.08 -.,001 -.013 -,001 -.040
T o8 -.002 -,012 .001 -.052
¥ olB -.003 -.,011 .004 =.059
720 -.00¢ -,008 .,006 -.083
7«24 -.005 -,006 .007 -.066
7.28 -.005 -.005 .008 -,065
¥ B8 - -,005 -,003 ,009 @ -,057
7 .36 -,005 .000 L0098 =.050
7«40 -.005 ,002 .008 @ -,044
¥ uih -.00¢ .004 007 -.033
7 .48 -.,003 .005 ,006 =.020
7 .58 -.002 .008 ,005 =-.007
¥ D6 -.001 .007 004 . 007
7.60 .000 .007 .002 .018
7 .64 .001 007 .000 .029

7.68 002 .O007 ~.001 035



X
7.72
7,76
780
7.84
7.88
7.92
7.96
8.00
8.04
8.08
8.12
8016
8,20
8.24
8.28
832

w
+000

A=20
% ¥
.000 .000

¥
002

»002
.002
002
003
.002
002
,002
.002
.001
«001
«001
.001
«000
-,001
-,001
-+001
-,001
-,001
=,001
-.002
- 002
= o001
-,001

FABLE I (cont.)

N 27.4
¢ %
006 -,003
005 -.,004
.004 -,004
.003 -.006
.002 -.006
000 -,006
=,001 -.006
-.002 -.005
-.004 -.,005
-.004 -.003
-.005 -,002
-.005 -.001
-.005 -.001
-.004 .000
-.004 ,002
-.003 .003
-.,003 .003
-.002 .003
-.001 .004
-.001 .004
«000 003
«001 .003
.001 .003
.002 .002



X
8.68
8.72
8.76
8.80
8.84
8.88
8.92
8.96
9,00
9,04
9,08
9.12
9.16
9.20
9.24
9.28
9.32
9.36
9.40
Q.44
9.48
9.52
9.56

9.60

9.64

¥
000

N= 220

%
.000

X
000

~46-

¥
- .OOl

-+,001
«000
«000
«000
«001
001
001
001

+000

TABLE I (cont.)

N- 27,4
v %
002 4002
«003 001
«002 000
002 =,001
«003 «,001
001 =,001
001 =,002
«001 -,002
«001 =,002
001 -.,002
«001 =-,002
«001 =-.002
000 =,002
»000 -,002
= o001 =,001
-,001 -.001
-,001 .000
-o,001 000
«000 001
-,001 .001
-+001 .001
-,001 001
-,001 L0011
-,001 .001
.000 001

\==33

¥
-000

«004
«009
«013
.015
.016
017
.018
.021
016
.012
« 007
003
«002
.001
- .001
- o004
-.008
- +009
-.012
~-,010
-.009
- +008
= o007

=003



9.68
9.72
9,76
9,80
9.84
9.88
9,92
9,96
10,00
10.04
10.08
10.12
10.16
10.20
10.24
10.28

w
000

A=26

¥
000

“
000

il T
L3

4
000

TABLE I (cont.)

AN:27.4
“ 4
000 L000

A=33
“
= o002

-+001
000
000
001
001
002
.002
003
«004
005
«003
.002
001
<001
«000



(@)
~AG -

TABLE II

Exact radial distribution functions for several values of

the parameters A and ﬁi .

1.00
1.04
1.08
1.12
l.16
1.20
1.24
1.28
1.32
1.36
1.40
1.44
1.48
1.52
1.56
1.60
1.64
1.68
1.72
1.76

=1

B%=.¢

1.022
1.512
1.764
1.825
1.782
l.692
1.590
1.495
1.412
1.339
1.280
1.232
1.192
1.159
1.132
1.109
1,089
1.073
1.060
1.049

g(x) as a function of x.

A=/
Bs=/0
1.162

2,230
2.868
56034
2.910
2,673
2,418
2.184
1.977
1.821
1.697
1.576
1,490
1.420
1.36%
1,325
1.288
1.256
1.233
1.216

A=S"
3¢=.6€

1.092
1.585
1.824
1.8583
1.783
1.674
1.554
1.449
1.355
1.274
1.208
1.151
1.105
1.070
1.039
1.015

« 998

;982

972

« 965

X
1.80
1.84
1.88
1,92
1.96
2,00
2,04
2.08
212
2.16
2.20
2.24
2,28
2,32
2.36
2440
2.44
2,48
2.52
2.56

A=/

B€=.¢6

1.042
1.036
1.032
1.030
1,031
1.031
1,031
1,031
1.031
1,030
1.030
1.028
1.026
1.025
1.024
1.022
1.021
1.020
1.019
1.018

A=/
pS=/0
1.201
1.190
1.182
1.178
1.180
1.182
1.184
1.186
1.188
1.191
1.191
1.186
1.179
1.170
1.162
1.155
1.145
1.138
1.129
1.122

A=S
(5?:.6
«965
«965
968
972
« 981
« 992

1.004
1.01%7
1.026
1.054
1.040
1.043
1.044
1.044
1.042
1.038
1.035
1.031
1.027
1.023



2,60
2.64
2.68
2,72
2.76
2,80
2.84
2.88
2,92
296
300
3,04
3,08
3012
5.16
3,20
.24
3.28
Se32
5036
3640
3.44
3448

3,52

A=/
fPE=.¢
1.016

1.015
1.014
1.013
1.012
1.011
1.010
1.009
1.009
1.008
1,008
1.007
1,007
1.006
1.006
1.006
1.005
1.005
1.0056
1,004
1,004
1,004
1.003

1,003

O
wcl] e

TABLE II (cont.)

pE€=lto PE=.§ BE=.&
1.116 1.020 3056 1.003
1.110 1.017 3.60 1.003
1.10¢ 1,015 3064 1,003

1.098 1,014 3,68 1.003

2 1.092 1.012 3.72 1,003

1.086 1,010 3,76  1.002
1.081 1.009  3.80  1.002
1,079 1.008  3.84 1,002
1,076 1,007  3.88  1.002
1,072 1.007 3.92 1,002
1,070 1.006  3.96  1.002
1,067 1,007 4,00  1.002
1,064 1.006 4,04 1,002
1,062 1.007 4,08  1.002
1,060 1.007  4.12 1,001
1,058 1,007  4.16 1,001
1.055 1.007  4.20 1,001
1.053 1.007  4.24 1,001
1,051 1.007  4.28  1.001
1.049 1.007  4.32 1,001
1.047 1.007 4.3 1,001
1,045 1,007  4.40  1.001
1,043 1,007  4.48  1.001

1.041 1.007 4.48 1,001

A=/
(BS=/0
1,040
1.038
1.037
1.035
1.034
1.032
1.031
1.029
1,028
1.027
1.026
1.025
1,024
1,023
1.022
1.021
1,020
1.020
1.019
1.018
1,018
1,017
1.016

1.016

A-S
GE=6
1.006"
1.006
1.006
1.006
1,006
1.006
1.006
1.005
1.005
1.005
1.005
1.004
1.004
1.004
1,004
1.004
1.003
1.003
1.003
1.003
1.003
1.003
1.003

1.003



4,52
4.56
4.60
4.64
4,68
4,72
4,76
4.80
4.84
4.88
4.92
4,96
5,00
5.04
5,08
5.12
5416
5,20
5.24
5,28
5632
5,36
540

5.44

A=/

p& .6 ,52‘.1/.6

1,001

1.001

1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1,001
1.001
1.001
1.001
1.001

1.000

A=/
1.015
1.015
1.014
1.014
1.013
1.012
1.012
1.011
1.011
1,011
1.010
1.010
1.010
1.009
1.009
1.008
1.008
1.008
1,008
1.007
1.007
1.007
1.006

1.006

TABLE II (cont.)

s
é

A
pE
1.002
1,002
1,002
1.002
1.002
1.002
1.002
1.002
1.002
1,002
1.002
1.002
1.002
1,002
1.002
1,002
1.002
1.002
1,001
1.001
1,001
1.001
1.001
1.001

5.48
5.52
5.56
5.60
5.64
5.68
5.72
5.76
5.80
5.84
5.88
5.92
5.96
6,00
6 .04
6,08
6.12
6.16
6.20
6.24
6.28
6,32
6,36

6,40

A=/
€-.6
1,000

A=

A=s

€ =lO £=.6

006
1.006
1.0056
1.005
1.0086
1.005
1.004
1,004
1.004
1.004
1.004
1,004
1.003
1.003
1.003
1.003
1.003
1.003
1.003
1,003
1,002
1.002
1.002

1.002

001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1.001
1,001
1.001
1.001
1.001
1.001
1.001
1.000



6e44
6,48
652
€6.56
6,60
6.64
6.68
6,72
6,76
6.80
6.84
6.88
6.92
696
7,00
7.04
7,08
7.12
716
7420
724
7.28
7.32
7356

TABLE II (cont.)

A=/ A=/ N\=s
€ =¢ pPE=l0 p£=6
1,000 1.002 1.000

1.002

1,002

1,002

1,002

1,002

1,002

1,002

1,002

1,002

1.001

1,001

1,001

1.001

1.001

1,001

1,001

1.001

1,001

1.001

1,001

1,001

1.001

1,001

S

x
7640

7.44
7448

N\N=/
(B¢ =.
1.000

N=/ A=S
€=6

(Sgs/.o

1,001 1.00
1.001
1.000
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Figure 1. The variation of the radial distribution
function correct to Vi with volume for{3f = ,80 on the

Born=Green basilse.
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Figure 2. The variation of the radial distribution

(D

function correct to Vi with temnerature for A = 20 on the

Born-Green basis:

i f‘orpf = .00
= ,60

3 forﬂf
C fer Ff =1,20
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& . E RN 3 = E AP B SO TR WL " o i e 3 b | s Py Lo L B
Cnee the distribution Tunctiong develoned in the re-

vious section are

N I g P - &
e eglevnlations of

mie functions undez

ncitions is an easy matter. Both the 3orn-Green

c’~L

ne Kirkwood theorv lead to the following equation of state:

Pv ___I_' )‘062 *3:,_(__\(__

et

NhT 6 g’()() d x. (71)

(<)

IT the modified Lennard-Jones potential (40) 18 gubstitered

then (71) hecomes:

Pv - >\ (n ENo
NRT [ + Do @l 6 ﬂ /xsdkg( Ax (72)

The internal energy., E,is given by:
D 9 )

E 3 >‘o 3 %2
,{7}::\'= 5 T r‘-zﬁ——}x \b/,(x) ?(x)dx, (73)

™M

The knowledge of the equation of state and

2

energy allows the calculation of all other thermodynamic
gquantities through thermodynamic relations. Nevertheless,
it is desirable to have explicit statistical mechanical

expressions for the other thermnodynamic quantities. KXirk-

wood's theory vields such an expression for the chemical

potential,/A/



x

E
/Zoy + /——- + //E .
NkT i NVNRT 7

/VP(T)= «Zm.[}z—/va,Zoyﬂ/ (74}
/V/ =\ /,’g/ fx Yo g% §lelx d £ - 17’”“_

It is convenient to work with reduced variables, since
this leaves open the choice of the parameters a and € in

the potential. The reduced variables used are:

3
* L. % k- v
-p(T) v AT

ate

(.J.

In terms of p*, v* and T*, the calculated equation of s

4=

applies for any fluid under corresponding-state conditions.

In Table III, p* is tabulated for various values of v* and
I*, and for various approximations to the radial distribution
function. The values of v* for which p* can be evaluated
are restricted to those values for which the radial distri-
but on?xs obtained. Iowever, due to the expansion (44), p*
can be calculated for any T*, The radial distri 1onp(4,),
where ¥ (x) is given by (44), were calculated for values
oflef from O to 1.20 by steps of .20. They were then sub-
stituted into the integral in (72). 4gain we have not kept
strictly within the powers of/Bi' to which we know the radial
distribution function.
The interval in x found necessary for the evaluation
of the integral was .04 throughout except near x = 1, where

;r;- is a very rapidly changing function. g(x) was there inter-

polated to a .01 interval in x bhetween x = 1.00 and 1.12



L-—' ——/—b—f + //gr .
VKT 7P e T T

xr
/‘?,(T)= i EV A/kT./Zoaﬂ/ (743
3
/V//Vh‘l' = Ao /gg/ f x* ¥ gl Slelx d £ - j?,/vk‘l‘
t is convenient to work with reduced variables, since
this leaves open the choice of the parameters a and € in

the potential. The reduced variables used are:
3
*aple] o Mo AT X
€/
—r* 1 _ RT

In terms of p*, v* and T*, the calculated equation of state

o

applies for any f

uld under corresponding-state conditions.
In Table III, p* is tabulated for various values of v* and
I*, and for various approximations to the radial distribution
function. The values of v* for which p* can be evaluated
are restricted to those values for which the radial distri-
butiongwas obtained. HNHowever, due to the expansion (44), p*
can be calculated for any T*. The radial dist wthnp(ﬂ),9
where ¥ (x) is given by (44), were calculated for values
oflﬂf from O to 1.20 by steps of .20. They were then sub-
stituted into the integral in (72). 4gain we have not kept
strictly within the powers of/3i' to which we know the radial
distribution function.

The interval in x found necessary for the evaluation

of the integral was .04 throughout except near x = 1, where

is a very rapidly changing function. g(x) was there inter-

olated to a .01 intervel in x hetween x = 1.00 and 1.12
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S I el
vas flrst calcu-

;

ey B B
obtained with

distribution function correct to terms in *1(*).

In order to carry out this calculation, the equation of

ed with an empirical equation,

B 7 % o 7 g 1 R e A8 q ; o kel
that p* is to a very good approximation a linear function o

%, and f1itting the coefficlents of the linear isometrics as

a funetion of volume. The critical point can be determined
by differentiating this empirical equation. Setting

i
Y
=4

£

. £ =} e . (e
as opnosed to the experinental

PV = ) £ . o
'v-.fl,_T o:)O3 ior al“bOI’l.

4

at

143

The same job was repeated with the equation of s
ich results from the radial distribution function correct
Cerms in.?ﬁ(xo « With linear isonetrics the enpirical

.

At the critical point

~e
T* = 1,318 pX*v¥Y = 371
¢ ) Mg = - .
A '3
» el = O 1

ion of state given in Appendix E, equation (157) resulte



ico Uy . ST S s b SO — 4 o —_ 4% 5
1008 180Te Ll LEs are [yuever TNoL Ul ee inears; uoe mnaxi-

mun deviation 1s 1 per cent in p*

the critical region.
Since the derivatives used to determine the critical point,
1t tneraloré the critical point itself, are sensitive to

small changes in curvature, guadratic isometrics were also
tried. This empirical equation of state (see Appendix E,

equation (158))

points at #€ = .60, .80,and

1
1.00 for A = .5, 10, 20, and 27.4
L@ MY ak WA = g -y g a1 ~ i e Te

%

P gy e 4~ —— N e Flye de
The disadvantage of this ecuation of state ig that

=
o
3

/3£ & AL the Tit is imperfect. The maximum percentage

[}

error in p* at A€ 40 is 25 at N = 10. The critical

point given by (158) is:

P 2 S % S Y . B S = 2 el Tom R P

Ldls ratio is probably niore religble than the one with
lincar isonetrics T T pitianl Attt Tiae withi )
ihear isouetlrics, since utne critical polnt lies witnlin ohe

exactly {itted range. “The difference 1s not very great.

ot
o
b
O

& ~ 4= ] PRI I Sudaoes demes calneoo . ol c
(158) was used to cdetermine the two phase region of

shase diagrsm. To make a complete determination of this

region, however, the equation of state for A< 5 is required

'or this purpose, the solutions at k = 1 are already
available, but another point is desirable for even lower A\
Without solving for any more racdial distribution functions
we can make use of the information the second virial coeffi-
cient furnishes at A = O. However, first, the second virial

coefficient has to be calculated with the modifiled Lennard-

Jones potential to which the equation of state corresponds.
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The second virial coefficient, j(->9 is given bys

3
B “2TfEx Tdy -peve ; (77)
3 L dx R

Introducing the potential (43):

3 S
B = -21Tﬂ€a i{e-(zé‘b’;(;)d 2T, 3“9)
3 » dx X173

A switch of variables and expansion of one of the exponen-

ct
b
=

the integrand makes it possible to express the

integral in terms of incomplete gamma functions, r(‘-il’)9 S

where
S, G, | )
and where

b ..
F(ab) = ) ¢ e but i

.
47 a3

The quantity b is tabulated below for the same

values Qf[}'f that were used previously. Adlso tabulated f
comparison is the corresponding b; for the complete Lennar

Jones potential (42).

or

r.:!; =
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PABLE V

Second Virial Coefficient

BE £, 5

2

.20 .0735 . 0406
.40 -.0290 =, 0521
.60 ~.1426 ~.1607
.80 -.2689 ~.2840
1.00 -.4100 =291,

Ihese data at (35' = .60, .80, and 1.00 were now combined
with the data at N = 1 and A = § previously cited, and an
equation of state in the virial form was fitted to agree
with a1l this information (see Appendix E, equation (159)).
It is interesting to note that the third virial coefficient
obtained in this fashion agrees very closely at/3i = ,60
and .80 with the one calculated by Bird, Spotz, and Hirsch-
felder(lg) with the complete Lennard-Jones potential (42).
With these empirical equations of state (158, 159)
we are now able to find the conditlons under which the liquid
and gas phase are in equilibrium. ZThe thermodynanic condi=-
tions for this equilibrium are that the pressure, the temper-
ature, and the chemnical potential of the two phases be iden-
Tical. Vie proceed by fixing our attention on an isotherm
below the critical point and try to find the two volumes for

which the fluid has the same pressure and chemical potential.
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The formula for the chemical potential is obtained through

rx‘

integration of the equation of state. Defining the chemical

potential on a volume basiss

+RT/6¢?V*/VV(T)“[ (P-—-——)a(v+1>v RT
/‘/VI(T) - /&m;(/*/'f‘ 'RT'/&?V)‘ (81)

was convenient to find the two volumes at a given temper-

£

.
ct

ature with equal values of

' p o p(T)RT Lo T

a—

RT ~ RT (82)

ITris is permissible sincep apd/v differ only by a constant

at a given temperature. The table below gives the values of
v
p*, T* and <= , for the two reduced volumes.

RT

TABLE VI

Conditions for Equilibrium between Gas and Liquid.

T p* | ﬁ: (v*) 1iquid (v*) gas

RT

1.43 %199 2.589 589
£ L .163 .032 1.860 4,649
1035 0127 "ollJ 10634’ 60798
1030 .102 "'5985 ] An’? 8&608
1025 0074 ‘“o[)ll 10193 120 566
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AT T* = 1.23 1t 1s no longer possible to find two volumes

which will make p¥* and/V'equal, since we do not have a
radial distribution function for low enough volumes.

Figure III shows the attainable two phase region, with sev=-
eral isotherms in that region as well as some isotherms
slightly above the critical point. The dome representing

the states of vapor and liquid in equilibrium is plotted

and extrapolated to low values of p* on the liquid side by
the dotted curve. On the gaseous side the dome, if extended,
would gradually approach p* = 0 at very large values of v*,
Figure III qualitatively at least strongly resembles the

experimental ecuations of state of many fluids.

internal energy was fitted empirically as a fvnction of
volume and temperature (see 4Lppendix 3, eguation (160)).
Putting in the)\, and (-"‘C' values for the liquid and gas

: AE
vhase, we find the energy of vaporization, /k{ s, To be

the following:

TABLE VII
Energy of Vaporization

AE.
o NE
-5;704

HY)

*®
B
OO Wi O W

-4,338

-3.305

e =
w

-2.283

°
(&5
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Finally, the entropy was also calculated with the aid

i 1 m

of the equation of state and is tabulated in Table VIII,
for the same values of N and/gi' for which the internal
energy and the pressure were evaluated. The table actually

gives the excess entropy defined on a volume basis as

follows:e

S-= ’R(Zoz\/ ¥ S’:(T) + Sve) (83)

where

S, () Lo | §- RAogy] (84)

and where

€ v
Sv = 5“ R%%)v - _’\_j_]dv‘ (85)

I"or the equation of state in the interval ofﬁf between .60
and 1.00, (158) and (159) were used. For(gf = .20 and .40,
(157) was used for‘X > £, lor x\‘ 5 the equation of state
was calculated from the N = 5 point and the second virial
coefficients tabulated previously (see Anpendix E, equation

(161) )4
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AT

TABLE VIII

The Excess Entropy

as a function of the reduced temperature, T*

9

-h a radial distribution function correct to terms

I 2

ok N 13.823 3.633 2.261 1.484 1.28%
l/:‘oOOO '".168 —0‘729 _10317 "2934’3 "30123
?o E/OO -0168‘ -c729 "1.3\17 —20343 “3.123
1.667 -. 066 -y 275 - JB52 il o D -2.638

-.308 -1.211 ~-1.816 2,659 -3.65

-.273  =1.089  -1.712  =2.774 = -3.5
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Figure 3. The reduced equation of state showing the

two phase region with several isotherums.
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Comparison with Dxperimentg and Conclusions

In this section the theory for the thermodynamic func-
tions and the radial distribution function developed pre-
viouvsly will be compared with experiments., The radial dis-
tribution function will be compared near 1 atm. with the
data of Eisenstein and Gingri cb( 2 In the thermodynanic
coriparison, the equation of state and the internal energy
will be the two key quantities to analyze. From them, all
other equilibrium properties can be evaluated through thermo-
dynanlc relations (e.g. the vapor pressure curve tabulated
in this section). Argon has been chosen as the fluid with
which experimental comparisons are to be made, since it is
a nonatomic fluid for which classical statistical mechanics
ought to be applicable, and since a great deal of data has
been gathered ébout ite The comparison, however, would
work out equally well for any other fluid obeying the law of
corresponding states with respect to argon.

(4 Comparison of Thermodvnanic Data

The thermodynamic comparison aepends upon the choice of
& and & which are to be substituted into (7%). Three sets
‘of these paraneters were thought to be signiiicant, and the
comparison has been carried through for all three. One of
these sets is that given by ilichels for the complete

Lennard-Jones potential (39,42):

EL = /6S5.3 / e
x /0 .eA-?e (86)

a, = 3.4#0s xs0 %,

These two parameters were adjusted so that, for a reglon
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near roorn temperature, the calgulated and exverimental second

er

the second virilal

o
D

virial coefficients for argon agree, W

2

coefficient was calculated with the complete Lennard-Jones

a were brought into corres-

¢F

potential (39,42) and where the da

}, -

nondence by the method of least squares. However, due to
the modified Lennard-Jones potential (43) used in our theory,
the calculated second virial coefficient is different (78).
Thus, the more significant parameters, @y and €m , would
be the ones where the nmodified second virial coefficients are
brought into agreement with experimental data. What was
actually done is almost equivalent to the above suggestion.

Ayw and €M were determined so that at @€ = .60, .80, and 1.00
the two theoretical virial coefficients coincide as well as

the criterion of least scuares pernits. 3v nlotting log b
- J & & )

against log ﬁE‘ , Tthe shift necessary to make the two curves

Enm QU
colncide determines the ratio of g and : .
€ Qe
Em
— =117 ) Q.
= . Q = LB EG g (87)

These two ratios, as a matter of Tact, bring the two curves
in good agreemént all the way down to B& = .20,

The third set of parameters 1s fixed by the requirement
that the theoretical and experimental critical volume and
temperature be brought into agreement. This causes the cal-
culated critical pressure to be in error (56.6 instead of
45 atm). HNot too much reliance, however, can be placed upon

these values, Q. and € , because the error introduced by



s
the incomplete knowledge of the radial distribution function
and the uncertainty in the method of location of the criti-
1,

cal point might shift the theoretical critical point consi-

derably. The table below compares the three sets of values.

T4aBLE IX

Different Choices for the Parameters a andi:

, Tt Va? c. M € cat,
tlichels' complete 2 .
Lennard-Jones potential Na_ = 23077 NE = 237.84
liodified

. P 3

Lennard-Jones potential A/a" = 18.569 NEy = 278.56
Critical 3

point adjustment NMa. = 30,298 AJQ; = 209.37

A comparison of pv/NKT)ca¢culated and experimental)is

illustrated below for two temperatures and the three sets
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10

Iy

B)

c)

_72_
A T2 kel e
TARBLE X

Conparison

(&, Qo )

Wichels!

1~ (-]

G g ¥
(16) .

=1

11
]
\n
O
Q

calc. expt. % diff. calc. exphe
. 982 « 925 + 6,2 1,290 1.161
1,186 Lol g Bsl 1l.714 1.486
L 907 2.138 -10.8 2.776 2.556
2.586 3.661 -29.8 3.644 -

llodified Lennard-Jones potential ( €M, Am

280 T = 150" ¢

calc. expt. % diff. calcs expt,
.841 . 084 -14.% 1.199 1281
. 943 Ls 510 -37.6 1.557 1.937
Critical point adjustment ( €e, Q¢ )

i e T = 150 C
calc. expte % diff. cale. expte
1,092 « 909 20.1 1.361 1. 057
1.374 . 978 4045 1.834 le271
2.2i7 1.362 6248 2.974 1796
2.952 12915 . B2 3.889 2.345

& GIFT,
311,71
15.3

% diff.
6.4
—1906
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The Ilichels @, and & agree best. The curve calculated
with his parameters has to be moved in the direction of the
paraneters for the Lennard-Jones potential with the hard

core (Qa, Em ). At i%é‘relaﬁivg’hiﬁh tenperatures (1ow/?£ )

the radiel distribution functions ought to be very good and

the deviations can be attrivuted to the superposition approxi-
tion, but also partly at least to the form of the potential
used. At high tenperatures, molecules with the modified
Lennard-Jones potential behave essentially as a van der Waals
gas with only the volume of the molecules themselves excluded.
Probably at these temperatures the collisions are actually
interpenetrating, and thus the modified Lennard-Jones poten-
tial does not represent the actual situation. Therefore, it
appears reasonable that the best a and € for the equation of
ould lic somewhere between @e, &« and Qm, €n .
4 comparison of vapor pressure data was also carried

out. Datacre given in Table XI for log p vs. 1/T for the

experimental points and the three calculated cases.
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TABLE XTI

Vapor Pressure Comparison

(14)

expt. llichels lfodified . Critical

1000/T log p  1000/T 1log p  1000/T log p  1000/T 1log p

6.635 1.681. 5,796 1.914 4,984 2,090 6.632 1.771
6.772  1.628  5.962 1.828 5,127 2.004 6.822 1.685
6.977 1.554 6.144 1.721 5,284 1.897 7.030 1.578
7.223  1l.466 6,376 1.626 5,483 1.801 7.296  1.483
7.555 1.346 6.633 1.488 5,705 1.664 7.590 1,345

84157 Iy

3
2

\O
S
(8]
O

e
}_J

o

dd»

N
O
O
e

O
©
(@

The calculated curves are all straight lines, roughly in
agreement with experiment. The critical point adjustment
agrees best here, since we are comparing data near the criti-
cal point.

A comparison of the excess internal energyv in units of
cal. is i1llustrated in Table XII for two temperatures and

the three separate values of the parameters.
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10
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10
20
274
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TanlE XII

4

4

xcess Internal Energy Comparison

£z

A) lichels ( &, Qu)
7 & 00 T = 150°¢
calc. exptgl7) % gift. eale. expt.
445 399 11.4 431 359
729 625 16.5 717 560
1163 918 2645 1153 782
3) Ilodified Lennard-Jones potential ( €m, @m )
T = O T = 150°C
calcs exph. ¢ diff. calc. expt.
30 504 540 510 453
860 788 Vs 844 694
C) Critical point adjustment ( €, Q. )
T =0C T = 150°C
calc, expt. % diff, calc. axpt.
387 317 22,0 377 285
638 497 28.3 629 447
1020 740 37.8 1013 656
1282 882 45,3 12773 764

~
o\

r\
l ol
L)
L}
®

—
no

@
NS

B
I
wn

% diff.
32.6
40.7
54.3
66,7
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The modified Lennard-Jones adjustment brings theory and
experiment into closest agreement this time. The Michels
Q, and €. follow closely behind, whereas the agreement is
worst for the critical &, and € . Significantly again, the
discrepancy is largest at the higher teuperatures with the

hard core potential of interaction, confirming the suspiclon

that the form of the potential is inadequate.

B) Comparison of the Radial Distribution Function

1t would bpe desirable to have a radial distribution

function near one atiiosphere to compare with the Eisenstein-

v d ; 1 ; ’ ’ N v & ; "
Glngrlch(*l) experimental determination of this function by

means of x-rays. However, as Figure III shows’solutions

i |

have not bheen obtained for small enough volumes. The solu-

K doits 1

tion at p* =.074 was the last one which permitted the calcu-

3 |

letion of a liquid volume. The p* corresponding to one
atmosphere can Le calculated once a choice of € and @ is
made. This p* is very small for any reasonable choice of
parameters. For example, for 9 and € s I* = 003 corres-
ponds to one atmosphere,

In order to have a radial distribution function at one
“atmosphere, 1t was decided to extrapolate to the X value
which corresvonds to p* = .003., This value of A\ could not
be determined from a power series extrapolation of the dome
of the two-phase region to low p* values, since the points
of the dome do not form a smooth curve. The aslternative

procedure adopted was to make the ratio of the critical

volume to the normal liquid volume the same in the theoretical



and experimental equations of state. This yields A = 13.128
for the liquid at one atmosphere. As Pigure III shows, this
value does not disagree with a reasonable extrapolation of
the done.

“ . %’, and ¥ at this value of A,were then obtained
at each value of x by separate analyvtic extranolations with
a cuble polynomial in X,. This polynomial was so determined
that it had the correct value of the Y’functions at X = 5, 10
20, and 27.4. The extrapolation formula was checked for Y.
at X = 33 and proved to be in error by a maximum amount of
about 10%. The extrapolation of ¥ at x = 1.00 then allowed
che X value to be determined as 37.297. For this wvalue of

de

N the hard sphere integral eguatlon is above its eigenvalue,

(18\

24, . The functions ¥ , ¥ , and ¥ are recorded in

high X value and possibly non-integrability of the radial
i i+ o o

It then becane necessary to deternine uke/?f value
which would correspond to the one atmosvhere isotherm. By

Gopting se”@ru‘lgi values and forming the corresponding

O

radial distribution function, a radial distribution function
was founé which gave p* = .003 when substituted in the equa-
tion of state (72)., The appropriate value of(?f was «843.
able XIII gives the radial distribution function for the

value of {32 = ,850, which is near enough to the correct one.



TABLE XIIT

The extrapolated functions Y/ which determine the radigl
distribution function as a function of x for the )\. value
of 13,13 in the Born and Green equation and the correspond-

ing radial distribution function for f € = .85,

V(x)= x Log G(x), X3/
WY(ixr) = Hlx) +?§?) ¥ (= +([&s) Y (w)

x to¢  wu e
1.00 1,044 -1.015 .021 1.217
1.04 1,045 -.284 013 2.185
1.08 1,043 .059  .009 2.769
1.12 1.012 .212 004 2,907
1.16 «949 242  -,014 2,683
1.20 .878 207 -.024 2,373
1.24 775 151  -.035 2,030
1.28 639 .088 -.035 1.713
1.32 469 L037  =.044 1.427
1.36 292 -,018 =-.042 1.198
1.40 .100 =-.078 -.042 1,002
1.44 -,094 -.114 =-.043 857
1 .48 -.292 -,146 -,031 o744
1.52 -.490 -.153 -.026 +657
1.56 -.642 -.187 =-.009 +596
1,60 -.805 =,165 =-.002 +553
1.64 -.930 =-.168 018 <524
1.68 -1.024 -.142 041 515

1l.72 -1.083 -+.120 061 516



1.76
1.80
1.84
1.88
1.92
1.96
2,00
2.04
2.08
2.12
2.16
2.20
2.24
2.28
2032
2,36
2.40
2.44
2.48
2.52
2.56
2.60

2.64

~3J
N

TABLE XIIl(conts)

¥
'1.105

-1.060
=-+962
=833
-« 647
=412
-.131

177
0419
615
«740
«820
«8563
«848
783
684
«568
0393
«251
063
-.103
= 6272

-0417

%
“0085

- +.066
-.,064
=035
~.028
-.021
-.015
- +007
.083
«166
211
«209
179
112
« 049
-,016
- 078
-.116
-.183
-6213
=231
- +249

-.259

532
«559
« 597
«660
o737
845
«980
1.130
1.297
1.447
1.542
1.577
1.552
1.480
1.384
1.281
1.186
1077
<990
« 907
«848
«800

778



2,68
2672
2676
2,80
2.84
2.88

2.92

2,96

300
3.04
3.08
3.12
3.16
3.20
3.24
3,28
3652
3056
3040
344
5.48
5052
3006

360

Q)
-80=-

TABLE AI11 (cont.)

'
- +554

- 0644

- 0724

=-e753
-.756
-e715
- .640
~+545
- 4086
= 0257
-+095
064
19D
0356
453
«530
«568
«586
565
«524
443
372
242
161

4

- ¢207
-e174
=134
-.088
=036
.022
.078
<135
173
222
0259
o277
«302
<283
0242
«202
«149
085
.012
- 067
- o127
-+203
-.244

- Q504

%
.005

.053
.111
143
.154
.154
.154
.148
.128
.128
114
.091
071
.050
024
.005
-.024
- 061
-.096
~ 125
- 0142
-.149
- 0147
-.139

7

763
»758
«760
772
«788
.816
883
«897
0946
1.008
1,069
1.124
1.174
1.211
1.232
1.240
1.226
1.200
1.160
1.116
1.069
1.026
980

946
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TABLE XIII (conte.)

w
023

-,073
-.186
-.261
- 347
W ALFL
-.446
- o443
-.422
-.399
- .343
-.279
- .203
-.124
- .039
. 047
140
.208
266
301
318
322
+302

279

¥
o 0501

= 6525
- 0298
- +302
=242
-+191
-e11%7
- .066
.002
073
o127
s 120
0241
«278
« 205
<311
281
257
222
176
092
«U43
=,012
-.082

A
-ol21
-.116
- .084
=039

005

.042

087
.126
0152
163
«159
«155
142
121
095

072

047

022
- 4009
=037
- ,064
=109
-.128
=151

7

«916
«889
874
«865
865
«870
883
<902
« 925
947
0971
999
1.026
1.049
1.071
1.089
1.101
1.108
1.108
1.101
1.082
1.064
1.045
1.021



4,60
4.64
4.68
4.72
4,76
4.80
4.84
4,85
4,92
4,96
5,00
5.04
5.08
5.12
5.16
5.20
5.24
5.28
5032
5.36
5.40
5.44
5.48
5.52

) Dot

TABLE X I1T (econt.)

¥
240

.182
135
0073
«005
«055
109
0144
«183
«210
0219
«217
204
«178
.151
118

"0071

«039
«006
033
066
«099
«120
«130

¥
- -124

-.166
-+.209
- o244
- 0254
- 0252
- +236
-.224
-.182
-0135
-.084
- +053
=+0056
036
090
132
0169
0186
212
«209
202
0184
«155
<120

A
-0146

-.144
-o.144
-.123
=106
-o071
-.038
=-o01%7
008
-041
082
111
«126
132
+135
127
«116
098
«087
066
043
.016
=019
- .048

7

1.006
986
«969
904
941
935
933
«9381
935
« 942
«955
«965
0977
«990

1.004

1.017

1.029

1.037

1.046

1.049

1.051

1.050

1.044

1.036



X
5.56
5.60
5.64
5.68
5.72
5.76
5,80
5.84
5,88
5,92
5.96
6,00
6,04
6.08
6,12
6.16
6.20
624
6.28
6.32
636
6 .40
6.44

6.48

~83=

TABLE XIII(cont.)

“
.142

.142
.128
116
093
.070
.060
031
004
.025
041
064
.082

.088

.085

085
«080
o074
070
»053
«041
023
006

. 006

¥
.079

«040
008
«043
076
+080
123
144

”. 0142

0146
«151
134
111
.079
064
035
«000
022
045
.060
090
«093
«105

117

“
- 4077

- 095
-.112
-.124
-ol34
-.115
=109
-,091
-.068
- .039
-,018
+000
029
053
«070
»088
093
.099
091
085
.080
062
045

«035

e

1,028
1.019
1.007
«998
«988
~ 986
0979
0973
0971
$ 971
«970
971
975
«981
«985
0992
« 998
1.003
1.0056
1,009
1,015
1.016
1,018

1.020



652
6,56
6,60
6.64
6.68
6.72
6.76
6.80
6.84
6.88

6.92

6.96

7.00
7 .04
7.08
7.12
7.16
7.20
7 .24
7.28
7.32
736
7 .40

7.44

[0}
-84-

TABLE XIII(cont.)

¥
.023

«035
041
083
053
.0563
. 053

.047

<041

029

023

012
- .006
- .006
- +006
=-.012
-,018
-.023
-.029
- 029
- 029
=+029
-+029

. 0025

A !
0111

.097
.085
.062
.045
.027
.015
-.008
- +039
-.043
-.049
-.060
- 060
-.064
-.076
-+070
- .064
- .047
-.035
-.029
-.018
.000
.012

.023

%
.012

- 006
-.023
-.041
-.,058
- 064
=070
-.070
-.070
-.064
-.053
-.047
-+.035
-6018
- 006
006
023
0356
0041
047
0563
.083

047

<041

1.019
1.017
1.015
1.011
1.007
1.004
1.002
<999
994
.992
.992
<990
.988
990
.989
991
902
.995
996
997
<999
1.001
1.002

1.003



7.48
7652
7056
7.60
7.64
7.68
7.72
7.76
7.80
7.84

7.88

TABLE XIII (cont.)

%
-.018

-.012
- 4006
000
+006
012
.012
012
012
.012
.018

¥“
.029

035
041
«041
«041
«041
<035
«029
023
.018
.012

<
035

029
023
012
« 000
- 006
-,018
-,023
-.023
-,035

- 0055

ﬁ/

1.004
1.006
1.006
1.006
1.005
1.006
1.004
1.003
1.002
1.000
1.000
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The value of/3£ of .843 seems badly off. If the iso-

_L

therns in the two phase region, Figure III, were to be
extrapolated to this low p*, a value of around 1.00 would
result. This discrepancy can not be due to the fact that
the A value of 37.297 is higher than the eligenvalue of the
hard sphere integral equation, since an extrapolation of
the radial distribution function to the eigenvalue itself,
34.8, would make the B& value at normal conditions even
lower. It must be concluded that no great reliance can be
placed on the extrapolation, since the rate of change of
the W functions is determined from the lower A values.
Iiear the eigenvalue one night expect a very much faster

change in the distribution functions than the previous
values at lower A\ would indicate. Ve thus have linited our
experimental comparison with thermodynanmic data to the
higher pressures where the radial distribution functions
have been conputed.

e

Figure IV compares this extrapolated radial distribution
function with experimental radial distribution functions
near one atmosphere(ll). The value of the characteristic
distance, a, was so adjusted that the first peaks coincidej
that is, a = 3.274 g. The agreement is fair if the scatter-
ing of the experimental data and the extrapolation used are
taken into account.

All these radial distribution functions for fluids with
intermolecular potentials of the Lennard-Jones type (42)
-

"irst and largest peak at the nminimunm of this

potential near x = l.15.4s x increases, the curve goes



=f
through oscillations of diminishing amplitude. Succeeding
neaks represent next nearest and further neighboring mole-

4
cules)31nce g(x) is so defined that 3, g(x) specifies the

local molecular density at a distance x from a specified
molecule. At large distances the function approaches unity,
indicating no correlation at all. For x<«1, g(x) is zero
since the hard-sphere core of thie molecule at the center
excludes a second molecule. It 1s also characteristic that
the peaks are sharper for lower temperatures (hi uﬂer/gf)
and smaller molar volumes (higher A Je Figure I illustrates
the first point, whi
Finally, avove some value of A no inte
obtainable. This point is identified

ik o
LO &

48 Tthe parameter X chang from values corresponding

4.

gas to those corresponding to a liguid, no abrupt change

-

can be observed in the radial distribution function because,

A &L

as was pointed out, the restraint of homogeneous dernsity was

In conclusion it can be said that the theory developed

renresents the experimental eguation of state and interna
energy of argon nmoderately well over a wide of volume

ané -temverature. It is hoped that this agreement will be
better once the exact radial distribution functilons
are used. TFuture plans to complete this project would in-
the radial distribution functions, at the
veliues GEA where approximate radial distribution functions

. 1 4.9, . o - S g5 Lo Aam FE ki g
are now available, by the methods suggested in section III

(page 17, this thesis), and completion of the solution at
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Appendix A

Details in the Derivation of the Integral Bouations

(4) Born-Green Eouation

To transform (28) into (29), the procedure followed is
to rewrite the gradient in (28):
R.. s

R dR Eeo?/? )<Ru. ﬁ V(?...)]

12 (88)
(& 5) C¢s)

/‘,D /\/ (Ra;) R &’ (Ra3) - l]g (R»;)a”\)g
Bguation (88) is dotted into the unit vector in the 1-2
direction, that is, into R. * On the left hand side, the

2
tnlt vector dotted into itself is unity. On the right hand
side the unit vector in the 1-2 direction dotted into the

one in the 1-3 direction is:

[FY ]—2-:3 ‘R; + 'Rl; L R:;
= (213) =
oLl 2R R 2 (89)

vhere the law of cosineshas been applied. In the above

integral, molecules one and two are fixed and an integration
over a nmovable nmolecule three is performed. The elliptical

or the bipolar coordinate systems are, therefore, natural
‘choices. In elliptical coordinates, molecules one and two
would be at the foci of the ellipse. For bipolar coordinates,

LA,

the following drawing illustrates the positions of the

molecules:
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The volume element for this system of coordinates, which is

rsed OLJ; LS

:f‘ﬁ,, [ﬁoy 3 (R.)+ BV ( R.,)]

a1
Bet (91)

f olR,3 R,,[g“’(m,) ][ dR.,%“’(R.,)V(R.a)[R.x "RiRE

lE.szal PR YR

K \1_,, the definitions of i and

V(x) ¢ be evtended,

‘}mc- a) = ?m (Ris)
\/(-'Ru) = V(Ry)

11 P s £ Llida aviEaradam Se atr o AdA Sedtacmands 1w (OQF Ly an
Le erlian O L2ILS @HLension 18 811 OGG JlltesZrali 1A (L LOF
N S S St RSN s 8 “2 ™ o o 57 e Y A onne s
LIle 1IceIravion oOver R 3 & i 23 o 10 praoceed g G g 10440V ENT
P T O 5 Pt ks e
clienge 9 L1¥ILLE As Cayried OouLs

Co

I Ru_i- Rz3 ()

= + = =
IR,, - J J J J ok
R‘— 121 (RIL—RIQI o 'Rl;"Rz;‘ Rn."’Ra_; . </~/>



’ ey
£ skd L b/ 9 * & ure
- e e N 4
Ll § 12 T1C roviaec
Lde JImies od nEegr LOIlL are cCcrosen as CY anc 12
. c2)
%= nt 7 Tt hand <id raniache T e < 2 t“"
&4k Wy WL LT LA U 418 SLGe alllslles sSairnce Lo U /
Al PR g R (O T T e i s R o ey T T ey
end V is zero. This in tegration over Nwa can actually be

T e O il mihde 7 A . P
carrieq oo on wne Figne Aanda sice

tion 1s interchanged between Rus and Rua

Log ?“’(R.;) +3 V(R.) =

T ﬂp/ dRas Ras [9“’(12,,) ] f F;‘R., j :R., 9" (Rs) (o)

R'z. Ras)

V(R")[ e [a dR-sy"’(R-ovm.A[ = R"]
Rl
The Tollowing drawing

o TR —~ < - .-'
ing illustrates the area of integ

gration,

e

2 tilon

("\
D]

o
'r—'o
C
@
.

J
ct
ot

13

Log g (Ra) +(3 V(R.) =
e[ AR,y Ras [9% R0y - T{ - | 4R

l RIL‘R?.;I
R’3 + Qz;

8<;:(Ru) Vv (R.,)j o;q R, tRQ., R,

3 / R‘3"Rzz
+j_ ARH 9" )(Ru) v (Rug) 0‘ 'Ru R't +'R,3 - RIJZ‘

Rﬂ. *R‘L’ Rv;_ R,L

£, 7% 5—:'\
P

14 |#= 2~ i 4 N * e 5

faking advantage ol the parity 92 ) Lt1on Che compination
+ SO Ta 9+ (OFY ! NYT ? ' T ¢ 2 2 Ta

OX LWO 1ntegra.l N \JJ s Uus JJ Clic LELL £ $-y e ol da DL



m(}’}_

"%’9'“)(1?11) + p V(Rlz.) = = Trﬁfw_/ AR’S

o Rz +Ra
\ (£9] (&3 = : k< - (96)
Ras[?' (Ru)"]j';degl g' )(R':i)vl(pm)/‘ R"'+R:.3 ~ 3 dR.
u."RT-B Riz o '

The integrstion over R|; is carried out next. The result-

ot
!J

)

,._J-

ing equation is identical with (29) if Raz is iden ed

: Ris as Y .

as ¥ , Ra 2s R , and finall

(]

(3) Kirkwood Houation

Starting with (36), a.change to bipolar coordinates, as

illustrated previously, is called for in order to obtain (37).
This is followed by an integration over the coupling parameter
between the limits zero and F . At ? = 0, the left hand side
vanishes, since, if there is no coupling between molecule one

%

and the rest of the moleculs

0

, there can be no correlation;

that is, g is one and of course the notential of interaction

0

&1y
inus

Lz 7 (R, F)  (FEVCR) =
W o IRu + Raz | 97
- ilé'f_/ / A FdRs [g“’( Ras)- | Rug) dRa R V(R,) 1 i?.; )

R.
lR-:." Rz;l
A change of limits analogous to the one illustrated in (93)

re

¥
A

: 7‘;;(P,f)+ﬁf\/(?)’
) (¥)) b r ‘
- T (€] - (2), - (96>

where Ria has been called R ; Ris=y , and Riz =t (37)

11 +ea
Ll UD

[62]

ot

is obtained from (98) if the variable r is changed to =-r
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*rals. The two inft

D

in one of the inte crals can then be com-

o
]

Je

[45)

-
Y

bined due to the parity conditions (9
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Appendix B3-=1

Other ilethods Tried

i solution of the non-linear integral equation (40}
sotential (42)., Since no

mathematical theory was known to attack the problem,

the simple numerical device of a direct iterative procedure
was first tried. Values of the two parameters were chosen
appropriate fd the liquid state. The process of direct
iteration starts with a trial radial distribution function,
gau(x). The kernel is calculated with it, and the convo-
lution is performed so as to obtain ﬁkaﬁ, the radial
(®)

distribution function on the left side. This 91_(:) is now
substituted in the right hand side of (40) as %Pn
obtain gf(xj on the left hand side. This process is re-
peated till the solution is found; that is, till the

function substituted on the right hand side reproduces it-

nrocedure diverges for wvalues oi the paraneters significant
to the liquid state. If the first trial distribution func-

true solution, it might be suPaised

(7
e
O
=
o3
=
(€3]
<
o}
H
~
-
—
(¢}
o
3
l._.l
A
S
T
e
i)
@

" that such a procedure should converge. Iione of the initial
~BE ¥(x)
: the radial

7

trials substituted (i.e.: g =1

e
4}

distribution function used by Kirkwood and Buff(7>; or the
experimental radial distribution function(ll)) proved to be

within the region of convergence. It became thus evident



he radial distribution function occurs in a very

sensitive way in the right hand side of (40).
L S g | £ " - ~ =
The only hope Ior conver ce of a direct iterative

procedure, therefore, lies in rearranging the equation in

4

such a fashion thatv the right hand side is relatively in-
sensitive to the radial distribution function. Such a
possibility arises if one recalls the convolution theorem

of Fouriler analysis, which converts (40) to:

F(R) = }\I,." Y(k) G(k) | (99)

The Fourier transforms are defined as followss

A

Fi = [ e efey gr0-pe YCO] dt -

Y(k) - :e“‘“[t(gw-f)]dt

(101)

G (k) = &e"“ RIOAE

These Fouriler transforms were calculated with th

I.B.l. equipnent and the file of punche for

Q ’)
Q
4]
P
u
169!
o
U

®©
3,

;ion procedures. Direct iteration amounts to



(‘nﬂ) (w) (m;
Fir - 2 Y (k) (k) (104)

That 1 a trial g(t) is used to evaluate £t | 2(t)-

Th S, trdisl elt) used t valuate t {g(t)-1

K(t), and their respective transforms. By (104), F(k) can
be calculated. The cycle is repeated after an inverse
transform of (k) vields a new tri >(t). This prc dure
transfo of F(k) yields a new trial g(t) 'his procedure

failed to converge. Direct iteration also failed for (105),

(107), and (108), three other forms of (99) derived below:

(ne + F (k)
h =
Y ( ) )o G(m)(h) ( .

1
O

\7l
N

F(R = Y(R) = 22 \(k) G(R) - (k)

(1063
Y Ty = Y (R)- F
(107)

>\o ¥ S)
|- 2 G (k)

Multiplying by %fG(K}

e Y T (R)-F TR -
F™(k) - — Nm[ e~ o

Y . . S ke oy L. 4
(105) was expected to be less sensitive to ?’ than (104).

The sensitivity in (107) and (108) lies in the denominator.
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)

-

It approaches zero for certain values of k and for values
of )\. significant to liquids Indeed, for the case of a
hard sphere liquid,Kirk Hooq( ) has shovn that the denomi-
nator vanishes for values of )\. slightly higher than those
corresponding to the liquid state. This means that a non-
integrable radial stribution function is obtained. The

X

smallest value of

ot

any value of

k for which I'Z“’-_’-G(h):

is then interpreted as a transition point.

A new attaclk on the problem had to be devised and the
method of steepest descents looked rost promising. AT
first this netrod was set up in its most genecral form. Let
us defline

D”( .

x) = G %) - Fa (109)
the difference in the radial distribution function between
left and richt hand side of (40) as the result of one

(=)
direect iteration with the initial trial ifn . 1he object
then is to introduce a new radial distribution function
L~
ﬁ}k(x) so as to make the total absolute difference decrease
most rapidly; that is,
(™) J (e
X = D T3y d (110)
- X
A (xo
should become as snall as possible. The method of steepest
() ' ()
descents states that 9& differs from Qh by an amount

2

(w
of X

proportional to the slope

?/RM( x) =

®
]

(wy

= (x) +

oX
Dg{“(x)

()

P} (111)



wherer’is some appropriate constant. if‘jc were a mono-
I % el b I LS N B - £ =] 1
tonic function of g, (x), this method shoul
gver, to calculate the above derivative proved to be a very
cumbersome procedure. Furthermore, to find the best value
of’X’would essentially be a trial and error operation. To

be p?ecise?eﬂmﬂlx should be a function of x if the descent

to be truly the steepest.

-
(48]

’

Since it is not possible to set up

L) ]

the method of steep-
est descents entirely rigorously anyway, procedures were
sought which might be adaptable to I.B.il. machines. We

rnust introduce at least one parameter which can be adjusted
so as to decrease X . The more parameters are introduced,
the more complicated the procedure becomes, but the more
rapidly will the solution be approached per cycle. The
speed of convergence is not as essential as simplicity if
the procedure is to be put on I.B.li. machines. Thus & one

parameter system was first explored as {ollows:

F o « A7g - (1-47) 00

(112}
() % ) () 2
X S [8700 - F700] el .
1) (~) )
If g/ = % can be rvewritten as
WA (=) (e €
X f [m]o(x* ol /[D (x))-D()x)]dx-
(113)

(wy Cw) Cwel)
24 OD h)Dbg-D “ﬂdx
The value of oL which mininizes X is found to be:

Sy SO [0 - DTdx
fw[D‘&’;) — DLM’(X)] dx : (114)

i



= 1

It can be shown that this method converges except in some

; B : . gt . :
singular cases. If this optimum value of & is substituted

(v

into the expression ford~ ve get, substituting X
(wel) (~) }
x(m (..‘) {[ D‘ ,(x) D (x - D (X)7dk
(mast) (=) *
f [ (x) — D (o] dx .

Since the last term in (115) is positive,

() (w)
X 7« X (116)

(™)

I~

O

This means that the distribution function has been improved.
Cm)

- , 2 1o S e s
It must be recognized that ¢, the 1terate of 9;

only apyroximately equal to:

)

°Lw 9(:”) * ('“ JW) 9?‘. (117)

This is the method of solution actually employed. Ilowever
it proved possible to simplify the scheme even further by
not having to calculate an A value.

The above scheme is almost identical with the one
developed in the paper given in Appendix (D). The method
given there might however be inmproved by not using the
entire inhomogeneous term as the first trial. Such a
starting function might prove too crude or possibly make
the convergence too slow. If no suiltable initial guess can
be found, the sure way to solve this linear integral equation
(4ppendix D, equation (32)) is to use the method of Fourier

transforms (99
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Appendix B2

I.3.ll._Procedure

(A) Introduction

Utilizing the expansion (44) in powers of B€ , it is

be noted at only three basic operations are required

1

to calculate all terms in the series iIH‘q/(x). It proved

possible to adapt I.B.l. machines to all three. However,

there still remain a number of operations simple and easy

enough to carry out on desk calculators, although they

could have been mechanized also. Whether to do a problern

on the desk calculator or the I.B.FH. machines was dictated

mainly by considereations of how tedious the calculation was

and how often it had to be performed. Thus, for example,

in the inhomogeneous part of the integral equation (508)

&

e
)

convolutions have to be carried out, besides such trivial
operations as multiplying a function by a constant and addéing
up all the various functions. All the simple onerations in-
cluding the preparation of the two functions making up the
convolution are best done on desk machines, since the punching
of the I.B.Il. cards and the subsecguent integration to get

the kernel on I.3.l7. machines would consume almost as much
time as the entire hand operation. Iowever, the convolution
itself is very tedious and occurs repeatedly in the inhomo-

geneous parts of the integral equations. It therefore paid

to work it out on I.B.l5. machines.
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Do

Once knowing the inhomogeneous part, the iterative Pro-

cedure described previously (69,70) can be started. Since

one cycle of this lteration lasts roughly half an hour, it
would have been awkward and very inefficient to stop the

machines so often and make some hand calculations before

5

nroceeding to the next cycle. Thus the entire operation from

(‘) Lnel)

(O to q:LX) was wired up for the machines., This wiring,
due to the limited number of ovnerations that these machines
can perform at any time, was split into two parts. The first

part involves convoluting the hard sphere kernel. Thi

&
B
o
o
.
o
i.._l

Tfunction never changess; but it 1s convoluted with a function
rom ifteration to iteration. Due to the simple

nature of this kernel, this convolution could be done by a
, o

more efficlent method than the convolution occurring in the

i

inhomogeneous part. The second nart of the iterative pro-
cedure consists of algebraic operations to obtain the next
trial function.

(B) Convolution Heeded for Inhomogeneous Part

o

The detalls of the actual wiring for the plugboards
which perform the above calculations are included in Appendix
B-3. It seems worthwhile, however, to describe briefly the
principles involved in setting up the wiring diagrams. The

convolution in the inhomogeneous part of the integral equation

is of the form:

e oo
f_R(s=x ECo) ds = f\m{e(t) E(x+t) 4L,



Both K (s-x) and E(s) are prepared by desk calculators and
punched out on I.B.l. cards at an interval of .04 in the

reduced units. This choice of spacing depends on the desire

to have the distribution function at such cloge point a180
with this interval, the trapezoidal rule of integration is

&

accurate enough in the above convolution. &s an additional
factor, the hard sphere distribution function, which 1is in-
volved in the higher terms in the expansion, had already been
evaluated at this interval. <The .04 interval was chosen in
the hard sphere radial distribution function for the same
reasons plus the fact that the Fourier analysis cards used
there were convenient for such a spacing.

The machine takes these functions, K(t) and E(s), and
for each value of x, at .04 intervals, carries out the inte-
gration indicated in (118). This convolution or integration
has to be performed only for x 1, since the distribution
function, due to the hard sphere core, is zero inside one.

We proceed by reproducing one function, let us say the kernel,

as many times as there are values of x for which one needs

o
(g1

the convolution. Then, to perform the integration for any

Ty

one value of x, the two functions are multiplied at corres-
ponding values of the argument, the product is printed on
the cards containing the kernel, and finally the products
are summed. This is essentially the procedure followed
except thaﬁ it proved possible to economize by doing four

R

valuves of x simultaneously. Thus, the cards contalning the

41 £

kernel have that function punched on them four times in the



following fashion:

Hep resentaulvc I.8.1l. cards in the convolution of the inhomo-

Card s# First Second Third Torth Fifth
Field Field Pield Tield Pield

—
ct

K(t)
\

04 K(t#.04) (%)

~ \\\\‘

2
3 £4.08 K(t#.08) K(te.04 (t)

\\\ \\\\\

4 t#.12  K(ts+.12) K(te.04) K({%)

e

~
K(t=.,08) E(te,04)

~
e

)
K(ts.08)
5 t¢#.16  K(ts#.16) K(te.12)

where t starts at that part of the negative t axis where the
kernel vanishes. The above operation, called spreading, ends
when the kernel becormes negligibly small at the positive t
axls. This spreading is accomplished by gang punching E(t)
on the neighboring cards as indicated above by arrows. It

is this set of kernel cards, called a deck, which is repro-

ltced nany times. It is labeled each time by a succeeding

deck number starting with deck number one. This identifica-
tion mark allows the machine to know with which value of

E(s) the‘Kernel has to be multiplied. That is, the corres-
ponding argument of E(s) is obtained by adding [O. 6(Deck #—1)+i}
to the values in the first field. Thus for deck number one,

one is added to the entry in the first field. So, in the

second field, the convolution (118) is performed for x = 1.0Q;



vt 5
rd field, the one for xe¢= 1.04; in the fourth,
the one for x = 1.08; and in the fifth, the one for x = 1,12.

In the second deck, according to the above fornmula, 1.16 is

added on to the first field in order to find the argument of

}.J

E(s), so that the second field will integrate for x = 1,16;
and so on, till all the desired values of x are covered.
The argument of E(s) obtained .by the above formula is punched
into the cards containing the kernel as they are prepared.
The one set of cards punched with E(s) is next matched up
with this number by the collator for all decks of the kernel
cards simultaneously. That is, each E(s) card is sorted with
all the kernel cards in all the decks containing the identi-
fication s. The 604 calculator then carries out four rultipli-
cations per card and punches the four products into the kernel
cards. A sort on the deck number and a run through the tabu-
labor and summary punch vields the final result by »rinting
and nunching four sums at the end of each deck.

(C) Iteration

The convolutions occurring in the iterative procedure
with the hard-sphere kernel could e handled in a way similar
to the one just described. Illowever, the above method is
wasteftl of both time and cards. An effort to improve it
was successful because of the simple nature of the kernel.
The advantage the hard-sphere kernel offers is that, by
partial integrations, the convolution, L(x), can be reduced

q

the function, 1(s), to be
(=)
convoluted with the kernel. 1(s) is of the form 3:%ﬁ « The

-4

to the formation of integrals o



N - - o b H — - sy ] 4 = T :
partial integrations are carried out as follows:

L(“) "'/ E(X-S)a—l]-»((s) dsJ

- o0
where x-s is restricted to |x-s{ <[
Therefore

X+
L(x) =[ f(x-s)‘—:]/(s) ds.

X~y

o

Integrating by parts yields:

5 X%y X+)
L(x) =[(><~S) - IjIJ“)/)(- + 2/(x-s)I/€(s) ds

X~y

where s
T Alcs) = f L (wy o o,

:- KB E TR S 5 1 o E . Bl ol -
The first term vanishes at the limits, so:

X+

Lix) = 2{ (x—s)I/(S) Ads.

K=y

Again integrating by parts yields:
X+ X+

L(x) = 2(x-s)T 4cs) /x-/+ 2 / I1%c¢s)ds

=-2 I’I(xu) - 2I;*€(’<") +
y 2I%e(x+1) -2131(""))

where

It-/((s) = f&vf:((w)dw/-
Iaj (s) = fso/ifz;(v[:((w) Ao,

(120)

(121)

(123)

(124)
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The evaluation of these multiple integrals is rnuch more

adaptable to I.3B.ll. machines than the direct procedure for

he

1le convolution, as can be seen from the following integra-

t
tion rules. Let us define

E(()Q = /g()(—lz
A»((x) = (I—E)f(x) = X x) //e(x-l)J

I
Z«é(x)r_i"«fcx) = l——?/kx)-;

- (125)

the following operators:

(’ +Ev E%. )l = €o +l(x—:)+---)
A

D £ o I €

lr-"(y(") -:,~47@0) d co.

Using the well known symbolic equation

-D = /%(l—ﬁ\

and expanding the logarithm)

3
D- A+ 2 4+ DO
o

- A (127)
3

we get

I

-—

) A AT 9 .
A[l + E" + —3—+... ]
resu

Carrying out the divisilon,

2 3
I=ZE-—%-A-,@_ /9L\*+___]

—

—~
fed
nNo
co

St

- .
S GS 1

12 y



3y squaring the above,

I ZZ__ A*———+ O-——é—‘t+-'?7

250
LA
:E: E + 12 FLo0

(130)

3y cubing I,

2 g
I3= Z?D-%A+ g _‘,O-!'—_A—-_.__-.]

2k0
(131)

Z’[(ha)(,..%)] A Z—se(mz) N

o e

240 240 °
Thus

3 i e L(x

Il (x)= £ [ 2 toos 2y Opw).
Tle - L[5 Y. e

0 = % [TZE iy TEF ] s Ol
where h is the interval. By (129), I becones,
accurate up to gecond differences:

R s N ( -F)*
Z 12 24 2_ 12 (—‘2—?-/' s

L leo = ,K[Z;((x) e =15l + HL(x-£) -1():-2-()]
l’-

2p)
I° is evaluated by neglecting terms in the second differences

terms in the first differences in 1(x).
The formula for I itself is not needed explicitly except for
values of x less than one. Because of the factor 5k Cx)gt&e
function 1(x) goes discontinuously to zero at x = 1, and stays
zero till x = O. Thus, for x # 1, the formula for 1° simply

reduces to adding the integral of a constant



100

T U xetom ) =T (x=1)+ m K I l(x=1) (130

J

where n is the integral number of intervals of h away from

-

x = 1. For I3 the above is integrated again, so that:

(

l?(x=/—m«2)=Ii((x=l)+m/£l—1»((x=1) +
em* T (%=1

It is quite essential for numerical reasons to start inte-

(135)

[\l

D
iR

1 i -
bf

ing from the largest value of x towards x = 0. If we

Q

commence at x = 0, L(x) would be inaccurate for large x,
since the dilference of large quantities would have to be
taken in the triple integral (124). S8light numerical errors
would thus be greatly magnified. These can creep in not only
due to the neglect of higher differences in (132), but also
due to the discontinuity at x = 1, if the integration were
started at x = 0. To take into account numerically the dis-

continuity occurring at x = 1, the formula for I1(x)} (133)

Ly

is used for two points below x = 1 in (134). Subsequent

[

to these two points, 1(x-h) and 1(x-2h) are zero,and I1l(x)

1s a constant.

. - e A = ~ 3
utnits of .02 is extrenely convenient. The reason for this
iy %] - i ” % o AR 4 s A3 2 iidar 2
s that with this intervasl the coefficient in front of the
T - Ty Ay 4w -4 whd T+ O T SU—— . KT
I¢ term (132) becones 4 z 10 wnile the one in front of the

- " -

- y o f e & - 3 3 2 —") f -
I3 term becomes 4 x 10 6@ Thus one can add I and 12 terns
the decimal point. Thus all in-

homogeneous parts calculated at a .04 interval in x were
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) o i

interpolated to an interval in x of .02. The brief table

below is intended to make clear how the multiple integrals
were evaluated. The procedure starts with the maxirmum

value of x for which 1(x) does not wvanish.
TABLE X\
Formation of llultiple Integrals

1(x) | X

2 max, . a &
b andy—.O? asb 2a¢b 3asb
8 Xmgx, = 04 atbsc Ja42bsc bas3bsc

Therefore by (132) and (133):
T 4(Xm Ok) = - 02[arbrc, 2!S +L"‘6—a]

24

1°4(x, - o) - (o2)* [(;Lq +b) + =
;«f(xw_'vo‘/')‘-:('ol)s'}z[(gq +l>\+cc:(

. : e "
The operations to form 2I" and 213 were wired up on a plug-

board with 58 program cycles out of a maximum possible 60,

C‘[‘

The actual wiring diagram is given in Appendix 3-3.
Due to the fact that almost all of the possible progranm
cycles had been used up above, the iterative procedure had

to be transferred to an additional plugboard. Again, the

O

=

wiring diagram is attached in Appendix B-3 and the details
are briefly described below. B3efore going into that’how—

ever, an intermediate step is necessary to form L(x). The



e = - - o I a5y 4 = . ey 4 4
previous calculation ended up so that on each card, (that is,

2 3

for a given value of x)721f4?005um1217((%)was punched. It
to punch into each card the multiple inte-
grals one unit removed in x in both the positive and negative

direction in order to form L(x) (123), This is accomplished

by a "backwards'" sort on the units position followed by an-

the tenths position. This brings adjacent to

other sort on

each card with a given value of x, the ones containing x-1

TABLE XVI

Illustration of Sorting Procedure

X X X
originally first sort second sort

3.96 3.80 2.00 /
3'92 loOO
3.9 0.00

7,62

1.02
) o
) e | &~
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The 604 I.B.li. machine then allows one to punch the numbers

on adjacent cards onto the one in the middle (see arrows).
. T : . b 5 G

Those cards with zero in the hundreds position are then

punched with unnecessary information, but these cards are

ct

not used in subseguent steps. The cards immedlately follow-

th
yith a zero in the hundreds position have

4. 5

ing the cards

-t

nothing punched into them from this previous card; that is,
this operation is suppressed. A sort on the hundreé?position
itself restores the cards to thelr normal sequence in %, On
these cards, besides the various multiple integrals, amwe (x)

is punched as well as the known functions ¢.(x), ¥ (x), and

(w) (™ &5)
‘e Cxx so that all the data for the operation to form “ﬂ- (=)

are present (59). The difficulty now encountered is that

not enough space is left on the cards to permit the calcu-~

lations. 4 method had to be devised to transfer sone of the

inTormation and the result of the calculation to another card.
This procedure involves the collator, which intersperses

two blank cards between each pair of printed cards. Let us
now consider the representative trio:
B3lank card 1

Punclhied card A

H R - = - AoV rgna el A=Y 7 s st # 5 R & <
Wwhen this trio is sent through the 0604 machine, each card
b S ) o ki g o I GO e S Ay
soes through three cycles in the Following order: a first
H | - ¥ e &5 i o o 3 . E TV Y
reading station, a punch station, and a second reading statlone

3y

o] ] oL e e o e A% ¥ s e - o P e Bl
Jilen carc & 1s & the Tirst regaclllg statlon and cardé one 1s



o —— = m W) .
at station, the X, v (0, ‘K(x)) amd, M _ (x)
are

o A G o e e W
I-(,; e LNET !'C’.’x].L.,«' 1.8

6

the »nunch

the digit
AT e a2 e 5 g7 sk e e I s 'f/ 2% e
priate value of &k ., all ions to form I (x) are

necess values from
il ™ i T o3 < P — RN [ PR o Broaadl. @l 2
card 1. Ilothing is punched during this cycle, but in the
SO S <7l a7 ” s T A SRS R ¥ 1 N 0. [ UP . P
third cycle, when card 2 is at the punch station and card A

at the second read station, the answers are printed into

card 2. In this same cycle,card 2 receives from card A the
values of x, @/(x), ' (x), and My (x) and has. them punched
in. It is card 2 now which becomes card 4 in the next iter-
ter the new rmultiple integrals have also been punched

% 3 I . 1 N i asm o &
he 1lterations with the ner values of A y &

o

45
U

alue of A around .1 was cautiously chosen to start out with.

P
1
\

IT convergence proceeced too slowly the values of A was in-

s 25 3 4 s s s e B eerie s Ty B no 1 Al D
creasec 1O aroung .2 i sSTedss »omeviere petnreen 10 and 20

lesired
b Nt B wim - -

also




ior

rocuced as uvhe
:ile to do a few

lator to improve
machines start wi

OO O ~T3 T e P =
OIogeneous parc vias used Ssuccess=
alrecacy been solvad 2% P
L alreaqy veen solved 10r sone
mtal Tind "'L@( by a constant was
ik K praa 7 e ke N o (€ ELO uGall ’ i (%)
g e = im ey | o - vy B
trial, It uswally proved worth-

rough convolution cyeles on a desk calcu-
the solution sontevhat velore letting I.BD.H.
th the iteration procedure.
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In Section II, derivations were given for rn-Green
" 37,38)
o>ey 3 \ T2 = P { KT . P TU R S LR e - S
(%SSJO’ Firkwood‘27 2%’ intepgral equationsg, Giffering in
) = ., 5 e Al s * o Rewd L - o}
the way roximation 1s introduced,

on functions ¢

}.,Al .

2 q & wme S ad) e T7 S s
-cones potential is used, a solution to the Kirkwood

91 Ay 3 = P Es .33 Ad var 1 E At A £ w
eql was work The added complication of coup-
N e vl o Aty B e by 1
potential, wliich Kirkwood's
= B 15 ol
to the reduced

Born-Green case

G"Li-?--!» L DL AsCy
n haa va NDrolran into a hard-snhere core j \"1(;( 7
I naa vo e RPIO RSN 11 uC 2 Rarce-gpaer 2Ore JO.r ul
the Lennard-=Jones notent tial
Cite mehhnaerdtd-g olle Q Lale

s Fawm s
Al OT@EeY BTo nermli sSe el

)m(s—wr,'

?‘\,1_3[;(“"?, }":” fm) 3[3_(8)—1748

(137)
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A (13
K(t 5§ ~-2/,zgfd [a/f“” Y0 94(s '°’o)_

-Zﬂé' ds a{f Y(s)ﬂ(g f(‘”}"'? (139)

/7€) ‘o

€ uil O I D 5 ween cilo 3 i A i e
sl SR AEes il W sermaRBeval  San Shap 4 M TR o L .
PA shitere potweinntlal 1s coupled 1n 0y Lese.ll g &l i@ tien one
- 4 5
H 164
Lenne L=d OINC otential 1s aaded o 4 otae oras

K(E fi") fm) / (aa;(,,, d f(o) 5 oK A 3{‘0 (140)
f“O b‘f(,f“’): f"’)

g o o wE o) S -
Rewriting the {irst tern in (“39)) RH(éf) O)) by introducing

(o
the definition of 9 (%, f ) ) , vields:
g(") f
(o) (o) -B¢ X(g) (s £
RH(E/}: o) —-Qﬁg/udsodf sSwe e s (141)

/,_. /€] « |

This is equal to:

) o -BEF” o5, 035 2
R, (¢ f( )--Qﬁf a/s a{}’“ K(s)e@ d ‘r(é _5‘_{_9_5,_@ (142)
/&y (-3 ) T

2 ] 2 el e ] Oy e as P s, Al g Sy
since Tor S®l the integrand is zero due to the ¥o(S) rac tor.,

L L e
Furcnermaore
(o)

_(32' f b:(s)

A e
2o . =/ (143)



U= e o | (145)

L
N

changes (142) into

/ ~f (o) '
) k(g 'f o y
RH(é fJ O) = ‘2/;73/0‘4(61 s e ? )/S‘ , /tl - l (1’—%&)}

f (o)
When

¢,
= 0, Ru(E $,°0) is trivially equal to zero (142)
9 H " J 2 B A R BN Yqlal b A =p 9 M 5
due to the limits of integration. TFor any other value of

a

the coupling parameter the kernel and 9% are independent
®) (o)

of ; (144), ‘Therefore, arbitrarily calling ; = 1 and

2o B o iy g o o i 4 e 2 o
integrating over u results in:

the procedure developed in a previous paper*—-7,

nlacing

&

e dalear 1 R SN St acrral s
e is taken out of the integral by re

its average value in the interval of integration, <€

Ru (6101 -2<g) [ 55 = <g.y K (e).



It i _LQ(?¢> whiieh is evaluate e e theory of the
o . 5 ~3 3
{0 wLLeE L _L?()\K‘i\;é' L e
e 1))
Ag Tor the second te n the kernel, R..(l;f f )
<
(4]
&lu/)9 the expe ilon of in powers 01/35' is substituted.
o)
Flretl, hoWever, The independence already found 1s Intro-
uceds:
Ceo) €1y W) (3]
g(s 7 57) =g(s | = 3(s,
- 4 o o
J (149)
where we have left out, as we will henceforth, the couplin
6ie tants whenever tl are fullvcoupled. This has besn

3 3 3 - o 1 ey i o ._
T AT 2 T35 TE Y el 5 YN e N ey T
so imnlicitly in the 3Sorn-Green equation.

¥(s, f“)
?(S,f )= e f (s)[ [g W‘” ] (151)

) e e &
00 \arc,u‘

RETF)=<g0 Ru(e) « R(E £7)
(¢ $°) = ((3; £) R(e) « (BEF) RulE

Ik,(6) = —Zf Fol(s) s ¥, (s als')
' * S 14

Nz /f) = - fj?,,(s) Ll{(s) J, (s) ds. (153)

Q‘ *Qb’lé’



Attention should be dravm to the hard sphere part of the
w
kernel, where <go7 is independent ofﬂf ‘f . Thus, this
term need not be expanded, while in the Born-Green integral
equation, 8") had to be expressed by a series.
f’"
It is possible now to restrict ourselves to = 1y

the physically occurring potential, so that we can also

expand the 945) in the integral equation (137) in powers

of ﬁf and collect equal powers of ﬂi « The equation for
the terms in ( BE)° reads:

o
A,
Yo ) = 37 <) Ro(x-3) s[ger-1] A s RS
- QO
his equation was solved in the paper previously published(L3)
4
(Appendix D). The terms in (/BE’) combine to give the inte-

gral equation :

W(x)=-x¥(x)+ —-[K(x 5)5[90(5) i]a(s+

& %‘1<9°7{;<,(x—3) 3‘,(5) s> ds,

This equation, as well as the ecuations for higher powers

Sia

in 'ﬁf , is again of the form:

o
Ao
x) =M (x) + 5= (g, )| No(x-s ?(S)‘//(sd 5
WN< ) [ ) ‘f <?o e ) o [ ) S) (156)
-
so that the sanme nethod of solution as for (59) can be en-
ployed.
(155) was solved under the condition that >\,<g°> = 20.

Yﬂ. and higher terms were not calculated. Actually, in



-1 25—
order to deal with smaller quantities, the difference between the

Born-Green and the Kirkwood integral equations was studied.

This difference equation 1s again an integral equation of the
same tvpe as (156}, The accuracy with which the solution was

calculated is that direct iterates of W{X) arree within * . 003,
The results are recorded in Table XIX, and a comparison of
the radial cdistribution funetions using only the firs

terms in the expansion of W(x) is plotted in graph V. This

coriparison is made at(3f = .60 and A,= 10,00 for the Kirk-
wood radial distribution function (corresponds to k = 20)

and N, = 10.28 for the Born-Green case (corresponds to A = 27.4).
The agreement is remarkable and would even be better for

(39 = ,80 and 1.00, ¥or still higher{ﬂi' and for/sf lower

than .60)tﬁé agreement is less exact singce in the region of

(35' between .60 and 1.00 there is a compensation of the ¥8(x)
and WX) terns.,

The region between ‘BE = .60 and 1.00, however, is the
one important to the liquid state. Since the radial distri-
bution functions do not differ greatly there, we can expect
close agreement between the two theories in the calculated

r

properties., The confirmation of this is given below in

lables XVII and ZVIII where p* and the excess internal
energy,respectively, are compa redy at almnost equal reduced

volume,



=130
TABIE XVII
Reduced Pressure

Ae = 10.00
Kirkwood

1.833
210

""0751

TABLE XVIII
Excess Internal Energy

Ao = 10,00
Kirkwood

5.881
5.986
0,102

Ao = 10.28
Born-Green

2091

Ae = 10,28
Born=Green

6.181
6.232
6.280
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functionsg, correct to Y s Tor the Kirkwood and Dorn-Green

integral equations.
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TABLE ITX
The function ¥ which determines the radial distribution
function as a function of x for the parameter N\ =20 in

the Kirkwood equation; Y¥ix) = X ,&39«():)) X%,
Wix) = Yo(®r) + € K (x)

x 4 X 4 x ¥
1.00 =.788 1.76 =371 252 =117
1.04 -.,091 1 .80 - 321 256 - 0184
1.08 o241 1.84 =+256 2,60 - o241
1.12 363 1.88 -.181 2.64 -.282
1.16 374 1.92 =,093 2.68 = 309
1.20 324 1.96 .008 2.72 -6 323
1.24 <242 2.00 118 2.76 - 6322
1.28 147 2.04 o244 2.80 -+ 306
1.32 0046 2.08 e D06 2.84 - o,276
1.36 -.052 2.12 o431 2.88 =234
1.40 -e141 2.16 465 292 -.184
1.44 = +220 2.20 «465 2,96 -e125
1.48 = 6290 2.24 434 3.00 -.,058
1.52 =545 2.28 380 3604 008
1.56 = o387 2,32 « 307 3.08 071
1.60 =416 2.56 o225 S+12 127
1.64 -0.428 2.40 135 3616 o172
1.68 =425 2.44 043 3.20 206

1072 "04017 2-48 "‘0059 5.24 0227



0233
224
«208
0179
0146
»106
.066
023
-.016
- .055
- 084
-.112
-.128
=139
- o142
=140
-+130
-.113
-.094
-.069
=044
-.,017
.008
032
.052

x
4,28
4,32
4,56
4,40
4.44
4,48
4,52
4.56
4,60
4.64
4,68
4,72
4.76
4,80
4,84
4.88
4,92
4,96
5,00
5,04
5.08
5.12
5.16
5.20
5.24

989

TABLE 3I%< (cont.)

1
.071

.082
. 087
088
.085
079
.068
056
.040
024
.009
-,005
-,020
=+,032
-,041
-+046
-.051
-.,051
- ,050
- 0,046
- +039
-,031
- .022
-.014
-+,0056

5.28
5.32
5,36
5.40
5.44
5.48
5.52
5.56
5.60
5.64
5.68
5.72
5,76
5.80
5.84
5.88
5.92
5.96
6,00
6.04
6,08
6.12
6.16
6.20
6.24

- 004
.012
.018
.023
.026
.028
.028
.028
.026
.021
«019
.014
.008
»002
- ,002
- +006
= +009
-.011
~-.013
-.014
-.016
-+.014
-,014
=-,012
=-+010



X
6.28
6.32
6.56
6.40
6.44
6.48

6,52

o1
-.008

- +,005
- ,003
000
002
003

«004

X
6.56
6.60
6.64
6.68
6.72
6.76

6.80

eV
~134-~

TABLE XIX (cont.)

¥
.006

.006
«006
006
«0056
.006

«005

x
6.84
6.88
6.92
6.96
7.00
7.04

« 004
002
001
000
-,002
=.004
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Radial Distribution Functions and the Equation of State of a Fluid Composed
of Rigid Spherical Molecules* '

Jonn G. Kirkwoop, EuceNE K. MauN, anp BErNI J. ALDER
Gates and Crellin Laboratories of Chemistry, Pasadena, California

(Received March 20, 1950)

The integral equation for the radial distribution function of a fluid of rigid spherical molecules has been
integrated numerically in the Kirkwood approximation and in the Born-Green approximation over a wide
range of densities. The distribution functions so obtained have been used to calculate the equation of state
and excess entropy of the fluid. The results are compared with those obtained by means of the free volume

theory of the liquid state.

L.

N the statistical-mechanical theory of liquids com-
posed of molecules possessing a potential of inter-
molecular force of the form,

N
V=2 V(Ra),

<k=1

¢y

the average density p®(Ry, Ry) in the configuration
space of molecular pairs plays a central role. In the
fluid states of aggregation, gas or liquid, it is possible
to define a function g(Rs), called the radial distribution
function, by the relation,

p®=[p® Fg(Re),

pB=N/v, 2)

where the average number density p® in singlet space
is uniform and equal to the reciprocal of the volume
per molecule, and R;, is the scalar distance in the
relative configuration space of a representative mo-
lecular pair. As is well known, the radial distribution
function may be determined experimentally by the
x-ray scattering technique.!

* This work was carried out under Task Order XIII of Contract
N6onr-244 between the ONR and the California Institute of
Technology.

LF. Zernike and J. A. Prins, Zeits. f. Physik 41, 184 (1927);
P. Debye and H. Menke, Physik. Zeits. 31, 797 (1930); B. E.

Warren, J. App. Phys. 8, 645 (1937); A. Eisenstein and N. S.
Gingrich, Phys. Rev. 62, 261 (1942).

The thermodynamic functions of a liquid are related
to the potential of intermolecular force V(R) and the
radial distribution function by the theories of Kirk-
wood,? Born and Green,? Mayer,* and Yvon,® which are
basically equivalent although differing in certain de-
tails. The equation of state is given by

pv 2rN > 4V
—1-— [ R_g®ar,  ©
NkT 3vkTYy dR
the internal energy by
E 3 2«N p
— =+ [ Rv@g®aR, @
NET 2 okT Y,
and the chemical potential by
p®  p¥(T)
——=logp+——+ 3 w5(T)=lim[u—NkT logp]
NET NkT NkT P-0
47TN2 1 L,
wi———[ [ RV@®y®, garit
U M &y

pv
—NET log—, (5)
NET

2 J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).

3 M. Born and H. S. Green, Proc. Roy. Soc. A188, 10 (1946).

4J. E. Mayer, J. Chem. Phys. 15, 187 (1947).

57. Yvon, Actualités Scientifiques et Industrielles (Hermann et
Cie, Paris, 1935), p. 203. Because of its relative inaccessibility,
the pioneering work of Yvon has been largely overlooked by other
investigators.
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where g(R, £) is the radial distribution function for a
pair of molecules, one of which, 4, is partially coupled
to those of the rest of the fluid, corresponding to a
potential of intermolecular force,

Va()=Vy_1+& ch=:1 V(Rax). (6)

w*(T) is the ideal gas reference value of the chemical
potential, depending on temperature alone.

Systems of integro-differential equations for the
average densities in the configuration space of subsets
of » molecules of a liquid have been developed in equiva-
lent forms by Kirkwood,>2 Born and Green,® Mayer,*
and Yvon.® In general, one has

NI 1
pW = — W)
(N —n)!om
B=1/(kT), ()

where W™ is the potential of average force acting on
the molecular subset #, the resultant of their direct
interaction and their average interactions with the
other N—n molecules of the liquid. When W®(123) is
approximated by

W®123)=WOA2)+WOU3)+W®(23),  (8)

where 1, 2, 3 denote the coordinates of a molecular
triplet, the several sets of integro-differential equations
may be closed to give an integral equation for the
pair function and thus for the radial distribution func-
tion. This approximation, superposition of mean forces
between pairs in a set of triplets may be regarded as
analogous to the Hartree approximation in quantum
mechanics, applied to the density p® in the space of
triplets as the product of the densities p® for the sets
in the space of molecular pairs. As has been shown by
one of us,® the corresponding Hartree-like approxima-
tion in singlet space leads to the free-volume theory of
liquids.

The resulting integral equation for the radial dis-
tribution function for a pair of molecules, one of which
is partially coupled to other molecules of the fluid ac-
cording to the potential of Eq. (6), takes the form

logg(R, £)=—BEV(R)

TN r®
+5 [ KR =1, § K @etr, §Te() 14y
‘I)R 0
¢ 0
j; j[‘tls S S

o av
K(t, &)=p¢ f (82—t2)d—g(s, £)ds; BGY (9)
el s

s J. G. Kirkwood, J. Chem. Phys. 18, 380 (1950).

LIQUID OF RIGID SPHERES

where now as henceforth g(r) denotes g(r, 1), with £=1.
The kernel designated by K refers to the Kirkwood
theory and that designated by BGY refers to the
Born-Green-Yvon theory. Although the original sets of
integro-differential equations in the two theories are
exact, the superposition approximation, Eq. (8), leads
to the two different kernels of Eq. (9). The numerical
discrepancies, reflecting the influence of the super-
position approximation are not great and will be dis-
cussed later. Since the essentials of the derivation of
Egs. (9) have been given elsewhere?>®7 they will not
be reproduced here.

The potential of intermolecular force V(R) is con-
veniently expressed in the form,

V(R)=ey(x),

x=R/a, (10)

where € is an energy and ¢ is a length characteristic of
the molecules. Thus for a Lennard-Jones potential,

we have
v ()= (1/2") — (1/°) (11)

where 7 is an exponent in the neighborhood of 12 and «
and o are the two values of R for which V(R) vanishes.
For rigid spheres,

Hme_ﬁf')‘ (%) = 0 ,

€300
=1;

0<x<1,

x>1, (12)

where ¢ is the diameter of the spheres. If we define a
function ¢(x) by the relation

g(x, £) = g FEer(a+ ¥ /e

g(—x)=g(x),
Y(—=x)=7(x),
Y(—x)=—¥(x), (13)

and extend the definitions of g(x) and y(x) to the nega-
tive real axis by means of the last three of Egs. (13),
the integral equation, Eq. (9), becomes

I e
B W f K(w—s, £)s(s)—11ds
4J_,
No= (4w Na?)/v

w at
K(, )= —28¢ f f sy(s)g(s, Ddtds; K
|¢] ~0

® dv(s)
K §=tpe [ (—m)——gls, Ods; BGY. (14)
e ds
The solution of Eq. (14) with the Lennard-Jones poten-
tial, Eq. (11), by numerical methods with the use of
International Business Machine equipment is at present
under investigation. Since direct iterative operation on
a sequence of trial functions g(s) with the integral

7J. G. Kirkwood and E. M. Boggs, J. Chem. Phys. 10, 394
(1942). A
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operator S *dsK(x—s) in general fails to give con-
vergent results for values of Ay appropriate to liquid
densities, other methods are being developed, which
depend on starting with a relatively good zero approxi-
mation to g(s). In order to obtain a set of trial functions
for the zero approximation base, as well as for their
intrinsic interest, we have undertaken the integration
of Eq. (14) for fluids composed of rigid spheres.
For rigid spheres, Eq. (14) becomes,

0

A
) =— f Eolw—s)s[g(s) —11ds

4J_,
g(s):g‘l/(s)/-‘? ISI ;1
=0 |5] <1
K)=£—1 |t]<1
=0 [2]>1 (15)

where ¥(x) denotes ¥(x, 1). The parameter \ is related
to the density in different ways according to the Kirk-
wood theory and the Born-Green theory (see Appendix).

TaM T [ o) TN =4nvan/o; K

Le:N) T N=4mV2(vo/2) ;
V= Na3/\/2,

BG
(16)

where 7, is the close-packed volume of the system of
spheres and gi:(\) denotes g(14-¢ A) as e—>-0. The
two systems of integro-differential equations under-
lying the Kirkwood and the Born and Green theories
are equivalent and exact. However, the superposition
approximation in the space of triplets leads to different
equations in the space of pairs. The discrepancy re-
flected in Eq. (16) is thus a measure of the error pro-
duced by this approximation.

Equation (15), linearized with respect to the function
Y(x), assumes the form,

—>\ nQK ¢ A 1
M_Zf_m Jw—s)[A{]s] =1} ()
—[1—A{]s] ~1}1sTds,
Aft}=1 0,

=0 <0, arn

where A (¢) is the unit step-function. Equation (17) has
been given approximate analytical solutions by Kirk-
wood and Boggs’ for several values of A\. The present
numerical solutions of the non-linear equation, Eq.
(15), cover a wider range of the parameter A than those
of Kirkwood and Boggs. For the same values of A in
the linear approximation, they are found to agree
with the analytical solutions for large values of x and
to correct the latter in the neighborhood of the first
peak of the radial distribution function.
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II.

We shall now describe the methods employed in
the numerical solution of Eq. (15), which we write in
the form

k (e}
xb(x):;[wKo(x—s)@(s)ds

o(x)=x[g(x) —1]
g@)=A(|x| —1)et@/=, (18)

The resolvent kernel k() of Ko(f) may be expressed in
the form?®
G(u)

>\ [=4]
k)= —| ——
@ Wjo‘ 1-AG(n)

1 @0
G(u)=;f Ko(t)ettdi=

cosutdu

1% COS%U —Sinu
s (19)

By the method of Fourier transforms, we obtain from
Eq. (18)

Y= — f k(w—s)f(s)ds
1) = o) — (@)

from which ¥(x) may be determined for x>1 when
J(x) is known. An alternative form of Eq. (20) is

(20)

f@=o@+ [ He-syas G
In the linear approximation,
eo(@)=A{|x|—1o(x)—[1—A4{]x| -1} ]e
folx)=0;  a>1
polx)=—x; x2<1 (22)
and Egs. (20) and (21) become
+1
fuw)= =+ [ Ba=ofi(o)s; <t
+1
Yolx)= —f k(x—s)fo(s)ds; x>1. (23)

-1

The first of Eqgs. (23) determines fy(x) and the second
determines the linear approximation yy(x) for >1. In
this approximation the determination of g(x) thus re-
duces to the solution of a linear integral equation for
fo(x) on the finite interval —1<x<41, with the re-
solvent kernel &(Z, \).

The resolvent kernel k(f,A) was calculated for a
suitable range of the parameter, A=35, 10, 20, 27.4,
with the use of IBM equipment and the file of punched
cards of sinuf employed in these laboratories for electron

8 E. C. Titchmarsh, Introduction to the Theory of Fourier Inte-
grals (Oxford University Press, London, 1948), pp. 303-305.
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TasLE L»* Radial distribution functions for several values '
of parameter A. x[¢g(x)—1] as a function of .

o

5 10 20 27.4 33
1.00 0.45 0.80 1.36 1.66 1.85
1.08 0.39 0.66 1.08 1.36 1.62
1.16 0.32 0.53 0.83 1.04 1.25
1.24 0.26 0.40 0.59 0.73 0.87
1.32 0.20 0.29 0.37 0.44 0.47
1.40 0.15 0.18 0.18 0.16 0.11
1.48 0.09 0.09 0.01 —0.08 —0.19
1.56 0.05 0.01 —0.12 —0.26 —0.41
1.64 0.01 —0.05 —0.22 —0.39 —0.56
1.72 —0.02 —0.10 —0.29 —0.46 —0.64
1.80 —0.04 —0.13 —0.31 —0.48 —0.63
1.88 —0.05 —0.13 —0.28 —0.41 —0.52
1.96 —0.05 —0.10 _ —0.18 —0.25 —0.29
2.04 —0.03 —-0.05  —0.03 0.02 0.10
212 —0.02 —-0.01 0.09 0.24 0.44
2.20 0.00 0.02 0.16 0.34 0.63
2.28 0.00 0.04 0.18 0.38 0.65
2.36 0.01 0.04 0.17 0.32 0.52
2.44 0.01 0.04 0.13 0.22 0.30
2.52 0.01 0.03 0.07 0.09 0.06
2.60 0.01 0.02 0.01 —0.03 —0.16
2.68 0 0.01 —0.04 —0.13 —0.32
2.76 0.00 -0.07 —0.20 —0.42
2.84 —0.01 —0.09 —024 —0.45
2.92 —0.01 —0.09 —0.21 —0.38
3.00 —0.01 —0.07 —0.15 —0.25
3.08 —-0.01 —0.04 —0.06 —0.03
3.16 —0.01 0.00 0.03 0.14
3.24 0 0.02 0.09 0.29
3.32 0.04 0.15 0.41
3.40 0.05 0.17 0.36
3.48 0.05 0.14 0.28
3.56 0.0+ 0.09 0.14
3.64 0.02 0.03 0.00
3.72 0.00 —0.02 —0.12
3.80 —0.01 —0.06 —0.23
3.88 —0.02 —0.10 —0.28
3.96 —0.02 —-0.11 —0.26
4.04 —0.02 —0.08 —0.20
4.12 —0.02 —0.05 —0.11
4.20 —0.01 —0.02 0.00
4.28 0.00 0.02 0.11
4.36 0.00 0.04 0.18
4.44 0.01 0.06 0.24
4.52 0.01 0.07 0.22
4.60 0.01 0.06 0.15
4.68 0.01 0.03 0.08
4.76 0.01 0.01 —0.01
4.84 0 —0.01 —0.09
4.92 —0.03 —0.15
5.00 —0.03 -0.19
5.08 —0.03 —0.18

a The solutions g(x) were checked by direct iteration in Eq. (15) at in-
tervals of 0.04 in x. The input g(x) checked with the output g(x) to 40.005
for A =5, 10, and 20, and to 0.02 for A =27.4 and 33.

diffraction calculation.® For these calculations it was
transformed by partial integration in the following

manner,
N 2 3uG(u)+sinu

k()= — | ——————— sinuidu.
o w[1-2G(u)]

e

Convolution operations with the kernel k(x—s) in-
volved in the solution of Egs. (23) were then carried
out on desk calculators.

Since, except for small values of A, the kernel &(Z)

9 Shaffer, Schomaker, and Pauling, J. Chem. Phys. 14, 659
(1946).
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TABLE I.—Continued.

%

5 10 20 27.4 33

5.16 —0.03 —0.13
5.24 —0.02 —0.06
5.32 0.00 0.01
5.40 0.01 0.07
548 0.02 0.12
5.56 0.02 0.16
5.64 0.02 0.14
5.72 0.02 0.10
5.80 0.01 0.05
5.88 0.00 —0.01
5.96 000 —0.06
6.04 0.00 —0.10
6.12 0.00 —0.13
6.20 —001 —0.12
6.28 —001 —0.08
6.36 —001 —0.03
6.44 —0.01 0.01
6.52 0 0.05
6.60 0.08
6.68 0.09
6.76 0.08
6.84 0.05
6.92 0.02
7.00 0.00
7.08 —0.02
7.16 —0.07
7.24 —0.07
7.32 —0.06
7.40 —0.05
7.48 —0.02
7.56 0.00
7.64 0.02
7.72 0.03
7.80 0.04
7.88 0.04
7.96 0.03
8.04 0.02
8.12 0.01
8.20 —0.01
8.28 —0.02
8.36 —0.02
8.44 —0.02
8.52 —0.02
8.60 —0.01
8.68 —0.01
8.76 0.00
8.84 0.00
8.92 0.00
9.00 0.01
9.08 0.01
9.16 0.01
9.24 0.01
9.32 0.01
9.40 0.01
9.48 0

possesses one or more eigenvalues less than unity,
solution of Eq. (23) by direct iteration fails to give
convergent results (see Appendix). In order to over-
come this difficulty, k(!) is expressed in the form

k(1) = ko(D)+ k(1)

k()(i) =4 0+A 1 COS’Yll"I—A 92 COS’th, (25)

where the parameters Ao, A1, 4s, v1, and v, are chosen
by trial to give JSi*k1(¢)%d! a sufficiently small value to
raise all of the eigenvalues of k:(#), which may be shown

0 R, Courant and D. Hilbert, Methoden der Mathematischen

Physik (Interscience Publishers, Inc., New York), Vol. I, pp.
104-110, 1943.
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to be bounded below by [2/2(2—1)k2(8)di %, above
unity.’ When this condition is fulfilled, fo(x) may be
represented by the convergent sum

1) = fo (o), (26)
where "
So,n(x) =00 2 (2)4+ j ko(x—s)fo, n(s)ds,
0y, o(x) = e
A
0, (%) = j kl(x‘v‘_s)fo‘ a—1(5)ds. 27)

Since the approximate kernel ko(x—s) is chosen in de-
generate form, the sequence of integral equations, Eq.
(27), are solvable in closed form,

fo, n(x) =0y, n(x>+ 24 lMl, n Sin'le",‘ 24 2M2, n Sil’l’Ygx,

1

Ml, n= ffo, n(S)Sin'ylsds,
0

1
MZ, i ffo, n(S)Sin’YzSdS, (28)
0

where the M, , are to be determined in each case by
solving a set of two linear equations, following from
their definition and the first of Egs. (28). Several
iterations, the number increasing with increasing values
of \, suffice to determine f,(x), which upon substitution
in Eq. (23) yields the desired solution of the linearized
problem.

In the non-linear case, f(x) of Egs. (20) and (21) no
longer vanishes outside the interval —1<x<+1
Nevertheless, we write Eq. (21) in the form

@)=+ f k(v —5)/(s)ds,

a(x)z—x—i—f k(x—s)f(s)ds
+[ Mae—s)f()ds #<1, (29)

and consider the sequence of integral equations,

fn(x)=an(x)+f k(x—s)fu(s)ds x<1,
an(x)= —x—{—f E(x—5)fu1(s)ds

_|_f_ k(x—s)fr_a(s)ds,

Ful®) = ale¥n @A 1] (x) w>1,

1044

il L0
Yul)= *j k(x—s)fn(s)ds—j k(x—5)f,1(s)ds

[ be-syias @0

Starting with the solution of Eq. (23) as fo(x) with
go(x)=—=, and solving each of the linear integral
equations, Eq. (30), by the method employed in the
solution of Eq. (23), we find that the sequence ¥, (x)
converges to the solution ¥(x) of the non-linear integral
equation, Eq. (18). All solutions are finally tested by
direct iteration with the kernel Ko(x—s) of Eq. (18).

For large values of the parameter A, convergence is
slow by the method of solution described here. How-
ever, when a moderately good approximation ¥°(x)
has been obtained by this method, it may be refined
by the following iterative procedure. If we linearize
Eq. (18) with respect to the error w(x), equal to ¥(x)
—¢°(x), we find,

Y(x) =90 (%)t (=),
(x)= Lo+ 0{w?),

>\ 0
Lw=v(x)+;j:m1(0(x—s)/1{ [s] —1}

¥(s)

X exp[ }w(s)ds

)\ ]
u(x)————f Ko(x—s)o%(s)ds —°(x)
A o

(31)

where L is an inhomogeneous linear operator and »(x)
is the iterative defect of the trial function ¥°(x). Let
us consider the sequence

PO w) =g D (@) ot (2)

@™ () = LMy

k 0
LWMWN=M”@%%Lf Ko(w—9)4{]s| 1}
e

S

Xexp[ Jw(’”(s)ds

k (7]
Vo () = f Ko(o—s)oD(s)ds—ymi(x),  (32)
4

—00

where »(® exactly satisfies the linear equation, L (M
=w®™ and ¢*(x) is the first member of the sequence
Y. We now define a sequence

wo(n) _ V(n)(x)7
0)1(") _— L(n)wo(n),
wz(n) - L(n)wl(n),

wg(n) - a(n)wl(n)_{,_ (1 —a("))wo("),



1045

0

Akk,(n)zf X ™ xe P da; x5 ™ = LMW —@ ™, (33)

The value of o which minimizes Ay is given by
a™=(Agp™ — Ay ™)/ (A1 ™+ Age™ —2A0; ™)
Agg™ 1 Ago ™ — Agy T2
33 i e [Aco 0™ ] '
Agp ™ Agy W Age™ —285™
(34)

The denominator in the expression for ¢ is positive
by the Schwarz inequality. Thus €™ is positive and
we have,

AOO(n)

0<A33(")/A11(")< 1. (35)

Repetition of this cycle will, except in singular cases,
lead to a sequence w; ™ (x) which converges in the mean
to the solution w ™ (x) of the linear equation, L™w®™
=w™, of Eq. (32). However, the most economical
path to a solution of the non-linear problem is through
the sequence

Yo =Dy @, (36)

where w;™ is given by Egs. (33) and (34). Except in
singular cases ¥3 converges to the solution ¥(x) of
the non-linear equation Eq. (18).

II1.

The methods described in Section IT have been used
to calculate g(x,\) for the fluid of rigid spheres for
values of the parameter A equal to 5, 10, 20, 27.4, and
33. The results of the calculations are presented in
Table I and Fig. 1. In Fig. 2, the linear and non-linear
solutions of Eq. (18) are compared for A-27.4. It will be
observed that they are appreciably different only in
the neighborhood of x=1. A comparison of the linear
solution for A=27.4, with the approximate analytical
solution of Kirkwood and Boggs,” shows the latter to
be somewhat inaccurate in the neighborhood of x=1.

Ae33 ¥ !

A=27.4

x=20

20— -

a(x) -

| 1
o I 2 3 4
x

F1c. 1. Radial distribution functions for several values
of the parameter \.

LIQUID OF RIGID SPHERES

All radial distribution functions exhibit their first
peak at x=1, decreasing monotonically to the first
minimum, which is followed by oscillations of diminish-
ing amplitude resembling those of the experimentally
determined radial distribution functions of real liquids.

From the values of gi(\) obtained from the solutions
presented in Table I, the densities corresponding to the
family of distribution functions g(x, A) may be deter-
mined by means of Eq. (16) according to the Kirkwood
theory and according to the Born and Green theory.
The densities are presented as a function of A for the
two theories in Table II.

For values of X equal to or exceeding 34.8, no solu-
tions of Eq. (15) exist for which #?[g(x)—1] is in-
tegrable. This value of X, corresponding to an expansion
/9o equal to 1.24 on the Kirkwood theory and 1.48 on
the Born-Green theory evidently represents the limit
of stability of a fluid phase of rigid spheres. For greater
densities, a crystalline phase is the stable phase.!! The
transition between fluid and crystalline phases cannot
be discussed quantitatively without an investigation
of distribution functions in the crystalline phase itself.
In the case of rigid spheres, it appears likely that the
transition may be of second order rather than of first
order, although at present this is no more than a sur-
mise. It is also possible that the crystalline phase
possesses some intrinsic disorder arising from the in-
ability of rigid spheres to distinguish between next
nearest neighbors and the likelihood of stacking errors
leading to structures intermediate between the face-
centered cubic and the hexagonal close-packed ar-
rangements.

The equation of state, Eq. (3), becomes for rigid
spheres,

v 27V2 v,
—l=—-a), (37

NET 3 v

20~ —
9(x)
10
1] 1

(o} 1 2 3 4

F1e. 2. Radial distribution functions for A=27.4. A, solution
of non-linear integral equation. B, solution of linear integral
equation.

1 J, G. Kirkwood and E. M. Boggs, J. Chem. Phys. 9, 514
(1941).
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- TaBrLeE II. Fluid densities as function of A\.#

A a1\) v/v0 (K) 2/v0 (BG)

5 1.45 4.74 5.15
10 1.80 2.83 3.20
20 2.36 1.78 2.10
274 2.66 1.45 1.73
33 2.85 1.29 1.53
34.8 2.90 1.24 1.48

a y/yg =ratio of volume to close packed volume of spheres.

where gi(\) is given as a function of density v/v in
Table II. In Table III, pv/RT—1 is presented as a
function of v/, for both the Kirkwood and the Born-
Green theories. This function is also plotted in Fig. 3
together with the free volume' expression for rigid
spheres,

pv 1
RT  (/u)i—1

where vy is the close-packed volume of a face-centered
cubic lattice rather than that of the simple cubic lattice
originally used by Eyring and Hirschfelder.

The excess molal entropy, S¥, of a fluid phase is de-
fined by the relation,

S= —R logp+S*(T)+S*

SR

(38)

S*(T)=lm[S+R logp]. (39)
-0
For the fluid of rigid spheres,
SE _AE “E [ 171' 1]
R Rr RT lrT T
SE  27V2 v g [N ()] 27V2 v,
e f dy+log[1+— —gx],
R 3 Jy y? 3 v
y=1/, (40)

since the excess internal energy E¥ vanishes. The excess
entropy in the Born-Green approximation has been
calculated by numerical integration, with the use of
the second of Egs. (40) and the values of gi(A) as a
function of /v presented in Table II. In the Kirkwood
approximation, Eq. (5) and the first of Egs. (40) yield
the expression,

SE A 271"\/—1)0 [ 2mV2 v

E_ __-}-—3— —g1+log 1—}-——— —gx], (41)

from which the excess entropy has been calculated with

2H, Eyring and J. O. Hirschfelder, J. Phys. Chem. 41, 249
(1937).
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the aid of the data of Table II. The results of the two
calculations are presented in Table IV.

It will be remarked that the agreement between the
Kirkwood and the Born-Green approximations is
moderately good both for the equation of state and for
the entropy. In the case of the equation of state, the
free volume theory yields a result which does not devi-
ate greatly from either the Kirkwood or the Born-
Green results, the departures becoming smaller as the
density increases toward close-packing.

APPENDIX

1. The relation between the density Na®/v and the parameter A
may be derived for the Kirkwood theory with the following ther-
modynamic equation, the equation of state, Eq. (37), and the ex-
pression for the chemical potential Eq. (34c) given by Kirkwood

and Boggs,”
ke E el @
J%F " +# (T) (340)
R% %—FZT\F% eV @7)

where gi(\) is g(1+4-¢) as e>-0. By differentiating the last two
equations with respect to v and equating their derivatives by the

first expression, we get
_1_]_.1_‘1_)‘: 1_]_2‘"\/— [ (&1@ :I;
dv\ 22

3 dv 5]

] T T T T

Fic. 3. Equation of state: po/RT— 1 as function of v/7. A, Kirk-
wood basis. B, Born and Green, C, free-volume theory. = volume
per mole, 'uo—volume per mole in close—packed arrangement,
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Tasre III. Equation of state of the fluid of rigid spheres.

v/v0* pv/RT —1 (K) pv/RT —1 (BG)
8.38 0.44 0.44
474 0.91 0.93
3.48 1.39 1.46
2.83 1.89 2.04
2.42 2.40 2.65
2.15 2.91 3.21
1.94 3.43 3.75
1.78 3.93 4.33
1.64 4.44 4.96
1.53 4.95 5.54
1.44 5.46 '
1.37 5.99

1.30 6.50

1.24 6.93

a For values of the Kirkwood parameter A =2.5, 5.0, -
last point, A =34.8.

-, except for the

hence, introducing z=1v/[g:(\) ]},

AN dz
———==—4rNa’;
La:M) D 2’
and integration with the limits (A, v) and (A\=0, v= ) yields
Eq. (16, K).
2. The divergence of a direct iteration attempt to solve Eq.
(23) may be seen by considering

@) =o(e)+ [ ki, (s,

Na?=V2v, (44)

F ) =a(m)+ [k, 7 @D(s)ds; 43)
hence, by subtraction,
afm=f—fo = [k, AfeD(s)ds, (46)

where f(x) is the exact solution of the linear integral equation -

whose inhomogeneous part is ¢(x), f™ 1 (x) is a trial solution, and
f™(x) the iterate of the trial solution. Using a representation for

|

LIQUID OF RIGID SPHERES

TaBLE IV. Excess entropy of the fluid of rigid spheres
as a function of density.

/10 SE/R (K) SE/R (BG)
8.38 —0.03 —0.03
4.74 —0.12 -0.11
3.48 —0.24 —-0.23
2.83 —0.39 —-0.37
2.42 —0.55 —0.56
2.13 —0.73 —0.76
1.94 —0.92 —1.00
1.78 —1.14 —1.23
1.64 —1.37 —1.49
1.53 —1.60 =177
1.44 —1.84

1.37 —2.07

1.30 —2.32

1.24 —2.60

the real symmetric kernel &(x, s) in terms of its orthonormal set
of eigenfunctions x; and its eigenvalues A\;, and expanding Af®1)
in the form,

AFOD(5) =2 0,V (s), @n
leads by substitution into Eq. (46) to
A1)y (4
Af () =2, %—Ax—j(ﬂ= 2 a;™x;(%),
i
a; (1)
)t 48
aj % (48)

Thus a;»™ is increased by 1/XA; after each iteration, hence di-
vergence occurs if for any |A;| <1 a;® %0, because then

ai(n)

>1

a,j(n—1>

and Af™ increases in magnitude with each iteration.
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Appendix B

Inte-rpolation Formulse

The empirical equation of state valid for A7 5 which
results from the radial distribution function correect to

Y .

(]
(4) With linear isometries, p* = aT* ¢b

. 101306 5 11,025 _ 27.447 % 45,691 _ 22,484

a = e kS vk kb vk (157)

b = 7:0393 , 5.2986 _ 19.285 , 15.861

(B) With quadratic isometrics) pk = aT*2 & bT* & ¢

a =_ 1892 _ ,2788 , .6806 _ .3716
- k3 yrd -

b = 1013 ., 11,1991 _ 21.9676 , 27.4701 _ 9.6530 (158)
AVE "\/*2 V*3 V*4 V*é

c u_ 8.0702 . 2.7487 _ 7.3144 . 4,0070
k2 v*3 x4 ykO 7

The following equation of state is wvalid for A+§ and

» T < A
Prl= SR P et Vet T
= v (159)
b = -18.403T* £18.190 T*2 - 4,937 T*3
¢ = -41.925 & 61.449 T* - 20,295 T*2
d = 182,536 - 251.7661* ¢ 84,665 T*2
The excess internal energy fitted empirically as a function

of volume and temperature :
E

E | e e (pe) + e(BE)
N E (160)
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A STATISTICAL MECHANICAL THECORY OF THE COEFFICIENT

O THERMAL CONDUCTIVITY OF MONATOUIC LIQUIDS

INTRODUCTION

The general objective of statistical mechanics is to
express macroscopic properties in terms of molecular varia-
bles, With this aim in nind for the coefficient of heat
conductivity, a procedure very much like the one for the
(1)

coefficient of wviscosity may be foliowed. The equations
8/ 3 q

of hydrodynamics provide the phenomenological relations for

the desired transport process. These are: the equation

of continuity,
- op |
AR w) + —= = - (1)

the equation of motion,

PRy
/0 é;z“ = >< + ‘7'52- i (2)

-

and in addition the equation of energy transport which con-

i i - . -
tains the heat current density, q, explicitly:

2E , v [Ea+3-ag] -0,

Dt (3)

- —
where P is the density, u 1s the particle velocity, X is

the external force, & 1s the stress tensor, and E is the

internal energy density. Finally a supplementary relation

defines the thermal conductivity, }C, as the proportionality
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factor between the heat current density and the temperature

gradients

These hydrodynamic eqguations have been derived by means
of classical statistical mechanics and the proper terms have

(2)

been put into correspondence so that expressions result
for the heat current density and the stress tensor, in terms
of molecular variables, which are the molecular distribution
function and the intermolecular force. Just as in the for-
mula for the stress tensor, two types of terms arise in the
one for the heat current density. One of these is due to
nomentum transvort and corresponds to the familiar expression
in the kinetic theory of gases. The other term, contributed
by the intermolecular forces, is expressed as a quadrature
of the potential of intermolecular force and of the density
and current density in the configuration space of pairs of
molecules.

The probability densities involved in the expressions
for the density and current density are, however, perturbed
from their equilibrium value due to hydrodynamic flow re-
sulting from the temperature gradient. One would have to
solve the Liouville equation after integrating it over the
phase space of IN-n molecules in a system of I molecules and
after time smoothing in order to obtain an explicit expres-
sion for the probability density in n-space. This problen,

however, 1s not unlike the one which presents itself in the
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solution for the equilibrium distribution function where a
chain of integro-differential equations has to be solved,

each of which relates a probability density in a given space
to the one in the next higher space. This chain was broken
there by the so called suverposition approximation(3), a
generalization of which has been introduced in the present
case by Born and Green<4) to accomplish the same end. Alter-
nate steps taken to close the set of equations are those ex-
plained in SHT I<5) where the theory of Brownian motion is
utilized to get the differential equation for the probability
distribution function in the phase space of sets of one, two,
and three molecules of the liguid. The Born and Green approach
differs from Kirkwood's only in the representation of the dis-
sivative mechanism which in the latter case is essentially
contained in the phenomenological friction constant. This
friction constant enters explicitly since the Langevin equa-
tion of motion has to be brought in to describe the move-
ments of a Brownian particle in an environment in statistical
equilibrium. The Langevin equation however has been derived
through statistical mechanics and thereby an expression for
the friction constant results. It has not as yet been possible
to calculate accurately the value of the constant.

To close the set of equations for the probability den-
sity therefore Kirkwood assumes local statistical equilibrium
in order to introduce the above Brownian motion theory. The
resulting differential equation, which 1is a generalization of

the Fokker-Planck equation, then allows the construction of
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the perturbed probability density to be substituted in the
expression for the heat current density. The probability
density is the steady state solution with the proper bound-
ary conditions where only linear terms in the gradient of

the temperature will be kept in the differential equations.

GENERAL PRELINMINARIES

In statistical mechanics, macroscopic observables are

set into correspondence with average velues determined by
o oy i .- € e s T -3 =3
robabllity densities f(n)(p,q;t) in the phase space (D,q)

of a subset of n molecules in a system of N molecules. Here

— (m)

£(77:t)= f)'zm(,ﬁ%-ﬁ Q;t) dF4R, (4)

and

= (w)

f (% %PQ ”‘TI'{W fos)ds) (5)

(?;3) is the phase space of the IN-n remaining molecules.

The time smoothing interval ¥ is determined by the process
of measurement; that is, T should be long relative to the
microsconic fluctuations but short compared to the macro-
scopic time resolution, so that observables in the liquid
effectively do not depend on ¥ . For the representation of
average values of functions of the configuration coordinates
( ?1’ ) only, the number density P<n) (g;t) is convenients

(‘h)

PR [ G048 ©
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In the singlet configuration space, ( r ), this expression
o ; y - 2 .
reduces to the ordinary mass density, P(r;t), and occurs in
n

] : . - diWaed . s
the current density, j (r;t), of the macroscopic equations

of hydrodynamics:
_ ' A ()
() = om P E) < o /( Rt 4F

) - @) N B TR 1A

(8)

2y 4, —

where m is the mass of the molecules. Similarly, P (RUFQ;t),
—® () = “’

Rt

the pair density, and 4 (R, the partiecle current

density in pair space projected on the singlet space of
w—gy

=
molecule 1, are given in the configuration space (R.,R;) bys

—»

~“') "’ = — - - s
P“’('Ru']}:)- t) - A//-/ Ra-) P’) P‘,’ t) 0//3/0(7):.
(8a)

PR R0 - MR R R O ar

(9)

In a system of molecules for which the intermolecular

- potential V@ can be represented in the form

\V, = Z; \/(R:u) (10)

where V (R) 1s a fuction of the distance Rj), between the
1th ang kth molecules, this pailr number density plays a
particularly important role. Ilowever, it 1s more conven-

: g ’ - ; - =3
ient to deal with the pair correlation function g(g)(r,ﬁ;t)



=
B

defined, for a fluid with identical particles, by
(2) , ~» — C2) —p
P (R,R;t)=pP (FF.R; t)=
“a , = 2 €2) -
p"(R,}-z‘)P (R; t) 9 (F R;t).

(11)

In the bulk liquid this function, g(2)(¥,®3t), is insensi-
tive to _r:; the macroscopic location, but sensitive to R =
Rz'ﬁ- = Ra s the relative coordinate between molecules.
Now a liquid with a potential of the form (10) has, at equi-

librium and in the absence of external forces, a correlation

) —p
function @, (R)

Ca) =0
(R) = exp {-LE R
7o kT LW (R)~\A/,~M ] (12)
J
(R \Was
where W (R) and are the potentials of mean force
in pair and singlet space. As has been shown in part I of
€3y
this thesis, 8@ (li) is a solution of an integral equation.
The negative gradient with respect to molecule one, for

example, of the potential of mean force is then the equili-

brium average force on molecule one in a set of n molecules,

XEYT
(G AWAT S

Therefore, taking the logarithmic gradient of (12) with re-

spect to molecules one and two results ins



€s)

(R (E) = RT % Loy 2(R)

(14)

(EY- (E) 2 kT v Loy 3 (R),

(15)

The time dependent distribution functions,as was point-
ed out,satisfy partial differential equations of the type
derived by Chandrasekhar on the basis of the phenomenological
theory of Brownian motion. For the momentum part of the heat
current density of a liquid in a steady state under a temper-

—— 5 —
s % 5 " . . (-’ t)
ature gradient, only the singlet equation for V,‘P)

is necessary:

F . P o = w
5t T & Ve b 4 -
— AW ) (263
Fo [F70 kT %]
where Tfr*=‘;—t—; ; [—-:m-: °< E)m_* ET , and
=t

f is the friction constant. F = is the perturbafing force
. = . :

on a molecule situated at R. For the intermolecular force

contribution to the heat current density, the pair equation

- () - .
for£ (ﬁ) R.J 'P,)'R;) t)has to be employed:

— c;’

‘BE E — (3]} :l;.: - (3) -.(“s‘;, ‘_"t)_(;)
ot +—;.v§¥ P Ve d %R s % & 1=
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where }’ is a friction tensor in the six dimensional space

of pa;;-s, .m <F-:>m Fm , and E F T 1s the pertur-
bag#ing force acting on molecule 1 of the fixed pair 1 and 2.
Due to the potential (10) assumed, only the probability den-
sities in the phase space of singlet and pair molecules are

significant.

The solutions of these differential equations for the
probability densities have to be substituted into the equa-
tion for the heat current densities obtained through the
statistical mechanical theory of the equations of hydrodyna-
mics. The procedure in the derivation of the macroscopic
equations of hydrodynamics is to utilize the statistical
mechanical expressions for P ,;, and for all the other
guantities which have oﬁvious statistical mechanical anal-
ogues. The time derivative of these quantities can also be
calculated through statistical mechanics by means of the
Liouville equation. The equation of continuity (1) then
Talls out immediately by expressing the conservation of
particles in terms of these expressions. In the equation
of motion (2), obvious statistical mechanical expressions
~are avalilable for all terms except the stress temsor. The
correspondence here 1s obtained by difference after the
remaining term has been changed into the form of the grad-
ient of a quantity to be identified with the stress tensor.
In a similar fashion, the heat current density, in terms of

microscopic variables for a single component, single phase



systen with a potential of the type (10) can be formed from

the energy transport Eg. (3). Let us write
? = $l< + ?V (18)
Here,

TEo- Mg zlEal [F-d{mme, o

S
U

-
7* can easlily be seen to represent the transport of
kinetic energy. The expression can be simplified by substi-

— -
tuting T for[%%-;]:
>

23 N - —~2 = £
Fo = 2 fup|7’TS (2a)

Also*,
7.(rt) - L/ ver) 4 - RR (R
4 2 [- )41 = Vv ( )].

[FE R R 8- ar el p a R )] dR

‘he expression for 9, is interpreted physically by noting

-

that the tern imvolvimg\/“l)r@prcsent the current density
of potential energy due to macroscopically imperceptible ran-
dom motion, whereas the term involving \'% (R) 1s connected with

to be done for this random motion to ocecur.

It is the term @+ which is dominant in liquids.
b DB el el emiead e 1 T bemty el s "
Gradients with respect to r haveg been ne g*ect@o in ( 21)
5 ¥y o o 4 3 8 et 3™ spe pals x
ince the cquantities involved /0"ruxijf > are relatively
5| ; e G X g
_,;_ ]

] G
LC - 9
ow Tunctions of this varizsble.
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MOMENTUL CONTRIBUTION TO THE HEAT CURRENT DENSITY

The momentum contribution to the heat current density,
=)
§£ y Will be evaluated by multiplying the 19 Fokker-Planck
— 2 =

equation (16) by'/7T/ T ang integratidngover momentum space,
according to (20). However, to interpret the rest of the
terms of the integrated Fokker-Planck equation, we need the
relations in which (16) is multiplied by i andlg and then
integrated over momentum space.

So let us first integrate (16) over momentum space.
Here, as henceforth, we will frequently use Green's theorem
in both configuration space and momentum space. Whenever
Green's theorem is used, the integrated part will vanish,
since the probability distribution functions fall off suf-
ficiently rapidly for large momenta or distances. Thus,
only the first two terms of (16) remain upon integration

over momentum spaces

a P (7] — w
— + V" * = )
5t g 1} O. (22)

This is the equation of continuity where the definitions

(7) and (8) have been introduced.

—

Multiplication of (16) by,—g and integration over P

yields the following equations

=

Pi:" 5 \V 4 /p( — _E f_ _-(t "F—."u) u;—_ (23)
Aﬁﬂt' R P mn m 12 :ﬂ/%n S CD.

The right hand side vanishes because subsequent to the use

of Green's theorem the identity



/d,‘;[;f‘.',a] p f;(,; 7l =0 (24)

(See (7) and (8)). The second term in (23) can be

oCCcurs.
rewritten in terms of macroscopic variables so that an e

—-wm
pression for F stults. Consider the following identity:

- §:

jdp[__ujlf-a’]’f /0{7’;;7;\'{ [ "—"l—:; { ”(25)
s amf s Japaa”

By (7) and (8) the last three terms can be combined. Further-
more, (2) times the left hand side is approximated as the

inetic energy density in one degree of freedomj that is,

o (o [Z-3] Ealy "TP 4 (26)

The total kinetic energy density 1s thens

f”{i’/:*“/ / 3“-'0 - S

Thus (25) becones

2 kT - i)‘ —~ ) - )
— 4— a(p;-;’/:/’g . Suap (28)

which, when substituted into (23), yields

Dﬁm st —'u)
af [h:f 1] 5 [ _‘e_ o @

Now, using (8) and then (22),

o7 o . BL'P"’&‘ = e

2 we[zae]- Lawlpra] o
Pm& V u

.0 [«ow-'i + P AN v
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7, is of second order in the velocity

{ >0\
\

27/

*rals lnvolving the

ey

—
Y 5 a S o | o & A 1 . G = wn 2 & 1.1
r ¢ + A 4 SN 3 ¥ fa Ve 4 o < 1 v
where the delfinition of @, anc (24) have been used in the
Lo ” » EI5 o = b ) o =1 yal oy N L W
e A _ 5 NT " P « l b R - £ i) Nne
l:;(w U I'eCucCcitlon. [+ OV in sne 1eilt ngna side o1 L Lile

radient of
pungf {} ]

sion for F. found in

to avold the unknown

o | 3 e -4 -
second Ttermn is &
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We must now replace 1: cw’ﬂ'ln‘a13 integrands by adding

(35)

o = IS 0 - s
and subtracting u. The last term 1s already in that form

and can be evaluated through (26) and (27).

- )

For Y Se e gf [v Jaz 11T T
‘7.5"“](4?/7/2—7;{ cEw[dFFITLL
-Id;{ T [ (] 7 - & S5 d T 70T 7]+
* g—;’%—" Vi [kTe]

Carrying out the differentiation indicated for the last two

terms in the bracket y]ers

f')"f\

Tz ST 7 [V*fG(P/W/W"T -
+[v...a]fa/;‘>’/fr’/‘7?f+&'-V~fa’7‘>'/if/ il @

- —

+fdpf m Vg & [/17/:l+27‘7T +
AT vy [o//’;f"[/lr/ 1+27—7TJ] S;TV ETP"]

(20), (26), and (27) simplify the above to:

g . SkT = - —
T Z“'E,—VED{TP‘ - ;“"‘;T‘ %C}H UVt v

5 kT
+-<7L-C4<}g -G a u:]+‘4 % C‘l_ P N

N | L ee w P =
€ ¥ V%JA}?' 'I?/ 7I_?7'/£ ffo(]’)’ ﬁ'.-?‘&-[-?ﬁ-ﬂ']]

Now let us drop second-order terms. Since ?— is small

—

and since ¢, is of order § (see leading term in (38)), the



,,,,,

terms on the right hand side involving j?'are of the order

! —

; and can be neglected. The term containing éZ-*?; (&3
vanishes because 1t 1s a non-linear term, and because, under
the condition of the problem only gradients in the temper-
ature and none in the velocity are allowed. The last inte-
gral 1s also negligible because 1t involves the gradient of
a'velocity, and because it is of order‘?i-, as can be shown
by multiplying the Fokker-Planck equation (16) by '?TL—V, &']1-7" ™
and integrating over‘F . The only remaining terms of (38)

are thus:

— ShT o] Mw? N .
Fr = 313 VEE?TP ]' ri i Vi"fd'f/ﬂ/ T v[' (39)

The last term will be evaluated with the aid of (16).

First let us rewrite (16), after dividing through by f :

G FET ] - + 2L "
. s - F:ui{T"’=_(:2

[}
Since the last three terms have the coefficient ?’they give

(163a)

]
a contribution of order'gi in (39), and so are negligible.
YR X e d —

Then multiplying (16a) by/ﬂ/ T T and integrating over p ,

we haves

v — o =92 — )W b}

fa{,'sﬂ'rr/ﬁ/ \C& 7T«[ +lva;,£ ] =0 (40)
By Green's theorem this equals -

-i—fo(;[/ﬁ-/‘ T4+ ﬁﬁw?].[ﬁ["lth,;["]: O (41)
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Apolying Green's theorem again, we get:
e e & T AT — — —_— )]
2(dz # 7[7 /= 2= falp[/-ir/’Z»,s- Tl
By (26) and (27), we finally get:

45 7 F/ff/*/—w“" o L Wk (43)
- .

2

M
v

[¢
Substituting (43) into (39), and treating P as a constant

when taking the gradient:

— $§Ile,0W 1_’_/2‘ L2 Il 2

= — =T -2 o vT-- P_____/‘ T 9T as)
3 & fF 2%

Thus, by the definitions (3a) and (18), the momentum contri-

bution, ¥w , to the coefficient of thermal conductivity is:

x“ . F(uh;T N¥A1T (45)

2 f 2 f.
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INTERMOLECULAR FORCE CONTRIGLUTION IO TEE EEAT

CURRENT DENSITY

In order to evaluate é: , as (21) shows, the relative
=g

current dens1ty,1'?¢h¢”u; has to be expressed by means of
the Fokker-Planck equation (17) in pair space, because it
involves the probability density in pair space. The proce-
dure is thus quite similar to the one just completed. (17)
is multiplied by wvarious powers of'g and integrated over
momentum space till the desired relative current density is
ferreted out. The only difference 1s that here six dimen-
sional spaces are dealt with.

Consequently, multiplication of both sides of (17) by
i{ , followed by integration over momentum space of both

particles, yields:

Iz %%" * v"'[/”‘ﬂ{“;(f’, A7 - F ¥

+ Ve (Bl G5 di - e
- UL e ] Ve - 5T % L. =
J

where Green's theorem and (8 and (9) deflnlng /f’ano-j‘"

have been applied. As a simplification

?(1)= ?’(T.) ;]:"’4, F(T;) 1“’ (47)

~

has been assumed where ? is the singlet friction constant.
This assumption neglects the dependence of the friction

Q)
tensop f’ on the relative configuration of pairs and makes

it¢ momentum independent. Since the situation is symmetrical
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with respect to the two molecules, multiplication by fi and
integration over momentum space leads to an identical equa-
tion except that the roles of molecules one and two are inter-
changed. The right hand side of (46) is the desired quantity.
To evaluate the left hand side in terms of known quantities,
(17) has also to be integrated over momentum space yielding

the continuity equation in pair space:

P P - Iy ey

Y + %..j/’u) N vﬁ";{;’ _ O (48)

2
Furthermore, the second term on the left hand side of (46)

is, as usual, obtained by multiplying (17) by'ﬂ.ﬁ’ and inte-
grating over momentum space. By an argument similar to that
following (1l6a), we can see that the contribution of the
terms on the left hand side of (17) to the integral is of
order'%ﬁk Therefore, only the right hand terms of (17) are
significant. Multiplying and integrating the right hand

side and using Green's theorem once then results in:

T #{c ] w dr are0 0

Expanding and avplying Green's theorem again leads to

= (2) - . (2) R
f?. fdr.dﬂ %iJr”’,’:_i‘j-. (50)
~ NJ.

In order to evaluate the third term of (46), we multiply the
right hand side of (17) by P fi , integrate over momentum

space, and apply Green's theorems:



%’“-) > P oy p® e g
- HP ~F) L kT v ;ja(p A, (5D
. ?u)[[ _ _TZ .
P’ 4 ){ RT Vi ]c(P AP =

Rewriting (51) by using Green's theorem again, we obtains

fm [{f?, ?. u)o(?, AP, - ‘:—“_'A;i:;)] +
. f“)D‘[ﬁﬁ{ x;{i_’; ‘(ﬁ; ) J,N-{: u,J _ O

Taking the gradients of (50) and (“2), in order to substitute

(52)

them into (46), and neglecting thej“ terms, since they are

non=linear and involve the gradient of the velocity, yields:

(l.)

? 5% }, V-o[h'rp“’] F Bu, - m 53)

Since we are neglecting second order terms, the time deriva-

2
tive of the current density can also be struck out because1},
ig of order'%'itself and is pombined with the ]?'coefficient
in front of this term.

An equation similar to (53) exists for molecule two.
These two equations are the differential equations for the
palr probability distribution function. Before they can be
solved they must be expressed in terms of a common function

which has been chosen here for convenience as the correlation

function defined in (11). Thus:



v [kTr™ (R, R.; )] -
Vﬁ-_ [hTP"’(i .t)/o")(i;‘)f) 9'“)(1?. ﬁs) t)] =

"’(m,t){9“’<? R t) Ve [RT o (R, ¢)] +
+ RT p“(R,t) v,;_g"(n.,m;tﬁ

Introducing (32) changes the above into

(54)

Uy ~ Wy D)oy — D (a)/= =
=P URL)P R E)GUR R ) E s KTy )(R.JR,;Q)(SS)

Substitution of this into (53), with the additional simpli-
fication that the mean intermolecular force F is replaced by

@, =
its equllibrium value <F7, results in:
—D

oAy, i
4: - ”'F( =
t) (56)

-ﬁ_ﬁ[(‘;—\"’? ) RT W 9 -<F> gmj

By (14) therefore:

_“(1) s ('/ Ly
423

5T (%5 g0 g 5]

(2)
It is to be noted that ?; y the equilibrium radial distri-

bution function, in the above equation refers to the condi-
ca)
tions at molecule one. ?., differs from the time dependent

2)

ta) r¢ . .
listribution function ? by 4 °, the perturbation term, which

alone depends on time:
C2) a) 7 (€2)

g ¥ 7. (58)

) g ==
7 , as has been pointed out, is a function of R, 9 Ra , and

it
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time; of course, it is also a function of temperature and
pressure. Now, under the existing temperature gradient, the

temperatures at Rv and R. are different so that really :

<2) =0 —

9 7= g™(R R, T(R), T(R) p, ¢) (59)

2 2

However, (58) necessitates the determination of a temperature
at which the equilibrium radial distribution function is to
be evaluated. The most natural choice is at the average
temperature be'tween’r(ﬁ) and T( Ea).* Since in liquids ?«“’ is
a function of the relative distancelﬁ,only, we can write, if
pressure is held constant throughout:

gP(R,T(R) T(R); t) =

¢ — — D (60)
» (R,) F(R,) 1€y, = - -
7. (R, L ) +9 (R, T(R) T(R.);¢t)

2
Define
T. T(R) + T(R,) . (61)
2
and
F: - p| o ’Ra. (62)

-y

e 3 s 2y ’
When taking the gradient af?,’au R, we have to correct for

the fact that the temperature is not evaluated at that point,
* Defining 3“’:7“’[0?-: T(R)]+31eads to unsymmetrical

equations with respect to molecules oneand two. The result-

ing differential equation for the probability density is

different but the final result is, of course, the same.

See Appendix I.



so that

(2) €2y s = ’ 2y ,
Vit -G RT) e oT 22, O

Since

— ey

y
R=R-R ad Vz=-Vi: s (64)
s R, 7,
the Taylor expansion keeping only linear terns gives

r7(3

Vid e - 9.7 (R,T)-%9 +—VT[ ] (65)
The other term on the right hand side of (57) V-&?g"'[ﬁ T'(f(_)]

he conditions at

=
involves T ( R.) only since it referys to t
molecule one. It is written now as the difference of two
quantities, as verifiable by a linear Taylor expansion, so
Ca)y n

that 3, is expressed in terms of the same temperature through-
-4

out. uﬂpandlﬂg‘é;?’?o) aoovt the temperature T 1cads to

Loy g [RT(RI] =
. 3y = (66)
Log g [R_T(F)], [9’2790 E‘:T(R‘)]] -r( I T(ﬁ'.)]

D T(R))
~ TR, ) =T(*)
Similarly expanding T (F)  about T(R) yields =T

T(R) = T(R)+ VT [R-F]+-
T(R)-T(R)=-+ oT R

O\

(67)
Thus

"V Ly 7[R, T(RD]
~V~ [’&77¢;’(R T)""(R VT {)T’Z’Z’?W(R T)f]

so that



;(J) — P %) (35} ((F]
- A i =
» ] - hT _ A €2y /¢y
f ‘;; ? - ‘Z%‘? ‘ +
vxvT [227) (69)
oT Jdp

f?» v JV~{&73 3% vT)[i”éL?_?

Multiplying (69) out and cancelling the first term results

ins
RS S _
- Y, = ‘_f———ﬁ- L) ¢a
Td1p

% B v~{(p. VT)[ “’] }]

where the terma (R vT)[—’—egf#»Yhas been nec'1 ected since it

is of second order, involving the product of the perturbation
and the temperature gradient. When the gradient is taken in

the last term of (70), one term cancels out, so that

-—-.

-2 Fo (R VT) v~[—’i°5$~‘"] 7

An exactly similar eowatlon holds in the space of molecule

(71)

two except that some si@ns are reversed, due to (64):

"y _, U)
= % =% ’7(a) l(l) s

43 = /o ?(T‘,) hT [v" ’67 ?/o )-.

LY (), = D :‘-)

It would now be possible to evaluate the relative current

(a)

; ; . *¢a) e :
density if the perturbation 3 were known. A differential
* ¥(T,) and$(T) difrer by terms of second order.



equation is obtained for this quantity if we express the left
hand side of (71) or (72) in terms of the radial distribution
function. To accomplish this it 1s necessary to take the
divergence of both sides of (71) so that the continuityE¥47)
can be used to convert the current density into a probability
density. It 1s more convenient to carry out this operation

in the six dimensional space. After taking the divergence and
adding the two equations, (71) and (72), the left hand side

contains:

T ; % —_—
Vi [4. - AP+ R, ’[‘h La.p,” (73)
(4®) changes this into

3
- _5_/?_ _ vﬁ.'.(&',,ﬂ“’ - Vﬁ-a.[c?‘,o“’ =

(74)

D C/o (n(’-?"; t) P(I)(,'S“) t} 3t3)(ﬁ) t)]
D¢ a
- PR E) G [G PR E) g (R )] -
PR E [ P Rt) § R, )]

where the definition of g, (11), has been introduced. The

continuity equation (22) and (64) transform (74) to:

‘ ) <2 — 3 n
'P”P( Z‘_g%“ » i, 2 ?“,,.b(;-v,;‘?() _

o _n ‘_gi“) | (75)
_/0 /0 [,)[— + [J“&:] VR" ?t&j'

Since only the perturbation term depends on the time, and

since a Taylor expansion can be made up to linear terms of

(



C’((R‘) about C:( :)J
- — — — gy —
S(R)-& (R,)= R Ve (76)
and since Ri is approximately equal to r .
J(R)- G(R)=R- Vet (77)
(75) is transformed into:
v [T'?csy it (2) ety =
SR AU AL
(783

LY R R )

This last term, involving the gradient of the velocity, is
important in the theory of the coefficient of viscosity. It
is here zero since the physical conditions permit no velocity

gradient. Finally by (71), (72), and (78):

[ Goar)s (g o] -

) D 7 Cay (79)
,0 /o _5%— v_[ _p_ ‘QT{ v g,“’.{.
V*’Z‘? 7],
This is the desired dlfferentlal equation for the probability
density expressed in terms of the perturbation,.
The complete solution of this equation leads to the mole-
cular interpretation of the relaxation time spectrum due to
flow caused by a temperature gradient. For the determination

of the coefficient of thermal conductivity it suffices to



}.J

consider the steady state solutions. The boundary conditions
subject to which this equation is to be solved are derived

from the conditions imposed on the excess probability current
density in pair space. The vanishing of the pair probability

current and its divergence at the origin will certainly satisfy

B

teet the requirements that there be no source or sinks of pairs.
The pair probability current and its divergence should also
vanish at infinity because of the physical interpretation of

the current. The particular solution of (79) E}“m,z O
satisfying these conditions can immediately be found by inspec-
tion. It obviously satisfies the boundary conditions that the

=
relative current density and its divergence vanish at R = O

and?m”. By (79)7

Vl__j;t’“’.&,o“’] -0 4 R0 avd R- = (80)

rc3) o a o o
Ir9g = 0, the first and second terms on the right hand side

of (71) vanish, leaving:

_.

7}', e, ___ig— 3.” (R-VT) v[ﬁzf‘y (81)

- a) n) ")
At R=0 vanishes exponentially so that :F’ 6
J o I o
-—d

At R=o% , when g, "= | , the boundary condition is also sat-

isfied., Thus, by (21), for a spherically symmetric potential,

q. -

Wa

th

dv () R <a)
/dR[\/ R ]9 (R-<T) g‘fl/_——ffﬂ—? (82)

P.
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How let us use polar coordinates

dR = R*%: OdR A O A S 52)

»|A1

=co—:@

and choose the z axis along the direction of VT,
R VT = VTR O (84)

Then the integration in (82) over ¥ can be carried out imme-

diately, giving2 T, so that:

% -

TRTA (85)
dav i <=

2 F vT AR[\/-R ] ()RidR[ 7JJ6%3w—ae

Integration over © gives 2/3. Therefore the intermolecular

contribution to the coefficient of thermal conductivity) which

is the negative of the factor multiplying VT , becomes:

TRT S

T 3 ﬁmﬁ~“@h?md_£ﬁ£7 (86)
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BVALUATIOHN OF THE COEFFICIELT O THERMAL CONDUCTIIVITY

The expression for ¥. can be changed into various forms
more convenient for calculation purposes. By so transforming
this equation it has been possible to express some of the
terms in X, by means of thermodynamic quantities. This is
desirable since it decreases the reliance on the radial dis-
tribution function, which is not accurately known and which
occurs in a rather sensitive way in the integrals.

fle write

Z. cm[ ,]?z
9. [ 7.” ﬁ[bT] [9“’] c(R [ T ”

So (86) becomes by (87) and then by partial integration:

X, : ,_B_'f_de[R‘fdvm V]Lm BT"’ a( ]

_ _TRTPS

4V d*Vv I3
3 f {)T[d'R[_-gR3 3R V-l- R“.c('R" ? )-i-

% ) D Cay
), AR[R*4Y_%*V] i%z" [’531‘-'],,; (89)

€1)
The first part of (89), ¥v , is evaluated through thermo-

dynamic data as follows.

Let V(R) be the Lennard-Jones potentials

very - v [ (2)7- (3]
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Writing x for

«- R
-l (91)

[43]

v Dbecomes:

/m_ hTPt D [ 13-9 CID— - 7-3 ] (92)
¥, = 33 fo(x e 7- [dx;—;g,, )

Consider now the equation of state and the eguation for the

internal energy as two simultaneous linear equations in the
two unknown integrals. That is, the equation of state with

the potential (90) becomes:

S

Adv
[dx x' = ﬁ.m =
° d x

- - (93)
6 w

fdx—,; > +/°dx ;Z? [AT"?]zw',ﬁ"z
and similarly the thermal equation of state becomes:
f%a(x x* AN =
° 4’" d- (94)

Co <a AE
f 4"”’7- - [o"(" ‘gx%‘»” 2 NP

where AE' E- Fg is the difference between the actual inter-
nal energy and that of the perfect gas. Solving for these
two integrals in (93) and (94) and substituting the result
into (92) yields:

) D AE SET

(95)
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For a liguid P can be neglected compared to /OAT inPkT"'P
sincelokTis the pressure that would exist if there were no
forces between the molecules. Carrying out the differentiation
with respect to T ylelds

{}) iR_,C(ﬂ
&v = 75- 3—__.&“ e
2 MNP 21TN

- == [P"’+ bT( a'r)j,

te) % 7% s i 5
where CP is defined as the heat capacity of the liquid at

(96)

constant pressure. Introducing the thermal expansion coef-

v

9 o =L "
ficient b= V('D_T_“r , One obtains

(¢)

(UD]
¥, = 27N FR-GC -

AEL) - 48 (R-a-'RTI:)] (97)

By then adcding on the remainder of the intermolecular contri-
bution and also the kinetic contribution, (4%), the thermal

conductivity coefficient 1s evaluated by the following equa-

tlons
hT 3 (e
2 [R-26(2R- " aEL) 6 (R RTS)] -
(98)
T‘hT,o

/rtng[}Q# 1§3\%] fggézgiz;u[i%;i:?

In the first term of (98), ‘”, we introduce
AH= H.-Hg-= E.+(pv),~Eg-RT = AE-RT (99)

because data sre usually given in terms of H, the enthalpy,



so that

u) (& 4 |
3 2fv [ZSC. g %—'R*b(ngH“’"RT)]. (100)

4.

With the following d “ua(é 7)

T = 89%
P=1.2 atm
AH= . 1543 cal/mole

b= ,o04p / Ok

vz 28,9 cc.

Cp = 10.10 cal/%¢
. ~(101)
. /68 /O-“'
bf": ————?5——'“ cal./ cn. sec. oK

If the repulsive exponent were 11.4 in (90) instead of 12,
K (L} %
becones equal to

e

Ku)'—_ 1.8 $ x 70 c¢,€/ ° (102)
Con, 2€<C, Ro

¥

For the integrals in (98) it i1s necessary to know the radial

4

GO

ot

distribution function and its derivatives with respec
distance and temperature. The first calculations were »ner-
formed with a reasonable analytic approximation to the exper-

imental radial distribution function found useful in the
calculation for the coefficient of viscosity(l).

2 S
%, - (—:—) . [(C:f—) £ (%‘-“—)t O<R < a (103)

R>Q.

e
—
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where Q = 4,5 A° and t = 14
Am = 3,554 and s = 7,007

The parameters Q, and t vere adjusted to fit the first peak

of the experimental data of Eisenstein and Gingrich for the
radial distribution function(B) and were Ifound to be relatively
temperature insensitive. The other two parameters Q.. and § were
then determined so that this radial distribution function,

when substituted into the theoretical expression for the
equation of state and the internal energy, reproduced the
experimental data. Now to find the temperature derivative of

a2

this radilal distribution function in accordance with the above

FoE

findings, 1t is assumed that only a.. and § are temperature-
& 9 o M &

dependent. To evaluaste this dependence the above procedure

1s repeated, using the temperature derivatives of the expres-
X 9 & iy B

)

i

clons for the equation of state and internal energy. That is,

4 o a.) _.[Os . . . -

the two parameters|{ —=jandl =——=/ are so adjusted by solving two
2T/, oT/p

linear simultaneous equations that They are consistent with

the experimental data for the heat capacity and the compress-

s q

ibility. The two derivatives proved to be equal to:
Da " e R

| = 2.94-8x70 " ; (———) ==-/[8§29xr0 " (104)
oT /s 2T

It is then pnossible by direct substitution to get

/. R’V 9—{;%&:”(%%_" | AR =-13/6 6" g A

alV » _, . (105)
/R'r _fii_“( )d'R____ 6.308)*/0 e AJ :
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¥ = ¢ Ewi, mee, "C, (106)

It remains to give a numerical value for the friction constant

=

. . : ; . &)
which 1s determined from the very general formulal?)

'?LT[f/ F:.(f)'/c:/f“);[w:/i;dé' ds 07

One crude way to evaluate this expression is to approximat f

f é’“ f)F/f)/ a(?o/&] (108)

!

where the int ation over s has been replaced by 5’3 thus
defining @ as the correlation time. BSince this correlation

4 2 3 Nal + 1 S| i o £ bl o o ’z“_
time is of the order of magnitude of the relaxation time, f y

(108) becomes upon substitution:

Fle)=-v Vs

f - éé"*[fv%.vvw e % 1] - | e
Sl alvve . vetVya]

By Green's theorem
_ P —— ¥/ Qg
N S A (Y Py

Hﬁpﬁ\f* o
% 2 0‘ (39)
3 R Jd R* +'§ 'a—‘_ﬁ]?o AR‘

The radial distribution function (103) gave as a preliminary

(110)

"

estimate for this friction constants:



-5 cal.
X <= 135 xr0”° /7," cew. . (112)

Due to the experimental difficulties, no measurement has

been carried out for this quantity, so 1t is only possible by

rious analogies to surmise whether this value is correct at
least in the order of magnitude, One such applicable analogy

s the principle of corresponding states which holds for any

'._J-

two parameter intermolecular potential. As has been pointed
out in part I of this thesis, the two non-dimensional para-
meters significant to the Lennard-Jones potential (90) are

3 v
a . . : : PO —— P
v anu/gf , Where &« 1s some characteristic distance of the
potential. Fluids possessing this sane form of the potential

3

. - P a___ ; &3 ™
have the same properties when v and/5 are the same. For
the case at hand, the only monatomic liquid for which the
coefficient of thermal conductivity is experimentally known
is helium I, for which, unfortunately, quantum effects are

o~
not negligible. The avallable value(9> at 3.3 Ok is 6 x 10™~

CefeSe 1t is almost certain that gquantum effects make this
value too large since helium II at still lower temperatures
has an enormously larger conductivity. Anyway, if it is

assumed that the conductivity of argon 1s the calculated

value, the prinecip of corresponding states gives as the

=



conductivity of helium I 1.6 x 1077 c.z.s. at 4.5 OK. This

is in reasonable agreement in view of the sign of the quantum

—r

effects and the higher corresponding state temperature. In

2

order to show what the application of the principle of corres-

-

ponding states would yleld in the case of the viscosity, where
all necessary experimental values are known, the following

comparison was carried out starting with the experimental

G 1

viscosity of argon at 892 K. 4t 4.5 OK the calculated viscos-
ity of He is .25 x 10-3 instead of .11 x 1073 poises. Hgain

=

this discrepancy,

7 L

quantum effects could cause but in any case

the significance of the order of magnitude of such a calcu-
lation is demonstrated. It is interesting to note that the
"

thermal conductivity of most liquids 1s between 10”3 and 10~%

and that the

H

are gas liguids have a smaller value by a factor

o

of 10, This may not be surnrising since the rare gases show
the same tendency compared to other gases.

To eliminate the uncertainty in the friction constant it
is possible to make an experimental comperison without knowing
its value since the product of the coefficient of viscosity
and thermal conductivity is very nearly independent of § o

va the small momentum contribution to the viscosity is neglec-
ted, the viscosity is proportional to ? while the thermal
conductivity, as has been seen, 1s inversely proportional to

the friction constant. Thus for helium I we would get:
(}' ) L xro”
= x c.g.5
’7 calew(a b ed ﬁ )

($=)

(113)

-7
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where, as is necessary for consistency, the same radial distri-
bution funection has been used for the evaluation of both coef=

fieients.

4=

The uncertainty in the distribution function and therefore
in the two integrals (10%) evaluated with it might be quite

large. It is interesting to note that if these two integrals

Y
!

were neglected entirely, that is if they proved to be negli-

[ g

524 0] - o o
gibly small compared to the ¥ term, the coelficlent of heat
o, ¥
conductivity of argon would be egual to 3.1 x 10 o CeZeBSe and
therefore the one for helium I would be 3.7 x 1077 CegeSsy 1N

better agreement with experiment.
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If we define
9u;)___ ?:u(ﬁ T(E.)) _'_g (114)
equation (63) and therefore (6%) remain unaltered., However
— =
there i1s then no need to expand ,207 ?:”(RUT(RJ) about
T(R ) thctom*mmtﬂ’vn for molecule one,as was previously
done. Therefore we can immediately wrife down the current

density in pair space projected on the 3-space oif molecule

i'or the corresponding equation for molecule two, however,

(2) e . '
it is necessary tha 'ngfy ('R (R )) be expanded about
T (R\) , so that analogously to (66

V; Log 9" (R, T (R))
Vi [ Loz g (R, T(R)) - (R T)[sa‘— Logg.” (R, T (R, )>],,

EIRRZN

iy e i e a * s gl 3
Therefore (72) becones instead

e ca) P F‘U 1¢2) r¢ay cay
4, —wap - - hT[V,;g - g (VAR Ay & A

_!
()\
S




£ )¢ --; ! now rosa P
\{/) vl { TOW 1‘.,

7<)

") w i’ vﬁ[%ﬂkTE—-ZVH? +

v 28/ Loy g 8 Va(RVT 1(>2E S (

urbation arising from departures of

<o

riuvm thus satisfies the partial differential eqguation
7€3)
v v /€3y /cz} 0}] f 9
- Rk 2kT 26
(l)
‘ “ o[ (7 vT(2Z2E)
FV“. - °
Z nfg, % | (RTIN==E" 5
The solution satisfying the boundary condition is now
following {orm:
ca)
W e oy L Loy g.
= ~(R.VT) -
g =g (R (R ST /P
If (120) is substituted into (114), equation (81l) res

O
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distance occurring in the Lennard-Jones potential (90).

constants occurring in an empirical radial distribution
function (103).

coefficient of thermal expansion.

molar heat capacity at constant pressure.

internal energy density, also, thermodynamic internal
energye.

specifies equilibrium average of a quantity.

equilibrium average force on molecule a in a set of n
molecules.

perturbation force on a molecule a in a set of n mole-
eules.

total force acting on molecule a in a set of n molecules.

total force in the configuration space of n molecules.

probability density in phase space of N molecules.
(™)

time averagednﬁ

time averaged probability density in the phase space of
n molecules in a system of N molecules.

pair correlation function.
equilibrium radial distribution function.

perturbation to the equilibrium radial distribution

function.
enthalpy.
particle current density in the configuration space of

n molecules.

particle current density in pair space projected on the
singlet space of molecule a.

Baltzmann constant,.
masss

total number of molecules.
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subset of total number of molecules,

momentum vector in lN-n dimensional phase space.

momentum vector in n-dimensional phase space - or singlet

space.,

the 2 momenta in l2-dimensional phase space.
pressure.

position vector in HI-n dimensional phase space.,
position vector in n-dimensional phase space.

heat current density,.

heat current density due to transport of thermal kinetic

energy.

heat current density due to molecular interactions.
gas constant

relative coordinate of molecules in a pair.

the two positions in 12-dimensional phase space.
the positions in singlet configuration space.

ial distribution

[o ]

constant occurring in an enpirical ra
function (103).

absolute temperature.
tine.,

9

constant occurring in an empirical radial distribution
function (103).

particle velocity,

pair interaction potential.

total intermolecular potential of N molecules.,
molar volume,

potential of mean force in the configuration space of
n-molecules,

external force per unit volume.

1/kT



& - energy occurring in the Lennard-Jones potential (90).
M = coefficlent of viscosity.
& = correlation time.
ég,qa:angles in polar coordinates.
¥ = coefficient of thermal conductivity.
¥ = kinetic part of the coefficient of thermal conductivity.

¥, = intermolecular part of the coefficient of thermal conduc-
Tivitv,

)(:’s a part of the intermolecular part of the coefficient of
thermal conductivity as defined by (92).

Y- a part of the coefficlent of thermal conductivity as
defined by (100).

f = friction constante.

(2
f ). friction tensor.
=3
-‘} .

. friction tensor in pair space projected on the singlet
2a space of molecule a.’
=
— —p
m=T, -4
24,3

/9 * mass density

(w)

= number density in the configuration space of n molecules.

RN

= symmetric stress tensor.

19

= time smoothing interval.
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bronose that a model theory for the viscosities

D3
Des

1o

taoc@d by trylng to correlate the viscosity and
Wwdro EﬁrqlC stabillity of tetrasilica <~

% ~ T 4 -~ e =~ o b
o) used co assess the aggresat state of molecular
species in the liguids -
X + s Lf o MmAaTraecnc amhiome A A SR 3
c) into a paracnor scinene To predlcey visco=
# g '
sS4 ’\1_\_953 ®
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2. 1 propose that a model theory for the viscosity of
liguid mixtures bes

a) tested by tryving to correlate the concentration-
dependence off the viscosity with that of the thermodynamic
finections

b) usca to define a new ideal norm for the viscosity
of a liquid mixture;

e) used to test the assumption that only binary inter-
actions are significant in the liquid.

B
} . ‘W\‘ﬂw o e X
3. The formula for Lne shecdlic v¢00051uj[h3,1n terns
of the molecular weight II and the constants K and A,

[]=RM* | used for yulymer solutions,may also apply
T

to some substances of low molecular weight,

4, The Monte Carlo mnethod can be used to evaluate the
adial distribution function of a harﬂ sphere fluld and of
hard sphere fluid mixtures. I.3.ll. equipment can be used for
the calculations, and the results may be compared with those
of this thesis.

ok

5. The general integral equation for the radial dis-

tribution function of a two cowmponent fluid mixture should

to set up and solved in the hard sphere approximation. These

radial distribution functions can then be used to study the

effect of molecular sige on the thermodynamic functions of

fluid nixtures.

b An electrical analog computer may be used to eval-

vate the three-dimens 1op“1 Ising model of ferrowagnetlan.
iethod can take into account interactions between other

arest nelgnbors.

7. An approximate order-disorder treatment of a crystal-
line isotovio mixture of a4 and B ounvorts the COHClh“lOﬂ that
the equilibriun form (with respect to nure & and pure B) is

a sUuperlattice at OCK,
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8. The "heat mole" of a component in a nulticonponent
mixture may be defined as the molecular welght times the
regtio of the partial enthalpy of the component to that of
the reference component. This Yheat mole® is useful in
multicomponent distillation calculations to compensate appro-

ximately for the heat balance. This definition of the
"heat mole" increases the accuracy of the calculations but
none of the tedium usually associated with a heat balance
calculation 1s involved

9., I propose that the radial distribution functions in
thre metastable gas-liquid regkon of the phase diagram (this
thesis) might be used in a theory of cavitation.

10, 4 critical examination of the Jones-Ray controversy,
which is concerned with the change of surface tension with
concentration of an electrolyte, yields the conclusion that
faults can be found for all the many explanations except
Langmuir's (Langnmuir, Scilence 8&, 430, 1938.)





