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ABSTRACT

A scheme for the practical estimation of power spectrum
from randomly-timed samples is proposed and investigated for wide-
sense stationary stochastic processes. The sampiing process {tn}
is assumed to be a stationary point process statistically indepen-
dent of the sampled process X(t) . Stationarity of {tn} admits

that joint statistics of do not depend on k . Closed

t * Cxin
form analytical formulae are derived for the spectral window

Qm(f) and for cov{§(fr),§(fq)} i var{g(fr)} for the particular
case of independent identically distributed sampling intervals.
Results confirm the alias-free character of the Poisson sampling
scheme even for non-bandlimited spectra. It is shown further that
for gaussian processes with very smooth spectra Poisson sampling

process can yield more reliable estimates (i.e., with a smaller

variance) than the well-known method of periodic sampling.
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INTRODUCTION

Power spectral techniques have found many useful applications
not only in communication engineering but also in such diverse fields
as Astronomy, Meteorology, Structural Dynamics, 0il Exploration and
Economics. From measurements of power spectra, it has been possible
in the case of linear systems to obtain useful estimates of the
stochastic relations generating such time series (see, for example,
reference [19]). In turn, identification of linear systems via spec-
tral analysis provides a means of constructive fault-finding and
subsequent modification of the design of radio receivers, aircraft and
other linear (or approximately linear) systems which are subject to
stochastic excitation. In areas of application involving natural sys-
tems (which cannot be modified) scientists and engineers have been able
by extrapolation to predict responses of those systems to well-defined
random excitations. Symbols from a communication source [10], radar
echoes from distant planets [12],[13] , swell recordings from distant
storms [11], reflections from seismic explosions [19], wind velocities
in atmospheric turbulence, and even day-to-day price fluctuation in the
stock market are all examples of random signals with which engineers
and scientists have to cope. In general, amplitudes of these signals
are random and in some cases significant readings of these amplitudes
arrive at random times.

For many of the applications mentioned above analog methods of
spectral estimation have proved inadequate due, for the most part, to

the degree of frequency resolution demanded by modern noise studies.

Since the advent of digital computers, discrete-time estimation of power
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spectra has been widely carried out using the standard procedure of

R. B. Blackman and J. W. Tukey [l1]. For a certain class of signals,
the standard procedure utilizing amplitude readings taken periodically
has produced useful results, while for others it has led to erroneous
estimates. Of particular concern is the error due to aliasing or
unwanted contribution (by '"folding over" replicas of the true spectrum)
from frequencies which are even multiples of the Nyquist frequency

(fN = 1/2At). The attractive possibility of using randomly-timed
samples as a means of eliminating aliasing was suggested by Blackman
and Tukey [1] and investigated by H. S. Shapiro and R. A. Silverman [9],
F. J. Beutler and 0. A. Z. Leneman [2]-[5], all of whom have shown that
Poisson sampling is alias-free even for non-bandlimited spectra. Whereas
the works cited above have provided the groundwork for this investiga-
tion, much~desired processing algorithms utilizing this particular
technique togetﬁer with qualitative analysis are still lacking.

In this thesis, a scheme for the practical estimation of power
spectra from randomly-timed samples is outlined and fully investigated
for a real wide-sense stationary stocbastic process X(t) . The scheme
requires the sampling process {tn} to be a stationary point process
whose statistics are independent of those of X(t) . Stationarity of

{tn} admits that joint statistics of t, are independent of k.

“km® Tk
Chapter I provides the basic formulation of the problem together with
relevant assumptions on the sampling process. An algorithm for
practical estimation of power spectra from non-uniform sampling is

outlined briefly. 1In Chapter II the first-order statistics of the

estimator are fully investigated. An analytical expression for the
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characteristic spectral window is developed in its most general form.
Methods of modifying spectral windows are discussed and windows aris-
ing from Hanning, Hamming and Barlett modifications are derived
analytically. The notion of aliasing is generalized and testing
criteria are discussed. Results on covariability And variability of
estimates are presented in Chapter III. Closed form expressions of
the Blackman-Tukey type are derived for the Poissson sampling scheme.
It is further shown that for very smooth spectra, Poisson sampling
scheme can achieve a better variance than the method of periodic
sampling. For wildly fluctuating spectra, on the other hand, results

show that Poisson sampling is equally unreliable.
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Chapter I

EMPIRICAL SPECTRAL ESTIMATION

1.1 Statement of the Problem

In the empirical estimation of power spectral density Sx(f) of a
real stationary stochastic process X(t) , the following procedure is

customary:

ceeg

(i) X(t) 1is sampled at prescribed times 2 N

tl,t
(ii) A processing algorithm is set up to utilize the sampled
data X(ﬁl),X(tz)---X(tN) along with appropriate information on the
sample intervals to obtain an estimate §x(fr) of the noise spectrum
at some frequency fr .
(iii) The estimator g;(fr) is evaluated and modified appropri-
ately. Evaluation consists in an analysis of the mean and variance

of Sx(fr) . The need to modify the estimate usually arises during the

analysis of the mean of Sx(fr) .

Sampling may be done periodically as in the Blackman and Tukey
algorithm or in a non-uniform manner as has been spggested and studied
in the literature [1]-[5],[9]. 1In practice, a statistical description
can be imposed on these intervals by either (a) sampling the process
X(t) according to some well known distribution like Poisson, periodic,
rectangular; or (b) observing, in the case of natural phenomena like
ocean waves, the arrival times of records and approximating their
statistical behavior as best as possible.

The goodness of estimating spectra by methods described above

depends to some extent on how accurate the sampling interval statistics
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have been approximated. In general, one does not need to know the
actual sampling times for practical estimation, but a statistical
description is required for a qualitative analysis. The scheme to be
developed later in this thesis admits of data whose sampling intervals
are additively random. Thus, it will be less sensitive to sampling
jitter than the procedure of R. B. Blackman and J. W. Tukey in which
the sampling intervals are fixed and equal.

The equations fundamental to spectral estimation procedures for

a real stationary (wide-sense) stochastic process X(t) are:

Sx(f) = J Rx(T) cos WT dT (1:11)
R (D) = E {X(t+71) X(t)} (1.12)

where
Sx(f)‘ is the power spectral density
Rx(T) is the autocorrelation function of X(t)

For ergodic processes ensemble averaging implied in equation

1.12 may be replaced with time averaging defined by

T =

T
R (1) = lim -,% jx(tﬂ) X(t) dt (1.13)
0

Equations 1.11 and 1.13 underlie theoretical spectral estimation in
continuous time or in discrete time with infinite data. Since empiri-
cal spectral estimation is carried out in discrete time with finite

data, a great deal of the efforts in the area is directed to developing
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improved sampling schemes. In what follows, we will develop some
processing algorithms for randomly sampled data, modify one of them

and evaluate its first and second order statistics.

1.2 Designing Estimation Algorithms for Practical Use

The first step in designing a spectral estimator for a
stationary process X(t) which is assumed ergodic is to obtain a

suitable numerical approximation to the defining equation:

=T

(o]
S(f) =2 j lim L X(t+t) X(t) cos 27 f T dt dt (1.21)
r T wT"T : r

oY——-9

Numerical integration schemes for doing this abound in the literature,
varying in complexity from the rectangular and trapezoidal approxima-
tions to quadrature formulas of the Lagrangian and Gaussian types (cf.
Todd [22]). In this section some estimation algorithms are developed
from first and second order integration schemes. The most suitable of

these is selected and modified for subsequent evaluation.

1.2.1 Review of Numerical Integration Schemes

Let £(t) be Riemann integrable in the interval [a,b] and let
f(tn).n = 0,1,2:-+-m be samples of f£f(t) at the times to,tl"'tm .

The area defined by the integral

b
I é J £(t) dt
a

can be approximated by either of the following sums of rectangles



A m-1

I, = I Eedte . ~t) (1.22a)
n=0
A m

t, = nzl B i, =t .} (1.22b)

The subscripts on I indicate that the base of corresponding rectangle
is obtained by taking the forward step (F) or the backward step (B).
A better approximation to the integral is obtained from an average of
the last two sums, namely:

A m-1

bl
" = nZO {f(tn+1) + f(tn)} (t o0 ~ ) (1.23)

I

which is none other than the trapezoidal approximation of an integral.

, . A
To see this, we write out the sum (letting %1 ™ Eagl ™ Bg o
A
fn = f(tn))
l' oo 0
I, = 5 {(f, + £)a, + (£, + £)a, + + (£, +f)al

and rearrange to have

1 m-1 .
I, = 5 {£0, ¢+ nzl £l +a )+ £ al
Higher order integration schemes result from fitting the
sampled data to polynomials of degree less than the number of sample
points. Details leading to well known quadrature formulas can be
found in texts on numerical analysis (see, for example, Todd [22],
pp. 59-61). As a rule polynomial fitting can be regarded as weighting

the rectangles in the sums defined by 1.22a, 1.22b.
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1.2.2 Algorithms for Estimating from Randomly Sampled Data

Let X(ti), i=0,1,2,°**,N be samples from a wide-sense station=-
ary stochastic (real) process {X(t)} and tys i=0,1,2,""",N be
points of the stationary point process {tk} whose properties we will
define later. Numerical approximations to the double integral in
equation 1.21 will proceed as follows. For simplicity, we will
approximate the inner integral as (letting Xk g X(tk))

I=T

1 " =
T j X(t+T) X(t) dt = - n)a z Xk+n Xk o s T = Na
0

and apply equations 1.22a, 1.22b and 1.23 to the outer integral to

obtain respectively (wr = 2wfr):

m-1 1 N-n

plf) = 2 nZO (N-n)a kzl X Tyoom w (b = BJ0 Bl (1.24a)

m
S = sl
Sp(£) =2 nzl (N—-n)a 2 X, Keeos w (e, - tJe a  (1.24b)
and
N
i 2 2
B lf. ] ® = X o
T E No, oy k "k
m-1 1 N-n )
T L O kzl Xiern k%% o™ B Oyt Oensn )%
N-m
+ (N—m)a Z X X GOS8 W (tk+m— tk)uk+m o (1.25)

Each of the above is a valid estimator as far as the integral in 1.21
is concerned and, in fact, §T(fr) is Blackman and Tukey's estimator

for equi-spaced samples. (To see this, put tetn ~ Tk T nAt ,
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ak+n = ak+1 = At , t, = kAt in equation 1.25.) We remark in passing
that there are infinitely many such valid estimators corresponding to
the various integration schemes already mentioned. However, in order
to obtain useful averaging filters or spectral windows, as they are
commonly referred to in the literature, it is some;imes necessary to
modify these estimators somewhat. TFor example, an earlier pilot analy-
sis showed that using either gF(fr) or gT(fr) for general non-
uniform sampling schemes is equivalent to averaging with windows which
are not integrable. §B<fr) , on the other hand, averages with a
Poisson window whose area is zero and whose bandwidth is therefore
infinite. Detail discussion on the averaging capability of the spec-
tral windows is presented in Chapter 2.

In general, modification of estimators can be viewed as con-
veniently weighting the rectangles in the sum of 1.22a, 1.22b. A
systematic way of choosing these weights is that provided by higher
order schemes of polynomial fitting. (See, for example, Todd, pp. 59-
61). Since higher order schemes will usually present analytical dif-
ficulties, any choice of weights which does not hinder analysis
considerably will be quite acceptable. Further ;ccuracy in the inte-
gration scheme can then be achieved by taking samples closer on the
average. A simple such modification which we present here for further
investigation assigns an approximate weight of 2 to the first rec-
tangle and a weight of 1 to the other rectangles in the sum of equation

1.22b. Thus we have
N om 1 N-n
5(£.) = 2 nZl ™) kZl Ko 5 C08 Wp (B Tp) (et 0800
(1.26)
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where

wl 0 , a1

The Blackman and Tukey estimator is easily derived from equa-

tion 1.26 above, by excluding the term adnl and replacing the sum
m m
Z with the sum Z  defined by

n-1 n=0
m m-1
Z a_ g %- {ao + 2 Z a + am}
n=0 n=1

1.3 The Sampling Process {t,}

The sampling sequence {tn} employed in the scheme outlined
above is assumed stationary with independently distributed intervals.
Furthermore, the processes {tn} and {X(tn)} are assumed statisti-
cally independent. It is implied by the stationarity of the {tn}
that the joint statistics of the respective number of points in any
set of intervals are invariant under a translation of these intervals.
Additional details on the theory of stationary point processes are
provided by Beutler and Leneman, Ref. [3]. Summérized below are some

relevant properties and assumptions on the sampling sequence {tn} .

(i) tu+l - tu £ au , W=1,2,*++ are independent and identically dis-
ributed with mean «a , common probability density p(T) , and

characteristic function

¢ (iw) g E[exp (~iwop) ]



w] i

t. , V20 with equality iff v =0 .

(ii) tu_wz, v

(iii) E[X(t“_w) X(tp)] Et{Ex[x(tuw) X(tu)]} with E_, E_ inter-

changeable.

(iv) ¢*(im) = ¢(-iw) where * implies complex conjugate.
Furthermore, ${(iw) satisfies the following:

v)  |oCiw)l< |¢C0)| = 1 , w#0

(vi) lim ¢(iw) = 0
wrtoo

The above conditions (v) and (vi) can be derived easily from definition

0

¢(iw) = J exp (iwt) p(T) dT
0

and the Riemann-Lebesgue lemma.
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Chapter II

FIRST ORDER STATISTICS

2.1 Introduction

In this chapter we proceed to examine the first basic property
of the scheme outlined in Section l.2--the expected value of the
estimator defined by equation 1.26. In particular, we will derive a
general analytical expression for the spectral window Qm(m) and
investigate how certain of its properties affect the resulting spectral
estimates. The notion of aliasing for periodic sampling is reviewed and
generalized to the non-periodic case. Testing criteria for alias-free
estimation simpler than those of Beutler [5], and Shapiro and Silverman

[9], are discussed and presented without proof.

2.2 Analytical Derivation of the Spectral Window

To derive an expression for the spectral window we apply the

expectation operator

to §(fr) in equation 1.26. Thus,
R N;n
E{S(£)} = Z (N_n)a { E, {E [X(t, ) K(t)] cos w (t, .

- ) o o, + aﬁnl)} {2.21)

Interchange of expectation and summation is justified, since we are
dealing with finite sums here. By the stationarity of the sampling

process {tn} , the summand in equation 2.21 does not depend on Kk ,
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so that

E{S(f )} = —-nzl E. {E [X(t ) X(t,)]cos w (e - tde (o, +af )}

Next, we take expectation with respect to X and introduce the Wiener-

Khinchin relations to have:

E{S(fr)} = é- ) J S(f) Et{cos w(e, - ¢ )cos W, (t t

Ls ke Sk
n -00

a (o, + a8 )} af

Now, (Re = "Real part of'")

Et{ cos w(tk+n t ) cos W (tk+n t ) ak(uk+n+ aﬁ )}
-l {;k(ak+n+ o8_,) Re [expli(who)(e,, = £)]
+ exp[i(m-mr)(tk*n— tk)])} = %-[qn(w+mr) + qn(w-wr)]

where

>

9. (@ = Re E_{ o (o + af ;) expl[i(t

- G211
K+

aRe Et {ak+nexp (-iﬂu-g+lau) % aG exp(—iﬂak+l)}

= QRe {(§—§?59-+ a6n1)¢n(ﬂ)}

The last equality follows from the assumption that the sampling inter-

vals are independent and identically distributed. Finally, we write

-]

E{§(fr)}' = f S(f) Hm(w;wr) df £2.22)

-00

where
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Hm(w;wr) é'% {Qm(w+wr) * Qm(w_wr>}

A T on d &n ¢
Q) = 2 Ref nzl oh @) o o} (2.22a)
m
=2 re {MGEE) 2L o) (2.23)

Equation 2.23 gives an analytical expression for the so-called spectral
window for non-uniform sampling in which the intervals are independent
and identically distributed. For the uniform sampling scheme of

Blackman and Tukey, the spectral window takes the form:

m
ai) £ rof LENL- ) By, 4} (2.24)

2.3 Desired Properties of the Spectral Window

By equation 2.22 E[g(fr)] can be interpreted as a convolution
of the true spectral density S(fr) and the window function
Hm(w,wr). It is also customary to regard the mean value of §(fr) as
a weighted average of the true spectrum over the bandwidth of the
spectral window when the latter's main lobe is at fr . For the
purpose of useful interpretation we can rewrite equation 2.22 in the
following more general form:

[ s(E) H (w0 ) df

-C0

H (w;w ) df
_i m> * e

E{§(fr)} = (2.31)
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Whence it is expected that

(i) Qm(w) % Qm(O) with equality iff w =0
(ii) J Qm(w) dw =0 , 0<g<w® ,any m

For absolute convergence of the convolution integral (see, for example,
Apostol [25] p. 490), and since S(f) is assumed bounded on (-®,+®),

it is sufficient that

[

(1i1) J QW | dw < «

=00

Finally, it is desirable to have spectral windows Qm(w) , indexed on
m , which form a defining sequence for the generalized function & (w)
i.e.,
(iv) lim Qm(w) = g 6(w)
m -+
This last requirement guarantees that §(fr) is asymptotically un-
biased. Throughout the preceding it has been taken for granted that

Qm(w) is continuous, real and even in w .

2.3.1 Bandwidth of Spectral Windows

The bandwidth over which averaging of the true spectrum is done
plays a major role in the stability of spectral estimates. For example,
if the spectral window is '"too wide'", satisfactory resolution becomes
rather difficult to achieve. In particular for spectra with bandwidths
of the order of the window bandwidth, estimates at all frequencies will

be very highly correlated. We are not concerned, at the moment, with
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how wide or how narrow the spectral window should be. Discussion on
the trade off between resolution and stability wiliﬁbe taken up later.
Rather, we are interested in establishing a working definition of
bandwidth.

Of the several definitions of bandwidth that abound in the lit-
terature, the one that lends itself to easy calculation is that of Parzen
[8]. It is simply that the bandwidth Bm(Q) of a spectral window
Qm(w) is the base of the rectangle whose height is the peak of Qm(w)

and whose area equals that of Qm(w) . Symbolically we write:

f Qm(w) dw

=00

B_(Q) e o7
m max (w)
2

(2.32)
The above definition assumes property (ii) of Section 2.3. Use will
be made of equation 2.32 and property (i) of Section 2.3 to compute the

bandwidths of periodic and Poisson windows later in this chapter.

2.4 Windows Resulting from Some Common Sampling Densities

In Section 2.2 we derived general analytical formulae for
Qm(w) under the assumption that the sampling intervals are indepen-
dent and identically distributed. By suitably defining the character-
istic function ¢(w) in equations 2.23 and 2.24, particular expressions
can be obtained for spectral windows resulting from any sampling scheme
for which our basic assumption is valid. In what follows, we shall
derive particular expressions for the periodic, Poisson and rectangular

sampling densities, and exhibit some graphical plots as visual aids.
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2.4.1 Periodic Sampling: The Blackman-Tukey Window

When sampling is done periodically without jitter as required

for the Blackman-Tukey algorithm, we have

t, = kAt , At = sampling period, with sampling density

pak(T) = (1 - At)

and characteristic function

¢ (i) = exp(iQAt)
which, with

2 fn o6UR) = At
310

puts equation 2.24 in the form:

(1 + exp(ifAt)) (1 - exp(ifimAt))

Q(Q) = At Re
m 1 - exp(ifAt)

1 - exp(-iflAt)
1 - exp(~-ifiAt)

Multiplying the R.H.S. by before taking the real part

leads to

Sy = e
Qm(Q) = At sin mQ At cot 7 (2.41)

which is Blackman and Tukey's result Qo(w) (ef. [Els pe35)s

2.4.2 Poisson Sampling Process: The Poisson Window

Here the sampling times are the occurrence times of events in a
Poisson process (e.g., shot noise, radioactive decay). The interval

between successive events e has the density
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a—l exp(-t/a) , T 20
Py kX)) =

"

and characteristic function
. -1
o) = (1 - ifw) (2.41a)

where aﬂl is the mean sampling rate and © the mean sampling inter-

val. The joint density for n successive intervals is

n-1
ooy o S BERCTIR), .2

P o
G Pn-1® " Pl o (n-1)!

from where we have the probability F(n,T) that there are n samples

in an interval of length T , given as

n
F(n,r) = Lo(T/a)

o nl

These last two expressions can be derived easily from the inverse

Fourier transform of the joint characteristic function

¢_(12) = (1 - iQa)

Now, from equation 2.4la, we have

53— o = ad
i

and consequently, (from equation 2.23)
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Q@) = 20 Re {671 - ¢ - 9 + ¢}
- 20 Re {601 - ¢"™Ha - 97

Multiply R.H.S. by (1 - ¢%)(1 - ¢*)"1 to get

20 Re {0(1 = ¢ )1 - ¢%)(L - 2 Re ¢ + [6|H)7Y}

Q¢ ()

magnitude of the complex function ¢ . To simplify, note

where |¢]
that we can write

¢ = cos Y exp(iy)
with

Y = arc tan (o)
so that

@ = 20 {cos™?y sin(@+1) Y /sin y (2.42)

2.4.3 Rectangular Sampling Process: Rectangular Window

As a final example we consider the rectangular sampling process
by which sampling intervals are uniformly distributed in [0,2a] with

mean o , i.e.,
1/2¢ 0S712 20
p, (1) =
ak .

0 otherwise

The corresponding characteristic function is

o) = (2i00)~L [exp(i200) - 1]

and after carrying out the indicated differentiation,
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: A
sza-ﬁn [0 ofl + l(ﬂa cot fla) ]

whence equation 2.23 gives
R@) = 20 Re {(1- 0t [¢(1- 9 +90(1-¢™ (L+1iG=- cot Qa))]}
Qm _ Qo ;

The above expression for QE(Q) does not lend itself easily to
further analytical investigation. However, we shall use the form

m 5 n
G - m{amm, b et o
n=1

+ sin nQa(cot Qo - hl'E”} (2.43)

for obtaining graphical plot of the rectangular window.

Shown in Figure 1 are the periodic, rectangular and Poisson
windows as given in equations 2.41, 2.43 and 2.42 respectively. They
are plotted for m= 25 and o =1 . Based on the figure, one is .
inclined to deduce that both Poisson and rectangular sampling pro-
cesses are ''alias free'" for non-bandlimited spectra, while the
periodic process is not. Analytical confirmation of this observation
will proceed in subsequent sections for periodic and Poisson windows.
As was pointed out earlier, the rectangular window is not tractable

analytically.

2.5 Details on the Periodic and Poisson Windows

In what follows we take a closer look at the periodic and
Poisson windows (the rectangular window will not be investigated fur-

ther due to lack of a suitable closed form expression for Qi(m)).
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In particular, we will verify properties (i) - (iv) of Section 2.3 and
compute analytically the bandwidth and sidelobes for each of the

windows for comparative analysis.

2.5.1 Integrability and Absolute Integrability

(a) Periodic window. To see that Q;(w) has repeated major

lobes at multiples of 2m/At , we write

m-1
Q;(w) = At {1+ 2 ] cos nuwAt + cos mwAt}
n=1

and apply cos © = cos (@0 + 2nm), n = 1,2,3,*** to have

Q) = Qiw+ED (2.51)

Equation 2.51 suggests restricting the periodic window to the band
|w| S /bt otherwise Q:(w) is neither integrable nor absolutely

integrable. On the other hand,

u W
Qm(w) rect T/t

is both integrable and absolutely integrable,

1 |&] <

t
rect - =
2T 0 £ <T

In particular, we have from tables

m/At
sin zl)z‘tAt dw = 2m , (cf Ref. {21], P 366)
/At tan '_2

Absolute integrability follows from the finiteness of the integration

limits and ordinary integrability demonstrated above. Further, we note
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that

Q(w) S Q1(0) = 2mAt lw| < m/Ace

(b) Poisson window. From equation 2.2a, we have

m %
Qp(w) = 20 Z cosn+lw cos(n+l) ¢y, Y = tan_lwa
o n=0
whence it follows that

Cw S (o) = 2@+

Further, Qi(m) is integrable, since

/2

E m .
j Qi(w)dw -2 J cos wsi;n$m+l)w dy
-0 -m/2

= 27 (cf. [21], p.377)

It follows too that Qz(w) is absolutely integrable over any finite

interval. Now,using the result

T Qf;(m) - 01/w®

W+ w

-

derived in the appendix, we can write for large L

= L -1 =)
J |QnPl(m)|dw-J[Qz(w)|dw+0 fd—‘é’-+f =
= =L o B L w

L
- f Q5 (w) |dw + 0(1/1°)
L

whence it follows that Qz(w) is absolutely integrable.
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2.5.2 Behavior of Qﬁ(w) , Qi(w) for Large m

The main interest here is to see whether or not the window func-
tions approach the delta function as m increases without bound. For
our purpose it will be sufficient if for F(w) continuous, bounded and -

absolutely integrable,

(o]

lim J Qm(w) F(w)dw = g F(0)

m = @
-00

where O 1is the area under Q (w) .
m

(a) Consider the integral
w/At
I = J Q:(w) F(w) dw and assume that F(w) is '"good" in
-T/At

the sense described above. Then

m/At
I = sin mw At cot 9%5 F(w) dw
-m/At

mT

sin d
+ [ o iy &
-mT

[+ ¢]
i.e., F
lin I = 2F(0) JE—%‘—I dy = 2mF(0)
-00

m > ®©

Consequently,

W
2m/At

lim Q:(w) rect

m > ®

276 (w)

(b) In a similar manner



-

qucw) F(w) dw

m/2 "
- cos Y sin(m+l)y
12 sin U F(tan V) dy
-
(m+1)g cosm(EET) sin y d
-z | Fean Jp) S
( il sin —— -
- m+l)§ m+1

lim RHS = 2 fs—i;‘—-‘i F(0) dy = 27 F(0)
00

m —*> «

which implies that

lim  QCw) = 2m8(w)
m = ® n
Additional evidence is provided by the observation that the major peaks
of Q:(w), Qz(w) given respectively by 2mo, 2(m+l)o tend to infinity
with m . Also the bandwidths obtained from equation 2.32 as 1/2mAt

cps, 1/2(m+l)a cps respectively, tend to zero with increasing m .

2.5.3 Computation of Side Lobes

(a) Periodic. Q:(m) = At sin mw At cot E%E

has zeros near W, = km/mAt , k=1,2,3 so that its side lobes have

peaks near
Ll
2mAt

wp = (2p+1) o e AL

given approximately by
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Qucw) < (=13Pac cotan[(-zf[%z%) ) (2.52)

(b) Poisson.

m+2
P . 20 cos Y sin(m+l) ¥
Qm(w) sin VY

has zeros near
wk = km/m+l or W, =-% tan(km/m+l), k=1,2,+ "

and consequently, peaks near

—- =-]—'- M _1.[ = LA
wp (2(m+1)) or wp o tan( w1’ 2 * P 1,2,

approximately equal to

m+2

Qg(wp) < 2a(-1)P cos Ggﬁz%)'ﬁ sin( m+l) (2.53)

Using equations 2.52, 2.53 we have computed some coprdinates
for the first three side lobes (corresponding to p=1,2,3) and
m = 50,100,°°°,300 . Results for m = 50,100 agree quite well with
those shown in Figures 2 and 3. It is observed from Table 1 that side
lobes move closer to the origin but do not decrease with increasing m
as is expected. Rather, the side lobes increase with m but do not
exceed a fixed fraction (namely, about 1/5 for the first side lobe) of
the main lobe. Figures 2 and 3 lead to the conclusion that side lobe
contributions are less pronounced with Poisson sampling than with
periodic sampling. However, this discrepancy disappears if m is
sufficiently large. Finally, we remark that the results of this sec-

tion confirm the known result that Poisson sampling is alias free even
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(a) First Side-lobe p =1
n u P P
m Wy Qwy) b Q{1
50 0.0942 -0.21205 0.0927 -0.16945
100 0.0471 -0.21217 0.0467 -0.18980
150 0.0314 -0.21219 0.0312 -0.19702
200 0.0235 -0.21220 0.0234 -0.20072
250 0.0188 -0.21220 0.0188 -0.20297
300 0.0156 -0.21220 0.0156 -0.20449
(b) Second side-lobe p= 2
U 10 S Y g PP
i 9y Q (@5) s Q (w5)
50 0.1570 0.12706 0.1552 0.06761
100 0.0784 0.12726 0.0779 0.09329
150 0.0522 0.12729 0.0521 0.10357
200 0.0392 0.12731 0.0391 0.10908
250 0.0314 0.12731 0.0313 0.11252
300 0.0261 0.12732 0.0261 0.11486
(¢c) Third Side-lobe p = 3
u u, u P P, P
m Wy Qp, (w3) Wy Q(w3)
50 0.2191 -0.09058 0.2190 -0.02567
100 0.1099 -0.09085 0.1093 -0.04929
150 0.0732 -0.09090 0.0729 -0.06062
200 0.0549 -0.09092 0.0548 -0.06714
250 0.0439 -0.09093 0.0438 -0.07136
300 0.0366 -0.09093 0.0365 -0.07432
Table 1. Some Coordinates for the first

three side-lobes.
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for non-bandlimited spectra (c.f., Beutler [5], Shapiro and Silverman

(9D.

2.6 Aliasing of Spectral Estimates

In the practical estimation of spectra from uniformly sampled
data, errors have been known to occur in the estimates due to the
periodic nature of the sampling scheme. These errors come as unwanted
addition of estimates of the true spectrum at certain integral mul-
tiples of the Nyquist frequency (fn = 1/2At , At = sampling interval).
Furthermore, estimates at these multiples of the Nyquist frequency are
indistinguishable from one another. For bandlimited spectra, this
problem, often referred to as aliasing, is easily surmounted by taking
samples at or above the Nyquist rate. For non-bandlimited spectra,
random sampling schemes (namely, the Poisson sampling scheme) have
been found to reduce or even eliminate aliasing effects. In this
section we derive the basic concept of aliasing for periodic sampling
directly from the corresponding window function Q;(f) and generalize
to nonuniform sampling schemes.

To this end, let us rewrite equation 2.22 .as:
E(8¢£)) = J S(£) Q_(£-£) df (2.61)
0

and assume for the moment that S(f) is non-bandlimited. With uni-
form sampling interval we showed in Section 2.5.1 that Qm(f) is

periodic with period fp = 1/At cps. Consequently, we may write

u £ T
Q (£) = Q (f) rect “175369\)2 §(£ + VE ) (2.62)

= =00



3

where (® defines the convolution integral. Now, using 2.62 in 2.61

and recalling (from Section 2.5.2) that

lim {Qm(f) rect l/At } = 2m8(£)

m =» &

we get
lim E{S(f )}= 27 Z S(£,+ VE) (2.63)
m = <« V==00
and
ootk
lim E {S(f * kE )} o= 2w ] S(f_+ vE) (2.64)
m > ® V=—0tk P

Equations 2.63, 2,64 together define aliasing for uniform sampling
scheme. Both equations show that on the average, estimates at

fr’ fr+ kfp k=1,2,+++ are indistinguishaﬁle. Each estimate §(fr)
is the true spectral density S(fr) at the frequency of interest fr
plus magnitudes of S(f) at fr + vfp v=1,2,""". The latter inter-

pretation becomes obvious when we write equation 2.63 (leaving out the

21 for convenience) as:

lin E {8¢£)) = S(£)+ 2 S(£, + VE) -

m = ®© V= =00

v#0

To recovef S(fr) from §(fr) with periodic sampling, the
above equations suggest that we make fP large enough (by sampling
closer together) so that S(f) is zero outside (—fp,fp) . For band-
limited spectra this is possible to within the capability of the

sampling equipment. However, for non-bandlimited spectra nonuniform

sampling patterns must be Used, since it is practically impossible
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to sample uniformly at an infinite rate.

Definition 1l: An estimate is said to be aliased in the ordin-

ary sense iff for some integer k and sampling interval At

lim E|§(fr) - 8¢f_ + k/Ae)| = 0

m + @

In terms of definition 1 above, a sufficient condition for estimates to
be aliased in the ordinary sense is that the spectral window Qm(w) be

a periodic function of w , with period wp = 2m/At .

2.7 Modification of Spectral Windows

One peculiarity of the estimator under investigation is the
term aGnl which was included to insure that the resulting averaging
filter Qm(w) is integrable in (=°,®) . As we have shown
earlier, integrability is only one of the essential features of a
usable averaging window. The need for modification of this type did
not arise for the periodic sampling, since the latter scheme is
restricted to bandlimited spectra by which integrability of the spec-
tral windows is virtually guaranteed. All efforts in the past have
been directed primarily at de-emphasizing side 1oges of windows and
forcing Qm(w) tq become positive definite--a necessary condition for
realizability of filters and other transfer functions. Tailoring of
the spectral window in this manner is usually accomplished by weight-
ing the mean-lagged products with an even, positive definite function.
Several weighting functions bearing the names of their innovators abound

in the literature for the periodic sampling. In this section we extend
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these tailoring techniques to the nonuniform sampling scheme and
examine in detail the effects on the Poisson window of Hann's and
Bartlett's weighting functions.

A general modification of the scheme under study can be written

as.:
i A mo N-n
S(£) =2 nzl i kzl D\Stk_m- tk) X(ty ) X(t,)cos wr(tk-l-n- t)
X ak(akm+ adnl) (2.71)
where
D, (=) |t] < T
D . (T) =
¥ 0 x| 2 T
m

By appropriately defining DV(T) , the resulting modified window can
be derived analytically as was done in Section 2.2. To illustrate, we

will derive the Poisson-Hanning and Poisson-Bartlett windows.

2.7.1 Application of the Bartlett Function to Nonperiodic Sampling

Scheme

The weighting function suggested by Bartlett is given as
1- [T]/Tm [t] < 2
D (1) =
B >
0 7] & %
m

and the corresponding spectral estimator is

N-n t =
a A, T 1 ktn ~ k
Sp(fy) = 2 nzl N-n kZI Q= ma ) Xty Xt

(2.72)
x cos w (t, = t) e +as )
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Proceeding as before, we get

T tk+n- ¢
E {S(f )} =2 Z j S(f) Et (1 - T) cos W (tk'f‘n tk)
n=1 -

X cos w(tk+l- tk)ak(ak+n+ aanl)}r df
- f S(£) Ho(wsw ) df
m p

with

B 1l ¢.B B
Ho(wsw) = 5 {Q (whe) + Q (w0}

=

C@ Q@ - (@

where Qm(Q)l is the unmodified window derived in Section 2.2 and
m

B 2
Q (w) = e )

n=1

)

n
with

qo () “E o (o, a8 )t -t ) Relexp i0(t,, - t)]}

k+n k+n
= E {Re[ak(onk + a8 1) ( Z o) exp(iﬂu-__l}zﬂuu)]}

Taking expectations as indicated, and noting that



lﬂo’k 3 iQOLk
Et {Ctk e } = 30 o (i) , Et{e } = ¢(i)
and
iQ 2
A d
E, {a } = $(10)
S 310°
it can be shown that
2 2
260 =of 2o ¢ Lam » o [ @9 2] + o, 38
i
(2.73)

Finally, we have the Bartlett window arising from nonuniform sampling

given by
Bay = 2R J {o"0 <284 a5 o - L By} (2.74)
Qm = i 0if nl ma In '
The Poisson-Bartlett Window
With Poisson sampling intervals,
2
¢(iQ) = (1 - ina)'l . - - u¢2(19), 29 . 2a2¢3(iﬂ)
9ifd aiQ2

so0 that the Poisson-Bartlett window can be written as (substitute

above into 2.73, 2.74):

m m
CP@ = 20 mre{ ] ¢™ -2 ] (1) ¢™P(a0) (2.74a)
n=0 n=0
m
- ne{ ] 0= - @&y ¢t
n=

Now the second summation on the R.H.S. of 2.74a can be carried out by

rewriting it as
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m+1
S = ) nb

n=1

n+l

and noting that

m+2
s = ) (n=1) ¢

- n=2

n+1

Subtracting the latter from the former, and manipulating accordingly,

we obtain

s, = (=072 {o2a- N+ 67 A - ¢ - @™ 1 - 9}

Next, substitute

Y

$(iQ) = costbei ;Y o= tan-lﬂa

and take real parts as before, to obtain
CP@ = D - @ sin’W 7 {20°cos™ Y [(w+2) cos(mt1)y
2 2
- (m+l) cos VY cos(m+2)yY] - 20" cos Y }

= (m sinzw)-l {2a cosm+2¢ [m sin(ut+l)VY sin Y= a(m+2)cos(mtl)y cos Y

+ a(mt+l) cos(m+2)lbcoszw] + 2a2coszw} (2.75)

Shown graphically in Figures 4 and 5 are the normalized
Poisson window, Qz(w)/Qi(O) and its Bartlett modification Q:B(m) /
QzB(O) for m = 50 and m = 100 respectively. The main peaks are

respectively, QZ(O) = 2(m+l)o and
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2 m
R0y = (o) - £ T (a+1)

n=0

20° (L) t2)
m

= 2(m+l)a - > ]

= 2(@+1) af1 - B2 g

While reducing the side lobes considerably, the Bartlett modification
tends also to increase the bandwidth as the plots in Figures 4 and 5

indicate. Again, results are improved with increased m .

2.7.2 Application of Hanning, Hamming Functions to Nonperiodic

Sampling Schemes

A general expression for the weighting function of the type

proposed by Julius Von Hann and R. W. Hamming can be written as:

a  +ajcos mT/T, ' |t] < T
D(T) =
0 |t] >t
m
where ao'= a, = 0.5 for "Hanning"
a = 0.54, a = 0.46 for "Hamming"
o 1

The corresponding estimator is (wm = T/mo)
N-n

m
S ..
shh(fr? =2 nzl T Y (a_+ a,cos w (t

-t)) X(e )
- ktn~ Tk k+n

X(tk)cos wr(tk+n- tk) ak(ak+n+ aénl)

Taking expectations as before and noting that
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Et{cos wm(tk+n- tk) cos w(tk+n- t,) cos wr(tk+n- tk)}

1.
7 leos(whw +w ) (e, =€) + cos(whw ~w ) (e, - t)

+ cos(w—wr+ wm)(tk+n- tk)-+cos(w—wr—uh)(tk+n- tk)]

we have

Q) = a Q) +3 a [Q (WH ) +Q (w-u )] (2.73)

where Qm(w) has been defined in equations 2.22a and 2.23.

The Poisson-Hanning Window

Application of the Hanning function to the Poisson scheme leads

to the Poisson-Hanning window defined as:
HP i Fgn l..P P
Q, (W = 5w +7lQ (why) + Q (w-w )]

where as before

m+2
Qi(w) . 20 cos B;iﬁ;n(m+l)w LV o= o

Further,
Qr0) = Q. (0) + Q. (m/ma)]
.
= mo for large m

mt+2

v n
since for Y = m/m and very large m , cos m/m = 1 and

sin(m+1)7/m = -sin T/m.
HP HP P P
The plots of Qm (w)/Qm 0) , Qm(m)/Qm(O) shown in Figures 6 and 7 for

m = 50, 100 respectively, show a similarity between the Bartlett effect
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and the Hanning effect on the Poisson scheme. The Hanning modifica-
tion leads to smaller side lobes but larger bandwidth than the

Bartlett modification.

2.8 Aliasing: Extension to Nonuniform Sampling and Criteria for

Alias-Free Estimation

In references [4] and [9] the authors have laid down some
criteria for a sampling process to lead to alias-free estimates.
Beutler [5] defines alias-free sampling in terms of the capability to
recover the true spectrum of x(t) from the "correlation sequence"

r(n) via

& N
S(E) = nzl an(fr) r(n) (2.81)

where

r(n) = E {X(t, ) X(t)}

- _%F J S (w) ¢:(iw) dw (2.82)

According to Beutler, alias-free recovery of spectra from correlation
sequence requires that §(fr) be uniquely defined by equation 2.81.
Equation 2.82 relates spectral recoverability from r(n) to the
sampling process by means of the joint characteristic function ¢:(iw)
of n successive intervals. From 2.82 it is inferred that sampling
is alias-free if a one-to-one mapping between r(n) and S(w) is
implied by equation 2.82. Some criteria for alias-free sampling have
been laid down by the authors mentioned aboye. Whereas Shapiro and

Silverman restrict their findings to spectra which are square
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integrable, Beutler considers a more general class of spectra. Their
criteria provide sufficient conditions for a sampling process to yield
alias-free recovery of spectra from the correlation sequence. In other
words, they provide conditions on ¢n(iw) sufficient to make equation
2,82 a one-to-one mapping of r(n) into S(w). Further details on
this can be found in the cited references. In what follows we shall
define alias-free estimation of spectra from the sampled data X(tn)
and establish some simple criteria in terms of the spectral window
Q(f) -

We refer to Section 2.6 and note that, whereas equations 2.63,
2.64 together imply that on the average g(fr) and g(fr + kfp) are
identical, this does not necessarily hold in general. For example, it

is conceivable to have a spectral window function Qm(f) of the form:

Qu (D) = Q(f) rect 7y ® I oV S(£+VE (@)
P D

(2.83)
where p(v) # 1 and fp(a) is fixed for each a .
Then we will have corresponding to equation 2.63,
lim E {S(£)} = J p(v) S(f + v (@) (2.84)
m > @ r V==00 ¥ p
and to equation 2.64
A ootk
lim E {S(f_+ kf (@)} = L p(VH)S(f + vE (@)
m -+ ® V==00+k
(2.85)

Now suppose there exist constants Uk such that
g, p (V) = p (V)

then it follows that
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otk

lin E {0,S[£+ kf (@]} = J o) S[E+ ki (a)] (2.86)
m > © Sl P V==0t+k t P

Thus we have

Definition 2: A spectral estimate is said to be aliased in

the generalized sense, if for some integer k and éverage sampling

interval a , there exist 0, fp(a) such that

lin E|S(£) - o,S(f_ + ke ()] = 0

m = ®

The above generalizes Definition 1 to include spectra which are iden-
tical to within a multiplicative constant. Thus a sufficient condition
for aliasing in the generalized sense is that the spectral window
Qm(f) exhibits main lobes at f= kfp(a); k= +¢,00,=2,=-1,0,1,2,°"" .,
Finally we have:
An estimation scheme is said to be alias-free with
respect to non-bandlimited spectra iff the characteristic window has

one and only one main lobe at f = Q,
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Chapter III

VARIABILITY AND COVARIABILITY

3.1 Introduction

In the last chapter we investigated the first-order properties
of our estimation scheme. One consequence of the subsequent analysis
is that the question of whether an estimate is aliased or not can be
answered directly from the characteristic spectral window Qm(w) . At
the first order level there is also the question of bias. Because of
the finiteness of data, g(fr) given in equation 1.26 is necessarily
biased. However, it can be shown from property (iv) of Section 2.3

that S(fr) is asymptotically unbiased, i.e.,
lim 3 =
poam, E{S(2 )} S(f.)

Thus far, the quality of our estimation scheme has not been well
related to the amount of data N wused. It has, however, been related
through m , where m i1s chosen to be always less than N . 1In the
last chapter we found that for certain classes of spéctra (band-~
limited for periodic, non-bandlimited for Poisson sampling) estimates,
g(fr) on the average approach the true spectra S(fr) as m increases
without bound. Webwill see later in this chapter that unless N is
increased accordingly, the stability of estimates will be adversely
affected. Consequently the pertinent questions to be investigated in
this chapter are:

(a) How c;ose to the true value is the estimate available from

a finite data size, N ; and what is the covariability of the estimates
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S(fr),S(fq) ?
(b) What is the effect of increased data on the quality of our

estimation scheme?

In particular, we will derive analytical formulae for cov{g(fr),

§(fq)} and var{g(fr)} ;

3.2 Analytical Derivation of cov[g(fr), §(fq)] . var{g(fr)}

To derive a formula for the covariance of two-spectral estimates
§(fr),§(fq) obtained from the same record via equation 1.26, we will
assume that an effective length Ne, of data has been selected. Details
on how to choose Ne are given in [1] (see for example, [1], p.102) but
for our purposes here it suffices to point out that N-m < Ne < N .

Also, we shall make use of

cov {xlx2x3x4} = E[X;X,] E[X,X,] + E[X;X,] E[X,X,] (3.21)

Equation 3.21 assumes that xl,xz,x3,x4 are joint gaussian variates
with zero means and is derived in Parzen [23], pp. 92-93.
For analytical convenience we shall make use of the following

approximately equivalent form of equation 1.26

o g T 9E Tkn Ten
LI = n§l kZl X(t - =) X+ —7) cos(W,Ty Jay (o, + 06 )
w = 27f T é t -t
T ! kn k+n k

to write
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4 T He kn
Z Z Et{cov[X(tk— ) X(t + 3 —) s
Nea® j,n=1 i,k=1

cov{g(fr),g(fq)}’

T )
- ii _ij
x(t:i 2 ) x(ti+ > )] cos erkncos(quij)o&ak(aﬂj"' anl)

x (o, + ab_ )} (3.22)

Now, assume that X(tk)'s are gaussian with zero means and apply

equation 3.21 to get:

T T. g
cov[X(tk ) X(t + —EE) " X(ti - —%i) X(ti+ -%l)]

- Rx[ti tk- E{T - Tkn)] Rx[ti k 2(T Tkn)]

(T +'c )]Rx[t:i t+-—(T +1’ )]

+ Rx[t W3

im %2

where Rx(T) = Ex(x(t+T) X(t)) dis the autocorrelation function of the

process X(t) . Next substitute the Wiener-Khinchin relations to get

0

RHS = f J S(fl) S(fz) {cos wl[ti- t - %{Tij- Tkn)]

-=00

1 il
cos wzlti- t:k+ E(Tij- 'rkn)] + cos ml[ti- " 2(Tij+ 'rkn)]

cos w,[t - t + 2(1 ¥ T )]} df df,

which, upon expanding the cosine functions, becomes

%- J J S(fl) S(fz) {cos[(wl+ wz)(ti— tk) - -;—(wl- wz)('rij- 'tkn)]

+ cos [ (wymuy) (£4= £ = Flop+ ) (v = 1))

+ cos[(wl+ wz)(ci- tk) - %(wl— wz)(rij+ Tkn)]
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+ cos[(wy - ) (t,= ) = -é-(w1+ w) (1 o+ 1)1 } e as,

The last result suggests the following substitution wl =w +w,

w, = W' = w and consequently dfldf2 = 2dfdf', whereby

2

Ty RS} RS}
cov[X(tk— T)X(tk+ —2—') . X(ti- 2 ) X(ti+ 5 )]

0

= J j S(E+£') S(f-£') {cos[20' (e~ t,) - (T 5= Tyl

-w'(t,,- T

+ cos[Zw(ti- t 1 kn)]

k)
+ cos[Zm'(ti— tk) - w(Tij+ Tkn)]

+ cos[2w(t - t w'(t, + rkn)]} df df' (3.23)

K" 1j
Using equation 3.23 we can now write an expression for the covariability

of two spectral density estimates g(fr), g(fq) in the form:

o

cov{g(fn) g(fq)} = 4 f j S(f'+ f) S(f'- £f) {Al(w',w,wr,mq)

-00

+ Az(w',w,wr,wq)} df df'

where

A
Al(m',w,wr,w ) = ; 5 ) Et{( cos[2m'(ti— tk)— w(‘ri = Ty, )]
T Nea® 1,5,k,n J kn

- - ' —
+ c:os[Zm(t:i tk) W ('rij 'rkn)]) (cos W T, cos qu:Lj)

aiak(ai+j+ adjl)(ak+n+ adnl)} (3.24)
and
Ay’ w0 ,0) 8—1- 7k {(cosl20(t;~t)) ~0(Ty )]

Ne a 1i,j,k,n
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+ cos[2w(t -t ) - w' (T, + T, ) 1) (cosw T, cos 0 Ty 000 (0 4% as, ;)

x (ak+n+aanl)} (3. 24a)

Again, we expand the cosine functions using cos a cos b -—é—[cos(a+b)

+ cos (a-b)] to rewrite defining equations 3.24, 3.24a compactly as:
Au(w',w,wr,mq)
= % {J\u(w',w+wr, w-i-wq) + Au(w',w—mr, uH-mq)
+ A“(m',w+mr,m—wq) + Au(w',w-wr, uhmq)
+ Au(m,w'+wr,w'+wq) + Au(w,w'—wr,w'+wq)

& Au(m,w'-i-mr,m-wq) - Au(w, w'-w_, w'-wq)}, , u=1,2

A whe, w+wq)

A 1
8 ' -
) ’ E , E {alqk(uk +o l)(a[ l+ aﬁll) cos[2w (tI tl)

-

+ )T - () Tl )

1
Az(m y who w+mq)

A_1
Ne“a® 4,1,ken

Et{aiak(ak+ﬁ+a6nl)(ai+j+ aﬁjl) cos[2w'(ti-tk)

- (o )T, - (m+wq)rij]}

Finally, we have
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1
Al(w ’ w+wr, w+wq)

: )
- E {a o a cos[2w'(t. -t ) + (wHw )T
NoPol 4. i ks OB kA0 1+ 17 % r’ Tkn

(uH-wq)Tij] + o Qo cos[2w‘(ti—tk) + (w-Hnr)Tkn- (w+wq)ai+1]

aiakai+ja cos[Zw'(ti-tk) + (wr)akﬂ- (w—i-wq) Tij]

+ a0 of cos[20'(t -t )+ (wh )o, - (wha) oy 1} (3.25)
Ay (w', whw_, w-Huq)

- ;%? 1,j§k,nEt{aiakak*“ai+j cos[2w' (t;-t,) = (who )T,

- (wﬁuq)rij] +ooa o cos[Zm'(ti—tk) - (uri-mr)'rkn- (uanq)ai+l]

+ aiakai+ja cos[ZLu'(ti-tk) - (Mr)ak+l - (w—i-wq) Tij]

+ a0’ cos[20' (tt) = (who Do = (who e, 31} (3.25a)

In taking expectation as indicated in equations 3.25, 3.25a,

overlapping of the intervals ¢t t, must be taken

17% Sk~ G447y

into account. One way to get around this is to consider a given per-

mutation of the times and break up the intervals

Eio Yo Y4y Yem
Ei % 1457510 Bletn ke

can use the assumed independence of disjoint intervals. Subject to

into non-overlapping intervals so that we



-52-
the requirement that the sampling instants form an ordered sequence, it
is shown in the appendix that there are only six permutations of the

times t , namely:

1* "k’ Cletn’ Fit

> > >
(i) ti+j ti_t t

(L) e ® Bp 2 g, ¥ Ty

(iii) ti+j 2t >t >t

(Av) o > by > 8 > 8y

> >
) g Tty T E 2t

(vi) t,, ., >t >t >t

i+j

Now for each permutation given above, we can proceed to take
expectation as stated earlier. This is done in detail in the appendix
for all six permutations. The results are summarized in the following

expression for the covariability of spectral estimates.

cov {§(w.) §(wq)}

- f I S(f'+f) S(f'-f) {A(w',w;wr,wq) +A(m,m',wr,’wq)} df df'

-0

where

L
Aw,w ,wr,wq)
1
-7 {A(w',uri-wr,wq) + A0 whe_, w-wq)

+ AMw', ww_, anq) + Aw', w-w_, w—mq)}
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1
Alw', wr, w+wq)

1 " "
- Re 7 £y (20" (E, (whw ) + 08, . ¢ (w ) *
NZOLZ {R(ijk)ikn i q i1 q

[gn(Zm'+w+wr) + En(Zw‘-w—wr) + adnl(fb(Zw'ﬂﬂ-mr) + @(Zw'—w—wr))]

+ ) E*

(2w' )[E 20"+ ) + 08 ) O(2uw"+wro ) [E_(why )
chk:j,k.n) k=i : " :

+ gzcwﬁ»r} + a8 (0lwrw) + ¢ (who )]

. i=-k-n+1

R3(i!j Dkin)

(wtw )+ ad,. 0

* . .
(Ei-i-j-k-n q jl (wq)) [Ei-—k(zw wr)

(meg (408 8 D) (20t ) (B (0k0 40 )

wk—i+1
+ad ¢ (2w+wr+wq)]]

"B, zk )igi-k(z“"ﬂ”“’r) (Bieanmgg ) + 08 I )
4 1sdsksm x (gj (wp=wg) + O‘Gjl cb(wr-wq))
+ €, (20" w0 ) (E‘:+n-1 _j (whw ) +o8 ¢*k-i—j+l(w+wr)) [E;(zwwrmq)

*
+aby) 0 (2w e )]+ £, (' ot ) 18y gy (W0,

Rg(1,3,k,n

+ o8 . oFk1-i+l i-k+1

ol (w w)+a6 <I>

) £y y

(w - q))

" *k-i-j+1 *
+ (Ek-i-n-i-j (who ) + o8 @ (w+wr)][ E g g (20H0 40D

wi-letl
R (2w+wr+mq)] ]

* i-k-n+1
+ 7 5k (20" +urkw )(&;i+j_k_n(unq) +as, 0

(whw )
Rg(1,3,k,n) q
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[En(wr-wq) + E:(2w+wr+wq) + a6n1(®(wr-mq)+-¢*(2w+wr+wq))] } (3.27)

A u-l 08 A .
where EU(Q) = " ") g 0 ¢ () 2 ¢ (iQ)
: A ;
Rl(i:.] ,k,n) = (i,j,k,n) . t >t, 2t >t

i+ 1= "kn ~ Tk

; A :
Rz(l,j ’k,n) = (i’J ’k"n) H tk-i'n > tkz ti+j > ti

R3(i’j Jkyn) = (4,3, k.n) : ti+j 2 tk+'n > ti > tk
Ra(i’j:k:n) = (isj »k,n) H tk+n > ti+j > tk > tk
Rs(l,j,k,n) = (1,j,k,n) : tdn > ti+j > ty > t

R6(i,j,k,n) (1,j,kyn) :+  t, .2t >t 2t

i,k = 1,2,***,Ne A 6
= U Ru
2 LN ul
n’J L 1’2’ ,m u
Note: R NR = 0 - H#V

3.3 Derivation of the Blackman-Tukey Result for Periodic Sampling

The Blackman-Tukey result can be derived from the general

result given in equation 3.27 by setting the terms containing ad

]
m m 31
ad equal to zero and replacing the ordinary sums E a Z a, with
nl n i
n=1  j=1
the "trapezoidal sums",
m m-1
Z an = a_ + 2 X an + a
n=0 n=1

in accordance with the Blackman Tukey estimator. In addition, we will

need the following properties of the periodic sampling process:
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o(Q) = iW8T

Q) _

310 o(Q) At
£,@ = @ == 6 = A (@) (3.31)
S+ Dt ) = Rt e iy
= a(R) 00, $(2,) (3.32)
oM@ = o THRE L Mgy = oM@ (3.33)

Substitute 3.31, 3.32, 3.33 into the expression so derived from 3.27

to get
A(w',w+wr, w+wq)

2
- L5 ke { z] o1 7K 2wy oM (whw ) (0% (whw ) + 0% (whw )]
Rl q r r

+ 2 ] oty oM ) [0 wh) + & (who )]

A

: Lot uty o ) 107 wha) + 0" ()]
3

+ § 7 ot 2w ¢*3(w+wq) (0" (whw ) + (D*n(uﬂ-wr)]
L

+ gsf o7k u) ¢*‘j(w+wq)[d>n(w+wr) + 0 ke )]

+ 2] 2wty o wr ) [ () + ¢*rém+wr)l}
6

Consequently:



-
' .
2w ,m,wr,wq)

2 m Ne n
- A_ti. Z ¥ o K2y ¢*j(m+m )(cbncwr) + 0¥ (uH-mr))
Ne” n,j=0 i,k=1 q

and

A(w,w';wr,mq)

2 Ne m
= é%— Re( [ ] ¢'7(w")] z (0% (s )
Ne® 1,k=1 §=0 1

" m
+ Q*J(uhwq)]nfo[(¢n(w+wr) + ¢*“(w+mr) + @“(w-wr)-+¢*?w_wr)]}

Now, with equation 3.33 it can be shown easily that

Ne
i A _1 i-k,, 1y o (8in New'At 2
K (w',Ne) 2 Lo (2w Ne sin w'At’
Ne 1i,k=1

is real, whence we write:

1
A(w,m';wr,mq) = E-Ku(w',Ne) Hm(m;mq) Hm(w;wr)

-

where

1,00y 2 3 o) + Qlaey))

u A "
Qm(x) = 20t Re 7z ¢ (%)
n=0

= At sin mx At cot 5%5 (from 2.41)

Finally, we use .the evenness of S(f) to write
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cov{§(fr),§(fq)} - f Hwsu ) Kwsw) T(W) df

with

r(wy 8 J S(£'+£) S(E-£') K (w,Ne) df'
Also,

var{S(£)} = [H(m;wr)lz [(w) df

%'“—*-8

Both of these are Blackman-Tukey's results (see, for example, p. 125

of [1]).

Note further, that the periodic variance kernel Ku(w',Ne) is

periodic with period

w' = m/At or f' = 1/2At
P P

and
m/20t m/2 .
' . 1 sin Ne x
Ku(w yNe) duw At (Ne sin x) dx
-T/20t -m/2
= T/Ne At

3.4 Results for the Poisson Sampling Scheme

For the Poisson distributed sampling intervals

1
A 1 - i
9 o - a¢2(iﬂ)
W1 - 1a0?

£, = it ()
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so that
Aw! ;uH-wr . urf-wq)

oKL 041y (09 (k) 46, 0" (e )
Ne’ {Rlci.j.k.n) 3l q

[¢n+l

(2w'+w+wr) + ¢n+l(2m'-w—wr) + 6nl(¢(2w'+w+wr) + @(Zm'—m—mr)]]

q>n+1

% Z (q,*k“i"j"‘l(zw') ((D*j+l(2m‘+w+wq) + djl ¢(2w'+w+wq))[ (whw_)
Rz(iIJ !k!n)

*n+1

+ ) 6 P ot ) 1 T (@I )

R3(i!j ’k’n)

i-k-n+l i-k+l,, , ktn-i+1
+6,,0 (w+wq)] [tb (2w'+wtw ) (@ (w,-w,)

+ & Qk—i+l i-k+1 gk+tn-i+1

.
al (2w'-w wr) (¢

(wr—mq)) + 9 (2wt 40, )

(zw-mrmq)) ]

4 8 Q*k-i‘l'l
nl

5 [ pl-k+l k+n-1i-j+1 k-i-j+1 ( “H'“’r))

(2w '"+wtw ) (¢
R, (1,3,k,n) _

(wr) + 6nl¢

) + ¢i—k+l *k+n=-1-j+1

[¢j+l(mr-wq) + 6 ¢(wr~wq) (Zw‘-w-wr)(¢ (whw )

j1

*k=-1-3+1 j+1 _
+8 .0 (wr) (o* (Z“H'“’rmq) + 6j1¢(wr wq)]}

+ prk-1itl k-i-j+1

[ (¢k+n—i—j+1
RS(isj :k’n)

(20w ) (who ) +6 ;@ (uHmr))

i-k+1

i+j-k+l k+n-i-j+1
(¢ (w-w ) +8,,0 (u)r-wq)) + (o* (ww )

h|

k-1i-j+1 , sitj—k+1 si-k+1 _
+8 .0 (who ) (@ (2wt 40 ) +8,, 0 (2w wq))]
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xk=1i+1 priti=k-n+l

+ )0

(20" +wrw ) (
Rg(1,3,k,n) b

* i=k-n+1
l¢

(mq) +6 3 (uH-wq))

[ n+1 *n+1

*
o (wr-wq) + 0 (Zw-Hur-Huq) +a ) (4>(wr-wq)+¢ (2ukw +w )]]}

(3.41)

The ranges of summation Ru(i,j,k,n) u=1,***,6 are those given fol-

lowing equation 3.27.

3.4.1 An Exact Result for cov[§(fr),§(fq)], var{g(fr)}

Equation 3.41 can be simplified a step further by noting that

5§ ¢ = ¢n+l

nl -
By appropriately replacing
m m
Z with z
n=1 n=0

we have for the Poisson sampling scheme

o

cov{§(fr),§(fq)} = I J S(f+£f') S(f-f") {A(w',w,wrmq)

-00

+ A(w,w';wr,wq)} df' df
where

1, ) = L ' '

AMw,w ,wr,wq) 4 {A(w ,wﬁ»r, uﬁuh) + Aw ,w+wr,w—wq)
L 1

+ A(w ,w—wr,w+wq) + Aw ,ukwr,m—wq)}

and
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[¢i—k'“+l (2w') o*iTl (uqu) (¢n+l (20" +wrkw )

SN
Ne Rl(i’jsksn)

+ ¢n+l(2w'-w-wr))]+ J [o* 173  (2un) oM (2wt )
Rz(i,j’k’n) q

( n+1 *n+1

d (Wr) + ¢ [°*1+j-k-n+l

(w—t—mr)]] +
R3(ilj ,k’n)

i-k+1

(w+wq)

i-k+1 k+n=-i+l

(¢ (2w‘+w+mr) ¢ (wr—wq) + ¢ (2w'-w—wr)

I (s 4 )] + [0 (auwroon )03 (w0 -0 )
1 R, (1,3,k,n) a r 9

grim=1-3+1 (who ) + g wH (20" -w-w ) pitt (Zw-Hur-Huq) ghktn-i~J+l (wrho_ )]

i+j-k+1 o131+l

+
Rg(1,3,k,n)

(wtw )

[¢*k-i+l
r

(20" 4wt ) (¢ (@ )

+ gxiti-k+l *k+n-i-j+1 o )]

(2uwtw +w )
r q r

+ =k=-n+1

[(p*k-iﬂ
Ra(i.j yk,n)

20"+t ) gxitd [

auﬂnq) (mr-wq)
& ¢*n+1(2wr+wq))]} (3.42)
i,k =1,2,""",Ne - n,j = 0,1,***,m

To obtain an expression for the variance of spectral estimates, we

simply note that

var {§(fr)} = cov {§(frl§(fr)}
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lim cov[g(fr),g(fq)]

|£ - £ |+
r g

3.4.2

From the Blackman-Tukey result derived in Section 3.3, we can
again relate the covariability of spectral density estimates §(fr),
§(fq) to the spectral window Qm(w) . For example, if Hm(w,wr) and
Hm(w,wq) do not overlap , cov{g(fg,g(fq)} = 0. With
Poisson sampling intervals, the results obtained so far do not make
this so obvious, but intuitively we expect a similar correspondence
between covariability of estimates and overlapping of spectral windows.

Now consider A(w',wrw_,wtw ) as given in equation 3.42 and
r q

note that
[A(w' ,w+wr,w+wq)|

< a2 n+1
- 2

{ I [Re[ot ™™ 20y 0%+ o 3 (0
Ne Rl(i’j ,k’n) %

(Zm'-m-i-wr)

+ ¢*"+l(2w'-m—wr) )] + R, (L, ko) Re[ ] \ + e
< az
om0 210 1100)

The last inequality follows, since
|Re z| = |z]
Making use of

1) ¢(w) .1‘ 1/4wa , wow

(i1) @(m+wr) = ¢(w+mq+mr-wq)
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and taking the leading term in each summation it can be shown that

1
lim Adw' ,whw_,wtw ) =
lw ~w | + e roa Nezlw -w |402
r q r q
and consequently,
cov{8(£),8(£)} ~ 0 (——)
q (£,-£)

as |f -f | + =,
rq

3.4.3 An Approximation for var{g(fr)}

In Section 3.3 we were able to derive a closed-form expression
for cov{g(fr), g(fq)} for the periodic sampling scheme. The proce-
dure outlined in Section 3.3 exploited certain properties of the
corresponding characteristic function (cf. equations 3.31, 3.32, 3.33)
which do not hold for the general nonuniform sampling scheme. In
particular, the characteristic function for the Poisson sampling
intervals does not satisfy equations 3.31, 3.32 and 3.33 exactly.
However, an approximate closed form expression for var{g(fr)} can
be derived from equation 3.41 for values of ' near w' = 0. and
near W = % w, . Such an approximation is the most natural one to seek
since the effective bandwidths of Qm(w), K(w',Ne) are of the order of
1/m and 1/Ne respectively, where m, Ne are typically very large.
Specifically, we will derive an approximation for Var{g(fr)} valid in
|w'| < 1/Nea and Iwi'wrl < 1/2mo. .

We begin .by assuming the following form for l(w',w+wrﬂwhur) s



i e

Aa(w ,uﬁmr,w+wr)

2 Ne m ,
=2y T e[ o™un oM 09w (0™ wh)
Ne™ i,k=1 n,j=0
+ )] + R 0k (3.43)

and proceed to derive an approximation for the remainder function,
R(w',uﬂ-mr) valid in |w'| £ 1/Nea and |w+wr|<l/2ma . From

equations 3.42, 3.43 we can write the remainder function exactly as:

R(w',uﬁwr)

2

- o Re{ I o+ ) ko0 (8" (20" vk )

n+1l

+ 0" 2w wmw ) - o (w) wntl

orIHL

. n+l
(2w') (¢ (who ) + @ (w-Hur))]

+ ) (cbnﬂ(m-mr) + ¢*n+1(w+mr)) [d)*k'i'J"'l(Zm') ¢*J+l(2m'+m-|—mr)
R
2

- oty exktlgny ¢*j+l(wr)]

" I[(¢*i+j-k—n+l(wr) d)i—k+l(2w'+w-i-wr)— ¢*j+l(wr)¢n+l(wr)

Ry

¥ (201 0¥HL (2y1y) 4 (o*iHI Tkomtl o) pi-k+l (20" -0 )

el (2wt2w ) - ¢*j+l(umur) oL (i », o1+ (20 0¥ (241 )]]

+7 [ (¢i-k+l (20" mwr)¢k+n—i—j+l

(wtw_)
R, R

- oM 2wy e 2wy oM (or ) ¢ )+
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& (¢1-k+l *j+1 *k+n—i—j+l(m+w )

'.-  —
(2w'-w wr) o) L

(2w+2wr) o}

*j+1 sn+1

- o unyerk Loy e (who ) (wﬁ»r))]

i+l *k+1

k+n—i—j+l(w+w ) - o (2w')®

+ ] [ @ utro) o
Rs

¢*j+l(w+mr)<bn+l(w+wr)] + (@*k'iﬂ(zwﬁmr)cb

’ (2w')

*i+j-k+l(2w+2wr)

#it+i-k-n+1

k=-i+1,, ,
+ RZ [(@* T 2wt )0 (whw_)
6

n+1

- o™ 2w 0¥ (201 08T (v ) 0™ (w0 )

*k-1+1 priti—k-n+l p#tl

+ (@ (20'+whw ) (whw ) (2w+2w )

— ¢i+1(2w')¢*k+l(2w')¢*j+l(w+mr)¢*n+l(w+wr)I]} (3.44)

where the ranges Rh(i,j,k,n) M =1,2,"**,6 are as previously specified.
Now consider the sum over Rl(i,j,k,n) which, for convenience,

we rewrite as

g . n+l
T 0% (30t (200 0% (2m) ot K+2 (2y1y (Q(Zw ke )
o r . ¢i+l(2w,)¢*k+l(2w,) d(2w'")
1
¢(2w'-w-w )\ n+l
r n+l n+l
+ — % -9 (uH-wr) - O* (w-Hur)

and note that
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¢(2w'+w+wr) - ¢(2w') ¢(w+wr)

1 1
1 - 120 +whw Jo T - 2iw'e)(1 - i(w—*—mr)a)

-2w'(w+wr)a2

- [1- 20" (wrw a2 - £(2u"+who )al[1 - 1(20"+oHo )a]

By maximizing the numerator and minimizing the denominator of the above

expression in |w'| < 1/Neo , ]w'+wr|_$ 1/ma , obtain that

|¢(2w'+w+wr) - ¢(2m')<1>(w-l-wr)]

Zw'(w-l-wr)az
[(1 - 2m'(wﬂur)a2)2+ (Zw'wr)zazlllz [1+ (2w'+uﬂ-wr)2a2]1/2
2 21 2, 2 4 i 5
— Nem Q Nem) Nem‘l ¥ Nt ¥ 2 2 ” )
Ne m

whence we have

] 'l' ' - _g_
PQuten ) = B(2w)0(why ) - T (3.45a)
Similarly,
1-k+2,.
e ¥ 1, near w' =0 (3.45b)
O (2w )% T (2w')

Next, we write, using 3.45a and 3.45b, the sum over Rl(i,j,k,n)

approximately as

n+l
RE ¢*j+1(w+wr)¢if1(2w')¢*k+l(2w') [(‘I’(Wr) - N_er‘z’(z“’_')J
n+l 2 " i
- T ) + () - geey) - (Wr)]
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4]
=

& R)j [¢*j+l (who )61 20y 0¥ 2wt (6" (wra )
1

+ L)) + 0(1/ve)] (3.46)

The latter is obtained from the former by taking the first term in the
binomial expansion of

2 )n+1

(¢(w+wr) ~ Nem 9(2w")

and noting that n+l/m S_EEL + 1.,

Approximations similar to equation 3.46 can be derived for
each of the composite summations in equation 3.44 by first establish-
ing approximations similar to equations 3.45a, 3.45b and then sub-
stituting into appropriate terms. Summarized below are some useful

approximations whose derivations follow closely that of equation

3.45a:
0(2w'+wkw 0% (whw ),

¢*(2w+2wr) = ¢(2w') + 0(1/Nem) (3.45¢c)
O(20" ke ) 0¥ (who ) = ®(2w') + 0(1/Nem) (3.45d)
* L) T o) + 0(1/m%) (3.45e)
oF (2042w )
——E ¥ olwh) + O(L/n%) (3.456)
¢ (who ) E

They are valid in |w'| < 1/Nea , |w % wrl £ 1/m0 and can be derived

quite easily. ' To illustrate further, we derive an approximation for
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the sum over R3(i,j,k,n) which, for convenience, we write as

o*I T (e ) 032wty Rt 24y
Ry(4,3,k,n) :

i-k+1

[ ; (20, ) ¢*i-kﬂ(w"r) n+1 )
- (wtw )
¢i+1(2w.)¢*k+1(2w.) p*tL ) r
,i=-k+1 i-k+l,, «n+2
. o (wrhw )@ (2w'-w-w )@ (2w+2w ) i ¢*n+1( ﬁ]
(p*i-k"'l (2w+2wr)¢i+l 2w') q)*k"i‘l (2w') ¢*ﬂ+l (‘*H'(l)r) r

Introducing equations 3.45, we have

(@(2w')-+0(1/Nem))i_k+l

¢i+1(2w,)¢*k+l

Q*j+1(w+mr)¢i+l(2w')¢*k+l

(Zw')[
R3(1,j.k.n)

(2w'")

+
n+l _ q)n+l(m+mr)

2
(@wtw ) +0(1/m"))

(0(20') + 0(1/Nem)) K+

(e*wro ) + 0(1/m))™ - ¢*“+1<wr>)]
(2w")
which, on taking the first terms in the binomial expansions as before,

reduces approximately to

i

o*3*L (urhy )¢i(2w')¢*k(2w')[¢n+l(w-i-m )
™ Ry(4,3,k,m) i i

+ ¢*n+1(m+wr) + O(I/Ne)] (3.4)

Except for the multiplicative constants 1/m, -2/Ne, equations 3.47
and 3.46 are identical. In a similar manner, it can be shown that
approximations to the other sums are identical to equation 3.46 to
within multiplicative constants and that these constants are of the

order of 1/m, 1/Ne . Since m is typically a fraction of Ne (i.e.,

m = 0(Ne)) we can write finally:
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~ a2 j+l i+l
R(',who ) & 0(1/Ne)( = Re D (whw )07 (20")
Ne R3<i,jsksn)

Q*k+l n+l

(20") (7 (who ) + ¢*n+l(w+wr)) - O(I/Ne)}

Consequently:

'
Aa(m ,w+wr,w+wr)

2 Ne m
- 2 Re£ 7T o e yet 2wy ot (2u1)
}
,k=1 n,j=0

(@ (wrw ) + ¥ ) (1 + 0(1/Ne))}

which, by the method of Section 3.3, leads to

A (W' 50,0) = % K (' ,Ne)Hi(w;wr) (1 + 0(1/Ne))

where, as before:

Ne
i,k=1

Kp(w',Ne) = 1/Ne2

Ho(wje) = Qb (whw ) + @ (w-w)

m
Pw = 20re | ")
n=0

Thus we have
var{§(fr)} - J J S(f+£f") S(f-f')Kp(f',Ne)Hi(f;fr)[14-0(1/Ne)}df df'

=00

(3.48)

Substitute ¢(2w') = coscpelcP , P = tan_12w'a to obtain the following

closed-form expression for the Poisson variance kernel K (w',Ne):
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cosl‘cp (1 -2 cos‘\etp cos Neop + Cosz%e )

K (w',Ne) =
P Nezsin2¢
Obtain further,
© /2 Ne
' ' 1 i+k
K(w',Ne)dw' = > Z cos ¢plcos(i-k)p + i sin(i-k)p] dp
2 =
e Ne“a —172 i,k=1

and integrate term by term using (cf. tables, [21])

™
2P (- 1)B(p,q)

x cos(p-q)x dx =

/2
J COSp+q-2
0

and the fact that K(w',Ne) is real

to get
b Ne
! m
K_(£',N )df' = )
_l LA N o dkel 28T i) B (4L ek

where B(p,q) is the well known beta function, viz.,

I'(p) T(q)
B(p,q) = _SRTTS$§T

Shown graphically in Figures 8a,b,c are the variance kernels

(3.49)

Ku(w',Ne) 5 Kp(w',Ne) for Ne = 200, 500, 1000 respectively. Observe

that for sufficiently large data (namely, Ne > 1000) both kernels

coincide.



-70-

T =0 €002

9N ‘sSTsu1d)y 20UBTIBA UOSSTOJ PUR DTIPOTIJ

J3S/0u5Y-"0344

00S°0 00h"0 00E*0

| T

Amzaavmm

0001 008°0 0080  O0Oh°O 0020  000°0- 00Z°0-
C3N“MOM :

00e" 1



=71~

000" ¥

006°0

I

=0 “005

008*0

= 9N ‘sTeuidy 90UBTIIBA UOSSTOJ Pue OTPOTIagd °q8 °STd
J3S/054-"0D344
00L°0 0080  00S'0  00h'0  O00E'0  002'0  001°0  0°
T I I = _
exm™ |
=

00e"o-

000°T 0080  009'0  OOR'O  002'0  000°O-
CIN“MOM

oge 1



T =0 °000T = @N ‘STauId)y 3IDUELTIBA UOSSTO4 Pu® IFpOTIad o8 ‘31

J3S/05d-"0344 :
000'!  006°0  008'0  00L'0  00S'0  00S'0  OOh'0  OOE'0  002'0 0010 O
_ _ _ _ _ ! T T T J(/\/
— g
o~
~
1

0oc°o-

000" 1 008°0 00s*0 00h*0 00e°0 000°0-
‘ CIN“MOM

002" 1



-] Y

3.5 Special Cases of Practical Interest

From the results of the preceeding sections, a number of useful
results bearing on assumptions about the spectrum S(f), can be
extracted. In [1] pp. 104-106, we find results based on four such
assumptions. Here we shall examine the two most useful of these,
namely: (i) Slow-varying spectra, and (ii) Spectral spikes. Usually
in practice, we are faced with estimating spectra which are fairly
smooth except for one or two jumps; in which case (i) and (ii) can be
applied piecewise., Analytically we shall be deriving approximations

to the integrals:
Cov {ﬁ(fr) s(fq)} ” j“”Hm(f, £, )8, (£, £ )T (£) af

(£) = [“S(£+£')s(£-£1)K(£',Ne) af"

3.5.1 Estimation of Spectral Spikes

Suppose S(f) consists of very sharp peaks (of widths << width

of K(f',Ne) ) at f = +f  with area = A, so that we can write:

s(£) = af6(rr ) + 6(e-1,)}

and

S(f+f') = A{a(f+f'+fo) + 6(f+f'-fo)}

s(£-£') = A{s(e-£'42 ) + 6(f—f'-f0)} .

S(f+f')s(£-£")



- -
2 '
= A {6(f+f'+fo)6(f-f'+fo) + 6(f+f'-fo)6(f-f +fo)

+ 6(f+f'+f°) 6(f+f'-fo) + 6(f+f'-fo)a(f-f'-fo)}

Now, let

ne

(ea]
1] 1 1
I(£,f,) [mé(f+f +£)8(£-1'+£ )K(f',Ne) df

1}

6(2f+2f°)K(-f-fé,Ne)

3 6(f+fo)K(f+fé,Ne)

The last equality follows from the evenness of K(f,Ne) and its

boundedness and absolute integrability (ef. Lighthill),
so that,
AZ
r(£) 215-{6(f+f°)K(f+fé,Ne) + 6(£)K(£-£_,Ne)
+ 6(£)K(£+£ ,Ne) + 6(f-f°)K(f-fo,Né)}

2
a:% {5(f+f°)K(0,Ne) - é(f)K(-fo,Ne)

+ 8(£)K(£,Ne) + 6(f-fo)K(-o,Ne)}

Where the last equality follows from

b (x) 8 (x) = ¢ (0) 6 (x)

and the observation that K(f,Ne) is a fairly good function (ef Light-

hill p. 42) Next, substitute K(O,Ne) = 1 to have

2
re) = & {s(eer) + 6(£-£ ) + 2 6(£)K(2 ,Ne)} ;
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Whence

ch{§(fr).§(fq)} = J::Hm(f;fr)nm(f;fq)r(f) ars

2
A . . . .
= B M B B B (- 520) + Hy(£058, ), (58 )

+ ZHm(O;fr)Hm(O;fq)K(fo;Ne)}
By the evenness of Hm(fl;fz) we can write:
Co s(fr),s(fq)}
2 . . - . .

= A {Hm(fo,fr)]{m(fo,fq) v Hy (058, )K, (052, JK(2 sNe )}
For f_ >> l/ K(f ,Ne) =0 so that

o Next * &
ch{s(fr).S(fq)}

o~ AZ{H (f 32 YH (f ;2 )}

m*"o’ r"“m‘ o’q

and

Va.r{ﬁ(fr)} = A% (e ;t)

In particular,

Var{s (£, )}

w.

2 .2
A HY(f ;%)

aqa%(0) + Q%(2£,) + 2a(0)(az,) |

" 2 22 d
= > =
. LA® m"a” , fo
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Thus, we see that even with large data size reliable estimates of
spectral spikes are difficult to obtain regardless of the sampling

scheme being used,

3.5.2 Estimation of Slow-varying Spectra

Here we are considering S(f) which vary slowly enough so that
within the bandwidth of K(f',Ne) the quadratic terms in its Taylor
series expansion may be neglected. Then for f'< l/N@a yNe=
we write:

£12
S(f+f') = S(f) + f'Sf,(f)+-2—:- Sf,f.(f) . JOO——

£12

S(f£-£') = 5(f) -f'sf,(f)+§T Sf,f,(f)  JE T

and consequently

s(er£n)s(£-1) = 5%(2) + 013{8(0)8,,,0(2) - 2400} + .o

= 5%(£) + 0 (Y 22)

The last approximate equality follows since S(f) is assumed bounded
and continuous and f' < l/Nea , Ne—® . Consequently for S(f)

bandlimited to Ifls B , we have
. (B+f)
r(f) = s2(¢)[ K(£',Ne)ar' + 0(*/, 2.2
(£) ()[(Bff) e) (*/52a2)

and in particular,

-2 -
Var{S(fr)} - G(Ne?gs(f)Hm(f, fr)J af + o(l/Ng.az)-Ieri(f;fr) af

where



<

A W(BtE) - 1
a(Ne) = I(K(f;,Ne)df = [K(f',Ne)af , for B >> ~/Nea
B+f -

Note that,

-8
[CEn e )ar = wi0) [To (/e (0)] ar

< b Qm(O)I:lQm(f)l ar

so that

2
Va.r{é(fr)} = O(Ne)ﬂs(f)Hm(f, fr)_] af + o(m/Néz)

a(Ne) Ez[s(fr)]
e

= 0(=3) »

Ne

where the equivalent width, We , 1is defined as:
s [ .
We = Ims(f)Hm(f;fr) ar

Now, for both the periodic and Poisson sampling schemes, we saw in

Iis(f)ﬂm(f;fr)]z at

Chapter II that E{Q(fr)} is approximately the same when the spectrum
is restricted to the Nyquist band, and m 1is very large. Also, the
equivalent width of estimate can be shown to approximate the correspond-
ing window bandwidths, Since the bandwidths of the windows are for all
practical purposes equal, we look to the quantity G(Ne) for a measure

of the variability of estimates which we define as
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var{g(fr)}a: o(Ne) O(mz___?
EZ{S(fr)} We Ne

where for both schemes, We = l/mz i

For the periodic scheme we have from section 3.3

Gu(Ne) = l/Nea ]

and for the Poisson (cf eqn. 3.49)
Ne
1

- L irk+l
Ne i,k =1 277 1(i4kel) B(441, kel)

Gp(Ne) =

where B(p,q) is the beta function.

Figure 9 exhibits graphical plots of cp(Né) and Gu(Ne) in the
range 10 < Ne < 100 ; computation of cp(Ne) for large values of
Ne consumes excessive machine time., However, to see that op(Ne) is
monotone decreasing, note from figures 8 a,b,c, that KX(f',Ne) is
positive definite and narrows with increasing Ne while its peak remains
equal to 1 for all Ne . Consequently we conclude that GP(NE) is
asymp totically bounded from above by cu(Ne) . Thus we can (cf section
4,2 below) say that it is possible to achieve a smaller variability with

Poisson sampling than with the method of periodic sampling.
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CHAPTER IV

SUMMARY AND CONCLUS IONS

4,1 Summary and Conclusions

For readers unfamiliar with the work of Blackman and Tukey [1],
the research reported in this thesis is by no means complete, Details
on 'planning for measurement' - 'prewhitening', 'post greening', etc.
have been purposely left out of this account to avoid undue repetition
of the main reference cited above, Primarily this thesis has been
concerned with:

(1) Outlining an estimation scheme admitting of data with random
sampling intervals, and,

(ii) Analyzing the mean and variance of such a scheme,

The assumption of independent, identically distributed random
variables which governs most of our analysis, is a useful one since it
includes most of the practical sampling schemes, Although the
analytical results contained in ChaptersII and III seem to take advantage
of this assumption, similar expressions can be derived for the most
general sampling scheme, For this case, closed-form expressions for
windows and kernels will present great analytical difficulthﬁ. On the
question of aliasing, we found in this thesis a more practical way of
testing for aliasiné - obtain a plot of the spectral window, Qm(w)
and check for maxima, In particular, we verified via an estimating
algorithm that the Poisson sampling process is alias-free even for non-
bandlimited spectra, One shortcoming of our algorithm is its non-
general nature, since, in fact, it was tailored for the Poisson sampling

process, As was pointed out in Chapter I, it is quite possible using
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techniques of numerical calculus to design algorithms to suit some
particular sampling schemes. Our algorithm which invokes the rectan-
gular approximation (instead of Blackman and Tukey's trapezoidal
approximation) to the fourier cosine integral was found unsuitable for
a detailed investigation of the rectangular sampling process.

The gaussian assumption to which most of the analysis in Chapter
III has been subjected, is not merely for analytical convenience since
we are dealing with very large data size and the central limit theorem
validates this assumption even when the process is not gaussian. On
variability and covariability of estimates we were able to obtain
closed form analytical expressions of the Blackman-Tukey type for the
case when sampling intervals are Poisson distributed. These results,
though approximate, are just as useful as a.ny.others derived in this
thesis since they make use of the governing assumption of very large
data size, Making use of these results we found further, that the
Poisson sampling process achieves a smaller variability than the
periodic sampling process for spectra which are very smooth, On the
other hand, for rapidly varying spectra the Poisson is just as un-
reliable as the periodic scheme, However, this is n;t to say that the
algorithm of Blackman and Tukey should be discarded as we will see

presently.

4.2 Poisson Vs Periodic Sampling

In the last section we inferred that for the same number of samples
of the process the Poisson sampling scheme achieves a smaller variance than

the periodic scheme., This presumes that data are available for as long as
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we want, In some cases of practical interest, the duration of data is
limited somewhat, so that one is constrained to sample more closely to
increase the number of samples or estimate from fewer record samples
than needed. Already, we know that increasing the data size achieves
smaller variance, so that it is quite possible that in a given time T
we can obtain more samples by sampling periodically than with Poisson
sampling. Even when signal duration is not limited, the question of
how much longer one waits for say, N samples by sampling one way
instead of the other, is worth looking into. Answers to these questions
can be sought only in a probabilistic sense such as outlined below.

Let TN =Q

+ O be the length of time it

4+ 17987 v TR L g
takes to obtain N data samples in a general non-uniform sampling
scheme with mean sampling interval equal to «. If sampling is done
uniformly every o secs., ?N = N secs, For)large N, TN is asymp-
totically normal with mean

k+n
u(T.) = B Za
& {\J=k \)}
3 N
- p— ] (.n.) = N ,
in
n=0
g N
E{TNJ» = 32 ¥ @)
n=0
2
= N(W1) o
and variance,
o a 2
(1)) = E(T]) - u(T,) = Na

From statistical tables we have
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Proof| T - N | <30 ()} = 0.99
i.e.

Na - 3a /N < T <N+ 3a VN
with probability 0.99.

Alternately, we write
1B Bagad
N N /N
with probability 0.99.
Now, for the case when the waiting time T, is fixed, the prob-
ability of obtaining between N-K and N+K samples by Poisson sampling

with mean rate l/a is given by

R Y
N-K

1
Pr{ N-Ks NT s N+ K £

In particular for TAa = 100 we have from tables (cf [24]) :

Pr{ 0 s N, < 11@} = 0.683094

Pr{ 80 s Ny = 120} = 0.954319

Pr{ 70 < Ny < 130}

4.3 Practical Implications of the Random Sampling Scheme

0.997057

In certain fields of application, prior statistical information
on the sample times is not readily available, in which case, it may be
necessary to record these sample times simultaneously. In some cases
this will require modification of the existing recording hardware and

possibly more computation time, On the other hand, the scheme allows
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a greater flexibility in data acquisition and errors due to small jitter
are less significant in this scheme than they are in the Blackman and
Tukey scheme. In what follows we outline the relevance of random

sampling in some areas of application,

4,3.1 Communications Technology

In some coded communication systems the time of channel avail-
ability are random, By sampling a time sequence in a random manner
corresponding to the random availability of the channel rather than

sampling periodically, the need for buffer storage can be eliminated.

4.,3.2 Seismic Data Processing

In future design of field experiments to investigate random
seismic noise by means of correlation or spectral techniques, geophone
arrays may now be set up randomly spaced in a manner that will optimize
seismic data acquisition. It may also be possible to filter out, using
appropriate geophone distributions, the propagating modes or coherent
noise as is sometimes called, This will eliminate the need for delay

lines as is the usual practice (cf [19]).

4.3.3 Oceanography .

Whether it be swells from distant storms or ocean waves, the times
of arrival are a random phenomenon and it will no doubt be more expedient
and space-saving to take readings whenever they are available rather than
periodically as is usually done, In this application arrival times have

been known to follow certain well known distributions,
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L.3.4 Structural Design

In the design of tall structures and aircraft, destructive power
of atmospheric turbulence is of very great concern. Engineers must
design to accomodate oscillations due to wind gusts whose magnitude and
direction are random phenomena with random occurence times. Estimation
of spectra of wind velocities and of ground motion (velocity and
acceleration) due to earthquakes normally preceeds actual structural

design,



-86-

Appendix A
A-1 : Behavior of Qi(w) for large w .

Recall that ¢ = arctan w @ and write

m
P n+l
lim (w) =2a 1lim
W = ® " ¢~ n/ L cos ¢ cos(n+l) ¢
n=0
2o (plimﬂ/z{ cosch(l + cos 2¢) + c‘os3cpcos3cp

+ coshcp cosl + L.uiennaot cosm+l(pcos(m+l)cp}

3

lim RHS =2 o cp . n/ {z cos cp + cos~@Ycos3p + cosutpcoshcpf

m— @

=2a L, {2 cos (n/z-e) + C:os3(r:/2-e)c03( 2% _3¢)

- COsh(ﬂ/z-e) cos (2r-lie )}

Expand the cosine functions noting that sinﬂ:/2 = 1 cos“/z =0 ete,,

and get
P b L 3
lim Qm(m) = 20« lim {2 sin'e + sin'e cosbe - sin’esin3e
ay == € =9

[}

2&{2 el+ + eh(l - Be® s bug) ® 3€1+}

=-16a€6

] -
Now, if,-€ =tan  wQ == l/wa so that
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@ (@) = 0(-c®)
= 0(*/,6,6)
A-2 : Behavior of QiB(m) for large o .

n+l

B @ cos(n+l) @ + cosch

- T (1D
Q, (w) = 2 {nal( m) cos

- (l+l/m) cosmc'ézms(m-rz) f.p}
Note from A-l1l that we can write

Qiﬁ(w) - Qi(n.) - ;_ﬁ_a z; n o'osn$lcos(n+1)cp

n=
- 3a(l+l/m) cosmc’fazcos(mz) )
Proceeding as in A-l1 we write

PB p 2q lm [, .2 . ..
lin Q' (0) = limQ(e) - 2 T { cosZpzoszg

w—l@

+ 20053cpcos3<p + 3cosh:pCO‘sh<p L G }

Now, lim y {-coschcosap + 2cos3<pc'os3<p + 3cosh<pcoalkp}
@ = x
2

lim {coaz("/z-e)cos(:t-ze) + 2 cos3(-g- - e)cos(g—ﬂ- 3e)
€—o

+ 3COsh(“/2-e)cos(2n - he)}

= lim {-B:ane cos2e - 2 sin3esin3e + 3 s‘inhe c'oshe}
€=o
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4

= - Ez(l-2€2+.-| ) - 6€ + 3€h(l;8€2+¢--)

1in QiB(u)) = lim {- 160 + ez}

w=—® € ™0

whence we say

Qle) =0 ( —55)

max PB

A-3 T 7 QT (a)
o) = m{ngo(l-mﬂ) cos™GT cos (n+1)p
- a (1+%/m) cos™5Paos (m+2)p}
E*'z(i) = 2 a Re{ T (1 - 2)(n+2) -cos™p cos(m+1) @ sing
- a(1/,) (me2)] cos™5 cos (w2 )paing - co;m?'stin(mz)cp] }
o X5 SRR =0, % , 2% , 3T , .seeeees
a-?? -- 2 {nnz:o(l.%“-)(ml)(n+z)cosn$leos(n+1)<p

- (m+1)(m+2)? @ cos™5%cos (m2) é}
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It can be deduced from above that

az

e
A
o

* 9 = o, 2k«
Further, we note that

5 nox n+l -
z (l'ff) cos ¢ cos(n+l)p < I (l—mE

n=o0 n=o0

which implies

e Q (a)

n

Q2 (0)
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Appendix B

B-1 Permutations of tj, ty, Cp4n ti+j subject to:

< >
(@9) ti_g ti+j and tk —'tkﬁn ,» 1Nn,j 0
First, assume also that
(2) t, < ti+j and t, 2t

so that only the following four permutations are possible (subject to

(1) and (2) above):

(3) <t <ty <t (v)
(4) ty = te <t < ci+j (vi)
(5) ty < t, < ti+j < . (iv)

(6) t, <t, <t <

k <t < Con = Bigg (L44)

Now relax restrictions in (2) to have from (3) and (6) respectively,
(i)
(8) t, <t Lt, <t (1)

An interval tree for the above permutations is illustrated in

Figure Bl, Note that the permutations are unique only as far as

absolute inequalities are concerned.
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ke i } :...V.v:.
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B-2 Derivation of A(w',wHw.,wtwg) subject to inequalities

(i) through (vi) of Section B-1

(1) B4y > %1 2 Cken ” S

—_— - = - -
G " 5T St T %

so that equation 3.25 becomes:

A{“(m',mr,wq)
-t ) o (o, + 081D (ot o+ a6, )
W o R, (4,35k,m ) %1% *k4n i+ %
e
cos[2w' (ti k+n) - (2m'+w+wr)(tk k) (wtw )(ti+j 1)]}
i2w' L au
- 2l2 y E, akRe[ o, e k+n+l )
Noa® R, (4,3,k,n)
e o i+j
iQu'tw+w ) 5 @ -i(wtw ) T o
( +08_ ) e el u) (a,, ,+a8,.) e Tin ¥
ak+n nl i+ §1
Define:
A Lu-1 oo iQa
EU(Q) = ¢ () 71 ° o(Q) = Et{e }
and :
@ & - M) 53 o -®)

and take expectation as indicated to get
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Afi) (m',wr,wmq)

1
2
Ne o Rl(i | ,k,n)

Re (20") € (20'+wh ) + a8 020" +whw )

Ei—k-n

* *
x (Ef(wre) + a8y 0 (whs))

Similarly, from equation 3.25a, obtain
(1) (0
Az (w ,w+wr,w+mq)

1

3 Re{
Ne o Rl(i:j sksn)

£y pn 200" (En (20'-w-w )

%*
) (umuq)]}

*
+ a8 020" ~w-w ) (gj (who ) + a8,

To obtain equation 3.27, follow the.above procedure and derive

Aiz), A§£> L = (ii),***,(vi), then note that equation 3.27 is given

by
2 2 2
M“"'wr""“"q), » {Al(w',aﬂ-wr,mhnq)+Az(w',wﬂnr,wﬂnq)}
=1 Rz(i,j,k,n)
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