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ABSTRACT 

Thie various aspects of the propagation of long waves onto a 

shelf (Le., reflection, transmission and propagation on the shelf) 

are examined experimentally and theoretically. The results are 

applied to tsunamis propagating onto the continental shelf. 

A :numerical method of solving the one-dimensional Boussinesq 

equations for constant depth using finite element techniques is 

presentied. The method is extended to the case of an arbitrary 

variation in depth (i.e., gradually to abruptly varying depth) in 

the direction of wave propagation. The scheme is applied to the 

propagation of solitary waves over a slope onto a shelf and is 

confirmed by experiments. 

A theory is developed for the generation in the laboratory of 

long waYes of permanent form, i.e., solitary and cnoidal waves. The 

theory, which incorporates the nonlinear aspects of the problem, 

applies to wave generators which consist of a vertical plate which 

moves horizontally. Experiments have been conducted and the results 

agree well with the generation theory. In addition, these results 

are used to compare the shape, celerity and damping characteristics 

of the generated waves with the long wave theories. 

The solution of the linear nondispersive theory for harmonic 

waves of a single frequency propagating over a slope onto a shelf is 

extended to the case of solitary waves. Comparisons of this analysis 

with the nonlinear dispersive theory and experiments are presented. 
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Comparisons of experiments with solitary and cnoidal waves with 

the predictions of the various theories indicate that, apart from 

propagation, the reflection of waves from a change in depth is a 

linear process except in extreme cases. However, the transmission 

and the propagation of both the transmitted and the reflected waves 

in general are nonlinear processes. Exceptions are waves with heights 

which are very small compared to the depth. For these waves, the 

entire process of propagation onto a shelf in the vicinity of the 

shelf is linear. Tsunamis propagating from the deep ocean onto the 

continental shelf probably fall in this class. 
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CHAPTER 1 

INTRODUCTION 

Long waves are waves with lengths which are large compared to 

the depth of water in which they are propagating. Among the waves 

which fall in this class are "tsunamis" or, as they are sometimes 

called, "tidal waves." The word "tsunami" is a Japanese word which 

means "harbor wave." It has been adopted by the scientific community 

in preference to "tidal wave" to mean an earthquake-generated sea 

wave. 

The earthquakes which generate tsunamis usually involve vertical 

movements of the sea bed. Such an earthquake occurred in Alaska in 

1964; it generated a tsunami which propagated throughout the Pacific 

causing damage at various locations along the West Coast of the United 

States, particularly in Crescent City, California. An important aspect 

in trying to either avoid or prepare for such a disaster is to under­

stand how a tsunami propagates. 

In the deep ocean where the depth may be 3500 m a tsunami might 

typically have a length of about 300 km and a height of 1 m and 

travel at a speed of 700 km/hr. The propagation of the tsunami 

would proceed essentially in constant depth through the deep ocean 

until it reached the region of shallower depth which surrounds most 

land masses--the continental shelf. Here the depth decreases 

considerably; of interest in this investigation was to determine 
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how such changes in depth affect tsunamis or tsunami-like waves. 

Since field observations of tsunamis are difficult except at 

the coast, the investigation was carried out by means of physical 

and analytical models. 

1.1 Objectives and Scope 

The objective of this investigation was to examine, both 

experimentally and theoretically, the various aspects of the propa­

gation of long waves onto a shelf, i .. e., the reflection, transmission 

and propagation of the waves on the shelf, for both abrupt and gradual 

changes in depth. Of equal importance was to determine if the linear 

mathematical models which comm.only are used in the analysis of 

tsunamis are sufficient or if it is necessary to use more complicated 

nonlinear models. 

The waves used in this study were primarily solitary waves. Thes4~ 

were chosen because it can be shown theoretically that waves which 

have net positive volume eventually, if the propagation distance is 

suffici1ent, will break up into a series of solitary waves. For 

analysis, solitary waves have the advantage that, although nonlinear, 

they can be described with just two parameters: the wave height and 

the depth. Additional benefits are: they propagate with constant 

form in constant depth and generally they can be separated from 

reflect4~d waves. Periodic waves in the fo:rm of cnoidal waves also 

were considered for propagation over abrupt changes in depth. 

To facilitate the experimental investigation, a theory was 

develop4~d for the generation in the laboratory of long waves of 
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permanent form, i.e., solitary and cnoidal waves. The theoretical 

investigation included the development of a finite element technique 

of solving the one-dimensional Boussinesq equations. This was 

applied to the full problem of solitary waves propagating over a 

slope onto a shelf and was confirmed by physical experiments. 

A review of previous studies of the propagation of long waves 

onto a shelf is presented in Chapter 2. The theoretical analysis 

which includes a review of the classical long wave theories and 

their application to this problem, wave generation theory and the 

development of the finite element numerical method are presented in 

Chapter 3. The experimental equipment and procedures are described 

in Chapter 4. The results of the investigation are presented and 

discussied in Chapter 5, and conclusions based upon these are described 

in Chapter 6. 
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CHAPTER 2 

LITERATURE SURVEY 

The nonlinear partial differential equations which govern the 

propagation of long waves have been known since the 19th century. 

However, until recently, only the equation arising from a linear 

approximation to these equations has been used for predicting the 

propagation of long waves onto a shelf. 

The theory arising from this equation is termed the linear 

nondispersive theory. The solutions of the theory for long waves 

of arbitrary shape propagating over abrupt and gradual slopes are 

presented in Lamb (1932). (Note, this represents the sixth edition 

of the work. It was originally published in 1879.) Lamb (1932,§176) 

shows, for a step, the reflection and transmission coefficients are 

given by: 

and 

(1-~) 

(1 + lh1fh2) 

2 KT,.. ____ _ 

1 + fh2/h1 

(2.1) 

(2.2) 

respectively, where h1 is the upstream depth and h2 is the depth on 

the shelf. 

Fo:r a "gradual" slope, i.e., a slope on which the depth changes 

by only a small fraction of itself within the limits of a wavelength, 
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Lamb (1932,§185) shows the reflection and transmission coefficients 

are given by Green's Law: 

Ka = 0 (2.3) 

and 

(2.4) 

respectively. 

Solutions of the linear nondispersive theory for the slopes 

between an abrupt slope (i.e., a step) and a gradual slope have been 

present,ed by Kajiura (1961), Wong et al. (1963) and Dean (1964). For 

all of these studies the solution was obtained for an harmonic wave 

with a single frequency in the steady state. 

Kaj iura (1961) proposed a method of solution for slopes of 

general shape and presented the solutions for two cases: 

i) A slope on which the depth varies as the square of the 

distance along it. The solution for the wave on the slope 

k 
is a function of x 2

• 

ii) A continuous slope determined such that the basic equation 

is transformed into an equation which gives simple expressions 

for the reflection and transmission coefficients. 

Wong et al. (1963) and Dean (1964) obtained the solution for a 

slope on which the depth varies linearly as a function of the distance 

along it. The solution of the wave on the slope is a function of 

Bessel functions. 
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Recall, the solutions for the two extremes of abrupt and gradual 

slopes were for long waves of arbitrary shape; therefore, if it is 

valid t10 do so, the solutions can be applied directly to solitary or 

cnoidal waves. However, for slopes between the two extremes, the 

solutions are for harmonic waves with a single frequency only; 

therefore the solutions, even if valid, cannot be applied directly to 

solitary or cnoidal waves. 

The full nonlinear equations were first solved for the problem 

of long waves propagating onto a shelf by Madsen and Mei (1969). 

Using the equations developed by Mei and Le Mehaute (1966), which 

incorporate the effect of a slowly varying depth, Madsen and Mei 

(1969) developed a numerical method of solution based on the method­

of-characteristics scheme of Long (1964). The slowly varying depth 

assumption used by Madsen and Mei (1969) is equivalent to the gradual 

slope mEmtioned earlier. 

Madsen and Mei (1969) found theoretically and experimentally that 

as a solitary wave propagates up a gradual slope its shape changes, 

with the front face of the wave steepening and secondary waves emerging 

from the back face of the wave. Eventually, either on the slope or 

on the shelf, the waves separate into a series of solitary waves 

followed by a train of oscillatory waves. Earlier, Street et al. (1968) 

experimEmtally had observed similar behavior but over a propagation 

distancE~ which was insufficient for the solitary waves to emerge fully 

from thE? main train. 
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Analytical solutions of the problem of solitary waves propagating 

over a gradual slope were found independently by Tappert and Zabusky 

(1971) and Johnson (1973). By assuming zero reflection and slowly 

varying depth, a variable depth form of the KdV equation can be 

derived and, using the same techniques as were used by Gardner et aZ. 

(1967) to solve the KdV in constant depth, asymptotic solutions for 

the sol:Ltary waves which emerge on the shelf can be obtained. The 

number of solitary waves which will emerge on the shelf is a function 

of only the depth ratio, h1/h2, as given by: 

(2.5) 

N < p 

where the number of waves, N, is strictly less than P. The height 

of the solitary waves which emerge is given by: 

H 
n 

Ho = 
(P - n) 2 (2. 6) 

n = 1, 2, N 

where H is the height of the incident solitary wave. 
C1 

To summarize, previous investigations in the field of long waves 

propagating onto a shelf have dealt with one of the following aspects 

of the problem: 

(i) Linear waves of arbitrary shape propagating over an extreme 

slope (i.. e., either gradual or abrupt); 
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(ii) Linear harmonic waves with a single frequency propagating 

over a slope; or 

(iii) Solitary waves propagating over a gradual slope. 

Thi~ question of which of the theories to use for the propagation 

of long waves in various situations is addressed by Hammack and Segur 

(1978). They show, using asymptotic arguments and a rectangular 

wave shape, the choice of which theory to use depends on the volume 

of the initial wave and an Ursell Number based on the amplitude and 

length of the initial wave. Applying their criteria to tsunamis, 

they show the linear nondispersive theory is the relevant theory for 

the propagation of the leading wave of a tsunami in a constant depth 

from the~ generation region to the beach. 
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CHAPTER 3 

THEORETICAL ANALYSIS 

The theoretical aspects of the problem can be described referring 

to Fig. 3.1 which shows the series of events which takes place as a 

long wave propagates onto a shelf. 

Fig. 3.l(a) shows the incident wave propagating towards the 

shelf in a region of constant depth. The various theories for long 

waves propagating in a constant depth are reviewed in Section 3.1 and 

exact solutions are described. 

As with other investigators (e.g. Mad.sen and Mei (1969)), for 

the analysis the incident wave was assumed to be a solitary wave 

(although, as mentioned previously, recent work by Hammack and Segur 

(1978) has cast some doubt on the practical validity of this). A 

theory for the generation, in the laboratory, of solitary waves and 

also of cnoidal waves is presented in Section 3.2. 

As the wave propagates through a region of variable depth its 

shape changes as shown in Fig. 3.l(b), and eventually the wave splits 

up into two waves: a reflected wave traveling to the left in the 

deep water and a transmitted wave traveling to the right on the shelf, 

see Fig. 3.l(c). Two theories are presented which solve the problem. 

In Section 3.3 a finite element method of solution of the Boussinesq 

equations for the case of waves propagating in a constant depth is 

present1ed, then the method is extended to the case of waves propagating 
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_c-/~CI DENT '~._A_V_E---==2===--
-

7 

Fig. 3.l(a) Incident wave propagating towards the shelf. 

,/ 
7 7 7 ?__,,.,,,./ 

/7 
Fig. 3.l(b) Wave transforming on the slopie. 

7 ,/'"/ 7 7 

HEFLECTED WAVE 
---~- ~ 

....c:=:--=>... ~~·~--~~-~--~~---"---~~ 
TRANSMITTED WAVE 

7 7 7 

Fig. 3.l(c) Reflected and transmitted waves. 
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in a re.gion with variable depth. This solution is the more accurate 

of those considered because it incorporates, up to second order, the 

effects of dispersion and nonlinearity. A first order solution in 

which these effects are neglected is presented in Section 3.4 where 

the theory developed by others for the solution for incident waves 

which are harmonic is reviewed and applied to the case of an 

incident wave which is a solitary wave. 

Finally in this chapter the technique of inverse scattering is 

described and numerical schemes for its solution are presented. 

Inverse scattering allows one to determine the final state of a 

long wave if it propagates to infinity in constant depth in the 

absence of friction. It was used in this study to analyze the 

reflected wave. (This will be discussed in detail in Section 5.2.) 

3.1 Outline Derivation of the Long Wave Equations and Exact Solutions 

The long wave equations can be derived in numerous ways; the 

approach which is outlined here follows that of Whitham (1974). 

Consider the flow situation shown in Fig. 3.2 which shows a 

~--~~~~~~~ _l___._ ~t) ~ S7 

x r ~ 
....-- h ~ 

~'-> -7---"l-7--7--7--7--7-~7--7-""'!7-7--7--7,....-7,..<0-
Fig. 3.2 Definition Sketch of the Flow Situation 
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wave propagating in water of depth h in a region of infinite 

horizontal extent. The vertical y axis has its origin at the 

still water level. The displacement of the free surface from the 

still water level is n(x,t). Assuming inviscid, irrotational, 

incompressible flow, there exists a velocity potential <I>(x,y,t) 

which satisfies the Laplace equation: 

-h s. y s. n 

The boundary conditions are: 

i) No flow through the bottom boundary: 

<I> = 0 
y y = -h 

ii) Kinematic boundary condition at the surface: 

n +<I> n ==<I> 
t x x y y=n 

iii) Dynamic boundary condition at the surface: 

<I> + 12 (~ 2 +<I> 2) + gn = o 
t x y y=n 

(3 .1) 

(3. 2) 

(3.3) 

(3. 4) 

The waves under consideration are long waves which are defined as 

waves whose characteristic horizontal length JI, is large compared to 

the depth h, i.e. R, > h. For long waves the horizontal velocity <I>x 

is approximately constant over the depth so the velocity potential 

can be expanded in terms of the parameter Y = h + y which is small 

compared to the characteristic horizontal length JI,, 
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~(x,y,t) yn f (x,t) 
n (3.5) 

By substituting Eq. (3.5) into Eq. (3.1), equating like powers of 

Y and applying the boundary condition ~ = 0 at Y = 0, the expansion 
y 

is simplified to: 

00 

~cx,y, t) = :L 
n=O 

y2n 

(2n) ! 
(3.6) 

Each variable is now normalized by scaling by a characteristic 

quantity: 

y = x!:... 
h 

= t*l&h' 
t !/, 

n* n = -
H 

where !/, is the characteristic horizontal length and H is the 

characteristic height of the wave and starred symbols denote the 

original dimensional variables. (Henceforth all equations will 

be dimensionless unless specifically stated otherwise.) When 

these variables are substituted into the expansion, Eq. (3.6), 

and the: remaining boundary conditions, Eqs. (3.3) and (3.4), two 

dimensionless numbers emerge: a.= H/h and S = h2 / J/, 2 • In writing 

the expansion, Eq. (3.5), it was assumed that S < 1 (i.e. the length 

of the wave is large compared to the depth). It is also necessary 

to assume that a.< 1 (i.e. the wave height is small compared to the 

depth). 
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The equations which arise by substituting the expansion, 

Eq. (3.6), into the boundary conditions, Eqs. (3.3) and (3.4), 

and retaining terms to order a. 2 , s2 and a.B are termed the Boussinesq 

equations after Boussinesq (1872) and are as follows: 

(3. 7) 

1 
ut + a.uu + n - -2 Bu t = 0 x x xx (3.8) 

Notice in Eqs. (3.7) and (3.8) the dimensionless numbers, a. 

and B, have different roles. The number a. appears before~ the 

nonlinear terms indicating their importance relative to the other 

terms depends on the wave height to depth ratio, H/h. The number 

B modifies the third derivative terms which are a correction for 

vertical acceleration. Hence as B decreases (i.e. as the wave 

gets longer) the importance of vertical accelerations decreases 

(or, equivalently, the pressure distribution with depth approaches 

hydrostatic). 

For Eqs. (3.7) and (3.8) to apply, it is further required that 

a. and B be of the same order. (To illustrate the reason for this, 

consider the case where B is so much greater than a. that e2 >a.; 

then terms of order (3 2 should be included in preference to terms 

of order a., and Eqs. (3.7) and (3.8) are not appropriate.) This 

introduces another dimensionless number U = a./ B, noted by Stokes (184 7) 

but named after Ursell who, in his 1953 paper, explicitly expounded 

the importance of the ratio a./S. Hence for the Boussinesq equations 
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to be applicable, the Ursell Number must be of order unity. Since 

a. represents the magnitude of nonlinear effects and i3 represents the 

magnitude of dispersive effects, the Ursell Number of order unity 

implies a balance of nonlinear and dispersive effects. 

The velocity u appearing in Eqs. (3.7) and (3.8) is the 

velocity at the bottom y = -1. It is often more convenient to use 

the depth averaged velocity: 

n 

u f = -1 
if> dy x 

The Boussinesq equations then take the form: 

- -- 1 -u + a.uu + n - - i3u = 0 t x x 3 xxt 

(3.9) 

(3.10) 

(3 .11) 

The Boussinesq equations cannot, in general, be solved in closed 

form so it is necessary to resort to a numerical scheme such as 

that which will be described in Section 3.3. 

The Boussinesq equations are the most general form of the long 

wave equations since the other well known equations can he deduced 

from them. These will now be listed along with their general 

solutions: 

i) For small amplitude, very long waves (a.« 1, i3 « 1) Eqs. 

(3 .10) and (3 .11) reduce to: 



and 

or 

16 

ii + n = o 
t x 

u - u = 0 
tt xx 

(3.12) 

These are the linear nondispersive equations which have 

solutions in dimensional terms of the form: 

u = f(kx - wt)+ g(kx+ wt) 

where and c = lgh 
0 

(3.13) 

Waves propagate at constant speed and with permanent shape 

in +x and -x directions. 

ii) For small amplitude waves whose length is not as great as 

those considered above (a<< 1, S < 1 and U « 1), Eqs. (3 .10) 

and (3.11) reduce to: 

and 

or 

n +u = 0 
t x 

- 1 -u + n --Su = O 
t x 3 xxt 

- - 1 o­u - U =-µU tt xx 3 xxtt 

(3.14) 

These are the linear dispersive equations which have solutions 

in dimensional terms of the form: 

- A i (kx-wt) + B i (kx+wt) u = e e 
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where (3.15) 

This implies that waves propagate with speeds which are a 

function of the length of the wave and the waves do not 

have a permanent shape. 

iii) For finite amplitude, very long waves (a.< 1, 13 « 1 and 

U » 1), Eqs. (3 .10) and (3 .11) reduce to: 

tilt + a.au + n = o x x 

which are the nonlinear nondispersive equations 

(3.16) 

(sometimes called the Airy equations). By reverting back 

to dimensional quantities, Eqs. (3.16) can be expressed 

more simply in characteristic form: 

d <lt (u ± Zc) 
dx 

= 0 on dt = ii± c (3.17) 

where c=lg(h+n) 

For waves propagating to the right into still water, Eqs. 

(3.17) predict that the wave amplitude and the velocity 

are constant along the characteristic curves dx/ dt =ii+ c, 

which are straight lines. Thus, each portion of the wave 

travels at its own speed, IT+ c. This process was termed 

amplitude dispersion by Lighthill and Whitham (1955). At 

the leading edge the velocity and amplitude are zero, hence 
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the leading edge travels at speed lgh; under a crest the 

velocity and the amplitude are each greater than zero, 

hence the crest moves faster than the leading edge. 

Eventually therefore the crest will overtake the leading 

edge and the wave will break. Breaking may actually occur 

before this depending on the shape of the wave. 

iv) For waves traveling to the right only, the velocity 

can be expressed in terms of the amplitude: 

- a. 2 1 u=n--n +-Sn 4 6 xx 
(3.18) 

and the Boussinesq equations then reduce to the KdV 

equation (after Korteweg and de Vries (1896)): 

3 1 n +n +-a.nn +-Sn =O t x2 x6 xxx (3 .19) 

Since, 

Eq. (3.19) can be expressed to the same order as: 

(3. 20) 

which is more amenable to numerical solution (see, for 

example, Peregrine (1966)). 

The KdV equation has exact analytical solutions in the form 

of waves of permanent shape--solitary waves and cnoidal waves. 

Before discussing these waves in detail, an example is presented 

which illustrates how waves propagate by the theories discussed: 
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(i) Linear Nondispersive 

(H) Linear Dispersive 

(iii) Nonlinear Nondispersive 

(iv) Nonlinear Dispersive 

Referring to Fig. 3. 3 (a), the problem is posed where at t = 0 there 

exists, in water of constant depth and infinite extent, a wave 

with profile given in dimensional terms by: 

n(x,O) = H sech2Kx (3. 21) 

For the example shown, the following conditions apply: 

H 
h = 0. 0 5 and K = 

and for t > 0 the wave is assumed to propagate to the right into still 

water. Figs. 3.3(a), (b), (c) and (d) show the wave profiles 

calculated using the various theories listed above at interval.s of 

nondimensional time, t./g/h, of 25. The abscissas are ( ~- t ~) 
which means that the figures are the series of events an observer 

would see if he were traveling at speed /gh. 

In Fig. 3.3(a) the profiles from all four theories are plotted 

together. In Figs. 3.3(b), (c) and (d) the linear nondispersive 

theory is compared respectively with the linear dispersive theory, 

the nonlinear nondispersive theory and the nonlinear dispersive 

theory. Under the linear nondispersive theory, the wave would remain 

stationary and retain its ori~inal shape. Under the lirn~ar dispersive 

theory the wave would propagate as if it consisted of a linear 
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combination of periodic waves with different lengths each propagating 

with a speed given by the dispersion relation in Eq. (3.15). Since 

short waves travel slower than long waves, the waves disperse, hence 

the overall shape would change. The nonlinear nondisper~ theory 

predicts that the wave would retain its integrity but that the 

coordinates behind the crest would stretch while those in front would 

contract causing the back face to flatten and the front face to 

steepen while the crest height remained constant. The wave would 

begin to break when the front face became vertical (at tlg/h=90.92 

in this case). 

In fact for the wave chosen and described by Eq. (3.21) none 

of the above would occur because the wave number K was selected 

such that the initial profile is a solitary wave, i.e. an exact 

solution of the KdV equation. Hence, the wave propagates unchanged 

in shape as shown in ll?ig. 3.3(d). The wave travels faster than it 

would under the linear nondis2ersive theory because the celerity is 

The form the wave takes as it propagates in a particular case 

depends on the relative magnitudes 
c 

of the dispersive term -6
1 c h2n 

0 xxx 

and the nonlinear term ~ : nnx in the dimensional form of the KdV 

equation: 

n +c (1+l.!l) n +.!. c h 2n = O 
t 0 2 h x 6 0 xxx (3. 22) 

where c = lgh 
0 
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For a wave with initial profile given by Eq. (3.21), K = ·~ 
represents the case where the nonlinear term balances the dispersive 

term and the wave shape remains constant. If K << J .! ..!!_ the 
1 4 h 3 

nonlinear term is larger than the dispersive term (U >> 1) and 

amplitude dispersion as shown in Fig. 3.3(c) takes place.. If 

K >>~(i.e. the wave is more peaked than a solitary wave of the 

same height) the dispersive term is larger than the nonlinear term 

(U«l) and frequency dispersion as shown in Fig. 3.3(b) takes place. 

Since the KdV or Boussinesq equations can be solved in the 

near field only by approximate numerical techniques, it is desirable 

to use the other equations wherever possible since they can be solved 

exactly in many cases. The problem of which of the equations to 

use in various circumstances is addressed by Hammack and Segur (1978). 

They show that for initial conditions of a rectangular wave, the 

applicable equation depends on the initial volume and initial Ursell 

Number, but that eventually, after a propagation time which is a 

function of the initial conditions, only the KdV equation will apply. 

This introduces another important parameter in long wave propagation: 

the propagation time. 

It is evident from Fig. 3.3 that if the time of interest is 

0 ~ tv'gl'il < 25 then any of the four theories can be used since they 

all provide essentially the same results. However for tlg/h> 25 

the solutions become quite different. The interpretation of this is 

that both dispersive and nonlinear effects take some propagation time 

(or distance) to become important. For example, for the nonlinear 
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nondispersive theory a characteristic propagation time is the time 

to breaking, which for an initial condition given by Eq. (3.21) is 

approximately 

(3.24) 

Thus for this theory and for this type of wave, the propagation time 

for nonlinear effects to become important is some percentage of 

No similarly clear cut time is available for the linear 

dispersive theory. 

For a particular problem of long wave propagation, such as the 

problem of long waves propagating onto a shelf which was considered 

in this study, it is difficult to say a" priori under what conditions 

it is necessary to use the full Boussinesq equations and when it is 

possible to use one of the other theories. 

One approach is to assume that the linear nondisperf~ theory 

applies unless the propagation time is sufficient for nonlinear or 

dispersive effects to become important; however the magnitude of this 

propagation time is, in general, ill-defined. The approach taken in 

this study was to use the ~!!:_linear diseersive theory and experiments 

as a basis to find the conditions under which the other theories 

would give the same results. The sort of conclusion which can be 

drawn from this is that if, for example, the nonlinear dispersive 

theory and the nonlinear non.dispersive theory give the same results 

in a particular case, then the propagation time was insufficient for 

dispersive effects to become important. 
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3.1.1 The Solitary Wave 

The solitary wave was observed first by Scott Russell 

(1844). It consists of a single hump of water entirely above still 

water level and extends from x =-co to x = 00 • Three theories are 

available which describe the wave profile; those obtained by: 

Boussinesq (1872), Mccowan (1891) and Laitone (1963). The most 

important of these is that due to Boussinesq (1872) since it is 

this form which is an exact solution of the KdV equation.. In 

dimensional quantities the Boussinesq solitary wave is: 

11 (x, t) = H sech2 

where (3.25) 

c = /g(h + H) 

The McGowan and Laitone solitary waves result from higher order 

theories but rl.o not fit experimental data any better than does Eq. 

(3.25) (see for example Naheer (1977), French (1969)). 

The solitary wave has the unique property that in a depth h it 

is completely defined by the wave height, H. This simpl:icity of 

shape along with its ease of generation in the laboratory and its 

propagation with constant shape make the solitary wave a particularly 

suitable model wave to study experimentally. For this study it had 

the added advantage that when considering reflections from a slope or 

a step the reflected wave was completely separate from the incident wave. 

3.1.2 Cnoidal Waves 

Cnoidal waves are periodic solutions of the KdV equation. 
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In dimensional form they are defined (e.g. Svendsen (197~·)) as: 

(3.26) 

where m =a./ S is the elliptic parameter (sometimes called k2), K = K(m) 

is the first complete elliptic integral, en is one of the Jacobian 

elliptic functions (hence the name cnoidal), y t is the he~ight of the 

trough above the bottom, L is the wave length and T is the period. 

It is noted that for given depth h, cnoidal waves are defined by 

any two of the following: 

i) the wave length L (or the period T), 

ii) the wave height H, 

iii) the elliptic parameter m (or the elliptic integral K). 

The relationships between these and the other parameters were 

described by Wiegel (1960) and Svendsen (1974). They are presented 

in Appendix A along with the numerical techniques which were developed 

during this study for their evaluation. 

The elliptic parameter m, by definition, is the Ursell Number, 

i.e., U = a./S. Another type of Ursell Number which can be defined in 

terms of physical parameters is HL 2/h3• The difference in these two 

definitions is in the use of the characteristic length R. for U =a./ S 

and the use of the wave length L for HL2/h3• The two numbers are 

related by: 

HL2 16 --= -mK2 
h 3 3 

(3.27) 
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hence the lengths are related by: 

4 
L = 13" KSl (3. 28) 

Since the elliptic integral K is a function of only the parameter m, 

HL2/h3 is also a function only of m; hence either of the Ursell 

Numbers can be used to define the shape of the cnoidal wave. The 

parameter m can take values between 0 and 1. At the two extremes: 

i) As m+O (and, consequently, HL2 /h3 +0), the Jacobian 

elliptic function, en, becomes the trigonometric function, 

'lr 
cos, and K+z. Hence the equation for cnoidal waves, 

Eq. (3.26) becomes: 

(3. 29) 

i.e., a harmonic wave. 

ii) As m+l (and, consequently, HL2 /h3+oo), the Jacobian elliptic 

function, en,. becomes the hyperbolic function, sech, and K, 

L and T +co, Hence the equation for cnoidal waves, Eq. (3.26), 

becomes: 

n = H sech2 - (x - ct) m h 
(3. 30) 

i.e., a solitary wave. 

The range of cnoJldal wave shapes from m = 0 and HL2 /h3 = 0 to m + 1 

and HL 2/h3+oo is shown in Fig. 3.4. For HL2/h3 ~10, the shape 

appears sinusoidal to the eye but in fact at HL2/h3 = 10 the crest 

amplitude is about 20% greater than the trough amplitude, i.e., 
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n n 
cr~s t~ = O. 54 7, tr~ugh = 0. 453. As HL 2 /h 3. increases this cliff erence 

increases, and as a consequence the crest becomes more peaked and 

the trough becomes flatter. At HL2 /h3 =1000, the cnoidal waves have 

the appearance of a train of solitary waves however the wave length 

L is still finite and there is still a trough below still water level; 

therefore, the waves are still cnoidal waves. 

It is of interest to compare cnoidal waves with Stokes waves in 

shallow water. Stokes waves can be obtained as a perturbation solution 

of the KdV equation (see, for example, Whitham (p. 471)): 

H 3 H2 
= Z cose + 16 k2 h 3 cos28 

cos38 + ---- (3.31) 

where e = kx - wt 

The dispersion relation is: 

w/k 
-- = 
lgh 

(3.32) 

where w = 2ir/T and k = 2ir/L 

H 1 HL2 

k2h 3 = (2ir) 2 h3 Notice that the perturbation parameter 

is another form of the Ursell Number. For the Stokes expansion to 

H HL2 
be valid, - 2 3 << 1 or, equivalently - 3- « (2ir) 2 • 

k h h 

Stokes waves may be compared to cnoidal waves by expressing 

cnoidal waves in their Fourier Series form and comparing the harmonics 

of the Stokes waves with these cnoidal.wave components: 



where 

Now, since 

only of m. 

30 

T1c y -h ( ) oo 

H = + + cn
2 

\ ;~ e Im = L an cos ne 

n=l 

= ...!_!21T 
21T 

0 

T1c 
H cosne de 

' (3.33) 

(3. 34) 

(y t - h) _ (K - E) 
H - mK - 1, it is evident that nc/H is a function 

The Ursell Number, HL2/h3, is also a function only of m 

(as given by Eq. (3.27)); hence, it follows that 11 /H and thus the 
c 

Fourier amplitudes an are functions only of HL2/h3. Eq. (3.31) 

indicates the amplitudes of the series for ns/H are also functions of 

only HL2/h3; therefore, Stokes waves and cnoidal waves can be compared 

by comparing the amplitudes of the components in Eqs. (3.31) and 

(3.33) as functions of HL2 /h3• This is done in Fig. 3.5 where the 

magnitude of the first three components in each case are plotted 

against HL2/h 3• The dashed lines represent the Stokes wave amplitudes 

given by Eq. (3.31). A continuous form for the a , defined by 
n 

Eq. (3.34), could not be found so the integral was evaluated numerically 

using the Fast Fourier Transform algorithm. (It is noted that although 

only three Fourier amplitudes are plotted, the Fourier series repre-

sentation of cnoidal waves is an infinite series.) 

Fig. 3.5 shows the component amplitudes of Stokes waves and 

cnoidal waves are coincident for HL 2/h3 ~10 but diverge as HL2/h3 

increasies. Since Stokes waves are only an approximate solution of 

the KdV equation while cnoidal waves are an exact solution, Fig. 3.5 

indicates Eq. (3.31) is an accurate approximation only for HL2 /h 3 ~10. 



10-ll 

a/H 

2nd 

COMPONENT 

31 

I 

I 
/ 

I 
I 

3rd COMPONENT 

CNOIDAL WAVES 

STOKES WAVES 

Fig. 3.5 Comparison of the first three harmonic components of cnoidal 
waves (-)and Stokes waves (---). 



32 

Notice that the range of validity of Stokes waves is not increased 

by inclusion of the third component. In fact, for O ~ HL2 /h3 ,:s 10, 

the third component is at least two orders of magnitude less than 

the first component so for most applications it can be neglected. 

As HL2/h3 increases above 100, the second and third Fourier amplitudes 

for cnoidal waves reach a maximum and then tend asymptotically to the 

first amplitude. This corresponds to the wave becoming more peaked 

and thie shape approaching that of a delta function for which the 

Fourier amplitudes are all equal. 

3.2 Wave Generation 

The wave generation theory presented here is applicable only to 

long waves which propagate with constant form (i.e. solitary and 

cnoidal waves). It was developed to prescribe the displacement-time 

history of the piston wave generator which was used in this study 

(see Section 4). The generator consists of a vertical plate which 

is mov1=d in the horizontal direction by means of a hydraulic servo­

system.. The input voltage to the servo-system is supplied by a 

memory unit containing 1000 voltages equispaced in time. The memory 

is loaded from a paper tape on which the 1000 voltages which correspond 

to displacement points are punched. The object of the theory developE~d 

here is to determine the function from which the displacement points 

(and h"mce the voltages) for a given wave can be obtained. 

3 .. 2.1 The DerivatiOti of a Generation Equation for Long Waves 

Consider the generation phase plane, Fig. 3.6, which will 

be used to demonstrate the way in which the generatian equation is 
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obtained. The figure shows a wave whose amplitude profile is 

sinusoidal (Fig. 3.6(c)) and whose velocity time record also is 

sinusoidal (Fig. 3.6(a)). The wave propagates to the right with 

constant form and with celerity c as shown in the x - t plane 

(Fig. 3.6(b)) where the wave properties such as amplitude and particle 

velocity propagate along lines (i.e. characteristics) which are 

straight and parallel and have slope dx/dt = c. The time history 

of the motion of the wave plate which generated the wave is repre­

sented in Fig. 3.6(b) by the curve s(t) which will be termed the 

"trajectory" in this study. Initially, for time t < O, the wave 

plate :i.s at rest at s = O. At time t = 0 the wave plate begins to 

move along the trajectory ~(t), The object of this development is 

to find the trajectory which will produce a particular long wave 

n(x,t) of constant form propagating with celerity c. The basic con­

cept is simply to match the velocity of the wave plate at all positions, 

d~/dt, with the corresponding velocity of the particles under the wave~. 

For long waves the particle velocity is approximately constant over 

the depth, so the velocity averaged over the depth, ii(x,t), is used: 

~~=u(~,t) (3.35) 

Inclusion of the position of the plate, ~' in the velocity, fi(~,t), 

takes into account that during generation the wave is propagating away 

from the plate along the characteristics. The effect is to produce a 

trajectory which is distorted from what it would be if u(O,t) were 

used. This can be seen in Fig. 3.6, where for illustrative purposes 
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the particle velocity averaged over the depth (Fig. 3.6(a)) is a 

simple sine curve. For this case, :i.f the velocity u(O,t) were used 

in Eq. (3.35), the trajectory would have sinusoidal shape and the 

crest of the trajectory, i:; = S, would occur at time ~ T. However, 

using the velocity u(t;;,t), Fig. 3.6(b) shows that the crest of the 

trajectory occurs at time t=~T+S/c. Thus the time taken for the 

plate to travel forward to its full extent is time S/c longer than it 

would be if the trajectory were sinusoidal and consequently the time 

taken for the plate to travel back to its original position is time 

S/c shorter than it would be if the trajectory were sinusoidal. The 

effect of including the position E; in the velocity therefore is that 

when th1e plate and wave are moving in the same direction, the time 

coordinate stretches; when the plate and the wave are moving in 

opposite directions, the time coordinate contracts. 

The simple sine water particle velocity shown in Fig. 3.6(a) 

was presented as an example; for waves of permanent form it can be 

shown (e.g. Svendsen (1974)) by continuity that the velocity averaged 

over thE! depth is: 

-c ) cn(x,t) u x t = -----~----' h+n (x, t) 

Thus, in terms of the plate velocity, from Eq. (3.35): 

s = cn(x,t) 
h+n(x, t) 

(3. 36) 

(3. 3 7) 

• dt;; where E; _ dt • Eq. (3. 37) must be integrated to obtain the trajectory, 

t;;(t). It is assumed that the wave has the form: 
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n(t;,t) = Hf(e) 

where e = k(ct - F,;) 

The total derivative of Eq. (3.39) is: 

and 

or, by rearranging: 

de • - = k(c- 0 dt 

ds ds ae ds · 
dt = de • dt = ae k(c - 0 

. 
3- = t; 
de k(c - g) 

(3.38) 

(3.39) 

(3. 40) 

(3.41) 

Substituting Eqs. (3.37) and (3.38) into Eq. (3.41), the latter 

reduces to the simple form: 

and 

dt; Hf(e) 
de = kh 

H 
t;(t) = kh 

(3 .42) 

f(w)dw (3.43) 

where w is the dunnny variable of integration and e is given by Eq. 

(3.39). Equation (3.43) is an implicit equation which can in general 

only be solved for a particular time t by numerical means. The most 

efficient method of solution was found to be Newton's Rule: 

Using Eq. (3.39), e is substituted for the displacement t; in Eq. (3.43) 

to yield: 

H le F = e-kct+h f(w)dw=O 
0 

(3.44) 
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The task is now to solve Eq. (3.44) for e at a given time t. Differ-

entiat:ing Eq. (3.44): 

ClF H ae- = l+h f(e) 

Newton's Rule is: 

e(i+l) 

where superscripts denote iteration number and Fe= ClF/38. 

for F and Fe in Eq. (3.46) yields: 
e (i) 

e(i)_kct+H f f(w)dw 
e (i+l) = e (i) - h 0 

1 + !! f ( e ( i)) 
h 

(3.45) 

(3 .46) 

Substituting 

(3.47) 

Having found e for given time t, the displacement ~ is given by: 

~ = ct - e/k (3.48) 

Eqs. (3.43), or (3.47) and (3.48) provide the wave plate displacement 

as a function of time ~(t) for a general wave form f(8). These 

equations will now be applied for specific functions f(8) which 

describe particular waves. 

3.2.1.1. The Generation of Solitary Waves 

For a solitary wave, the wave function f(e) in 

Eq. (3 .. 38) is: 

f (8) = sech2 e (3 .49) 
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where 8 = K (ct - l;), K = _ {3H" and c = lg (h+H). Substituting Eq. (3. 49) 
"4 h3 

into the generation equation, Eq. (3.43), and performing the integra-

tion yields: 

H 
l;(t) = Kh tanh K(ct - l;) (3.50) 

and the iterative equations, Eqs. (3.47) and (3.48), become: 

8 (i+l) 
(i) H (i) 

(i) 8 - KCt +htanh 6 

= 8 - H 8 (i) 
1 +- sech2 

h 

(3.51) 

and l;=ct-8/K (3.52) 

The phase plane in Fig. 3.7 shows a typical trajectory l;(t) calculated 

from Eqs. (3.51) and (3.52). The origin of displacement l; and of 

time t occurs under the wave crest because of the definition of the 

solitary wave, Eq. (3.49). In addition, since the function fin 

Eq. (3.,49) tends to zero as e goes to infinity, the intercepts of 

the characteristics associated with the leading and trailing edges 

of the wave with the time axis, ± t , occur at ± 00 • However, since 
0 

precision of only three significant figures was available in the 

actual generating device, the intercepts, t , were defined, for 
0 

practical purposes, by: 

t 
0 KC KC (3.53) 
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The stroke S is obtained by evaluating Eq. (3.50) at times t=+oo 

and t = - 00 and subtracting to yield: 

S _ 2H _ f 16 H h 
- Kh -\iT h (3.54) 

The duration of motion T is obtained from Fig. 3.7 by computing 

the times at which the leading and trailing edge characteristics 

interse~ct the trajectory s (t) and subtracting which gives: 

T=2t +S/c 
0 

(3.55) 

Substituting for the intercept t
0 

and stroke S yields for the 

duration: 

2 H 
T = - (3.8Q+h) 

KC 
(3.56) 

(The origin of the trajectory, s(O), was moved to the point (-~T,--}s) 

in the x-t plane so that motion started from rest and proceeded in a 

forward direction.) 

3.2.1.2 The Generation of Cnoidal Waves 

For cnoidal waves the function f(8) in Eq. (3.38) is: 

y - h 
f(e) = ~ +cn2 Celm) (3. 5 7) 

where e = 2K <'f-i) (which, for convenience in this development, is 

of opposite sign to the 8 defined earlier), and K is the first complete 

elliptic integral, en is the Jacobian elliptic function, m is the 

elliptic parameter, T is the period and L is the wave length. 
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Substituting Eq. (3.57) into the generation equation, Eq. (3.43), 

and performing the integration yields: 

' (3.58) 

where ·E(6jm) is the second incomplete elliptic integral, and m' is 

the complementary parameter, m' = 1 - m. 

Substituting this into Eq. (3,lf7) gives the iterative equation: 

6 
(i+l) = 

6 
(i) _ 

2Kht+(y _Hm') 6 (i)+!!.E(e(i)lm) 
T t m m .(3.59) 

The elliptic functions E(6(i)lm) and cn2 (e(i)lm) can most easily be 

evaluated by the numerical methods described in Appendix A. 

Having found 6 for given time t, the displacement ~ is given by: 

~ (t) (3. 60) 

Fig. 3.8 shows a typical trajectory ~(t), normalized with respect to 

the maximum, ~ , calculated using Eqs. (3.59) and (3.60). Because max 

of the form of the definition of the function f(6) in Eq. (3.57), 

the origin occurs at a point of maximum velocity. However, it is 

desirable to start the motion of the wave plate at a position where 

the plate velocity and wave amplitude are zero, i.e. where: 

~~ = u = 0 (3.61) 

and 

n (3. 62) 
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where 8
0 

is the argument of the cnoidal function determined such that 

the wave amplitude is zero. Eq. (3.62) can be written as: 

e = cn-1 
0 (

ytH- h) 1/2 
(3.63) 

which can be evaluated for a given wave by the numerical method 

described in Appendix A. 

and 

Substituting for 8 in Eq. (3.51) gives: 
0 

~ - -~ _ --1._ l(yt - h) eo +-mH {E(eo Im) - m' eo}] max - min - 2Kh L 

t ~ e 
....£=~+....£ 
T L 2K 

The maximum excursion of the wave plate or stroke S is: 

S = 2 ~max 

,(3.64) 

(3.65) 

(3. 66) 

Since the leading wave of a train of cnoidal waves is a transient wave, 

it was desirable to make it a positive wave rather than a negative wave 

so the train would not overtake it. Thus, the motion is started at a 

minimum point in Fig. 3.8, so the origin of the trajectory calculated 

from Eqs. (3.59) and (3.60) is moved forward by a time T- t
0

• 

The application of this theory and the waves which resulted from 

it are presented in Section 5.1. 

3.3 The Propagation of Long Waves onto a Shelf by the Nonlinear 

Dispersive Theory 

Two of the methods which presently exist for numerically solving 
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the Boussinesq equations in constant depth are the finite difference 

approach used by Peregrine (1966) and the method of characteristics 

which was employed by Long (1964). The finite element method 

described here has certain similarities to the scheme of Peregrine 

(1966) but in contrast to those of Peregrine (1966) and Long (1964) 

it is unconditionally stable and second order accurate. Madsen and 

Mei (1969) extended the approach of Long (1964) to solve the 

Boussinesq equations for the case of a gradually varying depth. In 

order to avoid the restriction of a gradual change in depth, the 

approach that was taken in this study was to first formulate a 

finite element solution of the Boussinesq equations for the case of 

a constant depth. The varying depth was then considered to consist 

of a sj~ries of steps between which the Boussinesq equations for a 

constant depth applied. The solutions in adjoining regions were 

matched at the steps by applying the boundary conditions of continuity 

of surface elevation and flow rate; the latter is equivalent to 

matching the surface slopes. 

3.3.1 The Numerical Solution of the Boussinesq Equations for 

Constant Depth by a Finite Element Method 

3.3.1.1 Analytical Formulation of the Problem 

Consider the physical system shown in Fig. 3.9 which 

consists of a body of water, bounded at x = 0 and x = X with a depth h, 

in which a wave propagates with characteristic horizontal length Jl 

and characteristic height H. 
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u=O ... u=O 
Li(x,t) 

x=O x=X 

Fig. 3.9 Definition Sketch for Numerical Scheme 

For long waves (.fl» h) of moderate amplitude (H < h) where the 

Ursell Number (H.fl2/h3) is of order unity, the governing equations 

are the Boussinesq equations, Eqs. (3.10) and (3.11), which in 

dimensional form are: 

0 (3. 6 7) 

and - + -- 1 h2- 0 ut uux + g~ - 3 uxxt = (3. 68) 

where u(x,t) is the velocity averaged over the depth and defined by: 

f
h+n 

u(x,t) = u(x,y,t)dy 
Cl 

(3. 69) 

Following the usual finite element formulation, the problem is first 

stated in its three forms--Strong, Weak and Galerkin. 
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The Strong (or Classical) form of the problem denoted as (S) is: 

Find the amplitude n(x,t) and the velocity u(x,t), in the 

intervals 0 ~ x ~ X and 0 ~ t ~ T, such that: 

(S) 

with the boundary conditions: 

and the initial conditions: 

n(x,O) = H(x) and u(x,O) = G(x) 

A weak (or variational) form of (S) denoted as (W) is: 

Find the amplitude n(x,t) and the velocity u(x,t) which 

satisfy the boundary conditions such that for all variations 

(W) 

w(x) and v (x): 

( n, w) + J x w {u (h + n)} x dx = 0 
0 

1 2 • + Jx (G, v) + -3 h a(u, v) v(uii + gn )dx x x 
0 

and, <{n(x,O) - G(x)},w) = 0 

<{u(x,O) - F(x)},v) = 0 

0 

where w is the amplitude variation and v is the velocity variation 

and • - ..£.n. .!. - au n - at ' u - at • 

The inner product is defined as: 

and th1: bilinear form: a(u,v) 

-- Ix (u,v) uv dx 
0 

u v dx xx 
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The Galerkin (or discrete) form of (W) which is denoted as (G) is: 

(G) 

Find the discrete functions nh(x,t) and uh(x,t) which satisfy 

the boundary conditions such that for all discrete functions 

wh and vh: 

and, 

(nh,wh) + Jx wh{uh(h+nh)}xdx = O 
0 

<fih, vb) + ~ h2 a cfih, vb) + j x vh <uhu~ + gn~) dx = o 
0 

0 

In this manner, the problem has been transformed from one of finding 

the solutions, continuous in x and t, of a set of partial differential 

equations to one of finding the solutions, continuous in t but 

discrete in x, of a set of ordinary differential equations. 

3.3.1.2 Finite Element Formulation 

Consider the one-dimensional finite element mesh shown 

in Fig. 3.10 where the interval O~x:s_X has been divided into N+l 

elements and N + 2 nodes. Let the amplitude variation wh(x) and the 

velocity variation vh(x) be linear combinations of the finite element 

basis functions ~.(x) and ~.(x) respectively: 
1 1 

N 

vh(x) == L ~i (x) 

i=l 

N+l 

wh(x) == L ~i (x) 

i=O 

(3. 70) 

(3. 71) 
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where subscripts denote the number of the node and ¢.(x) and l/J.(x) 
l. l. 

are functions which satisfy the following conditions: 

1 j i 1 j i 

(3.72) 

a j f:. i a j 1- i 

The typical basis functions ¢. shown in Fig. 3.10 are the linear 
1 

piecew:i.se continuous functions defined by: 

and 

where 

NODE 0 
x 0 

ELEMENT 

x- xi-1 

t.xi 

Xi+l - X 

llxi+l 

¢ (x) 
0 

2 3 

2 

x. 
1

<x<x. 
].- - - l. 

fix. 
l. 

i-1 
Xj-1 

Fig. 3.10 Finite Element Mesh 

x· I 
i+I 

i = 1,2,---N 

i+I 
Xj+1 

N-1 

N 

(3.73) 

(3.74) 

N N+I 
XN x 

N+I 
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Denoting the amplitudes at the nodes by e.(t) and the velocities 
l. 

at the nodes by d.(t), let: 
l. 

N 

-he ) u x,t =L 
i=l 

N+l 

nh(x,t) = L ~i(x)ei(t) 
i=O 

t/l.(x)d.(t)+t/l (x)ii (t)+t/l (x)ii (t) 
1 1 o o m m 

(3.75) 

(3.76) 

The object of the numerical scheme is to find the nodal amplitudes 

(ei (t) i = 0,---N+l) and the nodal velocities (di (t) i = 1,2---N) 

for th1: interval 0 < t ST. At a particular time, the amplitude and 

velocity between nodes is found by interpolation using the basis 

functions, ~(x) and ijJ(x). Linear basis functions imply linear 

variation of velocity and amplitude between nodes. 

Substituting the discrete approximations of the amplitude and 

velocity given by Eqs. (3. 75) and (3. 76) into the Galerkin form of 

the problem (G) yields: 

N+l 

L ( ) • fc = o ~.,~.e.-. 
l. J J J 

j = 0,1,2,---N+l (3. 77) 

i=l 

N 

L {<w 1.,i)!J.)+
3
1

h 2 a(i)!.,i)!.)}ci.+ {Cw ,i)!.)+
1
3

h 2 a(i)! ,i)!.)}{i 
l.J J ffiJ mJ m 

:l=l 

{ 1 2 }• M_ + (ijJ ,ijJ.)+-3 h a(ijJ ,ijJ.) u -f. - O 
0 J 0 J 0 J 

(3.78) 

j - 1,2,---N 
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where 

X N 

f~ = - f ~. j ( ~ 1jJ. d. + 1jJ ti + 1jJ u ) (h + 
J Jl LJ l.l. oo mm 

0 
i=l 

N+l 

L 
i=O 

(3. 79) 

and 

f~ = -Jx [w. 
J 0 J 

N N 

{ L ijJidi + ijJouo + ijJmum H L wk,xdi + wo,xiio 

i=l k=l 

N+l 

+ i)Jm xu } + g '°" 1jJ .~. e. J dx , m ~ J i,x l. 
(3. 80) 

i=O 

To write Eqs. (3.77) and (3.78) in matrix form, let: 

j = 0,1---N+l 

~j (ijJi'ijJj) + ~h2a(ijJi,ijJj) 

M 
(ijJo,ijJj) 

1 2 
j = 1,2,---N (3 .81) m. = + 3h a(ijJ ,ijJ.) OJ 0 J 

M 
(ijJm,ijJj) 

1 2 m. = + 3h a(ijJm,ijJj) 
filJ 

The matrix form of the Galerkin Problem (G) which is denoted as (M) is: 

(M) 

Find the nodal amplitude e.(t) i=0,1,---N+l and the nodal 
l. 

velocity di (t) i = 1, 2,---N, over the interval 0 < t ~ T such that: 

Mc · fc e = 

J1 d = M M • M • 
f -m u -m u 

-o o -m m 

e.(O) = H(x.) d.(O) = G(x.) 
l. l. l. l. 

(3. 82) 

(3 .83) 
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The matrices J/}C and ~' arising from the continuity equation Eq. 

(3.67) and the momentum equation (3.68) are symmetric positive 

definite matrices of order N+ 2 and N respectively. (For linear 

shape functions they are tridiagonal.) The vectors fc and fM 

contain nonlinear terms in the nodal amplitudes ~ and the nodal 

velocities d. M M The vectors m and m contain only one nonzero term -o -m 

for linear shape functions. 

3.3.1.3 The Time Integration Algorithm 

The time integration algorithm used to solve the 

matrix form of the problem, (M), was the Midpoint Rule: 

where 

Ji(d +1-d) =lit {fM,L_Jifi _Ji IT } - -n -n -n~ o o m m 
n..P--2 n..P--2 

f - e + e c (1 { } 
- 2 -n+l -n 

1
{d +d}) 2 -n+l -n 

M(l{ } l{ ) f - e +e - d +d - 2 -n+l -n 2 -n+l -n} 

. . (1 { }) u: =u - t +t 
o o 2 n :n+l 

n..P--2 

and the subscripts denote the number of the time step. 

(3.84) 

' (3.85) 

(3 .86) 

(3. 8 7) 

(3.88) 

The Midpoint Rule differs from the well-known Trapezoidal Rule 

(or Crank-Nicholson Method) in a subtle way which is apparent only 

when considering nonlinear problems. For the Trapezoidal Rule, the 
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vector !~+1~' for example, would be defined as: 

(3.89) 

Thus, in Midpoint Rule, the vector fc .i is found by evaluating 
-nr~ 

the function fC with arguments which are the average of those at the 

beginning and end of the time step, while. for Trapezoidal Rule the 

vector f~.p~ is found by evaluating the function EC at the beginning 

and end of the time step and averaging these functions. Clearly, if 

EC is a linear function, the Midpoint Rule and the Trapezoidal Rule 

are identical, however, if !C is a nonlinear function, Eqs. (3.86) 

and (3.89) are quite different. Although both the Midpoint Rule and 

the Trapezoidal Rule are unconditionally stable and second order 

accurate, the Midpoint Rule is preferred for nonlinear problems 

because the stability analysis more closely parallels the stability 

analysis for linear problems and thus results in a more definite 

statement of unconditional stability. The details of this and other 

aspects of the stability analysis of the Midpoint Rule and the 

Trapezoidal Rule for nonlinear problems are given by Hughes (1977). 

3.3.1.4 The Iterative Scheme 

The iterative scheme used to solve Eqs. (3.84) and 

(3.85) is similar to that used by Peregrine (1966) to solve a finite 

difference formulation of the Boussinesq equations: 

1. First Iteration: 

i) 
c c 

Evaluate gn+1~ = f (~n'gn) and solve Eq. (3.84) for the 

nodal amplitudes e(1) 
-n+l" 
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ii) Evaluate E:+1--:2 = ~M ( ~ { ~!!i + ~n}, ~n) and solve Eq. (3.85) 

for nodal velocities d(ll). 
-n+ 

It is noted the bracketed superscripts denote iteration number. 

2.. Second and Subsequent Iterations k = 2,3,--- : 

l..) c - c (1 { (k-1) } 1 { (k-1) }) Evaluate f .1 - f -2 e +l + e -2 d +l + d -n,....--:2 - -n -n -n -n 

and solve Eq. (3.84) for the nodal amplitudes ~~:i. 

ii) M _ M (.!_ { (k) } .!_ { (k-1) t) 
Evaluate !n+1--:2 - E 2 ~n+l + ~n , 2 S!n+l + ~n I and 

solve Eq. (3.85) for the nodal velocities g~!i. 

The difference in this scheme from that of Peregrine is that, in the 

second and subsequent iterations, Peregrine's scheme evaluates the 

functions !C and !M for the nodal velocity at the previous time ~n 

instead of the average of this and the best estimate of the nodal 

velocities at the forward time step, ~ {~n + g~!~l)}. It was found that 

this change, which amounts to full instead of partial implementation 

of Midpoint Rule, eliminated numerical dissipation and thus errors in 

the quantities which should be conserved (volume and energy) were 

reduced from a few percent to zero. 

3.3.1.5 Convergence and Accucacy 

The convergence of the iterative scheme was tested by 

numerical experiments. The experiments involved first setting up the 

initial conditions for a solitary wave with height H and nodal spacing 

!J.x. The nodal spacing was chosen by assuming that, for numerical 

purpose~s, the amplitude of a solitary wave is zero for n/H < 0.001. 



54 

Then f:rom Eq. (3. 25) the "length" of the wave can be defined as: 

where~ 

8.3 
L = ·­

K 
(3. 90) 

By sel1acting the number of nodes over which the wave is described, 

NX' tfoa nodal spacing is found from: 

8.3 =--
K 

(3.91) 

The number NX will be termed the "nodal spacing number" and in 

similar manner the "time step number", NT' is defined as: 

L N = -=--
T llt/gh 

(3.92) 

Having set up the initial conditions, iterations for one time step 

were performed to determine the minimum number of iterations k for 

which the error: 

max e: = 
i=l,2---NX 

(k) (k+l) 
ni - ni 1 

1000 
(3.93) 

The results for two waves with height H/h = 0.1 and 0. 7, are presented 

in Tables 3.l(a) and 3.l(b), where the number of iterations for 

convergence is given for various nodal spacing numbers NX and time 

step numbers NT. The data show the iterative scheme converges for 

the full range of NX only if NT ~ 40. It is noted that failure to 

converge for NT~ 40 does not contradict the unconditional stability 
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Table 3.1 Number of iterations for convergence 
for various nodal spacing numbers, Nx, 
and time step numbers, NT. (NC implies 
not convergent.) 

(a) H/h = 0.1 

~ s 10 20 40 80 

s NC NC NC NC NC 

10 3 NC NC NC NC 

20 2 4 s 9 NC 

40 2 2 2 3 3 

80 1 2 2 2 2 

160 1 1 1 2 2 

(b) H/h = 0.7 

~ s 10 20 40 80 

5 NC NC NC NC NC 

10 5 NC NC NC NC 

20 3 4 7 NC NC 

40 2 3 3 3 4 

80 2 2 2 2 2 

160 2 2 2 2 2 
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of the algoritlun; it is a feature of the iterative scheme chosen to 

solve the equations arising from the algorithm. Having selected a 

nodal spacing number which provides the desired degree of resolution 

in the wave profile, the optimum time step number is found by 

minimi.zing the product of NT and the number of iterations for con-

vergence. For the waves in this study, three iterations and 

NX =NT= 40 were used. 

A measure of the accuracy of a numerical scheme is the accuracy 

with which quantities which are conserved analytically also are 

conserved numerically. For the Boussinesq equations these conserved 

quantities are the volume and the energy (potential + kinetic). 

The accuracy of the scheme described here was tested by propagating 

the two solitary waves described previously (H/h = 0.1 and 0. 7) for 

ten wave lengths using three iterations and Nx =NT= 40 and comparing 

the ratios of initial to final volumes, v1 /VF, and initial to final 

energi1es, E1/EF. The results, which are presented in Table 3.2, show 

errors in the volume and energy ratios which are considered negligible!. 

This :implies, at least with regard to volume and energy, the numerical 

scheme has a high degree of accuracy. 

Table 3.2 Comparison of initial and final 
conserved quantities for the 
numerical scheme. 

VI/Y.F EI/EF 
No. of 

Time Steps 

H/h = 0.1 1.002 1.001 376 

H/h = O. 7 0.998 1.005 312 



57 

Also of interest was the way in which these solitary waves 

propagate. The wave profiles at regular time intervals are presented 

in Fig. 3.11 where, it is noted, the abscissas are distance normalized 

with r;espect to wave length, L, as given by Eq. (3. 90). The total 

distance of propagation in each case is ten wave lengths (101); 

thus, the wave has propagated 1.251 between each profile. 

In both cases the shape of the initial wave changes as it 

propagates. For the larger wave (H/h = O. 7) the wave height decreases 

to H/h = 0. 66 over the first five wave lengths and then remains 

constant. The trough which forms initially behind the main wave is 

left bE~hind by the main wave and, after propagating a distance of 

five wave lengths, they are completely separate. For the smaller 

wave (H/h = 0.1) the wave height decreases to H/h = 0.090 over the first 

five wave lengths and then remains constant. The trough which forms 

behind the main wave grows in amplitude, reaching a maximum of at/h 

= O. 0066 after the wave has travelled five wave lengths. Subsequently 

the amplitude of the trough slowly decreases accompanied by an increase 

in the length of the trough. 

The shape of the main wave after it has travelled ten wave lengths 

is examined in Fig. 3.12. In Fig. 3.12(a) the larger wave (H/h= O. 7) 

is compared to the Boussinesq and Mccowan solitary waves. The wave 

follows the theory of Boussinesq (1872) in the region of the crest and 

the theory of Mccowan (1891) near the leading and trailing edges. 

(This also was found to be true for large waves (H/h > 0.3) generated 

in the laboratory, and will be discussed in Section 5.1,) In Fig. 3.12(b) 
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Fig. 3.11 Wave profiles calculated using the numerical scheme for 
(a) H/h = O. 7 and (b) H/h = 0.1. 
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Fig. 3.12 Shapes of the waves after they have travelled ten wave 
lengths for (a) H/h = 0. 7 and (b) H/h = 0.1. 
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the smaller wave (H/h = 0.1) is compared to the Boussinesq solitary 

wave. As indicated in the figure, the waves both have sech2 shape 

but the "wave number" of the wave obtained numerically is 0.220 

compared with 0.260 for the solitary wave of the same wave height. 

Increasing the nodal spacing number, N , or the time step number, x 

NT' did not change the results presented in Figs. 3.11 and 3.12 

significantly so it is assumed the behavior observed is not caused 

by that aspect of the numerical scheme. Also, it is pointed out 

that with the finite difference scheme of Peregrine (1966), numerical 

dissipation caused by the partial instead of the full implementation 

of the Midpoint Rule (as was discussed previously) eliminates some 

of the details of the profiles which are shown in Figs. 3 .11 and 3 .12. 

In both cases considered, the initial wave is a solitary wave 

which i:s an exact solution of the KdV equation; however the shape of 

the wave changes as it propagates which is contrary to what the KdV 

equation predicts. A possible reason for this is that although the 

solitary wave is an exact solution of the KdV equation, the KdV 

equation is only an approximate form of the Boussinesq equations; 

therefore the solitary wave is not an exact solution of the Boussinesq 

equations. To demonstrate this, recall the expression for velocity, 

Eq. (3.18), which arises from the derivation of the KdV equation and 

which was used to compute the initial velocities for the waves being 

considered. If this expression is substituted into the first of the 

Boussinesq equations, Eq. (3.67), the following equation is obtained: 
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c = M°gh 
0 

(3. 94) 

The left hand side of Eq. (3.94) is the KdV equation which, if the 

right hand side were zero, would have the solitary wave as a solution. 

However, since the numerical scheme solves the Boussinesq equations 

with a high degree of accuracy, the presence of the higher order terms: 

on the right hand side of Eq. (3.94) (which are O(a2 ,aS)) prevents 

the solitary wave from being an exact solution. Further discussion 

of this with reference to Boussinesq (1872) and Keulegan and Patterson 

(1940) is presented in Appendix B. 

The behavior of the larger wave (H/h = 0. 7) is consistent with 

what is observed in the laboratory: the shape follows the theory of 

Boussinesq in the region of the crest and that of McGowan near the 

leading and trailing edges and the main wave quickly separates from 

the trailing oscillatory waves. However, some of the behavior of 

the smaller wave is contrary to what is observed in the laboratory; 

in particular, the growth of the trough and the slow rate at which 

the main wave separates from it. To investigate this further, use 

was made of the finite element program developed by Hughes, Liu and 

Zimmermann (1978) to solve the Navier Stokes equations. The program 

uses a penalty function approach to take account of the pressure (the 
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interested reader is referred to Hughes, Liu and Brooks (1978) for 

details of the method) and solves the problem of the free surf ace by 

allowing the finite element mesh to deform in the vertical direction. 

The scheme is two-dimensional so that, in contrast to the numerical 

method developed for this study, the velocities (horizontal and 

vertical) can vary with depth to a degree which is dependent on the 

number of elements which are taken in the depth. A comparison of 

wave propagation using this scheme with one element in the depth with 

wave propagation using the scheme developed for this study was 

conduct1ad. Starting with the same initial wave profile (amplitude 

and velocity) for the two schemes, a wave with initial height H/h = 0.086 

was propagated for a nondimensional time, tlg/h, of 78.4. In Fig. 

3.13, the profiles at intervals of tlg/h = 15.68 are compared, with 

the sch1ame of Hughes, Liu and Zimmermann (1978) being the dashed 

curves. The figure shows the results agree remarkably well consider-

ing they arise from approaches which are quite different. Notice the 

rate of growth of the trough is even greater with the scheme of 

Hughes, Liu and Zimmerman (1978) (at/h=0.0101 at t=78.4) than it 

is for the scheme developed for this study (at/h = 0.0063 at t = 78.4). 

This growth almost can be eliminated by using the approach of Hughes, 

Liu and Zimmermann (1978) with two elements in the depth. The results 

are presented in Fig. 3.14 which shows the trough has been reduced to 

a /h = 0. 0033 at t = 78. 4 and the relative wave height is essentially t ~ . 

constant with propagation. The difference in having two instead of one 

element in the depth is that the distributions of velocity (horizontal 

and vertical) are no longer constrained to be linear with depth. 
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Fig. 3.13 Comparison of wave propagation using the scheme developed 
for this project (-) with the scheme of Hughes, Liu and 
Zinnnermann (1978) (---). 
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Fig. 3.14 Wave propagation using the scheme of Hughes, Liu and 
Zimmermann (1978) with two elements in the depth. 
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That this change reduces the rate of growth of the trough is taken to 

imply the growth of the trough is caused by the one-dimensional 

approximations. These approximations, for the scheme of Hughes, Liu 

and Zimmermann (1978), are made in the numerical scheme but for the 

scheme developed for this study they are inherent in the derivation 

of the Boussinesq equations. 

Considering the dispersive nature of the trough, it is not 

surprising these effects are more pronounced for the smaller wave 

height because for the larger wave height the nonlinear effects would 

be expected to be stronger. In fact for the cases considered in this 

study where the numerical scheme was used to propagate solitary waves 

onto a shelf, problems with the formation of a trough did not arise. 

Part of the reason for this probably is that nonlinear effects caused 

by the reduced depth masked this behavior, but also the trough is 

small compared to the main wave (~6%) and its growth requires propa-

gation over a greater distance than was considered for most cases. 

3.3.2 Extension to the Case of Variable Depth 

Consider the problem shown in Fig. 3.15 where a long wave 

is propagating from a region with a constant depth h1 (Region I) over 

a step into Region II in which the depth also is constant but reduced 

REGION TI 
7 7 7 7 1' REGION I u; =117 

~·-7--7---7---7----7----7---~..,.....,~1® 

7 7 

Fig. 3.15 Definition Sketch for Extension to Variable Depth 
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Section (1) in Region I and Section (2) in Region II are located 

close to the step on either side of it. At a particular instant of 

time, the amplitudes at Sections (1) and (2) are n1 and n2 , respectively, 

and the depth averaged velocities are given by: 

u1 1 /1 u
1 

(y)dy 
hl + nl 

-hl 

(3.95) 

n2 
1 J u2 (y)dy U2 =---

h2+ n2 
-h2 

(3. 96) 

If the distance between Sections (1) and (2) is decreased until the 

sections are an infinitesimal distance apart on either side of the 

step, then for continuity of the water surface profile: 

(3. 97) 

and for conservation of mass: 

(3.98) 

where q
1 

and q2 are the flow rates per unit width through Sections 

(1) and (2), respectively, defined as: 

n1 
ql = J ul (y)dy (3. 99) 

-hl 

(3 .100) 
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Eq. 3.98 can be written in terms of the depth averaged velocities 

defined by Eqs. (3.95) and (3.96) as: 

(3.101) 

Since, for the problems under consideration, n1 < h1 and n2 < h2, as a 

first approximation Eq. (3.101) may be written as: 

(3.102) 

An estimate of the error e: in using Eq. (3.102) instead of Eq. (3.101) 

may be obtained by taking the difference between Eqs. (3.101) and 

(3.102) (which, using Eq. (3.97), gives: n1 (u2 -U.1)) and dividing by 

the flow rate u2h2: 

e: = 
(3.103) 

Substituting for the velocity ratio from Eq. (3.102), Eq. (3.108) 

becomes: 

(3.104) 

where n
1 

has been replaced by a characteristic wave height H and 

£lh = h1 - h2• Thus, the error in using Eq. (3 .102) is less than the 

maximum wave height ratio H/h2 and may be made arbitrarily small by 

consid1ering only small differences in depth. 

The finite element method described in Section 3.3.1 is extended 

to the case of variable depth by considering the varying bottom as 

consisting of a series of steps, as shown in Fig. 3.16. In the 
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i+I 

Fig. 3.16 The varying bottom considered as a series of steps 

regions of constant depth between the steps, the Boussinesq equations, 

Eqs. (3.67) and (3.68), apply. However, these differential equations 

do not apply across the steps because at a node i which is at a step, 

although the surface profile is continuous, velocities jump from 

ui to ui+l and the depth jumps from hi to hi+l' To obtain a solution, 

the problem is simplified by restricting the change in depth between 

steps to be small enough so that the error given by Eq. (3.104) is 

negligible; hence the conservation of mass is as well represented by 

Eq. (3.102) as by Eq. (3.101). By introducing a volume flow rate 

defined as: 

uh (3 .105) 
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the Boussinesq equations in constant depth may be rewritten in the 

form: 

(3 .106) 

- + 1 -- + 'h..... 1 h2- -- 0 q -qq gu11 -- q t h x x 3 xxt (3.107) 

These equations still are applicable only in a constant depth, since 

the depth h is discontinuous across a step; however both dependent 

variables, surface profile n(x,t) and the flow rate q(x,t), now are 

continuous across a step. The finite element scheme is implemented by 

placing nodes at the steps as shown in Fig. 3.16. Upstream of Node i, 

Eqs. (3.106) and (3.107) apply with h=hi; downstream of Node i, 

Eqs. (3.106) and (3.107) apply with h = hi+l • Since the same n. and 
l. 

q. are used for both regions, the continuity conditions across the 1 

step given by Eqs. (3.97) and (3.98) are automatically satisfied. 

The technique was tested by comparing with physical experiments and 

the results will be presented in Section 5. 

3.4 The Propagation of Long Waves Onto a Shelf by the Linear 

Nondispersive Theory 

In this section the method of solution of the linear nondispersive 

theory as reported by Wong et aZ. (1963) and Dean (1964) is applied 

to thee case of solitary waves propagating onto a shelf over a transi-

tion i.n which the depth decreases linearly with distance. (These 

approaches differ from those of Kaj-iura (1961) who used transitions 

in which the depth varied in a more complicated manner with distance.) 
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Even though the solitary wave arises as a solution of a nonlinear 

dispersive theory, since nonlinear and dispersive effects take some 

distance (or time) to develop (Hammack and Segur (1978)), tl}e 

linear nondispersive theory may predict the behavior for an initial 

distance (or time) which is limited. The limits of application of 

such an approach to propagating solitary waves was one of the 

objectives of this portion of the investigation. Certain aspects 

of this will be discussed more fully in Section 5. 

The domain of solution in Fig. 3.17 consists of three regions. 

In Region I, which extends from x = -00 to x = -L, the depth is a 

constan,t h1 • Initially, the incident wave will exist wholly in this 

region. Region III extends from x = 0 to x = 00 and the depth is a 

constan.t h2• It is assumed that no waves propagate from x = 00 in a 

negative x-direction. Region II is of length L and the depth changes 

linearly from h1 to h2• 

The linear nondispersive equation for variable depth as derived 

by Lamb (1932, §169) assuming small amplitude waves and hydrostatic 

pressure distribution, is: 

(3.108) 

Wong et al. (1963), Dean (1964) and Rajiura (1961) solved Eq. (3.108) 

for a single harmonic incident wave: 

( i(kx-wt) n x, t) = A1 e (3.109) 



REGION 
I 

71 

REGION 
JI 

REGION 
------• .... I •.--- IIT -~ 

x h=h- -(h -h) 
2 L I 2 

h, 

x=-L 
Ix .... 

Fig. 3.17 Definition sketch for linear nondispersive theory. 

where i = r-I" ,, w is the radial frequency, k is the wave number and, 

since it is assumed that there is no dispersion, w = Vgh1 k. The 

method used was to solve Eq. (3.108) for each of the three regions 

in turn and then match the solutions at the boundaries by assuming 

continuity of surface elevation and surface slope. Details of 

the method are presented in Appendix C. 
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The solution is: 

Region I: ( t) =A i (kx-wt) +A -i (kx+wt) 
nl x, 1 e 2e (3.110) 

Region II: (3 .111) 

where x 2wL 

Region III: ( ) = C ei(klh1/h2 x-wt) n3 x,t 1 (3 .112) 

where J (X) and Y (X) are the zero order Bessel functions of the first 
0 0 

and second kind respectively and the coefficients A2 , B1 , B2 and c1 

are functions of the incident wave amplitude A1 , the depth ratio h2/h1 

and the dimensionless quantity wL/lgh1 • The relationships for the 

coefficients A2, B1 , B2 and c1 as deduced by Wong et aZ. (1963) are 

listed in Appendix C. The reflection coefficient, defined as ~ = Azl A1 , 

and the transmission coefficient, defined as KT= CzlA1 , can be deter­

mined in simple terms only for extreme values of wL/lgh1 . 

For wL/lgh1 « 1 (i.e. L = 0, a step), the expressions for the 

Bessel functions of small argument can be used and the coefficients 

can be ,evaluated in terms of the depth ratio only: 

~ 
1 - lh2/hl 

= 
1 + lhzlh1 

(3.113) 

~ 
2 

= 
1 + th2/hl 

(3.114) 
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(These also can be obtained by the more basic approach of Lamb (1932, 

§176).) 

The magnitude of the reflection coefficient is bounded by 

0 S KR S 1 and the transmission coefficient is bounded by 0 s KT s 2. 

When the depth ratio h 2/h1 is unity (i.e. there is no shelf) there is 

zero reflection KR= 0 and perfect transmission ~ = 1 as expected. 

For small depth ratios hzlh1 (i.e. h 2 « h1 ) the reflection coefficient: 

~ + 1 and the transmission coefficient KT+ 2, however care must be 

exercised in using these expressions for small depth ratios to ensure 

that the small amplitude assumption is not violated on the shelf. For 

examplE:!, if h 2/h1 = 0.01 and the incident wave amplitude to depth ratio 

A1 /h1 = 0. 01 (which is small enough to be considered small amplitude), 

then the transmitted wave amplitude to depth ratio c1 /h
2 

= 1.82 which 

is certainly not small amplitude. In fact for the waves on the shelf 

to havE:! amplitude to depth ratios c
1
/h2 ~ 0. 01, the incident wave 

amplitude to depth would have to be A/h1 < 5. 5 x 10-5 • Similar 

arguments apply when the depth ratio is large h2 » h
1

) except that 

in this case care must be taken to ensure that the long wave assump-

tion is not violated. 

For wL/ lgh
1
»1 (i.e. a long slope), the reflection and trans-

mission coefficients are: 

K == 0 
R 

(3.115) 

(3.116) 
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which represents the classical Green's Theorem (Lamb (1932, §185) for 

long waves propagating over gradual slopes. 

Wong et aZ.. (1963), Dean (1964) and Kaj iura (1961) solved Eq. 

(3.108) for a single harmonic incident wave. Since Eq. (3.108) is a 

linear equation the solutions can be superimposed for an incident 

wave given by: 

n (x, t) 
N 

= L Al 
n=O n 

i(k x-w t) e n n 

Eqs. (3.110), (3.111) and (3.112), become: 

(3.117) 

Region I: ( ) ~ i(k x-w t) + ~ A -i(k x+w t) (3.118) n1 x, t = LJ A1 e n n w 2 e n n 

Region II: 

Region III: 

n=O n n=O n 

N 
nz(x,t) = L {B J (X) +B y (X )}e-iwnt 

n=O ln o n ,Zn o n 

2w L n x =------
n lgh.:"" {l - h2 ) 

1 \ hl 

t cl ei(knlhl/hz x-wnt) 
n==O n 

(3.119) 

(3 .120) 

For incident waves given by Eq. (3.117), the reflection and trans-

mission coefficients for wnL/lgh1 = 0 (Eqs. (3.113) and (3.114)) 

apply for two conditions: 

a) L/h1 = 0 (i.e. a step). Since Eqs. (3.113) and (3.114) are 

independent of frequency, each frequency component of the incident 

wave A1 is reflected or transmitted by the same proportion. Thus, 
n 
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the reflected and transmitted waves have the same shape as the 

incident wave. This is the classical result of Lamb (1932) who used 

a more fundamental approach and general functions f(x,t) instead of 

harmonic functions. 

b) n=O (i.e. w =O). n Since Eqs. (3.113) and (3.114) are 

independent of the slope length L, the proportion of the mean component 

(i.e. the volume) of the incident wave reflected or transmitted is 

the same for all slope lengths L. This rather surprising result will 

be discussed further in Section 5. 

For the solutions, Eqs. (3.118), (3.119) and (3.120), to apply 

to a particular long wave given by Eq. (3.117), it is necessary first 

that the wave height be everywhere small compared to the depth and 

second that the wave satisfy either of the two conditions: 

a) The maximum frequency wN is small enough for the nondispersive 

assumption to be valid, or 

b) The entire wave form propagates without dispersing. 

A solitary wave propagates in constant depth without dispersing but 

the wave height is not necessarily small compared to the depth. As 

the wave enters a region of changing depth such as Region II in 

Fig. 3.17, it is expected that amplitude and frequency dispersion 

will oc:cur. However, Hammack and Segur (1978) point out that the 

linear nondispersive theory may apply for some time before it is 

necessary to use the full Boussinesq equations to model the propagation. 

It is to determine this range of applicability therefore that the 

linear nondispersive theory is applied to a solitary wave propagating 
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onto a shelf. 

The solitary wave defined by Eq. (3 • .25) in Section 3.1 also can 

be written as: 

2 313 x-ct n(x,t) =Hsech - 4- (-i-) (3 .121) 

where Ji is the characteristic length defined by Hammack (1972): 

(3 .122) 

To implement the linear nondispersive theory it is necessary to 

use thE~ celerity c = lgh. It is convenient to normalize the inde-

pendent variables with respect to the slope length, L, as follows: 

x = x*/L t=t*~/L 1 

(where * denotes the original dimensional variable) and to normalize 

the wave amplitude with respect to the wave height, n = n*/H. Then 

Eq. (3" 121) becomes: 

2 3/3 L n(x,t) = sech 4 I (x-t) (3 .123) 

To find the solution for an incident wave given by Eq. (3.123) it is 

necessary to resort to numerical techniques because the complicated 

form of the coefficients A2, B1 , B2 and c1 makes the analytical 

Fourier Transform method difficult to implement. The development of 

the Fast Fourier Transform (FFT) algorithm however, has made 

numerical solution of the problem accurate and inexpensive. 
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The solution at a particular x is found in four steps: 

1. The incident wave at x = 0 is approximated by the discrete 

function 

where the tm are N equispaced points in the finite interval 

-T/2<t <T/2 
m 

(3 .124) 

where the magnitudes of N and T are governed by the desired accuracy 

and resolution as will be discussed presently. 

2. The discrete approximation of the incident wave Eq. (3.124) 

is put in the form: 

where 

N/2 

n (O, tm) = 2:= 
n=-N/2 

-iw t e n m 

by computing the discrete Fourier coefficients: 

N-1 
A =l'""" n(O,t ) 
ln N~ m 

m=O 

using the Fast Fourier Transform (FFT) algorithm. 

(3.125) 

(3.126) 

3. The solutions, Eqs. (3.118), (3.119) and (3.120), normalized 

as described above and with w = wn*L/fgh1 and k = k*L may be trans-n n n 

formed from the time domain to the frequency domain to become: 



Region I: 

Region II: 

where 

Region III: 

x n 

2w 
n 
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( ) eiknih1/h2 x 
x,wn = cl 

n 

N N N N 
n =--z, -2 +L,-----, 2-l, 2 

(3.127) 

(3.128) 

(3.129) 

The solution in the frequency domain for the wave at the particular 

location, x, (Fn) is calculated by evaluating one of Eqs. (3.127), 

(3.128) or (3.129) at that position, for the N components. 

4. The solutions Fn are transformed back into the time domain: 

1 n(x,t ) = m N 

N/2 

n=-N/2 

F (w ) n n 

using the inverse Fourier transformation. 

-iw t e n m (3.130) 

The~ numerical scheme requires specifications of the two quantities 

T and N. The total length of the time record T must be made large 

enough to include the entire wave at the location x. The number of 
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points N in the time interval T determine the resolution with which 

the solution at x is determined. The accuracy is determined by the 

. f 'ITN h" h b 1 hf I ( )I maximum requency wmax = T w ic must e arge enoug or F wmax 

to be 11egligible. An estimate of the magnitude of w can be max 

obtairn~d by considering the analytical Fourier Transform of 

( ) h 2 3/3 L h. h . n t =sec 4 i' w ic gives: 

'ITW 'ITW 
A1 (w) =2 cosech - w :/: 0 

n 2n 

A1 (0) = 2/n 

where 

(3 .131) 

For A
1 

(w ) I A
1 

(O) < 1x10-5 , Eq. (3 .131) implies w > 30n/ 'IT which, 'max max 
N 4L 

by substituting for w and n, becomes T > n-, i.e., to accurately 
max "' 

define the incident wave in the frequency domain, the ratio of the 

number of points in the interval to the length of the interval (N/T) 

must be: greater than four times the length ratio. 

Re:sults of this analysis and comparison with the nonlinear 

dispersive theory and experiment will be presented in Section 5. 
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3.5 The Propagation of Long Waves to Infinity by the Nonlinear 

Dispersive Theory 

Distant propagation by inverse scattering is a method of deter­

mining asymptotic solutions of the KdV equation. It provides a way 

of analyzing a wave of arbitrary shape which is being propagated by 

the nonlinear dispersive theory in an analogous manner to the way 

harmonic analysis could be used if the wave were being propagated by 

a linear dispersive theory. 

Linear dispersive equations such as the long wave equation (Eq. 

3.14) discussed in Section 3.1 have exact solutions in the form of 

sinusoidal waves. In a corresponding way the KdV equation has exact 

solutions in the form of solitary waves. A wave of arbitrary shape 

being propagated by a linear dispersive theory will eventually split up 

into an infinite number of sinusoidal waves of different wave numbers 

each t1~avelling at a speed which is a function of the wave number; a 

wave of arbitrary shape being propagated by the nonlinear dispersive 

theory will eventually split up into a finite number of solitary 

waves of different height followed by a train of oscillatory waves 

and, since solitary waves propagate at a speed which is a function 

of the wave height, the solitary waves separate into a train with the 

largest wave leading and the smallest wave trailing. For the linear 

<lispers~ theory, harmonic analysis provides the amplitudes of the 

infinite number of sinusoidal waves which emerge; for the nonlinear 

<lispers~ theory, inverse scattering provides the number and the 

height of the solitary waves which emerge. 
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I:n this section the inverse scattering theory, which was derived 

by Gardner et al. (1967), is outlined, then one of the few analytical 

solutions is presented and, finally, numerical methods of solution 

are described. 

3.5.1 Summary of the Inverse Scattering Theory 

Consider the KdV equation, Eq. (3.22). By changing 

variables as follows: 

Eq. (3.22) becomes: 

r = x_ tjk" 
h , h ' 

T = .!_t .Ii" 
6 1"h 

3 
f(r,T) = 2h n(x,t) 

f + 6ff + f = 0 
T r rrr 

(3 .132) 

(3.133) 

Whitham (1974, P585) shows that the asymptotic solution of Eq. (3.133) 

can be transformed to the Sturm-Louiville problem: 

1)! 11 + [),+f(r,O)]ijJ=O (3.134) 

where primes denote differentiation with respect to r, f (r,O) is the 

normalized initial wave profile and ijJ(r)+O as lrl+ 00 • Whitham shows 

the number of negative eigenvalues A gives the number of solitary 

waves which will emerge as T + 00 and the height of these solitary waves 

is: 

(3.135) 



82 

The number of negative eigenvalues is found by solving the 

initial value problem (see Hammack and Segur (1974)): 

lj! 11 + f(r,O)lj! = 0 

(3.136) 

lj!(O) = 1 1[; 1 (0)=0 

and counting the number of zero crossings of l/J. 

The inverse scattering theory has been applied to practical 

problems by Hammack and Segur (1974,1978) among others. Hammack and 

Segur (1974) show that if the initial wave profile has net positive 

volume, at least one solitary wave will emerge followed by a train of 

oscillatory waves. If the net volume is less than or equal to zero, 

solitary waves may or may not emerge depending on the form of the 

initial wave. If the wave amplitude is entirely negative, no solitary 

waves will emerge. 

3.5.2 The Analytic Solution for a Wave with sech2 Shape 

Analytic solutions of the inverse scattering problem are 

available for only a few initial wave profiles, i.e., n(x,O). One of 

these, given by Whitham (1974, p597), is: 

n(x,O) =A sech2B(x - x ) 
0 

where A is the wave height and B is a type of wave number. 

The number of solitary waves emerging as x and t +co is: 

N<_!.P 
2 

(3 .137) 

(3.138) 
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where (3 .139) 

1 
Note that N is an integer which is strictly less than 2 P (e.g. if 

P = 4. 0, N = 1). The height of the emerging solitary waves is given 

by Whitham (1974) as: 

(3.140) 

n=l,2 •••• N 

Since A is a wave height and l/B is a horizontal length, the 

nondimemsional quantity A/h3B2 is a type of Ursell Number. Eq. (3.139) 

can be rewritten in terms of the Ursell Number defined by Hammack 

(1972) as: 

3 
nmax u = ----- (3.141) 

Evaluating the Ursell Number for a wave given by Eq. (3.137) using 

Eq. (3.141) gives: 

27 A 
U = 16 B2h3 

and substituting this in Eq. (3.139) yields: 

p = ( 1 + 392 u) ~ + 1 

(3 .142) 

(3.143) 

A special case occurs when B2 =l A3 (i.e. a solitary wave); then 
4 h 

U = 9/4 and, from Eq. (3.143), P = 4, hence, using the inequality of 
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Eq. (3.138), only one solitary wave will emerge. 

If, for a particular initial wave with the form of Eq. (3.137), 

the Ur sell Number lies in the interval 0 < U:::, 9/ 4, then 2 < P ~ 4 and 

therefore only one solitary wave will emerge. An important case in 

this class relevant to this study is when. the initial wave has the 

form: 

n(x,O) = a.H sech2~1 H3 (x - x ) 
4 h 0 

(3 .144) 

where 1::i. < 1, i.e. a solitary wave whose amplitude has been reduced by 

a constant ratio over the entire wave. The height of the one solitary 

wave which emerges at infinity from Eq. (3.140) is: 

Eq. (3.145) is surprising in that, although it it the solution of 

the E£1alinear dispersive theory, the height of the emerging wave is 

linearly proportional to the wave height which defined its original 

shape. (This has important implications in data reduction and is 

discussed in detail in Section 5.2). 

I:E the Ur sell Number U > 9 I 4, then P > 4 and therefore more than 

one solitary wave will emerge. Table 3.3 gives the maximum Ursell 

Number for which a particular number of solitary waves will emerge. 

It shows that if for example the Ursell Number of a particular wave 

of sech2 shape lies in the interval 2. 25 < U < 6. 7 5, then two solitary 

waves will emerge. 
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Table .3.3 Maximum Ursell Numbers for a particular number of 
solitary waves to emerge from a sech2 wave. 

N 1 2 3 4 5 6 

u 2.25 6.75 13.5 22.5 33.75 46.75 max 

7 

63. 

3.5.3 Numerical Solutions for Waves with Arbitrary Shape 

The Sturm-Louiville problem Eq. (3.134) was solved using 

the Rayleigh-Ritz technique: 

Define the linear operator: 

LljJ = -t/J" - ft/J 

then Eq. (3.134) can be written as: 

where :A. is the eigenvalue. 

The Rayleigh Quotient is.: 

Q (Lt/J 't/J) 
(t/J, t/J) 

where the inner product is defined in general terms as: 

(u, v) ~ /

00 

uv dr 

-oo 

(3.146) 

(3 .147) 

(3.148) 

The eigenvalues ;\ are found by minimizing the Rayleigh Quotient 

Q over all functions ljJ(r): 
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A = min Q 
1/J(r) 

The calculated eigenvalue: 

µ == Q 

(3 .149) 

(3.150) 

resulting from evaluation of Eq. (3.148) for a particular function 

1/J(r), is an upper bound on the actual eigenvalue>.: 

(3 .151) 

The proximity of the calculated eigenvalue µ to the actual eigenvalue 

;\depends on the choice of the function 1/J(r). Two schemes were 

developed using different functions 1/J(r) and although the basic 

Rayleigh-Ritz techniques were the same, the implementation and appli-

cations were quite different. 

N 

Scheme 1: iJ;(r) = ~ci~i(r); 
i=l 

~.(-co) =~.(oo) =O 
1 1 

Scheme 2: 1/J (r) = ~ (kr); ~(-co)= Hoo)= 0 

Scheme 1 produces N eigenvalue estimates and involves N2/2 

numerical integrations and a matrix eigenvalue problem. Scheme 2 

produci~s only the lowest eigenvalue but with as few as nine numerical 

integrations and no matrices. Thus, if the height of only the leading 

solitary wave is required, Scheme 2 is preferable, but if more than one 

height is required Scheme 1 must be used. 
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3.5.3.1 Scheme 1: A Sum of Functions 

lf;(r) = 
N 

""'c.</>.(r); L.J 1. 1. 

i=l 

</>.(-oo) =<1>.(00) =O 
1 1 

' (3 .152) 

where the</>. are arbitrary functions. Then substituting in Eq. (3.148) 
J. 

and minimizing Q with respect to c. gives: 
1. 

[
{

00

qi!qi!dr- /

00 

f(r,0)4>.<j>.dr-µ !_~00 

<j>i<j>J.dJ =O 
~-oo 1 J -oo 1 J - J 

j 1,2, •••• N (3 .153) 

where primes denote differentiation with respect to r, and µ = Q. 

Eq. (3.153) may be written in matrix form: 

(3 .154) 

where A Joo "''."' '.dr iJ" = 't' 't' 
-oo 1. J 

B .. = f 00 f (r, 0)4>. 4>. dr 
1.J -oo 1. J 

D •. = /
00 

4> .¢ .dr 1.J J. J 
-00 

Eq. (3 .. 154) provides a standard matrix eigenvalue problem, the 

resulting eigenvalues µ. being upper bounds on the actual eigenvalues 
1. 

A.<µ. 
1. - 1. 



88 

In order to simplify the matrix eigenvalue problems it was 

decided to use orthogonal base functions $i. The functions chosen 

were the trigonometric functions: 

. i7fr I 
~ =sin --i L i=l,2, •.•• N (3.155) 

where L is a length large enough to be considered infinite for the 

particular initial wave f(r,O), and: 

r'=r+.h 
2 

The trigonometric functions are not ideal because the definition 

of the length 1 is arbitrary, but none of the other readily evaluated 

orthogonal functions such as the orthogonal polynomials have a suitable 

form for this problem. Substituting for the base functions given by 

Eq. (3.155) in Eq. (3.154) yields: 

ij7f2 /1 inr' ~ dr' 
Aij = 12 . ·• cos - 1- cos 1 0· 

0 i .; j 

(3.156) 
= 

i = j 

1
1 

i r' ~ B .. = · f(r',O) sin_:rr__1 sin 7fL dr' 
1J 0 

0 i .; j 

D •. = 
1J 1 

2 i = j 
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and usi.ng these relationships the matrix equation in Eq. (3.154) can 

be simplified to: 

(3.157) 

where i r/: j 

2 B' =-
ij L 

i1Tr 1 iTir' f(r' ,O) sin -- sin -- dr' 
L L 

and I is the identity matrix. 

To test the numerical scheme, the eigenvalues of waves with 

initial shape given by Eq. (3.137) were calculated for various wave 

heights A and wave numbers B and compared with the theoretical 

eigenvalues. (The results are presented in Appendix D.) The tests 

indicated that this scheme is sensitive to the choice of the length 

L (which is discussed in Appendi.x D) and that it is most accurate 

for waves from which more than one solitary wave will emerge. 

3.5.3.2 Scheme 2: A Single Function 

Since the solution sought is the height of the leading 

solitary wave, an obvious choice for the trial function 1jJ is: 

1jJ = sech2kr (3.158) 

which satisfies the boundary conditions i}J(± 00 ) = O. Using Eq. (3.158), 

the denominator of the Rayleigh Quotient (Eq. 3.149)) is: 

(ljJ' i}J) = f"' 
-oo 

sech4kr dr= ~ 
3k 

(3 .159) 
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and the numerator is: 

2 16 {(1/J') -f(r,O)}dr=rr-I (3.160) 

where 

I ~
00 

f(r,O) sech4krdr 
-co 

(3 .161) 

Thus, the Rayleigh Quotient becomes: 

(3.162) 

The best estimate of the lowest eigenvalue is found by minimizing 

the Rayleigh Quotient Q with respect to the parameter k: 

(3.163) 

where 

~~ = -4 j
00 

rf (r, 0) sech4kr tanh kr dr 
-co 

• (3.164) 

Setting aq/ak= 0, Eq. (3.163) was solved for the parameter k 

using Newton's Rule: 

Put F = dQ = ~ k - 2_ I - 1_ k 21_ 
dk s 4 4 ak 

then, differentiating with respect to the parameter k: 

where 

(3 .165) 

(3.166) 

a21 jco 
ak2 = -4 r 2f(r,O) Isech6kr -4sech4kr tanh2kr]dr . (3.167) 

-co 



91 

Newton's Rule is: 

(3 .168) 

where superscripts denote iteration number. Having found k within 

given accuracy from Eq. (3 .168) it can be substituted into Eq. (3 .162) 

to evaluate the Rayleigh Quotient Q, then 

The same tests which were performed for Scheme 1 also were 

carried out here, using Scheme 2 to calculate the lowest negative 

eigenvalue of waves with shape given by Eq. (3.137). The results, 

presented in Appendix D, show that this scheme also is most accurate 

for waves from which more than one solitary wave will emerge. 



92 

CHAPTER 4 

EXPERIMENTAL EQUIPMENT AND PROCEDURES 

Most of the equipment used in this investigation was constructed 

using "U.S. Customary" units; however, all experimental data 

were ta.ken in SI (System Internationale) units. In this chapter, 

in describing the equipment, measurements in the system of units 

used in the construction of the equipment will be stated first and 

the equivalent measurement in the other system of units will be 

stated in parentheses. 

4.1 The Wave Tank 

The wave tank which was used for the experimental program 

measure!S 123.8 ft (37. 73 m) long, 2 ft (61 cm) deep and 15~ in. 

(39.4 cm) wide. The tank is constructed of thirteen separate 

modules, twelve of which are identical; the additional module is 

located! at one end of the wave tank and contains a movable block 

section of the bed which was used by Hammack (1972). This module 

was sealed off and not used in this study.. A schematic drawing of 

one of the ten similar modules of the wave tank is shown in Fig. 4.1. 

Details of the construction of these modules have been given pre­

viously by French (1969) and will be discussed only briefly here. 

The side walls of each module are constructed of glass panels 

measuring 5 ft (1.52 m) long, 25 in. (63.5 cm) high and ~ in. (1.27 cm) 

thick. The instrument carriage rails are made of 1 in. (2.54 cm) 
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•. ~ ..... 1/4/~ I 
~-----===:__j __ L~-· _;:-~ ... , ,rCONCRE~ .. ;~~~ ~~:.~~ 

',.. L > J 

561/4" 

~b t.' I 

Fig. 4.1 Schematic drawing of a typical tank module (after French (1969)). 
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diamet~~r stainless steel rod and are mounted on the top flanges of 

the tank sidewalls with studs spaced at 2 ft (61 cm) intervals. The 

rails were carefully leveled to within 0, 001 ft (. 3 mrri) of a still 

water surface in the wave tank. 

To simulate a shelf, a false bottom and four slopes were 

constructed; the details are shown in Fig. 4.2. The shelf was 

constructed of plywood in 8 ft units and each was weighted with lead 

bricks to prevent it floating. The ribs shown in Fig. 4.2(a) which 

were placed at 4 ft centers were shaped so as to allow the air to 

escape along the underside of the shelf as the water level rose 

during filling. The shelf was sealed by packing the gap between the 

shelf and the glass walls of the tank with 3/8 in. diameter polyethyle~ne 

rod. 

Three slopes with lengths of 150 cm, 300 cm and 450 cm were 

constructed of 3/4 in. plywood as shown in Fig. 4.2(b). Each slope 

was approximately 6 in. high (actually 15.54 cm) at the one end where 

it butted into the shelf and tapered to a feather-edge. The feather­

edge was constructed of 16 gauge sheet metal. The half-sine transition 

shown :Ln Fig, 4.2(c) was cut from a glued laminated pine block. The 

equation representing the shape of the face of the transition is: 

(4 .1) 

where x and y are in units of inches. 
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Fig. 4.2(a) Cross-section of the shelf. 
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Fig. 4. 2 (b) Elevation of the slopes (L = 150 cm, 300 cm and 450 cm). 

Fig. 4.2(c) Elevation of the half-sine transition. 
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4.2 The Wave Generator 

ThE~ wave generator which was designed and constructed for this 

study consists of a vertical plate which is moved horizontally in a 

prescribed manner by means of a hydraulic servo-system. The system 

accepts a programmed input voltage and converts the input electrical 

signal into a displacement (which is directly proportional to the 

magnitude of the voltage); hence, the displacement-time history, or 

"trajectory", of the movement is proportional to the voltage-time 

history of the input signal. For purposes of discussion the overall 

wave generating system can be divided into three parts: the 

hydraulic system, the electrical servo-system and the carriage and 

wave plate. Schematic drawings of the entire system are shown in 

Fig. 4.3(a) and (b) and an overall view of the wave generator is 

shown in the photograph of Fig. 4.4; the various components shown in 

these figures now will be discussed. 

4.2.1 The Hydraulic System 

The hydraulic system consists of an oil reservoir, a pump, 

a filtet:, an unloading valve, a check valve, two accumulators, a 

second filter, a servo-valve and two hydraulic cylinders (only one 

of which can be used at a time). Figure 4.5 is a photograph of the 

hydraulic supply system which also can be seen in the lower left of 

Fig. 4.~f. In the background of Fig. 4.5 is the reservoir which has 

a capacity of 40 gal. (0.152 m3 ) of hydraulic oil. In front of the 

reservoir is the pump which is a Denison, constant volume, axial­

piston-type pump, rated at 2.9 gpm (0.012 m3 /min) at 3000 psi 
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Fig. 4.4 Overall view of the wave generator. 
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(20,000 kN/m2) and 2.8 gpm (0.011 m3/min) at 3500 psi (24,000 kN/m2); 

it is powered by a 7.5 hp (5.6 kW), 1800 rpm electric motor. Pro­

vision has been made for water cooling the oil but under present 

operating conditions the oil temperature has never exceeded l00°F (38°C) 

and thus the thermostat has never been activated. Immediately 

downstream of the pump is a filter constructed of stainless steel 

wire cloth with a nominal and absolute particle diameter rating of 

5 microns and 15 microns respectively. Downstream of the filter is 

an unloading valve which is followed by a check valve. The unloading 

valve senses the system pressure at a point downstream of the check 

valve; when the system pressure is below a preset value (3000 psi 

during normal operation) the unloading valve directs the flow of 

hydraulic fluid into the system. Once the desired system pressure is 

reached, the system side of the valve closes and the flow is diverted 

through an air-cooled heat exchanger (the radiator structure shown in 

Fig. 4.5) and back to the reservoir. The check valve prevents a 

reverse flow through the pump from the pressurized system when power 

to the pump is turned off. 

From the valves, the oil is pumped into two 10 gal. accumulators 

which are mounted on the wall above the hydraulic supply unit and can 

be seen in the background in Fig. 4.4. Each accumulator consists of a 

rubber bladder fixed inside a pressure vessel. The bladder is pre­

charged with nitrogen gas at 600 psi (4000 kN/m2) and when there is no 

oil in the accumulator, the bladder fills the entire vessel. When oil 

is introduced at pressure, the increased pressure causes the nitrogen 
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gas and the bladder which contains it to compress. As more oil is 

pumped in, the pressure continues to rise until the rated pressure 

of 3000 psi (20,000 kN/m2) is reached when the unloading valve 

activates and directs flow back into the oil reservoir. At this 

pressure each accumulator holds approximately 7 gal. (0.027 m3) of 

oil which provides a reservoir to supply flows which exceed the 

capacity of the pump (i.e., 2. 9 gpm). The accumulators also serve to 

damp out pressure fluctuations due to the opening and closing of the 

servo-valve and the unloading valve although this was not the primary 

purpose. 

A second filter (Moog Buta N with nominal filtration of 10 microns) 

is installed downstream of the accumulators to protect the servo-valve 

which is the most sophisticated and sensitive item of the hydraulic 

system. The servo-valve adjusts the quantity and the direction of 

the flow of oil in direct proportion to the electrical current it 

receives. The servo-valve is a Moog Model 72-103 which has a rated 

flow of 60 gpm (0.24 m3/min) at 40 ma current. 

The servo-valve directs the flow of oil to either end of a double­

acting hydraulic cylinder. Two cylinders were used in this study, 

both of which can be seen in Fig. 4. 4; a "long" cylinder which is 

mounted beneath the truss and a "short" cylinder which is mounted on 

the sloping face of the truss. In the photograph the servo-valve is 

mounted on the shorter cylinder indicating this cylinder was in use. 

For operation of the "long" cylinder the servo-valve must be moved to 

a position inside the truss not visible in the photograph. The truss 
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was madEa massive to avoid vibration problems and in fact there is 

no apparent vibration of the structure during operation. The long 

cylinder is a Miller Model DH77B cylinder with 2~ in. (6.35 cm) bore 

and 1 3/8 in. (3.49 cm) rod with a stroke of 96 in. (2.44 m). The 

cylinder is fitted with external drainbacks to eliminate oil leakage. 

This was important because it was found even a small amount of oil 

in the water caused the wave gauges to behave in an erratic manner. 

The length of the cylinder was designed so as to be able to gen­

erate a single or a ~eries of solitary waves; each use requires move­

ment in the forward direction only. However, problems occurred in the 

generation of periodic waves with the actual motion being distorted 

from the desired motion at the ends of the stroke. The cause of 

this after some investigation was found to be the static friction 

between the seals and the piston rod and the piston and the cylinder 

walls which has to be overcome before the piston can move. At the 

end of a. stroke when the piston is momentarily at rest, before it 

can begin to move a force termed the "break-loose force" must be 

applied to overcome the static friction. However, the force is 

provided by the differential pressure across the piston and this 

pressure~ takes a finite time to become sufficient to produce the 

break-loose force. In the meantime the input from the function 

generatoir is continuing so that when the break-loose force is reached 

the piston has to move faster than desired to catch up with the input 

function. 
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Two ways of reducing this problem are: 

i) To increase the bearing area of the piston so that the 

differential pressure required to produce the break-loose 

force is reduced, and 

ii) To improve the frictional characteristics of the seals, 

i.e., to reduce the break-loose force. 

Both of these were employed in the design of the smaller cylinder 

which :ls a Miller Model DER-77 cylinder with 5 in. (12. 7 cm) bore 

and 1 3/4 in. (4.45 cm) rod with a stroke of 16 in. (40.6 cm). The 

bearing area of this cylinder is 17.3 in. 2 (112 cm2 ) compared with 

3.4 in. 2 (22 cm2 ) for the longer cylinder. To ensure friction would 

not cause problems for this cylinder, the manufactured seals were 

removed and replaced by low friction Shamban Varidry R. G. Seals 

Model 832573-132. For these seals the friction is reduced by reducing 

the bearing area of the seals to a knife edge. These two measures 

effectively eliminated the problem of friction for the short cylinder. 

4.2.2 The Servo-System 

The servo-system consists of a function generator, a 

feedback device and a servo-controller. The principle of operation 

is that the voltage from the function generator and the voltage from 

the feedback device which are of opposite sign are summed in the 

servo-controller which then amplifies the resulting current which 

is transmitted to the .servo-valve. The servo-valve directs flow in 

one direction or the other depending on the sign of the current; the 

quantity of flow through the valve and hence the velocity of the piston 

~s proportional to the magnitude of the current. 



104 

The purpose of the function generator is to provide the voltage­

time history which is proportional to the desired displacement-time 

history,, i.e., the trajectory of the wave plate. The function 

generator used in this study was designed and constructed by Shapiro 

Scientific Instruments, Corona del Mar, California; a block circuit 

diagram is presented in Fig. 4.6 and the front face of the electronics 

is shown in the photograph of Fig. 4.7. The various components of 

the function generator shown in Fig. 4.7 will be described briefly 

first and the details of operation will be given later. 

The lower part of the photograph shows the paper tape reader which 

can be used either to load a memory unit which can be played back at a 

later time or to drive the motion directly. Located above the tape 

reader are the three digital thumbwheel potentiometers which allow 

scaling of the amplitude of the motion. The dial on the left in the 

uppermost panel is the time adjustment. When the switch beside it is in 

the UP position, the time base is calibrated internally and the rate at 

which the data are generated is determined by the larger knob and the 

dial. The data rate can range from 1 word/sec to lx106 words/sec; 

thus, since the memory contains 1000 words, the duration can range 

from 1000 sec to 0.001 sec. When the switch is in the down position, 

the data rate may be set between the internally calibrated rates 

using the smaller fine tuning knob located on the outer part of the 

larger knob. The right side of the upper panel contains the controls 

for the mode of operation--Manual, Run or Load from Tape--and the 

switches which execute the various phases of operation--Load Data, 
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Fig. 4 .. 7 View of the front face of the electronics. 
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Incremer1t Address, Select Address and Start. The number of cycles 

which the function generator will execute is governed by the single/ 

continuous switch on the lower right of the upper panel. The LED's 

on the upper part of the upper panel display the address and the 

data continuously. Below these in the center are the digital thumb­

wheel switches used for manual operation. 

The: function generator allows almost unlimited flexibility in 

programming the motion of the wave plate; however, due to the 

mechanical limitations of the system, the wave generator is less 

flexible. in its operation. The only restrictions on the function 

are that it be adequately described by: 

i) Equispaced time steps, and 

ii) Normalizing the stroke between the limits of 0 and 999 with 

each word (i.e., point) represented by three digits. 

The trajectory may be entered in any of the following three ways: 

i) With 1000 points punched on paper tape and stored in the 

memory. The paper tape, which may be punched either manually 

or by computer, is read into the memory by the tape reader. 

Once in the memory, the trajectory remains there until it 

is over-ridden or the unit is switched off. 

ii) With 1000 points entered manually by means of the digital 

thumbwheel switches and stored in the memory. This facility 

is useful if the paper tape described above contains a bad 

point (or points) because corrections can be made to the 

memory without repunching the tape. 
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iii} With continuous tape reading~ bypassing the memory. If the 

trajectory cannot be described by 1000 points, more points 

can be used and the trajectory read directly from paper tape 

into the servo-controller at the constant rate of 37.5 words 

per second. 

The trajectory which either is stored in the memory or is to be read 

in by the tape reader is scaled from 0 to 999 in amplitude. 

The actual total amplitude of the wave generator (i.e., the 

stroke) and the position of the wave plate are controlled by the 

three thumbwheel digital potentiometers shown in Fig. 4.7 labeled 

Initial Value, Gain, and Initial Position. Each contains 1000 divi­

sions from 0 to 999 and they have the following purposes: 

i) Initial Value is the first integer of the trajectory. 

ii) Gain is an integer directly proportional to the stroke. 

For a stroke of S cm the gain is: 

9 S for the long cylinder 

Gain = Integer portion of 

51 S for the short cylinder 

iii) Initial Position allows adjustment of the at-rest position 

of the wave plate and gives the location of the plate prior 

to starting the motion. When the Initial Position reads 

500 the piston is in the center of the cylinder and the 

input and feedback voltages are both zero. When the 

Initial Position reads 0, the piston rod is completely 
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retracted into the cylinder; when it reads 999 the piston 

rod is fully extended from the cylinder. 

At the completion of the motion, the wave plate will be in a 

position given by the product of the Gain and the difference between 

the last: and first integers of the program. Pressing the Reset 

button located beneath the Initial Position thumbwheel will return 

the plate to its original position at a constant rate of 5.5 cm/sec. 

The duration time of the motion is set using the coarse and fine 

adjustme.nt knobs shown in Fig. 4. 7 (and discussed earlier) and a 

digital clock. Shutting the valve just downstream of the accumulators 

removes the pressure from the servo-valve. In this depressurized 

state, the function generator is put in the Continuous mode and the 

Run switch depressed. The trajectory will cycle continuously with 

the duration of alternate cycles displayed on the digital clock. 

Having set the desired time, the function generator is switched to 

the Single mode and the Reset button depressed. After pressurizing, 

the wave generator is ready for operation. 

Two different devices are used for feedback for the two cylinders. 

For the long cylinder the feedback voltage is supplied by the voltage 

drop across a rotary potentiometer fixed to the carriage which is moved 

by a rack and pinion arrangement. The voltage drop across the 

potentiometer is directly proportional to the carriage position. The 

potentiometer is a Helipot Model 7603 with a ten turn, 10 K ohm 

resistance and 0.15% independent linearity. The anti-backlash gear 

which has a circular pitch of 48 and the precision rack are Bearing 
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Specialities Models AP48W-150 and RI-6-C2 respectively. 

For the short cylinder the position of the carriage is converted 

into an electrical signal by means of an LVDT (linearly variable 

differential transformer), Collins Model I.MT 711 P38. The LVDT 

consists of primary and secondary coils wound in the form of a tube 

ins.ide which a ferro-magnetic core moves. The primary coil is 

supplied with 6 VAC from the servo-controller and the output of the 

secondary coil is returned to the servo-controller where it is demodu­

lated into direct current. As the core moves within the coils, 

the field is changed and the demodulated voltage from the secondary 

coil varies linearly with the position of the core. The core is 

attached directly to one end of the piston rod; hence, as the 

piston moves, the core moves within the coils and the demodulated 

voltage from the secondary coil varies linearly with the position 

of the carriage. 

Thia servo-controller referred to above is a Moog AC/DC servo­

controller (Model 82-151) and power pack (Model 82-152). The servo­

controller was modified slightly for this application and the modified 

circuit diagram is presented in Fig. 4.8. The modifications are: 

i) The addition of the bank of resistors which allows finer 

tuning of the electrical damping than would be available 

otherwise. 

ii) the addition of the integrator circuit after the sunnning 

point of the function generator and the feedback from the 

potentiometer. This improved the response for the longer 

cylinder. 
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iii) The optional feature of the Dither Oscillator which provides 

a 600 Hz excitation to the servo-valve and hence improves 

the response was included also. 

Examples of the response of the wave generator are presented in 

Fig. 4.9 where the solid curves are the programmed motion from the 

function generator and the dashed curves are the actual motion from 

the feedback device. Figure 4.9(a) shows the response to a hyperbolic 

tangent function which would be used to generate a solitary wave 

and Fig. 4.9(b) shows the response to the function which would be 

used to generate a series of cnoidal waves. The time lag of approx­

imately 0.05 sec between programmed and actual motion which is evident 

in both figures is a feature of the servo-controller. In Fig. 4.9(a), 

near the start and finish of the motion, the curves for both the 

function and the motion exhibit some roughness. This is attributed 

to the function being described with voltages equispaced in time and 

with precision of only one part in one thousand. Apart from this, 

the actual motion shows good agreement with the programmed motion. 

4.2.3 The Carriage and Wave Plate 

The carriage and wave plate which are in the foreground 

in Fig. 4.4 are constructed of aluminum I-beams and plate. The 

carriage is supported on l~ in. (3.18 cm) hardened steel shaft rails 

(Pacific Bearings Model SA-20-120) by means of four linear ball 

bushings (Pacific Bearings Model SPB-20-0PN) mounted beneath the 

support plate as shown in Fig. 4.4. The vertical post extending 

upward from the carriage allows for the connection of either the 
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upper short cylinder or the lower long cylinder depending on the 

motion desired. 

To avoid problems of leakage around the wave plate, the wave 

plate is sealed against the glass side walls and steel bottom of the 

wave tank by means of rubber windshield wiper blades. The device 

which holds the wiper blades is shown in Fig. 4.10. It consists of 

two identical aluminum bars with grooves cut out to accept the body 

of the wiper blade. The blade is held in place by tightly bolting 

the two bars together. The wiper blade and holder are attached to 

the wave plate by #8 screws at 4 in. (10.2 cm) intervals. The holes 

in the holder through which the screws pass are slotted so as to allow 

adjustmEmt of the distance the wiper blade protrudes beyond the 

edge of the plate. This distance was set such that the wiper blade 

bears against the glass sidewalls and steel bottom of the tank in 

the manner shown in Fig. 4.10 over the full length of the traverse 

of the wave plate. 

4.4 ThE~ Measurement of Wave Amplitudes 

Resistance wave gauges are used in conjunction with the Hewlett 

Packard (7700 Series) recorder in order to measure wave amplitudes 

as a function of time at a specific location in the wave tank. A 

drawing of a typical wave gauge is shown in Fig. 4.11. The wave 

gauge consists of two stainless steel wires 3.25 in. long with a 

diameteir of 0.01 in., and spaced 0.16 in. apart. The wires are 

stretched taut and parallel in a frame constructed of 1/8 in. diameter 
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stainless steel rod. The wires are insulated electrically from each 

other in the frame, however, a current can pass between the wires 

when they are immersed in a conducting fluid. A Hewlett Packard 

Carrier Preamplifier (Model 8805 A) is used to supply the 2400 cps/4.5 

volt e:x:citation for the gauges as indicated by the circuit diagram 

in Fig. 4.12. The output signal from the wave gauge is also received 

by the Carrier Preamplifier which after demodulation and amplifica­

tion is displayed on the recording unit. As the immersion of a wave 

gauge :i.s varied in a conducting solution, the resistance in the 

circuit changes proportionally, causing an imbalance in the full 

bridge circuit shown in Fig. 4.12; this imbalance is recorded as a 

change from the balanced position. 

The wave gauge is attached to a remotely controlled calibration 

device which allows five wave gauges to be calibrated simultaneously. 

The calibration device is mounted on an instrument carriage resting 

on the stainless steel rails which are mounted to the walls of the 

wave tank. The calibration device, which is shown in Fig. 4.13(a), 

consists of a rack and pinion driven by a synchronous motor. The 

wave gauge is attached to the rack and its weight is counterbalanced 

by a lead weight. The synchronous motor (GE Model SG 101) is connected 

to the master control shown in Fig. 4.13(b) which consists of a 

synchronous generator (GE Model SF 142) which is driven by a pinion 

and the• rack of a point gauge. When the point gauge is moved, a 

current is generated and relayed to the motors which move the wave 

gauges vertically. There is a one-to-one relationship between movement 
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Fig. 4.l.3(a) View of the calibration device. 

Fig. 4.13(b) View of the master control. 
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of the point gauge and vertical displacement of the wave gauge so 

that, for example, a 1 cm deflection of the point gauge will move 

the wa"re gauge 1 cm vertically. To calibrate, the full bridge 

circuit first is balanced at a fixed gauge immersion, then the gauge 

is immersed and withdrawn a known distance from the balanced position 

by means of the point gauge and the deflection of the stylus is noted. 

This procedure is repeated for various innnersions and withdrawals 

and a typical calibration curve which results is shown in Fig. 4.14(a). 

If the wave gauge record is to be recorded using an analog-to-digital 

converter, the position of the point gauge may be represented electrically 

by means of the potentiometer shown in the foreground of Fig. 4.13(b). A 

typical calibration curve using this method is shown in Fig. 4.14(b). 

Notice the clusters of points at regular intervals along the curve. 

These oiccur because, when turning the wheel on the point gauge shown 

in Fig. 4.13(b), after turning to the limit one's wrist will rotate, 

the hand is lifted and the wrist rotated back in order to continue 

turning. During the time it takes to lift one's hand and rotate the 

wrist back, data still are being recorded by the A/D converter and 

these appear as clusters of points in the calibration curve. The 

scatter is caused by errors in the A/D converter. 

Every wave gauge is calibrated before each experiment; however, 

no calibration curves were obtained at the end of the experiment, since 

each experiment was completed within minutes of the initial calibration. 
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CHAPTER 5 

RESULTS AND DISCUSSION OF RESULTS 

Thi~ various aspects of the problem of long waves propagating 

onto a shelf to be discussed in this section can be illustrated best 

by considering a typical experiment, the layout of which is shown 

in Fig. 5.1. For this experiment, the upstream depth h1 was 25 cm 

and the height of the shelf was 15.54 cm, thus the depth ratio 

(h1/h2) was 2.64. The front face of the shelf was vertical (i.e. a 

step). Five wave gauges were located as shown in the figure: Gauge 1 

was placed 23 h1 (5.75 m) upstream of the step; Gauge 2 was placed 

at the step; and Gauges 3, 4.and 5 were placed at intervals of 60 h2 

(5.68 m) downstream of the step. The distance from Gauge 5 to the end 

of the wave tank was 30 h2, so that waves had travelled 60 h2 between 

being first recorded at Gauge 5, reflecting off the tank endwall and 

being r,ecorded a second time at Gauge 5. 

A solitary wave was generated by moving the wave generator with 

the trajectory given by Eq. (3 .50) for a relative wave height of 

H/h = 0 .1, a stroke of 18. 25 cm and a period of 4. 24 sec. The variation 

of the ·water surface elevation as a function of time as recorded by 

the wave gauge is shown in Fig. 5.2. The incident wave is the first 

wave recorded at Gauge l; it has a height H1 of 2.5 cm. Notice that 

it is synnnetric about the crest and there are no trailing oscillatory 

waves. 
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As the incident wave propagates over the step and onto the shelf, 

part of it is reflected and travels back towards the wave generator. 

The second wave recorded at Gauge 1 is this reflected wave. Its 

height is 0.5 cm and its shape is somewhat different than the incident 

wave. 

At the location of Gauge 2 the wave is at the step. Its height 

is 2.8 cm compared to 2.5 cm for the incident wave but its shape 

appears to be about the same as that of the incident wave. In fact 

if the reflection-transmission process were entirely linear it would 

be possible to superpose the incident and reflected waves to obtain the 

wave at the step; clearly this is not possible in this case and the 

reasons will be discussed in some detail later. 

As the wave propagates on the shelf a rather remarkable event 

takes place: the single wave recorded at the step splits up into a 

number of solitary waves of different heights followed by a train of 

small amplitude, oscillatory waves. This is a practical example of 

the inverse scattering theory discussed in Section 3.5. For this 

particular case the theory can be used to predict the number and 

height of the waves as follows: the time record of the wave at the 

step is transformed approximately into a spacial record by multiplying 

the time coordinate by a phase speed determined such that the volumes 

of the transmitted and reflected waves sum to the incident wave volume; 

then Eqs. (3.138) and (3.140) predict four solitary waves will emerge 

with wave heights 4.5, 2.5, 1.1 and 0.2 cm. The theory takes no 

account of friction, so applying an experimentally determined damping 
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equation (the details of which will be discussed later), the corrected 

wave heights which are predicted at x = 360 h2 (the second pass of 

Gauge 3) are 2.6, 1.5, 0.7 and 0.1 cm. The first three are similar 

to the wave heights recorded experimentally at x = 360 h2 • 

As the wave train propagates off the shelf into deep water, 

dispersion takes place innnediately. The small waves which appear at 

Gauge 3 at about 48 sec are those which were reflected back from the 

step when the wave train propagated into deep water. 

ThE~ various aspects of Figs. 5.1 and 5.2 (wave generation and 

propagation in constant depth, reflection, transmission, transformation 

on the shelf and propagation into deep water) will now be considered 

sequentially and in detail, including theoretical aspects of the 

problem,, 

5.1 Wave Generation and Propagation in a Constant Depth 

5.1.1 The Generation of Solitary Waves 

Hammack and Segur (1974) showed theoretically and 

experimentally that from any block of water with net positive volume 

at least: one solitary wave followed by a train of oscillatory waves 

will eventually evolve. Consequently, solitary waves can be generated 

in the laboratory simply by producing a block of water above the still 

water level and allowing it to propagate a sufficient distance for 

solitary waves to emerge. Figure 5.3 is an oscillograph record showing 

the waves which evolve from such a block of water which was produced 

by a linear displacement-time history of the wave generator. For this 

case the depth was constant throughout the tank and equal to 10 cm, the 
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stroke was 10.33 cm and the duration of motion was 0.8 sec. The gauges 

weil:"e spaced 2.5 m apart (i.e., 25 depths) with Gauge 1 placed LO m 

from the wave plate. Initially (Gauge 1) the wave has an arbitrary 

shape with a single main crest followed by a deep trough and several 

oscillatory waves. By the time the wave has propagated the 25 depths 

to Gauge 2, a solitary wave with a relative height of H/h = 0.18 has 

emerged followed by a train of oscillatory waves with heights which 

are about 25% of the height of the leading solitary wave. As the waves 

propagate, the solitary wave quickly outpaces the remainder of the 

train until at Gauge 5, 110 depths from generation, the solitary wave 

is completely separate from the trailing oscillatory waves. For 

many laboratory studies this method of wave generation would be 

satisfactory; however, in this study the solitary wave interacted with 

a step or a slope producing a reflected wave whose characteristics it 

was desired to measure. Trailing waves such as those following the 

main wave in Fig. 5,3 would have interacted with the reflected wave 

causing difficulties in interpreting the measured wave. Therefore, 

considerable effort was made to eliminate the trailing waves from the 

initially generated wave. 

Referring to the wave generation theory developed in Section 3.2, 

if the position of the wave plate is neglected in the velocity of the 

water particles (i.e., if u(O,t) is used instead of u(~,t)), the 

generation trajectory for solitary waves of all heights is: 

(5.1) 
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where, as before, S is the stroke given by Eq. (3.54) and T is the 

duratfon of motion given by Eq. (3.56). Using this trajectory the 

oscillatory tail, which was about 25% of the height of the main wave 

when a linear trajectory was used (as shown in Fig. 5.3), could be 

reduced to as little as 10%. Reduction of the oscillatory tail any 

further, however, required implementation of the full theory of 

Section 3.2. In the theory, it will be recalled, the trajectory is a 

functfon of the relative wave height H/h. Thus seven trajectories were 

prepar1ed for relative wave heights of from 0.1 to O. 7 in increments of 

0.1. These trajectories, with displacement normalized with respect to 

the st:roke, and time normalized with respect to the duration, are 

plotted in Fig. 5.4. The trajectories are evidently of similar shape, 

being distinguishable from one another only by the nondimensional slope 

at midstroke: 

u(~S,~T) = 
S/-r: 

3.8 + H/h 
l+H/h 

(5. 2) 

which :implies the slope of the trajectory for a relative wave height 

of H/h = O. 7 is 75% of that for a relative wave height of H/h = 0.1. The 

difference in trajectories from one relative wave height to another is 

small; however, since the degree of "tuning" being attempted was so 

fine, it was considered necessary, initially at least, to take details 

as fine as this into account. 

The oscillograph record from a typical wave generation experiment 

is presented in Fig. 5.5. The setup was precisely the same as was 

described for Fig. 5.3, but in this case the trajectory used was the 

solitary wave trajectory for a wave height H/h = 0. 2. As before the 
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depth was 10 cm and the stroke was 10.33 cm, but in this case the 

duration was 2.044 sec. The figure shows the trailing waves nearly 

have been eliminated, except for small amplitude, high frequency 

waves which are attributed to surface tension effects. 

The duration, T = 2. 044 sec, is 7 .4% greater than the theoretical 

duration calculated using Eq. (3.56). It was found that increasing 

the duration of the trajectory by 10% the amplitude of the trailing 

waves was reduced by 1% to 2%. It is at this stage that m:iing the 

refined trajectories is important because if one attempts to generate 

a wave with the wrong trajectory, the trailing waves cannot be reduced 

as much by adjusting the duration as they can be if the correct 

trajectory is used. 

Tb~t the optimum duration is not the theoretical duration is 

attributed to the approximate nature of the assumptions that: 

i) the actual motion of the wave plate is the programmed 

motion (see Section 4.2.2); 

ii) the velocity distribution is constant with depth (see 

Eq. (3.5) in Section 3.1); and 

iii) a laboratory solitary wave is given by the Boussinesq 

profile (Eq. (3.25)). 

The latter assumption is addressed in Fig. 5.6 in which the shape 

of solitary waves with relative heights of H/h = 0.15 and 0.61 are com­

pared with the theories of Boussinesq (1872) and Mccowan (1891). (A 

summary of these theories is presented in Table 5.1 which was extracted 

from Naheer (1977)). For small wave heights, the solitary waves derived 
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Table 5 .1 Solutions. of the solitary wave due to Boussinesq, Mccowan 
and Laitone. (Naheer (1977)) 

Boussinesq McGowan Lai tone 

h N sinM (l+n/h) 
(3 

Wave profile 2~X ( ")[ 3 H( a")] n = H sech --
M [cos M (l+n/h) + eoshM ~] 

H sech2 a~ 1- 4 h l-sech2 hA 4h h 

(4 

~ [ 1 H 3 (H)2 (Hn Wave speed c = /gh(l+H/h) lgh 1+ 2 h - 20 h + 0 h h 

Fluid particle (1 
velocities ( z x) 

Cn CN l+cosl-lh coshMh 
{H~ H(l 3z

2
)] ( x) horizontal u = h+n (cosI~ +cos~)2 

/gh h l+ h 4 - 2h2 sech2 a h + 

(~ )2(!~~ -1) sech4 (a ~ )} 

(2 z y 
CN sin11h sinh..~ w: [ z dn (H(2J vertical v = 

( ~ X)2 
- •gh h dX +Oh 

cosMi;· + coshl1b 

1) u is averaged 3) the relationships for 4) 
over the depth N and Mare 
applying continuity 

N = t sin2[M(l+ t ~)] 
Notes consideration 2) expression for the 

!! = .!i tan[l 11(1+ !!)] 3H ( 5 H) (Ht2 vertical velocity was a = f 4h l- 8 h + O h 
not presented by h M 2 h 

Boussinesq for soli-
tary waves 

by Boussinesq (1872) and Mccowan (1891) are coincident except at the 

leading and trailing edges and, as shown by Fig. 5.6(a), the shape of 

small e:x:perimental waves compares well with the theories. However, as 

the wave height increases, the Boussinesq and Mccowan profiles become 

different, with the Boussinesq profile being wider at the crest and 

narrower at the leading and trailing edges. For relative wave heights 

which are greater than 0.3, the experimental waves were found to follow 

Boussinesq near the crest and Mccowan at the edges, as shown in 

Fig. 5.6(b). (This same phenomenon was observed by French (1969) in 

experiments conducted in the same wave tank as was used for these 

experiments, but with a different method of wave generation.) 
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ThE~ generation and propagation data for solitary waves which 

will be presented were obtained from two different sets of experiments. 

In the first set, the data were obtained from the incident waves of 

experiments to be described in Section 5.2. The experiments were 

for relative wave heights of from H/h = 0. 05 to 0. 65 and for depths 

of from 17.27 cm to 31.08 cm. The data were obtained from a wave 

gauge placed 8.4 m from the initial position of the wave plate. The 

second set of experiments was performed to investigate the behavior 

of solitary waves as they propagate. Five wave gauges were used, 

with Gauge 1 placed 1.0 m from the wave plate and the other four 

gauges spaced at 4.0 m intervals downstream. Two depths were 

considered, h= 5.0 cm and 10.0 cm, and relative wave heights varied 

from H/h = 0.1 to 0.6. In this discussion, the data from the first 

set of experiments and the data from Gauge 1 of the second set of 

experiments will be presented first. Later the data from the remain-

ing four gauges of the second set of experiments will be compared to 

the data from Gauge 1. 

The solitary wave generation data are presented in Fig. 5.7 

where the ratio of wave height to stroke H/S is plotted as a function 

of the 1~elative wave height H/h. The equation of the theoretical 

curve, which can be derived from Eq. (3.54), is: 

(5.3) 

Fo1r small wave heights (H/h ~ 0 .1) the .theory agrees quite well 
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with the data; however, as the relative wave height increases, the 

measured wave height is generally less than is predicted and the 

agreement is worse the greater the distance in depths the wave gauge 

is from the wave generator. Friction cannot be the only cause of 

this be~cause both ordinate and abscissa have wave height in the 

numerator. 

Tb~ time-amplitude histories from which the data presented in 

Fig. 5.7 were obtained were digitized and a comparison of the follow-

ing properties with those of theoretical solitary waves was made: 

i.) The shape of the solitary waves was compared to the shape 

of the Boussinesq solitary wave by noting that, in Fig. 5.6, 

2 
both waves follow the Boussinesq theory for the upper 3 

of the wave height. Therefore, a regression analysis could 

be performed on the part of the wave where the amplitude 

1 exceeded 3 H to determine ~eg, Q and t
0 

in the expiression: 

n = lL sech2 Q(t - t ) --xeg o 
(5.4) 

For all but 11 of the 65 experimental waves considered, the 

coefficient of determination, r 2 , was greater than 0.999 

and the minimum for all 65 experiments was 0.990 which 

indicates the surface profiles of the waves are well 

described by a sech2 curve. (In this discussion, waves 

with this feature frequently will be referred to as having 

"sech2 shape.") The calculated wave height, ~eg' agreed 

with the measured wave height to within the wave gauge 
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error of ±0.04 cm for waves less than 2 cm in height and 

±2% for larger waves. The frequency, n, is compared with 

that of the Boussinesq theory described by: 

(5 .5) 

in Fig. 5.8 where the nondimensional frequency nlh/g is 

plotted as a function of the relative wave height H/h. 

The data follow the theory for small wave heights (H/h < 0. 2) 

but for larger wave heights the frequency is less than 

the theory predicts. This implies the experimental waves 

were less peaked than the theory predicts. The dashed 

curve in Fig. 5.8 represents the best fit of the data to 

an expression with the form: 

n = .tr .fn(1+aH) '1K "4il h 
(5 .6) 

(The regression analysis gave a= 0. 28 with coefficient of 

determination r 2 = 0.69.) 

ii)i Since the gauge at which the solitary waves were measured 

was less than 50 depths from generation, it was possible 

that the propagation distance was insufficient for the 

leading solitary wave to completely separate from the 

remainder of the train. To check this, the waves were 

propagated analytically to infinity using the technique 

of inverse scattering. For a particular initial wave, the 

analysis yields the number and heights of solitary waves 
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which emerge at infinity. For a wave which is initially 

a solitary wave, only one solitary wave with the same 

height as the initial wave will emerge at infinity. The 

results of this analysis on the 65 waves considered here 

are presented in Fig. 5.9 where the ratio of the wave 

height calculated from inverse scattering to the wave 

height which was measured, H1NV/H, is plotted as a function 

of the measured relative wave height, H/h. The horizontal 

line represents the theoretical result that a wave which 

is initially a solitary wave will retain its height at 

infinity. The data from the second set of experiments all 

lie below the theoretical line and this will be discussed 

in detail presently. The majority of the data from the 

first set of experiments lie between HINV/H = 0. 98 and 1. 08 

indicating the waves would have retained their shape if 

they had propagated to infinity in the absence of friction. 

One exception is the wave with height H/h = 0. 61 in depth 

h = 21. 7 6 and for this wave the theory predicted two solitary 

waves would emerge at infinity. 

iii) The volume under the experimental solitary waves is 

compared to the theories of Boussinesq (1872) and Mccowan 

(1891) in Fig. 5 .10 where nondimensional volume per unit 

width, V/h2, is plotted as a function of the relative wave 

height, H/h. The solid curve is the theory of Boussinesq 

(1872) and the dashed curve is the theory of Mccowan (1891). 
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For small wave heights, the theories are coincident but 

as wave height increases, McCowan's theory predicts a 

greater volume than Boussinesq's theory, then as the 

height approaches breaking (H/h ~ 0. 7) , the theories 

converge again. For small wave heights (H/h < 0.2) the 

data agree well with the theories but as the relative 

wave height increases the experimental waves have greater 

volume than either of the theories predict. The reason 

for this is evident from Fig. 5.6 which shows the experi­

mental profile follows Boussinesq's theory in the crest 

and McCowan's at the edges which can only make the total 

volume greater than either theory. 

These results show the solitary waves generated in the laboratory 

generally agree well with the theories for small relative wave heights 

(H/h < 0. 2) but diverge slightly for larger wave heights. 

5.1.2 The Propagation of Solitary Waves in a Constant Depth 

As a solitary wave propagates in a laboratory flume the 

effect of friction on the side walls and the bottom of the flume 

causes the wave height to decrease. This problem has received con­

siderable attention in the past by, e.g., Scott-Russell (1844), 

Keulegan (1948), Ippen and Kulin (1955), Van Dorn (1966), Naheer (1977), 

but in none of these studies is the agreement between theory and 

experiment sufficiently good to be confident in applying the theory 

without corrobarative experiments. Therefore, a set of experiments 

(described previously as the second set) was conducted to determine 
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the damping characteristics of solitary waves in this flume and in 

particular to determine, for a range of wave height and depth, the 

damping exponent f in: 

H = H e-fx/h 
a (5.7) 

where H
0 

is the initial wave height. The exponential form was used 

because the data seem to fit Eq. (5.7) quite well. As mentioned 

previously, five wave gauges were used, with Gauge 1 placed 1.0 m 

from the wave plate and the other four gauges spaced at 4.0 m 

intervals downstream. A solitary wave was generated and recorded 

on the oscillograph and, in addition, on magnetic tape using an 

analog·-to-digital (A/D) converter. 

The crest height H, the inverse scattered wave height HINV' and 

the wa·ve height 1L and frequency n from regression on the upper --R.eg 

2/3 of the wave records were obtained from each digitized record. 

The data are presented in Figs. 5.11 to 5.13. Fig. 5.11 is a plot 

of the damping exponent f as a function of the relative wave height 

H
0
/h, where both f and H

0 
were obtained by semi-log regression using 

Eq. (5.7). Data from Naheer (1977) which were for greater depths 

than were considered here and for a tank width of 110 cm are included 

in the figure. The curves are the theory of Keulegan (1948) which 

also can be expressed approximately in the form of Eq. (5. 7) with 

the damping exponent given by: 

H ~ ( [ ]~ f - l(-E..) 1+ 2h) \) 
- 3 h b gl/2 h3/2 

(5.8) 
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where 'V is the kinematic viscosity, b is the width of the tank and 

all other quantities are as have been defined previously. The theory 

predicts a small variation of the exponent, f, with wave height but 

the data do not appear to exhibit this. However, the increase in 

the exponent with decreasing depth which the theory predicts also is 

exhibited by the data. 

The other quantities (~NV' Raes and n) were calculated from 

the wave records in an effort to determine if and how the shape of 

the wave changed as it propagated. In Fig. 5.12 the ratio of 

the wave height calculated by inverse scattering to the measured 

wave height, H1NV/H, is plotted as a function of the measured relative 

wave height, H/h. Each symbol refers to a different experiment and 

the ticks on the symbol denote the gauge from which that particular 

point was taken, e.g., symbols with a vertical tick above denote 

Gauge 1. The figure shows, for all experiments, the wave height 

ratio H1NV/H of the waves at Gauge 1 is less than unity but for the 

other gauges the wave height ratio is scattered about unity. The 

interpretation of this is that since Gauge 1 was only 1.0 m from the 

wave plate, the wave had not yet reached its steady state but by 

the time it reached Gauge 2 it had, and as it propagated reduction in 

wave height due to friction was accompanied by the appropriate change 

in shape for that wave height. 

This is further illustrated in Fig. 5.13 where the frequency, n, 

calculated from regression on the upper 2/3 of the wave is plotted as 

a function of relative height, H/h. The solid curve in Fig. 5.13 is 
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the th1aory of Boussinesq as given by Eq. (5.5); the dashed curve 

repres1ants the best fit of the data, other than those from Gauge 1, 

to an E~xpression with the form of Eq. (5. 6) (in this case it was 

found a= -.004). The frequency of the wave at Gauge 1 in all cases 

is greater than the frequency of the wave when it passes the other 

gauges.. This implies the wave becomes less peaked as it propagates 

from Gauge 1 to Gauge 2. However, the data from the other gauges 

appear to be less scattered which indicates the shape is not changing 

as rapidly as it does between Gauges 1 and 2. 

The speed of propagation, or celerity, of solitary waves was 

measured by placing five wave gauges 0.45 m apart, generating a 

wave and recording the times at which the crest passed each gauge. 

The celerity was calculated by linear regression from the five 

pairs of x and t and is plotted as a function of the relative wave 

height in Fig. 5.14(a). With the gauges only 0.45 m apart, the change 

in height of the wave between the first and fifth gauges was negligible 

so the average of the five wave heights was used. The three curves 

in Fig. 5.14(a) represent the theories of Boussinesq (1872), Mccowan 

(1891) and Laitone (1963). The theories of Boussinesq and Laitone 

agree up to a wave height H/h = O. 2, then diverge slightly with the 

Boussinesq theory predicting a larger celerity (2% larger for H/h = O. 7). 

The theory of Mccowan agrees with the other two up to a wave height 

H/h = 0.12, then diverges to predict celerities which are significantly 

less than the other two theories. The data tend to follow the theory 

of Laitone more than any other which is a result also found by Daily 
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and Stephan (1952) and French (1969). Their data along with those 

of Nahe1er (1977) are presented in Fig. 5.14(b) (from Naheer (1977)). 

5.1.3 The Generation of Cnoidal Waves 

The generation of long periodic waves of constant form 

in the laboratory is difficult because nonlinear effects can never 

be completely eliminated. This can be illustrated by considering 

a wave of form: 

n(x,t) =a sin(kx-wt) (5. 9) 

and substituting into the KdV equation: 

n + C (1 +l n) TI +!.C h2 n = 0 t 0 2 h "'X 6 0 xxx 
' 

(5.10) 

where c = lgh. For nonlinear effects to be negligible, the magnitude 
Qi 

of the tllOnlinear term 2
3h c

0 
nnx must be much less than the magnitude 

of the dispersive term ~ c
0

h2 l'lxxx' which, from Eqs. (5. 9) and (5 .10), 

implies: 

.1~ < .... !.k2h2 2 h .... 6 (5.11) 

For long waves, it is usually assumed that kh~ 7r/l0, thus Eq. (5.11) 

implies: 

a 11'2 
h << 100 (5.12) 

Hence for a depth of, say, 30 cm in a laboratory flume, the long waves 

generated will be linear only for amplitudes a << 0.2 cm which is 

extremely small. Because of this, the periodic waves considered in 

this study were cnoidal waves which although nonlinear, propagate with 
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constant form. 

The wave generation theory developed in Section 3.2 was applied 

to produce six cnoidal wave generation trajectories, named CNl to CN6, 

which were stored on punched paper tape. The trajectories, the 

theoretical shape of the waves the trajectories generate, and other 

associated data are presented in Fig. 5.15, where the abscissas 

are time normalized by the wave period, t/T, and the ordinates are 

the displacement normalized by the stroke, ~/s, and the wave amplitude 

normali~~ed by the wave height, n/H. Trajectories CNl to CN4 have a 

nondimensional period: T./g/h = 20. 3 and wave heights which, starting 

with H/h = 0. 025, double successively. For trajectories CNS and CN6 

the relative wave height is: H/h = 0. 6 and the nondimensional periods 

are: r./g/h= 20 and 40. The trajectories in Fig. 5.15 correspond 

to a range of the complementary parameter, m', of 0.470~m' ~9.53x10-14• 

As the complementary parameter, m', decreases, the crest of the 

trajectory moves towards the left which means the average speed in 

the forward direction is greater than the average speed in the reverse 

direction. Since forward motion of the generator plate produces the 

wave crest while reverse motion produces the trough, greater speed 

in the forward direction produces a higher crest and consequently a 

shallower trough than if the average sp~ed were the same in both 

directions. In addition, as the proportion of the period in which 

forward motion of the plate takes place decreases, the wave crest 

becomes more peaked. 

The actual waves which trajectories CNl to CN6 generated 
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are compared to theoretical cnoidal wave shapes in Fig. 5.16. For 

these experiments a wave gauge was placed 1.0 m from the wave 

generator and a train of cnoidal waves was generated. The data for 

Fig. 5 .. 16 were taken from the third cycle which passed the gauge. 

The wave height used for the theoretical wave was the measured wave 

height,, which was in general less than what the generation theory 

predicted. Fig. 5.16 indicates that the generated wave shapes are 

predicted quite.well by the theory. 

Figure 5.17 is the oscillograph recording of the variation of 

the water surface during a typical wave generation experiment using 

trajectory CN4. The five wave gauges were spaced 2.5 m apart with 

Gauge l placed 1.0 m away from the wave generator. For this experi­

ment the depth was h = 20 cm, the stroke was S = 11.18 cm and the 

period was T = 2.90 sec. The wave generator executed four cycles, 

as sho"tom by the displacement time record at the bottom of the figure, 

and four waves resulted. The behavior of the leading and trailing 

waves will be discussed later. Attention is called here to the waves 

in the middle of the train which retain the same shape from gauge to 

gauge. Compare this with the recording shown in Fig. 5.18 in which 

everything is the same as for Fig. 5.17 except that the period was 

increased to 4.28 sec. In Fig. 5.18 the wave shape is not constant 

betwee11 gauges; there appears to be a secondary wave as indicated in 

the figure with a period half the main period. This phenomenon was 

examined by Madsen (1971) for waves with small Ursell Numbers, 

HL2./h3 .. He showed, using Stokes second order theory, that the waves 
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generated by sinusoidal trajectory, ~ = ~ 1sinwt, have the form: 

where 

n(x, t) =a sin(kx - wt) +a sin 2(kx - wt) 
p 

+ aL sin(k1 w - 2wt) 

w2 = gk tanh kh and k1 > 2k. 

(5.13) 

The first two terms represent a Stokes wave. The third term is a 

free second harmonic wave which travels at a slower speed than the 

Stokes wave and thus causes the wave shape to change as it propagates. 

Madsen showed that the second free harmonic wave can be eliminated 

by using a trajectory with the form: 

~ = ~l cos (wt) + s2 sin(2wt) (5.14) 

in which the second half-stroke s2 is adjusted so as to make a.L = O. 

As was shown in Section 3.2, for HL2/h3 < 10, Stokes waves and 

cnoidal waves are coincident. Hence, the theory of Section 3.2 

produces the same ~l and s2 in Eq. (5.14) as does Madsen's theory; 

however, for this theory the arguments of the trigonometric function 

in Eq. (5.14) are (wt - k~) instead of wt. The changing wave shape 

in Fig. 5.18 cannot be expressed in the form of Eq. (5.13) because 

for this case HL2/h3 ~120 which is well outside the range of appli­

cability of Stokes waves (HL2/h3 ~10), however the phenomenon is 

similar. Cnoidal waves, therefore, are generated only by their unique 

trajectory and unless this trajectory is used, the waves change shape 

as they propagate. 
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This discussion seems to imply that trajecotries CNl to CN6 will 

produce only the waves for which they were designed. However, since 

the trajectories were stored on tape in the normalized form in which 

they are plotted in Fig. 5.15 (i.e. with displacement normalized by 

stroke), it was possible to generate other cnoidal waves with 

trajectories with the same shape but different stroke and period. 

To find which waves have trajectories with the same shape, it was 

noted in Fig. 5.15, the only parameter which obviously distinguishes 

one trajectory from amother is the abscissal distance from the 

ordinate axis to the crest, i.e., the value of the ratio t/T to the 

crest. Referring back to Fig. 3.8, it can be seen this distance has 

been defined already: it is twice the time the origin was moved to 

start motion from zero, 2t
0

/T. Fig. 5.19 is a plot of t
0

/T against 

the nondimensional period Tfg/h. The curves are for constant wave 

height H/h and the horizontal lines are for the particular t
0

/T 

corresponding to trajectories CNl to CN6. It can be seen, for example, 

that for CNS which was designed for period Tfg/h = 20 and relative wave 

height H/h= 0.60, waves with (period, wave height) pairs of (21.4, 0.5), 

(23.3, 0.4), (26.2, 0.3), etc. have the same magnitude of t
0
/T=0.135. 

The half trajectories of a number of period, wave height pairs 

for which t /T = 0. 200 are compared in Table 5. 2, where the displacement 
0 

normalized with respect to the maximum displacement, ~/~max' is listed. 

The table illustrates a feature common to all comparisons made: for 

a particular t
0

/T and for Tf g/h <:::. 20 the trajectories are essentially 

the same. Therefore, for a given trajectory shape, it was possible 
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Table 5. 2 Comparison of Generation Trajectories for t /T = 0. 200. 
0 

~/~ for a half period for various wave height and max 

period combinations. 

H/h 0.2 0.1 0.05 0.025 

~ 16.36 21.33 28.81 40.0 

T 

o.o o.o a.a o.o o.o 

0.05 0.408 0.412 0.414 0.416 

0.10 0.738 0.741 0.743 o. 746 

0.15 0.937 0.939 0.939 0.940 

0.20 1.000 1.000 1.000 1.000 

0.25 0.947 0.950 0.951 0.951 

0.30 0.817 0.823 0.825 0.825 

0.35 0.639 0.644 0.650 0.650 

0.40 0.437 0.443 0.446 0.447 

0.45 0.221 0.225 0.227 0.227 

0.50 o.o o.o o.o o.o 
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to set the period and the stroke to generate cnoidal waves other 

than those for which the trajectory was designed without generating 

secondary waves. That this was correct only for Tlg/h~20 raises 

an interesting point. The cnoidal wave relations (Appendix A) have 

no mathematical restrictions on the period (or, equivalently, the 

wave length). The relations apply equally as well to a wave with 

Tl g/h = 1 as they do to a wave with Tl g/h = 100. Thus, the long 

wave assumption is an external physical requirement. However, when 

the generation theory is extended to waves which are not long, i.e., 

T{g/h< 20, it produces results which are different from those for 

physically long waves (Tlg/h > 20) with the same t
0

/T. For example, 

the trajectory shapes change slightly for constant t
0

/T as shown in 

Table 5.2,and the curves for various H/h in Fig. 5.19 converge. The 

reason for this is that although the long wave assumption is not 

explicit in the mathematical relations, it still must be there 

implicitly. 

Another example of this is shown in Fig. 5.20 which is the long 

wave part of the H/S vs l/T{g/h plot often used for small amplitude 

wave generation. The well-known small amplitude theory (see, e.g., 

Ursell et al. (1958)) is represented by the curve passing through the 

origin. The other curves are for cnoidal·waves and each are for a 

constant relative wave height H/h. For l/T/i]h= O, i.e., waves with 

infinite period (solitary waves), the variation of H/S with H/h is 

given by: ~ =~{6 ~ , which is Eq. (3.54). As the quantity l/T{g/h 

increases, the curves in Fig. 5.20 converge and, in fact, actually 
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cross for i/T/g/h>0.06. Clearly, the theory is invalid when this 

occurs, i.e., when the long wave criterion (h/L,:£0.05) is violated. 

The experiments performed to test the generation theory involved 

generating waves of various periods with each of the trajectories, 

CNl to CN6~ and measuring the wave heights 1.0 m from the wave plate. 

The results are presented in Fig. 5.21 which is the same as Fig. 5.20 

but with the addition of curves of constant t /T (the dashed curves) 
0 

and the experimental data. Comparison of experiment with theory takes 

place in two ways. First, the symbol shapes are associated with a 

particular trajectory represented by a dashed curve (e.g., the points 

represented by solid triangles were generated by trajectory CN6). 

Second, the position of the flag on the symbol defines the range of 

wave height in which a particular point lies, (e.g., symbols with a 

vertical flag imply the relative wave height: H/h ~ 0. 05) • Thus, the 

position of the point relative to the curves of constant wave 

height is also a comparison with the theory. It is evident that for 

trajectories CNS and CN6 (which were designed for H/h = 0.6 and 

T/g/h = 20 and 40) all the experimental points lie below the theoretical 

curves. For the waves generated by trajectory CN4, H/S is either on 

or below the theoretical curve. For trajectories CNl, CN2 and CN3 the 

points lie above, below or on the theoretical curves. Thus, the 

agreement with the theory is better for larger t
0

/T. A possible 

reason for this is that the trajectories with smaller t
0

/T generate 

high frequency small amplitude waves which appear in the trough of the 

main wave. This can be seen in Fig. 5 .16 where a wave with H/h = 0. 54 
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was generated by trajectory CN6 and also to a lesser extent in 

Fig. 5.17 where the trajectory used was CN4. The effect is even 

more pronounced in Fig. 5.22 which shows the waves generated by 

trajectory CN6 in a depth of 5 cm with stroke S = 6.07 cm and period 

T = 3.40 set:., which corresponds to H/S = 0.304 and l/T../g/h = 0.021 in 

Fig. 5.21. (This figure will be discussed in more detail presently.) 

The generation of spurious high frequency waves detracts from 

the energy available to generate the desired wave, so the effect is 

a reduction in wave height. Harmonic analysis proved fruitless for 

this problem because cnoidal waves have contributions at all frequen­

cies so the spurious high frequency waves could not be separated from 

the cnoidal wave components. A period representative of the waves 

in the trough at Gauge 1 in Fig. 5.22 is 0.35 sec which gives a 

nondimensional period of Tlg/h ~5 and a wave length of L ~10 cm. 

Capillary waves at an air/water interface have L~l.7 cm which is an 

order of magnitude less than the observed waves so it is concluded 

that the waves are not caused by surface tension. Conversely, T../glii'~ 5 

is about a quarter of the minimum period for long waves so the 

spurious waves would not be predicted by any long wave theory. Having 

excluded the two extremes of capillary and long waves, only short 

and intermediate waves remain, but no theory other than the full 

Navier Stokes equations is known which could predict the simultaneous 

appearance of both cnoidal waves and short waves. 

One approximation which is made in the generation theory and its 

application which can be eliminated as a cause of lower wave heights 
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than expected is the use of depth averaged velocities and a vertical 

wave plate. This is because the disagreement is worse for large 

periods where the velocity distribution with depth would be nearly 

constant than it is for smaller periods where the velocity distribu­

tion varies more with depth. 

5.1.4 The Propagation of Cnoidal Waves in a Constant Depth 

The propagation of cnoidal waves was considered in two 

phases: short range propagation which is relevant to this study 

and long range propagation which is of general interest. 

An example of short range propagation was presented in Fig. 5.17 

which shows a packet of four waves propagating 50 depths. At Gauge 1, 

five depths from the wave generator, the crest and trough amplitudes 

are the same for all four waves and the crests are equispaced in 

time. As the train propagates, the height of the leading wave 

decreases relative to the height of the other waves and the time 

between its crest and the crest of the next wave increases by about 

1% of the period from gauge to gauge indicating the leading wave is 

travelling faster than the rest of the train. The trough at the 

rear of the train maintains the same amplitude as the two central 

troughs but increases in period as the train propagates. The small, 

oscillatory waves which follow this trough grow in amplitude and 

period from gauge to gauge. 

However, in spite of these transient effects at either end of 

the train, the central part of the train between the second and fourth 

crests appears unaffected. Hence, the decrease in height from gauge 
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to gauge of the waves in the center of the train is attributed to 

friction entirely. Two sets of experiments were performed to test 

the effect of friction in which five wave gauges were spaced 2.5 m 

apart in water of depth 4.5 cm and 10.0 cm. A packet of waves was 

generated nnd the height of the third wave passing each gauge was 

recorded. A regression analysis was performed on these wave heights 

to determine the initial height H
0 

and the exponent f in the damping 

equation, Eq. (5.7). The results of this analysis are presented in 

Fig. 5.23 which is a plot of the exponent f vs the initial relative 

wave height H
0
/h. Included in the figure is a table which lists the 

data including the coefficient of determination, r 2 • For twenty 

of the twenty-eight experiments the latter exceeded 0.9 which 

indicates the decrease in wave height with propagation distance 

is reasonably well represented by the exponential equation, Eq. (5.7). 

The data exhibit considerable scatter but, even allowing for this, 

no variation of damping exponent f with wave height H
0

/h is apparent 

in Fig. 5.23. Comparing Fig. 5.23 with Fig. 5.11 which showed the 

damping exponent for solitary waves, the magnitude of the damping 

exponents for cnoidal waves and solitary waves appear similar for 

the similar depths considered. (For comparison, the curves described 

by Eq. (5.8) for solitary wave damping are presented in Fig. 5.23.) 

The wave gauge records of the experiments marked with an asterisk 

(*) in Fig. 5.22 were digitized using an A/D converter and an 

harmonic analysis was performed on a single wave cycle from each 

gauge. Of interest was the way in which the shape of the waves 
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change as their height decreases due to frictional effects and whether 

the shape remains cnoidal. Harmonic analysis was used only because 

it provides a means of quantitatively describing the complitated 

shape of a wave. The results for the first three frequency components 

are presented in Fig. 5.24 where the component amplitudes, normalized 

• HL2 
with respect to the wave height, are plotted against ~ • The curves 

presented in Fig. 5.24 are the theoretical curves which were described 

in Section 3.1 and plotted in Fig. 3.5; they represent the first three 

theoretical Fourier components of cnoidal waves. As the wave propa-

gates, the period remains constant but the wave height, H, and hence 

HL2 
the celerity (and the wave length, L) decrease; therefore, ~ 

decreases. Hence, the progression from one wave gauge to another in 

a downstream direction corresponds to moving from right to left in 

d . . f d . HL
2 

) F . 1 irection o ecreasing - 3- • or a particu ar 
h 

Fig. 5.24 (i.e. in the 

experiment the point at the right will have come from Gauge 1 and the 

point at the left from Gauge 5. Apart from one experiment, the 

theoretical curves agree well with the data with no apparent trend 

of the data either towards or away from the theoretical curves. Thus, 

the waves retain cnoidal shape as they propagate even though the wave 

height decreases due to friction. The exception is the experiment 

with Tv'g/h = 20 which exhibits large variations in the second and 

third components. It is this experiment for which, in Fig. 5.23, 

the damping exponent f is considerably greater than for the other 

exponents (f = 3.25x10-3). Therefore, it is concluded that for this 

wave the wave shape was changing as it propagated due to improper 
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generation. 

Another quantity of interest in the propagation of cnoidal waves 

is their speed of propagation or celerity. The theoretical relation 

for celerity (see, e.g., Svendsen (1974)) is: 

c2 
--= 

gh 
H l+a -
h 

(5 .15) 

(5.16) 

where m is the elliptic parameter and K and E are the first and 

second complete elliptic integrals respectively. The parameter a, 

which is a function of only m or, equivalently, only~:, is plotted 

HL2 HL2 
against h3 in Fig. 5.25. For large hS' a tends to unity and 

Fig. 5.25 

0 

a 

-1.0 

-2.0 

10" 10' 10• 

Variation of the celerity parameter, a, with Ursell Number, 
HL2/h3, for cnoidal waves. 
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the celerity tends to the solitary wave celerity, c = ~ gh ( 1 + H) 
h, 

HL2 
As - 3- goes to zero the parameter a goes to negative infinity but, 

h 
HL2 

since small ~ implies small wave height also, the celerity remains 

finite and tends to c = lgh . 

The c~lerity of cnoidal waves generated in the laboratory was 

measured by placing five wave gauges 0.45 m apart, generating a 

group of waves and recording the time at which a particular crest 

passed each gauge. The celerity was calculated by linear regression 

from the five pairs of x and t and is plotted as a function of wave 

height in Fig. 5.26. With the gauges only 0.45 cm apart, the change 

in height of the waves between the first and fifth gauges was 

negligible so the average of the five wave heights was used. The 

HL2 
numbers next to the points in Fig. 5.26 represent the value of ~­

h3 

( 00 denotes a solitary wave). The curves are 

Eqs. (5.15) and (5.16), for constant values of 

represents the long wave limit of h/L < • 05. 

the theory as given by 

HL2 
-3-· 
h 

The dashed curve 

The scatter exhibited 

by the dat~ is partially explained by the sensitivity of the graph 

exceeding the accuracy of the data. (For waves with large Ursell 

Number this is less of a problem because the wave crests are sharp 

and therefore well defined, but for waves with a small Ursell Number 

the crest is less peaked and its position is not as well defined.) 

In spite of the scatter the trend is for the cnoidal wave celerity 

to be generally less than the theory predicts, while the solitary 

wave celerity is well defined by the theory. 

Only near field propagation has been considered so far. Also 
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of interest is what happens to a train of cnoidal waves as it 

pro.pagates to infinity. The inverse scattering theory predicts 

one solitary wave will emerge--the lead wave, but the theory does 

not provide information about the trailing waves. An example of 

the long distance propagation in the laboratory of a train of cnoidal 

waves was presented earlier in Fig. 5.22 which shows a packet of 

four cnoidal waves propagating 340 depths from generation. The 

behavior of the leading crest, which slowly separates from the train 

and the trailing trough, which increases in duration, was described 

earlier when considering near field propagation. Of more interest 

here are any changes which occur in the center of the train. Careful 

inspection of each wave shows the heights of the three central crests 

vary by up to 0.025 cm (i.e., 1.3% of the wave height). The period, 

set at 3.40 sec, varies between 3.37 sec and 3.40 sec. These 

fluctuations are considered too small to imply any change is taking 

place to the center of the train as it propagates the 340 depths 

from generation. However, it cannot be concluded from this limited 

aspect of the study that the train would continue to propagate in 

this manner to infinity even in the absence of friction. 

5.2 The Reflection of Long Waves from a Change in Depth 

5.2.1 The Reflection of Solitary Waves from a Step 

The linear nondispersive theory described in Section 3.4, 

when applied to solitary waves propagating over a step onto a shelf, 

predicts the reflected wave will retain the same shape as the 
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incident wave, but the amplitude will be scaled by the reflection 

coefficient KR (given by Eq. (3.113)). Hence, the predicted reflected 

wave would be given by: 

m n = IL sech2 (x + /g'h':" t) R --K 4 h 1 
1 

(5.17) 

where H1 is the height of the incident solitary wave and HR is the 

reflected wave height given by: 

(5.18) 

A series of experiments were conducted, for a range of wave 

heights and depths, to test the validity of the linear nondispersive 

theory when applied to the reflection of solitary waves from a step. 

The experiments comprised essentially the arrangement described 

earlier and shown in Fig. 5.1 except that one of the gauges from 

the shelf was removed and placed adjacent to Gauge 1. This gauge 

was adjusted to be more sensitive than Gauge 1 so that maximum resolu-

tion of the reflected wave (which had height 10-45% of the incident 

wave) could be achieved. Electrical interference between the gauges 

was minimized by carefully and directly grounding the gauge support 

clamps. 

The experiments were performed in two sets: in the first set 

the effect of the height of the incident wave on the reflected wave 

was examined; in the second set the effect of the depth ratio on the 

reflected wave was examined. 
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The first set comprised 51 experiments with incident wave 

height to depth ratios H1/h1 varying from 0.05 to 0.65 and with depth 

ratios: h1/h2 of 2, 3, 3.5, 4, 7 and 10. The height of the shelf 

was 15.54 cm and Gauge 1 was situated 5.7 m upstream of the step. 

A solitary wave was generated and the incident and reflected waves 

were recorded. Both waves were digitized and the following quantities 

were calculated: maximum wave amplitude, inverse scattered wave 

height and volume. The results for the incident waves were presented 

in Section 5.1.2; the results for the reflected waves relative to 

these incident waves are plotted as a function of the relative wave 

height, H1/h1 , in Figs. 5.27 to 5.29. 

Figure 5.27 shows the ratio of measured wave heights ~/H1 
plotted as a function of the incident wave height ratio H1/h1 • The 

lines represent the best fit through the experimental points. They 

indicate that, as the incident wave height increases, the relative 

height of the reflected wave decreases and, as the depth ratio 

increases, this decrease takes place at a greater rate. Clearly this 

is contrary to the linear nondispersive theory which from Eq. (5.17) 

predicts, for constant depth ratio, h1/h2 , no variation in the wave 

height ratio Ha!H1 with incident wave height. Therefore, the linear 

nondispersive theory is invalid for some time between the time the 

incident wave leaves the gauge until the reflected wave reaches the 

same gauge. The propagation of the incident wave toward the step is 

expected to be predicted well by the linear nondispersive (as well as 

by the nonlinear dispersive theory) theory since the incident wave 
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is a solitary wave which propagates with constant shape, however 

this is not true for the propagation of the reflected wave from the 

step back to the gauge. Assuming the reflected wave at the step 

(x=O) is given by Eq. (5.17), then computing the Ursell Number 

after Hammack (1974) Eq. (3.141) gives U=2.25 ~' i.e. less than 

the Ursell Number of a solitary wave (U=2.25). Hence, the wave 

will change its shape as it propagates until one or more solitary 

waves emerge followed by a train of oscillatory waves. Since the 

gauge measuring the reflected wave is a finite distance (18-34 depths) 

from the step, dispersive and possibly nonlinear effects will occur 

and cause the reflected wave to be different in shape from that at 

the step. In addition, since the distance for complete separation 

into solitary waves is a function of the wave height, waves with 

different heights will be in different stages of evolution as they 

pass the wave gauge. Thus, the ratio of the reflected wave height 

to the incident wave height HR/HI will be a function of the distance 

from the step and, therefore, dependent on the incident wave height. 

A solution of this problem would be to measure the reflected wave a 

large distance from the step after the separation process has taken 

place. This i.s not practical first because the length of the flume 

is limited and second because friction causes a reduction in the 

wave height. However, propagation to infinity in the absence of 

friction can be performed analytically by the method of inverse 

scattering discussed in Section 3.5. As was shown in Section 3.5, 

from a wave with the form of Eq. (5.17) one solitary wave emerges 
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with the height given by: 

IL - l H { (1 + 8KR) ~ - l} 
2 

--1<,INV -4 I (5.19) 

where ~ is the reflection coefficient from the linear nondispersive 

theory, Eq. (3.113). Hence, using the inverse scattered height of 

the reflected wave, ~ , computed from the record of a wave gauge 
INV 

located at some position upstream of the step, the dependence of the 

results on the actual position of the gauge will be eliminated. 

In addition, if the linear nondispersive theory accurately describes 

the reflection process at the step, from Eq. (5.19) there will be 

no variation of wave height ratio ~ /H
1 

with incident wave height. 
INV 

The results of this analysis for the experiments plotted in Fig. 5.27 

are presented in Fig. 5.28 where the wave height ratio HR /HI is 
INV 

plotted as a function of the incident wave height to depth ratio 

HI/h1 • The difference between Figs. 5.27 and 5.28 is quite marked 

in that most (but not all) of the variation of the wave height ratio 

with relative incident wave height has been removed, particularly for 

small relative wave heights and small depth ratios. In fact, for 

incident wave heights HI/h1 < 0.3 and depth ratios h1/h2 ::::. 7 the data 

indicate no variation of the wave height ratio HR /H1 with incident 
INV 

relative wave height H1/h1 • Hence, for these parameters the inverse 

scattered reflected wave height ~ is proportional to the incident 
INV 

wave height H
1 

as predicted by the linear nondispersive theory, 

Eq. (5 .19). 
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For incident wave heights H1/h1 > 0.3 or depth ratios h1/h2 > 7 

the variation of wave height ratio with incident wave height still 

occurs and since, by using inverse scattering, the propagation of 

the reflected wave back to the gauge is eliminated as the cause, it 

is concluded that the process at the step is not predicted by the 

linear nondispersive theory. An obvious reason for this is that 

for large wave heights or large depth ratios the wave breaks on 

the shelf close to the change in depth. In fact, using the linear 

nondispersive theory and the criterion that a wave will break if the 

height to depth ratio exceeds 0.7, the limiting relative incident 

wave height for a non-breaking wave on the shelf is: 

HI 
-< 
h -1 

h 2 ( -~) 0.35 hl l+ ~~ (5.20) 

The limiting relative incident wave heights for the depth ratios 

considered here obtained from Eq. (5.20) are presented in Table 5.3. 

A comparison of the limiting wave heights in Table 5.3 with the range 

of wave heights in Fig. 5.28 for which the reflected wave height is 

independent of the incident wave height indicates the linear 

nondispersive theory predicts the correct behavior for some cases 

even though the wave may break on the shelf. 

This feature of the problem is further illustrated in Fig. 5.29 

where, for the 51 experiments under consideration, the ratio of the 

reflected to the incident volumes of the waves, YR/VI, is plotted as 

a function of the relative incident wave height, HI/h1 • The volume 
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Table 5.3 Maximum relative incident wave heights for non-breaking 
waves on the shelf as predicted by the linear nondispersive 
theory. 

h1/h2 2. 3. 3.5 4. 7. 10 • 

. HI/hl 0.30 0.18 0.15 0.13 0.07 0.05 

ratio appears independent of incident wave height for all depth 

ratios and even for waves which obviously break onto the shelf. 

Hence, the reflected volume appears to be a linear function of the 

incident volume, as predicted by linear nondispersive theory. 

Included in Figs. 5.27 to 5.29 are data from experiments in 

which the step was replaced by the half-sine transition described 

in Section 4.1. These data lie close enough to the data for the 

step to imply the transition has no effect on the reflected wave. 

The finite element numerical scheme described in Section 3.3 

also was used to determine the waves reflected from a step. However, 

it was found the reflected waves were dependent on the incident wave 

height, an effect the physical experiments do not predict and an 

effect which did not occur when a slope instead of a step was used 

(this will be discussed in more detail in Section 3.2.3). Hence, it 

was concluded, the approximation used to match flow rates across a 

step, which was described in Section 3.3.2, caused errors in the 

numerical scheme in this case. To avoid this, the numerical scheme 

was used with the step replaced by the half-sine transition. This 

change, the physical experiments show, has essentially no effect on 
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the reflected wave, but it reduces the error given by Eq. (3.104) by 

reducing the change in depth between the elements, hh. The effect of 

this is shown in Figs. 5.28 and 5.29 where for a depth ratio of 

h1/h2 = 3 and relative incident wave heights of H1/h1 = 0.05, 0.10 and 

0.15, the reflection coefficients calculated by the finite element 

scheme are the same for all three wave heights. 

As was mentioned earlier, the experiments were conducted in two 

sets. The experiments described so far comprise the first set in 

which the variation with wave height was examined. The second set 

of experiments involved keeping the relative incident wave height 

constant and varying the depth ratio to determine the behavior with 

depth ratio. The experiments were arranged in the same manner as 

for the first set with adjacent gauges placed 5.7 m from the plate; 

one adjusted to measure the incident wave and the other adjusted with 

increased sensitivity to measure the reflected wave. The relative 

incident wave height was fixed nominally at H1/h1 = 0.10 and all the 

waves were within: 0.090 < H1/h < 0.103. Initially fourteen experiments 

were conducted with depth ratios in the range: 1.51 ~ h1/h2 ~ 68.4; 

for h1/h2 = 68.4 the depth on the shelf was 0.19 cm. To determine if 

there was any dependence on the height of the shelf, two subsequent 

sets of experiments were conducted with shelves of smaller height. 

For the first set the shelf-height was 5.97 cm and the waves were 

measured at gauges located 3.0 m from the step. For the second set, 

the shelf-height was 5.68 cm and the waves were measured with gauges 

located 2.08 m from the step. (This latter set of experiments is 
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equivalent to those with the 15.54 cm step because the wave gauges 

were placed the same number of shelf-heights from the step.) The 

results in the form of the ratios of reflected to incident measured 

quantities: wave height HR/HI, inverse scattered wave height HR /H1 
INV 

and volume ¥R/V1 are plotted as functions of depth ratio h1/h2 in 

Figs. 5.30 to 5.32. The curves in each of these figures represent 

the linear nondispersive theory. For Figs. 5.30 and 5.32 this is 

given by Eq. (3.113) which is the reflection coefficient for a step. 

For Fig. 5.31 the curve is given by Eq. (3.145) and also Eq. (5.19) 

which gives the ratio of the inverse scattered reflected wave height 

to the incident wave height, HR /H1 • 
INV 

For all three plots, the data lie below the theoretical curves 

and the distance below increases with increasing depth ratio h1/h2• 

One reason for this is that from the equation which predicts approx-

imately the conditions for breaking onto the shelf, Eq. (5.20), the 

maximum depth ratio for an incident wave of height Hihl = 0.1 to be 

a nonbreaking wave is h1/h2 = 5. Therefore the linear nondispersive 

theory would not be expected to predict accurately the reflected 

wave for depth ratios h1/h2 > 5, and the data do seem to depart more 

from the theory for h1/h2 > 5. Friction also is a cause of the wave 

height data lying below the theoretical curve but accounting for its 

effects only slightly increases the wave height ratios (by from 4% for 

h1 /h2 = 1.5 to 11% for h1/h2 = 60) and this does not bring the data up 

to the theoretical curve. In addition, in Fig. 5.32, which shows the 

reflected volume ratio, the data are not affected by friction but 
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still tend to be below the theoretical curve. 

In Figs. 5.31 and 5.32 the data from the four different sets 

of experiments fit together well indicating there is no dependence 

on shelf-height. However, in Fig. 5.30, which shows the measured 

wave height ratio Ha!H1 , the data from the experiments with the 5.97 cm 

shelf placed 3.0 m from the gauge are generally less than the other 

data. The reason for this is that the distance from the step to the 

gauge for this set of experiments was 50.25 shelf-heights whereas 

the distance for the other experiments was 36.68 shelf-heights; thus, 

for the former, the wave had travelled further and dispersive and 

perhaps nonlinear effects had more time to develop. Notice that this 

tendency is substantially reduced in Fig. 5.31 which shows the inverse 

scattered wave height ratio Ha /HI. 
INV 

Also included in Figs. 5.30 to 5.32 are the data from four experi-

ments in which the half-sine transition instead of the step was used. 

The data show no difference from the data obtained when the step was 

used. 

The results for the nonlinear dispersive theory, calculated using 

the finite element scheme with the half-sine transition, coincide 

with the linear nondispersive theory in Figs. 5.30 to 5.32. Thus, 

from this and from the experiments conducted, it may be concluded 

for depth ratios of h1/h2 ~10 the reflection of solitary waves from 

a step is a linear process, apart from the propagation and the 

reflected wave may be approximately predicted by the linear nondis-

persive theory. 
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5.2.2 · The Reflection of Cnoidal Waves from a Step 

Experiments conducted to measure the waves which are 

reflected when cnoidal waves propagate over a step onto a shelf 

require a different laboratory technique than that used if the waves 

were small· amplitude, harmonic waves. In the latter case a standard 

procedure is to deduce the reflected waves from the combined incident 

and reflected waves using the principle of superposition. However 

for cnoidal waves, which propagate in accordance with the nonlinear 

dispersive theory, the principle of superposition is not valid, 

therefore an alternative method must be devised. The technique used 

in this study was to generate a finite number of cnoidal waves and 

measure the incident and reflected waves at a point in the flume 

where the trailing edge of the incident wave group had passed before 

the leading edge of the reflected wave group arrived. The method has 

two conflicting requirements: 

(i) The wave group must contain a sufficient number of waves so 

that the waves in the center of the group where measurements will 

take place are not affected by transient effects at the leading and 

trailing edges of the wave group. 

(ii) The wave group must be short enough that the incident and 

reflected wave groups are separated at the point of measurement. 

As was demonstrated earlier (see Section 5.1.2), for short 

distance propagation, the requirement that transient effects do not 

affect the waves in the center of the packet may be satisfied by a 

group consisting of as few as four waves. Thus, the procedure used 
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here was to place the wave gauges midway between the wave generator 

and the step and to generate as many waves as possible (four or 

greater) but still satisfy the requirement that incident and reflected 

wave packets be separate at the point of measurement. 

To illustrate the experimental details, the results of five 

experiments, in the form of the wave amplitude--time history are 

presented in Fig. 5.33, where the ordinate is the wave amplitude 

normalized with respect to the depth, and the abscissa is the non~ 

dimensional time tlg/h1 • The experiments were conducted using the 

15.54 cm shelf with the step situated 23.84 m from the wave generator 

and the wave gauge which gave the records presented in Fig. 5.29 

situated midway between the step and the wave generator (i.e., 11.92 m 

from both). For each experiment, four waves were generated using 

trajectory CN4 with a stroke S/h1 = 0.378 and a period Tlg/h1 = 27 .2, 

which theoretically should have produced waves with a relative height 

of H/h1 = 0.1. The five experiments were performed with five different 

upstream depths and consequently five different depth ratios. The 

four waves to the left in each part of Fig. 5.33 are those which 

comprise the incident wave group; the four to the right in each part 

comprise the reflected waves. Progressing down the figure, the depth 

upstream of the step, h1 , increases and, consequently, the depth ratio, 

h1/h2, decreases as does the distance of the gauge from the step 

expressed as the number of depths, x/h1 • The decreasing depth ratio, 

h1/h2, produces reflected waves of smaller height; the decreasing 

relative distance, x/h1 , causes the time between incident and reflected 
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wave packets also to decrease. Close inspection of Fig. 5.33 reveals 

that, for both incident and reflected waves, the amplitudes of the 

third and fourth crests are about equal, as are the second and third 

troughs. In addition to the constancy of period between the second, 

third and tourth crests for both incident and reflected waves, this 

indicates the transient effects at the leading and trailing edges of 

the wave group do not affect the central portion of the group, as 

was assumed previously. Figure 5.33 was introduced at this stage of 

the discussion for illustrative purposes; it will be discussed in 

more detail presently. 

Using the arrangement just described, experiments were conducted 

for depth ratios: h1/h2 = 3, 4, 7 and 10. The results are presented 

in Fig. 5.34 where the ratio of reflected to incident wave heights 

~/H1 is plotted as a function of the relative incident wave height 

H1/h1 • The numbers beside the points are the nondimensional quantity: 

gH1T2/hf, which is a type of Ursell Number. It is used in preference to 

the Ursell Numbers described earlier (m and HL2 /hf) because it can be 

calculated directly from experimentally measured quantities whereas 

the others must be deduced using complex numerical calculations. It 

is related to HL2/h3 by the celerity, c=L/T. The data exhibit 

scatter (some reasons for this will be presented shortly) but show 

no trend in the variation of reflection coefficient, HR/H1 , with 

either the relative incident wave height, H1/h1 , or the Ursell Number, 

gH1T2/hf • The .dashed lines in the figure indicate the limiting wave 

height for a nonbreaking wave on the shelf as predicted by the linear 
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nondispersive theory, Eq. (5.20). 

Included in the figure are data from experiments in which a 

shelf with a height of 5.97 cm was used. For these experiments the 

wave gauge measuring incident and reflected waves was placed the 

same relative distance, x/h1 , from the step as the equivalent 

experiments with the 15.54 cm shelf, i.e., x/h1 =51 for the depth 

ratio h1/h2 =3. In Fig. 5.34, the data generally lie below the 

data for the 15.54 cm shelf and this is attributed to the increased 

effect of friction for the smaller depth. 

In Fig. 5.35 the ratio of reflected to incident wave heights, 

Ha/HI' is plotted as a function of the depth ratio, h1/h2 • The 

curve was obtained from the linear nondispersive theory (as given 

by Eq. (3.113)). The data were obtained from the experiments pre­

viously described and from experiments in which the relative incident 

wave height and period were set at H1/h1 =0.1 and Tlg/h1 = 27 .2 and 

the depth, h1 , was changed. The data follow the trend of the linear 

nondispersive theory but the reflection coefficient is generally 

less than theory predicts as was found to be true also for solitary 

waves. ·Part of the reason for this is, of course, the effect of 

friction first on the incident waves as they propagate the 11.92 m 

from the gauge to the step and second on the reflected waves as they 

propagate the same distance from the step back to the gauge. However, 

a more important effect is the change in shape of the reflected waves 

as they propagate, due to amplitude and frequency dispersion. 
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This effect was examined for five of the seven experiments 

represented by solid circles in Fig. 5.35 (for which, it will be 

recalled, the nominal incident wave height was H1/h1 =O.l and the 

period was T/g/h1 =27.2). These are the five records which were 

presented previously in Fig. 5.33 and now will be considered in 

detail. The linear nondispersive theory predicts the reflected 

waves will have the same shape as the incident waves and will retain 

this shape as they propagate. Examination of Fig. 5.33, however, 

indicates the crests of the reflected waves are only approximately 

symmetric, tending to be steeper on the back face of the wave than 

on the front face. In addition, the troughs exhibit secondary waves 

which vary from experiment to experiment. Hence the linear nondisper­

sive theory appears to be invalid for some portion of the time between 

the time the incident waves leave the gauge and the time when the 

reflected waves reach it. The obvious region where the linear 

nondispersive theory does not apply is in the propagation of the 

reflected waves from the step back to the gauge. 

For solitary waves, this effect was accounted for by propagating 

the reflected waves to infinity in an analytical manner using 

inverse scattering. 

For cnoidal waves, to investigate the effect of amplitude and 

frequency dispersion, the following analysis was performed. First, 

the incident wave group was assumed to propagate without change 

of shape to the step. Second, the linear nondispersive reflection 

coefficient (Eq. (3.113)) was applied to the incident wave group to give 
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the theoretical reflected wave group. Thus, the shape of the 

reflected wave group at the step was assumed to be identical to that 

of the incident wave group. Finally, this reflected wave group was 

propagated numerically the 11.92 m back to the wave gauge by: (i) the 

linear dispersive theory using a Fourier transform method, and (ii) 

the KdV equation using Peregrine's finite difference scheme (from 

Peregrine (1966)). The latter was used in preference to the numerical 

scheme developed for this study because the waves were travelling 

in one direction, only. The results are compared with the wave gauge 

record from Fig. 5.33 in Figs. 5.36 and 5.37 which are arranged in 

a similar manner to Fig. 5.33, with the normalized amplitude, n/h1 , 

plotted as a function of the nondimensional time, tf g/h1 • The five 

reflected wave groups from Fig. 5.33 are represented by the solid 

curves and the theoretical results are represented by the dashed 

curves. In Fig. 5.36 which shows the linear dispersive theory 

compared with experiment, the theory predicts the reflected waves 

quite well for small depth ratios but as the depth ratio increases 

the reflected waves are more peaked than this theory predicts. The 

reason for this is the experimental Ursell Number, gHRT2/hf, increases 

with depth ratio because the reflected wave height increases. There­

fore, since the Ursell Number is a ratio of nonlinear to linear 

effects, the nonlinear effects are greater for larger depth ratios 

than for smaller depth ratios and consequently the linear dispersive 

theory is less likely to be applicable to large depth ratios. The 

veracity of this is illustrated by Fig. 5.37 where the nonlinear 
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Fig. 5.36 Comparison of the experimental reflected cnoidal waves 
with those calculated from the linear dispersive theory. 
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dispersive theory is compared with experiment. Here the agreement 

between theory and experiment is good, with even the secondary crests 

in the troughs predicted by the theory. The only difference between 

the theories in Figs. 5.36 and 5.37 is the inclusion, in the latter, 

of the nonlinear term. The good agreement between the theory and 

the experiments for the larger depth ratios is somewhat surprising 

considering, as was determined earlier, the wave breaks on the shelf 

for depth ratios h1/h2 > 5. 

Recall that some of the data presented earlier in Fig. 5.35 

were from the reflected waves shown in Figs. 5.36 and 5.37. In 

Fig. 5.35, the wave height ratio, ~/H1 , is plotted as a function of 

depth ratio and the data are compared with the linear nondispersive 

theory. However, the comparison does not appear as good there as it 

does in Figs. 5.36 and 5.37. The reason for this is that the wave 

height, which is defined as the difference between the maximum and 

the minimum amplitudes, is a measure only of the extremes of the 

wave whereas Figs. 5.36 and 5.37 give the shape also. 

The wave height ratios from the three theories and from the 

five experiments being considered are listed in Table 5.4. The wave 

heights were taken from the third wave in the group in each case. 

The table shows the three theories predict essentially the same 

wave height ratio which is up to 10% greater than the experiments. 

The difference between the experiments and the theories is attributed 

to dissipative effects which are not included in the theories. 

Although the theories agree in the height of the reflected waves, 
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Table 5.4 Wave height ratios for experiments, (HR/H1) , linear 
Expt 

nondispersive theory, CHa/H1) , linear dispersive 
L.N. 

theory, CHa/H1) , and nonlinear dispersive theory, 
L.D. 

h1/h2 

10.48 

6.32 

4.96 

4.03 

3.42 

(Ha/HI) 
N.D. 

(HR/HI) 
· Expt 

0.510 

0.406 

0.337 

0.289 

0.277 

(Ha/Hr) 

0.528 

0.431 

0.380 

0.335 

0.298 

L.N. 
(HR/HI) 

L.D. 
(HR/HI) 

N.D. 

0.529 0.529 

0.429 0.434 

0.376 0.381 

0.331 0.339 

0.302 0.298 

the theories predict different shapes for the reflected waves. This 

can be seen by comparing the dashed curves in Fig. 5.36 which show 

the linear dispersive theory with those in Fig. 5.37 which show 

the nonlinear dispersive theory. The shape of the reflected waves 

predicted by the linear nondispersive is the same as that of the 

incident waves shown in Fig. 5.33. 

Thus, the experiments conducted here, as was found for solitary 

waves, indicate the reflection process is linear and governed by the 

linear nondispersive theory. However, the propagation of the reflected 

waves requires a higher order theory in order to accurately determine 

the shape of the waves. 
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5.2.3 The Reflection of Solitary Waves from a Slope 

In this section the results from two theories and from 

experiments will be presented. The theories are: the linear 

nondispersive theory, which was solved by the Fourier transform 

method described in Section 3.4, and, the nonlinear dispersive 

theory, which was solved by the finite element method described in 

Section 3.3. 

The parameters involved in the problem of reflection of solitary 

waves from a slope in the absence of friction are: 

the upstream depth, h1 ; 

the downstream depth, h2 ; 

the slope length, L; 

the incident wave height, HI; and 

the reflected wave height, HR. 

The characteristic horizontal length of the wave, t, in general also 

is a parameter but for the particular case of solitary waves t is a 

function of only the incident wave height and the upstream depth as 

. -~ given by Eq. (3.122) (i.e., t = 1.5 (HI/h1 ) h1). The problem has 

five variables and one dimension; hence, using the Buckingham TI 

theorem, there are four dimensionless groups: 

; = f(~l , ~ , :I\ 
I 2 lJ 

(5. 21) 

That is, the reflected wave height ratio, ~ , is a function of the 

depth ratio h1/h2, the length ratio Lit and the incident wave height 
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to depth ratio H1/h1 • For both the experiments and the nonlinear 

dispersive theory, the reflected wave height ratio, Ha/H1 , is a 

function of all three of these parameters, but for the linear 

nondispersive theory it is a function of only the depth ratio and 

the length·ratio. Hence, the results of the linear nondispersive 

theory are presented first and, with corresponding experimental data, 

the results of the nonlinear dispersive theory will be presented later. 

It is recalled from Section 3.4 that the method used to solve 

the problem using the linear nondispersive theory is a Fourier 

transform method in which the incident wave is transformed into the 

frequency domain and the reflection coefficient, which is a function 

of frequency, is applied to each frequency component of the incident 

wave in turn. The resultant reflected wave is obtained by the 

synthesis of these components. In addition, it was shown in Section 

3.4, using the dimensionless frequency wL/v'ghi, the Fourier transform 

of a solitary wave for the purposes of the analysis may be considered 

to be a function of the length ratio, L/i, and the frequency, wL/v'gh1 , 

while the reflection coefficient is a function of the depth ratio, 

h1/h2 , and the frequency, wL/v'gh1 • This is illustrated in Fig. 5.38(a) 

and (b). 

Figure 5.38(a) shows the Fourier transform of the incident solitary 

wave, as given by Eq. (3.131), with the amplitude normalized with 

respect to the amplitude at w"' O, A1 (w) / A1 (0), plotted as a function 

of the nondimensional frequency wL/../gh1 • The curves, which are for 

various length ratios, L/~, evidently have similar shape but rolloff 
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from unity' at different frequencies which are a linear function of 

the length ratio (e.g. A1 (w)/A1(0)=0.95 occurs at wL/lgh1 =0.461 L/Q,), 

Figure 5.38(b) shows the modulus of the reflection coefficient, 

l~Cw) I (recall ~(w) in general is complex) plotted as a function of 

the nondimensional frequency wL/lgh1 • The curves, which are for 

various depth ratios, h1/h2, have similar shape but are displaced from 

one another according to the magnitude of the reflection coefficient 

at w = 0. 

Kajiura (1961) presented curves similar to Fig. 5.38(b) but used 

as the abscissa L/L where L is the wave length of the harmonic wave 

under consideration. However, the abscissas are equivalent because 

using the relationship L = lgh1 T, the frequency wL/lgh1 reduces to 

2~L/L. Kajuira (1961) considered slopes in which the depth was a 

nonlinear function of the distance along the slope, whereas, in this 

study the depth was a linear function of distance along the slopes. 

In principle, the process of calculating the reflected wave is 

to take the function describing a curve for a particular length ratio, 

L/Q,, from Fig. 5.38(a) and multiply it by the function describing a 

curve for a particular depth ratio, h1/h2 , from Fig. 5.38(b). This 

gives the reflected wave in the frequency domain which can be trans­

formed into the time domain by multiplying by e-iwt and integrating 

over the frequency range. (In practice, this procedure is performed 

numerically.) 

Before presenting the results of these calculations, Fig. 5.38(a) 

and (b) can be used to deduce the overall behavior: 
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i) For small length ratios (L/R. < 1) the majority of the Fourier 

transform curve lies in the frequency range 0::; wL/./gh
1 
~ 10-1 

where the reflection coefficient is essentially constant. 

Hence, the shape of the reflected wave is almost the same as 

that of the incident wave. A special case of this which 

already l!tas been considered is when LI R. = 0, i.e. , a step. 

ii) For large length ratios (L/ R. > 1) a considerable portion of 

the Fourier transform curve lies at frequencies wL//gh1 >l 

where the reflection coefficient is essentially zero. Hence, 

when the multiplication of the two functions takes place, 

the high frequency components of the incident wave are 

reduced to zero and, since it is these high frequency com­

ponents which affect the peakedness of the wave, the reflected 

wave is less peaked than the incident wave. 

iii) Because the reflection coefficient curves are similar in 

shape but displaced vertically in Fig. 5.38(b), the shape 

of the reflected wave for a particular length ratio is almost 

independent of the depth ratio. However, the amplitude of 

the reflected wave for a particular length ratio is propor­

tional to the reflection coefficient at w = 0 which is a 

function of the depth ratio. 

The transition between the two extremes of length ratio described 

in i) and ii) above is illustrated in Fig. 5.39 where the reflected 

waves predicted by the linear nortdispersive theory for a depth ratio 

of h1/h2 = 3 are plotted for length ratios of L/R. = O, 0.25, 0.5, 1, 2, 
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Fig. 5.39 The waves reflected when a solitary wave propagates up 
various slopes as predicted by the linear nondispersive 
theory. 
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4 and 8. In the table alongside the figure the quantities shown are 

as defined previously except for the length L* which is defined as 

the distance between points in the wave where the ratio n/H > 0.01, 

i.e., the length occupied by the upper 99% of the wave; thus, L~/Li 

is the ratio of the length occupied by the upper 99% of the reflected 

wave to the corresponding length of the incident wave. The abscissa 

is tlg/h1 -x/h1 which means the leading edge of the wave is towards 

the left in the plots (which can be thought of either as time records 

or as profiles with the wave moving to the left). 

For L/ !I, < 1 the shape of the reflected wave is similar to the 

shape of the incident wave and the slope can be thought of as 

relatively abrupt, since it does not affect significantly the shape 

of the wave. However, for length ratios greater than unity, the wave 

shape does change with the reflected wave taking the form of a 

"plateau" which slopes down towards the front of the wave. The higher 

amplitude near the rear of the wave indicates the proportion of the 

wave reflected increases as the wave climbs the slope. 

The similarity of reflected waves for a particular length ratio 

but various depth ratios as discussed previously is illustrated in 

Fig. 5.40 which shows the reflected wave height ratio Ha/H1 plotted 

as a function of the length ratio, L/i, for various depth ratios, 

h1/h2• The curves in Fig. 5.40 appear to have similar shape and, in 

fact, can be collapsed almost to a single curve by normalizing the 

reflected wave height, HR(~), with respect to the reflected wave height 

for a step, Ha(O), as shown in Fig. 5.41. Hence, for this linear 



O,G,.--~~~~~~~~--T"--~~---.-~~--.~~~.--~~~~~-.--~~--.-~~~ 

h/h2= 10. 
0.5 

0 .L! 

HR o.3 

Hr I 
I~"'-'\.""-. ~ 

0.2 

0 .1 

0--~~_,__~~~~~-'-~~_._~~___._~~~~~_._~~~~~-'-~~--' 
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 

L /i. 

Fig. 5.40 Variation of the reflected wave height ratio, Ha/HI, with length ratio, L/~, as predicted 
by the linear nondispersive theory. 

N 



0.6 

0.6 

HR(L/l) 

HR(O) 

0.4 

0.2 

h/h2= 10 

h/h2 = 2 

~-

~ ~ 

0--~~~-~~_._~~---'-~~-'-~~__.~~~~~~~~~~~~~~~~ 
0 o.s 1.5 2 2.5 

L/i. 
3 3.5 lj lj .s 5 

N 
!--' 
w 

Fig. 5.41 Variation of the relative reflected wave height, 1-Ia(L/R.)/HR(O), with length ratio, LU.,, as 
predicted by the linear nondispersive theory. 

.Cv 



214 

nondispersive theory the depth ratio, just like the relative incident 

wave he:ight, H1/hl' is not a parameter in the solution. 

Figure 5.41 shows as the length ratio increases from zero to 

unity the reflected wave height decreases rapidly but as the length 

ratio increases beyond unity the reflected wave height decreases at 

a slower rate. 

The solutions described so far are solutions to the linear non­

dispersive theory in which the relative incident wave height, H1/hl' 

does not affect the shape of the reflecte~d wave. However, in the 

actual physical problem it is expected the relative incident wave 

height would have some influence on the shape of the reflected wave. 

To investigate this, a series of numerical experiments and a series 

of phys:lcal experiments were performed. The numerical experiments 

comprised using the finite element program described in Section 3.3 

for a range of conditions. 

ThE~ physical experiments, in which the objective was to measure 

the wave reflected when a solitary wave propagates up a slope onto a 

shelf, had a number of difficulties which limited their extent. The 

main problems were: 

i) When one wishes to measure two waves, one of which is a tenth 

oic less in height than the other, the accuracy of measurement 

of the smaller wave is considerably less than that of the 

larger wave. For example, if th~~ waves trailing the incident 

wave are 1% of the height, they are negligible with respect 

to the incident wave. However, :for a reflected wave which 
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is a tenth the height of the inddent wave, the trailing 

waves represent 10% of the reflE:icted wave and thus can affect 

the shape considerably. 

ii) As the length ratio increases, Fig. 5.39 shows the length of 

the reflected wave also increase~s. Hence, the length of tank 

upstream of the slope must be large enough to accommodate 

the reflected wave which may be many times longer than the 

incident wave. 

The physical experiments were perfoi:·med for two depth ratios, 

h1/h2 =3.0 and 4.0, and for three slopes, L = 150 cm, 300 cm and 

450 cm, and the step (L = O); the shelf he.ight was 15.54 cm. The 

relativ1: incident wave height was varied from H1/h1 = 0.033 to 0.125; 

the lower bound arose from the difficulty of accurately measuring 

waves w:lth smaller height and the upper bound arose because waves of 

greater height broke on the slope. For a particular slope a four-fold 

increasi~ in the incident wave height halves the length ratio, Lit, 

because 1, it will be recalled, the characteristic length, t, is defined 

-~ as t = L 5 (H1 /h1 ) h1 . Hence, a range of length ratios could be 

covered with one slope simply by varying the incident wave height. 

However, to allow for the effects of incident wave height it was 

necessary to overlap the regions of length ratio which each of the 

slopes c:overed. 

The results of the physical experiments, and the linear nondisper-

sive theory and the nonlinear dispersive theory are presented in 

Figs. 5.42 and 5.43, in which the ratio of reflected to incident wave 
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height is plotted as a function of the length ratio, L/9.,. Figures 

5. 42 (a) and (b) are for the depth ratio h1/h2 = 3; Figs. 5. 43 (a) and (b) 

are for the depth ratio h1/h2 = 4. Figures 5.42(a) and 5.43(a) are 

reflected wave height ratios 1fa/H1 ; Figs. 5.42(b) and 5.43(b) are 

inverse scattered reflected wave height ratios ~ /HI. The solid 
INV 

curves are the linear nondispersive theory; the dashed curves are 

the nonlinear dispersive theory for a relative incident wave height 

of HI/h1 = 0.1. The experimental points have different symbols 

according to the slope which was used, and the numbers beside the 

points are the relative incident wave height HI/h1 • 

The. figures show the difference between the linear nondispersive 

theory and the nonlinear dispersive theory with HI/h1 = 0.1 is small, 

and the experiments show good agreement with the theories, particularly 

considering the problems of accuracy discussed earlier. For the 

experimental data, the data in the overlapping regions described 

earlier exhibit some differences but in such a random manner they 

are assumed to be scatter due to problems associated with experimen-

tal accuracy. Hence, the experimental data seem to indicate the 

incident wave height does not affect the reflected wave for the 

range of relative heights investigated. 

To investigate this further, the finite element analysis was used 

for a depth ratio: h1/h2 = 3 and a range of incident wave heights and 

length ratios; the heights of the reflected waves are compared in 

Tables 5.5(a) and (b), where zero relative incident wave height 

represents the linear nondispersive theory. The tables show the 
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Table 5.5 Reflected wave height ratios, (a) HR/HI and (b) HR /HI' 
INV 

for various length ratios and relative incident wave 
heights for depth ratio h1/h2 = 3. (nonlinear dispersive 
theory) 

~ . 
0.53 
1.03 
1.56 
2.00 

~ R, 

0.53 
1.03 
1.56 
2.00 

0 0.05 

0.218 0.228 
0.152 0.162 
0.110 0.121 
0.0888 0.0980 

(b) ~ /HI 
INV 

0 0.05 

0.137 0.138 
0.119 0.120 
0.101 0.099 
0.0831 0.0884 

0.10 0.15 

0.235 0.238 
0.161 0.165 
0.123 0.123 
0.0978 0.0997 

0.10 1.15 

0.139 0.139 
0.120 0.122 
0.101 0.098 
0.0879 0.0871 
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results for the nonlinear dispersive theory agree with each other 

within 5% which indicates no detectable influence of incident wave 

height on the solution for the range used. However, for this depth 

ratio (hi/h2 "' 3) the maximum incident wave for a nonbreaking wave 

on the shelf, as given by Eq. (5.20), is:: H1/h1 =0.18, which is 

not a very large wave. To increase the size of the incident wave 

but avoid breaking waves on the shelf, the depth ratio was reduced 

to h/h2 = 1. 5; then incident waves with relative heights up to 

H1/h1 = 0.4 could be considered. The results of the analysis, again 

using the finite element formulation, are presented in Table 5.6. 

Evidently, for these extreme cases, the height of the reflected 

wave is dependent on the height of the incident wave, however the 

dependence is only weak, with a fourfold increase in the incident 

wave height resulting in at most a 167. change in the reflected wave 

height ratio. 

The linear nondispersive theory generally predicts lower wave 

heights than the nonlinear dispersive theory and a reason for this 

is shown in Fig. 5.44(a) and (b) where the profiles of two waves 

from th1a experiments and the theories are compared. The ordinates 

in the figures are amplitude normalized with respect to incident 

wave height, n/H1 , so that the reflected waves from incident waves 

of different heights can be compared dire.ctly. The waves from the 

nonlinear dispersive theory for various wave heights are shown as 

dashed t:!urves and apart from small differences which can be attributed 

to numerical effects they predict the same wave profile. However, 
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Table 5.6 Reflected wave height ratios, (a) ~/HI and (b) ~ /HI' 
INV 

for various length ratios and :relative incident wave 
heights for depth ratio, h1/h2 = 1. 5. (nonlinear dispersive 
theory) 

~ fl, 
0 0.1 0. :2 0.3 0.4 

0.26 0.0965 
0.53 0.0849 
1.06 0.0606 
2.00 0.0356 

~~ 
fl, 

0 

0.26 0.0259 
0.53 0.0256 
1.06 0.0244 
2.00 0.0211 

0.0961 0.0928 
0.0845 0.0815 
0.0647 0.0640 
0.0376 0.0389 

(b) lL /H 
--KINV I 

I 
0.1 0. :2 

0.0246 0.231 
0.0243 0.0:225 
0.0233 0.0:219 
0.0202 0.0195 

0.0889 0.0862 
0.0788 0.0764 
0.0638 0.0592 
0.0387 0.0378 

0.3 0.4 

0.0219 0.0211 
0.0215 0.0195 
0.0204 0.0186 
0.0183 0.0170 
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the wave predicted by the linear nondispersive theory has a different 

shape and the difference is attributed to the effect mentioned 

earlier of amplitude and frequency dispersion in the propagation of 

the wave from the slope back to the point where the profile was 

taken. 

The profiles from the two experiments also are plotted in Figs. 

5.44(a) and (b). In Fig. 5.44(a) the data from the experiment agree 

with the theories except in the region of the crest and this differ­

ence is attributed to friction which is not included in either theory. 

In Fig. 5.44(b) the agreement is not as good although the overall 

shape of the wave predicted by the nonlinear dispersive theory also 

is evident in the experimental reflected wave. However, to illustrate 

the problem of accuracy mentioned earlier, an error of 0.01 cm in 

the measurement of the reflected wave becomes an error of 0.008 

in the amplitude n/HI' i.e., an error of about 8% of the wave height 

in Fig. 5.44(b). 

The process of reflection of solitary waves from a slope in most 

cases may be predicted approximately by the linear nondispersive theory 

but th~ nonlinear dispersive theory should be used for propagation 

upstream of the slope. 

5.3 The Transmission of Long Waves over a Change in Depth 

For the purposes of this study the "transmitted wave" will be 

defined as the time-history of the variation of the water surface 

elevation (the wave) at the upstream edge of the shelf. This concept 
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arises fro111 the linear nondispersive theory which predicts this wave is 

in fact the wave measured at any position on the shelf because under 

this theory waves propagate unchanged in shape in a constant depth. 

The prediction of the transmitted wave is a particularly important 

aspect of the problem. Once it is known it can be used as the boundary 

condition of one of the more straightforward theories of propagation 

for waves travelling in one direction only (e.g., the KdV equation) to 

obtain the characteristics of the wave at any position on the shelf. 

5.3.1 The Transmission of Solitary Waves over a Step 

In the experiments described in Section 5.2.1, in addition 

to measuring the incident and reflected waves, the waves at the step 

also were recorded. The data from these experiments are presented in 

Fig. 5.45 where the ratio of the wave height at the step to the incident 

wave height, H.r/HI' is plotted as a function of the relative incident 

wave height, HI/h1 , for various depth ratios, h1/h2 • The vertical 

dashed lines represent the incident wave height at which the linear 

nondispersive theory predicts the wave will break onto the shelf (see 

Table 5.3). In fact, in the experiments, the incident wave height at 

- which the wave broke onto the shelf was not well defined, and in most 

cases the only indication of breaking was irregularities just past 

the crest in the recorded water surface-time history. 

The data exhibit considerable scatter, but for depth ratios 

h1/h2 ~ 3. 5 in the nonbreaking region there appears to be a slight 

trend for the transmitted wave height ratio to decrease with increasing 

relative incident wave height. However, this is not reflected in the 

results of the nonlinear dispersive theory applied to the case of the 
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waves transmitted over the half-sine transition slope. These results, 

which are presented in Table 5.7, indicate no significant dependence 

of the transmitted wave height ratio, HT/H1 , on the relative incident 

wave height, H1/h1 (although the frequency ratio, nT/n1, does vary 

with H1/hl and this will be discussed presently). Hence, the trend 

in Fig. 5.45 is attributed to dissipative effects which increase 

with relative incident wave height. 

Table 5.7 Transmitted waves calculated using the 
nonlinear dispersive theory for h1 /h2 = 3. 

HI HT nT 
~ 

hl HI nr 

0 1.268 1.000 

0.05 1.261 0.973 

0.10 1.256 0.946 

0.15 1.258 0.936 

The data from these experiments and also from the experiments 

described in Section 5.3.1 as the second set of experiments are 

compared with the linear nondispersive theory as given by Eq. (3.114) 

in Fig. 5.46 where the transmitted wave height ratio, Hr/H1, is 

plotted as a function of the depth ratio, h1/h2• The heights of the 
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SYMBOL SHELF DISTANCE NOMINAL REMARKS 
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(cm) (m) 
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wave at the step evidently are less than the theory predicts for the 

entire range of depth ratios which is attributed to dissipative 

effects. The data depart more from the theory for depth ratios 

h1/h2 > 5. (Recall, as mentioned earlier, an incident wave, with a 

relative height of H1lh1 = 0 .1 will break onto the shelf at depth 

ratios h1/h2 greater than 5.) The data from the experiments with 

different shelf heights agree sufficiently well to indicate there 

is no dependence on the actual shelf height. 

Also plotted in Fig, 5.46 are data from experiments in which the 

vertical face on the shelf was replaced by the half-sine transition 

slope. These data lie close enough to the data from experiments in 

which a step was used to indicate the transition has no effect on 

the wave at the step. 

The nonlinear dispersive theory when applied to the case of 

solitary waves with relative height H1/h1 = 0.1 propagating over the 

half-sine transition slope gave transmitted wave heights which are 

plotted as solid circles in Fig. 5.46 within 1% of those predicted 

by the linear nondispersive theory for h1/h2 :£ 3. 

As mentioned earlier when describing Fig. 5.2, the shape of the 

transmitted wave appears the same as the shape of the incident wave, 

as the linear nondispersive theory predicts. To investigate this, 

the transmitted waves for experiments with the depth ratios h1/h2 = 2, 3, 

4, and 10 were digitized and the frequency, n, and wave height, H_ , --xeg 

in Eq. (5.4) were calculated by performing a regression analysis on 

the upper 2/3 of the wave. The results are presented in Fig. 5.47 
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where the ratio of the frequency of the transmitted wave to the fre­

quency of the incident wave, QT/Q1 , is plotted as a function of the 

relative incident wave height, H1/h1 • The data appear to lie about 

a ratio of frequencies QT/QI~ 0. 95 for wave heights HI/h1 ~0.2, 

then the ratio of frequencies decreases as the wave height increases 

with those for larger depth ratios decreasing at a faster rate. 

The linear nondispersive theory predicts QT/QI= 1.00 as denoted 

by the horizontal line in Fig. 5.47. However, the nonlinear dispersive 

theory predicts the frequency ratio decreases with relative incident 

wave height as shown by the experimental data in Table 5.7 which 

also are plotted in Fig. 5.47. 

Unlike the process of reflection, the process of transmission 

of a solitary wave over a step appears to be one in which nonlinear 

effects are important, particularly in the determination of the shape 

of the transmitted wave. 

5.3.2 The Transmission of Cnoidal Waves over a Step 

The results of experiments conducted to determine the wave 

height of cnoidal waves as they propagate over a step onto a shelf 

are presented in Fig. 5.48 where the transmitted wave height ratio, 

H.r/H1 , is plotted as a function of the relative incident wave height, 

H1/h1 , for depth ratios h1/h2 = 3, 3.5, 4 and 10. The numbers beside 

the experimental points are the quantity gH1 T2/hl which, as described 

earlier, is the Ursell Number with wavelength replaced by wave period. 

The vertical dashed lines represent the limits in incident wave height 

for the wave to break or not to break onto the shelf, predicted by the 
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linear nondispersive theory (described earlier) and listed in 

Table 5.3. 

The data exhibit considerable scatter, part of the reason for 

this is the way in which these finite amplitude, periodic waves 

propagate onto the shelf. As the crest passes the step, the flow 

at the step is in the downstream direction, i.e., onto the shelf, 

and as the trough propagates onto the shelf, the flow is in the 

reverse direction, i.e., off the shelf. However, since the waves 

have finite amplitude, the depth of water under the trough on the 

shelf may be reduced to the extent that the flow off the shelf cannot 

be achieved without some irregularities occurring in the trough of 

the wave at the step. (As a crude analogy of this, the process can 

be likened to the flow over a weir.) 

5.3.3 The Transmission of Solitary Waves over a Slope 

The dimensional analysis performed in Section 5.2.3 when 

considering the reflection of solitary waves from a slope also is 

applicable here. Eq. (5.21) becomes: 

HT = (hl L HI) 
H fh '!l,'h I 2 1 

(5.22) 

where ~ is the transmitted wave height, h1/h2 is the depth ratio, 

L/i is the length ratio where L is the length of the slope and JI, is 

-12 the characteristic length of the wave (i = l.5(H1/h1) h1), and H1/h1 

is the relative incident wave height. 

Initially, the effect of the relative incident wave height, 

H1/hl' will be neglected and the linear nondispersive theory will be 
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used to illustrate the effect of the length ratio, L/i, and the depth 

ratio, h1/h2, of the transmitted wave. This is done using Fig. 5.49 

which consists of two parts. Figure 5.49(a) shows the Fourier 

transform of the incident solitary wave which, as shown in Section 3.4, 

for the purpose of analysis, may be considered to be a function of 

the length ratio, L/i, and the nondimensional frequency, wL/lgh1 • 

Figure 5.49(b) shows the transmission coefficient normalized with 

respect to the transmission coefficient K.r(w)/K.r(O), which is a 

function of the depth ratio, h1/h2, and the nondimensional frequency, 

wL//gh1 • The latter have similar shape but have increasing trans-

mission coefficient ratio for increasing depth ratios at large fre-

quencies. 

The technique mentioned earlier for calculating the reflected 

wave from Fig. 5.38 also applies for calculating the transmitted 

wave from Fig. 5.49. Selecting a particular length ratio and a 

particular depth ratio, the corresponding functions of frequency for 

the Fourier transform and the transmission coefficient are multiplied 

together to give the transmitted wave in the frequency domain. To 

obtain the transmitted wave in the time domain the product is multi­

-iwt plied by e and integrated over the frequency range. 

The overall behavior can be deduced from Fig. 5.49 as follows: 

i) For small length ratios, L/i<< 1, (i.e., an abrupt slope) the 

transmitted wave will have essentially the same shape as the 

incident wave because the majority of the frequency range 

where the Fourier transform is nonzero is the frequency range 
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where the transmission coefficient is a constant. 

ii) For large length ratios, L/9v » 1, (i.e., a gradual slope) the 

majority of the Fourier transform will be multiplied by a 

constant transmission coefficient; hence the shape of the 

transmitted wave should be almost the same as that of the 

incident wave in this case also, but the wave height would 

be larger than for the comparable case with small length 

ratio (i.e., L/ 9v « 1). 

The transition between i) and ii) (i.e., the change from an 

abrupt to a gradual slope) is shown in Fig. 5.50. In Fig. 5.50(a) the 

transmitted wave height ratio, HT/HI, is plotted as a function of the 

length ratio, L/9v, for various depth ratios. The figure shows the 

difference in the height ratio for abrupt and gradual slopes is small 

for small depth ratios but increases with depth ratio. As the length 

ratio g.oes to zero the transmitted wave height ratio tends asymptoti­

cally to the value for a step given by Eq. (3.114). As the length 

ratio goes to infinity the transmitted wave height ratio tends 

asymptotically to Green's Law, Eq. (3.116). 

The shape of the transmitted wave may be compared to the shape 

of the incident wave by the following procedure: (i) multiplying 

the incident wave by the wave height ratio, Hr/HI, (ii) lining up 

the crests of this wave and the transmitted wave, (iii) taking the 

difference between the amplitudes, and (iv) squaring the difference 

and summing the squares. For a transmitted wave with exactly the 

same shape as the incident wave, the sum-of-the-squares must be zero; 
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otherwise the sum-of-the-squares is greater than zero and the greater 

the magnitude, the poorer the shape of the transmitted wave compares 

with the shape of the incident wave. The results of this analysis are 

presented in Fig. 5.50(b) where the sum-of-the-squares is plotted as 

a function of length ratio for various depth ratios. For the depth 

ratios considered, the maxima all occur in the range 1.0 < L/R- < 1.5. 

Thus, the linear nondispersive theory predicts, except for a range of 

length ratios close to unity, the transmitted wave has essentially 

the same shape as the incident solitary wave. 

For the linear nondispersive theory considered, the solution is 

not dependent on the relative incident wave height, H1/h1 (although 

it enters indirectly in the definition of the characteristic length, 

R-, as given by Eq. (3.122)). To examine the effect of the relative 

incident wave height on the transmitted wave for a range of conditions 

by physical experiments would have required a large number of experi­

ments with slopes and shelves of various heights each with different 

viscous effects. In this investigation, experiments were performed 

with the 15.54 cm shelf and the slopes described previously, and 

these results were compared with those from the finite element numeri­

cal scheme to justify investigation using numerical methods alone. 

These comparisons will be presented first and the results of the 

numerical experiments later. 

The experiments were conducted for an upstream depth of 

h
1

=31.08 cm, a depth ratio of h1/h2 = 2.0, and for a nominal relative 

incident wave height H1/h1 = 0 .1. Four slopes were used: the half-sine 
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transition slope and the linear slopes with lengths: 150 cm, 300 cm 

and 45Q cm. Each experiment was conducted in three runs. In the 

first run the five wave gauges were placed at various locations along 

the flume and a wave was generated. The resulting displacement of 

the water surface was recorded on both the oscillograph and the A/D 

converter. For the second run, Gauge 1 was placed in the position 

occupied by Gauge 5 in the first run and the other four gauges were 

positioned downstream of Gauge 1. The same wave which was generated 

for the first run also was generated for the second run and the waves 

were recorded in similar manner. This was repeated once more resulting 

in 15 wave gauge records at 13 different locations. The records 

were aligned in time by lining up the wave crests of the records 

from Gauge 5 of the first run and Gauge 1 of the second run and 

Gauge 5 of the second run with Gauge 1 of the third run. 

In the numerical experiments, a wave of the same height as 

was generated in the physical experiments (nominally HI/h1 =0.1) was 

used and the time records at locations equivalent to the thirteen 

locations of the wave gauges were computed. The numerical and physical 

experiments were aligned by lining up, in time, the crests of either 

the first or the second time record (i.e., either Gauge 1 or Gauge 2 

of the first run). 

The results of the four experiments are presented in Figs. 5.51 

to 5.54 which correspond to the half-sine transition, the 150 cm slope, 

the 300 cm slope and the 450 cm slope respectively. The solid lines 

represent the physical experiments and the dashed lines represent the 
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numerical results. The figures are presented in dimensional form 

because, although there are the three lengths: the upstream depth, 

h1 , the slope length, L, and the depth on the shelf, h2, which are 

the important lengths for the three regions: upstream of the slope, 

the slope, and the shelf, none of these lengths is the important 

length for all three regions. 

In Figs. 5.51 to 5.54 the origin of x was taken to be at the top 

of the slopes. The waves at the bottom of each figure, which are 

the amplitude-time history of waves at locations upstream of the 

slope, exhibit the incident wave with its crest at time t~2 sec 

then at time ti:::::6 sec the reflected wave can be seen. As the length 

ratio increases from figure to figure this wave becomes longer and 

smaller as was discussed in Section 5.2.3. As the solitary wave 

propagates onto the shelf, the front face of the wave steepens 

and as the wave propagates a second wave begins to form behind the 

main crest. This process will be discussed in more detail shortly 

but first the physical and numerical experiments will be compared. 

In Figs. 5.51 and 5.53 the waves from the numerical experiments 

appear to be propagating faster than those from the physical experi­

ments, particularly on the shelf. However, this is not true of the 

waves shown in Figs. 5.52 and 5.54; therefore, the apparent shifting 

of the wave records in time which occurs in Figs. 5.51 and 5.53 is 

assumed to be caused by errors in the lining up of the time records. 

It will be recalled, the method used to assemble the three physical 

experiments and the single numerical experiment which comprise each 
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figure involved, for the physical experiments, lining up the record 

from Gauge 5 of one experiment with Gauge 1 of the next experiment. 

Hence, if an error occurred in this procedure, all other records in 

that experiment would be misaligned. The numerical scheme required 

only a single alignment since all the time records were taken from 

a single experiment. An example of misalignment occurs in Fig. 5.51 

where, comparing the shift in time between the physical and the 

numerical waves, the lower four waves appear to be aligned correctly 

but the next five, i.e., at x=O, 0.4, 0.86, 1.3 and 1.66 m, all 

appear to have been shifted by the same amount and the upper four 

waves appear to have been shifted by an even greater amount. 

As the waves propagate, the physical experiments exhibit smaller 

wave amplitudes than the numerical experiments. This is attributed 

to frictional effects in the physical experiments which are not 

accounted for in the numerical experiments. 

Apart from these two effects, the physical and numerical experi­

ments show reasonably good agreement particularly with regard to 

the shape of the waves; the errors in alignment actually highlight 

some aspects of this. For example, Fig. 5.52, i.e., the experiments 

with the 150 cm slope shows the good agreement in the shapes of the 

front faces of the waves while Figs. 5.51 and 5.53, i.e., the experi­

ments with the transition slope and the 300 cm slope, show the good 

agreement in the shapes of the back faces of the waves. In Fig. 5.54, 

i.e., the experiment with the 450 cm slope, the waves appear to be 

aligned better and this shows the overall shapes of the waves in the 
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two experiments agree well except for the difference in amplitude 

which is caused by friction in the physical experiments. 

As mentioned previously, on the basis of the agreement between 

the numerical and the physical experiments, the effect of the inci­

dent wave height on the transmitted wave was investigated by means 

of numerical experiments. For depth ratios: h1/h2 = 2, 3 and 4, 

experiments were conducted to find the time record of the transmitted 

wave for various length ratios, L/~, and for incident wave heights 

of H1/h1 = O, 0.05, 0.10 and 0.15. 

To compare the transmitted waves, the time records at the bottom 

of the slope were aligned as is shown in Fig. 5.55 which is the 

result of a typical set of numerical experiments, in this case for 

a constant length ratio of LI~= 2. 00. Note, the characteristic 

length, ~' varies with the relative incident wave height, H1/h1 , 

therefore a constant length ratio, L/~ implies the slope length, L, 

is different for different relative incident wave heights. The 

abscissa in Fig. 5.55 is the nondimensional time tlgh1 /L and the 

ordinates are the relative amplitude n/H1 • These allow waves of 

different incident height H1 propagating over slopes of different 

length L to be compared because, as the lower figure shows, the waves 

at the bottom of the slope collapse into essentially one profile. 

The solid curve represents the linear nondispersive theory and is 

denoted H1/h1 = 0 to indicate it is independent of the wave height. 

The dashed curves represent the nonlinear dispersive theory for 

various relative incident wave heights, H1/h1 • The maximum wave 
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height considered was H1/h1 = 0 .15 because incident waves higher than 

this resulted in transmitted waves whose height relative to the 

depth on the shelf (i.e., HT/h2) exceeded 0.7. 

The figure shows, for a wave of finite height propagating over 

a slope, both the height and the slope of the front face of the trans­

mitted wave increase with increasing relative incident wave height. 

As was mentioned in Section 3.1, the phenomenon of steepening of 

the front face of a wave is a nonlinear rather than a dispersive 

effect and, as shown in Fig. 3.3, nonlinear effects take place only 

after a certain propagation distance. Hence, the propagation distance 

for the cases shown in Fig. 5.55 must have been sufficient for 

nonlinear effects to develop. Waves with larger heights have 

steeper front faces which implies the propagation distance for non­

linear effects to become important is inversely proportional to the 

relative incident wave height, H1/h1 ; this will be discussed in 

quantitative manner, for waves propagating in constant depth, in 

Section 5.4. 

Further illustration of the effects of wave height and length 

ratio on the transmitted wave is provided by the results of the 

numerical experiments (of which Fig. 5.55 was a typical example) 

presented in Figs. 5.56(a) and (b). Each experiment was for a different 

length ratio, L/2, and comprised four waves with different relative 

incident wave heights. This resulted in a figure similar to Fig. 5.55 

for each experiment but only the transmitted waves are presented in 

Figs. 5.56(a) and (b). 
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In all cases the slope of the front face, i.e., the left face 

of the wave, for the larger waves is greater than for the smaller 

waves. As the length ratio increases for a given relative incident 

wave height, the slope of the front face also increases. For the 

length ratio of LIQ, = 0. 53, which would be considered an abrupt slope 

by the criterion described earlier for the linear nondispersive 

theory, there is evidence of steepening of the front face. This 

indicates, even when the characteristic length of the wave is twice 

the length of the slope, nonlinear effects are important to some 

degree. 

For length ratios less than unity, the transmitted wave height 

ratio, HT/H1 , is almost constant with relative incident wave height. 

However, as the length ratio increases the height increases and this 

is interpreted as indicating the growth in the importance of disper­

sive effects. 

For the transmitted wave resulting from an incident wave with a 

relative height of H1/h1 = 0.15, when the length ratio is L/Jl. = 3.04 

an abrupt change in slope appears in the back face of the wave and 

for larger length ratios this becomes more pronounced. Similarly 

for the wave resulting from the H1/h1 =0.10 incident wave, a change 

in slope appears when the length ratio is L/ SL= 4. 08. However, no 

change in slope is evident in the back face of the waves resulting 

from the incident wave with the relative height of H1/h1 =0.05. 

These changes in slope correspond to the emergence of a solitary 

wave from the main wave and its appearance is interpreted as an 
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indication nonlinear and dispersive effects are becoming equally 

important. This is the area investigated by Madsen and Mei (1969) 

and subsequently by Tappert and Zabusky (1971) and Johnson (1973) 

in which it was assumed the slope of the bottom was gradual, i.e., 

in terms of the parameters considered here, (h
1 

- h2)/L « 1. 

In an effort to quantify these effects, for each of the numerical 

experiments performed, the following quantities were calculated: 

i) the maximum slope of the front face, B= Intl , max 

ii) the wave height, HT' and 

iii) the Ursell Number defined as: 

g~ 
u::: ----- (5.23) 

h21 12 2 nt max 

(which is similar to the Ursell Number defined by Hammack (1972) 

except that the time derivative, nt' is used instead of the space 

derivative, nx). 

To estimate what the difference in the solution would be if the 

linear nondispersive theory were used instead of the nonlinear 

dispersive theory, the relative difference in the maximum slope from 

that calculated by the linear theory, (B - B1 . ) /B1 . , and the relative in in 

difference in the transmitted wave height from that calculated by the 

linear theory, (H.r-HT . )/HT . were calculated. These quantities 
lin lin 

may be interpreted as indicating the relative importance of nonlinear 

and dispersive effects respectively. These data, for a depth ratio 
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of h1/h2 =3, are plotted as functions of the length ratio in Fig. 5.57 

(a) and (b). Figure 5.57(c) shows the Ursell Number defined by 

Eq. 5.23 plotted as a function of the length ratio; this figure will 

be discussed presently. 

The curves in Fig. 5.57(a) and (b) represent the best fit of 

these data and also the data for depth ratios h1/h2 = 2 and 4 (which 

are presented in Appendix F) as given by the following expressions: 

(5.24) 

(5.25) 

Differences between the numerical results and the corresponding 

empirical expression (Eq. (5.24)) in Fig. 5.57(a) are primarily due 

to the fact that data for all values of h1/h2 (see Appendix F) were 

used to derive Eq. (5.24) whereas only those data for h1/h2 = 3 are 

presented in Fig. 5.57(a). The relative differences predicted by 

Eqs. (5.24) and (5.25) are compared to the actual data in Fig. 5.58(a) 

and (b). The scatter exhibited there is attributed to the approximate 
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nature of Eqs. (5.24) and (5.25) rather than to errors in the data 

which, it will be recalled, are from numerical experiments. Eqs. 

(5.24) and (5.25) may be used to give order-of-magnitude estimates 

of the conditions under which it is necessary to use the nonlinear 

dispersive theory rather than the linear nondispersive theory. For 

example, for a length ratio of L/'l = 2.0 and a depth ratio of h1/h2 = 3,0, 

for the nonlinear analysis to be different by 10% from the linear 

analysis, the following relative incident wave heights would be 

required: H.rlh1 ~0.021 for the slope of the front face and HT/h1 ~ 0 .19 

for the wave height. 

In Fig. 5.57(c) the Ursell Number at L/'l=O is approximately 

the Ursell Number of the incident wave multiplied by (h1/h2) 2 • As 

the length ratio increases, the Ursell Number of the transmitted 

wave decreases which corresponds to the transmitted wave becoming 

more like a solitary wave for which the Ursell Number defined by 

Eq. (5. 23) is 2. 25/ (1 + HT/h2) • The appearance of the changes in 

slope of the back face of the wave mentioned earlier occur when 

the Ur sell Number is U ~ 9. 

The transmission of solitary waves over a slope, in general, 

requires numerical solution of the nonlinear dispersive theory. 

However, in some circumstances, which can be determined using Eqs. 

(5.24) and (5.25), the simpler and more straightforward linear 

nondispersive theory may be used. 
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5.4 The Propagation of Long Waves on the Shelf 

5.4.1 The Propagation of Solitary Waves on the Shelf 

As a solitary wave propagates over a step onto a shelf, 

it was shown in Section 5.3.1 the wave height and frequency of the 

transmitted wave are of the same order as the incident solitary wave. 

Hence, using the Ursell Number defined by Eq. (5.23), the Ursell 

Number of the transmitted wave is approximately the Ursell Number of 

the incident solitary wave multiplied by (h1/h2) 2 • Therefore, since 

the Ursell Number of the transmitted wave is not the Ursell Number 

of a solitary wave of the same height, the transmitted wave must 

change its shape as it propagates. Furthermore, since the Ursell 

Number of the transmitted wave is greater than the Ursell Number 

of the solitary wave of the same height, nonlinear effects will be 

more important than dispersive effects in the propagation. As was 

shown in Section 3.1, when nonlinear effects are greater than linear 

effects, the front face of the wave begins to steepen, (i.e., 

In I and In I increase). However, as this occurs the Ursell t max x max 

Number given by Eq. (5.23) decreases and thus nonlinear effects 

become relatively less important. In this section, this phenomenon 

is examined for the particular case of a transmitted wave with the 

form: 

(5.26) 

Of particular interest is under what conditions and for what distance 

of propagation do nonlinear effects dominate. 
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For a transmitted wave given by Eq. (5.26) propagating ort a 

shelf with a depth h2, the Ursell Number defined by Eq. (5.23) 

becomes: 

(5. 27) 

There are two extremes to be considered: 

i) If the Ursell Number is small enough for a linear theory 

to apply, then for this linear theory the propagation is 

not dependent on the actual wave height, HT. (One way this 

can take place is if h2 > h1 , i.e. , if the wave propagates 

into deeper water.) 

ii) If the Ursell Number is large enough for the nonlinear 

nondispersive theory to apply, it can be shown the propaga-

tion is not dependent on the frequency, nT, and the 

independent variables, x and t, can be normalized with 

respect to the frequency nT and the depth h2 (for details 

of this and other aspects of the nonlinear nondispersive 

theory of propagation of sech2 waves, see Appendix E). 

Hence, if the linear dispersive theory applies, propagation is 

dependent on the frequency nT but independent of the wave height HT. 

Conversely, if the nonlinear nondispersive theory applies, propagation 

is dependent on the wave height HT but independent of the frequency 

nT. Between these extremes the nonlinear dispersive theory applies 

(represented by the KdV equation) where propagation is dependent on 
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both the frequency nT and the wave height HT. 

To investigate these effects experiments were conducted using 

the results of Section 5.3.1, with the incident solitary wave height, 

HI, and the upstream depth, h1 , adjusted to give a range of relative 

wave heights, HT/h2, and nondimensional frequencies, nTlh2/g, for 

the transmitted wave. The wave propagating on the shelf was then 

recorded at eight locations downstream of the step. The desired 

wave heights and frequencies of the transmitted waves were 

~/h2 = 0.10, 0.30 and 0.50 and nTlh2/g = 0.10, 0.13 and 0.15 respec-

tively. Of these nine experiments, only eight could be conducted 

because in the case of HT/h2 = 0.50 and nTlh2/g = 0.10 the depth on 

the shelf was too small (h2 = 3 cm). 

The actual wave heights and frequencies are presented in Table 5.8 

along with other experimental data. These include the distance 

between the locations at which the wave was recorded, ~x, and the 

Ursell Number of the transmitted wave, U
0

• This Ursell Number varies 

from U = 5. 5 which is 2. 2 times that of the solitary wave of the 
0 

same height to U
0 

= 57 .4 which is 17 times that of the solitary wave 

of the same height. 

The time records i.e., the variation of the water surface eleva-

tion with time, at various locations are presented in Figs. 5.59, 5.60 

and 5.61 for the desired relative wave heights HT/h2 = 0.10, 0.30 and 

0.50, respectively. The ordinates are the amplitudes normalized with 

respect to the depth h2 and the abscissas are the nondimensional time 

tlg/h2 • The distance between the locations at which the waves were 
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Table 5.8 Details of the experiments for propagation of solitary 
waves on the shelf, shown in Figs. 5.58 to 5.60. 

Expt Desired Desired hl h2 HI b.x Measured Measured uo 
No HT/h2 n~ (cm) (cm) (cm) (cm) HT/h2 nT~ T g 

1 0.1 0.15 34.55 19.01 2.01 45.0 0.106 0.148 5.5 
2 0.1 0.13 29.63 14.01 1.48 45.0 0.108 0.126 10.1 
3 0.1 0.10 24.41 8.87 0.92 45.0 0.109 0.091 14.3 
4 0.3 0.15 22.50 6.96 2.21 22.5 0.330 0.135 25.8 
5 0.3 0.13 21.42 5.88 1. 77 22.5 0.304 0.117 31. i' 
6 0.3 0.10 15.37 4.15 1.22 22.5 0.322 0.084 57.4 
7 0.5 0.15 20.61 5.07 2.51 22.5 0.519 0.130 42.3 
8 0.5 0.13 19.79 4.25 2.05 22.5 0.512 0.112 48.8 

recorded is listed as x/h2 and also QTx/tgh2 • The latter quantity 

is of interest because as is shown in Appendix E if the propagation 

were predicted by the nonlinear nondispersive theory, the shape of 

the waves would be similar for waves with the same initial relative 

height, HT/h2, at equal values of nTx//gh2 • In fact, inspection of 

the figures, particularly Figs. 5.60 and 5.61 where the relative 

distances defined by nTx//gh2 are approximately the same, shows the 

shape of the waves are similar as the nonlinear nondispersive theory 

predicts. However the increase in the height of the crest with 

propagation distance evident for each experiment in Figs. 5.60 and 

5.61 is not predicted by the nonlinear nondispersive theory and 

hence must be caused by the interaction of nonlinear effects and 

dispersion. To find the distance over which the nonlinear nondisper-

sive theory applies, the waves at x/h2 = 0 were propagated by this theory 
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and by the nonlinear dispersive theory (i.e., the KdV equation) and 

compared with the experiments. The comparisons for the experiment 

with desired relative wave height H.rfh2 = 0.5 and desired nondimensional 

frequency nTlh2/g=0.15 which are considered typical are presented 

in Figs. 5.62 to 5.64, where the experiment is represented by the 

solid curves and the theories by the dashed curves. The nonlinear 

nondispersive theory is not presented in Fig. 5.64 because it predicts 

the wave breaks at x/h2 ~ 29 and the theory is invalid after this 

occurs. In addition to the nonlinear nondispersive theory and the 

nonlinear dispersive theory, the linear nondispersive theory also 

is presented. As mentioned earlier the latter predicts the shape 

of the wave remains the same and the wave propagates with celerity 

c = lgh2• Figure 5.62 shows the nonlinear dispersive theory and the 

nonlinear nondispersive theory are almost coincident for the initial 

13.3 depths from the step and both predict a greater celerity than 

the linear nondispersive theory. The experimental data follow the 

nonlinear theories better than the linear theory but have a smaller 

wave height and smaller front face slope, Intl , than the nonlinear max 

theories predict. Some reasons for this will be discussed presently. 

Figure 5.63 shows as the wave propagates further onto the shelf 

the results from the two nonlinear theories diverge; i.e., the 

nonlinear nondispersive theory predicts the wave height will remain 

constant but the front face of the wave will continue to steepen 

until the wave breaks, while the nonlinear dispersive theory predicts 

the wave will begin to transform into a series of solitary waves. 
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--- EXPERIMENT 
- - - LINEAR NONDISPERSIVE THEORY 
- - NONLINEAR NONDISPERSIVE THEORY 
- - --- NONLINEAR DISPERSIVE THEORY 
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Fig. 5.62 Comparison of waves measured experimentally with those 
calculated by various theories at locations given by 
x/h2 = O, 8.88 and 13.31. 
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EXPERIMENT 
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calculated by various theories at locations given by 
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The experimental profiles again exhibit a smaller wave height and 

smaller front face slope, but notice at x/h = 26. 63 the experimental 

wave height is slightly greater than the wave height predicted by 

the nonlinear nondispersive theory and on the back face of the wave 

there is a small trough indicating a second wave is beginning to 

emerge. 

In Fig. 5.64 the nonlinear nondispersive theory is omitted 

because it predicts the wave breaks between x/h2 = 26.63 and 31.07. 

This figure shows there is a considerable difference between the 

results of the experiment and those of the nonlinear dispersive 

theory; some possible reasons for this are proposed as follows. 

As the wave propagates from deep water into shallow water one 

would expect boundary layer separation to occur on the shelf close 

to the step. To investigate this, the water in the region of the 

step was mixed with fine aluminum powder, a wave was generated and 

the resulting motion of the aluminum particles was photographed. The 

results for an incident solitary wave of height HI= 2.0 cm propagating 

from a depth h1 = 20. 5 cm into a depth h2 = 5. 0 cm (a) over the step 

and (b) over the half-sine transition slope are presented in Fig. 5.65. 

The photographs were taken at intervals of ~ sec, and from left to 

right show the leading edge, the crest and the trailing edge of the 

wave propagating onto the shelf. The still water level is denoted 

in each photograph by the horizontal line. For the step, the region 

of separation appears to grow to be about 60% of the depth on the 

shelf. However, this is reduced to about 20% of the depth when the 



(a) 

( b) 

Fig. 5.65 Viewa of the separation caused by a solitary wave propagating 
over (a) the step and (b) the half-sine transition. 
(h1=20.50 cm, ~2 = 4.96, H1 = 2.0 cm) 
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half-sine transition slope is used. 

To examine the effect the different regions of separation have 

on the height of the wave as it propagates, experiments were conducted 

with the step and with the half-sine transition and the changing 

height of the waves as they propagate was compared. The results are 

presented in Fig. 5.66 where for four different depths on the shelf 

the relative wave height, H/h2, is plotted as a function of the 

relative distance from the edge of the shelf, x/h2 • For each of 

the experiments the incident solitary wave had a relative height of 

H1/h1 = 0.1. The transmitted waves, i.e., the waves at x = O, evidently 

have almost the same height for the step as they do for the half-sine 

transition. In fact, as is shown in Table 5.9 which compares the 

transmitted wave data, the shape of the transmitted waves in the 

form of the transmitted wave frequency, nT' also is essentially the 

same for the step as it is for the half-sine transition. Thus, as 

was noted in Section 5.3.1 the transition slope has no effect on the 

transmitted wave. However, for the smaller depths, i.e., h2 = 7. 77 

and 6.22 cm, the height of the wave propagating on the shelf which 

had propagated over the half-sine transition increases faster than 

the wave which had propagated over the step. This reflects the effect 

of the different extents of the zone of boundary layer separation 

shown in Fig. 5.65. 

In addition, dissipation due to friction on the sidewalls and 

the bottom which would be expected to be common to waves both from 

the step and from the half-sine transition causes the wave height to 



H 
11;-

0.6 

0.5 -

0.4 r 

0.3 -

0.5 .... 

0.4 .... 

0.3 .... 

0.4 -

0.3 .... 

! 

0.2 -

0.30 .... 

0.25 -

0.20 -

0 

272 

I I I 

0 STEP 
D HALF· SINE TRANSITION 

0 

0 
0 

0 

8 0 0 
0 0 

0 

0 0 
0 a 0 

B 0 
0 0 

8 c9 8 
a 8 8 a B B 

B 

gQof]g98 
gB 

g g 8 

I I I 

10 20 

I u h2 (cm) 

0 
0 

0 -0 

- 6.22 

-

-
0 0 

0 - 7.77 0 

-

-

8 a 8 8 g 
8 - 12.43 

-

-

88 0 

B 0 - 15.54 

-
I I 

40 50 60 
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Table 5.9 Comparison of the transmitted wave data for the experiments 
presented in Fig. 5.66. 

hz HT/h2 nTlh2/g 

(cm) STEP TRANS STEP TRANS 

6.22 0.393 0.385 0.138 0.135 
7.77 0.331 0.339 0.144 0.142 

12.43 0.246 0.246 0.201 0.193 
15.54 0.218 0.217 0.193 0.192 

be less than the theories predict. The cumulative effect on the shape 

of the wave which friction may have is postulated in the following way. 

If the shape of the wave is changing in a way which is proportional to 

the wave height, and the wave height is decreasing because of friction, 

then the shape of the wave will be different than if friction were absent. 

Hence, the differences between experiment and theory exhibited in 

Fig. 5.64 are attributed to dissipative effects. Thus, in view of these 

problems and of the difficulty of accurately prescribing the transmitted 

wave, further analysis of the propagation of a sech2 wave was conducted 

by analytical means. As mentioned earlie~ for some distance from the step 

the nonlinear dispersive theory and the nonlinear nondispersive theory 

appear to predict the same results. However, the theories eventually 

diverge and the distance which the wave has travelled when they diverge 

a given amount represents the propagation distance necessary for disper-

sive effects to become important. To find this distance it was necessary 

to propagate waves with both theories and determine the location at 

which they diverged. For this study the location of the divergence of the 
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theories was defined as the point at which the Ursell Numbers defined 

by Eq. (5.23) became different by 10%. The Ursell Number was used 

because it is sensitive to changes in both the maximum slope of the 

wave, Intl , and the maximum wave amplitude, n • The latter is max 'l!la.X 

of particular importance because the nonlinear nondispersive theory 

predicts the amplitude of the crest remains constant, hence any change 

in the crest height indicates dispersive effects have become important. 

However differences in the maximum slope of the wave also indicate a 

difference in the theories so its effect needs to be included also. 

The problem of comparing the two theories for waves given by 

Eq. (5.26) with various heights and frequencies is simplified 

considerably by recalling that the nonlinear nondispersive theory is 

independent of the nondimensional frequency nTlh2/g • Hence, for a 

particular relative wave height ~/h2 the solution is the same for 

all frequencies, nT/h2/g, providing the independent variables x and t 

are normalized with respect to the frequency (i.e., QTx/lgh2 and nTt 

respectively). The propagation distance over which most of the 

numerical experiments were conducted was the distance the nonlinear 

nondispersive theory predicts the wave will travel from the point at 

which its time record is given by Eq. (5.26) to the point at which 

the maximum slope, Intl , is infinite, i.e., the wave breaks. This max 

distance, denoted xb' is plotted as a function of the relative wave 

height, HT/h2, in Fig. 5.67 where the ordinate is the normalized 

distance nTxb//gh2 • The relationship plotted in Fig. 5.67 cannot 

be expressed in closed form (see Appendix E) ; however, for HT/h2 < 0. 05, 
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Theoretical variation of the distance a sech2 wave 
propagates to breaking, nTxb/lgh2 , with relative wave 
height, H.rlh2• 
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the curve in Fig. 5.67 is essentially linear and is given by the 

relationship: 

Q x (H )-0. 99 
__!__l ~ O. 93 h T 
lgh2 2 

(5.28) 

The significance of Eq. (5.28) for waves with small height, i.e., 

H.rfh2 < a. 05' will be discussed presently. 

Comparisons of propagation by the two theories for relative wave 

heights H.rfh2 = 0.1, 0,3 and 0.5 are presented in Figs. 5.68, 5.69 

and 5.70 in each of which the quantity UQ~ h2/g is plotted as a func­

tion of the propagation distance normalized with respect to the 

distance to breaking, x/xb. The ordinate, UQf h2/g, where U is 

defined by Eq. (5.23), can be thought of as an Ursell Number in which 

the time used is the normalized time QTt, since: 

(5.29) 

In each of the figures the lower curve corresponds to the nonlinear 

nondispersive theory. (Using the ordinate, Qfh2/g, this is a single 

curve for all values of the frequency QT.) The theory predicts the 

quantity UQ~h2/g decreases as the wave propagates which corresponds 

to the front face of the wave steepening, i.e., lntlmax increases. 

Eventually UQ~h2/g becomes zero when the front face becomes vertical 

and the wave breaks. 

The other curves in the figures are the variation of UQih2/g 
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Fig. 5.68 Theoretical variation of the Ursell Number, UQfhz/g, with 
propagation distance, x/xb, for an initial relative wave 
height of HT/hz = 0 .1; nonlinear dispersive and nondispersive 
theories. 



0.5 

0.4 

0.3 

0.2 

0.1 

278 

H n~ =0.287;. =I0.71 _T =030 
h2 . s gh2 

NONLINEAR 
NONDISPERSIVE ~ 

THEORY 

0.2 0.4 0.6 
xix b 

0.8 

ils 4n?i2 Xd Xd 
-- --
ilr g Xb h2 

1.0 0.506 0 0 

2.0 0.127 0.22 4.6 

4.0 0.032 0.50 21.0 

8.0 0.008 0.70 58.8 

1.0 
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theories. 
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with propagation distance calculated by the nonlinear dispersive 

theory for frequencies relative to the frequency of the solitary 

wave, Q , of QT/Q = 1., 1/2, 1/4 and 1/8. s s These correspond to 

waves which are less peaked than the solitary wave of the same height. 

Clearly, if the wave at x = 0 is a solitary wave, the nonlinear 

dispersive theory predicts the quantity UQ~h2/g will remain constant. 

However, Figs. 5.67 to 5.70 show if the frequency of the wave at 

x = 0 is less than the frequency of the solitary wave of the same 

height, the quantity UQ~h2/g decreases as the wave propagates. This 

corresponds partly to the steepening of the front face of the wave as 

for the nonlinear nondispersive theory but, in addition, dispersive 

effects cause the wave height to increase (as was evident in Figs. 

5.60 and 5.61); the combination results in UQ~h2/g increasing relative 

to the nonlinear nondispersive theory for the same propagation distance. 

The curves tend asymptotically to the value of UQ~h2/g for a solitary 

wave (denoted UsQ~h2/g) which is reached when the leading wave emerges 

from the group. UsQ~h2/g is listed in the column at the right of 

each figure. 

The distance to the point at which the theories diverge by 10%, 

xd' (i.e., the propagation distance for dispersive effects to become 

important) is presented in the tables in Figs, 5.68 to 5.70 as xd/h2 

and xd/xb. From the data, an approximate relationship for xd/h2 as a 

function of the relative wave height, HT/h2 and the relative frequency, 

QT/Qs' can be determined. Using regression analysis, the expression: 
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xd ....., .(ns )1. 31 (HT)-o. 88 
h ....., 1.68 n -1 h 

2 T 2 
(5.30) 

was found to give the best fit of the data, with coefficient of 

determination of r 2 =0.9988. This equation along with the numerical 

data used to obtain it are plotted in Fig. 5.71. 

For a solitary wave propagating onto a shelf, if it is assumed 

the frequency, QT' and the height, HT, of the transmitted wave are 

the same as those of the incident wave, as was shown to be approximate-

ly true in Section 5.3.1, the ratio of frequencies is given by 

(5.3l(a)) 

ar, in terms of the incident wave: 

xd (h·l )1.31 (hl)-0.88 .(HI)-0.88 
-:::::1.68 --1 - -
h2 h2 h2 h1 

(5.3l(b)) 

The use of Eqs. (5.30) and (5.31) is restricted to the range of the 

data used to obtain them, i.e., 0.1,=s. Hrlh2 .=s. 0.5 and nT ~ ns. (It was 

not realistic to generate data for waves with relative heights 

HT/h2 < 0.1 because the distance to breaking, which is given by 

Eq. (5.28) in this case, becomes prohibitively large and the numerical 

solution of the nonlinear dispersive theory requires thousands of time 

steps instead of the hundreds of time steps required for waves with 
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Fig. 5.71 Theoretical variation of the distance for dispersive effects 
to become important, xd/h2, with relative wave height, 
HT/h2. 



283 

For the sech2 waves considered, the distance for nonlinear effects 

to become important can be calculated in a manner similar to the way the 

distance for dispersive effects to become important was calculated. 

This involves propagating a wave by the linear nondispersive theory 

and by the nonlinear nondispersive theory and finding the distance, 

xn' for the quantities UQih2/g to become different by 10%. Recall, 

the linear nondispersive theory predicts the wave retains its'original 

shape, hence for this theory UQ~h2/g is constant. For the nonlinear 

nondispersive theory, the propagation distance for UQih2/g to change 

by 10% can be expresses analytically but not in closed form (see 

Appendix E). Hence the nondimensional distance QTxn//gh2 is 

presented graphically as a function of the relative wave height, 

H.rfh2, in Fig. 5.72. Notice the similarity in the shape of the curve 

to that of the curve in Fig. 5.67 which is for the nondimensional 

distance to breaking QTxb//gh2 • As for that curve, the curve in 

Fig. 5. 72 is essentially linear for ~/h2 < 0.05 and is given by the 

approximate relationship: 

(5. 32) 

Comparison with Eq. (5.28) for the distance to breaking shows the 

distance for nonlinear effects to become important is approximately 

1/20 of the distance to breaking, i.e., xn~xb/20. 

To summarize the results of this section, when a wave of sech2 

shape propagates onto a shelf, initially, for a distance xn (given 
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Theoretical variation of the distance for nonlinear effects 
to become important, QTxn/fgh2 , with relative wave height, 
HT/h2· 
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by Fig. 5.72 or Eq. (5.32) the linear nondispersive theory applies; 

but if the propagation distance exceeds xn the nonlinear nondispersive 

theory must be used. This theory is applicable for a propagation 

distance xd (given by Fig. 5.71 or Eq. (5.30)) when the nonlinear 

dispersive theory must be used. 

5.4.2 The Propagation of Cnoidal Waves on the Shelf 

As cnoidal waves propagate over a step onto a shelf, the 

period appears to remain constant (for a simple proof of this for 

linear waves, the interested reader is referred to Ippen (1966) p. 21), 

and it was shown in Section 5.3.2 the height of the transmitted wave 

is approximately the same as that of the incident wave. Hence, the 

Ursell Number, defined as gHT2 /h2 , increases by a factor of (h1/h2) 2 

as the waves propagate onto the shelf. However, as was shown in 

Fig. 3.4 in Section 3.1, a particular Ursell Number completely defines 

the shape of the cnoidal waves in terms of the relative amplitude, 

n/H, as a function of the relative time, t/T. Thus, since the trans­

mitted waves have an Ursell Number different from that of the cnoidal 

waves of the same shape, the transmitted waves cannot be cnoidal 

waves. Therefore, since only cnoidal and solitary waves propagate 

with permanent form, the shape of the transmitted waves must change 

as they propagate on the shelf. 

To investigate the way in which this takes place, experiments 

were conducted in which cnoidal waves were generated in a depth of 

h1 =20.23 cm and allowed to propagate over a step onto a shelf where 

the depth was h2 =4.69 cm. The waves were recorded at five locations: 



286 

at the step and at 1.0 m intervals downstream on the shelf. The 

resulting oscillograph records are presented in Fig. 5.73 which shows 

three experiments in which the relative height of the transmitted 

waves was kept constant at HT/h2 =0.28 and the period was varied 

(Tlg/h2 = 42.1, 57.1 and 77.4) and in Fig. 5.74 which shows three 

experiments in which the period was kept constant at Tlg/h2 = 57.1 

and the relative height of the transmitted wave was varied (HTh2 =0.16, 

0.28 and 0.50). 

In Fig. 5.73 which shows the experiments in which the wave height 

was held constant, the transmitted waves (i.e., x/h2 =0) for each 

experiment evidently have different shape; the amplitude of the trough 

decreases from 50% of the wave height for the record at the left 

of the figure (i.e., for Tfg/h2 = 42.1) to 35% of the wave height for 

the record at the right of the figure (i.e., for Tlg/h2 = 77.4). The 

transmitted waves are approximately symmetrical about the crest, but 

21.3 depths downstream, for the three cases the front face of the waves 

is steeper than the back face. At x/h2 =42.6 secondary troughs appear 

on the back face of the waves and as the waves propagate secondary 

waves emerge in a manner similar to what was seen to occur for solitary 

waves (e.g., see Fig. 5.58) except that in this case the wave groups 

are periodic and there is a trough below still water level. Although 

the number of waves emerging is different for each experiment, the 

development of the secondary waves appears to be similar for each 

experiment, namely, the front face steepens and secondary troughs 

emerge on the back face after the same distance of propagation in each 

case. 
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In addition, although the shape of the waves at x/h2 = 85 .3 is 

different for each experiment, the height of the waves measured from 

the main crest to the main trough is the same (H/h2 = 0. 30) and the 

amplitude of the main trough is 23% of the wave height for all three 

experiments. This is somewhat surprising because, it will be recalled, 

the amplitudes of the troughs of the transmitted waves varied from 

50% of the wave height to 35% of the wave height. It may be inferred 

from these experiments the wave period governs the number of secondary 

crests which emerge but it is the wave height which determines the 

manner in which the waves propagate. 

This is illustrated further in Fig. 5.74 which shows the records 

of the experiments in which the period was set at Tlg/h2 = 57 .1 and 

the wave height was varied. In these experiments also, the transmitted 

waves have different shape but in each case the waves are approxi­

mately symmetrical about the crest. As the waves propagate, the front 

face steepens then secondary troughs appear on the back face of the 

waves and finally secondary waves emerge. The height of the trans­

mitted waves approximately doubles between each experiment and it is 

interesting to compare the shapes of the waves after they have 

propagated distances proportional to the inverse of the relative height 

of the transmitted wave, i.e., x/h2 a: (HT/h2)-1 • For example, comparing 

the waves at x/h2 = 85. 3 of the record at the left (HT/h2 = 0.16) with 

those at x/h2 = 42.6 of the record in the center (HT/h2 = 0. 28) with 

those at x/h2 = 21.3 of the record at the right (HT/h2 = 0.50), the 

shape of the waves appears similar with a secondary trough just 
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beginning to emerge on the back face of the wave. Similarly comparing 

the waves at x/h2 = 85. 3 of the record in the center with those at 

x/h2 = 4 2 • 6 of the record at the right, the shape in this case also 

appears similar, with three crests evident and a number of other 

crests emerging. Hence, as was found for the case of solitary waves 

propagating onto a shelf, when cnoidal waves propagate onto a shelf 

the propagation distance for nonlinear and dispersive effects to 

occur is approximately proportional to the inverse of the relative 

wave height. 

The numerical solution of the nonlinear dispersive theory, in 

principle, is no different for this problem than for the case of 

solitary waves propagating on the shelf. However, the discretization 

interval, i.e., the time step, must be made small enough to describe 

each wave emerging in the group. Hence, for wave groups which break 

up into many waves, the time step must be made small, which implies 

large numbers of calculations. An example of the numerical solution 

of the nonlinear dispersive theory for cnoidal waves is presented 

in Fig. 5.75, where the theory is compared with a portion of the 

experiment shown at the right in Fig. 5. 74, i.e., for ~/h2 = 0.50. 

The experiment and the theory agree quite well with regard to the 

leading wave, however the theory predicts the emergence of secondary 

waves on waves further back in the group occurs more rapidly than 

observed in the experiment. One possible reason for this is the 

dissipative effects which were mentioned earlier when considering 

solitary waves propagating on the shelf. In spite of these effects 

the overall behavior agrees between experiment and theory. 
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5.5 Waves Propagating Off the Shelf 

Although it is outside the scope of this investigation, the 

process of waves propagating from shallow into deeper water over a 

step is presented for a single case to demonstrate one way by which 

it can be treated. 

In an experiment similar to that shown in Fig. 5.2, a solitary 

wave was generated and allowed to propagate over a step and onto the 

shelf. The reflected wave from the shelf was trapped by dropping a 

gate after it had passed. The main wave reflected off the rear wall 

of the tank and propagated back towards the step separating into a 

group of solitary waves in a manner similar to that shown in Fig. 5.2. 

Wave gauges were located at the step and at four other locations 

2.4 m apart in the region downstream of the step where the depth was 

h1 = 21. 73 cm. The waves were recorded on the oscillograph and on an 

A/D converter and are presented as the solid curves in Fig. 5.76. 

The wave group at the step (x/h1 = O) consists of four solitary waves 

and a tail which gradually decreases in amplitude and from which more 

solitary waves may have emerged if propagation in constant depth had 

continued. In fact, the depth increased abruptly to be 3.5 times 

that on the shelf. Hence, for any of the waves within the group, 

the Ursell Number given by Eq. (5.23) was reduced to 1/12 (i.e., 

(h2/h1) 2) that on the shelf. Thus, dispersive effects became more 

important than nonlinear effects and this is reflected in the wave 

records as the group propagated in the deep water. 
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The dashed curves in fig. 5.76 are the linear dispersive theory 

and were calculated from the wave record at x/h1 ::: 0 using the disper­

sion relation in Eq. (3.15), The shape of the waves predicted by the 

.theory agrees well with the experiment, particularly for the longer 

waves at the front of the train as would be expected since the disper­

sion relation, Eq. (3.15), is a valid approximation for long waves only. 

However, there is a difference in time between the theoretical and the 

experimental time records with the theory predicting a greater celerity 

than the experiment exhibits and the difference increases with propa­

gation distance. The reasons for the time shift are not understood but, 

apart from this, the behavior is predicted well by the linear dispersive 

theory. 

5.6 Application of the Results to the Tsunami Problem 

In this section, the results presented in previous sections 

are applied to the problem of a tsunami propagating onto the con­

tinental shelf. 

A typical cross-section of the continental slope off the coast 

of California is shown in Fig. 5.77 where, for clarity, the vertical 

scale has been distorted; the continental slope off New Zealand has 

similar characteristics. The depth in the deep ocean varies from 

2700 to 3900 m with an average of 3500 m. Defining the start of the 

continental shelf to occur where the contours begin to increase 

their spacing markedly, the depth on the shelf at the shelf-break is 

found to be about 1000 m. Hence, the ratio of the depth in the deep 
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ocean to that on the shelf-break, h1/h2 , varies from 2.7 to 3.9. The 

length of the slope, L, varies between 11 and 90 km with an average 

of 30 km. 

h1 
2700 to 3900 m 

Avg.= 3500m 

DEEP 
OCEAN 

100 to 300km 
TO COAST 

I ... 

CONTINENTAL 
SHELF 

CONTINENTAL 
SLOPE I 

L 
II to90km 

Avg.= 30km 

I 

Fig. 5.77 Schematic drawing of the continental slope off the coast 
of California. 

A problem in applying the results of this chapter to the tsunami 

problem is that each tsunami is unique; the form it takes depends 

both on the earthquake which generated it and on its propagation 

from the generation region. Furthermore, three-dimensional effects 
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in the propagation, which were not considered in this investigation, 

probably are important. 

An assumption sometimes made in the analysis of tsunamis is 

that the tsunami takes the form of a solitary wave. In fact, 

Hammack and Segur (1974) show this will be true only if the initial 

wave has non-negative net volume and the wave has propagated a 

sufficient distance for the solitary wave to emerge. However, if 

the initial wave has negative net volume, no solitary waves will 

emerge and if it has zero net volume solitary waves may or may not 

emerge depending on the detailed structure of the initial wave. 

Furthermore, Hammack and Segur (1978) postulate that the maximum 

distance of propagation possible across any ocean is not sufficient 

for solitary waves to emerge. Hence, the assumption of a tsunami 

having the form of a solitary wave may not be accurate. However, 

both tsunamis and solitary waves are long waves; therefore, the 

behavior of both is described by the long wave equations and it is 

on this basis the application of the results of the present study 

to tsunamis is made. 

To apply the results, some assumption must be made with respect 

to the wave height of the tsunami in the deep ocean near the slope. 

Following the example used by Hammack and Segur (1978), incident 

wave heights, HI' of 0.35 m and 3.5 m will be considered. Assuming 

the depth in the deep ocean is 3500 m this implies relative incident 

wave heights, H1 /hp of 1 x lo-4 and 1x10-3 , respectively. 
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Fior reflection, as was shown in Section 5.2, the linear 

nondispersive theory and the nonlinear dispersive theory agree 

well except for large waves propagating over small depth ratios. 

Hence, the reflection coefficient for the linear theory as shown in 

Fig. 5.40 is applicable to the assumed height of this example. Thus, 

for a depth ratio, h1 /h2, of 3.5, the reflected wave will have 30% 

of the volume and up to 30% of the height of the incident wave near 

the shi:lf. 

As will be recalled from Section 5.3, the transmitted wave is 

best p1redicted by the nonlinear dispersive theory; however, if the 

linear nondispersive theory is used, the difference between the 

theoriE~S in the slope of the front face of the wave and in the wave 

height are given approximately by Eqs. (5.24) and (5.25). In 

Table 5.10 these differences are presented for solitary waves with 

heights of HI= O. 35 m and 3. 5 m propagating over slopes with lengths 

of L = 10 and 100 1an for a depth ratio of h1/h2 = 3. 5. As the table 

shows, for this example, the differences are so small the linear 

nondispersive theory can be used. (For the nonlinear dispersive 

theory to be necessary, i.e., for there to be a 10% difference in 

the slopes, the incident wave height, HI' would have to be 175 m.) 

Eqs, (5.24) and (5.25), developed for solitary waves, are 

applied to an arbitrary wave to determine the characteristic length, 

fl,, which would be necessary for the theories to be different by 1%. 

Inspection of the equations indicates the difference will be a 

maximum when the length ratio and the wave height ratio both are 
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Table 5.10 Relative differences between the theories in (a) the 
slope of the front face and (b) the transmitted wave 
height for tsunamis which are solitary waves. 

~ L (km) 

(m) 10 100 

0.35 6. 7 x 20-6 3. 9 x io-5 

3.5 2.4x10-4 1.4 x io-3 

~ L (km) 

(m) 
10 100 

0.35 3.0x 10-a s .6x10-1 

3.5 3.1x10-6 6.0xlO-S 
I 
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maximum, hence, the characteristic length calculated will represent 

the maximum length for the theories to be different by 1%. Using 

a depth ratio of h1/h2 = 3. 5, a relative incident wave height of 

Hr/h1 = 1x10-3 and a slope length of L = 100 km, the maximum charac­

teristk length is 9., = 13 km. Thus, for tsunamis with characteristic 

lengths greater than 13 km, which it is expected will be the case, 

the linear and nonlinear theories are different by less than 1%. 

Thus, the transmitted wave probably will be predicted by the linear 

nondispersive theory. Referring to Fig. 5.50, since the maximum 

length ratio of the slope relative to the wave is L/9v = 0.06, 

(corresponding to a slope length of L = 100 km and a solitary wave 

height of Hr = 3. 5 m) the slope is considered abrupt. This implies 

the shape of the transmitted wave is the same as that of the incident 

wave and the amplitude is scaled by the transmission coefficient 

given by Eq. (3.114). (!<.r=l.30 for h1/h2 =3.5). 

For sech2 waves propagating on a shelf with constant depth, the 

distance to breaking predicted by the nonlinear nondispersive theory 

was found to be given by Eq. (5.28). Thus, for an incident solitary 

wave with height of Hr= 3. 5 m which is transmitted in the manner 

described above, the distance to breaking on the shelf where the depth 

is assumed to be constant and equal to 1000 m is xb~l.5x104 km. 

The distance for nonlinear effects to become important was found to 

be xn~xb/20, thus xn~700 km. However, as shown in Fig. 5.77, the 

distance from the continental slope to the coast is only 100 to 300 km. 

Hence, for a shelf with constant depth, the linear nondispersive theory 
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can be used for the propagation of the tsunami from the slope to the 

region near the coast where shoaling begins. (It should be realized 

that d1epth changes on the shelf may be important and shoaling effects 

may take place on the shelf which were not treated in this study.) 

Firom these examples it may be concluded, because of the small 

relative height of tsunamis and their large lengths relative to the 

lengths of the continental slope, the propagation of tsunamis from 

the de4ep ocean to the continental shelf-break and for some distance 

onto the shelf will be predicted as well by the linear nondispersive 

theory as by the nonlinear theories. 
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CHAPTER 6 

CONCLUSIONS 

Th.e major objective of this study has been to investigate, 

experimentally and theoretically, the propagation of long waves onto 

a shelf. The generation and propagation in the laboratory of long 

waves of permanent form have been investigated and the experimental 

results have been compared with the theory. The propagation of 

solitary and cnoidal waves over a step onto a shelf and the propaga­

tion of solitary waves over a slope onto a shelf have been investigated 

experimentally and also theoretically using both the linear nondisper­

sive theory and the nonlinear dispersive theory. (Generally, the 

experimental results indicate the finite element technique used to 

solve the Boussinesq equations predicts the processes well.) A 

single case of solitary waves propagating off the shelf into deep water 

also has been investigated experimentally and theoretically using the 

linear dispersive theory. 

For convenience, the major conclusions drawn from this study are 

arranged in the order in which the results were presented in Section 5: 

The Generation and Propagation of Long Waves of Permanent Form in a 

Constant Depth 

1. The generation of a solitary wave without oscillatory trailing 

waves requires the precise programming of a wave generator (see, 

e.g., Eq. (3.50)). 

2. The shape and celerity of solitary waves generated in the 
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laboratory are predicted well by the theories of Boussinesq, 

Mccowan and Laitone for small relative wave heights (H/h < 0.3). 

However, for large relative wave heights, i.e., H/h > 0.3, the 

shape and celerity of the solitary waves are somewhat different 

from these theories. 

3.. Cnoidal waves also require precise programming of a wave 

generator (see, e.g., Eq. (3.58)); if the trajectory is incorrect, 

SE~condary waves which travel at a different speed from the main 

waves are generated. 

4 .. The shape of cnoidal waves is well predicted by the KdV 

equation, but the experimentally measured celerities are some­

what less than those predicted theoretically. 

5. In the laboratory, the inner waves of a limited group of 

ci::toidal waves propagate over short distances essentially as the 

theory predicts an infinite number of waves would, i.e., without 

change in shape. 

6. The reduction of the height of solitary waves and cnoidal 

waves due to friction is accompanied by corresponding changes in 

the shape of the wave. The effect of friction on the height for 

solitary waves is reasonably well predicted by the theory of others. 

Experiments with cnoidal waves gave similar results as experi­

me~nts conducted with solitary waves. 

The Reflection of Long Waves from a Change in Depth 

7. At a step, the reflected wave measured experimentally is 

described well by the linear nondispersive theory for both 
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solitary waves and cnoidal waves. 

8.. The propagation of the wave reflected from a step for both 

solitary and cnoidal waves is governed by the nonlinear dispersive 

theory. 

9.. The height of the wave reflected when a solitary wave propa­

gates up a slope, for most cases investigated, is predicted as 

WEdl by the linear nondispersive theory as by the nonlinear 

dj~spersive theory. However, the shape of the wave predicted by 

the two theories is somewhat different and the nonlinear 

dispersive theory tends to agree better with experiment. The 

numerical theory predicts nonlinear effects become important for 

waves with a large height propagating onto a shelf with a small 

de~pth ratio. 

The Transmission of Long Waves over a Change in Depth 

10. For a step, from experiment and theory, the height of the 

transmitted wave (for both solitary and cnoidal waves) is not 

a function of the relative incident wave height. However, in 

the case of solitary waves, the shape of the transmitted wave 

is a function of the relative incident wave height. 

11. For solitary waves propagating over a slope, the linear 

nondispersive theory and the nonlinear dispersive theory predict 

different transmitted waves. The difference increases with 

increasing slope length and incident wave height, and hence, the 

nonlinear dispersive theory must be used to describe this aspect 

of the propagation. 
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The Propagation of Long Waves on the Shelf 

12. As a solitary wave propagates over a step onto a shelf, 

close to the step all three theories: the linear nondispersive 

theory, the nonlinear nondispersive theory and the nonlinear 

dispersive theory, predict the same result. However, at some 

distance from the step, the linear nondispersive theory predicts 

a different wave from the nonlinear theories; this distance 

(Eq. (5.30)) is the distance for nonlinear effects to become 

important. At a larger distance from the step the nonlinear 

ncmdispersive and nonlinear dispersive theories predict differ­

ent results; this distance (Eq. (S.32)) is the distance for 

dispersive effects to become important. 

13. As cnoidal waves propagate onto the shelf, each wave splits 

up into a series of waves of different height with the largest 

first. The distance over which the change in shape takes place 

is: inversely proportional to the relative wave height; the shape 

of the waves is related to the nondimensional period (Tv'g/h) of 

the cnoidal waves. 

The Propagation of Waves off the Shelf 

14. As waves propagate off the shelf into deeper water, the 

waves disperse in a manner predicted by the linear dispersive 

theory. An exploratory experimental and theoretical investigation 

indicates the linear dispersive_ theory predicts the propagation 

of long waves from shallow to deeper water reasonably well. 
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The Application of the results to the Tsunami Problem 

15. For tsunamis propagating from the deep ocean, in the 

vicinity of the continental shelf, the relative wave heights are 

probably small; hence, the linear nondispersive theory predicts 

the same results locally as would the m.onlinear theories. 
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APPENDIX A 

Cnoidal Wave Relationships and Numerical Methods of Evaluation 

The four relationships which follow are sufficient to describe 

cnoidaJL waves: 

n = (y t - h) + H cn2 {2K(i-f )!m •} (A.l) 

H 
y t = K(l-m ') (K - E) + h - H (A. 2) 

(A.3) 

, (A. 4) 

where h is the depth, H is the wave height, K and E are the first 

and sec:ond complete elliptic integrals respectively, yt, is the 

distanc:e to the trough from the bottom, L is the wave length, and 

T is the period. The elliptic parameter m has been replaced by its 

complement m' = (1-m), which makes the relationships more cumbersome, 

but is more suitable for numerical evaluation since the parameter m 

can take values as close to unity as, for example, 1-m = 1 x lo-40 • 

Re:lationships A. l, A. 2 and A. 3 were presented by Wiegel (1960) • 

Svendsen (1974) points out an error in Wiegel's expression for celerity 

and presents (A.4) as an alternative. This is also the expression 

for celerity given by Keulegan and Patterson (1940). 

Numerical Evaluation of Elliptic Functions 

Since the complementary parameter m' can be as small as 10-40, 
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the numerical evaluation of elliptic functions for cnoidal waves 

requires different treatment than for most other applications. 

The methods of evaluation given here were extracted from Abramowitz 

and Ste~gun (1965), and represent the most efficient and accurate 

methods: found. 

The first step in computing any of the elliptic function is to 

set up the Arithmetic/Geometric Mean (AGM) scale: 

a = 1 
0 

b = rror 
0 

c = 11- m' 
0 

th 
Stop at the N step, where aN = bN (i.e. cN = 0) to the accuracy 

desired. (Typically, c6 < 10-5 .) 

Fr1om the AGM, the elliptic functions are calculated as follows: 

1. First Complete Elliptic Integral K. 

2. Second Complete Elliptic Integral E. 

3. Jacobian Elliptic Function P = cn(w). 

a) Find ~N = 2N~w in radians. 
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b) Compute successively <PN-l' <PN-Z' --- <Pl' q,
0 

from the 

c) 

recursive relation: 

c 
sin (2<1> 1 - <I> ) = .....!!. sincp n- n a n 

Evaluate P = cn(w) = coscp • 
0 

n 

4. Inverse Jacobian Elliptic Function w = cn-1 (P). 

a) Find cp
0 

from: 

coscp
0 

= P = cn(w) 

b) Compute successively <Pl'<P 2 --- <PN from the recursive relation: 

c) Evaluate: 

The recursive relation is ambiguous by multiples of ~. How-

ever w converges to the exact value from below so the correct <P can 
n 

be found by evaluating w at each step and using: 

5. Se~cond Incomplete Elliptic Integral E(w). 

where <P are those calculated from the recursive relations above. 
n 

Us:ing the relationships A.l to A.4 and the numerical methods 

described above, most cnoidal wave problems can be solved in straight-
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forward manner by computer. However, one important problem that 

requires special treatment is: given H and T, find m '. Iterative 

schemes; (fixed point, Newton's. Rule, Regula Falsi) do not converge; 

hence, an ad hoa trial-and-error scheme was developed. The scheme is 

presented with no claims of elegance. 

For the given H, period can be expressed as a function of m': 

T(m ') = L/c 

The object is to find them' for which T(m') equals the given period 

T, that is: 

T-T(m 1) = 0 

The fit·st step is to compute T- T(m 1 ) for: 

m I= 10-j j = 0 ' 1, 2 ' 3 ' ---

until: 

. -·+1 
sgn(T - T(lO-J)) :f sgn(T - T(lO J ) ) 

Then it is inferred that T-T(m')=O for 10-j~m'~lO-j+l. 

The second step involves finding k1 in: 

and: 

such that: 

m' = k x 10-j 
1 

ffi I = (k + 1) X 10-j 
1 l 

sgn(T-T(m')) f. sgn(T-T(mi)) 
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where k1 is a digit between 1 and 9. 

The third step is to find k2 in: 

and: 

such that: 

sgn(T-T(m')) :f sgn(T-T(m:i_)) 

where k2 is a digit between 1 and 9. 

and: 

The nth step is to find k in: 
n 

' (k + k 10-l + k -a -n+1 -J· m = 1 2 x 3 x10 +---+kn x 10 ) x 10 

m' =m' +10-n-j+l 
1 

such that: 

sgn(T - T(m')) :f sgn(T - T(mi)) 

where kn is a digit between 1 and 9. This process is continued for 

as many times as the number of significant figures required form'. 

To elucidate the procedure, consider an example where 3 signifi-

cant figures are required and it is found that j = 3. Then the required 

m' is one of the 900 numbers between 0.00100 and 0.00999. The second 

step will determine the first nonzero digit after the decimal point 

(k1), the third step will determine the second nonzero digit (k2) 

and the fourth step will determine the third nonzero digit (k3). The 

final result will be m' = 0. OOk1 k2 k3 • 
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APPENDIX B 

The Equation from Boussinesq (1872), the Boussinesq Equations and 

Solitary Waves 

In Section 3.3.1.5, in discussing the accuracy of the numerical 

scheme it was pointed out that although the solitary wave is an exact 

solution of the KdV equation (Eq. (3.22)), it is not an exact solu-

tion of the Boussinesq equations (Eqs. (3.67) and (3.68)). However, 

the original equation derived by Boussinesq (1872) (and also by 

Keulegan and Patterson (1940)): 

n = + h- -+-a
2 

(3n h
2 

) tt gnxx g ax2 2h 3 nxx (B.l) 

does have the solitary wave as an exact solution. 

A question which arises is: how can the Boussinesq equations, 

Eqs. (3.67) and (3.68), and the equation from Boussinesq (1872), 

Eq. (B"l), have different exact solutions if they are of the same 

order of approximation, i.e., O(a. 2 ,a.S, S2), in terms of the parameters 

defined in Section 3.1? 

The answer is found in the early stages of the derivations of 

the equations. In the method used by Boussinesq (1872) and Keulegan 

and Patterson (1940), in evaluating the nonlinear terms in the dynamic 

boundary condition: 

the approximations v ~ 0 and u ~ ~ n are used. Similarly in the 

kinematic boundary condition: 
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(B.3) 

the approximation u ~ ~ n is used. 

Although of the same order of approximation, this is slightly 

different to the approach of Korteweg and de Vries (1895) and 

Whitham (1974) where u and v are expressed as cp and cp respectively x y 

and order of magnitude sorting is done with all the terms included. 

In addition, in deriving Eq. (B. l) the approximation 'Oat ::::::: - fgh aax 

is use.a but it is not necessary to make this approximation in deriving 

the Boussinesq equations, Eqs. (3.67) and (3.68). 
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APPENDIX C 

The Lin1ear Nondispersive Theory for a Single Harmonic Wave 

Thie theory developed here is essentially that presented by 

Wong et aZ. (1964). Using the nomenclature of Section 3.4, the 

variabl1es are normalized as follows: 

x = x*/L t = t* v'gh1 /L. 

h = h*/hl 

Equation (3.108) becomes: 

(C .1) 

Considering only the steady state solution, the time dependence 

of n(x,t) can be separated from the x dependence by assuming the 

solution has the form: 

n(x,t) = ~(x)e-iwt (C. 2) 

Substituting (C.2) in (C.l) results in the nondimensional ordinary 

differential equation: 

(h~ ) + w2 ~ = 0 xx (C.3) 

Referring to Fig. 3.17, the general solutions of (C.3) for 

Regions I, II, and III are: 

Region I: A iwx+A -iwx 
~l = 1 e 2e (C .4) 



RE~gion II: 

RE!gion III: 
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'2 =Bl J~ 1 =w~ lh2 - (1- hz)x) 

+ Bz Yo( 1 :wh2 lhz - (1- hz)x) 

7 = C iwx/ lh2 + C -iwx/ lhz" 
~3 le 2e 

' 
(C .5) 

(C. 6) 

where A1 , A2, B1 , B2, c1 and c2 are constants to be determined and 

J
0

( ) and Y
0

( ) are the Bessel functions of zero order of the first 

and sec:ond kind respectively. 

The 6 constants are determined as follows: 

(1) In Region I the rightward travelling wave is the incident wave 

which has amplitude A. Thus A1 =A. 

(2) In Region III it is assumed that there is no wave travelling 

le:ftward from x = 00 , therefore c2 = O. 

(3) The surface elevation at the boundary of Region I and Region II 

must be the same: 

thus: 

Similarly at the boundary of Regions II and. III: 

thus: 

• (C. 8) 



324 

(4) The surface slope must also be continuous at the boundary of 

Regions I and II: 

r;;l (-1) = r;;2 (-1) 
x x 

thus: 

.(C.9) 

Similarly at the boundary of Regions II and III: 

r;;2 (O) = r;;3 (0) 
x x 

thus: 

,(C.10) 

Equations (C. 7) , (C. 8) , (C. 9) and (C.10), which must be solved 

simultaneously, may be written in matrix form: 

iw -J -Y 0 Az -A e 
0 0 

. iw 
Jl yl 0 Bl Ai i.e 

= (C.11) 

0 J * y * 
-1 Bz 0 0 0 

0 Ji* Y1* -i cl 0 

where 

J = J ( 2w ) 
0 o 1-h2 

y - Yo( ) 0 

Jl - J1( ) 
yl - yl ( ) 



and 

Defining: 
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J * 
0 

= J ( 2w 
- 0 i-h2 ~) 

y * = yo( ) 0 

Ji*= 3i( ) 
Yi* = Y1( ) 

S = -J *Y - J Y * + J *Y + J Y * 
0 1 0 l 1 0 1 0 

y = Jo *Yo - Joyo* - J 1*Y1 + J 1y1 * ' 

8 = J *Y - J Y * + J *Y - J Y * 
0 1 0 1 1 0 1 0 

the determinant of the matrix in (C.11) is: 

iw 
ti = e (a. + iS) 

The solution of (C.11) is: 

A2 r e-iw(y+iO) 

Bl 2(Y
0

* +iY1*) 
A 

= -
Ii 

Bz -2(Jo* -iJ1*) 

-2i (1- h 2) 

cl 
'ITwlhz'" 

(C.12) 

(C .13) 

(C .14) 
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where, in evaluating c1 , use has been made of the identity: 

(C.15) 

The full solution is: 

Region I: nl (x, t) = Ae iw(x-t) + A2 (w)e -iw(x+t) 
' 

(C .16) 

Region II: 

[ 
2w 1 J -iwt + B2 (w)Y

0 1 _ h
2 

vh2 - (1- h2)x e , 

(C.17) 

Region III: ( t) = C ( ) iw(xl./hi.- t) n3 x, 1 w e (C .18) 
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APPENDIX D 

Tests of the Inverse Scattering Numerical Schemes 

S:ince the majority of the waves under consideration in this 

invest:igation were of sech2 shape, the tests performed on the 

numerical schemes described in Section 3.5.3 also were for waves 

with sech2 shape. These waves have the advantage that exact analytical 

results are available for comparison (see Eq. (3.140)). 

It was found for both schemes the wave height H in the initial 

condition: 

n(x,O) = H sech2 kx (D .1) 

did not affect the results. To illustrate this, the results for 

Scheme 2, in which no parameters other than H and k are involved, 

will be presented first and later the results for Scheme 1, which 

involves several parameters, will be presented for one relative wave 

height:, H/h. 

The results for Scheme 2 are presented in Table D.l where the 

ratio of the calculated to the exact height of the leading solitary 

wave is listed as a function of the relative initial wave height, 

H/h, and the wave number relative to that of the solitary wave of the 

same h':!ight, i.e., k/K where K = ~! :3 • The calculated height is 

obtained from the numerical theory discussed in Section 3.5 and for 

purpos,:!s of this comparison the exact height is defined as that given 

by Eq. (3.140). Recall from Section 3.5.2 that for wave number ratio 
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Table D.l Ratio of the calculated to the exact wave height of the 

leading solitary wave using Scheme 2. 

0.10 0.20 0.30 0.40 0.50 0.60 

0.25 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 

0.50 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

1.00 0.9968 0.9968 0.9968 0.9968 0.9968 0.9968 

2.00 0.9562 0.9562 0.9662 0.9562 0.9562 0.9562 

4,00 0.8357 0.8357 0.8357 0.8357 0.8357 0.8357 

8.00 0.7443 0.7443 0.7443 0.7443 0.7443 0.7443 

16.00 0.7139 0.7139 0.7139 0.7139 0.7139 0.7139 

32.00 0.7058 0.7058 0.7058 0.7058 0.7058 0.7058 

64.00 0.7037 0.7037 0.7037 0.7037 0.7037 0.7037 

128.00 0.7032 0.7032 0.7032 0.7032 0.7032 0.7032 
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k/K > 1 only one solitary wave emerges and for k/K < 1 more than one 

solitary wave amerges. The table shows the accuracy of the numerical 

scheme is independent of the relative wave height H/h. However, it 

is depE~ndent on the wave number ratio k/ K and it has an accuracy of 

better than 1% for waves from which more than one solitary wave will 

emerge but an error of up to 30% for waves from which only one solitary 

wave emerges. 

For Scheme 1, it will be recalled, as discussed in Section 3.5.3.1, 

two other parameters must be prescribed: the length, L, defining 

the trigonometric functions and the number of functions, N. For the 

relative wave height H/h=O.l, a number of tests were conducted for 

wave number ratios k/K = 0.25, 0.5, 1, 2 and 4 where, for k/K = 1, 2 

and 4, only one wave emerges but for k/ K = 0. 5, three waves emerge and 

for k/K=0.25, six waves emerge. The results, in the form of the 

ratios of the computed to the exact wave heights, are presented in 

Table D.2 where (a) is for k/K = 1, 2 and 4, (b) is for k/K = 0.5 and 

(c) is for k/K = 0.25. The results are listed as functions of the 

length ratio L/L where L = 10. 6/k (which was used because s s 

sech25 .. 3 = 1x10-4) and for (a) 20 trigonometric functions were used 

while for (b) and (c) 50 functions were used. The tables show there 

is an optimum length, L, for maximum accuracy. For waves from which 

a single solitary wave emerges, Table D.2(a) shows a good rule of 

thumb :Ls to make the length ratio the same as the wave number ratio 

or, equivalently, put L ~ 10.6/K, i.e., the "length" of the solitary 

wave of the same height as the initial wave. For waves from which 
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Table D.2 Ratio of the calculated to the exact heights of the emerging 

solitary waves using Scheme 1. 

(a) N = 20. Single wave emerges. 

~ 1.0 2.0 4.0 
s 

0.75 0.9965 
1.0 1.0000 
1.5 1.0000 0.9852 
2.0 0.9979 0.9973 
3.0 0.9949 0.8609 
i+. 0 0.9802 0.9567 
6.0 0.9743 
8.0 0.9507 

(b) N = 50. k/K = 0.5 Three waves emerge. 

L Wave Wave Wave --
L s 1 2 3 

JL. 5 0.9995 0.9996 0.9660 
2.0 0.9995 0.9995 0.9923 
2.5 0.9992 0.9995 0.9953 
3.0 0.9977 0.9897 0.9258 

(c) N=50. k/K=0.25 Six waves emerge. 

L Wave Wave Wave Wave Wave Wave -r.- 1 2 3 4 5 6 
s 

LO 0.9995 0.9995 0.9993 0.9994 0.9966 -3.76 
1.5 0.9993 0.9995 0.9993 0.9998 0.9900 0.0959 
2.0 0.9994 0.9994 0.9979 0.9953 0.9829 0.6161 
2.5 0.9993 0.9955 0.9797 0.9522 0.8563 0.0205 
3.0 0.9941 0.9582 0.8846 0.7158 0.4585 -1.10 
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more than one solitary wave emerge, the best length ratio appears 

to be l~/L ~ 2.0. s 

In using this scheme it was found advisable to allow the number 

of functions, N, to increment until the desired accuracy was reached 

rather than to use a pre-set value of N. However, the computation 

cost increases considerably with N so some upper limit needs to be 

placed on N. 
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APPENDIX E 

The Nonlinear Nondispersive Theory for the Propagation of sech2 Waves 

In this section the solution of the nonlinear nondispersive 

theory as given in characteristic form by Eqs. (3.17) will be applied 

to the particular case of a wave given by: 

n(o,t) = H sech2nt (E.l) 

propagating into still water with a constant depth, h. 

Fo:r the case of waves propagating into still water the method of 

charactieristics simplifies considerably because as shown by, e.g., 

Henderson (1966) the characteristics are straight lines with slope: 

dx 
dt = u + c (E. 2) 

where 

c = .lg(h+n) (E.3) 

and between these characteristics the quantity (u - 2c) is constant. 

Hence, ireferring to Fig. E.l, which shows the x - t plane for the case 

of a wave given by Eq. (E.l); the velocity ii and the celerity care 

constant along the characteristics and the velocity can be expressed 

as a function of the celerity: 

where c
0 

= /gh . 

u=2(c-c) 
0 

(E.4) 
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Fig. E.1 The x - t plane for a sech2 wave propagating into still 
water by the nonlinear nondispersive theory. 
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Substituting Eq. (E.4) into Eq. (E.2) gives: 

dx 
dt = 3c-2c

0 ' (E. 5) 

and since the celerity c is constant along the characteristics 

Eq. (E.5) can be integrated to yield: 

or, equivalently: 

x = (3c - 2c ) (t - t) 
0 

x 
t = 3c - 2c + t 

0 

(E .6) 

' (E.7) 

w]J.ere t is the intercept of the characteristic with the t axis and 

thus n(t) = n(o,t). Eqs. (E.6) and (E.7) are not in the usual func-

tional form because the variables usually considered the independent 

variables, x and t, are expressed as furn~tions of the variable usually 

considered the dependent variable, n, instead of vice versa. However, 

it is found more convenient to use the solutions in the form of Eqs. 

(E.6) and (E.7) because of their relative simplicity. 

The time slope of the wave, nt' is found by differentiating 

Eq. (E.7) partially with respect tot to yield: 

- 2 ac at 1 = -3x(3c- 2) -+­
Clt at 

. an dn at and, using the relation at" = df at" , one obtains: 

1 ~-1 
1.!J. = ~ [1-l:it -n~ ~ (3c - 2c )-2 (1 +.n.)-~ 
at dt 2 1h dt o h 

(E.9) 

• (E .1.0) 

Eq. (E.10) is applicable to any wave, n(t), but for the case~ of 
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a wave given by Eq. (E.l), Eq .. (E.10) becomes: 

For a sech2 wave the front face of the wave steepens as it propagates 

while the back face flattens a.s is indicated by the converging and 

diverging characteristics in Fig. E.l. Breaking occurs at the location 

where the front face of the wave becomes vertical, i.e. , where the 

d · · an h" h h h i · h b k erivative -at= 00 , w ic occurs w en t e express on in t e rac ets [ ] 

in Eq. (E .11) is zero. Notice, that for this theory the wave height, 

H, remains constant even at breaking. This is because the celerity 

and the velocity are constant along the characteristics which ar~e 

straight lines. The actual point of breaking is where the front face 

first becomes vertical, i.e. the minimum x for the expression in 

brackets to be zero. This minimum x, denote!d the distance to br~eaking 

and defined as xb' is found by algebraic manipulation of Eq. (E.11) 

to be: 

"x ( )k )!: a& b 1 H 2 H - 2 

-==-(c2-1)-1 _;. (-+l-c2 (3c -2) 2c 
./gh 3 . * h h * * * 

, (E.12) 

where c* is the root of: 

4c~ -3(~ + 3) ci- 2(~+ i)c~ + 9(~ + i)eo -2(~+ i) 0 ,(E.13) 

which lies in the interval 1 < c* < ~ 1 + ~ ~ 
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The maximum absolute slope, In I , at any location in the 
t max 

interval 0 ~ x .$ xb is: 

l+H-c2 _3nx (3c -2)-2c-l -( )
-!a ]1 

h * v'gii' * * 
(E.14) 

where c* is the root of: 

(E .15) 

~~1 which lies in the interval 1 < c* < 'l .L -r h . 

The location at which the front face r1;aches a particular 

maximum absolute slope, Intl , is: max 

ilic 
r:-= (3c - 2)c 

vgh * * 

where c* is the root of: 

(E.17) 

which lies in the interval 1 < c* < M· 
Notice in Eqs. (E.12) to (E.17) the explicit dependence on the 

frequency, n, can be removed by normalizing the independent variables, 

x and t, to be nx/lgil and fat 1~espectively. Hence, the frequency, Q, 

like the depth, h, is an independent parameter. 
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APPENDIX F 

Table F.l Solitary waves transmitted over a slope: the difference 
between the linear nondispersive and the nonlinear 
dispersive theories. 

L/R- h/h2 HI/hl 
~-~lin S- slin 
-H--

8
un Tlin 

o. 0.50 0.002 o.c10 
0.530 3.000 0.100 0.002 0.150 

0.150 0.002 0.210 

0.050 0.001 0 .140 
1.030 2.000 0.100 0.001 0.340 

0.150 0.010 o.540 

o. 050 0.030 0.420 
1.030 4.000 0.100 0.060 0.950 

0.150 0.100 1.530 

0.050 0.010 0.180 
1. 560 3.000 0.100 0.020 o.4oo 

0.150 0.040 0.630 

o.oso 0.001 0.140 
2.000 2.000 0.100 0.020 0.340 

0.150 0.050 o.540 

0.050 0.020 0.260 
2.000 3.000 0.100 0.040 o •. 510 

0.150 0.060 0.890 

0.050 0.020 0.410 
2.000 4.000 0.100 0.050 0.930 

0.150 0.090 1.510 

0.050 0.020 o.300 
3.040 3.000 0.100 0.040 o.750 

0.150 0.100 1.230 

o.oso 0.020 0.240 
4.080 2.000 0.100 0.010 o.590 

0.150 0.120 0.930 

o.oso 0.030 o.370 
4.080 3.000 0.100 0.110 0.920 

0.150 o.1ao 1.760 

o. 050 0.050 1.040 
4.080 4.000 0.100 0.23() 3.010 

0.150 0.460 5.530 

o. 050 o. 060 Q.610 
5.130 3.000 0.100 0.150 1.780 

0.150 0.240 2.120 

I 
I 


