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ABSTRACT 

A study is made of the free and forced oscillations in dynamic 

systems with hysteresis, on the basis of a piecewise-linear, non­

linear model proposed by Reid. The existence, uniqueness, bounded­

ness and periodicity of the solutions for a single degree of freedom 

system are established under appropriate conditions using topological 

methods and Brouwer' s fixed-point theorem. Exact periodic solutions 

of a specified symmetry class are obtained and their stability is also 

examined. Approximate solutions have been derived by the Krylov­

Bogoliubov-Van der Pol method and comparison is made with the exact 

solutions. 

For dynamic systems with several degrees of freedom, consis­

ting of "Reid oscillators"~ exact periodic solutions are derived under 

certain restricted forms of "modal excitation" and the stability of the 

periodic solutions has been studied. For a slightly more general form 

of sinusoidal excitation, a simple way of obtaining approximate solu­

tions by "apparent superposition" has been indicated. Examples are 

presented on the exact and approximate periodic solutions in a dynamic 

system with two degrees of freedom. 
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CHAPTER I 

INTRODUCTION 

The present investigation deals with the free and forced 

oscillations of a dynamic system with "linear hysteretic damping". 

The system restoring force is essentially derived from a linear 

spring; however, it is modified by a small additional contribution 

from a "hardening" or "softening" linear spring, depending upon 

whether loading or unloading takes place. The restoring force versus 

displacement characteristic is shown in Figure lb, indicating clearly 

the dependence on velocity also. Alternately, the additional restoring 

force or the deviation from the linear characteristic may be considered 

as a damping force in phase with the velocity, but proportional to the 

magnitude of the displacement. As shown in Appendix I, the energy 

loss per cycle due to hysteresis, sustained by the system under 

sinusoidal vibrations, is proportional to the square of the amplitude, 

but independent of the frequency of oscillation. This fact enables one 

to adopt the system as a model to describe the behavior of hysteretic 

materials. 

The concept of hysteretic damping 

In 192 7, Kimball and Lowell ( 
1

) dis covered that many 

engineering materials exhibit a type of internal damping in which 

the energy loss per cycle is proportional to the square of the strain 

amplitude, but independent of the frequency at which the sinusoidal 

strain is applied. We gel arid Walther <
2

) ·confirmed the dependence on 
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the square of the strain amplitude, but their observations indicated 

a weak dependence on frequency also. Recently, Lazan( 3 ) has shown 

that below the fatigue limit for materials, the hysteresis loss is 

proportional to the square of the strain amplitude, but is essentially 

independent of frequency over a wide range of frequencies. 

Closely following the discovery on the behavior of hysteretic 

materials by Kimball and Lowell, there evolved the concept of 

"linear hysteretic damping" in general engineering practice. 

Caughey(4 ) has remarked on the extensive application of this concept 

to air-craft flutter problems and in vibration theory. The papers by 

Duncan and Lyon(S), Theodore sen and Garrick(b) and the text by 

Scanlan an9 Rosenbaum.(?) give a good account of the work carried 

out on air-craft flutter analysis. 

In the field of vibrations, numerous papers have appeared 

on the subject of "linear hysteretic damping". The first among the 

recent ones was written by Mindlin(S) in 1948; then followed the 

papers by Soroka( 9), Myklestad(lO), Bishop(ll), Reid(lZ)' 

Fraeijs de Veubeke(l 3 l, Knopoff and MacDonald(l 4 ), Lancaster(lS) 

and Caughey(4 ). With the exception of Reid and Knopoff, all the papers 

listed above deal with linear models of "linear hyste retie damping''. 

The various linear models and the basic non-linear model are· briefly 

described in Appendix 1. Reid seems to be the first to have proposed 

this non-linear model, although in his paper he apparently failed to 

realize its essential non- linear character. For convenience, the 

non-linear dynamic system describing Reid's mode 1, sha 11 at times 

be referred to as the "Reid Oscillator" in the present work. 
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Piecewise-linear, non-linear systems 

In the course of analysis, an autonomous or non-autonomous 

second order ordinary differential equation of the piecewise-linear, 

non-linear class is encountered. Loud(lb) has discussed the 

advantages of piecewise-linear, non-linear models of physica~ 

systems over descriptions with non-linearities of cubic and other 

higher degree odd-polynomials, especially when large amplitudes 

are involved or no small parameters are inherent in the system. 

For a dynamic system with two-different spring constants depending 

upon whether the magnitude of the displacement is greater or less 

than unity, he has demonstrated the manifestation of the jump-

phenomenon and of the existence of asymmetric periodic solutions 

even in systems possessing symmetry. 

Fleishman( I?) has analysed a certain relay control system 

of the on-off type; deriving periodic solutions, ultra- and sub­

harmonics he has demonstrated the non-linear character of the 

problem:. More strikingly, he has established the validity of the 

principle of convex superposition to obtain the response for certain 

types of inputs, to the special case of a "non-linear" system, he 

has considered. 

By means of a convergent sequence of Fourier series 

expansions, Maezawa (l S) has solved for a class of periodic solutions 

of a piecewise-linear conservative system, with special reference 

to the performance of ultrasonic machining devices. A certain type 
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of rock drilling operation has been formulated in terms of a slightly 

modified version of the Reid oscillator by Fu(l 9 ), who has examined 

the stability of the periodic solution to the problem. 

Scope of the pre sent work 

The objective of the present study is to examine the existence 

of the periodic solutions of a specified symmetry class, and their 

uniqueness and stability as applicable to a Reid oscillator. Exact 

and approximate techniques shall be used to construct the periodic 

solution with the desired symmetry. For dynamic systems with 

several degrees of freedom, exact periodic solutions have been 

obtained, for certain special "modal" forms of sinusoidal excitation; 

the stability analysis is presented also, in these cases. A simple 

way of obtaining approximate solutions by "apparent superposition" 

has been established for multi-degree of freedom systems, when 

the restriction on the modal form of the excitation i s relaxed. In 

this context, it is anticipated that this attempt shall be a further 

step in the study of piecewise-linear, .non-linear dynamic systems 

with definite engineering applications. 
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CHAPTER II 

THE FREE VIBRATIONS OF A REID OSICLLATOR 

Consider the free oscillations of a mass M attached to a 

"Reid spring" as shown in Figure l. The equation of motion is 

given by 

Mx+ kx{l+g sgn(xx)}=o (2. la) 

x(O)=a, x(O)=O (2. lb) 

where k is the spring constant, g is the "non-linearity parameter" 

and x denotes dx/dt. The "signum" function is defined as 

sgn ( 9) = 

9 >O 

9=0 

9<0 

It shall be assumed throughout 0< g << 1. Let 

T =Wt 

Substituting (2. 3) into (2. 1 ), 

where 

x" + {1 + g sgn (xx')}x = 0 
x(O)=a g x'(O)=O 

I dx 
x =-

dT 

(2 . 2) 

(2. 3) 

(2. 4a) 

(2 . 4b) 

Since the restoring force in (2. 4a) is bounded, piecewise continuous 

and has only finiteg discrete discontinuities , the conditions of the 

Cauchy-Lipschitz fueorem (see Struble (
2

0), page 43) are satisfied 



M 

Figure la 

The Reid Oscillator 

Springs with constant, k 
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F(x) = k x {I + g sgn(xx)} 

A x 

Figure lb 

·Restoring Force vs. Displacement 
Characteristic of the Reid · Oscillator 

Slider mass, M 

Friction plate with coefficient 
of friction, g 

Figure le 

A Conceptual Arrangement 
of the Reid Oscillator 
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and the initial value problem in (2. 4) has a unique solution with x 

and x' continuous in T and the initial values. More details concerning 

this question are presented in Chapter III, while dealing with the 

corresponding non-autonomous differential equation. 

It will also be noticed that if in (2. 4a), x and x' are replaced 

by -x and _.,( respectively, the equation remains unaltered so that it 

is sufficient to consider semi-trajectories only. For 0<T<T1, let 

.,(<O, x>O andx(T
1
)=0. From(2.4a), 

II ) x +(1-g x=O (2. 5) 

Solving (2. 5) for the initial values in (2. 4b), 

x = a cos /y:-g T (2. 6) 

(2. 7) 

and 

(2. 8) 

For r 1 <T<T2 , let x1 <0, x<O and x1 (T
2

)=0. Then (2.4a) becomes, 

x"+(l+g)x=O (2. 9a) 

with 

(2. 9b) 

Henceg for 

(2.10) 

Since 

(2.11) 
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(2.lla) 

And 

(2. 12) 

The symmetry property of (2.4a) implies that T2 = Td/2, where Td 

is the period of damped oscillations, 

,. - 1T d -
[ /f"+g + vr:g} 

~l-g2 

The frequency of damped oscillations is given by, 

21T 2 ~ l-g
2 

w d = ,. d = /1 +g + Ii -g 

For 

g << 1 , wd <:>< ( 1 - % g2
) 

Again from the symmetry of (2. 4a), 

Therefore, 

x(Td) 1-
-- = 2:..:_g 
x(O) 1 +g 

(1.:.B.) =a 1 +g 

The logarithmic decrement o is therefore given• by, 

5 = tn( x(O) ) = tn .!..±& 
x( T d) . 1-g 

For 

g << 1 , 0 """ 2g 

(2. 1 3) 

(2. 14) 

(2. 1 5) 

.(2.16) 

(2. 1 7) 

(2. 18) 

(2. 1 9) 
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For a viscously damped system with damping coefficient j3, 

w """ d 

and 

2 
1-£ 

8 
(2. 2 0) 

Selecting j3=2ghr, would help to make the two decrements o and 5 

equal; however, 

w """ d 

2 
If quantities of O(g ) are neglected, then 

w = w = l; °6= 0 d d 

Thus, if g << 1, the system with the "Reid spring" behaves in almost 

the same way, as a viscously damped system with a damping ratio 

<: =.f- = * , at least as far as the free oscillations are concerned. 
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CHAPTER III 

FORCED OSCILLATIONS IN A SINGLE DEGREE OF FREEDOM SYSTEM 

III. I The Existence of A Unique Periodic Solution 

Consider the forced oscillations of a mass M attached to a 

"Reid spring" and acted upon by a force, F(t). The equation of 

motion is given by, 

Mi+kx{I+g sgn(x:i)}=F(t) 

Let 

Then (3 .1) ~ecomes~ 

Theorem 3 .1 

x(O) = a , x(O) = b 

x"+ x(l+g sgn x~) = f(T) 

x( 0) = a , x' ( 0) = b I w 
n 

(3.Ia) 

(3. I b) 

(3. Za) 

(3. 2~) 

If in (3. Za), f( T) is piecewise continuous and bounded, then 

the initial value problem in (3. 2) possesses a unique solution, with 

x( T) and x'( T) continuous in r and the initial values in (3. 2 b). 

Proof 

Rewriting (3.2) in the matrix-vector notation, 

dx 

dT = 

0 l 

x+ 
-(l+g sgn xx') 0 

~(O) = [ a ] 
b/w 

n 

0 

f( T) 
(3.3a) 

(3.3b) 
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where 

If f('T') is piecewise continuous and bounded, then in any finite region 

of the phase-plane (x-J! plane), 

II h(x, 'T') II~ K (3. 4) 

for any suitable vector norm and an appropriate constant, K. 

Moreover, for any pair of vectors~ and y lying entirely in the upper­

half or in the lower-half of the phase-plane . 

llh(~, 'T')-h(y, r>ll ~(l+g) 11~-yll (3. 5) 

Thus, the conditions of the Cauchy-Lipschitz theorem for a non­

autonomoua system (see Struble (Z 0 >, page 56) are satisfied so that 

a unique solution to (3. 2) exists, the trajectory being continuous in 

'T', a and band can be continued indefinitely or until 'T' ='T' +is reached, 

where J!( 'T' +) = O. But obviously, any segment of the x-axis cannot be 

a part of the solution trajectories of (3. Za); also for a non-constant 

function f( 'T'), a point solution cannot exist. The re fore, ~fte r ,! ( 'T' +) = 0 

has been reached, the solution curve must necessarily enter a region 

(x' ~ 0) 11 where the Lipschitz condition (3. 5) holds, besides (3. 4), so 

that it can be continued further under the same arguments as before. 

Continuity of the solution in the initial values 

The continuous dependence of the solution on the initial data 

follows directly on the application of the Lipschitz condition (3. 5), 

wherever it is satisfied (see Struble(ZO>, page 48). The only difficulty 

arises when the two initial vectors .£1 and .£.z are such that both the 

initial displacements are positive or both negative, but the initial 
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velocities are necessarily of opposite signs. Then the Lipschitz 

condition (3.5) does not hold necessarily, until the velocity of one 

solution changes in sign. 

Since the forward and backward problems are well-posed, 

it would be sufficient to consider the following case, to establish 

the continuous dependence of the solution on the initial values. 

Let x( T) and y( T) be two solutions of (3. 2a) with initial 

** conditions x(O), x' (0), y(O) and y'(O) >0. Also, for 0:::;: T ::;:r g let 

x(T), y(T) >0. However, let 

y(T)>O for O~T<T 

and 

* y1
(T )=0 

>:C 

* >:o,'< 
y(T)<O for T <T< T 

*>:c I *>:C 
Similarly» let x'(r)>O, 0 :s: T< T , with x (T ) = 0. It will be noticed 

that for r* < T < r**, the Lipschitz condition in (3. 5) is not generally 

valid. 

For 

Let 

* 0< T < T , x" + (I + g) x = f { T) g ~( 0) = .£. 

y"+ {l+g)y = f(T), y{O) = c* 

z(O) * * = c-c = d 

Then from (3. 6) and (3. 7), 

z" + ( I + g) z = 0 

* ~(O) = d 

(3. 6) 

(3. 7) 

(3. 8a) 

(3. 8b) 
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Solving (3. 8), 

d* (3. 9) z = 

cos ll +g ,. --
1 

- sin/I +g '!" 
h+g 

-11 +g sin /1 +g '!" co s/"iTg" 'I" 

so that, 

11~( ,.> 11 ~ (2 +g) 11 a>:cll = (2 +g> II~-~* 11 for o ~ -r ::: ,. * (3.10> 

But since y'( 'I"*>= Oo and Ix' - Y
1 

I ::: 11~-.Yll, 

Similarly, 

For 

so that 

with 

I * * Ix(,. >I::: (2+g> II~-~ II 

* * * Ix(,. > - y('l" >I~ (2+g> 11.£-.£ II 

* ** '!" <'!"<'!" , x" + (l+g)x = f('l") 

y" + ( 1- g) y = f (,.) 

(x-y)" + (1 + g) (x-y) = - 2gy 

(3.11) 

(3.12) 

(3.l 3a) 

(3.13b) 

(3.14) 

>:< 
~( '1"*) - y( '!">!') = !:. (3.15) 

being the initial value vector. As before, let ~-y = ~· Then, 

~ = ze* +I Z('!"-s)[ 
0 

. ] ds (3.16) 
J, -2g y( s) ,., .. 

where Z('l") is the principal matrix solution for the homogeneous 

problem in (3 .14) and Z(O) =I, the unit diagonal matrix. Obviously, 

from (3 .14), 
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cos;f+g T 
1 

sin /1 +g 'T 

/l+g 
Z(T) = 

- /l +g sin vf'+g T cos/l +g T 

In particular, 

Therefore, 

'l""'.c* 

~(T**) = Z('l'**)~* + J Z(T**-s) 

T* 

T** 

11 .. ~J T**) II ~ (2 + g) II~* II + 2 g(2 +g) J I Y ( s) I ds 

T* 

(3. 17) 

(3.18) 

However, as already discussed under the proof on the existence of 

solutions, for T* S:T S:T*>.\ IY('T) I is necessarily bounded. Then, 

from (3. 18), 

11~(T**)l1~(2+g)11~*11 +2g(2+g) I y I (T**-T>I<) (3.19) max 

where 

I y max!= max Iv ( s) I 
T* S: s ~ T*'l: 

Moreover, since x'(T) is continuous in the closed interval T* ~Ts: T>l0 l:, 

and £(T} is defined as in (3.13a} in the open inte.rval T*<T<T**, from 

the mean value theorem~ 

x
1
('!**} = x'(r:o.'<} + (T**- T*} X

11
(S) (3.20) 

where 
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In particular, since x"(T) cannot be identically zero, 

.,( ( T**) = 0 implies T** - T* = 

Substituting (3.11) into (3.21) gives, 

* (T*':C-T*)S: (Z+g)ll.s.-.£ II 
I x" < s> I 

From (3.19), (3.22), (3.15) and (3.12), 

x 1(T':C) 

.,(' ( s> 
(3.21) 

(3.22) 

llx(r**)-y(r**)ll s: (2+g)
2 

llc-c*ll + 2g(2+g) IY I (Z+g) llc-c*ll 
- - - - max Ix"( s> I - -

s: (2+g)2{1+2g 1Ymax1} 11.£-.£*11 
· lx"(s>I 

Hence» as Ii.£- ~,,ic II-+ 0, so also, 

Thus the solution depends continuously on the initial values. 

Corollary 3. l 

(3.23) 

(3.24) 

It may be noted that, if in (3. 2 ), f( r) is replaced by 13 f( r) 

and x by 13x = y, then the equation 

y" + [I+ g sgn(yy')} y = 13 f( T) (3. 2 5a) 

y(O) = 13 a , y'(O) = 13 b/w n 
(3.25b) 

has the solution 

y(r) = 13 x(r) (3. 26) 

for any scalar constant 13. 

Theorem 3 .2 

If in the equation 
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x" + (l+g sgn d) x = f('T) (3. 2 7) 

f( 'T) is piecewise continuous and bounded, then all solutions of (3. 2 7) 

are ultimately bounded with, 

2(£0 + e: ) 
lxl ~ g 

where f(O) = sup I f('T) I and e:>O. 
'T 

(3.28) 

Before proceeding to the proof of Theorem 3. 2, it would be 

convenient to derive certain results to be subsequently used in 

comparison. 

Lemma 3.1 

The equation 

x"+(l+gsgnxx')x = f
1 

sgnx (3. 2 9) 

possesses a unique, stable limit cycle, f (f1 ), where f 1 is a constant. 

Proof 

Consider the initial value problem, 

x" + (l+g ~gn x.,/) x = £
1 

sgn x' (3. 3 Oa) 

x(O) = a ; .,/(O) = 0 (3.30b) 

By treating f
1 

as the constant value of a dummy dependent 

variable f*( 'T), a simple extension (see Struble (Z O), page 62) of 

Theorem 3 .1 guarantees the existence of a unique solution to the 

initial value problem in (3. 3 0) with x and,/ continuous in T, a and 

the parameter f 1 . 

Moreover, substituting in (3. 30a), 

I I x = -y , x = -y (3. 31) 
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it is seen that the equation remains unaltered so that it is sufficient 

to consider only semi-trajectories of the motion. 

Let 

x ( T) > 0 , x' ( T) < 0 • 0< T < 'T' l 

with (3. 32) 

x' ( 0) = 0 and x( T 1 ) = 0 

From (3. 30a) 

x"+(l-g)x +f1 =0 (3,33) 

Multiplying (3. 33) by x' and integrating, taking into consideration 

the initial values in (3. 3 Ob) 

(3. 34) 

Since 

(3. 3 5) 

During this interval 

x'! + (l+g)x + f
1 

= 0 (3. 36) 

so that 

1 ,2 1 2 . z x + z (l+g)x + f 1x =constant (3. 3 7) 

Taking into account the initial values in (3. 3 5) and from the continuity 

of x( T) and x' ( 'T'), 

(3.38) 
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Since 

(3. 39) 

For a limit cycle, 

x(T2 ) = -x(O) =-a (3. 40) 

From (3. 39) and (3. 40) 

(3. 41) 

or, for a non-trivial solution, a must be equal to a*, where 

* Zfl a=-g 
(3. 42) 

Thus, if x(O)=a*=2f
1

/g, x'(O)=O, then the trajectory of (3. 30a) passes 

through 

(3. 43) 

and 

(3. 44) 

From the symmetry prop.erty of (3. 30a), it follows 

(3. 45) 

and 

x(2T 
2

) =a* (3. 46) 

Since the solution of the initial value problem is unique, there exists a 

unique limit cycle I'(f1), consisting of elliptical arcs, passing through 

the points, .(a*, 0), (0, -v*), (-a*, 0) and (0, v=-'.<), where 
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* >.'< 2fl 
v =a = 

g 

(3. 34) and (3. 37) are the equations of the elliptic arcs in the 

appropriate quadrants in the lower half of the phase-plane. 

The closed bounded set of points in the x-x' plane, enclosed 

by the limit cycle f(f1 ) shall be denoted by the compact set, O)f1). 

* Since a given in (3. 42 ), is proportional to f
1 

increasing f 1 increases 

the size of the limit cycle. Furthermore, the uniqueness of the 

solution, rules out any two limit cycles intersecting each other or 

having points in common. Therefore, a) 0
0 

(f
1

) c 0
0

(f
2

) for f2 >f1 

and b) the limit cycles f (f ) form a set of nested curves with no points 
l . 

in common. 

Stability of the limit cycle 

To examine the stability of the limit cycle f (f 1 ), consider a 

function G(x) defined by, 

2 2fl x 
G ( x) = x + ( l +g) 

2 
a (l-g)+2f

1
a 

(1 + g) 

For O<g< 1, G(x) has the following properties: 

(3. 4 7) 

a) G(x) ~ 0 ·consistent with (3. 38) to give real values to the velocity 

b) G(O) < 0 

I 
2 f 1 

c) G (x) = 2x + 1 +g , so that 

G'(x) ? 0 accordingly as x ? 
< . < - l+g 

f . 

d) c(- l~g)< G(O) <0, directly from property (c). 



-20-

fl 
G(x)< G(O) , for - l+g ::= x<O 

f . £1 
G(x) >G(- llg).for x < - l+g 

e) G(-a) 
( 

2fl) = Zag a - -g-

(1 + g) 

Therefore 

* 2£1 f 1 
G (-a) > 0 if a > a = g > 1 +g 

* G(-a)<O if a< a 

f) From properties (d) and (e), given above, it is seen that 

G(x).= 0 implies that, 

i) x = x( r 2 ) >-a if * 
2fl 

a >a = -- and 
g 

ii) x = x(r 2 ) < -a * ' if a<a 

From the symmetry property of (3.30) and the observation on x(r2 ) 

in (f) above, it is obvious that if the motion is started at a point 

outside the limit cycle r(fl ), the trajectories will spiral inwards, 

towards the limit cycle; if on the other hand, the initial values lie 

inside the limit cycle, the trajectories will spiral outwards towards 

the limit cycle. Thus the limit cycle r (f 1) is stable. 

Lemma 3.2 

All solutions of Equation (3. 2 ), starting outside the limit 

cycle r (fl) are ultimately bounded in 00 (fl), where fl = fo + e:' 

f = supjf(r)j, e:>O. 
o T 
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Proof 

From (3. 2), 

dx' = - x(l + g sgn xx') + f( T) 
dx -1 (3. 48) 

Therefore, 

dx'I fo 
dx x'=O = ± oo, provided !xi> (l-g) (3. 49) 

Thus, for sufficiently large values of !xi, the axis contains no arc of 

the trajectory. Let x( T 
0

) =a, x' ( T 
0

) = 0 and for T 
0
<T<T1, x' (T) < 0 

x('T') > 0 with x(T 1) = O. Suppose 

1 ,2 1 2 
V = zX + z (1-g) X + £1 X (3. 50) 

Evidently V ::<?: 0 where equality holds if and if only x'= x' = 0. From (3 .50), 

., .,1 I II ) I f I v =xx +(1-g xx+ 1 x 

Evaluating V' along a trajectory of (3. 2). 

v'(3. 2 ) = (£1 -f(r))x'(-r) 

Since suplf(r)!= f <f1 and for T <r<rl' x'(T)<O, 
T o o 

So along a trajectory of (3. 2 ), V decreases and for r 
0
<r<r

1
, 

V(r) - V(r ) ~ €(x-a) < 0 
0 

(3.51) 

(3. 52) 

(3. 53) 

(3. 54) 

Evaluating V' along a trajectory of the comparison equation in (3. 3 0), 

it is seen that, 

v'(3.30) = o (3.55) 

so that along a trajectory of (3. 3 0), V remains constant. 



-22-

For different values of V, the Equation (3. 50) represents a 

one parameter family of ellipses, all with their centers at the same 
f 

point, (- 1 !g, 0) in the phase-plane, and the length of the major axis, 

2 
p =---

/T::g 

IT J2v +-rlg (3. 56) 

and the length of the minor axis, 

(3. 57) 

Since p and q both increase with increasing values of V, the ellipses 

form a set of nested curves, with no points in common. 

For T 0<T<T
1

, along the trajectories of Equation (3. 3 0) V 

remains constant, while V decreases along the trajectories of (3. 2). 

Thus on examining these trajectories, both pass'ing through (a, 0) at 

T=T, it is seen that the integral curves of (3.2) lie closer to the 
0 

origin than those of (3.30), for T
0

<T<Tl' in view of (3.56) and (3. 57). 

Similar arguments, in all the other three quadrants of the phase-plane, 

yield the same result. 

Moreover, from Lemma 3 . 1, 

starting outside the limit cycle r(fl ), 

the trajectories of Equation (3. 30) 

>'.< 
(a>a at T = T

0 
), . spiral inwards 

to the limit cycle; so it follows that the trajectories of (3. 2 ), also 

spiral inwards. If the motion were to be started from points lying on 

r (f 1 ), still for a non-constant function £( T) with sup I£( T) I= f
0 

< f 1 , 
T 

v'(3. 2 )<0 over intervals during which x'f.O; for.,/= 0 and lxl >f0 /l-g, 

the x-axis contains no arc of the trajectory. Therefore, it follows 

that the trajectories of the Equation (3. 2), starting outside r(f1 ), must 

eventually intersect r(f1 ) and enter the interior of 'b (£1 ). 
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Lemma 3. 3 

All solutions of the Equation (3. 2} starting inside the set 

0
0

(f
0

) must remain inside 0 (f1}, where f
0

=suplf(T} I and f 1 =f
0

+ €!, 
o T 

Proof 

If in Equation (3. 50} under Lemma 3.2, f 
1 

were to be replaced 

by f and the arguments carried through, it would be concluded that 
0 

trajectories starting in the annular set (0
0 

(f1 ) - 0
0 

(f
0

} ), never 

intersect r (f 1} and indeed tend to the limit cycle r (f
0

} for Equation 

(3.30} or enter the points interior to r(£
0

} forEquation(3.2), as 

time T increases without bound. 

Consider a trajectory which lies in the interior of the set 

0
0 

(f ) at T =T
0

• Let it be assumed that at a later time T =T2 , the 

trajectory lies outside the limit cycle r (f 1}. Since 0
0
{f 

0
) is a subset 

of 0
0 

(£1} with no boundary points in common, there must exist a time 

T
1

, T
0
<r

1
<T2 , such that this trajectory lies in the annulus (0

0
(£1 ) -

0 (f } ) . But it has already been shown that a trajectory starting in the 
0 0 . 

above annulus can never intersect the . limit cycle r{f1 ) ; therefore, it 

is impossible for the trajectory of (3.2) to leave the interior of 0
0

{f1 ). 

Proof of Theorem 3 . 2 

It is de sired to show that, given f{ T} is piecewise continuous 

and bounded, then 

a} all solutions of the equation 

x" + {l+g sgn xx') x = f{T) 

are ultimately bounded in the set 0
0 

(f
1

} and 
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2fl 
b) Max lx(r)I ~ g' where f 1 =f

0 
+ €, 

r ... oo 

f = sup jf(r)I , €>0. 
0 

r 

The result in (a) above follows directly from Lemmas 3. 2 and 3. 3; 

the result in (b) follows from Lemma 3. 1, where it has been shown 

that on r (f 1 L lxl ~ 2f
1 

I g and the fact that the trajectories of (3 . 2) 

· are ultimately bounded in 0
0

(f1 ) as just mentioned in (a) above. 

Theorem 3. 3 

If in Equation (3. 2 ), f( r) is periodic of period T, besides being 

bounded and piecewise continuous, then there exists at least one 

periodic solution of (3. 2 ), of period T. 

Proof 

By Theorem 3.2, all solutions of the Equation (3.2) are ulti-

mate l y bounded in the . set 0
0

(f1 ) and, in particular, solutions starting 

in n 0(f1) must remain inside n 0 (fl) for all r. 

It has already been shown in Theorem 3. 1, that the solutions 

to the initial value problem in (3. 2 ), namely x( r) and x'( r), exist, 

are unique and continuous in T as we 11 as the initial values. Hence 

there exists a continuous mapping M(T), which maps points [x( '!"), x'(r)] 

in 0
0

(f
1

) into points [x(r + T), x'(r + T)], which are also in 0
0 

(£
1 

). 

Therefore, by the Brouwer's fixed point theorem, (see Saaty(
2

l >, 
page 42) there must exist at least one fixed point [x , x' Jinn (fl). 

0 0 0 

Thus 

[x (r+T), x' (r+T)] =M(T)[x (r), x' (r)]= [x (r), x' (r)] 
0 0 0 0 0 0 

(3.58) · 
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Similarly, 

[x (T+2T), x 1 (T+2T)1 = M(T)[x (r+T), x'(r+T)] 
0 0 . 0 0 

= M(T)[x (T), x' (T)] = [x (T), x' (T)] (3. 59) 
0 0 - 0 0 

So also 

[x (T+nT), x' (T+nT)] = M(T)(x (T+ (n-l)T), x' (T+ (n-l)T)] 
0 0 .- 0 0 . 

= ••• = [x' (r), x' (T)] 
0 o . 

(3. 60) 

Hence there exists at least one periodic solution of (3. 2) of period T. 
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III. 2 Construction of An Exact Periodic Solution 

In this section an exact periodic solution shall be derived to 

satisfy the differential equation, 

x 1
' + (1 +g sgn xx' )x = P sin(WT + cp) (3. 61) 

and also have the property, 

x(T+ir/w) = -x(T) (3. 62) 

Evidently from (3. 61) and (3. 62 ), the excitation and the solution both 

have the same period (2ir /w). During each half-cycle, x( '1') shall 

monotonically increase or decrease and accordingly, x1('1') shall stay 

positive or negative during an entire half-cycle except that at the 

beginning and at the end of the half cycle, x1('1') = 0. These stipulations 

considerably simplify the algebra involved in determining the periodic 

solution. 

At 'I' =O, let x(O) = -A, x'(O) = 0 and that for 0< 'I'< T1 
Ct1T =-, w 

0 <a,< 1, x(T) < 0, x'(T) > 0 with x(T 1) = O. Then from Equation 

(3.61), 

x"+(l-g)x = P sin(WT+cp) 

x(O) = -A, x'(O) = 0 

(3.63) can easily be solved, provided wZ :/. (1-g), to get 

(3. 63a) 

(3.63b) 

x(T)= - Pwcoscp
2 

sin v1":g 'I' -{A+ p sint} cosll-g 'I'+~ sin(w'T'+cp) 
/r:g (1-g-w ) 1-g-w 1-g-w 

(3. 64) 

x'('T)= - Pwco~cp cos/1-g 'I' +.,;1-'g fA+ Psin1} sinvT=g'I' 
1-g-w l 1-g-w 

Pw 
+ ---z,... cos (W'I' + cp) 

1-g-w 
(3.65) 
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At r=r1=a:rr/w, 

x(0.1T/W) = 0 

= - Pwcosp2 sin/1-g o.; _fA+Psini}cos/1-g a.; 
/1-g (1-g-w) l 1-g-w 

+ p 2 sin ( 0.1T + cp) 
1-g-w 

(3. 66) 

1 I ) Pw cos cp ,ir-- 0.1T ,,--( P sin~) . r,--::-_ 0.1T x(0.1T w = - 2 coso-g w + vl-g A+ smvl-g 00 . 1-g-w 1-g-w . 

Pw + _ _...;.;~2 cos ( 0.1T + cp) 
1-g-w 

(3.67) 

Suppose that for a.rr/w= r
1

< r<r2 =TI' /w, x(r) >0, x'(r)>O with the 

condition that x1(1T/w) = 0. Then (3. 61) becomes, 

II ( ) • ) Ci,1T 1T x + 1 +g x = P sm (wr +cp ; - < r< - . w w (3. 6 Sa) 

( 0.,1T) '(0.,1T) x 00 =O;x 00 =b (3.68b) 

where bis given by Equation (3.67). The solution to (3.68) is easily 

obtained by elementary methods (provided w
2 i- 1 +g). 

( "") -( b Pw cos (<p + et1T )) . ~+ ( a.TI') x , - - 2 sin vi -i-g r - -
/i+g /i+g (l+g-w ) w 

Psin(p+a.1T) ;:;-;-.1 + ( 0.,1T) + Psin(wr+cp) - 2 cos v 1 -rg r - - 2 
l+g-w w ltg-w 

(3. 6 9) 

'( ) (b Pw cos (<p +a.TI')) V+ ("' a.TI') X r : - 2 COS V 1 ;-g I - -

(l+g-w ) . w 

+/l+g Psin(p+
2

a.1T) sin/l+g (r- a;)+ Pwcos(w~+<p) (3 • 70 ) 
l+g-w l+g-w 
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21T 
The closure condition for a periodic solution, of period T = w' 
having the symmetry of (3. 62) is that 

x('TT/W) = -x(O) =A, x1(1T/W) = -x'(O) = 0 . 
Thus, 

A=( /ib+g _ Pwcos (cp+a.TI)}sin;f+g (1-a.)'TT 
JI+ g ( 1+ g - w2 ) w 

P sin (cp + 0.1T) ;;-;--+ ( 1- a.)ir + P sin ('TT + cp) 
- 2 cos..; J. ;-g 2-

1 + g- w w l+g-w 

0 =(b- · Pwcos (cp~mr)} cos/l+g (l~0.)1T 
1 +g-w 

+ ~g Psin(cp+a.;r) . ;:;--;--::.+ (1-a.);r + Pw cos(1T +cp) 
.,,. J. ;-g 2 sin \fJ. -rg w 2 

l+g-w l+g-w 

(3. 71) 

(3. 72) 

Eliminating A and b from Equations (3. 66 ), (3. 6 7), (3. 71) and (3. 72 ), 

Therefore 

c cos cp + d sin cp = 0 

e cos cp + f sin cp = 0 

cf - ed = 0 

c e 
tan cp = - d = - T 

(3. 73) 

(3. 74) 

(3.75) 

(3. 76) 

c = J + ___ R_c_o_s_T) _____ _ d = K + ___ Q~c_o_s_T)...:..-----

1 - j ~ ~: sin f3 sin T) 1 - j ~ ~~ · sinf3 sin T) 

R cos@ sin T) e = L - ____ _._ __ ....._ __ 

/1-tg - ·;r:g sin(3 sin T) 

f = M _ Q cos 13 sin Tl 

fi"+g - /f::g sin f3 sin T) 
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J = -Dw cos air cos T) + D ;r+g sin air sin 11 -Dw 

K = Dw sin air cos ri + D /1 +g cos air sin T) 

L = -A 0 sin o + B sin air + C cos air sin 11 cos f3 + D sin air cos 11 cos f3 

M = -B cos f3 + B cos a;r - C sin a;r sin 71 cos f3 + D cos air cos 71 cos f3 

+ Dcosf3 

Q = /r:g B sinf3 - Bw sin a;r + vl-g C sin a;r sin 11 sinf3 

-/1-g Dcos a;r cos ri sinf3 - /1-g D sinf3 

R = -Bw cos f3 + Bw cos a1T - h-:g C cos a1T sin T) sinf3 

- D vf:g sin a1T cos 11 sin f3 

Pw 
AO= 2 

./1-g (1-g-w ) 

B = p 
2 

1-g-w 

n--= 0.1T 
f3=v1-g­w 

C - Pw 
- 2 

D= 

/1 +g (1 +g-w ) 

p 
2 

1 +g-w 

Tl = vr+g (1 - a) ir 
w (3. 77) 

The solution technique used was to give values of g and wand to solve 

equation (3. 75) numerically for a; the "phase 11 cp was then obtained 

from (3. 76) and the "amplitude" A, from Equation (3.66). The values 

so obtained for a, A and cp must be substituted back in Equations 

(3.64), (3.65), (3,69) and (3.70) and it must be verified that sgn(xx')= 

-1, O<r<a;r/w and sgn(xx') = +l in the interval air/w < rr<rr/w to avoid 

extraneous roots obtained in solving the transcendental Equation (3. 75). 

The numerical results are shown in Figures 2 and 3 for three 

values of g=0.05, 0.1 and 0.2 and for win the :t:"ange 0.5<w<3.0. 
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It is to be recalled that w as in Figures 2 and 3 actually refers to the 

frequency ratio w /w , where w is the excitation frequency and w is 
e n e n 

the natural frequency. In the calculations, P was taken to be 1. It 

may be noticed that the phase cp, as defined above, goes through zero 

at resonance; this is to draw attention to the fact that since the exact 

response is not harmonic, cp is not the phase shift between the funda-

mental Fourier component of the solution and the input, nor is A the 

amplitude in the usual sense. 
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III. 3 Stability Analysis of the Periodic Solution 

The existence theorem, Theorem 3. 3, guaranteed the existence 

of at least one periodic solution of period T = Zrr/w, the method of 

construction given in (III. 2 ), yielded a single periodic solution with 

the symmetry in (3 .62). However, this solution is not guaranteed to 

be stable. The question of stability must be examined separately. 

Since Equation (3. 61) is of second order, it is acceptable to examine 

the behavior of any two quantities such as displacement and velocity 

or amplitude and phase to determine the stability of the periodic 

solution. For the dynamic system with single degree of freedom, it 

is found convenient to study the amplitude and phase as defined in 

Section III. 2. 

Let the differential equation of motion (3. 61) be expressed 

in the form 

z' = F (~, r) (3.78) 

and let a particular solution of (3. 78) be 

~ = ~(r) (3. 79) 

If this solution is perturbed slightly, so that 

z = s(r)+s(r) 
-p - -

(3. 80) 

then the original solution in (3. 79) is said to be asymptotically stable 

in the sense of Liapunov, if for any o >0, there exists an e: >0 such 

that for II s(O) II :s; e:, II s(r) II< 0 v r >0 and .£t II s(r) II= 0. In the usual 
- - T""'<X> -

cases, the time-behavior of s ( r) is furnished by the so-called 

variational equations 

s' =MS (3.81) 



where 
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aF.(s, -r) 
1 

as. 
J 

(i,j=l,2) (3. 82) 

Unfortunately, because of the sgn (xx') term in (3. 61 ), the matrix 

M cannot be obtained by classical methods. However, by borrowing 

ideas from error propagation in difference equations, following the 

perturbation at the beginning of a cycle, the deviation from the 

periodic solution can be determined at the end of the cycle. Repeating 

this process over and again, we can follow the propagation (similar 

to change with time) of the initial perturbations from the periodic 

. solution. The stability or instability of the solution is then determined 

by whether or not the deviations from the periodic solution decay or 

grow, as the number of cycles increases without bound (i.e. as -r-oo). 

In general the deviations in amplitude and phase are determined 

by non-linear difference equations. It may be shown, however (see 

for example Masri and Caughey(
22

)) that if the solutions of the 

linearized difference equations are asymptotically stable, then so 

also are the solutions of the non-linear difference equations, provided 

the initial deviations are sufficiently small. 

Let x (-r) denote the periodic solution as determined in the 
0 

previous section, with phase cp , of the differential equation 
0 

x" + ( 1 +g sgn xx')x = P sin (WT+ cp) (3. 83) 

Let the perturbation in the displacement x be £;; suppose that at 

-r=-r, x ('f) =-A, x'(-r )=0, then 
0 0 0 
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x = xo + So= -Ao - D..Ao' cp = cpo +D..cpo} 

I I I 0 i:' A x = x + s = , ':> = -D.. 
0 0 0 0 

(3. 84) 

where D..cp
0 

is the perturbation in cp, D..A
0 

is the perturbation in A 

at T = r 
0

, x and x' denote the displacement and velocity in the perturbed 

state. 

Suppose also that for T
0
<r<T1, x >0, x(T

0
)<0. Let f(x) 

be defined by 

f(x) = (1-g)x , x<O 

(1 +g) x , x>O (3.85) 

The equation of first variation is 

(3. 86) 

while 

(3. 87) 

Multiply both sides of (3. 87) by D..cp
0

/w and differentiate with respect 

to r, 

2[ ' ] [' ] x D..cp x D..cp 
_£__ o o + f'(x ) o o 
dr2 w o w 

= P cos (WT +cp )b..cp 
0 0 

(3 . 88) 

Subtracting (3. 88) from (3. 86) 

~ [s __ x: o_. D.._cp_o] 
dr w 

(3 . 89) 
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Let 

u(T} = s -x' (T} t:..cpo 
0 --

(3. 90) 
w 

Then 

(3.91) 

This is a special case of Mathieu-Hill equation. Let u
1 

and u
2 

be 

two solutions of (3. 91 ), where 

At 

Then 

u 1' ( T } = 1 
. 0 

x'(T )L::..cpo 
T = T u( T ) = S( T ) - o = -t:..A 

0 0 0 w 0 

. L::..cp L::..cp 
u I ( T } = s ' ( T ) - X

11 
( T ) --0 = - X

11 
( T } --0 

0 0 0 w 0 w 

(3. 92} 

(3. 93) 

(3. 94) 

II l::..cp 0 
u(T} = -t:..A Uz(T)- x (T )-- ul('r) (3. 95) 

0 0 0 w 

Suppose that at T = T + .!, + t:.. Tl, x'( T} = x' ( T) + £1
( T) = 0. Then, 

0 w 0 

. I 1T = u(T +1T /w} + u (T +-)t:..Tl 
0 0 w 

= u(T 
0 

+'TT /w) +quantities of second order in t:..r, L::..cp
0

, t:..A 

(3. 96} 
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So at the end of the first half cycle, 

( Tl") II = -t::.A u 2 ,. +- -x ('!") 
. 0 0 w 0 0 

D.cp 
0 

w 
Tr 

ul (,. + - ) 
0 w 

From Equation (3. 87), 

Tr 
At'!"='!"+-, 

0 w 

.,/' ( '!" ) = P sin cp + ( 1 - g) A 
0 0 0 0 

x" ( '!" + !. ) = - { P sin cp + ( 1 +g) A } 
0 0 w 0 0 

/ Tl" ) /( Tl" ) /1 ( Tl" ) /:::. cp 0 S ('!" +- = u '!" +- +x '!" +- --
ow ow oow w 

(3. 97) 

(3. 98) 

(3. 99) 

= -D.A u
2
' (r + !. ) - D.cpo [x11 (r ) u'

1 
('!" + !.) - x" (r + !.)] 

0 ow w 00 0 w 0 0 w 

Tr 
At r=r + - + t::.r1, 

0 w 

x' (,.) = 0 = x' (,. + !. ) + s' (,. + !. ) + [x" (,. + !. ) + s II (,. + !. )] !:::. Tl 
oo w ow oW. oW 

(3.100) 

f:/( Tl") "( Tl")A • • . f d d = ':> T +- +x T +- w.'T' 1 +quantities o secon or er 
0 w 0 w 

Therefore, • 

D.'T' -1 -
X"(T +!.) II ( Tr) 

0 W XO 'T'O + W 

(3.101) 

(3.102) 
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At the end of the half- cycle, Acp1 = Acp0 + wA .,-1 . 

So 

In matrix-vector notation, 

AA
1 

= 
. Acp l 

1T 
-uz(T + -) 

0 w 

x"(.,-) 
0 0 I ( u ,. 

x" (.,. + !_} l o 
0 0 w 

(3.103) 

(3. l 04) 

For the next half cycle, x' < 0, x(T0 + 1T/W + A.,- 1 ) = A0 + AA 1, 

cp=cp
0

+Acp
1

• A similar analysis to that performed for the first half 

cycle shows that 

where 

M = 

1T 
-u.-..('T" + -) c. 0 w 

x" ('1" + 1T) 
0 0 w 

x~( .,.o) ul ( .,.o + ~) 
w 

(3.105) 

(3. l 06) 
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Thus, 

[ :::] = M2 [ :::] 
(3.107) 

'In general, the deviations in the amplitude and phase at the end of 

the nth cycle are given by 

(3. 108) 

A necessary and sufficient conditon that 6.A , 6.cp tend to zero as 
n n 

n tends to infinity is that the eigenvalues of M be less than unity in 

modulus. The eigenvalues of Mare determined form, 

(3.109) 

w • 
where W(T + -) = W(T ) = l is the Wronskian of the solutions of 

0 w 0 

(3.91). 

The solutions u 1, Uz of (3. 91) are easily obtained by 

elementary method. 

w 1 1 
u (T + -) = cos{3 sin Tl + sin{3 cos Tl 

1 0 w /1 +g .;f:g 

ui (T
0 

+ :> = cos{3 cos Tl - sin Tl 

u 2 (T
0 

+ :> = cos{3 cos Tl - j ~~~ sin{3 sin Tl 

~(T0 + :) = -/1-"g" sin{3 cos Tl - /I+g cos{3 sinT"] 

(3. llO) 



-41-

where 

A. - ~ CX.lT - ~+ (1- CX.)lT 
I-' - v l - g , Tl - v l -rg w w 

O<cx.<l, such that x (r +a.lT/W) = 0 as determined by solving 
0 0 

Equation(3.75). FromEquations (3.98), (3.99), (3.109} and(3.110}, 

2 2).. 
A + ( 1 +g )A + P sin cp 

0 0 

r(A + P sin cp ) cos 13 cos T1 L' o o 

P sin cp + ( 1 - g 
2 

)A 
----

0
-----

0
- sinl3. s1n 11 J 

Q 
( 1 - g )A + P sin cp + o o __ 0 (l+g)A

0
+Psincp

0 
-

(3.111} 

With the values of A , co and ex. for the periodic solutions obtained 
0 0 

in the earlier section, it was found that the periodic solutions with 

the symmetry of Equation (3.62) were stable for the values of the . 

parameter g=0.05, 0.1and0.2 for w>0.5. 
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III. 4 A Different Approach to the Stability Problem 

The stability problem, discussed in the preceding section, can 

be formulated in yet another way from first principles, leading however 

to exactly the same results as in Equation (3.111 ). This latter approach 

is found to be more convenient, for instance, in determining the stabil-

ity of the periodic response of dynamic systems with several degrees of 

freedom. So presently, the equivalence of the two methods shall be 

demonstrated explicitly. 

Analysis from first principles 

Once again, let x ( T) represent the exact periodic solution 
0 

constructed in Section III. 2. From earlier discussion it follows 

Moreover for 

x"+(l+gsgnx x')x = Psin(WT+cp) 
0 0 0 0 0 

x (0) =-A 
0 0 

x'(O)=O 
0 . 

'Tl' 
O«r<­

w 

0 < T < CX,11' 
w 

CX,'Tl' < T <'Tl' 

w w 

x' (T) >0 with x' (!..) = 0; 
0 ow 

x (r)<O 
0 

x (r)>O 
0 

., Ct'Tl' x (-)=0 
0 UJ 

'Tl' 
x (-)=A 

ow 0 

Suppose (x + s) is a neighboring perturbed state; evidently, 
0 

(x +s)" +[I+ g sgn [(x +s)(x' +s')J}(x +s) = p sin (wr+cp ) 
0 0 0 0 0 

with initial values, 

x (0) + s(O) = -A + S 
0 0 0 

x' (0) + s'(O) = s' 
0 0 

(3. l 12a) 

(3. l 12b) 

(3.113) 

(3. l 14a) 

(3. l 14b) 
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Subtracting (3. l 12a) from (3. l 14a), 

s"+s+gflx +sl sgn(x'+s')-lx I sgnx'J = o 
0 0 0 0 

(3. 115) 

The asymptotic stability of the origin in the s- s' plane, a singular point 

for the differential equation in (3. 115 ), shall guarantee the stability of 

the periodic solution x ('!"), just as the results in Section III.3. 
0 

Solution during the first half-cycle 

Consistent with the preliminaries in Equations (3. 112 ), (3. 113) 

and (3. 114), during the interval 0::; 'l" s: rr /w, it is necessary to examine 

the non-linear terms in (3. 115) only for three possible situations; 

a) when x~ ... Q and Is'! determines the function sgn (x~ + g') 

. b) when x ... Q and s contributes to or dominates the expression 
0 

c) whenever Ix I andjx' I are predominant, or in other words 
0 0 

lx0 l>>lsl. lx~l>>ls'I 

Case a: x' ... o 
0 

As sand s' are perturbational quantities, consistent with the 

properties of x ('!") as in (3. 113) and assuming s' >0, it can be concluded 
0 0 

that during the entire half-cycle 0 s,. s-rr /w, except during a small inter-

val at the end, about ,. = rr/w, sgn (x' + s') = sgn x' =l. Furthermore, 
0 0 

without loss of generality, one might consider the case, 

with 

x' ('!") + s'(n >0 
0 

(3. l 16a) 

(3. l 16b) 
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and 

x'(r)+i:-'(r)<O, (!!:.+o)<r<
2

1T 
0 ':> w w (3. l 16c) 

1T I 1T 21T 
while x' (r) >0, 0<-r <- and x (T) <0, -<r <-. 

0 w 0 w w 

During the interval ~ <T < (~ + 6), x
0

(r)""" A
0

, its positive 

extremal value, so that lx
0 

+ i; l o..A 
0 

also, during the same period. Then 

fr om (3 • 11 5), 

s*+s+gA {sgn(x'+s')-sgnx'}=O, !!:.<T<(!!:.+o) 
0 0 0 w w 

Expanding (3. l 16b) in a series about T = !!:., 
w 

x~(: )+ x~(1T;). o+e;'(: )+s"(1T;). o+ O(o
2

) = o 

(3. 117) 

(3. 118) 

where a positive superscript denotes that the quantity under considera-

tion shall be evaluated as its limiting value from the right. 

From Equations (3. 112 ), (3. 113) and (3. 117), 

x"(1T+)= -(1-g)A +Psin(1T+cp) = -[(1-g)A +Psincp} ow 0 0 0 . 0 

s"(1T+) = -e;(!!:.)-2gA ""'-2gA w . w 0 0 

Since x'(:)=o, from (3.118), (3.119) and (3.120), 

- S '( ~) + SI ( ~) 
6 = ( +) ( +) = ( l+g)A + P sin cp 

xii 1T + s" 1T 0 0 
0 w w 

omitting quantities of 0( o2 ). Hence 

(3. 119) 

(3. 120) 

(3. 121) 

(3. 122) 
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omitting quadratic and higher terms in perturbational quantities. 

Rewriting (3. 122 ), 

-2gA 

[s'(!!.. + 5)- s'(!!..)J - 0 s'(lT) w w - {l+g)A + Psincp w 
0 0 

(3. 123) 

Similarly, 

= s(:) , correct to terms of o( I s'l
2

) 

(3. 124) 

Hence the effect of the terms sgn (x' + s') and sgn {x') during an interval 
0 0 

when Is' I dominates or is comparable to Ix~ 1. may be interpreted as 

a jump in i;', such that 

+ _ -2gA _ 
'('TT ) '(lT ) 0 '('TT ) S w - S w = ( l+g)A + P sin cp i; w 

0 0 

(3. 125) 

or 
+ ( 1 - g ) A + P sin cp _ _ '(lT ) 0 0 '(lT ) . 13 '(lT ) S w = ( 1 + g ) A + P sin cp S w = S w 

0 0 

where a negative superscript indicates the limiting value from the left, 

of the quantity under consideration. 

The same result as in (3. 125) is obtained if one were to consider 

that (x'+s') attains zero at T= (!!..-5) and is negative subsequently as 
0 UJ . 

against the case in (3. 116). 

Case b: x 0 .... o 

Having considered the effect of the non-linear terms in (3. 115), 

when the velocities (x' + s') and x' are opposite in sign, it remains to 
0 0 

examine the case when they are both positive, which occurs during 

almost the entire half-cycle mentioned above. During this period, the 
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perturbation equation (3. 115) becomes 

(3. 126) 

Recalling x ( a:rr ) = 0, it is obvious that during a small interval about 
0 w 

T =a:;, Ii; I would dominate or at least be comparable to jx
0 

I· 
Suppose 

with 

(x + s) < 0 
0 

(x +s) >0 
0 

From (3. 126) and (3. 127), 

Expanding (3. 127c) in a series, 

Moreover, since xo(T) and f XO (T) + s(T)} are both negative for 

O<T<(°{;-dp from (3.126)p 

. i; n+ (1-g)s=O 

Therefore, 

s(': -·) ~ so cos [,rt::g (': -€) J + 1:-g s~ sin [;r:g ("; -·) J 
,,...-: a:rr 1 , . rrT:: a1T 

= s cos v 1-g -+ - .- s sin" i+g -
0 w /"f:'g 0 w 

omitting quadratic terms in s , s', and e. 
0 0 . 

(3. 127a) 

(3. 127b) 

(3. 12 7 c) 

(3. 128) 

(3. 129) 

(3. 130) 

(3. 131) 
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From (3.129) and (3.131), 

( 
~ air 1 , . rr-= air ) s cos..;1-g-+--s sm..;i.-g-

o UJ ./"l-"i2 0 UJ 

x~(°:) 
e: = 

omitting quadratic terms in s , s' and e:. Then, 
0 0 

Similarly, 

s ( CX.: ) = s (a; -e:) + s' [ (a; -e:) + J . e: + •••• • 

= s(a:; -e: )+ o(11~ll2) 

But from (3. 128), 

s II [ (a; -e: r J = - { 1 + g) s + 2 g Ix 0 (a:; -e: )1 

= O( s) 

since I XO (T) I = 0( s) also, in the interval (a; -e:) < T < a; . 
s'(a;) = s'(~- e: )+ o(ll~ll 2 ) 

(3. 132) 

(3. 133) 

Therefore, 

(3. 135) 

The results in (3. 133) and (3. 135) imply that it does not matter 

if one neglects to make use of (3. 127) and (3. 128) and thus uniformly 

consider the perturbation Equation (3. 126) to be 

s"+(l+gsgnx )s=O 
0 . 

1T -O<T<­
W 

(3. 136) 

over the half-cycle with a jump in the velocity given by (3. 12 5) at the 

end when r = :!!... Equation (3. 136) is identical to (3. 91) and it is pos­w 
sible to write down the result, 
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s(O) 

= (3. 137) 

s' (o) 

where u 2 (:), ul,(:), u 1(:) and ui (:)are obtained from (3.110) with 

T =0. Taking into account the "jump condition" in (3. 125), 
0 

or 

s(:+) 

s'(:+). 

Stability condition 

l 0 

= 

= T .s_(O) 

During the next half-cycle, 

x'<O 
0 

(x~ +s') <0 

(3. 138a) 

.s_(O) 

(3. 138b) 

'TT 2TT --<r<-w l1l 
(3. 139) 

except for a small interval about T = 
2

TT , when the "velocity jump" 
l1l 

occurs with the same value of 13 as in (3. 125). Furthermore, following 

the same arguments as in the first half-cycle, in the interval 'TT < T < 2'11"-, 
l1l l1l 

the perturbation equation remains the same as in (3. 136) so that, 
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Similarly 

(3. 140) 

A necessary and sufficient condition that s, s' tend to zero as 

n-ooo, is that the eigenvalues of the matrix T be less than unity in abso-

lute value. From (3. 125), (3. 138b) and (3. 110), the characteristic 

equation for the eigenvalues is given by 

A. 
2 

+ ( l+g)A
2 

\ p sin cp l(A 0 + P sin cp0 ) cos 13 cos 7'l o ol' · 

Psincp +(l-g2)A ~ 
0 0 . ~ . + _ ~ s1nt-' s1nn 

(1-g)A + P sin cp 
0 0 - 0 

(l+g)A +Psincp -.; l -g2 0 0 

(3.141) 

which is identical to Equation (3 . 111) derived in Section III. 3. Further 

details concerning the stability of the periodic solution of a single 

degree of freedom dynamic system have already been discussed. 

Incidentally, it may be observed that the product of the 

eigenvalues A. 
1 

and A.2 of the matrix T satisfie.s the relation 

(l-g)A
0 

+ P sin cp
0 

A1"-2=l3= (l+g)A +Psincp 
0 0 

(3 . 142) 

For, the product of the eigenvalues is given by the determinant of the 

matrix T; and from (3. 138b) it follows that the determinant value is 13 

since the Wronskian of the fundamental solutions u 1 and u2 in (3. 138b) 

is unity. 

Hence a necessary condition for stability is that 1131 be less 

than 1; while this is a sufficient condition also if the roots of (3. 141) are 

complex, it is not so if the roots are real and hence the eigenvalues 
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must be explicitly evaluated from (3. 141) to determine the stability of 

the periodic solution. 

It may be remarked that the analysis of the perturbation 

equation (3. 115) as in this section, shall be closely followed to investi-

gate the stability of the periodic response in multi-degree of freedom 

systems. However, there is an essential difference in the nature of 

the "jump condition" in Equation (3. 125) and the "jump matrix" in 

. (3. 138b). In the single degree of freedom system, these quantities are 

independent of the fact whether the perturbed velocity (x' + i;') attained 
0 

zero earlier to or later than the unperturbed velocity; this is not true 

of systems with several degrees of freedom as will be seen in 

Section IV. 2. • 
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III. 5 Periodic Solution by Approximate Analysis 

Since the existence of a periodic solution y.rith the same period 

as the sinusoidal excitation is guaranteed from previous discussion, it 

is naturally interesting to examine whether the periodic solution or an 

approximation can be derived by techniques other than having to solve 

the transcendental equation in (3. 7 5 ). In this context, the method of 

slowly varying parameters is resorted to, following its successful 

application to solve piecewise-linear systems in earlier instances (see . 
for example, eaughey(23 )). 

Let 

x = C cos wr + S sin wr (3. 143) 

where e and S are slowly varying functions of r, represent the periodic 

solution of the problem 

x" + ( 1 + g sgn xx')x = P sin (wr + w ) 
' 0 

(3. 144a) 

x(O) =a x'(O)=b O<g<<l (3. 144b) 

From (3. 143) 

x' = -we sinwT+ wS cos wr+ e' cos wT+S'sinwT (3. 145) 

The auxiliary equation shall be taken to be 

e'cos WT+S'sinwT = O (3. 146) 

Then 

x" = -w
2

[ecoswT+Ssinwr]-we'sinwT+wS'coswT (3. 14 7) 

Substituting into (3. 144a), 

(l-w2 ) [e cos wT + S sin wr] - we' sin WT+ wS 'cos WT 

+ g je cos WT+ S sin w·rl sgn (-e sin WT+ S cos wT) = P sin(wT+w0 )(3. 148) 
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Multiplying both sides of (3. 146) by w sin wr, both sides of (3. 148) by 

cos WT and adding, 

(I-w
2

)[C cosZ w,-+S sin wT cos wTl+ uS' 

+ g/c
2

+s
2 I sin{wr+y)I sgn (cos{wT+Y)) cos WT= P cos wT sin {wr+ijr

0
) 

where 

Averaging over a cycle, 

c 
tan Y= S 

(3. 149) 

2 /c2+s2 l'IT ( ~ (1-w )C + 2wS'+ g I sin( e+y)J sgn cos( e+y) cos e de= p sin 1jr 'IT 0 ' 0 

(3. 150) 

Similarly, 

(l-Wz)S - ZwC'+ g/c: +Sz ~"I sin (9+yJI sgn (cos(0+y~ sin 9d9 = P cos ljl 
0 

To evaluate integrals in (3. 150) and (3. 151), let 

I 1 = l'IT !sin "-I sgn (cos A.) ~in )..d).. = O 
0 

r2'IT rr/2 · 
r2 = L !sin "-I sgn(cos )..) cos A.dA.=4J sin A.cos A,dA. = 2 

0 0 

Then 

(3. 151) 

(3. l 52a) 

(3. l 52b) 

f '!1"1 sin (9+v>I sgn [cos ( e+y)} cos e d9 = Iz cos y+ II sin y = 2 cos y (3. l 53a) 
0 
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2ir I I sin (9+Y>I sgn [cos (9+y)} sin e d9 = 11 cosy - 12 sin y = -2 sin y (3. 153b) 
0 

Thereforep 

2 20' J 2 2 . (1-w )C + 2ws'+ ~ C +s cos Y = P sm ijl
0 

2 I 20' J 2 2 , ( 1-w )S - 2wC - .::,.Q. C +s sin y = P cos ijl 
1T 0 

Since tan Y= C/S, (3. 154) reduces to 

( 1-w
2 

)C + 2wS' + ~S = P sin ijl l 1T 0 

2 2 O' 
( 1-w )S - 2wC' - .::,.Q. C = P cos w 

1T 0 

From (3. 143) and (3. 144), 

x(O) = C(O) =a x'(O) =S(O)W=b 

Let 

Z = C+ iS 

Then substituting (3. 157) into (3. 155) and (3. 156)p 

2 2. -i w 
(1-w )Z - 2iwZ' -~z = iPe 0 

1T 

ib 
Z(O)=a+ -w 

Solving the first order differential equation in (3. 158), 

-i( w + cp) 
Pe 0 

where tancp = (1-w2 )/(2g/ir}. 

(3. 154a) 

(3. 154b) 

(3. 155) 

(3. 156) 

(3. 157) 

(3. 158) 

'(3. 159) 



-54-

The complete solution is given by 

x(T) = [ReZ(T)]coswr+ [ImZ(T)]sinwT 

In particular, as T ... oo, 

Moreover, selecting $ =,,., 
0 

where 

P cos (wT+ co) 

2 
il:J!Ll tan cp = (2g71TT 

Thus the response to an excitation 

is given by 

where 

f(T) = P sin (WT+ $
0

) 

x(T) =A sin (wr + $ - cp ) 
0 s 

A 1 

P = J(l-w2 )2 + ( '?:f-)2 

and the "phase-shift cp "is given in Equation (3. 163). 
s 

(3. 160) 

(3. 161) 

(3. 162) 

(3. 163) 

(3. 164) 

(3. 165) 

(3. 166) 

The phase-shift 

so obtained is truly the phase difference between the fundamental har-

monic response, obtained by approximation, and the sinusoidal input. 
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The above solution is of course stable since it was obtained as 

the limit of the transient solution as T .... oo. 

The method of slowly varying parameters is a one-term or 

fundamental harmonic approximation only in the general asymptotic 

scheme (see Minorsk/
24

), pg. 360, and Bogoliubov and Mitropolsky<
25 >, 

pg. 134). Hence it is considered relevant to make a comparative study 

of the above results in Equations (3. 163) and (3. 166) with only the fun-

damental harmonic in the exact solution derived in Section IV. 2. 

Let 

(3. 167) 

be the fundamental harmonic contained in the exact solution x(T) repre-

sented in Equations (3. 64) and (3. 69). Evidently, 

l r2'11" 
a 1 = ; j

0 
x(T) cos wT d(wr) (3. l68a) 

and 

1 f'11" 
b 1 =; j

0 
x(T) sinwTd(wT) (3. 168b) 

From the symmetry property x(T) = -x(T + '11" /w), 

2 {J0.'11" J(l - 0.)'11" J(l - a,)'11" } 
a1=; ox(8)cos9d9+co_sarr 0 x(e~cose'de'-sina,'11" 0 x(e')sin9'd9' 

(3 . 169a) 

2 {Icrrr J(l-a,)'11" J(l -a,)'11" } 
bl=; 0 x(9) sin 9 d9+ cos (X,'11" 0 x(9') sin 9'd9'+ sina,'11" 0 x(9 1

) cos e' de' 

(3. 169b) 

x(9) is obtained from (3. 64) on substituting wT = 9 and similarly x(9') 

from (3. 69) on substituting wT = (9'+a.'11"). Equation (3. 167) may be 
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rewritten as follows: 

(3. 170) 

where cp
0 

is the "phase" obtained from solving (3. 76 ). Thus Cf1i is the 

actual phase shift between the fundamental harmonic in the response and 

the input. 

The amplitudes from (3 . 166) and (3. 170) are plotted in Figure 4 

and the phase angles cps and ~ in Figure 5. There is excellent agree­

ment in general although the maximum error, which occurs for g = 0.2, 

is as high as 10% in amplitude and 8% in phase. 
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CHAPTER IV 

FORCED OSCILLATIONS IN MULTI-DEGREE OF FREEDOM SYSTEMS 

IV. l Exact Solutions for a Restricted Class of Excitation 

A dynamic system with N-degrees of freedom is schematically 

shown in Figure 6, R 1, R 2 • • • RN+l are all "Reid springs", which 

during cyclic motion give rise to energy dissipation because of their 

piecewise-linear, non-linear characteristics. In this chapter, it is 

desired to study some aspects of the forced oscillation in such systems. 

In so far as exact solutions are sought, the analysis presented here is 

confined to only certain cases with very specific "modal excitation", to 

be described subsequently, The restriction is essentially due to the 

complexity of the non-linear terms, which makes it impossible to 

uncouple the differential equations of motion by coordinate transforma­

tions~ for arbitrary modes of excitation, as is done in linear systems. 

Equations of motion 

The equations of motion are given by 

~~ + sk ( l + g sgn [ ("k-"k-l H*k-\:-l)] }("k-"k- l) 

+ sk+l (1 + g sgn [ ("k -"k+l H\:-*k+i) J} ("k -"k+l) = Fk cp(t) k= 1,2, 3 ••• N 

(4. l) 

where ~is the k-th mass, sk is the spring constant of the k-th spring, 

and~ is the displacement of the k-th mass with x
0 

and ~+l being 

stipulated identically zero. 
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The force vector is specifically chosen to be Of the form F~(t) 

where F is a constant vector independent of time, cp(t) is a scalar func-

tion in time to be subsequently considered trigonometric. 

Equation (4. 1) shall be rewritten in the matrix-vector notation 

as follows 

Mx+Sx+ gS*(x)x = F~(t) - - -- - (4. 2) 

where M is the diagonal mass-matrix with 

{
o if ii j 

o .. = 
lJ 1 if i = j 

M .. = m.o .. 
lJ l lJ 

(4. 3) 

The tri-diagonal matrices S and S*(x) consist of the linear and non-

linear terms respectively of the general spring matrix associated with 

the restoring force represented in (4. 1). 

The only three non-zero elements of the k-th row of the matrix 

Sare 

(4. 4) 

Similarly, 

s~.k (x) = sk sgn [ ('1c -'1c-1 )(~ -~-1)} 

+ sk+l sgn [ ('1c-'1c+I H*k-*ic+I)} 
(4. 5) 

s~ k+I (~) = -sk+I sgn [ ('1c-'1c+I H*ic-*k+I)} 
' 

Evidently, S, s* (x) are real symmetric matrices. 

Existence and uniqueness of solutions 

The restoring force in Equation (4. 2) is bounded and piecewise 

continuous in any bounded region of the associated 2-N dimensional 
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phase-space. In addition, let the external forces be piecewise continu-

ous and bounded also. Then the Cauchy-Lipshitz theorem guarantees 

the existence of a unique solution to the initial value problem in any 

region of the phase-space bounded away from the discontinuity surfaces 

of the restoring force. In any region so described, the restoring force 

is continuous and for any pair of vectors ~and y_ lying entirely in such 

a region 

(4. 6) 

where 

s =maxsk 
max k 

Thus the necei;;sary conditions of the Cauchy-Lipshitz theorem are 

satisfied. In fact, the solution can be continued up to the first discon-

tinuity encountered. 

The Lipshitz condition in Equation (4. 6) is not satisfied only 

when the two vectors ~and y_ are such that for one or more values of 

k, it is true that 

and 

. k=l,2,-··N 

Hence the difficulty arises in extending the uniqueness property of the 

solution across such a discontinuity surface. But then, for the non-

autonomous system under consideration, cp(t) being a non-constant 

function, singular point solutions cannot exist. And just as in the case 

of a dynamic system with single degree of freedom, for large values 
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of 11.~.I!. the discontinuity surfaces cannot contain arcs of the solution 

trajectories of (4. 2 ). This enables one to extend the solution indefi-

nitely repeating the same arguments. 

Beyond this point, the analysis of a Reid oscillator witl;l single 

degree of freedom entailed a study in the phase-plane only. With just 

two possible values for the signum function in the non-linearity part, 

explicit solutions could be sought for the differential equation or first 

integrals evaluated. as necessary, so the continuity of mapping and 

ultimate boundedness of solutions could be established with appropriate 

conditions on the external force. · Furthermore, the existence of at 

least one periodic solution on periodic excitation was guaranteed by 

the application of the fixed point theorem to the phase-plane analysis. 

However, it is not found convenient or practicable to extend these tech-

niques to the multi-degree of freedom problem, simply because of the 

2-N dimensional character of the phase-space and the resulting very 

large number of permutations and combinations involved in dealing 

with the signum functions in Equation (4. 1). 

Still it is possible to obtain exact solutions in certain cases, 

proceeding from a knowledge of the corresponding results in linear 

systemso 

Exact solution for sinusoidal excitation 

The matrix-differential equation (4. 2) may be rewritten in a 

partly canonical form. Let M- 112 denote the diagonal matrix with 

elements, 
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1 

.rm.. 
1 

0 .. 
lJ 

where o .. is again the Kronecker-delta, 
lJ 

{
o if iii 

0 .. = 
lJ l if i = j 

(4. 7) 

and /rn. indicates the positive root. Prernultiplying both sides of 
1 

(4. 2) by M-l/l and introducing a new variable 

-1/2 
~=M y_ (4. 8) 

or 

•• ''< -1/2 
Iy_ +Sly_+ gS'i (y_)y_ = M Fcp(t) (4. 9b) 

'" Evidently S 1 and Si (y_) are real symmetric. 

Throughout the present work, it is assumed that the eigenvalues 

of s
1 

'are well separated and it has a full complement of eigenvectors. 

S 1 being real symmetric, its eigen values are real and the eigen vectors 

mutually orthogonal. For the type of spring-mass system under con-

sideration, it is not a severe restriction to as surne widely separated 

eigenvalues, if the various spring-constants are well-balanced. 

Suppose that g=O; Equation (4. 9b) becomes a purely l~near sys-

tern; in addition, let 

and 

cp(t) = sin (wt+ 9.) 
J 

(4. 10) 

(4. 11) 
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where E(j) is the eigen vector _ of the matrix S 
1

, corresponding to its 

j-th eigenvalue A'j = wf; ej is an arbitrary constant. The prop~rtion­

ality factor w~ in (4. 10) is introduced to help non-dimensionalizing the 
J 

equations consistently. Ii w2 f: A,., then a harmonic solution to the 
J 

problem, 

Iy+S
1
y_= w~E(j) sin(wt+ e.) 

J- J 
(4. 12) 

has exactly the same mode as E(j); in fact, the particular solution 

referred to is just, 

1 (j) . 
y_= ( 2 2 )E sm (wt+ 9.) 

1-w /w. J 
J 

(4. 13) 

In other words, for suitable initial conditions, an external force 

w~ E(j) sin (wt+ 8.) excites only the "corresponding pure normal mode 
J - J 

under free vibrations". If linear viscous damping were also present, 

the steady-state oscillations strictly correspond to this normal mode. 

The "Reid oscillators" being dissipative, the harmonic response 

in damped linear systems is suggestive to seek a solution of the equation 

(4. 14) 

in the form, 

y_ = E(j) s(t) (4. 15) 

On substituting (4. 15) into (4. 14), it is seen that the vector differential 

equation is simply equivalent to the scalar equation, 

2 • 2 
s+w. [l+gsgn(ss)}s = w.cp(t) 

J J 
(4. 16) 

the k-th row of (4. 14) being obtained by multiplying both sides of (4. 16) 

by the constant E~). 
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The uncoupling is accomplished, as the form of solution given 

in (4. 15) implies, 

E(j) ) 
- k 1 s<t) 

/fi\_1 
(4. 17) 

so that 

(4. 18) 

Hence 

s>; (y)y = M-112s>:c(~)~ 

-1/2 • -1/2 
= M (sgn ss)SM Y. 

= sgn ( s~)S l E(j) s(t} (4. 19) 

and (4. 14) becomes, 

IE(j)~(t)+S E(j)s(t)+gsgn(~~)S E(j)~(t) = w~E(j)rn(t) 
- ':> 1- ':>':> 1- ':> J- 't' 

' (4. 20) 

Recalling that E(j) is the j-th eigenvector of S
1 

such that s
1 

E(j} = wf E(j)' 

(4. 20) yields on equating the corresponding components on both sides, 

•• 2 • 2 
r;+w. [l+gsgn(ss)}s = w. cp(t) 

J J 
(4. 21) 

The properties of the solutions of (4. 21) have already been studied in 

Chapter III and the exact periodic solution has been derived in 

Section III. 2, for sinusoidal excitation cp(t) =sin (wt+ cp ). 
0 

Thus, given s(t) to be the exact solution of the Equation (4. 21 ), 

it is seen that 

~ = M-l/2 E(j) s(t) (4. 22) 

satisfies the differential equation 
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Mx+Sx+ gS*(x)x = w~~/2 E(j)cp(t) 
- - -- J -

(4. 23) 

with initial values, 

(4. 24) 

M-l/2 denotes the inverse of the matrix M 112 ; in particular 

1/2 M.. = jm. o. . (4. 25) lJ 1 lJ 

x(t) is periodic, if cp(t) is periodic also. N such exact solutions can be 

obtained so long as the external periodic (trigonometric) force excites 

one and only one of the N normal modes, as already described. 

In the foregoing discussion, s(t) in (4. 21) is known to admit of 

at least one periodic solution with the same period as the excitation and 

it has been verified by direct substitution that x(t) as in (4. 22) satisfies 

the differential equation (4. 23 ). However, it has not been shown that 

(4. 23) admits x(t) as a stable periodic solution; in fact, not even the 
•. · 

ultimate boundedness of x(t) has been established. Hence it is mean-

ingful to consider x(t) as a periodic solution of (4. 23) only if it is shown 

to be stable against at least infinitesimal perturbations. Thus it is 

again necessary to focus attention on the associated stability problem. 
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IV. 2 Stability of the Periodic Solution in 

Multi-Degree of Freedom Systems 

In principle, the stability analysis of the periodic response in 

multi-degree of freedom systems follows directly from the corre-

spending problem in the single degree of freedom case as formulated 

in Section III. 4. However, here the primary task is to uncouple the 

perturbation equations. 

Canonical form of the perturbation equations 

Let 

represent the periodic solution of the equation 

Mx + Sx + gS* (x)x = w~M112 E(j) sin (wt+9.) 
- - -- J - J 

wher.~ s(t), constructed as outlined in Section· III. 2, satisfies 

e. is so chosen that 
J 

s(O)=-A. 
J 

~(O) = O 

Consider a neighboring perturbed state 

Obviously, 

x =x +n -p -0 

Mx + Sx + gS:1~(x )x = w~M112 E(j) sin (wt+9.) 
-p -p -P-P J - J 

Subtracting (4. 27) from (4. 31 ), taking into account (4. 30), 

(4. 26) 

(4. 27) 

(4. 28) 

(4. 2 9) 

(4. 30) 

(4. 31) 
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(j) E (j) 

t
(j) _ Ek k-1 
k k-1 - rm::- -~ 

r·ic v~-1 

(4. 32) 

(4. 33) 

It will be observed that t~)k-l may assume a value of zero depending , 
upon the mode excited and the masses involved. The non-linear terms 

ih the k-th row of Equation (4. 32) can be written down explicitly, making 

use of (4. 26) and (4. 33). They are, 

{I o ) I r. (j > • • • ) I o ) I ~ o > .) } 8 k tk~k-1 s+ ~ - fk-1 sgn \tk,k-1st 11k - 'l1k-l - tk,k-1 S sgn ~k,k-1 S 

(') ~ (') .)} - I t~,k+l s I sgn \t~,k+l s = Hk,k-l + Hk,k+l (4. 34) 

where the notations Hk k-l and Hk k+l are self-evident. 
' ' 

Let E denote the matrix consisting of colunm vectors E(m), 

m=l, 2, • • • N, where E(m) is the m-th eigenvector of the matrix 

S M -l/Z SM-l/Z d . ·t . 1 2 ET h 11 
l 

= 1 correspon ing to i s e1gen va ue A. =W • s a mm 

denote the transpose of the matrix E. Let 

M -l/2E n= g (4. 3 5) 

so that 

(4. 36) 

Then from Equations (4. 34), (4. 35) and (4. 36) 
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assuming tfJ)k-l -to, k=2, 3· • (N+l). , 
Rewriting (4. 3 7) 

(j) { (\ (rn) \ [· (\ (rn) • \ l I I ·} 8 k, k-1 = sktk,k-1 S + Wi Yk,k-1 µrn) sgn s+ {n Yk,k-1 µm)j - S sgn S 

where 

This is of the form 

t(m) 
-(m) _ k,k-1 

Yk,k-1 - (j) 
tk k-1 g 

Hk,k-1 = 8 k ~.Li y ( i; + k "1n ~)- f ( s1 
where 

f(s)=lslsgn~ 

(4. 38) 

(4. 39) 

(4. 40) 

Recalling that the perturbations being considered are infinitesi-

mal, it is necessary to retain linear terms only in the perturbation 

quantities. In particular, it may be observed 

(4. 41) 

so that 

(4. 42) 
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In deriving (4. 42 ), it is to be remembered that although the functions 

under consideration possess only generalized derivatives, correct to 

first order terms in the perturbation quantities ~, m=l, 2, • • N, the 

expressions on either side of the equality sign are identical and hence 

can be interchanged in formulating the linear perturbation problem. 

Substituting (4. 42) into (4. 38), 

t(m) 
o) \ k k-1 {I l . o l l ·:t Hk,k-1 = sktk,k-1 fu_ t (j,) s+~ sgn ( s+µm) - S sgn SJ 

k,k-1 . 

(4. 43) 

where P is the vector [ p } 1 - m 

p =Is+µ jsgn(~+µ )-lslsgn~ m m m 
(4. 44) 

Finally, the non-linear terms in the k-th row of (4. 32) shall be written, 

Substituting (4. 45) and (4. 35) into (4. 32) and pre-multiplying- by 
(ETM-1/2), 

1µ + /\µ + g /\E. = 0 

where /\ is the diagonal matrix with elements 

2 
A .. = w. 6 .. 

lJ l lJ 

(4. 45) 

(4. 46) 

(4. 4 7) 

w~ is the i-th eigenvalue of S.=M-1/2 SM-l/2 and 6 .. is the Kroneckel"-
1 1 . lJ 

delta. From (4. 46) it follows 1 
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(4. 48) 

which is indeed in the canonical form desired. 

It must however be remarked that the canonical form above has 

been derived strictly under the assumption that t}J~-l /; 0, k= 2,3···(N+l) • . , 
If this condition is not satisfied during a particular modal excitation, 

the perturbation equations cannot be uncoupled in this way. Still it may 

be possible to determine the stability of the periodic solution in parti-

cular cases as is shown in the next section in Example 1, for a two-

degree of freedom system excited in the "in-phase" 'modal oscillation. 

Stability analysis · 

The asymptotic stability of the origin in the phase-plane for 

each of the N equations in (4. 48) shall guarantee the stability of the 

periodic solution x (t). Then a typical case to examine is 
-0 

s satisfies 

.. 2 { ·} 2 . 9 s+ wj l+g sgn ss s = wj sm (wt+ j). 

Furthermore, from previous results 

s(O)=-A. 
J 

s(t) <o , s(a:tr) = o 

. . (tr) s(O) = S w = 0 

i;(t + !I..) = - s(t) : . w 

(4. 49) 

(4~ 50) 

(4. 51) 
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where a* is evaluated by solving the transcendental equation (3. 75) 

corresponding to the frequency w* = : . , which is necessary to reduce 
J 

(4. 50) to the non-dimensional form in (3. 61). The equations (4. 49) and 

(4. 50) are similar to (3. 115) and (3. 112a), the perturbation and the 

basic differential equation respectively for a single degree of freedom 

dynamic system. 

Closely following the analysis in Section III. 4, it is necessary 

to investigate in detail the propagation of the initial perturbations only 

during the first half-cycle , including the "velocity jump" at the end, 

iT when t = - • In carrying out the required steps, quadratic and higher 
w 

degree terms in perturbational quantities shall be omitted; similarly 

linear terms in perturbational quantities shall be neglected in compari-

son with the maximum absolute values of displacement or velocity of 

the unperturbed solution. These details shall not be explicitly stated 

any further in this section. 

The "velocity jump" at t = iT/w 

Consistent with the preliminaries in Equations (4. 49), (4. 50) 

and (4. 51 ), it is evident that iri a small interval about t = : , ~ will 

undergo a sharp change in its value, interpreted as a jump in this work. 

Case a 

Let 

(g+l\)>0 , O<t< (:+o) (4. 52a) 

( ~ + ~) < 0 (: + 0) < t < 
2; (4. 52b) 
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with 

(4. 53) 

Since ~(t) < 0 for !!:.<t < Zrr, consistent with (4. 52a), 
w w 

• 
~ >0 in the inter-

val !!:.<t <(!!:.+ 6). From (4. 49) , w w . 

µk (t) = -2gw~ Aj (4. 54) 

Expanding (4. 53) in a series, 

(4. 55) 

taking into account (4 . 50) and (4 . 51) also. But 

( ) 
2gA. 

= ~ : - ( 1 - g) A . + sin 8. 
J J 

(4 . 56) 

from (4. 54) and (4. 55). Interpreting this result as a jump, just as was 

done in the case of a single degree of freedom system, 

~(:+) = ___ l ---=-2 ~(:-) 
2gA. wk 

1 + 1 
(1-g)A . +sin 9. 2 

J J w. 
J 

(4. 57) 

where the positive subscript for 13 denotes that the perturbed velocity 

velocity(~+~) attains zero at t>~, . or rather at some instant later 
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than the velocity g corresponding to the unperturbed periodic solution. 

It is observed that 0 ~ 13 + ~l, in the entire range of the ratio w~ I wf as 

this ratio decreases from oo to O. 

Case b 

Contrary to the hypothesis in (4. 52) in Case a, let 

(4. 58a) 

(4. 58b) 

with 

(4. 59) 

since g>O in the interval O<t<fu, from (4. 58b) and (4. 59), necessarily 

~ (t) <O (4. 60) 

Expanding (4. 59) in a series and taking into consideration (4. 50) and 

(4.51), 

~(~-5) -~(;-6) 
6= (1T-) = 2 

~ - w. [(l+g)A. +sine.} 
w J J J 

(4. 61) 

Moreover, 

• ('11' ) • (Tr) .. (1T-) ~ u;- 5 = µk w - µk w 6 

( ) 
2gA. 

= ~ : + (l+g)A. +sin 9. 
J J 

2 

Wic • (1T ) 
2~ w - 5 
w. 

J 

from Equations (4. 49) and (4. 61 ). Thus finally 
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U. ('ITW+) = {1 - ..,...,,..-..,.....,..2 g_A..._. :---=- ~W2~ } 11 ('ITW- ) 
.-.K ( l+g)A . +sin 8. · k 

J J J (4. 62) 

The negative subscript for f3 shall denote that the perturbed velocity 

( s +~) < 0 for t > (:- o) while the unperturbed velocity ~ > 0 in 0 <t <:: 

As the ratio w~!wf increases from 0, f3_ decreases from 1, till even­

tually f3 _ ~ 0 for 

~ ( l+ g) A. + sin 8. 

-2 > 2 A g . w. J 
J 

However, negative values for f3 are irrelevant, as this would imply 

• (1T ) 'IT that ~ > 0 in w - o <t < w, which in turn indicates a contradiction to the 

hypothesis as stated in (4. 58) and (4. 60); in other words, for suffi­

ciently large values of ~!wf, if f3_ ~O, the velocity cross-over as in 

Case a shall only be considered. 

It is of interest to note that f3+ = f3_ if w~ = wf, which is the result 

earlier obtained in Section III. 4. 

Perturbation solution in the interval 0 <t <ir /w 

Already having considered the case when ~and (s+~) are 

opposite in sign at the end of the interval 0 <t < !., when t ='IT, it 
w w 

remains to solve the perturbation equation (4. 49) when 

s gn ~ = s gn ( ~ + ~) = + 1 

which is the case in almost the entire half-cycle, prior to the instant 

when the jump in velocity occurs. During this interval, from (4. 49), 
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* ~ 
Since s('\1l1T)=o, in a small interval about t= a~1T, lµkl =O(lsJ); 

however, following the arguments in Section III. 4 in deriving Equation 

(3. 136), it is not essential to treat this case in detail separately. Thus, 

the perturbation equation (4. 63) shall be uniformly considered as 

O<t<!..­
w 

(4. 64) 

q.*1T a*ir ir with s(t)<O, O<t< and s(t)>O, --<t<- as in (4. 51). Solving w w w 
(4. 64), 

(4. 65) 

where 

T J l:_g_ . . 
11 =cos ri2 cos 11 1 - l+g sm 112 sin11 1 

T 
I . I . 

12 = cos 11 2 sm n1 + sm 112 cos ri 1 
~;r.:g ~ ;T+g 

T 21 = -wk {/ITg sin 112 cos 11 1 + /T=g cos 112 sin 11 1} (4. 66) 

T fl+i . . 
22 = - ,.,/ T:g sm 112 sin ri 1 +cos112 cos 11 1 

,, = w / l+g ( 1-a* )ir 
. 2 k Ul 

Stability conditions 

Taking into consideration the "jump conditions" in either one 

of the Equations (4. 57) or (4. 62) as applicable, 
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(4. 67) 

where 

As before, a sufficient condition for the stability of the periodic solu-

tion ~{t) is that the eigenvalues of the matrix T
1 

be less than 1 in 

absolute value. 

From (4. 66) and (4. 6 7), the characteristic polynomial for the 

eigne values is given by 

2 .. J, fEi. . 
A - ,... fos 'llz cos ri 1 - ~T+g sin ,., 1 sm ri2 

+ 13(cos 712 cos ri 1 - ft[ sin ri2 sinTJ 1 )}+13 = 0 

where 13 assumes either one of the values 

or 

1 
13=13+=--------------------~2 

2gA. wk 
1 + -{ 1---g-)_A_._+_.s.._i_n_e_. 2 

J J w. 
J 

~ = ~ -= ~ - ..,..( l_+_g_) :-g-j ~--· ..... s i-n-8,.....j ~ } 

where 13_ in (4. 69b) is relevant if and only if 0<13-<1. Hence if 

(4. 68) 

(4. 69a) 

(4. 69b) 

w; f:. w~, it is necessary to evaluate the roots of the two quadratic equa­

tions resulting from substituting (4. 69a) and (4. 69b) successively into 
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(4. 68). Each of the four eigenvalues of T 1 so obtained (or only two if 

13- as in (4. 69b) is irrelevant and 13+ only is applicable) must be less 

than unity in modulus. 

Furthermore, such a stability analysis for the asymptotic 

stability of the origin in the phase-plane must be carried out for each 

of the N equations in (4. 48) to ensure the stability of the periodic solu-

tion x (t), one excited mode of a dynamic system with N degrees of 
-Q 

freedom. 
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IV. 3 Analysis of a Two-Degree of Freedom System 

In order to illustrate the principles and procedures discussed 

in the preceding two sections, two examples shall be worked out con-

cerning the periodic solutions in a dynamic system with two degrees of 

freedom. 

Consider the forced oscillations in a two-degree of freedom 

spring-mass system with equal masses and identical "Reid-springs". 

Let the external sinusoidal forces acting on the two masses have the 

same amplitude and frequency. 

Example 1 

In addition, let the external forces be exactly in-phase. The 

equations of motion are 

where xd = (x1 -x2 ). Or 

IX+Sx+ gS>:~(~)~ = i_1 sin (wt+ 9
1

) (4. 71) 

implying obvious correspondence with the terms in (4. 70). It may be 

observed that ..!.
1 

is an eigenvector of the matrix S; in fact, it is the 

2 
eigenvector corresponding to the eigenvalue A. 1 = w

1 
=l of the matrix S. 
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Following the results in Section IV. 1, 

(4. 72) 

is a periodic solution of (4. 71 ), where s(t) satisfies 

s+ fl+g sgn s~}s= sin (wt+91) (4. 73) 

e
1 

is so chosen that s(O) = -A
1

; ~(O) = 0 and s(t) is the exact periodic 

solution as constructed in Section III. 2 . 

The stability analysis of this mode of excitation does not strictly 

follow the derivation given above in Section IV. 2; as per the notation in 

(4.33)i 

t(l) -0 (4. 74) 
1,2 -

and hence this is the exceptional case. In the perturbed state, let 

(4. 75) 

The perturbation equations corresponding to (4. 32) are 

~l +Zri1-'11z+g{[I s+'l11 I sgn ( ~+~l) - IS I sgn ~]+I 111 -ri2 I sgn (~l -~2 )} = O 

(4. 76a) 

ii2+2 T'12-ri1+g{[I s+ri2lsgn (~+~2)-1 slsgn ~] + lri2-ri1lsgn (~z-~1)} = 0 

(4. 76b) 

without the corresponding unperturbed terms indicate the exceptional 

situation in this excitation. However, in a two-degree of freedom 

system, these terms involve one of the principal coordinates of the 

system and hence it is still possible to uncouple the .·Equations (4. 76a) 

and (4. 76b). 
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Let 

(4. 77) 

where E diagonalizes the matrix S. Substituting (4. 77) into (4. 76a) and 

approximating the non-linear terms as in (4. 41), 

I i; + '111 I s gn ( ~ + ~ 1 ) - I s I s gn g + l ri 1 - '112 I s gn ( ~ 1 - ~2 ) 

where 

Similarly, 

= {I s + µ 1 + µ2 j s gn ( ~ + µ 1 + µ2 ) - I s I s gn ~} + 2 j ~ I s gn µ2 

.,.. {1 i;+µ1 I sgn ( ~+µl) - IS I sgn ~ 

+ {ls+µ2I sgn(~+0.2)-lslsgn g}+21~1sgnµ2 

= P1 + P2+ 2 lµ2!sgn0,2 (4.78) 

(4. 79) 

I '112-11i1 s gn ( ~2 - ~I ) + I s + '112 I s gn ( s + 'ii2) - I s I s gn g .,.. PI - P2 -21 ~I s gn µ2 

(4. 80) 

Substituting (4. 79) and (4. 80) into (4. 76), 

[I OJ .. [ 2 -1] [l l] [ 1]1 I . 0 1 .n + - 1 2 n + g 1 - 1 ..Q. + 2 g -1 ~ s gn ~ = 0 (4. 81) 

From (4. 81 ), 

µl +µI+ g P1 = O (4. 82a) 

Uz + 3~ + gp2 + ~gjµ2I sgn ~ = O (4. 82b) 

Or finally, 

(4. 83) 
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µ2 + 3 µ2 + 2 g I µ2 f s gn ~ + g {I s +~I s gn ( ~ + ~) - I s I s gn ~} = 0 (4. 84) 

Equation (4. 83) has been studied in detail in Sections III. 3 and III. 4 and 

the asymptotic stability of the origin as sured for the range of para-

meters considered therein. 

It may be observed that (4. 84) is the perturbation equation 

corresponding to w~ = 3, for the excited mode corresponding tow~= I. 

In the analysis of Equation (4. 84), once again the non-linear 

terms f Is+~ I sgn ( ~ +µ2 ) - Is I sgn ~} shall be interpreted to contribute 

to a "jump in velocity" at t=rr/w such that 

(4.85) 

for both cases as in (a) and (b), corresponding to 13+ and 13_ in 

Equations (4. 57) and (4. 62). 

For subsequent considerations, the perturbation equation (4. 84) 

shall be uniformly considered to be 

0 <t<:!!:.. 
w 

(4. 86) 

Since 0<13+ = 13_<1, for the values of g=0.05, 0.1 and 0.2, for w>0.5 

the trajectories of (4. 84) spiral inwards to the origin, i.f the trajec-

tories of (4. 86) do so. Hence a sufficient condition for the asymptotic 

stability of the origin in the phase-plane for (4. 84) is to show that the 

trajectories of (4. 86) spiral inwards to the origin. 

Let 

T = /!"t (4. 87) 
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Then (4. 86) becomes 

µz + ~ + g2 ~ s gn µ2 µz + g 1 µ2 s gn s = 0 (4. 88) 

where 

(4. 89) 

Let 

Suppose that 

v1 ~0, where equality holds if and only if ~ = µ2, = O. Along the tra­

jectories of .(4. 88 ), 

if sgn s = 1 

if sgn s = -1 
(4. 92) 

It may be recalled that sgn s can be 0 only for an instant and not during 

any interval. Therefore, v
1 

decreases or at most remains constant 

during the interval T 
0 
< T < T 1 • 

Suppose that 

(4. 93) 

Let 
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Along the trajectories of (4. 88 ), 

if sgn s =1 
(4. 94) 

if sgn s = -1 

From (4. 92) and (4. 94), it is observed that the "appropriate norm" v 1 

orv
2 

in each quadrant, depending upon whether µ2µ2§ 0, remains con­

stant or decreases; but even if both remain constant, 

or 

even if 

(4.95) 

Also 

(4. 96) 

where K is a constant. Furthermore these results are valid in the 

lower half of the phase-plane also, for µZ < O. Suppose 

µ2 µ2 < 0 , ,. 2 <,. < ,. 3 µ2 Ill > 0 , .,. 3 < ,. < ,. 4 

Then repeating the same arguments 

( 1 )2 1--g 
~('!" )< 3 µ2('1" ) 
·-~ 4 ( 1 )2 2 0 

l+-g 3 . 

(4. 97) 
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or 

,2 ( ) ,2 ( ) 
µ2 T 3 <µ2 T 2 (4. 98) 

So from (4. 97) and (4. 98 ), it is seen that the trajectories of 

(4. 88) necessarily spiral inwards to the origin; this is essentially due 

to the stabilizing influence of the terms 2gµ2 sgn (µ2µ2 ) in (4. 88); if 

these terms were absent, (4. 88) would have been just the well-known 

Hill-Meissner equation (see Den Hartog(Zb), page 387) which admits 

of unstable solutions. 

Thus, given 113I<1, the perturbation~ is necessarily asymp­

totically stable at the origin and since the same result has been derived 

in Section III. 3 concerning µl (t), the periodic solution xl = s(t), Xz = s(t) 

is stable. 

Example 2 

Consider the same spring-mass system as in Example 1, but 

with the external forces exactly opposite in phase. This example will 

be treated following directly, the formulation of the stability problem 

in Section IV. 2. 

The equations of motion are 

= 3 [J sin (wt+ e2 ) (4. 99) 
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Or 

Ix+ S~ + gS* (~)~ = 3iz sin (wt+ 92 ) (4. 100) 

It may be observed that i_
2 

is the eigen vector of the matrix S, corre­

sponding to its eigen value A.2 = w~ = 3. Just as before, 

~={-~}s(t) (4. 101) 

is a periodic solution of (4. 100), if s(t) satisfies 

s + 3 fl+ g s gn s ~} s = 3 sin (wt + 92 ) (4. 102) 

92 is so chosen that s(O) = -A2 ; ~(O) = 0; in particular, for w > O. 5 .jj, the 

values of A 2 and 92 are obtained from the construction given in III. 2 • · 

The second mode being excited in this example, 

E(2) E(2) 

t (2) - _l_ - _2_ - 2 
1 2 - -
, /fill /m2 

which assures that the general formulation in Section IV. 2 is valid in 

this case. 

The perturbation equations corresponding to (4. 32) are 

Ti 1+2 ri 1 -ri2 + g {I s + ri 11 s gn ( ~ + ~ 1 ) - I s I s gn f 

+ j 2 S +Tl 1 - ri2 I s gn ( 2 ~ + ~ 1 - ~2 ) - 2 I S I s gn ~} = 0 (4. 103) 

ii2 +2 Tlz -ri 1 +g{I - S +'112 ! s gn ( - ~ +~2) -1- SI sgn ( - g) 

+l-zs+112 -11 1 lsgn(-2~+n2 -n 1 )-l-2slsgn(-2~)} =O (4.104) 

where the negative signs are "maintained" as such to closely identify 

with the formulation in Section IV. 2. Once again, substituting 

11
1 

= µ
1 

+ µ2 , 112 = µ
1
-µ2 and approximating the non-linear terms in 
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( 4. 1 0 3 ) , as in ( 4. 41 ) 

~ 1 + 2 'Tl1 - '112 + g ( P 1+3 P2 ) = 0 (4. 105) 

ii2 + 2'112 - '111 + g(pl -3 Pz) = 0 (4. 106) 

where 

pi = I s + µi I s gn ( ~ + µi) - I s I s gn g i = 1, 2 (4. 107) 

From (4. 105), (4. 106) and (4. 107), 

µ1 + µ1 + g{I i;+µ1I sgn cg+µ1) - Isl sgn g} = o (4. 108) 

~ + 3 µ2 + 3 g {I s + µ21 s gn ( g + µ2 ) - I s I s gn ~} = O (4. 109) 

which are exactly in the form as derived in Section IV. 2, in Eqn, (4. 48). 

Equations (4. 108) and (4. 109) have been analysed in Section III.4, 

while dealing with the stability of the periodic solution of the single 

degree of freedom dynamic system; accordingly µ
1 

{t) and µ
2 

(t) tend to 

0 as t-.oo so that the periodic solution of ~(t) in (4. 101) is found to be 

stable. 
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IV. 4 Approximate Solutions by Harmonic Balance 

In Section IV. 1, it has been shown that 

(4. 110) 

is an exact periodic solution of the system of equations 

Mx + Sx + gS>:C (x)x = w ~Ml/Z E (j) sin (wt+ 9.) 
- - -- J - J 

(4. ll l) 

The stability of the periodic solution (4. 110) has been discussed also. 

Often, however, it may be of interest to relax the restriction 

that the external force be in the exact modal form of any one of the 

eigenvectors, E(.j), j=l,2, • •N of the matrix s
1 

=M-l/ZSM-l/Z. In such 

a case, if no.t an exact solution, one might like to obtain an approxi-

mate periodic solution by fundamental harmonic balance. Such a first 

approximation still needs solving a set of ZN transcendental equations, 

which is an enormous task in itself. 

It may be remarked, that an approximate solution to within 

fundamental harmonic balance of 

(4. ll2) 

where 

(4.113) 

is given by 

-1/2), (j) . x = M a,. E A. sin (wt+ y.) 
- '--' J- J J 

(4. 114) 

j 

A. sin (wt+Y.) is a first approximation to the solution of 
J J 
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.. ) 2( ·1 2 . ( ) ijl(t + w. l+g sgn ijlw ijl = w. sin wt+ cp. 
J J J 

(4. 115) 

The a.. 1 s and cp. 1 s are constants to be evaluated. 
J J . 

Before proceeding to substantiate the claim of the approximation 

to x as in (4. 114), a number of useful results shall be derived. 

Determination of a.., cp., j=l,2, • •N 

These quantities are determined in an effort to represent the 

external force vector as a linear combination of the eigeJ;l vectors of 

the matrix s
1

• Since the N eigenvectors E(j), j =1,2, • •N of the matrix 

-1/2 -1/2 
S 1 = M SM _are mutually orthogonal, . they form a basis for an N-

dimensional linear space. 

Let the external force 

t :ii<: 

F(t) = F:>i< sin wt+ G' cos wt (4. 116) 

where F* is the column vector (f 1 cos cp 1, £2 cos cp2 , • .fN cos cpN} and 

G* is the column vector (£ 1 sin cp1, £2 sin cp21 • ·fN sin cpN} • Then F* can 

be expressed as a linear combination of the basis vectors [E(l), E(Z), 

~ • E(N)J so that 

Similarly, 

F* = \ a.w~E(j) 
- l J J-

j 

(4. 117) 

The proportionality factor w? is introduced in the above relations to be 
J 

consistent in non-dimensionalizing the equations as was earlier done. 

Then (4. 116) becomes 
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F(t) = \ a.w~E(j) sinwt+ \ b.w~E(j) cos wt 
- l J J- l J J-

j j 

I . 2 (j ) l 2 (j) . = (a. s1nwt+ b. cos wt)w. E = a..w. E sm (wt+ cp.) 
'--' J J J- J J- J 
j j 

a..=Ja~+b~ 
J J J 

b. 
sin cp. = -1. 

J O.· 
J 

a. 
cos cp. = _J_ 

J . a.. 
J 

(4.119} 

(4. 120) 

where a.' s and b.' s are obtained from solving the systems of linear 
J J 

equations in (4. 11 7) and (4. 118 ). 

Approximate solution by harmonic balance 

Suppose it is desired to obtain the first approximation 

iii ( t) = A. sin (wt + Y.) 
J J 

(4. 121) 

to satisfy the differential equation 

.. 2 • 2 
iii+w. [l+gsgniiiiiiJiii = w. sin(wt+cp.) 

J J . J 
(4. 122) 

Substituting (4. 121) into (4. 122 ), 

fw~ -w
2

) A. sin (wt+ iii.)+ gw~ A. sin (wt+ iii.) sgn [sin (wt+ iii.} cos (wt+ iii.}} 
\J J J J J J J J 

= w~ sin (wt+ cp.) (4. 123) 
J J 

Expanding in Fourier series both sides of (4. 123} and retaining only 

terms corresponding to the fundamental harmonics 

{ fw~ -w2
) A. sin 'X + ~w~ A. cos 'X + •• ·} = fw~ cos (cp. -y.) sin X 

\J J 1T J J lJ J J 

+ w~ cos (cp.-y.} cos X+ ··} 
J J J 

(4. 124) 

where X= wt+ y.. Equating the coefficients of sin X and cos X. respectively 
J 
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2 
(l-w2)A. =cos (cp.-y.) 

w. J J J 
~A. = sin (cp.-y.) 

1T J J J 
(4. 125) 

J 

or 

(4. 126) 

(4. 12 7) 

Two more results can be immediately written down following 

the harmonic approximation in (4. 121) derived above. 

( 1) As already shown in Section IV. 1, the vector differential 

equation 

(4. 128) 

has the exact or approximate periodic solution 

(4. 12 9) 

depending upon whether 1\r satisfies the differential equation (4. 122) 

exactly or approximately. Since the k-th member of the N-differential 

equations in (4. 128) is obtained by multiplying both sides of (4. 122) by 

the factor E~), the approximation in (4. 121) implies that 

)j) = E(j) A. sin (wt+ 1\r.) 
.,_ - J J 

(4. 130) 

satisfies (4. 128) to within harmonic balance. 
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(2) Multiplying (4. 128) by a.. and summing over j, 
J 

I'\ a..y_··O) + S '\ a.y_(j) + g '\ a..s* (y_· (j >)y_(j) = '\ a..w~ E(j) sin (wt+cp.) (4. 131) 
L J . IL J L J L J J - J 
j j j j 

Denoting 

I a.jy_ o) = y_* 

j 

Ii'*+ S 
1

y_* + g '\ a.s*
1
' (y_(j ))y_(j) = '\ a. . w~ E(j) sin (wt+cp.) 

L J L J J- J 
j j 

Evidently, 

Y.* = '\ a..E(j) A. sin (wt+y.) 
l J- J J 
j 

y_(j) = E(j) A. sin (wt+y.) 
- J J 

(4. 132) 

(4.133) 

(4. 134) 

(4. 135) 

satisfy (4. 133) and (4. 128) to within fundamental harmonic balance. 

The first approximation for x in (4. 112) 

Substituting for F(t) from (4. 119) in (4. 112) 

Mx+Sx+ gS>~(x)x=Ml/Z\ a,.w~E(j) sin (wt+~ri.) - - - - . l J J - . 't'J 
j 

(4. 136) 

for which an approximate fundamental harmonic solution is sought. 

-1/2 . -1/2 
Introducing ~ = M y_ and pre-multiplying (4. 136) by M , 

Iy + s 1 y_ + gs>'r (y_)y_ =I ajwf E(j) sin (wt+cpj) 

j 

(4. 137) 

Consistent with (4. 114), it is claimed that .y~ as in (4. 132) is the first 

approximation to the periodic solution of y_ in (4. 137). 
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Evidently from (4. 133) and (4. 137), it is sufficient to show that 

for the fundamental harmonics in the variable (wt), the Fourier coeffi­

cients of the non-linear terms s>i (y)y when y = y* in (4. 13 7) and 

l ajS~(y(j))y(j) 
j 

in (4. 133) are identical, for all corresponding elements in the vector 

quantities involved. 

* -1/2 * When y=y, ~=M y, so that 

where 

recalling 

Then 

R_ . 6 l t (j ) A . -K k-1 sin k k-1 = k k-1 a. ·sin y. , , , J J J 
j 

E(j) 
t(j) = _k_ -
k,k-1 

(4. 139) 

(4. 140) 

(4. 141) 



-96-

-.!..l (-M-1/2 S M-l/2E(j)), A . _ a,. . sin y. 
1T • - k J .J J 

J 

1 l ( (j)), . = -- s 1E a,.A.smv. 
1T:-' - kJJ J 

J 

l I 2 (j) . = - - w. Ek a..A. sm y. 
1T J J J J 

(4. 142) 

j 

On the other hand, 

\ a,.S*(y_(j))Y.(j) = \ a,.A. sin (wt+ Y.) sgn [sin2(wt+ y.)}S
1
E(j) (4. 143) 

LJ LJJ J J -
j j 

substituting for Y.(j) from (4. 135 ). Therefore, 

(
\ a,.S*(y(j»Y.(j)) =) a..w~ A. sin (wt+ y.)Ek(j) sgn [sin2(wt+Y.)} (4. 144) 
LJ '-'JJJ J J 
j k j 

So finally it is seen that 

Similarly the coefficients of the cos wt term in the Fourier expansions 

of the above two non-linear terms are found to be identical. 
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This implies that ~(t) as in (4. 114) satisfies to within the 

fundamental harmonic approximation, the differential Equation (4. 112 ). 

The "apparent superposition" to obtain the approximate solution has 

been possible strictly because of the behavior of the particular non-

linearity of the problem. 

Example 

Consider a dynamic system with two degrees of freedom, 

consisting of equal masses and identical "Reid springs" just as in the 

examples in Section IV. 3. However, suppose that the external har-

monic forces have an arbitrary phase difference, 2'11. The equations 

of motion a:r:e 

(4. 14 7) 

where 

F(t) = [sin ~wt+ 211) J 
- s1nwt 

=cos 11 [ i J sin (wt+ T'J) + sin ri [ _ i J cos (wt +T']) (4. 148) 

and the vector~ and the matrices S, S*(~) are given in Equations (4. 70) 

and (4. 71 ). 

According to (4. 114), a first approximation to the periodic 

solution of (4. 147) is given by 

x 1 """cos T'J *l (t) +sin 71 *z(t) = B 1 sin (wt+ 9 1)} 

Xz.,,... cos T'J w1 (t) - sin 'l1 w2 (t) = B 2 sin (wt+ 9 1 ) 
(4. 149) 

where tjf 
1 

(t) and *z (t) are the periodic solutions of 

•• 0 

tjf 1 + {1 + g s gn tjf 1 * 1 } tjf 1 = sin (wt+ rl) . 
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obtained by fundamental harmonic balance. 

From previous results 

w1 (t) ""'A 1 sin (wt+ y1) 

w
2

(t) ""'A2 sin (wt+ y2 ) 

A 1 = ~ l-w2')2 + (~ )2 }-1/2 
2 2 -1/2 

A 2 = ~3-w2 ) +(~) } 

(3 -w2 )"cos '11 + .§_g_ sin 'r") 
7T 

tan y2 = 6 2 
( l -w2 ) cos '11 + ~sin '11 

7T 
.2£cos 11- (3-w ) sin '11 

7T 

Accordingly in (4. 149) 

2}1/2 
+ (A

1
sinY

1 
cos ri+ A2 sin y2 sin 'r")) 

B 2 = {(Al cosy l cos '11 - A2 cos Yz sin '11)
2 

+ (A
1 

sin Y 
1 

cos '11 - A 2 sin y2 sin 'r")) 

A 1 sin y 1 cos11 + A2 sin y2 sin11 

tan 8 1 = A
1 

cos y
1 

cos ri+ A
2 

cos y
2 

sinri 

A
1 

cos y
1 

cos ri- A2 cos y2 sinri 
tan 82 =A . A . . 

1 s rn y 1 cos 11 - 2 sin y 2 sin '11 

2}1/2 
(4. 150) 

For several values of g and 'r"), the quantities B
1

, B
2

, 8
1 

and 82 have 

been calculated and compared with the corresponding quantities in the 

fundamental Fourier components of the periodic solutions of (4. 14 7), 
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obtained by numerical integration. The agreement is quite satisfactory 

as may be seen from the results shown in Table I for two typical cases. 

There are two rows of entries against each frequency in the table; the 

first row consists of the values calculated from (4. 150) while the cor­

responding results obtained by numerical methods are entered in the 

row below. 
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Table Ia 

g = o. 05 

w Bl 91 B2 92 

o. 625 1. 528 0.437 1. 532 0.245 

1. 518 o. 437 1. 523 0.244 

0.700 1. 821 0.414 1. 828 0.246 

1. 811 o. 415 1. 818 0.247 

o. 900 4. 825 0.263 4.866 o. 191 

4.778 0.263 4.820 o. 191 

1. 04 10.30 -2.402 10.46 -2.366 

10. 47 -2.394 10.63 -2.359 

l. 50 0.830 2.912 0.957 -2. 173 

0.830 2. 913 0.957 -2.173 

1. 70 2.267 1. 434 2.905 -1.997 

2.229 1. 456 2.850 -1. 988 

2. 165 0.329 -1. 983 0.345 z. 828 

0.330 -1.984 o. 346 2.830 

2.86 o. 148 -2.22 o. 15 3. 021 

o. 148 -2.22 o. 15 3. 021 
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Table lb 

. g = o. 2 

w Bl e1 B2 e2 

o. 525 0.645 1. 573 0.668 0.445 

0.609 1. 587 o.630 0.441 

0.85 1. 296 1. 038 1. 510 0.459 

1. 212 1. 072 1. 410 o. 471 

0.95 2.28 0.277 2.97 0.04 

2. 12 0.412 2. 70 o. 14 

1. 0 2.50 -0. 517 3.48 -0. 54 

2. 56 -0.360 3.45 -0.42 

1. 25 o.669 -2. 75 l~ 10 -1. 214 

0.666 -2.71 1. 10 -1. 217 

1. 715 2.232 1. 191 2.623 -1. 943 

2. 194 1. 341 2. 586 -1.815 

2.0 0.833 -0. 17 0.915 -3.034 

o. 855 -0. 16 0.938 -3.030 

2.6 0.248 -0. 561 0.258 3. 11 

0.249 -0.561 0.259 3. 11 
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CHAPTER V 

CONCLUSION 

From earlier chapters, it follows that the "Reid Oscillator" or 

the piecewise-linear, non-linear model yields well-pos·ed mathematical 

problems for the free and forced oscillations in dynamic systems. 

In free vibrations the frequency of damped vibration is lower 

than in the undamped oscillator and essentially the model resembles 

the viscously damped system. 

From the response curves in Figures 2a and 3 it is seen that 

during forced oscillations also the "Reid Oscillator" behaves similar 

to a linear system with viscous damping. On the basis of the actual 

computations pertaining to the exact periodic solutions described in 

Section III.2, it is found that the frequency at which the maximum dis-

placement or the peak "amplitude" occurs decreases from O. 9994 to 

O. 99 as g increases from 0.05 to 0.2. In linear systems also, with a 

damping coefficient 13 = ~. the frequency at which the peak amplitude 
1T 

occurs~ decreases from O. 9998 to O. 996 as g increases from O. 05 to 

o. 2. 

There is one distinct feature in the present case which is not 

observed in forced oscillations of viscously damped linear systems. 

For low excitation frequency, as seen in Figure 2b, in the range 

0.5 <W<0.8g the "amplitude" of vibration or maximum displacement 

has a greater value for larger values of g, the "non-linearity" or 

"damping" factor and the curves intersect each other. In viscously 
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damped linear systems, the amplitude corresponding to a larger value 

of the damping ratio C = ~, is necessarily smaller than that for a 

smaller value of ' at all frequencies. 

Regarding future work, it may be pointed out that it is 

necessary to resolve the questions concerning the existence of ultra­

and sub-harmonics. In fact for w < O. 5 in Figure 2a, it is believed from 

sample numerical solutions that the presence of ultra-harmonics 

makes it impossible to obtain periodic solutions with the symmetry in 

Equation (3. 62). The response to random excitations would also form 

a major area of investigation. In certain specific materials, it may 

be useful to consider the presence of viscous damping or non-linear 

functions of the displacement also in order to derive appropriate 

mathematical models. 
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APPENDIX I 

MATHEMATICAL MODELS OF MATERIALS 

The most significant feature in the concept of hysteretic damping 

is the property that in sinusoidal motion, the energy loss per cycle due 

to hysteresis is independent of the frequency of oscillation. Experi­

mental results, since the observations by Kimball and Lowell ( 1), have 

confirmed that certain materials indeed possess this property. Vari­

ous attempts have been made from time to time to represent such 

materials in a mathematical form convenient for such applications as 

in vibration analy_sis. 

Essentially there are four mathematical models based on 

(1) complex stiffness coefficients; (2) frequency dependent viscous 

damping; (3) Biot' s visco-elastic model; and (4) Reid's piecewise-

linear, non-linear model. 

I. Complex stiffness coefficient 

In this model, the restoring force is given by either 

a) F(x) = (a+ib}x 

or 

b} F(x}=keigx 

where a, b, g and k are constants . Model (a} was used by Soroka (9 ) in 

his discussion of forced oscillations . Model (b) was used by 

Myklestad(lO) and Fraeijs de Veubeke(l 3 ). Caughey(4 ) and 

Lancaster(lS} have pointed out the serious mathematical errors m 

these papers and as such it is impossible to draw any meaningful 
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conclusion from their work. For instance, the transient solution pre-

sented in Myklestad' s paper fails to satisfy his differential equation, 

indeed it satisfies the differential equation of a viscously damped sys-

tern. Myklestad' s solution to the forced vibration problem although 

correct for the type of excitation he chose, cannot be extended to other 

types of excitation. 

2. Frequency dependent damping 

In this model the restoring force is given by 

F(x) = hx+ kx 
w 

where h and k are constants. 

The interpretation of the frequency term, w, is clear in the 

case of sinusoidal motion, but is far from clear for transient oscil-

lations or complicated forcing functions. This model has been used by 

Mindlin (S) and Bishop (l l). 

The two models described above have serious mathematical and 

physical defects. Neither model can be simulated, even conceptually 

on an analog computer. The first model yields complex-valued solu-

tions to real physical systems. The second model violates the mathe-

matical condition for a physically realizable system. 

The first successful linear model of hysteretic damping was 

given by Biot(Z?) in a paper entitled "Linear Thermodynamics and the 

Mechanics of Solids". At the end of this paper, he demonstrated a 

visco-elastic model, which at least for steady state oscillations, yields 

a well-posed mathematical problem. 
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3. Biot' s vis co-elastic model 

In this model, the restoring force is given by 

where k, g and E are constants and Ei is the exponential integral 

· J-u -s 
Ei(u) = es ds 

00 

This model has been investigated by Caughey(4 ) who showed 'that it 

yields well-posed mathematical problems for transient and steady-state 

oscillations of all kinds. 

4. Reid's piecewise-linear non-linear model 

In this model, the restoring force is given by 

F(x) =k[x+ g Ix l sgnx} 

= kx[l + g sgnrl} 

=kx+kg I ~1 x 
x 

where k and g are constants and 

{ 

1 if e > o 
s gn e = 0 if e = 0 

-1 if 9<0 

Reid(lZ) seems to be the first to have proposed this model. In 

his technical note, he was preoccupied in resolving the apparent incon-

sistencies in the problem of free vibrations of a dynamic system with 

frequency dependent viscous damping; apparently, he failed to observe 

the far-reaching effects or the non-linear character of the model. 
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Hysteresis loss in a "Reid oscillator" 

As just mentioned above, .the restoring force is given by 

F(x) = kx[ 1 + g sgn :xX] 

If the displacement x is carried through a cycle 

x =A sin (wt+ cp) 

then the energy loss ~W per cycle is given by 

T + 2rr/w 

~w = t F(x) xdt 

T + 2rr/w 

= kA
2 J {~ sin2(wt+cp)+gl ~ sin2(wt+cp)j}d(wt) 

T 

= ZkgA2 

Thus the energy loss per cycle is proportional to the square of the 

amplitude, but independent of the frequency. It may be recalled that 

for linear viscous damping, the energy loss per cycle is proportional 

to the square of the amplitude and proportional to frequency also. 
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