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ABSTRACT

A study is made of the free and forced oscillations in dynamic
systems with hysteresis, on the basis of a piecewise-linear, non-
linear model proposed by Reid, The existence, uniqueness, bounded-
ness and periodicity of the solutions for a single degree of freedom
system are established under appropriate conditions using topological
methods and Brouwer's fixed-point theorem, Exact periodic solutions
of a specified symmetry class are obtained and their stability is also
examined, Approximate solutions have been derived by the Krylov-
Bogoliubov-Van der Pol method and comparison is made with the exact
solutions,

For dynamic systems with several degrees of freedom, consis-
ting of ""Reid oscillators'', exact periodic solutions are derived under
certain restricted forms of ""'modal excitation'' and the stability of the
periodic solutions has been studied, For a slightly more general form
of sinusoidal excitation,' a simple way of obtainingl approximate solu-
tions by '""apparent superposition'' has been indicated. Examples are
presented on the exact and approximate periodic solutions in a dynamic

system with two degrees of freedom,
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CHAPTER 1

INTRODUCTION

The present investigation deals with the free and forced
oscillations of a dynamic system with "linear hysteretic damping'’,
The system restoring force is essentially derived from a linear
spring; however, it is modified by a small additional contribution
from a '""hardening' or ''softening'' linear spring, depending upon
whether loading or unloading takes place, The restoring force veréus
displacement characteristic is shown in Figure 1b, indicating clearly
the dependence on velocity also, Alternately, the additional restoring
force or the deviation from the linear characteristic may be considered
as a damping force in phase with the velocity, but proportional to the
magnitude of the displacement. As shown in Appendix I, the energy
loss per cycle due to hysteresis, sustained by the system under
sinusoidal vibrations; is proportional to the square of the amplitude,
but independent of the frequency of oscillation, This fact enables one
to adopt fhe system as a model to describe the behavior of hysteretic

materials,

The concept of hysteretic damping

In 1927,- Kimball and Lowell(l) discovered that many
engineering materials exhibit a type of internal damping in which
the energy loss per cycle is proportional to the square of the strain
amplitude, but independent of the frequency at which the sinusoidal

(2).

strain is applied, Wegel and Walther confirmed the dependence on
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the square of the strain amplitude, but their observations indicated

" a weak dependence on frequency also. Recently, Lazan(3) has shown
that below the fatigue limit for materials, the hysteresis loss is
proportional to the square 6f the strain amplitude, but is essentially
independent of frequency over a wide range of frequencies.

Closely following the discovery on the behavior of hysteretic
materials by Kimball and Lowell, there evolved the concept of
"linear hysteretic damping' in general engineering practice.
Caughey(4) has remarked on the extensive application of this concept
to air-craft flutter problems and in vibration theory. The papers by

(5) (6)

Duncan and Lyon'"’, Theodoresen and Garrick

(7)

and the text by
Scanlan and Rosenbaum® ’ give a good account of the work carried
out on air-craft flutter analysis.

In the field of vibrations, numerous papers have appeared
on the subject of ''linear hysteretic damping'. The first among the
recent ones was written by Mindlin(B) in 1948; then followed the

papers by Soroka(g), Myklestad(lo), Bishop(“), Reid(lz),

(13)

Fraeijs de Veubeke , Knopoff and MacDonald(l4), Lancaster(ls)

and Caughey(4).

With the exception of Reid and Knopoff, all the papers
listed above deal with linear models of '"linear hysteretic damping''.
The various linear models and the basic non-linear model are briefly
described in Appendix 1. Reid seems to be the first to have proposed
this non-linear model, although in his paper he apparently failed to
realize its essential non-linear character. For convenience, the

non-linear dynamic system describing Reid's model, shall at times

. be referred to as the '"Reid Oscillator'' in the present work.
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Piecewise~linear, non-linear systems

In the course of analysis, an autonomous or non-autonomous
second order ordinary differential equation of the piecewise-linear,

(16)

non-linear class is encountered. Loud has discussed the
advantages of piecewise-linear, non-linear models of physical
systems over descriptions with non-linearities of cubic and other
higher degree odd-polynomials, especially when large amplitudes
are involved or no small parameters are inherent in the system.
For a dynamic system with two-different spring constants depending
upon whether the magnitude of the displacement is greater or less
than unity, he has demonstrated the manifestation of the jump-
phenomenon and of the existence of asymmetric periodic solutions
even in systems possessing symmetry.

Fleishman(17) has analysed a certai>n relay control system
of the on-off type; deriving periodic solutions, ultra- and sub-
harmonics he has demonstrated the non-linear character of the
problem. More strikingly, he has established the validity of the
principle of convex superposition to obtain the response for certain
types of inputs, to the' special case of a '"'non-linear' system, he
has considered.

By means of a convergent sequence of Fourier series

(18)

expansions, Maezawa has solved for a class of periodic solutions
of a piecewise-linear conservative system, with special reference

to the performance of ultrasonic machining devices. A certain type
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of rock drilling operation has been formulated in terms of a slightly

(19)

modified version of the Reid oscillator by Fu » who has examined

the stability of the periodic solution to the problem.

Scope of the present work

The objective of the present study is to examine the existence
of the periodic solutions of a specified symmetry class, and their
uniqueness and stability as applicable to a Reid oscillator. Exact
and approximate techniques shall be used to construct the periodic
solution with the desired symmetry. For dynamic systems with
several degrees of freedom, exact periodic solutions have been
obtained, for certain special "'modal" forms of sinusoidal excitation;
the stability analysis is presented also, in these cases. A simple
way of obtaining approximate solutions by ""apparent superposition"
has been established for multi-degree of freedom systems, when
the restriction on the modal form of the excitation is relaxed. In
this context, it is anticipated that this attempt shall be a further
step in the study of piecewise-linear, non-linear dynamic systems

with definite engineering applications.
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CHAPTER 1I

THE FREE VIBRATIONS OF A REID OSICLLATOR

Consider the free oscillations of a mass M attached to a
"Reid spring'' as shown in Figure 1. The equation of motion is
given by

Mx + kx {1+g sgn(xi)}=0 (2.1a)
x(0)=a , %(0)=0 {2.1Db)

where k is the spring constant, g is the ''non-linearity parameter"

and x denotes dx/dt. The '"signum'' function is defined as

+1 for 6>0
sgn(8)=( 0 8=0 (2.2)
=1 6<0

It shall be assumed throughout O<g<<l1l. Let

cf=§%,w:wt (2.3)

Substituting (2.3) into (2.1),

x”+{1+g sgn (xx')}x:O (2.4a)
x(0)=a , %(0)=0 | (2.4b)
where
-
T dr

Since the restoring force in (2.4a) is bounded, piecewise continuous

and has only finite, discrete discontinuities, the conditions of the

(20)

Cauchy-Lipschitz theorem (see Struble , page 43) are satisfied
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and the initial value problem in (2.4) has a unique solution with x
and %’ continuous in T and the initial values. More details concerning
this question are presented in Chapter III, while dealing with the
corresponding non-autonomous differential equation.

It will also be noticed that if in (2.4a), x and x'are replaced
by -x and -x’ respectively, the equation remains unaltered so that it
is sufficient to consider semi-trajectories only. For 0<7T< Tys let

x'<0, x>0 andx('rl)=0. From (2.4a),

x"+(1-g) x=0 (2.5)

Solving (2.5) for the initial values in (2.4Db),

x=acos/1l-g T (2.6)
™
T, = — (2.7)
1 2y1-¢g
and
’ —
x(T)) = -a/l-g A (2.8)

_For Ty <T<Ty, let X' <0, x<0 and x'(’rz)=0. Then (2.4a) becomes,

x"+ (1+g) x=0 (2.9a)
with
x(1,)=0, ¥ (7,)= -a/dl-g (2. 9b)
Hence, for
T ST<Tys X = - Bil-n, sin VI +g (T-7,) (2.10)
/l+g '
Since
<(1,)=0, T, =1, + —Tm (2.11)
2 Vg 1 , 2

2/1+g
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= + (2.11a)
A=A
And
x(T,) = -a ———&};g (2.12)

The symmetry property of (2.4a) implies that Ty = Td/Z, where T4

is the period of damped oscillations,

_ . L/ +/TE)

Tq = > (2.13)
l-g
The frequency of damped oscillations is given by,
o, =2 _21-g” (2.14)
4 Tq g +/g
For
g<<1, wd’—*(l—%g2> | (2.15)
Again from the symmetry of (2.4a),
x(Tq) = —X(Td/Z) '_1_'_% = a(i;g> (2.16)
V14g g
Therefore,
x(T,) ‘
€ . I=2 2.17)
x(0) l1+g
The logarithmic decrement § is therefore given by,
- _X_KQL> = 4n i
6"{'n(x('rd). —Lnl_g (2.18)

For

g<<l, & =2g (2.19)
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For a viscously damped system with damping coefficient B,

2

Edm 1-%— (2.20)

and

5 =P

Selecting P=2g/m, would help to make the two decrements § and § .
equal; however,

s

3 >w

A 4
| Z d

If quantities of O(gz) are neglected, then

Thus, if g << 1, the system with the '""Reid spring' behaves in almost
the same way, as a viscously damped system with a damping ratio

C,=-ZE= -1§ , at least as far as the free oscillations are concerned.



-10-
CHAPTER III
FORCED OSCILLATIONS IN A SINGLE DEGREE OF FREEDOM SYSTEM
III.1 The Existence of A Unique Periodic Solution

Consider the forced oscillations of a mass M attached to a
"Reid spring' and acted upon by a force, F(t). The equation of

motion is given by,

M3+ kx {1+g sgn(xi)}=F(t) (3.1a)
x(0) =a , %(0)=bh  (3.1b)
Let
wi = %{4— s T :wnt and —F—;ﬁ}l:f('r).

Then (3.1) becomes,

x"+x(1+g sgn xx) = £(1) (3.2a)
x(0) =a , x(0) = b/wn (3.2b)

Theorem 3.1

If in (3.2a), f(T) is piecewise continuous and bounded, then
the initial value problem in (3.2) possesses a unique solution, with

x(7) and x'(T) continuous in T and the initial values in (3.2b).

Proof
Rewriting (3.2) in the matrix-vector notation,

0 1 0

= X + = h(x, 7) (3.3a)
-(14g sgn xx) 0|~ £(T)

2 &

- 4
x(0) = ¢ (3.3b)
b/w
n



"

where

X

% =
= v
X

If £f(7) is piecewise continuous and bounded, then in any finite region
of the phase-plane (x-x plane),
I, T [l< K (3.4)

for any suitable vector norm and an appropriate constant, K.
- Moreover, for any pair of vectors x and y lying entirely in the upper-
half or in the lower-half of the phase-plane

[ h(x, 7) - by, ) || s(1+g) || x-y |l (3.5)
Thus, the conditions of the Cauchy-Lipschitz theorem for a non-

(20)

autonomous system (see Struble , page 56) are satisfied so that

a unique solution to (3.2) exists, the trajectory being continuous in

T, a and b and can be continued indefinitely or until T=T+ is reached,
where x'('r+) = 0. But obviously, any segment of the x-axis cannot be
a part of the solution trajectories of (3.2a); also for a non-constant
function f(T), a point solution cannot exist. Therefore, after x'(’r+) =0
has been reached, the soluti;)n curve must necessarily enter a region

(%’ > 0), where the Lipschitz condition (3.5) holds, besides (3.4), so
< P

that it can be continued further under the same arguments as before.

Continuity of the solution in the initial values

The continuous dependence of the solution on the initial data
follows directly on the application of the Lipschitz condition (3.5),

wherever it is satisfied (see Struble(zo)

, page 48). The only difficulty
arises when the two initial vectors < and <, are such that both the

initial displacements are positive or both negative, but the initial -
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velocities are necessarily of opposite signs. Then the Lipschitz
condition (3.5) does not hold necessarily, until the velocity of one
solution changes in sign.

Since the forward and backward problems are well-posed,
it would be sufficient to consider the following case, to establish
the continuous dependence of the solution on the initial values.

Let x(7) and y(T) be two solutions of (3.2a) with initial
conditions x(0), x'(0), y(0) and y'(0) >0‘. Also, for Os'rs'r**, let
x(T), y(T)>0. However, let

Y(1) >0 for OsT<T"
y(17)=0
and

s sk
Y(T)<0 for T <T< T

E 33 33
Similarly, let ¥(1)>0, 0sT<T ', withx (T )=0. It will be noticed

that for ™ <7 <7, the Lipschitz condition in (3. 5)vis not generally
valid.
For
0<'r<'r* > x”+l(1+g)x=f('r) , x(0) =c (3.6)
y'+ (L+g)y = £(7) , y(0) = c* (3.7)
Let
*.o ok

x-y =z, 2(0)= c-c =4d

Then from (3.6) and (3.7),

z'+ (l+g)z = 0 (3.8a)

2(0)=d" (3.8b)
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Solving (3. 8),

cosvli+g T ! sinv/l+g T
A+g *
% = d (3.9)
-Vl+g sinvli+g T cos/l+g T
so that,
£ £ £
lz(ml < @+) |4l = 2+g) lc-c" || for O<r=7 (3.10)
But since y'('r*) =0, and lx'- y’l < H_)_g—_z“,
P %
I¥(T)] = @+g) |lc-c | (3.11)
Similarly,
% % %
|x(17) - y(T) | < (2+g) [lc-c || (3.12)
For
'r*<'1'<'r*>:< 3 x”+(1+g)x=f('r) (3.13a)
y' + (1-g)y = £(7) (3.13b)
so that
(x-y)" + (1+g) (x-y) = -2gy (3.14)
with
x(7*) -~ y(71%¥) = g* (3.15)
being the initial value vector. As before, let x-y = z. Then,
% p 0 -
z=2e + | Z(1-s) ds (3.16)
% -2g y(s)

where Z(T) is the principal matrix solution for the homogeneous
problem in (3.14) and Z(0) =1, the unit diagonal matrix. Obviously,

from (3.14),
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= i
cos/i+g T sinvl+g T
v1+g
Z(7) = (3.17)
-/l+g sin/itg 1 cosvl+g T
L )
In particular,
TR 0
Z(TH¥) = Z(TH¥) e + f Z(T¥%-g) | -2g y(s)| ds
T%
Therefore,
Tk%
lz(m%%) || < 2+g) |lex| +2g(2+g) j ly(s)|ds  (3.18)
T

However, as already discussed under the proof on the existence of
solutions, for T¥% <7 < T¥%%, [y('r)[ is necessarily bounded. Then,

from (3.18),
lz(res)|| < @+g) [lex|| +2g@+g) |y _ | (% -7%) (3.19)

where

|y (s) |

maxl. - max
TH < g THX

Moreover, since x'('r) is continuous in the closed interval T% <t < T73%%,
and ¥ (1) is defined as in (3.13a) in the open interval T*<T< 7%%, from
the mean value theorem,

K (k) = 3 (1%) + (T - 7%) xX"(E) (3.20)

where

TH < € < ok
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In particular, since x”(T) cannot be identically zero,

7 )
%' (7%%) = 0 implies T¥¥-7% = - ’}%'u)' (3.21)
x (&)
Substituting (3.11) into (3.21) gives,
5
(rs gy < (248) lle-c | (3.22)
| x"(8) |

From (3.19), (3.22), (3.15) and (3.12),

Ix(r5) - y(re5) || s 2+g)° ||| + 282 +¢) |y —‘2—+E;L llc-c*|l
p.4

ma.xl l gl

< 2+g) l+2g_1193§_1_ [l e-c*ll (3.23)
|x"(€)]

Hence, as I-IE-E_*Hﬂo, so also,
[| (k) - y(ik) || = 0 (3.24)

Thus the solution depends continuously on the initial values.

Corollary 3.1

It may be noted that, if in (3.2), f(T) is replaced by B f(T)

and x by Bx=y, then the equation

y'+ {1+gsgn(yy)}y =B () | (3.25a)
y(0) =Ba , y(0)=Bblu, (3.25b)
has the solution
y(T) =B x(T) (3.26)

for any scalar constant .

Theorem 3.2

If in the equation



sl

%"+ (1+g sgn xx') x = £(1) (3.27)
f(T) is piecewise continuous and bounded, then all solutions of (3.27)
are ultimately bounded with,
2(f, +€)

|x| < == (3.28)

where f(0) = sup If('r)l and ¢>0.
T

Before proceeding to the proof of Theorem 3.2, it would be
convenient to derive certain results to be subsequently used in

comparison.

Lemma 3.1

The equation

x"+(l+gsgnxx')x = f. sgn¥ (3.29)

1

possesses a unique, stable limit cycle, I‘(fl), where f1 is a constant.

Proof
Consider the initial value problem,

x"+ (l+g sgnxx’)x=f1 sgn %' (3.30a)
x(0)=a ; ¥(0)=0 (3.30Db)

By treating fl as the constant value of a dummy dependent
variable f*(T), a simple extension (see Struble(zo), page 62) of
Theorem 3.1 guarantees the existence of a unique solution to the
initial value problem in (3.30) with x and ¥ continuous in T, a and
the parameter fl .

Moreover, substituting in (3.30a),

x=-y, ¥=-y (3.31)



w1 T

it is seen that the equation remains unaltered so that it is sufficient
to consider only semi-trajectories of the motion.
Let

x(1)>0 , ¥ (1)<0 , O<T<m,
with (3.32)

% (0) = 0 and x(T;) =0

From (3.30a)

x”-i-(l-g)x-l—f1 = (3.33)

Multiplying (3.33) by x’ and integrating, taking into consideration

the initial values in (3.30Db)

x'z x2 1. 2

=— + 5 (l-g) +f;x=52a" (I-g) +fa (3.34)
Since

x(r)) =0, (1)) = - Ja%(l-g) +21a (3.35)

For T1< T< TZ’

let x(1) <0, ¥ (1)<0 with x(1,) = 0, x(7,) = 0.
During this interval

'+ (l4g)x +1; = 0 . (5.36)

so that

%x’z + % (1+g)x2 + flx = constant (3.37)

Taking into account the initial values in (3.35) and from the continuity

of x(T1) and X/(7),

1 2,1 2 __1_ 2
5 X +i (1+g)x + flx- > a (1-g)+fla (3.38)
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Since
1+ 2 1 2
x'(r,)=0 , L) +f x(r,) = zal(l-g)+£)a (3. 39)
For a limit cycle,
x('rz):-x(O)=—a (3. 40)

From (3.39) and (3, 40)

ag(a-%):O | | (3. 41)

or, for a non-trivial solution, a must be equal to a¥*, where

2f, ,
5.5 e it (3. 42)
g <

Thus, if x(O):a*:ZfI/g, x'(0) =0, then the trajectory of (3, 30a) passes

through
2f
x('rl)~= o , x’('l'l) = -«/a*z(l-g)+2f1a* = =yt = --E-l— (3.43)
and
Zf1
— oa¥ oL 2, =
x('rz)_ a* = el x(Tz)_O (3. 44)
From the .symmetry property of (3, 30a), it follows
(t,+7,)=0 T+ )—,/ #2(1_g)+2£ a* = *—El- (3. 45)
TP =0 X Upih)=wvan i-glrena” =vi =~ .
and
x(272)=a* , x'(2T2)=O (3.46)

Since the solution of the initial value problem is unique, there exists a
unique limit cycle T'(f;), consisting of elliptical arcs, passing through

the points, (a¥, 0), (0, -v¥), (-a%*, 0) and (0, v*), where
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% % Zfl
V =g =,
g
(3.34) and (3.37) are the equations of the elliptic arcs in the
appropriate quadrants in the lower half of the phase-plane.
The closed bounded set of points in the x-x’ plane, enclosed
by the limit cycle I‘(fl) shall be denoted by the compact set, Qo(fl).
%
Since a given in (3.42), is proportional to fl increasing f.1 increases
the size of the limit cycle. Furthermore, the uniqueness of the
solution, rules out any two limit cycles intersecting each other or
having points in common. Therefore, a) Qo(fl) c Qo(fz) for f2 >f1
and b) the limit cycles I‘(fl) form a set of nested curves with no points

in common.

Stability of the limit cycle

To examine the stability of the limit cycle I‘(fl), consider a

function G(x) defined by,

3¢ % a (l-g)+28a

e 1 1
Glx) = %"+ ey - 055 (3.47)

For 0<g<l, G(x) has the following properties:
a) G(x) < 0 consistent with (3.38) to give real values to the velocity

b) G(0)< 0
2f

c) G'(x)=2x + -1-+—;- , so that

f

’ > - 1
G(x) £ 0 accordingly as x e

Aty

f
d) G(— 1_‘*1'g-)< G(0)<0, directly from property (c).
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£
1
G(x)< G(0) , for -n—g- < x<0
] ‘ fl
G(x)>G(- —l—:é)forx < —1—%
< Zf1>
Za.g a - —?—
e) G(-a) =
(1+g)
Therefore
2f f
. x  “h 1
G(-a)>0 if a>a ~—é—>——l+g
5k

G(-a)<0 if a< a

f) From properties (d) and (e), given above, it is seen that

G(x).= 0 implies that,

% Zf].
i) x:x(’rz)>-a , if a>a = --g— and

- *
ii) x=x('r2)<-a , if a<a

From the symmetry property of (3.30) and the observation on x('rz)
in (f) above, it is obvious that if the motion is started at a point
outside the limit cycle I‘(fl), the trajectories will spiral inwards,
towards the limit cycle; if on the other hand, the initial values lie
inside the limit cycle, the trajectories will spiral outwards towards

the limit cycle. Thus the limit cycle I‘(fl) is stable.

Lemma 3.2

All solutions of Equation (3.2), starting outside the limit
cycle I‘(fl) are ultimately bounded in Qo(fl)’ where f1 = fo +e,

f = suplf(’r)l, €>0.
°
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Proof
From (3.2),
7 4
% _ -x(1+g s}g{,nxx)-%f('r) (3.48)
Therefore,
4 .
"j—z‘ =g -t , provided lxl > (l-(;r) (3.49)

Thus, for sufficiently large values of le, the axis contains no arc of
the trajectory. Let x('ro) =a, x'(To) =0 and for TeST<Tps x'(1)<0

x(T) >0 with x(’rl) =0, Suppose

2 1

V=5x +—2—(1-g)xz+f ble (3.50)

N —

1

Evidently V20 where equality holds if and if only x=%x'=0. From (3.50),
V=xx"+(1-g)x¥ + 1) % (3.51)

Evaluating V' along a trajectory of (3.2),

V'(3.2) = (fl-f("r))x’('r) (3.52)

Since sup | f(7)] = fo<f

and for T <r<T,, ¥X(7)<0,
- o 1

1

Vi3.2) S ;(fl'fo)IX'|=-SIX'!<0 (3.53)

So along a trajectory of (3.2), V decreases and for 'ro< T< Tl’

v(T) - V(To) < e(x-a) <0 (3.54)

Evaluating V' along a trajectory of the comparison equation in (3.30),

it is seen that,

V'(3_30) =0 (3.55)

so that along a trajectory of (3.30), V remains constant.
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For different values of V, the Equation(3.50) represents a
one parameter family of ellipses, all with their centers at the same

point, (— -i-iz-, 0) in the phase-plane, and the length of the major axis,

2
2 £
p= 2% +—1—+—g- (3.56)
v1-g
and the length of the minor axis,
f1
q=2,/2V + 70 (3.57)

Since p and q both increase with increasing values of V, the ellipses
form a set of nested curves, with no points in common.

For 7 <t<T,, along the trajectories of Equation(3.30) V

1’
remains constant, while V decreases along the trajectories of (3.2).
Thus on examining these trajectories, both passing through (a, 0) at
T it is seen that the integral curves of (3.2) lie closer to the
origin than those of (3.30), for TS T<Tys in view of (3.56) and (3.57).
Similar arguments, in all the other three quadrants of the phase-plane,
yield the same result.

Moreover, from Lemma 3.1, the trajectories of Equation (3.30)
starting outside the limit cycle I“(fl), (a1>a>:< at 'r='ro), spiral inwards
to the limit cycle; so it follows that the trajectories of (3.2), also
spiral inwards. If the motion were to be started from points lying on
I“(fl), still for a non-constant function f(T) with sgp I f(T) l = fo< fl,
V'-(3.2) <0 over intervals during which x'#0; for ¥’ = 0 and |x| > f,/1-g,

the x-axis contains no arc of the trajectory. Therefore, it follows

that the trajectories of the Equation (3.2), starting outside I‘(fl), must

eventually intersect I‘(fl) and enter the interior of (fl)'
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Lemma 3.3

All solutions of the Equation (3.2) starting inside the set
Q,(f,) must remain inside 0 _(f;), where f = sx;p |£(T) | and f,=f,t¢€,
€>0,.

Proof

If in Equation (3.50) under Lemma 3.2, f were to be replaced

1
by { and the arguments carried through, it would be concluded that
trajectories starting in the annular set (Qo(fl) - Qo(fo) }, never
intersect I‘(fl) and indeed tend to the limit cycle I‘(fo) for Equation
(3.30) or enter the points interior to l"(fo) for Equation (3‘.2), as
time T increases without bound.

Consider a trajectory which lies in the interior of the set
Qo(f ) at ’r='ro . Let it be assumed that at a later time T=Ts, the
trajectory lies outside the limit cycle I‘(fl). Since Q (f ) is a subset
of Qo(fl) with no boundary points in common, there must exist a time
.

5 To< T < Ty, such that this trajectory lies in the annulus (Q (fl) -

1 1

Qo(fo) ). But it has already been shown that a trajectory starting in the
above annulus can never intersect the limit cycle I‘(fl); therefore, it

is impossible for the trajectory of (3.2) to leave the interior of Qo(fl).

Proof of Theorem 3.2

It is desired to show that, given f(T) is piecewise cbntinuous
and bounded; then
a) all solutions of the equation
x" + (1+g sgn xx') x = £(71)

are ultimately bounded in the set Qo (fl) and
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2f
b) Max Ix('r)l < ———1, where f1=f + €,
=00 g °

fo= suplf('r)l , €>0,.
T

The result in (a) above follows directly from Lemmas 3.2 and 3.3;
the result in (b) follows from Lemma 3.1, where it has been shown
that on T(fl), |x| < Zf1 /g and the fact that the trajectories of (3.2)

-are ultimately bounded in Qo(fl) as just mentioned in (a) above.

Theorem 3.3

If in Equation (3.2), f(7) is periodic of period T, besides being
bounded and piecewise continuous, then there exists at least one

periodic solution of (3.2), of period T.

By Theorem 3.2, all solutions of the Equation (3.2) are ulti-
mately bounded in the set Qo(fl) and, in particular, solutions starting
in Qo(fl) must remain inside Qo(fl) for all r.

It has already been shown in Theorem 3.1, that the solutions
to the initial value problem in (3.2), namely x(7) and x'(T), exist,
are unique and continuous in T as well as the initial values. Hence
there exists a continuous mapping M(T), which maps points [x(T1), x'(T)]
in Qo(fl) into points [x(T+ T), ¥(T+ T)], which are also in QO (fl).
Therefore, by the Brouwer's fixed point theorem, (see Sa,a,t')r(21 ),
page 42) there must exist at least one fixed point [xo, x'o] in Qo(fl).
Thus |

[x (1+T), ¥ (T+T)] =M(T)[x (1), ¥ ()]=[x (1), x (1] (3.58)
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Similarly,

[x (T+2T), x/(T+2T)7 = M(T)[x (T +T), x_(T+T)]
= M(T)[x,(7), x,(T)] = [x_(T), x[(T)] (3.59)

So also

[xo(T+nT), x'o(T+nT):} o M(T)[xo('r+ (n-1)T), xé)('r+ (n-1)T)]
= eee = [X;(T), XIO(T)] (3.60)

Hence there exists at least one periodic solution of (3, 2) of period T,
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III.2 Construction of An Exact Periodic Solution

In this section an exact periodic solution shall be derived to
satisfy the differential equation,
x"+ (l+g sgn xx’ )x = P sin(WT + o) (3.61)
and also have the property,

x(T+w/w) = -x(T) (3.62)

Evidently from (3.61) and (3.62), the excitation and the solution both
have the same period (2w /w). During each half-cycle, x(T) shall
monotonically increase or decrease and accordingly, x'(T) shall stay
positive or negative during an entire half-cycle except that at the
beginning and at the end of the half cycle, x/(T)=0. These stipulations
considerably simplify the algebra involved in determining the periodic
solution.

At 7=0, let x(0)= -A, ¥/(0)=0 and that for 0<T<T =%,
0<qg<l, x(1r) <0, x'(T) > 0 with x(’rl) = 0, Then from Equation
(3.61),

x"+(l-g)x = P sin(wT +®) (3.63a)
x(0) = -A, ¥X(0)=0 (3.63Db)

(3.63) can easily be solved, provided w? #(l-g), to get

x(7) = - Pwcosg sinvl-g T -<A+£—§—i££29> cosvl-g T+ E 5 sin (wT+ep)

J1-g (l—g-wZ) I-g-w l-g-w
(3.64)
X(7)= - MZ—CQ cos/l-g T +/l-g {A+P—SE%} sinv/l-g T
l-g-w l-g-w
Puw |
+—-———2-1 cos (WT + o) (3.65)
-g-w :
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At 7=Tl=aw/w,
x(aw/w) =0
- . Puw coscp2 sin/l_-_g- 'a +Psm9}cos =y L,
Vi-g (1-g-w") l-g-w
+‘-—————-zs1n(a1r+cp) (3.66)
l-g-w
(aw/w) = - —}':—)—ul—c—oéz-cp—cos -g 2 g T g{A + Eln—f%} sinvl-g Q—J-
: l-g-w 1-g-w
+ ___I_D_u_)_z_ cos (o +) (3.67)
l-g-w

1< T<T, =m/w, x(T)>0, x(1)>0 with the

condition that x’(w/w)=0. Then (3.61) becomes,

Suppose that for am/w= T

"+ (14g)x = P sin(wT +0) ; %01<'r<'-g—) . (3.68a)
x<9—'"—) =0 f(ﬂ) =b (3.68b)
W w

where b is given by Equation (3.67). The solution to (3.68) is easily

obtained by elementary methods (provided wZJ! 1+g).

x(T) ={ B chos(cp+a£r)} sin 1+g< —%;1
/A+g Vit+g (L4g-w")

- BBl ton) oo AT fr, BLY ., Eslal o) (3.69)
1+g-w v l+g-w
(l+g-w ) .

+\/iTg Psin(cp+zomr) sinv/I7g (’r--gil>+ chos(w;+<:p) (3.70)
l+g-w N l+g-w
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The closure condition for a periodic solution, of period T = o

having the symmetry of (3.62) is that

x(m/w) = -x(0) = A, ¥(w/w) = -x(0)=0.

Thus,

A :{ b = Pwcos (Cp+ag)}sinﬁ+—g QI—O,ZTT
/I+g Jl4g (1+4g-w07) w

_Psin(p+am)

cosVl+g (1- + E8ih (# +2c9) (3.71)
1+g-w o l1+g-w
0 ={b- chos(cpﬁz-'cmr) cos/lTI-E (l1-a)m
1+g-w .
+/T7g Ps1n(cp+2an') sindlTg (l-u?,)w 4 Pw cos (7 +o) (3.72)
l+g-w 1+g-w
Eliminating A and b from Equations (3.66), (3.67), (3.71) and (3.72),
ccosep +dsing =0 (3.73)
ecosep +f singp =0 (3.74)
Therefore
cf-ed =0 {3.75)
=-L=_2
tang = 3 T (3.76)
c=17+ Rcos 1 d=K+ Qcos N
1- /i—;gsinﬁsinn 1- /i—;g‘sinﬁsinn
e =L R cosP sinn f=M Q cosP sinn

Vitg - /I-g sinp sinm

Vit+g - /1-g sinp sinn
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= -Dw cosam cosn+ D/i+g sinam sinm -Dw
= Dw sinawcosn+ Dy/1l+4g cosamsinn

-AO sin§+ B sinam + C cos am sinM cosf + Dsinaw cos 1 cosf

2 R
H

= -Bcosf + Bcosam - Csinanw sin 1 cosP + D cos am cos 1 cosf
+ Dcosp
Q = /1-g BsinP - Bw sinar +/i-g Csinar sinm sinp |,
-/I-g Dcosam cosn sinP - /i-g Dsinp
-BwcosP + Bw cosam - /i——_g C cosam sin T sinp

- D/I-g sinam cosn sinf

Puw

A = e Pw

- Vi-g (l-g-wz)

/T7g (14g-u)

B_-____.P_Z : Dz___g__.z.
l-g-w 1+g-w
T
B =g & ;o= ving U= (3.77)

The solution technique used was to give values of g and W and to solve
equation (3.75) numerically for o ; the '"phase' ¢ was then obtained
from (3.76) and the "amplitude'" A, from Equation (3.66). The values
so obtained for o, A and ¢ must be substituted back in Equations
(3.64), (3.65), (3.69) and (3.70) and it must be verified that sgn (xx) =
-1, O<r<aw/wand sgn(xx’) = 41 in the interval aw/w < T<w/w to avoid
extraneous roots obtained in solving the transcendental Equation (3.75).
The numerical results are shown in Figures 2 and 3 for three

values of g=0.05, 0.1 and 0.2 and for w in the range 0.5<w<3.0.
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It is to be recalled that w as in Figures 2 and 3 actually refers to the
frequency ratio we/wn, where w, is the excitation frequency and W is
the natural frequency, In the calculations, P was taken to be 1. It
may be noticed that the phase ¢, as defined above, goes through zero
at resonance; this is to draw attention to the fact that since the exact
response is not harmonic, @ is not the phase shift between the funda-
mental Fourier component of the solution and the input, nor is A the

amplitude in the usual sense,
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III.3 Stability Analysis of the Periodic Solution

The existence theorem, Theorem 3.3, guaranteed the existence
of at least one periodic solution of period T =2w/w, the method of
construction given in (III.2), yielded a single periodic solution with
the symmetry in (3.62). However, this solution is not guaranteed to
be stable. The question of stability must be examined separately.
Since Equation (3.61) is of second order, it is acceptable to examine
the behavior of any two quantities such as displacement and velocity
or amplitude and phase to determine the stability of the periodic
solution. For the dynamic system with single degree of freedom, it
is found conveﬁient to study the amplitude and phase as defined in
Section III.2. |

Let the diffe rential equation of motion (3.61) be expressed
in the form

Z=F(z) (3.78)

z = s(T) (3.79)
If this solution is perturbed slightly, so that

gp=§('r)+§('r) (3.80)

then the original solution in (3.79) is said to be asymptotically stable

in the sense of Liapunov, if for any § >0, there exists an €>0 such

that for || §(0)||<e, ||&T)||<6 vT>0and £t ||E(T)|| =0. In the usual
- - T-00

cases, the time-behavior of_§(’r) i_s furnished by the so—ca_lled

variational equations

g’ Mg (3.81)
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where

8Fi(s,'r)
M., = ——— (i,j=1,2) (3.82)
N 5,
J

Unfortunately, because of the ‘sgn(xx') term in (3.61), the matrix
M cannot be obtained by classical methods. However, by borrowing
ideas from error propagation in difference equations, following the
perturbation at the beginning of a cycle, the deviation from the
periodic solution can be determined at the end of the cycle. Repeating
this process over and again, we can follow the propagation (similar
to change with time) of the initial i)erturbafions from the periodic
.solution. The stability or instability of the solution is then determined
by whether or not the deviations from the periodic solution decay or
grow, as the number of cycles increases without bound (i.e. as T —00).
In general the deviations in amp‘litude and phase are determined
by non-linear difference equations. It may be shown, however (see
for example Masri and Caughey(zz)) that if the solutions of the
linearized difference equations are asymptotically stable, then so
also are the solutions of the non-l_inear difference equations, provided
the initial deviations are sufficiently small,
Let xo('r) denote the periodic solution as determined in the

previous section, with phase P of the differential equation
x" +(l+g sgnxx¥)x = P sin (wT +0) (3.83)

Let the perturbation in the displacement x be §; suppose that at

TET » X (TO) = -A , x('ro) 0, then



.

-AO- AA S, © =0, AR
(3.84)

g = -AAO

r_ r _
+8=0 . g

where Acpo is the perturbation in ¢, AAO is the perturbation in A

at T=7,, X and ¥’ denote the displacement and velocity in the perturbed

state.
Suppose also that for T 'r<’r1, x' >0, x('ro) <0. Let {f(x)

be defined by
f(x) = (1-g)x , %<0

(1+g)x , x>0 (3.85)
The equation of first variation is
d2§
- +f'(xo)g =P cos (wT +o,)Ap (3.86)
dT
while
dzx0
dTZ +f(xo)=Psin(wT +Cpo) (3.87)

Multiply both sides of (3.87) by Acpo/w and differentiate with respect

to T,
2 | ¥ Ag x Agp
d
5 Ow 21 + f'(xo) 2 m | =Pcos (wT +cpo)Ach (3.88)
dr 7
Subtracting (3.88) from (3.86)
2 X A X Aep
d 0~2%o o ~%o
3| 8- ——— | +1(x,) | 8- —=——| = 0 (3.89)

dr
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Let
) 'y DO
u(t) = §-x (7) _"o (3.90)
W .

Then

dzu

— +f'(x (T))u=0 (3.91)

d'r2 °

and u, be

This is a special case of Mathieu-Hill equation. Let u 2

1

two solutions of (3.. 91), where

up(r )=0 ; ui(¢0)=1
(3.92)
uZ(To)-lv - uz’('ro)=0
At
® (7 )Ae,
TET s wr )= () - = -AA (3.93)
A A
w'(r )=g'(r ) -x"(7 ) 2= -x" (7 ) —=> (3.94)
Then
/4 ACpO
u('r)=-z_\.A0 uz('r)-xo("ro) m ul('r) | (3.95)

Suppose that at T= TS + Iru-) + A’rl, x'(7) =x’O(T) + E(1)=0. Then,

A

) [o)

™ / ™
§(To S TAT u('ro +w/w+AT) +xo('rO % w+AT1)

1)

w(T +m/w)+u(t +=)AT
o o W 1

A ) ” A Cpo

! Ty e L
tx (TH5) — T % (T )

w ATl

]

u(r _+w /w) + quantities of second order in AT, 'Acpo, AA .

(3.96)
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So at the end of the first half cycle,

g =BT +m/w+AT )=AA =u(r +7/w)
= -AA_u, (T +T) =% ( )—-—-—Acpo (7 &=} 3.97)
T 0 R2'To ™! "Fo\ ! T Ml T T (3.
From Equation (3. 87),
U4 _ . -
xo('ro) = Psmcpo+ (1 g)Ao (3.98)
n Ty - :
xo('ro +w) = {Psmcpo+(l+g)Ao} (3.99)
At T=T + —,
“r +Z)=u'(t +Z)+x" (1 +T) ®o
ST w o w'ow
Acp A
7 m 14 [e) 7 s Vi v o
= e — - — +—
AA uz('ro+w) xo('ro) m ul('ro+w)+xo('ro ) m

= -AA_ ul(r +F—)-—A—3Q[x”('r Jul(r + D)~ (1 + D]
K o 20 W w o o 1l o w o o W

(3.100)

At T=T + T+ AT,
o w 1

’ ’ ™ ’ ™ " ™ " m ]
Q= Z Z L +I)|a
H(m=o=x (r + )+ 8 + Ty [ (1 +3)+8%r +3) ] A
Y us ” m T
= £ ('ro + w) +x ('ro i LU)A'r1 + quantities of §econd order
in AT, Agy, AA . | (3.101)
Therefore, .
Ap
- m ' ud o s ’ _11}
L {88 W + D)+ 2 (1) wj(r v D)} Ao,
Tl T n m - X” (T " :I'_I‘_) w
p.4 (T°+E)) ol %

(3.102)
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At the end of the half-cycle, Ap; = Dyt WAT

1
So
WAA ul(rt + =) X (7))
Ay = °u2‘; & +Am&JL£jruﬁ%+1) (3.103)
(T + =) “(T 4+ b
o'o w o''o w
In matrix-vector notation,
~ B
x (T )u (T + =)
gy el ey
AA1 Ah,
’ i ”
By, wuy (T + =) xo(T,) Wir 4T Ag,
" 1 ” l 1'o w
%ol ) XolTot W)
— g (3.104)

For the next half cycle, %' <0, x(T, + w/w + A'rl)on + AAI’
cp:cpo+Aq:>1 . A similar analysis to that performed for the first half

cycle shows that

AAZ AAl
) Aoy
where
.
” L
Xo(To) ul(To+ w)
~uylTy + ) ) w
M = (3.106)
" ué(ToJr%) xo(T5) / ™
*\To™T W - FotTo" B




-40-

Thus,

AAZ

2 o (3.107)

Acpz

In general, the deviations in the amplitude and phase at the end of

the nth cycle are given by

AAn AA

n
= M 3,108)
Aqnl (

A necessary and sufficient conditon that AAn, Acpn tend to zero as
n tends to infinity is that the eigen values of M be less than unity in

modulus. The eigen values of M are determined form,

"

2 X”('To) ; X (To)
[l + P - T i+ ) | - o [Winr f = 0
XO(TO+(.—U_) XO(T0+’(—1.))

(3.109)
where W('ro + 1(;—) = W('ro) = 1 is the Wronskian of the solutions of
(3.91).

The solutions U, u, of (3.91) are easily obtained by

elementary method.

T 1 . 1 4 ~N
u, (1 +-=) = cosP sinn + sinP cos M
e v i g
ui('l'o + %) . cosP cos M - /%—& sinP sinm B
. (3.110)
1=
112(_'1'0 + %) = cosP cos ™ - T+—§ sinP sin "M

uy (T + :-‘T)-) = -/I-g sinP costn - Vi+g cosp sinn
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where

p=vitg &, n=/arg LG

w
O0<a<l, such that xo('ro+cur/w) = 0 as determined by solving

Equation (3.75). From Equations (3.98), (3.99), (3.109) and (3.110),

2+ ..
(1 +g)AO +P sin @

(Ao + P smcpo) cos B cos M

P sincpo+(1—g2)Ao ,
- sinf. sin?’]]

i-g?

(1-g)A +Psing
+ o] _ o
(1+g)AO+P sin g

=0 (3.111)

With the values of Ao’ ©, and o for the periodic solutions obtained
in the earlier section, it was found that the periodic solutions with
the symmetry of Equation (3.62) were stable for the values of the

parameter g=0,05, 0.1 and 0.2 for w>0.5.
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11,4 A Different Approach to the Stability Problem

The stability problem, discussed in the preceding section, can
be formulated in yet another way from first principlés, leading however
to exactly the same results as in Equation (3.111)., This latter approach
is found to be more convenient, for instance, in detérmining the stabil-
ity of the periodic response of dynamic systems with several degrees of
freedom, So presently, the equivalence of the two methods shall be

demonstrated explicitly,

Analysis from first principles

Once again, let xo(q-) represent the exact periodic solution

constructed .in Section III, 2, From earlier discussion it follows
n” ’ _ .
x0+ (1+g sgnxoxo)xo = Psm(w7+§po) | (3.112a)
, .
xo(O) = -A.0 8 xo(O) =0 | (3. 112b).
Moreover for

m Y] 3 ’ 'I_L - .
.0<'r<w ’ xo('r)>0w1thxo(w)..0,

Q. . Oy -
O<r< . x (1)<0 5 = ( m =0 (3. 113)
an il . . Ty e
" <T<w ’ ol™>0 xo(w)—Ao

Suppose (xo+ €) is a neighboring perturbed state; evidently,
(x g)"+ {1+gsgn [(xo+ §)(x;)+ g')]}(xo+ g) = P sin (wrtep, ) (3. 114a)

with initial values,

x (0)+8(0) = -A_+§_  ; x_(0)+E10) =g (3. 114b)
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Subtracting (3, 112a) from (3. 114a),

e"+E+g{ |x0+§| sgn (x(')+§’) - Ixol sgnx;} =0 (3.115)
The asymptotic stability of the origin in the g-&’ plane, a singular point
for the differential equation in (3, 115), shall guarantee the stability of

the periodic solution xo('r), just as the results in Section IIL 3,

Solution during the first half-cycle

Consistent with the preliminaries in Equations (3, 112), (3.113)
vand (3. 114), during the interval O < T <w/w, it is necessary to examine -
the non-linear terms in (3, 115) only for three possible situations;

a) when x(')-oO and ]g’] determines the function sgn (xé+ g’)
. b) when xo-.o and £ contributes to or dominates the expression
|x_+g|

c) whenever Ixol andlx’ol are predominant, or in other words

|, 1>>18l, [xgl>> 8|

Case a: x' =0
. gy

As € and g’ are perturbational quantities, consistent with the
properties of xo(T) as in (3, 113) and assuming g(’)>0, it can be concluded
that during the entire half-cycle 0 stsw/@w, except during a small inter-
val at the end, about T=w/y, sgn (x(’)+ E’) =sgn x:) =1, Furthermore,

without loss of generality, one might consider the case,
X;('r)Jr e'(m>0 , O<fr‘<(%+ 5) (3. 116a)
with

x;<%+ 5) 1 g'(%+ 5) = 0 (3. 116b)
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and
x;(T)+§'('r)<0 ] (%Jr 6>< T<%E- (3. 116¢)

while x’ (1) >0, 0<r <™ and x’ () <0, —<T<—2-Ir—-
o w o w w

During the interval T'(I‘;<'T < (% + 8), xo(fr)a' Ao , its positive
extremal value, so that |xo+§|mA0 also, during the same period, Then

from (3. 115),
E” + g+ng{sgn(x;+g')_sgnx;}zO , T-(;-<¢<<1(I-)+.5> (3.117)
Expanding (3, 116b) in a series about r=

1
(.U
(D e (e (Dsrouwti=o o

where a posiﬁve superscript denotes that the quantity under considera-
tion shall be evaluated as its limiting value from the right,

From Equations (3. 112), (3.113) and (3, 117),

+
xg(% >: -(1-g)A_+Psin(m+ep,) = —{(l—g)AO+PSincpo} (3, 119)
'
g”(% > = -E(Iru;)- ZgAO = -ngo (3. 120)

Since x'(l‘u;>=o, from (3. 118), (3.119) and (3. 120),

=) +2/(3)

6= (3.121)
( >+§ ( > 1+g)A +Ps1ncp
omitting quantities of 0(5 ). Hence
¢(3+9)- £(Drs(Z) o
| (3. 122)

= g’(%) - Zng'g,C%)

(1+g)Ao+ P sin P,
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omitting quadratic and higher terms in perturbational quantities,

Rewriting (3. 122),

[§’<E§+ 5) ) 5(%)] = (1+g).;o+ P?sin ®, ’5'(%) | (3. 123)
Similarly,
f(2+5)- 2(2)+ £(2)-ov 0t

) (3. 124)
g(%) , correct to terms of O(I &'l )

Hence the effect of the terms sgn (x;+ £’) and sgn (x(’)) during an interval
when |£’| dominates or is comparable to [x(’)l, may be interpreted as
a jump in €', such that

- -2gA -
g'(%+>'gl(% ) " (A _+ Bem %y gl(% )

(3. 125)
(l-g)Ao+ P sin P,

or %'(?;) " (T+g)A_+ Psing, g'(%') = ﬁg'%_)

where a negative superscript indicates the limiting value from the left,

of the quantity under consideration,
The same result as in (3, 125) is obtained if one were to consider
that (x;-i- ') attains zero at 7= (%-5) and is negative subsequently as

against the case in (3, 116).

Case b: x5-0

Having considered the effect of the non-linear terms in (3.115),
when the velocities (x(’)+ g’) and x; are opposite in sign, it remains to
examine the case when they are both positive, which occurs during

almost the entire half-cycle mentioned above, During this period, the
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perturbation equation (3, 115) becomes
” _ T_r.-
e"+e+g(x +El-[x |)=0 , O<T< (3. 126)

Recalling xo(%) =0, it is obvious that during a small interval about

T:Q(-LL, |e] would dominate or at least be comparable to lxol,

Suppose
(x +E)<0 o<'r<(9w1- e) | (3. 127a)
(x t€)>0 , T>(T1T- e) | (3. 127b)
with
xo(%- e)+ g(—-e> 0 (3. 127¢)

From (3.126) and (3. 127),

E”+ (1+g)E = 2g lxo(T)| 5 (%-€><T<%§- (3.128)

Expanding (3, 127c) in a series,

xo(g-E)-xO(mT) +g(—-- e>+ o(e?) = 0 (3. 129)

w w
Moreover, since xo('r) and {xo(’l‘)-i-g('r)} are both negative for

0<T <(-@J—-e), from (3. 126),

g7+ (1-g)E=0 0<¢<(%’—-e) (3. 130)

Therefore,

(-2

o [/ (5-0)] Ly 15 (9]

(3. 131)

o G,1T
E cos /1-g=—+ g sin /I+g =—
© v ./T‘g

omitting quadratic terms in €, g;, and €,



B

From (3. 129) and (3. 131),

(gocos Ji-¢g -%I-+———1——g(')sin J1-g g(:—) _
€= /1-g (3.132)
< (g1>
o\ W

omitting quadratic terms in €, g(’) and ¢. Then,

()« o) 65 o

(3. 133)
= 5(%-<)+o(lgl”)

Similarly,

() - (@) () Jono
But from (3. 128),

g[(%-e) ] = - (rerz+2gx (X -c)

= O(8)
since [x_(T)| =O(E) also, in the interval (S‘wl-e)<rr<90-)1. Therefore,
/() = /(%) +o(ilz?) (3. 135)

Case e | [>5]g], [x)[>>]¢]

The results in (3, 133) and (3. 135) imply that it does not matter
if one neglects to make use of (3, 127) and (3. 128) and thus uniformly

consider the perturbation Equation (3, 126) to be
E"+(l+gsgnx )E=0 0<fr<"a)7-" (3. 136)

over the half-cycle with a jump in the velocity given by (3. 125) at the
end when T = %, Equation (3. 136) is identical to (3, 91) and it is pos-

~ sible to write down the result,
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()] fol@) ) oo

) = (3.137)
(3] (%) « () |go

: Ty w (T il s ; -
where uz(w), uz(w), ul(w) and ul(w) are obtained from (3, 110) with

To=0. Taking into account the '"jump condition' in (3, 125),

(2| oo |s(E)

i = (3. 138a)
[ T [T
() oo [5(F)
or
mt+ ™ T
g(ﬁ “2(5) “1(5 )
: = £(0)
$xl
[T (T ¢t [T
g<w ) BuZ(w) Bul(w
= T E(0) (3. 138b)
Stability condition
During the next half-cycle,
7 ’ 2t =
x, <0, (x,+€)<0 , Z<r<3t (3. 139)

except for a small interval about 7= %, when the '""velocity jump"

(2" < pe(2)
g () = pe(2
occurs with the same value of B as in (3. 125), Furthermore, following

the same arguments as in the first half-cycle, in the interval T <r< —21—,

the perturbation equation remains the same as in (3, 136) so that,

(&) - re() - e

w
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Similarly

+
_g_(%’ ) = T"g(0) (3. 140)
A necessary and sufficient condition that g, &’ tend to zero as
n-oo, is that the eigenvalues of the matrix T be less than unity in abso-
lute value, From (3, 125), (3.138b) and (3,110), the characteristic

equation for the eigenvalues is given by

2 2 "
At (1+g)Ao+PSincpo [(A0+Ps1ncpo) cosfBcosn

Psincp0+(l—g2)Ao } (1-g)A0+PsincpO
- sinB sinmn| + - =0
/l-gz (1+g)Ao+ Psmcpo
(3., 141)

which is identical to Equation (3. 111) derived in Section .3, Fuarther
details concerning the stability of the periodic solution of a single
degree of freedom dynamic system have already been discussed,

Incidentally, it may be observed that the product of the
eigenvalues A and )\2 of the matrix T satisfies the relation

e (l-g)Ao+Psincpo
Kyhy = hi= (T+g)A_+ Psing,

(3. 142)

For, the product of the eigenvalues is given by the determinant of the
matrix T; and from (3, 138b) it follows that the determinant value is
since the Wronskian of the fundamental solutions uy and u, in (3, 138Db)
is unity,

Hence a necessary condition for stability is that lﬁl be less
than 1; while this is a sufficient condition also if the roots of (3, 141) are

complex, it is not so if the roots are real and hence the eigenvalues



-50-

must be explicitly evaluated from (3, 141) to determine the stability of
the periodic solution,

It may be remarked that the analysis of the perturbation
equation (3, 115) as in this section, shall be closely followed to investi-
gate the stability of the periodic response in multi-degree of freedom
systems, However, there is an essential difference in the nature of
the "jump condition'" in Equation (3. 125) and the "jump matrix'" in
(3. 13815), In the single degree of freedom system, these quantities are
independent of the fact whether the perturbed velocity (x(’)+ g’) attained
zero earlier to or later than the unperturbed velocity; this is not true
of systems with several degrees of freedom as will be seen in

Section IV, 2.
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III. 5 Periodic Solution by Approximate Analysis

Since the existence of a periodic solution with the same period
as the sinusoidal excitation is guaranteed from previous discussion, it
is naturally interesting to examine whether the periodic sqlution or an
approximation can be derived by techniques other than having to solve
the transcendental equation in (3, 75), In this context, the method of
slo§v1y varying parameters is resorted to, following its successful
application to solve piecewise-linear systems in earlier instances (see
for example, Caughey(23)).

Liet
x = CcoswT+SsinwT (3, 143)

where C and S are slowly varying functions of T, represent the periodic

solution of the problem

x"+(l+gsgnxx’)x = Psin (wT+ 1]:0) (3. 144a)
x(0)=a ; x'(0)=b ; O<g<<l (3. 144b)
From (3, 143)
x' = -wCsinwT+ WS cos WT+ C’'coswT+S’sinwT (3, 145)

The auxiliary equation shall be taken to be
C'cos wT+S'sinwrt = 0 , (3. 146)

Then

x” = _wZ TCcoswT+SsinwT] -wC’sin wT+ wS’cos wT (3. 147)

Substituting into (3. 144a),

(l-wz)[C cos wT+S sinwTt] - wC’sin wT+ wS cos wr

+g ]C coswT+ S sin w'rl sgn (-C sin Wt +S cos wr) = P sin(wr+{,)(3. 148)



.

Multiplying both sides of (3, 146) by wsin wT, both sides of (3. 148) by

cos wT and adding,
(l-wz)[C cos? wr+8S sin wr cos wT T+ wS’

+g/C"+S Isin(wT+y)| sgn (cos(urr+Y)> coswWr=PcosyTsin (wT+1J;o)
(3. 149)

where

tany =

wla

Averaging over a cycle,

2 L2 2T 4
(l-wz)C+2wS’+ g@f [sin(e+Y)]sgn (cos(e-l-Y))cos 9pde=Psin 11;0
0 :

(3. 150)

Similarly,

[l b T
(l-wz)S -2wC'+ L%_-I-S_ jz ]sin (e+y)l sgn (cos(e+y)> sin 6dg =P cos wo
0

(3. 151)
To evaluate integrals in (3, 150) and (3. 151), let
- | .
Il = lsin )\[ sgn (cos })sin ) d)=0 (3, 152a)
0
™ m/2 4
I, = |sin )\[ sgn(cos )\)cos Ad) =4 sin Acos ) d) = 2 (3. 152b)
0 0

Then

17
Jz ]sin (e+Y)l sgn {cos (8+y)} cos 6dg = I2 cos Y+ I1 sinY =2 cos vy (3, 153a)
0
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2 ]
j Isin (9+Y)| sgn {cos (6+Y)} sin 6d@ = Il cos y -I2 siny = -2 sin ¥y (3. 153b)
0

Therefore,
(1-)C + 205"+ 2 { CP45% cos ¥ = Psiny, (3. 154a)
(1-w2 )S - 2wC’- —21-Tg- N c?+8% sin Yy =Pcos | (3. 154b)

Since tany=C/S, (3.154) reduces to

(1-0")C+ 205"+ 285 = Psin y_

(3. 155)
(l-wZ)S -2wC’ - %r&c = Pcos \1;0
From (3, 143) and (3, 144),
x(0)=C(0)=a ; x'(0)=S(0)w=b (3. 156)
Let
Z=C+1iS (3. 157)
Then substituting (3, 157) into (3, 155) and (3, 156),
: -iy
(l-wz)Z -Zin’-Z?lg-Z =iPe °
‘ (3. 158)
ib
Z(0)=a+ r
Solving the first order differential equation in (3, 158),
-i(y t o) -{_Z_g.+i(1_w2)}.l.
Z(r)={a+ 24 —E° - e - T 2w
2 2
[(1-0?)" + (£8)
-i(\bo+ ) '
Pe
- = (3. 159)

Joer (&7

where tang = (1-w2)/(2g/-n-).
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The compléte solution is given by
x(T) = [ReZ(T)]cos wT+ [ImZ(T)] sinwT (3. 160)

In particular, as T-o0,

-1yt o)
gt Z(T) = - —=2 = - (3. 161)
T = 00 ’ N 2 gg.
Ju-+ (22)

Moreover, selecting | =,
o

St x(T)=Acos (wT+ o) = Pcosz(wq-.'_ ) .

P .
= sin (WT+ ¢ _-® ) (3. 162)
Ja-us (22 T

where

E!

1
o =5-9 , tancp=(2gw“) (3. 163)

Thus the response to an excitation

f(T) =P sin (wT + 1];0) (3. 164)
is given by.
x(T)= A sin ((m-+q;0- cps) (3. 165)
where
A 1
?’ — (30 166)

Ju-te (22

and the '""phase-shift cps” is given in Equation (3, 163), The phase-shift
so obtained is truly the phase difference between the fundamental har-

monic response, obtained by approximation, and the sinusoidal input.



w550

The above solution is of course stable since it was obtained as
the limit of the transient solution as T- o0,

The method of slowly varying parameters is a one-term or
fundamental harmonic approximation only in the general asymptotic
scheme (see Minorsky(24), pg. 360, and Bogoliubov and Mitropolsky(25),
pg. 134), Hence it is considered relevant to make a comparative study
of the above results in Equations (3, 163) and (3, 166) with only the fun-
damental harmonic in the exact solution derived in Section IV, 2,

Let

xh('r) = a; cos uu'r+b1 sin T (3. 167)

be the fundamental harmonic contained in the exact solution x(T) repre-

sented in Equations (3, 64) and (3. 69). Evidently,
1 2T
a;=— x(T) cos @t d{wT) (3, 168a)
T 0
and

b1=

ERE

™
fx(T) sin wT d(wT) (3. 168b)
0
From the symmetry property x(7) = -x(T +7/w),

5 | poum (1-q)m (L-g)w ) o
a;== f x%(0) cos 9dp+ cos ocrrj x(6’) cos e’de’-sinomj x(0') sin §'dp
(3. 169a)

J~0JT

2 d-a)w (1-g)m
b, =2([ x(8) sin 8.6+ cos omJ' x(8") sin §'d8’+ sinomj s(5%] cos e’de’}
0

0 0
(3. 169b)
x(0) is obtained from (3, 64) on substituting wT = § and similarly x(8')

from (3, 69) on substituting wT = (8'+ar)., Equation (3. 167) may be
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rewritten as follows:

xh(T) =Ah sin (wT-{-cp*) :Ah sin (w7 + B~ cph)

“ (3.170)
Ah Va A 51nCp i P :Ahcosfp* S =, @

1
where Pg is the '""phase' obtained from solving (3. 76). Thus P, is the
actual phase shift between the fundamental harmonic in the response and
the input,
The amplitudes from (3, 166) and (3. 170) are plotted in Figure 4
and the phase angles P and P in Figure 5, There is excellent agree-
ment in general although the maximum error, which occurs for g=0.,2,

is as high as 10% in amplitude and 8% in phase,
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CHAPTER IV
FORCED OSCILLATIONS IN MULTI-DEGREE OF FREEDOM SYSTEMS

IV, 1 Exact Solutions for a Restricted Class of Excitation

A dynamic system with N-degrees of freedom is schematically

shown in Figure 6, Rl’ R2 oo R are all "Reid springs'', which

N+l
during cyclic motion give rise to energy dissipation because of their
piecewise-linear, non-linear characteristics, In this chapter, itis
desired to study some aspects of the forced oscillation in such systems,
In so far as exact solutions are sought, the analysis presented here is
confined to only certain cases with very specific ""modal excitation'', to
be described subsequently, The restriction is essentially due to the
complexity of the non-linear terms, which makes it impossible to

uncouple the differential equations of motion by coordinate transforma-

tions, for arbitrary modes of excitation, as is done in linear systems,

Equations of motion

The equations of motion are given by

mk).ik"' Sk{l + g sgn [-(xk-xk-l)(}%k-;(k-l)]}(xk-xk—l)

2 Sk'H. {1 +gsgn [()ﬁ(-xk'i‘l)(}.{k-ik'f‘l)]}(xk_}ﬁ('ﬂ) = chp(t) k=1,2,3- «N
(4.1)

where m, is the k-th mass, s, is the spring constant of the k-th spring,

k
and %, is the displacement of the k-th mass with X and XN+ being

stipulated identically zero,
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The force vector is specifically chosen to be of the form Feo(t)
where F is a constant vector independent of time, o(t) is a scalar func-
tion in time to be subsequently considered trigonometric,

Equation (4, 1) shall be rewritten in the matrix-vector notation .
as follows

M+ Sx+gS” (x)x = Eolt) « (4.2)
) where M is the diagonal mass-matrix with
0if i#j
My 50 - By = {1 T | (4.3)
The tri-diagonal matrices S and S*(ﬁ) consist of the linear and non-
linear terms respectively of the general spring matrix associated with

the restoring force represented in (4, 1),

The only three non-zero elements of the k-th row of the matrix

S are
S Pk § ST Mm § Sk =%k (4.4)
Similarly,
Sy 101 = =5y sm [ (kb )
Sie,x® = sy sen {lx-x )& -F )] @, 5)

St 580 {0924 ) (- py))
S a1 ) = =554y 580 {0 -x4) (g )]

Evidently, S, S*(_)g) are real symmetric matrices,

Existence and uniqueness of solutions

The restoring force in Equation (4. 2) is bounded and piecewise

continuous in any bounded region of the associated 2-N dimensional



B

phase-space, In addition, let the external forces be piecewise continu-
ous and bounded also, Then the Cauchy-Lipshitz theorem guarantees
the existence of a unique solution to the initial value pfoblem in any
region of the phase-space bounded away from the discontinuity surfaces
of the restoring force, In any region so described, the restoring force

is continuous and for any pair of vectors x and y lying entirely in such

a region
[l +5¥x)x - (5 + ¥ (wy)|| s 4(1+g)s . [lx-v]] (4. 6)
where
S nax = mlix 8y

Thus the necessary conditions of the Cauchy-Lipshitz theorem are
satisfied, In fact, the solution can be continued up to the first discon-
tinuity encountered,

The Lipshitz condition in Equation (4, 6) is not satisfied only
when the two vectors x and y are such that for one or more values of

k, it is true that

5en (X -Xpeyy) = 980 V-V
and »
sgn (;ck-}.(kﬂ) = -8gn (¥} -¥3y) » k=1,2,N
Hence the difficulty arises in extending the uniqueness property of the
solution across such a discontinuity surface, But then, for the non-
autonomous system under consideration, ¢(t) being a non-constant

function, singular point solutions cannot exist, And just as in the case

of a dynamic system with single degree of freedom, for large values
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of ||x||, the discontinuity surfaces cannot contain arcs of the solution
trajectories of (4.2). This enables one to extend the solution indefi-
nitely repeating the same arguments,

Beyond this point, the analysis of a Reid oscillator with single -
degree of freedom entailed a study in the phase-plane only, With just
two possible values for the signum function in the non-linearity part,
explicit solutions could be sought for the differential equation or first
vin’cegrals evaluated. as necessary, so the continuity of mapping and
ultimate boundedness of solutions could be esi‘:ablished with appropriate
conditions on the external force, - Furthermore, the existence of at
least one periodic solution on periodic excitation was guaranteed by
the application of the fixed point theorem to the phase-plane analysis,
However, it is not found convenient or practicable to extend these tech-
niques to the multi-degree of freedom problem, simply because of the
2-N dimensional character of the phase-space and the resulting very
large number of permutations and combinations involved in dealing
with the signum functions in Equation (4, 1).

Still it is possible to obtain exact solutions in certain cases,
proceeding from a knowledge of the cdrresponding,results in linear

systems,

Exact solution for sinusoidal excitation

The matrix-differential equation (4.2) may be rewritten in a

1/2

partly canonical form, Let M~ denote the diagonal matrix with

elements,
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where Gij is again the Kronecker-delta,

0 if i £i

6i'
b l1ifi=j
and ,/mi indicates the positive root, Premultiplying both sides of

(4.2) by M-I/'Z and introducing a new variable

=2y

(4. 8)

1/2 1/2 1/2 1/2

MV 2125+ MY 2502y 4 g MY 25* (piM M 2y = MY 2Foit) (4. 9a)

or

sk 1/ 2

If+S,y+gS](y)y=M """Eo(t) (4. 9b)

Evidently S1 and ST(X) are real symmetric,

Throughout the present work, it is assumed that the eigen values
of Sl ‘are well separated and it has a full complefnent of eigen vectors,
S1 being real symmetric, its eigen values are real'and the eigen vectors
mutually orthogonal. For the type of spring-mass system under con-
sideration, it is not a severe restriction to assume widely separated
eigen values, if the various spring-constants are well-balanced,

Suppose that g=0; Equation (4. 9b) becomes a purely linear sys-

tem; in addition, let
F = o2V (4. 10)

and

op(t) = sin (wt+ eJ.) | : (4. 11)
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where E(j) is the eigen vector of the matrix Sl’ corresponding to its
j-th eigen value >‘j = w? 3 ej is an arbitrary constant, The propbrtion—
ality factor w? in (4. 10) is introduced to help non-dimensionalizing the
equations consistently, If wZ 4 )‘j’ then a harmonic solution to the

problem,

1§45,y = wjzg:_(j)sin(wu 0;) (4. 12)

has exactly the same mode as E_(J); in fact, the particular solution

referred to is just,

- /wj>

In other words, for suitable initial conditions, an external force

u)jz E(j) sin (wt + ej) excites only the '"corresponding pure normal mode

under free vibrations'', If linear viscous damping were also present,

the steady-state oscillations strictly correspond to this normal mode,
The "Reid osciliators” being dissipative, the harmonic response

in damped linear systems is suggestive to seek a solution of the equation
o0 2 j
Ij+8,y+ g5} (py = o 20yt (4. 14)

in the form,
y=Ee) | (4. 15)
On substituting (4, 15) into (4. 14), it is seen that the vector differential

equation is simply equivalent to the scalar equation,
2 . 2
B+ {1+gsgn(E5)}E = winlt) (4. 16)

the k-th row of (4. 14) being obtained by multiplying both sides of (4. 16)

by the constant El(g) .
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The uncoupling is accomplished, as the form of solution given

in (4, 15) implies,

(o1 ) = 5B £(t) (4. 17)
/ey
so that '
sgn (g =x, ) -% )} = sgn (g8) 4, 18)
Hence
s¥(py = M 2% x)x
= M Y2 (ggn etysma M2y
= sgn (8)5, EWg(t) (4. 19)
and (4. 14) becomes,
1EVE0) +5, EV g0+ g sgn (285 EVer) = ol BV 4. 20)

Recalling that E(J) is the j-th eigen vector of S, such that S E(J) :wZE(J),
= 1 = =
(4. 20) yields on equating the corresponding components on both sides,
o0 2 o 2
§+wj{1+gsgn(€€)}€=wjto(t) (4.21)
The properties of the solutions of (4,21) have already been studied in
Chapter III and the exact periodic solution has been derived in
Section III. 2, for sinusoidal excitation ®(t) = sin (wt+ CPO).

Thus, given E(t) to be the exact solution of the Equation (4,21),

it is seen that

2‘.=M'1/'2 Ve (4,22)

satisfies the differential equation
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M + Sx + g5 ()x = 0] M 25 0epe (4. 23)

with initial values,

x(0) =M 2D g0y ; 20 =MY2ED ¢0) (4. 24)
M-I/z denotes the inverse of the matrix Ml/z; in particular
1/2 = /m 6 (4. 25)

x(t) is periodic, if ®(t) is periodic also, N such exact solutions can be
obtained so long as the external periodic (trigonometric) forc;e excites
one and only one of the N normal modes, as already described,

In the foregoing discussion, g(t) in (4.21) is known to admit of
at least one periodic—solution with the same period as the excitation and
it has been verified by direct substitution that x(t) as in (4.22) satisfies
the differential equation (4,23). However, it has not been shown that
(4. 23'). admits x(t) as a stable periodic solution; in fact, not even the
ultimate boundedness of x(t) has been established, Hence it is mean-
ingful to consider x(t) as a periodic soiution of (4.23) only if it is shown
to be stable against at least infinitesimal perturbations, Thus it is

again necessary to focus attention on the associated stability problem,



-69-

IV,2 Stability of the Periodic Solution in
Multi-Degree of Freedom Systems

In principle, the stability analysis of the periodic response in

multi-degree of freedom systems follows directly from the corre-

sponding problem in the single degree of freedom case as formulated

in Section III, 4, However, here the primary task is to uncouple the

perturbation equations,

Canonical form of the perturbation equations

Let

-1/2

x (1 =M2E0g)

represent the periodic solution of the equation

2

Mx+Sx + gS"< (x)x = wj MI/ZE(J) sin (wt+6j)

where E(t), constructed as outlined in Section'III, 2, satisfies

oo 2 2 . 2 °

g+wj {1+g sgn gg}g:wj sin (wt+9j)
ej is so chosen that

5(0)=-4; ; £0)=0
Consider a neighboring perturbed state
Z(.pzio-i-n

Obviously,

= 2. 1/2_.(j) ..
ot + gS* =Ww. .
Mi + 8% 45" (x % wJ M'TEY sin (ptt+ GJ)

Subtracting (4.27) from (4.31), taking into account (4, 30),

(4. 26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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M#+Sn+ g{[s* (x +1) Yz 1) - 5* (_;50)50} =0 (4. 32)
Let
(3) (3)
t(J) Ek = Ek'l (4:o 33)
k,k A7 /mk /mk-l
It will be observed that t1(<J)k  May assume a value of zero depending

upon the mode excited and the masses involved, The non-linear terms
in the k-th row of Equation (4, 32) can be written down explicitly, making

use of (4, 26) and (4. 33). They are,

G) G) e,..0 _z LG) g
sk{ltk',k-l g+ m -y 1[sen <tk,k-l S+ “k“”k-1> It 15sen (k,k-l g)}
0) gyn s
il s1<+1{|t1< 41 5F M~ Mgy [ 580 <tk,k+1 BF M nk+1>

G) A\
ltk |41 &lsgn (tk,k+1 §>} =B ted T oy 1854

fe oo and Hk, K4l are self-evident,

Let E denote the matrix consisting of column vectors E(

where the notations H

m)

m=1,2,...N, where E(m) is the m-th eigen vector of the matrix

-1/2 1/2 X

S SM ™', corresponding to its eigen value )\m=w$n. E~ shall

l—

denote the transpose of the matrix E, Let

ﬁ:M-I/ZEH_ (4.35)
so that
1 (m) '
Uy ZEk Moy (4.36)
e = .

Then from Equations (4, 34), (4,35) and (4, 36)
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St (J) <ytk k1M )

kkl

sgn{§+ ) (Ztk k—l‘l )}
kkl

-|g]sgn g} (4.37)

()
Hy 11 = % kel {

assuming tl(g)k-l #0, k=2,3.+ (N+l),

Rewriting (4, 37)

g+ (z Yﬁl()_lu >
m

(3)
Hy )17 51ty el

sgn}:§+<ZYkk_ >J lglsgn€>

(4. 38)
where
yim) Ik k-l
k-1~ ()
Kk, k-1
This is of the form
Hy ka1 = kfgL-l{f<§+Z%“m>'f(§)} (4.39)
m
where
f(g)=|g|sgn € (4, 40)

Recalling that the perturbations being considered are infinitesi-
mal, it is necessary to retain linear terms only in the perturbation

quantities, In particular, it may be observed
- 2
f G+Z ocmum> -£(8) =) a fE(EHu) - £@)F+ Ol (4. 41)
m m

so that
!§+ (Z Yk k- 1“‘“)]5%“{’5’* S‘Yk 1o My )}-Ifilsgné

=;Y1(<Iff<).1 {l g+u_|sgn(E+0_)-|&|sgn é}+ ollgl®) (4. 42)
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In deriving (4.42), it is to be remembered that although the functions
under consideration possess only generalized derivatives, correct to
first order terms in the perturbation quantities %, m=1,2,.+ N, the

expressions on either side of the equality sign are identical and hence
can be inte‘rchanged in formulating the linear perturbation problem,

Substituting (4. 42) into (4. 38),

(m)

. £
Hy g1 = o1t et = { gt lsen (B40,) - |5 |sen 3
» ’ = t
K, k-1
s, M 2Ep) -5 M PEY), (4, 43)
where p is the vector {pm},
o =le+u_|sen (E+i_)-|glsend (4.44)

Finally, the non-linear terms in the k-th row of (4, 32) shall be written,

_ -1/2 -1/2
Ry it T B fopg = =B T TER, o (MRS,
-1/2 -1/2
PN " B - a M T EE (4.45)
Substituting (4.45) and (4, 35) into (4. 32) and pre-multiplying by
®&Tm?),
I+ Au+gppR = 0 (4. 46)
where A is the diagonal matrix with elements |
A= s o (4. 47)
ij =% %4 | - ¥
wiz is the i-th eigenvalue of S].L=M-1/2 SM-I/2 and Gij is the Kronecker-

delta, From (4. 46) it follows,
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fi + of e+ gwp { S+ sen (B+i) - [glsgn ) =0 k=1,2N  (4.48)
which is indeed in the canonical form desired,

It must however be remarked that the canonical form above has
been derived strictly under the assumption that t1(<j,)k—1 £0, k=2,3.-+(N+1),
If this condition is not satisfied during a particular modal excitation,
the perturbation equations cannot be uncoupled in this way, Still it may
be possible to determine the stability of the periodic solution in parti-
cular cases as is shown in the next section in Example 1, for a two-

degree of freedom system excited in the "'in-phase' modal oscillation,

Stability analysis

The asymptotic stability of the origin in the phase-plane for
each of the N equations in (4, 48) shall guarantee the stability of the

periodic solution J_(o(t). Then a typical case to examine is
o0 2 2 o o , .
uk+wkuk+gwk{lg+uklsgn(§+uk)-l%lsgn §}=0 (4. 49)
E satisfies |
. B . Z .
E+ ] {1+g sgn gg}g:wj sin (wt+9,) (4. 50)
Furthermore, from previous results

: % % \
80)=-4;, ; EB)<0 , O<t<E () =0 ;

S

o (LS LI ;
E(t)>0 , g Shee §(w)_A. ;

~

(4.51)

é(O):{g(%):O ; &®)>0, o<t<T

gfe+ ) = -5 J



T4

o

where " is evaluated by solving the transcendental equation (3, 75)

corresponding to the frequency w* = -u%, which is necessary to reduce
(4, 50) to the non-dimensional form in (3. 61), The equations (4,49) and
(4, 50) are similar to (3,115) and (3, 112a), the perturbation and the
basic differential equation respectively for a single degree of freedom
dynamic system,

Closely following the analysis in Section III, 4, it is necessary
to investigate in detail the propagation of the initial perturbations only
during the first half-cycle, including the ''velocity jump' at the end,
when t= % . In carrying out the required steps, quadratic and higher
degree terms in perturbational quantities ‘shall be omitted; similarly
linear terms in perturbational quantities shall be neglected in compari-
son with the maximum absolute values of displacement or velocity of
the unperturbed solution, These details shall not be explicitly stated

any further in this section,

The ""velocity jump'' at t=7/y

Consistent with the preliminaries in Equations (4. 49), (4,50)
and (4.51), it is evident that in a small interval about t= %, ':Jk will

undergo a sharp change in its value, interpreted as a jump in this work, .

Case a

Let

(€+£1k)>0 ’ 0<t<(10'5+5) (4. 52a)

(B+3)<0 , (I(:;+5)<t<%)“— (4. 52b)
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with
' é(%+5>+[1k(%+5>=0 (4, 53)
Since é(t)<0 for fu-)-<t< %DE, consistent with (4, 52a), L:k>0 in the inter-
syal Loy <(1+5). From (4,49),
w w
OE -zgwi Aj , 42—)-<t< (%-*' a) (4. 54)
Expanding (4.53) in a series,

e B

o b T2 _ .
§<%‘) wk{(l g)Aj-i-smGj}

6=

(4. 55)

taking into account (4, 50) and (4, 51) also., But

(5 6)=in (5 ) + i (5 )

o
>~2gkajG

g4

- ln

=l T - “84; _Uili_ s ' 4,56
”“k(w) (l-g)AJ.+ sin ej w; %(wM) (4.56)
; :

from (4. 54) and (4. 55). Interpreting this result as a jump, just as was

done in the case of a single degree of freedom system,

- - \
”’k<%+> N ZglA. wi uk% )
1+ (1-g)Aj+1sin ej ;'JZ" > (4.57)
= Py “k(%—> | /

where the positive subscript for § denotes that the perturbed velocity

velocity (éﬂ:tk) attains zero at t>Twi,, or rather at some instant later
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than the velocity g corresponding to the unperturbed periodic solution,
It is observed that 0 <B_<l, in the entire range of the ratio wi/w‘? as

this ratio decreases from oo to O,

Case b

Contrary to the hypothesis in (4, 52) in Case a, let

Ld e on'
(E+p ) >0, 0O<t< (—w- - 6> (4, 58a)
s o o 2w ’
(E+py ) <0, (w 6><t< m (4, 58b)
with
£(5-0) +i (£-6)0
since £>0 in the interval 0<t< I, from (4, 58b) and (4.59), necessarily
° v o
G ®<o (w-5> <t<T (4, 60)

Expanding (4. 59) in a series and taking into consideration (4, 50) and

(4c 51)0

G(E-0) -5 (2-¢)

TRy T 2 :
g(w ) UJj {(1+g)Aj+31n eJ}

5 (4.61)

Moreover,
e (5-9) = () - (5 )
o [w ngj wlzt o (W
”‘k(&})* (17g)A. T sin 0. _Z‘“k(a '5>
J J wj

from Equations (4,49) and (4. 61), Thus finally




w7 T

(4. 62)

The negative subscript for B shall denote that the perturbed velocity
(€+ﬂ,k) <0 for t> (%-5) while the unperturbed velocity é>0 in O<t< -105-
As the ratio wi/wjz increases from 0, B_ decreases from 1, till even-

tually B_ <0 for

2
1+g)A. + sin 8,
k>( g) s 3
2 2gA.

However, negative values for B are irrelevant, as this would imply

that L:Lk>0 in (%-6><t < Tar, which in turn indicates a contradiction to the
hypothesis as stated in (4., 58) and (4, 60); in other words, for suffi-
ciently large values of u;i/wjz , if B_ <0, the velocity cross-over as in
Case a shall only be considered.

It is of interest to note that By =p. if wz =w§ , Which is the result

k

earlier obtained in Section III, 4,

Perturbation solution in the interval O <t<w/w

Alréady having considered the case when é and (éﬂ]k) are
opposite in sign at the end of the interval O<t< %, when t = %, it
remains to solve the perturbation equation (4,49) when

sgn é:sgn (é+le)=+1
which is the case in almost the entire half-cycle, prior to the instant

when the jump in velocity occurs., During this interval, from (4. 49),
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o 2 Z
I-lk+wkuk+gwk{l€+¥-‘k|’|”§l}=0 (4. 63)
ot o
Since g(T>= 0, in a small interval about t= — h‘lk' = O( |§ ]);
however, following the arguments in Section IIl, 4 in deriving Equation

(3. 136), it is not essential to treat this case in detail separately., Thus,

the perturbation equation (4, 63) shall be uniformly considered as

fik+u)12{{1+gsgn g}uk=o ; O<t<%- (4. 64)

Y

% : %
with E(t) <0, 0<t<£Lw’land E(t) >0, %)—Tla <I‘(5 as in (4, 51), Solving

(4. 64),

m(E ) (@
= (4. 65)

56 O

where
l-g . . k
'I‘Mzcos'n2 cosmy - Tig sinm, sinm,;
T 5= cosm, 8inm +——-1—-sinn cosn
12~ 2 1 2 1
w/T-2 w/1te
Ty =-w, {,/I+g sin ™M, cos n; + /T-g cosm, sin nl} > (4. 66).
Ty == 1tg sinn, 8inn, + cos cos M
2277 A Tog B M2 B M2 1
3 (1_ *2
Thy Sl -8 OLm1T y Mp=w /ite g g J

Stability conditions

Taking intoconsideration the "jump conditions'" in either one

of the Equations (4, 57) or (4. 62) as applicable,
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% TH, (0) =T, (0) (4. 67)

where

= W | and B=By or B_
My

As before, a sufficient condition for the stability of the periodic solu-
tion .}Eo(t) is that the eigen values of the matrix 'I‘l be less than 1 in

absolute value,

From (4. 66) and (4. 67), the characteristic polynomial for the

eigne values is given by

2 i- . .
A = Adcos Mp o8 M- Trg sinn, sinm,

+B<cos Ny cos My - /%é— sin‘n2 sinn1>}+ﬁ =0 (4. 68)

where 3 assumes either one of the values

1

B=B+= > / (4. 69a)
ZgAJ. W
1+ - —
(l-g)Aj + sin ej wj?
or
2gA, o |
B=p.=q1- (I+g)A.+sinb. 2 (4. 69b)
J J wj

where B_ in (4, 69b) is relevant if and only if 0 <B.<1, Hence if
wii ij , it is necessary to evaluate the roots of the two quadratic equa-

tions resulting from substituting (4, 69a) and (4, 69b) successively into
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(4, 68), Each of the four eigen values of T1 so obtained (or only two if
B- as in (4. 69Db) is irrelevant and B; only is applicable) must be less
than unity in modulus,

Furthermore, such a stability analysis for the asymptotic
stability of the origin in the phase-plane must be carried out for each
of the N equations in (4, 48) to ensure the stability of the periodic solu-
tion Eo(t)’ one excited mode of a dynamic system with N degrees of

freedom,
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IV.3 Analysis of a Two-Degree of Freedom Systefn

In order to illustrate the principles and procedures discussed
in the preceding two sections, two examples shall be worked out con-
cerning the periodic solutions in a dynamic system with two degrees of
freedom,

Consider the forced oscillations in a two-degree of freedom
spring-mass system with equal masses and identical '""Reid-springs'',
Let the external sinusoidal forces acting on the two masses have the

same amplitude and frequency,

Example 1

In addition, let the external forces be exactly in-phase, The

equations of motion are

L) 1n )

sgnxlfcl-i-sgnxd:’cd —sgnxd}'cd r‘xl
te -sgnx.x sgnx, X, +sgnx.x x
a*d 2%2 a*d| | %2
M1

= sin (wt + 91) (4. 70)
L1

sin (wt+8,) (4,71)

implying obvious correspondence with the terms in (4, 70), It may be

observed that f. is an eigen vector of the matrix S; in fact, it is the

1

eigen vector corresponding to the eigen value A =w? =1 of the matrix S,
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Following the results in Section IV, 1,

x= [1 E(t) (4. 72)
1
is a periodic solution of (4, 71), where E(t) satisfies
g+ {1+g sgn EE}E=sin (wt+h,) (4. 73)
91 is so chosen that £(0)= -Al; fg(O):O and E(t) is the exact periodic

solution as constructed in Section III, 2.

The stability analysis of this mode of excitation does not strictly

follow the derivation given above in Section IV, Z; as per the notation in
(40 33)9
1

4

0 (4. 74)

(1) _
ty 5=

and hence this is the exceptional case, In the perturbed state, let
x1:§+n1 . x2:§+'r]2 (4. 75)

The perturbation equations corresponding to (4, 32) are

n1+2n1"nz+g{tl §+n1'5gn (é+ﬁl) = i glsgn_ é:+ lﬂl'ﬂzlsgn (ﬁl“ﬁz)} : 0
(4, 76a)

ﬁ2+2ﬂ2-n1+g{tl g+m,|sgn (E+1,) - |£]sgn é: +]ny-n;|sgn (ﬁz-ﬁl)} =10

(4, 76b)
The terms Inl-‘nzlsgn (ﬁl-ﬁz), |n2-nllsgn (ﬁz—ﬁl) in (4. 76) appearing
without the corresponding unperturbed terms indicate the exceptional
situation in this excitation, However, in a two-degree of freedom
system, these terms involve one of the principal coordinates of the

system and hence it is still possible to uncouple the "Equations (4. 76a)

and (4, 76b),
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Let

1 1 ’
n=eu=[; ;u | (4. 77)
where E diagonalizes the matrix S, Substituting (4, 77) into (4, 76a) and

approximating the non-linear terms as in (4., 41),
|g+n,|sgn (E+7)) -] g|sgn &+ n;-n, |sen () -1,)
= {]§+u1+uzlsgn(é+dl+ﬁz) - |€]sgn é}+2[u2|sgn T8
~ {lg+uy| sgn (2+i)) - |g|sen
+ {]g+1, | sgn (E+4y) - |8 ]sgn & +2|u,[sen i,

= ppt oy +2|u,lseny, (4. 78)
where |

p, =|E+u]sgn (E+0) - [glsgné , i=1,2 (4. 79)
Similarly,

|n,-n,lsen (A, -fi))+ | g4m, | sgn (§+1),) - | £|sgn § = o, -p, -2, [sgn i,
(4. 80)
Substituting (4. 79) and (4, 80) into (4, 76),

1 07.. 2 -1 1 1 1 .
[o Jn+ [_1 2]ﬁ+ gl:l _1:]_2+ Zg[_l]lpzlsgnuz =0 (4.81)
From (4, 81),
“1+u1+gp1:0 A (4. 828.)
u2+3p2+gp2+;g|p2|sgngz=o (4. 82b)
Or finally,

ﬂ1+u1+g{!§+u1|sgn(é+ﬁl)-lglsgn §}=° v 83}
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f,+ 30y + 2el iy [sgn i, + g {|g+iy|sgn (B4,)-glsgn i} =0 (4.84)
Equation (4. 83) has been studied in detail in Sections III, 3 and III, 4 and
the asymptotic stability of the origin assured for the range of para-
meters considered therein,

It may be observed that (4, 84) is the perturbation equation
corresponding to wg =3, for the excited mode corresponding to wi = 1

In the analysis of Equation (4. 84), once again the non-linear
terms {]g+u2 [sgn (é-l—ﬁ,z) -|g|sgn £} shall be interpreted to contribute

to a "jump in velocity' at t =w/w such that

20 A )
“2(%?) = {1 - (1+g)Ai§+lsin el}ﬁz = ) (4. 85)

for both cases as in (a) and (b), corresponding to 3, and B_ in

Equations (4, 57) and (4, 62),
For subsequent considerations, the perturbation equation (4, 84)

shall be uniformly considered toc be

ﬂ2+3p2+gu2 sgn §+2glp2|sgnﬁ2=0 0<t<% (4. 86)
Since 0 <B4+ = B_<1, for.the values of g=0,05, 0.1 and 0,2, for w>0.5
the trajectories of (4, 84) spiral inwards to the origin, if the trajec-
tories of (4.86) do 80, Hence a sufficient condition for the asymptotic
stability of the origin in the phase-plane for (4, 84) is to show that the

trajectories of (4, 86) spiral inwards to the origin,

Let
du 2 !
- ro_2 v Gl
T= 3% My =g o uz-de (4. 87)
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Then (4. 86) becomes
N+ My + By SER WS + 8 1M, Sgn £=0 (4. 88)

where

g,=%¢ . g =3¢ (4. 89)
Let
LMD <O , To<T<T, 5 H(T)=0 5 Ky(T)=0 ; ui(r)>0 (4. 90)
Suppose that

1 ,2,1 2
V=g 4 s (=gt M, (4.91)

v,20, where equality holds if and only if W, = Hé =0, Along the tra-

jectories of (4, 88),
Vi =Haky + (1-gptgg) Uy iy
=-g MMy {sgn -1}

{ 0 if sgneg=1

/ - 4, 92
_Zglluzuzl if sgneg=-1 i 9R

It may be recalled that sgn £ can be 0 only for an instant and not during
any interval, Therefore, Vl decreases or at most remains constant
during the interval ToST<T]-
Suppose that

uzpé>0 » TST<T, uz('rl)zo
(4. 93)
Wy(T2)=0 and p,(1)>0 , T,<T<T,

Let

12,1 2
Vo=ghy t3(l4g-g i, 0 V20
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Along the trajectories of (4. 88),

V2’= -glp,zué {sgnE+1}

) "Zglhiz“él if sgng=1 w94
0 if sgn €=-1 )

From (4. 92) and (4. 94), it is observed that the "appropriate norm' V1
or V2 in each quadrant, depending upon whether p,zué§ 0, remains con-

‘stant or decreases; but even if both remain constant,

1
l-g +g l-=g
2 2 °1 2 3= 2
Mo (T)) = sl (T ) = —F— 1, (T)
22 l+g, -8, 2 o 1+%—g 2o
or
2 2 ;
HZ(TZ) <u2('1'0) , even if
’ / | (4. 95)
V1=V2=0
Also
2, 2 2
My (T1)=(1-gytg Iy (T ) =K (T ) (4. 96)

where K is a constant., Furthermore these results are valid in the
lower half of the phase-plane also, for ué < 0, Suppose
leué<0» Ty <T<Ty ; uzué>0, Ta<T<T,
L.lz('r3)=0 : ué('r4)=0
Then repeating the same arguments

2 (1-3%)

W (1)< 2t 2 ) (4. 97)

(45¢)

2
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1
1-38
uéz('r3)<K< ?1’ >u§(70)
(1+38)
or
My (T5) <us’(T) (4. 98)

So from (4. 97) and (4, 98), it is seen that the trajectories of
(4. 88) necessarily spiral inwards to the origin; this is essentially due
to the stabilizing influence of the terms Zgu2 sgn (quJ.z) in (4. 88); if
these terms were absent, (4.88) would have been just the well-known

(26)

Hill-Meissner equation (see Den Hartog , page 387) which admits
of unstable solutions,

Thus, given HS [ <1, the perturbation M is necessarily asymp-
totically stable at the origin and since the same result has been derived

in Section III, 3 concerning ul(t), the periodic solution x, = g{t), %, = g(t)

is stable,

Example 2

Consider the same spring-mass system as in Example 1, but

with the external forces exactly opposite in phase, This example will

be treated following directly, the formulation of the stability problem
in Section IV, 2,

The equations of motion are
42 [xljl . [2 -1:\ [xl}+g[:sgnxlxl+ sg.nxdxd - s:gn 1%g X,
? x, 12 |x, -sgn X X SgnX,X, +sgnx X, | | %,

1
=3 [ } sin (wt + 92) (4. 99)
-1



-88-

I#+Sx +gS™ (x)x = 3f, sin (wt+6,) (4.100)

It may be observed that iZ is the eigen vector of the matrix S, corre-

sponding to its eigen value )\2 = wg =3, Just as before,

x= {_i}i(t) (4, 101)

is a periodic solution of (4, 100), if E(t) satisfies

2+3{1+gsgn EE}E = 3 sin (wt+ 8,) (4, 102)

92 is so chosen that £(0)= -AZ; é(O) =0; in particular, for w>0,5/3, the
values of A2 and 62 are obtained from the construction given in III, 2 .

The second mode being excited in this example,

2

—_—
~—

=(2)
E;” E

AR

[aV]

(2)
1,2

1
oy

t

3|

which assures that the general formulation in Section IV, 2 is valid in
this case,

The perturbation equations corresponding to (4, 32) are

Apren -nyte{| g+n,lsgn (241 - |g|sgn &

+]2g+m, -n,|sgn (2&+1,-n,) - 2| €|sgn é} =0 (4.103)

i +2n, -n +ef|-g+m, |sgn (-E+7y) - |-E|sgn (-§)
+]-2 §+n2-nllsgn (-zé+ﬁ2‘-ﬁ1) -|-2€]|sgn (-zé)} =0 (4,104)

where the negative signs are '"maintained' as such to closely identify
with the formulation in Section IV,2., Once again, substituting

= Myt Hy, My =Hy-H, and approximating the non-linear terms in
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(4.103), as in (4. 41)

fi+ten; -mpy telpyt3p,)=0 (4. 105)
fi,t2n, - Ny +8(p-3p,) =0 (4. 106)

where
pi=|§+ui]sgn(é+ﬂi)-]glsgné , i=1,2 (4.>107)

From (4, 105), (4.106) and (4. 107), |
ﬁ1+u1+g{l§+u1|sgn(é+ﬁ1)-lglsgn é}=0 (4. 108)
u2+3u2+3g{|g+u2|sgn(é+ﬁ2)-|g|sgn é}:o (4. 109)
which are exactly in the form as derived in Section IV, 2, in Eqn. (4. 48).
Equations (4, 108) and (4. 109) have been analysed in Section IIL.4,
while dealing with the stability of the periodic solution of the single
degree of freedom dynamic system; accordingly p.l(’c) and My (t) tend to

0 as t—oo so that the periodic solution of x(t) in (4, 101) is found to be

stable,
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IV.4 Approximate Solutions by Harmonic Balance

In Section IV, 1, it has been shown that

x=MY2gWg (4. 110)

is an exact periodic solution of the system of equations

Mii+Sx+ gS* (x)x = w?Ml/ZE(J) sin (ut+9,) (4. 111)

The stability of the periodic solution (4, 110) has been discussed also,

Often, however, it may be of interest to relax the restriction
that the external force be in the exact modal form of any one of the
eigen vectors, E(-j), j=1,2,-N of the matrix S, =M_1/ZSM-1/2. In such
a case, if not an exact solution, one might like to obtain an approxi-
mate periodic solution by fundamental harmonic balance, Such a first
approximation still needs solving a set of 2N transcendental equations,
which is an enormous task in itself,

It may be remarked, that an approximate solution to within

fundamental harmonic balance of

1/2

ME+Sx+gS*(x)x=M"'“F(t) (4. 112)
where
F (t) =£, sin (wt+ ) (4. 113)
is given by
-1/2 G) A o
=M .EVA, sin (wt+y, 4,114
x Zaj_ ; sin (wt+y,) (4. 114)

J

Aj sin (wt+Yj) is a first approximation to the solution of
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'q}(t)+wj2{1+g sgnww.}qyzwjz sin(wt+cpj) (>4. 115)

The aj's and cpj's are constants to be evaluated,
Before proceeding to substantiate the claim of the approximation

to x as in (4, 114), a number of useful results shall be derived,

Determination of ij’ cpj, j=1,2,. N

These quantities are determined in an effort to represent the
external force vector as a linear combination of the eigen vectors of

the matrix Sl’ Since the N eigen vectors g)_(‘)), j=1,2,+*N of the matrix

-1/2 /2

S, =M SM"1 are mutually orthogonal, they form a basis for an N-

1
dimensional linear space,
Let the external force

F(t) = F* sin gt + G cos ut (4. 116)

where _F;* is the column vector {fl cos @, fz cos @,, f _cos CpN} and

N
” 3 ; g %

g* is the column vector {fl sin @, f2 sin,, « 'fN smeN} . Then F" can

be expressed as a linear combination of the basis vectors [_Ig‘._(l), _F;:(Z),

. oE(N)] so that

| =Y a.uf gl (4, 117)
j

Similarly,

The proportionality factor wjz is introduced in the above relations to be
consistent in non-dimensionalizing the equations as was earlier done,

Then (4, 116) becomes



.

F(t) = Z ajwjz_(J) sinwt+z bjijE(J) cos wt
J J

- : 2.(3) _ Lol 1P s
_;‘(ajs1nwt+bjcoswt)wj__ _Za.jwj__ sin (wt+ @) (4.119)

[

j j
> > b. a, '
a.=,/a.+b, ; sin®.= il ; cos®, = - ' (4, 120)
J J J J a; J- Cﬁj

where aj's and bj's are obtained from solving the systems of linear

equations in (4. 117) and (4, 118).

Approximate solution by harmonic balance

Suppose it is desired to obtain the first approximation

\IJ(t):Aj sin (wt+ Yj) (4, 121)
to satisfy the differential equation
o 2 ’ 2 .
lll-l-wj {l1+gsgn Y}y = W sin (wt+ cpj) (4. 122)
Substituting (4, 121) into (4, 122),
2 2 q 2 ; N
(wj -w )AJ. sin (wt+¢j) + gwj Aj sin (wt+\JJj) sgn {sin (wt+¢j) cos (wt+¢j)}'
=wj2 sin (ut+p) (4 123)

Expanding in Fourier series both sides of (4, 123) and retaining only

terms corresponding to the fundamental harmonics

{(wJZ -wZ)AJ. sin X+ —Z;Tg-w?Aj cos X+ ~--} = {wJZ cos (cpj-Yj) sin X
' 2
+ W, cos (tp.-y.)cos X+ .o
; (an YJ)
(4, 124)

where Y =Wt+ YJ. . Equating the coefficients of sinX and cos K respectively
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2
O . . c28 a0 g .
(1 w.2>AJ. = cos (9,-¥,) 5 ZEa, = sin(@;-Y,) (4. 125)
j
or
1
A; = 2 17z (4, 126)
w 2g
(l—;)—2—>+(“)
j
2
(l %)mncp -—gcoscp
w.
tan Yj = 32 (4, 127)
<1 -;9—2—>coscpj+ —g-smcp
j

Two more results can be immediately written down following
the harmonic approximation in (4, 121) derived above,
(1) As already shown in Section IV, 1, the vector differential

equation

10 s y0 4 gst (y0)y0) W E ¢V sin () (4. 128)
has the exact or approximate periodic solution

y3 = 20y (4. 129)

depending upon whether | satisfies the differential equation (4, 122)
exactly or approximately, Since the k-th member of the N-differgntial
equations in (4, 128) is obtained by multiplying both sides of (4, 122) by
the factor El(g), the approximation in (4, 121) implies that

g9 =£;_(j)Aj sin (wt + V) (4. 130)

satisfies (4, 128) to within harmonic balance,
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(2) Multiplying (4. 128) by aj and summing over j,

o (3) (3) (K, G) _ 2 .(j)
IZaJ.I +512aj1 +g2ajs*( )y zaw EV sin (wtte) (4. 131)

. ° ° J J
J J J j
Denoting
Z“jX(J) =y* (4, 132)
j
ook % % (J)
Iy’ +Slx + gZajSI(z_ z 51n (wt+cp ) (4, 133)
J j
Evidently,
® _ ()4 s
y _Zaj_I'_J_ A, sin (utty,) (4. 134)
J
G _g0)a,_ s 4,135
¥ aE J.s1n (wt+Yj) (4. )

satisfy (4, 133) and (4, 128) to within fundamental harmonic balance,

The first approximation for x in (4, 112)

Substituting for F(t) from (4,119) in (4, 112)

M3+ Sx+ g5* (x)x = Ml/zz E(J)51n(wt+cp) (4. 136)
j

for which an approximate fundamental harmonic solution is sought,

Introducing _:_;_:M—l/zx and pre-multiplying (4. 136) by M-l/z,

4 2..(j
Iy+S,y+ gS’*l< (y)y = Z(xjwj E(J)

J

sin (wt+cpj) (4, 137)

Consistent with (4, 114), it is claimed that f“ as in (4, 132) is the first

approximation to the periodic solution of y in (4, 137),
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Evidently from (4, 133) and (4. 137), it is sufficient to show that
for the fundamental harmonics in the variable (wt), the Fourier coeffi-
cients of the non-linear terms ST(X)}L when }i":Y_* in (4, 137) and

j
in (4, 133) are identical, for all corresponding elements in the vector

quantities involved,

When y = y*, 3E_=M_1/2y_*, so that
(x‘k'xkl)= - - a.A. sin ((.Ut‘l‘Y.):Rk kls‘in (wt+ekkl)
= e\ym o me) j - k-
: T el (4. 138)
where
. % ok :
Rk,k-l cos ek,k—l = z tk,k-lajAj cos Yj (4. 139)
j
: _NL0G) . '
R‘k,k—l sin ek,k—l = Z tk,k—lajAj sin Yj (4, 140)
j
recalling
() ()
) By Bl
k, k-1~ -
Then

g sy o) _ 1 .
(Sl(z_ )y >k = /"rer {- skRk,k—l sin (wt+ ek,k_l)

sgn [ sin 2 (wt+ ek,k-l)]}

+ - - sin (wt+0

-8, R )]
‘/-_m_l_{.{ k+17 7k, k+l k,k-1

sign [sinZ(wt+6k’k+l)]} (4. 141)
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1 IZ'" N A 1 1 )
- ST(y" )y ) sinwtd(wt)= BB 5 P OLA 81nY
11'0 (1 >k z/-m—k kkkl k'l‘lkk'i‘].}
LYV (a2 g V250 .
= z< g >kajAj sin Yj
1 (3) .
=== Z <SIE >kajAj sin Yj
F .
- 2 L1¥ 2 g)
- "Z oA sin Y, | (4. 142)
J

On the other hand,
Y ajs*(y_(j))x(j) - ZajAj sin (ut+Y;) sgn {sin2(wt+ yj)}sl__r;:_(J) (4. 143)
j J

substituting for y_(j) from (4, 135), Therefore,

z ajs*(x(j))x(j )> . Z ajwjzA.j sin yj)E]S) sgn {sin2(Wt+Y,)} (4. 144)
j k J

™ T J k

™ . 0

-IQJJ <z 0.5 vy ) sinwtda(we) = -1 ZE(J)aA sin¥, (4. 145)

o \7 ) , 173
j 8 j

So finally it is seen that

1 o %, %
;;_f (51()1 )y_*) sin wt d(wt)
0 k
| 2 o :
i SO IV A N e
T ‘[0 <z ajS (y" "y sinwtd(wt) k=1,2, N (4, 146)
J k
Similarly the coefficients of the cos wt term in the Fourier expansions

of the above two non-linear terms are found to be identical,
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This implies that x(t) as in (4, 114) satisfies to within the
fundamental harmonic approximation, the differential Equation (4, 112), |
The ""apparent superposition'' to obtain the approximate solution has
been possible strictly because of the behavior of the particular non-

linearity of the problem.,

Example
Consider a dynamic system with two degrees of freedom,
consisting of equal masses and identical '"Reid springs'' just as in the
examples in Section IV, 3, However, suppose that the external har-
monic forces have an arbitrary phase difference, 2mM. The equations
of motion are |
I+ Sx+ gS* (x)x = F(t) (4147

where

sin (wt+2n)
E(t) =[ sin Wt ]

:cosn[}]sin (wt+n)+ sinn[_}]cos (wt+m) (4, 148)
and the vector x and the matrices S, S*(.’E) are given in Equations (4, 70)
and (4. 71).
According to (4. 114), a first approximation to the periodic
solution of (4, 147) is given by

x, > cosni, (t)+sinny,(t) = B sin (ut+ el')

(4, 149)
X, mcosnllll(t) -sinM wz(t) = B, sin (wt + 91)

where q;l(t) and lllz(t) are the periodic solutions of

{1;1+ {1+g Sgnwlq‘;l}‘bl = sin (wt+ M) .



i

;];2+3{1+g sgn q;zq;z}q;z:cos (wt+m)

obtained by fundamental harmonic balance,

From previous results

11;1(1:) mAl sin (wt+ Yl)

lJJZ(t) = A2 sin (wt+ yz)

2.-1/2 2 2+-1/2
A= s BET} 5y = fondi ()]
(1-0)2) sinn - Egkcos'r] (3-w?) cos n+ é-g-sinn
tan le i ;  tan Y2= 3 X

(l-wz)cosn+ %rg-sinn —Trg-cosn-(?»-wz)sin'n _

Accordingly in (4, 149)

B1 = {(A1 cos Y1 cosn+ A2 cos YZ sin 'n)2
2 1/2
+ (AlsinY1 cos N+ A2 siny2 sinm) }
B, = {(A A inn)°
2_{( 1 €08 Y cosn-A,cosy,sinn
' 5 1/2 > (4. 150)
¥ (A1 sin Yl cos’r}-A2 siny2 sinn) }

A. sin Yy cosn + A2 sin Y, sinmn

1
tan 0, = -
17 AjcosY;cosnt A, cosy,sinn
Alcos\{1 cosn-Azcosyzsinn
tanezzA i cosn - A, si si
1 siny, n-4A,siny, sinn ),

For several values of g and 1, the quantities B, BZ’ 91 and 92 have
been calculated and compared with the corresponding quantities in the

fundamental Fourier components of the periodic solutions of (4. 147),
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obtained by numerical integration, The agreement is quite satisfactory

as may be seen from the results shown in Table I for two typical cases,
There are two rows of entries against each frequency in the table; the
first row consists of the values calculated from (4, 150) while the cor-
responding results obtained by numerical methods are entered in the

row below,



0. 625

0,700

0. 900

1,04

1. 50

1,70

2,165

2,86

1,528
1.518

1.821
1,811

4,825
4,778

10. 30
10, 47

0. 830
0. 830

2,267
2,229

0.329
0.330

0. 148
0, 148
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Table Ia

g=0,05

0,437
0,437

0.414
0.415

0.263
0.263

-2,402
-2,394

2,912
2,913

1,434
1,456

-1,983
-1, 984

-2,22
-2,22

m
n=g

1,532
1,523

1,828
1.818

4,866
4,820

10, 46
10, 63

0,957
0. 957

2,905
2,850

0. 345
0. 346

0,15
0,15

0,245
0,244

0.246
0,247

0.191
0.191

-2.366
-2,359

-2,173
-2,173

-1.997
-1,988

2,828
2,830

3.021
3.021



0,525

0.85

0,95

1.0

1,25

1,715

2.6

0, 645
0.609

1.296
1,212

2,28
2, 12

2,50
2,56

0.669

0. 666

2,232
2,194

0.833
0. 855

0.248
0,249
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Table Ib

1.5%3
1,587

1,038
1,072

0,277
0.412

-0, 517
-0. 360

-2,75
-2,71

1. 191
« Lo B3%1

-0, 17
-0, 16

-0, 561
-0.561

0,668
0.630

1.510
1.410

2,97
2,70

3.48
3.45

1. 10
1.10

2,623
2,586

o, 915
0,938

0.258
0.259

0, 445
0.441

0,459
0,471

0, 04
0. 14

-0, 54
-0, 42

-1.214
-1,217

-1,943
-1,815

-3.034
-3,030

. 11
3.11
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CHAPTER V

CONCLUSION

From earlier chapters, it follows that the '"Reid Oscillator' or
the piecewise-linear, non-linear model yields well-posed mathematical
problems for the free and forced oscillations in aynamic systems,

In free vibrations the frequency of damped vibration is lower
than in the undamped oscillator and essentially the model resembles
the viscously damped system,

From the response curves in Figures 2a and 3 it is seen that
during forced oscillations also the '""Reid Oscillator' behaves similar
to a linear system with viscous damping., On the basis of the actual
computations pertaining to the exact periodic solutions described in
Section III,2, it is found that the frequency at which the maximum dis-
placement or the peak "amplitude'' occurs decreases from 0,9994 to
0.99 as g increases from 0,05 to 0,2, In linear systems also, with a
damping coefficient B = ZTrg.’ the frequency at which the peak amplitude
occurs, decreases from 0,9998 to 0;996 as g increases from 0,05 to
0.2, |

There is one distinct feature in the present case which is not
observed in forced oscillations of viscously damped linear systems,
For low excitation frequency, as seen in Figure 2b, in the range
0.5<w<0,8, the "amplitude' of vibration or maximum displacement
has a greater value for larger values of g, the '"non-linearity'' or

"damping'' factor and the curves intersect each other, In viscously
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damped linear systems, the amplitude corresponding to a larger value
of the damping ratio C= g’—, is necessarily smaller than that for a
smaller value of € at all frequencies,

Regarding future work, it may be pointed out that it is
necessary to resolve the questions concerning the existence of ultra-
and sub-harmonics, In fact for w<0,5 in Figure 2a, it is believed from
sample numerical solutions that the presence of ultra-harmonics
makes it impossible to obtain periodic solutions with the symmetry in
Equation (3, 62)., The response to random excitations would also form
a major area of investigation, In certain specific materials, it may
be useful to consider the presence of viscous damping or non-linear
functions of the displacement also in order to derive appropriate

mathematical models,
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APPENDIX I

MATHEMATICAL MODELS OF MATERIALS

The most significant feature in the concept of hysteretic damping
is the property that in sinusoidal motion, the energy loss per cycle due
to hysteresis is independent of the frequency of oscillation, Experi-
mental results, since the observations by Kimball and Lowe'll(l), have
confirmed that certain materials indeed possess this property, Vari-
ous attempts have been made from time to time to represent such
materials in a mathematical form convenient for such applications as
in vibration analysis,

Essentially there are four mathematical models based on
(1) complex stiffness coefficients; (2) frequency dependent viscous
damping; (3) Biot's visco-elastic model; and (4) Reid's piecewise~

linear, non-linear model,

1, Complex stiffness coefficient

In this model, the restoring force is givén by either
a) F(x)=(a+ib)x
or

b} Flel=keSx
(9)

where a, b, g and k are constants, Model (a) was used by Soroka in

his discussion of forced oscillations, Model (b) was used by
MYkleStad(lo) and Fraeijs de Veubeke(13). Caughey(4) and
(15)

Lancaster have pointed out the serious mathematical errors in

these papers and as such it is impossible to draw any meaningful
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conclusion from their work, For instance, the transient solution pre-
sented in Myklestad's paper fails to satisfy his differential equation,
indeed it satisfies the aifferential equation of a viscously damped sys-
tem, Myklestad's solution to the forced vibration problem although
correct for the type of excitation he chose, cannot be extended to other

types of excitation,

2, Frequency dependent damping

In this model the restoring force is given by
] g i B
W

where h and k are constants,

The interpretation of the frequency term, g, is clear in the
case of sinusoidal motion,u but is far from clear for transient oscil-
lations or complicated forcing functions, This model has been used by
Mindlin(S) and Bishop(ll).

The two models described above have serious mathematical and
physical defects, Neither model can be simulated, even conceptually
on an analog computer, The first model yields complex-valued solu-
tilons to real physical systems, The second model violates the mathe-
matical condition for a physically realizable system,

The first successful linear model of hysteretic damping was

(27)

given by Biot in a paper entitled "Linear Thermodynamics and the
Mechanics of Solids'', At the end of this paper, he demonstrated a
visco-elastic model, which at least for steady state oscillations, yields

a well-posed mathematical problem,
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3. DBiot's visco-elastic model

In this model, the restoring force is given by
t

F(x)=k(x- g‘[ Ei[-€(t-7)] g‘},‘?d'\'

t
o

where k, g and € are constants and Ei is the exponential integral
T} e_g
Ei(u) = J —d§g
o 5
This model has been investigated by Caughey(4) who showed that it
yields well-posed mathematical problems for transient and steady-state

oscillations of all kinds,

4, Reid's pitecewise-linear non-linear model

In this model, the restoring force is given by

F(x)=k{x+g|x|sgn%}

=kx{1+gsgnxk}

:kX+kgl'}£l}.{
X

where k and g are constants and

1ifg>0
sgng=¢( 0if06=0
-1if 6<0

Reid(lz) seems. to be the first to have proposed this model, In
his technical note, he was preoccupied in resolving the apparent incon-
sistencies in the problem of free vibrations of a dynamic system with
frequency .dependent viscous damping; apparently, he failed to observe

the far-reaching effects or the non-linear character of the model,
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Hysteresis loss in a '""Reid oscillator'

As just mentioned above, .the restoring force is given by
F(x) = kx[1+gsgnxx]
If the diéplacement x is carried through a cycle
X = Asin (wt+ @)
then the energy loss AW per cycle is given by

T+ 2w/w
AW = [r F(x) % dt

T + 2/
Sy {Fsin2(ut+ @)+ g|sin2(wt+ o) fd(t)
T

Thus the energy loss per cycle is proportional to the square of the
amplitude, but independent of the frequency, It may be recalled that

for linear viscous damping, the energy loss per cycle is proportional

to the square of the amplitude and proportional to frequency also,
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