

DEVELOPMENT OF A METHOD FOR THE COPPER-CATALYZED
ASYMMETRIC PROPARGYLATION OF OXIME ESTERS

Thesis by

Katie Marie Chan

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2018

(Submitted January 15th, 2018)

© 2018

Katie Marie Chan

All Rights Reserved

ORCID: 0000-0002-8220-9013

ACKNOWLEDGEMENTS

I would like to thank my research advisor, Professor Sarah Reisman. Sarah provided me with a fantastic opportunity to learn and study exciting new fields of chemistry. It was a privilege to conduct research under her mentorship. With her help I was able to grow and become a knowledgeable organic chemist in addition to a chemical biologist. Sarah's advice and input have been invaluable to my development as a scientist and what I learned from her and my experiences in her lab have set the stage to propel me forward in my career as a chemist.

I would like to thank my undergraduate research advisor, Professor Jared Shaw at University of California, Davis. After taking his organic synthesis class, I asked to conduct organic chemistry research in his laboratory the following quarter. It was in his class and lab that I initially developed my passion for organic chemistry and chemical biology. I'm so grateful to Jared for helping me to realize my love of organic chemistry and for giving me such a strong foundation in research.

There are many other people at Caltech who contributed to the successful completion of my Master's degree. I would like to thank Professor Brian Stoltz for his support and encouragement. His door is always open to students and the close relationship between our two groups was one of the special aspects of my experience at Caltech. I would like to thank Dr. Scott Virgil for taking great care of the catalysis center and for always being available and willing to help students. He goes above and beyond to help any student who asks, and I am so grateful for his help in separation of my racemic compounds. I would like to thank Dr. David VanderVelde for maintaining a great NMR facility.

I would also be remiss if I didn't mention some of the wonderful friends and labmates who helped make this journey possible. First, thanks to my mentor and project partner, Nick Cowper, who helped fine-tune my hands in lab and was always ready with helpful advice and ideas. I would also like to thank my yearmates Jordan Beck, Julie Hofstra, Kelsey Poremba, and Alice Wong, who are both inspiring colleagues and great friends. Many, many thanks go to Matt Hesse and Jared Moore, without whose advice and experience I would have been lost. Thanks also to Denise Grünenvelder, whose wonderful friendship and support made life at Caltech a little easier and a lot more fun.

It is a rare and precious thing to be able to collaborate without any sense of competition. That feeling is something that Caltech gives us – no matter whom you ask, any person is willing to offer help or ideas. That sense of community is something I will fondly remember.

Lastly, I would like to thank my parents, John and Barbara Chan, for their endless love and support. No matter what life has thrown at me, they have always been there with advice and encouragement to help me keep going. They have urged me to pursue my dreams and I could not have gotten to where I am today without them.

ABSTRACT

Alkynes represent a significant motif in natural products and pharmaceutical drugs, and the wide variety of reactions they can undergo makes them a handy tool in total synthesis. They can be introduced readily in various manners, including via propargylations of ketones and aldehydes. However, one reaction that remains to be examined is the propargylation of oximes to give a propargyl hydroxylamine. Current enantioselective propargylations of oximes typically require a chiral auxiliary and/or rare metals such as palladium or indium. Having an enantioselective propargylation of oximes which could use an external ligand and more commonly available metals would facilitate use of the product in total synthesis, as well as potentially as an unnatural amino acid. Unusual amino acids including alkynes are desirable for their use in copper(I)-catalyzed azide-alkyne [3+2] dipolar cycloadditions, a common bioorthogonal reaction.

Herein, the development of a copper-catalyzed propargylation of oxime esters is described. Initial efforts to induce enantioselectivity using a zinc nucleophile-based system proved fruitless. Although some Lewis acids could raise the yield, the enantioselectivity remained very low. Therefore, new reaction conditions using a boronate nucleophile were investigated. The use of a copper catalyst with a diphosphine ligand gave the desired product in high enantioselectivity, albeit low yield.

TABLE OF CONTENTS

CHAPTER 1	1
Nucleophilic Additions to Oximes, Ketones, and Aldehydes	
1.1 INTRODUCTION	1
1.2 REACTIONS OF OXIMES.....	5
1.3 PROPARGYLATION REACTIONS	12
1.4 CONCLUDING REMARKS	22
CHAPTER 2	23
Efforts in Our Laboratory	
2.1 LEWIS ACID-CATALYZED ASYMMETRIC ADDITION TO OXIME ESTERS	23
2.2 COPPER-CATALYZED ASYMMETRIC ADDITION TO OXIME ESTERS	26
2.3 CONCLUDING REMARKS	40
2.4 EXPERIMENTAL SECTION	42
2.4.1 Materials and Methods.....	42
2.4.2 Starting Materials Synthesis	43
2.4.2 Ligand Synthesis	49
2.4.4 Propargylation Reactions	56
REFERENCES	60

APPENDIX 1	63
Spectra Relevant to Chapter 2	
APPENDIX 2	89
Additional Tables Relevant to Chapter 2	

LIST OF ABBREVIATIONS

Ac	acetyl
acac	acetylacetone
app	apparent
aq	aqueous
Ar	aryl group
BBD	borabicyclodecane
BIBOP	(<i>2R,2'R,3R,3'R</i>)-3,3'-di- <i>tert</i> -butyl-2,2',3,3'-tetrahydro-2,2'- bibenzo[<i>d</i>][1,3]oxaphosphole
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphthalene
BINOL	1,1'-bi-2-naphthol
BiOX	bi-oxazoline
Bn	benzyl
Boc	<i>tert</i> -butoxycarbonyl
Box	bis(oxazoline)
BPE	1,2-bis(phospholano)ethane
br	broad
BTFM	bis(3,5-trifluoromethylphenyl)
Bu	butyl
<i>i</i> Bu	<i>iso</i> -butyl
<i>n</i> Bu	butyl or <i>norm</i> -butyl
<i>t</i> Bu	<i>tert</i> -butyl
Bz	benzoyl

¹³ C	carbon-13 isotope
/C	supported on activated carbon charcoal
°C	degrees Celcius
calc'd	calculated
CAM	ceric ammonium molybdate
Cbz	benzyloxycarbonyl
cm	centimeter(s)
cm ⁻¹	wavenumber(s)
comp	complex
conc.	concentrated
conv.	conversion
Cy	cyclohexyl
d	doublet
<i>d</i>	dextrorotatory
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCM	dichloromethane
<i>de</i>	diastereomeric excess
DIPEA	<i>N,N</i> -diisopropylethylamine (Hunig's base)
DMAP	4-dimethylaminopyridine
DME	1,2-dimethoxyethane
DMF	<i>N,N</i> -dimethylformamide
DMS	dimethylsulfide
dr	diastereomeric ratio

EDTA	ethylenediaminetetraacetic acid
<i>ee</i>	enantiomeric excess
E^+	electrophile
<i>E</i>	trans (entgegen) olefin geometry
e.g.	for example (Latin: <i>exempli gratia</i>)
EI	electron ionization
eq	equation
equiv	equivalence(s)
er	enantiomeric ratio
ESI	electrospray ionization
Et	ethyl
<i>et al.</i>	and others (Latin: <i>et alii</i>)
Fmoc	fluorenylmethyloxycarbonyl
g	gram(s)
h	hour(s)
^1H	proton
^2H	deuterium
HFIP	hexafluoroisopropanol
HMPA	hexamethylphosphoramide
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrometry
Hz	hertz
IC_{50}	half maximal inhibitory concentration (50%)

IR	infrared spectroscopy
<i>J</i>	coupling constant
L	liter or neutral ligand
<i>l</i>	levorotatory
LA	Lewis acid
m	multiplet or meter(s)
M	molar or molecular ion or metal
<i>m</i>	meta
μ	micro
Me	methyl
MeCN	acetonitrile (CH_3CN)
MEK	methyl ethyl ketone
Mes	mesityl
mg	milligram(s)
MHz	megahertz
min	minute(s)
mL	milliliter(s)
mm	millimeter(s)
μM	micromolar
mol	mole(s)
MS	molecular sieves
<i>m/z</i>	mass-to-charge ratio
NMR	nuclear magnetic resonance

Nu ⁻	nucleophile
<i>o</i>	ortho
OTf	trifluoromethanesulfonate
<i>p</i>	para
Ph	phenyl
pH	hydrogen ion concentration in aqueous solution
ppm	parts per million
Pr	propyl
^c Pr	cyclopropyl
ⁱ Pr	isopropyl
ⁿ Pr	propyl or <i>norm</i> -propyl
py	pyridine
Pyox	pyridinyl oxazoline
pyr	pyridine
q	quartet
Quinox	quinolinyl oxazoline
R	alkyl group
<i>R</i>	rectus
ref	reference
<i>R_f</i>	retention factor
rt	room temperature
s	singlet or seconds
<i>S</i>	sinister

sat.	saturated
SFC	supercritical fluid chromatography
t	triplet
TADDOL	(<i>–</i>)- <i>trans</i> - α , α' -(2,2-Dimethyl-1,3-dioxolane-4,5-diyi)bis(diphenylmethanol)
TBS	<i>tert</i> -butyldimethylsilyl
temp	temperature
TES	triethylsilyl
Tf	trifluoromethanesulfonyl
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin layer chromatography
TMS	trimethylsilyl
tol	tolyl
Ts	<i>para</i> -toluenesulfonyl (tosyl)
UAA	unnatural or unusual amino acid
UV	ultraviolet
W	watts
X	anionic ligand or halide
Xyl	xylyl
Z	cis (zusammen) olefin geometry