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1.1 INTRODUCTION 

 Unnatural or unusual amino acids (UAAs) are a commonly used tool in many 

fields, particularly medicinal chemistry, in which they embody potential drugs, building 

blocks for structure-activity relationship studies, and starting materials for syntheses of 

complex molecules.1  These compounds comprise amino acids not included in the twenty 

most common amino acids found in proteins.  They are not coded for in proteins and in 

most cases are lab-made for a variety of purposes.  Medical uses include treatment for 

various conditions, anesthesia, imaging, and radiotherapy (Figure 1.1, a).  Nonmedical 

uses for UAAs include biochemical research, where they can be used as fluorescent 

labels, photoactivated crosslinkers, or in bioorthogonal reactions.  Often in these cases 

the amino acid is incorporated into a protein where it can be reacted with a marker to 

allow for later monitoring.2,3  In these cases, the copper(I)-catalyzed azide-alkyne [3+2] 

dipolar cycloaddition or click reaction is a useful tool.3  A UAA bearing either an azide 
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or alkyne can be incorporated into the desired protein, and the corresponding compound 

introduced in a click reaction.  This allows for monitoring of protein activity or 

investigation of a particular enzyme active site.  The flexibility of incorporating either 

azide or alkyne as the UAA allows for less disruption of natural enzymatic function. 

Figure 1.1. Uses of unnatural amino acids.1-4 

 

However, UAAs are often very expensive or only available as racemates.  D 

isomers are often even more expensive than L isomers due to the lack of existing starting 

materials that can be sourced from the chiral pool. This pattern is seen even in naturally 

occurring amino acids, such as leucine, as the L isomers are more common (Figure 1.2).  

In the case of racemic synthesis, separation is often difficult and time-consuming. For 

example, on a gram-for-gram basis, D-tert-leucine from Sigma-Aldrich is almost 

seventeen times the price of L-tert-leucine (Figure 1.2). Propargylated UAAs are also 
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considerably more expensive than their alkyl counterparts. L- and D-propargylglycine are 

only available in 250 mg and 100 mg sizes, compared to the up to 10 g and 5 g sizes 

available for their saturated counterparts, L- and D-norvaline.  When prices are 

normalized to per gram, L-propargylglycine costs $2872 per gram, compared to $18.65 

per gram if L-norvaline is purchased in bulk or $54 per gram if not.  It would therefore be 

useful to have a way to readily and cheaply access unnatural amino acids 

Figure 1.2. Price per gram comparison of select amino acids. 

 

 Bode et al. have shown that C-terminal α-keto carboxylic acids can be condensed 

with hydroxylamines to give peptide bonds, allowing quick use of a hydroxylamine as an 

unnatural amino acid (Scheme 1.1).5  Similarly, the hydroxylamine could readily be 

reduced to the free amine, providing the same result.  It was therefore desired to design a 

new reaction framework by which an oxime ester could be nucleophilically substituted 

with a propargyl group to form a propargylated hydroxylamine, which could be useful as 

a UAA as well as handles for “click” chemistry.3   

Scheme 1.1. Formation of peptide bonds via condensation of hydroxylamines with 

α-ketoacids. 
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 In addition to providing potential UAAs, the desired methodology could prove 

useful in synthesis.  Our lab intended to use the product in the total synthesis of gliovirin, 

a natural product.  A potential retrosynthesis can be seen in Figure 1.3, a.  Other natural 

products that might be made from the desired product (1) include adametizine A, 

aspergillazine A, and strepturidin. 

Figure 1.3. Examples of natural products which could be made using the proposed 

method.6,7 

 

Alkyne 1 is useful in chemical synthesis where it provides a convenient source of 

acetylenic groups, which can then be used as a functional handle to access a wide variety 

of structural motifs. Additionally, alkynes are a significant motif in natural products and 

pharmaceutical design (Figure 1.4). 
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Figure 1.4. Alkyne-containing drugs and natural products.8-10 

	
    

 

1.2 REACTIONS OF OXIMES 
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corresponding oxime amide could be reacted enantiospecifically with an allyl bromide, 

zinc powder, and THF-NH4Cl to form an allylated hydroxylamine in excellent yield and 

moderate to good diastereoselectivity (Scheme 1.2, b).11   

Scheme 1.2. Racemic and enantiospecific allylation of oximes. 

 

Later that year, Hanessian et al. developed a second allylation that used an 

external ligand to form a chiral allylic zinc bromide and allylate α-ketoester oximes 

(Scheme 1.3).  By using phenyl bis(oxazoline) (PhBOX), they achieved allylation of their 

oximes in good yield and high e.e.  Additionally, the ligand could be recovered without 

loss of optical activity.12 

Scheme 1.3. Asymmetric allylation with an external ligand. 
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tested Hanessian’s aqueous conditions against compounds 2 and 3 but found that while 2 

gave the expected hydroxylamine 4 in 92% yield, the more electrophilic 3 only gave a 

38% yield of 5 (Table 1.1, entries 1 and 2). They next found that 3 was unreactive toward 

allyltrimethylsilane in the presence of BF3•OEt2 (Table 1.1, entry 3).  

Table 1.1. Allylation of oximes using allylindium reagents. 

 

 Treatment of 3 with allylmagnesium bromide produced the deprotected oxime 6 and 
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the reaction mixture showed that, in fifteen minutes, 2 was converted to product 4 (24%), 

dimers such as 8 (19%) and polymers (entry 7). The authors added acetic anhydride in 

order to eliminate dimerization, and subsequently triethylamine to force full reaction with 

the acetic anhydride.  They were able to expand the reaction to encompass substrates 

containing different esters, as well as both benzoyl- and benzyl-protected oximes. 

Additional viable substrates included crotyl bromide, one ketoxime, and one nitrile. 

 Miyabe et al. previously “reported the palladium-indium iodide-mediated 

regioselective allylation of glyoxylic oxime ether.” They noted that in anhydrous THF α-

adducts were selectively formed, whereas in the presence of water γ-adducts were 

formed.14 Therefore, they next examined the reactivity of glyoxylic oximes and 

hydrazones toward an allylindium reagent and the effects of water on this reaction.15  

Initially, they tested the reactivity of different oximes and hydrazones toward allyl acetate 

in the presence of Pd(PPh3)4 and indium(I) iodide in THF. They found that 9a could be 

allylated in one hour in 92% yield (Table 1.2, entry 1).  However, 9b did not react, and  

Table 1.2. Palladium- and indium-catalyzed allylation of oximes and hydrazones 

with allyl acetate. 
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the results are consistent with a six-membered ring transition state being important for 

successful allylation.   

They next examined the reaction of 10, which showed low diastereomer excess in 

anhydrous THF and marked improvement when running in 10:1 THF—H2O (Table 1.3, 

entries 1 and 3).  They suggest this effect would be due to the reversibility of the 

allylation reaction. Although in anhydrous THF longer reaction times led to lower 

diastereoselectivity (Table 1.3, entries 1-2), this was not found to be the case in 10:1 

THF—H2O (entries 3-4).   

Table 1.3. Effects of solvent on the allylation of oxime 10. 

 

Finally, they tested the propargylation of oxime 10 in anhydrous THF (Table 1.4).  

It was found that the reaction proceeded in good yield with LiBr or LiCl and a palladium 
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Table 1.4. Propargylation of 10 in anhydrous THF. 

 

 Mitani et al. developed a method for the preparation of α,α-disubstituted amino 

acid derivatives by the reaction of α-oxime esters with alkylzinc reagents.16  Initially, 

they examined the radical alkylation of 11 using isopropyl iodide, Bu3SnH, and Et3B. 

After trying a variety of reaction conditions, the best result was formation of 12 in 15% 

yield (Scheme 1.4).   

Scheme 1.4. Alkylation of 11 via radical pathway. 
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Table 1.5. Optimization of the alkylation of 11. 

 

With these conditions in hand, the authors set out to expand the scope of their 

reaction. They first tested the alkylation of methyl pyruvate oxime, 14a. Unbranched 

alkylzincate reagents gave the corresponding product in good yield (Table 1.6, entry 1).  

Reaction with iPr3Zn•MgBr resulted in a low yield, which was improved by increasing 

the equivalence of alkylzinc (entries 2-3). Allylation of 14a occurred in low yield (23-

41% yield), but this was increased to 68% by increasing the reaction temperature to 

Table 1.6. Alkylation of glyoxyl oximes and imine with organozinc reagents. 
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reflux (entries 4-5). Additionally, the authors tested their conditions against oximes 14b 

and 14c, with good yield (entries 6-10).  They attempted the allylation of an imine (14d) 

using this reaction scaffold, which gave low yields (entries 11-12). 

Finally, they turned their attention to synthesis of amino acid derivatives. 

However, they initially were unable to form the desired oxime ester 15b (Scheme 1.5, a), 

and subsequently found that treatment of 16a resulted in complete consumption of the 

starting material with no desired product formed (Scheme 1.5, b). Finally, they found that 

under their reaction conditions, 17a could be used to form α-substituted proline 

derivatives (Scheme 1.5, c). 

Scheme 1.5. Attempted formation of α-substituted proline derivatives. 
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to ethyl glyoxylate in high enantioselectivity and yield. Adding hexafluoro-2-propanol 

(HFIP) was found to slightly improve yields by suppressing formation of oligomeric 

byproducts. Ethyl glyoxylate was propargylated in good to excellent enantioselectivity 

and yield using allenyl silanes with both linear and branched alkyl substituents (Table 

1.7). It was discovered that [3+2] cycloaddition products could be formed by increasing 

the steric bulk of the silane substituents. 	
   

Table 1.7. Propargylation of ethyl glyoxylate. 
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and further investigations showed that silicon tetrachloride was the optimal silicon 

source.  

Figure 1.5. Optimization of the phosphoramide ligand for allylation of 

benzaldehyde. 

	
    

Investigation into the reaction showed that it gave good yields for a variety of 
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(Table 1.8, entries 1-5). The authors were also able to use allenyltributylstannane to 
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 Hernandez et al. reported the use of two borabicyclodecanes, B-allenyl-10-Ph-9-

BBD (19) and γ-trimethylsilyl-propargyl-10-Ph-9-BBD (20) for propargylation and 

allenylation of ketones.19 These reagents are air-stable and readily prepared in optically 

pure forms.  Initially, the authors examined the asymmetric propargylation of various 

ketones using 19 (Table 1.9, entries 1-5).  The resulting tertiary alcohols were obtained in 

good yield (62-85%) and good to high enantioselectivity (61-93%). They note that the 

addition to propiophenone was much slower, requiring two days at 25 ˚C (Table 1.9,  

Table 1.9. Propargylation and allenylation of ketones using borabicyclodecanes. 
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proceeded in good to excellent yield (62-95%) and good to excellent enantioselectivity 

(78-98%) with the exception of propiophenone, which gave 64% ee (Table 1.9, entries 6-

B

Ph

• B

Ph

TMS

19 20

R1 R2

O 1) 19 or 20, Et2O, —78 ˚C

2) pseudoephedrine, hexane, 70 ˚C R1

OHR2

R1

OHR2
•

TMS

R1 R2 19 or 20 Yield (%) % eeEntry
1 Ph Me 19 85 93
2 Ph Et 19 65 76
3 Et Me 19 71 74
4 TMS Me 19 62 90
5 CH2=CH Me 19 64 61

6 Bu Me 20 62 84
7 p-MeOC6H4 Me 20 95 92

8 p-BrC6H4 20Me 80 98

9 2-C4H2S Me 20 71 78

10 Ph Et 20 63 64

or
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10). The recyclable nature of the 9-BBD reagent and fairly wide variety of ketones make 

this a suitable addition to the propargylation toolbox. 

Shi et al. sought to develop a modular approach to chiral phosphine development, 

which they applied to discovery of a catalyst for the Cu(I)-catalyzed asymmetric 

allylation and propargylation of ketones.20 They first examined diphosphine L3 in the 

Cu-catalyzed asymmetric allylation of acetophenone (Figure 1.6). The product was 

obtained in quantitative yield and 41% ee. In order to improve the enantioselectivity of 

the reaction, they designed the next ligands with a constrained macrocycle, which 

eventually increased enantioselectivity to 89% ee using L4 (Figure 1.6).  

Figure 1.6. Ligand optimization for the copper-catalyzed allylation of 

acetophenone. 

 

Using L4 and the tetramethyl dioxaborolane 21a, the authors were able to allylate 

a variety of ketones in good to excellent yield and enantioselectivity (Figure 1.7, 22-25). 

They also found that crotylation using L4 and 21a or 21b “also proceeded with improved 

diastereo- and enantioselectivity” relative to their previous reaction using iPr-DuPHOS 

(Figure 1.7, 26a-26b). However, they note that their enantio- and diastereoselectivity 

were slightly inferior to that reported by Schaus.21  

N

O

O Ph

PPh2

PPh2

L3: >95% yield, 41% ee
[5 mol % catalyst, —40 ˚C]

N

O

O Ph

P(p-F-C6H4)2

P(p-F-C6H4)2

O

O

MeO

MeO

Ph

O

Me B O

O
MeMe

Me
Me

CuOAc, ligand,
LiOiPr (0.5 equiv)

CH2Cl2, —40 ˚C, 16 h Ph

MeHO
+

L4: >95% yield, 89% ee 
[2 mol % catalyst, —75 ˚C, iPrOH (1 equiv)]
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Figure 1.7. Copper-catalyzed allylation and crotylation using tetramethyl 

dioxaborolanes. 

 

They also were able to use this reaction with allenyl dioxaborolane 27 to 

propargylate a range of ketones in good to excellent yield and enantioselectivity (Figure 

1.8). 

Figure 1.8. Copper-catalyzed propargylation using allenyl tetramethyl 

dioxaborolane. 

 

Schaus and Barnett demonstrated the enantioselective propargylation of ketones 

using 1,3-dioxaborolanes with a BINOL catalyst.22 They initially investigated the 

reactions of 28 with acetophenone with L5 as the catalyst. They found that no reaction 

occurred at room temperature.  However, with heating to 65 ˚C, they obtained alcohol 30 

in 80% yield and an enantiomeric ratio of 93:7 after only 15 hours (Table 1.10, entry 1). 

MeHO

22: 99% yield, 89% ee

MeHO

23: 90%, 90% ee

HO

24: 99% yield, 98% ee

S

MeHO

25: 93% yield, 92% ee

Ph

MeHO

Me

26a: β-CH3, 26b: α-CH3 
using 21b: 80% yield (26a : 26b = 93 : 7), 90% ee (3m), 90% ee (3n)
using 21c: 76% yield (26a : 26b = 9 : 91), 90% ee (3m), 90% ee (3n)

R1

O

R2 B O

O
MeMe

Me
Me

CuOAc (2 mol %),
L4 (2.4 mol %),

LiOiPr (0.5 equiv)
iPrOH (1 equiv), CH2Cl2

—75 ˚C

R1

R2HO
+

21a: R = H
21b: R = (E)-Me
21c: R = (Z)-Me

RR

MeHO

93% yield, 95% ee

MeHO

88% yield, 93% ee

HO

84% yield, 98% ee

MeHO

65% yield, 81% ee

R1

O

R2 • B O

O
MeMe

Me
Me

CuOAc (2 mol %),
L4 (2.4 mol %),

LiOiPr (0.5 equiv)
iPrOH (1 equiv), CH2Cl2

—75 ˚C
R1

R2HO
+

Me

Me

27
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They were able to reduce the reaction time by the use of microwave irradiation (entry 2). 

Next, they investigated the use of allenyldioxaborolane 29, hypothesizing that the greater 

ring strain in the boronate would result in a faster reaction. They found that this was the 

case, and in addition saw an increase in reactivity at room temperature (Table 1.10, 

entries 3-4). Ultimately it was determined that reaction with 29 under microwave 

conditions gave the greatest yield (85%) and enantioselectivity (97:3 er).  

Table 1.10. Chiral biphenol-catalyzed propargylation of acetophenone. 

 

The substrate scope of the reaction was found to encompass ketones with varied 

steric and electronic properties, and the authors found that in the case of ketones with 

lowered steric hindrance they could use 3,3’-Mes2-BINOL (L6) or 3,3’-anthracyl-BINOL 

to improve the selectivity (Table 1.11, entries 2 and 5). 

Table 1.11. Substrate scope of biphenol-catalyzed propargylation. 

 

B•
O

OH
OH

Br

Br

Ph

O

Me Ph

MeHO

28 n = 2
29 n = 1

30

L5

Entry Boronate Methoda Temp (˚C) Time (h) Yield (%) er
1 28 a 65 15 80 93:7
2 28 b 105 1 77 93:7
3 29 a 65 15 80 97:3
4 29 b 60 1 85 97:3

a Catalyst was dissolved in boronate and then ketone added.
Heated using the following methods: (a) conventional heating 
(b) microwave reactor held at 10 W

L5 (10 mol %)
+

O
n

R1 R2

O

B•
O

O

R1

R2HOL5 (10 mol %)

μwave
+

Entry R1 R2 Yield (%) er
1 Ph CH3 85 97:3
2a Ph(CH2)2 CH3 86 79:21
3 Ph CH2Ph 98 98:2
4 naphthyl CH3 86 97:3
5a PhCHCH CH3 91 95:5
6 CH3 68 96:41-cyclohexenyl

a Reaction run with 10 mol % L6 instead of L5

OH
OH

Ar

Ar

L6
Ar = 2,4,6-(CH3)3C6H2
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They also investigated whether the reaction could be used for diastereoselective 

propargylations using a racemic boronate. They found that the methyl allenyl borolane 

gave the syn-methylpropargyl product in 93% yield and in 86:14 diasteromeric ratio 

(Table 1.12, entry 1). By using allenes with larger substituents at the γ-position, the 

authors were able to improve the diastereoselectivity of the reaction even to the point of 

obtaining the product in >25:1 dr and 94:6 er from the isopropyl allenyl borolane (Table 

1.12, entry 2). 

Table 1.12. Diastereoselective biphenol-catalyzed propargylation. 

 

Similarly, in 2010 Fandrick et al. used a dioxaborolane compound (31) with a 

BIBOP catalyst to perform enantioselective propargylation of aldehydes.23 During their 

initial optimization, they noted a slow background reaction with or without a copper 

catalyst. They found that phosphine ligands greatly increased the selectivity for the 

alkynyl product rather than the allene; the highest enantioselectivity came from the 

methoxy derivative of their parent BIBOP ligand (MeO-BIBOP, L7). Their reaction 

conditions gave high enantioselectivities and yields for a variety of aromatic substrates 

with a slight decrease in enantioselectivity for the one aliphatic substrate (Figure 1.9). 

Their conditions also allowed them, in at least one case, to selectively propargylate an 

aromatic ketone rather than an ester (Figure 1.9). 

 

Ph Me

O
B•

O

O
Ph

MeHOL5 (10 mol %)

μwaveR
R

+

Entry R Yield (%) er dr
1 Me 93 92:8 (major)

98:2 (minor)
86:14

2 iPr 82 94:6 (major) >25:1
3 Ph 98 94:6 (major)

96:4 (minor)
87:13
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Figure 1.9. Copper(II) isobutyrate-catalyzed propargylation substrate scope. 

 

A 2011 study by Fandrick et al. focused on the copper-catalyzed, enantioselective 

propargylation of ketones.24 They initially focused on methyl ethyl ketone (MEK) for the 

challenges it represents in enantiocontrol. Initial attempts employing their previous 

copper(II) isobutyrate—MeO-BIBOP system yielded the homopropargylated alcohol 32 

with an ee of 69% (Table 1.13, entry 1). After “an intensive ligand, solvent, and catalyst 

survey,” they found that using Xyl-BINAP (L9) raised the enantioselectivity to 83% and 

unsubstituted BINAP raised enantioselectivity to 90% (Table 1.13, entries 2-3). 

Decreasing the reaction temperature to –83 ˚C provided 32 in 83% yield and 95% ee 

(entry 4).  

Subsequently, the authors investigated the scope of the reaction, finding it to be 

efficient over a variety of compounds with uniformly high enantioselectivity and good to 

excellent yield (Table 1.14). However, benzofuran methyl ketone required increased 
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O

tBu tBu OMeOMe

HHO TMS

99% yield, 97% ee

HHO TMS

95% yield, 99% ee

O
EtO

O

Me

HHO TMS

96% yield, 97% ee

N
H

HHO TMS
Cbz

95% yield, 90% ee

HHO TMS

CN
FMe2N

94% yield, 96% ee

HHO

O

TMS

77% yield, 93% ee

R H

O

B
TMS

O

O
MeMe

Me
Me

Cu(isobutyrate)2 (7 mol %)
MeO-BIBOP (9 mol %)

LiOtBu (7 mol %), THF,
-30 ˚C, 18 h MeO

OH TMS

+

MeO-BIBOP (L7)

31
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catalyst loading and 35 hours reaction time to go to completion and showed an ee of only 

84% (Table 1.14, entry 5). 

Table 1.13. Ligand optimization for copper-catalyzed propargylation of ketones. 

	
    

Table 1.14. Substrate scope of the Cu-BINAP asymmetric propargylation. 

 

 

 

 

Me
Me

O

B
TMSO

O

MeMe
Me
Me

Cu(isobutyrate)2 (5 mol %),
Ligand (7 mol %)

LiOtBu (7 mol %), THF
Me

MeHO TMS

Entry Ligand Temp 
(˚C)

Conversion 
(Isolated Yield)

ee (%)

1 MeO-BIBOP —25 99% 69%
2

32

3

Xyl-BINAP —25 99% 83%

4

BINAP —62 99% (81%) 90%

BINAP —83 99% (83%) 95%

P

O

P

O

tBu tBu OMeOMe

MeO-BIBOP (L7)

PPh2
PPh2

P(Xyl)2
P(Xyl)2

BINAP (L8) Xyl-BINAP (L9)

R1 R2

O

32 (1.4 equiv),
Cu(isobutyrate)2 (5 mol %),

(R)-BINAP (7 mol %)

LiOtBu (8 mol %), THF
–62 ˚C, 18 h

R1
R2HO TMS

Entry R1 R2 Yield (%) ee (%)
1 Et Me 81 90

2 cPr Me 96 98

3 CH2CH2Ph Me 77 90

4 p-NO2-Ph Me 85 93

5a Benzofuran Me 80 84
a 10 mol % catalyst, 35 h
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1.4  CONCLUDING REMARKS 

 As this chapter encompasses, transition metal catalysis readily enables the 

allylation and propargylation of ketones and aldehydes, as well as the allylation of 

oximes in high yield and enantioselectivity. The propargylation of oximes, however, is a 

less explored field. Enantioselective reactions often require expensive metals such as 

palladium or indium, or a chiral auxiliary, which can increase steps in a synthesis and is 

often simply unwieldy. There remains to be seen a straightforward oxime propargylation 

which proceeds catalytically over a wide substrate scope. This would fill a gap in the 

synthetic toolbox as well as provide a method of access to various unnatural amino acids 

or synthetic precursors. 

 

  


