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Chapter 1

Computers meet Quantum
Mechanics

1.1 Introduction

The physics of information and computation has been a recognized discipline
for several decades. This is not surprising. Information is, after all, encoded
in the state of a physical system. Our abilities to compute and process
information depend directly on the physics of the system. A computation is
something that can be carried out on an actual physically realizable device.
Hence the study of information and computation is linked to the study of
the underlying physical process. From the perspective of developing state-of-
the-art computing technology, study of the principles of physics and material
science is essential. From a more abstract and theoretical point of view,
there have been noteworthy milestones in our understanding of how physics
constrains our ability to use and manipulate information e.g. Landauer’s
Principle, Reversible Computation, Explanation of Maxwell’s Daemon, etc.

1.2 Quantum Information Theory

The concepts of information theory underlying modern methods of comput-
ing are essentially classical. However, a better understanding of the laws
of quantum mechanics has revealed fundamentally new ways of information
processing. Even during the early days of quantum mechanics, it was proba-
bly clear that classical theories of information would need revision from the
viewpoint of quantum laws.

¢ Random Processes Quantum mechanics is non deterministic. For
example, the radioactive decay of a source is described by a truly ran-
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dom Poisson process. However, deterministic classical dynamics has no
place for true randomness.

e Non-disruptive Measurements In quantum theory, non commuting
observables A, B cannot simultaneously have precisely defined values.
Performing a measurement of A will necessarily influence the outcome
of a subsequent measurement of B. Thus the act of acquiring infor-
mation about a physical system inevitably disturbs the state of the
system. Classical physics has no such restrictions.

e No Cloning Theorem Quantum theory does not allow for the possi-
bility for cloning of the state of a system. If it were possible to make
multiple copies of a system, it would be possible to measure the quan-
tum clone without disturbing the original system, thereby violating the
above principle.

The laws of quantum mechanics also influenced our notions of informa-
tion in far deeper ways. John Bell showed that the predictions of quantum
mechanics cannot be reproduced by any local hidden variable theory. Bell
showed that by means of entanglement, quantum mechanics invariably stores
information between the correlations of physical systems. A lot of interest

_has developed in the study of quantum information theory since the 1980’s.
Benet, Vazirani, et all have been among the pioneers in this field. A number
of Tesults in classical information theory have found their generalizations in
quantum information theory. The principles of quantum information theory
were also put to use in the related fields of quantum computation, teleporta-
tion and cryptography. Feynman@[l], et all are credited with the foundations
of quantum computation. However, in spite of the fundamentally different
and unusual properties of quantum information theory, the world was caught
off guard when Peter Shor proposed his now famous quantum algorithm to
factorize numbers efficiently [3]. This was to set the trend for quantum in-
formation theory and it’s related fields from the mid 90’s onward.

1.3 Computation |

Modern methods of computing are essentially based on classical physics.
However, as discussed above a better understanding of the laws of quantum
mechanics has revealed fundamentally new ways of information processing.
Based on these new ideas, a quantum computer uses a two level quantum
system for a qubit - the quantum analog of the classical bit. Unlike it’s
classical counterpart, a qubit can simultaneously be in a superposition of



it’s base states |0) and [1). This allows a quantum computer to perform
parallel computation far more naturally than a classical computer. It has
also been observed [1] that a classical computer can simulate a quantum
system only with exponential slowdown in the size of the system. These
concepts lead people to believe that certain problems can be solved far more
efficiently using a quantum computer [2]. Interest in quantum computers
increased dramatically following the publication of quantum algorithms for
prime factorization [3] and exhaustive search[4]. From a completely different
viewpoint, a technological viewpoint, Moore’s empirical law predicts that the
amount of information stored on a chip doubles every 18 months. This rapid
decrease in size of classical bits has forced us to take cognizance of quantum
effects even in classical information processing. Thus, in a sense, quantum
computing has become a necessity.

1.4 Physical Implementation of a Quantum
Computer

The above sections outlined the theoretical progress made by quantum com-
putation and quantum information theory. With the publication of the fac-
torization algorithm in 1994 [3], the true potential of a quantum computer
was understood. The search for a physically realizable model of a quan-
tum computer assumed new importance. However, interactions with the
environment in any realistic model make it is extremely difficult to perform
computations through coherent manipulations of qubits. The discovery of
error correcting codes[6] allows a quantum computer to function in spite of
some degree of decoherence and hence may make quantum computers an
experimental reality someday. Yet, bringing the time scales of decoherence
into the error correcting range has also proved to be a daunting task.

The hardware for a quantum computer needs to meet some stringent
specifications in its ability to store and manipulate quantum information.

e Storage of Information: The hardware would need to be able to
store quantum information in qubits sufficiently long to perform the
computation

e Logic Gates The physics of the quantum device should make it pos-
sible to manipulate the quantum states of single qubits. It should also
allow for interactions between two adjacent qubits in order to perform
some non trivial binary gate.



e Minimal Interaction with Environment In order to minimize the
effects of decoherence, it is important that our qubits be well isolated
from the environment.

e Measurement It should ultimately be possible to measure the final
state of the qubits and thus obtain the result of a computation.

We will very briefly mention some classic schemes for quantum computa-
tion that have been proposed.

1.4.1 Ion Trap

This model for quantum computation was proposed by Ignacio Cirac and
Peter Zoller [7] and has been pursued by Dave Wineland’s group at the
National Institute for Standards and Technology (NIST'), among others. This
model uses single ions held in a Paul trap as qubits. The ground state of
the ion |g) is interpreted as the qubit state |0), while the long-lived excited
state |e) is the qubit state |1). It is easy to read out the states of the ions
by performing a measurement that projects onto the |e),|g) basis. A laser
is tuned to a transition from the state |g) to a short-lived excited state |e).
When this laser illuminates the ions, each qubit with the value |0) absorbs
and reemits the laster light, so that it fluoresces. Qubits with the value |1)
remain dark. Single qubit gates are performed by addressing individual ions
with a laser light of frequency w, which induces transition between the |0) and
|1) states. Mutual coulomb repulsion between ions keeps them sufficiently
far enough away to be able to address each atom individually with the laser
pulse. The coulombic interactions between ions creates a spectrum of coupled
normal modes of vibrations for the trapped ions. This effect can be exploited
to perform binary gates in the ion trap quantum computer. One big drawack
of the ion trap computer is that it is an intrinsically slow device. The speed
of the computer is ultimately limited by the nergy-time uncertainty relation.

1.4.2 NMR

Recently another model for quantum computation, NMR Quantum Comput-
ing has been proposed [9]. Nuclear spins in a particular molecule represent
the qubits of computation. The spin states 1) and |) in the presence of a
global magnetic field represent the qubit states |1) and |0). Single qubit states
are manipulated by applying a global magnetic field rotating at a frequency
w, in resonance with the particular qubit to manipulate. Dipole dipole inter-
actions between adjacent qubits cause the energy splitting between the |1),
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|4) states of a qubit to depend on the quantum state of/rjte-ig//'hm@;Qubits.

Hence conditional dynamics is possible, allowing for two qubit-ifiteractions.



Chapter 2

Quantum Computation in Solid
State

As discussed in the previous chapter, numerous schemes for the implemen-
tation of quantum computers have been proposed. Ion traps [7] and NMR
[9] have been the more notable among them. However, scaling these schemes
to more than ten qubits has not been possible due to exponential increase
in decoherence with the number of qubits. Recently a lot of interest has
been generated in the implementation of a quantum computer in the solid
state. By proposing such a scheme, one hopes to make use of the tremendous
technological progress made in solid state in the past few decades. One also
hopes to mimic the success of the classical computer in this field. Bruce
Kane presents a scheme for implementing a quantum computer on an array
of nuclear spins located on donors in silicon, the semiconductor used in most
conventional computer electronics [8]. Logical operations and measurements
can in principle be performed independently and in parallel on each spin in
the array. We will discuss specific electronic devices for the manipulation
and measurement of nucelar spins as proposed by Kane. The fabrication of
these devices will require significant advances in the rapidly moving field of
nanotechnology. Although it will be difficult to scale Kane’s device to large
sizes, a silicon based quantum computer is in a unique position to benefit
from the resource and ingeniuty being directed towards making conventional
electronics of ever smaller size and greater complexity.

2.1 Kane’s Quantum Computer

Kane’s proposal of building a quantum computer consists of embedding 3'P
impurities in a Si semiconductor host. There is a global magnetic field



B =~ 2Tesla along the z direction. This magnetic field splits the nuclear
1

levels of the *'P spin 7 nuclei giving us the qubits for our computer. The
presence of the one valence electron of each donor impurity is vital to the
implementation of single as well as binary gates. A rotating magnetic field
Bgc, with variable frequency, also needs to be applied in the zy plane to
implement the single qubit gate. In addition to the above, two voltage gates,
A & J are also needed. The A gates are placed right above the donor
atoms so as to control the wavefunction of the associated valence electrons.
The J gates are placed between two donor atoms and are used to manipulate
the interaction between valence electrons of two adjacent donor atoms. The
computer operates at very low temperatures, in the order of 100mK in order

to minimize decoherence due to thermal fluctuations.

2.1.1 Logic Gates

A quantum computer operates by making unitary reversible transformations
on a series of qubits. A particular gate consists of some such unitary opera-
tions of a number of qubits. A 'universal gate’ is one which can be used to
build any computing network. It has been shown that almost any two-qubit
gate in universal [12]. Thus any model of a quantum computer should be able
to specify how to do unitary single qubit operations and a non-trivial two-
qubit gate. Kane’s model of the computer proposes to satisfy these objectives
by the precise control and variation of three external parameters.

e A gates control the strength of the hyperfine interactions and hence
the resonance frequency of the nuclear spins beneath them.

e The globally defined magnetic field B, rotates at a variable resonant
frequency allowing us to flip nuclear spins.

e J gates between the donors turn on and off electron mediated coupling
between nuclear spins.

The hyperfine interaction [13] between the valence electron and nucleus of
each donor atom gives us local control over each individual qubit. This inter-
action changes the split in the energy levels of the 3'P nuclei. The strength
of the interaction depends on the probability amplitude of the wavefunction
of valence electron at the nucleus. By changing the voltage on the A gate,
the electron wavefunction can be pulled away from the nucleus under the
gate and towards the barrier, there by reducing the probability amplitude of
the electronic wavefunction at the nucleus. The energy split between the two
levels of the nucleus is thus changed making it’s resonant frequency different



from the other nuclei. Now we apply the globally defined rotating magnetic
pulse B, at the resonant freqency of this particular qubit, allowing us to flip
only this particular qubit. In this way, one can perform single qubit gates.

Executing a two qubit operation is not quite as simple. In this model,
information is stored in the spins of the P nuclei. In order to perform a
non-trivial binary gate interaction between neighbouring nuclei is essnetial.
However, the physics of the model does not permit such an interaction. Kane
proposes to perform the gate using electron mediated interactions between
the nuclei.

Due to the hyperfine interaction between a nucleus and its valence elec-
tron it becomes possible to couple nuclear spin states to certain electron
spin states. The spin exchange interaction between two adjacent electrons
can then be used to effectively establish an interaction between the corre-
sponding nuclei.This interaction between adjacent electrons depends on the
overlap of their wavefunction and thus can be controlled via the J voltage
gate. By biasing the J voltage gate positively, we increase overlap and hence
the strength of the interaction. By biasing it negatively we can decrease the
overlap and effectively decouple the electrons from each other. For the pur-
pose of simplicity, we will assume that by biasing the A voltage gate we can
arbitrarily set the strength of the hyperfine interaction between individual
nuclei and electrons to any non-negative value. In the real physical model,
the hyperfine interaction has a certain maximum strength when the A volt-
age gate is neutral. The strength of this interaction can then only be reduced
by biasing the gate positively, but can never be zero. It is through the use
of the A and J voltage gates that we can control the interactions between
the four particles and effectively achieve a non trivial binary gate. We will
discuss the physics of this interaction in further detail in the next section.

2.2 Kane’s Two Qubit Gate

As mentioned earlier, a non-trivial two qubit gate in Kane’s model is executed
via electron mediated nuclear coupling. The Hamiltonian of the interactions
of these four particles, namely nl, el, n2, e2, is given by
Junoft 4+ AdMe® 4 jw.od
H(A,J) = + Jo4io® (2.1
+lupol + Aoo® 4+ lweo®
Here, the o™ & o¢% denote the Pauli spin vectors of the i** nucleus
and electron, 7 = 1,2. The binary gate can be carried out by varying the J
voltage gate which affects the overlap of adjacent electron clouds and thus
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affects the J term in the above Hamiltonian. The value of A above has to be
non-zero to enable the nuclear spin states to couple to electron spin states.

Let us denote the electron spin states by |1), |{) and the nuclear states
by |1), |0). Thus the state |1 10) corresponds to the electron and nucleus
of the first qubit being in the 'up’ state while the electron and nucleus of
the second qubit are in the ’down’ state. Kane’s proposal for a binary gate
consists of performing a swap between the nuclei states. Hence, executing
the gate results in the state |10) being converted to the state [01). Since the
electrons are not part of our qubits, we do not care about what the their
states are, as long as they are not entangled with the nuclear states at the
end of the gate.

It can been seen that by turning the J gate and the A gate on, our
qubit states ‘mix’ with electron states. Though this ‘mixing’ is essential
for the execution of the gate, we would ideally like to return to pure qubit
states at the end of the execution of the binary gate. Kane resolves this
difficulty by turning the A and J gates on adiabatically. We thus start our
system in product states of the nuclei and electrons and slowly turn on the A
and J gates. After allowing the appropriate phase differences to accumulate
between the different eigenvectors of the system we adiabatically turn the
J and A voltage gates off. Hence, as per the adiabatic theorem, we return
to the original (uncoupled) nuclear and electron states we started out with,
albeit with phase differences. The phase differences allow us to perform a
non-trivial binary gate. In particular, we are able to swap the nuclear states
of adjacent nuclei.

2.3 The Swap Gate

As mentioned in section(2.1), the computer operates at very low temperature
in the range of milikelvins. Thus, for large values of B, like 2 Tesla, the
energy difference between the electron spin states is large enough, so that
they are 'mostly’ in the ||]) state when A = 0 and J = 0. Hence, the
execution of a swap gate, involves the transformation of the state ||J 10)
to the state |/ 01). These states belong to a 4 x 4 eigenspace, &, of the
hamiltonian H independent of A and J. We can focus our attention on the
appropriate 4 sub-matrix of the hamiltonian. Denote it by Hg(A4, J). In the
basis {|t4 00), |1 00), |44 10), |44 01)}, Hs(A, J) can be written as,
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—wp — J ad 2A 0

_ 2J —wp — J 0 2A
H(A D=1 94 0 —wetJ O (2:2)
0 2A 0 —We + J

For given values of A and J denote the eigenvectors and eigenvalues of
the sub-matrix by:

In+(A, 7))+ Ay (4,J)
Ine—(4,J)) : Ane_(4,J)
len—(A,J)) : Aen_(A,J)
lex(4, 7)) : Aer(4,J) (2.3)

where, the eigenstates and eigenvalues are ’smooth’ functions of A, J.
The use of such a ‘complicated’ notation will be explained shortly.

2.3.1 Qualitative Analysis of Eigenspace &

We will first attempt to qualitatively understand the nature of the eigen-
vectors and eigenvalues of H(A, J). Consider first an initial Hamiltonian of
the system of two electrons and two nuclei, obtained by setting A = 0 in
Eq.(2.1).

i n1 1 €1
qWn0,t  + jWeo,

- H(0,J) = { + Jotio® (2.4)

1 n2 1 e2
+3Wn0,? +  5Wel,

In this case, there is no coupling between nuclear and electron spins.
The eigenvectors of the emtire 16 x 16 Hamiltonian are easily obtained. In
particular, eigenvectors of the 4 x 4 sub-matrix Hg(0, J) are given by:

In4(0,4)) [H) ®[10 +01)
Ine-(0,5)) = [4) ®[10-01)
len_(0,5)) = [T — 1) ®|00)
le+(0,5)) = [T} + 1) ®]00) (2.5)

The eigenvalues of these states are

11



Anp(00) = —We+J (2.6)
Ane_(0,0) = —We+J (2.7)
/\en_ 0,J) = —Wp— 34 (28)

Aep(0,) = —wnp+J (2.9)

We are now in a position to explain the notation in Eq.(2.3). Subscripts
'+’ or '’ denote states which form a symmetric or antisymmetric superpo-
sition of spin states respectively, when A = J = 0. The first letter denotes
whether the nuclei or the electrons are in such that particular superposi-
tion. The presence of a second letter for the 27¢ and 3™ eigenstates will be
explained shortly.

Since the eigenstates of Hs(A, J) given by Eq.(2.3) are ’smooth’ func-
tions of A and J, the adiabatic theorem states that the initial eigenstates of
H,(0, J), given by Eq.(2.5), will evolve into the eigenstates given by eq.(2.3)
as A, J are varied adiabatically. A quick note should be made at this point
regarding the uniqueness of the initial eigenstates of Hg(0, J). Since the
states |J4) ® |10 — 01) and |}J) ® |10 + 01) are degenerate, any linear combi-
nation is also an eigenstate of Hg(0, J) and hence a potential candidate for
[n+(0,4)) and |ne_(0, 7)) (of course we would have to change notation then).
However, if for some value of A and J, An, (A, J) # Ane_(A, J), an arbitrary
linear combination will not be able to satisfy the ’smoothness’ condition of
the eigenvectors. Hence it is important to pick the 'right’ eigenvectors for
In+(0,7)) and |ne—(0,j)) from the two dimensional eigensubspace spanned
by [4{) ® |10 —01) and |}J) ® |10+ 01). Though we have not rigorously
proved it yet, eq.(2.5) is the right choice.

The above eigenvectors are independent of J. Their eigenvalues, however,
do depend on J and are plotted in fig.(2.3.1).

For the sake of clarity, the eigenvalues of the degenerate states ||.|) ®
|10 — 01) and |{)) ® |10+ 01) have been slightly displaced with respect to
each other in the diagram. As the value of A is increased adiabatically, the
terms Ao™c® and Ac™20% are introduced in the hamiltonian. Considering
the following equation,

ohg® = 2050" + 20° 0% + 007
where,

04 = 0Oz 110y
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Figure 2.1: Energy Spectrum of £ with A =0

The terms Ao™ ot and Ao™20¢ couple states in which electron and nu-
clear spin states have been exchanged. Now we see the advantage of writing
the eigenvectors of Hg(0, J) as |{{) ® |10 — 01) and [{|) ® |10 + 01) since
they couple to the states |1} — |1) ® [00) and |1} + |1) ® |00) respectively.
From Fig.(2.3.1) the states of the same color couple together to form new
orthogonal states which are eigenstates of Hg(A, J).

For the states |[JJ) ® [10 — 01) and [t} — [1) ® |00) eigenvalues of the
unperturbed hamiltonian (A = 0) cross at 2 x J = “=5“z». Hence in the
presence of coupling, these levels anti cross each other. Also the relative
mixing of the two states changes as J changes due to the J dependence in
their unperturbed eigenvalue difference. That is to say that the eigenkets
|ne_(A, J)) and |en_(A, J)) are J dependent. For small values of A and far
below the point of anti-crossing, |ne_(4,J)) and |en_(A4, J)) are ’mostly’
in the states [{|) ® |10 —01) and |t} — [1) ® |00). (Hence our notation
is still justified). As we go beyond the point of anti-crossing, the eigenket
|ne_(A, J)) flops into the state 'mostly’ [ — |1) ® |00), while the eigenket
len—_(A, J)) flops into the state 'mostly’ ||]) ® |10 — 01). This explains the
presence of the second letter in our notation.

However, for the states [{]) ® [10 + 01) and |1} + {1) ® |00), the differ-
ence in unperturbed (A = 0) eigenvalues is independent of J. Hence the
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eigenvectors |ny (A4, J)) and |ey (A4, J)) are also independent of J. It is note-
worthy that as a result of this property, these two eigenkets are invulnerable
to 'damage’ due to non-adiabatic variations in J.

2.3.2 Quantitative Analysis of &

From the qualitative understanding obtained above, we write the hamiltonian

: . 00 = 00 =
H,(A, J) in the basis |T¢+¢})§®l ) I %@l L 1u>®\|/1§ by |¢¢>®3§+01>}

In this basis, the hamiltonian can be written as:

~w,+J 0 0 24
0 —w,—3J 24 0
Heel)= 0 24 —we+J 0 2.10)
24 0 0 —wet+J '

It is now trivial to diagonalize this submatrix and obtain the exact eigen-
vectors and eigenvalues.
The 4 eigenvectors of the above system are given by

Iny(A,J)) = cos %i [44) ® |10 + 01) — sin % 14 + 1) ®100)(2.11)
|ne_(A,J)) = cos % ) ® |10 — 01) — sin —92; 1T} — 1) ® 00)(2.12)
len_(A,J)) = sin 92: 114) ® 10 — O1) + cos 92: 114 — I1) ® |00)(2.13)

le+(A,J)) = cos %t [44) ® [10 4 01) + sin %i T4 + 1) ®|00)(2.14)

where,
0, (A) = arctan ;22— (2.15)
6_(A, J) = arctan ——24 (2.16)
0 S 0+, o<

As expected, 6. is a function of A alone.
The corresponding eigenvalues are given by
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Eigenvalue Spectrum of HS(A,J)
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Figure 2.2: Energy Spectrum for £ with A # 0

e+ Wp e n 2
Anp(Ad) = _(w 2w>+J—\/<w 2w> + (24)2
we + Wn we - wn 2 2
)‘ne_(A,J) T D) - J - D) -2J) + (2A)
We + Wn We — Wn 2 2
)\en_(A,J) = D) - J+ ) —2J + (2A)

2
e+ n e Yn
Aef(4,g) = —(w 2w>+J+\/<w 2w) + (240

It is easy to see that the eigenkets and eigenvalues satisfy the ’smoothness’
condition and eq(2.5). Fig(2.3.2) is an energy spectrum of the eigenkets as a
function of J. A fixed small value of A has been chosen to show the various
features talked of qualitatively early.
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2.3.3 Ideal Swap Gate

As stated before, the quantum state of the system starts out as |} 10). We
propose to adiabatically turn on and then off the values (something different
might need to be done with the physical voltage gates that determine the
values) of A, J so as to swap nuclear states. Thus after a time 7, we would
ideally like to have evolved to the quantum state || 01). We will work within
the adiabatic approximation and hence ignore the error due to the finiteness
of . Let,

n (t) = /Ot Ay (A(2), J(t)) dt (2.17)
b 6) = [ e (40), I 1) (2.18)
bn(0) = [ Den_ (400,00 (219)
e (8 = /0 e (A(8), J(1)) (2.20)

Let, 7 be such that
Gy (T) = pe_(1) =7 (2.21)

Since, An, (A(t),J(t)) and Ane_ (A(t), J(t)) are finite functions, this is
always possible. Let U(t,0) be the evolutionary operator for the execution
of the gate. Hence by the adiabatic theorem,

U(t,0) [ny) (0,0) = e®+® |ny (A(¥), J(t))) (2.22)
U(t,0) [ns) (0,0) = e?+® [ny (A1), J(t))) (2.23)
U(t,0) [ny) (0,0) = e®+ @ ny (A(2), J(t))) (2.24)
U(t,0) [ny) (0,0) = e?+ @ ny (A2), J(2))) (2.25)
As, required, let the state of the system at a time ¢ be 9(t). .". as per our

initial conditions,

$(0) = [ 10) (2.26)
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Thus, we have

¥(r) = U(7,0)%(0)
=U(r,0) |1 10)
— U(r,0) (IM ® !;0 +01) e 150 ~ o1>)
_Utr o [17£0,0))  ne_(0,0))
- U( ’0) ( \/5 17 \/§ )

Using Eq.(2.22) for the evolution of the quantum system,

¥(r) = o) |y (A(7), I (7)) €97 |ne_ (A(7), J(7))) }

f te
\/_ {e+™ |n,.(0,0)) + e~ (") Ine_(0,0)) }

Z¢n (T) 3
s ¢+§ {In4(0,0)) + - =920 [ne_(0,0))}

\/— {lTL+

= -—\/-—_2_ {In4(0,0))
1
gor> {In+(0,0)) — [ne_(0,0))}

_ ) e10+01)  [{) ®[10-01)
- 2 9
= {4 01)

We have carried out the above calculation, within the limit of the adia-
batic approximation. Clearly, there is an error due to the finite size of 7. It
would be worthwhile to study the appropriate way in which to change A, J
in order to minimize this error given a fixed execution time 7.

Another source of error in the above idealized gate analysis is decoher-
ence. In general, nuclear spins are very robust to spin decoherence, while
electron spins are comparatively far more vulnerable. This was the essential
motivation behind using the nuclear spins as qubits. However, the electrons
do participate in the gate and the effect of electron decoherence might be
the limiting factor in this scheme for computation. We shall now study the
effect of decoherence on the fidelity of the swap gate.

0,0)) + ei¢ne_ (T)=dn, (1) Ine_(0, 0))}

)+ e [ne_(0,0))}
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Chapter 3

Decoherence

Decohernece is the biggest hurdle in the way of building a working model of a
quantum computer. It is a daunting task to sufficiently isolate the quantum
computer from the environment in order to carry out coherent calculations
on qubits. The merits of any quantum computer are in its ability to perform
many computations within the time scales of decoherence. We will first
define the concept of decoherence and then consider its effects on the swap
gate described in the earlier chapter.

3.1 What is decoherence?

A quantum system is generally in a superposition of it’s base states. Let us
consider a quantum register of L qubits as our quantum system. Let

2L1

T(@) =Y ait)]d) (3.1)

=0

be the general state of the register. Here i, in it’s binary decomposition,
represents a base state in the 2% dimensional Hilbert Space of the register.
The value of the k** binary digit of 4 denotes the state of the k** qubit of
the register. The density matrix of any quantum state |¥(¢)) is an operator
given by p(t) = |¥(¢)) (¥(t)| and can be represented as,

2L_1

(p(®) = Y w:(®)a5 () ) (3l (3-2)

1,j=0
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or in matrix notation as,

* * *
alai alaz B ala]-
*
P : : :
a;a] ;a3 ... @a;

The off-diagonal elements are the coherence terms, while the diagonal ele-
ments are called populations. The coherence terms quantify the degree of
the interference and entanglement of the quantum system. In general, inter-
actions with the environment cause these terms to decay. As a result, the
quantum system essentially ends up as a probabilistic mixture of it’s base
states. All entanglement and superposition is destroyed. This phenomenon
is called decoherence. In the case of a quantum computer, decoherence es-
sentially limits the power of the computer to that of a classical one. In the
next section we will specifically talk about decoherence for a single qubit
interacting with an environmental heat bath. The example is analytically
solvable and gives a good idea of the mechanisms of decoherence.

3.2 Decoherence in a Single Qubit

This model of decoherence was analyzed by Palma, Ekert, Souminen[10] for
a single qubit. Consider a qubit interacting with a heat bath in thermal
equilibrium at temperature T. The initial density matrix of the system, i.e.
density matrix of qubit 4+ environment, is assumed to be in a product state.

0(0) = p(0) ® [ [ Rur (3.3)

Here Ryr is the usual thermal density matrix of the k mode of the field.
The summation is carried out over discreet field modes and will be later on
extended to the case of continuum of field modes.

The Hamiltonian of interaction between environment and qubit is equiv-
alent to the one introduced by Unruh[11],

1 *
H= §azw + Z aLakuk + Z az(gkal‘; + grak) (3.4)
k k

where the aL and the gy operators stand for the annihilation and creation
operators of the k mode of the field. The Hamiltonian above has the par-
ticular advantage of being exactly solvable, thus allowing us to study and
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understand in detail the mechanism of decoherence of a single qubit. One
must note that this Hamiltonian allows for no energy exchange between the
environment and the qubit. As a result, the populations of the reduced den-
sity matrix of the qubit remain unchanged in time. This is not a serious
defect in the model as the populations decay on a far slower time scale than
the coherence terms and can be treated as constant to a good approximation.

On calculating the evolution operator in the interaction picture, one sees
that it causes entanglement to occur between the qubit and the environ-
ment, though we started off initially with product states. As time proceeds,
the overlap between the different field states, with which the qubit becomes
entangled, decreases. Since the off-diagonal elements in the reduced den-
sity matrix are proportional to this overlap, they decay in time. One can
rigorously calculate the above terms to show the diminishing value of the
off-diagonal elements in the reduced density matrix of the qubit.

Let p(t) denote the reduced density matrix of the qubit at a time t, where

pii(t) = (i Tro(?) |5) (3.5)

Here T'rg denotes the trace over the environment of the density matrix of
whole system (qubit + environment) - g(t). The above considerations then
give us p11(t) = p11(0) and poo(t) = poo(0), i.e. the populations do not change
over time. Also, for the coherence terms we get,

pro(t) = €79 py(0). (3.6)

['(t) can be evaluated as (putting Boltzmann constant kg as unity and
transforming to a continuum of field modes ),

x [ dpfroom 1ot
Vi
[ e@Ise)Pa+ 22 (3

where G(v) is the density of modes at a frequency v, (n(v))r = €727 csc %
is the average number of field excitations at temperature T and d’: is the
dispersion relation.

We note at this point, that G(v)|g(v)|? is in general characterized by
a cutoff frequency which depends on the particular problem at hand. For
example, if the environment is a phonon bath, the cutoff frequency could
be the Debye frequency. Hence, depending on the no. of dlmensmns of our
field and the cutoff frequency, we can model G(v)|g(v)|? « v"e”* where n
depends on the dimension of the field and v, is the cutoff frequency.
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From Eq.3.7, we can thus identify three time regimes over which the
characteristics of the decoherence varies:
@ quite T gime for ¢ < v;!, where decoherence essentially does not take
“place

e a quantum regime, for ;! < t < T~!, where the main cause of de-
coherence is the quantum fluctuations of the vacuum state of the field
modes

e a thermal regime, for ¢ > T!, where thermal fluctuations are respon-
sible for the loss of coherence

Explicit formulae for the value of I'(t) can be evaluated for the case of
one dimension and three dimensions for all three of the above regimes.

3.3 Master Equation

It is often possible to describe the evolution of a density matrix, at least to
a good approximation, by a differential equation. This equation, the master
equation will be our next topic. It is not obvious that it is possible to
describe the evolution of a density matrix by means of a single differential
equation. As a matter of fact, this is only possible if the quantum system is
"Markovian’, or in other words, local in time. In the case that our quantum
system is not closed, there is an exchange of information between system and
environment. This is called an open system. An open system is dissipative
because information can flow from the system to the reservoir. But that
means that information can also flow back from reservoir to system, resulting
in non-Markovian fluctuations of the system, i.e. fluctuations which depend
on the state of the system at an earlier time. Except in the case of coherent
unitary evolution, these fluctuations are unavoidable and an exact Markovian
description of quantum dynamics is impossible. Yet in many contexts, it is
possible to say that the correlation time of the fluctuations are much smaller
than the time scale of the evolution that we want to follow. Thus the reservoir
'forgets’ the state of the system within a time short enough so as to not
bother our ’coarse’ evolution of the system. In this realm it is possible to
use the Markovian approximation and hence a master equation approach to
open system. We will use this approach to analyze decoherence in Kane’s
quantum computer.
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3.4 Decoherence in Kane’s Binary Gate

Kane’s quantum computer uses the robust nuclear spins for information stor-
age and computation. However, conditional dynamics between the gates is
mediated by electron spins, which are highly susceptible to dephasing due
to environmental interactions. We believe that this electron mediated cou-
pling will be the Achilles’ heal of the computer. We would thus like to study
the evolution of the system allowing for electron spin interactions with the
environment as in section(3.2). However, we do not care about the exact
nature of environment electron interaction (except that it causes dephasing).
Hence, we will assume that our system is Markovian and resort to the master
equation approach as outlined in An Open Systems Approach to Quantum
Optics by Howard Carmichael.

Let the density matrix for two qubit system at a time ¢ be given by p(t).
The master equation determining the evolution of this density matrix for
pure dephasing of electrons is given by

p=—i(H(t),p(t)) = (p(t) — 02p(t)05) — 2 (p(t) — 02p(t)0e?) -
3.8

Here H(t) is determined by the values of A, J at the time ¢.

As before we want to focus on the particular eigenspace of H containing
the states |10) and |01). o€ and 0% also maintain the structure of the
eigenspaces of H, i.e. they do not contain terms that mix the different
eigensubspaces of the hamiltonian. As a result, if we were to start out our
density matrix within the relevant subspace, Eq.(3.8) would ensure that it
stays within this subspace. Hence it makes sense to talk of a master equation
for only the subspace we are interested in, namely the eigenspace space given
by mathboz&, = {|{{ 10), |44 10), |14 00), |11 00)}. Let, p,(t) be the density
matrix of & at a time ¢. Let mathbfH, be as defined by Eq.(2.2). Let o2
and ¢! be the restrictions acting on the appropriate subspace. Thus the

master equation can be written as

Ps = —1 (Hs(t)a ps(t)) =y (ps(t) — gslps(t)dzl) Y9 (p(t) = 0'22,0.9(00';2;) 9)

It is not easy to obtain an analytical solution of this equation even for
the simplified initial conditions of Eq.(2.26). We thus resort to a numerical
simulation. In addition, we would like to focus on the decoherence aspect of
the error. Hence we assume perfect adiabaticity. We thus turn on A, J to a
specified value in a time short enough to ignore the phase collected by the
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eigenvectors and decoherence effects. Since we assume perfect adiabaticity,
the speed with which we do this does not matter. We then leave A, J at
the specified values and allow the quantum system to evolve to collect the
necessary phase difference of 7 as per Eq.(2.21), the ideal gating time. (Note
that for different values of A, J the time required to collect the phase 7 is
different and hence the system is exposed to decoherence for different times.)
During this period we numerical simulate the evolution of the system using
the master equation (3.9). We then calculate the fidelity of the resulting
density operator compared to the ideal quantum state of the system in the
absence of decoherence. A plot of fidelity for different values of A, J will give
us an idea of the feasibility of the quantum computer.
The ideal state of the system is given by

[%(7)) = [n+(4, J) — ne_(4, J))) (3.10)
Thus the fidelity of the density operator is defined by,

F = (1) ps(T) [4b(7)) (3.11)

The plot on the following page shows F for different values of A, J. A
plot of log (1 — F) is also included to better view the features. It can be seen
that the fidelity improves for larger values of A, J. However, for values of
J larger than “=7*= it is necessary to cross the level crossing and the deco-
herence at this point is very large. The adiabatic approximation will also be
important in crossing this point as the difference in energy levels is particu-
larly small. Thus it becomes important to cross the level crossing slowly to
minimize adiabatic damage, and yet fast enough to minimize damage due to

decoherence.
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Chapter 4

Results, Conclusions and
Acknowledgements

4.1 Conclusions

One of the salient points of Kane’s quantum computer was the use of robust
nuclear spins to store information, but the use of fast electrons to do the
binary gate. It was hoped that in this process we would gain on decoherence
time scales but be able to do the gate longer. However, from our numerical
simulation, the fidelity of the binary gate improves as we increase the values
of A and J. By increasing these values, we are floping more and more into
the electron states from the nuclear states. In other words, though possible
decoherence is high for a model using the electron spins as qubits, the swap
gate can be carried out fast enough to improve on decoherence as compared
to Kane’s computer. However, this result should not be taken too seriously.
After all, the robustness of the nuclear spins wins over electron spins specially
while storing information is con/g_g,rmgd_ which is not tested.while-ealeulating~—-—~""""" "~
the fidelity of the swap gate. /Thought/ Ja model using electron spins won
out as far as swap gate fidelity was-concerned, Kane’s computer might still
outperform in a quantum circuit which takes place over a long enough time
““period./Learing from the experience that fidelity of the swap gate improves
the more-we—aré in the nuclear states, it might be instructive to cross the
level crossing and completely swap over to electron states in order to do the
gate. However, as noted earlier, the point of level crossing seems to be a
troublesome feature, not just from decoherence point of view, but also from
adiabaticity. Hence this might not be a valid option. Lastly, it seems unlikely
that Kane’s model can be scaled up to the size envisaged by Preskill in its
present stage. However, building a small prototype might allow us to perform
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small calculations on a few qubits.

4.2 Future Considerations

We have studied only one particular model for decoherence in Kane’s com-
puter. There are even other sources of error besides decoherence. Adiabatic-
ity is one such source. In order to obtain a phase difference of IT there are
many ways to vary the values of A and J over time. The existance of a partic-
ular ‘path’ in (A,J) space which minimizes the error due to non-adiabaticity
is quite plausible. The fidelity calculations done above as A, J are varied
along this path would give a good upper bound to the fidelity of the swap
gate. Other sources of error like those due to noise in the Voltage gates, etc.
can also be studied.
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