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Chapter 1 

Computers meet Quantum 
Mechanics 

1.1 Introduction 

The physics of information and computation has been a recognized discipline 
for several decades. This is not surprising. Information is, after all, encoded 
in the state of a physical system. Our abilities to compute and process 
information depend directly on the physics of the system. A computation is 
something that can be carried out on an actual physically realizable device. 
Hence the study of information and computation is linked to the study of 
the underlying physical process. From the perspective of developing state-of­
the-art computing technology, study of the principles of physics and material 
science is essential. From a more abstract and theoretical point of view, 
there have been noteworthy niilestones in our understanding of how physics 
constrains our ability to use and manipulate information e.g. Landauer's 
Principle, Reversible Computation, Explanation of Maxwell's Daemon, etc. 

1.2 Quantum Information Theory 

The concepts of information theory underlying modern methods of comput­
ing are essentially classical. However, a better understanding of the laws 
of quantum mechanics has revealed fundamentally new ways of information 
processing. Even during the early days of quantum mechanics, it was proba­
bly clear that classical theories of information would need revision from the 
viewpoint of quantum laws. 

• Random Processes Quantum mechanics is non deterministic. For 
example, the radioactive decay of a source is described by a truly ran-
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<lorn Poisson process. However, deterministic classical dynamics has no 
place for true randomness. 

• Non-disruptive Measurements In quantum theory, non commuting 
observables A, B cannot simultaneously have precisely defined values. 
Performing a measurement of A will necessarily influence the outcome 
of a subsequent measurement of B. Thus the act of acquiring infor­
mation about a physical system inevitably disturbs the state of the 
system. Classical physics has no such restrictions. 

• No Cloning Theorem Quantum theory does not allow for the possi­
bility for cloning of the state of a system. If it were possible to make 
multiple copies of a system, it would be possible to measure the quan­
tum clone without disturbing the original system, thereby violating the 
above principle. 

The laws of quantum mechanics also influenced our notions of informa­
tion in far deeper ways. John Bell showed that the predictions of quantum 
mechanics cannot be reproduced by any local hidden variable theory. Bell 
showed that by means of entanglement, quantum mechanics invariably stores 
information between the correlations of physical systems. A lot of interest 

~...,_.d~eveloped in the study of quantum information theory since the 1980's. 
Benet azirani, et all have been among the pioneers in this field. A number 
o results in classical information theory have found their generalizations in 
quantum information theory. The principles of quantum information theory 
were also put to use in the related fields of quantum computation, teleporta­
tion and cryptography. Feynma~[l], et all are credited with the foundations 
of quantum computation. However, in spite of the fundamentally different 
and unusual properties of quantum information theory, the world was caught 
off guard when Peter Shor proposed his now famous quantum algorithm to 
factorize numbers efficiently [3]. This was to set the trend for quantum in­
formation theory and it's related fields from the mid 90's onward. 

1.3 Computation 

Modern methods of computing are essentially based on classical physics. 
However, as discussed above a better understanding of the laws of quantum 
mechanics has revealed fundamentally new ways of information processing. 
Based on these new ideas, a quantum computer uses a two level quantum 
system for a qubit - the quantum analog of the classical bit. Unlike it's 
classical counterpart, a qubit can simultaneously be in a superposition of 
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it's base states /0) and /1). This allows a quantum computer to perform 
parallel computation far more naturally than a classical computer. It has 
also been observed [1] that a classical computer can simulate a quantum 
system only with exponential slowdown in the size of the system. These 
concepts lead people to believe that certain problems can be solved far more 
efficiently using a quantum computer [2]. Interest in quantum computers 
increased dramatically following the publication of quantum algorithms for 
prime factorization [3] and exhaustive search[4]. From a completely different 
viewpoint, a technological viewpoint, Moore's empirical law predicts that the 
amount of information stored on a chip doubles every 18 months. This rapid 
decrease in size of classical bits has forced us to take cognizance of quantum 
effects even in classical information processing. Thus, in a sense, quantum 
computing has become a necessity. 

1.4 Physical Implementation of a Quantum 
Computer 

The above sections outlined the theoretical progress made by quantum com­
putation and quantum information theory. With the publication of the fac­
torization algorithm in 1994 [3], the true potential of a quantum computer 
was understood. The search for a physically realizable model of a quan­
tum computer assumed new importance. However, interactions with the 
environment in any realistic model make it is extremely difficult to perform 
computations through coherent manipulations of qubits. The discovery of 
error correcting codes[6] allows a quantum computer to function in spite of 
some degree of decoherence and hence may make quantum computers an 
experimental reality someday. Yet, bringing the time scales of decoherence 
into the error correcting range has also proved to be a daunting task. 

The hardware for a quantum computer needs to meet some stringent 
specifications in its ability to store and manipulate quantum information. 

• Storage of Information: The hardware would need to be able to 
store quantum information in qubits sufficiently long to perform the 
computation 

• Logic Gates The physics of the quantum device should make it pos­
sible to manipulate the quantum states of single qubits. It should also 
allow for interactions between two adjacent qubits in order to perform 
some non trivial binary gate. 
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• Minimal Interaction with Environment In order to minimize the 
effects of decoherence, it is important that our qubits be well isolated 
from the environment. 

• Measurement It should ultimately be possible to measure the final 
state of the qubits and thus obtain the result of a computation. 

We will very briefly mention some classic schemes for quantum computa­
tion that have been proposed. 

1.4.1 Ion Trap 

This model for quantum computation was proposed by Ignacio Cirac and 
Peter Zoller [7] and has been pursued by Dave Wineland's group at the 
National Institute for Standards and Technology (NIST), among others. This 
model uses single ions held in a Paul trap as qubits. The ground state of 
the ion lg) is interpreted as the qubit state IO), while the long-lived excited 
state I e) is the qubit state I 1). It is easy to read out the states of the ions 
by performing a measurement that projects onto the le), lg) basis. A laser 
is tuned to a transition from the state lg) to a short-lived excited state le'). 
When this laser illuminates the ions, each qubit with the value IO) absorbs 
and reemits the laster light, so that it fluoresces. Qubits with the value I 1) 
remain dark. Single qubit gates are performed by addressing individual ions 
with a laser light of frequency w, which induces transition between the IO) and 
I 1) states. Mutual coulomb repulsion between ions keeps them sufficiently 
far enough away to be able to address each atom individually with the laser 
pulse. The coulombic interactions between ions creates a spectrum of coupled 
normal modes of vibrations for the trapped ions. This effect can be exploited 
to perform binary gates in the ion trap quantum computer. One big drawack 
of the ion trap computer is that it is an intrinsically slow device. The speed 
of the computer is ultimately limited by the nergy-time uncertainty relation. 

1.4.2 NMR 

Recently another model for quantum computation, NMR Quantum Comput­
ing has been proposed [9]. Nuclear spins in a particular molecule represent 
the qubits of computation. The spin states It) and I-!-) in the presence of a 
global magnetic field represent the qubit states 11) and IO). Single qubit states 
are manipulated by applying a global magnetic field rotating at a frequency 
w, in resonance with the particular qubit to manipulate. Dipole dipole inter­
actions between adjacent qubits cause the energy splitting between the It), 
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1.J-) states of a qubit to depend on the quantum state of!neighroring),,Qiubits. 
Hence conditional dynamics is possible, allowing for two'qubit-t~tions. 
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Chapter 2 

Quantum Computation in Solid 
State 

As discussed in the previous chapter, numerous schemes for the implemen­
tation of quantum computers have been proposed. Ion traps [7] and NMR 
[9] have been the more notable among them. However, scaling these schemes 
to more than ten qubits has not been possible due to exponential increase 
in decoherence with the number of qubits. Recently a lot of interest has 
been generated in the implementation of a quantum computer in the solid 
state. By proposing such a scheme, one hopes to make use of the tremendous 
technological progress made in solid state in the past few decades. One also 
hopes to mimic the success of the classical computer in this field. Bruce 
Kane presents a scheme for implementing a quantum computer on an array 
of nuclear spins located on donors in silicon, the semiconductor used in most 
conventional computer electronics [8]. Logical operations and measurements 
can in principle be performed independently and in parallel on each spin in 
the array. We will discuss specific electronic devices for the manipulation 
and measurement of nucelar spins as proposed by Kane. The fabrication of 
these devices will require significant advances in the rapidly moving field of 
nanotechnology. Although it will be difficult to scale Kane's device to large 
sizes, a silicon based quantum computer is in a unique position to benefit 
from the resource and ingeniuty being directed towards making conventional 
electronics of ever smaller size and greater complexity. 

2.1 Kane's Quantum Computer 

Kane's proposal of building a quantum computer consists of embedding 31 P 
impurities in a Si semiconductor host. There is a global magnetic field 
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B ~ 2 Tesla along the z direction. This magnetic field splits the nuclear 
levels of the 31 P spin ~ nuclei giving us the qubits for our computer. The 
presence of the one valence electron of each donor impurity is vital to the 
implementation of single as well as binary gates. A rotating magnetic field 
Bae , with variable frequency, also needs to be applied in the xy plane to 
implement the single qubit gate. In addition to the above, two voltage gates, 
A & J are also needed. The A gates are placed right above the donor 
atoms so as to control the wavefunction of the associated valence electrons. 
The J gates are placed between two donor atoms and are used to manipulate 
the interaction between valence electrons of two adjacent donor atoms. The 
computer operates at very low temperatures, in the order of lOOmK in order 
to minimize decoherence due to thermal fluctuations. 

2.1.1 Logic Gates 

A quantum computer operates by making unitary reversible transformations 
on a series of qubits. A particular gate consists of some such unitary opera­
tions of a number of qubits. A 'universal gate' is one which can be used to 
build any computing network. It has been shown that almost any two-qubit 
gate in universal [12]. Thus any model of a quantum computer should be able 
to specify how to do unitary single qubit operations and a non-trivial two­
qubit gate. Kane's model of the computer proposes to satisfy these objectives 
by the precise control and variation of three external parameters. 

• A gates control the strength of the hyperfine interactions and hence 
the resonance frequency of the nuclear spins beneath them. 

• The globally defined magnetic field Bae rotates at a variable resonant 
frequency allowing us to flip nuclear spins. 

• J gates between the donors turn on and off electron mediated coupling 
between nuclear spins. 

The hyperfine interaction [13] between the valence electron and nucleus of 
each donor atom gives us local control over each individual qubit. This inter­
action changes the split in the energy levels of the 31 P nuclei. The strength 
of the interaction depends on the probability amplitude of the wavefunction 
of valence electron at the nucleus. By changing the voltage on the A gate, 
the electron wavefunction can be pulled away from the nucleus under the 
gate and towards the barrier, there by reducing the probability amplitude of 
the electronic wavefunction at the nucleus. The energy split between the two 
levels of the nucleus is thus changed making it's resonant frequency different 
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from the other nuclei. Now we apply the globally defined rotating magnetic 
pulse Bae at the resonant freqency of this particular qubit, allowing us to flip 
only this particular qubit. In this way, one can perform single qubit gates. 

Executing a two qubit operation is not quite as simple. In this model, 
information is stored in the spins of the 31 P nuclei. In order to perform a 
non-trivial binary gate interaction between neighbouring nuclei is essnetial. 
However, the physics of the model ,does not permit such an interaction. Kane 
proposes to perform the gate using electron mediated interactions between 
the nuclei. 

Due to the hyperfine interaction between a nucleus and its valence elec­
tron it becomes possible to couple nuclear spin states to certain electron 
spin states. The spin exchange interaction between two adjacent electrons 
can then be used to effectively establish an interaction between the corre­
sponding nuclei.This interaction between adjacent electrons depends on the 
overlap of their wavefunction and thus can be controlled via the J voltage 
gate. By biasing the J voltage gate positively, we increase overlap and hence 
the strength of the interaction. By biasing it negatively we can decrease the 
overlap and effectively decouple the electrons from each other. For the pur­
pose of simplicity, we will assume that by biasing the A voltage gate we can 
arbitrarily set the strength of the hyperfine interaction between individual 
nuclei and electrons to any non-negative value. In the real physical model, 
the hyperfine interaction has a certain maximum strength when the A volt­
age gate is neutral. The strength of this interaction can then only be reduced 
by biasing the gate positively, but can never be zero. It is through the use 
of the A and J voltage gates that we can control the interactions between 
the four particles and effectively achieve a non trivial binary gate. We will 
discuss the physics of this interaction in further detail in the next section. 

2.2 Kane's Two Qubit Gate 

As mentioned earlier, a non-trivial two qubit gate in Kane's model is executed 
via electron mediated nuclear coupling. The Hamiltonian of the interactions 
of these four particles, namely nl, el, n2, e2, is given by 

(2.1) 

Here, the ani & aei denote the Pauli spin vectors of the ith nucleus 
and electron, i = 1, 2. The binary gate can be carried out by varying the J 
voltage gate which affects the overlap of adjacent electron clouds and thus 
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affects the J term in the above Hamiltonian. The value of A above has to be 
non-zero to enable the nuclear spin states to couple to electron spin states. 

Let us denote the electron spin states by It), I+) and the nuclear states 
by 11), IO). Thus the state It+ 10) corresponds to the electron and nucleus 
of the first qubit being in the 'up' state while the electron and nucleus of 
the second qubit are in the 'down' state. Kane's proposal for a binary gate 
consists of performing a swap between the nuclei states. Hence, executing 
the gate results in the state 110) being converted to the state jOl). Since the 
electrons are not part of our qubits, we do not care about what the their 
states are, as long as they are not entangled with the nuclear states at the 
end of the gate. 

It can been seen that by turning the J gate and the A gate on, our 
qubit states 'mix' with electron states. Though this 'mixing' is essential 
for the execution of the gate, we would ideally like to return to pure qubit 
states at the end of the execution of the binary gate. Kane resolves this 
difficulty by turning the A and J gates on adiabatically. We thus start our 
system in product states of the nuclei and electrons and slowly turn on the A 
and J gates. After allowing 'the appropriate phase differences to accumulate 
between the different eigenvectors of the system we adiabatically turn the 
J and A voltage gates off. Hence, as per the adiabatic theorem, we return 
to the original (uncoupled) nuclear and electron states we started out with, 
albeit with phase differences. The phase differences allow us to perform a 
non-trivial binary gate. In particular, we are able to swap the nuclear states 
of adjacent nuclei. 

2.3 The Swap Gate 

As mentioned in section(2.1), the computer operates at very low temperature 
in the range of milikelvins. Thus, for large values of B, like 2 Tesla, the 
energy difference between the electron spin states is large enough, so that 
they are 'mostly' in the IU) state when A = 0 and J = 0. Hence, the 
execution of a swap gate, involves the transformation of the state IU 10) 
to the state IU 01). These states belong to a 4 x 4 eigenspace, £8 , of the 
hamiltonian H independent of A and J . We can focus our attention on the 
appropriate 4 sub-matrix of the hamiltonian. Denote it by H 5 (A, J). In the 
basis {It+ 00), I+ t 00), IU 10), IU 01) }, H 5 (A, J) can be written as, 
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2J 

[

-Wn - J 

H,(A, J) = 2: 

2J 
-Wn-J 

0 
2A 

2A 
0 

-we+J 
0 

(2.2) 

For given values of A and J denote the eigenvectors and eigenvalues of 
the sub-matrix by: 

ln+(A, J)) 
lne_(A, J)) 
len_(A, J)) 

le+(A, J)) 

An+(A, J) 
Ane_ (A, J) 
Aen_ (A, J) 

Ae+(A, J) (2.3) 

where, the eigenstates and eigenvalues are 'smooth' functions of A, J. 
The use of such a 'complicated' notation will be explained shortly. 

2.3.1 Qualitative Analysis of Eigenspace £1 

We will first attempt to qualitatively understand the nature of the eigen­
vectors and eigenvalues of H(A, J). Consider first an initial Hamiltonian of 
the system of two electrons and two nuclei, obtained by setting A = 0 in 
Eq.(2.1). 

:.H(O,J) = { 
+ lw O"e1 

2 e z 

+ Jae1(je2 

+ lw O"e2 
2 e z 

(2.4) 

In this case, there is no coupling between nuclear and electron spins. 
The eigenvectors of the emtire 16 x 16 Hamiltonian are easily obtained. In 
particular, eigenvectors of the 4 x 4 sub-matrix Hs(O, J) are given by: 

ln+(O,j)) - l.W.) ® 110 + 01) 
lne_(O,j)) - l.W.) ® 110 - 01) 

len_(O, j)) - It .L. - .L. t) ® IOO) 
le+(O,j)) - lt.L. + .L.t) ® IOO) 

The eigenvalues of these states are 
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An+(O,J) - -we+l (2.6) 

Ane-(0,J) - -we+l (2.7) 

Aen-(0,J) - -Wn -3] (2.8) 

Ae+(O,J) - -wn+l (2.9) 

We are now in a position to explain the notation in Eq.(2.3). Subscripts 
'+' or ' - ' denote states which form a symmetric or antisymmetric superpo­
sition of spin states respectively, when A = J = 0. The first letter denotes 
whether the nuclei or the electrons are in such that particular superposi­
tion. The presence of a second letter for the 2nd and 3rd eigenstates will be 
explained shortly. 

Since the eigenstates of Hs(A, J) given by Eq.(2.3) are 'smooth' func­
tions of A and J, the adiabatic theorem states that the initial eigenstates of 
H 5 (0, J), given by Eq.(2.5), will evolve into the eigenstates given by eq.(2.3) 
as A, J are varied adiabatically. A quick note should be made at this point 
regarding the uniqueness of the initial eigenstates of Hs(O, J). Since the 
states i U) Q9 i 10 - 01) and i U) Q9 i 10 + 01) are degenerate, any linear combi­
nation is also an eigenstate of Hs(O, J) and hence a potential candidate for 
in+(O, j)) and ine_(O, j)) (of course we would have to change notation then). 
However, if for some value of A and J, An+ (A, J) =I Ane_ (A, J), an arbitrary 
linear combination will not be able to satisfy the 'smoothness' condition of 
the eigenvectors. Hence it is important to pick the 'right' eigenvectors for 
in+(O, j)) and ine_(O, j)) from the two dimensional eigensubspace spanned 
by i..1--D Q9 ilO - 01) and iii-) Q9 ilO + 01). Though we have not rigorously 
proved it yet, eq.(2.5) is the right choice. 

The above eigenvectors are independent of J. Their eigenvalues, however, 
do depend on J and are plotted in fig.(2.3.1). 

For the sake of clarity, the eigenvalues of the degenerate states iii-) Q9 
ilO - 01) and iii-) Q9 ilO + 01) have been slightly displaced with respect to 
each other in the diagram. As the value of A is increased adiabatically, the 
terms Aa1i1ae1 and Aa1i2ae2 are .introduced in the ham.iltonian. Considering 
the following equation, 

where, 

a+ ax+ iay 

a_ - ax - iay 
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Energy plot of submatrlx of H
1 

~ 

~O) 0.5 

:;; 0 

~ c 
w 

--0.5 IH>© 110+01) ~=--

-1 

-1.5 

~'---~~~~~~~~~~~~~~'-----~~----"' 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
j 

Figure 2.1: Energy Spectrum of Er with A= 0 

The terms Aari1 ae1 and Aari2ae2 couple states in which electron and nu­
clear spin states have been exchanged. Now we see the advantage of writing 
the eigenvectors of H 5 (0, J) as IU) 0 110 - 01) and l.J-,j,) 0 110 + 01) since 
they couple to the states It.!. - .!. t) 0 IOO) and It.!.+.!. t) 0 IOO) respectively. 
From Fig.(2.3.1) the states of the same color couple together to form new 
orthogonal states which are eigenstates of Hs(A, J). 

For the states IU) 0 110 - 01) and It.!. - .!. t) 0 IOO) eigenvalues of the 
unperturbed hamiltonian (A = 0) cross at 2 * J = we;wn. Hence in the 
presence of coupling, these levels anti cross each other. Also the relative 
mixing of the two states changes as J changes due to the J dependence in 
their unperturbed eigenvalue difference. That is to say that the eigenkets 
lne_(A, J)) and len_(A, J)) are J dependent. For small values of A and far 
below the point of anti-crossing, lne_(A, J)) and len_(A, J)) are 'mostly' 
in the states I.!..!.) 0 I 10 - 01) and It.!. - .!. t) 0 IOO). (Hence our notation 
is still justified). As we go beyond the point of anti-crossing, the eigenket 
lne_(A, J)) flops into the state 'mostly' It.!. - .!.t) 0 IOO), while the eigenket 
len_(A, J)) flops into the state 'mostly' IU) 0110 - 01). This explains the 
presence of the second letter in our notation. 

However, for the states I.!..!.) 0110 + 01) and It.!.+ .!.t) 0 IOO), the differ­
ence in unperturbed (A = 0) eigenvalues is independent of J. Hence the 
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eigenvectors ln+(A, J)) and le+(A, J)) are also independent of J. It is note­
worthy that as a result of this property, these two eigenkets are invulnerable 
to 'damage' due to non-adiabatic variations in J. 

2.3.2 Quantitative Analysis of £1 

From the qualitative understanding obtained above, we write the hamiltonian 
H (A J) in the basis { IH+.1-t)®IOO) IH-..1.t)®IOO) l.w.)®110-01) IW®llO+Ol)} 

s ' v'2 ' v'2 ' v'2 ' v'2 
In this basis, the hamiltonian can be written as: 

[

-Wn + J 0 0 

H (A J) = 0 -wn - 3J 2A 
s ' 0 2A -we+ J 

2A 0 0 
(2.10) 

It is now trivial to diagonalize this submatrix and obtain the exact eigen­
vectors and eigenvalues. 

The 4 eigenvectors of the above system are given by 

ln+(A, J)) 

Jne_(A, J)) 

Jen_(A, J)) 

le+(A, J)) 

where, 

o o 
- cos ; l.W.) ® 110 + 01) - sin ; It-!.+-!. t) ® 100)(2.11) 

- cos 
0
2
- l.W.) ® 110 - 01) - sin °; It-!. - .it)® 100)(2.12) 

- sin °; l.W.) ® 110 - 01) +cos 
0
; It .i - .it)® 100)(2.13) 

o o 
- cos ; I-!.-!.)® 110 + 01) +sin ; It-!.+-!. t) ® J00)(2.14) 

0 +(A) = arctan _bi_ 
We-Wn 

o _ (A, J) = arctan We-:~ -4J 

0::.:; 0+,0- < 7r 

(2.15) 

(2.16) 

As expected, O+ is a function of A alone. 
The corresponding eigenvalues are given by 
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Eigenvalue Spectrum of H (A,J) 
2.5.---,---,----,----,---,---,--....__,---,---,--~ 

2 

1.5 

0.5 

i!ii 
:;; 0 
c 
w 

--0.5 

-1 

-1.5 

-2 

I en_(a,j)) 

anti level crossing 

I 

I ne_(a,j)) 

-2.5~-~-~-~-~-~-~-~-~-~____, 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
i 

Figure 2.2: Energy Spectrum for £1 with A=/=- 0 

An+(A,J) _ ( w,; Wn) + J _ ( w,; Wn )' + (2A)' 

,\,,._(A,J) _ -( w, ;wn )- J -J( ( w,; Wn )- 2J )' + (2A)' 

,\=-(A,J) - ( w,; Wn) - J + J ( ( w,; Wn) - 2J) 2 + (2A)2 

Ae+(A,J) . _ (We +
2 

Wn) + J + ( w,; Wn) 
2 

+ (2A)' 

It is easy to see that the eigenkets and eigenvalues satisfy the 'smoothness' 
condition and eq(2.5). Fig(2.3.2) is an energy spectrum of the eigenkets as a 
function of J. A fixed small value of A has been chosen to show the various 
features talked of qualitatively early. 
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2.3.3 Ideal Swap Gate 

As stated before, the quantum state of the system starts out as 14 10). We 
propose to adiabatically turn on and then off the values (something different 
might need to be done with the physical voltage gates that determine the 
values) of A, J so as to swap nuclear states. Thus after a time T, we would 
ideally like to have evolved to the quantum state 14 01). We will work within 
the adiabatic approximation and hence ignore the error due to the finiteness 
of T. Let, 

</Jn+(t) =it An+ (A(t), J(t)) dt 

</Jne_ (t) = it Ane_ (A(t), J(t)) dt 

</Jen_(t) =it Aen_ (A(t), J(t)) dt 

<Pe+(t) =it Ae+ (A(t), J(t)) dt 

Let, T be such that 

(2.17) 

(2.18) 

' (2.19) 

(2.20) 

(2.21) 

Since, An+ (A(t), J(t)) and Ane_ (A(t), J(t)) are finite functions, this is 
always possible. Let U(t, 0) be the evolutionary operator for the execution 
of the gate. Hence by the adiabatic theorem, 

U(t, 0) In+) (0, 0) = e<Pn+(t) In+ (A(t), J(t))) (2.22) 

U(t, 0) In+) (0, 0) = e<Pn+(t) In+ (A(t), J(t))) (2.23) 

U(t, 0) In+) (0, 0) = e<Pn+(t) In+ (A(t), J(t))) (2.24) 

U(t, 0) In+) (0, 0) = e<Pn+(t) In+ (A(t), J(t))) (2.25) 

As, required, let the state of the system at a time t be 'ljJ(t) . :. as per our 
initial conditions, 

'¢(0) = 1410) (2.26) 

16 



Thus, we have 

'lf;(r) = U(r, O)'lf;(O) 
= U(r,O) 1-t.-t. 10) 

= U(r, O) ( ltt) ® l~O + 01) + 14) ® l~O - 01)) 

= U(r, O) en+~ 0)) + lne_~ 0))) 

Using Eq.(2.22) for the evolution of the quantum system, 

'lf;(r) = ~ { ei<Pn+(r) In+ (A(r), J(r))) ei<Pne_(r) lne_ (A(r), J(r)))} 

= ~ { ei<Pn+(r) ln+(O, 0)) + ei<Pne_(r) lne_(O, 0))} 

ei<Pn+ (r) 
= J2 {ln+(O, 0)) + ei<Pne_(r)-<Pn+(r) lne_(O, 0))} 

= ~ {In+ (0, 0)) + ei<Pne_ (r)-<Pn+ (r) lne_ (O, 0))} 

= ~ {In+ (0, 0)) + e-i7r lne_ (O, 0))} 

1 
= J2 {ln+(O, 0)) - lne_(O, 0))} 

1-t.-t.) ® 110 + 01) 14) ® 110 - 01) 
-

2 2 
= 1.i.i 01) 

We have carried out the above calculation, within the limit of the adia­
batic approximation. Clearly, there is an error due to the finite size of T. It 
would be worthwhile to study the appropriate way in which to change A, J 
in order to minimize this error given a fixed execution time T . 

Another source of error in the above idealized gate analysis is decoher­
ence. In general, nuclear spins are very robust to spin decoherence, while 
electron spins are comparatively far more vulnerable. This was the essential 
motivation behind using the nuclear spins as qubits. However, the electrons 
do participate in the gate and the effect of electron decoherence might be 
the limiting factor in this scheme for computation. We shall now study the 
effect of decoherence on the fidelity of the swap gate. 
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Chapter 3 

Decoherence 

Decohernece s the biggest hurdle in the way of building a working model of a 
quantum computer. It is a daunting task to sufficiently isolate the quantum 
computer from the environment in order to carry out coherent. calculations 
on qubits. The merits of any quantum computer are in its ability to perform 
many computations within the time scales of decoherence. We will first 
define the concept of decoherence and then consider its effects on the swap 
gate described in the earlier chapter. 

3.1 What is decoherence? 

A quantum system is generally in a superposition of it's base states. Let us 
consider a quantum register of L qubits as our quantum system. Let 

2L-1 

jw(t)) = L ai(t) ji) (3.1) 
i=O 

be the general state of the register. Here i, in it's binary decomposition, 
represents a base state in the 2£ dimensional Hilbert Space of the register. 
The value of the kth binary digit of i denotes the state of the kth qubit of 
the register. The density matrix of any quantum state jw(t)) is an operator 
given by p(t) = jw(t)) (w(t)j and can be represented as, 

2L-l 

(p(t)) = L ai(t)aj(t) Ji) UI (3.2) 
i,j=O 
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or in matrix notation as, 

aiai aia2 aiaj 
a2ai a2a2 a2aj 

p= 

The off-diagonal elements are the coherence terms, while the diagonal ele­
ments are called populations. The coherence terms quantify the degree of 
the interference and entanglement of the quantum system. In general, inter­
actions with the environment cause these terms to decay. As a result, the 
quantum system essentially ends up as a probabilistic mixture of it's base 
states. All entanglement and superposition is destroyed. This phenomenon 
is called decoherence. In the case of a quantum computer, decoherence es­
sentially limits the power of the computer to that of a classical one. In the 
next section we will specifically talk about decoherence for a single qubit 
interacting with an environmental heat bath. The example is analytically 
solvable and gives a good idea of the mechanisms of decoherence. 

3.2 Decoherence in a Single Qubit 

This model of decoherence was analyzed by Palma, Ekert, Souminen[lO] for 
a single qubit. Consider a qubit interacting with a heat bath in thermal 
equilibrium at temperature T. The initial density matrix of the system, i.e. 
density matrix of qubit + environment, is assumed to be in a product state. 

g(O) = p(O) @ II RkT (3.3) 
k 

Here Rkr is the usual thermal density matrix of the k mode of the field. 
The summation is carried out over discreet field modes and will be later on 
extended to the case of continuum of field modes. 

The Hamiltonian of interaction between environment and qubit is equiv­
alent to the one introduced by Unruh[ll], 

H = ~azw + L atakvk + L az(gkat + gkak) 
k k 

(3.4) 

where the at and the ak operators stand for the annihilation and creation 
operators of the k mode of the field. The Hamiltonian above has the par­
ticular advantage of being exactly solvable, thus allowing us to study and 
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understand in detail the mechanism of decoherence of a single qubit. One 
must note that this Hamiltonian allows for no energy exchange between the 
environment and the qubit. As a result, the populations of the reduced den­
sity matrix of the qubit remain unchanged in time. This is not a serious 
defect in the model as the populations decay on a far slower time scale than 
the coherence terms and can be treated as constant to a good approximation. 

On calculating the evolution operator in the interaction picture, one sees 
that it causes entanglement to occur between the qubit and the environ­
ment, though we started off initially with product states. As time proceeds, 
the overlap between the different field states, with which the qubit becomes 
entangled, decreases. Since the off-diagonal elements in the reduced den­
sity matrix are proportional to this overlap, they decay in time. One can 
rigorously calculate the above terms to show the diminishing value of the 
off-diagonal elements in the reduced density matrix of the qubit. 

Let p(t) denote the reduced density matrix of the qubit at a time t, where 

(3.5) 

Here TrE denotes the trace over the environment of the density matrix of 
whole system (qubit +environment) - g(t). The above considerations then 
give us p11 (t) = p11 (0) and Poo(t) = Poo(O), i.e. the populations do not change 
over time. Also, for the coherence terms we get, 

P10(t) = e-r(t) P10(0). (3.6) 

f(t) can be evaluated as (putting Boltzmann constant ks as unity and 
transforming to a continuum of field modes ), 

r(t) J dkl 1

2 h llk 1 - cos llkt 
ex 9k cot 2T v~ 

J dk 1 - cos vt 
ex dv dv G(v)Jg(v)J 2(1+2(n(v))r) v2 

(3.7) 

where G(v) is the density of modes at a frequency v, (n(v))r = e-d'T csc {r 
is the average number of field excitations at temperature T and ~~ is the 
dispersion relation. 

We note at this point, that G(v)Jg(v)J 2 is in general characterized by 
a cutoff frequency which depends on the particular problem at hand. For 
example, if the environment is a phonon bath, the cutoff frequency could 
be the Debye frequency. Hence, depending on the no. of dimensions of our 
field and the cutoff frequency, we can model G(v)Jg(v)J 2 ex vne-:c where n 
depends on the dimension of the field and Zic is the cutoff frequency. 
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From Eq.3.7, we can thus identify three time regimes over which the 
characteristics of the decoherence varies: 

,.,..~ 7 ~- . -,- ~ ~ ~ ,,_ 

(~gi;~-~fo; -~-~-~~~1, where decoherence essentially does not take 
~ce 

• a quantum regime, for v;1 < t < r-1
, where the main cause of de­

coherence is the quantum fluctuations of the vacuum state of the field 
modes 

• a thermal regime, for t > r-1, where thermal fluctuations are respon­
sible for the loss of coherence 

Explicit formulae for the value of r(t) can be evaluated for the case of 
one dimension and three dimensions for all three of the above regimes. 

3.3 Master Equation 

It is often possible to describe the evolution of a density matrix, at least to 
a good approximation, by a differential equation. This equation, the master 
equation will be our next topic. It is not obvious that it is possible to 
describe the evolution of a density matrix by means of a single differential 
equation. As a matter of fact, this is only possible if the quantum system is 
'Markovian', or in other words, local in time. In the case that our quantum 
system is not closed, there is an exchange of information between system and 
environment. This is called an open system. An open system is dissipative 
because information can flow from the system to the reservoir. But that 
means that information can also flow back from reservoir to system, resulting 
in non-Markovian fluctuations of the system, i.e. fluctuations which depend 
on the state of the system at an earlier time. Except in the case of coherent 
unitary evolution, these fluctuations are unavoidable and an exact Markovian 
description of quantum dynamics is impossible. Yet in many contexts, it is 
possible to say that the correlation time of the fluctuations are much smaller 
than the time scale of the evolution that we want to follow. Thus the reservoir 
'forgets' the state of the system within a time short enough so as to not 
bother our 'coarse' evolution of the system. In this realm it is possible to 
use the Markovian approximation and hence a master equation approach to 
open system. We will use this approach to analyze decoherence in Kane's 
quantum computer. 
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3.4 Decoherence in Kane's Binary Gate 

Kane's quantum computer uses the robust nuclear spins for information stor­
age and computation. However, conditional dynamics between the gates is 
mediated by electron spins, which are highly susceptible to dephasing due 
to environmental interactions. We believe that this electron mediated cou­
pling will be the Achilles' heal of the computer. We would thus like to study 
the evolution of the system allowing for electron spin interactions with the 
environment as in section(3.2). However, we do not care about the exact 
nature of environment electron interaction (except that it causes dephasing). 
Hence, we will assume that our system is Markovian and resort to the master 
equation approach as outlined in An Open Systems Approach to Quantum 
Optics by Howard Carmichael. 

Let the density matrix for two qubit system at a time t be given by p(t). 
The master equation determining the evolution of this density matrix for 
pure dephasing of electrons is given by 

p = -i (H(t), p(t)) -11 (p(t) - a~1p(t)a~1 ) -12 (p(t) - a~2p(t)a~2 ) 
(3.8) 

Here H(t) is determined by the values of A, J at the time t. 
As before we want to focus on the particular eigenspace of H containing 

the states 110) and IOI). a;1 and a;2 also maintain the structure of the 
eigenspaces of H, i.e. they do not contain terms that mix the different 
eigensubspaces of the hamiltonian. As a result, if we were to start out our 
density matrix within the rele,vant subspace, Eq.(3.8) would ensure that it 
stays within this subspace. Hence it makes sense to talk of a master equation 
for only the subspace we are interested in, namely the eigenspace space given 
by mathbox&8 = {l.U 10), I# 10), It.!. 00), I.!. t 00) }. Let, Ps(t) be the density 
matrix of &s at a time t. Let mathbf Hs be as defined by Eq.(2.2). Let a~2 

and a~1 be the restrictions acting on the appropriate subspace. Thus the 
master equation can be written as 

It is not easy to obtain an analytical solution of this equation even for 
the simplified initial conditions of Eq.(2.26). We thus resort to a numerical 
simulation. In addition, we would like to focus on the decoherence aspect of 
the error. Hence we assume perfect adiabaticity. We thus turn on A, J to a 
specified value in a time short enough to ignore the phase collected by the 
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eigenvectors and decoherence effects. Since we assume perfect adiabaticity, 
the speed with which we do this does not matter. We then leave A, J at 
the specified values and allow the quantum system to evolve to collect the 
necessary phase difference of 7r as per Eq.(2.21), the ideal gating time. (Note 
that for different values of A, J the time required to collect the phase 7r is 
different and hence the system is exposed to decoherence for different times.) 
During this period we numerical simulate the evolution of the system using 
the master equation (3.9). We then calculate the fidelity of the resulting 
density operator compared to the ideal quantum state of the system in the 
absence of decoherence. A plot of fidelity for different values of A, J will give 
us an idea of the feasibility of the quantum computer. 

The ideal state of the system is given by 

11/J(r)) = ln+(A, J) - lne_(A, J))) (3.10) 

Thus the fidelity of the density operator is defined by, 

F = (?jJ(r)I Ps(r) 11/J(r)) (3.11) 

The plot on the following page shows F for different values of A, J. A 
plot of log (1 - F) is also included to better view the features. It can be seen 
that the fidelity improves for larger values of A, J. However, for values of 
J larger than we·tn it is necessary to cross the level crossing and the deco­
herence at this point is very large. The adiabatic approximation will also be 
important in crossing this point as the difference in energy levels is particu­
larly small. Thus it becomes important to cross the level crossing slowly to 
minimize adiabatic damage, and yet fast enough to minimize damage due to 
decoherence. 
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Chapter 4 

Results, Conclusions and 
Acknowledgements 

4.1 Conclusions 

One of the salient points of Kane's quantum computer was the use of robust 
nuclear spins to store information, but the use of fast electrons to do the 
binary gate. It was hoped that in this process we would gain on decoherence 
time scales but be able to do the gate longer. However, from our numerical 
simulation, the fidelity of the binary gate improves as we increase the values 
of A and J. By increasing these values, we are fioping more and more into 
the electron states from the nuclear states. In other words, though possible 
decoherence is high for a model using the electron spins as qubits, the swap 
gate can be carried out fast enough to improve on decoherence as compared 
to Kane's computer. However, this result should not be taken too seriously. 
After all, the robustness of the nuclear spins wins over electron spins specially 
while storing information is conce~hich ~i~_I}gi~t!ist~d.;wJ.i-iJ..e,.eaJelilat-ing"'-~~··-~--~~ ~ .. .--······-- - · · · 
the fidelity of the swap gate. /Thoug:;.va-inodel using electron spins won 
out as far as swap gate fidelity 'was-c--oncerned, Kane's computer might still 
outperform in a quantum circuit which takes place over a long enough time 

.... ~--·-perio(["~om the experience that fidelity of the swap gate improves 
the mo~ in the nuclear states, it might be instructive to cross the 
level crossing and completely swap over to electron states in order to do the 
gate. However, as noted earlier, the point of level crossing seems to be a 
troublesome feature, not just from decoherence point of view, but also from 
adiabaticity. Hence this might not be a valid option. Lastly, it seems unlikely 
that Kane's model can be scaled up to the size envisaged by Preskill in its 
present stage. However, building a small prototype might allow us to perform 

::;~)~~ \7 ~ ~ ~-d1 ~ ~~-~~-1 
r>1 - f.l..,,, ,..(' c~~~'/-l 24 ~ " l - -

( 0 _::;; ____,, '-?r~ "v -<.IVc.-&-L.- ~--'-'-~--l'l~~~ 
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small calculations on a few qubits. 

4.2 Future Considerations 

We have studied only one particular model for decoherence in Kane's com­
puter. There are even other sources of error besides decoherence. Adiabatic­
ity is one such source. In order to obtain a phase difference of IT there are 
many ways to vary the values of A and J over time. The existance of a partic­
ular 'path' in (A,J) space which minimizes the error due to non-adiabaticity 
is quite plausible. The fidelity calculations done above as A, J are varied 
along this path would give a good upper bound to the fidelity of the swap 
gate. Other sources of error like those due to noise in the Voltage gates, etc. 
can also be studied. 
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