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ABSTRACT 

The kinetic Sunyaev-Zel 'dovich (kSZ) effect is of great cosmological interest for 

providing precision measurements of peculiar velocity fields independent of system­

atics present in other cosmological probes. The high precision kSZ measurements 

on the horizon are expected to yield valuable constraints distinguishing between 

competing cosmological models . Instrumental to kSZ astromony is the removal of 

contaminating point sources, primarily radio and dusty, star-forming galaxies that 

have bright emissions in kSZ spectral bands. As the precision of measurements 

improve, the source removal residuals may become significant contributions to the 

overall kSZ error budget. A full simulation is essential to characterizing these in­

duced errors. This study develops a procedure for contamination removal from first 

principles, verifying its optimality against information theoretic limits. Models for 

contaminating sources of increasing complexity are considered, at each step charac­

terizing the optimality of the subtraction compared to theoretical bounds. The final, 

currently unfinished objective is to apply this subtraction procedure to a realistic 

source distribution and understand the incurred systematics. 
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Chapter 1 

INTRODUCTION 

1.1 The Sunayev-Zel'dovich Effect 

The Sunyaev-Zel'dovich (SZ) effect describes how the intra-cluster media (ICM) in 

galaxy clusters scatters the cosmic microwave background (CMB) signal (Sunyaev 

and Zeldovich, 1972; Birkinshaw, 1999; Glenn et al., 1998a). Incoming CMB 

photons are inverse Compton scattered off energetic electrons and acquire a higher 

energy (are blue-shifted). This results in a deficit of electrons at wavelengths 

below the CMB blackbody peak and a surplus at higher wavelengths, as depicted in 

Figure 1.1. 
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Figure 1.1: Exaggerated depiction of SZ wavelength shift (Carlstrom, Holder, and Reese, 
2002). 

Three SZ effects are distinguished by the contribution to the electrons' energy in 

each: 

• The Thermal SZ effect (tSZ) describes the SZ effect due to thermal component 

of electron energy. 

• The Kinetic SZ effect (kSZ) describes the SZ effect due to bulk motion 

contribution to electron kinetic energy. 
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• The Relativistic SZ effect (rSZ) describes the SZ effect due to relativistic 

corrections to electron thermal energy. Generally considered as a perturbation 

on the tSZ effect. 

The great importance of SZ effects is that they provide probes into cosmological pa­

rameters that both are independent of redshift and carry distinct spectral signatures . 

This makes them both easy to identify and useful at a wide range of cosmolog­

ical distances. The SZ effects are also independent of many other observational 

techniques and are subject to orthogonal systematics, providing complementary es­

timates on a variety of measurements (Carlstrom, Holder, and Reese, 2002). The 

relative magnitude of the tSZ and kSZ effects are presented in Figure 1.2. 

,,....__ ,.., 
I._. 0 .1 

[/J 

- 0.1 

Kinetic SZE 

The rmal SZE 

0 100 200 300 400 500 

Frequency (GHz) 

Figure 1.2: Depiction of relative scales of the tSZ, kSZ effects, with 0.0005 the CMB 
blackbody flux depicted for scale (Carlstrom, Holder, and Reese, 2002). 

Thermal SZ Effect 

The thermal SZ effect, derived from thermal contributions to electron energy, fluc­

tuates CMB photons by the following equation 

(1.1) 

with electron density ne, crT Thomson cross section, k8 the Boltzmann constant, Te 

the electron temperature, m e the electron mass, c the speed of light integrated dl 

along the line of sight (Sayers et al. , 2013). f(v, Te) is the frequency dependence 
hv 

which is denoted in terms of x = --­
ks Tc MB 

f(x) = (x ex + 
1 

- 4) (1 + OszE(x, Te)) 
ex -1 

(1.2) 
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where o SZE denotes the relatistic corrections typically of order a few percent for most 

of the spectrum (Carlstrom, Holder, and Reese, 2002; Itoh, Kohyama, and Nozawa, 

1998). Among other useful applications, the tSZ effect is of great use in conjunction 

with X-ray techniques in distance determinations to clusters e.g. (Cavaliere, Danese, 

and Zotti, 1979; Birkinshaw, 1979). 

Kinetic SZ Effect 

The change in the temperature of CMB photons due to the kSZ effect when passing 

through some galaxy cluster is given 

!J.TcMB 

TcMB 

Vz 
= - -Te 

c 
(1.3) 

with Vz the ICM peculiar velocity along the line of sight and Te the total electron 

optical depth (Sayers et al., 2013) 

Te = J n ea-T dl. (1.4) 

The kSZ effect is particularly interesting as a cosmological probe of peculiar ve­

locities, velocity deviations from Hubble's Law or equivalently velocities relative 

to CMB rest frame. It is the only known technique to measure large scale velocity 

fields at high redshift (Carlstrom, Holder, and Reese, 2002). 

Research Uses of the kSZ Effect 

In contrast with established measurement techniques, the kSZ effect provides a 

direct measurement of line-of-sight velocities Vz of hot electrons within galaxy 

clusters (Sunyaev and Zeldovich, 1972), useful for constraining cosmological pa­

rameters. While spectroscopy is already an actively used technique for constraining 

such parameters (e.g. the total matter density Om and the normalization of den­

sity fluctuations a-8 (Feldman, Watkins, and Hudson, 2010; Ma, Branchini, and 

Scott, 2012; Nusser and Davis, 2011)), kSZ measurements are still invaluable as 

these two techniques exhibit vastly different systematic uncertainties. For instance, 

a kSZ measurement is independent of redshift and depends only on the electron 

line-of-sight velocity and optical depth, local characteristics, while spectroscopy 

requires averaging over many galaxies which decreases the resolution of the mea­

surement. Studies conclude that in efforts to constrain to dark energy parameters or 

deviations from general relativity, kSZ measurements would probe different mass 

scales and exhibit different systematic uncertainties while still maintaining a similar 

level of accuracy. By including kSZ measurements, combining constraints from 
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various measurements can then produce a tighter overall constraint on interesting 

parameters (Albrecht et al., 2006). 

Recent observations of the kSZ effect have proven difficult but feasible. Data from 

the WMAP and Planck satellites, the two most recent CMB datasets, have been used 

to place upper limits on the bulk flows and root mean square (RMS) variations of Vz 

via the kSZ signal (Kashlinsky et al., 2008; Osborne et al., 2011). A combination of 

other data was also used to constrain the mean pairwise momentum of clusters that 

is inconsistent with noise at a confidence level of 99.8% (Hand et al., 2012). Most 

recently, kSZ measurements using Bolocam and Herschel Spectral and Photometric 

Imaging Receiver (SPIRE) data have been able to constrain Vz measurements of 

galaxy cluster MACS J0717.5+3745 to 3450 ± 900km/s (Sayers et al., 2013). 

1.2 Contamination 

These above results demonstrate both the feasibility of kSZ measurements and their 

utility in constraining cosmological parameters. With the next generation of detec­

tors, kSZ measurement precision is expected to improve as statistical uncertainties 

decrease. Accordingly, systematic uncertainties on the separation of the kSZ signal 

from other astronomical signals will become more important. 

In particular, extragalactic infrared point sources such as sub-millimeter galaxies 

and radio galaxies have significant emissions in kSZ frequencies and are the major 

source of contamination in SZ surveys (Carlstrom, Holder, and Reese, 2002). Since 

these galaxies remain point-like down to scales far below present SZ resolution, 

these contaminating sources can effectively be treated as point sources. As such, 

they exhibit significantly higher spatial flux density than the SZ signal and must be 

subtracted to examine the underlying phenomena. 

Sub-millimeter Galaxies 

A large portion of sub-millimeter galaxy luminosity is dominated by dusty, star­

forming galaxies (DSFGs), reviewed extensively by (Casey, Narayanan, and Cooray, 

2014). These galaxies are completely optically obscured, yet the dust heated by ul­

traviolet radiation of newly forming stars produces infrared luminosities in excess 

of 10 13 L 0 . This implies a star formation rate that is in the thousands of M0 /yr com­

pared to the Milky Way's paltry 2M0 /yr (Robitaille and Whitney, 2010). Even so, 

they are extremely spatially compact, approximately 2 ± lkpc across corresponding 

to an angular width of ;S 1" and so exhibit point-source like beam profiles (Casey, 

Narayanan, and Cooray, 2014). 
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This heated dust forms the primary infrared emission of these DSFGs, and the 

resulting SED is well described by a modified black-body, or 'greybody' SEO, for 

wavelengths ;::: 50µm. The greybody SEO as a function of spectral frequency v is 

given by 

S(vl,B, T) = X (1 - e-T(v)) X B(v, T) 

r(v) = (:r 
1 

where T is the redshifted temperature T = Tdust -- and T is is the optical depth, 
1 + z 

fitted as a function of v0 the frequency at which the optical depth equals unity 

(Draine, 2006). Typical redshifts for DSFGs with peak emissions in the far infrared 

range from 2.2-2.7 (Casey, Narayanan, and Cooray, 2014). ,B is referred to as 

the emissivity and is generally found to be E (1, 2] and commonly assumed to 

be 1.5 (Casey, Narayanan, and Cooray, 2014). vo is estimated from laboratory 

experiments to be 3THz which is an order of magnitude above the model instrument 

v ::::; 400GHz. Experimental studies indicate its value is closer to vo ~ 1.5THz 

(Conley et al., 2011; Rangwala et al., 2011). Often, we make the optically thin 

approximation (1 - e-T(vl) ~ ( :J.B, valid for observation wavelength;::: 450µm, 

and obtain for SED 

(
v),B2hv3 1 

S(vl,B,T) = - -
2
---hv--

VQ c eksT - 1 
(1.5) 

1.3 Research Goal 

The above presents DSFGs to be point-source contaminations with known SEO. 

This work focuses on a first-principles approach to subtracting these contaminating 

point sources from multi-band data. The objective is to apply signal processing 

theory to subtract point sources from astronomical maps containing both stochas­

tic instrumental noise and confusion noise from sources with fluxes below some 

detection threshold. Using this formalism, we identify both procedures to com­

pute optimal estimators and the theoretical limit on their accuracy. We are able 

to compare this with results from simulations containing randomly generated noise 

and ensure our procedure saturates the theoretical subtraction accuracy limit. The 

theory is developed starting from a constrained setup that is successively relaxed to 

better describe real contamination sources. 

While there exist studies performing fits of these data to various SEO profiles (Sayers 

et al., 2013; Casey, 2012), studies of the optimality of such procedures and the in-
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traduced errors are lacking. This work aims to begin to fill that gap with a procedure 

that is tested against theoretical fit accuracy limits in constrained environments that 

is subsequently applied to contaminating sources with known SEDs to characterise 

subtraction systematics. The procedure is laid out for generalizing this to SEDs of 

arbitrary complexity. 

The code for this project is hosted at https: //gi thub. com/yubo56/Bolocam_ 

Source_Subtraction. 
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Chapter 2 

DATA SIMULATION 

The entirety of the study is performed using simulated data. The parameters of the 

simulated data are described below. 

2.1 Instrument Parameters 

The modeled instrument in this study is taken roughly after the Bolocam instrument 

at the Caltech Submillimeter Observatory to have the following properties (Glenn 

et al., 1998b): 

Field of View 480 arcseconds 

Resolution 256 pixels 

Observational Frequencies Frequency bands centered at 

[400GHz,.353GHz, 273GHz, 231GHz, 150, 91GHz] 

corresponding to wavelengths 

[750µm, 850µm, 1.lmm, 1.3mm, 2.0mm, 3.3mm] 

1 
Point Spread Function Gaussian with width ex: - observational frequency (diffrac­

v 
tion limited). Taken to be 15arcsec FWHM in the 750µm band, 

Confusion Noise Tabulated in Table 2.1, obtained from Bethermin simulations 

(Bethermin et al., 2011). 

Stochastic Noise Assumed to be a sum of white noise at half the confusion limit 

and a small v-8/3 noise component (generally taken to be on the order of 
1 

the white noise at v ~ 
60 

arcsec- 1 the lowest spatial frequency in the map; 

we call this spatial frequency the elbow of the v-813 noise). The v-813 noise 

component corresponds to atmospheric noise (Sayers et al., 2010). 

No treatment of any instrumental imperfections is handled in this study; the data are 

assumed to be corrected for any distortions and defects. 



Wavelength 
750µm 
850µm 
1.lmm 
1.3mm 
2.0mm 
3.3mm 

Confusion Limit (Jy) 
1.81 x 10-
1.37 x 10-4 

1.12 x 10-4 

9.47 x 10-5 

4.99 x 10-5 

2.43 x 10-5 

Table 2.1: Confusion limit for each wavelength bands. 

2.2 Data Model 
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Instrumental data consist of 2-dimensional discrete arrays (maps) of spectral flux 

density (often referred to simply as flux) values. We notate such maps Vrs with r, s 

indicies into the array, or sometimes just v(x) where xis understood to be discrete 

indicies. The data are taken across six frequency bands v, each of the six maps 

referred to as vv(x). The six maps are assumed to overlapping in coordinates just 

taken at different spectral frequencies. 

Given a set of maps vv(i), we assume that the maps comprise some set of point 

sources overlaid on a stochastic background. In other words, the maps vv(x) can be 

decomposed as 

(2.1) 

with i indexing the sources in the map, sv(x) the known source profile as a function 

of some source parameters Ai that may differ per map, Ai the total flux from the 

ith source and nv(x) some stochastic noise obeying some known power spectral 

density (PSD). We will generally notate a function f(xl,l) to be a function of x with 

parameters A. With a known PSD, we can generate realisations of nv(x) to simulate 

instrumental data; see Section 3.2 for the associated procedure. 

Because we only consider point sources, sv(x) is given solely by the point spread 

function of the instrument, which as discussed in Section 2.1 is taken to be Gaussian 

with width fixed at 15arcmin in the 750µm band. In order then for A to be the total 

flux from the source, we require that s be normalized to have unit integral. Due 

to the discretization of the map, this normalization can be mandated in two ways, 

either the sum of s over all pixels in the map or as the integral of a continuous 

Gaussian with the same width a- . These two can differ if s is not centered on one 

of the observational pixels. We choose the latter because it corresponds to the total 

flux emitted from the source rather than the total flux observed. 
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2.3 Point Source Distribution 

In the earlier stages of the study, where the accuracy of the formalism is the primary 

focus, point sources with arbitrary fluxes and spatial location are used. In the later 

stages of the study, where accuracy on realistic data is of increased interest, we 

intend to use the simulated point source flux distribution from Bethermin to draw 

quantitative conclusions on systematic errors (Bethermin et al., 2011; Bethermin, 

2014). 
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Chapter 3 

MATHEMATICS 

3.1 Conventions 

Below we discuss some of the conventions used in this work. 

Fourier Transforms 

We begin with continuous Fourier transforms. g(x), g(k) for x, k E JR.2 are related 

by the forward and reverse transforms 

_(_,) JJdz_, (_,) -jk-x gv = xgxe 

g(x) =ff d2v g(v)ejk-x, 

(3.1) 

(3.2) 

where j = ~, k = 2nv and the integration is performed over the entirety of 

JR 2 unless otherwise noted. This sign convention is used so the correspondence 
d 
dt f--7 jw holds. This 2n convention is used such that the units of g( v) are just units 

of l/Hz times those of g(x). A symmetric (2n)- 112 convention unduly obfuscates 

the units. 

Convolution is then defined under this sign convention as 

[g(v)h(v)] Z.:: [g * h] (x) =ff d2
.X1 g(x1)h(x - xi). (3.3) 

Discretization 

To work with the discrete, pixelated maps, we must work with the discrete forms of 

the above formulae. Define x 1, x2 to be pixel indicies that range over [- ~, ~ - 1] 
L 

and define !1L = N the pixel width of the map for L the width of the map in 

arcminutes. We identify the below correspondences 

.!f-1 .!f-1 
ff dz.x -7 I I (!).L)2 

X1=-1t Xz=-lf 

.!f-1 
- I (/1L)2 (3.4) 

x1,x2=-lf 

- _, fmn 2 -
f(v) -7 (!1v) 2 = L f mn, (3.5) 
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where the shorthand (3.4) is defined to save space. Moreover, it is necessary to 
1 

insert the (t..v) 2 = L
2 

bin width in converting between the discrete and continuous 

J to ensure the units are correct. In the interest of clarity we will adopt a convention 

whereby all m, n incidies in v space and r, s indicies in x. 
The transform pair becomes 

~-1 

g- l "' grse-Jkmn·Xrs 
mn = N2 U 

r,s=-~ 

~ -] ~ 
grs = I f1mneikmn·Xrs 

m,n=-~ 

and circular convolution 1 

~-1 

[g * hJrs = ~2 I gr,s,h(r-r1)(s-s1)· 

r1 ,s 1=-~ 

3.2 Signal Processing Formalism 

(3.6) 

(3.7) 

(3.8) 

Below we establish the signal processing mathematics used to construct the source 

subtraction procedure. 

Power Spectral Density 

The physical noise n(x) in a single frequency band as discussed in Section 2.2 is 

characterized by its PSD. The noise cannot be taken as simply Gaussian in each 

pixel with some fixed variance (n(x)2
) (assuming zero mean) as such a description 

does not contain the correlation of v(x) with itself in space. Physically, such 

correlations are meaningful: the propagation of a signal in space would encode 

information about v(xo) in v ( xo + {) . These correlations are i.nstead described 

with the autocorrelation function 

R(f) = (v(x1)v (x1 +{)) (3.9) 

= ~2 ff d2
x v(x)v (x + {). 

We then define the noise PSD J ( v) the Fourier transform of the autocorrelation func­

tion (where v the spatial wavenumber is not to be confused with v the observational 

li.e . we take the signal to be periodically repeating in both directions, or equivalently any 
indicies exceeding the length of the signal are taken modulo the signal length. 



frequency band), given by 

J (v) =ff d2x R (x) e-Jk-x 

R(x) =ff d2vJ (v) eJk-x_ 
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(3.10) 

(3.11) 

(lnCv)i2) 
Recalling that J(v) = L

2 
where ii(v) is the Fourier transform of n(x), we can 

generate a single noise realisation n(x) with PSD J(V) by choosing a value of ii(v) 

from a normal distribution with width L~ J ( v). In order to guarantee though that 

n(i) is real (since v(x) the observed signal is real), we require ii(v) = ii* (-v). 

Model Parameter Estimation 

Recall from Section 2.2 that the data are modelled as v(x) = n(x) +I Ais(xl,li). 
i 

In order to define a goodness-of-fit x2 for some model mv(xl,-1) parameterized by 

some ,l to the data, we propose 

2 = '\' JJ d2vli\(v) - mv(vl,-1)1
2 

x L.J lv(v) 
v 

(3.12) 

= I I lvvCv) - mvCvl,-1)1
2 

v v lv(v) 
(3.13) 

We will generally use the integral notation because it is cleaner without numerical 

factors; the conversion between the two has already been laid out earlier in this 

section. We note that if mvCil,t) =I Ais(xl;lJ exactly then 
i 

and since d2v L 2 = 1 we find that x2 is just the total number of frequency compo­

nents. 

Given this x2
, the choice of parameters A for some model mv is a x2-minimization 

process. For a given Ak. the best-fit value lk satisfies 

~~loJ, = Q. (3.J4) 

This condition can be used to compute the best-fit estimators of various Ak in the 

ensuing models considered. 
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Estimation Uncertainty 

The above expression gives the best-fit estimators for a parameter Ak. but the un­

certainties on these estimators can also be determined by the curvature of the x2 

matrix about its minimum. We use the general statistical result L1x2 = 1 along 

one dimension and L1x2 ~ 2.3 along two dimensions correspond to lcr deviations. 

Then, the x 2 surface can be expanded quadratically about its minimum as 

2 __, 2 ->y 1 __, 
X ( ,t) - X min ~ ,t 2 . H . ,t 

a2x2 
H·= ---

11 - o,iu3,iJ 

(3.15) 

( 
1 )-l 

where H is the Hessian matrix. We can identify C = 2 H to be the covariance 

matrix, which quantifies the uncertainty on the parameterization of X~in· The 

covariance matrix also enters in the multivariate probability distribution of the 

estimators 

This is an accurate characterization so long as the x2 surface is well-approximated as 

a quadratic at its minimum, producing a normal multivariate probability distribution. 

For instance, for any Ak that does not covary with any other parameters, we can 

marginalize over the other ,1 to recover the well-known result 

(3.16) 

where we must evaluate Ak at its optimal estimator ,lk to be at X~in. 

There exist parameters that do not obey such a description, those exhibiting non­

quadratic behavior in all neighborhoods of X~in ' and these need to be handled on a 

case-by-case basis. 

3.3 Simulation 

The objective of the study is to verify that the source subtraction performs at 

the theoretical limit predicted by the covariance matrix elements. To this end, 

we perform simulations in which we generate many noise realizations nv(.x). In 

each noise realization, we insert sources with known parameters Ak and apply the 
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procedure to estimate Ak for each parameter. The deviations of the Ak from the 

inserted ,lk can then be plotted as a histogram. The distribution of Ak is expected 

to be Gaussian with width CT Ak since the negative exponential of the x2 can be 

associated with a likelihood function. 

We examine various parameters ,tin different models and show that the distributions 

of their optimal estimators either agree with the prediction from the covariance 

matrix or deviate in well-understood ways. 
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Chapter 4 

SOURCE SUBTRACTION: FORMALISM AND SIMULATION 

In this chapter we lay out the procedure for point source subtraction and establish 

its agreement with analytical predictions derived from signal processing theory. 

4.1 Single Frequency Band 

We first exarning source subtraction in a single frequency band. Only the accuracy 

of the formalism is of interest here, and so we place sources with unrealistic signal­

to-noise ratios (SNR) to improve the approximation of the x 2 surface as quadratic. 

Single Centered Source 

Consider if the spatial location of the source is known (e.g. centered on the (0, 0) 

pixel) and we wish simply to find the flux of the source in the map. Then s(x) can 

be chosen to be exactly the source profile including spatial offset and the data model 

becomes 

v(x) = As(x) + n(x) (4.1) 

lx-xo l2 
with s(X) cc e - 2u 2 the normalized, dimensionless beam signal fixed at some .X0 , A 

the desired flux we wish to recover and n(x) some noise realization. s(X) depends 

on no other parameters since it is a Gaussian with known width er and offset .Xo. 

The x2 becomes then 

2(A) =ff d2v lv(v) - As(v)l2 
x J(v) 

(4.2) 

The optimality condition for estimator A is _K__ = 0 and d 21 
dA A=A 

0 
=ff 2_, 2A. ls(v)l2 - s* (v)v(V) - s(V)v* (v) 

d v _, . 
J(v) 

We then recall that s(x), v(x) are real, so s*(v) = s(-v), v* (v) = v(-v) . Since 

we are integrating over all d2 v, the two terms s* (v)v(v) + s(v)v* (v) make equal 

contributions (there is a correspondence for each contribution from the former term 
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at v and the latter term at -V), so we can just consider twice one of these terms, and 

we obtain 

ff d2 __, S*(ii)ii(ii) 
A v J(v) 
A=------

ff d2_, isCiillz 
v J(ii) 

(4.3) 

The uncertainty (.J A in this estimator can be computed using the covariance-less 

result in (3.16) to obtain 

[
!d2x2 1 ]-

1 

2 dA2 
A A=A 

[II ct'v 1 ;~tr (4.4) 

The predictions of this estimator and uncertainty can be examined by generating 

many noise realizations and adding a source of fixed flux A in the same location 

in every map. Within each map, we compute using (4.3) the best-fit estimator A 
and aggregate these estimators into a histogram that is expected to have width given 

by (4.4). The comparison of a histogram containing estimators from 10000 noise 

realizations to this analytic prediction can be found in Figure 4.1. Note the close 

agreement between the width of the Gaussian fit and the predicted width. The shape 

of the distribution is also very clearly Gaussian. 

Amplitude Estimators 
1000.0 mean= 1.0 

rms = 1.3712E-02:...---
100.0 theory = 1.39 - 2 

10.0 

1.0 

0.1 ~~~~~~~~~~~~~~~~~~ 

0.94 0.96 0.98 1.00 1.02 1.04 1.06 

Amplitude Estimators (units) 

Figure 4.1: Histogram of flux estimators over 10000 noise realisations with a single source 
of unit flux inserted. mean/rms values from Gaussian fit and theory from ( 4.4 ). 
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Single off-center source 

Consider now if we have a source profile with an unknown position offset .X0 = 
(xo, Yo) such that s(ilio) = s(x - io); while we restrict x to be on the pixelated 

grid, io is allowed to take on any continuous value. It is a well-known result that 

in the continuous Fourier transform 'FT[f(x - io)] = f (v)e-Jk-xo if j(v) is the 

Fourier transform of f(x). Sampling both sides of this result at discrete intervals 

demonstrates that the property holds for the discrete Fourier transform as well. The 

x2 then becomes 

(4.5) 

We can then repeat the above exercises to compute the optimality conditions on 

A, xo, Yo and their associated uncertainties. First, the optimal flux estimator A 
changes little 

JJ d2 .., Jk.x0 s*(V)v(V) 
A v e J (v) 

A =--------

JJ d2 .., is(v) l2 
v J (v) 

2 =[ff d2vls(v)l
2
]-

1 

CF A J(v) 

(4.6) 

(4.7) 

The optimal position estimators for xo, Yo follow the same expressions, so we will 

only compute the optimality condition for xo below 

ox2
1 _ _ a ff 2 .., v(v)AeJ k-xo s* (v) + v* (v)Ae-Jk-xo s(V)I - - 0 - -- d v -------------

oxo , 8xo J(v) x - x' xo=xo o- o 

(4.8) 

a ff 2-- v(v)AeJk-xo s* (v) I = -2- d v . 
oxo J(v) xo=io 

While there is no analytic form for .Xo, the integral is a convolution of the map v (x) 

and the optimal.filter ¢(x) with Fourier transform 

- ( ..,) _ s(v) 
¢ v - J(v). 

The optimality condition for .Xo can be cast in terms of this optimal filter as 

[) [ ... ... ] ... I 0 = -2 ox v(x) * ¢(x) (xo) , . 
0 xo=xo 

(4.9) 

(4.10) 
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.Xo is then the the maximum of the convolution of the map with the optimal filter. 

However, recall that x0 is a continuous parameter, while the convolved map is 

necessarily pixelated. This can be compensated by recalling that the convolution of 

a Gaussian with a Gaussian remains a Gaussian. Thus, the peak of the convolved 

map is approximately a Gaussian, completely Gaussian in the white noise limit 

where the optimal filter is a constant multiple of the source profile, and we can 

obtain the position of the maximum in the convolved map to sub-pixel accuracy by 

fitting the peak of the convolved map to a Gaussian. 

The theoretical limit on the accuracy of x0 can be determined first by noting that 
a2x2 

there is no covariance between A, xo (i.e. = 0) and no average covariance 
oAoxo 

between xo, yo , both of which can be verified by taking the partial derivatives. Thus, 

the uncertainty on .Xo is given as 

It is then a common prescription to replace v* ( v) with its expectation (v* ( v)) = 
Aej k-xo s* ( v) ~ Aej k-xo s* ( v). The motivation for this is that the convolution of the 

optimal filter with the noise is dominated by the convolution of the source with the 

optimal filter which is just a high-pass filter on the known source profile. Moreover, 

the uncertainty on an estimator should be noise realisation-independent and only 

depend on the noise properties. This substitution yields 

(4.11) 

It is more sensible to compare the width of the distribution of .Xo to the er xo predicted 

using A instead of A, since in testing the A will change from realisation to realisa­

tion while A is both constant and known. The predictions of both above analytic 

predictions with histogram widths is provided in Figure 4.2 
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(a) Histogram of flux estimator deviations (A - A) 
over 10000 white noise realizations with a sin­
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( c) Histogram of position estimator deviations over 
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Gaussian fit and theory from (4.11) . Only .Xo 
included since x2 is symmetric in XQ, YO depen­
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realizations with a single source of 0.2mJy flux in­
serted at SNRl 0. mean/rms from Gaussian fit and 
theory from (4.7). 
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Figure 4.2: Position and flux estimator deviations over multiple trials and different PSDs 
using offset filtering. 

Multiple Sources 

The next step is to generalize the subtraction to multiple sources in a single map. 

The naive approach is to simply continually subtract out the brightest source in the 

map. However, this produces suboptimal flux estimation due to overlap between 

sources. Instead, we write down the x2 for M sources 

(4.12) 

with ith source centered at 10 i. Assume that the pixel locations of all have already 

been determined. Minimizing with respect to the A yields M coupled equations 
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indexed over i 

Jx·k-* .... - .... Ai lsi(v)l2 + ~ e-J(xk-x;)·kAk is(v)l2 
J J d2v e , f(~)v(v) = J J d2v k*i J(v) 

= A-JJd2 .... lsi(v)l2 ~A JJd2 .... -J<xk-x;) ·r ls(v)l2 
l v J(v) +L.. k ve J(v) 

k*l 

=I Ak J J d2v e-J(xk-x;)·k lj~~t 
k=l 

(4.13) 

for the A, and since the equations are all linear in Ai we can write down the 

optimality condition for these Ai as a matrix equation 

MA=S 

M· = JJd2 .... J(x;-xk)·r ls(v)l
2 

lk ve J(v) 

S· = JJ d2 .... Jx;·k s*(v)v(v) 
l ve J(v) 

that can be solved to simultaneously compute all flux estimators in a map. 

(4.14) 

The naive iterative algorithm described above is still used for position estimators, 

down to some detection limit, then the matrix solution applied to find the source 

fluxes at each of these position estimators. The detection limit can generally be set to 

be at~ 3-5 SNR, and so we use a much higher SNR in the subtraction to guarantee 

all sources are identified. The resulting histogram is presented in Figure 4.3. 

Amplitude estimators 
1000.0 

mean = 0.99859 
rms = 0.0146 
theory= 0.0139 
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0.1 

0.90 0.95 1.00 1.05 1.10 
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Figure 4.3: Flux Estima~ors with 20 sources in each of 1000 maps, each of unit flux 1, 
subtracted iteratively. White noise at unrealistic SNR. 

The histogram in Figure 4.3 can be noted to have some systematic skew leftwards. 

This can be explained by the phenomenon of blended sources, whereby sources 
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that are too spatially close cannot be distinguished by an iterative subtraction, c.f. 

Figure 4.4. Blended sources are inevitable in data, but the error committed by mis­

identifying a blended source will generally fall under the confusion limit. A careful 

study of techniques used to study blended sources can be found in Appendix A. 

Figure 4.4: Example of blended sources. Cross section of fluxes of two point sources of 
unit flux (red) and their cumulative profile (black) with arbitrary units across the horizontal 
axis . Note that the lower plot is easily mistaken for a single source than two separate. 

4.2 Multiple Frequency Band 

We are now able to identify spatial location and flux of multiple point sources 

within a single frequency band. We next apply the formalism to sources in multiple 

frequency bands. 

As discussed in the introduction, Section 2.1, we model our data to be collected in 

multiple spectral frequencies in overlapping spatial domain. Since any astronomical 

sources will have emissions in all spectral frequencies in the same spatial location, 

utilizing all maps to simultaneously identify sources results in more robust detection. 

For instance, detections of modest significance in individual frequencies may be 

highly significant if they come from the same spatial location. 

In order to correlate information across multiple frequency bands, it is necessary to 
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assume some functional form for the SED. We use the greybody SED in the optically 

thin limit given in the introduction (1.5) 

( 
v )/3 2hv3 1 ( l'... )

3
+/3 

S(vjj3,T) = - _ 2 ___ h_v __ = A-:o-v __ 

vo c eksT _ 1 eksT _ 1 
(4.15) 

where we absorb some numerical factors into A. Recall that typical ranges of 

Tdust = (1 + z)T range between 20-60K with z E [2.2, 2.7]. 

Moreover, as also discussed in Section 2.1, the point spread function of the instru­

ment is assumed to be simply diffraction limited in different frequency bands, so the 

source profile sv(x) has different widths for different v. Each sv(x) is assumed to 

be normalized to unit integral. Then the x2 for a single source can be written 

3+fi 2 

- (__,) -A(;t) -Jk-xo- (__,) 
Vv V hv e Sv V 

ekiif -I 

x2
(A,1o,J3,T) = "ffd2v---------u lv(v) 

v 

(4.16) 

which can be verified to be normalized to the total number of frequency components 

across all spectral frequencies. 

We will first consider various simplified schemes to verify the generalisation of our 

formalism to multiple frequency bands. 

Fixed SED 

Consider the simplification where in (1.5) both j3, T of the source are known and 

held fixed. Then the x2 function in ( 4.29) becomes only a function of A, 10 again, 

as the grey body dependence can be absorbed as a normalization on the s v (1) (not 

on A which is frequency-independent). Define 

( l'... )3+/3 

sv(.x) = ~0 sv(x), 
IV 

( 4.17) 
eksT - 1 

then we obtain for a single source 

(4.18) 

The optimality condition for A follows from differentiation 

"ff d2v eJx,·ks~(~vv(v) =A "ff d2v j sv(v~l2 
U lv(v) U lv(v) 

v v 

(4.19) 
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rPx2 
To compute the uncertainty on this estimator, we once again identify that = 

oAoxo 
a2 x2 

0 0 
= 0, so the uncertainties are given simply by the second derivatives of the 

Yo xo 
x2 with respect to A. This yields 

(4 .20) 

Both formulae can be observed to closely parallel their single-band counterparts. 

Offset Position Estimation 

The position estmator .Xo satisfies similar optimality criterion to the single frequency 

case as well: 

a x2
1 = 0 = I {_2_j_ JJ d2 V' ilv(v)Aei:·

1
os*(v) I } 

oxo xo=xo v oxo J(v) xo=xo 

- __, sv(v) 
¢v(v) = lv(v) (4.21) 

~~
2

1 A = 0 =a~ {I [vv(i) * ¢v(i)] (io)I A} (4.22) 
0 xo=xo 0 v xo=xo 

where we analogously define a multi-band optimal filter ¢v(i). With no off-diagonal 

terms in the covariance matrix, this has minimum uncertainty 

(4.23) 

which relates the position estimator uncertainty in each individual band a-;
0
,v to the 

overall position estimator uncertainty a-xo . 

Recall that in the single-band case, we were able to compute x0 to sub-pixel res­

olution by fitting the convolution v(i) * ¢(i) to a Gaussian near the peak. In the 

present case, x0 is the argmax of the sum of the convolutions of the vv(i) * ¢v(x__,) in 

each frequency band v. However, each convolution is peaked at a different position, 

the x0 in that band, and the sum of these six Gaussians is no longer Gaussian about 

its peak. Thus we cannot use a Gaussian fit to extrapolate .Xo to subpixel resolution. 
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Instead, an estimator with optimal uncertainty can be computed as a weighted 

average of the optimal estimators in each individual frequency band. 

1 A ~ 1 A 

- 2 XQ =: ~ -
2
-xo,v 

0-XQ v 0-XQ, V 

We demonstrate this has the correct variance 

Var (xo) = Var(a-; 0 (I +xo,v)) 
v 0-xo,v 

= a-;0 (I Var(+xo,v)) 
V 0-XQ,V 

2 = 0-xo 

(4.24) 

(4.25) 

The distribution of the estimators over many noise realisations can be observed in 

Figure 4.5 to agree well with the analytic prediction. 
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(a) Hi stogram of flux estimator deviations. mean/rms from Gaussian fit and theory from 
(4.20). 

X Position Estimator Deviations 
1000.0 mean = -0.014 

rms = 4.4493E-01~__,..._.., 

100.0 theory= 3.71 -01 

10.0 

1.0 

-2 -1 0 2 

Position Deviation (Pixels) 

(b) Histogram of position estimator deviations. mean/rms from Gaussian fit and theory 
from (4.23). 
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Figure 4.5: Histograms of multi-band flux and position estimators with noise parameters 
described in Section 2.1 and a single source of l.81mJy flux in 750µm band inserted 
corresponding to SNR 20 over 10000 trials. 

This procedure is liable to fail when the SNR is sufficiently low that the optimal 

position estimator in certain bands identifies a statistical fluctuation rather than the 

source, as the weighted average will then include estimations made from non-source 

fluxes . One way to decrease the probability of this occuring is to seek the maximum­

flux estimators in each band within a small pixel range of the maximum pixel in the 

convolved map (e.g. 3o-v the beam width in each frequency band). Considering 

fewer pixels decreases the probability of finding a signal-like statistical fluctuation 

but does not identify when a failure occurs. 
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To identify the occurrence of such a failure, we associate a x2 statistic with the 

position estimators in each band. Any bands with position estimators inconsistent 

with the hypothesis that the same source is fitted in each map can then be ignored 

from the weighted average in finding the position estimator. All frequency bands can 

still be used to compute the flux of the source, however. We require both procedures 

described here for best performance as discarding frequency bands from position 

estimation degrades .Xo in a noise realisation-dependent way, so first restricting fitting 

to be within a small range of the convolved maximum assures that this happens as 

infrequently as possible. 

Multiple Sources 

The extension to multiple sources follows a similar procedure to the single-band 

procedure. The x2 becomes 

(4.26) 

where we account for the possibility that each source has a different (but known) 

SED by allowing s v,i to differ between sources. Then we can apply the same 

procedure as in the single band case, iteratively subtracting the brightest source 

for source positions 'down to some detection threshold and then writing down M 

coupled equations for M source fluxes 

I {J J dzv eJx; · k5~,i(~i\ (v)} = I{£ Ak J J dzv e-2nJ Cxk -x;) · v sv,i(v)s~k(v)} 
v l v(v) v k= l lv(v) 

(4.27) 

which can be solved using the same MA = S prescription as for the single band 

(4.14). This subtraction is demonstrably still optimal as predicted by (4.20) and 

(4.23) as can be seen in Figure 4.6. 
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Figure 4.6: Estimator histograms for 1000 noise realisations with 8 randomly inserted 
sources with flux 0.6mJy in 750µm in each. Unrealistic SNR ~~ 200 in leading band used 
to avoid cutoff by detection threshold. 
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4.3 Rayleigh-Jeans SED 

We next examine the case where the SED satsifies the Rayleigh-Jeans approximation 

ksT » hv. Note that a frequency of v = 400GHz corresponds to a temperature of 

T = 19.2K. 

The greybody SED from (1.5) becomes instead 

2h ( v )
3+/3 1 

S(vl,B) = v~ - h-v --

C ekBT - 1 

~ 2h (fa) 3+/3 ksT = A (2'._)2+/3 
c2 hv vo 

(4.28) 

where we absorb some numerical factors into A the normalization. Then the x2 for 

a single source becomes 

(4.29) 

The optimality conditions for xo, A are the same as before if we simply carry the 

S(vl,8) factor with the source profile .S\(v). The optimality condition on estimator 

j3 on the other hand is 

It is impossible to solve analytically for estimator j3 to obtain a closed form as we 

did for A nor to cast the condition in illuminating form as we did for .Xo. Instead, 

we must use gradient descent to numerically seek the x 2 minimum at which (4.30) 

is satisfied. We use the built in Truncated-Newton minimizer tnmin in IDL1 to 

perform the minimization. At each step of the gradient descent, we re-compute the 
ax2 

optimal .Xo, A at the current value of ,B. We use 
0 

,B to compute each time step 

however, which assumes fixed .Xo, A; this empirically has little effect on convergence. 

In order to examine the uncertainties of all these estimators, we must look at the full 

Hessian, which is no longer diagonal like previous applications of the formalism. 

1 Data Analysis done using IDL 8.1 (Exelis Visual Information Solutions, Boulder, Colorado). 
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Since x2 is symmetric with respect to xo, Yo parameters, we need only compute 6 

second partial derivatives, reproduced below 

a2x2 
---=0 
8xo a /3 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

where we go ahead and substitute the expectation values for all noise-dependent 

terms. The observation is that there is a covariance, equivalently a degeneracy, 

between the /3, A parameters in the x2 surface. With covariances the uncertainties 

on the /l. A estimators are no longer given by [ ~ ~ ;,' r , [ ~ ~ :,' r res pecti vel y. 

In order to characterize degenerate parameters, we must consider multivariate his­

tograms to capture any covariances. If the multivariate distribution over many noise 

realisations conforms to the prediction made by the formalism then we can be as­

sured our subtraction is optimal. Since the computed Hessian derivatives assume all 

parameters but two are held fixed (rather than being allowed to seek their optimal val­

ues freely), the proper method to generate each two-dimensional histogram is to fix 

all estimators but two. We generate one histogram for each of the two-dimensional 

subspaces of the Hessian computed above, in Figure 4.7. 
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Figure 4.7: Bivariate histograms of estimator deviations Ak - ,lk in Rayleigh-Jeans fitting 
with other variables held fixed. Over 20000 noise realizations. Both histograms and 
Gaussian fits are colored corresponding to regions of 1, 2, 3cr deviations labelled with darker 
colors corresponding to smaller deviations. Unrealistic SNR ~ 100 used. No covariances 
for /3, .Xo and /3, A reported since they are consistent with zero. 
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To compare the bivariate Gaussian histogram fits to the formalism, it is most illumi­

nating to assign uncertainties to the fit parameters. Uncertainties for the histograms 

can be computed via Monte Carlo simulation by fluctuating each bin with N counts 

by Gaussian with standard deviation VN (the usual Poissonian assumption and 

Gaussian approximation) and refitting. Such a bootstrapping technique estimates 

the uncertainty on the fit parameters, and we can see that the fits are nicely Gaussian 

as in Figure 4.8. 
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Figure 4.8: Histograms of bootstrapped bivariate Gaussian fit parameters in order 8, 0-1, 0-2 

where a-1, a-2 refer to the widths along the principal axes of the respective histograms in 
Figure 4.7 and e the orientation. 

On the other hand, the analytical parameters can also be assigned an uncertainty 

by generating x2 surfaces for many noise realisations and performing a quadratic 

fit to the minimum of the surface. It should be noted that over the fitted interval, 

the fitted function generally differed from the computed, slightly non-quadratic x2 

surface by ;;::; 5%, so a similar systematic uncertainty must be associated with these 

fit parameters. The comparison of the covariance matrix terms computed via the 

analytical estimate, the multiple x2 fits and the bootstrapped histogram fits can is 

found in Table 4.1. 



Parameters 
/3, A (histogram) 

/3, A (analytic) 

/3, A. Cx2
) 

A, .Xo (histogram) 
A, .Xo (analytic) 

~ 2 
A, .Xo Cx ) 

/3, .Xo (histogram) 
/3, x0 (analytic) 

~ 2 
f3, .Xo Cx ) 

Covar(/3, A) (histogram) 
Covar(/3, A) (analytic) 

Covar(/J, A) (x2
) 

CTJ 

(12.10 ± 0.10) x 10-4 

(11.879) x 10-4 

(11.82 ± 0.11) x 10-4 

(4 .111±0.036) x 10-4 

(4.137) x 10-4 

(4.146 ± 6 x 10-5) x 10-4 

(8.171 ± 0.075) x 10-4 

(8.074) x 10-4 

(8.043 ± 0.046) x 10-4 

(5.5 ± 0.1) x 10-/ 
(5.31±0.002)x10-7 

5.28 ± 0.002 x 10-7 
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cr2 

(6.128 ± 0.049) x 10-4 

(6.0875) x 10-4 

(6.087 ± 0.046) x 10-4 

(3 .772 ± 0.034) x 10-j 
(3.691) x 10-3 

(3.698 ± 0.023) x 10-3 

(3.711±0.034) x 10-j 
(3.691) x 10-3 

(3.696 ± 0.023) x 10-3 

Table 4.1: Covariance matrix entries using bootstrapped histogram, analytic and multiple 
x2 fits. cr1, cr2 refer to the uncertainties of the first, second parameters in the left-most 
column respectively. Units on A are mJy, on .Xo pixels and on /3 unitless. Unrealistic noise 
parameters, SNR 100 in leading band. 

Note that including the uncertainty on the covariances establishes that the three 

estimates generally agree, particularly accounting for the x2 systematic misfitting, 

and thus we can be assured that the procedure satisfactorily attains the theoretical 

accuracy bound predicted by the formalism. 

4.4 Greybody SED 

At the beginning of Section 4.3, we found that for T » 19K we can make the 

Rayleigh-Jeans approximation. In reality, the normal range of dust temperatures in 

DSFGs is in the range 20- 60K, implying that the redshifted T for many sources lies 

outside the Rayleigh-Jeans limit (Casey, 2012). We thus return to the full greybody 

SED (1.5) reproduced below 

and x2 also below 

( 
v ) 3+ /3 

S(vlf3, T) = -:~--
eksT - 1 

( )

3+/3 2 

- (~_A ~ -/Lio- (__,) 
Vv VJ hv e Sv V 

eksT -I 

x2 (A,.X0,f3,T) = ~ffd2v---------
Li lv(v) 

v 

(4.35) 

(4.36) 



33 
hv 

However, this parameterization runs into difficulties. In particular, since eksT ~ 1, 

changes in T still produce somewhat linear changes in flux, making T heavily 

degenerate with A the flux parameter, confounding the gradient descent. An example 

of the observed degeneracies can be seen in the cross section along the A - T plane 

of the x 2 surface about its minimum in Figure 4.9. 
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Minimizing params: 0.072280720, 150.00000 
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Amp 

0.15 

Minimizing params: 2.5239401 , 10.563413 

0.20 

Figure 4.9: Inserted source with A = 1.74, T = 17 for two realisations of noise. The 
drastically different A, T suggest terrible degeneracies that are consistent with the shape of 
the x2 surface observed. 

To better constrain the problem, we instead define 

S(vlf3,T) ~ S(vlf3,T) 
S(vpivlf3, T) 

(4.37) 



34 

where we normalize the SED by some pivot frequency Vpiv that is held constant 

throughout the minimization. Then A takes on the interpretation of relative flux to 

the flux in frequency band Vpfv, and the x 2 formula becomes 

3+ /3 hvpiv - 2 
- ( .... )_A (-v-) e kfiT -1 -Jk·xo- (__,) Vv V . hv e S v V 

Vpiv kT I 

x2(A, .Xo, /3, T) = ~ff d2v e B -

u JvCv) 
(4.38) 

v 

The optimality conditions on A, io can once again be written down; we will not do so 

here since it follows the exact same procedure as before. The optimality conditions 

on /3, T once again require gradient descent search via tnmin. Since the conditions 

areabituglytowritedown,defineS(vlvpiv,.Xo,/3,T) = (~) 3+/3 e'.f:- l e-Jk.xo, 
Vpiv eksT - 1 

then the conditions become 

ox
2

1 o = a f3 /3=P 

~ JJ 2 .... 2 [AS(v)s~(v) - vi(v)] [AS(v)sv(v)] ( v) 
= u d v .... In -

lv(v) vo v 

(4.39) 

0--ox
2

1 

- oT T=t 

2 [AS(v)s~(v) - vi(v)] 
( 

hv )( ~) ( ~ )( hv ) A(,;,, r· ,,,,, -l -'i;if' •(sT_h~v- e )k2sT -1 -~ekBT Sv(v) 

eksT -1 

= IJJ d2v---------lv(-v) ________ _ 
v 

(4.40) 

It should be noted that the (A, io, .Yo. /J, T) that tnmin finds is independent of Vpiv; 

for every set of parameters (A, xo, yo, f3, T) found at one Vpfv, a corresponding set 

( 

S(vlv'. , /3, T) ) 
A ( I piv , xo, yo, f3, T exists at a different pivot v~iv yielding the same x 2 

S V Vpjv, /3, T) 

value. In fact, the x2 surfaces are exactly identical between choices of Vpiv up to a 

scaling factor on A, 

The x2 surface even with the pivot frequency scaling exhibits intractable non­

quadratic degeneracies in f3, T. For instance, at SNR 20, the shape of the x2 surface 

looks like Figure 4.10. Recalling that the association of the covariance matrix with 

estimator uncertainties assumes a quadratic x 2 surface, this non-quadratic surface 
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defies characterization using the developed formalism, and it is futile to compute 

the Hessian. 

Inserted params: 1.5000000, 15, Minimizing params: 1.6223778, 12.392511 
25 

20 

15 

10 

5 

0
o.5 1.0 1.5 

Beta 
2.0 2.5 

Figure 4.10: x2 surface for /3 = 1.5, T = 15K. Source inserted at SNR 20 in leading band 
with noise parameters from Section 2.1. Contours plotted are llx2 = 0.1, 0.5, 1.0, 2.3 the 
last corresponding to a 1 a- deviation. 

Per-band flux estimation 

With little constraining power in the /3-T plane of parameter space, we instead wish 

to quantify how well we can constrain the SED shape over the degenerate parameter 

space. To first get some idea of how the degeneracy degrades the SED fit, we 
1 a2 x2 

can compute a the covariance matrix element a-~ = ---
2
-, which describes the 

2 oA 
uncertainty on A with fixed f3, T. The results of this computation are reported in 

Table 4.2 and are in good agreement with simulation. 
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Band Pivot-based Single-band 
750µm 0.0531 0.0905 
850µm 0.0421 0.0685 
1.lµm 0.0250 0.0560 
1.3µm 0.0174 0.0473 
2mm 0.0064 0.0250 
3mm 0.0019 0.0120 

Table 4.2: Comparison of flux uncertainties in leading 750µm band with fixed f3, T be­
tween single-band estimators and multi-band estimation, where multi-band has /J, T fixed at 
inserted values f3 = 1.7, T = 13K. Units of mJy. 

Of subsequent interest is the degrading of estimation once [3, T are freed to their best 

fit values . Since [3, T do not covary in Gaussian fashion, analytical prediction of the 

ensuing uncertainties in A are impossible and can only be obtained via simulation. 

Simulation results are ongoing. 
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Chapter 5 

FUTURE WORK 

5.1 Greybody Subtraction Systematics 

The current stage of progress on greybody subtraction has encountered non-Gaussian 

degeneracies that can only be studied via simulation. Current and future work focus 

on characterizing these systematics. For instance, in computing the uncertainty 

of the flux estimator in each band using multi-band subtraction with {3, T at their 

best-fit values (rather than fixed as studied at the end of Section 4.4), the computed 

uncertainties are observed to vary with SNR, and a sample of the behavior is given 

in Table 5 .1. 

Band Fixed {3-T SNR5 SNRlO SNR 100 
750µm 0.0531 0.0668 0.0698 0.0783 
850µm 0.0421 0.0414 0.0424 0.0380 
l.lµm 0.0250 0.0296 0.0327 0.0252 
1.3µm 0.0174 0.0244 0.0259 0.0167 
2mm 0.0064 0.0163 0.0090 0.0053 
3mm 0.0019 0.0088 0.0049 0.0026 

Table 5.1: Uncertainty on flux estimators in each band for fixed /3-T analtical estimate 
and histogram widths for various SNRS over 10000 realisations while freeing /3, T. SNR 
defined in leading frequency band 750µm. 

Progress on sampling this dependence over many more values of SNR is under way, 

and the dependency can hopefully be cast at least qualitatively into illuminating 

terms. Of particular interest is the improvement in subtraction quality in the 2mm 

band, the peak emission frequency of the kSZ signal, and characterizing the error in­

troduced in the 2mm band is pivotal to understanding source subtraction systematics 

in kSZ astronomy. 

We are also in the process of examining any biases that appear when subtracting a 

source SED with a mis-fitted SED. For instance, if the source parameters are chosen 

from arbitrary Gaussian distributions f3 = 1.7 ± 0.3, T = 25 ± 7K (using arbitrary 

source distributions are still preferable to using the Bethermin Catalog which does 

not have known inserted distribution parameters for comparison) and are subtracted 

with the following fitting techniques: 
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Single Subtraction only within the single frequency band, no information from 

other frequencies used. 

Fixed Subtraction with fixed SED f3 = 1.7, T = 25K. 

Emis Fixed Subtraction with fixed f3 = 1.7 but Tallowed to seek x2-minimizing 

value. 

Tdust Fixed Subtraction with fixed T = 25K but f3 allowed to seek x2-minimizing 

value. 

Free Both Subtraction with both [3, T allowed to seek x2 minimizing values. 

then the resulting histograms of flux estimators in the leading 750µm band and the 

2mrn band of interest are in Figure 5 .1. It is of interest that fixing T at some sensible 

temperature seems to both decrease the variance and not increase the bias of the flux 

estimators, but further investigations are ongoing. 
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Figure 5.1: Histograms of flux estimators using the five described fitting techniques for 
inserted sources with distribution of source parameters f3 = N (I. 7, 0.3), T = N(25, 7) where 
N is the normal distribution. 

5.2 Application to Realistic Source Distribution 

With the above results, we will have completed the characterization the behavior of 

the source subtraction algorithm in the absence of confusion noise, in the absence of 

other sources. The algorithm is believed then to perform optimally, at the accuracy 

limit of the formalism. The remaining work is to apply the algorithm to ensembles 

of point sources obtained from the updated Bethermin catalog (Bethermin, 2014). 

The subtraction in a map with an unknown number of sources will be performed 

until the variance of the convolved map doesn't change appreciably. Characterizing 

the SNR at which this happens, as well as the accuracy of the subtracted sources, 

must all be performed with the realistic source distribution provided by the catalog, 

and will finally provide a complete characterization of the source subtraction on a 

realistic catalog of point sources. 
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Appendix A 

BLENDS 

As discussed in Section 4.1, we occassionally can have overlapping sources that are 

mischaracterized as a single source as in Figure 4.4. The effect of this phenomenon 

were manifestly clear when comparing Figure 4.1 and Figure 4.3: while the flux of 

a source when there is only one source in the map is estimated correctly with the 

expected uncertainty, when there are many sources the probability of source overlap 

increases, biasing the estimators and producing a larger variance than predicted. 

Because the procedure estimates two adjacent sources as one very bright source and 

one very dim source, the sum being slightly less than the sum of the original two, 

(A) is biased low and er~ is larger than predicted. 

To fully account for blends, two distinct steps are required: first, the number of 

sources that make up a blend must be identified (if it is not a blend, it can be 

considered a blend of a single source), and second, the position and flux of these 

sources must be estimated. 

A.1 Iterative subtraction 

First we attack the latter problem, estimating the position and flux of blended 

sourcces assuming we know how many sources make up the blend. It turns out that 

an iterative procedure works well to estimate the position and flux of the individual 

sources. Call N the number of sources in the blend. We first subtract N sources, 

and then we add each estimated source back in before re-subtracting it. Repeating 

this for all N sources separately for many iterations, the estimators converge to the 

inserted fluxes and positions. In Figure A.1 we see that over many iterations the 

source fluxes converge to the correct value. Such an approach is generally termed 

iterative. 

To solve the former problem, identifying the number of sources that make up a 

blend, two methods were developed, one empirical and one theoretically rigorous, 

detailed below. 
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Figure A.1: Plot of flux estimators of two sources placed two FWHM apart as both position 
and flux estimators are iteratively improved. Note that while we initially grossly misestimate 
the sources, iterative estimation rapidly converges towards the correct values of two sources 
of flux 0 .5 arbitrary units. 

A.2 Mean-based Proof of Concept 

One method for identifying the number of sources in a blend was devised based on 

the mean of the subtracted map. Recall that the generated maps are assumed to have 

zero-mean noise and positive source beams, so a perfectly subtracted map should 

on average have zero mean as well. 

First, the above iterative technique is applied assuming the blend comprises some 

number N of sources. If the mean of the subtracted map is appreciably greater than 

zero, the iterative technique is reapplied assuming the blend comprises N + 1 sources. 

This procedure is repeated until the mean of the subtracted map is sufficiently close 

to zero; the criterion for this closeness is discussed below. 

The approach was motivated by the observation that the mean of the residual map 

would only be close to zero if the correct number of sources was subtracted, illus­

trated in Table A.1 
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Beams in map 1 source 2 source 3 source 4 source 
1 source 0.000197 8.94e-05 
2 source 0.0230 0.000371 0.000571 
3 source 0.0341 0.0149 -6.70e-05 0.000200 

Table A.1: Means of residual map as a function of number of sources present and number 
of sources subtracted, averaged over 200 trials each. While the number of trials is formally 
inconclusive, it is clear that the mean only falls close to zero when the correct number of 
sources is subtracted. 

However there are a few notable problems with this approach: 

• The mean of a map is generally not identified with anything physical, and data 

are generally reported with zero mean including the sources. This implies 

that the mean of a subtracted map with the correct number of sources will not 

be zero but some indeterminate negative quantity. 

• There is no ab initio prediction for the deviation of the mean of the subtracted 

map from zero. Without this, it is impossible to define the criterion for the 

number of sources required to describe a blend. 

• There is a more statistically rigorous way to formulate the necessity of adding 

an additional pulse, in the form of an F-test. 

However, it is evident that using the mean to distinguish blends does decrease 

subtraction bias, as can be seen in Figure A.2. Thus, while incorrect, the mean­

based subtraction demonstrates that seeking an appropriate method to distinguish 

blends is a worthwhile pursuit. 

A.3 F-test 

The statistically rigorous criterion for the number of sources required to describe 

a blend is based on the F-test. A form of the F-test can be applied to determine 

whether addition of more parameters to a fit is statistically justifiable, which in our 

case translates to determining whether an additional beam is required to describe a 

particular blend. 

Given two hypothesis Hi, H 2 with H 2 an extension of Hi with additional fit param­
(x2 - x2)/(v2 - v2) 

eters, the test statistic 1 2
2 2 

1 2 (with x 2 defined in the usual way) can 
X2fv2 

be shown to follow an F-distribution with degrees of freedom vi - v2, v2. Then if 
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(a) Histogram of flux estimators using mean as subtraction thresh­
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due to some maps containing sources in close proximity. Arbitrary 
values of no significance in magnitude used. 
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(b) Histogram of flux estimators using no subtraction threshold, 
with 1000 realisations of noise and 20 sources in each of unit flux. 
The histogram is noticably biased rightwards. 
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Figure A.2: Histogram of flux estimators between using and not using mean subtraction 
threshold. Note the less biased and more symmetric estimator histogram when using the 
mean subtraction threshold. 

the test statistic exceeds some critical value we know with high probability that H2 

is the preferred fit to the data over H 1. 

Given this F-test, the procedure is then the same as before, whkh is to fit each blend 

with an increasing number of beams until the F-test predicts that the addition of 

another beam produces insignificant changes in the x 2
. 

However the implementation of this procedure produced an unexpected result: the 

test statistic changes depending on the size of the map used even when all other 

characteristics are held constant. If a map much larger than the beam width is 

used to calculate the x2 for a single blend, the test statistic frequently asserts that 

a one-source map should be subtracted as a two-source map. Only by arbitrarily 

truncating the map, say, 3FWHM on either side of the target source, does the test 

statistic correctly identify the number of sources in a map. 
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The numerical results of these tests can be found in Table A.2. The F-test predicts that 

for all these configurations the critical value is somewhere in the range~ 2.64 ± 0.05 

(since all configurations have extremely large v2 degrees of freedom, their critical 

values are very similar). Note that as the size of the considered map changes, so 

too does the average value of x11 - x 12 , the x2 difference between subtracting a 

single-source map as a single beam or as a two-beam blend. This is inexplicable: 

in a single-source map, attempting to subtract a second source should not change 

x 2 much, as the second subtracted source cannot correspond to a real source and so 

should have very low flux regardless of the size of the map considered. 

Number of pixels XII (J" Xtt x12 (J" x 12 X11 - X12 (J" X I 1-X 12 

20 397.54 27.58 396.30 27.63 1.23 1.59 
32 1021.17 45.21 1017.90 45.22 3.27 2.49 
64 4089.20 92.25 4082.50 92.11 6.70 2.92 
128 16378.42 181.19 16368.92 181.04 9.51 2.94 
256 65526.80 365.46 65514.52 365.50 12.28 3.07 

X21 (J" x 21 x22 (J" x 22 X21 - X22 (J" x 21- x 22 

20 918.21 50.86 528.00 199.79 390.20 200.00 
32 1310.87 55.10 1019.09 45.23 291.78 34.01 
64 4409.64 99.87 4087.01 92.13 322.64 36.78 
128 16702.46 186.40 16376.18 181.02 326.28 36.04 
256 65851.73 366.16 65524.56 365.51 327.17 36.52 

Table A.2: Average x 2 values for various different configurations of map and subtraction 
parameters; notation is such that first subscript is number of inserted sources and second 
subcript is number of sources attempted to subtract (e.g. x21 is a map with 2 sources sources 
being subtracted as a single source). When there are two sources, they are placed 1.2 FWHM 
apart. Averaged over 10000 realisations for each configuration. Image dimensions are 
256 x 256. All uncertainties were computed by performing Gaussian fits to very Gaussian 
data, as expected as the x 2 distribution tends to a larger number of degrees of freedom. 

The test statistics indicate that only an appropriately sized subportion of the map can 

be considered when using the F-test to determine whether a second source exists. 

This is unacceptable as there is no obvious criterion for determining how large a 

sub-map to consider. 

In conclusion, it does not seem at the present that there is a viable criterion to 

identify how many sources comprise a blend, without which blends cannot be 

treated differently than single sources. Were such a criterion to be identified, 

Figure A.2 suggests that the biases observed on the A estimators could be remedied. 

Ultimately however, a technique for treating blends may not be necessary, as with a 
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realistic source distribution the residual of a mis-subtracted blend is expected to be 

dominated by confusion noise generated by sources too dim to be subtracted. 




