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ABSTRACT

The kinetic Sunyaev-Zel’dovich (kSZ) effect is of great cosmological interest for
providing precision measurements of peculiar velocity fields independent of system-
atics present in other cosmological probes. The high precision kSZ measurements
on the horizon are expected to yield valuable constraints distinguishing between
competing cosmological models. Instrumental to kSZ astromony is the removal of
contaminating point sources, primarily radio and dusty, star-forming galaxies that
have bright emissions in kSZ spectral bands. As the precision of measurements
improve, the source removal residuals may become significant contributions to the
overall kSZ error budget. A full simulation is essential to characterizing these in-
duced errors. This study develops a procedure for contamination removal from first
principles, verifying its optimality against information theoretic limits. Models for
contaminating sources of increasing complexity are considered, at each step charac-
terizing the optimality of the subtraction compared to theoretical bounds. The final,
currently unfinished objective is to apply this subtraction procedure to a realistic

source distribution and understand the incurred systematics.
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Chapter 1

INTRODUCTION

1.1 The Sunayev-Zel’dovich Effect

The Sunyaev-Zel’dovich (SZ) effect describes how the intra-cluster media (ICM) in
galaxy clusters scatters the cosmic microwave background (CMB) signal (Sunyaev
and Zeldovich, 1972; Birkinshaw, 1999; Glenn et al., 1998a). Incoming CMB
photons are inverse Compton scattered off energetic electrons and acquire a higher
energy (are blue-shifted). This results in a deficit of electrons at wavelengths

below the CMB blackbody peak and a surplus at higher wavelengths, as depicted in

Figure 1.1.
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Figure 1.1: Exaggerated depiction of SZ wavelength shift (Carlstrom, Holder, and Reese,
2002).

Three SZ effects are distinguished by the contribution to the electrons’ energy in

each:
e The Thermal SZ effect (tSZ) describes the SZ effect due to thermal component
of electron energy.

e The Kinetic SZ effect (kSZ) describes the SZ effect due to bulk motion

contribution to electron kinetic energy.
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» The Relativistic SZ effect (rSZ) describes the SZ effect due to relativistic
corrections to electron thermal energy. Generally considered as a perturbation
on the tSZ effect.

The great importance of SZ effects is that they provide probes into cosmological pa-
rameters that both are independent of redshift and carry distinct spectral signatures.
This makes them both easy to identify and useful at a wide range of cosmolog-
ical distances. The SZ effects are also independent of many other observational
techniques and are subject to orthogonal systematics, providing complementary es-
timates on a variety of measurements (Carlstrom, Holder, and Reese, 2002). The

relative magnitude of the tSZ and kSZ effects are presented in Figure 1.2.
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Figure 1.2: Depiction of relative scales of the tSZ, kSZ effects, with 0.0005 the CMB
blackbody flux depicted for scale (Carlstrom, Holder, and Reese, 2002).

Thermal SZ Effect
The thermal SZ effect, derived from thermal contributions to electron energy, fluc-

tuates CMB photons by the following equation

L0 _ T)fne (1.1)
TemB

with electron density n,, o Thomson cross section, kB the Boltzmann constant, 7,

the electron temperature, m, the electron mass, ¢ the speed of light integrated d/

along the line of sight (Sayers et al., 2013). f(v,T,) is the frequency dependence

which is denoted in terms of x = e
kpTcmp
e* +1
fx) = = -4} (1 +0sze(x,T)) (1.2)
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where d57£ denotes the relatistic corrections typically of order a few percent for most
of the spectrum (Carlstrom, Holder, and Reese, 2002; Itoh, Kohyama, and Nozawa,
1998). Among other useful applications, the tSZ effect is of great use in conjunction
with X-ray techniques in distance determinations to clusters e.g. (Cavaliere, Danese,
and Zotti, 1979; Birkinshaw, 1979).

Kinetic SZ Effect
The change in the temperature of CMB photons due to the kSZ effect when passing

through some galaxy cluster is given

AT,
—EME _ﬁTe (1.3)
Tcms c

with v, the ICM peculiar velocity along the line of sight and 7, the total electron

optical depth (Sayers et al., 2013)
T, = f neor dl. (1.4)

The kSZ effect is particularly interesting as a cosmological probe of peculiar ve-
locities, velocity deviations from Hubble’s Law or equivalently velocities relative
to CMB rest frame. It is the only known technique to measure large scale velocity
fields at high redshift (Carlstrom, Holder, and Reese, 2002).

Research Uses of the kSZ Effect

In contrast with established measurement techniques, the kSZ effect provides a
direct measurement of line-of-sight velocities v, of hot electrons within galaxy
clusters (Sunyaev and Zeldovich, 1972), useful for constraining cosmological pa-
rameters. While spectroscopy is already an actively used technique for constraining
such parameters (e.g. the total matter density €, and the normalization of den-
sity fluctuations og (Feldman, Watkins, and Hudson, 2010; Ma, Branchini, and
Scott, 2012; Nusser and Davis, 2011)), kSZ measurements are still invaluable as
these two techniques exhibit vastly different systematic uncertainties. For instance,
a kSZ measurement is independent of redshift and depends only on the electron
line-of-sight velocity and optical depth, local characteristics, while spectroscopy
requires averaging over many galaxies which decreases the resolution of the mea-
surement. Studies conclude that in efforts to constrain to dark energy parameters or
deviations from general relativity, kSZ measurements would probe different mass
scales and exhibit different systematic uncertainties while still maintaining a similar

level of accuracy. By including kSZ measurements, combining constraints from
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various measurements can then produce a tighter overall constraint on interesting
parameters (Albrecht et al., 2006).

Recent observations of the kSZ effect have proven difficult but feasible. Data from
the WMAP and Planck satellites, the two most recent CMB datasets, have been used
to place upper limits on the bulk flows and root mean square (RMS) variations of v,
via the kSZ signal (Kashlinsky et al., 2008; Osborne et al., 2011). A combination of
other data was also used to constrain the mean pairwise momentum of clusters that
is inconsistent with noise at a confidence level of 99.8% (Hand et al., 2012). Most
recently, kSZ measurements using Bolocam and Herschel Spectral and Photometric
Imaging Receiver (SPIRE) data have been able to constrain v, measurements of
galaxy cluster MACS J0717.5+3745 to 3450 + 900km/s (Sayers et al., 2013).

1.2 Contamination

These above results demonstrate both the feasibility of kSZ measurements and their
utility in constraining cosmological parameters. With the next generation of detec-
tors, kSZ measurement precision is expected to improve as statistical uncertainties
decrease. Accordingly, systematic uncertainties on the separation of the kSZ signal

from other astronomical signals will become more important.

In particular, extragalactic infrared point sources such as sub-millimeter galaxies
and radio galaxies have significant emissions in kSZ frequencies and are the major
source of contamination in SZ surveys (Carlstrom, Holder, and Reese, 2002). Since
these galaxies remain point-like down to scales far below present SZ resolution,
these contaminating sources can effectively be treated as point sources. As such,
they exhibit significantly higher spatial flux density than the SZ signal and must be

subtracted to examine the underlying phenomena.

Sub-millimeter Galaxies

A large portion of sub-millimeter galaxy luminosity is dominated by dusty, star-
forming galaxies (DSFGs), reviewed extensively by (Casey, Narayanan, and Cooray,
2014). These galaxies are completely optically obscured, yet the dust heated by ul-
traviolet radiation of newly forming stars produces infrared luminosities in excess
of 10"* L. This implies a star formation rate that is in the thousands of M /yr com-
pared to the Milky Way’s paltry 2M;/yr (Robitaille and Whitney, 2010). Even so,
they are extremely spatially compact, approximately 2 + 1kpc across corresponding
to an angular width of < 1” and so exhibit point-source like beam profiles (Casey,
Narayanan, and Cooray, 2014).
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This heated dust forms the primary infrared emission of these DSFGs, and the
resulting SED is well described by a modified black-body, or ‘greybody’ SED, for
wavelengths > 50um. The greybody SED as a function of spectral frequency v is
given by

SWIBT) =x(1-e™™) x B(v,T)

8
T(v) = (V—VO)

where T is the redshifted temperature 7' = Tdus,%u and 7 is is the optical depth,
fitted as a function of vy the frequency at which the optical depth equals unity
(Draine, 2006). Typical redshifts for DSFGs with peak emissions in the far infrared
range from 2.2-2.7 (Casey, Narayanan, and Cooray, 2014). S is referred to as
the emissivity and is generally found to be € [1,2] and commonly assumed to
be 1.5 (Casey, Narayanan, and Cooray, 2014). v, is estimated from laboratory
experiments to be 3THz which is an order of magnitude above the model instrument
v < 400GHz. Experimental studies indicate its value is closer to vy ~ 1.5THz
(Conley et al., 2011; Rangwala et al., 2011). Often, we make the optically thin

B
approximation (1 - e_T(V)) = (i) , valid for observation wavelength > 450um,
Yo
and obtain for SED
Pomd 1

S(V|B.T) = ( ? ) (1.5)

Vo
1.3 Research Goal
The above presents DSFGs to be point-source contaminations with known SED.
This work focuses on a first-principles approach to subtracting these contaminating
point sources from multi-band data. The objective is to apply signal processing
theory to subtract point sources from astronomical maps containing both stochas-
tic instrumental noise and confusion noise from sources with fluxes below some
detection threshold. Using this formalism, we identify both procedures to com-
pute optimal estimators and the theoretical limit on their accuracy. We are able
to compare this with results from simulations containing randomly generated noise
and ensure our procedure saturates the theoretical subtraction accuracy limit. The
theory is developed starting from a constrained setup that is successively relaxed to

better describe real contamination sources.

While there exist studies performing fits of these data to various SED profiles (Sayers
et al., 2013; Casey, 2012), studies of the optimality of such procedures and the in-
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troduced errors are lacking. This work aims to begin to fill that gap with a procedure
that is tested against theoretical fit accuracy limits in constrained environments that
is subsequently applied to contaminating sources with known SEDs to characterise
subtraction systematics. The procedure is laid out for generalizing this to SEDs of

arbitrary complexity.

The code for this project is hosted at https://github.com/yubo56/Bolocam_
Source_Subtraction.



Chapter 2

DATA SIMULATION

The entirety of the study is performed using simulated data. The parameters of the

simulated data are described below.

2.1 Instrument Parameters

The modeled instrument in this study is taken roughly after the Bolocam instrument
at the Caltech Submillimeter Observatory to have the following properties (Glenn
et al., 1998b):

Field of View 480 arcseconds
Resolution 256 pixels

Observational Frequencies Frequency bands centered at
[400GHz,353GHz, 273GHz, 231GHz, 150, 91GHz]
corresponding to wavelengths

[750um, 850um, 1.1mm, 1.3mm, 2.0mm, 3.3mm]

1
Point Spread Function Gaussian with width oc — observational frequency (diffrac-
v
tion limited). Taken to be 15arcsec FWHM in the 750pum band,

Confusion Noise Tabulated in Table 2.1, obtained from Béthermin simulations
(Béthermin et al., 2011).

Stochastic Noise Assumed to be a sum of white noise at half the confusion limit

3

and a small v™5/3 noise component (generally taken to be on the order of

the white noise at v ~ gaarcsec_1 the lowest spatial frequency in the map;
3 /3

we call this spatial frequency the elbow of the v~%/3 noise). The v~*3 noise

component corresponds to atmospheric noise (Sayers et al., 2010).

No treatment of any instrumental imperfections is handled in this study; the data are

assumed to be corrected for any distortions and defects.



Wavelength | Confusion Limit (Jy)
750pum 1.81 x 107*
850pm 1.37x 1074
1.lmm 1.12x 107
1.3mm 9.47 x 1073
2.0mm 4.99 x 107
3.3mm 2.43 %107

Table 2.1: Confusion limit for each wavelength bands.

2.2 Data Model

Instrumental data consist of 2-dimensional discrete arrays (maps) of spectral flux
density (often referred to simply as flux) values. We notate such maps v,; with r, s
indicies into the array, or sometimes just v(X) where X is understood to be discrete
indicies. The data are taken across six frequency bands v, each of the six maps
referred to as v, (X). The six maps are assumed to overlapping in coordinates just

taken at different spectral frequencies.

Given a set of maps v,(X), we assume that the maps comprise some set of point
sources overlaid on a stochastic background. In other words, the maps v, (X) can be

decomposed as
v (®) = n(®) + ) Aisy(F14) 2.1)
i

with / indexing the sources in the map, s, (X) the known source profile as a function
of some source parameters A; that may differ per map, A; the total flux from the
ith source and n,(X) some stochastic noise obeying some known power spectral
density (PSD). We will generally notate a function f(x|A) to be a function of x with
parameters A. With a known PSD, we can generate realisations of n,(X) to simulate

instrumental data; see Section 3.2 for the associated procedure.

Because we only consider point sources, s,(X) is given solely by the point spread
function of the instrument, which as discussed in Section 2.1 is taken to be Gaussian
with width fixed at 15arcmin in the 750pum band. In order then for A to be the total
flux from the source, we require that s be normalized to have unit integral. Due
to the discretization of the map, this normalization can be mandated in two ways,
either the sum of s over all pixels in the map or as the integral of a continuous
Gaussian with the same width o. These two can differ if s is not centered on one
of the observational pixels. We choose the latter because it corresponds to the total

flux emitted from the source rather than the total flux observed.



2.3 Point Source Distribution

In the earlier stages of the study, where the accuracy of the formalism is the primary
focus, point sources with arbitrary fluxes and spatial location are used. In the later
stages of the study, where accuracy on realistic data is of increased interest, we
intend to use the simulated point source flux distribution from Béthermin to draw
quantitative conclusions on systematic errors (Béthermin et al., 2011; Béthermin,
2014).
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Chapter 3

MATHEMATICS

3.1 Conventions

Below we discuss some of the conventions used in this work.

Fourier Transforms
We begin with continuous Fourier transforms. g (%), g(k) for %, k € R? are related

by the forward and reverse transforms
30 = [[ &% g (3.1)
g = [[ &7 g, (3.2)
where j = V=1,k = 2x¥ and the integration is performed over the entirety of

R? unless otherwise noted. This sign convention is used so the correspondence

e <> jw holds. This 27 convention is used such that the units of g(V) are just units

—1/2

of 1/Hz times those of g(X). A symmetric (27) convention unduly obfuscates

the units.

Convolution is then defined under this sign convention as
~ g NT g TT — - - - —
[ZRG)| e [g+h] @) = [[ a7 gD - F). (3.3)

Discretization

To work with the discrete, pixelated maps, we must work with the discrete forms of

2
L
and define AL = I the pixel width of the map for L the width of the map in

. N N
the above formulae. Define x, x; to be pixel indicies that range over [—?, — - l}

arcminutes. We identify the below correspondences

g1 g
Hd%?-> > Ly
1%—:17 2__7
= Z (AL)? (3.4)
foH - S = L foim (3.5)
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where the shorthand (3.4) is defined to save space. Moreover, it is necessary to
insert the (Av)? = Zlf bin width in converting between the discrete and continuous
f to ensure the units are correct. In the interest of clarity we will adopt a convention

whereby all m, n incidies in v space and r, s indicies in X.

The transform pair becomes

¥
- [ iz
B =g D Srse I (3.6)
rs=—4
g
grs = gmne./ mn*Xrs (37)
m,n:—%
and circular convolution!
y &
[g % h]rs = ﬁ Z grlslh(r—rl)(s—sl)- (3.8)
N
rL,sS1=—%

3.2 Signal Processing Formalism
Below we establish the signal processing mathematics used to construct the source

subtraction procedure.

Power Spectral Density

The physical noise n(X) in a single frequency band as discussed in Section 2.2 is
characterized by its PSD. The noise cannot be taken as simply Gaussian in each
pixel with some fixed variance <n(5c’)2> (assuming zero mean) as such a description
does not contain the correlation of v(¥) with itself in space. Physically, such
correlations are meaningful: the propagation of a signal in space would encode
information about v(Xy) in v ()?0 + 5) These correlations are instead described

with the autocorrelation function

R(E) = (v(@)v (% +£)) (3.9)

é ﬂ &z v(@y (2+E).

We then define the noise PSD J(v) the Fourier transform of the autocorrelation func-

tion (where v the spatial wavenumber is not to be confused with v the observational

lie. we take the signal to be periodically repeating in both directions, or equivalently any

indicies exceeding the length of the signal are taken modulo the signal length.
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frequency band), given by

J@) = [[ %R ) e ikE (3.10)
R(Z) = H 277 (7) 7, G.11)
(@I

Recalling that J(V) = 73 where 71(V) is the Fourier transform of n(X), we can
generate a single noise realisation n(X) with PSD J(¥) by choosing a value of 7(V)
from a normal distribution with width L+/J (V). In order to guarantee though that

n(X) is real (since v(X) the observed signal is real), we require (V) = " (—V).

Model Parameter Estimation
Recall from Section 2.2 that the data are modelled as v(X) = n(X) + Z A;s(X]A;).
i

In order to define a goodness-of-fit X2 for some model m, (X|1) parameterized by

some A to the data, we propose

~v V) — ~v _)/l z
XZ _ ZJ d217|v (V) Jvzn‘_;)(vl )l (312)
~v V) — ~v _)/{ %
_ ZZ |9, () Jf(ng)(VI )| _ (3.13)

We will generally use the integral notation because it is cleaner without numerical

factors; the conversion between the two has already been laid out earlier in this

section. We note that if m, (¥|1) = Z A;s(X] ;) exactly then

VP = Z ff P27 |7, ()]
= Jy (V)
=3 [J v N2,

and since d*¥ L? = 1 we find that ¥’ is just the total number of frequency compo-

nents.

Given this y2, the choice of parameters A for some model m,, is a y*-minimization
process. For a given Ay, the best-fit value A satisfies
dx?

= {, .14
a1 0 (3.14)

A=Ak

This condition can be used to compute the best-fit estimators of various A in the

ensuing models considered.
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Estimation Uncertainty

The above expression gives the best-fit estimators for a parameter Ay, but the un-
certainties on these estimators can also be determined by the curvature of the y?
matrix about its minimum. We use the general statistical result A y? = 1 along
one dimension and A y* ~ 2.3 along two dimensions correspond to 1o deviations.

Then, the y? surface can be expanded quadratically about its minimum as

=) - 1 =%
X)) = X2 =~ /lT—z— ‘H- A (3.15)
82 2
; PRE 8
AidA;

-1
where H is the Hessian matrix. We can identify C = (EH) to be the covariance

. . . . . 2 2
matrix, which quantifies the uncertainty on the parameterization of y, .. The
covariance matrix also enters in the multivariate probability distribution of the

estimators

Py, ... A,...)=exp|- Z /1,-(C_1)ij/1j
ij

This is an accurate characterization so long as the y? surface is well-approximated as
a quadratic at its minimum, producing a normal multivariate probability distribution.
For instance, for any A4 that does not covary with any other parameters, we can

marginalize over the other A to recover the well-known result

182X2
2 942

o3, =[Cul™ =

=1
} . (3.16)
Ax=Ag

where we must evaluate A at its optimal estimator A to be at )(fm-n.

There exist parameters that do not obey such a description, those exhibiting non-
quadratic behavior in all neighborhoods of )(fm.n, and these need to be handled on a

case-by-case basis.

3.3 Simulation

The objective of the study is to verify that the source subtraction performs at
the theoretical limit predicted by the covariance matrix elements. To this end,
we perform simulations in which we generate many noise realizations #n,(X). In

each noise realization, we insert sources with known parameters A, and apply the



14

procedure to estimate A for each parameter. The deviations of the Ay from the
inserted A, can then be plotted as a histogram. The distribution of Ay is expected
to be Gaussian with width o, since the negative exponential of the x? can be

associated with a likelihood function.

We examine various parameters A in different models and show that the distributions
of their optimal estimators either agree with the prediction from the covariance

matrix or deviate in well-understood ways.
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Chapter 4

SOURCE SUBTRACTION: FORMALISM AND SIMULATION

In this chapter we lay out the procedure for point source subtraction and establish

its agreement with analytical predictions derived from signal processing theory.

4.1 Single Frequency Band
We first examing source subtraction in a single frequency band. Only the accuracy
of the formalism is of interest here, and so we place sources with unrealistic signal-

to-noise ratios (SNR) to improve the approximation of the y? surface as quadratic.

Single Centered Source

Consider if the spatial location of the source is known (e.g. centered on the (0, 0)
pixel) and we wish simply to find the flux of the source in the map. Then s(X) can
be chosen to be exactly the source profile including spatial offset and the data model

becomes

v(X) = As(X) + n(X) 4.1)
B = N . B,

with s(X) «c e 202 the normalized, dimensionless beam signal fixed at some Xp, A
the desired flux we wish to recover and n(X) some noise realization. s(X) depends
on no other parameters since it is a Gaussian with known width o and offset Xj.
The y? becomes then
~ > e TR
[v(v) — AS(¥)|

G (4.2)

) = [[d

d)(2

The optimality condition for estimator A is A =0 and

A=A

([ s 2ABBONP = RV - 56) T ()
0= Hd 7 e .

We then recall that s(X), v(X) are real, so §°(v) = 5(—¥),v" (V) = ¥(—¥). Since
we are integrating over all d>¥, the two terms §*(¥)7(¥) + §(¥)¥"(¥) make equal

contributions (there is a correspondence for each contribution from the former term
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at v and the latter term at —v), so we can just consider twice one of these terms, and

we obtain
2= FOHVE)
A_Hd" NG)) 4.3)
= — .
s= [5G
IS &V 55

The uncertainty o4 in this estimator can be computed using the covariance-less

result in (3.16) to obtain
=
"

|
- > 5
_[ j dv__m‘ . (4.4)

o2 = ldz)(z
A7 12 dA2

The predictions of this estimator and uncertainty can be examined by generating
many noise realizations and adding a source of fixed flux A in the same location
in every map. Within each map, we compute using (4.3) the best-fit estimator A
and aggregate these estimators into a histogram that is expected to have width given
by (4.4). The comparison of a histogram containing estimators from 10000 noise
realizations to this analytic prediction can be found in Figure 4.1. Note the close
agreement between the width of the Gaussian fit and the predicted width. The shape

of the distribution is also very clearly Gaussian.

Amplitude Estimators

1000'0§ mean = 1.0
rms = 1.3712E-02

100.0 i theory = 1.39Q0E°02 '

10.0 3

1.0F

0.1

0.94 0.96 0.98 1.00 1.02 1.04 1.06
Amplitude Estimators (units)

Figure 4.1: Histogram of flux estimators over 10000 noise realisations with a single source
of unit flux inserted. mean/rms values from Gaussian fit and theory from (4.4).
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Single off-center source
Consider now if we have a source profile with an unknown position offset Xy =
(x0, y0) such that s(¥|Xp) = s(X¥ — Xo); while we restrict X to be on the pixelated
grid, X is allowed to take on any continuous value. It is a well-known result that
in the continuous Fourier transform 7 [f (X — Xp)] = f(V)e_ﬂ—"'f" if £(¥) is the
Fourier transform of f(X). Sampling both sides of this result at discrete intervals
demonstrates that the property holds for the discrete Fourier transform as well. The
1 then becomes

. 2

7(7) — Ae Tk Fo5(7)

J(V)

XA, %) = f d*v (4.5)

We can then repeat the above exercises to compute the optimality conditions on
A, xo, yo and their associated uncertainties. First, the optimal flux estimator A

changes little

H d2z ej/?-;?o M CNIE))

A= r ”)JI o (4.6)
[ a7 55
2 er 5P
oh=|[]d s (4.7)

The optimal position estimators for xg, yo follow the same expressions, so we will

only compute the optimality condition for xo below

dxo x0=%o dxo J(¥) -
4.8)
S5 _]Ef() ~%
= —-2ij a2y v(v)Ae _ 5 (V)
axo J(V) -

While there is no analytic form for £y, the integral is a convolution of the map v(X)

and the optimal filter ¢(X) with Fourier transform

167!
= . 4.9
é(V) 7 (4.9)
The optimality condition for £y can be cast in terms of this optimal filter as
0= [v(X) * ¢(X)] (Xo) . (4.10)

B
0xg

xX0=X0
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X is then the the maximum of the convolution of the map with the optimal filter.
However, recall that X, is a continuous parameter, while the convolved map is
necessarily pixelated. This can be compensated by recalling that the convolution of
a Gaussian with a Gaussian remains a Gaussian. Thus, the peak of the convolved
map is approximately a Gaussian, completely Gaussian in the white noise limit
where the optimal filter is a constant multiple of the source profile, and we can
obtain the position of the maximum in the convolved map to sub-pixel accuracy by

fitting the peak of the convolved map to a Gaussian.

The theoretical limit on the accuracy of Xy can be determined first by noting that
2.3

0A0xg
between xo, yo, both of which can be verified by taking the partial derivatives. Thus,

=1
X0= XO}

5 -1
_ 22 ([ =¥ De D50 ,
s _(272') Aﬂd T vx] .

there is no covariance between A, Xy (i.e. = 0) and no average covariance

the uncertainty on X is given as

5 1d2 2
o 2 dx?

0

It is then a common prescription to replace ¥ (V) with its expectation (V" (V)) =
Ae’ E'£°§*(17) ~ Ae/ E'EOE*(V). The motivation for this is that the convolution of the
optimal filter with the noise is dominated by the convolution of the source with the
optimal filter which is just a high-pass filter on the known source profile. Moreover,
the uncertainty on an estimator should be noise realisation-independent and only

depend on the noise properties. This substitution yields

Js(v)l
TG

3 )Azﬂd2*|s(v)| vl @.11)

o2 = |@n )A?-j R

Q

J(V)

It is more sensible to compare the width of the distribution of X to the o, predicted
using A instead of A, since in testing the A will change from realisation to realisa-
tion while A is both constant and known. The predictions of both above analytic

predictions with histogram widths is provided in Figure 4.2
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Flux estimator deviations

Flux estimator deviations 10000 — o 020
10000F mean = -0.0022 rms = 2.3512E;
rms = 1.8795E-02 100.0f theory =
100.0 f theory = 1.880 -
100F
10.0 E
10F
1.0 E
0.1
0.1 010  -0.05 0.00 0.05 0.10 0.15
-0.10 -0.05 0.00 0.05 0.10 Flux Estimator Deviation (mdy)

Flux Estimator Deviation (mdy)
R (b) Histogram of flux estimator deviations over
(a) Histogram of flux estimator deviations (A — A) -8/3
over 10000 white noise realizations with a sin-
g]e source of OZmJy flux inserted at SNR10Q. alizations with a single source of 0.2mJy flux in-
mean/rms from Gaussian fit and theory from (4.7).  serted at SNR10. mean/rms from Gaussian fit and

10000 white + — arcsec™! elbow v noise re-

theory from (4.7).
X Position estimator deviations X Position estimator deviations
1000.0F 1mean = -0.0076 ' " 10000 mean = -0.0091

rms = 2.0830E-01
100.0 f theory = 1.99.

100.0

10.0 F 3 10.0
1.0F II ll E 1.0
0.1 A 0.1
-1.0 -0.5 0.0 0.5 1.0 -1.0 0.5 0.0 0.5 1.0 15
Position Deviation (pixels) Position Deviation (pixels)

() Histogram of position estimator deviations over  (d) Histogram of position estimator deviations
10000 white noise realizations with a single source 8/3
of 0.2mJy flux inserted at SNR10. mean/rms from
Gaussian fit and theory from (4.11). Only Xy realizations with a single source of 0.2mJy flux in-
included since X2 is symmetric in xq, yo depen- serted at SNR10. mean/rms from Gaussian fit and
dence. theory from (4.7).

over 10000 white + — arcsec™ ! elbow v~8/3 noise

Figure 4.2: Position and flux estimator deviations over multiple trials and different PSDs
using offset filtering.

Multiple Sources

The next step is to generalize the subtraction to multiple sources in a single map.
The naive approach is to simply continually subtract out the brightest source in the
map. However, this produces suboptimal flux estimation due to overlap between

sources. Instead, we write down the y? for M sources

2
e~ IkT0i A5 (V)

T (4.12)

(V) -

MR

X’ :f d*y

with ith source centered at Xp,;. Assume that the pixel locations of all have already

been determined. Minimizing with respect to the A; yields M coupled equations
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indexed over i

s i 1D M_-*_f)./; i (2
A 5D + 3 e T BTk A |5(9)]

ffaes IO g G
:A.fjdze |S,(V)‘ iAk dezﬁ — = xz)kM
l J(V) 4 J(V)
= N 22 —](xk—x)k|s(v)|
$ . [ s e

for the A,-, and since the equations are all linear in A,~ we can write down the

optimality condition for these A; as a matrix equation

MA= 3§
- 2= j(fl-—fk).k’lg(v)lz
M, = f d<y e’ 7
S J:f d2—’ X ks (;3:)(V) (414)

that can be solved to simultaneously compute all flux estimators in a map.

The naive iterative algorithm described above is still used for position estimators,
down to some detection limit, then the matrix solution applied to find the source
fluxes at each of these position estimators. The detection limit can generally be set to
be at ~ 3-5 SNR, and so we use a much higher SNR in the subtraction to guarantee

all sources are identified. The resulting histogram is presented in Figure 4.3.

Amplitude estimators

1000.0

mean = 0.99859

rms = 0.0146

theory = 0.0139
100.0

0.90 0.95 1.00 1.05 1.10
Amplitude of beam (units)

Figure 4.3: Flux Estimators with 20 sources in each of 1000 maps, each of unit flux 1,
subtracted iteratively. White noise at unrealistic SNR.

The histogram in Figure 4.3 can be noted to have some systematic skew leftwards.

This can be explained by the phenomenon of blended sources, whereby sources
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that are too spatially close cannot be distinguished by an iterative subtraction, c.f.
Figure 4.4. Blended sources are inevitable in data, but the error committed by mis-
identifying a blended source will generally fall under the confusion limit. A careful

study of techniques used to study blended sources can be found in Appendix A.
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Figure 4.4: Example of blended sources. Cross section of fluxes of two point sources of
unit flux (red) and their cumulative profile (black) with arbitrary units across the horizontal
axis. Note that the lower plot is easily mistaken for a single source than two separate.

4.2 Multiple Frequency Band
We are now able to identify spatial location and flux of multiple point sources
within a single frequency band. We next apply the formalism to sources in multiple

frequency bands.

As discussed in the introduction, Section 2.1, we model our data to be collected in
multiple spectral frequencies in overlapping spatial domain. Since any astronomical
sources will have emissions in all spectral frequencies in the same spatial location,
utilizing all maps to simultaneously identify sources results in more robust detection.
For instance, detections of modest significance in individual frequencies may be

highly significant if they come from the same spatial location.

In order to correlate information across multiple frequency bands, it is necessary to
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assume some functional form for the SED. We use the greybody SED in the optically

thin limit given in the introduction (1.5)

3+8
B 3 v
;) ;
soipTy =2 2L _ 4 (o) (4.15)
Yo > _kth thT _
eksT — ] eks 1

where we absorb some numerical factors into A. Recall that typical ranges of
Ty.s: = (1 + )T range between 20-60K with z € [2.2,2.7].

Moreover, as also discussed in Section 2.1, the point spread function of the instru-
ment is assumed to be simply diffraction limited in different frequency bands, so the
source profile s, (X) has different widths for different v. Each s,(X) is assumed to
be normalized to unit integral. Then the Y fora single source can be written
L \3B 2
By (%) — A%e—f’?%@w)
e*BT 1

Jy (V)

Pz pT =Y [[d (4.16)
v
which can be verified to be normalized to the total number of frequency components

across all spectral frequencies.

We will first consider various simplified schemes to verify the generalisation of our

formalism to multiple frequency bands.

Fixed SED

Consider the simplification where in (1.5) both B, T of the source are known and
held fixed. Then the y? function in (4.29) becomes only a function of A, X, again,
as the grey body dependence can be absorbed as a normalization on the s, (X) (not

on A which is frequency-independent). Define

v 3+
(2

eksT — ]

5. (X}, (4.17)

5, (X) =

then we obtain for a single source

e 2
By (V) — Ae™ /K705, (%)

2 = _ 2=
xH(A %) = Zf a2y 55 . (4.18)

The optimality condition for A follows from differentiation

Zf 42 S i () =A) ﬂ a2 —lgﬁ)lz. (4.19)

Sy (V) (V)
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" . . 3% x*
To compute the uncertainty on this estimator, we once again identify that 34 3/ =
X
62X2 0
Byl = 0, so the uncertainties are given simply by the second derivatives of the
00X0

)(2 with respect to A. This yields
5P|
2 _ 2 =17V v
o2 = b Hd P } (4.20)

Both formulae can be observed to closely parallel their single-band counterparts.

Offset Position Estimation

The position estmator X satisfies similar optimality criterion to the single frequency

case as well:

(9)(2 == d 9.3 ﬁv(v)AejE‘fog*(l_/))
(9_X0 xo=%o - Z {_23_)60 f Y J(V) xozfo}
732\ gv(]-/))
hN= TS 421)
x> 9 ) )
a_xo . =)= a—xo- {Zyl [Vv(x) * ¢v(f)] (Xo) xo:ﬁo} (4.22)

where we analogously define a multi-band optimal filter ¢, (¥). With no off-diagonal

terms in the covariance matrix, this has minimum uncertainty

- o -1
o2, = |ea Y [ dz;lsjv((vvjjzvz] (4.23)
: -
1
) Zv: 0'1260,\’}

which relates the position estimator uncertainty in each individual band oio,v to the

overall position estimator uncertainty o ,.

Recall that in the single-band case, we were able to compute Xy to sub-pixel res-
olution by fitting the convolution v(X) * ¢(X) to a Gaussian near the peak. In the
present case, £ is the argmax of the sum of the convolutions of the v, (X) = ¢>‘,(§) in
each frequency band v. However, each convolution is peaked at a different position,
the %o in that band, and the sum of these six Gaussians is no longer Gaussian about

its peak. Thus we cannot use a Gaussian fit to extrapolate % to subpixel resolution.
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Instead, an estimator with optimal uncertainty can be computed as a weighted

average of the optimal estimators in each individual frequency band.

1 1
—%0= ) ——%oy (4.24)

O_XO v U-XOsV

We demonstrate this has the correct variance

X0,V
1
4
=0
. v (0-%0,")
=k (4.25)
9 2 1 2 1
and observe that (£o) = { o7, Z 7 X0y |) = 0%, Z > (Xo,v) | = xo-
y o-xo,v v O_xo,v

The distribution of the estimators over many noise realisations can be observed in

Figure 4.5 to agree well with the analytic prediction.
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Flux Estimator Deviations

1000.0¢ mean = 0.0013

rms = 8.4262E-02
100.0 f theory = 8.3147E;

10.0 F

1.0F

0.1 .
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
Deviations (mdJy)

1 L T | 1

(a) Histogram of flux estimator deviations. mean/rms from Gaussian fit and theory from
(4.20).

X Position Estimator Deviations

1°°°-°§ mean = -0.014
rms = 4.4493E-01
100.0 £ theory = 3.71

PETTT AT

10.0F

) |H |H1
0.1[ ]
-5 -1 0 1 2

Position Deviation (Pixels)

(b) Histogram of position estimator deviations. mean/rms from Gaussian fit and theory
from (4.23).

Figure 4.5: Histograms of multi-band flux and position estimators with noise parameters
described in Section 2.1 and a single source of 1.81mlJy flux in 750um band inserted
corresponding to SNR 20 over 10000 trials.

This procedure is liable to fail when the SNR is sufficiently low that the optimal
position estimator in certain bands identifies a statistical fluctuation rather than the
source, as the weighted average will then include estimations made from non-source
fluxes. One way to decrease the probability of this occuring is to seek the maximum-
flux estimators in each band within a small pixel range of the maximum pixel in the
convolved map (e.g. 30, the beam width in each frequency band). Considering
fewer pixels decreases the probability of finding a signal-like statistical fluctuation

but does not identify when a failure occurs.
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To identify the occurrence of such a failure, we associate a )(2 statistic with the
position estimators in each band. Any bands with position estimators inconsistent
with the hypothesis that the same source is fitted in each map can then be ignored
from the weighted average in finding the position estimator. All frequency bands can
still be used to compute the flux of the source, however. We require both procedures
described here for best performance as discarding frequency bands from position
estimation degrades X in a noise realisation-dependent way, so first restricting fitting
to be within a small range of the convolved maximum assures that this happens as

infrequently as possible.

Multiple Sources
The extension to multiple sources follows a similar procedure to the single-band

procedure. The y? becomes
—- M E ¥h o~ —- .
Wy (V) = 2, Aje/FIE, (V)
i=1

Pz =Y [av T . (4.26)

where we account for the possibility that each source has a different (but known)

SED by allowing s,; to differ between sources. Then we can apply the same
procedure as in the single band case, iteratively subtracting the brightest source
for source positions down to some detection threshold and then writing down M

coupled equations for M source fluxes

el¥kgr ()9, (V)

) u L omictz3 i (DB ()
ZV] f d*v 5. = Z{;Ak[ d2y 27 Gk %) v ;V(sg;( L }

(4.27)

which can be solved using the same MA=3§ prescription as for the single band
(4.14). This subtraction is demonstrably still optimal as predicted by (4.20) and
(4.23) as can be seen in Figure 4.6.
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Amplitude estimators

1000.0 T T T T . 3
mean = -3.1E-05 E
rms = 0.00103 ]

theory = 0.00103

100.0

10.0

PRt |

0.1 1 1 i "

-0.006 -0.004 -0.002 0.000 0.002 0.004 0.006
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(a) Histogram of flux estimator deviations A — A. mean/rms calculated from Gaussian fit
and theory from (4.20).

X position estimation deviations
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(b) Histogram of position estimator deviations x¢ — X, mean/rms calculated from Gaus-
sian fit and theory from (4.23).

Figure 4.6: Estimator histograms for 1000 noise realisations with 8 randomly inserted
sources with flux 0.6mlJy in 750um in each. Unrealistic SNR ~~ 200 in leading band used
to avoid cutoff by detection threshold.
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4.3 Rayleigh-Jeans SED

We next examine the case where the SED satsifies the Rayleigh-Jeans approximation
kgT > hv. Note that a frequency of v = 400GHz corresponds to a temperature of
T =19.2K.

The greybody SED from (1.5) becomes instead

L
2h () 1
Sv|B) = 2 m l
eFsT —
3+
2h: {2 2+p8
% (%) BT _alX (4.28)
c? hv Yo

where we absorb some numerical factors into A the normalization. Then the )(2 for

a single source becomes

2+ 2 a
B (P - A (L) e RRs, ()

Yo

Az p)y =) [ T (4.29)

The optimality conditions for xo, A are the same as before if we simply carry the
S(v|p) factor with the source profile §, (V). The optimality condition on estimator
B on the other hand is

Yo

‘)
bd 0 Z ﬂ dzv Ty (V) " (VLO)

52 [A (L)z*ﬁ 55 () — v:(m] [A Ly EV(V)}

Ip

It is impossible to solve analytically for estimator A to obtain a closed form as we
did for A nor to cast the condition in illuminating form as we did for %y. Instead,
we must use gradient descent to numerically seek the x> minimum at which (4.30)
is satisfied. We use the built in Truncated-Newton minimizer tnmin in IDL! to

perform the minimization. At each step of the gradient descent, we re-compute the
Z

- 0
optimal %o, A at the current value of 3. We use . to compute each time step
p

however, which assumes fixed £o, A; this empirically has little effect on convergence.

In order to examine the uncertainties of all these estimators, we must look at the full

Hessian, which is no longer diagonal like previous applications of the formalism.

'Data Analysis done using IDL 8.1 (Exelis Visual Information Solutions, Boulder, Colorado).
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Since y? is symmetric with respect to xo, yo parameters, we need only compute 6
second partial derivatives, reproduced below

162 x? Zj‘fdz vo 4+23|sv(‘_;)|2 431
2 9A2 J, (V) il
4+2,8 5 (I
= = = (27)°A d*v ) - 432
20x2  8y? = ZH T s
4428
19242 (L) 5P
i) = d2—» V() S ;
o Zﬂ R In2 (VO) (4.33)
02/\/2
GxgdA 0
5 ) 2 VO)M” 00 (v
T Z ﬂd In (V—O) (4.34)
32/\/2
6)60 3ﬁ -

where we go ahead and substitute the expectation values for all noise-dependent
terms. The observation is that there is a covariance, equivalently a degeneracy,

between the S, A parameters in the ,\(2 surface. With covariances the uncertainties
1622 1 rige N

— respectively.
2 Bp° 2 0A?

In order to characterize degenerate parameters, we must consider multivariate his-

on the 3, A estimators are no longer given by [

tograms to capture any covariances. If the multivariate distribution over many noise
realisations conforms to the prediction made by the formalism then we can be as-
sured our subtraction is optimal. Since the computed Hessian derivatives assume all
parameters but two are held fixed (rather than being allowed to seek their optimal val-
ues freely), the proper method to generate each two-dimensional histogram is to fix
all estimators but two. We generate one histogram for each of the two-dimensional

subspaces of the Hessian computed above, in Figure 4.7.
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Figure 4.7: Bivariate histograms of estimator deviations A — Ay in Rayleigh-Jeans fitting

with other variables held fixed. Over 20000 noise realizations.
Gaussian fits are colored corresponding to regions of 1, 2, 3o~ deviations labelled with darker
colors corresponding to smaller deviations. Unrealistic SNR ~ 100 used. No covariances

for B, %9 and f, A reported since they are consistent with zero.

Both histograms and
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To compare the bivariate Gaussian histogram fits to the formalism, it is most illumi-
nating to assign uncertainties to the fit parameters. Uncertainties for the histograms
can be computed via Monte Carlo simulation by fluctuating each bin with N counts
by Gaussian with standard deviation VN (the usual Poissonian assumption and
Gaussian approximation) and refitting. Such a bootstrapping technique estimates
the uncertainty on the fit parameters, and we can see that the fits are nicely Gaussian

as in Figure 4.8.
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Figure 4.8: Histograms of bootstrapped bivariate Gaussian fit parameters in order 6, o1, 0
where o1, o refer to the widths along the principal axes of the respective histograms in
Figure 4.7 and 6 the orientation.

On the other hand, the analytical parameters can also be assigned an uncertainty
by generating ,\/2 surfaces for many noise realisations and performing a quadratic
fit to the minimum of the surface. It should be noted that over the fitted interval,
the fitted function generally differed from the computed, slightly non-quadratic X
surface by < 5%, so a similar systematic uncertainty must be associated with these
fit parameters. The comparison of the covariance matrix terms computed via the
analytical estimate, the multiple ¥ fits and the bootstrapped histogram fits can is
found in Table 4.1.
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a2

B, A (histogram)
,é, A (analytic)
BA ()

(12.10 £ 0.10) x 107*
(11.879) x 1074
(11.82 +0.11) x 107

(6.128 £ 0.049) x 10~*
(6.0875) x 1074
(6.087 + 0.046) x 107*

A, %o (histogram)
A, %o (analytic)
A g0 (X))

(4.111 + 0.036) x 107*
(4.137) x 1074
(4.146 + 6 x 107) x 107~

(3.772 £ 0.034) x 107
(3.691) x 1073
(3.698 + 0.023) x 107>

B, Xo (histogram)
ﬁ, Xo (analytic)
B, 2o (%)

(8.171 £ 0.075) x 10~*
(8.074) x 107*
(8.043 £ 0.046) x 10™*

(3.711 £ 0.034) x 10~°
(3.691) x 1073
(3.696 + 0.023) x 1073

Covar(p, A) (histogram)
Covar(, A) (analytic)
Covar(, A) (y?)

(5.5+0.1) x 1077
(5.31 £ 0.002) x 1077
5.28 +0.002 x 1077

Table 4.1: Covariance matrix entries using bootstrapped histogram, analytic and multiple
/\(2 fits. o, 0 refer to the uncertainties of the first, second parameters in the left-most
column respectively. Units on A are mJy, on %o pixels and on f unitless. Unrealistic noise
parameters, SNR 100 in leading band.

Note that including the uncertainty on the covariances establishes that the three
estimates generally agree, particularly accounting for the Xz systematic misfitting,
and thus we can be assured that the procedure satisfactorily attains the theoretical

accuracy bound predicted by the formalism.

4.4 Greybody SED

At the beginning of Section 4.3, we found that for 7 > 19K we can make the
Rayleigh-Jeans approximation. In reality, the normal range of dust temperatures in
DSFGs is in the range 20-60K, implying that the redshifted 7" for many sources lies
outside the Rayleigh-Jeans limit (Casey, 2012). We thus return to the full greybody
SED (1.5) reproduced below

|=<

(v0)3+ﬁ

SWIB.T) = —; (4.35)

el — |

and y? also below
(5)” 2
o) = Arpr—e T Pg, (7
S04 2 B i ]

(AT BT =) [[d T (4.36)

y v
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_hy_
However, this parameterization runs into difficulties. In particular, since e*s7 ~ 1,

changes in T still produce somewhat linear changes in flux, making 7 heavily

degenerate with A the flux parameter, confounding the gradient descent. An example

of the observed degeneracies can be seen in the cross section along the A — T plane

of the y? surface about its minimum in Figure 4.9.
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Figure 4.9: Inserted source with A = 1.74,T7 = 17 for two realisations of noise. The
drastically different A,T suggest terrible degeneracies that are consistent with the shape of
the Xz surface observed.

To better constrain the problem, we instead define

SWIBT) —

S(vIB.T)

— 4.37
SOmIBT) 37
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where we normalize the SED by some pivot frequency vp;, that is held constant
throughout the minimization. Then A takes on the interpretation of relative flux to

the flux in frequency band v,;,, and the Xz formula becomes

348 Mpiv . 5
W) - A () e, )
) - P ekB" —1
X (A Xo, B,T) = d“y . (4.38)
]|

The optimality conditions on A, £o can once again be written down; we will not do so
here since it follows the exact same procedure as before. The optimality conditions
on S, T once again require gradient descent search via tnmin. Since the conditions

v +i eh%l% = 1| B
are a bit ugly to write down, define S(v|vpiy, X0, B, T) = ( ) T—e"ﬂ”o,
Vpiv efBT — 1
then the conditions become
2
0= aai
B lp=p
2 [ASOW)FL(P) - 7:(9)] [AS(n)5, (¥
_ fodzv [AS(V)$;(V) vav)] [AS(»)5, (V)] In (l) (4.39)
= J, (V) Yo
F) 2
0= 24
T |p_p

5 (V)

hv,; kv, s
hy pry ptv hy
kT _1\|_Ppiv &gt ||, %pgT _1\__mv__%pT
e 1 —¢ *B e B 1 —r—e*B
)3+,8 kpT? kT2

hy_ 2

2 [ASO53) = 7] |4 52

Vpiv

:Zﬂvv L)

(4.40)

It should be noted that the (A, £o, $o, 4, T) that tnmin finds is independent of v,;,;

for every set of parameters (A, xo, yo, 8, T) found at one v,;,, a corresponding set

AS(VIV;Z.V, B,T)
S(Vlvpiw B, T)’
value. In fact, the y? surfaces are exactly identical between choices of v,;, up to a

X0, Yo, B, T) exists at a different pivot V;aiv yielding the same y?

scaling factor on A,

The y? surface even with the pivot frequency scaling exhibits intractable non-
quadratic degeneracies in 8, T. For instance, at SNR 20, the shape of the y? surface
looks like Figure 4.10. Recalling that the association of the covariance matrix with

estimator uncertainties assumes a quadratic XZ surface, this non-quadratic surface
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defies characterization using the developed formalism, and it is futile to compute

the Hessian.

Inserted params: 1.5000000, 15, Minimizing params: 1.6223778, 12.392511
25

n
o

o
i,nIIII||!III[II[|1III|IIII|

=
(4]

Tdust

S

1.0 1.5 2.0 2.5

Figure 4.10: X2 surface for g = 1.5,7 = 15K. Source inserted at SNR 20 in leading band
with noise parameters from Section 2.1. Contours plotted are A /\(2 =0.1,0.5,1.0,2.3 the
last corresponding to a 1o deviation.

Per-band flux estimation
With little constraining power in the ST plane of parameter space, we instead wish
to quantify how well we can constrain the SED shape over the degenerate parameter

space. To first get some idea of how the degeneracy degrades the SED fit, we

62X2

2942°
uncertainty on A with fixed B,T. The results of this computation are reported in

can compute a the covariance matrix element 0'% = which describes the

Table 4.2 and are in good agreement with simulation.
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Band Pivot-based Single-band
750pum | 0.0531 0.0905
850um | 0.0421 0.0685
I.1um | 0.0250 0.0560
1.3um | 0.0174 0.0473
2mm 0.0064 0.0250
3mm 0.0019 0.0120

Table 4.2: Comparison of flux uncertainties in leading 750um band with fixed g, T be-
tween single-band estimators and multi-band estimation, where multi-band has g, 7" fixed at
inserted values g = 1.7,7 = 13K. Units of mJy.

Of subsequent interest is the degrading of estimation once f, T are freed to their best
fit values. Since S, T do not covary in Gaussian fashion, analytical prediction of the
ensuing uncertainties in A are impossible and can only be obtained via simulation.

Simulation results are ongoing.
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Chapter 5

FUTURE WORK

5.1 Greybody Subtraction Systematics

The current stage of progress on greybody subtraction has encountered non-Gaussian
degeneracies that can only be studied via simulation. Current and future work focus
on characterizing these systematics. For instance, in computing the uncertainty
of the flux estimator in each band using multi-band subtraction with B, T at their
best-fit values (rather than fixed as studied at the end of Section 4.4), the computed
uncertainties are observed to vary with SNR, and a sample of the behavior is given
in Table 5.1.

Band Fixed p~I" SNR5 SNR 10 SNR 100
750pum | 0.0531 0.0668 0.0698  0.0783
850um | 0.0421 0.0414 0.0424  0.0380
I.Ium | 0.0250 0.0296 0.0327 0.0252
1.3um | 0.0174 0.0244 0.0259 0.0167
2mm 0.0064 0.0163 0.0090  0.0053
3mm 0.0019 0.0088 0.0049  0.0026

Table 5.1: Uncertainty on flux estimators in each band for fixed S—T analtical estimate
and histogram widths for various SNRS over 10000 realisations while freeing £,7. SNR
defined in leading frequency band 750 um.

Progress on sampling this dependence over many more values of SNR is under way,
and the dependency can hopefully be cast at least qualitatively into illuminating
terms. Of particular interest is the improvement in subtraction quality in the 2mm
band, the peak emission frequency of the kSZ signal, and characterizing the error in-
troduced in the 2mm band is pivotal to understanding source subtraction systematics

in kSZ astronomy.

We are also in the process of examining any biases that appear when subtracting a
source SED with a mis-fitted SED. For instance, if the source parameters are chosen
from arbitrary Gaussian distributions g = 1.7 £ 0.3,7 = 25 + 7K (using arbitrary
source distributions are still preferable to using the Béthermin Catalog which does
not have known inserted distribution parameters for comparison) and are subtracted

with the following fitting techniques:



38

Single Subtraction only within the single frequency band, no information from

other frequencies used.
Fixed Subtraction with fixed SED g = 1.7,T = 25K.

Emis Fixed Subtraction with fixed g = 1.7 but T allowed to seek X’-minimizing

value.

Tdust Fixed Subtraction with fixed 7 = 25K but g allowed to seek )(Z—minimizing

value.

Free Both Subtraction with both B, T allowed to seek ,\/2 minimizing values.

then the resulting histograms of flux estimators in the leading 750um band and the
2mm band of interest are in Figure 5.1. It is of interest that fixing 7" at some sensible
temperature seems to both decrease the variance and not increase the bias of the flux

estimators, but further investigations are ongoing.

Single Fixed
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ms = 1.0019E+00 ms = 1.2259E+00
1000 1 1000 k|
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-6 -4 2 o 2 4 6 -8 -6 -4 2 ] 2 4 6 8
Emis Fixed Tdust Fixed
10000F rean = -0.20 1000.0F 1ean = 0.043
ms = 7.4043E-01 ms = 7.1380E-01
1000 e 1000 b
100F E 100F 3
10f e 10F I I I o
0.1 0.1
-4 -2 /] 2 4 -4 -2 o 2 4
Free both
1000.0

mean = -0.093
ms = 7.9136E-01

1000 F 3
10.0F 4
10 7

0.1 | I
-6 -4 -2 o 2 4

(a) 750pm band
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Single Fixed
100008 vean = -0.0057 1000.0F ean = 0.021
rms = 1.0024E+00 ms = 7.1245E-01
1000 E 100.0 1
100 E 100 E
10F 3 1.0 3
0.1 0.1
£ -4 -2 ] 2 4 6 -4 2 0 2 4
Emis Fixed Tdust Fixed
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Figure 5.1: Histograms of flux estimators using the five described fitting techniques for
inserted sources with distribution of source parameters g = N(1.7,0.3),T = N(25,7) where
N is the normal distribution.

5.2 Application to Realistic Source Distribution

With the above results, we will have completed the characterization the behavior of
the source subtraction algorithm in the absence of confusion noise, in the absence of
other sources. The algorithm is believed then to perform optimally, at the accuracy
limit of the formalism. The remaining work is to apply the algorithm to ensembles
of point sources obtained from the updated Béthermin catalog (Béthermin, 2014).
The subtraction in a map with an unknown number of sources will be performed
until the variance of the convolved map doesn’t change appreciably. Characterizing
the SNR at which this happens, as well as the accuracy of the subtracted sources,
must all be performed with the realistic source distribution provided by the catalog,
and will finally provide a complete characterization of the source subtraction on a

realistic catalog of point sources.
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Appendix A

BLENDS

As discussed in Section 4.1, we occassionally can have overlapping sources that are
mischaracterized as a single source as in Figure 4.4. The effect of this phenomenon
were manifestly clear when comparing Figure 4.1 and Figure 4.3: while the flux of
a source when there is only one source in the map is estimated correctly with the
expected uncertainty, when there are many sources the probability of source overlap
increases, biasing the estimators and producing a larger variance than predicted.
Because the procedure estimates two adjacent sources as one very bright source and
one very dim source, the sum being slightly less than the sum of the original two,
<A> is biased low and ai is larger than predicted.

To fully account for blends, two distinct steps are required: first, the number of
sources that make up a blend must be identified (if it is not a blend, it can be
considered a blend of a single source), and second, the position and flux of these

sources must be estimated.

A.1 Iterative subtraction

First we attack the latter problem, estimating the position and flux of blended
sourcces assuming we know how many sources make up the blend. It turns out that
an iterative procedure works well to estimate the position and flux of the individual
sources. Call N the number of sources in the blend. We first subtract N sources,
and then we add each estimated source back in before re-subtracting it. Repeating
this for all N sources separately for many iterations, the estimators converge to the
inserted fluxes and positions. In Figure A.1 we see that over many iterations the
source fluxes converge to the correct value. Such an approach is generally termed

iterative.

To solve the former problem, identifying the number of sources that make up a
blend, two methods were developed, one empirical and one theoretically rigorous,
detailed below.
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Figure A.1: Plot of flux estimators of two sources placed two FWHM apart as both position
and flux estimators are iteratively improved. Note that while we initially grossly misestimate
the sources, iterative estimation rapidly converges towards the correct values of two sources
of flux 0.5 arbitrary units.

A.2 Mean-based Proof of Concept

One method for identifying the number of sources in a blend was devised based on
the mean of the subtracted map. Recall that the generated maps are assumed to have
zero-mean noise and positive source beams, so a perfectly subtracted map should

on average have zero mean as well.

First, the above iterative technique is applied assuming the blend comprises some
number N of sources. If the mean of the subtracted map is appreciably greater than
zero, the iterative technique is reapplied assuming the blend comprises NV +1 sources.
This procedure is repeated until the mean of the subtracted map is sufficiently close

to zero; the criterion for this closeness is discussed below.

The approach was motivated by the observation that the mean of the residual map

would only be close to zero if the correct number of sources was subtracted, illus-
trated in Table A.1
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Beams in map | 1 source  2source 3 source 4 source
1 source 0.000197  8.94e-05

2 source 0.0230 0.000371 0.000571

3 source 0.0341 0.0149 -6.70e-05  0.000200

Table A.1: Means of residual map as a function of number of sources present and number
of sources subtracted, averaged over 200 trials each. While the number of trials is formally
inconclusive, it is clear that the mean only falls close to zero when the correct number of
sources is subtracted.

However there are a few notable problems with this approach:

* The mean of a map is generally not identified with anything physical, and data
are generally reported with zero mean including the sources. This implies
that the mean of a subtracted map with the correct number of sources will not

be zero but some indeterminate negative quantity.

* There is no ab initio prediction for the deviation of the mean of the subtracted
map from zero. Without this, it is impossible to define the criterion for the

number of sources required to describe a blend.

» There is a more statistically rigorous way to formulate the necessity of adding

an additional pulse, in the form of an F-test.

However, it is evident that using the mean to distinguish blends does decrease
subtraction bias, as can be seen in Figure A.2. Thus, while incorrect, the mean-
based subtraction demonstrates that seeking an appropriate method to distinguish

blends is a worthwhile pursuit.

A.3 F-test

The statistically rigorous criterion for the number of sources required to describe
a blend is based on the F-test. A form of the F-test can be applied to determine
whether addition of more parameters to a fit is statistically justifiable, which in our
case translates to determining whether an additional beam is required to describe a

particular blend.
Given two hypothesis Hy, H, with H, an extension of H; with additional fit param-
X2 = XD/ =vd)

)
X515
be shown to follow an F-distribution with degrees of freedom v| — v, v». Then if

(with ,\/2 defined in the usual way) can

eters, the test statistic
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Amplitude estimators

100.0 L
mean = 1.0005
rms = 0.0147
theory = 0.0139
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0.0 0.95 1.00 1.05 1.10
Amplitude of beam (units)

(a) Histogram of flux estimators using mean as subtraction thresh-
old, with 1000 realisations of noise and 20 sources in each of unit
flux. The histogram is centered on the correct value, though being
slightly wider than the theoretical limit. This is understandable
due to some maps containing sources in close proximity. Arbitrary
values of no significance in magnitude used.

Amplitude estimators

1000.0 f Y
mean = 0.99893
rms = 0.0144

theory = 0.0139
100.0 i

100

T 1

0.90 0.85 1.00 1.05 1.10
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(b) Histogram of flux estimators using no subtraction threshold,
with 1000 realisations of noise and 20 sources in each of unit flux.
The histogram is noticably biased rightwards.

Figure A.2: Histogram of flux estimators between using and not using mean subtraction
threshold. Note the less biased and more symmetric estimator histogram when using the
mean subtraction threshold.

the test statistic exceeds some critical value we know with high probability that H,
is the preferred fit to the data over H.

Given this F-test, the procedure is then the same as before, which is to fit each blend
with an increasing number of beams until the F-test predicts that the addition of

another beam produces insignificant changes in the y>.

However the implementation of this procedure produced an unexpected result: the
test statistic changes depending on the size of the map used even when all other
characteristics are held constant. If a map much larger than the beam width is
used to calculate the y? for a single blend, the test statistic frequently asserts that
a one-source map should be subtracted as a two-source map. Only by arbitrarily
truncating the map, say, 3FWHM on either side of the target source, does the test

statistic correctly identify the number of sources in a map.
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The numerical results of these tests can be found in Table A.2. The F-test predicts that
for all these configurations the critical value is somewhere in the range ~ 2.64 +0.05
(since all configurations have extremely large v, degrees of freedom, their critical
values are very similar). Note that as the size of the considered map changes, so
too does the average value of yi; — xi2, the ,\/2 difference between subtracting a
single-source map as a single beam or as a two-beam blend. This is inexplicable:
in a single-source map, attempting to subtract a second source should not change
x° much, as the second subtracted source cannot correspond to a real source and so

should have very low flux regardless of the size of the map considered.

Number of pixels | yii i X12 T vz X1 = X2 Tyi—ypie

20 397.54 27.58  396.30 2763 1.23 1.59

32 1021.17 4521 101790 4522 3.27 2.49

64 4089.20 9225 4082.50 92.11 6.70 2.92

128 16378.42 181.19 16368.92 181.04 9.51 2.94

256 65526.80 365.46 65514.52 365.50 12.28 3.07
X21 T xa X22 O xn X21 = X22 O yo1—xm

20 918.21 50.86  528.00 199.79 390.20 200.00

52 1310.87 55.10 1019.09 4523 291.78 34.01

64 4409.64 99.87 4087.01 92.13 322.64 36.78

128 16702.46 186.40 16376.18 181.02 326.28 36.04

256 65851.73 366.16 65524.56 365.51 327.17 36.52

Table A.2: Average y” values for various different configurations of map and subtraction
parameters; notation is such that first subscript is number of inserted sources and second
subcript is number of sources attempted to subtract (e.g. y»; is a map with 2 sources sources
being subtracted as a single source). When there are two sources, they are placed 1.2 FWHM
apart. Averaged over 10000 realisations for each configuration. Image dimensions are
256 x 256. All uncertainties were computed by performing Gaussian fits to very Gaussian
data, as expected as the )(2 distribution tends to a larger number of degrees of freedom.

The test statistics indicate that only an appropriately sized subportion of the map can
be considered when using the F-test to determine whether a second source exists.
This is unacceptable as there is no obvious criterion for determining how large a

sub-map to consider.

In conclusion, it does not seem at the present that there is a viable criterion to
identify how many sources comprise a blend, without which blends cannot be
treated differently than single sources. Were such a criterion to be identified,
Figure A.2 suggests that the biases observed on the A estimators could be remedied.

Ultimately however, a technique for treating blends may not be necessary, as with a
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realistic source distribution the residual of a mis-subtracted blend is expected to be

dominated by confusion noise generated by sources too dim to be subtracted.





