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Abstract

In the course of preparing for the 2005 DARPA Grand Challenge, an off-road race for au-
tonomous vehicles, a group of undergraduates from Caltech developed a set of deterministic
algorithms for performing sensor fusion on maps generated by different range sensors on a
mobile robot. That framework had serious limitations, however, including “disappearing”
obstacles and lack of confidence data associated with features in the maps. In this thesis, we
present a probabilistic framework that attempts to solve some of these problems by using er-
ror models of two typical types of range sensors, as well as by making use of Kalman filtering
techniques from control theory to fuse the resulting measurements into an accurate digital
elevation map. Our results indicate that this probabilistic framework has several advantages
over the determinisic framework used by Team Caltech in the 2005 Grand Challenge.
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Chapter 1

Introduction

Autonomous mobile robots (also known as unmanned ground vehicles, or UGVs) have a vari-
ety of applications, including use in the military to reduce the risk to soldiers during combat;
in industrial settings, especially in autonomous inspections of hazardous waste facilities; and
in planetary exploration, of which NASA’s Mars Pathfinder and Mars Exploration Rovers
are the most famous examples. However, one of the major limitations of UGVs is the ac-
curacy with which they can sense and map their surroundings as they explore, since they
must frequently work in unstructured, previously unmapped environments. Complicating
the problem further, UGVs must generate maps of their environments using measurements
from potentially noisy sensors. Designers frequently attempt to reduce the impact of this
problem by using multiple sensor systems with different strengths and weaknesses (Luo and
Kay, 1989). Stereovision systems, for example, can provide dense but potetially noisy range
data, whereas laser range finders can provide relatively more accurate, but also sparser range
data. Using multiple sensors to map an environment brings up two potential problems, how-
ever.

First, how do you transform the robot’s perception of the world into a data structure
that can be used to efficiently plan the robot’s path? Of course, the answer to this question
depends on the type of path-planning algorithm that is used. One common data structure
used for path planning is a goodness map, essentially a grid of discrete cells, where every cell
is assigned a goodness value corresponding to its traversability as determined by a variety
of measures (Goldberg et al., 2002). In unstructured environments, however, the problem
is non-trivial; there is generally no obvious method of computing goodness (traversability)
based on raw sensor data, especially when that data is sparse. (One exception would be
stereovision data, which frequently provides enough data in a single measurement to com-
pute traversability (Bellutta et al., 2000).) Instead, one can introduce an intermediate data
structure between the raw sensor data and the final goodness map, which can be used to
collect the data from the measurements over time. This data structure is known as a digital
elevation map (DEM), and is similar to a goodness map in that it is made up of a grid of
discrete cells. Its contents are fundamentally different, however, in that every cell contains a
height that corresponds to the elevation of the terrain at the coordinates of that cell, instead
of an abstract goodness value.



Figure 1.1: Alice, Caltech’s entry in the 2005 DARPA Grand Challenge.

The second question one must answer when using multiple sensors on a UGV is whether
or not one can combine the information from the different sensors into a representation of the
world that not only makes sense, but is also optimally accurate. In other words, how should
one fuse together the data from different sensors? In this thesis we provide an answer to that
question, drawing on techniques from control theory to create a probabilistic framework in
which to perform sensor fusion.

1.1 A Previous Framework and Its Limitations

The sensor fusion problem is not a new one, of course, and has been explored in the past.
One potential solution was explored by a group of undergraduate and graduate students from
Caltech on their entry into the DARPA Grand Challenge: a 10-hour, 175-mile off-road race
for unmanned autonomous vehicles that was held for the second time in October 2005 (see
figure 1.1). In preparation for the Grand Challenge, a particularly flexible framework was
developed for performing sensor fusion, using both DEMs and goodness maps. In particular,
every sensor created its own DEM and corresponding goodness map using methods described
in Cremean et al. (2006). The resulting goodness maps were then fused using a heuristic
algorithm that was biased toward sensors whose coverage areas were closer to the vehicle. A
diagram of this framework is depicted in figure 1.2. Unfortunately, this solution had several
limitations, which we briefly review here.

The first such limitation is something we have termed the “disappearing obstacle” prob-
lem, which is also described in more detail in Cremean et al. (2006). Essentially, a chain
of events can occur in which a long-range sensor accurately detects an obstacle of a given
height, but the data from that sensor is overruled by a short-range sensor, which detects only
the lower portions of the obstacle. While one could adjust the weight attached to each sensor
so that sensors pointed closer to the vehicle had lower confidence than those pointed further
away, this would remove the potential advantages of using short-range sensors, namely that
short-range sensors tend to produce data with less noise due to a shorter moment-arm about
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Figure 1.2: A diagram of the information flow in the software system used on Team Caltech’s
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which the range measurements are taken. We describe this problem in more detail in section
2.3.

A second such limitation has to do with what values the goodness map should have in
areas which are void of sensor data (no-data areas). There are arguments against both setting
the goodness of no-data cells to be high and setting them to be low (again, see Cremean
et al. 2006). One potential solution would be to use a probabilistic framework instead, so
that meaningful statements could be made about the probability of a given cell having a
certain goodness value. Again, this would require a new framework in which to fuse the
sensor data.

The final limitation is similar to the no-data limitation described above, in that the
system has no confidence data associated with the goodness values (or the elevation values)
in a given cell. This limitation was one of the major causes of the failure of Caltech’s vehicle
to complete the 2005 Grand Challenge. Essentially, two midrange sensors failed during the
course of the race, leaving only a significantly less accurate long-range sensor to guide the
vehicle. The vehicle did not slow down while driving through areas of its map about which
it should have had less confidence, however, leading it to eventually crash.

1.2 A Probabilistic Framework

In light of these limitations, it is clear that another sensor fusion strategy is necessary. In this
thesis, we will demonstrate how performing sensor fusion using a probabilistic framework at
the DEM stage of mapping to fuse all of the incoming sensor data can eliminate some of the



limitations described. Although similar sensor fusion algorithms have been proposed before
(as in Cremean (2006)), we believe that this is the first system to probabilistically fuse data
from disparate sensor types. Thus, the contributions of this thesis are threefold:

1. We present error models for two common types of sensors, stereovision and LADAR
(building on results in Ye and Borenstein (2002) and Matthies (1992)), which can then
be used in a probabilistic sensor fusion framework.

2. We present a probabilistic framework (inspired by Cremean (2006)) using techniques
adapted from control theory (i.e. the Kalman filter), which, given certain conditions
on the form of the sensor noise, provide the optimal estimate of the elevation of the
surrounding terrain.

3. We take advantage of the framework’s probabilistic nature by extending it to present
a solution to the “disappearing obstacle problem.”



Chapter 2

Technical Approach

According to control theory, the optimal estimator for a linear system undergoing Gaussian
white noise disturbances is a Kalman filter. Therefore, we would expect that a Kalman filter
would perform reasonably well as the means of data fusion for the problem described above.
To test this expectation, we implemented a discrete Kalman filter on a cell-by-cell basis for
the digital elevation map, with the inputs consisting of the measurements and variances from
the different sensors for a given cell, and the output consisting of the estimated elevation
and covariance of that cell. The algorithm we propose proceeds as follows, and is depicted
graphically in figure 2.1:

1. A range measurement of the terrain surrounding the vehicle is taken, and an error
model is used to describe the uncertainty surrounding the measurement.

2. The measurement is transformed into a global coordinate frame, and the uncertainty
in the vehicle’s state estimate adds to the uncertainty of the measurement’s position.

3. The measurement (and more specifically, its uncertainty) is discretized so that only a
small number of cells in the elevation map need to be updated.

4. In every cell that needs to be updated, the new data is fused by an individual Kalman
filter in the particular cell using the discretized information taken from the sensor’s
uncertainty model.

One important aspect of this algorithm is that it is performed aysnchronously — data
fusion is performed only when new measurements are taken, and no additional processing
is required otherwise. Additionally, the computational steps required to perform the data
fusion have been developed with an eye toward efficiency, so that the algorithm can perform
in real time on a UGV.

Of course, there are many implementation details which this high-level overview of the
algorithm does not cover; the rest of this section will describe in detail how we arrive at the
uncertainty models for the sensors, how we discretize that model, what equations we use
to implement the Kalman filter, and how we attempt to solve the “disappearing obstacle”
problem.
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Figure 2.1: A diagram of our algorithm — processing proceeds clockwise from the bottom-
left. First, a measurement is taken using a sensor and some uncertainty is associated with it
using an error model for that sensor. Second, the measurement is tranformed into the global
coordinate frame, as indicated by the purple axes. (The red axes indicate the intermediary
vehicle coordinate frame, as described in the text.) Third, the uncertainty is discretized, as
indicated by the dashed lines. Finally, the existing estimate of the elevation in the map, the
dashed red line, is fused with the measurement to give a new estimate, the solid red line.

Before we continue, we make note here of the different coordinate systems and notational
conventions used throughout the rest of this thesis. In particular, three coordinate frames
are used throughout this thesis (figure 2.2):

1. The sensor coordinate frame, which has its origin at a given range sensor. This frame
varies from sensor to sensor.

2. The vehicle coordinate frame, which has its origin at ground-level beneath the rear axle
of the vehicle, and is oriented such that the x-axis points forward toward the point on
ground level beneath the front axle, the y-axis points to the right of the vehicle toward
where the right-rear tire touches ground-level, and the z-axis points downward into the
ground. This frame moves along with the vehicle.

3. The global coordinate frame, an Earth-fixed reference frame. In this thesis, we make use
of the standard UTM (Universal Transverse Mercator) coordinate system, in which the
x-axis points north, the y-axis points east, and the z-axis once again points downward
into the ground.

To specify in which frame a given variable is being referenced, we frequently use subscripts
of the form “descriptor, frame.” So, for example, the x-coordinate of a measurement in the
vehicle frame would be referred to by “z,,,”, where the m stands for “measurement” and
the v stands for “vehicle frame.”

10



Figure 2.2: The different coordinate frames used throughout this paper, simplified to two
dimensions for easier demonstration. For each of the coordinate frames, the Y axis points
out of the page toward the reader.

For notation, in section 2.1, actual values are denoted with hats (e.g. p) and Gaussian
errors are denoted with tildes (e.g. p). In sections 2.2 and 2.3, hats are used to denote an
estimate of an actual value (e.g. Z; ;).

2.1 Sensor Uncertainty Models

As was mentioned above, to probabilistically fuse the range measurements from multiple
sensors, it is necessary to have both the measurements from the range sensors and the
uncertainty estimates associated with each range measurement. We will generate these
uncertainty estimates by using statistical error models of the sensors that predict how the
sensor’s measurements are affected by noise in the system. We have chosen to present error
models for two common types of range sensors used on UGV’s, LADAR (LAser Detection
And Ranging) and stereovision. Because the measurements are transformed into the global
coordinate system, we also need to take into account the error model of the state sensors,
whose output is used to perform the coordinate transformation from the vehicle frame to
the global frame.

2.1.1 LADAR Uncertainty Model

LADAR (sometimes referred to as LIDAR) is a name given to a broad category of range
sensors which use lasers to precisely determine distances to objects in the sensor’s field of
view. Here, we cover LADAR that works on a time-of-flight principle: at a precise time ¢y,
the sensor emits an infrared laser pulse which is reflected off of a spinning mirror into the
environment; that pulse is then reflected by an object back to the sensor, which measures
the time ¢; at which the pulse returned. The range is then simply p = c(t; — to)/2 (where
c is the speed of light). (Figure 2.3.) This process is repeated at distinct intervals as the
mirror spins, resulting in range measurements at regularly spaced angles 0 € [0in, Omaz)-

11



Figure 2.3: A diagram of how LADAR works: a pulse of light is emitted from the LADAR.
The light then bounces off an object in the environment, and reflects back to a sensor in the
LADAR. The time it takes for the pulse to be emitted and then reflected is used to report
the range. This procedure is done dozens of times a second as a mirror within the LADAR
spins, allowing measurements to be taken in an arc in the robot’s direction of travel.

If we assume that the noise on both the range and the angle is Gaussian, our error model
becomes:

p o= i (2.1)
0 = 0+0

where p and 6 are the reported range and angle measurements, respectively, p and 6 are the
true range and angle, and j and § are Gaussian zero-mean random variables that introduce
noise into the measurement. This is similar to the model described by Ye and Borenstein
(2002), who found an error model for the range of SICK laser scanners (a specific brand and
model of LADAR) of the form

p = kp+b+p (2.3)

where k and b are parameters that account for the fact that the reported measurement is not
precisely the same as the actual range, but is instead linearly related. In their experiment,
they determined that £ = 1.0002 and b = 3.6mm. Because these values are negligible
compared to the ranges we are measuring', we felt that for our purposes it was safe to
neglect these terms and use our original error model. For an analysis of how well our model
fits the actual LADARs used in the experiment, see section 3.2.

2.1.2 Stereovision Uncertainty Model

In the case of stereovision the error model is somewhat more complex. Stereovision estimates
range by making use of two cameras, each mounted on approximately the same backplane
a distance b apart from each other, such that the scan lines of each camera are as close to

LAt the longest possible range reportable by the LADAR units we used in our experiment (81m, according
to their specifications), the difference between our error model and that of Ye and Borenstein is 1.98cm. At
the longest reported range actually measured during the experiment (~30m), the difference is 0.96cm.

12
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Figure 2.4: On the left are two images from a stereovision pair, taken of the same scene
simultaneously. The boxes in each image highlight corresponding regions of pixels, and the
dashed lines illustrate the different positions the same object has in the two images. By
analyzing these differences a disparity image can be created, as shown on the right. In this
image, lighter green pixels are closer to the camera, and darker green are further away. Black
areas indicate pixels where the algorithm could not confidently make a match, and thus no
range was estimated.

parallel as possible. The cameras are then synchronized so that they take images simultane-
ously; these images are then fed to a stereovision algorithm, which first warps the images so
that their scan lines are exactly parallel using an a priori mapping determined offline using
calibration data. The system then analyzes the two images to find similar, or corresponding,
regions of pixels. (The methods used to solve this correspondence problem are beyond the
scope of this thesis — for a review of such algorithms, see Scharstein and Szeliski (2002).)
Once a match is found, the algorithm takes the x coordinate of the central pixel of the
matching region in each image, x; and z,, and computes the disparity d = x; — z,.. (Figure
2.4.) Through some simple geometry, it can be seen that the range will then be given by

bx f

7

where again, b is the baseline (the distance between the two cameras), f is the focal length

of the cameras (in pixels), and N is the maximum number of disparities searched. Addi-

tional analysis (see Matthies (1992)) shows that the uncertainty inherent in stereovision is

fundamentally different from that of LADAR — error in stereovision is proportional to the

square of the range and the difference in disparity, and inversely proportional to the focal
length and baseline, e.g. if the range is given by

d=1{1,...,N} (2.4)

p = p+p (2.5)
then the error is:
9
p-Ad
2.
bx f (2.6)

Thus we can model the Gaussian noise p as having a variance

poq
bx f

(2.7)

13



where o4 is the variance in disparity.

For simplcity we can treat range measurements from stereovision as identical to those
from LADAR, despite these differences. We simply treat each scan line from stereovision as
we would an individual scan from a LADAR unit, except the pitch of the sensor is now a
function of which scan line the measurement comes from. Additionally, we must adjust the
error model for each measurement to depend on the reported distance - instead of being a
Gaussian of fixed variance regardless of the range reported (as in the LADAR case), we now
adjust the variance based on the equation for the error given above. Thus we have:

p = p+p (2.8)
0 = 6+0 (2.9)
6 = 0+9 (2.10)

where p, 0, and ¢ are the reported range and angle measurements, respectively, p, é, and
¢ are the true range and angles, and p, 0, and ¢ are Gaussian zero-mean random variables
that introduce noise into the measurement.

2.1.3 State Estimation Uncertainty Model

To make use of the range information provided by the sensors, we must transform the range
measurements into a global coordinate frame so that they can be fused into a global map.
This transformation is performed in two steps: first, the range measurement is transformed
into the vehicle coordinate frame using calibration data taken offline about the position and
orientation of the sensor on the vehicle; second, the range measurement is transformed into
the global frame by using position and orientation data provided online by the vehicle’s state
estimation system, as in figure 2.5.

If we apply the small angle approximation and neglect second-order terms in the mea-
surement noise, the measurement’s location in the vehicle frame ([ TMmy YMuy ZMw ]T) is:

T [ 5. p Ccos 6 cos ngS
Yro | = | Ysw | + | psinfcoso | + (2.11)
ZM v | ZSw —psin ngS
i cosécosgzg —ﬁsinécosg?) —ﬁcosésingg p
sinécosg?) ﬁcosécosgzg —p sinésinq% 0
—sin (ﬁ 0 —p cos qg ¢

As before, in this expression qZ; is the pitch angle of the measurement with respect to horizon-
tal; for LADAR units, this number is a constant for all measurements, while for stereovision
systems, it is a function of the scan line of the range measurement. | Ts, Yso» 250 }T is
the location of the sensor in the vehicle coordinate frame.

Finally, we must include the uncertainty that is added by translating from the vehicle
coordinate frame to a global coordinate frame (e.g. the uncertainty in our state estimate

14



Figure 2.5: To transform a measurement (the blue dot) from the vehicle frame (the red line
pointing to the measurement) to the global frame (the purple line pointing to the measure-
ment), we must make use of the vehicle’s state estimate to determine where the vehicle is
located in the global frame. However, due to errors in the signals from the GPS and IMU,
that state estimate is accompanied by some uncertainty (the faded oval cloud centered on
the vehicle frame’s origin, or the offset in the angle between the estimated and actual vehicle
frame).

that results from noisy measurements coming from the GPS and IMU). We model these
€rrors as

A Tv,g Tyg
Yv,g = Yvg | T | Yvg (2.12)
| “Vyg | | “Vyg | | Vg ]
and
Pvyg Dvyg Dvyg
hvg | = | hvg | + | hvg (2.13)
| Vg | Tvg | Vg

where [ Tvg Yvg Vg }T is the vehicle’s reported position (as determined by the state-
estimation software) in the global frame (in which we remind the reader that the x-axis points
North, the y-axis points East, and the positive z-axis points downward), and [ Pvg hvg Tvg
is the vehicle’s reported pitch, yaw (or heading), and roll with respect to the global co-
. A A 2 T A 2 A T
ordinate frame. As before, [ Tvg Uvg 2vg } and [ Dvg hvg Tvg } correspond to
the actual values of the corresponding positions and angles, and | Zv, Jvg Zvg ]T and
~ T . . .
[ Pvy hvg Tvg ] correspond to Gaussian zero-mean random variables that introduce
noise into the state estimate.

In general, to transform a measurement from the vehicle coordinate frame to the global
coordinate frame, we have:

TM,g TMw TV,g
Ung | = Rpvghvig,mvg) | Ymw | + | Yvyg (2.14)
ZM,g ZMw Vg

15
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where [ Zag Yng Zarg ]T is the measurement’s location in the global coordinate frame,
and the rotation matrix is defined by:

R(p,h,r) = (2.15)
coshcosp —cosrsinh + coshsinrsinp sinrsin h 4 cosr cos hsinp
sinhcosp  cosrcosh+sinrsinhsinp —coshsinr + cosrsinhsinp

—sinp cospsinr COST COS P

Using these equations, it becomes possible (although algebraically messy) to finally trans-
form the measurements and their covariance matrices into the global coordinate frame, taking
into account all the uncertainties. Although we omit the actual equations here for brevity,
the procedure is outlined as follows:

1. Transform the noisy measurement into the global coordinate frame, to get a vector 7

in 3.

2. Subtract away what would be the true measurement P (e.g. 7 but with all the noise
terms set to zero), to get 7 =7 — 7.

3. The full 3x3 covariance matrix is then C' = 7#7'.

4. To reduce calculation time, we then apply the small-angle approximation in all off the
noise terms (since we assume them to be small) and neglect higher-order noise cross
terms, giving us C.

The result is a 3x3 matrix which describes the uncertainty ellipse associated with the mea-
surement.

2.2 The Kalman Filter Framework

The next step in the algorithm is to fuse the transformed data with existing measurements
using a Kalman filter, the details of which are described below.

2.2.1 Cell Update Equations

The basic premise of our Kalman filter framework is that the state we are estimating in each
cell is the elevation of that cell, z; j, where the subscript ¢, j indicates the location of the cell
in our discrete map. We begin by assuming that the state can be modeled as a standard
discrete linear system of the form:

(2.17)

with a measurement of the form
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where z; ;(k) is the state of the system at time k, the matrices A, B, and C represent the
linear model of the plant and the measurements, u; (k) is the input to the plant at time
k, y; j(k) is the measurement taken at time k, and w(k) and v(k) are independent, zero
mean, white, Gaussian random variables that represent the process and measurement noise
(respectively), with covariance matrices ) and R.

For this system, the general propagation equations for a discrete Kalman filter are (Welch
and Bishop, 2004):

Pk +1k) = AP (klk)AT +Q (2.20)

where as is standard, Z; ;(k + 1|k) is the estimate of the state at time k + 1 given the first k&
measurements, Z; j(k|k) is the estimate of the state at time & given all of the measurements
up to and including those at time k, P ;(k + 1|k) is the estimate error covariance at time
k + 1 given the first & measurements, and P, ;(k|k) is the estimate error covariance at time
k given all of the measurements up to and including those at time k.

At this point, it would be possible to make assumptions about the relationship between
the elevations of neighboring cells. For example, one could use the dynamic model of the
elevation (i.e. the A or B matrices) to apply some sort of smoothness constraint, by relating
the elevations of neighboring cells. Within the types of terrain we have encountered experi-
mentally, however, we do not believe that any sort of smoothness condition applies; various
natural as well as man-made obstacles (such as cliff faces, fence posts, or signs) introduce
sudden large discontinuities in elevation which make it difficult to relate the elevation of a
given cell to that of its neighbors. (Of course, once a measurement is taken, it is possible to
extract information about multiple cells simultaneously - this point is addressed in section
2.2.2))

Since we have ruled out any relationship between neighboring cells, and since we assume
that the environment is static (and since it is not changing, not subject to noise itself) it
follows that A =1, @ = 0, and B = 0. Thus the propagation equations are simply:

sk +1k) = Az(klk) (2.21)
Py(k+1lk) = Py(klk) (2.22)

and so we do not need to perform any time updates. (This is fortunate, because performing
some sort of time update to every cell in the map could be extremely computationally
expensive, rendering the current algorithm useless in real-time applications.)

We next turn our attention to the measurement update equations. For the system we
have described, the general update equations for a discrete Kalman filter are given by (Welch
and Bishop, 2004):

P ik+1k+1) = (I—-K(k)C)P;(k+1|k) (2.24)
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where z,, corresponds to a new elevation measurement for the cell (i, 5), and the Kalman
filter gain K is given by:

1

K = P (k+1k)CT (CP,(k+1|k)C" + R)~ (2.25)

As with the time update equations, the measurement update equations can be simplified.
To begin with, since the coordinate transformations we perform give us immediate access to
the elevation of the measurement, we have C' = 1. Thus we can write:

Pk +1|k) (2 — 2i5)
P, ;(k+1|k)+R
Zii(k+1k) (P j(k+1|k) + R) + P, ;(k + 1|k) (zm — Zi ;)
P, j(k+1|k)+ R
Rz, j(k+ 1|k) + P j(k + 1|k)z,
P i(k+1|k)+ R

and
P, i(k+1|k) P ;(k + 1|k)
P i(k+1k)+ R
P, i(k+1k)*+ P ;(k+ 1|k)R — P, j(k + 1]k)?
P i(k+1k)+ R
P, i(k+1k)R
P, j(k+1|k)+ R

P i(k+1k+1) = P jjk+1]k)—

(2.27)

where we remind the reader that R is the error covariance of the new elevation measurement.
In the next section, we explain how we determine R based on the 3D uncertainty ellipsoid
of the measurement, C'.

2.2.2 Measurement Discretization

Now that we have determined both the measurement mean and the appropriate covariance
matrix, as well as how to update a cell given this information, we must choose which cells
to update (and how to transform the 3D covariance matrix C' into a 1D variance R for use
in the Kalman filter). As was indicated in the previous section, for each measurement we
will update the estimate of the elevation of multiple cells by taking advantage of the fact
that the uncertainty ellipsoid of a single measurement extends over several cells. There are
essentially three methods one could use to perform this update.

1. Simply update all the cells in the map with the new measurement.

2. Update only the cells that fall within a fixed geometric pattern centered around the
mean of the measurement (e.g. a square of a fixed side length or a circle of a fixed
radius) regardless of the orientation and size of the uncertainty ellipsoid surrounding
the measurement.
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3. Update cells based on the probability that the measurement came from that cell,
i.e. if the probability that a measurement came from a cell (as determined by the
uncertainty ellipsoid generated by the error model) is greater than a given threshold,
then we update that cell with the corresponding measurement.

For our implementation we dismissed the first method due to the latency it would in-
troduce by requiring an update to every map cell for every single measurement. Instead,
we chose to use an update algorithm that combines the second and third methods. In our
update algorithm, we calculate which cells have centers that fall within the 95% confidence
ellipsoid, and we then update only those cells whose distance from the mean of the measure-
ment falls below a given threshold. For our experiment, this threshold was set to be 2m,
which effectively limited the number of cells updated such that the algorithm could perform
in real time on our computing system.

Because we are not estimating a single parameter (like the location of an object in some
coordinate system), but are instead discretizing a single measurement so as to estimate
several parameters (the elevations of the cells we choose to update), we must also find a way
to discretize the covariance we use when we update those cells. In particular, we would like
our discretization method to reflect the belief that cells further away from the mean of the
measurement are less likely to contain whatever object generated that measurement, and
thus should not be as heavily influenced by the measurement. This notion is captured by
using the probability function p; ;(2), which describes the probability that the measurement
actually came from the cell (4, 7), from an object of height z, given the uncertainty ellipsoid
of that measurement:

.. .. A
Ca(if)+52  pCy(id)+52

pij(z) = / p(z,y, z) dy dx (2.28)

.. - .. A
m(zvj)_% Cy(laj)_Ty

where C, (4, j) and Cy(i, j) are the z and y coordinates of the center of cell (i,7), A, and A,
are the width of the cell in the x and y directions (both constants, since we are not using
a multi-scale map), and p(x,y, z) is the model of the uncertainty ellipse surrounding the
measurement, given by:

1
v = (2m)*2 Vdet €

]T

exp F (x— u)TC (x - ) (2.29)

2

where x = [z y 2|, and = [Targ Yy zM,g]T, the measurement itself.

Because equation 2.28 cannot be solved analytically, and would be difficult to solve
numerically in real time (given that we must makes thousands of updates to cells per second),
we instead approximate it by:

pij(2) = p(Cy(i,7),Cyi, ), 2) Az A, (2.30)

To make sure that cells closer to the measurement mean have a lower covariance when we
fuse them using the Kalman filter, we simply take the inverse of this probability as our
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measurement covariance, i.e.:
1

R - — 1 (2.31)
pij(zg)

2.3 The Disappearing Obstacle Problem

One final topic we will cover is a solution to what we have termed the ”disappearing obstacle”
problem. Figure 2.6 is a diagram of this phenomenon; a description follows:

=

Figure 2.6: The “disappearing obstacle” problem. A long-range sensor detects the obstacle
accurately at t = 0. A short-range obstacle then incorrectly states that the obstacle is only
as high as the solid line at t = 1, when it is really as tall as the dotted line. At t = 2 the
obstacle’s height estimate indicates that it will not be traversable, but it is too late for the
vehicle to react and choose another path.

1. t = 0: A long-range sensor detects an obstacle accurately (although with high co-
variance), and it is fused into the map as a series of cells with a given height and
covariance.

2.t = 1: A short-range LADAR detects the lower portions of the obstacle prior to
detecting the higher portions. The cells in the map temporarily appear as if the
obstacle does not exist (or is simply very short) because the measurements from the
short-range LADAR have a lower covariance than those from the long-range sensor,
and so "overrule” the existing estimate.
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3. t = 2: The obstacle’s correct height is detected by the short-range LADAR, but it is
too late for the vehicle to react in time to choose another path.

This phenomenon can occur in any system where there are vertical obstacles such as
posts or trees, and close-range sensors with low covariances on their estimates which scan the
terrain in a “push-broom” fashion as do LADARs. And while the phenomenon is temporary
and the cells are eventually updated to reflect the obstacle’s true height, this correction
sometimes does not come quickly enough. In the time it can take for the short-range LADAR
to sweep all the way up an obstacle (as the vehicle drives forward), the vehicle’s planning
algorithms can attempt to plan a path through the area once occupied by the now vanished
obstacle. In fact, this behavior was encountered many times over the course of testing for the
2005 DARPA Grand Challenge; the disappearing obstacle problem frequently caused Alice
to attempt to take shortcuts over obstacles it thought for a moment were no longer there,
only to find out too late that the obstacle was, in fact, still there.

We make use of the probabilistic nature of our new framework to help solve this problem.
In particular, we use a sequential probability ratio test (hereafter referred to as an SPRT)
to determine whether or not the new measurements coming from the short-range LADAR
should be fused into, and in some sense replace, the existing data in a given cell. For every
new measurement that comes into a non-empty cell, we test the simple hypothesis that
either:

Hy: The new data corresponds to the same obstacle previously detected in that cell, and
fusing the new data with the old data will not cause the existing obstacle to disappear,
or,

Hy: The new data does not correspond to the same obstacle previously detected in that
cell, but it will result in a more accurate estimate of the elevation of that cell (i.e. the
old data was inaccurate and should be replaced).

In either case, if the hypothesis is proven true then the proper course of action is to fuse in
the new data.

Of course, we can determine which of Hy or H; is true simply by examining the values of
the new measurements. If they are “close” to the existing value then we can be fairly sure
Hy is true. If they are “far” from the existing value, then the old data is probably inaccurate
and H; is likely to be true. We will determine whether the measurements are “close” by
testing whether or not they correspond to a normal distribution with mean given by the
existing estimate, and variance given by the variance in elevation of the measurements that
have been fused into that cell, weighted by their covariance. This variance is given by

n 5 2
o Do [P (B — 2ag)]
Tij = N (2.32)
Zk:o Rk
where n measurements (27,4, - - - » 204, ) have fallen into the cell (4, j), whose current estimate

is Zije
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Now that we have the mean (Z;;) and variance (o;;), we can proceed to describe the
specific SPRT we perform. Following Wald (1947), we note that the probability density
of a sequence of n measurements of the elevation of the cell (2p,, ..., 2rmy,,) under our
hypothesis is:

1 1 — . N2
Po (27)2 o7 exXp ( 252 § :(ZM,gz z J) ) (2.33)

] =1

According to Wald (1947), we want to compare this probability density to a probability
density p1, which is a weighted average of the probability density corresponding to various
values of z; ; for which we would reject Hy. As derived in Wald (1947), an optimal choice
for pq, is:

1 < ) )

1 - R 9
——exp | — E Mg — Zij — 00;
227 2o ( 207 — (009 ! i) )

which is simply the average of the two density functions corresponding to z;; = 2, ; + 00 ;
and z;; = 2;; — 60, ;, where z; ; is the actual value of the elevation of the cell (7, 7), and ¢ is
given by:

Fig — Fij

> 5 (2.35)

Tij

where we wish to reject the hypothesis Hy if this inequality is true. Of course, rejecting H,
is equivalent to accepting Hj.
Then, for some thresholds A and B, the test would normally be carried out as follows:

1. When a new measurement of a cell comes in, check to see if any data already exists
in that cell. If less than two data points have been used to estimate the state of the
current cell, fuse in the new measurement immediately. Otherwise:

2. Calculate p1,,/pon, as given by equations 2.34 and 2.33.

(a) If p1n/pon < B, accept Hp, and fuse in all of the data in the current cell’s buffer
using the Kalman filter procedure described in equations 2.26 and 2.27, and keep
track of the variance in elevation using equation 2.32.

(b) If p1,/pon > A, accept Hy, and fuse in all of the data in the current cell’s buffer
using the Kalman filter procedure described in equations 2.26 and 2.27, and keep
track of the variance in elevation using equation 2.32.

(¢) If B < pin/pon < A, add the measurement to the buffer and continue taking
measurements.
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Figure 2.7: Assume the current estimate of the elevation is given by the solid red line, and
the new estimate that would result from fusing in new sensor data is given by the dashed red
line. If we then receive a LADAR measurement as shown in blue, there is a high probability
that the existing sharp peak in elevation is incorrect, and we should proceed with fusing in
the new data.

One can see that since the acceptance of either hypothesis leads to the same action, the
SPRT essentially serves as a mechanicsm to delay fusion of new range data. One possible
drawback to this approach is that it could result in the delayed detection of obstacles in cases
where the old data did not detect the obstacle, but the new, delayed data does. Despite this,
we believe that this drawback will be less dangerous than the disappearing obstacle problem
which the SPRT seeks to solve.

In the next section, we describe our implementation of this algorithm, as well as the
Kalman filter framework described above. Before we continue, though, we point out to
the reader that there is an additional source of information which we have not tapped —
that of which cells were not occluded by an obstacle. Figure 2.7 illustrates our point: if a
measurement comes in which indicates that an existing elevation estimate is incorrect because
it would have caused a sensor to pick up an obstacle at a closer range than was actually
detected, then we can take this to be a “null” measurement in some sense. (Of course, this
assumption is invalid in the case of partially transparent obstacles.) Unfortunately we were
not able to find an efficient way to integrate this information into our framework, especially
in a manner that would be generalizable to both LADAR and stereovision. This may be due
in some part to the framework itself — a 3D voxel map may be more amenable to “null”
measurements indicating which cells should be empty than our 2.5D DEM. Regardless, we
believe using these “null” measurements could greatly improve map accuracy, as we will
mention in our notes on future work in section 5.
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Chapter 3

Implementation and Testing

To test the algorithm we have described, we implemented it within the framework of Team
Caltech’s entry in the 2005 DARPA Grand Challenge, Alice. In this section, we describe in
more detail the various hardware and software used for this implementation; most of this
information is also available in Cremean et al. (2006), which is more broadly focused.

3.1 Experimental Platform

Alice, the UGV used for testing, is a Ford E350 van modified by Sportsmobile West of
Fresno, CA, for off-road operations. While the hardware modifications that allow Alice to
perform autonomously off-road are nontrivial and required a significant amount of effort, for
the purposes of this thesis they are not nearly as important as Alice’s software architecture.
Thus, for more information on the hardware aspects of the testing platform, we direct the
reader to Cremean et al. (2006).

The software system used on Alice was designed to be modular and easily adaptable (see
figure 3.1). Each sensor has a dedicated software module known as a “feeder,” which reads
in data from that sensor over a physical connection (such as a USB or IEEE 1394 port),
and then broadcasts that data to Alice’s internal LAN, where it can be received by any

Supervisory Control

™ Road Finding CostMap > PathPlanner | Path Follower [ Vehicle
A Actuation
I
. L7
Environment || F|eyation Map [« State Estimator [« Vehicle
Sensors
A
N
I
Environment <

Figure 3.1: Alice’s software architecture. The portions relevant to this thesis were the
environment sensors (at the bottom left) and the elevation map.
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Figure 3.2: Alice’s sensor coverage. The wider cone corresponds to the short-range stereo-
vision; the longer, thinner cone corresponds to the long-range stereovision. The black lines
correspond to the intersection of the ground plane with the various scan planes of the LADAR
units. The small rectangle is Alice, approximately to scale.

other software module running on a computer connected to the network. One such module
is the mapping module, which then combines the data from the different sensors into a
single cost map of Alice’s environment. The cost-map itself, as well as the elevation maps,
are implemented using a scrolling framework in which the vehicle is always located at the
center of the map, and the edges of cells are oriented along the northing-easting coordinate
system. That cost-map is then broadcast to the vehicle’s path planning module, which uses
the map to compute an appropriate path. Although communications between the various
components of the system are based on message passing over a gigabit Ethernet network,
we did not encounter any problems with dropped packets or lack of bandwidth. Throughout
the experiment, we used maps that were 200m on a side, with cells that were 40cm on a side.

3.2 Sensors Used and Verification of Error Models

Prior to the 2005 DARPA Grand Challenge, members of Team Caltech, with help from
the Aluminess company, outfitted Alice with several sets of semi-redundant sensors. For a
complete description of the sensors used, see table 3.1; figure 3.2 shows the coverage of the
sensors on flat, level terrain; figure 3.3 shows where the sensors are actually located on Alice.

Of course, it was necessary to verify that the sensor error models we presented earlier
were accurate, i.e., that they had the statistical properties we assumed. To ensure this,
we collected large samples of data points from both types of sensors, and then analyzed
their statistical properties. The results, shown in figures 3.4 and 3.5, demonstrate that our
assumptions hold.

In particular, in figure 3.4, we can see that the distribution of measurements from a single
LADAR scan (averaged over many thousands of scans) are indeed Gaussian.
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Sensor Type

Mounting Location

Specifications

LADAR (SICK LMS 221- Roof 180° FOV, 1° resolution, 75Hz, 80m
30206) max range, pointed 20m away
LADAR (SICK LMS 291- Roof 90° FOV, 0.5° resolution, 75Hz, 80m
S14) max range, pointed 35m away
LADAR (Riegl LMS Q120i) Roof 80° FOV, 0.4° resolution, 50Hz, 120m
max range, pointed 50 m away
LADAR (SICK LMS 291- Bumper 180° FOV, 1° resolution, 80 m max
S05) range, pointed 3m away
LADAR (SICK LMS 221- Bumper 180° FOV, 1° resolution, 80m max
30206) range, pointed horizontally
Stereovision ~Pair  (Point Roof 1 m baseline, 640x480 resolution, 2.8
Grey Dragonfly) mm focal length, 128 disparities
Stereovision ~Pair  (Point Roof 1.5 m baseline, 640x480 resolution, 8
Grey Dragonfly) mm focal length, 128 disparities
Road-Finding Camera Roof 640x480 resolution, 2.8mm focal length
(Point Grey Dragonfly)
IMU (Northrop Grumman Roof 1-10° gyro bias, 0.3-3 mg acceleration
LN-200) bias, 400 Hz update rate
GPS (Navcom SF-2050) Roof 0.5 m CEP, 2 Hz update rate
GPS (NovAtel DL-4plus) Roof 0.4 m CEP, 10 Hz update rate

Table 3.1: The various terrain sensors used on Alice on the day of the Grand Challenge. Not
all of these sensors were used at all points during the current experiment.
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Figure 3.3: Alice, with terrain sensors labeled. (GPS and IMU are not labeled.)
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Figure 3.4: Distribution of scan measurements from a single LADAR unit, in this case the
roof-mounted SICK LMS 221-30206, and the corresponding Gaussian error model.

In figure 3.5, we have plotted the mean and standard deviations of the disparity (averaged
over more than one hundred images). The overall variance of the disparity for the pixels in
the image was o4 = 0.7256.

3.3 Experimental Procedure

To test the final system, we drove the UGV manually through two different types of terrain, as
depicted in figure 3.6. The first type of terrain was a flat dry lakebed, populated by obstacles
comprised of simple geometric shapes where ground-truth was approximately known, so that
we could perform calibrated tests on the accuracy of our system’s ability to properly estimate
elevation. The second type of terrain was a more realistic desert environment which was
chosen so as to verify that our algorithm would successfully achieve three goals:

1. Comparable accuracy in elevation to the old algorithm, along with reasonable covari-
ance values.

2. Reduced areas of no data in comparison to the old algorithm.
3. Elimination of the disappearing obstacle problem.

For this terrain, which was composed of a bumpy dirt road along with obstacles such as sage
brush and small rocks, ground truth was not known, so only qualitative comparisons were
made.

During testing the raw sensor data was timestamped and logged so that it could be post-
processed and analyzed at a later date. However, the final algorithm we developed was still
able to process the data in real time. The results of that analysis are the topic of the next
section.
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Figure 3.5: On the left are mean disparity measurements from a set of stereovision images
taken by the short-range (1m baseline) pair while the vehicle was stationary. The disparity
of each pixel is indicated by its color, according to the colorbar on the right. On the right
is the variance in disparity at each pixel. Again, the value of the variance at each pixel is
indicated by its color, according to the colorbar on the right. In both cases, dark blue pixels
at the bottom of the scale indicate no disparity was estimated by the stereovision algorithm
due to lack of texture in the image. At the bottom is a sample image from the sequence
used during this test.

Figure 3.6: Two representative images of the types of desert terrain in which the system
was tested. On the left is a sample desert road, lined with small rocks and brush. On the
right is a sample dry lakebed, the elevation of which we assumed was completely flat so as
to approximate ground-truth.
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Chapter 4

Results and Discussion

Our major results are fourfold, and are described below. First, in section 4.1, we show that
our algorithm generates maps with the elevation and covariance values we would expect
given the different sensors that have filled in the map. Second, in section 4.2, we show that
our algorithm dramatically reduces the “no data” problem. Third, in section 4.3 we show
that our algorithm successfully solves the “disappearing obstacle” problem. Finally, we close
with section 4.4 by mentioning a few unanticipated results of our algorithm.

4.1 Map Accuracy and Covariance Characteristics

Figure 4.1: A sample elevation map generated by our algorithm (top) and by individual sen-
sors using the old algorithm (bottom) in conditions for which ground truth is approximately
known. The ground-plane (a dry lakebed) is assumed to be flat, and the obstacle (the green
blob in the maps) was a 1m by 1m flat board. The elevation of a cell is given by its color —
white indicates no data, blue indicates higher elevation, and brown indicates lower elevation,
with an overall range of approximately 1m. For scale, the gridlines are 4m apart.
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Figure 4.1 shows a sample elevation map generated as a result of our algorithm. The
estimated height of the obstacle, which is 1m tall, is approximately 50cm. This disparity is
to be expected — our algoirhtm fuses together all of the range data from the obstacle (from
its top to its bottom) and so the resulting height estimate is close to the obstacle’s mean
elevation. We also note that the obstacle appears much larger in the map than it actually is
— this phenomenon is explained in more detail in section 4.4. The height estimates in the
individual elevation maps (shown on the bottom) are comparable, indicating no degradation
in performance from the use of our framework.

“High
Covariance

Covariance

Figure 4.2: A sample covariance map generated by our algorithm. The covariance value of
each cell is indicated by its color. Blue indicates lower covariance, while brown indicates
higher covariance. The vehicle’s approximate position and direction of travel are given by
the red arrow. The terrain is a relatively flat desert road, with brush on either side. A
description of the significance of each labeled region is given in the text.

Figure 4.2 shows a sample covariance map generated as a result of our algorithm. For this
example we used the short-range (1m baseline) stereovision pair, as well as the roof-mounted
SICK LMS 221-30206 and SICK LMS 291-S14. Of course, our algorithm is not limited to
using only three different sensors — in this example we used only three for simplicity of
presentation. In particular, one can pick out which regions were filled in by which sensors
based on the values of the covariance in those regions, as described below:

Region A: This darkest region, the region with the lowest covariance, was generated by
the combination of all three sensors.
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Region B: This light-blue region was generated by coverage of both the short- and long-
range LADAR units, but not the stereovision pair. Thus the covariance is slightly
higher than that in region A.

Region C: This darker region was generated as a result of multiple scans by the short-range
LADAR of the same patch of ground due to the vehicle being stationary. Because more
measurements have been taken, the covariance is lower than that of region B.

Region D: This lighter region has been seen only by the long-range LADAR, thus it has
the highest covariance of any area in front of the vehicle.

Region E: As with region C, this region is slightly darker than region D (and thus has a
lower covariance) because the long-range LADAR was able to take multiple scans of
this area due to the vehicle being stationary.

Region F: The spotty regions to either side of the road the vehicle is traveling on are a
result of measurements of nearby brush. Because measurements are less dense to the
sides of the vehicle than directly in front of the vehicle, the covariance is the highest
in these areas.

4.2 Data Smoothing Results

1

Figure 4.3: On the left is a sample map generated using the old algorithm, which is dotted
with cells containing no data. On the right is a sample map generated using our algorithm,
which has significantly fewer no-data cells. In these maps, the color of a cell corresponds to
the estimate of its elevation, with blue cells being higher, red cells being lower, and white
cells indicating no data.

Figure 4.3 demonstrates how our algorithm reduces the no-data problem mentioned in
the introduction, even when only one sensor is used. In this example case we use only the
SICK LMS 291-S14 to generate the maps. This example shows what is potentially a worst-
case scenario for the old algorithm; the old algorithm was capable of doing interpolation
across small gaps of no data, which is not shown here. Even so, our algorithm still performs
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better in that its “interpolation” is performed probabilistically as a function of the incoming
measurements, and makes no assumptions about the smoothness of the map.

4.3 Disappearing Obstacle Problem Results

Figure 4.4: On the left is a sequence of elevation maps showing the fused map that results
from using the old algorithm, which did not adequately solve the disappearing obstacle
problem. On the right is a sequence of maps, taken at the same time steps, illustrating that
our method eliminates this problem.

Figure 4.4 demonstrates how our algorithm performs when confronted with data that, in
the old algorithm, would have lead to a disappearing obstacle scenario. Both cases start out
the same way: at ¢t = 0, the obstacle on the left (the blue-green blob, which in reality is a
bush) has been detected by the long-range LADAR. At time ¢ = 5, however, the short-range
LADAR scans over the obstacle, causing parts of it to disappear in the map on the left,
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while it is preserved in the map on the right. Finally, at ¢ = 7, the vehicle has passed the
obstacle and it has reappeared in both maps. Although the algorithm performed correctly
on this specific set of data, there were cases for which the obstacle still disappeared (albeit
to a smaller extent than before we began using the SPRT). Additionally, a great deal of
trial-and-error was involved in choosing values of A, B, and § which would result in the
algorithm performing correctly.

4.4 Unanticipated Results

Finally, we close this section by noting some interesting unanticipated characteristics of our
solution to the elevation-fusion problem not mentioned above.

Figure 4.5: An example of data from stereovision overpowering data from a LADAR unit.
The region labeled “B” has been seen by only the LADAR unit, and has a smooth elevation
(due to the high accuracy of LADAR). In contrast, the region labeled “A” has been seen
by both stereovision and LADAR data, but the elevation in this region is very rough due to
the more numerous measurements from stereovision overpowering those of the LADAR, as
described in more detail in the text.

The first such characteristic is that measurements taken using stereovision tend to “over-
power” measurements taken by LADAR units despite the relative inaccuracy of stereovision
compared to that of LADAR, as seen in figure 4.5. (By “overpower”, we mean that if a
stereovision system and a LADAR unit both measure the elevation of the same terrain, the
resulting estimate will be more heavily influenced by the measurements generated by the
stereovision system than by those generated using the LADAR unit.) This bias towards
stereovision is due in large part to the fact that the number of measurements stereovision
provides from a single image is an order of magnitude greater than the number of measure-
ments LADAR produces from a single scan. In a sample stereovision image, the number
of measurements that fall into a single cell may be in the dozens, while for a LADAR scan
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that number is rarely higher than two or three. Additionally, for a given frame the measure-
ments from stereovision that fall into a single cell tend to be highly correlated. (In other
words, the Gaussian noise occurs between the disparity values a pixel has in separate im-
ages, not between the disparity values individual pixels have within a single image.) Thus,
when the fusion is performed, the more numerous and highly correlated measurements from
stereovision tend to outweigh the measurements generated via LADAR. While this does not
necessarily represent a flaw in the system, it may be desirable to investigate an alternative
error model for the stereovision system that takes into account the highly correlated nature
of the measurements generated by stereovision for a given image.

Figure 4.6: An example of the data smoothing/obstacle growing that results from using our
algorithm. The growing phenomenon (which is described in the text) makes the obstacles
indicated by the red arrows appear larger in the map than they are in reality.

An additional characteristic of our algorithm is the apparent smoothing effect it has on
obstacles (i.e. vertical terrain features), as in figure 4.6. This phenomenon is generated only
by LADAR measurements, and is similar to the previous phenomenon in which stereovision
measurements “overpowered” LADAR measurements. In particular, this phenomenon is a
result of two aspects of our system. The first is the fact that LADAR units will generate
more measurements for a vertical terrain feature than for a horizontal one, since the LADAR
scan plane will intersect a vertical feature at multiple elevations as the vehicle drives forward.
The second is that we use the uncertainty ellipsoid surrounding the measurement to update
multiple cells for a given measurement. As a result, the cells surrounding the measurement
of a vertical obstacle are updated more times with data generated by that vertical obstacle
than by data coming from the actual terrain in that cell. The result is that obstacles appear
to be grown and smoothed within the elevation map, to an extent that varies proportionally
to the uncertainty ellipse surrounding the measurement. Thus measurements of obstacles
with a larger uncertainty ellipse tend to be grown more, while those with more accurate
measurements are grown less. Of course, this is not necessarily a flaw — the designer of the
path-planning algorithm, for example, can make use of this “obstacle growing” to treat the
vehicle as a point within the map, thereby potentially reducing the computational complexity
of the planning algorithms.
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Chapter 5

Conclusions and Future Work

In this thesis we have presented a probabilistic framework for performing real-time mapping
aboard an unmanned ground vehicle. Our framework has successfully solved some of the
problems that plagued the previous heuristic solution used by Team Caltech on its 2005
DARPA Grand Challenge entry. In particular, we have presented error models for two dif-
ferent types of range sensors, and made use of Kalman filters to fuse together elevation
measurements from those different sensors using their corresponding error models. Addi-
tionally, we have added safeguards that take advantage of the probabilistic nature of our
framework to prevent obstacles from temporarily disappearing from the map. The resulting
algorithm solves the “disappearing obstacle problem,” reduces the number of “no-data” cells
in the map, and provides a covariance map which indicates the algorithm’s confidence in
each cell’s estimated elevation.

A problem we have not covered in this thesis, but which is of critical importance within
the overall software architecture used by Caltech’s vehicle, is the problem of how to convert
elevation maps into goodness maps. For the 2005 Grand Challenge, a heuristic method was
used to convert elevation maps into goodness maps. However, due to the heuristic nature of
the elevation fusion, no confidence data was available for use during this conversion, and so
Alice drove at the same speed through terrain seen with its less accurate long-range sensors
as it did through terrain seen with its more accurate short-range sensors. In fact, this lack
of distinction between which sensors had seen (or not seen) the terrain surrounding Alice
was one of the major causes of the Caltech vehicle’s failure to complete the 2005 Grand
Challenge. By incorporating the covariance values generated by our algorithm (e.g., by
setting cells with a high covariance to have a lower goodness, and vice versa) this sort of
failure can be avoided in the future, and we strongly recommend that this adaptation be
investigated in future research.

There are also other potential extensions to our algorithm which have not yet been
explored. As mentioned in section 2.3, one potential extension would be to augment our
current range measurements with “null” measurements that indicate areas where there are
no obstacles, so as to better eliminate any spurious obstacles that are detected as a result
of sensor noise. This extension could be implemented both for stereovision and LADAR,
since range measurements from either could be used to determine rays along which no solid
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obstacle exists.

Another major such extension would be to use a multi-resolution map for storing the el-
evation data — that is, a map that does not have a fixed resolution, as ours did, but instead
automatically subdivides into smaller cells as new measurements are taken and smaller fea-
tures are detected. Alternatively, one could abandon the discretized nature of a grid-based
map altogether, and attempt to group measurements together into individual obstacles or
features that were not restricted to specific grid cells, but whose positions and other charac-
teristics were instead freely estimated using the incoming range measurements. In essence,
this framework would model the world in a vectorized manner, as opposed to the rasterized
model we have used.

Before we conclude, there is one final issue which we feel needs to be addressed given the
overall framework within which the research presented in this thesis fits. In particular, this
thesis has been the culmination of several years of work on the 2004 and 2005 DARPA Grand
Challenges. Recently, however, DARPA has announced a third Grand Challenge, to be held
in November 2007, which will focus primarily on autonomous driving in urban, dynamic
environments. It is clear that this urban Grand Challenge (DGC3) will present difficulties
that are somewhat different from those of the previous two Grand Challenges (DGC1-2). The
most notable difference, of course, is that in DGC1-2, the assumption that the environment
would be static was a valid one, whereas in DGC3, the environment will be dynamic, i.e.,
it will contain moving obstacles such as other vehicles. Because this static assumption was
critical for the mapping framework developed for DGC1-2 and presented here, it is clear
that additional work will be required for the Team Caltech vehicle to be able to compete in
DGC3. In particular, we believe that navigation in an urban environment will require the
vehicle to have a great deal more understanding and awareness of its environment. It will
no longer be adequate for the vehicle to treat all terrain features the same based solely on
their rough geometry, e.g., treating vehicles and large boulders the same, since they have
roughly the same overall size and shape in an elevation map. Instead, the vehicle will have to
actively recognize objects like vehicles, and attempt to model their dynamics to predict how
they will behave. The rasterized mapping framework used for DGC1-2 may not be sufficient
for this aspect of DGC3; a framework closer to the vectorized one described in the previous
paragraph may be needed.

Despite this fundamental shift in approach, we believe that many of the broader lessons
learned over the course of this research will be applicable to future work on DGC3. For
example, if both stereovision and LADAR continue to be used as the vehicle’s primary range
sensors, the error models presented in this thesis will continue to be applicable. Addition-
ally, the new framework that is developed should be designed so as to avoid issues like the
disappearing obstacle problem and the no data problem. And of course the benefits of a
probabilistic framework are now obvious; we believe that some of the same techniques used
in this thesis could be adapted for use in estimating parameters of distinct objects in the
vehicle’s environment. Regardless of the framework used for DGC3, the completion of this
thesis indicates that the torch is being passed to a new team of Caltech students and we
wish them luck in their continued development of algorithms for autonomous navigation.
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