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The statistical model of the atom is extended within the
semi=-classical framework to include the correlation emergy of the
electron gas, obtained by an interpolation formula which reproduces
the known high and low density limits exactly. The basic eguations of
the model are derived; and general theoretical results valid for all
free atoms znd ions are obtained., These include the determination of
the electron density at the edge of the atom, a virial theorem for the
atom, an estimate for the correlation energy as a function of Z, and a
treatment of the Fermi-Amaldi correction, The theory of the compressed
atom is also treated, and an eguation of state as well as a virial theorem
for atoms under pressure is derived. The eguations of the model are
solved in terms of a Thomas-Fermi-Nirac - 1like approximation, in terms
of a semi-convergent expansion for the potential near the mucleus, and
numerically for the atoms Argon, Chromium, Krypton, ¥enon, and Uranium on
the Burroughs Computer, Complete tables of the solutions obtained are
given, The solutions of the model are illustrated in detail for the
case of Argon, including a calculation of the energy terms of the Argon
atom, Finally, the extended model is applied to the calculation of
equations of state, the cross-section for small-angle scattering of
medium-energy electrons from atoms, and atomic polarizabilities and
diamagnetic susceptibilities., It is found that the extended model

leads to improved agreement with experimental valves,
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I. INTRODUCTION AND BACKGROUND

A, Introduction -

The so-called semi-classical statistical model of the atom,
originated independently by Thomas (1) and Fermi (2), has proved
to be a simplified, albeit fruitful and versatile approach to the
many electron system of the atom, Since its inception, this model
has been extensively elaborated by numerous authors, and has been
made the basis for the caleulation of a large variety of atomic
properties, Comprehensive reviews of the theory and applications
of the statistical model have been given by Corson (3) and Gombas (L),
The model is based on a number of simplifying assumptions
- which we shall sketch briefly. To begin with, it is assumed that the
electrons surround the nucleus with a spherically symmetric density
distribution. The basis of the model lies in assuming further that
the volume of the atom can be divided into subvolumes hﬁT‘rgdr over
which the potential is approximately constant but which still contain
a sufficiently large number of electrons., Finally, the electrons |
occupying each subvolume at a distance r from the nucleus are
considered to constitute a totally degenerate electron gas at zero
temperature, whose energy density €. depends solely on the electron
dengity’ f)(r) and the nuclear potential at r. The energy of
the atom as a whole is then obtained by integrating both the potential
energy and the electron gas energy density over the volume of the

atom, The above model is semi-classical in the sense that guantum



mechanics enters only into the expression for the energy density
of the electron gas,

In the spirit of the above model it is clearly desirable to
write the best possible expression for € . In the original formu-
lation of Thomas and Fermi, which has come to be called the Thomas-
Fermi model (henceforth abbreviated as TF), € was taken simply
to be the kinetic energy density of the degenerate electron gas,
Thus, all electron interactions with the exception of the classical
electrostatic Coulomb interaction were neglected. It was found that
the electron density calculated on the basis of this model decreased
too slowly'with distance far from the nucleus, and thus led to
appreciable errors in the calculation of effects which depend criti-
cally on the electron density in the outer regions of the atom.
Examples of such ére atomic polarimabilities and diamagnetic
susceptiblilities, the cross-section for small_anglé electron scattering
from atoms, and equations of state. |

The first step toward extending the model was taken by
Dirac (5) who, in addition to the kinetic energy density, included
in &€ the exchange energy density of the electron gas. The corres-
ponding model is known as the Thomas Fermi-Dirac model (henceforth
abbreviated as TFD).

Within the framework of the semi-classical statistical
approach outlined above, the next obvious extension of the model
is to include in € the correlation energy density of the electron
gas in addition to the kinetic and exchange energy densities, The
chief difficulty is that the electron density in an atom ranges from

very small values at the edge of the atom to very large values



close to the nucleus. Consequently, it is necessary to have an expres-
sion for the correlation energy of an electron gas valid for the
whole range of eleciron densities. Expressions for the correlation
energy of an electron gas have been obtained at the low density limit
by Wigner (6,7), and at the high density limit by Gell-Mamn and
Brueckner (8); it has so far been impossible to derive}theoretically
an expression valid at intermediate densities, which correspond to
intermediate coupling (Cf. Gell-Mamm, ref. 9) in the perturbation
approach to electron interactions,

A first attempt to take into account the correlation energy
in the statistical model of the atom was made in 1943 by Gombas (10)
based on an approximate expression for the correlation energy due
to Wigner (7), whi;h, however, is valid only for reasonably small
densities and thus not realistic for the atom as a whole, More
recently, Lewis (11l) treated the same problem, starting with an
analytical interpolation formula for the correlation energy which
allegedly reproduces the known exact expressions at the low and high
density limits., In view of the lack of a satisfactory theoretical
expression at intermediate densities, this appears to be areasonable
way to appréach the probiem from a practical viewpoint, However,
the work of Lewlis includes some unsatisfactory aspeets which it is
our intention to obviate. In the first'place, there is a fundamental
error made by confusing the average energy per electron with the
energy of an electron at the top of the Fermi sea., Secondly, the
interpolation is unnecessarily crude and can easily be improved in

order to reproduce both the high and low density limits correctly.
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Porther, as has been pointed out by Gell-Marn, there are some missing
terms in Lewis' expression comnecting the potential with the demsity.
This arises partly from the fact that the interpolation is not carried
cut between the known high and low density limits for the energy
density € , but rather for e/e—/a!/o o With the result that the known
limits of & are not reproduced, Finally, the work of Lewis is only
preliminary in that he merely derives the Fermi-Thomas equation
corresponding to his expression for the correlation energy density,
but does not sélve the resulting equation., Nor does he attempt to
develop the theory much further beyond obtaining an expansion for
the potential near the origin and a virial theorem for the atom,
both of which are also in error as can be seen from the fact that
they do not reduce to the TFD limit in the case of vanishing correla-
tion, The former of these is presumably due to an algebraic error,
while the latter arises from a misunderstanding of the work of Feynman,
Metropolis, and Teller (12).

I% therefore appears worthwhile to reattempt the problem of
including the correlation energy density in the statistical model
- of the atom, and to investigate fully the implications of this
extension of the model, to which task the present work is devoted.
In keeping with the preliminary work of Gombas and Lewis, we shall
remain strictly within the semi-classical framework in the sense
oublined above, and neglect the se called 'quantum corrections' to
the\madels which are essentially inhomogeneity corrections, Thellatter
were first discussed in 1935 by Weizsaecker (13), and most recently

by Baraff and Borowitsz (14)s It is well known that in the outer regions
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of the atom, which are of paramount interest to us; the guantum
corrections are negligible,

In the remainder of Part I we collect some basic results from
the theory of degenerate gases and from Fermi-Thomas theory for
purposes of background and later reference, In Paft II we derive
an interpolation formula for the correlation enérgy density of the
electron gas, which reproduces the lmown exact high and low density
limits, In Part III we derive the Fermi-Thomas equation corresponding
to our expression for the correlation energy density, and reexpress
‘it in dimensionless variables, Part IV is devoted to a full development
of the theory of the free atom on the basis of our model, i.e.
to those features of the model which can be obtained without resorting
t0 a2 numerical solution of the equations. Part V treats the case of
the compressed atom, In Part VI we discuss methods for the solution
of the.basic‘equations of the model, The equations have been solved
on a computer for the cases of Argon, Chromium, Krypton, Xenon, and
Uranium. In the way of illustration, the solution for Argon is
discussed in detail in Part VII. In Part VIII we present various
applications of our model, and compare our results to the corres-
ponding TF and TFD results, wherever possible, also to experiment.
The applications cconsidered are equations of state, small angle
scattering of medium energy electrons from atoms, and the calculation
of atomic palarizabilities and diamagnetic susceptibilities, Finally,
in ihe Appendix we include complete tables of the numerical solutions

obtained,
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B, Resume of Basic Formulae

For purposes of background and convenient reference we collect
in this section some well known results from the theory of degenerate

electron gases and from the statistlcal model of the atom.

(1) Electron Gas

We consider a completely degenerate electron gas at zero
temperature, consisting of N electrons confined in & volume V , and
define the uniform density /0 = N/V , We nmow ask for the energy of
the ground state of the system,

In the first approximation we take into account only the
kinetic energy of the electrons. Then a simple guantumemechanical

calculation yields for the average energy per electron:

_ 2/,

@ 3

[ = K k /0
(I=1)

where

Wem (3/10) (37203 &2, = 2,871 o

k

The kinetic energy density of the electron gas is conseguently given
by
- 3
Ek ':"/OMk = D(k/O (I=2)

and the highest energy electron at the top of the Fermi sea has the

energys

- (1-3)
me = (k) (2m) = (5/3) F
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If we include effects of exchange, the total energy density
of the electron gas becomes
€ = € K+ & e : (Inh)
where Ee 1is the exchange energy density term given by

€, = — l)(e/°4/3

where

(1=5)
Xe = (3/) (3/m)Y° e = 0,738 €2
Thus, the total energy density of the electron gas, I-=li, has the
explicit form:
3 3 /A
€ = D(k/’ - °(e/‘° 4 (1-6)

Finally, for guick reference , we note the following definitions which

are frequently employed in the statistical model of the atom:

vy = (3/ br)Y/3 P U35 ag =42/(ne?) 5 (Ry) = €2/2a,

(I=7)

(ii) The statistical model

The basic asSumptions vnderlying the statistical model of the
atom were outlined in the introduction, The elementary Thomas=Fermi eguation
can bevderived from simple physical considerations; howevera for purposes
of later extension, it is advisable to follow a systematic approach,

On the basis of the statistical model, the total energy of an

atonic system consisting of a nucleus of charge Ze surrounded by
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N electrens can be written in the form:

{
E = Je({akalv - jc V,V/o/v + e | |enacry) dvdv
2 JJTiRrLF
(1-8)
The first term on the right of I-8 arises from the energy density
& ( /o) of the electron gas; the second integral represents the
energy of the electron gas in the nuclear potential Vi , and the
third is due to the electrostatic Coulomb interaction of the electrons,
The electron density is now determined from the condition

that the density be such as to minimize the total energy of the

atom, subject to the side condition that the atom contain N electrons:
dv = N
(° (1-9)
Expressed formally, this condition becomes
SE+NevV) = 0 (-10)

where V, is an as yet undetermined Lagrange multiplier. If the
kinetic energy density I-2 is substituted for ¢ in expression I-8,
and the variation indicated by I-10 is performed, one obtains

the eguation

%fv.yoz/“ = (V-Ve (1-12)

where V represents the total potential at r, When this is

 combined with Poisson's eguation:

VEV-Ve) = 47706 (1-12)



one is led directly to the Thomas-Fermi eguation:

PH(V-U) = 4re (32 )%rv—ms"—
I

Equations I-8 through I-13 represent the basic theory of the TF

(1-13)

statistical model, The boundary conditions on the potential are given

by

Lim r (V-Vy) = 2e
r-p 0

- dv/dr - (z - N) efR?
r=R
where R represents the radius of thé atom, Equation I-13 is
customarily expressed in terms of dimensionless variables defined
by

Vi) =L (v-14)
Ze

/
= : - a 2\/3
X f??u ; //u-— Qo (’9jz
| 4 \ 22
In terms of these variables, eguation I-13 and the boundary

conditions I-1l,15 take the form:

(I-1k)

(1-15)

(1-16)

(1-17)

(1-18)

(I-19)



where X = R//;,e Thus, in dimensionless form, the Thomas-Fermi
eguation and its boundary conditions are independent of Z , so that
a single solution applies to all atoms, the scale being given by the
definitions I-16,17. The solution of I-18,19 can only be obtained
numerically.

In order to obtain the Thomas-Fermi-Dirac eguation it is
merely necessary to substitute in equation I-8 the expression I-6
for the energy density of the electron gas-and again determine /0 (r)
from the condition I-10, If this is done, equation I-11 becomes

replaced by

ks B _ 4w % = (V-V)e - (1-20)
= tx’k/o /3 e p ,.

It is again possible to solve this equation explicitly for /0 (V»VO)
and substitute it into Poisson's eguation, yielding in place of

I-13 the TFD equation:

3, Yy 3 |

Y-V, + 77 = 3e V-Y+7% "+ 7 1-21

72 (V-V, +7%) = 4ne :“K) [E v ] (1-21)
where

P

)
™= (L~ e )/z'
27* a,

If analogously we define the dimensionless variables:

Ly =k (V-V, +T>)
Ze

X = I"//u

(1-22).
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the equation corresponding to I-18 becomes:
, ) : 3
e sp /2.
5”6 (x) = X/(_)?C_) + K] (1-23)

with

= 2 Ke )
3e2(‘:‘n‘ZZ)/~3

The boundary conditions corresponding to I-19 in this case take

the form:

Yy =/

% () = XK

X
7e (1-2L)

Y(x)-XE'I) = z_z-;_./z

Unlike in the case of the TF atom, here Z is involved both in
the equation for % (x) and its boundary conditions. Consequently,
a separate numerical solution beccmes necessary for each value of

Z and N,



II, INTERPOLATION FORMULA FOR THE CORRELATION ENERGY

OF AN ELECTRON GAS,

There is some ambiguity in the literature in the usage of
the term 'correlation energy' for an electron gas, The correlation
energy is defined by some authors to be the difference between the
eiact energy and the kinetic plus exchange energies; whereas, particﬁlarn
ly since the advent of field-theoretic methods for treating
many body problems, the term is frequently applied simply to the
L

e term in the perturbation expansion, Here we shall use the

term interchangeably, the difference between the two definitions
6

clearly consisting of terms of order e- and higher.

As we have pointed out previously, the atom as a physical
system encompasses a wide range of electron densities, whereas
exact expressions for the correlation energy of an electron gas
are known only in the high and low density limits. In order to
include the correlation energy in the statistical model of the atom
it therefore becomes necessary to first obtain a reasonable inter-
polation expression which can be assumed to be approximately valid
in the intermediate density range.

The high density limit has been derived by Gell-Mann and
Brueckner {8) who obtain the following expression for the average
correlation energy per electron of an electron gas in a uniform
pogitive background.

P o= 2 (/-4nz) dn .'fS_) - 0.096 (11-1)
¢ T Qo
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where ;c is expressed in Rydbergs. We write this in terms of a

Y,

dimensionless variable 3 = ap/o 3 , obtaining:
—- Y
Mg = =2 (1-4p2)fn 8 ~ /2 (/-«?nZ).Qn(f_’_C)a-f- o.a9§/ (11-2)
77'1 T 3
After calculating the numbers, this becomes
d. (Ry) = =RBM3 — (' >7 |

(11-3)
/g = 006218 , C'= 01257

The corresponding low density 1limit has been calculated by
Wigner (6,7) starting from the assumption that as /° - 0 the electrons
crystallize into a cubic body-centered latiice, which has a lower
energy than any alternative lattice, The calculations of Wigner
have recently been redone by Coldwell-Horsfall and Maradudin (15)

who obtain for the total energy per electron the expression:
= - 0.89593 €%/
Utot, 09593 €7/ rg (11=h)

The correlation energy per electron is obtained from the above
by subtracting the exchange energy per electron, Ee / /a s where

€ ¢ is given by equation I-5, Conseguently, we have:

o

Mg = Myt — Se/o (11-5)

If we express this in terms of the dimensionless variable ¥ and

in units of Rydbergs, we obtain:
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i, (Ry) = -Y% 3 <</

J
(T1-6)

Y =2 /0.37573)(_4_31)'/3 __éz. (%)"3: /412

Our aim is now to find some analytic interpolation formula
for U, which reproduces the above high and low density limits.
An obvious first attempt (essentially equivalent to Lewis (11))

would be to try
i, = o Anl(l1+63) + C (11-7)

which has the limits

(g la% +alib+C 35>

M, = (TI-8)
ab¥ +C , 35 /

In order to satisfy the low density limit II-6, we must have
C =0 ) ab=—F

and the high density limit reguires
a :=-7/§ | ) al,fg b =-c'

The above four eguations constitute an overdetermined set, If we

choose to reproduce the low density limit exactly, we must take
C=o0 , @ = -ng J b= W%§G

- which means that we cannot reproduce the constant C' in the
high density limit. Although the absolute value of C' dis irre-
levant in the statistical theory of the atom, the difference
between -« a2 In b = lc‘f%7(6z4) and C' gives a general measure
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of the error of the in'terpolation formula, In this case we have
/31&(*/{3\ = 0,195 compared to C' = 0,126,

However, we can improve upon this result and require that
both the high and low density limits be satisfied exactly. This can
be accomplished by adding to our trial function II-7 a functi:on

f\ (3 ) with the following properties:

7[\(3) — constant , 3§ >> /

A simple function of this type is f(i) =c% (Ffal)_l . Conse-

guentlys we shall replace II-7 by the trial function

Me = @ An (1+3) + ";o/ (11-9)
which has the limits:
a3 + C , 3 >>/
de = ‘ (11-10)
(& +;I§.> T , B/

It can now easily be shown that both the limits, II-3 and II-6,

can be satisfied exactly by choosing

/ c’
a:-ﬂ) ¢c=-C , o= ——r (II-11)
| A
£ we calculate the necessary numbers we find that with II-11

our ‘proposed interpolation formula II-9 for the correlation energy

then becomes:

i (Ry) = —0.06218 bil1+3) — 04257 5 (1139
Y+0.093/
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Finally, for later use, we write explicitly the corresponding

expression for the correlation energy density E¢ in the form:

— Y, %3 )
€. = Nc//aln(/+a7o 3) + ffz‘%’a—] (11-13)

where

>, = 0.03/07 e* , =2.02/6 , 7=0.0931]

Ao

In order to assess the reasonableness of our interpolation
formula we have made a numerical comparison of II-12 with an
approximate ex%rapolated expression obtained by Wigner (7) for
reasonably low densities., It was found that II-12 agrees with
Wigner's expression well within the accuracy claimed for the
latter., Thus, our interpolation formula can be considered satis-
factory from the point of view that it reproduces both the high and
low density limits exactly, and agreés with an independently
obtained approximate expression over the range of validity of the
latter,

If desired, the interp@latian procedure could be carried
out to higher orders by making use of known higher order corrections
~ to both the high and low density limits. Thus, the next term in the
high density limit II-1 is of the form rsln(rsfao) while the
next term in the low density limit II-l is proportional to rg=3/2,
An ipterpolatibn corresponding to II»lZ exact to those orders is
found to lead to a set of eight non-linear simultanecus equations,
While it is possible to solve these, it is felt that the inherent
inaccuracy of the interpolation procedure does not warrant the addition-

al ocomplications involved, particularly in later worke



III, THE THOMAS-FERMI EQUATION INCLUDING CORRELATION

We now proceed to derive the fundamental eguation of the
statistical atom model based on our interpolation expression II-13,
In section A we obtain the analogue of the TF or TFD equation,
given, respectively, by I-13 or I-21, and carry out the conversion

to dimensionless variables in section B,

A, Derivation of the Eguation,

We begin by including the interpolation formula II-13 in
the expression for the total energy density &€ of the electron gas,

and thus write:

) A N / (1#2.0%) + 00 II1-1)
€ = K"f o(e/o Wc/@/n 470 7_1_4/1/3 ( )

The total energy of the atom can then be written in the form:

E = By + Ep + Eg (I1I-2)

H (r) fr) Avdv’ (111-3)

£ - '—efﬂwv

The term Ey represents the contribution of the electron gas energy,
while E; and Ej are the electrostatic energies due to the electron
Coulomb interaction and the nuclear potential, respectively., We must

now perform the variation indicated by I-=10. i.e.



S(E+NevV, = 0 (TTI-k)

Taking the variation of the individual terms of III-3, we obtain
in view of IITI-1:

ijJV[ Xk/az/3 - %Mc/o‘é _O(C/:én(/fda/olé) #

VZ

+./._4¢‘£..i 2 ca % — L 5‘[00 ]
3 /fq,,/ll{S +-3 7-+a,/a'/3 3 (7'+4,/o %)° f)
dE, = e’-f _[J._,gf!‘ﬂf("’)?("dvl-r - jg dv [—epcri)dv’
¢ F-F'l )P
= - ef S/ dv Ve
(I11-5)

JEJ = —eJS/oaIVV

and
oN = N{‘EQO‘!y'
where V,, as is apparent from the above, is the potential at r
due to all the electrons of the atom. If we denote the total potential

by V = Vy + V, and substitute the expressions III-5 into III-k

we obtain the desired local relation between V and p H



- 3. 7
(V-VY,)e asf.o(k/o 3-9‘0(¢/ -xc/:?n(/fdyz 2) +
* _(' %o + -f.__?i, - L o (a
S+ 7y 3(“‘7&“, e e, )t [ (111-6)
Together with Poisson's equation
V"(V~Vo)‘= 4'47'/@ (T1I-7)
and the physical boundary conditions
Lim i~ (V-V,) = Ze (IT1-8)
r—»0
V(R) =~ @__‘__’.‘2.-‘?— (III-9)
<
- dY = (Z-Me (TI1-10)
arir=R <+

our model is then completely defined, If in equation III-6 we set
X e = 0 we reproduce the TFD model given by I-20; if we set both
Ce = ®e = 0we regain the TF model described by I-11,13,

Unlike with both the TF and TFD models, in our case it is
manifestly impossible to solve equation III-6 explicitly for /a (V= Vp)
and substitute it into Poisson's equation in order to obtain a
differential equation involving only the single dependent variable
(V - Vo). This circumstance causes considerable analytical
compiications in the actual solution of the system of equations

defining our model, but presents no fundamental difficulties,
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B. Conversion to Dimensionless Varlables.

In order to express the eguations of our model in terms of
dimensionless variables corresponding to I-18 or L-23, we may
proceed in two alternative ways.,

| We again define the dimensionless variables SV (X)) and x

by means of

W(x) =§'_‘1 L Ver — %_7 ’ (III-11)
e
)
o] e

If we now further define the variable A (x) vy

Mx) = k xl/’}o bk - M (_%E_)l/s (1I1-13)

then Poisson's equation in terms of these variables takes the form:

3
j‘./j-;? = -A-,;- (111-1h)
X Xz

i.e, it becomes a second order differemtial eguation in the two
dependent variables 9” 9 /\ s The algebraic relation connecting
‘;” (x) and )\ (x) ecan be obtained by expressing equation III-6 in terms

of the above dimensionless variables, Thus we find

?(x\ = ')\L-—% xtA - \_‘)_{‘(e ,,z_) (171-15)

. where

F(3) = by(1#5) +2

and

2
+"°'3 —fo 3 (111-16)

8 /’b‘s S7™M3 S (rmt



@@ L=
=2(12)° A (mm)

¥ = = (’/—/nZ) ?//)
_ZA 4r*2 V22
We must now express the boundary conditions as well in
dimensionless form, Since Y (x) was defined exactly as in the TF
case (Equations I-16,17), the boundary conditions corresponding
to III-8 and III-10 are likewise identical to those of the TF éase,

i.e, we have

oY =/ (TIT-17)

W(E) - X ¥R) = :z.’.g"-f (IT1-18)

The boundary condition III-9 becomes in view of the defining

equation ITI-11:
wexr) = Z/;;ﬁe—'(‘/fm‘%)] (TII-19)

Referring back to III-6 we see that the term in brackets on the
right-hand side of ITI-19 is a function only of Z and the
density Po= Ve (R) at the outer radiuvs of the atom. As we shall
show next in Part IV(A), for the case of a free atom, /oa is an
invariant for all atoms and ions. Consequently, III-19 can be

written in the simple form

#cx) = X Cipa) (111-20)
where ( ( /‘o) is a constant given explicitly (Cf. equation IV-20)

by

/.
C(/oo\ = - 02?55 7';7') N (111-21)
2
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Thus, in dimensionless form, our model is represented by
the differential eguation IIT-1lk with ?V and .A connected by
I11-15,16, and where 90 must satisfy the boundary conditions
1I1-17,18,20,

The advantage of this form is that the differential eguation
itself is simple in form, and the boundary conditions are likewise
relatively simple and directly obtained from physical considerations,
The disadvantage is analytical in that we must deal with a system
of equations rather than with a sgingle differential egquation. As in the
TFD case, it is necessary to obtain a separafe solution for each
atom and ion since both Z and N enter into the eguation and
its boundary conditions,

Alternatively, we may try to obtain a single differential
equation in a single dependent variable, This can be achieved by
substituting III-15 into III-1l and performing the indicated
differentiation, Thus we obtain after considerable simplification:

DN 4 2 (=[xt A e 51eh)] -

X% Gxh

— 2
- ne€A N fe(2xA'=A) _ d |
b’x 5- (X'I") 7 PETA = XA’/-L (I11-22)

where the primes denote differentiation with respect to the
‘ "
argument and 5 'C?\)and E ( 3) are given in their simplest

form by
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=21 - + 4= _ 203 L 263"
; (:\ 3 /+% 3(/-»"3')2' 3 FeX (73t T et
(I11-23)
F5)=-5 L ,z.,_? /0o . . /603 _20%"

Eguation ITI-22 together with ITI-23 constitutes a differential
equation in the single dependent variable )\ (x), albeit a very
complicated one, Its only advantages are analytical in that we
obviate the necessity for dealing with a system of eguations and
have freed the eguation from troublesome logarithms, contained origi-
nally in YIII~15. Also, once a solution for A is obtained, the
corresponding value of ¥ (x) is obtained relatively simply from
III-15, while the reverse is not true,

It remains to express the boundary conditions III-17,18,20
directly in terms of A (x). The boundary condition corresponding to
ITI-8 cannot be obtained directly from that for 4 (x)., Instead, we
proceed from the observation that since correlation will not appreciably
affect /0 (r) near the nucleus, the behaviour of /0 asr—>0

will have the same character as in the TF and TFD cases, namely

/o(r) ——*42 - P//z ; 1m0 (TII-2L)
r/u

If this is expressed in terms of A s we find
Aoy =/ | (T11-25)

At the outer edge of the atom, the boudary condition corresponding

to III-20 follows directly from the definition of A’, and we have
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AN(X) = k /aol/“Z‘ “ (ITI-26)

where, as mentioned previously, /00 and k are known constants.
Finally, the bondition corresponding to III-18 can be obtained by

substituting TII-15 into ITI-18 which yields the complicated relatiom:

¥ —
IRV S NP SRS 2V e
(11I-27)

+ &Xl/z (ZZ/\GI——/\O)S"I—E_-{‘%) = 2=V
T2 | & z

where

- Sy
Ay = A(X) A j/_}_/

J
X = X

Thus, our model can be described in dimensionless form alternatively
by the system of eguations III-1k,15,17,18,20 or by the system
II1-22,23,25,26,27,
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" IV, THEORY OF THE FREE ATOM

This part is devoted to the development of what we consider
to be the basic theory of our model defined in Part III, i.e. to
those features which can be obtained without resorting to 2 numerical
solution of the basic eguations of the model. The most important
of these are the determination of the undetermined Lagrange multiplier
Vo, and the electron density /Oo =P (R) at the edge of the atom,
These are obtained in section A. In section B we derive a virial
theorem for our model, Section C is devoted to establishing an
approximate expression for the correlation energy of the atom as a
whole, Finally, in section D we investigate the well-known Fermi-
Aﬁaldi correction (16) in the framework of our model, Our considerations
in this part will pertain exclusively to the case of the free atom,
defined by zerc pressure at the boundary. The corresponding situation

when this requirement is relaxed will be treated in Part V.

A, Determination of Vo and g, .

The most important result of our model which can be obtained
without expliecitly solving the system of eguations ITI-(6-10) is
the value of the electron density at the edge of the atom, which
in turn serves teo determine the previously undetermined Lagrange
muiltiplier VQ,‘WQ have obtained the fundamental equation ITI=6
by reguiring that the electron density as a function of r be
such as to minimize the total energy of the atom. If analogous
to the TFD case we assume that the electron demsity in our model is

given byib (r) up to the edge r = R of the atom and vanishes
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thereafter, it is then clear by referring to the boundary conditions
I1I-8,9,10 that the total energy of the atom is a function of the
hitherto undetermined atomic radius R, We can now in turn obtain
a condition on R by requiring likewise that R will adjust itself
such as to make the emergy of the atom a minimum, i.e. by regquiring

the fulfillment of the condition

..é:—-f- =0 (Iv=1)
&R

In the above variation we must remember that /0 must simultaneocusly
satisfy the egquation III-15, obtained by our previous variation
of E with respect to /o while keeping R constant. We shall
find that the condition IV-1l leads to an equation for the determination
of /oo '

We begin by rewriting the expressions III-2,5 for the total

energy of the atom in the forms

R
7 9/3 j (/+ao ’/3)4-
£ = i 47rr‘Jr?b< —Kep =g [ pAnCItAy
. k/d e 4 / |

Z o
+.E:‘_'.97Ll_/_:] - eﬁ Wy r) —_ze__ﬁl/ecr)} (1v-2)

7T+ as Y
In performing the variation IV-1 on the expression IV-2 we must
keep in mind that both the limits of the integral IV-2 as well as
the functions Vg and /0 (r) in the integrand are functions of R,

Following the usual rules for differentiating an integral, and

writing /00 = /9 (R) we then obtain:
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R

SE_ S foep P [ Lallranp ) +
—;ﬁH W L

F2Tap® 1 s (ap®)”

[*)
3'7*-/-40/0"3 CEE S -/470’4 ]

‘- e %(r) —-_% Ve(r)} —77% Frrdr —

R
_ | e 0 QWD grrdr L 4R X, ) %
sz oK / //

(o}

2, % 0. 4%
- Xes __p(c// /61(/%/ %) 4 gjd/ ]

"'6/ (K) —-__2_-_,/ W (R) } =0 (Ivbagj;

In order to simplify this expression, we start by considering

the following expression:‘

Vocr) = -—ej (f')_f/"l (Iv;h)
e Tl

from which we can obtain:

R)dls f/ ) 9,0(/')4/
____,__;) = - ,” -F ] U S

P =R
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where the first integral on the right of IV-5 arises from the
differentiation of IV-l with respect to the upper limit of the
iﬁtegral, and is an integral over the surface of the sphere

[F*/ = R, We now form the expression:

» R
21 e f Ve o pidr = .__f /aa/l/ (1V=-6)

Fld

By substituting equation IVe5 into IV-6 and exchanging the order

of integration in both terms on the right-hand side, we find

e Ve ,,/ = /fdsf (R)(r)JVf(r’)/ err)]
2 J~ /0 ’ /r— sﬁ_‘ ’

..*/-

= —%/ffol{(r*)dS + | Ve(r) 9/?0’)0/,,_/]
S

x
=2 [ nRRl, + fo 2202 %(rfwrf:/r]

(1V-7)

In the last integral on the right of IV-7, the dummy variable r°
-may be replaced by rj; if we then substitute IV-7 into IV-3, the

latter becomes
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- | 5 % %
%1% - 477' KZ[K/(/Oa B‘O(e/oo f‘p(c//-ﬂo 'Z’(/f"ﬁ.fa 3) 7

9/
Zefe - R) —eq V(R) | +
+7_$:_‘;_ﬁ/_%73] e/o,l/,v() e o Y )}
R
7 Y y ,
'f‘“[}7”/”ﬁJ7§%$l{;§fN€/g %‘E?“m7ﬂ 3 _ NbZZZZ7(f+a7ﬂ 3) £

o | 2
L ST Y Wi ~Lo@e®) 5) ]-e%—@%j (17-8)
/M«fy’ 2 74 cya’/a 3 (7’1‘474”3)2 |

Referring back to the equation III-6 connecting V and /° ; and
notiné that Wy = Ve # V, it is seen that the complicated

integral on the right-hand side of IV-8 is simply equal to

—e |47e* W Do dr (17-9)
J 5 ’
However, siﬁce
/\/:f4r/‘/';oz//‘ (1v-10)

we have, for a fixed number of electrons

4 5

N _ o = Fa R, + | 4Tt dr

AR / 0 57?

with which the integral IV-9 reduces simply tos
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47’/‘/(;%6%

Substituting this result into the complicated integral-differential

equation IV-8, we obtain the much simpler forms

2 3 - 72
E o — 3... N oY )7"
%7? -0 =%"R /K"/° xc/o xc&,/ (/ﬂ/

+ Tﬂ ]__ e/‘V[k) .,«.C/o,l{} (Iv-11)

7T+ a/a

This can be further simplified by substituting into the above for

V(R) = Vo the expression obtained from III-15 with /00 in place of /

Thus, we are finally led to
%

SE _ 4 'n'/?/.__xk/ L xc/ﬂ +D(c/—'7£""

TR /+4/

! & (. )/o ]f

3 L

—3
7 +a.,/o°'/3 T+ e/ /3)* (1¥-12)

which is simplj an algebraic expression for the single wnknown /a o
Since the solutions R =0 or /o = (0 are ruled out by the
requirement that with b(,_ = 0 our model must reduce to the TFD

case for whieh boeth R and /’o are known to be finite, we can
freely divide the above equation through by R and /ao o 1f we
consequently divide the last equation through by R2 /o s Peexpress

Y3

it in 'terms of the dimensionless parameter 5 =do / and adopt

the definitions

folg)e s pe ()%
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we find, after some algebra, that the simplest form of the

detemining‘equa,tion for ¥, is a quartic given by
4 3 2
F(3) =0 = ' +a% + b5 #ch+d (1v-13)

where the known constants a,b,c,d are as follows:

a = [| + 27 - /gg
27+ 7% =k (/7 27) - Ae
c = p? -—éi(Z?“,«?'z)-—é‘— (27-+70)

d = —AC_ 72_7£c_ (7‘"'+7"0‘)

2 é

O~
h

(Tv-1L)

The necessary numerical values are calculated to be:

[3:@ 0.2573 , | A = 0,01083
- a = 1,058, b =0,03690, ¢ ==,01843, d =-,002180

4 cursory analysis of the function /\ ( So)revea.ls that it has
a unique zerc on the positive 5,-axis, In order to obtain I,

we have solved equation IV-13 numerically by Newton's iterative
method, finding
%
, = O0./5048 = 4%'0 | (Iv-15)

which yields the value

—3
/oo = 3,40 7{ x /0 (17-16)
ao .



As is apparent from the generality of the above derivation,
the electron density /00 at the edge of the atom is an invariant
for all atoms and ions in this model. The same is true for the TFD

model for which

-3 '
/007,5'0 = 2./5%0_0__ (Iv-17)
-}

We see that the effect of including the correlation energy
density increases the value of/o° by some 60 per éent over the
TFD value, It does not follow, however, that the effect of cerrelation
on other parameters of the atom, such as for example the energy, will
be of the same order of magnitude., In the simple TF model, /Fk = 0 which
implies an infinite radius R, and consequently leads to a too
slowly decreasing electron density for large r, and to considerable
errors in applications of the model to situations for which the
density in the outer regions of the atom is significant.

The above result has as its consequehce that the value
of R for a given.atom or ion in our model will be smaller than the
corresponding TFD value, although =--- unlike /00 === R cannot be
found without first solving the equations completely, '

Fiﬁally, we determine the Lagrange multiplier Vy, We proceed
by writing the basic eguation II;«é for r =R and /9 = /Oo . By

then taking cognizance of the boundary ccndition III-9, we have

...Voe_ = -(__g_’_:;e!_)_.@-?‘_{xk Zoz"-g-f.(_e.’fo —_

a,* Qo

- kzz/gz'(/¥ﬁ3;)'*‘~£-——-‘ + 2o L cr:ié —}7
/*3s © 37 7+ 3 3 (7r+3)2/ (1v-19)
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With ;o given by IV-15, the terms involving ¥, in IV-8

can be evaluated, and we obtains

Voe = ‘%&17& 00089335_2 (1TV-19)

Equation IV-19 shows that for neutralk atoms Vy 1s a universal
constant, while for ions it is a function of the degree of ionization
and the radius R of the ion. In both cases we have, again by
referencé to the boundary condition III-8 the relation
(V(R) - Vy) e = = 0,08933 ﬁ (IV=20)
)
It is this relation which permits us‘ to write the universal
dimensionless boundary condition III-20,21,
We have thus accomplished our purpose of finding exact
expressions for /Oo and V, directly from the basic equations of

our model, We shall find these to be very useful in the development

to follow,
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B, Virial Theorem

Qur purpose in this section is to derive a virial theorem
for the atom based on ocur model,
The corresponding virial theorems for the TF and TFD models

are given, respectively, by

2 By +Ep = 0 (IV-21)

2 Bg+E,+Ey = 0 (1v-22)

where Ex, Ep and Eg represent the total kinetic, potential,
and exchange energy of the atom, respectivelys

We shall use as our starting point an approach due to Fock (17)
ﬁhich is based eséentially on a similarity transformation, In
this method, we let/o be the density which minimizes the energy of
the atom, i.e, the density which satisfies the basic equations TII-6,7,
We then consider a family of neighboring denﬂities /°A obtained
by contracting all distances by a factor A » These are given

explicitly by

/o)‘ = Aa/o (Ar) | (1v-23)

which for A = ] becomes the correct density. Next, the energy
of the atom is calculated as a function of A ¢ The varational

principle then gives the condition

Lim dE) - p : (Tv-2l)
Asl  dA

For our model, the total energy of the atom as a function of J

is given formally by
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E(A) = B (A) + By (A) + Be (A) + E; (A) (1v-25)

where E; represents the total correlation energy of the atom,

Tt can easily be shown (17) that

Be (M) = XEc, By (A) = AEp, E(A) = Ax

. < . . (1v-26)
By substituting these expressions into IV-25 and applying the
condition IV-2hL we are led to the formal virial theorem:
2Bk +Ep+ B = ~— Lim dE.(A) (IV-27)

A2l T )

The correlation energy Ec can be obtained from IT-13; thus we

have

r
= —K Lo (14a,0") + u'aog ]47"'
é-C 4 Jo/o/ n / e ﬂ/d /3 (1v-28)

With IV-23 we then obtain for Eg (A):
/A

) / %)
E (A = = /\3/(/11') ]n(/fda/\/aéfir)) + G—a" / 3(,,’;_) ]4}7/;»
(1v-29)

We note that we do not obtain a simple expression analogous to
IV-26 since the correlation energy, unlike the kinetic, potential,
and exchange energies, is not a homogeneous function of/ﬂ7 ------
conseguently Eg (A ) cannot be written as a function of A
times the original correlation energy. Eqo

If in IV-29 we make the change of variable KGAF,%

obtains
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R
Ec(/\\= — e ﬁ[/n(/fao/\/a") *0'4" ]4//"
. o | T +as ﬁ}ﬂ (17-30)
where /0 = /0 (r'), Differentiating and taking the limit
indicated by IV-27 we are led to:
~Lim JED) _ /ao _ sla ]/v
A=l d/l /o e / / (7'+e/a VJ? (Iv-31)

By comparing IV-27 with IV-22 we see that it is the above expression
which must be added to the TFD virial theorem due to the inclusion
of correlation in our model., However, this would lead to a very
awkward and physically unclear virial theorem; we are thus motivated
to simplify the expression IV-31,

Consequently, we go back to the basic equation III-6 which

we recast in the form:

g} y ,
Xe //+ s % e T e

(7°# 47/

- 3(V-¥)e - «c/

3 #
el 3.0 (/#a, ‘i)/
7"‘"/ 7 (1v-32)

If IV=32 is substituted into IV-31 we obtain

- L tit? W -3 —_ %
A—r7 Lol = J +5;; 81n(/+4,,/0 ) [dy +

* j[fo(k/%—-4p(e/0%—3%e + 3%/6_7/1/

(Iv-33)



which at first sight is even more complicated, However, unlike

in IV-31 we can readily identify all terms in IV-33, Thus, comparing
with IV-28 we see that the first integral on the right of IV-33

is in fact simply ﬁhree times the correlation energy E.. We can

similarly identify the remaining terms in IV-33 by noting that

Ex = j“k/:é/V ) Le= —We f/o%/V (1v-34)

-JV/&eé/v = —-J(V,,-/-Vg)/oe/v:: —ej/a(l{,fz—’lé)/v—f.jal{- v

= zﬁ; + zﬂ%; (IV=35)

where Ep is the total potential energy while Egp 1s the potential
energy due to the electron Coulomb interaction alone, With these
identifications, eguation IV-33 then reduces to

—~Lim dE.A) _
Iv-3
By combining this with equation IV=27 we finally obtain the exact

virial theorem for our model as follows:
3B+ 2B, + 3B, + 3By + 3B, +3Vee N = 0 (Iv-37

The above represents the generalization of IV-21,22, and must
reduce to the TFD virial theorem if we neglect correlations, i.e.
if we go to the limit Ec = 0, Vo = Vgoryp. In this limit

IV=37 takes the form:

3Ek+21«3p+3}3:e+3Eep+3v N = 0 (Iv-28)

opFp°



Comparing with IV-22 we find that the equivalence is by no means
apparent, In order to establish the equivalence, we proceed from the
TFD virial theorem IV-22, If we now return to the basic TFD
equation I-20, multiply it by 43/0 and integrate term by term,

we obtain

\S'IYKJ/O"%/V - ﬂfef/o%ﬂ/v - SJ(W %m)e/”“O (1V-39)

Identifying the individual terms by means of IV-3L,35, equation

IV=39 becomes

5B+ LBy + 3B, + 3Fgp + 37 w0 (T7-10)

orFp®
If we now subtract IV-22 from IV=-L0, or alternately substitute TV-LO
into IV-38 and compare with IV-22, we observe that the equivalence is
established so that our virial theorem does indeed reduce to

the correct TFD limit.

Qur final virial theorem IV-37 is somewhat unsatisfactory
from a practical viewpoint since, unlike the TF and TFD virial
theorems, it unavoidably involves Egp explicitly in addition
to Ep. This circumstance arose fundamentally from the fact that
Ee is not a homogeneous function of /o o Once the numerical
solution for 9’1 or /o is obtained, all energy terms entering

into the virial theorem can be directly caleculated, with the

pb
Eep in terms of Ep and the boundary conditions of the. solution

exception of E_ .. We find it possible, however, to eliminate

99 (x) for a given atom,



To show how this is done, we proceed by writing

Ep = EHP L Eep ' (N@iﬂ_’)

where Ep, 1s the potential energy of the atom due to the interaction

of the electrons with the nuclear potential, and is given explicitly

by

= - 2 7L0/ v (Tv=L2
£, = -2e2 £ )
From the differential equation III-1l together with the definition

of A (x) we have for /-) the expression

po=E Y cx) (1v-13)
7/7/3 X
where }U(x) and x are defined by III-11,12, If this is substituted

into IV-L42, we obtain

/U

It is possible to simplify this further by making use of the boundary

E, = ——g_}ffg(a”fxux = —f:e 1/50’/,17)_yz’(a£] (Tv-hi)
o :

conditions IT-18 and II-9, and the definition of (¥ . With these

we find

Yy = —7;&7 A (17-18)

and by denoting the initial slope (/o) of the solution for a
particular atom or ion by a3, equation IV-Ll; becomes, after

using IV-L1 to eliminate Eep:

3F *S5F, 38, +3E -32%" & -3 eV, (2-N) = 0 (IV-16)

” 7



For neutral atoms (N = Z) this reduces simply to
3B+ 5Ey+ 3E, + 3K, =312%° a) = 0 (1V-17)

Equation IV-L6 represents the desired formulation of the basic
virial theorem IV-37 in which Egp has been eliminated in terms
of the boundary value aj. Both are, of course, equally valid,
However, once a solution 9” (x) is obtained for a particular atom,
a] is known automatically, so that the form IV-l6, or alternatively
IV=47 is more convenient for practical calculations,

We note in passing that while above we were able to obtain
Enp exactly in terms of the boundary values of ¢/ at x =0 and
x = X, this does not appear to be possible for the other energy
terms, For the TF case this can indeed be accomplished by a
series of partial integrations; however, in our model the compli-
cated nature of the expression III-15 relating W and /\ precludes

this possibility.
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C. The Correlation Energy of the Atom,

We desire to obtain an estimate of the total correlation
energy of the atom., By this we can mean two different things. On
the one hand, we can define the éorrelation energy of the atom
through equation IV-28 where ,o (r) is to be obtained from the
solution of our model., It is this meaning which was attached to

E. in our development of the virial theorem. Alternatively, we can

c
define the correlation energy of the atom to be the difference
between the total energies of the atom in our model and the TFD
model, It can be shown that in actuality the difference between
these two definitions is very small, inasmuch as the values of the
kinetic, potential, and exchange energies are not appreciably
changed from their TFD values by including correlations, The method
which we use below to obtain an estimate of Eg iﬁplicitly assumes
the second of the above definitions,

In order to arrive at an estimate for E, we shall use as
our starting point a technigue due to Hulthen (18). Thus we form
the derivative dE/dZ where N/Z is kept constant and E is the

total energy of the atom:
E = |ledv - Zezfﬁ/V - %J’/ fodv (1V-18)

We write:

dE| _ 2F , 3£ M
;,’Zﬁﬁ BECE + N dZ (Iv-L9)
z
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With IV-L8, equation IV-L9 becomes

df = 2 £
Zf/% Jpgd + 25 £ (xv-50

On the other hand, from III-k we can infer

L - —We (1V-51)
NV

with which IV-50 takes the form:

JE = — e"f dv - Vel (1v-52)
d /M 7% z

The relation IV-52 holds eqﬁally well for the TFD and for our
model, If we let unprimed variables represent the values for our
model and use primes to denote the corresponding values for the

TFD model, we can thus writes

;| - die=E))] :-—eZ/ o uj—_@.rv,-w
ﬁ/_l_‘_/_, d 2 ?_A/ j# fﬁ— 7
z

The last term on the right-hand side of IV=53 we can evaluate

(1Iv-53)

immediatély since we have previously calculated 7y, which is
given by eguation IV=19, The corresponding value Vg,' for the

TFD model is given by

o
Ve = (2-Me* , cotrse? (1v-53°)

/“X/ Qe



Inasmuch as we do not know the values of X or X' without recourse
to a numerical solution, we shall restrict our attention to the
case of neutral atoms. For these, the last term on the right of

IV-53 then becomes:

Qe

__ZM e (V,-V') = —0.04/?%5 (Tv-5k)

We now turn our attention to the more complicated term in
brackets on the right-hand side of IV-53, In order to estimate this
term we shall make two assumptions: (1) In Part VI(A) we show that
for purposes of calculating the density our model can be approxima-
tely represented by a TFD-like equation with a changed value of b(e__e
We shall assume that this is a sufficiently good approximation for
our immediate purpose, so that the term we wish to estimate consists
of the difference of two TFD-like terms; (2) for the density we shall
make use of an approximate expression derived by Jensen (19) on the
basis of the Ritz variational principle,

For the Thomas-Fermi atom Jensen proceeds from the basic

egquations

S(E+NeV) = 0, N *J/’"N (1v-55)

where, in our notation:
/3
E = Ep+ Nkf/o ﬂIV (IV-56)

He then makes the following Ansatz for the densitys
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;=X
/o_-. __/1_/_5_____ (/+C,x+€2,\'z+ ...)3
A x3
with , (1v-57)
| V2 2%
X = (I‘/) Z
do

The above density has the desired properties that it decreases

3/2

exponentially for large » and behaves as r near the origin,
The undetermined coefficients J , aj,an, etc, are to be deter-
mined by the Ritz variational principle, The constant A is
fixed by the némaliza,tion condition IV-55 and can be written in
the form

3
_;’A‘/“ 7cce) (1V-58)
A

where P(cy) is a polynomial of the coefficientes ¢35 alone and

does not involve /\ H

-

e}
3
PCc) = V4 J‘eax(/fc',x —f—Ca)(?'f-m)/\’?'dx (TV-59)
)

Jensen found that he cbtains a very satisfactory solution by
retaining oly ¢y and c2 in the series IV-57; in fact, c2
is found to vanish, By substitutingiV-57 into IV-56, the total

energy for neutral atoms takes the form:

7
E=(RN\—FENE" et e

Ao
where Fy gnd Fp are independent of /\ » depending only on the
coefficients c¢3. The coeificients c¢q and A are finally
determined from the extremal relations:

9€ _o 9E _o -4
5¢, }.- ) >y = (17-51)



=5

The second of these gives immediatelys

A= _Fe (Tv-62)
2 i
For a neutral atom, Jensen found the values ¢y = 00265, /\ = 10,91,
Fp = 0,140,

Jensen (20) has further extended this method to the TFD

atom for which IV-56 is replaced by
- 7 2
E = E, + X f/a v — ke f/o Sdv (1V-63)

By substituting the density IV-57 inte IV-63 it is found that added
to the energy expressibn IV-60 is an exchange term, the total

energy now being:

= (F A o( ~
where vFe is found to be given by:
@
...i)r 4
fe = 2 e 3 (1+x) Xdx (IV-65)

@n " [Fe))” |,
Jensen now further assumes that ¢y remains approximately unchangéd
so that the effect of exchange is manifested only by a changed
value of /\ o The second of the conditions IV-61 applied to

TV-6L gives for the new value of /\ 2

/ | efFe
- 0 etz s 7. (Iv-66)
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where /\o corresponds to the TF value given by IV=62, The parameter
Fe 1is calculated to be 0,021 e°/Ke with c = 0,265,

As outlined above, our approach will now consist of repre-
senting our model by the TFD-like approximation discussed in Part VI(a).
Further, we shall assume for the density Jensen's expression, where for
our case /\ is given by:

7
A= A (/ + Xe  fe
o STov ,}) (17-67)

and where 0(\," is defined by equation VI-6, Accordingly, in the
expression IV-53 we shall assume both /0 and / / %o be of the form
IV=-57 with A given by IV-67 and IV-66, respectively.

We must now evaluate the integral:

J = eLJ# Av (IV-68)

Substituting for ﬂ and r from IV=57, we obtain

4. J—
J = 2¢8 2% ) T (17-69)
Qo 7(‘(/, 7
where : @
@ 3
Tce,) = J"K(/"'C,xfdx = 2 ()3 [x &
0 Y20 0
3 3 »
L 2 (3)am o
o9=0
and -

@ 3 :
3
P(C/) = Zfe‘x(/‘/'(;/\’)xzaér:x Z E (_g)q’?y,sz)/
0
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With the result IV-69 we can thus write:

4
— e? fﬁ./v_fﬁ?__’,{v] = —-2e* 7 /3](0} (A-A") (17-72)
2o ~ce) ~

which in view of the relations IV-66,67 becomes:

Y,
_el[fﬁ_dv_‘/%’/\]: -2 231 | F _g(_g_’_/)o:e (1v-73)

With c; = 0,265, we calculate I(cy) = 2,328, P(cy) = 28,12,
and putting in the remaining numerical parameters calculated

previously we obtain explicitly:

—e"[fﬁ”_-c/v ——/‘7,2_../4/!/-7 = -00924 27 LR (IV-7h)

By substituting the results IV-5k and IV-7L into IV-53, and integrating,

we finally obtain
S 5/3 838
Ee = (0,0554 2°/° + 0,0838 Z) Ry (1V=75)

The above formula gives the total correlation energy of the
atom in the framework of our approximation. The exchange energy of

the atom in the TFD model is calculated to be:
Ee = -0.i6 25/3 Ry

We observe thaf the correlation energy is of the order of 13 to 30
per cent of the exchangeenergy, the actual ratio being a function

of Z,
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In conclusion, we note that if the expression IV-53 is
substituted intc the virial theorem IV-37 and the resulting
expression is‘cempared with the TFD virial theorem IVwBSQ the only
additional term arises from the term in brackets of eguation IV-53;
the second term invelving the V,'s gives no contribution. That this
must be true ecan also be seen ina very simple way. For neutral atoms,
the term invelving the Vg's corresponds to a part E' of the

correlation erergy which is proportional to Z, i.e,

c
However, this term is unchanged by the similarity transformation,
so that

-
ECV(A) Ec’, ..__.._C-.__._.’:/é:\ (/‘):.‘0

and conseguently it can give no additicnal contribution to the

virial theorem,
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D, The Fermi-Amaldi Correction.

One of the basic inadequacies of the original Thomas-Fermi
'modei is that the electrons interact with themselves, i.e. in
computing the energy the potential Vg acting on a particular
electron is taken to be the potential due té all electrons
including the particular electron in question,

In order %o correct this situation, at least in a crude
way, Fermi and Amaldi (16) simply assign to each electron of the
atom the individual density /Q/}/ ’ where/O is the total
electron density within the atom, and then assume that the potential
acting on a particular electron is that due to thé other N-1
electrons, Thus, the electron potential Vg(r) acting on each

electron is written as
velr) = N-1 V(r) (17-78)
N

where Vg(r) is the total electron potential as defined before
by equation I-8 or IV-L, The result of incorporating this modifi-
cation into the TF theory in the standard manner outlined in

Part I(B) is that in place of I-11 we now obtain the equation:

(V-Vole —eVe - 'EE Nk/o (1v-79)

where V, as before, is defined by V = Vi + Vg, In this approach,
it is thus the additional potential term = e Vg/N, known as the
Fermi-Amaldl correction, which serves to eliminate thé electron

-self-interaction. Without going inte detail, it can easily be
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shown that the eguation corresponding to I-13 becomes

¥,
PAVHK) = dre (Vw2 cvry)

where

Vo= WV o= Ve % Ve

By now applying the transformations:

| S -
¥ (x) < 76 (v*—1)

2/
X, gt 7))

equation IV-80 becomes:

3.
(PII - P 2
x V2
which is formally equivalent to the original TF equation I-18,
but differs from the former in that ¥ and x are related

differently to V and r, The boundary conditions for (¢ take

the form

‘el = -V v

(1v-80)

(1v=81)

(1v-82)

(1Tv-83)

(TV--8L)

(1v-85)

(1v-86)

Equation IV=8l together with IV-85, 86 and the definitions IV-81,82,83

constitutes the so-called Fermi-Amaldi equation, The Fermi-Amaldi

equation, in view of the boundary condition IV-85, poséesses the

same family of solutions as the TF eguation; however, the particular
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solution for a given atom will be different due to the difference
in the boundary conditions I-19 and IV-86, Further, the potential
and radius are related differently to P and x, In fact, it is
to be noted from IV-82 that the potential V(r) is not directly
obtainable from ¥ (x), ulike in the TF case, The same is not

true of the density which is given explicitly by

"
=z NP (1v-87)
4,7/15 /V-‘/ X
Fermi and Amaldi (1€) proceed to solve equation IV-8l approximately

by making the Ansatsz

Y= % * K7, (TV-871)

where @, is the ordinary TF solution, and 3Z(x) is a known
tabulated function (Cf, for example ref, l) with the.properties
.70 (0) =0, 74 ?0) =/ , The coefficient k is then to be
determined from the boundary conditions at X,

If we now progress to the TFD model, the situation is
somewhat differént» For an extended electron gas of sufficiently
high density, the exchange energy includes a self-exchange term
which cancels the electrostatic self=interaction discussed previously.
Thus, in the interior of the TFD atom the elecirostatic self-
interaction is compensated by inclusion of the exchange energy
~in the model, so that we can no longer justify the Fermi-Amaldi
correction., However, at the edge of the atom where ﬁhe electron

density is low this compensation is not complete, and the Fermi-
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Amaldi term again becomes necessary in order to eliminate the
self-interaction, Jensen (21) has described a way to combine
these effects for the case of the TFD model, which we shall here
sketch in outline, To this purpose, he replaces the exchange
energy term I-5 by a function which in the interior of the atom
is equal to the exchange energv term, but at the edge approaches
the Fermi-Amaldi term., Thus, in essence, the atom is described

by the usval TFD equation T-21 in the interior, but by the Fermi-
Amaldi equation_IV—BO near the outer edge of the atom., The value
of the electron density /00-:70(r) at the edge of the atom is
assumed to be maintained at the original TFD modei.value; the
value of R changes, however, Then, as far as the calculation

of the density is concerned, one can to a sufficient degree of
accuracy replace the TFD equation with the Fermi-Amaldi equation
with suitably changed boundary conditions, However, any other
parameters of the atom, which depend significantly on the interior
of the atom, such as the energy, must be calculated from the
original TFD equation. An extended discussion of the justification
of this procedure is to be found in the paper of Jensen (21),

The c&nsiderations of Jensen apply equally well to our

‘model, since the exchange and correlation energies are physically
similar in nature, bqth describing the tendency of electrons to
stay away from each other with a conseqguent lowering of the energy.
We cén therefore incorporate the Fermi-Amaldi correction in an
exactly analogous manrier, and calculate the density on the basis

of the Fermi-Amaldi equation IV=-8l with the boundary conditions:
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Plo) =1 (TV-88)
* 2/
p(x)=¢X S o=£ 2‘—l?‘_j’-’,;—-/o 2 (1v-89)

Px) -Fe(X) = 224 , L (17-90)
z z
The boundary condition IV-89, in which )Ao is to be replaced
by the pf@viously calculated value IV-16, is obtained directly
from IV-82 and IV-79.
Equation IV-8kL, as in the TF and TFD cases, can approximately

be solved by the Ansatz IV-87, in terms of which the above

boundary conditions become

Y, (&) + szf) = X (1V-91)

G -24'@) + k90 -Fptr)]= EHE (g

Equations IV-91,92 represent two simultaneous equations for the
unknown parameters k and X,

It is evident that the Fermi-Amaldl correction is of less
importance in our model than in the TFD amd particularly in the TF
model, since the effect of the correlation term is in the same
direction as that of the exchange term and thus helps to compensate
for the self-interaction of the electrons, whose removal was the

original raison-d'€tre of the Fermi-Amaldi correction,
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V. THEORY OF THE COMPRESSED ATOM,

Our considerations up to this point have dealt exclusively
with the isolated free atom, defined by zero pressure at the
boundary., In this part we shall show how the solutions of the
model may be adapted to apply to matter in bulk under pressure;
and derive formulas for the pressure ancd compressibility of elements
as a function of mass density., Finally, we shall obtain the gene-
ralizafion of the vifial theorem for atoms under external pressure,

We consider matter in bulk but restrict Qur,atten%iqn 0
the region of very high pressures., In this region the valence
electrons are little distinguisbed from the core electrons so
that all electrons can be treated together by the statistical
method, The latter is particularly suited for this case inasmuch as
the shell structure of the electrons becomés relatively unimportants
also, since the electron density is everywhere high, the statistical
assumption of many electrons per unit volume is better satisfied,

At very high pressures £he atoms, both in the solid and
liquid state, assume a very symmetric distribution. Conseguently,
as is usually done, we can attribute to each atom a spherical
elementary cell of radius R and reduce the problem of matter
in bulk to the consideration of the elementary cell, We shall
further consider each cell as electrically neutral, i.e. confine
our attention to unionized matter, For a specified mass density,
the problem is then to find V(r) and /O (r) for each cell, and
to derive a relation between the largeuscale‘properties of pressure

and mass density.



The main difference between this case and the case of
the free atom is that by specifying the mass density of the bulk
matter, we specify the radius R of the'elementary cell so that R
is no longer determined by the minimum condition for the total
energy, i.e. by IV-1, or the boundary condition III-20,

As before, the potential V(r) in the cell must satisfy
the boundary condition

Lim<+r V(r) = Ze (V=1)
r=>0

and the condition obtained from symmetry:
av = O (v-2)
dr | r=R B
Thus, the solutions for the elémentary cell are again obtained
from the equations III-1),15,16:

wiexN = /\s(ﬂ

x '/7_ (V“’B)

with the now changed boundary conditions:
o) = 1, X Yix) = ¥ (Vly)

For a given mass density, X is specified, and the correct
solution of the family of solutions of ‘/J (x) obtained previously
for the free atom is the one which satisfies the second of the
boundary conditions V-l for the specified value of %o

The potential is related to Y(x) by

v o= }Zﬁ S”(X) ‘*‘\Vo (v-5)
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As we have seen in Part IV(A), V, was determined for the free

atom from the minimum condition JE/ Y4 = 0 which now no

longer applies, Following Slater and Krutter (22), we shall determine
Vs for the compressed atom from the condition that at the nucleus

the potential V(r) must be independent of R, and hence of the
pressure, If, for a given value of 2, we let %}(x), Vof represent
the solution for a free neutral atom, and ¢, Vo, the corresponding

values for the compressed atom, and write the expansion of Y (x)

near the origin (Cf., equation VI-17 in part VI(A) ) in the form:
W(x) = 1+ ¢lo) x+ 0 (x?) (V-6)

this condition becomes

__f_. + Vo"f.Z.‘?-.f”’(o)=/_§_§+g/+;?u_€.$}ﬁ’(o)

or

V. = 14/[ +7Zu_f-. [g’(a) ~ ¥ro) ] (V=7

For a specified value of X for the cell, ¢¥"(o) is known once
the solution determined by the boundary conditions V=l is obtained,
and Vb and the potential can then be found by eguations V-7

and V=5, respectively,

The pressure of a system can be defined in general by

P = -& (v-8)

where dV represents an adiabatic expansion, and E 1is the total
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~energy. If we apply this to our elementary cell, we obtain the

g

pressure at the edge of the cell as:
P = = / . 0’ 5 (V=9)
Gg R* A
where R is the radius of the cell, The expression dE/dR for our
model we have calculated previously in part IV(A), If we compare V-9

“and IV=12, we obtain the following expression for the pressure:s
| by Y Z
P = 2y 3 — LK —-Nc/ Gofo — — +
3k / ’ 3 "/ o 2 L ayt 7

+ 4 Qo 7% 6-a 2, 7
3 "'—/&— — e £ 7)2 _7 (V-10)
(-}

where /Oo is the electron density at the edge of the cell, which,
however, is no longer given by the value IV-16 for a free atom,
This completes the theoretical development, In order to
obtain an explicit eguation of state between the bulk properties
of pressure and mass density, we must proceed as follows, The
mass density /qm expressed in vgfbc is related to the radius

of the elementary cell by:

34 L, (V-11)
45 /», s

where A is the atomic weight of the particular element and 4/1/‘
is Avogadro's numer. Equation V-11 defines R for a given value

of /om o We find X simply from

£ | = ﬁ///u (v-12)
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With this value of X , the density of electrons /Ca at the edge

of the ecell is then obtained from

/"o = 2z w(x) (v-13)

47r/u3 X
where ?’(x) is that solution of the'family of solutions of V-3
which satisfies the conditions V-l for the given value of X. By
substituting the value of /oo found by V=13 into V-10, we finally
obtain the pressure éorresponding to the mass density /00,,

We can further find the compressibility as a function of

/AD,, or of the pressure in a similar mamner, The compressibility
A is defined by

= =-Vdr (v=1L)

i 13
I av

which, in terms of X, becomes

L= -X 4 (V-15)

Above we have outlined how to obtain P(X). The derivative
dP/dX is probably best found numerically once we have obtained P(X).
However, it is possible to give an explicit expression for A" in

terms of the solution (/(x). To this purpose we write

dP _ dE dpe .

which in view of V=13 allows us to write V-15 in the form:
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. )[ g - W"rz) ] (v-17)
V4 /2

The derivative dV?Q?u » can be found straightforwardly from equation
V-10, and we are thus able to find the compressibility of elements
és a function of either density or pressure,

Finally, we shall obtain the generalization of the virial
theorem IV-37 for the case of compressed matter, and show that

it becomes:
3E *+2E,*3F + 3B+ 3B+ 3VeeN = =3 Pv  (7-18)

where all guantities apply to the elementary cell, In order to
demonstrate V-18, we proéeed in a fashion similar to that of

Part IV(B), We again form the family E (A):

E(A) = E (/;A)

where /oA and E QﬂA) are as defined in Part IV(B), Next, we
find the limit lim dE (A\)/d A which from equations IV-25,27,36

A=/
is known to be
dE(;\\) /.A*lu =3Fg=2FEp=3EF =3By =3Ec-3Vgel
(V-19)
On the other hand, we can also write
dE (N / = Lim JEQ) d(R) _ Lom ~R JEQ)
AN lh=1 = A1 dRIN T W AR oo

If we now assume that in the last expression of V-20 we can interchange



B0

the limiting and differential operations, V-20 becomes simply

,,\al = -t (v-21)
rwhich, together with V=19 and V-9 immediately leads to the desired
#irial theorem V-18, However, it is by no means obvious that the
differential and limiting operations are in fact interchangeable;
consequently we shall derive V=18 in a more circuitous but less ambi-
guous manner.,

Written out explicitly, E (A) becomes

Rl 3
(N = - - 3) +TAL)_ |-
E () J{Kkﬂ Ke/A K;/;O,\jﬂ(h"a/,{ )7-/-4/,: ]
Rj R
e/f:,\ a/v + £ f [ ﬂz\“"]@f”) dvdv'
/ (V-22)

Differentiating, we obtain by the usual rules for differentiating an

integrals

dEQ _ -R JED ___7-7;-(_;)?{/“"/0/‘5/3__“6 %

-Nc//j)t/n(/vm,/,.‘ +F_i‘;4’2’—] Eﬂ( *%ff’))] +

""4/,\ =K

R/A
A Jsx 0 '/3-o<[ A" o Lol )
_[}56%—1C? Xk/éA 5?‘*3/% c/3 ;z?;a +An //

2/3
U—doﬁa (_‘A — \{ye o Ve(ﬂ)e‘}d\/
7‘+4 7

/ #a424")"
’ /A (v-23)
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where we have made use of IV-=li, For A = 1, the integral of

expression V-23 becomes

R : y

2/, /. 4

/.9_%.4”/3 kk/ﬂ 30(3/" ( c 37_-/_—:5—;/0,{’
0 ,

+ A (/7'-474 %) + 1 _E'ﬁzL’_/f A AR dv
| STrapt S (7‘+a,/'4?)z
(v-2L)
Referring back to TTT-6, we see that V-2l is simply equal to |
R
2
~4rVe /—,ﬁ—-a "/ ridr (v-25)
24 A=/
0
If we now take note of the normalization condition
KA
4‘”/.?A dr = Z (7-26)
0
and differentiate V-26 with respect to A , we obtain
3 K/A
—4”/?/01\(’?//0 + |47 ridfdr =0 (v-27)
A‘P' '/

(o]

Taking the limlt A = 1 of equation V-27, we find that the

expression V-25 becomes
¢r e K
- T K€ / 0 (V=-28)

On the other hand, after taking the limit A = ] of the first term

on the right-hand side of V-23, we have
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. , ‘
+_C4ofl, /:’] —_ V[k)e/,, } (V-29)

7+ do/a,'

By now referring back to IV-11 we see that V=29 becomes

LRl v - R dE V-3
0/00 aﬁ ( JO)
Substituting V-30 and V-28 into V-23, we finally obtain
dE (A)/ = =R JE (v-21)
—aN A= ar

which is identical to the relation V-21 which we set out to prove,
and which as shown leads to the desired virial theorem V-18,
A similar calculation shows that V-18 reduces to the

correct TFD 1limit for a compressed atom, namely:

ZEk'@'EP*Ee =3 Pv (V-32)
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Vi, METHODS OF SOLUTION

| We now proceed to the problem of obtaining the solution
of the system of basic equations describing our model, An approximate
method for solving the eguations is discussed in Section A,
In section B we derive a semi-convergent expansion for VV(X) which
is valid near the oﬁigin,’ln the final analysis, the system
I17-(14-20) must be solved numerically; this has been done on the
Burroughs computer for five selected elements, A few comments
regarding the numerical solution procedure are included in section C;
complete tables of the solutions obtained are to be found in the

Appendix,

4, Approximate Solution.

The exact system of equations III-(1}-20) based on our
expression II-12 for the correlation energy is very complicated,
In order to gain an lidea of the general effect of correlation, we
shall here obtain an approximate solution, showiﬁg that to first
order our model isequivalent to a TFD model with a changed value
of e o

This method is based on an observation of Gombas (10) that,
as far as the calculation of the electron density isconcerned,
the effect of correlation is appreciable only in the outermost
region of the atom and can be neglected in the inner regions
where even exchange effects which are larger do not appreciably

influence /0 (r)e The principle of the method is then to replace
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the function U; given by I-12 by an analytically simpler expression
which is valid at »r = R or/) S/oe

Thus, we expand Ec in a Taylor series about ¥, , keeping
only first order terms, i.e. we replace T, (¥) by an approximation

»\;/-C (3) given by

We(3) = i (5) + 4 (5-5)

where (vi-1)

{ :4/(30) = ”/U;_.__(E)

d X =3,

V4
and where 3 represents the value of ¥ = 4o/¢ 3 at the edge
of the atom and is given for our model by eguation IV-15,

Eguation VI-1 can be written in the more convenient form:

W, (3) :;05"' k ; k= ﬂ:(L)-ZL (VI-2)

We have thus approximated the function II-12 simply by a straight
line, namely the slope of U, (§) at I = 3,, However, in so doing,
we have used the exact theory to determine X, o

The tobtal energy density of the electron gas corresponding

to VI-2 becomes

- G/
£ = A(k/o% - ke/% + fqde/ S &7 (VI=3)

As can easily be verified, the corresponding approximation

to the model equation IITI-6 becomes

Vs

_(\/—-V,)e 2’5‘:“’70%”3?- A/e/o +g, za/'é*-/é (VI-L)
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It is now seen that the term k is irrelevant since it can be

absorbed in the undetermined Lagrange multiplier by writing
Vo' = Vo + kfe (vi-5)

which then changes the value of Vs from that previously obtained,
Alternatively, it is clear physically that the term k will not
affect the solution for /° (r) since it corresponds to a constant

background potential k/e, If we now define

b(e, = A’e "j Ao (VIwé)
4

equation VI-h becomes
. y .
(V-7 1) e = £ K '3—'io(l 3 FT=7)
[¢] 3 R/o 3 C/ ( HE

which is seen to be formally equivalent to the TFD equation I-20,
but with [, replaced by &g/ . Thus, in this approximation, we
can avail ourselves of all previous results obtained for the TFD
atom in order to derive results for corresponding atoms in our

. model,

The guantity ‘fo can be calculated from the known

expression for u, and the previously derived value of §, o The

c

result is
| ? = —-0/255 e* (VI-8)
[2] a‘

and thus

b(el = 0864/ e’ ‘ (VI-9)
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The above approximation must now be checked for internal

consistency. Thus, for the TFD atom, /‘)"TFD is given by

', ) "
) = e (VI-10)
/O TFD 2 % K

If the above approximation is to be self-consistent, the value for

/Oo previously obtained for our model and given by IV-16 must
also be reproduced by VI=10 with b(e again replaced by O(el s We
note that the transformation e —-ro(clobtains already in the
expression VI-3 for & ‘, If VI-3 is now used %o determine /aa
by the method of Part IV(A), the term kP' corresponding to the
éonstan't potential naturally does not contribute so that /0 TFD
is indeed given by VI-10 with e replaced by Ne' . Thus, the
approximation is self-consistent,

Since VC enters into the TFD eqguation, every known solution
of the TFD equation corresponds to a solution of our model represented
by the above approximation, Referring to I-23,2L we observe that the

eguivalence can be written as

2 Xe = 2Kk
3e* (4729 3e*(#r2'9"

Consequently, a TFD solution for the density /9 (r) for an atom
of atomic number Z corresponds within the framework of the asbove
appro:d‘.xﬁation to the solution in our model for an atom with

atomié number ,
3/1

!
Zz'= Z ( ,D_(Si__.> (VT-11)
Ke
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The simplification gained is of course enormous, However
the approximation is admittedly crude. Furthermore, it can be used
only for the calculaticn of the density; in order to obtain the
energy and similar parameters of the atom, the exact expressions
are reguired,

Inasmuch as it is our intention to solve the exact system
of equations numerically, we shall not pursue the above approximation
further. The purpose for including it here is to elucidate the
nature of the correlation correction, and to be able to use it

in approximate estimates.
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B. Expansion near the Origin,

For the purpose of the numerical integration of the
equation III-1h it is convenient to have available an expansion for
\P» (x) near the origin, siﬁce the second derivative (,U“(x') diverges
ﬁear the origin as x"‘%o Such an expansion will also show how
correlation affects the potential near the nucleus,

For reference and later comparison we cite the knowm
expansiéns for the TF and TFD solutions to order xgs the latter
being obtained from Feynman et al (12):

‘IUTF s 1raxe b2 a2 10 | (VI-12)
3 5 3
P 1+a1x+hx3/2+3/8x2+

s/e . 3, .3 ‘
2= I%_,)x/ s /gg_;x (VI-13)

where /3 is as defined in equation III-15, and a) in both cages
is the arbitrary slope at the origin which is not defined by the
second-order differential equation or the boundary comnditions at
the origin.

The above expansions can be obtained simply by making an
Ansatz for QU (x) as a series in halfe-powers of x with undeter-
mined coefficients, and determining the coefficients by substitubting
into the TF or TFD eguation, The solution thus obtained is strictly
formal, and nothing is known about its uniqueness or convergence.

On the other hand, as shown by the author (23), both the unigueness
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and convergence is auvtomatically demonstrated if the solution
is obtained by extending the well-known Picard method in the theory
of first order differential eguations,

We begin by integrating equation III-1l twice with respect

to x and obtain in view of ITI-17g

XX :
3
Wiy = [/ +4, x *j Aty dr«’7 (VT-11)
0

¥
| o 77
where al‘ is the arbitrary slope ¥/(o) at the origin. By making
use of the following identity which can be verified by a simple

integration by parts:
X ~3

gy dy dy = J (x-7) 9 (9)d (v1-15)
)

(oY 0

we obtains

X .
Y= /+ax + _(_;_7;7_) 43(7""7 (VI-16)
Z
0

By substituting successive approximations of /\ into the integrand
of VI-16 we can thus obtain successive approximations‘of SU o
The advantage of this method for ‘genera,ting successive approximations
for {J from those of A 1lies in the fact that we obtain three
higher orders than if we calculated W directly from /\ by means
of eqguation III-15,

Since we know A(o) =1, we can use /\ =1 as the zero-

order approximation for A (%). Substituting this into VI-16
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and performing the integration leads to:

Yoo 1 agmel P (VI-17)
3
to order x3 / 2. To find the next term in the expansion for /\

we can go back to the horribly cemplicated equation II1I=-22, If we
]

solve II1I=22 for /\ (x) and then substitute the zero-order

behaviour A(o) = 1, we find after much tedious algebra:

J/

¢ 2.
3\ — X s —X_ ') — = VT-18
JF (3) — ., S L, At €x3”-( )

as x -0, Knowing the behaviour of /\ (x) in the limit x-»0

we can thus write the next order for A (x):
Mo = 1+ g (VI-19)
x) = %= I-
' 2

. : . .1-.-
If we in turn substitute this into VI-16, expand to order ’7 2

and integrate, we find the next order term for the ? =expansions

Y £l+a3_x+hx/2+3ﬁ2 | (VI-20)

It would now appear to be reasonable to make an Ansatz for /\ of

the form

A 2 ] 4 ]é x= + b2X + b3x3/ ese (VI@E],}
2

To determine the coefficients, we can proceed by differentiating
III-15 and using the resulting equation together with III-=15 to
eliminate the divergent logarithmic term, In this manner we obtain

the eguation:



= l=

¢x) . Z/\/\,—'ﬂ/\’l/"/ltv‘——} - AT, LA

- Ye 513 (:éz{_{\_;’_'_i) | (VI-22)
x /2

Since W is known to a higher order than /\ s We can expand
VI-22 consistently to any given order of )\ and hope to determine
the coefficients of the )\ -expansion, It is found, however, that
when VI-21 and VI-20: are substituted into VI-23, we obtain for
the constant term the inconsistent equation ¥ = 0, This shows
that the Ansatz VI-21 is analytically inconsistent. In fact, it
is found that the expression for /\(x) must include in addition
to box another term giving a constant first ‘derivative, Such

a term is provided by (x 1n x), Consequently, we shall instead of

VI-21 make the Ansatz

)\(x) = l+}§x%+x(b2 + b3ln x) + x3/2 (b), + bgln x)
(vI-23)
where we have included a trial function for the next order as well,
The coefficients are calculated as follows, First, we substitute the
above expression into VI-16, expand Az( ’7) to order /7 3/2 and
perform the integrations to obtain }U , which after mach algebra

is found to be

(x) =1+ apx+ b2+ 3 2+:§/2[2+uba6ub]+
R T aE )/ JICEPES
+ b baxo/?1n +3[3+ by + bj, = 5 b3 + be)f +
(s 2 gy
31m x [
o E x/ 3" é—"bB] (vI-2k)



Next, we calculate }l‘ from equation 1’11,159 vizo:

- /6’ XA~ x ( F(e ,,z) (VI-25)

where F (&) is given by III-16, With /) given by VI-23, we

find the following auxiliary expansions to the required orders:
‘ e - Ny o
[ﬂ (/+—;','/1) - j’?é z-j”)( —f-/d‘,)‘

_/7_

EAX"E 1 # )x
Jrer [74— 7
ey f(/—}«)/\’yz‘

(1 eAx")*

s'(él\x-’/z) = (1,,5_4»:%. -,4-0‘) -—E’a/nx +‘4“,1“3/-(7§. —/”o) +
‘"
g (gl

where

poEA) L e (ErE) e

If the remaining terms in VI-25 are similarly expanded, we obtain

for 5” (x):
e =1 +[25; ‘,%'L— ((/ne-/-é— +o)] X + (24, +L Jxbox+

#[2be VA4 ) + -—~°‘(’v"4/]§" o

+ 2bo x Ve lnx (1v-27)
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We then determine the coefficients bk by requiring that the

two expressions for $U as given by VI-2L and VI-27 be identical

tc the orders involved, which leads to:

b, =4 /a +,§-1 +0/[/;4£+_3L+Uy

b, -

P | (VI-26)
= 2 I[__Z-_. _2 g-'r]
by = T +5 [zt -5 L7

be =0

The fact that we can determine the cbefficients consistently
means that the Ansatz VI-23 is analytically consistent. If we now
substitute the coefficients VI-26 into VI-2L we finally obtain after
considerable simplification the expansion of ¥(x) consistent to
order x3, which is given by:

%(X) = ] + ax 4" 32x3/2 + 8.33{2 + a.hxs/z +
+ agxs/zln x + a.6x3 + a7x31n x (vi-27)

with

O
~
]

D
(&)
| W
Ty owg e

2 (4+8%), 2 / /6
+ 2 (47L ) e 2 Une st +r) + LY
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 The corresponding expansion for A (x) is provided by VI-23
with the coefficients determined by VI=26,

The above can be shown to have the correct TFD 1limit VI-13
for ¥ =0 4if account is taken of the fact that & (x) was
defined differently in the two cases (Cf, egquations III-11 and I-22),
Because of the extreme complexity of the differential eguation for

/\ (x) (Equations III-22,23) we have avoided dealing with it directly,
and have thus not followed the Picard method rigorously. However,
we have checked the first few terms of the expansion by applying the
extended Picard approach directly to the ‘A -eguation.

We note from the expansion VI-27 that exchange effects -=--
represented by /4 e==== are involved already in the %2 term,

while correlation first makes an appearance in the x5/2 term,



C. Numerical Solution

The basic system of equations III(1h-20) descfibing our model
was solved numerically for the five elements: Argon, Krypton, Xenon,
Chromium and Uranium,
The systematics of the nmumerical solution is as follows,
For each value of Z a family of solutions Y (%) corresponding
to different values of the starting slope ay = 9910) is obtained,
The point X at which each solution intersects the straight line
4’ = Cx where C is given by III-21 defines the edge of the varticular
atom or ion, This solution then corresponds to an ion with atomic

number % and degree of ionization:
/
Z-N = Y -x Yo (VI-28)
: Z

where W (x) is the particular solution in question, and X is as
defined above, Thus, in order for the sclution to correspond to
a physical system, the starting slope a; must be such that

the value of the right-hand side of VI-28 lies between zero and one,
Solutions which do not intersect the line 99 = (Cx do not correspond
to any free atom or ion. The value of the right-hand side of VI-28
is found to be extremely sensitive to the starting slope ajy; for
example, in the case of Xenon the values of 3y for the neutral
and singly ionized atom differ only in the seventh place, This
means that in order to find the solution for the neutral atom
for which the right-hand side of VI-28 must vanish, the corres-
ponding aj must be found to the full eight-place accuracy of the

computer,
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In the actual integration procedure the basic equation III-1l
2

was transformed by the change of variable x = w~ with which
TII-1l; takes the form
2 3 |
Y - 1a¢ +hw A3 (W VI-29
W W re-9)

The advantage of this transformation is two-fold, In the first place,
unlike the differential eguation for Y (x), the above equation
contains no terms wﬁich diverge at the origin, thereby making a more
accurate numerical integration possible for small x or w, Secondly,
for a given interval AW , the transformation auvtomatically
decreases the interval for A X  when W <</ for which ¥(w)
varies relatively rapidly, and increases it for large values of w

at which ?( W) is slowly varying.

Eqguation III-15 in terms of w becomes
Yiw) = ,\z‘—ﬁvw\ .-(wz\}'(%/.\_.) (VI-30)

where J(3) , as before, is given by III-16.

| In obtalning the solutions, the power series VI-27 was

used out to x = 0,01 with the coefficients compq‘ted for each 2

by VI-27 and 1T1I-16, From x = 0,01 onward, the solution was obtained
numerically with a step size AW = 0,01, The integration was

carried out bﬁ' means of the standard Adams-Moulton procedure,

At each step of the integration it is necessary to mwrt equation
VI=30 to find A L wl o This was done by Newton's method, and it

was found on the average that by using the value of A( W) from the



previcu&s&ep‘as an initial guess, three interations sufficed to
obtain ,X with seven-place accuracy, In some cases it was
found to be necessary to diminish the step size near the edge of
the atom due to the circumstance that equation VI-30 has real
solutions for /\( w) only barely beyond the edge of the atom,
The truncation error per step was found to be < lD°7.

Four solutions were obtained for each value of Z. Among
these the solution for the neutral atom was pinpointed within the
aecuracy‘ef the computer, To a lesser degree of accuracy
( in (Z-N)/Z) we have also tried to obtain the solutions describe
ing the singly and doubly ionized atom, For the solutions obtained
the values of W(x), WHUx), and PYCX) are given to seven
significant figures in Tables VL-X of the Appendix. In the course
of the trial and error procedure for determining the value of the
correct starting slope aj for the neutral atom, 2 number of
sets of values of ay, X, and (Z»N)/Z was found for each value
of Z, These are useful for interpolation and are presented in the

summary tables I-V of the Appendix,
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VII, DISCUSSION OF THE SOLUTION FOR ARGON,

In the way of illustrating the gemeral nature of the results
obtained, we shall here discuss in some detail the solution for
Argon (Z = 18),

In figure 1 we illustrate the family of solutions of
equation III-1lL for the case of Argon, The three curves shown
represent three scluiions ¢’ (x) corresponding to different starting
slopes a1~= Y/(0), On the scale of this graph, the boundary
line V’ = Cx coincides with the x-axis for all practical purposes.

Within the limits of accuracy of the computer, the sclution
closest to that of the neutral atom corresponds to the starting
slope ay = =1,6376553, which is associated with the values
(Z-8)/Z = 0,00345, X = 11,39, The associated values of X and
(ZeN)/Z for different starting slépes are summarized in Table I of
the Appendix, An extrapolation of this data yields for the free
atom with Z-N = 0° the value X = 11,52, Comparing this with
the TFD model result Xppp = 12,7, we see that in our model the
radius of the Argon atom is smaller by some 10%, As computed
previously, the electron density at the edge of the atom is
larger than the TFD value by some 60%, |

For Argon, the value of //o s defined by III-12, is found
to be |

S 0u33T805 2 | (VI1-1)
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Figure 1

Family of Solutions {(x) of Equation ITI-1k,
Z = 18, (Cf, also Table VI of the Appendix),
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with which the radius of the free neutral Argon atom in our model
becomes R = 3,89 a,, where a, is the Bohr radius, The electron

density in terms of the solution y)(x) is given by equation IV=L3:

= Z_ sp/f .
— L. (VII-2}
-/ T X VI1-2]

from which we calculate the explicit formula
4/:“/'/2&40 = (S3,2857) X, Frx) (VII-3)

This function, computed from the values of Table VI of the Appendix,
is plotted in figure 2, and compared with the TF and TFD models,
From this figure it can be seen that the difference between the
density distributions of the TFD and of our model is significant
only in the outer regions of the atom, where our model ieads to
higher densities and a smaller overall radius,

By comparing the density//ag ’at the dege of the atom
computed by VII-2 with the exact value IV-1l5 derived on theoretical
grounds, we are provided with an independent check of the accuracy
of our numerical solution, The two values thus computed are found
to be identical to within the four-place accuracy of the computation,

We now proceed to the calculation of the energy terms
of the Argon atom, For the kinetic energy of the Argon atom we

have from IV-3lL:

éik = 0<k -[/9{2%13’
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Figure 2

Comparison of the electron density of
Argon, expressed as 477’,' z/a a o
as a function of f??; s for the TF, TFD

and present models,
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which with VII-2 becomes

£ = 2% %,y
¢ —/" "(477)("3 pr (=)

In order to evaluate Ep, the above integral must be obtained
numerically with the values of Y/ taken from Table VI of the
Appendix, A difficulty is presented, however, by the fact that near
the origin the 1ntegrand diverges like x 2 This difficulty can
be circumvented by using the expansion VI-27 near the origin in

o '
order to caleculate %’ » If this is done out to a value x = A
and the integral computed numerically from then on, VII-L becomes

replaced by

” ' Y [y
Ek = Z; ‘(I:/ /2;('/"-/-,3265 A’ +_§_{£§:¢I,"f‘_¢2_€q&),{; 2 9" T -3‘/4]
/« (417) > 4 ),

(VII-5)
where a3 and aj are given by VI-27.

The exchange energy of the atom is given by IV-3l, which in

view of VII-2 can be written in the form:

Lo = —MZ y"}”” (VII-6)

(4ir)% Y

In this case there are no divergence problems at the origin so
that VIT-6 may be direectly evaluated numerically with the data
of Table VI of the Appendix,

| For the purpose of computing the potential energy, we

first write:
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£, = —efuptog fuph

= —.é_je \;,M/v _-.il_fe_ Z,/aa/v (VII-8)

In order to express the first integral om the right of VII-8 in

terms of the solution Y (x), we note that

=2Ze P(x) +7,
T

where Vo, is given explicitly by equation IV-19, The second integral
is simply half the nuclear potential energy which we previously
obtained in equation IV=LL in terms of the boundary values of ¥ .
With these relations, the expression VII-8 for neutral atoms takes

the explicit form:

E. = [f;usu”dx + Px) - WD] £ kZ
r 2
/ (VII-9)

As in the case of the kinetic energy, the integrand of the integral
appearing in VII-9 diverges like x’% near the origin so that
we must again have recourse to the exp&nsioh VI-27 in order to
carry out the integral near the origin, |

The nuclear potential energy is given by

£,

= —2¢ [ vix) -] (v11-10)

With VII-10 and VII-9, the electron potential energy is then obtained

from

Bep = Ep = Enp (VII-11)
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Finally, the correlation energy E, 1is best obtained from the
approximate expression IV=-76, although in principle it can be
obtained from the virial theorem IV-U6 once the remaining energy
terms have been calculated, The latter presents practical difficulties,
however, since the small correlation energy is obtained as the
differeﬁce between large numbers, which must therefore be known
very accurately in order to give a reliable value forv Ego

For the neutral Argon atom we have calculated the above
energy terms, evaluating the necessary integrals numerically or
by combined series-numerical integration, as required. The values
of Y (x), SU' (x), and W# (x) for the Argon solution corresponding
to a; = =1.6376553 were taken from Table VI of the Appendix,

The results, accurate to the figures stated, are:

B, = 675 e°/a,
E_ =2l1 e°/a
ep o
Epp == 1569 ez/éo
5 (VII-12)
Fp = - 1328 e /aQ

B, =-28.7 &/a,
2
E B @ 60247 e /&0

We note that the correlation energy is very small compared to the
kinetic and potential energies, but amounts to some '23% of the
exchange energy. A check reveals that the above values satisfy the
exact virial theorem IV-L7 to within the accuracy of the above energy

values,
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With the values VII-12 the total energy of the Argon atom in our

model becomes
E = =688 eg/agv (VII-13)

compared to the TF value Eqp = = 653 ez/aQQ The negative of
the value VII-13 at the same time represents the total ionization
energy of the Argon atome Without further laborious computation
we can also obtain the énergy necessary to ionize the atom dowm
to the K-shell, which is of some astrophysical interest. The
energy of an ion containing only two K-shell electrons has been

obtained for reasonably large Z by Hylleraas (24), who finds:
- 2 5 2 )
Bk ==(2°=32) /a0 (VII-1h)

The energy necessary to ionize the Argon atom down to tﬁe K=shell
is then simply given by the différence of the two expressions
VII-1k and VII-13, and is found to be 375 e2/a..

Other results pertaining to the Argom atom, such as the
polarizability, diamagnetic susceptibility, and small-angle electron
scattering cross-section are presented together with those of

other atoms in Part VII dealing with applications of our model,



VIII, SELECTED APPLICATIONS OF THE THEORY,

The theory of the model developed in the previous sections
is gemerally applicable to the calculation of all atomic properties
which can be treated on the basis of the statistical model of the
afam, In this part we shall investigate briefly the application
of our model to selected problems., In doing so, our purpose is not
primarily to obtain a large body of specific data, but more to
illustrate the general nature of the effect of including the
correlation energy in the framework of the semi-classical statis-
tical atom model, Accordingly, we shall limit our calculations
to representative examples. The specific applications considered
are equations of state of the. elements, the cross-section for the
small-angle scattering of medium-energy electrons from atoms, and
atomic polarizabilities and diamagnetic susceptibilities, The |
results are compared with previous models and with experiment,
wherever possible, It is found that our model leads in general
to improved agreement with experiment, although the agreement

is not guantitative,

B, Equations of State

As we have shown in Part V dealing with the theory of the
compressed atom, the statistical model of the atom can be made the
basis for the calculation of the eguation of state of.elements.

The results of Part V are strictly applicable only at zero absolute

temperature since the development was based on the assumption of



total degeneracy of the electron gas. However, it is well known that

the degeneracy criterion for an electron gas is:
2/. z/
p— 742-‘ ¥IiIli=-1
(” %7 (VIII-1)

In Part IV(A) we found that for our model, even for a free atom,

the lowest value of the density is given by

/oo = 3.24072 X 1072 (VIIr-2)

Le]

If this is substituted into VIII-1; we calculate

(___)’/ Wl _ 34,200% 200‘/( .
Em | T

For matter under pressure the electron density at the edge of the
atom becomes larger than the value VIII-2 so that the assumption
of degeneracy is valid to higher temperatures. We see from VIII-3
that for the practical caleculation of eguations of state, the
- electron gas can be considered as totally degenerate up to gquite
high temperatures, In fact, the degeneracy criterion VIII»B is
well enough satisfied for the pressures and temperatures existing
at the earth's core,

We choose as examples the elements of Iren and Carbon
in order to be able to compare cur results to those previously
obtained by Jensen (25) and Feynman, Metropolis and Teller (12),
respectively, For purposes of simplicity, our caleculations will

be based on the Fermi-Amaldi egquation applicable to our model, which



was discussed in Part IV(D).

We surmarize briefly the procedure for the caleulation
of a point on the mass density versus pressure curve for a given
element, To begin with, we choose an arbitrary value of x and

caleculate R from

R = Va X (VIII-L)

where 7z * is given by IV=83, The corresponding mass density

is obtained frem

[om :43'}, =3 (VIII-S)

For solution of the applicable Fermi-Amaldi equation at X

we make as usual the Ansatz
Vi) = ¢ (1) +k2[Z) ‘ (VITI-6)

and determine k from the condition

Kk = "//a * [%/X)—'X%YZ)] (VITI=7)
X 5 “x) — % (X

As discussed previously, the functions %5 J 7, are known

tabulated functions, and are given for example in ref., L, Next we

determine the parame%er

Fy
5, = | q" / WF)] (VITI-8)

and write our expression V-10 for the pressure in the form

P '_'32 LI » qf{'ff) (VITI-9)

doé‘
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vhere

(30 _-= D(edo ¥ a, /2 R) *+ V't ]
d ) R Z‘:k) [( %) (7a% )t (VITI-10)

By going through the above steps for each chosen value of X, we
obtain a corresponding point mﬁ the P - /0». curve,

It has become customary in the literature (Cf, for example
Feynman et, al., ref. 12) to present the results in terms of a
function f (3) (where ¥ is not identical with our previously

defined variable ¥ ), Thus, the pressure is written in the form
P= P /‘ ( 3) (VIII-11)

where % is the pressure due to the uniform distribution of
all electrons of the material throughout the volume of the
material, given by

/‘5’=32__x,</-% 5 43_; (VIII-12)

and the variable ¥  is defined by

-~ %

¥ = —396- (VITI-13)

2R
It is a simple matter to convert the data of equations VIII=(L-=10)
to the form VIII-(11-13),
~ We have calculated }[‘ () for Carbom, and plot our results

in figure 3, The curves corresponding to the TF and TFD models were
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taken from fig. 1 of Feynman et, al, (12), although the actual
numbers were recomputed for the TF and TFD cases from formulas
given there, The points at whicﬁ the f (%) curves intersect
the X -axis correspond to zZero pressure, i.e, the free atom,
It is seen that the effect of correlation is not negligible,
At the high pressures at which the statistical model of compressed
matter can be considered applicable, no data is available for a
direct comparison with experiment.,

By means of the equations VIIT=(L=10) we have also
calculated the equation of state for irom in terms of the absolute
units of dynes/cm2 and g/cc. The results are presented in

figure b and compared with the TF model,
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Figure 3

The pressure - density function /ffjj
(cf. eguations VIII=11,13) for Carbon

compared for the TF, TFD and present models.
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Figure L

The pressure P (dynes/bma) as a function
of /QM (g/cc) for iron, Theoretical curves

for the TF and present models.,
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B. Electron Scattering,

We shall here investigate the scattering of electrons from
atoms in the framework of our model, We restrict our considerations
to very small scattering angles (6 31.0"'1-l = 102) and electron
energies of the order of 50 kev for which the Born approximation is
valid and relativistic effects may be neglected to a good approximation,
It is this region which is of paramount importance for contrast
formationbin electron microscopy (Cf. Lenz, ref, 26), The scattering
of electrons from atoms has beenvtreated on the basis of the Thomas-
Fermi model by a number of authors: e.g. v.Borries (27), Heisenberg (28),
Lenz (26), It is found that while the TF model leads to generaliy
satisfactory results for scattering angles of the order of 10°
and above, at the very small angles of interest in electron
microscopy the scattering function C) (defined below in equation
VIII-21) given by the TF model is too large by a factor of L to 5,
This leads to elastic scattering cross-sections which are 25 times
too large, and to inelastic cross-sections 5 times larger than
those obtained by experiment or on the basis of cumbersome
Hartree-Fock calculations (Cf. ref., 29), The reason for the
agreement atlarge angles and simultanecus disagreement at very
small angles lies in the fact that for the former the interior
of the atom is'imporiant, while the latter depend on the outer
regions of the atom which are not satisfactorily desqribed by
the TF‘modelg It is the hope of improving this situation which

constituted the original motivation for the present investigation,
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We consider first the cross-section for elastic scattering.
On the basis of the Born approximation, the cross-section for the
elastic scattering of electrons from an atom of atomic number 2

is given by the well-known Mott (30) equation:

dT,/ -4 _ (2-F )" (vIIz-1h)
497

o "l
where  gf2.is the solid angle element, 7-‘-‘ /k=k"1 is the
magnitude of the electron wave vector difference before and after

scattering, and ¥ is the atomic form factor given by:

F= J‘/me"

i.e. the Fourier transform with respect to 5’ of the electron

-t‘ F
7" av (VIII-15)

density /A7(r) of the atom, For elastic scattering, g can be

written as

e 4 n" N
= 1L sn
] = 5 g (VITT-16)
where )\ is the electron wavelength and © +the scattering angle,

After the integration over the angular variables is performed, the

form factor VIII-15 takes the form

@
F = _ﬁl“ff‘/o(f)mh(fr)d/‘ (V1I1-17)
7 Yo

The application of the statistical model of the atom to the caleculation
of electron scattering cross-sections now simply consists of using

in VIII-17 for /0 (r) +the value obtained on the basis of the



statistical model, Thus, for the TF model, we have with IV-L3:

V.4
f §f ”(x) Sro (//4 X) dx (VITI=18)
0

where % (x) is the TF function defined by I-16, If this is
integrated twice by parts and use is made of the TF boundary
conditions X =@ , YWea=/ , ¥, (&) =%¥ax) =0 obtained

for the neutral atom, one can write:
‘ o
F =2 —-Z J %[X) A/'ﬂfi X)dx (VIII-3
| 1-19)
g ) Ko aincgye ‘

For small g, i.e., small scattering angles, the above can

be expanded to yield
@

F=Zz —Zf/ﬂ/lf Kudx  + 0(7’) (VIII-20)

By defining the dimensionless variable 7: 7% and using the definition

I-17, equation VIII-20 is finally written in the form
F = Bre 2 + O(z7) —
= Z - 7-;- 7 + ( 7 (VIII-231)
where the TF scattering function @rr is defined by

@
2
@,F = 6%f}( ¥ (x)dx (VIIT-22)
o

Referring back to VIII-1ll, we find that in terms of @ and 7

- the elastic scattering cross-section is given by:



~100-
dey - ol ©F
Cet, = ao O . ocvy? (VITT~23)

d - 7

For the TF model, C)7F' has been computed by Lenz (26), who
finds

1/3
@7-; = 13,6 2 / - (VIII=2L)

As discussed above, the above value of @@pre is too large by a
factor of I %@ 5 when compared to experiment (29).,

We now progress to our model., Here again, F 1s given by
equation VIII-18, but where y’ (x) now represents the solution
corresponding to our model, which for a neutral atom satisfies

the boundary conditions

J

Weoy =/ wix) = ¥ , YU =CcX (VIII-25)
X

with C as defined by I1I1-20, If we again integrate VIII-18 twice
by parts and use the boundary conditions VIII-25, we obtain in

place of VIII-19 the more complicated formula:

F =2 - 2[ ) }psm(//(ﬂd)f'%’@)/ﬁ%p /C«nf///Z)}/

(VIII=26)

In order to assess the effect of our model it is sufficient
to consider only very small scattering angles; accordingly, we
expand the above expression for small g and obtain in terms

of /7 = /40 the expression

- rX
_ _ 2 _ 2 Y
F=2 274% 77_{)(%*)4){ _ﬂﬂal—:/-/- Oy J

(VITI-=27)
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Finally, by making use of the last of the boundary conditions

YII1=-25, the above can be simplified to

X
—~ = _ 2 2 N g 5
F =2 Zaﬁ,‘;z /[x Poodx — %X]-f- O] (vir1-28)

Comparing VIIT=28 with VIII-21 we see that for our model we
can define an analogue CD of the TF scattering function

in the forms

® = %:gﬂ[./_éx Wex)dy — %_Z. / (VITI-29)

which when substituted into VIII-23 in place of @nr gives the

elastic cross-section for our model, We note that unlike the TF

function GDrF' s GD 5 in our model is not a simple function

of Z since both X and 90(x) are implicit functions of Z.
We now turn our attention to inelastic scattering, The

total scattering cross-section, including both elastic and inelastic

scabtering is giveh by the familiar Morse (31) formula:

de _ _# //2 -/’/"+5] (VIII-30)

dea 4%

which differs from VIII-1ll by the addition of the inelastic
scattering function S. At small angles, we can use for the latier

a formula derived by Compton (32) on classical grounds:

= 2
S Z - :;__ _ (VIII-31)

where F 1is again given by VIII-15, Wyrwich and Lenz (29) have
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2 o -
showm that to order /7 the Compton formula VIII=-31 agrees with
the exact quantum mechanical expression of Morse (31), and can thus
be used at the very small angles of interest to us,.

Substituting VIII-21 into VIII-31, we find to order

e

s = g’lz  (VITI-32)

With the relations VIII-32 and VIII=23 the problem of caleculating
the e_lectrdn scattering cross-sections at very small angles in the
framework of the statistical theory of the atom is thus reduced
to the calculation of the scattering function @ o

In order to caleulate the functions @ for our model,
the integral appearing in eguation VIII-29 must be evaluated
numerically with the values of X and W( x) obtained from the
numerical solutions for each particular atom. We have calculated

® from the data of Tables VI-X of the Appendix for the neutral

atoms for which we have obtained solutions. The results are preseanted
in Table 1 and compared with the TF value @rp given by eguabion
VIII-2li, We see that the values of (&) given by our model are indeed
much smaller than the TF wvalues @T‘F , the reduction factor
ranging from L.4 for Argon to 2,6 for Uranium,

We have further carried out calculations for Chromium, and
computed the total scattering cross-section at very small angles
for electrons with energy 60 kev, The results are shown in figure 5
and compared to the corresponding TF results, and to tﬁe experimental

data of Biberman et, al. (33). It is seen that the agreement with
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experiment is markedly improved, In fact, the theoretical values are
now slightly too small, which is probably due to contributions by the
valence electrons of the Chromium foil which are inadeguately repressnted

by the statistical model of the atom,
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Table 1

oD

Electron scattering functions @ for the present
model and for the TF model ( D ye ) for various

elements.,

Atom @ TF @

Ar 11)4(736 26 036
Ky 1hli,0 h1,66
Xe 16548 55,05

g 196,8 7he79
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Figure 5

Total cross-sections _L @ for the scattering
ar dsz

of 60 kev electrons from Chromium. Theoretical

curves computed for the TF model and the present modelj;

experimental curve from the data of Biberman et. al, (37);

8 in radians,
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C, Atomic Polarizabilities and Diamagnetic Susceptibilities,

As a fipal illustration of the application of our model
we consider the calculation of atomic polarizabilities and
diamagnetic susceptibilities,

The diamagnetic susceptibility X and polarizability KX
of an atom are given, respectively, by the well-known formulae

(Cf, ref. 3L):

XN=—-Ner <r¥ (VITI-33)
é mc®
—— 2
¥ = £ [<rp] (Vrit-30)
9 24,

where J/‘ is Avogadro's number, m the mass of the electron, and

Cr&) is given by

(/- 2> = j,{. 7(,.)Jv - 77]/‘?1]‘ (VIII“BS}
(]

Substituting for /J and r form IV-}43 and III-12, we obtain

for (ﬁ?:
- P4
Cr> = Z/azjxsfa"{x)n’x (VIIT-36)
(o)

After integrating twice by parts and using the boundary conditions

VIIT-25, we find that VIII-36 can be written in the form

ey

rs
> = 4 ®@ ' (VITI-37)

where @ has been previously obtained in connection with the
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electron scattering problem and is given explicitly by equation VIII-29
for our model, and by VIII-2k for the TF model, The values of ®
for the atoms for which we obtained numerical solutions were
caleculated in the previous section and are given there in Table 1,
On the basis of these we can caleculate X. and K by the formulas
VIII-33 and VIII-3k, respectively.,

In tables 2 and 3 we present the results obtained with our
model andcompare them with available results of calculations based
on the TF model, on the Hartree self-consistent field, and with
Aexperiment@ The Hartree self-consistent field values were taken from
Hartree (35), The experimental results for the diamagnetic susceptibility
were obtained from Mann (36), those for the polarizability from
Fajans and Joos (37)e From Tables 2 and 3 we see that while the
unmodified TF model is hopelessly inadeguate for calenlating
atomic polarimabilities and diamagnetic susceptibilities, our model
obtained by including both exchange and correlation leads to
reasonable agreement with experiment, although the agreement is not
guantitatively precise, In fact, as can be seen from the results for
Argon, the calculations based on our model lead to much the same values
as those obtained by the much more cumbersome method of the Hartree
self-consistent field,

In general, we can conclude that for the caleulation of
atomic properties which depend critically on the electron density
in the outermost region of the atom, our model leads to improved
agreement with experiment., For those properties which depend primarily
on the density in the interior of the atom, the correlation

correction has little effect,
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Table 2

Magnetic susceptibilities ¥, (1070 cm3) for

stoms of various elements,

Ar Cr Kr Xe U,
TF model 81,0 - 102,0 11.7.0 -
Present model 20,88 25,96 33,00 h3.61 59.25
Hartree field 20.6 - - - -

Experimental 19,5 - 28,0 L2l o
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Table 3

atoms of various elements,

- Ar
TF model U7,78
Present model 2,5k
Hartree field 2,47

Experimental 1,65

Cr
L3.h1
2,95

emous

37.92
3.17

2,50

4 (10"'211 cm3) for

Xe
33613

3.70

e

Lis10

27.7h
1,00

= e
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X._APPENDIX

The Appendix consists of tables of numerical solutions
obtained for the elements Argon, Chromium, Krypton, Xenon , and Uranium,
Tables I « ¥V are summary tables giving corresponding values
of a; , X and (Z=N)/Z for each element , For the values of ay
preceded by a star complete solutions are given in tables VI « X,
The values of ay preceded by + and ++ correspond approximately
to the singly and doubly ionized atom in each case, The value of X
listed for (Z=N)/Z = 0 is extrapolated from the remaining data,
Four complete solutions \{/()9, wicx) , S””(x), were obtained

for each element o These are presented in Tables VI = X,
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SUMMARY TABLES I = V



TABLE I
Argon
- 2y X (2-N) /2
#* 1,65 ' 350L5 oli359
#* L6l lis )78 2272k
1,638 64300 ' o116l
1,6379 64,656 61299
16377 86237 20679
+ % 1,637685 84570 05949
163767 2:181 SOLT77
1,63766 909225 | 202818
1637657 10,489 261782
1,637656 10,760 001.228
1,6376556 11,089 2008227
1,637655 11,15 20072
# 1,6376553 11,39 000315

11,52 0



*

ENN

+ %

%

D

1.635

1,629

1,62875
1,62868
1.62867
1,628665
1,6286L
1.628627
1.628613
1,6286105
106286
1,6285992
1,6285989
1,6285987

1
o
(o3
&

TABLE 1T

Chreomivm

X

34662
6,L07
70150
8,108
80227
8,322
8,806
9180
9,839
10011
11,590
12,076
12,360
12,85
13,10

(ZeN) /2

3675
01567
21120
#0896
s0853
20831
20698
20602
«OLE1,
o0L27
00173
50113
00811

200294



# 1,623
1,619
1,6188
1,6187
1,61865
++ % 1,618625
1,618620
1,618610
+ % 146186077
1,618605
# 146186039

= 117 =

TABLE

IIT

Krypton

Lo1083
6072
Ta56
8oli3
9.36
lﬂwﬁ?‘
104,62
11,69
12,11
13,25
15,26
15,L9




1,6111
+4 % 1611095
1,61109
+ # 146110889
1,611088
1,6110877
# 1,6110876
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~TABIE IV

Xenon

X

Lo62

6491
11.76
12,157
13,91
1,550
15,063

16083

17,372
18,15

(z=W) /2

2298
0163
o0L7
03886
o025
001981
00116
006275
2003988
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TABLE V
Uranium

- 8y X (2-) /2

# 1o61 309k 2368
1,60k - 10,1k o085
1.,60397 11,35 20656
1,60395 13,65 00398
++ 3 1,6039LL8 16,01 00228
1,6039LL5 16,43k 20210

+ # 1,6039L3) 18,68 00106
# 16039432 19,91 20066

21,9 0
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TABLE VI
SOLUTIONS FOR ARGON
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a; = = 1,65

X ¥ (@ — P e
20100 29818393 1.45062¢ 9,86l423
0225 9673932 1.353521 6.h3k106
20400 +9L15816 1,258),30 679281
0900 8865212 1.078520 2,866782
-1600 »8171128  .091535k2 1,925161
«2500 7416178 0o 7708L67 1.3L9Ll1
3600 -6641068 +6153919 «9673567
11900 «5875366 05383262 7019565
6400 5138910 21118328l »5125129
8100 o lii93L55 3737379 »37L8673
1,000 03794292 03127871 02735680
1,210 ,3191680 $2637577 ,1982183
1.hko 2632009 02250773 +1415952
1.613 2262359 02031121 01102985
1,796 1515960 1699218 .059887L
2,190 1228550 21608797 +0LLi5350
2,196 s0753575 +1506279 0235920
26993 -002L119 »1418915 0018273
- 3.0LL68 =,0050582 »1118358 0002923

3,04503  ..0051087 1418357 ,0002779



X
<0100

+0225
L0400
0900
1600
.2500
.3600
11900
6100
.8100
1.000
1.210
1,440
1,613
1,796
2@016h'
2,190
2,196
2993
11,000
L 779
821

_Px)
298119393

+9676181
09h9825
«887430L
»818752k
o Thli238k
,66800L2
.5930737
05215238
hi5L6551
3931610
0337279k
286919k
+25L7890
02250550
1937721
1720251
.1386393
20939495
.0226652

= 900?2-!-88;3

=,0077529

=122«

“”1@6&

1140616
1,343L88
1,248351
1,068255
29017338
7596506
6333494
+5251137
11335630
03569685
+2934819
22112902
+1987105
»1738115
1521251
21317638
» 1186065
100556k
0811497
0611916
0625103
0625087

)
9,865933
64136339
l1.682241
2,8711L8
1,930876
1,356L66
29756813
»T115080
0523551L
+3873570
- +2877273
¢2111782
21595153
»1297562
»1053839
,0828222
0688873
-0501195
0296378
.0068L91
20001158
+0003318



x

,0100
20225
»0L00
0900
1600
2500
«3600
11900
-6L00
8100
1.000
1,210
1.Lbo
1,613
1.796
2,016L
2,190
2,196
2.993
3,197
1,000
Lokl
5,018
505225

&
W (%)
,98h9gg;
«9676702

29450753
.8876L09
.8191321
» ThL8LS0
6689065
5913557
5232912
1570428
03963h21,
o3k1h776
0292221
02611193
2330283
+2035967
»183501L
+153478L
.11567h2
,0870505
»0652L0L
0LBL926
-03LLLL6
0235396

&

@] 2 Fe

- le63?685

- W (x)
1438299
1.341165
1.2L6017
1,065878
69022752
«7570585
#6305612
25220540
Ji301l25
3530815
+2890027
62360692
21925686
+1668993
01116228
+1227760
1085955
.0885L42
20652985
2092751
.0380613
+0301001
0239188
20199879

yyll(x}
9.866280

6.4L36857 |
682926
2,872160
1.932200
1,35809
09776119
.7138L82
»5261181
3903176
+2910L0k
+2179325
1638035
01341109
«1104767
20884728
+0750005
00570970
20381506
2026313k
0187625
0137555
0100952

,007590%



£

6.,0025
6,5025
7.0225
7.5076
8,0089
8,526l
8,58L9

«014987h
0075105
,0009122
=,00k)29L
-,0093161
-,0139837
= 00114892

=12l

1.637685

~ ¥
20162869
0137372
.0117389
»0103532
+0093269
«00866L6

20086170

Y7 (=)
«0058291
200kN310
«0032989
.002h394
20016680
0008689

20007575



S, S
L0100

20225
+04L00
20900
#1600
#2500
« 3600
#1900
»6L00
8100
1,000
12100
Lehli0
1,613
1,796
2,016
2,190
2,h96
24993
3697
14,000
Lo ok
54018
565225

By =

Y(x)

+98L9628
29676709

«9L50675
288761136
+8191369
o ThL8528
6689181
#5943722
05233139
4570735
03963833
3415315
+292492h
+26150k5
#2331308
2037231
+1836L91
21536695
41159546
=087L50l
20657952
009h2h23
00354565
+02L8712

e

=125

il 1063?6553

— VX
1,138269
1.341135
1,245987
1,106585
290221536
7570252
+630525h
25220146
«1300986
+3530315
22889451
2312553
21964618
» 15668103
L5223
1226601
+108L663
+0883888
20650923
+0L90050
20377128
0296575
20233542
0187792

wx)
9,866285
64136862
1,682936
2,872173
1,932217
1,358115
«9776368
o T138771L
25261511
3903551
2910830
»2118125
21685749
#13LL711
»1105k26
«NBB5L62
+0750802
s0571885
+0382613
»0261839
0189318
013965k
0101006

20079052



—X

650025
645025
700225
705076
8,0089
845264
940000
944861
10,0489
10,4976
11,022}
11,3569
11,.h2kh

21265

a B e 1»63?6553

Wix)

+0166986
20097101
«N03740L3

~5000866)

=,00L8LoL
=30082802
=30109186
©30132100
=, 01511125
=,0168721
=,0182832
=,0190276
©,0191636

— Yltx)
»0154118
00126511
+0103827
+00868L7
»0072542
20060LL7
+0051230
+00L320L
20035322
»0029836
«002L003
+0020502
«D019797

W)
20062099
20048969
20038772
20031545
0025774
40021171
»0017881
«0015225
20012922
20016048
20010664
+0010L41
+0010l36
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TABLE VII

Solutions for Chromium



#0100
20225
20100
+0900
#1600
»2500
23600
<1900
6400
28100
1,000
1.210
1,hh0
1,613
1,796
2,016
20496
25993
3497
3§6622
346626

Y (x)
298119885
09677265
«9L51701
2587820k
»8193708
» Th506LlL
«56896L6
5940377
25222983
+h5L9775
23926897
3355794
02384138
2196729
+2179080
»1837L30
» 1205988
20618358
«0126L1L6

-,00l1L92
=,0001:1880
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A == 1,635

¥l
1.435773
1,338833
1,2143953
1,06L5L5
«9019042
+7578L85
26326915
85256998
211354996
23603503
#2984533

21,8026

22074288
»38L0800
21611015
»1159140
+1198960
« 1065166
21017410
.101hL70kL
+101470L

wrix)
9,850513
60121379
4667837
24897945
1,918876
1,345568
9657181
+T02377h
«5118349
+3789737
+2793817
42057021
»1507428
«1206152
«0958206
20726846
4038627k
#0169266
20031950
20001970
50001878



] 2 Do

a; = = 1.628665

X W =¥w ¥
+0100 .9850519 1.429432 9,851473
- ,0225 29678691 1,332L77 61122791
+0L00 »9h5k2h1 1.237568 11,669709
20900 8883965 1.058043 2860704
21600 : 8201096 +8951773 1.922L8L
62500 o Th672Uk 7507584 1.349998
23600 - 6714330 06250678 «9709639
oLig00 05975410 05173391 7081538
»6L00 45271303 R 11261533 5217819
1,000 011013658 +2862662 2882825
1,210 03470195 2338185 02157478
1.Lk0 22984213 21907952 01620730
1.613 22677006 «1654018 »1329398
1,796 42395599 ~1433735 »1092229
2,016 02103754 1217799 20870L231
- 2,l96 »160627h «0879737 ,0563450
2,993 1230220 40650537 0375742
3,497 +09Lk533 0192933 0258656
116000 20725760 0383060 20183333
bloh 0886557 0305522 0133018
5,018 00L131k3 20215886 -0096729
55225 | 20300164 +0203771 ,0071411

6,0025 ,02098143 ,0174008 .0053400



A

6,5025
- 7.0225
75076
80089
803203
803261

Y

0128871
0054993
«40007279
=,0067305
-+0094733
=,0095376

&1 E e 1@628665
~¥x)

00151086
00134102
00123391
+0116817
20111293
40111269

wx)

20038878
«0026869
20017515
20008762
10004365
»,0004228



1.Llo
1,613
1,796
2,016
2,190
2,196
2,993
3,197
1,000
L, lok
5,018
545225

_pon)

2985052l
09678703
#9L5L262
.888L0o1L
8201184
.7h67386
2671h542
059757k
25271718
«h615580
1014511
+347130k
02985654
02678734
02397669
2106297
»19073L6
1610097
1235801
0952455
0736699
20571260
0132874
+0325968

&

=

= 1,6286105

— ¥r)

1429377

1.332k22

1,237513

1.058987
895119k
2750697k
6250023
»5172672
260730
» 3196599

+2861535 -

22337162
.1906390
»1652257
~1L317L5
1215505
1075150
-0876670
206146485
.0L37657
+0376298
0296999
0235119
20190403

EE:I/(X)

9.851478

642280k
L.669725
2,860727
1.922515
1.350036
49710089
- 7085059
5218416
03869252
2883704
02158459
21621836
»1330597
1093536
20875681
-07k2350
0565235
0377935
0261334
+0186577
0137313
-0101L33
s0077035



X

6.0025
6,5025
7.0225
7.5076
8,0089
8,526l
9,0000
9,186k
9,9856
10,0L89

P

1602427049
0170813
,0108439
+0059209
00015468

-.0023727
=50055485
«,0085006
=+0112989
-.0116118

=132=
ay = = 136286105

— ¥

60157701
0131148
+0109655
+009392L
0081105
,0070825
00063605
»0058092
0054349
00054026

)

20060051
20016788
+0036351
20028798
20022569
0017328
0013250
20009458
0005406
0004767



ﬁévwgam

inserted to correct error in pagination



#0100
¢0225
»0L00
«0900
01600
02500

23600

211900

#6400

8100
1,000
1,210
1,Mh0
1,613
1.796
2,016
24190
2,196
24993
3.496
L1000
Lo h9k
5,018
505225

Fey

09850525

29678705
2954267
»388Lo2Y
o 3204201
o THETLLT
«6714587
5975805
05271807

'9h615701

61014672
3471516
02985932
22679068
22398071
02106791
01907924
21610843
1236892
0954005
20738839
«057h139
20L367L0
0331026

=13l

2, = = 1,6285987

- ¥
1,4129365
14332411
1,237501
1,057975

28951070

07506843

52119882

#5172518

511260558

«3L96103

2861309

#2336899

1906081

21651910

o1h3135h

21215051

21071648

20876068

«06L5691

20LB86623

00374973

+0295328

0233006

20187776

W)
9851480
641422807
Lo669728
2,860733
1,922521
1,3500Lk

29710186

7085172

5218515

3869399

+2883870

«2158647

«16220L9

1330829

21093790

20875966

00742655

aN56558)

20378364

00261858

0018721h

00138078

40102361

0078148



S, .

650025
665025
700225
745076
80,0089
8,526l
900000
914860
10,0489
10,4976
11,022L
11,4921
12,0409
12,5316
12,816l
12,8881

2(72

00249203
+01790L8
001189148
&0072305
0031806
=,0003310
«400305L0
@40054LL0
=s007778L
0093610
e 0109439
=y 0121071
=,0133288
w5 0112009
=,0146320
=g01L7320

%1

o

wl35e

- Yt
20151491
0127213
o010481)
»N088068
«0073988
20062123
0053130
+00L5368
0037868
0032791
00027661
0023653
+0019L91
0016089
#001L190
20013715

Ftx)

«006137L
+004L8372
40038263
2003108k
#0025333
00020717
«0017382
«0011638
2001213k
20020547
0009068
2000804k
4000718k
0006734
+0006628
s0006621



ﬂl}émy

TABLE VIII

Solutions for Krypton



X P
20100 »9851076
00225 +9679919
a0L00 0956368
40900 5888395
21600 »5211140
#2500 «Th76701
3600 67251522
aLi900 05986765
26400 +5280786
8100 »116198L0

1,000 110102514
1,210 03153818
1.bko +2949016
1,613 026214385
1,796 +2321381
2,016 219988438
2,190 + 1771561
26196 01415816
2,993 60920728
3:197 | «0L77803
L4000 20061236
L, 1047 =,002L1426
1087 =,0027731

&

1

o 13623

=¥
1,)1239h2
1,327198
1,23257h
1,053813
8919210

o Th863L3

06241993
25178299
011281045
03532763
22914986
+2L09745
22000476
o 1763107
01561167
»1868581
+ 1247956
010867h9
s092L577
+08L1328
20818723
20817993
20817988

Y x)
9,834268
6,L06125
1.653688
2,8L6072
1,909235
1,338013

2960053

6983896

5123202

s 3777522

+2793048

02066552

21526L43

+1231L76

0989661

0765156

oN626016

+0L37800

00231325

00096772

2012798

20001103

000086k



«0100
20225
20100
»0900
1600
#2500

3600

+L1900

#6100

28100
1,000
1,210
1,hLko
1,613
1,796
2,016
2,190
2,196
25993
3,197
14,000
~ hielioh
5,018
565225

3,

1

Y
2985151k
»968090L
#9458123
28892373
.8218313
7188163
+67h2L6L

26010966

05314126
1661835
04070126
43532692
23052178
02748L62
2170281
22181820
21984793
#1690275
213190L6
21037550
00822726
0657532
#0518831
0011153

~138=

=¥
1.419563
1,322808
1,228164
1,049323
8872762
«Th37399
+6189387
#51206L3
11216699
3459801
+28311L2
0231234
»1886358
#16351L0
o 117217

. 01203572

« 1061933
-N868923
#N6LL697
+0LBL98T
00375188
«0297076
00236217
+0192342

Yl
9,831925
6+L07100
1651979

2,847971

1,911715

1,3L1056
+9636510
27025510
+5170706
38313kL0
«2853777

02134957

+ 1603152
#13151L3
1080557
0865057
20733203
20558103
20372990
40257766
40183878
+0135165
0099651
20075466



X
640025
655025
7.0225
7.5076
8,009
8,526
9,000
90186
10,0L9
10,240
10,30k

EZ(x)

00326828
0253382
0189066
20137686
»009137)
#00L9LhT
#0014273
=, 0018786
=40051663
«,0066L90
300701132

=130

= 1,6186250

—- Pix)
20160363
+013k520
00113750
+0098696

- sN086590

20077061
0070532
30065697
0062238

»0061585
20061436

¥x)
00058597
#0045390
20034963
00027391
20021131
«0015867
20011806
20008138
20004152
-0002636

20001978



‘glh()s—a

a; = = 1,6186077

_X Px) =¥ ¥
0100 +9851515 1.l195k6 9,.834928
20225 +9680907 1,322791 6107103
40L00 -9158129 1,228147 Lo 651981
0900 8892388 1,049305 2,8147978
01600 8218341 8872579 1.911725
02500 »TLB88208 »Th37206 1.3L1067
23600 6742531 »6180181 +9636651,
11900 6011061 «5120L16 702567l
26100 25314257 oli226L06 5170893
+8100 +11665012 »3159515 3831552
1,000 k070361 2830813 .2851016
1,2100 3533002 2311961 02135227
1.Lko 3052583 1885909 21603757
1,613 2748919 +1634636 21315475
1.796 2470866 11416650 1080919
2,016 2182540 01202921 20865L58
2,196 21691357 0868062 055859
2,993 +13020623 0610561 20373589
3,197 .1039781 20183518 0258491
1,000 0825793 «0373319 20184750
Lo Lok 0661636 0251738 0136197
5,018 05214308 0233288 0100881
5.5225 0118275 20188738 20076917



X

60025
65025
70225
T.5076
8,0089
8.526L
9 ,0000
9, Li86L
10,0489
10,4976
11,022)
11,492
12,0l1
12,110k

12,1801

o)
0335856
00261812
0203521
«0155529
0112290
«0074303
»¢00b6998
20020666
=.0005929
=,0024740
- .00LL589
= +0060800
-,0078375
-,0080523
-,0082663

a

1

wlhle

= = 1,6186077

- ¥Yx)
+01.56600
012926
0107359
0091088
20077518
20066221
005780L
«0050709
+00LL109
0039879
+0035933
00033222
0031001
0030798

0003061

A9
20060288
0047370
+0037290
00030093
00215282
20019564
20016096
20013171
.0010387
0008507
20006572
20004981
20003067
20002783

20002168



-,

0100
20225
00400
s0900
1600
#2500
03600
211900
«6L00
+8100
1,000
1.210
1.Lko
1,613
1.796
2,016
2,190
2,196
24993
3,097
1,000
i Lok

© 5,018

$e5225

&

Vex)
29851516
«9680908
29458131
+R892392
5218318
»7h88218
o67U25L6
6011083
»5314287
11665053

- oLO70L1S

353307k
03052676
#27L9062
22171001
2182706
21985826
1691607
1320986
104029k
+0826199
00662581
00525569
00L19915

w1 )12

= 1,6186039

=¥x
1.h195k2
1,322787
1,2281L3

~1,0k9301

.8872538
o Th371263
«618913L
512036l
11216388
o 359Llg
«2830737
.2311873
1885805
1634520
01116519
61202771
21064042
«0867863
,06140300
-01:83180
20372889
00294200
0232614

,0187907

L)
9.834930

6,L0710L
h65L98L

- 2,847980

1,911727

1,341070

29636685
« 7025712
25170936
»3831€01.
.285L071
2135289
1603827
1315551
1081003
0865550
00733735
«0558707
0373728
+0258658
00184950
201361135
0101166
0077252



X
6,0025
6,5025
7.0225
75076
8,0089
8,526k

9,0000

9,L86L
10,0489
10,4976
11,022k
11,Lk92
12,0409
12,5316
13,0321
13.5k2
14,0625
1h,516
15,05LhL
15,210
15,288

Hx)
40337935
20267015
20206853
0159644
»0118470
.0082571
0051565
20029799
0005372
-,0011388
-,0028L01
=.0041596
-,005L935
=,0065222

M¢007h330’

=,008231L8
=,00893L8
=,009L577
=,0099800
-,0101118
«,0101748

a1

w] )3

&=

= 1.,6186039

— Y%
+01.55000
0128030
20105883
0089328
00075416
0006370k
<005L8k2
«00L7213
00039877
4003L9L8
20030025

20026251

,0022k61
001953k
+0016916
001555
+0012100
0010675
0008748
0008200

0007927

_Ex)

«0060680
20047829
20037830
.0030723
20025020
002013k
+0017109
0014360
+0011826
00010193
+0008626
20007477
20006377
0005577
00004910
20004366
200039h2
20003681
,0003515
»00031:98
+0003L96



- =lhhe

TABLE IX

SOLUTTONS FOR XENON



X

«0100

,0225
QMMO
20900
«1600
#2500
03600
«i900
#6100
8100
1,000
1,210
1ol
1,613
1,796
2,016
2,190
2,196
26993
3,197
11,000
Lo Lol
1i.6195
11,6199

_HAx).
9851569
09681909
«9L59867
8896030
-82211193
o 1196198
«6753168
60211109
5323905
11672036
L072262
03526615
3033947
2718872
02Li265h2
02117907
1902490
+1.5699L6
+1120061
,073L0L32
20387930
+0063595
=,0017660
=.0017939

=1L5=

= o 1@61&

—#ix)
1,L15071
1,318475
1.22k0h7
1.0L5779
«88LLE6T
»Th17558
6178717
,5119792
11226270
03180465
02863739
2357977
019L6kT2
»1706L76
1500853
01302825
1177162
+1005597
»0822928
0718109
00666506
20649952
0619368
06119368

9,821885
6,39L506
Lo6L2916
2,83703L
1,901893
1.33225k
9557236
6953236
5103601
03767581
02791607
02072707
1539538
+12L9161
1011791
»,0792256
00656796
0L 7h636
10276759
20148156
0062708
000911
0000503
,0000L65



ﬁf(yg
»9852260
09682563
9161032
.86898672
+8228956
7503808
«6763L81
«6037472
»53L6028
11701883
11111957
.3578878
03102256
2800985
22525025
02238838
«20433k2
1751070
01382589
1103132
»0869893
00726023
+0588638
«0Li82280

|

w1lb=

=

= 1,6110950

- ¥t
1112163
1,315561

- 1,221120

1002!2?98
3813729

»7385070

.6113810
5081550
JL183617
.31,32138
2808255
2293588
1871119

0162202l

1405965
21194161
»1056716
0862385

20637022
Oh8LhT7h

00372335
0291522
0233691
s0189611

Y

9,.822325
64395152
Lo 6L3771
2.838292
1,903535
1.334266
9580997
- 46980693
0513907
23803003
22831523
211760k
21590013
»1303951
1071272
20857595
0726896
20553387
»0370052
0256017
00182959
.013L8L9
2009980k
,0076076



=1l 7=

a8 = = 1,6110950

. Yex) —Yx Y )
6,0025 00399349 40157251 40059571
6.5025 20327597 0130829 004673l
7.0225 20265400 20109258 ,0036701
75076 0216118 20093267 20029525
8,0089 20173115 20079981 »0023717
8526l +013L677 +0068978 0018987
9,0000 .0104001 0060839 .0015501
9,186l ,0076121 ,0051039 ,0012552
10,0489 00k 755k s00L7795 50009742
10,4976 20027023 200143859 «00078L7
11,022} »000L99L +00L0259 40005918
11.k921 =,0013320 20037847 2000L375
12,0409 -.0033517 .0035912 0002683
12,3201 =,0045927 00035169 -0001534
12,1609 =,0048403 ,0001251

«0035071



X
«0100

s0225
+0L00
20900
2600
+2500
- 3600
21900
#6400
8100
1,000
1,210
1.Lko
1,613
1,796
2,016
2,190
2,196
12,993
3.h97
14,000
h@h9ﬁ
5,018
5.5225

w118

!

Fix)

29852260
+9682561
+9L61034L
8898677
08228965
07503823
6763501
6037504
«53L6072
JL701943
1112037
0357898l
0310239l
»2601151
02525225
2239083
02013627
1751138
01383123
»1103885
0890925
»0727399
+0590469

OL8LELY

=

s l a6110889

- ¥x)

1,112157
1.315555
1.221113
1.104279
»8813666
»7385003
6113739
«5081h72
01183531
»3l320L0
2808142
02293458
.1870966
1621853
»1L405773
1193939
,1056741
.0862093
20636640

| -0l80982

s0371712
20293748
0232727
0188433

55'”(/\’)

9,822325
6.395153
L.6L3772
2.83829L
1.903538
1.33k270
#95810L5
46980748
.513h970
3803071k
+2831603
2117695
»1550115
»130L063
1071393
0857729
,07270L0
0553550
0370251
+0256255
0183242
10135182
0100237
,0076535



. S

6,0025
6,5025
7.0225
7,5076
8.0089
8,526k
9,000
9,186l
10,0489
10.L976
11,022L
11.k921
12,0L09
12,5316
13,0321
13,5L2L
1L,0625
1k, 5161
1h.592l

&1 =

Y - ¥ix
200102340, 20155835
.033136L 00129129
0270138 ,0107216
.022223) 0090856
0180247 20077133
ooihBhlb 00065613
»011L158 20056931
0088629 000L9L97
00628149 0042107
0044906 0037698
0026376 0033062
,0011686 .002958
=,0003589 0026191
=40015808 0023688
=,0027119 ,0021578
=.0037669 0019840
=.00L761L 20018467
=,0055782 -0017600
=,0057121 0017489

1S

Prx)

0060100
20047345
,0037410
»0030336
+002L6L9
0020061
0016721
,00139L3
0011362
20009679
,0008038
»0006806
0005585
0004647
00003862
0003020
20002257
,0001542
.0001401



»UL00
0225
-0400
+0900
21600
2500
3600
11900
6100
8100
1,000
1,210
1.4bo
1.613
1,796
- 2,016
2,190
2,196
2,993
3,497
1,000
ho ok
5,018
5.5225
6.,0025
6,5025

¥ (x)

29852260
29682561
@9h6103h
8898678
.8228967
7503826
,6?63508
»6037511
5346082
1701956
11112055
3579007
,310212L;
2801188
+2525269
22239138
2003691

1751519

»13832L2
1104053
0891155
0727706
0590876
-0LB5176

.0L03005

00332202

8

=150=

= = 1,6110876
- Wix)

1,412156
1,315553
1,221112
1.0L2790
.8813652
.738L588
6113723
»5081L55
11183511
3432018
,2808117
2293128
.1870932
2162181k
+1L05729
1193891
21056117
0862028
0636555
0480873
037157k
0293576
,0232513

»0188170 ‘

00155521

,0128751

if:ll :Xg

9,822325
6,395153
L. 613773
2.838295
1.903539
1.33k271
9581055
6980759
513498l
+3803090
2831621
2117716
1590138
1304088
21071120
0857759
0727072
0553587
0370295
0256308
0183305
0135256
010032k
0076637

.0060217

0047481



ay = - 1.6110876
_ Yex) ¥ P
70225 0271192 20106761 20037568
7.5076 0223529 0090319 0030518
8;0639 ,018183L 0076498 0021858
85260 s0195359 0061862 ,0020302
9,0000 0116787 .0056058 .0016995
9,186k 0091117 .00L8481 0014257
10,0489 0066260 .ooAleoz 0011730
10,1976 0048397 0036316 0010095
11.0224 .0031152 00031445 ,0008521
11,4921 .0017278 2002772k .0007359
12,0409 0003112 002400k +0006236
12,5316 -,0007951 002115} 0005405
13.0321 ~.0017593 .0018632 4000693
13.5h2L -,0026818 ,0016398 0001083
11,0625 -,0034819 L0014l .0N03561
14,5161 =,004200L ,0012888 .000317k
15,054k ~.0047501 ,0011288 0002785
15,5236 - +0052502 0010050 0002450
16,0000 =,0057016 .0008920 00002252
16,1836 -,0061075 0007883 +000204L)
17.0569 =.0065270- . ,0006770 0001850
17,3056 - 0066897 ,0006318 +000178L
17,3889 ~,0067517 0006170 0001765



=152=

TABLE X

SOLUTTONS FOR URANIUM



X

20100
00225
«0L00
#0900
#3600
#2500
#3600
«11900
6100
8100
1,000
1,210
1.Lho
1,613
1,796
2,016
2,190
2,096
26993
3197
309438
309hLk2

=153

a; = = 161
Y — Vi)
9852362 1.411200
+9682775 1,314758
29161365 1,220538
«88991L2 1,042827
8229120 8822123
7502769 . 7503303
«£759801 ,6713526
+6029073 05121379
05330088 1211317
ol:67L701 3506730
+L068778 02902152
23513668 #21:09718
3007399 2013001
02679828 01781512
#2372105 #1591111
220L17L6 ;1h09161
180670k 1296176
+1h3L0LL 1148935
20902686 1008187
00L121L97 s09L7775
=3 0007L53 00936206

«0936206

- )

94809288
66382326
ho631226
2,826389
1.892283
1,323568
»9L78608
«6880988
5035986
03702873
22728157
22008981
«1h7h13L
+1181833
20911992
00719077
00580788
+0393666
20189LLL
.0060988
+00001L)

»0000101



X

#0100
+0225
+0L00
»0900
» 1600
02500
#3600
11900
+H400
25100

1,000

1,210

1,400

1,613

1,796

2,016

2,190

2,196

2,993

3197

11,000

L hol

5,018

545225

2

1

Y
09852963
09684137
«9463793
«8900L6L7
03239046
« 7513629
25783376

6062538

5376161
+ 11736836
24151371
43622328
»3119286
2850216
22576293
62292136
+2097985
+ 13076k
o Lih1%05
« 1163450
+0951205
0788001
20651119
#05L51L6

=15l

- =1,6039L48

=¥
1,11051.39
1.308682
1,214436
1,036613
28757847
« 7335611
«6100817
050LL 765
2152583
+ 31106288
278697k
02276261
2+ 1357168
1510113
«1395851
.1185828
01019157
20856861
20633378
0L 79067
20370725
0293400
20232858
401838893

%:ﬂZY)
9,510203
64383670
L.63300k
24829004
1,895692
1.327761
«9527850
+6937805
»5100658
03775892
,2810222
02100977
21577109
21293181

1062306

»0850350
«0720737
05L8716
20367023
20254057
| 0131713
20134096
20099471

20075981



X

€,0025
"6,5025
760225
705076
80089
8,526l
9,0000
91361
10,0489
10,4976
11,022}
11.h921
12,0409
12,5316
13,0321
13,5k2L
1h,06285
1, 5161
15,05k
15,5236
16,0000

16,0801

Y
20462558
20391192
«03254L82
0281073
0238525
20201082
«0L71550
o01L5117
»0113627
@5100115
20080920
«006560L1
»N049690
20036885
0025005
@0913917
20003490

~oN005016

w‘lﬁé@j?hl@

- ¥ x)

015652h

2066813
20058163
+0050750
2N0k367h
0038967
+003L325
20030831
#0027408
«0N02L857
«0022679
«00200838
+N019311
»0018235
00017243
«0016615
sNOLE209
0016148

¥x)
40059693
N0k 7049
«0037156
20030179
0024536
00019981
$N0L6666
0013909
s0C11349
20009682
20008061
20006850
20005660
20004759
20003966
0003261
0002626
2000212}
20001571
,0001103
0000578

00001156



«0100
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