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Introduction

Shock waves are known to significantly alter the medium through with they propagate.
Shocks in the interstellar medium have been known to affect star formation. Likewise,
shocks in the intergalactic medium are expected to affect galaxy formation and the
confinement of intergalactic clouds. Because of their significant influence, it is important
to have a sound understanding of the different solutions used to study shocks and see how
they differ. In this paper, I will focus on the self similar solution, thoroughly developed
by Ostriker and McKee, and the explosion model, developed by Tegmark, Silk, and

Evrard.

Background

A shock resulting from an explosion undergoes four phases. In the first phase, the
external medium can be neglected, as the ejected mass undergoes free expansion. Then,
when the shock absorbs a mass equal to the initially ejected mass, the shock begins its
adiabatic phase, where it can be assumed that radiative losses are negligible, and all of
the shock's energy is conserved. At this point, the well known Taylor Sedov solution is
applicable and the shock is said to be self-similar. Later, when radiative losses come to
total the amount of the initially injected energy, the shock enters the snow plow phase,
where momentum is conserved. Last, as the pressure in the interior of the shock drops to

the pressure of the external medium, the shock merges with the outside medium.

This paper focuses mainly on the second phase of the supernova remnant. I will analyze
the models in both a static and expanding universe. The static case applies when the
shock remains in its galaxy. The expanding universe case applies when the shock reaches
the IGM. In order for the shock to reach the IGM, it must either be infused with energy
from multiple supernova bursts, with a total energy input estimated at around 10 ergs,
or the galaxy must be small, which was the case for early galaxies. In addition, I will use
the models to analyze upper limits on how much energy can be inputted into the system
so that the shock becomes weak on time scales smaller than the Hubble time. Last, I will
give the solution to a simplified model that takes into account the first correction to a

blastwave during its free expansion phase.



Self Similar Solution

A self similar flow means that the flow at any point and time looks the same as it did at a
prior point and a prior time. In other words, while the flow evolves in real space, it is
invariant once suitably scaled. This implies that any non-dimensional quantity
constructed out of parameters describing the system must remain constant for all time.
Hence, every quantity must have power law dependences on a specific parameter, the

most convenient of which is the normalized shock radius.

Solution in a static universe:

The parameters used to describe the system in this case are the initial injected energy (E),
the outside density (o1 ), the radius of the shock (r), and time (t). Given these quantities,

we can make a non-dimensional constant £ as shown below, and then solve for the radius
of the shock.
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For this case, a single supernova is injecting all of the energy. However, if multiple
supernovas are firing, the energy is additive, and when looking at the solution at time
scales when the self similar solution is valid, it is as if a single supernova injected the
sum total of all the multiple energy inputs. Note that &, is a specific value chosen to
enforce energy conservation (see equation 1.1.12) Given this power law solution for the
radius of the shock, it is important to get a feel for the magnitude of quantities we are
dealing with and approximately when the solution is valid. Look to the table below for
reference. Clearly, the velocity of the shock cannot exceed that of the initial ejected mass.
For an initial energy input of 10°' ergs and an external density of 2 * 10** g cm>,
assuming an ejection of 1 Mo, we will have an initial velocity of 10* km s™. So we
cannot expect the solution to be valid for times much smaller than 100yr. Now consider

how much energy is radiated away. The cooling function has a value of 10%' — 10 erg



cm™ s for a temperature of 2 * 10° K. With these values, you'd expect by a time of 10
yr for about 10°" ergs to be radiated away, which implies that the solution will not be
valid for times much larger than 10° yr. (For a derivation of the post shock temperature,
shown in the table, look to appendix B. To see how the radiated energy was found, look

to the Energy Analysis section)

t (yn) 1 10 100 1,000 10,000 100,0000
Ish (PO) 315 791 1.99 4.99 12.5 315
Uga(kms) | 124,000 | 31,000 | 7,820 1,970 494 124

T, (kelvin) | 2.08E11 | 1.3E10 | 8.3E8 5.3E7 3.3E6 2.1E5

Aside from the shock radius, it is also important to analyze the interior structure of the
shock. In order to know how the pressure, velocity, and density in the interior of the
shock act, we first need to know the values of these quantities directly after the shock.
These quantities, labeled with a subscript 2, are called the post-shock values. They are
determined by the Rankine — Hugoniot jump conditions, which come about by integrating
the continuity equations over the shock. The post shock values, in terms of the external

values, in the limit of a strong shock, are shown below.
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Once these quantities are known, we can begin to determine the internal structure, by

using the fluid conservation equations shown below (mass, momentum, and energy).
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We first assume the hydrodynamic variables have the following dependences on & :

\2
p(xr, t) =p2a (§) U(r,t)=Uz§V(§) P(r,t):le(é-lp(@

&o \Eord 1.7

Plugging in these dependences into the fluid conservation equations, we are left with 3

coupled ordinary differential equations.

ag v+ 1.1.8
dv 4 (o \ 2. Fy=114 4 | dp )
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d S (y #1)

Note though, as mentioned before, that only one particular value of €o is appropriate. In
order to determine this value, we have a normalizing condition, that forces energy

conservation.

Ish (D) 12 1
JS [ —+ = pu?| 4nrfdr = E
0 y-1 2 L1l

The first term represents the thermal energy in the shock while the second represents the
kinetic energy. Note that radiative losses such as ionizing the external medium and
Compton cooling off the CMB are not taken into account. This equation, once the above

dependences are substituted in, yields the following integral.

o Jfo[ (&) +a (£) V2 (€)] €4de = 1
—_ : +a v =
TR ETE 1.1.12

Only for an appropriate value of £, will the integral be satisfied. In our case the value is

approximately 1.17. It is important to notice that self similarity forces the thermal and

kinetic energy to always remain in the same ratio. Numerically integrating the above



equations (1.1.8 — 1.1.10), we get the following graphs for the internal structure of a

blastwave in a static medium.
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Figures: 1.1.1 normalized density profile, 1.1.2 normalized pressure profile, 1.1.3 normalized velocity
profile

Notice that the density profile is biased towards the shock radius. Since radiative cooling
has an n* dependence, it is clear that radiative effects will be most prevalent towards the
shock radius. As a result the particles at a smaller normalized radius will catch up with
the mass in front of them, and as time progresses, a shell structure will form. Also note
that both the velocity and density go to zero at the shock center, while the pressure
remains nonzero, signifying a very hot inner core. A plot of the temperature of the

blastwave, as a function of normalized shock radius, is shown below.
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Figure 1.1.4 — normalized internal temperature.

Solution in an expanding universe

In an expanding universe, the density is time dependent. As a result, the time dependence
of the shock wave changes. We are interested in analyzing a matter dominated universe
with Q = 1, where Q is the ratio of the energy density to the critical density today. Given

this type of universe, the scaling of the density is shown below.

3 2 . ; :
P0= pPut <h whereh = 3 for Q =1, tisthecosmictime

and py is the density of the external mediumwhen the shockbegins. 121

In addition, it is possible to make the solution more general, given a new formalism for
expressing different parameters in terms of power law dependences on a normalized

shock radius. The formalism is shown below.

x = x (1) R 122

Where x is any hydrodynamic variable, x(1) represents the post shock value of the
variable, and R is a normalized shock radius. This new formalism allows for the
possibility of introducing energy decay and other complications. The new time
dependence of the shock wave, assuming an expanding universe and no energy decay, is
expressed below.

1
V5 (2+3n)/5
| T

E
\ ou / 1.2.3
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Since for Q = 1, h = 2/3, the exponent of time is 4/5. It is intuitive that the exponent for
the shock should be greater in a moving medium. Primarily, since the density of the
outside medium is decreasing with time, there is less frictional force stopping the shock

from propagating. In addition, the shock picks up kinetic energy from the Hubble flow.

Note that because of self similarity, the ratio of the shock velocity to the Hubble velocity
must be constant for all time. This ratio, which depends on the cosmology, is shown

below. -

%, Sx3h b 1.2.4

Now given these expressions for the shock radius, we can look for the internal structure
of the blastwave. Once again, we look to the Rankine — Hugoniot jump conditions to
establish a post shock value. Because of the velocity of the external medium, the post

shock values have a different form. In the limit of a strong shock, they are shown below.
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Given our new formalism, it is more convenient to 1) use the entropy equation instead of
the energy equation and 2) express the coupled differential equations in terms of
logarithmic derivatives. The definitions used in the differential equations are shown

below.

X = X1 (t) X () where A =
Rs 1126

. Olnx  dInZ

RS e, i 1.2.7

Note that x once again represents any hydrodynamic variable, and x; represents the post

shock value. The differential equations, expressed in terms of the above definitions then

become:
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12.8

1.2.9

1.2.10

Note that the coupled differential equations all depend on gravity. But the gravity term is

dependent on the density distribution inside the shock. Hence, it is best to assume a

certain density profile, compute the internal distributions, and then recompute the profiles

based on a gravity term that coincides with the previously computed density distribution.

I iterated this approach until I reached a steady state solution. Plots of the internal

distributions for an expanding universe are shown below.
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Figures: 1.2.1 normalized density profile, 1.2.2 normalized pressure profile, 1.2.3 normalized velocity

profile
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Notice that all the material is concentrated between A = .965 and A = 1. In addition, notice
that the pressure approaches zero at A = .965. If this were not the case, then the nonzero
pressure would push the material in all directions, and the shell structure would not exist.
Moreover, the steadily decreasing velocity profile implies that the velocity of objects at

smaller A will catch up the mass in front of it, further contributing to the shell structure.

Explosion Model

Since it takes a while for the self similar solution to become valid, it seems unnatural to
use the energy of the initial injected energy in the formula, because of losses during the
free expansion phase. As a result, Tegmark, Evrard, and Silk developed a different
solution that models a blastwave from the time of the explosion to the time the shock

merges into the IGM.

This model has 3 assumptions about the blastwave. 1) It assumes that most of the mass in
the shock is concentrated in a thin spherical shell centered at the shock radius. 2) It
assumes a neutral, uniform, pressure-less IGM. 3) It assumes that the internal plasma is
thin and has a constant pressure and temperature. Given these assumptions, they derive a

force formula which characterizes the system.

HZR
2 o4 |

d°R  87pG 3(dR 2 1
dt2  opuH2R R

= -HR) . (Qd+ : Qb)
where p is pressure, H is the Hubble constant, @y is the density of baryonic matter today
divided by the critical density, and Qq is the ratio of dark matter today divided by the
critical density. The first term in the equation represents the pressure of the internal
plasma driving the shock outward. The second term is a braking force, which describes
the necessary force needed to increase the velocity of the outside material from the
Hubble velocity to the shock velocity, as it is picked up. The last term is the gravitational
force. Note that the gravitational term resulting from the baryonic matter is half that of
the dark matter. The % factor comes from the self-gravity of a thin shell. Also, note that
the dark matter does not interact with the shock. This model assumes an @ = 1 matter

dominated universe, only composed of baryonic and dark matter. This is a valid

12



assumption for redshifts smaller than 3000, when the matter and radiation energy density

were equal, till recent redshifts, when the cosmological constant has taken over.

In addition to an equation for the radius, they also use an equation that describes how the

internal thermal energy evolves with time.

3 3
Et = > PV = 2 pR

2.2

dE¢ av 2> dR

=L =p = L-47mpR" ——
dt dt dt 2.3
L = Lsn - Loomp - Librems - Lion + Ldiss 2.4

My 3m ;dR 3
Len = 1.21e © (tpum - €) Lagiss = fa —— ( —HR)

2R ‘dt 2.5

where L is the sum of all radiative losses. Since the internal plasma is assumed to have
constant pressure, the internal energy is straight forward to compute. A change in internal
energy occurs because of radiative losses and the work necessary to expand the shock.
The only terms we focused on for the radiative effects were Lg, and Lgiss. L, represents a
sourcing term that occurs while multiple supernovas are going off. Notice that is has the
form of a constant energy injection into the shock for times smaller than tyym (~ 5 * 10
years). Lgiss occurs because we assume the collision of the shock with the external
medium is inelastic. As a result, some of the excess energy, after interacting with the
shell, leaks inside to reheat the interior plasma. However, the amount of energy that does
this is tough to gauge so fy is introduced to account for the complicated microphysics.

The parameter fj is very important, and we will vary its value in our analysis.

These two equations give us two coupled differential equations. Moreover, normalizing

the variables in the context of a matter dominated © = 1 universe, we get the following

equations, which can be numerically integrated.
18 2 g (T)

T e = m ) —"—3[1-
Qp T ()

K.

(JVAA_Lvé g T
J



2.6

il ('E)V s i (t)r
2nr (T)3 r (t) 0.7

iz
wheret = — -1 andt, = hubble time.

*

g, 1, and r are all the normalized versions of p, L, and R respectively. n is the ratio of the
Hubble constant at T to the Hubble constant when the shock begins expanding. Note that
the Hubble time t+ is a function of redshift, and is the time at which the shock begins
expanding. Just to get a feel for the order of magnitudes we are dealing with, below
shows a plot of the shock radius as a function of time. The upper line is for fg = 1, while

the lower is for f; = 0.

. T

5 10 15 20 25 30 35

Figure 2.1 — radius of the shock as a function of normalized time.

Comparing the Models

We have chosen several possible ways to compare the two models. First is the time
dependence of the solution. Given the clear time dependence in the self similar solution,
we can look at how the explosion model scales with time at late times in the solution. We
have also decided to test the accuracy of the explosion model's assumptions by
comparing its internal structure to the internal structure of the self similar solution. Then,

given these distributions, we want to compare the energy distributions of both solutions.
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Comparisons Static Universe

It would be best to first compare the models, in a simpler context, by neglecting the
Hubble flow and gravity. In this case, the explosion model's equations of motion reduce

dramatically and are shown below.

v 2
o7 ey o ag EL o 21D
T (T) r (T) 3.1.1
1) ! ()
] — _5 o
R e g 312

Note that the explosion model, even neglecting radiative losses, does not conserve energy
because of the losses due to the work in expanding the shock. Since the self similar
solution conserves energy, it is most natural to first force energy conservation in the
explosion model, and hope the time dependence matches at late times. The new equation

for the loss in thermal energy is shown below.

3 3 v o3 3y
E = 2pV~qr:const—>qr+3qrr = 10

q' 8 i q
- = == —
r 3.14

With these new equations, numerically we found that the solution scales as 2/5, which

matches exactly with the self similar solution.

Next we looked at the scaling of the explosion model using its original equations of
motion. This time however, we were curious to find for what value of fy the solution
looked like the self similar solution. Below is a chart of the exponent of time for various
values of fj at late times in the solution. Note that for this simplified case, there is no
appropriate time to check the time dependence of the solution, but it was clear that the
time dependence of all solutions were asymptotic. As a result, we checked the time

exponent at late times.

15



fy 1 8 6 4 2 0

Exp of time | .4004 3812 3616 3410 3184 2901

We can see from the chart that fy = 1 best approximates the self similar solution.
Analytically, I was also able to verify the exponents for fy= 0 and fy = 1. This was a good

check that the program was working appropriately. The analysis is shown below.

rl
fg=0->g' = -5 q - q~r_5
g
s ot R q~r_6~t_6n—> = -
r 7 3.1.5
rl
fg =1 » gq' = -3 q—>q~r_3
%
3 B L q~r_4~t—4a n =
r 5 3.1.6

It was surprising that, in the case of fy = 1, a dissipative system acts like a system that
conserves energy. In order to get a better understanding of how the system is behaving,
we looked at the thermal and kinetic energy distributions as a function of time. They are

shown below.
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Figure 3.1.1 — Kinetic energy vs time. Figure 3.1.2 — Thermal energy vs time.

Notice that after the first bump, the system conserves its energy. Looking at equation
(3.1.6), which is valid at late times, this should not be considered a coincidence, since for

this case q ~ . Hence, the total thermal energy, which goes as qr’, should be constant.
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Another way of understanding the conservation of energy is that the only energy lost by
the system, which results from the inelastic collisions, is regained by the system as
thermal energy. In addition, note that since the self similar solution conserves energy, the
time it takes for this particular case to stabilize may be a good indication for how long it

takes an explosion to become self similar.

Next in the analysis is verifying the assumptions the explosion model made about the
internal structure of the shock. Look to figures 1.1.1 — 1.1.3, for reference of the internal
structure of the shock in the self similar solution. A plot of the explosion model’s internal
structure is not shown because it is not instructive. It consists of all the mass concentrated

in a thin shell at the shock radius, with uniform pressure inside.

Note that the self similar solution does not include certain microphysics taken into
account by the explosion model. In the explosion model, it is assumed that a small
amount of the ionized medium leaks from the shell into the interior, providing the
internal pressure that drives the shock. Moreover, they do not consider the thermal energy
of the shell itself. The self similar solution, on the other hand, does not take into account
the ionized medium produé%y the shock, but does compute the pressure associated
with the mass inside the shock. Hence, the only characteristic we can compare between
the two internal structures is the density distribution. Looking at the density profile, for
the self similar case, we see that the mass is concentrated towards the shock radius. But,
it is clear that all of the mass is not concentrated in a thin spherical shell. Moreover,
assuming the pressure for the self similar case roughly corresponds to the pressure of the

ionized medium, we can see that it is approximately constant for r/R smaller than .6.

Hence '/their(m‘s'feems to be poor agreement between the internal structure of the Explosion

N

Model and the internal structure of the self similar solution in the case of a shock in a

static medium.

Aside from comparing internal structures, we can also compare energy distributions. We
could ask again for what value of fg will the energy distributions in the explosion model
be equal to that of the self similar solution. Note that for a self similar solution, the shock

contains 70% thermal energy and 30% kinetic energy. The table below shows the

17



computation done for several values of {3, where the first pair of energies are scaled by

the initial energy inputted into the shock, and the last pair is scaled by the final energy.

fa 1 .8 6 4 2 0

T 7 Bt 6 26 110 .0433 .015 .0035
K / Eisit 4 19 .088 .0407 0176 0067
T / Efin .6 77 .556 il b 460 343
K/ Efn 4 423 444 485 .540 6357

We can see that no value of fy will match the energy distributions in the self similar
solution. Moreover, the energy in the system is only conserved for fg = 1. No matter how
high f; is, the model will never be able to convert enough collisional energy into thermal
energy that reheats the interior of the shock to the self similar value. This implies that
there may be another mechanism for transferring heat into the interior that the explosion
model has not taken into account. Or it's possible, as we saw before, that the thin shell
approximation is not valid. It may be the case that the majority of the mass is not moving
at the shock velocity, but some velocity slightly lower. As a result, the kinetic energy

would be smaller and the energy distributions could match the self similar case.

Comparisons Expanding Universe

Next, we moved on to a more general problem, taking into account the expansion of the

universe.

As before, we first compare time scalings for the modified explosion model, which
conserves energy (see equation 3.1.4). In this case, just as before, we get a match of .8.
Next, we analyzed how the time scales for the original explosion model. Below is a table
showing the computed time dependences for various values of fy. Note though that for the
case of the expanding universe, there is a specific time, where the solution’s time
exponent can be tested. Since we know, from before, that for a cosmological blatwave,
the ratio of the shock velocity to the Hubble velocity is a specified value, we can check

the exponent of time at a point in the evolution of the blastwave where its velocity is 6/5

18




of the Hubble velocity. Since it’s expected that all solutions to the explosion model will
eventually match this criteria, given that the velocity of the shock begins at a velocity
higher than this value and decays to the Hubble velocity monotonically, I included the

time at which this criteria is met in the table below.

fa 1 .8 .6 4 o2 0
Exp of t 1999 1999 S99 1999 7999 1999
Time 7.87 127 6.71 6.18 5.67 5.18

First we can see that the exponent of time for all values of fy matches the self similar
solution exactly. This however, should be expected, because we are measuring this value
at a time when the explosion model is approximately self similar. Note that the solution
does not stay at this exponent, and hence does not remain self similar, for all times after
this period. Plots of the scaling of the shock radius as a function of time are shown below,
for multiple values of f;. We can see that the solutions begin to asymptote to the same
value at late times, which is expected as the shock begins to merge with the IGM. Also,
we can gauge how long the solution is approximately self similar by measuring when the
scaling is between some € of .8.

din (Rs)
dln (t)

©
© =

Figure 3.2.1 — dIn(R) / dInT (the exponent of time). Line above is for f; = 1. Line below is for f; = 0.

What’s more interesting is the time it takes for the explosion model to become
approximately self similar, as a function of f;. We can see, as we expect, that it takes
longer for the solution to become self similar for higher values of fy because, there is

more internal pressure driving the shock at speeds too high to be self similar. Moreover,
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the relationship between this time and fy seems linear, as the following plot shows. This
is surprising, in that the physics of is f3 complicated, as discussed before, and you would

not expect it to have a simple linear effect.
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Figure 3.2.2 - T vs fy.

Next, we compared the internal structure of the blastwave computed in the self similar
solution to the assumptions of the explosion model. Look to figures 1.2.1 — 1.2.3 for the

computed internal structure of the self similar solution.

As discusses before, both models take into account thermal pressure from different
sources. The explosion model has its thermal energy sourced by the ionized plasma,
while the self similar solution’s thermal energy comes from all material inside the shock.
Because of this discrepancy, it is tough to gauge the difference in the internal structures
of both models. However, we can compare density distributions, and we see that the shell
approximation is valid in an expanding universe. Notice however that the shell is not
uniformly distributed, and does not travel at the shock velocity, as assumed in the

explosion model.

Now we look to the energy distributions of each model. Below is a table listing the
energy distributions for different values of fg. The first set is normalized by the initial
energy input, while the second is normalized by the energy at the time of measurement.
Note that once again I chose to compare the distributions when the shock velocity was
6/5 of the Hubble velocity. Also note that a self similar blastwave has 68.5% kinetic
energy and 31.5 % thermal energy.

20



fa 1 8 .6 4 2 0

K./ Enmit 9329 1793 6474 .5430 4571 3861
T{ Bt .0338 0257 0192 .0140 .0097 .0062
K / Egy 9650 9679 9712 9749 9792 9842
T By .0350 0321 0282 .0251 .0208 0158

We can see that no matter what value of fy, the energy distributions do no match the self
similar case. Note that in an expanding medium, for the self similar solution, the kinetic
energy dominates while in a static medium, the thermal energy dominates. This is to be
expected because the shock absorbs the kinetic energy of the Hubble flow. Also, it’s
expected that the energy distributions above will not match that of the self similar
solution because, just as in the static case, the model cannot account for enough thermal

energy.

Energy Analysis

Next we wanted to find out on what time scales the shock becomes weak. A shock will be
considered weak when it merges with an already ionized IGM, which is predicted to have
a temperature of about 10000K. Setting the mean thermal velocity equal to that of a gas
of protons at this temperature, we get an approximate velocity for when the shock

becomes weak.

-
v = \[3 <10 % 20° =2
m s 4.1

Setting this velocity equal to the velocity of a self similar shock in a static medium, we

get a relation for the time at which the shock becomes negligible.

5
1 4 113
Vg = €o l(E’ \IS t 5= veE > tweak = 2 =0 I(?:i \I 5

5 \,OO) \5 Ve \po) } 4.2
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Note that this time is a function of redshift because the external density is a function of
redshift. In this approximation though, we are not taking into account the time
dependence of the external density, as the shock propagates. We are assuming that the
external density at the time of the explosion is approximately correct throughout the
shock’s propagation on the time scales we are interested in. Adjusting for the redshift
dependence, we get the following.

5
2 & ( E 3

tweak = |-
\5 Vf \prcr

1
e T8 I { ]

J 1+2z. Esp ) 1+ 2* 4.3

E
)

where z, = redshift when shock began expanding
Per = Ccritical density today
Qp = ratioof baryonicdensity tocritical density
Next, we want to compare this time to the hubble time when the shock began. This can be

easily solved for, assuming a matter dominated universe with @ = 1.

3 3
L 12 oem. gl L 1%
1+2z,) V1 iz ] 4.4

2

Eg= =
3 Hp

(
|
\

where Hp = hubble constant today

Setting these two expressions equal to each other, we get an upper limit on how much

energy can@j\hitially injected such that the hubble flow can be neglected.
3

E < 1055ergs|{ ! \12

Vs 7y ) 4.5
Note that most supernova explosions are on the order of 10°" ergs. Only when multiple
supernovas are firing at the same time, as is assumed in the explosion model, will the
injected energy reach a value of 10> ergs. Therefore we can see from the above limit that
for redshifts of about 15, when shocks become important for their influence in ionizing
the IGM, we know that the shock will become weak before a Hubble time elapses, hence

the Hubble flow can be neglected, as is shown in the plot below.
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Figure 4.1: Plot of ty and t, as a function of redshift for E = 10° ergs. (t is plot above for low z). We
can see that for low redshifts, ty is large compared to tyx. For high redshift past the crossing point, the
Hubble flow cannot be neglected, while for lower redshifts before the crossing point, it can.

Given the upper limit, it is important to verify the limit's validity. First we can ask
whether the solution is approximately self similar on these time scales. To address these
issues, we need to determine approximately when the solution becomes self similar, and

when, because of radiative losses, the solution is not self similar.

The solution becomes self similar on time scales when the shock absorbs an amount

equal to the initially ejected mass.

1 43
4”00R332M0‘> 4 TPo ‘go'(iE“'\‘StB] = Mo
3 3 ( \DO} )
2 1 5
—>t:|( =% }6~2 83 + 10t (-1 }3{7715”’6(351)2
2 3 ] +
\47(005 §O3E5} \l Z*) \Mo} E 46

Given this computation, and looking to the figure above, we can see that the time scales

we are interested in are well past the first phase of a SNR.
Now we look at radiative losses. The energy dissipated goes as:

E ~ Ln’ Vt 4.7
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DEEE M ngy®
m 4.8

where n ~

where L is the cooling function, n is the number density, V is the volume of the shock,
and t is time. The expression for n is the external baryonic density times a factor of 8. The
extra factor comes from the Rankine Hugoniot jump conditions which states that, for a
gas with y= 5/3, the post shock density is 8 times the external density. Moreover, since
most of the cooling occurs near the shock, it is appropriate to use this value. At a
temperature of 10000K, the cooling function is at approximately 102* erg cm’® s™'. Hence

we can show that radiative losses become severe at a time shown below.

)

4 E 2
Losnt+ tool* — 7T ‘fo‘( \IS t3| ~E

3 \ oo ) J

2
E : -63
- toool~ 7.87 * 1% I(f\l A (1+2zy) 11
\Es1 ) 4.9

For a redshift of 20, with an energy of 10°! ergs, tooor ~ 2.1 * 10" s. Looking to equation
4.3, we see tyeak ~ 6.4 * 10" s. Therefore, for times that we are interested in, the shock

remains self similar, and the above limit is valid.

We can also form a lower limit on the energy necessary to produce a shock wave, as a
function of redshift. In order to produce a shock, the ejected material must have a speed
greater than the sound speed. Note that the sound speed is dependent on the temperature

of the medium, which approximately scales with redshift as (1+z).

;EE_ il 2 41 M
Vg = — - E~ 2'MejectV > E > 7.5+ 107 (1+z,) ergs
m

4.10

This limit is easily met by most explosions at a redshift of 20.
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First Phase of the Remnant

I was also hoping to have a solution for the blastwave during its initial free expansion
phase. However, instead of having a simple free expansion, I wanted to take into account
a first order correction term. It seemed logical to assume a frictional term dependent on
the cross section of the particles of the outside medium, as well as the density of the

external medium. By dimensional analysis, we get the following force equation.

me'! = -pov’ 5.1

Note however that the first phase of the supernova remnant occurs on time scales small
relative to the expanding universe. As a result, I will neglect the time dependence of the

external density. Integrating the above equation, we get:

opVo ‘ -1
m 5.2

V(L) = vg|l=+

The coefficient in front of t is particularly interesting: p/m is the number density of the
outside medium, which implies m/op is the mean free path length, which makes
m/opvy the time it takes to travel the mean free path length. The above equation can be

integrated again to get the radius of the shock.

X (&) = == Inf{ls—+

ug H 53
Notice that in the limit of opvet/m << 1, the solution reduces to free expansion, as you’d
expect. Previously I mentioned that the free expansion phase breaks down when the
shock accumulates a mass equal to the ejected mass. I’d like to verify this claim based on

the above model.

B
4 ( 3Mab & m
47

—erx3:Mab—>x=l } - t,=

3 \ 0 &WO (| m

) 5.4

where My, 1s the absorbed mass at t«. Now, plugging in this time to the velocity, we get:
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5.5
Clearly, the free expansion assumption is not valid anymore when the exponent is of
order 1, at which time the velocity has decreased by more than a factor of 2. Therefore
we have:

47 (m )3 4

51 B | p = g
P o S i 5.6

Q
Wl

58

———

3
4

N i
e

e

where 1 is the mean free path length previously discussed. Note that in a mean free path
length, the shock on average has no time to interact, let alone, absorb any mass. Hence,
the quantity we see above is approximately all of the initially ejected mass. The above
model therefore, correctly predicts when the solution transitions out of the free expansion

phase.

Conclusion

The above analysis compared the self similar solution to the explosion model in both a
static and expanding medium. Doing this allowed us to understand the benefits of both
models. While the self similar solution is approximately exact during the second phase of
a supernova remnant, it does not take into account more complicated processes, like
ionizing the IGM. The explosion model, on the other hand, which accounts for different
cooling effects, is useful in that it models a blastwave throughout its entire evolution.
However, it is not able to accurately account for the energy distributions during the
second phase of the remnant. The energy analysis was useful because it revealed that for
most supernova at a redshift of 15, the time at which shocks are important for ionizing
the IGM, the Hubble flow can be neglected, which greatly simplifies the problem. Last,
using a simplistic model that describes the first phase of a remnant, we were able to
verify the claims made that the free expansion solution breaks down when the shock
absorbs a mass equal to the initially ejected mass. The above analysis is fundamental
because explosions, and their resulting shocks, greatly alter the surrounding medium.
Since the surrounding medium is important to most astrophysical questions, knowledge

of shocks is necessary.
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Appendix A: Accuracy of Numerical Analysis

The coding was all straightforward for most of the cases described above. I typically used
a second order Runge-Kutta algorithm. However, numerically finding the internal
structure of the cosmological blastwave was more difficult because there were
singularities involved. As a result, to show the accuracy of my code, I will analyze the
solutions of the coupled differential equations at the singularity, using the Ostriker and
McKee formalism, and plot the difference between my numerical results and the actual

solutions near the singularity.

For a hollow blastwave, which was the case for the cosmological solution, the internal
radius of the shock (behind which no mass exists), is defined as A;. Since the structure of

the blastwave is self similar, A; remains constant, which implies the velocity at A;is A;vs,

e A.l

Looking at the entropy equation (1.2.10), we see that at A;, p* and P* must diverge.

Ostricker and McKee, in order to solve this problem, then define the following:

§

o =(l-v)p

* *

P'= (1-v) P A2

And noting that as A -> };

(y-1) (1-v) ¥

2 (yv-1) A3
The continuity equations then reduce to:
W = @ + kg 2% A4
(1 9 e (v - 1) VP,+,+ 1 flee = kg
2 (yv-1) 2 AS
P =yo" +vky- kp A6

Solving these equations at A = A; we get:

Pi+= 3+ kE“kp A7
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i 6+2kg- (v +1) ko
pPi = Cra e )
7 A.8

*

6+ 2 ke~ ks~ 27
il e B R

¥ A9

Assuming the following solution for a hydrodynamic variable x:
X~ (A=) A.10

We get the following relation for the exponent:

xi*

vi® A.ll

ot =

which implies:

elowhel vl ke

lDl =

kp+3)/—2(3+k}:_;) A.12
L =
kp+3)’—2(3+kE) A13

Given these power laws, the following plots show how close my numerically computed

solutions are to the actual solutions near the singularity.

P2 P,

o T !
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-
¢ 0.4}
W 0.3/
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|
= & 0.1 [
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Figure A.1 — Actual solution is to the left Figure A.2 — Actual Solution goes to zero
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Figure A.3 — Actual Solution is above

For figure A.l, we see that the actual solution has a stronger singularity than my

numerically computed solution. However, both profiles go to infinity at approximately

the same normalized radius. For figure A.2, the actual solution reaches zero identically,

while mine stops at .4. I believe this is just a result of the numerical integrator not being

able to handle the coupled singularity in the density. For figure A.3, the difference in the

actual verse numerical solution always stays within .00001, which is a trivial difference.

In addition, to make sure difference would not affect the data, I computed the energy

distributions for two sets of internal structures. The first set was my numerical solutions.

The second set was my numerical solutions connected to the correct analytical solutions

near the singularity. The difference in energy distributions between these two sets was 1

part in a 100.

Appendix B: Post-Shock Temperature

The specific internal energy for a gas particle is:

E P
€ = — = e wherey = ratioof specificheats

mo (y-1)0
Setting E equal to the energy in terms of T, we get:

Pm 3 P 2m
= kT - T = = =
(¥ =1) p 2 (y-1)p 3k

B.1

B.2

Then, plugging in the values for the post shock values of P and p given in equation 1.1.3,

we get:
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3k (y+1)2 16k B.3
Where in the last step I took y = 5/3. Note that using the post shock temperature to
determine the cooling function’s value, even though the temperature increases
dramatically inside the shock, is valid because most of the cooling occurs near the shock

radius, where the density is highest.

Appendix C: Code

Code used for Self Similar Solution

// Omega = 1 solution for expanding universe
// including gravity

#include <iostream>
#include <vector>
#include <cmath>
#include <fstream>

using namespace std;

vector <double> den;
vector <double> vel;
vector <double> pres;
vector <double> grav;
double den 1, vel 1, pres_1;

// important parameters (fix)

1l

double g 6.672E-8;

double t = 365E2 * 24 * 60 * 60; // seconds

//double t = 10.;

double r_s 1.898 * pow(lE51 * g * pow(t, 4), 1/5.); // cm
//double r s = pow(lE51 / 2E-24 * pow(t, 2), 1/5.) * 1.17;
double out den =1/ 6. / MPI / g/ pow(t, 2); // gm / cm3
//double out den = 2E-30;

double v_s;

1

double step;

int accuracy; // # of steps away from singularity to recompute
double lambda 0 = 1.;

double gam = 5

double eta = 4
int length;
int temp = 0;

T
l Bai
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double k
double k
double v h =
double omega

I
o w

double lam i;

double 1 p = gam * (3. -~k d) / (kd+ 3. * gam — 6.);
double 1 d = {6: = (gam & 1) * kd) / (kid# 3« ¥ gam = 6.);
deuble ¢ p, ¢ d, € w;

veid Init funes() {

length = (int) (lambda 0 / step) + 1;
den.resize (length);

vel.resize (length);

pres.resize (length);

grav.resize (length) ;

lambda 0 = step * (length - 1);

v s = eta * £ 8 /[ t

// Initial values set according to jump conditions

den 1 = (gam + 1) / (gam - 1) * out den;
vel 1 = (2 + (gam = 1) *w h) / (gam # 1) * v sy
pres 1 = 2 / (gam + 1) * out dem * pow(v s * (1 =% h), 2)7

// normalized values

den[length - 1] = 1;
vel[length - 1] = 1;
pres(length - 1] = 1;

// intially define gravity to have a lambda distribution
for (int a = 0; a < length; a++) {

grav[a] = step * a;

}

vector <double> Compute der (double 1, double d, double v, double p,
double g) {

temp++;

vector <double> ret(3);

double v_log, d log, p_log;

double v_dexr, d der; p der;

double theta = p * pres 1 / d / den 1 / pow(l * v_s, 2);
double v.n =v * vel 1 / 1 / v_s;

double v_log num, v_log den, d _log num, d log den, p_log num,
p_log _den;

double g mine = omega * pow(v. h / 1, 2) * g / v_n;
//double g theirs = omega * pow(v_h, 2) / pow(l, 3) * g;



v _log num = 2. * theta * (kp = 2 ®* gam * v n) + (L = v.n) * ((k p
k d) * v.n - g mine); -

v _log den = 2. * v n # (gam * theta - pow(l - v_n; 2)}z

v_log = v_log num / v_log den;

d Tog num = 2. * theta * (k p=wgam= kd) / {L=vn) - (B. * v.n -
Zei®m kd+kp e o= de *ymtofl - v ~ g hane;

d log den = 2. * (gam * theta ~ pow(l — v.n, 2))7

d log = d log num / d log den;

p_log num = -gam ® v o * Kk odeb ok p¥ (gam ® von o+ 2. 0% (I =% n)) =

4, * gam * v.n * (L = Vv n) = gam * g mine;
p log den = 2. * (gam * theta - pow(l - v_n, 2));:
p_log = p log num / p_log den;

v der =w log * v / 1
d der = d log * d / 1;
p/1

p der = p _log * ;
ret [0] = step * d_der;
ret[l] = step * v der;

ret[2] step * p_dex;

//cout << 1 << endl;

//cout << ™7 log M << % _log num <X M ¥ <« ¢ log den k< ™ W« v Ibg
<< endl; =

/leout << "d log ™ << d log num << ™ M << d log den << ¥ " << d log
<< endl; 1L

//cout << "p log " << p _log num << " " << p log den << " " << p log
<< endl; [+

//cout << endl;

//if (temp % == ()
//cin >> temp;

return ret;

void Compute funcs () {

double lambda;

’

vector <double> k1l (3)
vector <double> k2(3);
//vector <double> k3(3);

//vector <double> k4 (3);

int a = length - 2;

lambda = lambda 0 - step * (length - 2 - a);

while (lambda > .90) {

// for (int a = length - 2; a >= 0; a--) {
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//lambda = lambda 0 - step * (length - 2 - a);
//cout << lambda << endl;

Compute der(lambda, den[a + 1], vel[a + 1], presf[a + 1],

Compute der(lambda - .5 * step, den[a + 1] - .5 * k1[0], vell
w0 2 k1A presia 4+ L] = .5 % kl[2], gravia + 1]):
//k3 = Compute der (lambda - .5 * step, den[a + 1] - .5 * k2[0],
vella + L] — 8 * E2[1], presfa + 1] = 5 * k2[27):
= Compiite der(lambda ~ gtep, den(a + 11 — k3[0], vella + 1] -
k310 » presla & 1] = k3(2]);

[/eout. << k2[0] << endl;
[feout << k211 << endls
Lleout << K2[2] <% endl;
//cin >> temp;

den[a] = denf[a + 1] - k2[0];
vel[a] vella + 1] — k2[1];
pres[a] = pres[a + 1] - k2([2];

//den[a]
k4[0]);

//vella] = vella + 1] -1/ 6. * (k1[1l] + 2 * k2[1] + 2 * k3[1] +
k4[1]):

//pres[a)l = presfa + 1) - 1 / 6. * (kl[2] + 2 * k2[2] + 2 * k3([2]
kd[21)¢

denfa 4 1] — A 4 6. * kl[0] + 2 * k2[0] + 2 = K3[0] +*

a~=j
lambda = lambda_0 - step * (length - 2 - a);
}
void Determine lam() {
double lambda;
int a = (int) (length * .96);
lambda = step * a;
double dif = abs(vella] - lambda * 24 / 23.);
while ((abs(vel[a] - lambda * 24 / 23.) <= dif) && (a < length)) {
dif = abs(vell[a] - lambda * 24 / 23.);
atts
lambda = step * a;;

}

lam i = lambda - step;
cout << lam i << endl;

}

void ReCompute () {

a

+
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// fit proportionality constants;

[

(=]

=

o)

[
|

(int) (lam i / step);
a_i + accuracy;

.
o}
o
o))
Hh
I

f >= length) {
= length - 1;

= pres[a _f] / pow(step * (
den[a_f] / pow(step * (a_
= (1 - vella f] * 23 / 24.

g Lo
Il

// recompute function from a i to a f

for (int a = @& i; a <= a £} at+) |

denfa] = ¢ d ¥ pow(step * (a —a i), 1 d);
pres(a] = ¢ p * pow(step * (a —a i), 1 p);
vellal] = (1 = c v ® step ® (a =~ & 1)) * step ® a % 24 / 23.;
}
}
voild Determine grav () {
double lam;

double sum 0;

for (int a = 0; a < length; a++) {

lam = step * a;

if (a < (int) (length * lam _i)) {
grav[al] = 0;

}

else {

sum += den[a] * pow(lam, 2) * step;
grav[a] = sum;

}
for (int b = (int) (length * lam i); b < length; b++) {

lam = step * b;
grav[b] = grav[b] / grav[length - 1] / pow(lam, 2);



}

void Output vals () {
double lambda;

ofstream out A("den.dat");
ot stream out B("vel.dat");
ofstream out C("pres.dat");
ofstream out D("grav.dat");

for (int a = (int) (length *
lambda = step * a;

//if (abs(den[a]) < 5)
out A << lambda << " " <<

//if (abs(vella]) < 5)
out B << lambda << " " <<

//if (abs(presla]) < 5)
out C << lambda << " " <<

out D << lambda << " " <<
//a=-=;

out A.close
out_B.close
out C.close
out_D.close

}

void Determine Energy () {

double therm = 0;
double kin = 0;
double lambda;

lam i); a < length; a++) {

den[a] << endl;

vel[a] << endl;

presla] << endl;

grav(a] << endl;

for (int a = length - 1; a > (int) (length * lam i); a--)

lambda = a * step;

therm += presfa] * pow(lambda, 2) * step;

kin += den[a] * pow(vel[a]

}

* lambda, 2) * step;

cout << "Thermal: " << therm / (therm + kin) << endl;
cout << "Kinetic: " << kin / (therm + kin) << endl;

¥

int main() {

{

.



int iterate;
//cout << "Starting value for t (after explosion): ";
//cin >> time;
cout << "Step size: ";
cin >> step;
cout << "# of steps: ";
¢in >> accuracy;
cout << "% of iterations: i
cin >> iterate;
Imit, funes();
Compute funcs();
for (int a = 0; a < iterate; a++) {
Determine lam();
//ReCompute () ;
Determine grav(); // concerned about my definition
Compute funcs () ;
}
Determine lam();
ReCompute () ;
Determine Energy ()
Output _vals();
return 0O;

Code used for Explosion Model

#include <iostream>
#include <vector>
#include <cmath>
#include <fstream>

using namespace std;
// notice £ d and M 5

vector <double> r;
vector <double> r prime;
vector <double> g;
double omega b = 1/7.;
double omega d = 6/7.;
double t fin, step;

int length, temp;

double f d;

double f m = .1;

int a vel = 07

double t burn = 5E7;

double M 5 = omega b * 20.;
double H 0 = 3.24E-18;
double h = 0.5;

double t hubble;

void Init funes() A

length = (int)(t fin / step) + 1;



r.resize (length);

r prime.resize (length);
g.resize (length);

t fin = step * (length —~ 1)}

209 = 1.7
= 0.; // doesnt matter long run

1
r prime[0]
e [O] = il

}

vector <double> Compute der (double t, double R, double Rprime, double
P).

vector <double> ret (3);
double rDPrime, gPrime, eta, grav, 1 diss;

eta =1/ (1 + t);
grav = —(2 / 9. * omega d + 1 / 9. * omega b} * powl(eta, 2) * R;
rDPrime = 18 * M PI / omega b / pow(eta,2) * P / R - 3. *

(pow (Rprime, 2) - 4 / 3. * eta * R * Rprime + 4 / 9. * pow(eta * R, 2))

/ R + grawv;

l diss =1/ 3. * £ d * omega b * pow(eta * R, 2) * pow(Rprime - 2 /
B. * eta ® R, 3):

//1 diss = 0;
// changed to make NOT constant energy.
if (t hubble * & < & burn) {
1 ddiss 4= 17
}
gPrime = 1 diss / 2. / M PI / pow(R, 3) - 5 * Rprime / R * P;

/leeut << 1 diss / 2. 4 M BT / pow(R, 3) [ (5 * Rpraime / R * P) <<
endl;

ret[0] = step * rDPrime;
ret[l] = step * Rprime;
ret[2] = step * gPrime;
//cout << t << " " << rDPrime << endl;

return ret;

}

void Compute funcs() {
double t;

vector <double> k1 (3);
vector <double> k2 (3);
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for (int a = 1; a < length; a++) {
t = (a - 1) * step:
kl = Compute der(t, rla-1], * prime[a-1], gla-1]);

k2 Compute der(t + .35 * stepy rla=l] # =5 % kl[l], r prime[a-1]
B K101, gla=1] + .& * kl[2])s

rlal] = rla - 1] + k2[1];
r primefal = ¢ prime[a — 1] + k2[0];
glal = gqla - 1] + k2[2];

//if ((glal > gla-1]) || gla-1] == 0)

// qlal = 0;

flcout << "Z: " << z << endls

//cout << "R Doulbe prime: " << rDPrime << endl;
//cout << "R prime: " << r prime[a - 1] << endl;
//cout << "Q prime: " << gPrime << endl;

//cin >> temp;

//cout << z << " " << rDPrime << endl;

}
void Determine vel() {
double eta = 1;
double diff min = abs(2 / 3. * eta * r[0] / r_prime[0] - 5 / 6.);
double t;
double t_vel;

for (int a = 1; a < length; a++) {

t = a * steps
eta = 1 / (I + t);
IE (absi2 4 Be *eta *or[a] o B oprimeal — & 4 6.) € diff main) o

a_vel = a;
diff min = abs(2 / 3. * eta * r[a] / r_prime[a] - 5 / 6.);
Lt vel = t;

}

//cout << "a" << a vel << endl;
cout << "t wvel " << t wel K< endl;

}

void Output vals() {



double t, eta, 1 diss;

double e init = 2. * M PI * pow(r
(

[01, 3) * q[0] + omega b / 9. *

pow(r([0], 3) * pow(r prime(0], 2);
deuble e last;
double r factor = .13 / h / (1 + t fin) * pow(M 5, .2);

ofstream out A("r.dat");
ofstream out B("g.dat");
ofstream out C("log.dat");
ofstream out D("slope log.dat"):;
ofstream out E("l _vs w.dat");
ofstream out F("therm.dat");
ofstream out G("kin.dat");
ofstream out H("rel vel.dat");
ofstream out_I("temp.dat");
ofstream out J("slope.dat");

double temp;

double temp_1 = 10000;
int counter = 0;
for (int a = 0; a < length; a++)
t = a * step;
//if (abs(rlal) < 1000)
ont B << t <« ™M <k x[F]
//if (abs(gla]) < 1000)

out B &< it < M W

out € << logi(t + L) <<

if (a != length - 1) {
oIt Dl oy K W T = (Hogi(e [ & -11) = Teglelal)) # (legi(t == 1 -+
step) - log(t + 1)) << endl;
out J << £ << " " << r prime[a] %< endl;
if (a == length - 2)
cout << "scaling Y & (log(rla + 1]) - log(rla])) / (leg(t + 1 +
step) = log(t + 1)) << endl;
}
eta = 1 / (1 + t);
l diss =1 / 3. * £ d * omega. b * pow(eta * rlal, 2) *
powi(r primela] = 2 / 3. * eta * rlal, 3);
out B <& £t &« " " &K I digg = 4 ¥ M PI # gla) % r primefa] *
pow(r[a], 2) << endl;
out. B €¢€ & << " " <« 2. * M PI ¥ powlrlal, 3) * glal / e init <<
endl;
out G << t << " " << omega b / 9. * pow(r[a], 3) * pow(r_prime[a]
eta, 2) / e init << endl;
if ((a == length - 1) || (& = a_wvel)) {

" << log(r[al)

{

* r factor << endl;

<< gla] << endl;

<< endl;
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e last = 2. * M PI * pow{rla], 3) * glal + omega b /
pow(r[al, 3) * pow(r primela] * etd, 2);
cout << "Thermal: " << 2. * M PI * pow(r(a], 3) * gla]
<<
endl;
cout << "Kinetic: " << omega b / 9. * pow(r[a], 3) *
pow (r_primela]
* eta, 2) / e init << endl;
if (a == a vel) {
gout &< "sealing " €K (logilz[a + 1]) - leg(xlal)y /J (&
step) - log(t + 1)) << endl;
}
cout << endl;
}
obt H <€t <€ " " << ¢ primefal / (2 £ 3. * eta * m[al)

e B

/e dndk

ogit + 1 +

<< endl;

temp = 4.5E5 * pow(M 5, .4) * gla] / £ m / omega b / pow(eta, 2);

out I << t << " " << temp << endl;

if ((counter == 0) & (temp < temp 1)) {
cout <<"t of temperature; "™ << t << endl;
cout << endl;
counter++;

out A.close(
out B.close (
out. C.close(
out D.close(
out. E.closel(
out. F.close(
out_G.close (
out H.close(
out I.close(
out Jd«closel

}
int main() {

cout << "“End wal eof ti "

ein >» t finy

cout << "Step size: ";

¢in >> istep;

cout << MEidy MG

ein >> £ d;

llceout €< "I burns ";

//cin >> t_burn;

cout << "Inditial zi M <« pew(l + t fin, 2/3.) — 1 <€ endl;
wrong B

//possible

40



cout << endl;

t hubblle = 2 7 3. F (H @ * K] * pow(l + t_fin, -1);
gout << "t hubble: " «< t hubble << endl:

colit. << endl;

Init funes();

Compute funcs () ;

Determine_vel();

Output_vals();

return 0;
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