
Measurement, Simulation, and Design of the 

Dispersion-Engineered 'fraveling-Wave Kinetic Inductance 

Amplifier 

Senior Thesis Presented by 

Saptarshi Chaudhuri 

California Institute of Technology 

Department of Physics 

Advisor: Jonas Zmuidzinas 

Submitted May 7, 2013 





ABSTRACT 

Recently, Eom et al. [1 J proposed a new concept for a low-noise cryogenic amplifier known 

as a Dispersion-Engineered Traveling-Wave Kinetic Inductance (DTWKI) amplifier. This 

device exploits the nonlinear kinetic inductance of superconducting thin-film nitrides to 

achieve high gain-bandwidth, near quantum-limited noise, and excellent dynamic range. In 

this thesis, we describe recent progress toward an experimental realization of the DTWKI; in 

particular, we focus on improvements in the areas of gain-bandwidth and noise performance. 

We describe a numerical model of the amplifier, and use this model to interpret experimen­

tal results and provide insight into the effects of dispersion-engineering on gain processes. 

Lastly, based on experimental results and model output, we propose some improvements to 

the DTWKI device. 
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I. INTRODUCTION 

In recent years, there has been increasing demand from the astronomy community for 

sensitive amplifiers that operate in the microwave, millimeter-wave, and submillimeter-wave 

bands. To this end, Eom et al. have proposed a new concept for a superconducting amplifier 

known as a Dispersion-Engineered Traveling-Wave Kinetic Inductance (DTWKI) amplifier. 

[1] Characteristics of the proposed device include: 

• Low noise. In theory, the amplifier should operate close to the noise limit imposed by 

quantum mechanics. Current low-noise transistor amplifiers add noise that is at least 

a factor of 20 above this limit. 

• Large gain-bandwidth. Preliminary model results show that for amplifiers operating 

under 10 GHz, significant gain can be achieved over a range of 6 GHz. This quality 

has only been achieved by transistor amplifiers. 

• Large dynamic range. High-power signals can be amplified with little distortion. Out­

put saturation levels of -10 dBm or larger are possible. For a gain of 20 dB, this 

corresponds to an input power of -30 dBm. The dynamic range is far better than 

that in resonant Josephson parametric amplifiers (JPAs) , in which dynamic range is 

limited by the fact that the internal current is larger than the input-output current 

by a factor of VQ, where Q is the quality factor. 

• Low power dissipation. As discussed below, the amplifier requires a strong pump to 

operate, but only a small fraction of this pump power is dissipated in the device. 

• Easy production. The superconducting components of the amplifier can be fabricated 

through standard thin-film deposition and lithography techniques. So far, all devices 

have been single layer. 

The DTWKI amplifier, if produced as proposed, will have considerable impact in fields (other 

than astronomy) where detector sensitivity is crucial, including superconducting-detector 

readout, fundamental physics experiments, quantum information, and low-temperature 

physics. 

As will be discussed below, the DTWKI amplifier falls into the larger class of traveling­

wave parametric amplifiers. Parametric amplifiers are so known because the nonlinearity of 
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the circuit material enables one of the circuit parameters to be varied periodically through 

the application of a strong pump waveform. If a weak signal waveform is also injected into 

the device, the periodic variation will transfer power from the pump to the signal, producing 

significant power gain. The parametric amplification process also generates a waveform of 

a third frequency, known as the idler. For parametric amplifiers, such as the DTWKI, 

that are described by four-wave mixing processes (processes discussed in the next chapter), 

we can write the relationship between the pump fp, signal f 8 , and idler Ji frequencies as 

In the case of the DTWKI device, the varying circuit parameter is the kinetic inductance 

of the component superconducting thin films. Kinetic inductance is a phenomenon in which 

the kinetic energy of the Cooper pairs (the particles that carry the current in the supercon­

ductor) manifests itself as a surface inductance. The Ginzburg-Landau and BCS theories of 

superconductivity predict that this inductance varies with the supercurrent. [2] In particular, 

the second-order Taylor expansion of kinetic inductance, as a function of current, takes the 

form 

(1) 

I* describes the strength of the nonlinearity. In this thesis, we will refer to Lo as the 

characteristic inductance. The lack of a linear term in the expansion can be explained on 

physical grounds. If a linear term was present, that would imply that the inductance depends 

on the sign of the current; such behavior is not representative of a physical process. 

The impetus behind the development of the DTWKI amplifier is recent advances in the 

knowledge of superconducting thin-film nitrides. It has been found that titanium nitride 

(TiN) and niobium titanium nitride (NbTiN) have favorable properties for use in parametric 

amplifiers. For example, the materials' high normal-state resistivity results in high induc­

tance nonlinearity, which is needed to produce adequate signal power gain. Indeed, recent 

experiments involving nonlinear resonators show that the inductance modulation can be as 

high as 83. Additionally, thin-film nitrides exhibit low power dissipation at the microwave 

frequencies, which translates into excellent noise performance and allows gain to overcome 

loss. [3] 

Consider a dispersionless superconducting transmission line with nonlinear kinetic induc­

tance. Two obstacles prevent its use as a parametric amplifier, one of which is shock front 

formation. [4] Consider the propagation of the strong pump in the dispersionless line. From 
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the equation for the voltage across the inductor, V = L( I)~~ , it is evident that the nonlinear­

ity will result in generation of the third harmonic frequency 3fp· Once the third harmonic is 

generated, odd higher harmonics 5fp, 7fp , etc., can be generated. If the input pump power 

is sufficiently high, sufficient power will be transferred into the higher harmonics, the pump 

wave will steepen, as illustrated in Fig. 1, and a shock wave will form. Once a shock wave 

forms, the current in the line exceeds the critical current, and the transmission line becomes 

resistive. This, in turn, leads to the dissipation of the pump power, inhibiting amplifica­

tion. We can also think of the shock wave process purely in terms of phase velocity. The 

current-dependent inductance leads to a current-dependent phase velocity, V¢(I) = vlrnc· 
L(I)C 

Consequently, points on the wave that correspond to higher currents move more slowly than 

their lower-current counterparts, causing the wave to steepen as illustrated in Fig. 1. The 

wave continues to propagate until it becomes nearly infinitely steep, at which point a shock 

front forms, and as before, efficient amplification is prevented. 

Additionally, amplification in the dispersionless nonlinear transmission line is limited by 

phase mismatch. The principal process for the production of signal gain is the conversion of 

two pump photons into one signal and one idler photon. The degree to which the phases of 

the three tones - pump, signal, and idler- are matched determines how coherently the signal 

is generated along the length of the line, and thus, determines how much gain is generated at 

the output. This idea will be explored in greater quantitative precision in the next section, 

but for now, we introduce some terminology that will allow us to understand the concept. 

The kinetic inductance nonlinearity of (1) results in the pump tone interacting with its own 

AC current to produce an additional phase shift on the pump. This additional phase shift 

is known as self-phase modulation. There is also an interaction between only the pump and 

signal that results in an additional phase shift on the signal tone; a similar nonlinear phase 

shift is also present on the idler tone. These phase shifts are known as signal cross-phase 

modulation and idler cross-phase modulation. As discussed in the next section, in all three 

effects, the phase shift is linear in input pump power and linear in transmission line length. 

Let Bp(z) , Bs(z), and (}i(z) represent the phase of the pump, signal, and idler tones, as a 

function of position along the transmission line; let 6 'lj;(z) = 88 (z) + (}i( z) - Wp(z) represent 

the phase difference between the tones. (The factor of 2 takes into account the fact that a 

signal and idler photon pair is the result of an interaction between two pump photons.) In 

the situation that no idler is present at the input , as in the DTWKI, the closer this phase 
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FIG. l. Illustration of shock wave formation in a transmission line with kinetic inductance nonlin-

earity given by (1). The dark blue curve represents the time-domain pump waveform at the input. 

The phase velocity v<P = ~ decreases as the magnitude of current increases; the higher­
L(I)C 

magnitude current values propagate more slowly compared to the lower-magnitude current values. 

As a result, the input waveform steepens, resulting in the time-domain waveform represented by 

the light blue curve at a position further along the line in the direction of propagation. The wave 

continues to steepen as it propagates further down the line (green, yellow curves) until it becomes 

infinitely steep (red curve). At this point, a shock wave forms, and the power in the pump is 

dissipated. 

difference remains to fl'lj;(z = 0) as the wave propagates down the line, the higher the gain is. 

The coupled-mode equations, discussed in the next section, predict that in a dispersionless 

transmission line of length L, the above phase modulation effects produce a phase slippage 

between the three tones, tl'lj;(z) =I= fl 'lj; (O), resulting in signal and idler power gains of 

(2) 

(3) 

for signal frequencies near the pump. Here, fl¢ is the pump self-phase modulation per unit 

length. We denote the total self-phase shift over the line by !le = Lfl¢. Together with the 

fact that shock fronts form at phase shift !le :S 1, equation (2) implies that the maximum 

possible gain is a factor of 2, or 3 dB. Such gain is too small for practical applications. 
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In summary, a dispersionless nonlinear transmission line cannot be used as an amplifier 

due to shock front formation, which leads to dissipation of pump power, [4] and phase 

mismatch, which limits the amplifier to a small quadratic gain. 

In the DTWKI device, which, in the current generation, is in the form of a distributed­

element coplanar waveguide ( CPW) consisting of NbTiN thin films , both of these issues 

are to be resolved through a loading process in which we periodically perturb the center 

strip width, and hence the impedance, of the transmission line. The loading process is 

illustrated in Fig. 2 and Fig. 3. Let fper be a frequency that is slightly larger than the third 

pump harmonic 3fp· The center strip width of the CPW is periodically increased (and thus, 

the impedance decreased), with the separation of perturbations being one-half wavelength 

corresponding to the frequency fper · Much like an electronic bandgap, this creates a stopband 

-a range of frequencies that are not transmitted by the transmission line- centered at f per 

that includes the third harmonic 3fp· The stopband limits higher harmonic generation and 

prevents shock front formation. We also tweak every third loading by reducing its length to 

half the length of the first two loadings. This creates weaker stopbands at fper/3 and 2fper/3 

and results in dispersion features near these frequencies. By fine-tuning the pump frequency 

near the stopband at fper/3, this dispersion can be used to compensate for nonlinear phase 

slippage. As a result , the phases of the three tones can be matched (6.'l/;(z) = 6.'l/;(O) for all 

z) for a wide range of signal frequencies , and the amplifier can operate in the exponential 

gain regime: 

Gs~ 1 + sinh2 (L6.¢) 

Gi ~ sinh2 (L6.¢) 

(4) 

(5) 

for signal frequencies over a wide bandwidth around the pump. To see the vast improvement 

given by this dispersion engineering, consider the application of a strong pump that produces 

a self-phase shift of 6.B = 3 at the output of the amplifier. In the quadratic gain regime, 

assuming shock wave formation does not occur (i.e. the third harmonic falls in a stopband), 

the signal gain is a factor of 10, or 10 dB , whereas in the exponential gain regime, the signal 

gain is approximately a factor of 100, or 20 dB. 

In addition to the exponential wideband gain, another attractive feature of the DTWKI 

amplifier is near quantum-limited noise. The DTWKI belongs to the class of phase­

insensitive amplifiers, so known because both quadratures of the signal are amplified equally. 
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FIG. 2. Top: A schematic of the periodic structure of the center strip in the DTWKI amplifier. 

The introduction of a wide section every 1/2 wavelengths at frequency fper inhibits higher harmonic 

generation, while reducing the length of every third loading introduces the dispersion at the pump 

needed for phase matching and exponential gain. Bottom: An image of an early DTWKI test 

sample, fabricated in the form of a CPW from NbTiN thin films, which illustrates the loading 

process. The transmission line is in the form of a double-spiral coplanar waveguide, with the 

input and output ports as labelled above. The length of the amplification section is 0.6 meters, 

which is approximately 225 wavelengths at the pump frequency 11.56 GHz. At each end of the 

amplification section is a 0.1-meter turn of impedance taper, which has impedance of nearly 300 

ohms at the intersection with the amplification section and an impedance of 50 ohms at the port. 

Every D = 877 µm, the center strip width is increased by a factor of three, as illustrated in the top 

right panel. The length of the first two loadings in the six-section periodic structure is 50 µm, while 

the length of the third loading is 25 µm. The impedance of these wider sections is approximately 

two-fifths that of the rest of the line. The distance between adjacent turns of the spiral is 250 µm; 

the large spacing minimizes coupling between the adjacent turns. 
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FIG. 3. Top: A schematic of the stopbands created at fper/3, 2fper/3, and fper by the loading 

process. Here, the stopbands are centered near 6, 12, and 18 GHz. Bottom Left: A magnified 

view of the stopband near 6 GHz, showing an example pump frequency. Bottom Right: The 

dispersion associated with the fper /3 stop band, showing the location of the pump chosen in the 

figure to the left. kef f is the effective wavenumber in the presence of dispersion and ko is the 

wavenumber in the absence of dispersion. The y-axis represents the contribution of dispersion to 

the phase shift of a wave traveling through a six-block periodic structure. 

The uncertainty principle from quantum mechanics asserts that, for this class of amplifiers, 

there is a fundamental lower-limit on the fluctuations of the signal quadrature components 

added by amplification. This fundamental lower-limit, called the standard quantum limit, 

or SQL, is one-half of a photon per second per unit bandwidth. Adding the one-half-photon 
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vacuum noise yields the quantum-limit noise temperature of TsQL = * = f x 48 mK/GHz, 

where his Planck's constant and ks is Boltzmann's constant. In theory, the DTWKI should 

be able to achieve such quantum-limited noise; the amplifier need not add thermal noise 

or shot noise. [5] In contrast, state-of-the-art high electron mobility transistors (HEMTs) 

possess noise temperature above 1 K/GHz, corresponding to an added noise of at least 20 

photons. 

In parametric amplifiers based on Josephson junctions, it has been demonstrated that the 

fluctuations of one quadrature component can be reduced below the quantum limit at the ex­

pense of increasing fluctuations in the other quadrature, a phenomenon known as squeezing. 

[6] The DTWKI is a non-degenerate parametric amplifier, as the signal is generally far away 

from the pump frequency. In this case, the fluctuations of the amplified signal quadratures 

will be equal, but will be highly correlated with fluctuations at the idler frequency. This 

phenomenon, known as two-mode squeezing, has many potential applications in quantum 

information science. 

Lastly, it is important to note that several amplifiers based on principles similar to those 

described above have already been demonstrated, illustrating the feasibility of producing the 

DTWKI amplifier. For example, narrowband resonator-based parametric amplifiers using 

nonlinear kinetic inductance have been demonstrated by Tholen et al. [7] In 1967, an optical 

traveling-wave parametric amplifier that makes use the Kerr nonlinearity of optical fibers -in 

which the index of refraction is intensity-dependent- was patented. [8] The latter is of special 

significance, as in theory, the transmission line structure of the DTWKI device should work 

in a manner similar to that of the optical fiber. 

In Chapter 2, Section A, of this thesis, we discuss the coupled-mode equations, a simple, 

analytical framework for discussing traveling-wave amplifiers which is borrowed from the 

field of nonlinear optics. In Chapter 2, Section B, we discuss a harmonic balance model 

which is designed to capture physics associated with the formation of standing waves that 

is not captured in the coupled-mode equations. 

In Chapter 3, we discuss experimental results concerning gain processes in the DTWKI. 

By comparing the experimental data with the model output, we explore the physics behind 

deamplification, in which the gain is less than 1, and the reduction of gain due to mixing pro­

cesses involving sidebands of higher harmonics. We also discuss the causes and consequences 

of impedance mismatch between the taper and the amplifier. 
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In Chapter 4, we discuss the experimental noise performance of recent DTWKI samples. 

We discuss progress toward achieving quantum-limited noise and in particular, efforts to 

reduce on-chip heating. 

Finally, in Chapter 5, we propose a design for the next generation of devices that should 

achieve the best gain-bandwidth and noise performance of any DTWKI to date. We discuss 

efforts to realize two-mode squeezing, and more broadly, we discuss future plans for DTWKI 

development. Lastly, we discuss other novel methods for developing low-noise amplifiers. 
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II. AMPLIFIER MODELS 

A . Coupled-Mode Equations 

Consider a transmission line of length L, which has some intrinsic dispersion. By "intrin­

sic", we mean that the dispersion is caused by some effect that occurs everywhere on the line 

and thus, that the dispersion affects the phase evolution of a monochromatic waveform on 

a per unit length basis. By using this model, we assume that the dispersion created by the 

impedance loadings in the DTWKI can be modeled as some effective intrinsic dispersion. 

The differential equations governing voltage and current on the transmission line are 

av= -L(I)a1 
az at 
a1 _ 0av 
az - - at 

(6) 

(7) 

where L(I) is the inductance per unit length, given by equation (1), and C is the capacitance 

per unit length. Combining the two equations, we obtain a wave equation for current: 

a2 I - ~ [L(I)Col] = 0 
8z2 ot ot (8) 

We express the current I as the sum of a number of frequency components, 

(9) 

where c.c represents the complex conjugate of the first term, and the slowly varying complex 

amplitudes An satisfy 

ld
2Anl lk dAnl 
dz2 « n dz (10) 

The I 2dI / dt nonlinearity connects combinations of four frequencies. Thus, a general 

discussion of four-wave mixing in a Kerr medium includes four frequencies in the sum in (9): 

two pump tones at wp1 and wp2 , a signal at w 5 , and a generated idler at Wi = wp1 +wp2 - w 5 • In 

degenerate four-wave mixing, the two pump tones are at the same frequency, wP = wp1 = wp2 . 

Plugging the expansion (9) into (8) and using the approximation in (10), the evolution of 

the amplitudes AP , As , and Ai is governed by the following coupled-mode equations [9]: 

10 
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(11) 

where c = vfoc is a characteristic phase velocity, and D../3 = ks+ ki - 2kp is the linear phase 

mismatch. 

From equation (8), it is clear that the pump, signal, and idler are not the only tones 

traveling in the line. As mentioned before, the four-wave mixing process creates odd pump 

harmonics (2n+ l)wp , n = 1, 2, ... , as well as tones of frequency (2n+ l)wp ± (ws -wp)· The 

latter frequencies are called sideband frequencies; the tone below (2n + l)wp is the known as 

the lower sideband of the harmonic , while the tone above (2n + l)wp is known as the upper 

sideband of the harmonic. We could expand (11) to include these modes; for simplicity, 

here we assume that these higher frequency tones fall in a stopband and do no propagate, 

or at least , that the dispersion engineering creates a phase mismatch such that the higher 

frequency tones do not interact coherently with lower frequency tones, in which case the 

amplitude of the higher frequency tones is negligible compared to those at lower frequency. 

In the DTWKI, the signal is typically very weak compared to the pump, so we can drop 

all terms in equations (11) except those that scale as [Ap[ 2 or [Ap[ 3
. This approximation is 

known as the weak-signal approximation. We also assume that the pump is undepleted as 

it travels through the line, so that d[Ap[ / dz = 0. In this case, the first equation in (11) can 

be solved for Ap: 

(12) 

Thus, from (12), we see that the nonlinearity causes an additional phase shift per unit length 

of 

(13) 

This is precisely the self-phase modulation introduced in the previous section. The expression 

for self-phase modulation can also be derived by extracting the coefficient of AP from the 

right-hand side of the dAp /dz expression in (11). Since [Ap[ 2 ex ~n, where Pin is the input 

pump power, we see that the self-phase modulation is linear in input power, as mentioned 

in the Introduction. 

Plugging ( 12) into the differential equations ( 11) (after applying the weak signal approx­

imation) and using the methods explained in [10] yields analytical solutions for the signal 
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and idler amplitude 

A8 (z) = A8 (0)exp (i (~s ~</> - ~) z) ( cosh(gz) + ;; sinh(gz)) 

Ai(z) = A 8 (0)exp (i (~i ~</>- ~) z) (i~</>:;sinh(gz)) 
where r;, = ~/3 + 2~¢ and g is the parametric gain coefficient, given by 

1 
g =-

2 
WsWi ( 2~</> )2 _ r;,2 

w2 
p 

(14) 

(15) 

(16) 

In deriving equations (14) and (15), we have assumed that no idler is present at the input z = 

0. (No idler is excited at the input in experiment, making this an appropriate assumption.) 

From analyzing the complex exponent in the solutions (14) and (15) or by extracting the 

coefficient of As and Ai in (11), the signal and idler cross-phase modulation per unit length 

is found: 

(17) 

Note that the ~ term from the complex exponent in (14) and (15) is not present in (17). 

The reason for this is that the r;, phase term is the result of the interaction of three tones­

specifically, the conversion of two pump photons into signal and ider photons; cross-phase 

modulation is a result of interactions between only two tones- either the pump and the 

signal or the pump and the idler. 

With no dispersion, ~/3 = 0, and from (12), (14), (15), the pump, signal, and idler are 

not phase-matched: 

(18) 

The signal and idler power gains are 

JA8 (L)J
2 

( 1 ) . (I Ws I )2 

Gs(ws) = IAs(O)J2 = 1 + 11 - ~:T- 1 sm 1 - Wp L~</> (19) 

1 
2 ( wi) 

2 
sin ( 11 _ wi I L~<t>) 

2 

11 - ~1 Wp Wp 

(20) 
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Taking the limit w8 ---+ wp, we recover the quadratic gain results of (2) and (3). 

From (16), the parametric gain coefficient is maximized when K, = 0. It is easy to see 

that this condition corresponds to the pump, signal, and idler being phase-matched. The 

signal and idler power gains are 

(21) 

(22) 

Taking the limit w8 ---+ wP, we recover the exponential gain results of (4) and (5). 

The phase-matching condition can be written as 

(23) 

To achieve this condition, we can modify the dispersion in the region of the signal. However, 

this achieves exponential gain only in a narrow section around the signal. If we instead 

modify the dispersion at the pump (and add no dispersion at the signal or idler), we achieve 

this phase-matching condition, and consequently, exponential gain, for a wide range of signal 

frequencies. As illustrated in Fig. 3, the periodic structure in the DTWKI accomplishes the 

task of producing dispersion in a narrow range of frequencies around the pump. 

To illustrate the enhanced gain-bandwidth provided by dispersion engineering, we plot 

the signal gain for various levels of phase mismatch in Fig. 4. For the transmission line 

with no dispersion engineering, described by the 6./3 = 0 curve, the peak gain is 10 dB, 

with the boundaries of the 3 dB bandwidth occurring at ~ = 0.566 and ~ = 1.434. This 

yields a bandwidth of B = 0.866. For the 6./3 = -6.¢ curve, which describes a transmission 

line that is dispersion-engineered but not phase-matched, the peak gain is 17.82 dB, with 

the boundaries of the 3 dB bandwidth occurring at ~ = 0.541 and ~ = 1.459. This yields 

a bandwidth of B = 0.918. For the 6./3 = -26.¢ curve, which describes a phase-matched 

transmission line, the peak gain is 20.06 dB, with the boundaries of the 3 dB bandwidth 

occurring at ~ = 0.532 and ~ = 1.468. This yields a bandwidth of B = 0.936. Thus, 

by using dispersion engineering, we increase the peak signal gain by a factor of 10 and the 

bandwidth by approximately 8%. 
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Gain Predicted by Coupled-Mode Equations 
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FIG. 4. The gain predicted at self-phase shift b.B = Lb.¢ = 3 for varying levels of linear phase 

mismatch. The signal frequency is normalized by the pump frequency. Note that both the gain 

and the bandwidth increase as the degree of phase mismatch decreases. 

B. Harmonic Balance Model 

Though the coupled-mode equations provide us with a simple way to understand the 

physics of the DTWKI, it has significant shortcomings. The impedance steps in the de­

vice produce reflections, which in turn, create standing waves. Consequently, the current 

amplitude varies with position on the line, and if the degree of variation is not sufficiently 

small, the approximation dlApl/dz = 0 used in solving the coupled-mode equations is not 

valid. Additionally, it is unclear whether we can assume that the dispersion created by the 

impedance loadings can be treated as an effective intrinsic dispersion. We also may not 

be able to assume that the power in the higher harmonics and the sidebands of the higher 

harmonics is insignificant compared to that in the pump, signal, and idler tones. To resolve 

these issues, we have developed what is known in the electrical engineering community as 
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a harmonic balance computation scheme. In this treatment, the DTWKI amplifier will be 

treated as a cascade of weakly nonlinear transmission line sections. Our strategy for deter­

mining the nature of pump and signal propagation will be similar to that used in analyzing 

the coupled-mode equations. We will first solve for the amplitudes of the pump tone and its 

harmonics throughout the line. Using the solution for the pump tone and the weak-signal 

approximation, we will then solve for sideband amplitudes, including those of the signal and 

idler. 

1. Modeling A Short Transmission Line Section 

First, we consider a short transmission line section. This section can be characterized 

by its length L, its characteristic impedance Zc = j!i-, its phase velocity c = .,;Le in 

the limit of zero current, and its J* value, which, as mentioned before, sets the scale for 

the nonlinearity. Each section obeys the differential equations (6) and (7). We define the 

forward and backward-propagating waves in each section as: 

( ) 
_ V(z, t) + ZJ(z, t) 

az,t - fr7 

2vZc 

b( ) 
= V(z, t) - Zcl(z, t) 

z,t fr7 

2vZc 

(24) 

(25) 

Both of these waveforms have dimensions of Watts112 . Substituting these expressions into 

(6) and (7), we find that these a(z, t) and b(z, t) obey the nonlinear wave equations 

aa 1 (aa 1 a 3) 
az =-ii at+ 6I'tZcat(a- b) (26) 

ab = -~ (-ab+ _ 1_ .§_(a _ b) 3 ) 

az c at 6I'tZcat 
(27) 

Under the weak-signal approximation, which allows us to ignore t ones that result solely 

from the mixing of two or more sideband photons, we can decompose a(z, t) and b(z, t) into 

a sum of pump harmonic and sideband waveforms: 

a(z, t) ~Re (t, a(nw,; z)e'~,t + nt= a(wm; z}e""•') 

b( z, t} ~ Re ( t, b( nw,; z )e"'w,,t + n~= b( Wm; z }e'"''") 
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(29) 

where Wn = nwp + W8 - Wp are the sideband frquencies. In the case that Wn < 0, the physical 

frequency of the waveform is -wn. In this notation, w1 represents the signal frequency, while 

w_1 represents the idler frequency. 

We treat each transmission line section as a two-port circuit, as shown in Fig. 5. a 1 

represents a forward-traveling incoming wave at Port 1. It travels through the transmission 

line section and exits through Port 2. This outgoing wave is represented by b2 . Similarly, a2 

represents a backward-traveling incoming wave at Port 2. It travels through the transmission 

line section and exits through Port 1. This outgoing wave is represented by b1 . 

07 - b2 -- -
Transmission 

b7 
Line Section 

- - 02 
- ... , 

Port 1 Port 2 

FIG. 5. Here, we show a schematic of a transmission line section. a1 and a2 represent, respectively, 

the forward- and backward-propagating incoming waves , while b1 and b2 represent forward- and 

backward-propagating outgoing waves. 

We restrict our attention to propagation of the pump tone and its harmonics . Define 

a1 (nwp) as the the complex amplitude of the component of the incoming wave a 1 that 

is at frequency nwp. Similarly, define a2(nwp), b1(nwp) , and b2(nwp)· In the language of 

equation (28), a1(nwp) = a(nwp;z = 0), a2(nwp) = b(nwp;z = L) , b1(nwp) = b(nwp;z = 0), 

b2(nwp) = a(nwp; z = L). 

We can write the outgoing wave amplitudes at the nth harmonic as a sum of linear and 

nonlinear contributions from the incoming wave amplitudes: 

(30) 
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where, letting c be the section's phase velocity and kp = w; be the propagation constant, 

(31) 

S(nwp) is a scattering matrix representing a phase shift on the incoming waves due to the 

traveling waves propagating some nonzero distance. The nonlinear term, represented by the 

rightmost vector in (30), can be approximated by plugging the expansion of pump harmonics 

from (28) into Eqs. (26)-(27) and using first-order perturbation theory: 

- 3a1(kwp)a1(lwp)a2(mwp)sinc((n - m)kpL) 

+ 3a1 ( kwp)a2 (lwp)a2 ( mwp)sinc( kkpL) 

- a2(kwp)a2(lwp)a2(mwp)] 

( ) inkpL -ink L ~ ;; [ ( ) ( ) ( ) .Q2 nwp = 2412 z e P L....t un ,k+l+m ai kwp ai lwp ai mwp 
* c k,l ,m 

- 3a1 (kwp)a1 (lwp)a2(mwp)sinc(mkpL) 

+ 3a1(kwp)a2(lwp)a2(mwp)sinc((n - k)kpL) 

- a2( kwp)a2( lwp)a2 ( mwp)sinc( nkpL)] 

(32) 

(33) 

Here, k, l, and m range from -oo to oo. For k < 0, a1(kwp) is the complex conjugate 

of a1(-kwp), i.e. a1(kwp) = a1(-kwp)* (and similarly for a2(kwp)). Fork= 0, a1(kwp) = 

a2(kwp) = 0. These two equations give us several insights into the nature of the nonlinearity: 

• In contrast with the linear response, the nonlinear amplitudes depend on both ports' 

incoming amplitudes. 

• The nonlinear response amplitudes for a certain harmonic depend not only on the 

incoming amplitudes for that harmonic, but also the incoming amplitude for the other 

harmonics. 

17 



• Note that each term in the summand is the product of three incoming amplitudes. 

This is due to the quadratic form of the inductance in (1) along with the voltage 

equation V = LdI / dt , which together produce a cubic nonlinearity. As a result of this 

cubic nonlinearity, if only the fundamental harmonic is injected into the transmission 

line, only odd harmonics will be produced. 

• The generation of third harmonic in the presence of a pump waveform can be seen by 

letting k = l = m = 1 in the above formulas. 

• To observe the self-phase modulation effect in this perturbative treatment , excite port 

1 with only a pump tone, and do not excite port 2. Then, 

(34) 

so 

This yields a self-phase modulation per unit length of 

(36) 

which is the same result as (13) from the coupled-mode theory, except formulated in 

terms of power instead of current. 

Of course, when implementing these equations in a computational setting, we cannot take 

into account infinitely many frequencies, so we truncate our analysis and the above sums to 

some harmonic number kmax, -kmax < k , l , m < kmax· kmax is determined in simulation by 

looking for the harmonic number above which the amplitudes are insignificant. 

Eqs. (32), (33) give an approximate solution to the nonlinear response amplitudes; to 

improve upon this approximation, we use the fact that a superconducting line is lossless to 

excellent approximation. In other words, power is conserved and 

(37) 
k=l i=l k=l i =l 
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We define a vector of all incoming amplitudes for a fixed section: 

ais) (wp) 

a~s) (wp) 

ais) (2wp) 

a~s) (2wp) 

ais) (kmaxWp) 

a~s) (kmaxWp) 

(38) 

where the superscript (s) represents the sth section. We define similar vectors for the out­

going and nonlinear response amplitudes, denoted b(s) and c(s)_ By eq. 30, these vectors 

obey the relation 

(39) 

where 

( 40) 

The nonlinear response vector can be decomposed into the perturbative solution and a 

power-conserving correction: 

(41) 

From (37), we deduce that 6c(s) must obey 

0 = \S(s)a(s) ic(s)) + \c(s) 1s(s)a(s)) + \c(s) ic(s)) + \6c(s) ic(s)) 

+ \c(s) l6c(s)) + \S(s)a(s) l6c(s)) + \6c(s) IS(s)a(s)) + \6c(s) l6c(s)) (42) 

Since the perturbative solution is assumed to be accurate to good approximation, we 

desire the size of the correction, \6c(s) l6c(s) ), to be minimal. Thus, we can solve for the 

power-conserving correction using Lagrange multiplier minimization, with ( 42) as the con­

straint . The result is 

( 43) 
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2. Cascading Transmission Line Sections And Modeling Impedance Changes 

Now consider a cascade of short transmission line sections, such as that which makes up 

the DTWKI device. A schematic of a cascade is shown in Fig. 6. 

D 
bz 

~ 

I. 
a 

External 2 -•~~:-: -Ex-~-m-a/~~D-~--~-~----D-~----0-~----~--~-
Port 1 Port 2 

FIG. 6. A schematic of a transmission line cascade. ai and a2 represent the waves excited (i.e. the 

pump and the signal) at the external ports of the transmission line, while b1 and b2 represent the 

waves leaving the transmission line. The wider sections represent the loadings. 

To determine how the pump propagates through the cascade, we must take into account 

the impedance steps that occur from section to section. Mathematically, this is done by 

"inserting" impedance-conversion circuits between transmission line sections. We can treat 

the impedance-conversion circuit as a two-port circuit , as we do with the short transmission 

line section in Fig. 5. Suppose that a transmission line section has characteristic impedance 

Z1 and the adjacent section to the right has characteristic impedance Z2 . Then, for each 

harmonic, the incoming and outgoing wave amplitudes are related by 

(44) 

where 

[ 
Z2 - Z1 2.JZ1Z2] 

2.JZ1Z2 Z1 - Z2 
(45) 

Note that unlike the scattering matrix in Eq. ( 31) , the matrix in ( 45) depends on 

impedances, rather than frequency, and thus , it will be the same for all harmonics. 

Now we are prepared to solve for the pump and harmonic amplitudes at all ports along 
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the line. We define a vector of all the incoming amplitudes at every harmonic: 

ai1
) (kwp) 

a~1 ) (kwp) 

ai2
) (kwp) 

a~2 ) (kwp) 

aiN) (kwp) 

a~N)(kwp) 

(46) 

Here, N is the total number of sections, including impedance-conversion circuits. Simi­

larly, we can define b(kwp) and c(kwp) for the outgoing and nonlinear response amplitudes. 

Note that for the latter vector, every other pair of entries will be zero because impedance­

conversion circuits are linear. We define the total scattering matrix S(kwp) by 

( 47) 

For odd s , 5(s)(kwp) is given by the transmission line scattering matrix in (31), while for 

even s, it is given by the impedance-conversion matrix in ( 45). 

Additionally, we define an internal projection matrix 

0 0 

0 1 0 

0 1 0 

0 

0 1 0 

0 

(48) 

and an external projection matrix given by Pe = 1 - Pi · These matrices can be interpreted 

as follows: A vector of the form ( 46) multiplied by Pe gives the harmonic amplitudes at the 

external ports, at which the waves are excited. The same vector multiplied by Pi gives the 

harmonic amplitudes at every internal port - that is, at every port between these external 
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ports. Finally, we define a connection matrix 

0 

C= 

0 

0 1 

1 0 

0 1 

1 0 

0 

0 

( 49) 

More explicity, if we let Ci,J represent the entry in the ith row and the jth column (starting 

the indexing at 1), then for 2 :Sn :S N, C2(n-1) ,2n-1 = 1 and C2n-1,2(n-l) = 1, and Ci,j = 0 

everywhere else. The amplitudes of the outgoing waves of a two-port circuit are equal.to the 

amplitudes of the incoming waves at the adjacent two-port circuits. Mathematically, this 

can be expressed as 

(50) 

Putting together eq. (30),(46)-(50) gives an expression for the incoming wave amplitudes 

for internal ports: 

(51) 

where 1 is the 2N x 2N identity matrix. Note that Pea(kwp) represents the incoming 

amplitudes for the external ports for the kth harmonic. These amplitudes can be treated as 

known parameters in this model, since they are representative of the waveform that we inject 

into the line. In the current generation of the DTWKI, no pump harmonics are excited at 

the external ports, so Pea(kwp) = 0 fork =f 1. Additionally, only one of the ports is excited, 

so ai1
) (wp) =f 0, while a~N) (wp) = 0. 
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We can combine the equations (51) for each harmonic into one master equation. Let 

a= 

Denote its complex conjugate by 

a*= 

and let 

a(wp) 

a(2wp) 

a(3wp) 

a(wp)* 

a(2wp)* 

a(3wp)* 

(52) 

(53) 

(54) 

Similarly, we can define b and c = c(a). (The functional dependence is to emphasize 

that the nonlinear response amplitudes for a transmission line section are a function of the 

incoming amplitudes for that section.) Define 

(55) 

We define C, Pi , and Pe to be block diagonal matrices, where each of the 2kmax blocks is a 

copy of C, Pi, and Pe, respectively. Then we have 

(56) 

where 1 is the 4Nkmax x 4Nkmax identity matrix. Thus, we find that solving for the incoming 

amplitudes at each port is a root-finding exercise, where we are trying to find the root of 

the equation 

L(a) = 0 (57) 
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where L is the operator 

(58) 

To solve the equation, we apply the following iterative method: 

1. Set the incoming amplitudes for the external ports, Pe(a). 

2. Make an initial guess for the nonlinear response amplitudes c(a). A typical guess is 

to set all of these amplitudes to zero. 

3. Use (51) or (56) to determine the incoming port amplitudes at each harmonic. 

4. For each transmission line section, compute the nonlinear response amplitudes using 

the perturbative solutions (32) and (33) and the power-conserving correction ( 43). 

5. Compute L(a). Compute the Newton-Raphson correction la given by 

(8£) -aa. 6a = - L(a) (59) 

where the derivative on the left-hand side can be computed by approximating c in 

equation (58) as the perturbative solution~: 

8L - - _1 - - - - -aa. = [1- CS] C[SPe + J] - Pi (60) 

where J is a Jacobian computed in the Appendix. Eq. (59) represents a sparse linear 

system that can be solved for ba. 

6. Add ifa to a to obtain a new set of incoming amplitudes at each harmonic. 

7. Return to step 4. Repeat until a self-consistent solution has been reached -in other 

words, until the amplitudes that result in step 6 are changing negligibly from iteration 

to iteration. Once the solution has been reached, we have solved for the incoming am­

plitudes and the nonlinear response amplitudes. We can then determine the outgoing 

amplitudes for each harmonic, which are given by 

(61) 

Physically, this process can be thought of as follows: We solve for the pump and higher 

harmonic propagation in the absence of the nonlinearity (step 3). We then compute the 
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nonlinear response using the knowledge about pump propagation from the previous step 

(step 4). However , these "local" nonlinear effects affect how the pump propagates "globally" 

-that is, how it propagates throughout the line. Thus, we need to update our solution for the 

global pump and higher harmonic propagation (step 5). This, in turn, again affects the local 

nonlinear effects, which, in turn, affects the global pump and higher harmonic propagation. 

We repeat this iterative process until a self-consistent solution has been found. 

Suppose we know the solution to pump propagation for some input pump power and wish 

to determine the solution for some higher power. Then, we need not make an initial guess of 

0 for the nonlinear response amplitudes. We can set our initial guess to be those nonlinear 

response amplitudes which solved the system at the lower power; doing so performs the 

calculation in fewer iterations. 

Finally, note that in numerically implementing these techniques, we describe the input 

pump power by a dimensionless factor: 

JP::i a=-- --

21i1){i0 
(62) 

where Pin is the input pump power, and 1i1
) and z2) are the nonlinearity strength and 

characteristic impedance of the section at which the pump tone is excited. Physically, 4a2 

can be thought of as an approximation to the maximum inductance modulation. 

3. Signal Analysis in a Short Transmission Line Section 

Having solved for the evolution of the pump as it travels along the loaded transmission 

line, we turn our attention to signal propagation, and more generally, to the sideband tones. 

The key assumption here is the weak-signal approximation: since the signal is weak compared 

to the pump, the pump amplitudes found in the previous section do not change in the 

presence of the signal. Similar to the manner in which we denoted pump amplitudes at 

each port , we write a1(wn) = a(wn; z = 0) , a2(wn) = b(wn; z = L), b1(wn) = b(wn; z = 0), 

b2(wn) = a(wn; z = L). As before, for each transmission line section, we can write the 

outgoing amplitude at frequency Wm as a sum of linear and nonlinear contributions from the 

incoming amplitudes: 

(63) 
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where, letting c be the section's phase velocity and kn = wen be the propagation constant, 

(64) 

Plugging the full expansion of (28) into (26) and (27), and using first-order perturbation 

theory, 

(65) 

+ 2a1(kwp)a2(lwp)a2(wm)sinc((kkp - kn)L) - 2a2(kwp)a1(lwp)a1(wm)sinc(kkpL) 

+ a2 ( kwp)a2 (lwp)a1 (wm)sinc( (kn - km)L) - a2( kwp)a2 (lwp)a2 (wm)sinc(knL) ]8n,k+l+m 

(66) 

where the sums over k, l, m are from -oo to -oo. As with the pump nonlinear response 

amplitudes, we cannot evaluate such infinite sums in a computational setting, so we truncate 

the sums to some sideband number Smax, -Smax < k, l, m < Smax, above which the sideband 

amplitudes are not significant. In deriving these expressions, we used the weak-signal ap­

proximation to ignore terms that contain fewer than two pump photons in each product of 

three amplitudes. Since we assume that the pump and harmonic amplitudes do not change 

in the presence of the signal, we can set the pump amplitudes in the above two equations 

to be the same as those found through the process in the previous section. 

The signal cross-phase modulation effect may be seen by exciting port 1 with a pump 

and signal tone and not exciting port 2. Then, 

( ) iksL -ikLI ( )l2 ( ) _g2 W1 = W 8 = - 12 Z e P ai Wp ai W 8 

4 * c 
(67) 

so 
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This yields a signal cross-phase modulation per unit length of 

(69) 

Similarly, we find the idler cross-phase modulation to be 

(70) 

Note that the results (69) and (70) for cross-phase modulation are the same as (17) from 

the coupled-mode theory. 

Note also that the nonlinear response is linear in the sideband amplitudes. Thus, we 

may use matrix algebra techniques to solve for the sideband amplitudes, instead of using 

the complicated system in the previous section. Define a vector asig of all incoming sideband 

amplitudes, 

asig = 

al (w-SmaJ 

a2(W-Smax) 

a2(W-Smax+l) 

ai (w-1) 

a2(w-1) 

ai(wo) 

a2(wo) 

ai(w1) 

a2(w1) 

al (wsma:z;-1) 

a2(wsmax-1) 

ai(WsmaJ 

a2(wsmaJ 
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and similarly a vector S ig· Then, from (65) and (66), it is clear that we can write 

(72) 

where Ssig is a matrix of the form 

Sn ( - smax. - smax) S12(-smax ,-smax) Sn ( - smax.-smax+l) S12(-smax ,-smax+l) 

S21 (-smax,-smax) S22(-smax,-smax) S21 (-smax,-smax+l) S22(-smax,-smax+l) 

Sn ( - smax+l,smax) S12( - smax+l, - smax) S11 ( - smax+l,-smax+l) S12(-smax+l,-smax+l) S12(-smax+l,smax) 

S21 ( - smax+l,smax) S22( - smax+l, - smax) S21 ( - smax+l,-smax+l) S22(-smax+l,-smax+l) S22( - smax+l ,smax) 

S11 ( - smax+2,-smax) S12(-smax +2,-smax) S11 (-smax+2,-smax+l) S12(-smax+2 ,- smax+l) S12(-smax+2 ,smax) 

Ssi9 = S21 (-smax+2,-smax) S22(-smax +2,-smax) S21 (-smax+2,-smax+l) S22 (-smax +2 ,-smax+l) S22( - smax+2,smax) 

S12(smax.-smax) Sn (smax.-smax+l) S12(smax .-smax+l) 

821 (sma:z:,-Smax) S22(sma:z; , -Smax+l) S22(smax,smax) 

(73) 

Using the above expressions for the nonlinear response amplitudes, the entries for this 

matrix are: 

S11 (n, r) 

(74) 

(75) 

(76) 
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(77) 

4. Signal Analysis in a Cascade of Short Transmission Lines 

Now we analyze signal propagation in the context of the full cascade. For each sideband 

frequency Wm, define a vector of the incoming amplitudes for all sections: 

ail) (wm) 

a(w) = 

a~l) (wm) 

ai2) (wm) 

a~2)(wm) 

aiN)(wm) 

a~N)(wm) 

(78) 

As in the harmonic balance treatment for the pump, the superscript represents the section 

index. We define similar vectors b(wm) and c(wm) for the outgoing and nonlinear response 

amplitudes. Note that every other pair of entries in the nonlinear response vector will be zero 

because impedance-conversion circuits are linear. For each sideband frequency, we define 

the 2N x 2N scattering matrix 

S(w ) = ffi N 5(s) (w ) m W s=l m (79) 

where S(s) (wm) is the linear scattering matrix from equation (64) representing the linear 

propagation phase shifts for the sth section. 

Following Eq. (51), the sideband amplitudes at the internal ports are given by 

(80) 

where we have substituted the perturbative solution f.(wm) for the actual nonlinear response 

amplitudes c(wm)· Using the concatenation scheme of (56)-(54), we arrive at 

Piiis = [ 1 - cs]-l C[SFeiis + ~sl (81) 
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where 

S = EB8 '.'.:'.:ax S(w ) k--Smax k 

a(W-Smax) 

a(W-Smax+l) 

a(wsmaJ 

and similarly for f.8
• From (72), it is clear that we can write 

(82) 

(83) 

(84) 

where Ssig is constructed from the nonlinear scattering matrices for each section. Plugging 

this into Eq. (81), 

(85) 

Rearranging, 

(86) 

Equation (86) gives the incoming amplitudes at the internal ports in terms of the incom­

ing amplitudes at the external ports, the latter of which is a known parameter because it 

represents the sideband amplitudes which are excited at the ends of the transmission line 

cascade. Once the incoming amplitudes at all ports are found, the outgoing amplitudes at 

each sideband frequency may be found through 

(87) 

where hs is defined similarly to as. 
To summarize, the harmonic balance model operates as follows: First, using an iterative 

Newton-Raphson method, we solve for the pump and higher harmonic propagation. Then, 

using the weak-signal approximation and linear algebra techniques , we solve for the signal 

and sideband propagation. 
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III. GAIN AND POWER-DEPENDENT PHASE PROCESSES OBSERVED IN 

THE DTWKI AMPLIFIER 

In this chapter, we discuss experimental results concerning gain and power-dependent 

phase processes observed in the DTWKI amplifier and progress toward achieving high gain­

bandwidth. A typical experimental setup is shown in Fig. 7 from [1] . 

A. Device I 

The first sample studied was that shown in Fig. 2. For several different pump powers, 

we measured the forward signal transmission in a wide range around the optimal pump 

frequency of 11.56 GHz. (By optimal, we mean that this pump frequency gave the highest 

gain.) The gain of the signal can be computed by dividing the measured transmission am­

plitude when the pump is on by the measured transmission amplitude when the pump is off. 

The unnormalized pump-off transmission (the transmission in the absence of nonlinearity) 

for this device is shown in Fig. 8. The transmission dips/stopbands shown are centered at 

5.90 GHz, 11.83 GHz, 17.70 GHz. Note that we opted to use the second dispersion feature, 

instead of the first , as to increase the dispersion at the pump. (There is a transmission dip 

near 35 GHz that blocks the third pump harmonic.) 

To elucidate the physical mechanisms behind DTWKI operation, the results were com­

pared to the harmonic balance model described in Sec. 2B. For these simulations, we con­

sidered the first three harmonics and the first seven sidebands, kmax = Smax = 3. Note that 

these simulations do not take into account the port impedance, so the effects of impedance 

mismatch between the transmission line and the ports- and in particular, reflections- are not 

modeled. 

In comparing to the model, we first calculate, for each piece of thin-film CPW in the six­

block periodic structure, the characteristic impedance and phase velocity. These parameters 

are then adjusted to match the width and center frequency of the dispersion feature near 

the pump in the pump-off transmission. 

Additionally, to convert the physical power scale to the dimensionless power scale used in 

simulation, a conversion factor is computed; this is done by finding the pump power on the 

dimensionless scale such that, for signal frequencies near the pump, the simulated amplifier 

31 



Psat- 2W 

4dB 

300 K 

4.1K n 
------------------------------------ - ---~ -----~ 

80 mK ,/ 3 

~--,~ 

FIG. 7. An experimental setup for testing DTWKI amplifiers. The pump is produced by a low 

noise synthesizer, amplified to an appropriate level, and then filtered by a commercial combine 

filter. After passing through a splitter, the pump is attenuated at 4 K. This tone is then filtered 

through a second commercial combine filter, which provides more than 70 dB attenuation of noise 

on the pump line at the signal frequencies of interest and prevents synthesizer phase noise from 

appearing as noise at the signal frequency. The other output of the splitter is phase and amplitude 

adjusted to cancel the pump tone that passes through the paramp. Without cancellation, the 

pump power would saturate the 4 K HEMT amplifier. The signal tone is produced by another 

low-noise synthesizer or a vector network analyzer. After passing through several attenuators at 

both room temperature and the 4 K stage, the signal is coupled to the paramp input by a 20 dB 

directional coupler at the base temperature of the dilution refrigerator. A cryogenic isolator placed 

after the paramp is used to absorb noise radiated from the HEMT towards the paramp in the 

post-amplification stage. A cryogenic switch allows the HEMT to be connected to 50 n loads at 

the base temperature and 4K stages, which enables the noise measurement process. After further 

room temperature amplification, the signal is measured using the network analyzer. Note that 

losses from coaxial cables are not displayed. 
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FIG. 8. The measured pump-off transmission for the DTWKI device shown in Fig. 2. Left: The 

pump-off transmission in the frequency range 5-18 GHz. Note the stopband features centered at 

5.90 GHz, 11.83 GHz, 17.70 GHz. The decrease in unnormalized transmission at higher frequencies 

is primarily due to losses in the coaxial lines. Right: A close-up of the pump-off transmission in the 

frequency range 11.5-12 GHz, with the pump frequency and the stopband feature, which provides 

the pump dispersion, labeled. 

gain at that power matches the experimental amplifier gain at the highest applied physical 

power. The power conversion process is illustrated in Fig. 9. The amplifier gain (blue curve) 

near the pump at the highest applied pump power, -7.61 dBm (0.173 mW), was matched 

by setting the pump power in simulation to amax = 0.059 (green curve). (Above -7.61 dBm, 

the critical power is exceeded and the superconducting thin films switch to the normal state, 

at which point the pump power is dissipated and no gain is observed.) Dividing a~ax by 

the highest applied power in Watts gives the multiplicative factor for converting physical 

powers. In this case, the conversion factor was 0.0592 /0.000173=20.12. Given a physical 

power in Watts, multiplying the power by the conversion factor gives the corresponding 

a2-value. Taking the square root then gives the desired a-value. 

Analyzing the experimental gain curve in the top panel of Fig. 9, we see that the amplifier 

achieves significant gain at amax = 0.059 (-7.61 dBm) in the frequency range 8-14 GHz. 

However, there is a fine-scale variation of the gain that varies periodically with the signal 

frequency. This variation increases with pump power, and diverges around the critical power, 

at which nonlinear dissipation arises . As a result, though the average gain is approximately 
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10 dB, several peaks above 20 dB are observed. The frequency spacing of the peaks in 

the gain ripples (bottom left panel of Fig. 9), approximately 25 MHz, corresponds to the 

electrical length of the transmission line, indicating that the gain ripple is due to standing 

waves created at the ends of the line. The origin of these standing waves is two-fold. First, 

because of the dispersion, the impedance at the pump frequency is significantly different 

from the characteristic impedance. Indeed, a Bloch-type solution to the six-cell periodic 

structure reveals a pump impedance of nearly 220 n. Such an impedance mismatch between 

the taper (which has impedance of 300 n at the ends of the amplifier) and the amplifier 

creates reflections and consequently, standing waves. Second, the impedance of the tapers 

at the input and output ports of the amplifier may differ from 50 n, which is the impedance 

of the external circuit. 

The limits which impedance mismatch place on gain can be understood quantitatively. 

Consider the transmission line cascade drawn in Fig. 6. For a signal wave propagating from 

external port 2 to external port 1, let r 1 represent the fraction of power that is reflected 

at external port 1. For a wave propagating from external port 1 to external port 2, let 

r 2 represent the fraction of power that is reflected at external port 2. For simplicity, let 

r = r 1 = r 2 . Let C1 represent the forward gain -the gain the signal acquires in traveling 

from port 1 to port 2- and let Cb represent the backward gain -the gain the signal acquires 

in traveling from port 2 to port 1. Recent DTWKI experiments have demonstrated that the 

backward gain is, to excellent approximation, Cb = 1. Consider a signal wave with input 

power amplitude Ps at external port 1. It travels to external port 2, where it is reflected, 

creating a backward-traveling wave with power amplitude rc1P8 . This wave is reflected at 

external port 1, creating a forward-traveling wave with power amplitude f 2C1P8 • If 

(88) 

then the new forward-traveling wave has a greater amplitude than the input signal. After 

many oscillations, the signal amplitude will exceed the critical power; when this occurs, the 

DTWKI will switch to a resistive state, and the power in the line will be dissipated. We 

term this phenomenon self-oscillation. The greater the impedance mismatch, the greater 

the reflection coefficient r, and the lower the forward gain C 1 at which the critical power is 

exceeded. 

Note that there are two dips in the signal gain near the pump frequency, as shown in 
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the bottom right panel of Fig. 9. The dip labeled "Dip l" in the figure, occurring near 

11.8 GHz, occurs because these signal frequencies fall in the stopband in the right panel of 

Fig. 8. Any pump to signal power conversion is overcome by the attenuation in the forward­

traveling signal power. The dip labeled "Dip 2" in the figure, occurring near 11.3 GHz, occurs 

because the idler falls in the stopband; since the amount of signal gain depends critically on 

the coherent interaction of pump, signal, and idler, and since the idler is attenuated as it 

travels through the line, no signal gain is observed. As demonstrated in Fig. 4, the coupled­

mode equations do not predict these gain dips; this is due to the fact that in assuming the 

transmission line possesses intrinsic dispersion-as opposed to dispersion caused by periodic 

loadings-, we ignore transmission stopbands. 

Though we chose the power conversion factor to match the experimental and simulated 

gain near the pump, the gain is also reasonably matched at signal frequencies far from the 

pump. This indicates that the added dispersion at the pump is providing the gain-bandwidth 

enhancement predicted by the harmonic balance model with Smax = 3. 

An interesting feature arises when we examine the gain profile for lower powers, such as 

a = 0.0399 (-11 dBm). The gain profile is shown in the top plot of Fig. 10; as in the gain 

profile at amax, the simulated profile at Smax = 3 (green curve) and the experimental profile 

(blue curve) are reasonably matched over a large range of frequencies. For signal frequencies 

near 7 GHz, the amplifier is observed as operating in a deamplification mode with >15 

dB deamplification; that is, the output signal power is less than 1/ 30-th of the input signal 

power. From equations (14) and (15), it is clear that the coupled-mode equations, considering 

only pump, signal, and idler , do not predict deamplification when the linear phase mismatch 

6./3 is less than zero. Accordingly, the deamplification mode is not predicted when we run 

the gain simulation with Smax = 1, shown in red in Fig. 10. However, the Smax = 3 model 

predicts that deamplification will occur (albeit at a frequency 200-300 MHz greater than 

what is observed). How do we resolve this discrepancy? 

The resolution to this discrepancy lies in understanding the conversion of the signal w8 

into the third harmonic sideband frequency w3 = 2wp + w8 • The principal process for the 

production of w3 photons is the combination of one signal photon and two pump photons. As 

in the conversion of two pump photons to a signal and idler photon, the rate of production 

is dictated by the degree of phase mismatch between the pump, signal, and w3 tones . In 

designing early DTWKI devices, (before the harmonic balance model had been fully <level-

36 



Comparison or Signal Gain, a=.0399 

--Experiment 

15 
_ Simulation smait3 

__ Simulation smax=1 

7 8 9 10 11 12 13 14 15 16 
Signal Frequency (GHz) 

w3 Gain vs Signal Frequency, a=.0399 

- Simulation 

- -10 co 
::g, 
c 

-15 "(ii 
CD 

M 
-20 3 

-25 

-30 

-35 

-40 
7 8 9 10 11 12 13 14 15 16 

Signal Frequency (GHz) 

FIG. 10. Top: Gain profile at a = 0.0399, as measured in experiment (blue curve), computed 

in simulation at Smax = 3 (green curve), and computed in simulation at Smax = 1 (red curve). 

Bottom: Simulated gain of the w3 tone as a function of signal frequency. 

37 



Simulated Signal and m
3 

Gain at 7.0 GHz. a=.0399 

- Signal Gain 
4 - °'3 Gain 

3.5 

3 

2.5 
,!; 

"' CJ 2 

c: 

~ 

1.5 

0.5 

0o 100 200 ~ 400 500 600 700 800 900 
Linear Phase of the Signal (radians) 

Simulated Signal and m
3 

Gain at 7 .25 GHz, a.o.0399 

3.Sr;=====,,--.---,--..-----.----,---, 

3 

2.5 

2 

1.5 

0.5 

- Signal Gain 
_ m

3
Galn 

0o 100 200 300 400 500 600 700 800 900 
Linear Phase of the Signal (radians) 

Simulated Signal and m
3 

Gain at 7.5 GHz, a=.0399 

2.Sr;======;--....--....----..--...---.-----..., 

2 

1.5 

0.5 

- Signal Gain 
_ w

3
Gain 

0o 100 200 300 400 500 600 700 800 900 
linear Phase of the Signal (radians) 

FIG. 11. The simulated signal and w 3 gain vs linear phase of t he signal for signal frequencies 7.0 

GHz, 7.25 GHz, and 7.5 GHz. Note t hat t he gain is not in logarit hmic (dB) unit s. 

38 



oped) it had been assumed that for most signal frequencies, the third harmonic sideband 

frequency should fall in the wide stopband at the third harmonic and that for signal fre­

quencies for which this does not occur, there is significant phase mismatch generated by the 

added dispersion outside of the stop band; in either case, the generation of the w3 tone should 

be suppressed to negligible levels. Plotted in the bottom panel of Fig. 10 is the simulated 

gain in the w3 tone, G3 = Outpuit Po;~r at ~;quency w3
, versus the signal frequency. Note that at 

npu 1gna ower 

some frequencies near 7 GHz -frequencies for which the lower third harmonic sideband does 

not fall in the stopband- G3 is more than 6 dB. The power in the w3 output is greater than 

that in the signal output, and the w3 tone cannot be ignored. 

To better understand why the w3 tone is a significant factor for the production of signal 

gain, we plot in Fig. 11 the simulated signal and w3 gain versus the linear phase of the signal 

for signal frequencies 7.0 GHz, 7.25 GHz, and 7.5 GHz. The linear phase of the signal is the 

phase the signal would have at some point on the line in the absence of nonlinearity; it is 

linearly proportional to the distance along the line. 

The evolution of the signal and w3 amplitude can be semi-quantitatively described by 

extending the coupled-mode treatment of Section 2A to include the w3 tone, whose slowly­

varying complex amplitude we represent by A3 and whose wavenumber we represent by k3 . 

We write , for each tone, 

(89) 

We then find that 

(90) 

(91) 

where the constant of proportionality is positive and Ps and P3 are the power amplitudes 

for the signal and w3 tones, respectively. 

K1(z) = 6/31 + es(z) + ei(z) - Wp(z) 

K3(z) = 6(33 + B3(z) - es(z) - Wp(z) 

6/31 = ks + ki - 2kp 

6(33 = k3 - ks - 2kp (92) 

The first term on the right-hand side in (90) relates to the mixing of two pump photons, a 

signal photon, and an idler photon. If the term is positive, the two pump photons are being 
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converted to a signal photon and an idler photon; if it is negative, the signal photon and 

idler photon are being converted to two pump photons. The second term in (91) relates to 

the mixing of two pump photons, a signal photon, and an w3 photon. If the term is positive 

(with the inclusion of the minus sign), an w3 photon is being converted to two pump photons 

and a signal photon. If the term is negative, two pump photons and a signal photon are 

being converted to an w3 photon. Note that the term on the right-hand side of (91) carries 

the opposite sign of the second term on the right-hand side of (90). This represents that as 

the w3 power decreases, the signal power increases. K1 (z) and r;;3 ( z) are simply a measure 

of the phase mismatch between tones. Considerations of translational symmetry, owing to 

the periodic structure of the DTWKI, allow us to approximate K 1 ( z) and r;;3 ( z) as linear 

functions 

K1(z) ~ 1f(ws) + 1i(ws)z 

K3(z) ~ /~(ws) + rl(ws)z 

for some frequency-dependent coefficients 1~(ws), 1Uws), 1~(ws), and 1Hws)· 

(93) 

All three plots in Fig. 11 illustrate a sinusoidal variation of the signal and w3 tone. Such 

behavior is predicted by the cosine term with the linear-in-z argument (calculated in (93)) 

in equations (90) and (91). In the top panel, corresponding to signal frequency 7 GHz, the 

power in the w3 tone increases at the expense of the signal power throughout the transmission 

line; the power in the w3 tone seems to level off at the end of the line. This process can be 

seen using (90) and (91) by varying r;;3 (z) from 0 to ~; in such a situation, the term on the 

right-hand side of (91) is always positive, so the w3 amplitude increases. As r;;3 (z) approaches 

~'the derivative in (91) approaches zero and the growth begins to level off, as illustrated in 

the figure. An important question to ask is why the power in the lower sideband of the third 

harmonic can exceed the input signal power. If all the power in the input is converted into 

higher sideband power, from where does the extra power in the sideband originate? The 

answer to this question lies in the first term of equation (90). While the third harmonic 

sideband is taking away power from the input signal, additional signal power is generated 

by pump-to-signal conversion. The higher harmonic sideband extracts this signal power as 

well, causing the signal amplitude to always decrease and increasing the higher harmonic 

sideband power beyond the input signal power. 

In the middle panel, corresponding to the signal frequency 7.25 GHz, the power in the w3 
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tone increases at the expense of the signal power until a linear signal phase of approximately 

700 radians. Beyond 700 radians, the process is reversed: the power in the higher sideband 

tone decreases, whereas the signal power increases. This process is understood by varying 

K:3 (z) from 0 to a value between ~ and 3
2n. From (91), between 0 and ~' the derivative 

is positive and the w3 tone grows. When K:3 ( z) reaches ~, corresponding to the linear 

signal phase reaching 700 radians , the derivative of (91) reaches zero, and the w3 tone is 

at maximum amplitude. ow, as K:3 (z) grows beyond ~' the derivative of (91) is negative, 

meaning that the w3 photons begin to convert back into signal photons, as illustrated in the 

figure. 

The bottom panel, corresponding to the signal frequency 7.5 GHz , shows the same effect 

as the middle panel, with the exception that the amount of distance over which the signal 

amplitude increases is greater in the former plot. In other words, letting L be the length of 

the transmission line, K:3 ( z = L) is greater in the first situation than in the second, but in 

both situations, the value is less than 3
;. 

In summary, in some instances, we are not able to ignore the w3 tone because the tone 

can inhibit signal gain. 

In addition to analyzing the signal gain as a function of signal frequency, we can analyze 

the signal gain as a function of pump power. For the remainder of this section, all simulations 

are performed with kmax = Smax = 3. The comparison of simulation and experiment is 

shown in Fig. 12. The signal frequency is 9.5 GHz; to account for the gain ripple, we 

average the signal gain data points in the 200 MHz band centered around 9.5 GHz. The 

plot shows a reasonable match between simulation and experiment, with the only exception 

being gain at high pump powers. The decrease in gain above a = 0.05 (13 maximum 

inductance modulation) is likely due to dissipation effects related to quasiparticle generation. 

The simulation does not take into account loss mechanisms in superconductors- hence, the 

difference between the data and model output. Indeed, as described in Section 2B, we 

assume that power is conserved as waves travel through the transmission line. 

Our analysis of the data reveals that the harmonic balance model predicts with significant 

accuracy the behavior of the signal amplitude as a function of pump power and signal 

frequency. A natural question to ask is whether the model also accurately predicts the 

signal phase. From the forward transmission data, we can infer the power-dependent phase 

contribution to the total signal phase as a function of signal frequency and pump power. 
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FIG. 12. Signal gain at 9.5 GHz as a function of pump power, as measured in experiment (blue 

curve) and computed in simulation (green curve). To account for the gain ripple, we average the 

gain values in the 200 MHz band around the signal frequency. 

This is done by measuring the phase of the transmitted signal when the pump is on and 

measuring the phase of the transmission when the pump is off. Subtracting the second value 

from the first yields the power-dependent phase. From equation (14), we deduce that the 

power-dependent phase is the sum of the signal cross-phase modulation and terms arising 

from phase mismatch (i.e. the terms which contain r;,). 

The top panel of Fig. 13 illustrates reasonable agreement between the power-dependent 

phase measured at the highest pump power amax = 0.059 and that computed in simulation 

for signal frequencies 7-15 GHz. Note that the phase demonstrates a fine-scale variation with 

the frequency spacing of ripple peaks being approximately 25 MHz; this is not surprising 

as the gain profile shows the same behavior. It is almost certain that the phase ripple 

is due to the same impedance mismatch issues. The discrepancy between simulation and 

experiment near 15 GHz is likely due to the differing depths of the strong stopband feature 

located at 17.7 GHz (see Fig. 8) . In simulation, the transmission stopband has a depth 

greater than 1000 dB. (Because of numerical precision issues, a depth of 1000 dB means 
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that the transmitted amplitude is essentially zero.) Such a deep stop band is not possible in 

experiment, with the deepest observed stopbands having a depth of 60 dB; indeed, looking 

at Fig. 8, the stopband at 17.7 GHz, which is the largest of the three , has a measured depth 

of approximately 50 dB. A deeper stopband feature means greater dispersion far from the 

stopband, which in turn, translates to a discrepancy between model and experiment in the 

wavenumber k8 • This results in a discrepancy in the linear phase mismatch, which from 

(14), produces a discrepancy in the power-dependent contribution to the phase. 

Interestingly, if the signal phase given by the coupled-mode equations is approximately 

correct (which we believe it is) , the data displayed in Fig. 13 allows us to deduce whether 

phase-matching -and consequently, maximum gain- is achieved. From equation (14), if 

the power-dependent phase approaches zero as the signal frequency approaches zero, then 

the line is phase-matched. In Fig. 13, the power-dependent phase in the limit of zero 

frequency is approximately -4 radians. Thus, the line is not phase-matched. There are 

several possibilities for why the optimal pump frequency does not give phase-matched gain. 

For example, the pump that is theoretically predicted to give phase-matched gain (i.e. the 

theoretically-predicted optimal pump frequency) could be closer to the stopband than the 

experimentally-observed optimal pump frequency. In this case, the electrical impedance at 

the theoretically-predicted pump is greater than that at the experimentally-observed pump, 

which, in turn, implies a greater impedance mismatch between the t aper and the DTWKI 

device. The gain at which self-oscillation leads to power dissipation is then lower, which 

compensates for any extra gain performance that would result from phase-matching. 

The bottom panel of Fig. 13 demonstrates reasonable agreement between measurements 

and model output of power-dependent phase as the pump power is varied. The signal 

frequency is fixed at 9.5 GHz. To account for the phase ripple, we use the same technique 

that we used to account for the gain ripple. That is, we average the phase data points in the 

200 MHz band centered around 9.5 GHz. The difference between simulated power-dependent 

phase and experimental power-dependent phase is slightly larger for pump powers higher 

than a = 0.05. While the reason for this is unknown, the gain discrepancy is also larger 

for pump powers higher than a = 0.05; since the gain discrepancy is most likely caused by 

dissipation in the superconducting thin films , it is possible that the phase discrepancy is 

also due to dissipation. 
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B. Device II 

From the previous section, we observed two effects that can limit gain-bandwidth perfor­

mance: 

1. The impedance mismatch, which is likely caused by the dispersion at the pump and 

a mismatch between the taper impedance and the characteristic impedance of the 

amplification section, can result in inconsistent gain performance over a wide range 

of frequencies. For example, in Device I, large gain ripples were observed in the 

8-14 GHz range. The impedance mismatch also likely limits the gain due to self­

oscillation. Additionally, the impedance mismatch may prevent the amplifier from 

achieving broadband phase-matched gain. 

2. Significant power transfer from the signal to the third harmonic sideband at frequency 

w3 = 2wp + Ws can reduce the signal gain and bandwidth. 

We chose to attack the first issue. Our proposed solution to the problem was as follows: 

Suppose that instead of choosing every third loading in the DTWKI to be one-half of the 

length of the other two loadings, we slowly "phase in" the reduced-length loading. That is , 

at one end of the line, we allow the three loadings in the six-block periodic structure to all 

be the same length. Then, as we progress along the line, we gradually reduce the length of 

every third loading until the third loading is one-half of the length of the other two loadings 

in the six-block structure. We maintain the one-half-length third loading for a certain length 

of line; as we approach the other end of the line, we gradually increase the length of the 

third loading until, at the very end of the line, it equals the length of the first two loadings. 

Because of the phased-in loading, while significant pump dispersion exists in the center 

of the line, there is no dispersion at the ends of the line. Since there is no dispersion, 

the electrical impedance for the pump should, to excellent approximation, be equal to the 

characteristic impedance of the transmission line. The mismatch between the taper and 

the filter section should therefore be smaller. Since we vary the amount of dispersion at 

the pump, the phase-matching condition (23) cannot be met at all points along the line, 

and therefore, inefficiency in signal generation is introduced. The gain inefficiency should 

however be balanced- over even overcome- by the higher self-oscillation threshold: since the 

impedance mismatch is lower, the gain at which self-oscillation occurs is higher. 
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We fabricated and measured a device with the phased-in loading feature. The distance 

between loadings is 626 µm. The first three loadings at one end of the line have lengths 

50, 50, and 50 µm. Over the first 0.2 meters, the third 50 µm loading is slowly reduced in 

length to 25 µm. The 25 µm length is maintained over the next 0.25 meters. Over the last 

0.2 meters, the loading is gradually increased in length from 25 µm back to 50 µm. 

The pump-off transmission for this device is shown in Fig. 14. In the range shown, there 

is one stopband, which is centered at 8.86 GHz. The measured optimal pump frequency is 

8.694 GHz. Instead of using the second dispersion feature , as we did in Device I, we used 

the first dispersion feature. 
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FIG. 14. The measured pump-off transmission for the DTWKI Device II , including some loss from 

external components. Left: The pump-off transmission in the frequency range 4-14 GHz. There is 

one stopband feature , which is centered at 8.86 GHz. As in Device I, the decrease in unnormalized 

transmission at higher frequencies is likely due to coaxial losses. Right: A magnified view of 

the pump-off transmission in the frequency range 8.5-9 GHz, with the pump frequency and the 

stopband feature labeled. 

Now that the pump wavenumber is position-dependent, the analytical solutions to 

coupled-mode equations derived previously are no longer an accurate picture of what 

occurs in the transmission line. Thus, the harmonic balance model becomes crucial to 

understanding the device physics. 

We simulate using kmax = Smax = 3. We use the parameter-adjusting process introduced 

in the previous section to compare model and experiment in this device. The measured 

46 



gain at the highest applied physical power, -11 . 09 dBm ( 0. 0778 mW) , for signal frequencies 

near the pump was matched to the simulated gain at amax = 0.056, giving a power-to-a2 

conversion factor of 0.0562 /0.0000778=40.31. 

Displayed in the top panel of Fig. 15 are the experimental gain profile at amax = 0.056 

(blue curve), along with the simulated gain profiles for Smax = 3 (green curve) and Smax = 1 

(red curve). Again we observe a gain ripple that varies nearly periodically with signal 

frequency- see bottom left panel of Fig. 15. The frequency spacing between peaks in the 

gain ripple, approximately 20 MHz, corresponds to the electrical length of the transmission 

line, indicating that, as in Device I, the ripple is a result of reflections/ standing waves 

produced at the ends of the transmission line. However, the gain ripple is smaller than what 

we observe in Device I for equivalent gains; in Device I, the gain ripple for 9 dB peak gain 

has an average height of 4 dB in Device I, whereas in Device II, the gain ripple for 9 dB peak 

gain has an average height of 2 dB. (Note: When we state "9 dB peak gain," we mean that 

when the gain values are averaged to smooth the data, the peak gain in the smoothed data 

is 9 dB.) This illustrates that our phased-in loading technique has enabled more consistent 

gain performance over a wide band of frequencies. It is not unlikely that the remaining gain 

ripple/ phase mismatch is due to non-optimal fabrication of the impedance taper. Though 

the maximum gain observed is smaller in Device II (9 dB peak gain at amax = 0.056 in 

Device I vs. 12 dB peak gain at amax = 0.059 in Device II), experiments at the time of 

the writing of this thesis have shown that 15 dB gain with an average ripple height of 2 dB 

can be achieved in devices with phased-in loadings, demonstrating the higher self-oscillation 

threshold achieved by this technique. The reason for the lower gain is most likely the smaller 

pump phase length of Device II (approximately 1050 radians for Device II vs. approximately 

1400 radians for Device I). The smaller the pump phase length, the smaller the self-phase 

shift near critical power and the smaller the gain. Nevertheless, other reasons for lower gain 

are possible, including non-optimal fabrication of the CPW and connectivity issues between 

coaxial cables and the device box. 

As in Device I, two dips in gain near the pump frequency are present (bottom right panel 

of Fig. 15); one dip is located near 8.55 GHz, and the other is located near 8.8 GHz. The 

reason for these dips is the same as before: the signal or the idler falls in a stopband. 

The simulated Smax = 3 gain profile is well-matched to the experimental gain profile for 

frequencies 6-14 GHz, with the experimental gain being significantly lower than the simulated 
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FIG. 15. Top: A comparison between experiment and simulation of the gain profile at power 

amax = 0.059. The experimental curve is shown in blue, while the simulated curve for the Smax = 3 

model is shown in green and simulated curve for the Smax = 1 model is shown in red. Bottom 

Left: A sample of the gain ripple at power a m ax = .056 between 7.2 and 7.4 GHz. On average, the 

ripple has a height of 2 dB , with the ripple height reaching a maximum of 3.5 dB near 7.33 GHz. 

Bottom R ight: The two gain dips observed near the pump frequency. Dip 1 is located near 8.55 

GHz, whereas Dip 2 is near 8.8 GHz. 

gain for the 4-6 GHz range. The reason for this discrepancy is unclear. However, a more 

significant difference exists between the Smax = 1 simulation, which only considers the signal 

and idler , and the Smax = 3 simulation, which considers the third harmonic sidebands. In 

the former profile, the signal gain and the 3 dB bandwidth is considerably larger; near the 
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pump, the gain in the two simulations is the same, but as we move away from the pump, the 

signal gain from the Smax = 3 simulation drops to 2-3 dB below the gain from the Smax = 1 

simulation. 

Similar to the situation in Device I, the cause of the difference in the simulated gain 

profiles is linked to significant power conversion from the signal photon to the w3 photon; 

given that the Smax = 3 profile is well-matched to experiment, while the Smax = 1 profile 

is not, it is likely that this power conversion is actually occurring in the DTWKI. In the 

top figure of Fig. 16, the gain of the w3 tone, as computed in the harmonic balance model, 

reaches -0.8 dB near 12.5 GHz. This corresponds to a tone whose output power is 833 of 

the input signal power. Given that the signal gain is less than 5 dB near 12.5 GHz, the w3 

tone cannot be ignored. 

The bottom graphic of Fig. 16 shows how the signal and w3 amplitudes evolve as the 

tones propagate down the line. Though the coupled-mode treatment was deemed to be 

inaccurate because of the position-dependent dispersion, equations (90) and (91), derived 

from an extension of the coupled-mode equations, seem to accurately reflect the numerical 

results. As predicted, both tones vary as sinusoids. An interesting feature of Fig. 16 not 

found in Fig. 11 - the corresponding result for Device I- is that at the output, both the signal 

and the w3 amplitudes are increasing. Such behavior is a result of the signal power generated 

from pump-to-signal conversion being larger than the signal power converted through signal­

to-w3 conversion. The origin of the jump in the signal gain in the middle of the transmission 

line and the ripple in the amplitudes is unknown. 

We also compare experimental results and the harmonic balance Smax = 3 model results 

for the gain at 7.0 GHz as a function of pump power. To account for the gain ripple, we 

average the gain data for the 100 MHz band centered at this frequency. Fig. 17 shows a 

reasonable match between model output and measurements. Note that, beyond the a = 

0.042 data point, the experimental gain begins to slip below the simulated gain; this may 

be indicative of the onset of dissipation due to heating or some other effect. 

Finally, we analyze the power-dependent phase of the signal. The power-dependent phase 

versus signal frequency for the highest pump power amax = 0.056 is plotted in the top panel 

of Fig. 18, and an excellent match is obtained between simulation and experiment. As in 

Device I and the gain profile of Device II, the phase ripple, with peaks approximately 20 

MHz apart, is likely due to reflections at the ends of the line. The bottom plot of Fig. 
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Comparison of Gain vs Pump Power, Averaged About 7.0 GHz 
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FIG. 17. Signal gain at 7.0 GHz as a function of pump power, as measured in experiment (blue 

curve) and computed in simulation (green curve) . To account for the gain ripple, we average the 

gain values in the 100 MHz band centered at the signal frequency. 

18 shows the power-dependent phase at 7.0 GHz as the pump power is varied; again, a 

reasonable match is obtained between simulation and experiment. Unlike Device I, the 

differences between simulation and experiment in phase values seem to be uncorrelated with 

the differences in gain value. (Recall that in Device I, larger discrepancies between the 

model and measurement are seen in both phase and gain for powers beyond a = 0.05 and 

we conclude that the phase discrepancies may be a result of dissipation.) 
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IV. NOISE IN THE DTWKI AMPLIFIER 

In this chapter, we describe the measurements performed on Device II to determine the 

noise the device adds during signal amplificiation. The technique used is widely known in 

the amplifier community as a Y-factor measurement, which operates as follows: Consider 

connecting a 50 D resistor, also known as a calibrator, to the input of the amplifier. In our 

setup, shown in Fig. 19, the calibrator is connected through a hybrid coupler to allow for 

introduction of the pump tone. 

Filtered l 
pump "-' _.,__.....;i--~ 

3dB 
hybrid 

To HEMT 

FIG. 19. A 50 n resistor and the filtered pump from Fig. 7 are connected to the paramp by a 

hybrid coupler. The resistor acts as a noise source whose noise can be adjusted by varying the 

temperature. The isolator between the resistor and the hybrid coupler is used to avoid heating 

from reflected pump power. 

The noise power generated by the resistor over a signal bandwidth B centered at a 

frequency f is given by [12] 

(94) 

where TR is the resistor temperature. B is approximately 10 Hz for these measurements. 

Note that in the high-temperature limit, (94) reduces to the well-known Johnson-Nyquist 

relation 

and in the low-temperature limit, (94) reduces to the one-half photon quantum noise: 

The hybrid coupler attenuates the calibrator noise power 

Pi:/ = Peal A He + ~ (1 - A He) 
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where AHc=-3.5 ± 0.2 dB. (We have lumped the circulator attenuation into this value.) 

The second term represents the vacuum noise from the other input of the hybrid, used for 

connecting the filtered pump line. We can express Pi'/:/ in photon units: 

(98) 

When the pump is on, the noise power at the output of the DTWKI is 

(99) 

where GPA is the paramp gain at the center frequency of the signal band and APA is the 

added paramp noise in photon units. As discussed in the introduction, the uncertainty 

principle requires APA :;:::: ~ in the high gain limit. (More generally, APA :;:::: ~11 - G?~I-) 

The noise at the parametric amplifier output is amplified by a HEMT and additional room 

temperature amplifiers. The noise power at the output of this amplification stage is 

(100) 

where G and Aadd are the gain and added noise from these amplifiers. For convenience, we 

absorb the hf factors into G: 

(101) 

Pon is measured directly in our experimental setup . 

When the pump is off, the noise power at the output of the amplification stage is 

Poff = G' B[Acal + Aadd] (102) 

Poff is also measured directly in our setup. 

G' BGPA can be determined by changing the temperature of the 50 ohm resistor, thereby 

varying Acal· Dividing Pon and Poff by G' BGPA gives 

Pon Aadd 
G'BGPA =APA+ Acal+ G'BGPA (103) 

Poff Aadd ( ) 
G'BGPA =Acal+ G'BGPA 104 

For what follows, we will refer to the term on the left-hand side of equations (103)-(104) as 

measured noise and Acal as the calibrator noise. 
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To determine the amplifier noise, we plot the measured noise vs. the calibrated noise for 

the pump-on and pump-off data. We then extrapolate the two lines to zero calibrator noise, 

Acal = 0. Subtracting the pump-off extrapolated value from the pump-on value yields APA · 

We measured the amplifier noise in two situations: (1) the pump is applied in a continuous 

mode, and (2) the pump is applied in a pulsed mode. When we installed the paramp in the 

noise measurement channel, we found that the optimal pump frequency had shifted slightly 

from the previous value of 8.694 GHz and was now situated at 8.689 GHz. We measured 

the noise at frequency f=8.314 GHz, at which the gain was GpA=9.5 dB. 

In the continuous mode noise measurement, the resistor temperature was set to the values 

0.25 K, 0.5 K, 1 K, 1.5 K, 2.0 K, 2.5 K, 3 K, 3.5 K, and 4.0 K. The pump was turned on, 

and the noise at the output of the amplification stage (the stage which includes the HEMT 

and room temperature amplifiers) was measured at each temperature. The pump was then 

turned off and the noise was measured a second time. The results are shown in the top panel 

of Fig. 20, with the calibrator noise plotted against the measured noise. Extrapolating the 

pump-on and pump-off data to Acal = 0 through a linear fit gives APA,cont + c'~aGPA =4.8 

photons and c'~aGPA =2. 7 photons. Subtracting the second equation from the first and 

propagating the uncertainty from the hybrid coupler attenuation yields an amplifier noise 

of APA,cont=2.l±O.l photons. 

In the pulsed mode noise measurement, the resistor temperature was set to 0.2 K, 0.5 K, 

1 K, 1.5 K, 2.0 K, 2.5 K, 3 K, 3.5 K, and 4.0 K. The pump was turned on for 100 ms every 

2 seconds (i.e. a pulsed pump), and the noise at the output of the amplification stage was 

measured at each temperature. The pump was then turned off and the noise was measured 

again. The results are shown in the bottom panel of Fig. 20. Extrapolating the pump-on 

and pump-off data to Acal = 0 through a linear fit gives APA,pulse + c'~aGPA - 3.9 photons 

and c'~G:A -2. 7 photons, yielding an amplifier noise of APA,pulse=l.2±0.l photons. Thus, 

the pulsed mode noise performance is nearly a photon better than that of the continuous 

mode. 

To study why the pulsed pump and continuous pump modes yield different amplifier 

noise values, we installed germanium thermometers on our devices and monitored the device 

temperature as the pump power, and consequently, the signal gain, was varied. Fig. 21, 

shows the result. The gain values shown are an average of the gain data for frequencies 

between 8.0 and 8.3 GHz. As the gain is increased from 0 to 16 dB, t he device temperature 
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FIG. 20. Top: The measured noise quanta in the continuous pump mode at various tempera­
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mode. The pump on data points are represented in blue, and the pump off data in green. The 
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Device Temperature vs Signal Gain 
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FIG. 21. The device temperature as a function of the signal gain as the pump power is increased 

and then decreased. The lower branch of the data represents increasing pump power, while the 

upper branch of the data represents decreasing pump power. Signal gain values are calculated by 

averaging data points between frequencies 8.0 and 8.3 GHz. 

increases an order of magnitude, from 100 mK to 1000 mK. As the gain is then decreased 

from 16 dB to 0 dB , the device temperature decreases; however, the branch of decreasing­

pump-power temperature is above the branch of increasing-pump-power temperature, with 

a difference of nearly 100 mK at small gain values. Both the ten-fold increase in device 

temperature and the temperature difference between decreasing pump power and increasing 

pump power sweeps are indicative of heating of the device. Thus, when the continuous pump 

is applied, the chip heats up, and thermal noise is generated, resulting in increased amplifier 

noise. 

To reduce heating, we have recently begun fabricating the DTWKI devices with a gold 

border. In the previous generation of amplifiers, which includes Device II, heat is transported 

away from the device through the silicon substrate and aluminum wire bonds. Aluminum 

is superconducting at low temperatures, and consequently, it has low thermal conductivity 
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(i.e. it is not a good medium for heat conduction). Using the gold border , along with gold 

wirebonds between the chip and device housing, should enable better thermal management 

of the device and reduce noise. 

58 



V. A PROPOSAL FOR A NEW DTWKI DESIGN AND LOOKING FORWARD 

Based on the data presented in Chapters 3 and 4, I propose a new design for the DTWKI 

with the following characteristics: 

• As in Device II, we will set the center-to-center distance between loadings to 626 

µm, so that the pump frequency is near 8.7 GHz. However, now we will triple the 

length of the device, bringing the total length close to two meters. The phase-in of 

the third loading will occur over 0.2 meters on each end of the filter section, while the 

remaining 1.6 meters in the middle of the device will maintain the third loading at 

one-half of the length of the first two loadings. To achieve high gain ( > 15 dB) with a 

small line length, the pump power must also be high. In turn, to get significant gain­

bandwidth enhancement through phase-matching, the dispersion at the pump must be 

high, meaning that we must place the pump very close to the neighboring t ransmission 

stopband. As we approach the stopband, the dispersion-vs-frequency curve increases 

rapidly; this occurrence is illustrated in Fig. 3. Thus, there is a limited range for 

finding the optimal pump frequency. If we use a longer line, a lower pump power can 

be used to achieve high gain, meaning that not as much dispersion is necessary for 

phase-matching and that there is a larger range for finding the optimal pump. The 

lower pump power also means reduced on-chip heating and reduced thermal noise. 

• Instead of using loadings of length 50 µm, 50 µm, and 25 µmin the intermediate 1.6 

meters, we will use loadings of length 100 µm, 100 µm, and 50 µm. At each end of 

the line, the first three loadings are all 100 µm in length. As we approach the middle 

of the line, every third loading is gradually reduced in length from 100 µm to 50 µm; 

this reduction in length, as mentioned before, occurs over 0.2 meters at each end of 

the line. By increasing the length of the loading, we make the third stopband feature 

wider, and therefore, the w3 tone can be ignored for a larger range of signal frequencies. 

This results in higher gain and higher bandwidth. 

• Currently, the NbTiN thin films are grown on a silicon substrate. We will substitute 

sapphire for silicon. At low temperatures, sapphire has a higher thermal conductivity 

than silicon, meaning that sapphire will better limit on-chip heating. The sapphire 

will complement the gold-plating discussed in the previous chapter. 
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Estimates based on the harmonic balance model and recent experiments indicate that 

such an amplifier should operate with an added noise of at most 1 photon and should 

readily achieve more than 20 dB gain with a 3 dB bandwidth of more than 2 GHz on each 

side of the pump. 

DTWKI amplifier development is progressing on all fronts. Recently, we have discovered 

that the signal fluctuations are indeed highly correlated with idler fluctuations, though prob­

ably not at the level of a two-mode-squeezed state. Our colleagues Kent Irwin, Jiansong 

Gao, Dave Pappas, and Mike Vissers at NIST Boulder have demonstrated 8 dB gain in 

DTWKI amplifiers using titanium nitride thin films . TiN exhibits a maximum inductance 

nonlinearity comparable to that found in NbTiN; however, the pump power at which the 

maximum nonlinearity is achieved is two orders of magnitude lower in TiN than in NbTiN. 

Previously, the Caltech/ JPL development group had not been able to demonstrate gain in 

DTWKI devices using TiN. The exciting result at NIST could lead not only to a diversi­

fication of the types of superconducting material used, but also to a further reduction of 

noise. 

Our group is also developing amplifiers that are not based on the nonlinear kinetic in­

ductance of superconducting thin film nitrides. One disadvantage of thin films is that they 

possess a low inductance nonlinearity compared to Josephson junctions, in which nonlineari­

ties of 20-253 can be achieved. However, parametric amplifiers based on Josephson junctions 

have not demonstrated a dynamic range as large as that for amplifiers based on thin films. 

Is there a material for which we can achieve inductance nonlinearities higher than thin films 

while still achieving dynamic range larger than that for Josephson parametric amplifiers? 

Experiments performed by graduate student Aditya Kher show that NbTiN nanowires might 

do the trick. He is currently developing resonant paramps based on nanowires. A traveling­

wave amplifier based on a low-pass LC ladder network, in which the lumped inductances 

are replaced by nanowires, is also being designed. 
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VI. APPENDIX 

A. Computation of Jacobian for Harmonic Balance Model 

Here, we compute the Jacobian of size 4Nkmax x 4Nkmax, 

- ac 
J = ai. (105) 

It is clear that the problem of computing the Jacobian reduces to computing, for each 

transmission line section the four derivatives 8fi(nwp) 8fi(nwp) 8f 2(nwp) and 8£2(nwp) for any 
' 8a1(rwp)' 8a2(rwp)' 8a1(rwp)' 8a1(rwp) 

r, -kmax ::; r ::; kmax, and any n, 1 ::; n ::; kmax· These derivatives are easily computed 

using (32) and (33): 

- 2(1 - 61,r)a1(lwp)a2(kwp)sinc((n - k)kpL) 

+ a2( kwp)a2( lwp)sinc(rkpL)] 

+ LOn,k+2r[2(1- 6k,r)a1(kwp)a1(rwp)sinc(nkpL) 
k 

- 2a1(rwp)a2(kwp)sinc((n - k)kpL)] 

+ On,3r(a1(rwp))2sinc(nkpL)] 

+ 2(1 - 61 ,r)a1(kwp)a2(lwp)sinc(kkpL) 

- 2(1 - ok,r)(l - 6z,r)a2(kwp)a2(lwp)] 

+ L On,k+2r[2a1 (kwp)a2(rwp)sinc(kkpL) 
k 

- 2(1 - ok,r )a2(kwp)a2(rwp)] 

- On,3r ( a2 ( rwp) )2] 
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- 2(1 - 61 ,r)a1(lwp)a2(kwp)sinc(kkpL) 

+ a2(kwp)a2(lwp)sinc((n - r)kpL)] 

+ L 6n,k+2r[2(1 - 6k,r)a1(kwp)a1(rwp) 
k 

- 2a1(rwp)a2(kwp)sinc(kkpL)] 

+ 6n,3r(a1(rwp))2] 

+ 2(1 - 61 ,r)a1(kwp)a2(lwp)sinc((n - k)kpL) 

- (1- 6k ,r)(l - 61,r)a2(kwp)a2(lwp)sinc(nkpL)] 

+ L 6n,k+2r[2a1(kwp)a2(rwp)sinc((n - k)kpL) 
k 

- 2(1 - 61,r)a2(kwp)a2(rwp)sinc(nkpL)] 

- 6n,3r ( a2 ( rwp) )2sinc( nkpL)] 

(108) 

(109) 

The Jacobian can then be constructed by evaluating these derivatives at the value of a found 

in step 3 or step 6 of the iterative process and entering them at the appropriate locations in 

a 4Nkmax x 4Nkmax matrix, the appropriate locations being determined by the manner in 

which we ordered the entries of ~ and a. 
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