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Abstract 

Coupled oscillators are used to model systems such as arrays of lasers or detectors whose 
response is combined to increase signal strength. I investigated a systems of two coupled oscil­
lators using a model incorporating features such as reactive (non-dissipative) force couplings 
and amplitude-dependent frequencies . I employed careful numerical simulations to build up 
intuition about the various behaviors of the model and then studied the model analytically to 
determine regions of synchronization, a phenomenon in which many oscillators lock their rel­
ative phase or frequency to a common equilibrium value. The result of this investigation can 
be used to motivate the choice of parameter values (such as spread of intrinsic frequencies or 
coupling strength) of small systems of nanomechanical oscillators currently being designed by 
Matt Matheny in the Roukes laboratory at Caltech. 
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1 Introduction 

Numerous physical systems can be modeled by interacting oscillators [6]. An exciting quality of 
such systems is their ability to oscillate collectively at a common frequency or phase even when 
the individual oscillators have different intrinsic frequencies or initial phases. This phenomenon is 
known as synchronization. Small groups of oscillators are directly applicable to synchronizing sys­
tems, such as lasers that are coupled to increase power output [4], and nanomechanical oscillators, 
where synchronization to a common frequency can eliminate the inevitable frequency differences 
arising from imperfections in fabrication [2]. Understanding small numbers of coupled oscillators 
can be useful in the development of "renormalization group" methods to analyze very large systems 
(such as the synchronized flashing of fireflies [1]). 

The general solution to a system of nonlinear oscillators can be very complicated. However, 
specific solutions can be obtained by taking the limit as the number of oscillators gets either very 
large or very small and then simplifying various aspects, such as assuming that only phase matters 
or assuming some symmetry, such as a coupling between oscillators that is all-to-all [5]. Previous 
work in this field has focused on the continuum limit of a very large number of oscillators and the 
limit of very small number of oscillators. In this project I investigate a discrete systems of two 
nonlinear oscillators. 

This paper is organized as follows. After an introduction the devices motivating the body of 
work presented in this paper, I will derive the terms used in the equations of motion of the model 
from the physical properties of the device. I then explore the behavior of the equations by finding 
numerical solutions using explicit iterative methods. The observed behavior is used to develop 
an intuition then used to approach the model analytically, using methods typical of dynamical 
equations. 

2 Devices 

Devices are currently being designed, fabricated and developed by Matt Matheny in Michael 
Roukes 's group at Caltech. There are two different devices currently being worked on. 

The first type of device is single beam on a chip made of a thin piezoelectric material sand­
wiched between a p-doped and n-doped layer of GaAs. The piezoelectric material is off-center, so 
when a voltage is applied to the piezoelectric layer causing it to expand, it strains the beam and 
causing it to buckle. The beam is placed on one end of a cavity and probed optically with a laser. 
As the beam buckles, this changes the cavity length and modulates the power in the cavity, which 
is then detected by shining the laser on a photodiode. The signal from the photodiode is then am­
plified and phase-shifted so that is satisfies the Barkhausen criterion for oscillation, and then used 
to drive the piezoelectric, completing the loop. 

The piezoelectric beam is a very clean system. It can be probed optically and achieves a strong 
signal and a very good signal to noise ratio. The primary disadvantage of this system is that 
multiplexing is not possible. Multiple oscillating piezoelectric beams on a single chip cannot be 
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probed by the same laser due to the extreme proximity of chip features compared to the waist of 
the beam. As the eventual goal of this device is the synchronization of a large number of oscillating 
beams on a single chip, this optical setup is less useful. The second type of device being developed 

800E-013 

~ 600E-013 

J 400E-013 

200€-0 13 

---·---·..._.J.-
OOOE.000 

' I 

II 

E~ ~•,0•(2•NJll)"(W!! • 'tH•C:}"'l • w .,. 
V.M ~E 
122215E SaJ5SJE·I 
124Cl!IE: •50Xl9 
, .... 13JQ811 

2001SeE 14Z581E· 1 ....... 

12 41 1242 12 43 1244 1245 1246 1247 

Frequency (MHz) 

Figure 1: Left: Two beams in the magnetomotive oscillating device. Right: Example closed loop 
frequency spectrum. 

in the Roukes lab is a magnetomotive oscillator, pictured in Fig. 1. In this design a chip containing 
many fabricated beams is placed in the magnetic field of a strong permanent magnet. AC current 
is fl.owed through the beams, causing them to experience a Lorentz force and buckle. The reflected 
signal of the AC current driving the beams is used to probe the resonators. It is amplified and 
phase shifted to satisfied the Barkhausen criterion and then fed back into the resonators. While this 
method does not yield as strong a signal or good signal to noise ratio as the optical design, it can be 
scaled to drive as many oscillating beams on the same chip as the equipment will allow. The beams 
may then be coupled by biasing the voltage difference of the beams them to establish an electric 
field between them. This electric field pulls the beams together, capacitively coupling them. 

3 Theory 

3.1 Equations of Motion 

In this section I will build up the equations of motion used to describe coupled NEM beams. Begin 
with a harmonic oscillator, which has the equation of motion 

(3.1.1) 

Here x(t) is the displacement (in the case of a beam it is in the fl.ex displacement in the the funda­
mental mode), and co is an intrinsic frequency that depends on the the size of the cantilever and it's 
material properties. For NEMS devices the signal is quite small due to the scale of the devices. In 
order to increase the signal many devices can be fabricated and coupled together. Because of the 
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dependence of intrinsic frequency on the size and makeup of each device, intrinsic frequency can 
vary greatly during actual fabrication of multiple oscillators. It is then important that the devices 
be synchronized so that they oscillate at a single frequency. I will consider the case of two devices 
reactively coupled. This is done by giving one beam some bias voltage and holding the potential 
of the other beam to ground. This establishes an electric field between the two beams which pulls 
them together. Including the coupling term and writing equations for two coupled oscillators, the 
equations of motion are now 

.Xi + roix1 - B(x1 - x2) = 0, 

.X2 +ro~x2 -B(x2 -xi)= 0, (3 .1.2) 

where B is proportional to the strength of the coupling force, and 001 and Ulz are the intrinsic 
frequencies of the separate oscillators. Because the coupling term is proportional to displacement 
it is invariant under time reversal, and so we call it reactive. 

For a spring that obeys Hook's law, stretching or compressing spring with spring constant k 

and rest length l to new length l' results in a restoring force of magnitude F = kll - L'I· As a toy 
model for a beam, consider two springs of rest length l, one with endpoints at (- l ,O) and (0,0) 
and the other with endpoints at ( l , 0) and ( 0, 0). If the springs are connected at ( 0, 0) and then this 
connected point is displaced to ( 0 , y), then the restoring force will be directed toward ( 0, 0) and 
have magnitude 

F = 2kl (J~~ + 1-1) 4-+t ';;' ~y3 
l /2 + 1 (3.1.3) 

This restoring force that has a cubic dependence on displacement which I will refer to as a Duffing 
term. It is a characteristic feature of the Duffing equation, which describes a spring that stiffens as 
it is stretched, 

.X1 + rof xi - B(xi - x2) +ax} = 0, 

.X2 + ro~x2 - B(x2 - xi)+ a2z = 0. (3.1.4) 

We will see in the next section that this term causes the intrinsic frequency of the beam to shift 
as the oscillations grow in amplitude. With the addition of this term the differential equations of 
motion are nonlinear. Finally, a Van der Pol term is added, 

.X1 + roix1 - B(x1 - x2) + axi + v(xi - 1 )i1 = 0 , 

.X2 +ro~x2 - B(x2 - xi) +ax~ + v(x~ - l)i2 = 0. (3.1.5) 

This term that drives the system towards a limit cycle with Xn near unity. It is comprised of negative 
linear damping, which models the energy injected into the system through a feedback loop, and 
positive nonlinear damping, which models the loses due to friction and other sources. 
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3.2 Perturbation Theory 

Above I assume that a and v are constant for all oscillators, and that the intrinsic frequency COn 

would be the feature that varied the most across oscillators. This assumption is valid because in the 
system we are trying to model a and v are observed to be small, thus any variation is dominated by 
the variations in COn· 

In this section we will try to solve (3.1.5) by perturbing away from a harmonic oscillator and 
then eliminating what are known as "secular" terms. The objective will be to remove the fast, 
"nearly harmonic" oscillations and focus on the slower nonlinear effects. 

If the frequency is expressed as deviations around some center frequency co~ = co2 (1 +On), 
then the center frequency co may be removed by choosing a new timescale t ---+ t / co, and scaling 
the parameters a ---+ aco2 , v ---+ vco and B ---+ Bco2 . It now is convenient to only write equations for 
a single fiducial oscillator we are interested in, which I will call x(t), and refer to the oscillator it 
is coupled to as i(t). I will use the subscripts to refer to a term in a series expansion of x(t). The 
equation of motion now is written 

x+ (1+8)x - B(x - i) + ax3 +v(x2 - l)i = 0. (3.2.1) 

If all the parameters 8, a, v and Bare much smaller than unity we can perturb away from the har­
monic oscillator solution with a two timescale approximation. These parameters can be expressed 
as being small perturbations by scaling them by a small factor E « 1, 

x+ (1 +EO)x - EB(x - i) +Eax3 +Ev(x2 - l)i = 0. (3.2.2) 

For E = 0 this is a simple harmonic oscillator with frequency 1. The proposed solution to this 
equation is an expansion of x(t) in orders of E. We will only carry out the calculation to first order 
in E. Additionally, we will modulate the harmonic oscillator solution over a much slower time scale 
with a complex amplitude A(T), where T =Et, so that x(t) = A(T)eit + A(T)e-ir . The complex 
conjugate is used to ensure that x(t) is real, as it is a measurable physical quantity. We will treat T as 
an independent variable from t and express A(Et) = 2JA/dt = (2JA/2JT) (2JT / 2Jt) = E2JA / 2JT =EA' (T). 
The derivatives of the proposed solution are, 

i(t) = iA(T)ei1 - iA(T)e-it + E(A' (T)ei1 +A' (T)e-i1
) + Ei1 (t) + O(E2) , 

x(t) = - A(T)eit - A(T)e- it +2iE(A'(T)eir - A'(T)e- i1 ) +Ei1(t)+0(E2). 

These are substituted into (3.2.2). We require that all orders of E must vanish separately. The 
zeroth order equation is that of the harmonic oscillator and is automatically satisfied by the e±it 
term of x(t). The first order equation is 
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x1 +x1 +2i(A'e;1 - A'e- i1) +8(Ae;1 - Ae- i1)-B(Ae;1 +Ae- it - Ae;1 +Ae- ;1) 

+a(A3e3;1+3IAl2Ae;1+3IAl2Ae-i1A3e-3i1) 

+iv(A3e3;1 + (IAl2 - l )Ae;r - (IAl2 - l)Ae -;1 -A3e-3it) = 0. (3.2.3) 

We can identify this equation as the harmonic oscillator equation with periodic forcing terms. 
The e±ir term is known as a secular1 term. This term is a resonant forcing and will cause the 
amplitude of the corrective term x1 (t) to grow in time. In order for the stated perturbation theory 
to be faithful to the original assumptions, x1 (t) may not grow to be large, so the secular term must 
be eliminated. We use the free parameter introduced by the two timescale expansion to set the 
coefficients of e±it to zero: The e±3it does not create a solution that grows in amplitude with time, 
so there is no need to remove it. Setting the coefficients of the secular term equal to zero, we have 

2iA' + 8A - B(A - A)+ 3alAl2A + iv(IAl2 - l)A = 0. (3.2.4) 

This is a first order dynamical equation. We end our perturbation theory here, as this provides 
the rest of the information of the zeroth order term, and can be used to calculate the first order 
correction. Define new variables z(vT / 2) = A(T) , co= 8/ v , a= - 3a/ v , ~ = B/ v. I will also 
return to using z to mean a time derivative of z, now with respect to the rescaled time vT / 2. The 
equations for both oscillators written in their entirety are 

z1 = i(co1 - alzil 2)z1 + (1- lzil 2)z1 - i~(z 1 - z2), 

z2 = i(co2 - al z21 2)z2 + ( l - lz21 2)z2 - i~(z2 -z1). (3.2.5) 

This is a first order system of dynamical equations, which is easy to solve for a given set of 
{z 1(t) ,z2(t)} using a Runge-Kutta method to iterate from {z1(0) ,z2(0)} with t / Af intermediate 
steps. Through this perturbation theory we have removed the fast time scale of the harmonic 
oscillator and left only the slower time scale nonlinear contribution. With the fast time dependence 
removed we are free to use larger time steps Af with the Runge-Kutta. 

3.3 Numerical Simulation 

I performed numerical implicit integration on (3.2.5) using a fourth order Runge Kutta iterative 
method (RK4) implemented in Python. With this as a base I constructed a library of functions to 

1 I had not previously seen the word "secular" used in this context. I had previously always thought it to refer to 
something of state or to mean"worldly" . It seems that this technical use of the world comes from astronomy, where it 
is used to mean slow changes in the motion of celestial objects. The etymology of the word is derived from the latin 
word saecularis meaning "of the age". This was extended to long time phenomena, such as celestial mechanics, literally 
occurring over "ages". In the context I am using it secular refers to the long timescale introduced to allow for the removal 
of secular terms from the perturbation theory. 
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Figure 2: Survey of parameter space. 

adiabatically sweep parameters (e.g. Fig. 3) and perform searches of parameter space (e.g. Fig. 
2). From performing many numerical calculations we can make several observations that will be 
essential to describing this system analytically. The first is that there are three classes of behavior: 

Phase Locked Synchronization Both oscillators advance in time at a single common frequency. 
The relative phase between the oscillators is constant. 

Unlocked Synchronization The relative phase between the two oscillators is not constant, but 
phase slips do not occur. The phase of one oscillator never advances more than 27t ahead of 
the other. 

No Synchronization Each oscillator advances in time at it's own frequency, affected by the other 
oscillator a negligible amount. The relative phase between the oscillators will increase in 
time without bound. 
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The second is that for both the locked and unlocked synchronized state there are solutions where 
the phase difference <j> of the two oscillators is very close to zero, which I will refer to as "in­
phase". There are also solutions where the relative phase <j> is closer to n, which I will refer to as 
"anti-phase". 

How these three classes occupy parameter space can be seen in Fig. 2. At each (~ , a) pair 
perform RK4 for 15 random initial conditions. The hope here is to explore the space of initial 
conditions so that at least one of the 15 points is in each of the different basins of attraction for 
the different classes of behavior. Then the result of the RK is checked to determine what class of 
behavior occured. If none phase lock color that point white (no synchronization). If all 15 phase 
lock with 0 < <j> < n/2 the point is colored blue (a single phase locked state exists here). If all 15 
phase lock but for some n/ 2 < <j> < 7t and and 0 < <j> < n/ 2 for others the point is colored red (two 
phase locked states exist here). If some, but not all , of the 15 RK phase lock color then that pixel 
is colored green (both a phase locked and unlocked synchronized state exist here). 

This search of parameter space can give us a good idea of what behavior we expect from the 
oscillators. We first see that exactly what we expect, that they synchronize for large values of the 
coupling ~' and that the nonlinearity a plays some role as well. 

The goal in the later sections will be to calculate where the boundary of these regions will occur, 
and at the same time to understand what causes them. A more detailed view of the boundaries is in 
Fig. 3. This figure shows very slow sweeps of parameter~. and where transitions occur for a given 
(~ , a) this is plotted as a point on the left plot. 

The effect of synchronization on the frequency spectrum of the oscillators is shown in Fig. 4. 
Here the intrinsic frequency roo of one is held fixed as the other ro, is swept from - 3 to 5. Between 
about - 1 and 3 the oscillators have phase locked and exhibit a single common frequency. At ro, 
outside this region the spectrum of each oscillator is more diverse as the frequencies of z1 and z2 
beat. 

I also implemented a second order stochastic Runge Kutta (SRK2) in Python for numerical 
simulations including white noise[3]. I've included a benchmark test of the noise I made to ensure 
it was a proper stochastic Runge Kutta method, Fig. 5. The sum of the absolute phase of the two 
oscillators experiences no forces, so in the presence of noise it should undergo a random walk. The 
expected value of a random walk is proportional to VT, so ( (81 +82)2) should increase linearly 
in time. I approximate the expected value by averaging 100 SRK runs. This figure shows that 
for constant time and different number of iterative steps the noise stays constant, proving that this 
implementation of SRK is correct. 

In Fig. 6 an example of the effect of noise on the solutions. This is a sweep of coupling strength 
like in Fig. 3, but as the amount of noise increases we can see that the jump from the anti-phase 
unlocked state to the in-phase locked state occurs for stronger couplings . 
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Figure 3: Left: Boundary data obtained from slow sweeps of p for set a and Lico = 1. The blue 
curve (circles) corresponds to the boundary of the in-phase locked solution. The red curve (squares) 
corresponds to the boundary of the anti-phase locked solution. The diamonds are the boundary 
of the anti-phase unlocked solution, and the triangles are the boundary to the in phase locked 
synchronized state. The sweeps that generated this data is pictured on the right. Right: In these p 
is slowly swept from 2 to 0 for set a and ~co. Here the excursion of lz1 + z2 I /2 is plotted. When 
the oscillators are phase locked this should be a single line. When unlocked or not synchronized 
the excursion will increase, because the amplitudes and phases are changing in time. We can see 
that there are two phase locked solutions, the in-phase solution where lz1 + z2l / 2 is near 1, and the 
anti-phase solution, where lz 1 + z2 I / 2 is near 0. As P is swept from 2 to 0 we see that the anti-phase 
solution becomes unlocked (shaded red), and then jumps to the in-phase solution. Finally as p is 
swept lower the in-phase solution unlocks (blue) and synchronization is lost (grey). 

class stochastic_runge _kutta: 
def __ init__(self, data, f, time=O, dt=0.01): 

self.data= array(data) 
self.time= float(time) 
self.dt = float(dt) 
self . f f 
self .D= 0 

def step(self , dt , data): 
10 " "" Will take a single SRK2 step of dt from point data'""' 
11 psi= dot(sqrt(2*self .D* dt),random.normal(size=(2 , len(data))) ) 
12 kl= self.f(self.time , data) 
13 k2 = s e If . f ( s e If . time+ d t , data+ d t *kl+ psi [ 0] + I j * psi [ l]) 
14 return dat a + (dt/2) * (kl +k2 )+p si [O]+lj * psi [I] 
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Figure 4: Fourier Transform of oscillators as the intrinsic frequency of one is swept. Red corre­
sponds to higher intensity. 

3.4 Analysis 

3.4.1 Amplitude Death 

Zero amplitude in both oscillators (called amplitude death) is a fixed point, but it is unstable. 
Linearizing (3.2.5) around Jz1 J = Jz2J = 0 causes all the nonlinear terms to drop out, leaving 

(~ I) = (1 + i ( ~I - ~) 
z2 1~ 

(3.4.1) 

By taking the Trace of the Jacobian we find that 

~ ~ - T (l+i(ro1 - ~) 
AJ +f\,2 - r i~ (3.4.2) 

Taking the real part of this equation we see that Re('A1 + 'A2 ) = 2, so at least one eigenvalue will 
always have a positive real component, causing this fixed point to be unstable. This is a due to the 
reactive nature of the coupling. If the coupling had a dissipative component then regimes would 
exist when amplitude death is a stable solution to the model[4]. From this point on I will only 
consider solutions with non-zero amplitudes. 
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3.4.2 Amplitude and Phase 

If in (3.2.5) z(t) is written as a complex number with amplitude and phase, Zn(t ) = rn(t)eien (t), 
then these equations can be divided through by the complex phase eien of each oscillator and then 
separated into real and imaginary components, 

ft + i81 r1 = i( 001 - arf )ri + ( 1 - rf )r1 - i~(r1 - r2ei<P), 

f2 + i82r2 = i( 002 - ar~) r2 + ( 1 - r~) r2 - i~(rz - r1 e- i<P ) . 

We get the amplitude and phase dynamical equations, 

h = (1 - rf)r1 - ~r2sin<j> , 

f2 = (1 - r~)r2 + ~r1 sin<j> , 

<j> = ~oo - (r~ - rf) (a +~ cos<j>) . 
r1r2 

(3.4.3) 

(3.4.4) 

(3.4.5) 

(3.4.6) 

where <j> = <J>2 - <j> 1, and ~oo = mz - 001. We have gone from four equations (two real and two 
imaginary), to three. This is because dynamical equations for the phase of each oscillator, 81 and 
82 have been combined into a single dynamical equation for relative phase, <j>. We are allowed to 
do this because in this model the dynamics of one oscillator relative to another cannot depend on 
the overall phase. 

These equations have many advantages. The fixed points of (3.4.6) describe a synchronized 
state that I will refer to as phase locked. From numerical simulations it is evident that when the 
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Figure 6: An example of noise affecting the unlocked synchronized state. Blue is noise D = 10- 3 , 

green is 10- 4 and red is 10-5 . The coupling ~ is swept from high to low. 

oscillators are phase locked it must be true that h = f-2 = 0. I will begin by examining these fixed 
points. 

3.4.3 Symmetries 

There are some symmetries in (3.4.4)-(3.4.6). They are useful to simplify the following calculations 
by reducing the space we must search for stable solutions. The most obvious is that they are 
invariant under <!> --+ <!> + 2n. There are three other invariant transformations that can be performed 
on these equations 

3.4.4 Fixed Points 

<!> --+ - <!> , r1 +-t r2 and Lico --+ - Lico. 

<!> --+ - <!> , a --+ -a, ~ --+ - ~and Lico --+ - Lico . 

<!> --+ n+<!> and~--+-~. 

(3.4.7) 

(3.4.8) 

(3.4.9) 

By adding together (3.4.4) and (3.4.5) we find that all other fixed points must lie on the curve (see 
Fig. 7) 

(3.4.10) 

From this we see that in a phase Jocked equilibrium state the amplitude of one oscillator must 
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Figure 7: Curve of positive solutions to (3.4.10). The solid curve is r1 = SJ , rz = s2 (3.4.11), and 
the dotted curve is TJ = u J, r2 = u2 (3.4.12) 

be greater than one, and the other less than one. We can break this curve into two parts, by parame­
terizing TJ and r2 with s 2 = 8~2 sin2 $. The two parts are {r1 =SJ' r2 = s2} and {rJ = UJ ' rz = u2}, 
where UJ , u2 ,s1 , s2 are functions of parameter Sand defined as 

SJ= ~V3+~-sign(s)J2+s2 -2~, 
s2 = ~J3 + ~ + sign(s)J2+s2 -2~, 

UJ = ~J3-~- sign(s)J2+s2+2~, 
u2 = ~J3 - ~+sign(s)V2+s2 +2~. 

(3.4.11) 

(3.4.12) 

These are both plotted in (7). The solid curve is SJ and s2 , and it sweeps from TJ = J (3 + J3) / 4, r2 = 

V(3-J3) / 4 at S = - 1 to TJ = V(3 - J3) / 4, r2 = V(3+J3) / 4 at s = 1, passing through 
TJ = 1, r2 = 1 at s = 0. The dotted curve is u J and u2 and has the same endpoints, although it 
jumps discontinuously from TJ = 1, r2 = 0 to rJ = 0, rz = 1 at S = 0. 

The fixed point of (3.4.6) is written as, 

~co= (r~ - rT) (a+ ~cos<!>). 
TJT2 

(3.4.13) 
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This is plotted in Fig. 8. 
From this plot of fixed points we can immediately see two things. The first is that there are no 

fixed points for 1 < ~2 = 8~2 sin2 
<J>. For all ~ > JT78 the curves of fixed points split into two, one 

centered at <1> = 0 and the other centered at <1> = n. This leads us to expect two types of phase locked 
solutions, one where the two oscillators are "in-phase", and one where the relative phase of the two 
oscillators is <1> "'n, which I shall call "anti-phase". This corresponds to what we see numerically, 
where the in-phase solution exists in the regions shown in blue, green and red in Fi. 2, and the 
anti-phase solution exists in the region shown in red. 

The second thing we notice is that there are at least two fixed points for any value of Lico. The 
term Lico can be thought of as a force pulling the oscillators away from synchronization that has to 
be balanced by the right hand side of (3.4.13). Because of this we expect for large Lico that phase 
locking should not be possible. This suggests checking the stability of these curves of fixed points. 

We can use the gap in curves of fixed points to calculate a necessary condition for phase locking. 
When the discontinuity occurs at~= ± 1, (3.4.13) reduces to 

(3.4.14) 

Alternatively written as a curve that we can plot against the numerical data, a(~) , 

(3.4.15) 

This is an necessary condition for phase locking, but not sufficient. It is plotted as a green curve in 
Fig. 13. We can see that it does not do a very good job of describing where phase locking ends, 
but we should notice that it always lies to the left (weaker coupling) of phase locking. The linear 
stability of the fixed points along this line have to be considered in order to determine if a phase 
locked fixed point will be a solution in a physical system. 

3.5 Linear Stability 

The linearizing (3.4.4 )-(3.4.6) around the fixed points yields 

[~] 
(3.5.1) 

The three eigenvalues of the Jacobian in (3.5.1) can be evaluated along the solution curves 
(3.4.11) and (3.4.12) to yield eigenvalues that are functions of the three parameters, a, ~and Lico, 
and <j>. When the real part of these functions are all negative for a given point in parameter space 
and value of <J> then that solution is stable for that value of <J>. As soon as any of these functions has 
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Figure 8: Plots of Llro as a function of<!> for a constant value of a= 1 and ~ values of 0.3, 0.36, 
0.4 and 1. Every point along these curves are fixed points for a given set of parameters Llro, a, ~­

The red curves correspond to (3.4.13) evaluated with r1 = u1 and r2 = u2 (3.4.12), and the blue 
line corresponds to evaluations with r1 = si and r2 = s2 (3.4.11). The dotted portions of the curves 
represents fixed points which are unstable. The stability was calculated by evaluating the Jacobian 
(3.5.1) for each point<!> along the curve r1 = s1 , r2 = s2 or r1 = ul , r2 = u2. We see that the set 
of fixed points where r1 = ui, r2 = u2 is always unstable. We also see that the in-phase locked 
solution is stable for small enough Llro, and that the anti-phase solution has a minimum ~ for which 
it is stable. 
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a real part greater than zero the solution is unstable. 

a= I. ,B = 0.3 
t:.w 

a = I. ,B = 0.36 
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Figure 9: Eigenvalues of (3.5.1) as a function of <)>, evaluated at r1 = u1 and r2 = u2• Notice 
that at least one of the eigenvalues always has a positive real component for all values of <)>. The 
solid curves are the real components of the eigenvalues, and the dotted curves are the imaginary 
components. 

In Fig. 8 this calculation is used to show the stability of the fixed points. Stable fixed points 
are a solid curve, and the unstable fixed points are a dotted curve. We can see that the set of fixed 
points where r1 = u, and r2 = u2 (3.4.12) are always unstable. This can also be seen from plotting 
the eigenvalues, as in Fig. 9, where there is an eigenvalue with a positive real component for all 
values of<)>. The set of fixed points where r1 = s1 and r2 = s2 is sometimes stable. The eigenvalues 
are plotted in Fig. 10. 

a = 0. ,B = 0.3 
t:.w 

_, 

a = I. ,B = 0.3 
t:.w 

_, 

a = I. ,B = 0.5 
t:.w 

Figure 10: Eigenvalues of (3.5.1) as a function of<)>, evaluated at r1 = s1 and r2 = s2. The solid 
curves are the real components of the eigenvalues, and the dotted curves are the imaginary compo­
nents. 

We will proceed by using the stability of the r1 = s 1 , r2 = s2 branch of fixed points to try to 
define the region in parameter space where phase locking will occur. For a given a and f3, invert 
(3.4.13) to find <)>(a, f3 , ~ro). This has to be done numerically. It is actually rather tricky2, as there 
are many roots for each solution curve. Using <)> , r1 and r2 can be evaluated, which can then be 

2For an example, consider Fig. 8, ~ = 0.3. For D.ro = 0.5 there are two solutions on the interval $ E [O, n / 2], r 1 = 
s 1, r 2 = s2 . They are$~ 0.72 (which results in a stable solution) and$~ 1.98 (which is unstable) . It is quite a problem 
to make sure that the root finding method used to invert D.ro( $) gives the $ resulting in the stable solution. Currently I 
know no perfect way to do this, other than possibly writing a specialized root finding routine for this specific curve. 
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used to evaluate the Jacobian. The eigenvalues can be found numerically and then used to make a 
contour along which the largest eigenvalue is equal to zero. This should be a curve in parameter 
space defining the boundary of the phase locked region. 

The Mathematica code used to create the plots is 

ContourPlot[O == Max[Re[Eigenvalues[J[a, p, <!>l / . FindRoot[~ro- (r2
2 - r2

1
) a + JLcos[<j>] ] 

r1 r2 

/. r1 ---+ s 1 / . r 2 ---+ s2 / . ---+ J8 Sin ]]] , a ,0,2 , ,0,2 ] 
We expect two type of solutions, in-phase and anti-phase, characterized by two separate cases, 

where - n/ 2 < <!> < n/ 2 and n/ 2 < <!> < 3n/ 2. Because we are root-finding along the curves in Fig. 
8, a task for which we will require continuity, we will consider the two cases separately. 

1. In-Phase Locked: - n/ 2 < <!> < n/ 2 

2.0 

1.5 

0.0 0.5 

/3 f3 

Figure 11: Shown on the left: curve of critical stability for the in-phase locked state with Lico= 1. 
Shown on the right: curve of critical stability for the in-phase locked state with Lico = 1/ 4 compared 
to the~ « 1 approximation (3 .5.4). 

From Fig. 8, we can see that Lico is always negative when <!> < 0. We need only con­
sider Lico > 0, because (3.4.7) is just a relabeling of r 1 and r 2. We need only consider 
<!> E [O, sin- 1 (2J2~)- 1 J for inverting Lico. 

We now try to obtain a contour in parameter space where the largest eigenvalue is zero. This 
will be the edge of the regions where the phase locked solution is stable and unstable. This 
is done by plotting contours of the determinant of the Jacobian (3.5.1 ) in the ( ~ , a) plane, 
evaluated at for constant Lico and at each point in the plane. The Jacobian depends on r 1, r2 

and<)>. Along this chosen curve we have parameterized r 1 and r 2 as a function of<)> , ~ and a . 
We need only <)> , which is a function of Lico. This function is found numerically by finding 
the roots of (3.4.13). The result of this procedure is shown is Fig. 11 . 
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If we linearize the curve (3.4.10) near~ = 0, we can approximate r1 and r2 as r 1 = 1 + o and 
r2 = 1 - o, where o « 1. This is motivated by Fig. 7, where the slope of the curve around 
r1 = 1, r2 = 1 is - 1. Plugging these into (3.4.4) and (3.4.5) and only keeping terms out to 
first order in o we get 

2o+ ~sin<j> = ±o~sin<j> . (3.5.2) 

If we assume that ~ « 1 then we find that o = - ~~sin <j>. Plugging this into (3.4.6) and 
keeping terms out to first order in o we find 

Liro = - 4(a + ~cos<j> ) o = 2(a + ~cos<j>Wsin<j> . (3.5.3) 

The response to Liro is maximized at <j> = rt/ 2. For Liro beyond that there is no <j> large enough 
to balance the frequency difference and allow for synchronization. Thus the boundary be­
tween phase locking and unlocked should occur at <j> = 2rt. This gives a guess that is good 
for~ « 1, 

Liro = 2a~ . (3.5.4) 

Plotting this next to the phase locking boundary calculated from the linear stability of fixed 
points should yield good agreement for small ~ (less than about 0.2), see in Fig. 11. 

2. Anti-Phase Locked: rt/ 2 < <j> < 3rt/ 2 

As in the previous case, Liro is only positive in one region for <j> , when <j> > rt / 2. Thus we 
need only consider <j> E [rt - sin- 1 (2v'2~)- 1 , rt] and <j> E [rt , rt + sin- 1 (2v'2~)- 1 ]. The results 
of the rootfinding are shown in Fig. 12. 

3.6 Putting it all together 

To characterize this system, we need to combine Fig. 11,12 into one picture that will tell us for 
what regions of parameter space different phase locked solutions will be stable or unstable. By 
plotting these curves we construct a picture of the stability of all the solutions , shown in Fig. 13. 
In this figure we can see the two types phase locked states that exist, plotted in blue for 0 < <j> < rt/ 2 
and red for rt/ 2 < <j> < rt. The agreement with the data from Runge-Kutta is very good. 

Additionally we can see that curve defining the boundary for existence of phase-Jocking [(3.4.15) 
shown in green] has good agreement with the points where the unlocked, but still synchronized, 
solution ceases to exist. Why this occurs is explained in the next section. 
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Figure 12: Curve of critical stability for anti-phase locked state with ~ro = 1. 

3.7 Unlocked Synchronization 

The fact that the unlocked synchronized states lie on the edge of the phase locked states in parame­
ters space is a big hint as to their origin. Phase locking can no longer occur when the phase locked 
fixed point becomes unstable. However, the phase locked solution still exists. I propose that when 
the the solution becomes unstable, nearby there is a stable limit cycle around the fixed point. The 
existence of such a limit cycle could be checked by extending the stability analysis to quadratic 
order. Alternatively, we can first check numerically. We do indeed see that the unlocked synchro­
nized states are stable limit cycles around the now unstable phase locked fixed points. An example 
is shown in Fig. 14. This is for~= 1.62, and the fixed point becomes unstable at roughly~= 1.63. 
At ~ = 1.62 the eigenvalue in the r1 and r2 direction have of a positive real component, and they are 
is A± = 0.0113 ± 2.908i. We expect the oscillation frequency of the limit cycle to be the imaginary 
part of the eigenvalue, ro1c = 2.908, and this is what we see. The discrete Fourier transform is that 
of the synchronized frequency of both oscillators (81 = 82 = 4. 7 43), beating against the frequency 
of the limit cycle, yielding peaks in the Fourier transform at increments of 2.908 away from the 
central peak. By looking at the time evolution of r1 , r2 and <j> we see that they are essentially si­
nusoids with the limit cycle frequency. We expect r1 and r 2 to oscillate at rote. as those are the 
directions with the imaginary component of the eigenvalue. The reason <j> also oscillates at this 
frequency is that to stay a solution <j> must adjust itself to follow r1 and r2 . Since there is only one 
frequency present <j> must adjust itself at that frequency. 

This same reasoning also explains the in-phase unlocked state. However, in this case, (3.4.15) 
stops at ~ = 1 / JS. For~ < lsqrt8 there is always a solution to (3.4.13) for a given value of <j> (and 
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Figure 13: Curves of critical stability for ~co= 1 composed from Fig. 11 and 12. Additionally, 
the necessary condition for phase locking (3.4.15) is plotted in green. On the right these curves are 
compared to the data from numerical solutions in Fig. 3. 

as long as ~co) is not too large. From Fig. 10 we can see that the imaginary part of the eigenvalues 
is zero when ~ < 1 / JS, so there is no limit cycle that can be perturbed away to from an unstable 
fixed point. 

The limit cycle around the unstable fixed point can be thought of as a perturbation away from 
the fixed point, with r 1 (t) = r \0l + cr\' l eiwict +er\ I) e - iwict + c2 r \2l (t) ... (and likewise for r 2 and<)>). 

Naturally a first order perturbation, assuming that r1 , r 2 and <!> all oscillate around r \0l, r~o) and <j> (O) 
with a common, constant frequency will only be valid very close to the boundary where the phase 
locked solution becomes unstable. As long as the perturbation is valid, then the limit cycle should 
disappear when the fixed point disappears, because there is no longer anything to perturb away 
from. Thus the curve (3.4.15) should be a good estimate of when the unlocked synchronized state 
should disappear, as long as it is close enough to (11) (or (12), depending on which unlocked state 
we are trying to find the boundary for). When further away from the phase locked boundary the 
limit cycle becomes more complicated. The annihilation of the phase locked fixed point is a global 
phenomenon and may no longer correlate with the annihilation of the limit cycle if it is sufficiently 
pulled away from the perturbation. This argument explains the agreement present in Fig. 13. 

This argument could be made more rigorous. A stability analysis out to second order could 
confirm the existence of limit cycles as solutions. To check the stability of the limit cycles the 
calculation must be done to cubic order. 
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Figure 14: Left: Fourier transform of z1 and z2 at ~ro = 1, a= 1, ~ = 1.62, when the oscillators are 
in the unlocked synchronized state. Right: r1 , r2 and <j>. 

4 Conclusions 

In this thesis we have successfully characterized the behavior of our model. We fully explored the 
observed behavior and classified the solutions into two synchronized states, an the in-phase and 
anti-phase solutions. These solutions exist as phase locked synchronized states for large coupling 
strengths, and as unlocked synchronized states for smaller couplings before coming completely 
unlocked. I've also developed the numerical tools necessary to run simulations of the oscillators 
with noise. 

The very first thing to be done in followup is to wait with anticipation for the multiplexed 
device to be built and then compare how well it 's physical behavior matches what we expect based 
on our calculations. Once this is finished there will surely be a lot of work still to be done on the 
two oscillator device and model. 

The Jong term goal for these devices seems to be building as many beams on a chip as possible 
and then synchronizing or driving them in exotic ways to do useful things. The next logical step 
would be to extend this work to describe a one dimensional array of oscillators coupled to their 
nearest neighbors. The two oscillator result can be incorporated into a Renormalisation Group 
technique and then applied to a large nearest neighbor coupled array. 

25 



5 Acknowledgements 

First, my mentor and advisor, Mike Cross. He is entitled to 10% of the profits. Thanks to Matt 
Matheny for building the actually oscillators this theory applies to and for providing all of the 
wonderful device pictures (1) . He also took the time to show me his devices and explain everything 
about them to me, and for that I am indebted to him. 

This project will hopefully end with this thesis, but it began as a Caltech SURF project. In 
addition to Mike Cross I was mentored by Mason Porter, who always demanded near perfection 
but less often received it from me. Additionally, Jeff Rogers and Ron Lifshitz were great to talk to 
about my project. I also want to thank the Caltech SURF Office and Program, as well as Boeing 
for funding. I hope that someday they get their theory of the airplane. 

26 



References 

[1] J. Buck and E. Buck. Synchronous fireflies. Scientific American, 1974. 

[2] Michael C. Cross, Jeffrey L. Rogers, Ron Lifshitz, and Alex Zumdieck. Synchronization by 
reactive coupling and nonlinear frequency pulling. Physical Review E, 73(036205), 2006. 

[3] Rebecca L. Honeycutt. Stochastic runge-kutta algorithms. i. white noise. Phys. Rev. A , 45, 
1992. 

[4] Jeffrey L. Rogers. Analysis of three coupled limit-cycle oscillators. Preprint, January 2007. 

[5] Steven Strogatz. From Kuramoto to Crawford: Exploring the onset of synchronization in 
populations of coupled oscillators. Physica D, 143:1-20, 2000. 

[6] Steven Strogatz. Sync: The Emerging Science of Spontaneous Order. Hyperion, 2003. 

27 




