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Abstract 

The quasi-static interactions between macroscopic, spherical particles are well described by the Hertzian 

contact law. However, little is known about the interaction law at the micrometer scale, where the 

effects of electrostatic and hydrodynamic forces at the contact are no longer negligible. Contact 

dynamics at the micrometer scale have been relatively unexplored due to experimental challenges, since 

the particles are too small in size to be excited by actuators but too massive to be manipulated by 

electromagnetic fields. In this work, we experimentally study the dynamic interactions between two 

micrometer-scale spheres colliding in a v-shaped groove. From our experiments we determine physical 

parameters of interest that inform us about the force laws that apply before, during and after the 

collision. These parameters include the coefficient of air resistance, the coefficient of friction between 

the spheres and the groove, the coefficient of friction between two spheres in contact, and the 

coefficient of restitution. 

Motivations for Work 

A fundamental understanding of the laws controlling the dynamic interactions between micrometer­

scale particles is relevant to many applied areas, ranging from the large-scale fabrication of 

microelectronic devices (where, for example, the interaction of wafers with dust particles represents 

one of the biggest fabrication challenges) to the flow and packing of granular particles in pharmaceutical 

and chemical applications. 

In particular, metamaterials research involves the creation of new materials from periodically arranged 

repeated subunits. The arrangement of the subunits is engineered such that the metamaterial exhibits 

novel desired material properties. Extensive research in the Oaraio lab has been carried out on soliton 

wave propagation in 10, 20 and 30 periodic arrangements of centimeter-scale stainless steel spheres. 

An understanding of the contact dynamics for micrometer-scale stainless steel spheres will pave the way 

for the creation of new metamaterials that exploit the unique properties of these smaller spheres. 
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1.1 The Hertzian contact force between spheres 

The interactions between spherical particles init ially in point contact are governed by the quasistatic 

Hertzian force l11, FHertz = Kh 312 , where K = E~ , R is the radius of the spheres, E is the elastic 
3(1-£T ) 

Young's modulus, O' is the Poisson ratio and h is the deformation of the spheres, which is given by the 

separation between the centers of adjacent spheres minus the sum of their radii. 

The Hertzian fo rce is derived by considering the pressure 

between the two deformed spheres inside the region of contact 

C. In general C is an ellipse w ith axes a and b. By substituting 

Uz = l -u
2 

ff.c Pz(x,y) dx dy into the equation describing the 
n E T 

geometry, Ax2 + By2 + Uz + u; = h, we obtain the equation 

to be solved for the pressure distribution in the region of contact: 

~ (1-u2 + 1-u'2) J"f Pz(x,y) dxdy = h - Ax2 - By2 
rr E E1 Jc T 

Fig 1.la. Figure from ref [2] showi ng 

geometry being discussed. 

--- equation (1) 

Since this equation is equivalent to the equation for the potential inside a uniformly charged ellipsoid, 

the results from potential theory can be used to show that the pressure inside the region of contact is 

given by Pz(X, y ) o< j 1 - :: - ~: . By considering the relation between force and pressure, F = 

ffc Pz(x,y) dxdy , we obtain the exact expression for the pressure, 

p x - - 1----3F ~ x
2 

y
2 

zC ,y) - 2n a b a 2 b 2 
--- equation (2) 

Substitution of equation (2) into equation (1) gives elliptic integrals for h, A and B : 

h = FD J. "" de 
rr O )(a 2+c)(b 2+c)e 

--- equation (3.1) 

A _ FD J. "" d e 
- rr O (a2+c))(a2+c)(b 2+c)e 

--- equation (3.2) 

B _ FD J. "" d e 
- rr 0 (b2+c).j(a2+c)( b 2+c)e 

--- equation (3.3) 

In the case of two deformed spheres w ith equal radi i, = B = ~ . Also , the region of contact is a circle, so 
R 

set a= bin equations (3 .2) and (3 .3) to obtain 

--- equation ( 4) 
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where Fis the force in the contact region and D = ~ (1-a\ Substitution of equation (4) into equation 
2 E 

2 2 1 3 

(3.1) gives h = F3(!!_)3 which can be inverted to obtain the expression for the Hertzian force, F o< hz. 121 
2 R 

1.2 Molecular adhesion between spheres: 

The Derjaguin-Muller-Toporov model 

The Hertizian force describes an ideal interaction in which adhesion between the spheres is not 

accounted for . The Derjaguin-Muller-Toporov (DMT) model 131 and the Johnson-Kendall-Roberts (JKR) 

model141 are the most widely accepted theoretical models for the adhesive force that acts between 

spheres during contact. The JKR model is a more accurate approximation for large spheres with small 

stiffness which deform a lot during collision, while the DMT model works better for small spheres with 

large stiffness that deform relatively little151 . Since our research deals with micrometer-scale stainless 

steel spheres which deform relatively little during impact, only the DMT model is presented here. 

The DMT model is derived by considering the deformation of an 

elastic sphere in contact with a rigid surface. The energy of 

interaction between the sphere and the plane is decomposed 

into a sum of the volume energy of elast ic deformations, 

We = f
0
a Fe(a)da, and the surface energy of molecular forces, 

Ws = f
0
L <p(Z) 2rrr dr where <p(Z) is the interaction energy per 

unit area . L can be taken to be infinity since for our relatively 

stiff spheres, Z « R. Note from the diagram that a is the 

deformation of the sphere and Z is the height of the deformed 

part of the sphere above the surface. 131 

J · 
I I 

I I I 
I I I I 

' ! ! l 
I/ I '\ 1 ' N 
I/ .0.---7 
I vlK I -----\ (). . . -
·<' r 4 r' 

'· ~ 
Fig l .2a. Figure from ref [3] showing geometry 

being discussed. 

In the region of contact, Z = E = constant, where E is the smallest possible spacing between the 

sphere's surface and the plane. Thus, the surface energy inside the contact region is 

Ws' = J: <p (E)2rrr dr = rraR<p(E) . Outside the region of contact the adhesive force sti ll acts at a 

distance; in this region (x, a) =~[ax+ (x 2 
- a2 )arctan ~] + E . Ws", the surface energy outside the 

rrR a 

region of contact, can be expressed as an integral depending on Z(x, a) . Then, by the method of 
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dW 1 dW 11 

generalized displacements, the adhesive force at the place of contact is F
5
(a = O) = - 5 + - 5

- = 
da da 

2rrR<p(E ). !3l 

1.3 Dissipative forces 

1.3.1 Dissipation during sliding motion 

In classical models of friction, the dissipation of energy due to one material sliding against another is 

described by the Coulomb friction force Fcou = -µN , where N is the normal contact force . The value 

of the constantµ depends empirically on the materials in contact. When a force is applied to one of the 

materials, static friction initially acts between the materials. When the force exceeds a certain 

magnitude the material begins to slide aga inst the other and Coulomb friction applies. The viscous drag 

force due to motion in fluids such as air or water follows the equation Fviscous = - ::: v . 161 
T 

1.3.2 Dissipation during rotational motion 

Attempts have been made to model dissipation due to rotational motion for both the JKR171 and DMT181 

models. In particular, Brach, Dunn and Cheng derive a model for dissipation during rolling due to the 

tearing-off force required to overcome the molecular adhesion force derived in the DMT model. 

They consider a rolling microsphere in contact with a flat surface. By considering the various torques on 

the sphere they arrive at the equation for angular displacement mk 2 
d

2

e
2 

= -rFt(r) + MA(r) + MH(r), dT . 

where k is the radius of gyration and Ft is the tangential force on the sphere due to friction from the 

surface. The moment from the adhesion force which acts at the trailing edge of the contact during 

rolling is given by MA(r) = f
0

2
rr foCAwa 3 cos 2 a da = rrf0 CAwa3

, where fo is the adhesion force and CA 

the adhesion dissipation constant. The moment due to the Hertzian deformation at the contact is given 

by MA (r) = f
0
a J;rr P(p', a') CH Vn (p', a') p' 2 cosa' dp' da = ~ j~ CHwa4 , where P is the Hertzian 

force, Vn is the relative velocity, CH is the Hertzian dissipation constant and K is a constant depending 

on the Young's modulus and Poisson ratio . The geometry is labelled in fig l.3.2a . 181 
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n 

Contact region : 

t' 

Fig 1.3.2a . Figure from ref 8] showing 

geometry being discussed. 

1.4 The coefficient of restitution 

Our current experimental setup can measure the positions and thus the velocities of the spheres, but is 

unable to resolve the deformation of the spheres during the collision and the adhesive forces at the 

surface of the spheres. We therefore need a way to extract information about the physics of the 

collision based solely on velocity data before and after the collision. 

The coefficient of restitution provides a means by which this may be achieved. It is defined as Cres = 

vzr - vir where v21 is sphere 2's velocity just after the collision, v11 is sphere l's velocity just after the 
V1i - Vz ; 

collision, v1 i is sphere l's velocity just before the collision and v2 i is sphere 2's velocity just before the 

collision. Although classical theory predicts that Cres should be a constant, experiments have shown 

that it tends to be a decreasing function of the impact velocity. The experiments of Antypov et al, and 

Kuwabara and Kono show it to be a monotonically decreasing function of the impact velocity19U101, 

whereas the experiments by King et al. have shown it to decrease non-monotonically1111 . 
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Fig 1.4a. Figure from Antypov et al (ref [9]) showing 

the experimentally measured coefficient of 

restitution decreasing monotonically as a function of 

impact velocity . 

1.1-----------------

I 
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Fig 1.4b. Figure from King et al (ref [11]) showing the 

experimentally measured coefficient of restitution 

decreasing non-monotonically as a function of 

impact velocity. 

There are numerous models attempting to explain the velocity dependence of the coefficient of 

restitution . One approach is to apply a viscoelatic collision model with adhesive forces based on the JKR 

model to derive a decreasing coefficient of restitution .1121 Another approach is to include a dissipative 

term that is proportional to the rate of change of deformation. In the work of Kuwabara et al and 

Morgado et al, the equation of motion for the deformation is !!!:.d
2

h
2 

= -~kh~ -~k'{Fi.dh [uJ,[131. The 
2 dt 4 2 dt 

first term on the right-hand side is the Hertzian force and the second is the dissipative term. 

~---- --- - ... c 
.2 
2 
t; tir--- -- ~---- - -·~- , ·-
~ 0 5 1------<---+---+----·--"--+-"-'"-""•-==...-=i-

0 2 3 4 5 
VelQCity [ms-1] 

Fig 1.4c. Figure from Kuwabara et al (ref [10]) . The 

solid curves are predicted by their model. The points 

are experimentally measure values of the coefficient 

of restitution. 
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-----·- · 
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g,.,,fm l >I 

0.05 

Fig 1.4d. Figure from Brilliantov et al (ref [12]) 

showing their predicted dependence of the 

coefficient of restitution on the impact velocity. 

Numerous other models from the literature are 

shown as well. 

Given the preponderance of theoretical models, our approach is to experimentally investigate the 

velocity dependence of the coefficient of restitution for our system and then compare it with various 

models to determine which gives the best fit . When precise measurements of the coefficient of 

restitution are made we will be able to modify the terms in the theoretical model until it matches the 
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experimental results. Thus, without measuring the details of the collision per se, we can verify 

theoretical models that predict the experimental observable- the coefficient of restitution- and thus 

understand the physics of the collision . 
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2.1 Overview of experiments 

The goal of the experiments is to study the dynamics of one-dimensional collisions between 

micrometer-scale spheres. The spheres are placed in a v-shaped groove fabricated on a silicon wafer 

which maintains their alignment throughout the collision process and restricts their motion to one 

dimension. A sphere is excited into motion by a laser pulse which ablates material from the sphere's 

surface. The reaction force from the ablation pushes the sphere forward. The motion of the spheres is 

captured using a high-speed camera, and their displacement-time data is extracted via image processing 

of the footage . Curve fitting of the data is then used to extract parameters of interest. 

Before and after the collision, the parameters of interest include the air resistance friction coefficient 

and the coefficient of friction between the sphere and the groove. During the collision the coefficient of 

friction between the two spheres in contact becomes important as well. In addition, the coefficient of 

v r- v t 
restitution Cres = 

2 1 
, a ratio of the difference between the two spheres' final and initial velocities, 

Vii - Vzi 

provides inside into the dissipative losses that occur during the collision. 

2.2 Experimental materials 

2.2.1 Stainless steel spheres 

The two types of spheres used in our experiments were made of grade 440C (SS 440C) and grade 316C 

(SS 316C) stainless steel. The SS 440C spheres have a diameter of 229µm and a mass of 47.9µg. The SS 

316C spheres have a diameter of 300µm and a mass of 113µg. The two different sizes were chosen in 

order to study how sensitive the results would be to the mass and size of the spheres. 

2.2.2 Grooves on silicon wafers 

The grooves in which the spheres were placed were fabricated on silicon wafers via anisotropic wet 

chemical etching. A lµm thick layer of silicon nitride (Si 3N4), designed to act as a mask, was deposited 

on the surface of [100] silicon wafers via chemical vapor deposition. Patterns corresponding to the 

desired groove dimensions were etched into the Si 3N4 mask via photolithography and reactive-ion 

etching processes. The grooves were then etched into the unmasked silicon using a 50% KOH solution at 

14 



85°C. The grooves had a width of 240µm and a groove angle of 70.6°, with an estimated surface 

roughness of~ 0.1 µml151
. l141 

2.3 Experimental setup 

The spheres are excited into motion by a Q-switched Nd:Yag nanosecond laser (Quante! Brilliant, 

maximum power 3.2W, 532nm wavelength, pulse duration 4ns) operating at various laser intensities. 

The laser beam is channeled through a half-wave plate and a polarized beam splitter. The beam splitter 

splits the beam into two arms. The groove wafer is positioned and clamped onto a sample stage such 

that one arm of the beam is aligned with the front end of the groove and the other with its back end. By 

rotating the halfway plate we can change the polarization of the beam, and thus control the beam 

intensity on each arm. l14l For the experiments presented here, we only use the front arm of the beam. 

single shot laser pulse 
0-1mJ@532nm 
pulse duration 4ns 

High speed camera 
& Microscope system 

Fig 2.3a . Schematic of experimental setup . 
Spheres are placed in a v-shaped groove 
etched into a silicon wafer. A laser pulse is 
fired at the first sphere. The sphere's 
motion is captured by the high-speed 
camera. Image courtesy of ref [14]. 

The spheres are placed inside the groove by hand using tweezers and moved to precise initial positions 

via a robotic positioning system. The positioning system consists of a positioning tip (fine steel wire 

glued to a 3d-printed plastic tip) whose motion is controlled in 3 perpendicular directions, x, y and z, by 

3 motors. The groove lies in the x-y plane, parallel to the x-axis. The positioning system's software makes 

use of images from the high-speed camera and image processing to locate the spheres. At the beginning 

of each experiment, the system locates the spheres using image deconvolution. It then brushes the 

spheres from above until they are 100 pixels apart from each other. Next, it pushes each sphere to the 

desired initial position, which is specified in pixels by the user. 

The front arm of the laser beam is focused via a lens onto the center of the first sphere. A laser pulse 4ns 

in duration is fired at the sphere. The size of the laser spot on the sphere's surface is 40 µm . l141 The 
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laser pulse ablates a thin layer of material from the sphere's surface, resulting in reaction forces that 

push the sphere forward in the groove1161 . 

A high-speed camera (Phantom vl2 .1) is used to image the motion of the spheres. The image of the 

spheres to be recorded is magnified by a Leica S6D microscope with additional achromatic lens sets 

between the camera and the sample stage. The microscope setup provides a spatial resolution of 4.3µm 

per pixel, and the maximum field of view is 5.Sx3.4mm 2
• The high-speed camera is operated at 25000fps 

with a 39µs exposure time and a total pixel resolution of 960x120. A lSOW quartz halogen fiber optic 

illuminator (Fiber-Lite PL800 lSOW) is used to illuminate the sample stage. 1141 

For the data analysis, the positions of the spheres on the groove at each point in time are retrieved from 

the saved images through image deconvolution . 1141 Curve fitting of the displacement-time graphs is used 

to extract the experimental parameters of interest. 

2.4 Experiments conducted 

We began by conducting experiments for single spheres moving in a groove using both the SS 440C and 

the SS 316C spheres. However, when we moved on to collisions between two spheres, we were unable 

to obtain results for the SS 440C spheres because they tended to stick to the positioning tip and thus be 

lifted out of the groove. Despite our efforts to electrically ground the tip to prevent the spheres from 

sticking to it due to static electricity, the problem persisted. The problem is therefore probably due to 

adhesive forces between the sphere's surface and the tip. This problem does not occur for the heavier 

SS 316C spheres, whose weight probably overcomes the adhesive force, preventing them from being 

lifted out of the groove . Thus, the two-sphere collision experiments were performed with SS 316C 

spheres only. Future improvements to the experimental system will be required in order to perform the 

collision experiments with SS 440C spheres so as to study how the collision physics may vary with sphere 

mass and size. 

2.4.1 Precision of automated sphere positioning system 

This initial experiment was designed to test the precision of the automated robotic sphere positioning 

system. First, the system was programmed to position a single sphere in a groove at a target x­

coordinate of 200 pixels . The positioning test was repeated 100 times. Next, the system was 
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programmed to push a sphere to the left 30 times in target increments of 5 pixels per push. Results from 

this test give indicate how precisely the robotic system can move a sphere to a desired position or move 

it by a desired number of pixels . 

2.4.2 Single spheres moving in a groove (SS 440C and SS 316C) 

The purpose of this experiment is to determine the air resistance friction coefficient and sphere-groove 

friction coefficient for SS 316C and SS 440C spheres. A single sphere (SS 316C or SS 440C} was placed in a 

v-groove and excited by a 4ns laser pulse at various laser energies. The range of laser energies was used 

to create a range of initial velocities. 

The SS 316C spheres were excited with a 4ns laser pulse at 14 different laser energies. The experiment 

was repeated 15 times per laser energy, making for a total of 210 runs of the experiment. The laser 

energies used were 0.151, 0.215, 0.244, 0.275, 0.300, 0.302, 0.322, 0.324, 0.342, 0.355, 0.356, 0.363, 

0.364 and 0.366 mJ/pulse. 

The SS 440C spheres were excited with a 4ns laser pulse at 14 different laser energies. The experiment 

was repeated 15 times per laser energy, making for a total of 210 runs of the experiment. The laser 

energies used were 0.0222, 0.0385, 0.0587, 0.0590, 0.108, 0.135, 0.164, 0.192, 0.219, 0.245, 0.268, 

0.287, 0.304 and 0.315 mJ/pulse. The laser energies used for SS 440C were lower than those used for SS 

316C because of the lower mass of the SS 440C spheres, which allowed this range of laser energies to 

produce the same range of initial velocities as for SS 316C. 

The displacements of the spheres at each point in time were recorded using the high-speed camera . 

2.4.3 Collision between two spheres in a groove (SS 316C) 

The goal of the collision experiment is to extract the coefficient of restitution and sphere-sphere friction 

coefficient for SS 316C. Two SS 316C spheres were positioned at an initial distance of 300 pixels apart by 

the robotic positioning system. The first sphere was excited with a 4ns laser pulse at 10 different laser 

energies. The experiment was repeated 20 times per laser energy, giving a total of 200 runs of the 

experiment. The laser energies used were 0.122, 0.140, 0.165, 0.189, 0.212, 0.233, 0.251, 0.265, 0.276 
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and 0.283 mJ/pulse. The first sphere collided with the second sphere, which was initially stationary. The 

displacements of the spheres at each point in time were recorded using the high-speed camera . 

2.4.4 Improved collision experiment between two spheres in a groove (SS 316C) 

In the earlier collision experiment, the first sphere was excited into motion by direct laser ablation. The 

damage to the sphere's surface due to the ablation may have affected the results . To improve, we 

instead used a third 'striker' sphere to excite the first sphere into motion, such that only the third 

sphere was shot by the laser. Of interest in this experiment is the collision between the first and second 

spheres. Displacement-time data from the striker sphere is not used. 

The first and second spheres were again positioned 300 pixels apart by the robotic positioning system. 

The striker sphere was positioned 100 pixels away from the first sphere. The striker sphere was excited 

into motion by a 4ns laser pulse at 10 different laser energies. The laser energies used were 0.115, 

0.152, 0.191, 0.211, 0.232, 0.253, 0.273, 0.293, 0.313 and 0.351 mJ/pulse. The experiment was repeated 

20 times per laser energy, giving a total of 200 runs of the experiment . Upon being hit by the striker, the 

first sphere was set into motion and collided with the second sphere. The displacements of the spheres 

at each point in time were recorded using the high-speed camera . 

18 



3. Results and Discussion 

3.1 Precision of automated sphere positioning system 

3.2 Single spheres moving in a groove (SS 316C and SS 440C) 

3.2a) Least- squares fits of displacement-time graphs 

3.2b) Physical explanation 

3.2c) Transition time, tr 

3.2.1 Determining the air resistance friction coefficient, T 

3.2.2 Determining the sphere-groove Coulomb friction coefficient, µ9 

3.3 Collision between two spheres in a groove (SS 316C) 

3.3a} Least- squares fits of displacement-time graphs 

3.3.1 Determining the sphere-sphere friction coefficient, µb 

3.3.2 Determining the coefficient of restitution, Cres 

3.4 Improved collision experiment between two spheres in a groove (SS 316C} 

3.4.1 Determining the sphere-sphere friction coefficient, µb 

3.4.2 Determining the coefficient of restitution, Cres 

19 



3.1 Precision of Automated Sphere Positioning System 

The robotic sphere positioning system is able to position a sphere at a desired location with great 

precision. Figure la) shows that the sphere was positioned precisely at the desired x-coordinate of 200 

pixels in all but 3 out of 100 trials. Figure lb) shows that the sphere was pushed to the left by precisely 

five pixels in all but 2 out of 30 trials. The 2 'bad' trials were caused by the sphere sticking to the 

positioning tip and being pulled back to the tip's resting position. The problem of spheres sticking to the 

tip was reduced by changing the material of the tip to stainless steel and electrically grounding it to 

prevent the buildup of static charge. 

Pixe1 no. 

200 

150 

100 

50 

0 

Initial Position of Sphere 

20 40 60 80 100 

Fig 3.la. The robotic positioning tip was able to 

precisely position the sphere at the desired pixel 
number 200 in 97 out of 100 trial s. 

Pixel no. 

200 

150 

100 

50 

Pushing Sphere to the Left in 5 Pixel Increments 

Fig 3.lb. The robotic positioning tip was able to push 

the sphere to the left by precisely 5 pixels in 28 out 

of 30 trials . In the remaining 2 trials the sphere stuck 

to the tip and was dragged back to the tip's resting 

position. The problem of spheres sticking to the tip 
was reduced by electrically grounding the tip . 

3.2 Single spheres moving in a groove (SS 316C and SS 440C) 

3.2a} least- squares fits of displacement-time graphs 

A typical displacement-time profile contains an initial quadratic part followed by an exponential part. 

Using least-squares fitting we determined that the exponential part obeys the equation x = a + 
-t 

bT(l - er) and that the initial quadratic part obeys the equation x = x0 + v0 t + ct2 + a+ bT(l -
-t 

er) . 
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Fig 3.2a}-1.Typical displacement-time graph 
for a bead rolling in a groove. An initial 
quadratic part and a subsequent 
exponential part can be distinguished by 
performing least-squares fits on the data. 
We define the "transition time" as the time 
when the graph shape changes from 
quadratic to exponential. 

The exponential part corresponds to deceleration due to air resistance, given by Fair = m d
2

x
2 

= 
dt 

mdx 

T dt 

where T is the friction coefficient corresponding to air resistance. T can be directly found from the 

exponential fit. The quadratic part corresponds to constant deceleration due both to Fair and to the 

Coulomb friction force Fcou = m ::~ = µ9 N, where µ9 is the Coulomb friction coefficient and 

N = 2mg sin80 cos80 is the normal contact force acting on a sphere sitting in a groove with groove 

angle 80 . The displacement corresponding to Fcou is given by x = x0 + v0 t + ct 2
. Differentiation of this 

expression yields::~ = 2c. Inserting this into the expression for Fcou we obtain an expression for µ9 in 

terms of c, µ9 = -~ , which enables us to determine µ9 from the quadratic fit. The "transition 
gsm80 

time", which we define as the time when the displacement-time curve changes from quadratic to 

exponential, can be precisely determined as the intersection point of the quadratic and exponential fits. 

A typical set of quadratic and exponential fits together with their residuals are shown below. Residuals 

were typically small in magnitude (of the order of 10·6) and randomly distributed about 0, indicating that 

the fits were appropriate. In addition, fit parameters did not change drastically between runs of the 

experiment, indicating that the fits were appropriate for the data. 
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Fig 3.2a)-2. Typical quadratic and exponential fits with residuals shown . 

The small magnitude and random distribution of the residual s, as well as 

the consistency of fit parameters between different runs of the 

experiment, indicate that the fits were appropriate. 

3.2b} Physical explanation 

We can provide a physical explanation for the presence of two parts- quadratic and exponential- in the 

displacement-time graphs. After laser excitation, the sphere initially slips on the groove. In accordance 

with the Coulomb model, kinetic friction acts between the sphere's surface and the groove's surface as 

the former slides against the latter, thus producing displacement which depends quadratically on time. 

Air res istance also acts on the sphere at this time since it has non-zero velocity. 

At the transition time, the sphere stops sliding and begins to roll without slipping. This occurs when the 

point of contact between the sphere and the groove is stationary. Thus, at the transition time, the 

sphere has slowed to the point where its velocity v is equal to srw, where s = sin(e
2
°) and 80 is the 

groove angle. During rolling without slipping no kinetic friction acts between the sphere and the groove, 
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so on ly the effect of air res istance is left. The air resistance produces displacement which varies 

exponentially in time, as expected. 

3.2c) Transition time, tr 

The transition time tr , which is the time when the sphere stops sliding and begins to roll without 

slipping, is plotted as a function of initial velocity v 0 for SS 316C and SS 440C spheres respectively. t r 

increases with v0 , as is to be expected since spheres imparted with a greater initial velocity should slip 

for a longer time . For both types of spheres, t r appears to be a linear function of v0 . For SS 316C 

spheres, the linear fit is tr = -{0.00177 ± 0.00063 ) + (0.192 ± O.Oll) v 0 . For SS 440C spheres, the fit 

is given by t r = (0.00161 ± 0.00059) + (0.148 ± 0.014)v0 . Ideally, these graphs would allow us to 

predict when a sphere with a given initial velocity will start rolling without sliding. A comparison of this 

data with theoretically predicted transition times (based on models including the air resistance and 

Coulomb friction) could be used to verify theoretical models. However, for the SS 316C fit the value of 

the adjusted coefficient of determination R-squared is 0.579, and for the SS 440C fit it is 0.489. The R­

squared values are not very close to 1, most likely due to the large scatter of data points about the best 

fit line, particularly in the case of SS 440C. More precise transition time data is needed to conclude 

about the dependence of transition time on initial velocity. 

SS 316C 
Transition time [s] 

0.014 

0.012 

0.010 

0.008 

0.006 

0.004 

0.002 

Linear fit (SS 316C): 

tr = a+ bva 
a = - 0.00177 ± 0.00063 
b = 0.192 ± 0.011 
R2 = 0.579 

0.02 0.04 

Transition time [ s] 

0.014 

0.012 

0.010 

0.008 

0.006 

0.004 

0.002 

0.06 0.08 
vO [m/s] 

SS 440C 

. 
Linear fit (SS 440C) : 

tr = a + b Vo 

a= 0.00161 ± 0.00059 
b = 0.148 ± 0.014 
R2 = 0.489 

vO [m/s] 
0.08 0.02 0.04 0.06 
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Fig 3.2c)-1.Transition time tr as a function of v0, the 
initial velocity of the sphere, for SS 316C spheres. The 
transition time increases linearly with v0, matching the 
linear fit tr= -(0.00177 ± 0.00063) + (0.192 ± O.Oll)v0 . 

However, R2 = 0.579 which is not close to 1. 

: • •• 2~ • • • • • 4? • . · '°· ..'ID •• 100 ••• 

-0.002 •• • •• . . ... · . . . 
- 0.004 

Fig 3.2c)-2 .Transition time tr as a function of v0, the 
initial velocity of the sphere, for SS 440C spheres. The 
transition _time increases linearly with v0, matching the 
linear fit tr = (0.00161 ± 0.00059) + (0.148 ± 0.014)v0 . 

However, R2 = 0.489 which is not close to 1. 

3.2.1 Air resistance friction coefficient, T 

The air resistance coefficients T determined from the 210 runs of the experiment with SS 316C stainless 

steel spheres and the 210 runs of the experiment with SS 440C stainless steel spheres are plotted as a 

function of the initial velocity of the sphere, v 0 . For SS 316C, T is approximately constant at T = 

0.0959 ± 0.0056 s at low velocities and begins to increase at higher velocities. At higher velocities we 

observe an increased spread in the values of T. For SS 440C spheres, T gradually increases with v0 . 

Although the numerical values of T for SS 316C and SS 440C fall within a similar range, the velocity 

dependence is quite different, suggesting that the differences in masses of SS 316C {113µg) and SS 440C 

{47.9µg) and the difference in their surface areas (2.83x10-7 m2 for SS 316C versus 1.65x10-7m2 for SS 

440C) do influence the air resistance acting on the spheres. 

SS 316C 
T [s] 

0.20 

O.U 

0.10 

: ·::i'····: 
• ··4·· . . 

~.l·# . .. : :-
• .,~ ¥![: •• •• 
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0.00 
0.00 0.02 
~--~---~-------~-- vO [m/s] 

004 OM O~ 

Fig 3.2.la . Air resistance friction coefficient T as a 

function of v0, the initial velocity of the sphere, for SS 

316C spheres. T is approximately constant at T = 
0.0959 ± 0.0056 s for low velocities, and begins to 

increase at higher velocities. 

T [s] 

0.14 

SS 440C 

0 12 ... . . :1.4+·· ·.· 
008 t.:-. :I:°!!. ~+.~t~ .. :.: . 
006 . ty~... . . .. .. . 
0.04 ·. ; . 

0.02 

-+----~---~----~---~ VO [m/s] 
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Fig 3.2.lb. Air resistance coefficient T as a function of v0 , 

the initial velocity of the sphere, for SS 440C spheres. T 

increases gradually with v0. 
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3.2.2 Sphere-groove Coulomb friction coefficient, µg 

The Coulomb friction coefficient µ9 , which describes the friction between the sphere and the groove 

when the sphere is sliding on the groove, is plotted as a function of the initial velocity of the sphere for 

SS 316C and SS 440C spheres. For SS 316C spheres, µ9 remains constant as initial velocity increases. The 

mean value of µ9 is 0.333 ± 0.065. On the other hand, for SS 440C spheres µ9 appears to increase 

gradually with initial velocity and then plateau out. 

SS 316C SS 440C 
µ µ 

0.6 
0.5 .. 

0.5 
0.4 

0.4 

0.3 
0.3 

0.2 
0.2 

O.l 0.1 

0.0 ------------------ vO(m/s] 
0.04 0.06 0.08 0.02 

-+---~-------------- vO [m/s) 
0.08 0.04 0.06 0.00 0.02 

Fig 3.2.2a. Coulomb friction coefficientµ as a function of 

v0, the initial velocity of the sphere, for SS 316C spheres. 

µ, remains constant as v0 increases, and has a value of 

0.333 ± 0.065. 

Fig 3.2.2b. Coulomb friction coefficient µ as a function 

of v0, the initial velocity of the sphere, for SS 440C 

spheres. µ, increases gradually with v0 and then plateaus 

out. 

3.3 Collision between two spheres in a groove (SS 316C} 

3.3a} Least- squares fits of displacement-time graphs 

A typical displacement-time graph for the two 
xl [m] 

Displacement-Time Graph, Sphere J and Sphere Z 

spheres is shown in fig 3a)-1 . Sphere 1 is the 

'striker' sphere which is excited by the laser 

pulse. For sphere 1, before the collision we can 

observe that the graph contains the expected 

initial concave quadratic part corresponding to 

sliding and the following exponential part 

corresponding to rolling without sliding. The 

collision point is demarcated by a drop in 

velocity which manifests as a decrease in the 

0.0025 Collision 

t 
0.0020 

0.0015 

0.0010 
-+->-~--~---~--~-~ l[s] 

0.2 0.4 0.6 0.8 1.0 1.2 

Sphere 1 

Sphere 2 

Fig 3.3a)-1. Displacement versus time graphs for each of the two 

spheres. Sphere 1 (blue line) is the 'striker' sphere which is set into 

motion by the laser pulse. Sphere 2 (red line) is initially at rest and 

begins to move after sphere 1 collides with it. 
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gradient of the displacement-time graph . Just after the collision, there is a convex quadratic region 

-t 

which obeys the equation x = Xi +vi t + ci t 2 + a + bT(l - er), where the fit coefficients are 

different than for the initial concave quadratic part (see fig 3.la for details). After the convex quadratic 

region there is again an exponential part corresponding to rolling without sliding. 

Sphere 2 is initially at rest until it is hit by the striker. Its velocity is zero prior to the collision. After the 

collision its displacement-time graph contains the concave quadratic part corresponding to sliding and 

the exponential part corresponding to rolling with sliding. 

3.3.1 Sphere-sphere friction coefficient, µb 

Of particular interest in this experiment is the displacement-time profile of sphere 1 immediately after 

-t 

the collision, which is a convex quadratic obeying x = x1 +Vi t + c1 t
2 + a+ bT(l - er) . The 

equation x1 + Vi t + ci t 2 describes acceleration rather than deceleration. We deduce that the 

acceleration arises because srw > v after the collision. 

xl [m] 

0.0022 

0.0020 

0.0018 

0.0016 

0.0014 

0.0012 

0.0010 

0.0008 

0.0 0.2 0.4 

Sphere 1 

Convex quadratic 

region 

0.6 

- Exponential fit 
- Quadratic fit 

0 .8 1.0 1.2 

Fig 3.3.la . Displacement-time profile of sphere 1. The 

convex quadratic region after the collision corresponds to 

acceleration, which arises because srw > v after the 

collision . 

Each of the exponential and quadratic fits, together with their residuals, is shown in fig 3.lb. The overall 

random distribution of residuals about zero and the small size of the residuals indicate a generally good 

fit. In addition, the fit parameters did not vary drastically between different runs of the experiment, 

indicating that the fits were appropriate for the data . 
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Fig 3.3.lb. Example of quadratic and exponential fits to sphere l's 
displacement-time data before and after the collision . The residuals and 
consistency of fit parameters between runs of the experiment indicate 
an appropriate fit . 
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B 
.d . dv gµ9 y cons1 enng - = - -

dt s 

dw 
and r- = kgµ9 over a period of time lit, we arrive at the relation 

dt 

srwi = (ks 2 + 1)v1 - ks 2 vi , where k = 5/2 is related to the moment of inertia of the sphere, v; and w; 

are the initial linear and angular velocities of the sphere and v1 is the final linear velocity of the sphere. 

!iv and l'.lw can thus be determined simply from fit data which gives the velocities of the sphere before 

the co llision, just after the collision and at t he end of the convex quadratic part. In addition, we have 

that -!iv = f Fcou dt = J-'- dt = - rt.w and so !iw = µbk !iv, where r is the sphere radius and µb is 
m µbrm kµb r 

the friction coefficient between the two spheres. 

Thus, a plot of !iw against !iv for sphere 1 yields the sphere-sphere friction coefficient, µb. From a linear 

fit of the graph we obtain µb = 1.403 ± 0.046. The adjusted value of the coefficient of determination 

R-squared for the fit is 0.852 which is close to one, indicating that the linear fit is appropriate. 

/::,.w 
Plot of !::,. v to find µb 

w1 1-wl f [rad/s] 
70 

60 

50 

40 

30 

zo 

10 

Linear fit: 
y =a+ bx 
a= -7.l ± 1.3 rad/s 
b = 11690 ± 390 rad/m 
R2 = 0.852 

.. ·. 

0.003 0.004 0.005 

3.3.2 Coefficient of restitution, Cres 

0.006 v1,-v1f [m/s] 

Fig 3.3.lc. Plot of t.w vs t. v for sphere 1, the striker sphere. 

Since t.w = !'bk t.v , µb can be obtained from a linear fit of 
r 

the data. Its value is µb= 1.403 ± 0.046. 

The black line is the linear fit y =a+ bx where a= -7 .l ± 1.3 
rad/s and b = 11690 ± 390 rad/m . The R-squared value of the 
fit is R2 = 0.852 which is close to 1, indicating that the linear 
fit is appropriate. 

The coefficient of restitution is given by Cres = :zt = ~:t where v21 is sphere 2's velocity just after the 
ll ' 

collision, v1r is sphere l's velocity just after the collision, v1 i is sphere l's velocity just before the 

collision and Vzi is sphere 2's velocity just before the collision. It can be calculated directly from the 

velocities obtained from curve fitting. It is plotted here as a function of v01, which is the velocity of 

sphere 1 at the start of the experiment just after it has been excited by the laser pulse. 
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Fig 3.3.2a . Plot of Cres • the coefficient of restitution, against 

vOl , the velocity of sphere 1 at the beginning of the 

experiment just after it has been excited by the laser pulse . 

Cres = 0.73 ± 0.27, which indicates that the data is too 

noisy and cannot be used to determine Cres · 

Cres appears to be constant in vOl , but a calculation of the mean and standard deviation of Cres yields 

Cres = 0.73 ± 0.27. The magnitude of the standard deviation is 37% of the magnitude of the mean . 

Thus the data is too noisy to allow for a precise determination of Cres . Data from other sets of 

experiments were also used to calculate Cres ' and in all cases, Cres could not be precisely determined. A 

future improvement to the experimental setup will be required in order to investigate the dependence 

of Cres on vOl and to precisely determine Cres . 

It is notable that several values of Cres are larger than 1. At first glance, this seems to indicate that 

kinetic energy has been generated, rather than dissipated, in the collision . However, coefficients of 

restitution larger than 1 have been observed in the case of oblique collisions impacts of hard aluminum 

oxide spheres on thick elastoplastic polycarbonate plates. This has been attributed to a change in the 

effective normal between the sphere and the plate, which arises due to deformation of the plate and is 

not captured in the calculations for the restitution coefficient, rather than to an increase in the total 

kinetic energy. 1171 In our system, however, oblique impact is prevented by the groove. It is likely that our 

Cres values larger than 1 arise instead because some of the spheres' angular momentum is converted 

into linear momentum during the collision, as is observed in the convex quadratic part of sphere l's 

displacement-time graph right after the collision which indicates that sphere 1 is accelerating due to 

torque from sphere 2. Since the coefficient of restitution accounts for linear momentum only, the non­

zero angular momentum of our spheres is probably the cause of the 'anomalous' Cres values which are 

larger than 1. 
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3.4. Improved collision experiment between two spheres in a groove 

(SS 316C) 

In this improved collision experiment, a third sphere rather than a direct laser pulse was used to excite 

sphere 1 into motion in order to avoid damaging the surface of sphere 1 due to laser ablation. The 

displacement-time graphs for this experiment were qualitatively identical to experiment 3.3 and are 

therefore not shown here. The third sphere was merely used as a striker, so its displacement-time data 

was not used. Both sphere 1 and sphere 2 showed the same quadratic regions corresponding to sliding 

on the groove and the exponential regions corresponding to rolling without sliding. Sphere l's graphs 

showed the same convex quadratic region corresponding to acceleration after the collision as before. 

Curve-fitting was carried out using the same equations as in experiment 3.3. 

3.4.1 Sphere-sphere friction coefficient, µb 

A graph of t.w against t.v was again generated to find the sphere-sphere friction coefficient, µb, from 

the relation t.w =µbk t.v . A linear fit of this data gives µb = 1.341 ± 0.021. To compare this with the 
r 

value found in experiment 3.3, compute the quantity = ~ . If rJ ~ 3 we conclude that the two 
rrj - crt 

measurements, µ3 and µ4 , agree since they are within 3 standard deviations of each other. rJ = 1.23 < 

3, so we conclude that the value of µb found from experiment 3.4 is in good agreement with that found 

from experiment 3.3. 

wl,-wlj (rad/ s] 
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200 

/::,.w 
Plot of - to find µ6 

/::,.v 

Linear fit: 
y =a+ bx 
a= 23 .7 ± 5.6 rad/s 
b = 11170 ± 180 rad/m 
R

2 
= 0.962 

-+--------~---------- vl;- vl1 [m/s] 
0 .02 0.04 0.06 0 .08 

Fig 3.4.la. Plot of llw vs llv for sphere 1, which was excited via 

impact by a third sphere . Since llw = ""k llv , µb can be 
r 

obtained from a linear fit of the data . Its value is µb= 1.341 ± 
0.021, which agrees with the value found in experiment 3.3 

with an 17-value of 1.23 < 3. 

The black line is the linear fit y =a + bx where a = 23 .7 ± 5.6 

rad/s and b = 11170 ± 180 rad/m . The adjusted R-squared 

value for the fit is 0.962 which is very close to 1, indicating 

that the linear fit is appropriate. 

The adjusted R-squared value is 0.962 which is close to 1, indicating that the linear fit is appropriate. The 

data points in this experiment are distributed much more closely to the best fit line than in experiment 
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3.3.1, which is reflected in the adjusted R-squared value which even closer to 1 than before. These 

results may indicate that the technique of preventing damage to sphere 1 from laser ablation by using a 

third sphere as a striker may produce more reproducible results. It is possible that the damage to sphere 

1 from the laser ablation caused the greater scatter in results in experiment 3.3. 

3.4.2 Coefficient of restitution, Cres 

The data for Cres is for this improved experiment is shown in fig 4.2a) . Values of Cres greater than 1 are 

still present, and in this experiment there are also several values of Cres that are less than 0. For the 

positive values of Cres1 Cres,+ = 0.65 ± 0.37. The large size of the standard deviation relative to the 

mean indicates that the data is still too noisy and cannot be used to precisely determine Cres or extract 

its velocity dependence. 

Cres 

2 

Coefficient of Restitution, Cres 

.. 
Fig 3.4.2a. Plot of Cres • the coefficient of restitution, against 

vOl, the velocity of sphere 1 at the beginning of the "•p : experiment just after it has been excited into motion by the 
• •: •• ." .: • •• ; •. striker sphere. For the positive values of Cres• Cres,+ = . . ... . .... . ' . . . . . 

t---~--i 

. i : . • •. • 0.65 ± 0.37, which indicates that the data is still too noisy 

.+--=---"--~_.....~~---+_.._•.....,..___.__• ~-+-_._.,'1---±-0~
0 

~~~ ~1 [m/s] and cannot be used to determine Cres · 
O.Q2 0.04 O.Q6 O.d's • 0. " 

0
0.12 . . 

-1 

Vzf - Vtf 
An examination of the data revealed that the negative values of Cres = here correspond to 

Vii - Vzi 

cases where the numerator, v21 - v11, was negative. The denominator v1 i - v2 i was always positive 

as expected. The convex quadratic region of sphere l's displacement-time graph, as prominent in 

experiment 3.4 as it was in experiment 3.3, corresponds to linear acceleration of sphere 1 due to torque 

from sphere 2 during the collision. The negative denominators thus correspond to cases where sphere 

l's velocity after the collision exceeded sphere 2's due to the linear acce leration from the torque. 
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4. Conclusion 

This work has provided a first insight into the collision dynamics for micrometer-scale stainless steel 

spheres. The air resistance friction coefficients and Coulomb friction coefficients for SS 440C and SS 

316C spheres have been experimentally determined. The sphere-sphere friction coefficient for SS 316C 

spheres has also been determined via two collision experiments whose results are in agreement. The 

coefficient of restitution for SS 316C spheres could not be precisely measured with the current 

experimental method and materials, and thus could not be compared with theoretical predictions. 

There was also a relatively large spread in transition times measured for SS 316C and SS 440C spheres, 

which would have to be improved on in order to compare these results with theoretical predictions of 

the transition time. Although efforts were already made to minimize contamination by dust, 

measurements might be improved by conducting the experiment in vacuum to prevent dust particles 

from affecting it. In addition, data from more different types of coll isions (eg. collisions in which sphere 

2 also has a non-zero initial velocity, glancing collisions in which the spheres collide at an angle) could be 

collected and cross-compared to confirm the experimental results. 
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