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Abstract

The quasi-static interactions between macroscopic, spherical particles are well described by the Hertzian
contact law. However, little is known about the interaction law at the micrometer scale, where the
effects of electrostatic and hydrodynamic forces at the contact are no longer negligible. Contact
dynamics at the micrometer scale have been relatively unexplored due to experimental challenges, since
the particles are too small in size to be excited by actuators but too massive to be manipulated by
electromagnetic fields. In this work, we experimentally study the dynamic interactions between two
micrometer-scale spheres colliding in a v-shaped groove. From our experiments we determine physical
parameters of interest that inform us about the force laws that apply before, during and after the
collision. These parameters include the coefficient of air resistance, the coefficient of friction between
the spheres and the groove, the coefficient of friction between two spheres in contact, and the

coefficient of restitution.

Motivations for Work

A fundamental understanding of the laws controlling the dynamic interactions between micrometer-
scale particles is relevant to many applied areas, ranging from the large-scale fabrication of
microelectronic devices (where, for example, the interaction of wafers with dust particles represents
one of the biggest fabrication challenges) to the flow and packing of granular particles in pharmaceutical

and chemical applications.

In particular, metamaterials research involves the creation of new materials from periodically arranged
repeated subunits. The arrangement of the subunits is engineered such that the metamaterial exhibits
novel desired material properties. Extensive research in the Daraio lab has been carried out on soliton
wave propagation in 1D, 2D and 3D periodic arrangements of centimeter-scale stainless steel spheres.
An understanding of the contact dynamics for micrometer-scale stainless steel spheres will pave the way

for the creation of new metamaterials that exploit the unique properties of these smaller spheres.
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1.1 The Hertzian contact force between spheres

The interactions between spherical particles initially in point contact are governed by the quasistatic

EV2R
3(1-02)

Young’s modulus, o is the Poisson ratio and h is the deformation of the spheres, which is given by the

Hertzian force', Fy..r, = Kh3/2, where K =

R is the radius of the spheres, E is the elastic

separation between the centers of adjacent spheres minus the sum of their radii.

The Hertzian force is derived by considering the pressure
between the two deformed spheres inside the region of contact

C. In general C is an ellipse with axes a and b. By substituting

uz——-l;—gffc @dxdy into the equation describing the

geometry, Ax?> + By? + u, + u, = h, we obtain the equation

to be solved for the pressure distribution in the region of contact: Fig 1.1a. Figure from ref [2] showing
geometry being discussed.
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Since this equation is equivalent to the equation for the potential inside a uniformly charged ellipsoid,

the results from potential theory can be used to show that the pressure inside the region of contact is

2 2
given by B,(x,y) < |1 —z—z——i—z . By considering the relation between force and pressure, F =

JI. P:(x,y) dxdy, we obtain the exact expression for the pressure,

3F 2 2 )
Ry = 5s— fl - % — % --- equation (2)

Substitution of equation (2) into equation (1) gives elliptic integrals for h, A and B:

FD (oo de )
h= 7.{0 (a%+e)(b2+e)e --- equation (3.1)
FD ro de .
A= 7fo (@+e) @ +e)(bre)e --- equation (3.2)
FD (oo de .
B = 7-’-0 (b2+6)/(a%+e) (b2 +e)e --- equation (33)
In the case of two deformed spheres with equal radii, = B = % . Also, the region of contact is a circle, so

set a = b in equations (3.2) and (3.3) to obtain

1 1
a= FE(%)E --- equation (4)
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= EU ). Substitution of equation (4) into equation
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where F is the force in the contact regionand D = 5(

2 2 1 3
(3.1) gives h = FE(—?;)E which can be inverted to obtain the expression for the Hertzian force, F o hz.

1.2 Molecular adhesion between spheres:

The Derjaguin-Muller-Toporov model

The Hertizian force describes an ideal interaction in which adhesion between the spheres is not
accounted for. The Derjaguin-Muller-Toporov (DMT) model® and the Johnson-Kendall-Roberts (JKR)
model™ are the most widely accepted theoretical models for the adhesive force that acts between
spheres during contact. The JKR model is a more accurate approximation for large spheres with small
stiffness which deform a lot during collision, while the DMT model works better for small spheres with
large stiffness that deform relatively little®™. Since our research deals with micrometer-scale stainless

steel spheres which deform relatively little during impact, only the DMT model is presented here.

The DMT model is derived by considering the deformation of an
elastic sphere in contact with a rigid surface. The energy of
interaction between the sphere and the plane is decomposed

into a sum of the volume energy of elastic deformations,

W, = [, F.(a)da, and the surface energy of molecular forces,

W, = f0L<p(Z)21rr dr where @(Z) is the interaction energy per

unit area. L can be taken to be infinity since for our relatively

stiff spheres, Z < R. Note from the diagram that a is the

deformation of the sphere and Z is the height of the deformed Fig 1.2a. Figure from ref [3] showing geometry

part of the sphere above the surface. ! bt distiissed.

In the region of contact, Z = ¢ = constant, where € is the smallest possible spacing between the

sphere’s surface and the plane. Thus, the surface energy inside the contact region is

W, = f0L<p(s)27rr dr = maR@(e) . Outside the region of contact the adhesive force still acts at a

: __ ) 1 .
distance; in this region (x, @) = == [ax + (x? - az)arctang] + e . W', the surface energy outside the

region of contact, can be expressed as an integral depending on Z(x,a). Then, by the method of
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generalized displacements, the adhesive force at the place of contact is F;(a@ = 0) = S 5
a a

2mRp(e). B

1.3 Dissipative forces

1.3.1 Dissipation during sliding motion

In classical models of friction, the dissipation of energy due to one material sliding against another is
described by the Coulomb friction force F,,,, = —uN , where N is the normal contact force. The value
of the constant y depends empirically on the materials in contact. When a force is applied to one of the
materials, static friction initially acts between the materials. When the force exceeds a certain
magnitude the material begins to slide against the other and Coulomb friction applies. The viscous drag

. . . & & m
force due to motion in fluids such as air or water follows the equation Fyiscous = == v L

1.3.2 Dissipation during rotational motion

Attempts have been made to model dissipation due to rotational motion for both the JKR”! and DMT'®
models. In particular, Brach, Dunn and Cheng derive a model for dissipation during rolling due to the

tearing-off force required to overcome the molecular adhesion force derived in the DMT model.

They consider a rolling microsphere in contact with a flat surface. By considering the various torques on

the sphere they arrive at the equation for angular displacement mk? Z—ng = —1F (1) + My(z) + My (),

where k is the radius of gyration and F; is the tangential force on the sphere due to friction from the
surface. The moment from the adhesion force which acts at the trailing edge of the contact during
rolling is given by M, (1) = foznfoCAwa3 cos’a da = nfyCywa?, where f, is the adhesion force and C,
the adhesion dissipation constant. The moment due to the Hertzian deformation at the contact is given

by M,(7) = foa foznP(p’,a’) Cy vy (p', ") p'*cosa’dp’ da =§ ECHwa"' , where P is the Hertzian

force, v, is the relative velocity, Cy is the Hertzian dissipation constant and K is a constant depending

on the Young’s modulus and Poisson ratio. The geometry is labelled in fig 1.3.2a.®



Contact region:

Fig 1.3.2a. Figure from ref 8] showing
geometry being discussed.

1.4 The coefficient of restitution

Our current experimental setup can measure the positions and thus the velocities of the spheres, but is
unable to resolve the deformation of the spheres during the collision and the adhesive forces at the
surface of the spheres. We therefore need a way to extract information about the physics of the

collision based solely on velocity data before and after the collision.

The coefficient of restitution provides a means by which this may be achieved. It is defined as C,.; =

l;zf - Zlf where v;,¢ is sphere 2’s velocity just after the collision, vy is sphere 1’s velocity just after the
1i — V2i

collision, vy; is sphere 1’s velocity just before the collision and v,; is sphere 2’s velocity just before the
collision. Although classical theory predicts that C,..s should be a constant, experiments have shown
that it tends to be a decreasing function of the impact velocity. The experiments of Antypov et al, and
Kuwabara and Kono show it to be a monotonically decreasing function of the impact velocity®"*%

whereas the experiments by King et al. have shown it to decrease non-monotonically™*.

10
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Fig 1.4a. Figure from Antypov et al (ref [9]) showing
the experimentally measured coefficient of

Fig 1.4b. Figure from King et al (ref [11]) showing the
experimentally measured coefficient of restitution
decreasing non-monotonically as a function of
impact velocity.

restitution decreasing monotonically as a function of
impact velocity.

There are numerous models attempting to explain the velocity dependence of the coefficient of
restitution. One approach is to apply a viscoelatic collision model with adhesive forces based on the JKR
model to derive a decreasing coefficient of restitution.™ Another approach is to include a dissipative
term that is proportional to the rate of change of deformation. In the work of Kuwabara et al and

. . . . md?h Biqo B dh
Morgado et al, the equation of motion for the deformation is %F = —~kh? — ERI‘/HE [11113] The

first term on the right-hand side is the Hertzian force and the second is the dissipative term.
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Fig 1.4d. Figure from Brilliantov et al (ref [12])

Fig 1.4c. Figure from Kuwabara et al (ref [10]). The showing their predicted dependence of the

solid curves are predicted by their model. The points
are experimentally measure values of the coefficient
of restitution.

coefficient of restitution on the impact velocity.
Numerous other models from the literature are
shown as well.

Given the preponderance of theoretical models, our approach is to experimentally investigate the
velocity dependence of the coefficient of restitution for our system and then compare it with various
models to determine which gives the best fit. When precise measurements of the coefficient of

restitution are made we will be able to modify the terms in the theoretical model until it matches the

11



experimental results. Thus, without measuring the details of the collision per se, we can verify
theoretical models that predict the experimental observable- the coefficient of restitution- and thus

understand the physics of the collision.

12
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2.1 Overview of experiments

The goal of the experiments is to study the dynamics of one-dimensional collisions between
micrometer-scale spheres. The spheres are placed in a v-shaped groove fabricated on a silicon wafer
which maintains their alignment throughout the collision process and restricts their motion to one
dimension. A sphere is excited into motion by a laser pulse which ablates material from the sphere’s
surface. The reaction force from the ablation pushes the sphere forward. The motion of the spheres is
captured using a high-speed camera, and their displacement-time data is extracted via image processing

of the footage. Curve fitting of the data is then used to extract parameters of interest.

Before and after the collision, the parameters of interest include the air resistance friction coefficient

and the coefficient of friction between the sphere and the groove. During the collision the coefficient of

friction between the two spheres in contact becomes important as well. In addition, the coefficient of
Var —Vaf

restitution Cppg = ey L ratio of the difference between the two spheres’ final and initial velocities,
1t = ¥z

provides inside into the dissipative losses that occur during the collision.

2.2 Experimental materials

2.2.1 Stainless steel spheres

The two types of spheres used in our experiments were made of grade 440C (SS 440C) and grade 316C
(SS 316C) stainless steel. The SS 440C spheres have a diameter of 229um and a mass of 47.9ug. The SS
316C spheres have a diameter of 300um and a mass of 113ug. The two different sizes were chosen in

order to study how sensitive the results would be to the mass and size of the spheres.

2.2.2 Grooves on silicon wafers

The grooves in which the spheres were placed were fabricated on silicon wafers via anisotropic wet
chemical etching. A 1pm thick layer of silicon nitride (SisN,), designed to act as a mask, was deposited
on the surface of [100] silicon wafers via chemical vapor deposition. Patterns corresponding to the
desired groove dimensions were etched into the SisN, mask via photolithography and reactive-ion

etching processes. The grooves were then etched into the unmasked silicon using a 50% KOH solution at

14



85°C. The grooves had a width of 240pm and a groove angle of 70.6°, with an estimated surface

roughness of ~ 0.1 pm*®, 4

2.3 Experimental setup

The spheres are excited into motion by a Q-switched Nd:Yag nanosecond laser (Quantel Brilliant,
maximum power 3.2W, 532nm wavelength, pulse duration 4ns) operating at various laser intensities.
The laser beam is channeled through a half-wave plate and a polarized beam splitter. The beam splitter
splits the beam into two arms. The groove wafer is positioned and clamped onto a sample stage such
that one arm of the beam is aligned with the front end of the groove and the other with its back end. By
rotating the halfway plate we can change the polarization of the beam, and thus control the beam

intensity on each arm.™ For the experiments presented here, we only use the front arm of the beam.

| High speed camera
. & Microscope system

Fig 2.3a. Schematic of experimental setup.
Spheres are placed in a v-shaped groove
etched into a silicon wafer. A laser pulse is
fired at the first sphere. The sphere’s
single shot laser pulse motion is captured by the high-speed

0~1mJ@532nm camera. Image courtesy of ref [14].
pulse duration 4ns

p { L o e
# > V-shaped grooves on
a i sificon wafer

The spheres are placed inside the groove by hand using tweezers and moved to precise initial positions

via a robotic positioning system. The positioning system consists of a positioning tip (fine steel wire
glued to a 3d-printed plastic tip) whose motion is controlled in 3 perpendicular directions, x, y and z, by
3 motors. The groove lies in the x-y plane, parallel to the x-axis. The positioning system’s software makes
use of images from the high-speed camera and image processing to locate the spheres. At the beginning
of each experiment, the system locates the spheres using image deconvolution. It then brushes the
spheres from above until they are 100 pixels apart from each other. Next, it pushes each sphere to the

desired initial position, which is specified in pixels by the user.

The front arm of the laser beam is focused via a lens onto the center of the first sphere. A laser pulse 4ns

in duration is fired at the sphere. The size of the laser spot on the sphere’s surface is 40 um. ¥ The

15



laser pulse ablates a thin layer of material from the sphere’s surface, resulting in reaction forces that

push the sphere forward in the groove™.

A high-speed camera (Phantom v12.1) is used to image the motion of the spheres. The image of the
spheres to be recorded is magnified by a Leica S6D microscope with additional achromatic lens sets
between the camera and the sample stage. The microscope setup provides a spatial resolution of 4.3um
per pixel, and the maximum field of view is 5.5x3.4mm?. The high-speed camera is operated at 25000fps
with a 39us exposure time and a total pixel resolution of 960x120. A 150W quartz halogen fiber optic

illuminator (Fiber-Lite PL8OO 150W) is used to illuminate the sample stage. ™"

For the data analysis, the positions of the spheres on the groove at each point in time are retrieved from
the saved images through image deconvolution. ** Curve fitting of the displacement-time graphs is used

to extract the experimental parameters of interest.

2.4 Experiments conducted

We began by conducting experiments for single spheres moving in a groove using both the SS 440C and
the SS 316C spheres. However, when we moved on to collisions between two spheres, we were unable
to obtain results for the SS 440C spheres because they tended to stick to the positioning tip and thus be
lifted out of the groove. Despite our efforts to electrically ground the tip to prevent the spheres from
sticking to it due to static electricity, the problem persisted. The problem is therefore probably due to
adhesive forces between the sphere’s surface and the tip. This problem does not occur for the heavier
SS 316C spheres, whose weight probably overcomes the adhesive force, preventing them from being
lifted out of the groove. Thus, the two-sphere collision experiments were performed with SS 316C
spheres only. Future improvements to the experimental system will be required in order to perform the
collision experiments with SS 440C spheres so as to study how the collision physics may vary with sphere

mass and size.

2.4.1 Precision of automated sphere positioning system

This initial experiment was designed to test the precision of the automated robotic sphere positioning
system. First, the system was programmed to position a single sphere in a groove at a target x-

coordinate of 200 pixels. The positioning test was repeated 100 times. Next, the system was

16



programmed to push a sphere to the left 30 times in target increments of 5 pixels per push. Results from
this test give indicate how precisely the robotic system can move a sphere to a desired position or move

it by a desired number of pixels.

2.4.2 Single spheres moving in a groove (SS 440C and SS 316C)

The purpose of this experiment is to determine the air resistance friction coefficient and sphere-groove
friction coefficient for SS 316C and SS 440C spheres. A single sphere (SS 316C or SS 440C) was placed in a
v-groove and excited by a 4ns laser pulse at various laser energies. The range of laser energies was used

to create a range of initial velocities.

The SS 316C spheres were excited with a 4ns laser pulse at 14 different laser energies. The experiment
was repeated 15 times per laser energy, making for a total of 210 runs of the experiment. The laser
energies used were 0.151, 0.215, 0.244, 0.275, 0.300, 0.302, 0.322, 0.324, 0.342, 0.355, 0.356, 0.363,
0.364 and 0.366 mJ/pulse.

The SS 440C spheres were excited with a 4ns laser pulse at 14 different laser energies. The experiment
was repeated 15 times per laser energy, making for a total of 210 runs of the experiment. The laser
energies used were 0.0222, 0.0385, 0.0587, 0.0590, 0.108, 0.135, 0.164, 0.192, 0.219, 0.245, 0.268,
0.287, 0.304 and 0.315 mJ/pulse. The laser energies used for SS 440C were lower than those used for SS
316C because of the lower mass of the SS 440C spheres, which allowed this range of laser energies to

produce the same range of initial velocities as for SS 316C.

The displacements of the spheres at each point in time were recorded using the high-speed camera.

2.4.3 Collision between two spheres in a groove (SS 316C)

The goal of the collision experiment is to extract the coefficient of restitution and sphere-sphere friction
coefficient for SS 316C. Two SS 316C spheres were positioned at an initial distance of 300 pixels apart by
the robotic positioning system. The first sphere was excited with a 4ns laser pulse at 10 different laser
energies. The experiment was repeated 20 times per laser energy, giving a total of 200 runs of the

experiment. The laser energies used were 0.122, 0.140, 0.165, 0.189, 0.212, 0.233, 0.251, 0.265, 0.276

17



and 0.283 mJ/pulse. The first sphere collided with the second sphere, which was initially stationary. The

displacements of the spheres at each point in time were recorded using the high-speed camera.

2.4.4 Improved collision experiment between two spheres in a groove (SS 316C)

In the earlier collision experiment, the first sphere was excited into motion by direct laser ablation. The
damage to the sphere’s surface due to the ablation may have affected the results. To improve, we
instead used a third ‘striker’ sphere to excite the first sphere into motion, such that only the third
sphere was shot by the laser. Of interest in this experiment is the collision between the first and second

spheres. Displacement-time data from the striker sphere is not used.

The first and second spheres were again positioned 300 pixels apart by the robotic positioning system.
The striker sphere was positioned 100 pixels away from the first sphere. The striker sphere was excited
into motion by a 4ns laser pulse at 10 different laser energies. The laser energies used were 0.115,
0.152,0.191, 0.211, 0.232, 0.253, 0.273, 0.293, 0.313 and 0.351 mJ/pulse. The experiment was repeated
20 times per laser energy, giving a total of 200 runs of the experiment. Upon being hit by the striker, the
first sphere was set into motion and collided with the second sphere. The displacements of the spheres

at each point in time were recorded using the high-speed camera.
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3.1 Precision of Automated Sphere Positioning System

The robotic sphere positioning system is able to position a sphere at a desired location with great
precision. Figure 1a) shows that the sphere was positioned precisely at the desired x-coordinate of 200
pixels in all but 3 out of 100 trials. Figure 1b) shows that the sphere was pushed to the left by precisely
five pixels in all but 2 out of 30 trials. The 2 ‘bad’ trials were caused by the sphere sticking to the
positioning tip and being pulled back to the tip’s resting position. The problem of spheres sticking to the
tip was reduced by changing the material of the tip to stainless steel and electrically grounding it to

prevent the buildup of static charge.

Initial Position of Sphere Pushing Sphere to the Left in 5 Pixel Increments

Pixel no. Pixel no.
200 (e 200
150 150
100 100 :
50 50
0 Trial no.

20 40 60 80 100

Fig 3.1a. The robotic positioning tip was able to
precisely position the sphere at the desired pixel
number 200 in 97 out of 100 trials.

— Push No.
5 10 15 20 25 30

Fig 3.1b. The robotic positioning tip was able to push
the sphere to the left by precisely 5 pixels in 28 out
of 30 trials. In the remaining 2 trials the sphere stuck
to the tip and was dragged back to the tip’s resting
position. The problem of spheres sticking to the tip
was reduced by electrically grounding the tip.

3.2 Single spheres moving in a groove (SS 316C and SS 440C)

3.2a) Least- squares fits of displacement-time graphs

A typical displacement-time profile contains an initial quadratic part followed by an exponential part.

Using least-squares fitting we determined that the exponential part obeys the equation x = a +

=t
bT(1 — eT) and that the initial quadratic part obeys the equation x = x + vot + ct? + a + bT(1 —

=t
er).

20



x1 [m]

0.0018 -
Fig 3.2a)-1.Typical displacement-time graph
for a bead rolling in a groove. An initial
0.0016 | quadratic part and a subsequent
exponential part can be distinguished by
0.0014 | Exponential fit performing least-squares fits on the data.

We define the “transition time” as the time
when the graph shape changes from

0.0012 | “Transition time” quadratic to exponential.

0.0010 -

Quadratic fit

0.0008

L

O P ISP
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d?x mdx

The exponential part corresponds to deceleration due to air resistance, given by F ;. = W=~

where T is the friction coefficient corresponding to air resistance. T can be directly found from the
exponential fit. The quadratic part corresponds to constant deceleration due both to F,;- and to the

d?x

Coulomb friction force F.,, =m—3

= ugN, where pug is the Coulomb friction coefficient and

N = 2mg sinf, cosf, is the normal contact force acting on a sphere sitting in a groove with groove

angle 6. The displacement corresponding to F.,,, is given by x = x, + vyt + ct?. Differentiation of this

’ ; d?x . - " . . :
expression yields = 2c. Inserting this into the expression for F,,, we obtain an expression for p, in

terms of ¢, pug = , which enables us to determine u, from the quadratic fit. The “transition

_gsinBO
time”, which we define as the time when the displacement-time curve changes from quadratic to

exponential, can be precisely determined as the intersection point of the quadratic and exponential fits.

A typical set of quadratic and exponential fits together with their residuals are shown below. Residuals
were typically small in magnitude (of the order of 10°) and randomly distributed about 0, indicating that
the fits were appropriate. In addition, fit parameters did not change drastically between runs of the

experiment, indicating that the fits were appropriate for the data.
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Quadratic fit Exponential fit

x1 [m] x1 [m]
0.00100 0.0018
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0.00095
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0.00090
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0.00085
t[s] t[s]
0.001 0.002 0.003 0.004 0.01 0.02 0.03 0.04 0.05
Residuals (Quadratic fit) Residuals (Exponential fit)
3,%1078 .
- .'.
* 4
2.x1076 ?
~ . " .
1.x1076 e A AT T il
A i %
* % . . A »
S TET g0 e0 CeJNsel “'os i
% - S
-1.x1076 “ . :
.'.I' . 't .'
—2%1076 L "

Fig 3.2a)-2. Typical quadratic and exponential fits with residuals shown.
The small magnitude and random distribution of the residuals, as well as
the consistency of fit parameters between different runs of the
experiment, indicate that the fits were appropriate.

3.2b) Physical explanation

We can provide a physical explanation for the presence of two parts- quadratic and exponential- in the
displacement-time graphs. After laser excitation, the sphere initially slips on the groove. In accordance
with the Coulomb model, kinetic friction acts between the sphere’s surface and the groove’s surface as
the former slides against the latter, thus producing displacement which depends quadratically on time.

Air resistance also acts on the sphere at this time since it has non-zero velocity.

At the transition time, the sphere stops sliding and begins to roll without slipping. This occurs when the

point of contact between the sphere and the groove is stationary. Thus, at the transition time, the
- ) ; ) .0 )
sphere has slowed to the point where its velocity v is equal to srw, where s = sm(—zﬂ) and 6, is the

groove angle. During rolling without slipping no kinetic friction acts between the sphere and the groove,
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so only the effect of air resistance is left. The air resistance produces displacement which varies

exponentially in time, as expected.

3.2¢) Transition time, tr

The transition time t , which is the time when the sphere stops sliding and begins to roll without
slipping, is plotted as a function of initial velocity v, for SS 316C and SS 440C spheres respectively. t;
increases with v, as is to be expected since spheres imparted with a greater initial velocity should slip
for a longer time. For both types of spheres, t appears to be a linear function of vy. For SS 316C
spheres, the linear fit is t7= -(0.00177 £ 0.00063 ) + (0.192 £+ 0.011)v,. For SS 440C spheres, the fit
is given by t; = (0.00161 + 0.00059) + (0.148 + 0.014)v,. Ideally, these graphs would allow us to
predict when a sphere with a given initial velocity will start rolling without sliding. A comparison of this
data with theoretically predicted transition times (based on models including the air resistance and
Coulomb friction) could be used to verify theoretical models. However, for the SS 316C fit the value of
the adjusted coefficient of determination R-squared is 0.579, and for the SS 440C fit it is 0.489. The R-
squared values are not very close to 1, most likely due to the large scatter of data points about the best
fit line, particularly in the case of SS 440C. More precise transition time data is needed to conclude

about the dependence of transition time on initial velocity.

SS 316C SS 440C
Transition time [s] Transition time [s]

0.014 . 0.014

Linear fit (SS 316C):
0.012 tr=a+ bv

0.010 a =-0.00177 £ 0.00063
b=0.192 £0.011

0.008 RZ =0.579

0.012

0.010

0.008
Linear fit (SS 440C):

0.006 0.006
tr=a+bvg
0:004 0:004 a=0.00161 + 0.00059
0.002 0.002 b=0.148 £ 0.014
. 2
— R?=0.489 —
0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08
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Fig 3.2c)-1.Transition time t; as a function of v, the
initial velocity of the sphere, for SS 316C spheres. The
transition time increases linearly with v, matching the
linear fit tr = -(0.00177 + 0.00063 ) + (0.192 + 0.011)v, .
However, R? = 0.579 which is not close to 1.
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3.2.1 Air resistance friction coefficient, T

Fig 3.2c¢)-2.Transition time tr as a function of vg, the
initial velocity of the sphere, for SS 440C spheres. The
transition time increases linearly with v, matching the
linear fit tr = (0.00161 + 0.00059) + (0.148 + 0.014)v,.
However, R? = 0.489 which is not close to 1.

The air resistance coefficients T determined from the 210 runs of the experiment with SS 316C stainless

steel spheres and the 210 runs of the experiment with SS 440C stainless steel spheres are plotted as a

function of the initial velocity of the sphere, v, .

For SS 316C, T is approximately constant at T =

0.0959 + 0.0056 s at low velocities and begins to increase at higher velocities. At higher velocities we

observe an increased spread in the values of T.

For SS 440C spheres, T gradually increases with vj.

Although the numerical values of T for SS 316C and SS 440C fall within a similar range, the velocity

dependence is quite different, suggesting that the differences in masses of SS 316C (113ug) and SS 440C

(47.9pg) and the difference in their surface areas (2.83x10”7 m? for SS 316C versus 1.65x10’m?” for SS

440C) do influence the air resistance acting on the spheres.

T [s]
0.20

0.15

0.10

0.05

0.00

88 316C

0.00

v0 [m/s]

0.02 0.04 0.06

Fig 3.2.1a. Air resistance friction coefficient T as a
function of v,, the initial velocity of the sphere, for SS

316C spheres. T is approximately constant at T
0.0959 + 0.0056 s for low velocities, and begins to
increase at higher velocities.

T [s]
0.14

0.12
0.10

0.0:

=3

0.06 1

0.04

0.02

SS 440C

Jr%*; *-%-'H Jr

VO [m/s]

0.02 0.04 0.06 0.08

Fig 3.2.1b. Air resistance coefficient T as a function of v,
the initial velocity of the sphere, for SS 440C spheres. T
increases gradually with vq.
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3.2.2 Sphere-groove Coulomb friction coefficient, p,

The Coulomb friction coefficient u, , which describes the friction between the sphere and the groove

when the sphere is sliding on the groove, is plotted as a function of the initial velocity of the sphere for

SS 316C and SS 440C spheres. For SS 316C spheres, 1, remains constant as initial velocity increases. The

mean value of ugis 0.333 £ 0.065. On the other hand, for SS 440C spheres u, appears to increase

gradually with initial velocity and then plateau out.

SS 316C SS 440C
H u

06 3
0.5 . - :

05 E s
04

04 =
0.3

03

. 0.2

02

0.1 ol

0.0 v0 [m/s v0 [m/s]

0.00 0.02 0.04 0.06 0.08 Cenfe) 0.08

Fig 3.2.2a. Coulomb friction coefficient p as a function of
Vo, the initial velocity of the sphere, for SS 316C spheres.
Hg remains constant as vo increases, and has a value of
0.333 £ 0.065.

Fig 3.2.2b. Coulomb friction coefficient p as a function
of vq, the initial velocity of the sphere, for SS 440C

spheres. |, increases gradually with voand then plateaus

out.

3.3 Collision between two spheres in a groove (SS 316C)

3.3a) Least- squares fits of displacement-time graphs

A typical displacement-time graph for the two
spheres is shown in fig 3a)-1. Sphere 1 is the
‘striker’ sphere which is excited by the laser
pulse. For sphere 1, before the collision we can
observe that the graph contains the expected
initial concave quadratic part corresponding to
sliding and the following exponential part
corresponding to rolling without sliding. The
collision point is demarcated by a drop in

velocity which manifests as a decrease in the

Displacement—Time Graph, Sphere 1 and Sphere 2

%1 [m]
0.0025} Collision
‘ Collision

00020 + + Sphere 1
- Sphere 2

0.0015}

0.0010 -

; i i e t[s]
0.2 04 0.6 0.8 1.0 L2

Fig 3.3a)-1. Displacement versus time graphs for each of the two
spheres. Sphere 1 (blue line) is the ‘striker’ sphere which is set into
motion by the laser pulse. Sphere 2 (red line) is initially at rest and

begins to move after sphere 1 collides with it.
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gradient of the displacement-time graph. Just after the collision, there is a convex quadratic region

-t
which obeys the equation x = x; + vit + ¢;t> + a+ bT(1 —eT), where the fit coefficients are
different than for the initial concave quadratic part (see fig 3.1a for details). After the convex quadratic

region there is again an exponential part corresponding to rolling without sliding.

Sphere 2 is initially at rest until it is hit by the striker. Its velocity is zero prior to the collision. After the
collision its displacement-time graph contains the concave quadratic part corresponding to sliding and

the exponential part corresponding to rolling with sliding.

3.3.1 Sphere-sphere friction coefficient, p,,

Of particular interest in this experiment is the displacement-time profile of sphere 1 immediately after
~t

the collision, which is a convex quadratic obeying x = x; + Vit + ¢;t> + a+ bT(1—eT) . The

equation x; + v;t + ¢;t? describes acceleration rather than deceleration. We deduce that the

acceleration arises because srw > v after the collision.

Sphere 1
x1 [m]
0.0022
Collision

0.0020
0.0018 — Fig 3.3.1a. Displacement-time profile of sphere 1. The

Convex quadratic convex quadratic region after the collision corresponds to
0.0016 region acceleration, which arises because srw > v after the

collision.
0.0014
0.0012 — Exponential fit
— Quadratic fit
0.0010
0.0008
t
0.0 0.2 04 0.6 0.8 1.0 12

Each of the exponential and quadratic fits, together with their residuals, is shown in fig 3.1b. The overall
random distribution of residuals about zero and the small size of the residuals indicate a generally good
fit. In addition, the fit parameters did not vary drastically between different runs of the experiment,

indicating that the fits were appropriate for the data.

26



Sphere 1- Quadratic fit (Before collision)
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Sphere 1- Exponential fit (Before collision)
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Fig 3.3.1b. Example of quadratic and exponential fits to sphere 1’s
displacement-time data before and after the collision. The residuals and
consistency of fit parameters between runs of the experiment indicate
an appropriate fit.
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d . . , .
2ty & kgyg over a period of time At, we arrive at the relation

and r =
dt

: ; dv _
By considering o=
STw; = (ks? + l)vf — kszvl- , where k = 5/2 is related to the moment of inertia of the sphere, v; and w;
are the initial linear and angular velocities of the sphere and v; is the final linear velocity of the sphere.
Av and Aw can thus be determined simply from fit data which gives the velocities of the sphere before

the collision, just after the collision and at the end of the convex quadratic part. In addition, we have

rAw k ; ; "
t= = s and so Aw = ”%Av, where r is the sphere radius and p,, is
b

that —Av=fFCT"“dt = ||

HpTm

the friction coefficient between the two spheres.

Thus, a plot of Aw against Av for sphere 1 yields the sphere-sphere friction coefficient, y;. From a linear
fit of the graph we obtain pu;, = 1.403 + 0.046. The adjusted value of the coefficient of determination

R-squared for the fit is 0.852 which is close to one, indicating that the linear fit is appropriate.

Aw
Plot of Av to find 2,
wl,-—wlf[rad/s]

70

60 Hnear ft:t: Fig 3.3.1c. Plot of Aw vs Av for sphere 1, the striker sphere.
y=a+bx

5 a=-7.1+1.3rad/s Since Aw = i:LkAv , Up can be obtained from a linear fit of
b =11690 + 390 rad/m the data. Its value is y,= 1.403 + 0.046.

40 R*=0.852

301

The black line is the linear fity = a + bx where a =-7.1 + 1.3
rad/s and b = 11690 + 390 rad/m. The R-squared value of the
fit is R> = 0.852 which is close to 1, indicating that the linear

fit is appropriate.

LA S . . v13=v1 7 [mys]
000f"* * 0002 0.003 0.004 0.005 0.006

3.3.2 Coefficient of restitution, C,..¢

The coefficient of restitution is given by C,..s = 1;2"—_”% where v, is sphere 2’s velocity just after the

1i 2i

collision, v, is sphere 1’s velocity just after the collision, vy;is sphere 1’s velocity just before the
collision and v,; is sphere 2’s velocity just before the collision. It can be calculated directly from the
velocities obtained from curve fitting. It is plotted here as a function of v01, which is the velocity of

sphere 1 at the start of the experiment just after it has been excited by the laser pulse.

28



Coefficient of restitution, Cyeg

Crcs
Fig 3.3.2a. Plot of C,;, the coefficient of restitution, against
15¢ v01, the velocity of sphere 1 at the beginning of the
. : experiment just after it has been excited by the laser pulse.
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Cyes appears to be constant in v01, but a calculation of the mean and standard deviation of C,, yields
Cres = 0.73 £ 0.27. The magnitude of the standard deviation is 37% of the magnitude of the mean.
Thus the data is too noisy to allow for a precise determination of C,.s . Data from other sets of
experiments were also used to calculate C,,g, and in all cases, C,.s could not be precisely determined. A
future improvement to the experimental setup will be required in order to investigate the dependence

of Cres on v01 and to precisely determine Cyy .

It is notable that several values of C,.s are larger than 1. At first glance, this seems to indicate that
kinetic energy has been generated, rather than dissipated, in the collision. However, coefficients of
restitution larger than 1 have been observed in the case of oblique collisions impacts of hard aluminum
oxide spheres on thick elastoplastic polycarbonate plates. This has been attributed to a change in the
effective normal between the sphere and the plate, which arises due to deformation of the plate and is
not captured in the calculations for the restitution coefficient, rather than to an increase in the total
kinetic energy."” In our system, however, oblique impact is prevented by the groove. It is likely that our
Cres values larger than 1 arise instead because some of the spheres’ angular momentum is converted
into linear momentum during the collision, as is observed in the convex quadratic part of sphere 1’s
displacement-time graph right after the collision which indicates that sphere 1 is accelerating due to
torque from sphere 2. Since the coefficient of restitution accounts for linear momentum only, the non-
zero angular momentum of our spheres is probably the cause of the ‘anomalous’ C,.s values which are

larger than 1.
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3.4. Improved collision experiment between two spheres in a groove

(SS 316C)

In this improved collision experiment, a third sphere rather than a direct laser pulse was used to excite
sphere 1 into motion in order to avoid damaging the surface of sphere 1 due to laser ablation. The
displacement-time graphs for this experiment were qualitatively identical to experiment 3.3 and are
therefore not shown here. The third sphere was merely used as a striker, so its displacement-time data
was not used. Both sphere 1 and sphere 2 showed the same quadratic regions corresponding to sliding
on the groove and the exponential regions corresponding to rolling without sliding. Sphere 1’s graphs
showed the same convex quadratic region corresponding to acceleration after the collision as before.

Curve-fitting was carried out using the same equations as in experiment 3.3.

3.4.1 Sphere-sphere friction coefficient, u,
A graph of Aw against Av was again generated to find the sphere-sphere friction coefficient, up, from

the relation Aw = ”erAv. A linear fit of this data gives u, = 1.341 £ 0.021. To compare this with the

|13 —H4l

value found in experiment 3.3, compute the quantity = . If n < 3 we conclude that the two

a2-a2
measurements, U3 and p,, agree since they are within 3 standard deviations of each other.n = 1.23 <

3, so we conclude that the value of y; found from experiment 3.4 is in good agreement with that found

from experiment 3.3.

Plot of A to find g,
Av

wl;-wl ¢ [rad/s]

1000 Fig 3.4.1a. Plot of Aw vs Av for sphere 1, which was excited via
impact by a third sphere. Since Aw =“rﬂAv , Up can be
£00 obtained from a linear fit of the data. Its value is p,= 1.341 +
0.021, which agrees with the value found in experiment 3.3
600

with an n-value of 1.23 < 3.

Linear fit:

400 y=a+bx .
&= 23.7'45.6a0/s rad/s and b = 11170 + 180 rad/m. The adjusted R-squared
b=11170 + 180 rad/m value for the fit is 0.962 which is very close to 1, indicating
00 R*=0.962 that the linear fit is appropriate.
0.02 0.04 0.06 0.08 vy L]

The adjusted R-squared value is 0.962 which is close to 1, indicating that the linear fit is appropriate. The

data points in this experiment are distributed much more closely to the best fit line than in experiment

30

The black line is the linear fity = a + bx where a = 23.7 + 5.6



3.3.1, which is reflected in the adjusted R-squared value which even closer to 1 than before. These
results may indicate that the technique of preventing damage to sphere 1 from laser ablation by using a
third sphere as a striker may produce more reproducible results. It is possible that the damage to sphere

1 from the laser ablation caused the greater scatter in results in experiment 3.3.

3.4.2 Coefficient of restitution, C,..¢

The data for g is for this improved experiment is shown in fig 4.2a). Values of C,..¢ greater than 1 are
still present, and in this experiment there are also several values of C,.¢ that are less than 0. For the
positive values of Cyes, Cres+ = 0.65 * 0.37. The large size of the standard deviation relative to the
mean indicates that the data is still too noisy and cannot be used to precisely determine C,..5 or extract

its velocity dependence.

Coefficient of Restitution, Cy.¢

Cres

Fig 3.4.2a. Plot of C,.s, the coefficient of restitution, against

v01, the velocity of sphere 1 at the beginning of the

experiment just after it has been excited into motion by the

striker sphere. For the positive values of C,e5, Cresy =

0.65 + 0.37, which indicates that the data is still too noisy
V01 [m/s] and cannot be used to determine C, ;.

. Vof—0
An examination of the data revealed that the negative values of Cyes = H here correspond to
1 — Vai

cases where the numerator, v, — V5, was negative. The denominator vy; — v,; was always positive
as expected. The convex quadratic region of sphere 1’s displacement-time graph, as prominent in
experiment 3.4 as it was in experiment 3.3, corresponds to linear acceleration of sphere 1 due to torque
from sphere 2 during the collision. The negative denominators thus correspond to cases where sphere

1’s velocity after the collision exceeded sphere 2’s due to the linear acceleration from the torque.
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4. Conclusion

This work has provided a first insight into the collision dynamics for micrometer-scale stainless steel
spheres. The air resistance friction coefficients and Coulomb friction coefficients for SS 440C and SS
316C spheres have been experimentally determined. The sphere-sphere friction coefficient for SS 316C
spheres has also been determined via two collision experiments whose results are in agreement. The
coefficient of restitution for SS 316C spheres could not be precisely measured with the current
experimental method and materials, and thus could not be compared with theoretical predictions.
There was also a relatively large spread in transition times measured for SS 316C and SS 440C spheres,
which would have to be improved on in order to compare these results with theoretical predictions of
the transition time. Although efforts were already made to minimize contamination by dust,
measurements might be improved by conducting the experiment in vacuum to prevent dust particles
from affecting it. In addition, data from more different types of collisions (eg. collisions in which sphere
2 also has a non-zero initial velocity, glancing collisions in which the spheres collide at an angle) could be

collected and cross-compared to confirm the experimental results.
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