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Abstract 

Theories of cosmological inflation, an early exponential expansion of the universe, have solved the 

horizon, flatness, and monopole problems in addition to successfully predicting properties of the 

fluctuations in the cosmic microwave background. Many of these theories have the property, known as 

eternal inflation, where inflation never ends everywhere at the same time and where there are always 

regions of exponentially expanding inflating space. The details of inflation are not known at this 

time and it would be interesting to estimate how generic eternal inflation is in the space of possible 

inflaton potentials. Of the several ways that inflation can be eternal, we focus here on the one, known 

as stochastic eternal inflation , where inflation is prevented from ending everywhere by quantum 

fluctuations in the inflaton field exceeding its classical motion. We argue that the conditions currently 

used to classify a trajectory as stochastically eternal are inadequate for general trajectories where the 

inflaton field may classically have a large velocity or be moving up its potential and are therefore ill­

suited to studying how generic stochastic eternal inflation is. We propose an improved condition that 

takes these possibilities into account as well as more accurately calculating the quantum fluctuations 

using a perturbative Langevin method developed elsewhere. We investigate this condition in specific 

inflaton potentials and find examples where this condition deviates significantly from the one usually 

used in addition to finding examples where the mechanisms for eternal inflation are seemingly met 

even though space is not inflating. 
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Chapter 1 

Introduction 

1.1 Hist orical Introduction t o Inflation 

There were three seemingly unrelated problems with the standard big bang cosmological model in 

the 1970s [1]. The first, called the horizon problem, is that the cosmic microwave background (CMB) 

is observed to be extremely homogeneous over distances that would never have been within causal 

contact with each other in either a radiation or matter dominated universe. The second, called the 

flatness problem, is that to explain the observed flatness of the universe requires an extremely fine 

tuned curvature in the early universe. The standard big bang model does not explain how regions 

that were never in causal contact could be at the same temperature or why the curvature would 

have the value necessary to explain observations. The third problem, called the monopole problem, 

is that as the gauge group of grand unified theories is spontaneously broken by phase transitions 

as the universe cools, magnetic monopoles are produced in quantities that would easily have been 

detected by experiments [2]. 

Guth realized that a possible solution to the monopole problem that he was developing with 

Tye [3] could also solve the horizon and flatness problems at the same time [4]. In this theory, 

known as inflation, a scalar field is trapped in a false vacuum as in Fig. 1.1. While the field is 

trapped in the false vacuum, it quickly dominates the energy density and causes space to expand 

at an exponential rate. This expansion would end when the inflaton tunnels into the true vacuum 

corresponding to the current universe. In Ref. [3], the scalar field was the Higgs field but current 

inflationary research refers to the field as the inflaton and even allows for multiple inflaton fields. 

Inflation solves the horizon problem because the horizon expands more rapidly during inflation 

than the physical distance between two points. Thus, if the universe experienced an initial period 

of inflation, the homogeneous regions in the CMB would have been in causal contact. The flatness 

problem is solved since inflation rapidly drives the universe to the extremely small values of curvature 

necessary for the subsequent radiation dominated universe to evolve the curvature to its present day 

value. The monopole problem is solved if monopoles are produced before or during inflation and 
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V(</>) 

Figure 1.1: False vacuum driven inflation. If the rate for the field to tunnel from the false vacuum 
to the true vacuum is sufficiently small, inflation will be eternal. 

then become very dilute compared to photons as the universe exponentially expands since photons 

are only produced during reheating as inflation ends. All three problems are solved simultaneously 

if space expands by more than approximately 60 e-folds during inflation [l]. 

As was noted in Ref. [4] and was further studied in Refs. [5, 6], the original proposal of Ref. [4] 

suffered from a problem known as the graceful exit problem. When the field tunnels to the true 

vacuum, it does so by nucleating a bubble of true vacuum within the background of false vacuum. 

The bubble of true vacuum proceeds to expand into the false vacuum, which is still exponentially 

expanding, and in doing so, almost all of its energy is at the bubble walls leaving the interior of the 

bubble essentially empty. All of the structure of the universe would then be concentrated in the walls 

of the bubble resulting in a highly inhomogeneous and anisotropic universe. The proposed solution 

to this problem presented in Ref. [4] is that thermalization occurs as multiple bubbles collide and 

merge to form a homogeneous and isotropic universe. However, this solution is not viable because 

bubbles of true vacuum nucleate into regions of inflating false vacuum and the space between bubbles 

expands too rapidly for the bubbles to collide and thermalize. If the decay rate for tunneling to 

the true vacuum were sufficiently increased, thermalization could occur; however, an increase in the 

tunneling decay rate by this amount would not allow for enough inflation to solve the three problems 

described above [5, 6] . 

Solutions to the graceful exit problem were quickly found by Linde [7] and Albrecht and Stein­

hardt [8]. In these theories , called new inflation, the field starts in the false vacuum of the Coleman­

Weinberg potential [9] which has a small potential barrier. When bubbles tunnel, they start near 

the top of the potential and slowly roll down towards the true minimum. During this slow roll down 
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V(¢>) 

slow-roll inflation 

Figure 1.2: Example of an inflaton potential characteristic of new inflation. A false vacuum is 
sometimes added before the initial period of slow-roll inflation such that the field tunnels into the 
slow-roll region of the potential as was done in the original new inflation proposals. 

the potential, the energy of the field is changing very slowly and space sti ll expands at a nearly 

exponential rate the still solves all of the problems of Guth's original proposal. Inflation ends as 

the inflaton reaches the bottom of the potential and decays into standard model particles. This 

scenario solves the graceful exit problem since the expansion responsible for solving the cosmological 

problems occurs during the slowly rolling phase and thermalization occurs during reheating resulting 

in a homogeneous and isotropic universe. Although the original proposals include a false vacuum, 

the key to the success of new inflation is the period of slow-roll inflation rather than false vacuum 

driven inflation preceding the inflaton 's decay to the current vacuum. Therefore, many new inflation 

models do not include the initial false vacuum. An example of a new inflationary potential is shown 

in Fig. 1.2. 

1.2 Eternal Inflation 

There are several ways for inflation to not end everywhere at once and for there always to be 

regions of inflating space. This phenomenon is know as eternal inflation and leads to a cosmological 

multiverse [10] 

Eternal inflation and its role in continually creating new universes was first discussed by Vilenkin 

in the context of false vacuum driven inflation [ 11 ]. False vacuum driven eternal inflation occurs 

when the inflaton gets stuck in a false vacuum as with the original theory of inflation illustrated in 

Fig. 1.1. As was discussed with t he graceful exit problem , if the bubble nucleation rate is sufficiently 

small , the inflating space between bubbles will expand faster than bubbles can nucleate and expand. 
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V(¢) 
stochastic eternal inflation 

Figure 1.3: Stochastic eternal inflation in a quadratic potential. Quantum fluctuations are schemat­
ically shown in blue and classical motion is schematically shown in red. 

In this case, there will always be regions of space where the field is in the false vacuum and can 

subsequently nucleate a nother bubble and inflation is eternal. 

Linde discovered a second mechanism for inflation to be eternal due to quantum fluctuations of 

the inflaton field exceeding the classical motion of the field [12- 14]. This type of eternal inflation is 

sometimes called chaotic eternal inflation; however, to avoid confusion with other types of chaotic 

inflation [15], we will refer to this as stochastic eternal inflation. Stochastic eternal inflation is 

illustrated in Fig. 1.3. Quantum fluctuations in the field are roughly proportional to /V. Thus, 

if the field is high enough on the potential, it will have large quantum fluctuations which could 

either kick the field down or up the potential. There wi ll be regions of space where the inflaton 

moves down the potential, experiences the usual slow-roll inflation where quantum effects are small, 

and reheats as it approaches the minimum . However, there will also be regions of space where 

the inflaton moves up the potential and continues to expand. The volume of t his inflating space 

continues to expand indefinitely and regions of space where inflation ends and the inflaton reheats 

will be eternally produced . 

The third way inflation can be eternal , illustrated in Fig. 1.4, is due to domain walls in the 

inflaton field and is called topological eternal inflation [ 16, 17]. If the fi eld is near the maximum of a 

potential separating two degenerate vacua, it can classically roll away to either vacua and a domain 

wall will form separating the two domains. If the domain wall is sufficiently thick, it wi ll expand and 

new regions of space will continually be created where the field can roll into either domain. Each 

time a portion of the domain wall rolls into one of the vacua, it reheats as it reaches the minimum 

and forms a pocket universe simi lar to the situation with stochastic eternal inflation. 



5 

(a)V(¢) {b) ¢(x)a 

x 

Figure 1.4: Topological eternal inflation. (a): an example of a potent ial that has vacua at ¢ = 0 
and ¢= a. (b): a kink solu tion interpolates between the vacua at ¢ = 0 and ¢=a in one spatial 
dimension. The field is solut ion is shown in black and the energy density is shown in blue. In 
more dimensions this kink solut ion becomes a domain wall and can be t he source of eternal inflation 
provided t he thickness o is sufficient ly la rge. 

T he details of inflation are not known at t his t ime and t he inflaton potential or even whether 

inflation is driven by a single field or mult iple fi elds are not known. It would be useful to estimate 

how generic eternal inflation is in t he space of possible potent ials and init ia l field condit ions to see 

how likely it is t hat inflation implies the existence of a mult iverse [10]. Due to the general features of 

eternal inflation described above many people argue that eternal inflation is generic but there have 

been no quant itative investigations into this question to our knowledge. 

T here have been many investigations into inflation in random potent ials [18- 26]. In par t icular, 

Refs. [18- 20] investigated random Fourier series potent ials to study generic inflationary predictions 

for cosmological observables. It would be interesting to extend these studies to t he question of eternal 

inflation . One could generate many random potent ials and numerically find the init ia l condit ions 

for each potent ial t hat would support eternal inflation. By studying a la rge number of potent ials, 

one could quant itatively estimate how generic each of t he three types of eternal inflation are. 

1.3 Conditions for Stochastic Eternal Inflation 

T he program of investigating how generic stochastic eternal inflation is in random potent ials de­

scribed above cannot present ly be carried out for two reasons. F irst , a satisfactory measure on t he 

space of t raj ectories is not known at this t ime. T he canonical measure on the space of trajecto­

ries [27] has a singulari ty at zero curvature [28] and it is not current ly known how to deal wit h 

this singulari ty. How this singulari ty is dealt wit h is at least part ia lly responsible for vastly dif­

fering estimates for the likeliness of getting 60 e-folds of inflation in , for example, the analysis of 

a quadratic potent ial [29, 30]. Ref. [29] finds t he probabili ty to be extremely close to uni ty while 

Ref. [30] finds the probabili ty to be extremely close to zero. T herefore, even if t he regions of phase 
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space suppor t ing stochast ic eternal inflation could accurately be fo und for a la rge number of random 

potent ials, this knowledge could not be converted into a meaningful probabili ty. Second , we argue 

that the condi t ions current ly used in t he li terature to check whether a trajectory is stochastically 

eternal are not applicable to generic cases where t he field could have a large velocity or could be 

moving up the potent ial. Both of t hese cases would be prevalent in t he study described above. 

In t his work, we focus on the second problem a nd investigate t he condi t ions necessary for eternal 

inflation. Much of t he li terature on eternal inflation deals only with slow-roll inflation and , as far as 

we are aware, a ll of the condit ions for stochastic eternal inflation are only applied when t he field is 

slowly rolling. Inflation when the field has a large velocity have been studied bu t not in the context 

of eternal inflation. Refs. [31 , 32] discusses fast-roll inflation as a mechanism for generating the 

initia l condit ions necessary for inflationary t heories relying on slow-roll inflation but do not discuss 

eternal infl ation during a period of fast-roll inflat ion. Ref. [33] fur t her considers t he dynamics of 

fast-ro ll inflat ion, wit hout considering eternal inflation, and Ref. [34] showed t hat fast-roll inflation 

models are consistent wit h observat ions. 

In Sec. 2.3 we generalize t he condi t ions necessary for stochastic eternal inflation so as to take into 

account the possibili ty of fields with large velocit ies and fields classically moving up t he potent ia l. 

We also discuss the generalization of these condi t ions to the case of mul t iple inflaton fi elds. Further­

more, standard methods for dealing wit h the quantum fluctuations in stochastic eternal inflation 

usually cite resul ts [11 , 35- 38] that are derived only for a free fi eld . T he justification for this is not 

discussed and it is not clear that t hese resul ts a re applicable to generic potent ials. In addi t ion to 

the improvements made to the condi t ions fo r eternal inflation, we use t he perturbative La ngevin 

method of Ref. [39] to more accurately compute t hese fluctuations. T his method , a long wit h a 

short discussion of t he other methods commonly used to deal with t hese quant um fluctuations, 1s 

described in Ch. 3. 

In Ch. 4, we apply t he conditions derived in Sec. 2.3 to the quadratic and sine-Gordon potent ials 

in addi t ion to a random Fourier series potent ia l typical of the kind studied in Refs. [18- 20] that 

would be useful fo r studying how generic eternal inflat ion is. We find that t he condi t ions are not 

generally accurate fo r t he Fourier series potent ial but find examples where t hey are well sui ted for 

studying the other potent ials. We compare t he improved condit ions with t he condi t ions typically 

used in t he li terature and find examples where t he two condi t ions greatly differ. Addi t iona lly, we 

find examples of trajectories satisfying t he condi t ions for eternal infl at ion even while t he field is not 

inflat ing, a possibili ty not previously discussed to our knowledge. Unfortunately, t he approximations 

needed for t he per t urbative Langevin method to be valid are not always met so these results serve 

only as evidence t hat current methods are inadeq uate for studying generic inflat ionary trajectories. 

Most of t he original work for t his t hesis is contained in Sec. 2.3 and Ch. 4. 

In the fo llowing, we use natural uni ts where Ii = c = 1 and work with t he reduced Planck mass 
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mp1 = mpi/V8if = l/V8ifG = 2.4 x 1018 GeV. We use a metric with signature(-,+,+,+). For 

spacetime indicies, Greek indicies run over space and time components while lowercase Latin indicies 

run only over space components. Uppercase Latin indicies label fields within a vector of fields. 
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Chapter 2 

Inflationary Dynamics 

2.1 Equations of Motion 

Before studying the conditions necessary for stochastic eternal inflation, we review the dynamics of 

inflation. We will study the evolution of scalar fields in the background of the Friedmann-Robertson­

Walker (FRW) metric 

ds2 = -N2 (t) dt2 + a2 (t) + r 2 (de2 + sin2 e dcp2
) [ 

dr
2 

] 
1- kr2 

(2.1) 

where N(t) is the lapse function and a(t) is the scale factor. k is the curvature with k = 0,+1, and 

-1 corresponding to fiat, closed, and open geometries respectively. With coordinates x/J. = (t,x), t 

and x are the comoving coordinates while N(t)t and a(t)x are the physical coordinates. The Hubble 

parameter is defined as 
_ a(t) 

H(t) = a(t). 

The action ford real scalar fields <P = (¢1, ... , ¢d) minimally coupled to the metric is1 

(2.2) 

(2.3) 

where g is the determinant of 9µ.v, R is the Ricci scalar, V(</J) is the potential, and all repeated 

indicies are summed. More general kinetic terms of the form -1/2gµ.vc11 (¢)8µ.¢ 1 8v¢J have been 

studied, for example in Ref. [40], and actions that are more general functions of gµ.v 8µ.¢ 1 8v¢J have 

been studied in Dirac-Born-Infeld (DBI) inflation motivated by string theory [41, 42]. We will only 

consider the canonical kinetic term in Eq. (2.3) where the field space metric is bIJ. As is shown in 

1If [A] denotes the mass dimension of the quantity A, then [N(t)] = 0 and [a(t)] = -1. This leads to slightly 
strange dimensions in the action since, in this notation, (x0 = t] = -1 but [xi] = 0. (.;=g] = - 3 since (goo] = 0 and 
[9ii] = -2. Since [d4 x] = -1, the volume form has mass dimension -4 as it should. Similarly, (80] = 1, [8i] = 0, 
[g00J = O, and [gii] = 2 so that the kinetic term has mass dimension 4 and (SJ = 0, as it should, if [<Pr] = 1. 
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Appendix B, for the FRW metric, 

Thus, 

J 4 3 [ _ 2 ( ii a
2 

k aN ) 1 · l · 1 ( l) l S = d xNa 3mpl N2a + N2a2 + a2 - N3a + 2N2¢ ¢1 - 2a2 '\!¢ . ('\7¢1) - V(<f>) 

where 

Integrating by parts and assuming boundary conditions such that surface terms vanish 

Therefore, the Lagrangian density is 

3-2 · 2 3 N mp! aa _ 2 a . 1 . a 1 3 £' = - N + 3mp1Nak + 
2
N¢ ¢1 - 2 ('\!¢ ) · ('\7¢1) - Na V(<f>). (2.4) 

There are no time derivatives of N which is therefore acting as a constraint. The Euler-Lagrange 

equations for N give 

,::) CLJ 3-2 . 2 3 
u..z., mP1aa _ 2 a . 1 . a ( 1) 3 oN= N 2 +3mp1ak-

2
N 2¢¢1- 2 '\!¢ · ('\7¢1)-aV(<f>)=O. (2.5) 

Since N is a constraint, we will set N = 1 from now on. Then Eq. (2.5) becomes the Friedmann 

equation 

2 1 [1 · l · 1 l ] k 
H = 3m~1 2¢ ¢1 + 2a2 ('\!¢ ) . ('\7¢1) + V(<f>) - a2. (2.6) 

Since 

and 

the Euler-Lagrange equations for ¢ 1 give the scalar field equation 

.. . 1 2 av 
cPl + 3H¢1 - a2 \l cP1 + OcPl = 0 (2.7) 

where 

The expansion of the scale factor gives rise to an effective friction term proportional to H . 
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During inflation the fields are smoothed out in space very rapidly and the approximation that 

spacial derivatives of the fields can be neglected is valid. Furthermore, during inflation, a grows 

exponentially so that the term k/a2 in Eq. (2.6) rapidly becomes negligible even if k -/= 0 and this 

term can be neglected. In this case, the Friedmann equation Eq. (2.6) becomes 

2 1 [1 . l. ] 
H = 3m~, 2¢> c/>1 + V(¢) (2.8) 

and the scalar field equation Eq. (2.7) becomes 

.. . av 
c/>1+3H¢>1 + B¢

1 
= 0. (2.9) 

These are the forms of the equations that we will use. In general, we will be interested in trajectories 

that are initially not inflating or which are inflating only very briefly. The choice of k = 0 is further 

motivated by the fact that the canonical measure on the space of trajectories [27] diverges for zero 

curvature [28]. This divergence can be thought of as a delta function at zero curvature [43] even 

though an explicit form for this measure is not known at this time. 

2.2 Slow-Roll Parameters 

In this section, we describe the slow-roll parameters useful for characterizing inflationary trajectories. 

These parameters can be written either in terms of the potential V or in terms of the Hubble 

parameter H [44]. However, only the parameters written in terms of H are accurate if the field is 

not slowly rolling, which is the generic situation we wish to consider, so we will only deal with the 

Hubble slow-roll parameters. 

The first slow-roll parameter defined as 

iI 
t=--- H2 

characterizes whether a trajectory is inflating or not. Since 

t is also given by 

.. (. )2 .. 
if = ~ - ~ = ~ - H 2 , 

a a a 

a 
1- aH2 · 

(2.10) 

(2.11) 

From this form, it is clear that the condition that space is undergoing accelerated expansion ii > 0 

is equivalent to t < 1. In the following analysis, we will consider an inflaton trajectory as inflating 

at a given time if t < 1 at that time. 
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To compute E for a given trajectory, it is necessary to know iI. From Eqs. (2.8) and (2.9), 

so 

. 1 ( .. 1 . av . ) H . 1 . 
2HH = 

3
_ 2 <P <P1 + 

0
,i,. <P1 = - _ 2 <P </J1, 

mP1 '1-'J mP1 

. 1 . I. 
H = - _ 2 </J cPI· 

2mP1 

Since iI ~ 0, it is clear from Eq. (2.10) that E ~ 0. From Eqs. (2.10) and (2.12), 

E=3 .. J/¢If2 

<jJ1 <fJJ/2 + V(</J) 

(2.12) 

(2.13) 

Therefore E < 1 if and only if (/>1 (/>J/2 < V. A trajectory is inflating as long as the kinetic energy of 

the fields is less than the potential energy. 

The second slow-roll parameter defined as 

iI 
'T/=-. 

HH 
(2.14) 

characterizes the importance of the second derivative terms in Eq. (2.9). Unlike E, 'T/ can be positive 

or negative. If l'Tll « 1, then ¢1 can be neglected in calculating the classical trajectories. From 

Eq. (2.12), 

(2.15) 

In the case of a single field, 'T/ is proportional to the ratio of the acceleration to the friction term in 

Eq. (2.9): 

(2.16) 

2.3 Conditions For Stochastic Eternal Inflation 

Stochastic eternal inflation occurs when the quantum fluctuations of the inflaton field exceed the 

classical fluctuations thus allowing the field to get "stuck" up high on the potential in certain regions 

of space which continue to inflate. For simplicity, we will first consider the case of a single inflaton 

field <P and will generalize the discussion to multiple fields in Sec. 2.3.3. 

The change in the field in a Hubble time over the interval [to, to+ H01
] can be decomposed into 

the classical and quantum contributions as 

(2.17) 

where b..<PcI is the classical change in the field and b..</Jqu is the change in the field from the quantum 
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noise. ¢c1(t) is the solution to Eq. (2.9) so that 

(2.18) 

The simplest condition for stochastic eternal inflation, and the one frequently used in the litera­

ture, is that inflation will be stochastically eternal provided that l.0.¢qul > l.0.¢cil· In this case, the 

quantum fluctuations exceed the classical roll of the field so it is just as likely that the inflaton will 

roll up the potential as it is that it will roll down. It is often quoted, almost universally in discussions 

on stochastic eternal inflation, that in one Hubble time, l.0.¢qul = H/27r so that the condition for 

stochastic eternal inflation to occur is 

(2.19) 

There are several problems with this condition. First, it does not take into account the probability of 

the field moving up the potential or how the expansion of the inflating space affects this probability. 

As we will see in Sec. 2.3.1, these effects make it easier to have stochastic eternal inflation than the 

condition Eq. (2.19). Second, it does not take into account the direction of the classical roll; for 

example, if the field moves up the potential classically without any quantum fluctuations . Finally, 

using l.0.¢qul = H/27r during a Hubble time is not a good approximation for generic potentials. This 

last point is discussed in detail in Ch. 3. 

2.3.1 Accounting for the Expansion of Inflating Space 

The conditions for stochastic eternal inflation including the probability of the field moving up the 

potential are discussed in Ref. [45]. Here we review this argument with slight modifications. 

Correlations in the inflaton field extend up to approximately a Hubble length so the field is 

approximately constant in a Hubble volume. Let ¢0 be the average value of the field over a given 

Hubble volume H 03 at time t0 . If the field is inflating at t0 , then at t 1 = t0 + H 01
, the volume of 

the initial space will have increased by a factor of e3 ;::::; 20. Since correlations in the field extend up 

to a Hubble length, the initial volume will break up into Nas = e3 independent Hubble volumes. 

This process is schematically illustrated in Fig. 2.1. The classical value of the field ¢c1(t1 ) can be 

computed from Eq. (2.9) with the initial conditions ¢ 0 and ¢0 . Then in the nth independent Hubble 

volume the average value of the field will be the classical value plus quantum noise .0.¢qu: 

Thus, if the probability that V(¢n(t1 )) :'.'.'. V(¢0 ) in one of these e3 independent regions is greater 

than e-3
, there is at least one region where the field has not moved down the potential and inflation 
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f/Ho 

to 

f =exp [ft:1 
H(t) dt] fds = e 

H - 1 (t1) 
Hcis1(t1) = H01 

N = !3 H33(t1) 
Ho 

independent volumes 

Nds = e3 ~ 20 

Figure 2.1: Schematic illustration of the evolution of a homogeneous initial Hubble volume. Quan­
tities specific for pure de Sitter space are marked in blue. The value of the field within a Hubble 
volume is schematically illustrated by the shade of the volume. ¢0 is classically evolved to ¢c1 ( t 1 ). 

The initial volume expands by a factor J3 and breaks up into N independent Hubble volumes with 
an average value of ¢n(t1) = ¢c1(t 1) + l::. </>qu throughout the nth volume. The quantum noise !::.¢c1 
leads to each independent volume deviating from ¢c1(t1 ). For example, ¢ 1 is larger than, ¢2 is 
approximately the same as , and ¢3 is smaller than ¢c1. 

is stochastically eternal. 

For convenience, we define the quantity 

!::.¢(to) = !::.¢(to) sgn [~~ I ] 
</> = </>( to) 

(2.20) 

which has the magnitude of t:.¢(t0 ) and which is always positive for trajectories moving up the 

potential V(¢) > V(¢0 ) and negative for trajectories moving down the potential. The field does not 

roll down the potential if 

(2.21) 
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Thus, for inflation to be eternal, 

(2.22) 

The probabili ty distribution for the quantum change in t he field during a Hubble t ime is usually 

cited as 

(2.23) 

although this is not in general a good approximation. This issue is discussed further in Ch. 3. Using 

Eq. (2.23), t he cumulative distribution function for l::i.¢qu is 

1 [ J2n l::i.¢qu ] 
<I>c( l::i.qu) = 2 1 + erf H(to) , 

so Eq. (2.22) is equivalent to 

1 _ 2 _3 > ·f [ - J2n&¢c1(to)] 
e - er H(to) . 

The so lut ion to this inequality gives the condition for stochastic eternal infl at ion 

= 1 165 > - J2n&¢c1 (to) 
Ccts - . - H(to) . (2.24) 

To compare wit h Eq. (2.19), t his is equivalent to H (t0 )/2n ::'.: -0.607l::i.¢c1(to). Ref. [45] uses t he 

condi t ion l::i.¢qu > l!::i.¢cil instead of the condition !::i.¢qu ::'.: - !::i.¢c1 which leads to replacing - !::i.¢c1 

wit h l!::i.¢c1l in Eq. (2.24). Both condit ions make it slight ly easier to have eternal inflation than 

Eq. (2.19) which requires t he standard deviation of the quantum fluctuations to exceed the classical 

roll. T his is too str ict since the initial Hubble volume breaks up into e3 independent Hubble volumes 

and the field only needs to move up t he potential in one of these volumes for inflat ion to be eternal. 

We argue t hat using !::i.¢qu more accurately captures the physics of stochastic eternal inflation, 

however. T he right hand side of Eq. (2.24) can have any sign while it wo uld be non-negat ive using 

l!::i.¢cil· In particular, if the field classically moves up the potential, !::i. ¢c1 > 0 and the inequa li ty is 

satisfied for any value of H . This is a reasonable scenario for generic ini tial conditions where it is 

possible for t he field to ini t ia lly be moving up the potential leading to a large !::i.¢c1 t hat still resul ts 

in t:i.¢ ::'.: 0 even if the magnitude of t he classical roll is larger tha n the magnitude of t he quantum 

fluctuations. 

In fact, if the field is ini t ia lly moving up t he potential, both choices of - !::i. ¢c1 and l!::i. ¢c1 I predict 

eterna l inflation at some point , while - t:i. ¢c1 will predict eternal inflation t he entire t ime the field 

is moving up t he potential. If the field is moving up the potential there will be some value t * such 
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that from t* to t * + H - 1 
( t *) the field classically rolls up t he potent ial t urns around and returns to 

its starting point such that ~¢c1(t*) = 0. In this case, there will be a neighborhood B around t * 

such that H (t )/27r 2'. 0.607 J ~¢c1(t )J for a ll t E B . 

2.3.2 Accounting for Non-Slow-Roll Inflation 

T he above derivations of Eq. (2.24) assume t hat t he space-time is t ruly de Sitter space a nd that the 

Hubble parameter is constant for t he ent ire trajectory. T his is an excellent approximation for slow­

roll infla tion when r: « 1 but is unsatisfactory for our general purposes where if = - ¢2 / 2m~1 can be 

la rge. Furthermore, numerical investigations show that it is possible, even somewhat likely, for the 

condition Eq. (2.24) to be met but for the inflaton field to not be inflating. This raises the possibility 

of having the self-reproducing structure of stochast ic eternal inflation wit hout inflation. To properly 

investigate this possibili ty and eternal inflation in general when ¢can be large , Eq. (2.24) has to be 

modified to account for t he effects of non-constant H. 

In general, during the Hubble t ime length interval from t0 to t 1 = t0 + H01
, the physical volume 

of the init ia l space will expand by 

[ 1to+ H0
1 

] 

J3 
=exp 3 to H (t) dt . (2.25) 

However , assuming t hat correlations in the field still last over distances of order H - 1
, t he init ial and 

final Hubble volumes are not t he same and the init ia l Hubble volume will break up into 

J3H3 
N=fi3 

0 

independent Hubble volumes. T he condit ion Eq. (2.22) is t hus replaced by 

(2.26) 

(2.27) 

ow it is possible t hat ¢ is so la rge that H decreases by more than t he expansion f can compen­

sate for and N < 1. In this case the right hand side of Eq. (2.27) is greater t han 1 and stochastic 

eternal inflation is not possible regardless of the size of t he quantum fluctuations in comparison to 

the classical roll. T his suggests t hat the slow-roll approximation will be valid for more trajectories 

supporting stochastic eternal infla tion than would be considered wi t h Eq. (2.24). Ref. [39] calcu­

lates Pc(~cPqu, t ) for general potent ials using the slow-roll approximation by pert urbatively solving 

the Langevin equation as is described in Sec. 3.4. T he resul t ing distribu tion Eq. (3.30) is normal 

wit h mean ( 8¢2 ) and variance (8¢ i) given by Eqs. (3.32) and (3.31) respectively. T herefore, t he 
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Nds = e3 

- 3 - 2 - I 

Figure 2.2: Illustrat ing the condition Eq. (2.27). Inflation is eternal if the probability of 6 ¢ > 0 (the 
solid black line) is greater than N - 1 (the horizontal lines). The dashed horizonta l line corresponds 

to the critical value N = 2. If N < 2, inflation can only be eternal if 6 ¢c1 > 0. The maximum value 
of N corresponds to the pure de Sitter space value of e3 and is shown in blue. 

cumulative distribu t ion function is 

and, if c is defined as the solution to 
2 

l - - = erf c N , 

then the condit ion Eq. (2.24) is replaced by 

(2.28) 

As with Eq. (2.24), Eq. (2.28) correctly deals with fields classically moving up the potential but 

Eq. (2.28) has two new features. First , Eq. (2.28) allows for quantum fluctuations about 6 ¢c1 with 

non-zero mean ( 8¢2 ). However , this effect should be small since, as is discussed in Sec. 3.4,_ J (8¢i) 

is first order in quantum noise while ( 8¢2 ) is second order in quantum noise. If the perturbative 

expansion is valid so that Eq. (2.28) is valid , then ( 8¢2 ) / J (8¢i) « 1. 

Second , and more interesting, Eq. (2.28) accounts for Hubble volumes differing in size between 
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to and to + H01
. As was discussed above, this condition predicts no eternal inflation if N < 1. 

Eq. (2.28) also has different behaviors for N > 2 and N < 2 as is illustrated in Fig. 2.2. For 

simplicity, let ( 8ch) = 0 in this discussion since its effects are negligible. The discussion remains 

the same for non-zero ( 8¢2 ) by replacing .6.¢cI with .6.¢cI + ( 8¢2). If N > 2, c > 0 so inflation will 

be eternal if .6.¢c1 > 0 or if .6.¢c1 < 0 as long as the quantum fluctuations ( 8¢i) are sufficiently large. 

For N > 2, larger quantum fluctuations make it easier to have eternal inflation when .6.¢c1 < O. The 

largest possible values of N and care given by pure de Sitter space where Nas = e3 and cas = 1.165. 

As N decreases so does c and the ratio -.6.¢c1/ J2 (8¢i) must increase for inflation to be eternal 

if .6.¢c1 < 0. For N < 0, c < 0 so inflation will only be eternal if .6.¢c1 > 0 and the quantum 

fluctuations ( 8¢i) are sufficiently small. For N < 2, inflation cannot be eternal if .6.¢cI < 0 and 

larger quantum fluctuations make it harder to have eternal inflation if .6.¢c1 > 0. 

Note that the condition Eq. (2.27) is general and could be used if a more accurate method is 

developed for computing the distribution of quantum fluctuations than the perturbative Langevin 

method of Ref. [39]. In this case, the behavior described above and illustrated in Fig. 2.2 would be 

qualitatively correct (unless the distribution was so extreme that cas < 0). 

2.3.3 Multiple Fields 

Now consider the case of multiple scalar fields ¢1. Let .t!.i.<f> = (.6.¢1 , ... , .6.¢d) be the vector of the 

.6.¢1c1s for the d fields. The unit vector pointing in the direction of the increasing gradient of the 

potential at </>0 is 

ft( </>o) = 1~~11 -
</>-<Po 

(2.29) 

where the derivatives in '\! are with respect to the ¢1 here. If for multiple fields we define 

.6.¢(to) = .t!.i.<f>(to). n(<f>(to)), (2.30) 

then the condition for eternal inflation that the field move up the potential Eq. (2.21) is unchanged. 

As with the single field case, .t!.i.<f>c1 can be calculated from Eq. (2.9). 

The perturbative Langevin method does not allow for an analytic solution for multiple fields; 

however, the solutions would still be normally distributed for each field ¢1. If X 1 and X2 are two 

normally distributed random variables with means µ1 and µ2 and variances a1 and a2, then a1X1 + 
b2X 2 is a normally distributed random variable with mean a 1µ 1 + a2 µ2 and variance a~ar + a~a~ 
[46]. Therefore, the distribution for .6.¢qu is still given by Eq. (3.30) but where 

and (2.31) 

Therefore, with the definition Eq. (2.30) and the parameters Eq. (2.31), the condition Eq. (2.28) 
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is the same for the case of multiple inflaton fields. Note that, as with the case of a single field, 

this condition takes into account the possibilities of large classical motion still resulting in eternal 

inflation. For example, Eq. (2.24) accurately describes the case where <P is moving with a large 

velocity in a direction orthogonal to ft resulting in almost no change in the value of V(<P) as an 

eternal trajectory even if the classical roll exceeds the quantum fluctuations. 

2.3.4 Possible Objections to these Conditions 

All of the quantum effects leading to Eq. (2.28) are contained in Pc(6.¢qu)· This leads to at least two 

possible sources of error. First, the field equations Eq. (2.9) for the classical roll of the fields use the 

Hubble parameter computed classically. Thus quantum fluctuations leading to deviations in ¢ and 

¢ are not accounted for in computing the classical trajectory. For Eq. (2.24) and the distributions 

often computed using the Fokker-Planck equation described in Sec. 3.2 this is a potential problem. 

However, for the distribution calculated using the perturbative Langevin equation described in 

Sec. 3.4, the backreaction of the field is accounted for in the perturbative expansion. Therefore, for 

Eq. (2 .28), even though quantum fluctuations in H are not accounted for in the computation of ¢ch 

these fluctuations are included in the calculation of Pc(6.¢qu)· 

The second possible source of error coming from all of the quantum effects being included in 

Pc(6.¢qu) occurs if a trajectory does not satisfy Eq. (2.28) for to = tinitial where tinitial is the time at 

which the initial conditions are specified for the trajectory of interest. In this case, it is still possible, 

and somewhat likely, that the trajectory will satisfy Eq. (2.28) for to > tinitial· When Eq. (2.28) is 

not satisfied for to= tinitial where ¢c1(t) has been computed fort E [tinitiaJ, tinitial +Hi~i~ial], ¢c1(t) will 

continue to be computed with initial conditions given by the classical final values of the previously 

computed portion of the trajectory. Quantum effects leading to deviations from these classical initial 

conditions are not considered and one could argue that errors in the computation of ¢c1 continue to 

compound if Eq. (2.28) is not satisfied early in a trajectory. 

One could also object to the computation of Nin Eq. (2.26) . Quantum fluctuations in H were 

not considered here and the inclusion of backreation in Pc(6.¢qu) does not enter into the calculation 

of N. It is also possible to imagine that the division of the initial volume into independent final 

volumes is more complicated than simply taking a ratio of volumes. However, this is an improvement 

over current methods and already leads to significant effects as is shown in Ch. 4. 

Another possible objection to the condition Eq. (2.28) comes from an assumption that was glossed 

over in claiming that Eq. (2 .27) implies that a trajectory is capable of supporting stochastic eternal 

inflation. This assumption is that if Eq. (2.27) holds at t0 , it will also hold at t0 + H0
1 for one 

of the Hubble volumes for which V(¢) :;::: V(¢0 ), and will continue to hold for one of the fractal 

volumes created at each iteration. If Eq. (2.27) is satisfied, at least one of the N Hubble volumes 

will satisfy V(¢) :;::: V(¢0 ) but Eq. (2.27) does not guarantee that Eq. (2.27) will be satisfied for any 
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of these Hubble volumes for which V(¢) 2". V(¢0 ) . Furt hermore, the problem of ignoring quantum 

effects in the init ia l condi t ions for the calculation of ¢c1 described above fur ther complicates the 

analysis of this ass umpt ion . T his assumption seems reasonable for t he typical situations studied in 

the li terature where t he fie ld is rolling down the potent ial and the slow-roll approximation is valid 

Since both E « 1 and 1'17 1 « 1, the trajectory satisfying Eq . (2.28) is not changing rapidly and 

the condi t ions lead ing to t he satisfaction of Eq. (2.28) seem likely to be returned to in subsequent 

volumes. 

T he analysis of this assumpt ion is more delicate in more generic situations where the field could be 

rolling up the potent ia l, E and 1'17 1 can be large, or the field may not even be inflating. For example, if 

Eq. (2.28) is satisfied because ¢ was rolling up t he potent ia l and 6..¢c1 ~ 0 in the neighborhood of t he 

turning point , the quant um fluctuations could be very small. Since t he satisfaction of Eq. (2.28) could 

really be largely due to t he classical motion and since that motion is changing rapidly with possibly 

negligible quant um corrections, it seems possible t hat the condi t ions leading to t he satisfaction of 

Eq. (2.28) are never met again. W hile the field will not roll down the potent ia l in one of t he N Hubble 

volumes , it seems possible t hat in t he next Hubble volume the field will roll down the potent ial in 

every Hubble volume. Again, quant um effects not considered here could play an important role in 

some of these cases. However, there does not seem to be a straightforward condit ion to check for 

whether this assumpt ion is valid and fur ther analysis is needed. 

F ina lly, one could object to using H - 1 as the length over which correla tions in t he inflaton 

field extend and H - 3 as the volume t hroughout which ¢ is homogeneous in the calculation of N 

Eq. (2.26). Suppose that at t0 t he field is homogeneous throughout some volume, not necessarily 

the Hubble volume, and that that volume subsequent ly expands. T hen at t ime t, t he correlations 

in t he fie ld will extend over t he distance to t he particle horizon from t0 to t: 

d(t) = a(t) 1: a~~:) =exp [1: H (t') dt'] 1: exp [-1:' H (t" ) dt"] dt'. (2.32) 

To be completely correct , Eq. (2.26) should be replaced by 

(2 .33) 

For pure de Sitter space, 

it eH (t - to) 1 
d(t) = eHt e - Ht' dt' = -

to H 

In particular , if we consider expansion after a Hubble t ime, d(t0 + H - 1
) = (e - 1) / H and the 

correlations do extend over approximately a Hubble length. Since it is only a rat io of distances to 

the par t icle horizon that enters N, it is only important that d be a constant mult iple of H - 1 for the 

use of H - 1 instead of d to be correct. 
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5 10 15 20 

Figure 2.3: Comparison of correlation length scales for an extreme trajectory in a quadratic potential 
V(¢) = m~1 ¢2 /2. The blue curve is the ratio of the distance to t he particle horizon computed by 
Eq. (2.32) and t he distance to the particle horizon in pure de Sitter space. The red curve is N / f 
computed using Hubble lengths. The green curve is N / J computed using the distances to the 
particle horizon computed by Eq. (2.32). 

In the more general case where the expansion is not de Sitter, Eq. (2.32) should be used . While 

it is stra ightforward to numerically calculate the integrals in Eq. (2.32) for a given trajectory, it is 

very inconvenient to use Eq. (2.33) in general since d(t) is now not determined solely by the data 

at t but for data over the entire interval [to, t]. Therefore, to more accurately check the condition 

Eq. (2.28) for a trajectory with initia l conditions given at tinitial , one would have to integrate out to 

to = ti ni tial + Hi~i\ ial and then integrate out to to + H 0 1 to before Eq. (2.28) could be checked for 

the first time. Fig. 2.3 compares N computed with H a nd d for an extreme trajectory with la rge ¢ 

that is often not inflating in the steep potential V(¢) = m~1 ¢2 /2. For this trajectory, d is smaller 

than H - 1 but N / f computed with d and H are comparable once the velocity is not so large. N / J 

differs by a factor of~ 1.5 between the two methods at the largest discrepancy for la rge ¢. 
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Chapter 3 

Probability Distribution for 
Quantum Fluctuations 

3.1 Fluctuations of a Free Scalar Field in de Sitter Space 

The value of ( ¢2 ) for a free scalar field will be important to normalizing the quantum fluctuations in 

more general situations described below. In this section, we compute (¢2 ) for a massless free scalar 

field following Refs. [47, 48]. 

The field can be expanded as 

(3.1) 

where p and x are the comoving momentum and position vectors respectively and a(p) and at(p) 

are annihilation and creation operators. In Minkowski space, 'l/Jv(t) = e-ivat /V2PQ. From Eq. (2.7), 

since a = eHt in de Sitter space, 

(3.2) 

The solution to Eq. (3.2) is [47, 48] 

(3.3) 

with v = 3/2 and where TJ = -e-Ht / H is the conformal t ime and the H~n) are Hankel functions. 

The de Sitter space solution that matches the Minkowski solution as p ---+ oo is given by c1 = 0 and 

C2 = - 1 [47]: 

(3.4) 
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With this solution, 

2 1 J 2 3 1 J (e-
2
Ht H

2
) 3 1 J ( 1 H

2
) 3 

(¢ ) = (27r)3 17/Jp(t)I d P = (27r)3 2P + 2p3 d P = (27r)3 2k + 2k3 d k (3.5) 

where k = pe- Ht is the physical magnitude of the momentum. The first term is due to the usual 

vacuum fluctuations of Minkowski space and can be eliminated by renormalization. The second 

term has the contributions due to inflation. The momenta responsible for the fluctuations are 

k0e-Ht :S k :S ko [49]. Thus, assuming ko is of order H, 

(3.6) 

In one Hubble time, this reproduces the result that the variance in the quantum fluctuations is 

H2/47r2. 

The analogous equation to Eq. (3.2) for a free scalar field with mass m, which has the additional 

term m27/;p on the right hand side, has the same solution Eq. (3.4) with v2 = 9/4 - m2 / H 2 [48] . In 

the limit m2 « H 2, a similar, but more complicated, computation gives [47, 48] 

2 3H
4 

[ ( 2m
2t)] (¢) = -- 1-exp --

81f2m2 3H 
(3.7) 

which reproduces Eq. (3.6) fort« H/m2. 

3.2 The Fokker-Planck Equation 

The probability distribution function Pc(¢, t) to find the field at ¢ at time t within a comoving 

volume is often calculated using a Fokker-Planck Equation. For the massless free field, the situation 

is simpler and Pc satisfies the diffusion equation 

(3.8) 

where D is the diffusion coefficient [11, 47] . Since from Eq. (3.6), 

( 2) J 2 H3t ¢ = ¢ Pc(¢, t) d¢ = 
4

1f2 , 

taking time derivatives and using Eq. (3.8), 

H
3 j aP. j a2 

P. j aP j 
47r2 = ¢

2 
ate d¢ = D¢2 a¢2c d¢ = -2D ¢ a¢c d¢ = 2D Pc d¢ = 2D. 
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Thus D = H 3/8n2
. If <P =<Po at t = 0, then Pc(¢, O) = 8(¢- ¢0 ) and the solution to Eq. (3.8) is 

(3.9) 

Therefore after a Hubble time t = H- 1
, the distribution of 6.¢ = <P - <Po is given by Eq. (2.23). 

Eq. (3.9), which has only been derived for the massless free field, is implicitly used every time it is 

claimed that the quantum fluctuations in the inflaton field are H /2n during one Hubble time. 

There is nothing in the above derivation to suggest that Eq. (3.9) is accurate if the infiaton is 

not massless and free . The generalization of Eq. (3.8) to non-flat potentials is the Fokker-Planck 

equation [14, 50, 51] 

8Pc =~[Pc dV _1_8(H
3
Pc)J 

ot 8¢ 3H d¢ + 8n2 8¢ . (3.10) 

Eq. (3.10) reduces to Eq. (3.8) for flat potentials. Eq. (3.8) is a good approximation to Eq. (3.10) 

when d V / d¢ is small; however, it is hard to know how small this derivative must be for Eq. (3.8) to 

be valid without knowing the magnitude of 8Pc/8t and oPc/8¢. Refs. [14, 50, 51] solve Eq. (3.10) 

in a few specific cases that are not widely applicable and it is not clear how to solve Eq. (3.10) for 

a general potential. 

Eq. (3.10) is only applicable in the slow-roll approximation. The most general Fokker-Planck 

equation is [48] 

(3.11) 

Furthermore, none of the differential equations for Pc presented here Eqs. (3.8), (3.10), and (3.11) 

take into account the backreaction of the field on the geometry. Therefore, none of these approaches 

are accurate when the quantum fluctuations are too large. The relevant regime for studying stochas­

tic eternal inflation is when there are large quantum fluctuations is so extra care should be used 

when using results derived from these equations for this purpose. 

3.3 The Langevin Equation 

As an alternative to calculating Pc from a Fokker-Planck equation, the effects of quantum fluctuations 

can be calculated from a Langevin equation [39, 52, 53] . The Langevin equation is obtained by adding 

a stochastic quantum noise term to the right hand side of the classical equations of motion Eq. (2.9). 

When the slow-roll approximation is valid, this Langevin equation takes the form 

. 1 dV H 312 

¢ + 3H d¢ = ~~(t) (3.12) 



where ~( t) is a white noise field satisfying 

(~( t)) 

(~(t)~(t')) 
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0 

b(t - t'). 

(3.13a) 

(3.13b) 

The normalization of the right hand side of Eq. (3.12) is chosen so that Eq. (3.6) is reproduced for 

a free massless field. 

Since, from Eq. (2.8), 

Eq. (3.12) can also be written as 

I - 8H 1 dV 
H --=---

- 8¢ 6m~1H d¢ ' 

. H3/2 
¢ + 2m~1H' = --~(t). 

27r 

3.4 Perturbative Langevin Method 

(3.14) 

In this section, we describe the perturbative method of Ref. [39] used to solve the Langevin equation 

Eq. (3.12). This method is the first to incorporate the effects of backreation for a general potential. 

We expand the solution ¢(t) in powers of the noise ~(t) 

¢(t) = ¢c1(t) + <5¢1(t) + <5¢2(t) + ... (3.15) 

where ¢c1(t) is the classical solution defined as the solution to Eq. (3.12) with~= 0 and the terms 

<5¢n(t) are corrections to this classical solution proportional to ~n. Substituting Eq. (3.15) into 

Eq. (3.14) and keeping terms up to second order in~ , 

Note that the backreaction of the field has been accounted for here since H has been expanded in 

terms of the quantum fluctuations. The terms independent of ~ are by definition the equation for 

<Pei. The terms linear in ~ give 

(3.17) 
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and the terms quadratic in ~ give 

(3.18) 

The differential equations for 8¢1 and 8¢2 Eqs. (3.17) and (3.18) can be solved with integrating 

factors. Both equations have the same integrating factor 

µ=exp { 2m;1 J H 11 [¢c1(t)] dt} . 

Using the fact that 

d¢c1 = -2- 2 H'(,1., ) dt mp! '!'cl 

to change integration variables, 

[ J H"(</J) ] / 1 
µ=exp - H'(<P) d¢ = exp(-lnH) = H'. 

Thus, with the initial conditions 8¢1(t0 ) = 8¢2(to) = 0, the solution to Eq. (3.17) is 

8¢ (t) = H'[¢c1(t)] t H3f2[¢c1(t')] ~(t') dt' 1 
27r }to H'[¢c1(t')] 

(3.19) 

and the solution to Eq. (3.18) is 

8¢2(t) = -m;1H'[¢c1(t)] 1: ~'.'[~~1(~:')~] 8¢I(t') dt' + 3H'~;i(t)] 1: yf H[¢c1(t')]8¢1(t')~(t') dt'. 

(3.20) 

From Eq. (3.13), (8¢1 (t)) = 0 and 

2 - H'2[¢c1(t)] rt H3[¢c1(t')] I - - H'2[¢c1(t)] r</>c1(t) [ H(¢)] 3 d 
(8¢1(t)) - 47r2 lto H'2[¢c1(t')] dt - 87r2m;1 }q,o H'(<P) ¢ (3.21) 

From Eq. (3.19), 

Therefore 

- - 2 H'[,1., (t)] t H"'[¢c1(t')] (8,1.,2(t')) dt' + 3H'[¢c1(t)] rt H 2[¢ (t')] dt' 
mp1 'l'cl }to H'[¢c1(t')] 'l'l l67r2 }to cl 

H'[¢c1(t)] rt H"'(<P) (8¢2) d¢ - 3H'[¢c1(t)] rt H2(¢) d¢. 
2 }to H'2(¢) 1 327r2m;1 lto H'(¢) 
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Substituting in Eq. (3.21), 

(8¢2(t)) = H'[<Pc~~] 11>c1(t) H"'(<P) 1"' [ H,(x)] 3 dx d¢ - 3H'[~~~)] 1t H~(<P) d¢. 
16Jr2mP1 </>o q,0 H (x) 321f mP1 to H ( <P) 

Integrating the first term by parts, 

(3.22) 

The second term in Eq. (3.22) can be integrated by parts 

1</>ci(t) II [ H(</J) ]3 - - H31¢c1(t) ~ 1¢c1(t) H2(¢) 
¢0 H (¢) H'(¢) d¢ - 2H'2 ¢0 + 2 ¢0 H'(<P) d¢ 

and cancels the last term in Eq. (3.22). The first term in Eq. (3.22) is given by Eq. (3.21) so 

(3.23) 

We now show that this formalism reproduces the result Eq. (3.6) for a massless free field. In this 

case, H' = 0 so plugging Eq. (3.15) into Eq. (3.14) simply gives 

0. 

(3.24) 

(3.25) 

8¢2 is therefore constant and, since 8¢2(to) = 0, is equal to zero. All of the quantum noise comes 

from 8¢1 in this case. Eq. (3.24) can easily be integrated to give 

o¢1 (t) = ~ lt H312 [¢c1(t')]~(t') dt' 
21f to 

(3.26) 

and therefore 

(o¢i(t)) = 
4

1
2 t H 3[¢c1(t')] dt' = 

4
H: (t - t0 ). 

1f ho 1f 
(3.27) 

If ¢[~] = ¢c1 + 8¢1 + 8¢2 + ... is the solution to the Langevin equation Eq. (3.12), then the 

probability density function is [39, 54, 55] 

Pc(¢, t) = (8(¢- ¢[~]))=~Joo ( eik(¢-¢[W) dk =~Joo eik(¢-¢c1) / e-ik(6¢1H¢2+ .. . l) dk. 
21f -oo 21f -oo \ 

(3.28) 
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To second order in noise 

Therefore, 

Pc(</>, t) 2-j00 

exp[- ~k2 (8¢i)+ik(¢-¢c1 - (8¢2))] dk 
27r -oo 2 

1 { [¢- ¢c1(t) - (8¢2(t))]
2

} 
J2n (8¢r(t)) exp - 2 (8¢r(t)) . 

(3.29) 

Eq. (3.29) describes the probability Pc(¢ , t) of finding the field at a specific value at a given 

time but it can easily be used to calculate the probability distribution of the quantum fluctuations 

Pc(6.¢qu> t) over a given time. Since ¢ = ef>c1 + 6.ef>qu, 

(3.30) 

The use of 6.¢qu is acceptable as long as ( 8¢2) is used and ( 8¢~) = ( 8¢i) since this multiplies 

these quantities by either ±1. 

In practice, we use 

H(ef>) 

H"(ef>) 

H"'(¢) 

to rewrite Eq. (3.21) and compute 

and to rewrite Eq. (3.23) and compute 

1'>31 y'V(¢) 
VvffipJ 

1 V'(¢) 

2J3mp1 JV(¢) 

1 [ V"(¢) V'
2

(¢) l 
2J3mp1 JV{¢) - 2V312(¢) 

(8¢ (t)) = { V"[¢c1(t)] _ V'[ef>c1(t)] } (8¢2(t)) 2 
2V'[¢c1(t)] 4V[ef>c1(t)] 1 

(3.31) 

V'[ef>c1(t)] { vs/2(¢0) vs12[¢c1(t)]} 
+ 48n2~1 JV[¢c1(t)] V'2(¢o) - V'2[¢c1(t)] . (

3
.
32

) 
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Chapter 4 

Stochastic Eternal Inflation in 
Particular Single Field Potentials 

4.1 Overview 

In this chapter, we investigate what trajectories are capable of supporting stochastic eternal inflation 

in specific single field inflaton potentials. We discuss the quadratic potential (Sec. 4.2), the sine­

Gordon potential (Sec. 4.3), and a random Fourier series potential (Sec. 4.4). For the quadratic and 

sine-Gordon potentials, we use the parameters that are consistent with astrophysical observations 

as well as more generic parameters. 

For each potential, we carry out the following procedure to find the trajectories that are capable 

of supporting stochastic eternal inflation: 

1. Choose an initial value of the Hubble parameter Ho and several initial values of the field ¢0 

distributed throughout the potential. 

2. For each ¢0 , classically evolve the field using Eq. (2.9) from t0 to t0 + H 01 . 

3. Check the condition Eq. (2.28) . If it is satisfied, that trajectory will support eternal inflation. 

If it is not satisfied repeat 2 using the ¢(t0 + H01
) and H(t0 + H01

) as the initial conditions. 

4. Continue to repeat 2 and 3 until Eq. (2.28) has been satisfied or until some criteria to stop 

looking for eternal trajectories is met. 

5. Integrate the measure on the space of trajectories over the initial conditions found to support 

eternal inflation to find the fraction of trajectories supporting stochastic eternal inflation. 

In practice we use a flat measure on the space of trajectories since the form of the correct measure 

is not known. Our main goal is to highlight the differences between the conditions Eqs. (2.28) and 

(2.24). Thus the correct form of the measure is not as crucial as if we were studying the probability 
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of getting eternal inflation in a given potential. Unless otherwise stated, we stop checking if a 

trajectory is eternal once it has oscillated about a minimum in the potential more than twice. 

It is necessary to choose a value of Ho so that the same trajectory is not inadvertently counted 

twice. From Eq. (2.8), 
. -2 2 <Po= 3mp1H0 - V(</Jo). (4.1) 

Since there are two trajectories with the same value of H 0 , for a general potential, the measure on 

the space of trajectories would need to be divided by two to give the correct measure. The above 

procedure would also need to be carried out separately for ¢0 > 0 and ¢0 < 0 and the results 

combined to give the correct answer. However, for potentials with reflection symmetry, only one of 

the branches of the solution needs to be calculated if the factor of two in the measure is ignored to 

give the correct answer. For most of the following, we choose an Ho corresponding to starting at 

rest from the maximum of the potential. Thus from Eq. (4.1), 

Ho= (4.2) 

To better understand the following results, it will be useful to estimate where on a general 

potential eternal inflation will take place given that the slow-roll approximation is valid. Ref. [45] 

makes a similar estimate for the quartic potential V = >.¢4
• In one Hubble time, .6.¢c1 ~ J>c1/ H. If 

1771 « 1 then from Eq. (2.9) 

Thus, using Eq. (2.24), inflation will be eternal provided that 

IV'I 
0.26 ,(; 3H3. 

If 1: « 1, H 2 = V/3m;1• Therefore, if the slow-roll approximation is valid and the effects accounted 

for in Eq. (2.28) are negligible, inflation will be eternal for values of¢ that satisfy 

(4.3) 

4.1.1 Explanation of Figures 

In the following sections, we present many figures illustrating the characteristics of various trajec­

tories in different potentials. All of the figures have the same format which we explain here. 

Figure (a) is a plot of the classical field ¢c1 and Figure (b) is a plot of the classical field's velocity 

¢c1. In both of these figures, the trajectory is plotted in a solid black line if the field is inflating 

( E < 1) and is plotted in a dashed black line if the field is not inflating ( E ~ 1). 
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Figure (c) is a plot of the eternal conditions Eqs. (2.28) and (2.24). These conditions require a 

Hubble time worth of data to compute and are plotted as functions of t0 , the initial time for the 

data spanning to to t0 + H01
. The black line is Ccis and the red line is c. The green line is the right 

hand side of Eq. (2.24) and the blue line is the right hand side of Eq. (2.28). Therefore, Eq. (2.24) 

is satisfied if the green line is below the red line and Eq. (2.28) is satisfied if the blue line is below 

the red line. If N" ::::; 1, neither c nor the right hand side of Eq. (2.28) is plotted. If the field is not 

inflating ( E ;:::: 1) for any time in [to, t0 + H 01], the green and black lines are plotted as dashed lines 

rather than solid lines. 

Various quantities quantifying the accuracy of the perturbative Langevin method are plotted in 

Figure (d). The slow-roll parameters E and 1111 are plotted as black solid and dashed lines respectively. 

lml2 / H 2 where m2 = d2V/d¢2 is plotted as a blue dashed line. The significance of the remaining 

quantities plotted in Figure ( d) in discussed in Appendix A. The solid blue line is 10¢2/ 8¢1 I which 

should be small if the terms linear and quadratic in quantum noise can be treated separately. The 

red line marked £ 2 and the green line marked R1 are the ratios 

I 
2L2(¢cl + 6.¢) I 
H"' ( ¢cl)6.¢2 and 

I 
R1(cPcl + 6.¢) I 

(H3/ 2)'( ¢c1)6.¢ 

respectively defined by Eqs. (A.4) and (A.5). In practice we use 6.¢ = (¢2) ±~and plot the 

above ratios as solids lines for + and dashed lines for -. In almost all cases, the + and - plots are 

indistinguishable. Note that £ 2 vanishes for the quadratic potential and is not plotted for this case. 

Note that in many of the plots of ¢cl, l6.¢cl/¢cil « 1. In this case, the overall scale of the ¢cl 

axis is labeled at the top of the plot and the difference from that value is labeled along the axis. So, 

for example, the ¢cl axis is labeled from -2.663158 x 105 to -2.66315 x 105 in Fig. 4.l(a). 

4.2 Quadratic Potential 

In this section, we consider a quadratic potential of the form 

(4.4) 

V(¢) ::::; m~1 if¢ E [-V2m~1/m, V2m~1 /m] which is the range of¢ that we will consider. Thus 

Vmax = m~1 and Eq. (4.2) gives Ho = mpif ../3. For this potential, 
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So from Eq. ( 4.3), we expect inflation to be eternal for 

m3/2 
1¢1>4.3 ~ . 

~ v m 
(4.5) 

To be consistent with observations m = 3 x 10- 6mp1 [43]. In this case, both Eqs. (2.24) and 

(2.28) pred ict that t he whole range of ini t ia l condi t ions supports eternal inflation carrying out the 

procedure ou tlined in Sec. 4. 1. Figs. 4. 1 and 4.2 show examples of trajectories ini t ia lly rolling down 

t he potent ial and ini t ia lly rolling up t he potent ial respectively. Both of these trajectories show large 

discrepancies between t he right hand sides of Eqs. (2.2-1) and (2.28) init ially which then asymptote 

to t he same value. (Note that the blue line in F igure (c) of both figures is small bu t nonzero). T hese 

large discrepancies are due to the quantum fluctuations as calcula ted in Eq. (2.28) being larger than 

t hose calculated in Eq. (2.24) since ( o¢i) is larger than H 2 I 47r2 . As expected , c differs from CclS 

ini t ially when IHI ~ 1¢1 is large but approaches eds as IHI becomes small. Excep t for a brief period 

in the beginning of the trajectories, Fig. 4.2 shows eternal infla tion for both Eqs. (2.24) and (2.28) 

for the ent ire t rajectory while Fig. 4.1 shows a large period of non-eterna l inflation for Eq. (2.2-l). 

Both of t hese trajectories are examples where the condit ions for stochastic eternal inflation are met 

but the fi eld is not inflating the entire t ime that t hey are met. T his is t rue of Eq. (2.28) for both 

t rajectories and of Eq. (2.24) for the trajectory of Fig. -1.2 . The errors for both of these trajectories 

are small; however , 1111 > 1 so t he slow-roll approximation is not necessarily valid. 

Figs. (4. 1) and (4.2) a re typical of t he qualitat ive behavior for trajectories with init ial velocit ies 

rolling down and up the potent ial respectively. For m = 3 x 10- 6mp1 from Eq. (-1.5), we expect 

inflation to be eternal for 1¢1 2:, 2500mpt· T he range of ¢ 0 for which inflation is not eternal is 

t herefore much smaller than the range of values ¢0 for which inflation is eternal and such non­

eternal t rajectories wo uld be difficul t to find in a uni form sampling of ini t ial condi t ions. Even with 

l<Pol ;S 2500mi,1, from Eq. (4.1) ¢0 will be so large that if the fi eld was ini t ially rolling down t he 

potent ial it will rapidly roll up the other side. As was discussed in Sec. 2.3.2, both Eqs. (2.24) 

and (2.28) will event ually predict eternal inflation for fields moving up t he potent ia l. To illustrate 

t hat not a ll parts of a trajectory are eternal however, we plot the t rajectory start ing from rest at 

<Po = -800mp1 in F ig. 4.3. Eqs. (2.24) and (2.28) both predict no eternal inflation with sma ller 

discrepancies than were seen in Figs. F ig. 4. 1 and F ig. 4.2. Since this trajectory also has 1771 « 1 in 

addition to the errors in t he per turbative expansion being small , Eq. (2.28) is valid . Note t hat t he 

trajectory shown in F ig. 4.3 is part of another trajectory wit h initia l conditions given by Eq. ( 4.1) and 

therefore should not be counted separately in an investigation of the likelihood fo r eternal inflation. 

We now consider the quadratic potent ial wit h m = mp1 which illustrates the differences between 

Eqs. (2.24) and (2.28) t hat could be present in a generic potent ial wit h parameters taking values 

up to t he Planck scale. For Jio > 0, Eq. (2.24 ) predicts eternal inflation fo r ¢ 0 E [-J2mp1, J2mpt] 
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corresponding to every trajectory satisfying V :S m~1 being eternal at some point , while Eq . (2.28) 

predicts eternal inflation for ¢0 E [O, 0.64mpi] corresponding to roughly 223 of t he a llowed tra­

jectories being eternal. To understand t hese results , note t hat Eq . (4.5) pred icts eternal inflation 

for 1¢1 ;:, 4.3mp1 > V2mp1. T herefore, we do not expect eternal inflation a nytime t he slow-roll 

approximation is valid and t he field is rolling down t he potentia l. 

F ig. 4.4 shows a typical trajectory init ia lly moving down the potent ia l. N is never greater than 

1 before the fi eld has oscillated about t he minimum more than twice and we stop looking for eternal 

trajectories. T herefore Eq. (2.28) never predicts eternal inflation for the fie ld init ia lly moving down 

the potent ia l. Eq. (2.24) a lways predicts eternal inflation after t he field passes the minimum of t he 

potent ia l once and begins to move up the potent ia l. 

F ig. 4.5 shows a typical trajectory init ially moving up t he potent ia l for ¢0 E [O , 0.63mpi]· In 

this case, both Eqs. (2.24) and (2.28) predict eternal inflation initially before the fie ld turns around 

and begins moving down the potential where inflation is no longer eternal. As with the case of 

m = 3 x 10- 6mp1, there are large discrepancies between the two condit ions; however, t hey do not 

eventually converge to t he same solu t ion. 

F ig. 4.6 shows a typical trajectory init ially moving up the potent ia l for <f>o E [0.63mp1 , J2mpi]· 

In t his case, the right hand side of Eq. (2.28) has shifted up and the condit ion Eq. (2.28) is no longer 

satisfied initia lly. However , Eq. (2.2.f) is sti ll ini t ially sat isfi ed before t he fie ld turns around. Again , 
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there are large discrepancies between the two conditions and the solutions do not converge. Note that 

while the errors in the perturbative expansion, when N > 1, are small , the slow-roll approximation 

is not valid for m = mpl and m 2 > H 2 so these results should be met with skepticism. 

4.3 Sine-Gordon Potential 

In this section, we consider the sine-Gordon potential , also referred to as natural inflation, of the 

form 

V ( ¢ ) = ~A ( 1 - cos 7) . (4.6) 

We consider ¢ E [O, 27rf] so Eq. (4.2) gives H0 = -J A/3m~1 . For this potential, 

I A . ¢ 
V = - sm ~ 

2J f (
A)3/2 ( ¢ ) 3/2 

and V 312 = 2 1 - cos f 

So from Eq. ( 4.3) , we expect inflation to be eternal for ¢ satisfying 

O.ll !J?1 2: lsin(¢/ !) I 
3 2 

_ 

mpl [l - cos(¢/!)] I 
(4.7) 
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J A/3m~1 , ef>o > 0. 

tmp1 

2 x 10- 12m4 f pll 57rf /6, Ho 

To be consistent with observations, A = 2 x 10- 12 m~1 and f = vs;;:mp1 [43]. In t his case for 

¢0 > 0, both Eqs. (2.24) and (2.28) p redict that inflat ion will be eternal for ¢0 E [0,7rf]. In t his 

case, for computational reasons, we only looked for eternal trajectories for t he init ia l part of t he 

trajectories . If the trajectories for ¢0 E [7r f, 27r J] were cont inued to t he point where they star t to 

roll back up t he potent ial, both condi t ions are likely to predict eternal inflat ion. T he only values 

of ¢ that sat isfy Eq. (4.7) are essent ia lly right at ¢ = 7r f. T herefore, we do not expect eternal 

inflation if the slow-roll approximation is valid and the field is rolling down the potent ial and t hat is 

what we fi nd. F ig. 4. 7 shows a typical trajectory moving up t he potent ial init ia lly. Both condi t ions 

predict eternal inflation init ia lly as the field is moving up t he potent ial and predict no eternal 

inflation around t he same point when the field turns around and moves down the potent ia l. T he 

two condi tions approach the same solut ion around the point where t he field turns around. F ig. 4.8 

shows a typical trajectory start ing near t he top of t he potent ia l and moving down ini t ia lly. Both 

condit ions asymptote to the same solut ion eventually but never predict eternal inflation unt il after 

t he field would have rolled back up the potentia l. F ig . .J .9 shows a typical trajectory start ing near 

t he bottom of the potent ial and moving down init ially. Neither condit ion predicts eternal inflation 

but the two solutions do not asymptote to the same solut ion. Unlike in t he quadratic case all of 

the trajectories in t his sine-Gordon potential contain portions of t he trajectory where the slow-roll 

approximat ion is valid and the errors in t he perturbative expansion are small. 

We now consider the sine-Gordon potential wit h A = m~1 and f = vs;;:. We find that both 
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Eqs. (2.24) and (2.28) predict eternal inflation for ¢0 E [O, 20.4/mpi] if ¢0 > 0. From Eq. (4.7), we 

expect inflation to be eternal for 9.9mp1 ~ ¢ ~ 21.5mp1 if the slow-roll approximation is valid and 

the field is moving down the potential. There are four types of qualitatively similar trajectories that 

we illustrate here. 

Fig. 4. 10 shows a typical trajectory starting low and initially moving up the potential. Both 

conditions predict eternal inflation while the field is moving up the potential and predict no eternal 

inflation around when the field turns around and moves down the potential. Fig. 4.11 shows a typical 

trajectory starting high and initially moving up the potential. Both conditions agree that inflation is 

eternal while the field is moving up the potential and, since ¢ 2: 9.9mp1 , after the field turns around 

and moves down the potential , both conditions continue to agree that inflation is eternal. Fig. 4. 12 

shows a typical trajectory starting high and initially moving down the potential. S ince¢~ 21.5mp1 , 

both conditions predict eternal inflation, although Eq. (2.24) initially predicts no eternal inflation 

while Eq. (2.28) predicts eternal inflation from the beginning of the trajectory. F inally, Fig . ..J. .13 

shows a typical trajectory starting low and initially moving down the potentia l. Both conditions 

predict no eternal inflation since ¢ 2: 21.5mp1. 

Both conditions are generally in good agreement in Figs. 4.10, 4. 11 , and .t.13 while the two 

conditions initially differ and then asymptote to the same solution in Fig. 4 .12 . In a ll of the trajec­

tories, at least after an initial period, both the errors in the perturbative expansion and the slow-roll 

parameters are small indicating that Eq. (2.28) is a good approximation. 

4.4 Random Fourier Series Potential 

A generic potential will not be as nice as the quadratic or sine-Gordon potentials. In studying how 

generic eternal inflation is one might therefore consider potentials of the form 

[ 
N ] -4 n¢ . n¢ 

V(¢) = Ampl ao +B L (an cos=-+ bn sm =-) 
n=l 771pl mpl 

(4.8) 

where an and bn are randomly chosen from a uniform distribution with zero mean and standard 

deviation 
2/ ?N 

O'n = e-n - . 

Such potentials, and their multi-field generalizations, have been studied in Refs. [18- 20] to calcu­

late the distributions of cosmological observables predicted by generic inflationary potentials . The 

question of eterna l inflation in such potentials has not been studied to our knowledge. 

An example of a random potential of the form Eq. ( 4.8) with N = 5 is shown in Fig. 4.14. If we 

were truly interested in computing the likelihood of eternal inflation in generic potentials, we should 

set B = 1, ao = 0, and choose A to correspond to different energy scales (as is effectively done in 
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Figure 4.14: Example of a random Fourier series potential of the form Eq. ( 4.8) with N = 5. 

Refs. [18- 20]). However , for illustrative purposes to avoid complications with potentials for which 

V(¢) < 0, we choose a0 and B such that the global minimum is at V = 0 and the global maximum 

is at V = Am~1 • A typical trajectory for the potential shown in Fig. 4.14 is shown in Fig. 4.15 . Even 

though the classical trajectory is well behaved , the perturbative expansion completely breaks down 

for most of the trajectory. This may be partially due to (8¢i) and (8¢2) Eqs. (3.31 ) and (3.32) 

having factors of V' in denominators and diverging near extremal points. However, the perturbative 

expansion breaks down for this trajectory at points where V' =I 0 and for other similar trajectories 

where ¢ is never near an extremal point. This example shows that Eq. (2.28) using the perturbative 

Langevin method of Ref. [39] described in Sec. 3.4 is still inadequate for investigating eternal inflation 

in generic single field potentials. 
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Chapter 5 

Summary and Conclusion 

While it is widely qouted that eternal inflation is generic, there have been no quantitative studies 

into this question to our knowledge. The criteria used to support the claim that a potential, or a 

trajectory in that potential, is capable of supporting stochastic eternal inflation do not account for 

the generic initial conditions that would be prevalent in a study of how generic stochastic eternal 

inflation is. 

In Sec. 2.3.2, we discussed conditions necessary for stochastic eternal inflation that improve on 

the conditions normally used in three ways. First, we take into account the direction that the 

field moves classically which can make it easier for a trajectory to be eternally inflating. Second, 

we take into account the fact that when 1¢1, and hence IHI, is large, the number of independent 

volumes N that an initial homogeneous volume expands into can be less than the pure de Sitter 

value Nds = e3 ~ 20. Third, we use the perturbative Langevin method of Ref. [39] described in 

Sec. 3.4 to more accurately compute the distribution of quantum fluctuations . 

We compared the our improved conditions and conditions similar to the most sophisticated 

conditions used in the literature in Ch. 4 for quadratic, sine-Gordon, and random Fourier series 

potentials. We found examples where these two conditions greatly differ. In particular, taking into 

account the true value of N can be crucial since, if it is less than 1, inflation cannot be stochastically 

eternal even if the quantum fluctuations exceed the classical roll. We also found examples where 

the conditions for stochastic eternal inflation are met but the field is not inflating which has not 

previously been discussed to our knowledge. 

The results of Ch. 4 should be viewed as evidence that even the most sophisticated conditions 

currently used in the literature to justify stochastic eternal inflation are inadequate for generic 

situations and are particularly ill-suited for studying how generic stochastic eternal inflation is . The 

analysis of Sec. 2.3.2 improves upon these conditions but is still inadequate for this task and more 

work is required before such an analysis could be made. Further efforts to address the objections 

made in Sec. 2.3.4 should be made in future work. Work is especially needed for distinguishing when 

the condition for stochastic eternal inflation is satisfied for every iteration of expansion and when it 
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is satisfied only a finite number of times. 

More crucially, a method for accurately calculating the distributions of quantum fluctuations 

in generic situations needs to be developed. We suggest generalizing the perturbative Langevin 

method of Ref. [39] to be applicable even when the slow-roll approximation is not valid. This 

generalization would not have a simple solution that requires only the calculation of single integrals 

however and would require numerically solving differential equations with stochastic noise terms. 

This approach has the advantage of easily incorporating the analysis of multiple fields which require 

such an approach even when the slow-roll approximations are made. Such an approach was used to 

study hybrid inflation in Ref. [56] where it was found that the differential equations needing to be 

solved were usually stiff and required care in both the solution and verification that the errors were 

small. We therefore do not expect this approach to be easily suited to the task of analyzing generic 

potentials but think it would be useful for analyzing specific cases with generic conditions that do 

not necessarily satisfy the slow-roll approximation. 

We conclude by noting that the analysis presented here, and any improvements made to it in the 

future, could be useful for studying the conditions necessary for false vacuum driven and topological 

eternal inflation as well. Ref. [57] studies general tunneling from a false vacuum that could be a 

combination of Coleman-de Luccia [58- 60] and Hawking-Moss [61] tunneling. In a full investigation 

of eternal inflation, this analysis should be modified to include more accurate computations of the 

quantum fluctuations responsible for tunneling especially if (possibly fast-rolling) trajectories are 

being considered. Finally, while quantum fluctuations do not play an important roll in topological 

eternal inflation, they would likely be important in the formation of a domain wall from a generic 

trajectory which would need to be considered in a full analysis of topological eternal inflation. 
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Appendix A 

Validity of the Perturbative 
Langevin Method 

The validity of the perturbative method of Ref. [39] for solving the Langevin equation described in 

Sec. 3.4 is discussed in Ref. [62]. In this appendix, we describe the error analysis of Ref. [62] and 

slight modifications to it used in the analysis of Ch. 4. 

A general function!(¢) can be expanded about the classical solution ¢cl in powers of !:i¢ as 

(A.1) 

where 

(A.2) 

is the remainder of the expansion truncated to the nth power of !:i¢ [63]. Therefore, expanding the 

Langevin equation Eq. (3.14) and using the classical equation of motion 

d~¢ + 2m;1H"(¢c1)!:i¢ + m;1H"'(¢c1)!:i¢2 + 2m;1L2(¢c1 + !:i¢) = 

H3/2(¢c1) ( + (H3f2)'(¢c1) !:i¢( + R1(¢c1 + !:i¢) ( (A.3) 
2rr 2rr 2rr 

where 

11<Pc1+l:i.¢ 
- (¢c1 + !:i¢- t)2 HC4l(t) dt 
2 ¢c1 

(A.4a) 

r"'c1+t:i.¢ 
Ji. (¢c1 + !:i¢- t)(H312)"(t) dt . 

cPcl 

(A.4b) 

Note that Eq. (3.16) is Eq. (A.3) truncated to second order in ~-

Eq. (A.3) determines !:i¢ exactly. The criterion of Ref. [62] for the perturbative expansion to be 

valid for !:i¢ approximated by 8¢1 + 8¢2 is that £ 2 and R1 be small compared to the other terms in 
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the expansion. Thus the expansion is valid if 

// I Hl//(¢2c1)D.¢2 I IL2(¢c1 + D.¢)1 '' 

IR1(¢c1 + D.¢)1 « l(H312 )'(¢c1)D.¢1 

where D.¢ = 8¢1 + 8¢2. In practice we use instead D.¢ = (8¢2) ± ~­

Ref. [62] uses a different form of the remainder than Eq. (A.2): 

E (,i.. + D.,i..) = 1<n+1l(¢c1 + eti¢) D.,1..n+1 
n '!'cl <f' ( n + 1) ! <f' 

for some e E [O, l]. This leads to the alternative definitions 

and the alternative conditions 

H<4l(¢c1 + eLD.¢) D.¢3 
6 

(H3/2)"(¢c1 + eRD.¢) D.¢2 
2 

(A.5a) 

(A.5b) 

(A.6) 

(A.7a) 

(A.7b) 

(A.8a) 

(A.8b) 

Eqs. (A.8) can then be used to solve for the values of D.¢max > 0 and D.¢min < 0 that provide the 

strictest bounds for equality in Eqs. (A.8). The approximation will be valid if 

(A.9) 

Eqs. (A.8) can be used to find analytic expressions for D.¢min and D.¢max for the quadratic 

potential but must be solved numerically for other potentials. We find it easier in practice to 

compute the integrals in Eqs. (A.4) and directly check Eqs. (A.5) than to solve Eqs. (A.8) for D.¢min 

and D.¢max and to check Eq. (A.9). To compute the integrals in Eqs. (A.4) we use 

_1_ (~ v<4l - V'"V' - ~ V"
2 ~ V'

2
V" - 15 V'

4 
) 

J3mpi 2 JV V3/2 4 V3/2 + 4 vs/2 16 v112 

1 ( 3 V" 3 V'
2 

) 

33;2~{4 4 Vl/4 - 16 vs/2 
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and to compute the right hand sides of Eqs. (A.5) we use 

H"' _ 1_ (~ V"' _ ~ V'V" ~ V'3 ) 
J3mpi 2 .JV 4 V3/2 + 8 V5/2 

31/4 V' 

4- 3/2 v1/4 · 
mp! 

(A.10) 

In addition to checking Eqs. (A.5) it is easy to check bef;2 « bef;1. This must be true for D..ef; = 

bef;1 + bef;2 to be a good approximation for splitting Eq. (3.16) into separate equations for bef;1 and 

bef;2. In practice, we check (bef;2) « Vl¢i. 
In the analysis of Ref. [62], it is also checked that 

(A.11) 

as is required for the probability of D..ef; E [D..¢imin, D..¢imax] to be close to 1. Since we do not compute 

t1¢imin and D..¢imax, we do not check this condition in general. However, in the case of the quadratic 

potential, we computed the integral and found it to be 1 for all cases where the expansion was 

otherwise considered valid. Furthermore, in all of the cases checked in Ref. [62], this integral only 

begins to deviate from 1 as D..ef; approaches D..¢imin or D..¢imax· We therefore find it unlikely that this 

condition would not be satisfied when the other conditions for the validity of the expansion are valid. 
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Appendix B 

Calculation of the Curvature of the 
FRW Metric 

B .1 Calculation of the Christoffel Symbols 

We calculate the Christoffel symbols using the method described in Ref. [64] where the variation of 

the integral 

1 J dxµ dxv 
J = 2 9µv dT dT dT 

~ J {-N
2 

( :: ) 

2 

+ a2 
[ 1 _\r2 ( ~~) 

2 

+ r 2 
( ~!) 

2 

+ r 2 
sin

2 e ( ~:) 
2

]} dT (B.l) 

is set to zero and the Christoffel symbols are read off of the appropriate coefficients of the resulting 

geodesic equation 

(B.2) 

We start with the variation t --+ t + 8t resulting in 

JI= ~ J {-2N N ( dt) 
2 

8t - 2N2 dt d(
5
t) + 2aa [ 

1 
( dr) 

2 
+ r 2 (de) 

2 
+ r 2 sin2 e (d<P) 

2
] 8t} d1 

2 dT dT dT 1 - kr2 dT dT dT 

Integrating by parts and assuming appropriate boundary conditions so that the surface term van-

ishes, 

J N 2 dt d(8t) d = -! ( NdN dt N 2 d
2
t) i: d 

dT dT T 
2 dT dT + dT2 ut T. 

Thus 

!{ .(dt)
2 

d
2
t [ 1 (dr)

2 
(de)

2 
(d¢)

2
]} JI = N N dT + N2 dT2 + aa 1 - kr2 dT + r2 dT + r2 sin2 e dT 8t dT = 0 
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and therefore 

d
2
t N ( dt) 

2 
aa [ 1 

dT2 + N dT + N 2 1- kr2 ( dr)
2 

(dB)
2 

(d¢)2] dT + r2 dT + r2 sin2 B dT 

We thus have the following Christoffel symbols 

. 2 rt - aar 
ee - N2 , 

Next, we consider the variation r --7 r +Jr resulting in 

=0. 

(B.3) 

1 2 2 dr d Jr 2kr dr dB . 2 ¢ 
[ 

( ) 
( ) 2 ( )2 ( 2 l 8J = 2 J a 1 _ kr2 dT ~ + (l _ kr2) dT Jr+ 2r dT Jr+ 2r Slll B -:;: ) Jr dT. 

Integrating by parts, 

J a
2 

dr d(Jr) dT _ -! [ a
2 

d
2
r + 2a

2
kr (dr)

2 
+ 2a da drl Jr dT 

1 - kr2 dT dT - 1 - kr2 dT2 (1 - kr2)2 dT 1 - kr2 dT dT . 

Thus 

u - - - - - - - +a r - +a r sm - ur T -!:J -J [ a
2 

d
2
r a

2
kr (dr)

2 
2aa dt dr 2 (dB)

2 
2 . 2 B (d¢)

2

] J: d - 0 
1 - kr2 dT2 (1 - kr2 ) 2 dT 1 - kr2 dT dT dT dT 

and therefore 

d
2
r kr (dr)

2 
2a dt dr 2 (dB)

2 
. 2 2 (d¢)

2 

- + - + - - - - r(l - kr ) - - r sm B (1 - kr ) - = 0. 
dT2 1 - kr2 dT a dT dT dT dT 

We thus have the following Christoffel symbols 

rr kr 
rr - 1 - kr2, 

Next, we consider the variation B --7 B + JB resulting in 

1 J [ dB d(JB) . (d¢)
2 

l 8I = 2 a2 2r2 
dT ~ + 2r2 smBcosB dT JB dT. 

Integrating by parts, 
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Thus 

JI = -a r - - 2a r- - - 2aar - - +a r Slll B COS B - OB dT = 0 J [ 2 2 d
2
B 2 dr dB . 2 dt dB 2 2 . (d¢) 

2
] 

dT2 dT dT dT dT dT 

and therefore 
d

2
B 2 dr dB 2a dt dB . (dB)

2 
- + --- + --- - smBcosB - = 0. 
dT2 r dT dT a dT dT dT 

We thus have the following Christoffel symbols 

I'~,p = - sin B cos B, 
(} (} a 

I'8t = I'w = -, 
a 

Finally, we consider the variation ¢ ~ ¢ + 0¢ resulting in 

OJ = 

Thus 

(} (} 1 
r(Jr = rr(J = -. 

r 

d
2
¢ + 2 cotBdB d¢ + ~ dr d¢ + 2a dt d¢ = 0 

d72 dT dT r dT dT a dT dT 

and we have the following Christoffel symbols 

,p _ ,p _l r r<P - r <Pr - - , 
r 

All Christoffel symbols not listed in Eqs. (B.3-B.6) vanish. 

B.2 Calculation of the Riemann Curvature Tensor 

(B.5) 

(B.6) 

In this section, we calculate the components of the Riemann tensor necessary to calculate the Ricci 

tensor. The components of the Riemann tensor are 

(B.7) 
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qr= 0 SO 

Rtrtr 9tt ( 8tr~r + r~tr~r - r~rrrr) 

- N2 [ aa + a2 
- 2aaN aaN a

2 l 
N 2(1 - kr2) N 3(1 - kr2) + N3(1 - kr2) - N2(1 - kr2) 

1 -akr2 (a: - a) · (B.8) 

r~<t> = o so 

2 (aiv ) ar N -a . (B.9) 

r~<t> = o so 

Rt<t>t<t> 9tt ( atr~<t> + r~tr~<t> - r~<t>rf <1>) 

- N [(aa+a2)r2sin28 _ 2aaNr2sin28 aaNr2sin28 _ a2r 2sin28] 
N2 N3 + N3 N2 

2 . 2 e (aiv ··) ar sm N - a . (B.10) 

r~0 = o so 

Rroro 

(B.11) 

r~<t> = o so 

(B.12) 
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r~"' = o so 

(B.13) 

B.3 Calculation of the Ricci Curvature Tensor and Scalar 

We use the results of Sec. B.2 to calculate the components of the Ricci curvature tensor necessary 

to calculate the Ricci curvature scalar. The components of the Ricci curvature tensor are 

(B.14) 

Thus, from Eqs. (B.8), (B.9), and (B.10), 

R 3 (aiv ··) ,u=~ N-a . (B.15) 

From Eqs. (B.8), (B.11), and (B.13), 

(B.16) 

From Eqs. (B.9), (B.8), and (B.13), 

ar
2 (aN ) ( 0,2 ) Ree = - N2 N - a + 2r

2 
k + N2 . (B.17) 

Finally, from Eqs. (B.10), (B.12), and (B.13) 

ar
2 

sin
2 

(J ( aN ) 2 2 ( a2 
) Rq,q, = - N 2 N - ii + 2r sin (J k + N 2 . (B.18) 

Finally, we can calculate the Ricci curvature scalar. From Eqs. (B.15)-(B.18), 

(B.19) 
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