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1 Abstract

The unique physical properties of graphene and its potential uses in nanoscale devices
make it a compelling subject of study.! Graphene, a two dimensional crystal which con-
sists of a single layer of carbon atoms bonded together in a hexagonal lattice, has a conical
band structure at low energies. Therefore, the charge carriers of graphene obey the Dirac
equation for relativistic particles and can be thought of as massless Dirac fermions.!?3
However, recent scanning tunneling microscopy (STM) studies of graphene on silicon
dioxide substrates have found corrugations in the graphene samples, and more impor-
tantly have observed deviations in the tunneling spectra from the expected Dirac-like
behavior.%*% Several possible explanations exists for this observed deviation from Dirac-
like behavior, including phonon-mediated inelastic tunneling *7, charge impurities ¢, and
changes to the band structure to due the underlying substrate.®

We present scanning tunneling spectroscopy and microscopy data of graphene on a
silicon dioxide substrate at a temperature of 77 K. The topographical studies reveal surface
corrugations in graphene due to rippling and partial conformation to the underlying silicon
dioxide substrate. In the tunneling spectra, a deviation from the expected Dirac-like
behavior is observed. A lack of correlation between the Dirac voltage and conductance
maps at a low bias voltage indicates charge impurities are not the primary cause for
deviations from Dirac-like behavior. A strain map is computed from the topography
and green’s functions are fitted to estimate the contribution of phonon coupling to the
tunneling conductance. We find that regions of higher strain correspond to higher phonon
frequencies, indicating that phonon-mediated inelastic tunneling is a major contributor

to the deviation from Dirac-like behavior found in tunneling spectra.

2 Introduction/Background

Prior to its successful isolation, graphene was believed not to exist naturally in nature
due to arguments made by Landau and Peierls that 2D crystals were thermodynamically

unstable.”!? Graphene was only recently mechanically isolated in 2004 by A.K. Geim



and K.S Novoselov from the University of Manchester. ! In the short time since it was

successfully isolated, many remarkable properties have been found in graphene, such as

Dirac-like band structure; an ambipolar electric field effect, which allows the charge car-

riers to be tuned continuously from electron to holes!; exceptionally high mobilities of up

to 200000¢m2V ~Ls~1 at ambient conditions'™!?; and a minimum conductance of % when
13,14

gated at zero charge carriers'”'*, where e is the charge of an electron and h is Planck’s

constant.

2.1 Fabrication of Graphene

The first graphene flakes observed were produced through the process of mechanical
exfoliation.! Mechanically exfoliation involves repeatedly peeling graphite with scotch
tape, until flakes of few layer or single layer graphene are achieved. In order to investigate
whether these flakes are truly single layered graphene, the flakes are placed on top of a
silicon dioxide substrate of precisely 300 nm thickness. Due to optical interference, single
layered graphene can then be identifed with an optical microscope.

While mechanical exfoliation is a relatively inexpensive process for fabricating graphene,
it is a time consuming and yields graphene flakes of sizes only on the order of several mi-
crons in size. A lot of effort has therefore been placed in attempting to grow graphene
epitaxially. Single layer graphene has successfully been grown through chemical vapour
deposition of hydrocarbons on metallic surfaces, as well as through thermodeposition on
silicon carbide. As of recently, graphene samples of areas up to several square centimeters
have been grown using chemical vapour deposition of nanometer thick graphite films onto

a nickel substrate.!®

2.2 Electronic Band structure of Graphene

Graphene exhibits a unique electronic band structure which is conical and has no band
gap at the K and K’ points of the Brillioun zone. Each carbon atom in graphene has
four valence electrons; the three o electrons are covalently bonded to neighboring carbon

atoms through sp? hybridization while the remaining 7 electron is in the 2p. orbital
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and participates in conduction through the graphene shee Consequently, we are only

interested in the 2p, electrons and we will use a tight binding approximation to calculate

the electronic band structure of graphene 1617

2.2.1 Tight Binding Approximation

Let us now consider the bravais lattice of graphene. The unit cell consists of 2 atoms;
typically denoted as A atoms and B atoms. A general electronic wavefunction ¥(r) will

be sought of the form:

—

U(r) = ca®a(r) + cp®p(F — d) (1)
where ® 4 and @5 have the form satisfying Bloch’s Theorem

Bo(F) = o T g Fa(F— B),a=A,B (2

and ¥4 and ¥ are the 2p, wavefunctions at lattice sites A and B.

To find the electronic band structure of graphene, the secular equation 7

det(H — BS) =0 (3)

will be solved for energy, where H is the Hamiltonian, E is the eigenenergy and S is the
overlap integral matrix. The matrix elements of H and S will be computed considering
only the three nearest neighbors of each atom. The notation where H,p is the matrix
element < ®4|H|®p > will be used.

Since the three nearest neighbors of each A atom are three B atoms and vice versa,
Has and Hgp are 0. For H,p and Hpy, there 3 B atoms surrounding the A atoms and

vice versa. Therefore:
HAB = HBA = Ek e“;é‘ktkv k= ]-7 25 3 (4)
te =< a(F)| H[¢p(F — Ry) >

where k is the wavenumber and ¢t = t; = t, = t3. For convenience, we denote



fa(k) =% eiFRet. Now, the distances from atom A to its three B neighbors are (for a

B atom to its nearest A neighbors, Ry, = —Ry,):

Rl = (2:1/57%)
R2 = (2—"—\/37_%)
R3 = (_%’O)

where a = 2.49 A . Therefore fa(k) = t(e**V3 +2e**3v3 cos %—a) Note that f(k)g =
fa(k)" = f(k). Therefore, Hag = Hp 4 = f(k)

In calculating the overlap integral matrix, for s, =< ¥A(7)|¢ (7 — Ifk) >, we have
assumed that s; << 1 in the tight binding approximation, so that Sas = Sgp = 1 and
Sap =Spa=0.

Setting Ey, =0 =

—E k
det f&) =0=
f(k) 2—-E
B =|f(k) =
Fap(ky, ky) = if,\/I+ 4 cos @ cos %La + 4cos? %La (5)

where t ~ -3.033 eV. These two bands meet at the six corners known as the K and K’
points of the first Brillouin zone of the reciprocal lattice, and therefore graphene has no

band gap (Figure 1).

2.2.2 Relativistic Charge Carriers

Taylor expanding E,p near the K or K’ points in the first Brillouin zone to first order
gives:

Eap(kz, ky) = +vsh|k| (1)

where vy is the Fermi velocity with a value of ~ As a result of this conical band

=&
300"

structure, charge carriers of graphene at energies near F; have vanishing effective mass



Figure 1: The band structure of graphene (images taken from Heo, Jinseong. Probing electronic properties of carbon
nanotubes. Ph.D thesis. California Institute of Technology). (2008)

and obey the Dirac equation for relativistic particles, with a reduced speed of light equal

to vy. Therefore, these charge carriers can be thought of as massless Dirac fermions.

2.3 Electronic Transport in Graphene

Experimental studies '''2 have shown a remarkably high charge carrier mobility x in
graphene. Specifically, mobilities of up to 200000% at ambient conditions have been
measured, which are larger than the highest mobilities of any semiconducting materials.
This measured value is in agreement with the predicted value assuming charge impurities
in the substrate as the main source of scattering. The high mobilities make graphene an
excellent candidate to be be used in components of integrated circuits and it is highly
possible that graphene will replace current silicon based technologies.

The high charge carrier mobilities of graphene also allow for the observation of the
Quantum Hall Effect (QHE) at room temperature.!® Graphene exhibits an anamolous
QHE, where the hall conductance plateau occur at o,, = £(N + %)%, which compared
to the standard Integer Quantum Hall effect sequence is shifted by % Additionally, due
to the relativistic nature of the charge carriers of graphene, the energies of the Landau
Levels in a magnetic field are given by are Ey = ivf\/m , instead of the standard
E,=F; + hw.(n+ %) where w, = 7% is the cyclotron frequency.

Graphene also exhibits an ambipolar electric field effect!, where the concentration of

charge carriers can be tuned continously from electrons to holes by adjusting the gate



voltage.

p(kQ)

Vy(V)

Figure 2. The ambipolar electric field effect in graphene. Changing the gate voltage in graphene changes the fermi
level, allowing for the concentration of charge carriers to be tuned continously from electron to holes. The rapid decrease
in resistivity when increasing the charge carrier concentation indicates their high mobility. (Image taken from Rise of
graphene. K.S Novoselov, et. al. 2007)

When the density of charge carriers is gated to zero, graphene still exhibits a finite

conductivity of %.13’14 This minimum conductively is a property instrinsic to systems

described by the Dirac equation '*. Most theories perdict a value of % for the minimum
conductivity of graphene, in constrast to the % found in most experimental measure-

ments. It is not yet known whether this disagreement is due to theoretical approximations

of electron scattering in graphene, or experimental limitations in measurements.

2.4 Scanning Tunneling Microscopy

An excellent tool for investigating graphitic surfaces is the scanning tunneling microscope
(STM).1920 Scanning tunneling microscopy operates on the principle of quantum tunnel-
ing, where a small voltage is applied between a conducting tip and sample, establishing a
tunneling current between the two. The tunneling current is proportional exponentially
to the distance between the STM tip and the sample, and therefore can provide informa-
tion about the topography of the sample with rather high precision. The derivative of
the tunneling current with respect to bias voltage is proportional to the local density of
states (LDOS) of the sample, and therefore the STM can provide spatial resolution of the
LDOS of a sample.



3 Deviation from Dirac-like behavior

Recent studies on graphene have produced observed spectra which does not exhibit Dirac-
like behavior.>%® There are several interpretations for the cause of this deviation from
Dirac behavior. Charge impurties will cause a shift in the Dirac point, and therefore
cause a deviation in observations from the expected behavior.® Phonon-mediated inelastic
tunneling'1 will also have an affect on the tunneling spectra, due to coupling between the
nearly free electron bands at the center of the Brillouin zone and the 7 bands at K and
K'.57 Finally, studies of graphene on silicon carbide have found that some of the 7 bonds
typically involved in conduction have instead bonded with carbon atoms in the substrate,

therefore changing the electronic band structure of graphene and giving rise to finite

energy gaps®.

di/dV (a. u.)

-0.1 0.0 0.1

di/dV (a. u.)
>
|

i Sample Bias (V)
0.5 — Vo
0.0 l T I T "I T l T I
-0.4 -0.2 0.0 0.2 0.4
Sample Bias (V)

Figure 3: The tunneling spectra over corrugated graphene. The deviation from Dirac-like behavior is attributed
to phonon-mediated inelastic tunneling. (Image taken from Giant Phonon-induced Conductance in Scanning Tunneling
Spectroscopy of Gate-tunable Graphene. Y. Zhang, et al. (2008)

As a simple excercise, we will first consider a uniaxial strain on a graphene lattice.
This serves as a very rough approximation of the distortion to the topological structure

caused by the corrugations.



3.1 Electronic Band Structure of strained graphene

The deviation from Dirac-like behavior has been observed mostly in corrugated graphene
samples. Therefore, as a simple approximation, the corrugations on the graphene samples
will be approximated as a strain in the graphene lattice to see if such a disortion would

cause graphene to lose its conical band structure and induce a band gap.

3.1.1 Uniaxial strain

The tight binding calculation used to derive the band structure of graphene will be redone

considering the effects of the strain ¢ in the direction depicted in Figure 4.

Figure 4: Strain along the horizontal direction. Note that there is a compression in the direction transverse to the strain

There will also be a contraction in the direction transverse to the strain, which will be
depedent on v, the poisson ratio of graphene.'® It will be assumed that the strain is not
sufficient to invalidate the three nearest neighbors approximation, so H 4 and Hgp will
still be zero and only Hp and Hg4 will need to be recomputed. The distances of the A

atom to its three nearest B neighbors are:

Rl — ((1+a)a (lfun)u.)

2v3 ' 2
By = ((12—{:}7r_)a’ _ (l—ga)a)
Ry = (—4252, )

Hap = Hpa = 5, %Pty k=1, 2,3

te =< Ya(7)|H|vp(F — Ry) >

10



By symmetry, t; =ty = t. Let t3 = ¢t and f(k) = ), etk R’ctk This means that
F(k)a = t(cie™ T 4 2e7 30 cos Uty Note that f(k)a = f(k)s* = f(k).
Therefore, Hap = Hp, = f(k)

Reformulating the earlier calculation:

Esp(ke, ky) = £t4/ ¢ + 4¢; cos ‘/S(H;)k”‘ cos (l_ug)kya + 4cos? M (1)

3.1.2 Low Energy dispersion

Taylor expanding E2,, near a minima at low energies and keeping only the lowest terms...

E3p =~ 3c,(1+ 0)*(ak,)? + (1 — £)(1 — vo)2(ak))?

Eap(k,, K) ~ tay/2a(1 + o)k + (1 — D)(1 — vo)?k,?2

i Vi

Therefore, the dispersion relation is still conical, and the band gap is still exactly zero.

3.1.3 Strain along any axis

Up to this point, we have restricted our consideration to uniaxial strain parallel to one
of the sides of the hexagon. Next, we relax the constraint and allow strain ¢ along
an arbitrary axis, ¢ = cosfz + sinfy. Due to the strain, there will be a compression
(or stretch, if the strain is a compression) in the axis perpendicular to that of ¢, which
we denote as n = sinf#z — cosfy. This compression will be dependent on the poisson
ratio v of graphene, which is about 0.17. ' Remaining with the three nearest neighbors

approximation, for each A atom (for B atoms, simply negate the R; components):

R, = Ri+ o((R; - &)¢ — v(R; - h)n)

Ri, = (ﬁ + (2\/- cos @ + —sm&) cos o — (—7 sing + 2 5 cos f) sin fvo)
Rlyz(%-g-(ﬁc s&-{—-sm@)sm@a (— 2 51n9+ 5 cos ) cos fvo)
Ry, = (5_\1/§ + (ﬁi cosf — 3 sinf) cosfo — (— 2\lf sinf — £ cos ) sin fvo)

11



Figure 5: Strain along an arbitrary direction.

Ry =(—3+ (ﬁg cos — 3 sin6) sin fo — (—ﬁ sin @ — 3 cos ) cos fro)

Rz, = —ﬁ(l + cos B cos o — sin O sin fvo)
Ry = —%(sin 6 sin fo — cos 6 cos fvo)

To calculate the new Fyp = :I:\/W, Flk) = 3 eiE'katk, k = 1, 2, 3 must be
recomputed. To evaluate the transfer integrals, the approximation that ¢, scales as #
will be used. Values of the band gap as a function of strain and angle were numerically
computing through iterating through values of 8 from 0.0 to 1.0, and values of ¢ from 0.0

to 1.0. Figure 6 is plot of band gap as a function of strain and the angle of the strain:

0.0

Band gap size
6.0 eV

0.0eV
1.0
00 01 02 03 04 05 06 07 08 09 10
g = —Ae

Figure 6: Plot of the band gap as a function of strain and the angle of strain. Note that a strain of greater than 50%
is needed to induce a gap, a magnitude which would cause the graphene lattice to melt, and invalidate our three nearest
neighbor approximation we used in our tight binding calculation.

12



As seen in Figure 6, graphene will continue to exhibit Dirac-like behavior until the
strain is greater than 50%, a magnitude which would cause the graphene lattice to melt
and invalidate the three nearest neighbor approximation used in the tight binding calcu-

lation.

3.2 Phonon-mediated inelastic tunneling

In this section we will look into phonon-mediated inelastic tunneling, as we will return to
it later. Phonon-mediated inelastic tunneling is caused by out of plane phonons at the K
and K’ points, which cause coupling between the nearly free electron bands at I' and the
Dirac fermions in the 7 bands near K and K’. 7

Tunneling currents are determined by the local density of states near the tip, typically
around 5 Aabove the sample.® For graphene, according to Terseoff and Harmann?!, we
should have j—{, R’ \I/p2Np(E) + \I/KZNK(E), where Nr is the density of states of the nearly
free electron bands and Ni(F) is the density of states of the = bands. In the presence of
phonon-mediated inelastic tunneling, we have %}% ~ 1017 Therefore, Nr(E), the density
of states of the nearly free electron band, will dominate the tunneling density of states.

We will discuss here the model developed by Wheling et al.” to explain how phonon-
mediated tunneling affects scanning tunneling spectroscopy.!! The Dirac fermions at K

and K’ can be described by the Hamiltonian H = ) vE(k)cie, where cf is the

v=1t,q
creation operator of an electron in the 7 band with a momentum q, and v = =+ is an
index for the conduction and valence bands. The nearly free electron bands at I' have a
minimum energy at £, = 3.3 eV, and can be approximated by a flat band H = Zq dsz Eqdyg,
where dz is the creation operator of an electron with momentum q.

The out of plane phonons at K and K’ can be described by H,, = hw, Y, a};ak7
where a}; is the creation of a phonon of frequency w,. The phonons cause scattering
between the nearly free electron bands and 7 bands. This interaction can be described

by V =AY, i (kg Cog + € ydirg) (ar + ait).

The noninteracting electron Green’s function is described by

13



L 0 0

twp—FEs

0(p 7 ) — 1
G(g, itn) 0 iwn—E(q) 0

N
iwn+E(q)

where w,, are the fermionic Matsubara frequencies. The non-interacting phonon Green’s
function is described by D°(iQ,,) = mLfﬁ Therefore, the aforementioned electron-

phonon interaction can be rewritten in matrix notation as

0 X O 00 A
M.=] X0 0|andMy=1]0 0 0
00 0 A0 O

so that the electronic self-energy can be expressed as
(iwn) = =532, ., D(1Q2m) M, GO (r = 0, 1wy, — iQm) M, (1)

The self-energy is diagonal and for w small compared to the Dirac energy bandwidth

(~ 6 eV), the components are ), | (w +1i6) = Z/Ll(w + i) + ¢ Z:yl(w +i0), where:
511 (W +88) o (w — w,) log 4522 + (w + w,) log ||
S (w +6) o< —8(|w] — we)|w—sgn(w)w,|

Integrating the interacting Green’s function G=! = G~ — 37 (w) over momentum
space gives the total density of states, N(w) = —=TrImG(r = 0,w + id). As shown in
Figure 6, the resulting total density of states are V-shaped and indistinguishable from
that of the 7 bands. The only difference is a small shift of the Dirac point that occurs
with increasing coupling strength.

At these low energies, the density of states in nearly free electron bands are described

by Nr(w) = — = Egjilz(ui:zf}ﬂé)\” This density of states will vanish for energies less
then FE, if there is no electron-phonon interaction. With the phonon-electron interaction
present, for electron energy w > w,, where w, is the phonon frequency, the nearly free

electron bands will mix with the 7 bands, resulting in a band gap of width +w,. Outside

14
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Figure 7: a. The density of states for coupling strengths A = 0, 0.3, 0.5, 0.7 eV. The top pannel shows the total density
of states while the lower panel shows the density of states of the nearly free electron band. b. The density of states of
the nearly free electron band. Changing the chemical potential p will causes the Dirac point to shift. (Images taken from
Phonon-mediated tunneling into graphene. T.O Wehling, et. al 2008.)

of this bandgap, the density of states of the nearly free electron band will resume to the
V-shaped behavior of the density of states of the 7 bands. Since the tunneling spectra
will be dominated by the density of states of the nearly free electron band, Wehling et.
al 7 predict a tunneling spectra for graphene as depicted in Figure 7. This was observed

by Z. Yhang et al. from Berkeley in 2008 °, as shown in Figure 3.

4 Results

4.1 Topography

We conducted our STM graphene measurements at 77.7 K and pressures below 107 torr.
To calibrate the STM to high accuracy, topography scans were taken of a graphite sample
(Figure 18). The image exhibits a triangular lattice structure which is due to Bernal
stacking.

STM topography scans of graphene over a 2.2 nm by 5.0 nm region(Figure 8a) and 8.6
nm by 8.6 nm (Figure 8c) region are shown. The scans exhibit a hexagonal lattice struc-
ture, as well as significant corrugations. The height variations due to these corrugations

are on the order of 4+ 0.5 nm, over the range of 10 nm.

15



In figure 8b is a histogram of the height variations over region of 8a. In order to
compare the corrugations of the graphene sample with that of a Si0, substrate, AFM
measurements were taken of a SiO, substrate over a 8.6 nm by 8.6 nm region. Figure 8d
shows the histogram of the height variations of both the SiO; substrate and the graphene
sample over the 8.6 by 8.6 nm region. The correlation between the histograms demonstrate
that corrugations in the graphene are due to its partial conforming to underlying silicon

dioxide substrate.

a b
z
£
w
£ 4
o
a
-10 0 10
Height(A)
c d
o
o0
o
3 4
5]
D o
O
n- 4
-10 10
0 X(nm) 8.6 Heigﬂ (A)

Figure 8: a. A STM scan of graphene over a 2.2 nm by 5.0 nm region. b. A histogram of the height variation over the
region scanned in a). ¢. A STM scan of graphene over a 8.6 nm by 8.6 nm region. d. A histogram of the heigh variations
of an S02 substrate and the height variations over the region in ¢). The two histograms show apparent correlation

4.2 Conductance Maps

Scanning tunneling spectroscopy measurements were performed over a 5.0 nm by 2.2 nm
region. Conductance (%) maps at various bias voltages are shown in Figure 9 and a
spatial map of the Dirac voltage is shown in Figure 10.

At low bias voltages, the conductance appears to correlate fairly well with the overall

topography. As the bias voltage is increased, the overall conductance becomes more

16
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Figure 9: a A topography scan over a 2.2 nm by 5.0 nm region. b-d. Conductance maps at bias voltages of 0 meV, 80
meV and 240 meV. As the bias voltage is increased, the overall correlation of the conductance with topography is reduced

homogenous, indicating that the conductance modulations are primarily associated with
the low energy charge excitations which are influenced by changes in topography and a
strained lattice.

Charge impurities in the SiOy substrate would cause a shift in the Dirac voltage and
therefore could be a cause for the deviation from Dirac behavior found in the tunneling
spectra. The spatial map of the Dirac voltage is fairly homogenous, while at low bias
voltages, the spatial conductance maps follow the overall topography of the sample.

The lack of correlation between the Dirac voltage and conductance maps at low bias
voltage (Figure 10) indicates that charge impurities likely are not the main cause for the

variations in the local density of states of graphene.

4.3 Strain Maps

In Figure 11 is a fast Fourier transform of the topography scan from figure 4a. We observe
a distorted hexagon (Figure 11), indicating significant distortion to the lattice structure
of the graphene sample.

In order to quantify these lattice distortions, the displacement u(z,y) = u, + u,y,

17
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Figure 10: a. A spatial map of the conductance at a low bias voltage. b. A spatial map of the Dirac voltage. c. A
histogram of the Dirac voltage over the spatial region in b. It is apparent from the histogram that the Dirac voltage is
fairly homogenous in the spatial region in b. Overall, there is a lack of correlation between Dirac voltage and conductance

at low bias voltage.
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Figure 11: A fast Fourier transform of the earlier 5.0 nm by 2.2 nm topography scan. The distorted hexagon indicates
significant distortion to the lattice structure of the graphene sample
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where u is the deviation of the local lattice vector from the equilibrium lattice vector,
was used to compute strain maps over the topography region in figure 8a(Figure 12).
This displacement was computed by taking the Fourier transform of a group of atoms,
computing the displacement of the local reciprocal lattice vectors, and inverse Fourier

transforming that displacement back into real space.

100

100-

100

100

du du
_ du _ du _ _ ot
iz ¢ Sy, = D d. Spy = Sy = T3

Figure 12a is a map of the scalar strain, or S, = “(:;y), while Figures 12b-d show the

3 d dug | duy
a1 u x
strain tensor components, S;, = =, S, = d—yy and Szy = Sy = 2= respectively.

Overall, we can see that the scalar strain appears roughly follow the topography.

To investigate the correlation between low charge excitations and strain, a correlation
number between a conductance map at low bias voltage (Figure 9) and the scalar strain
(Figure 12a) was computed as follows:

JU® = Dg(F+ R) — g)d®r
Vv Af,f (O)Ag,g(o)

= (1)

where

Aps(Ry= [ F() = DU+ B) = Pder

and f and g are the low bias voltage conductance map and scalar strain map.

19



A value of -1 implies complete anticorrelation, +1 indicates complete correlation and
0 indicates no correlation at all. The correlation number for the scalar strain and low
bias voltage conductance map (40 meV) was 0.44. However, at highier bias voltage
conductance maps (240 meV), the correlation went down to 0.12, indicating that strain

has a much more pronounced affect on the low charge exitations of graphene.

4.4 Phonon-mediated inelastic tunneling

As discussed earlier, due to phonon-mediated inelastic tunneling, the tunneling density
of states are dominated by the density of states of the nearly free electron bands Np(F).”
Therefore, to see the correlation between strain and the deviation in the tunneling spectra,

Nr was fitted to the observed tunneling spectra, where:

Y 4 (wtid)
NF(w) = vW‘W—Eal—%Zl,l(“"Hé)‘z (1)
with F, = 3.3eV and the electron self-energy

S w+i6) =3 (W +16) +i 3 (w +48), with:

(e +6) ox (= wa) 1og [ 25| + (w0 + we) log |52

2/1/,1(“) +10) x —O(|w| — w,) |w—sgn(w)wy|

The phonon frequency, w, is used as a fitting parameter.

In Figure 13a is a line cut of tunneling spectra, along the direction depicted in 13g.
The spectra along this line cut are primarily U-shaped, and from the strain map in 13g,
correspond to a region of substantial strain. The theoretical fit to an observed tunneling
spectra (Figure 13c) along this line cut agrees fairly well and corresponds to an out-
of-plane phonon frequency hw, of 44 meV. In Figure 13b is a line cut with tunneling
spectra exhibiting more V-shaped behavior. This line cut corresponds to a region of
relaxed strain. The theoretical fit from a tunneling spectra (Figure 13e) in this region
corresponds to a lower phonon frequency of fiw, of 26 meV. Therefore, this apparent
correlation between the observed tunneling spectra and strain maps seems to indicate

that strain-induced modulations in conductance and phonon-mediated inelastic tunneling
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Figure 18: w- c). Line cuts of tunneling spectra along the directions indicated by g. a. A line cut with tunneling
spectra that is primarily U shaped. b. A line cut with tunneling spectra which is primarily v-shaped. c. A line cut where
the tunneling spectra goes from being primarily v-shaped to primarily u-shaped. d. A theoretical curve fit of a primarily
u-shaped tunneling spectra from a) with a phonon frequency of fiw, = 44meV. e. A theoretical curve fit of a primarily
v-shaped tunneling spectra from b) with a phonon frequency of iiw = 26meV. f. A comparison of the fits from d) and e)
g. The region from which the line cuts of tunneling spectra were taken from. The directions of the line cuts are indicated
by the arrows in the figure.
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are one of the primary reasons for the deviation of tunneling spectra in graphene from

Dirac-like behavior.

5 Current/Future Projects

5.1 STM on gated graphene

While phonon-mediated inelastic tunneling contributes to the deviation in the spectra
from Dirac behavior, it is likely not the only cause. Given that the phonon-mediated
tunneling is due to low energy exitations, we hope that by gating our graphene sample
to change the the Fermi level, we may be able to gain insight into other causes for the

deviation from Dirac behavior.

Low Temperature STM

1. Tube
scanner and
STM Tip

2. Cryogenic
microwave X
filter r
3,
Trans-

impedence

pre-amplifier
XY Stage
[21

Cryogenic Dewar

Figure 14: A block diagram of the STM setup with gate voltage

We currently have a gated graphene sample loaded within the STM and are attempting

to conduct measurements.
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5.2 Future projects: STM on graphene atomic switches

We are interested in the physics behind graphene switching devices discovered by Professor
Marc Bockrath’s research group. ?? A large current is applied accross a graphene sheet
breaking the bonds between carbon atoms, forming a nano-scale gap. When the applied
bias voltage is below 2 volts, the current remains negligably low. As the bias voltage is
increased to the 2.5-4 volt range, the current increases dramatically, up to a maximum
of 0.65 mA at around 5 V. Applying bias voltages of over 6 volts results in a negligable
current once again. Thus, by applying different voltages corresponding to ON and OFF
states, a graphene switching device can be constucted. Such a switching device has uses
in logic gates and information processing applications. It is believed that the switching in
the graphene occurs due to the formation of linear chains of carbon atoms. The formation
and breakdown of the linear carbon chain depends on the applied bias voltage. These
switching devices will also provide us with an opportunity to look at the edge states of

graphene, and whether the edge states which form are armchair states or zizzag states.

6 Conclusion

In summary, we obtained atomically resolved scanning tunneling microscopy and spec-
troscopy of graphene. The topography scans exhibited corrugations in the graphene sam-
ple, which are due to its partial conforming to the underlying silicon dioxide substrate.
More importantly, the observed tunneling spectra exhibited deviations from the expected
Dirac behavior. Charge impurities are unlikely the main cause for this, as there was little
correlation spatially between the Dirac voltage and low bias conductance maps. Instead,
substrate induced strain in the graphene sample and phonon-mediated inelastic tunneling
are likely the main cause for the deviation from Dirac behavior observed in the tun-
neling spectra. Because this phenomenon occurs with low energy exitations, gating the
graphene sample will prove to be informative, and hopefully shed light into other causes

for deviation from Dirac behavior.
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7 Experimental Setup

7.1 Scanning Tunneling Microscopy

The primary experimental tool used in these studies is the scanning tunneling microscope
(STM). The STM is an excellent experimental tool to study graphene due to its atomic
scale resolution. STM operates on the principle of quantum tunneling, where the con-
ducting tip of the microscope is brought to within subnanometer distance of a sample and
an applied bias voltage causes electrons to tunnel through the vacuum in between the tip
and the sample.

The resulting tunneling current can provide extensive information about the sample
surface.!®?0 Using the Fermi’s golden rule, there is a transmission rate of electrons from

the energy states of the sample to the energy states of the tip:
W = %_?M{Qgé(Etzp - Esample) =

I =42 [ (f(Er — eVs — E) + [(Er + E))psarmple(Er — Vs + E)puip(Er — E)MAAE
(1)

where f is the Fermi-Dirac distribution, p represents the density of states and h is
Plancks constant. The barrier between the tip and the sample will be treated as a 1D
rectangular potential barrier with a width of d. Using time dependent pertubation theory,

the wavefuctions for the exact Hamiltonian will be approximated as °:

U (z) = ae X* for z > 0

Uy(z) = beX* for z < d

where x = ?L‘fzé;” Thus, ¥(z) is a correct solution for z < d and W,(z) is a correct
solution for z > 0. Thus, inserting the general solution W(t) = c(i,)\Ilse;th + (1(1‘/)\111(3_11;wzi

into the time dependent Schrodinger equation:

HY(t) = h™Y where H = H, + Hy
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which gives My, =< Uy|Hp|Ws > exp (—2xd). =
I o exp (—2xd).

Therefore, the resulting current is proportional exponentially to the distance between
the STM tip and the sample, and can provide information about the topography of the
sample.

Now, consider (1), at low temperatures and with a constant tunneling matrix:

Lo 3 oeVb psampie(EF — €V — E)pyip(Ep + E)dE

Assuming that the tip density of states is constant, and taking the derivative with respect

to V.

dr
vy X psample(EF - 6‘/[;)

so that E% is proportional to the local density of states of the sample.[1] Therefore, the
tunneling current can provide information about both the topography and its derivative
with respect to bias voltage information about the local density of states of the sample.
Due to graphene’s 2D nature and its conical band structure, its density of states would be
linear as a function of energy, vashishing at the Dirac point implying a V-shaped tunneling

spectra.

7.2 STM specifics

The measurements on graphene were conducted on a homebuilt, cryogenic STM capable
of temperature measurements from room temperature down to 6.2K. The STM is also
capable of magnetic fields up to 7 Tesla and achieving base pressures below 10719 torr at

6 K.

7.2.1 Tube Scanner and Coarse Movement Stages

The control and movement of the STM comes from the cylindrical tubescanner and the

coarse movement stages. The tubescanner consist of piezo-electric crystal and provides
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Figure 15: A block diagram of the STM setup
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fine control movement. Therefore, by applying voltages in the range from 10-100 volts
accross the four quadrants of the tube scanner, the tubescanner can go from fully retracted
to fully extended, providing a movement range 2 microns in the z direction. The tube
scanner can also achieve lateral movement in both the x and y directions with a range
of 10 microns. The spatial scans conducted by the STM are done through this lateral

movement of the tubescanner.

Side View Top View

5¢cm

1. Z-stage piezo stacks
2. Sapphire casing
3. Piezo tube-scanner

4. Tip
5. Sample
6. Sapphire plate

XY-Stage

Figure 16: A diagram of the STM head

While the tubescanner provides fine control movement of the position of the tip relative
to the sample, coarse movement stages provide a much larger range of movement. The
coarse z-stage moves the tubescanner 1 micron per step. This, combined with the piezo-
electric control of the tubescanner provides a safe method of bringing the tip within
tunneling range of the sample. First, the voltage applied to the tubescanner is gradually
increased. If no tunneling current is detected as the tube scanner becomes fully extended,
the tube scanner is retracted, and the coarse z-stage moves a step closer to the sample.

The process is therefore repeated until a tunneling current is detected.
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The course XY stage provides a range of lateral movement of 1 mm, with 100 nm
movement per step. The XY stage allows for the study of fairly imhomogenous samples.
Additionally, it allows for the correction of the tip position, in case the tip is positioned

over a conducting part of the surface but not over the part of the surface desired for study.

7.2.2 Cryogenics

The STM is capable of maintaining a temperature of 6.2 K near the sample. This is
achieved by placing the STM body inside a cryogenic dewar, and filling the dewar with
either liquid nitrogen (77 K) or liquid Helium (4.2 K). The STM head is constructed from
materials with low coefficients of thermal expansion so that the STM can operate in a

large range of temperatures.

Air table

STM access

Air cushions
STM body
He4/LN, dewar
7T magnet

STM head

ol Gl -8 o o

Figure 17: sT™ diagram
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7.2.3 Modes of Operation

The STM can conduct both topographic and spectroscopic scans. Topography scans
are performed by moving the tip laterally over the sample over a specified range. This
movement is achieved through the tubescanner. As the tip is moved over the sample, a
constant tunneling current through a feedback system, which moves the tip away from the
sample if the tunneling current is too high and closer to the sample if the tunneling current
is too low. Because the tunneling current is exponentially proportional to the distance
between the tip and the sample, a very precise measurement of sample topography can
be through this method. The STM is often used for resolving individual atoms, as atomic

resolution was achieved in our scans of graphene.

Figure 18: A topography scan of graphite with atomic resolution. The scan was performed while calibrating the STM
for high accuracy. The image exhibits a triangular lattice structure which is due to Bernal stacking.

The STM can also be used for spectroscopy and conductance maps. In scanning
tunneling spectroscopy, the tip remains at its position over the sample and the bias voltage
is varied over a range of values. As a result, the tunneling current as a function of bias
voltage can be measured, and 5—",, the tunneling conductance, can provide information
about the local density of states (LDOS) of the sample. By combining the topography
mode and spectroscopy mode, spatial conductance maps can be taken with the STM. This

is achieved by taking individual spectra at various locations of the sample and therefore

providing spatial resolution of the local density of states of the sample.
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7.3 STM tip fabrication

Tips for the scanning tunneling microscope (STM) are fabricated from platinum-iridium
wire, mainly because platinum-iridium is unreactive with air and the process for fabricat-
ing tips from platinum-iridium is relatively simple. The fabrication process of platinum-
iridium tips involves first the mechanical shearing of platinum-iridium wires followed by
the electrochemical polishing of the resulting tips. Mechanical shearing is accomplished
using wire cutters to shear tips from a platinum-iridium wire. Only optically sharp tips
are kept, as optical sharpness is required so that the tip can be positioned exactly above
the micron sized graphene sample.

The electrochemical etching process involves placing the tips in a solution of calcium
chloride dihydrate and an AC voltage of 5 V is applied between the solution and the tip
for a few seconds. This sharpens the tip atomically, improving the quality of tunneling,
as well as leaving a broad tip surface. The broad surface tip surface allows the tip density
of states to be linear, so that the tunneling conductance remains a good approximation

of the local density of states of the sample.

7.4 Frabrication of graphene sample

The graphene sample under investigation in this project was prepared by Professor Chun
Ning Lau’s group from the University of California at Riverside and was fabricated through
the process of mechanical exfoliation.!. The sample is several microns in size and is lo-
cated on top of a silicon dioxide substrate containing gold contact pads approximately
160 microns away from the graphene sheet. Gold wires connect the pads to the graphene
sample. These gold pads and wires were etched onto the substrate through photolithog-
raphy processes. In order to remove possible residual photoresist resulting from the pho-
tolithography process, the graphene sample was annealed at a temperature of 400 C° for
15 minutes in an oxygen environment using a Hevi-Duty high temperature oven with an

Omega CN2011 temperature controller.
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7.5 Positioning STM tip over the sample

Due to the size of the graphene sample, which is barely resolvable to the naked eye, one of
the most difficult tasks was positioning the STM tip over the graphene sample. In order to
provide the needed magnification, an optical microscope was configured and used in this
task. Even with this magnification, moving the sample on the XY stage right underneath
the sample with complete accuracy is not achievable. In the scenario where the STM is
operating and the tip is positioned over the surrounding gold, the XY stage must be used
to reposition the tip over the graphene sample. This is a rather cumbersome task, as the
STM has a maximum range of around 1 square micron in scanning. Therefore, our field
of view while running the STM is at most 1 micron, while our precision using the optical

microscope is limited to 10 microns.
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