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1 Abstract 

The unique physical properties of graphene and its potential uses in nanoscale devices 

make it a compelling subject of study. 1 Graphene, a two dimensional crystal which con­

sists of a single layer of carbon atoms bonded together in a hexagonal lattice, has a conical 

band structure at low energies. Therefore , the charge carriers of graphene obey the Dirac 

equation for relativistic particles and can be thought of as massless Dirac fermions. 1'2'3 

However, recent scanning tunneling microscopy (STM) studies of graphene on silicon 

dioxide substrates have found corrugations in the graphene samples, and more impor­

tantly have observed deviations in the tunneling spectra from the expected Dirac-like 

behavior.4
'5'6 Several possible explanations exists for this observed deviation from Dirac­

like behavior, including phonon-mediated inelastic tunneling 4
,7 , charge impurities 6 , and 

changes to the band structure to due the underlying substrate.8 

We present scanning tunneling spectroscopy and microscopy data of graphene on a 

silicon dioxide substrate at a temperature of 77 K. The topographical studies reveal surface 

corrugations in graphene due to rippling and partial conformation to the underlying silicon 

dioxide substrate. In the tunneling spectra, a deviation from the expected Dirac-like 

behavior is observed. A lack of correlation between the Dirac voltage and conductance 

maps at a low bias voltage indicates charge impurities are not the primary cause for 

deviations from Dirac-like behavior. A strain map is computed from the topography 

and green's functions are fitted to estimate the contribution of phonon coupling to the 

tunneling conductance. We find that regions of higher strain correspond to higher phonon 

frequencies, indicating that phonon-mediated inelastic tunneling is a major contributor 

to the deviation from Dirac-like behavior found in tunneling spectra. 

2 Introduct ion/Background 

Prior to its successful isolation, graphene was believed not to exist naturally in nature 

due to arguments made by Landau and Peierls that 2D crystals were thermodynamically 

unstable. 9,10 Graphene was only recently mechanically isolated in 2004 by A.K. Geim 
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and K.S Novoselov from the University of Manchester. 1 In the short time since it was 

successfully isolated, many remarkable properties have been found in graphene, such as 

Dirac-like band structure; an ambipolar electric field effect, which allows the charge car­

riers to be tuned continuously from electron to holes1
; exceptionally high mobilities of up 

to 200000cm2 V - 1s - 1 at ambient conditions11•
12

; and a minimum conductance of 4f when 

gated at zero charge carriers13
•
14

, where e is the charge of an electron and h is Planck's 

constant. 

2.1 Fabrication of Graphene 

The first graphene flakes observed were produced through the process of mechanical 

exfoliation. 1 Mechanically exfoliation involves repeatedly peeling graphite with scotch 

tape, until flakes of few layer or single layer graphene are achieved. In order to investigate 

whether these flakes are truly single layered graphene, the flakes are placed on top of a 

silicon dioxide substrate of precisely 300 nm thickness. Due to optical interference, single 

layered graphene can then be identifed with an optical microscope. 

While mechanical exfoliation is a relatively inexpensive process for fabricating graphene, 

it is a time consuming and yields graphene flakes of sizes only on the order of several mi­

crons in size. A lot of effort has therefore been placed in attempting to grow graphene 

epitaxially. Single layer graphene has successfully been grown through chemical vapour 

deposition of hydrocarbons on metallic surfaces, as well as through thermodeposition on 

silicon carbide. As of recently, graphene samples of areas up to several square centimeters 

have been grown using chemical vapour deposition of nanometer thick graphite films onto 

a nickel substrate. 15 

2.2 Electronic Band structure of Graphene 

Graphene exhibits a unique electronic band structure which is conical and has no band 

gap at the K and K' points of the Brillioun zone. Each carbon atom in graphene has 

four valence electrons; the three a electrons are covalently bonded to neighboring carbon 

atoms through sp2 hybridization while the remaining 7f electron is in the 2pz orbital 
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and participates in conduction through the graphene sheet .16 Consequently, we are only 

interested in the 2pz electrons and we will use a tight binding approximation to calculate 

the electronic band structure of graphene 16•17 

2.2.1 Tight Binding Approximation 

Let us now consider the bravais lattice of graphene. The unit cell consists of 2 atoms; 

typically denoted as A atoms and B atoms. A general electronic wavefunction Ill ( T) will 

be sought of the form: 

where <I> A and <I> 8 have the form satisfying Bloch's Theorem 

and 'lfJA and 'lfJB are the 2pz wavefunctions at lattice sites A and B. 

To find the electronic band structure of graphene, the secular equation 17 

det(H - ES) = O (3) 

will be solved for energy, where H is the Hamiltonian, E is the eigenenergy and S is the 

overlap integral matrix. The matrix elements of H and S will be computed considering 

only the three nearest neighbors of each atom. The notation where HAB is the matrix 

element < <I> A IHI <I> B > will be used. 

Since the three nearest neighbors of each A atom are three B atoms and vice versa, 

HAA and H88 are 0. For HAB and HBA , there 3 B atoms surrounding the A atoms and 

vice versa. Therefore: 

H - H - '"""' ik·R~t k - 1 2 3 AB - BA - u k e k, - , , (4) 

where k is the wavenumber and t t3 . For convenience, we denote 
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f A(k) = L k eik·R~t. Now, the distances from atom A to its three B neighbors are (for a 

B atom to its nearest A neighbors , Rib = - Ria): 

R1 = ( 2)3 , ~) 

R2 = ( 2)3, -~ ) 

R3 = (- ~, O) 

0 ik _!!___ - ik a k a) ( ) where a= 2.49 A . Therefore f A (k) = t(e x F3 + 2e x273 cos+ . Note that f k B = 

fA(k)* = f(k). Therefore, HAB = HaA = f(k) 

In calculating the overlap integral matrix, for sk =< ~A(i) l~s(f' - R-: ) >, we have 

assumed that sk < < 1 in the tight binding approximation , so that SAA = S BB = 1 and 

SAB =SBA= 0. 

Setting E2p, = 0 =? 

[ 

-E f(k) j 
det 

J(k) * 2 - E 

E 2 = IJ(k) l2 ::::} 

E20(kx, ky) = ±t;J 1 + 4 cos V3; T. a cos !y- + 4cos2 !y- (5) 

where t ::::;; -3.033 eV. These two bands meet at the six corners known as the K and K' 

points of the first Brillouin zone of the reciprocal lattice, and therefore graphene has no 

band gap (Figure 1). 

2.2.2 Relativistic Charge Carriers 

Taylor expanding E20 near the K or K' points in the first Brillouin zone to first order 

gives: 

(1) 

where v I is the Fermi velocity with a value of ::::;; 
3
g

0
. As a result of this conical band 

structure, charge carriers of graphene at energies near Ed have vanishing effective mass 
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Figure 1: The band structure of graphene (images taken from Heo, Jinseong. Probing electronic properties of carbon 
nanotubes . Ph.D thesis. California Institute of Technology). (2008) 

and obey the Dirac equation for relativistic particles, with a reduced speed of light equal 

to v 1. Therefore, these charge carriers can be thought of as massless Dirac fermions. 

2.3 Electronic Transport in Graphene 

Experimental studies 1•11•12 have shown a remarkably high charge carrier mobility µ in 

graphene. Specifically, mobilities of up to 200000c;s
2 

at ambient conditions have been 

measured, which are larger than the highest mobilities of any semiconducting materials. 

This measured value is in agreement with the predicted value assuming charge impurities 

in the substrate as the main source of scattering. The high mobilities make graphene an 

excellent candidate to be be used in components of integrated circuits and it is highly 

possible that graphene will replace current silicon based technologies. 

The high charge carrier mobilities of graphene also allow for the observation of the 

Quantum Hall Effect (QHE) at room temperature .18 Graphene exhibits an anamolous 

QHE, where the hall conductance plateau occur at a x y = ±(N + ~) 4f , which compared 

to the standard Integer Quantum Hall effect sequence is shifted by ~. Additionally, due 

to the relativistic nature of the charge carriers of graphene, the energies of the Landau 

Levels in a magnetic field are given by are EN = ±vrJ2enBN, instead of the standard 

En= E± ± nwc(n +~) , where We= ::. is the cyclotron frequency. 

Graphene also exhibits an ambipolar electric field effect1, where the concentration of 

charge carriers can be tuned continously from electrons to holes by adjusting the gate 
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voltage. 
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Figure 2: T he ambipolar electric field effect in graphene . Changing the gate voltage in graphene changes t he fermi 
level, a llowing for t he concentration of charge carriers to be t uned cont inously from electron to holes . T he rap id decrease 
in resistivity when increasing the charge carrier conccntation indicates their high mobility. (Image taken from Rise of 
graphene. K.S Novosclov, et . a l. 2007) 

When the density of charge carriers is gated to zero, graphene still exhibits a finite 

conductivity of 4f .13•14 This minimum conductively is a property instrinsic to systems 

described by the Dirac equation 11
. Most theories perdict a value of '!,e~ for the minimum 

conductivity of graphene, in constrast to the 4f found in most experimental measure­

ments . It is not yet known whether this disagreement is due to theoretical approximations 

of electron scattering in graphene, or experimental limitations in measurements . 

2 .4 Scanning Tunne ling M icroscopy 

An excellent tool for investigating graphitic surfaces is the scanning tunneling microscope 

(STM) .19
•
20 Scanning tunneling microscopy operates on the principle of quantum tunnel­

ing, where a small voltage is applied between a conducting tip and sample, establishing a 

tunneling current between the two. The tunneling current is proportional exponentially 

to the distance between the STM tip and the sample, and therefore can provide informa-

tion about the topography of the sample with rather high precision. The derivative of 

the tunneling current with respect to bias voltage is proportional to the local density of 

states (LDOS) of the sample, and therefore the STM can provide spatial resolution of the 

LDOS of a sample. 
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3 Deviation from Dirac-like behavior 

Recent studies on graphene have produced observed spectra which does not exhibit Dirac­

like behavior. 5,6,8 There are several interpretations for the cause of this deviation from 

Dirac behavior . Charge impurties will cause a shift in the Dirac point, and therefore 

cause a deviation in observations from the expected behavior.6 Phonon-mediated inelastic 

tunneling1 1 will also have an affect on the tunneling spectra, due to coupling between the 

nearly free electron bands at the center of the Brillouin zone and the 7r bands at K and 

K' .5'7 Finally, studies of graphene on silicon carbide have found that some of t he 7r bonds 

typically involved in conduction have instead bonded with carbon atoms in the substrate, 

therefore changing the electronic band structure of graphene and giving rise to finite 

energy gaps8 . 

2.0 
4 

1.5 
::i 

~ 1.0 > 
"C 
:::::: 
"C 

0.5 

0.0 
-0.4 -0.2 0.0 0.2 0.4 

Sample Blas (V) 

Figure 3: The tunneling spectra over corrugated graphene . The deviation from Dirac- like behavior is attributed 
to phonon-mediated inelastic tunneling. (Image taken from Giant Phonon-induced Conductance in Scanning Tunneling 
Spectroscopy of Gate-tunable Graphene. Y. Zhang, et al. (2008) 

As a simple excercise, we will first consider a uniaxial strain on a graphene lattice. 

This serves as a very rough approximation of the distortion to the topological structure 

caused by the corrugations. 
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3.1 Electronic Band Structure of strained graphene 

The deviation from Dirac-like behavior has been observed mostly in corrugated graphene 

samples . Therefore, as a simple approximation, the corrugations on the graphene samples 

will be approximated as a strain in the graphene lattice to see if such a disortion would 

cause graphene to lose its conical band structure and induce a band gap. 

3.1.1 Uniaxial strain 

The tight binding calculation used to derive the band structure of graphene will be redone 

considering the effects of the strain c; in the direction depicted in Figure 4. 

Figure 4: Strain a long t he hor izontal d irection . Note that there is a compression in t he direction transverse to t he strain 

There will also be a contraction in t he direction transverse to the strain, which will be 

depedent on v , the poisson ratio of graphene. 16 It will be assumed that the strain is not 

sufficient to invalidate the t hree nearest neighbors approximation, so H AA and H 8 8 will 

still be zero and only HAs and HaA will need to be recomputed. The distances of the A 

atom to its three nearest B neighbors are: 

R = ( (l+a)a. (1 - va)a) 
1 2,/3 ' 2 

R = ( (l+a)a _ (1-va)a) 
·2 2,/3 ' 2 

R = (- (l+a)l'a 0) 
3 V3 ' 
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By symmetry, t1 = t2 = t. Let t3 = Ctt and J(k) = Lk eik·R-;.tk · This means that 

J(k)A = t(ct ei(l+o-)kx,/J + 2 e-i(l+O")kx 2 :iJ COS (l-v;)k,,a) . Note that J(k)A = J(k)a* = J(k). 

Therefore, HAa = HsA = J(k) 

Reformulating the earlier calculation: 

3.1.2 Low Energy dispersion 

Taylor expanding E~D near a minima at low energies and keeping only the lowest terms ... 

Therefore, the dispersion relation is still conical, and the band gap is still exactly zero. 

3.1.3 Strain along any axis 

Up to this point, we have restricted our consideration to uniaxial strain parallel to one 

of the sides of the hexagon. Next, we relax the constraint and allow strain a along 

an arbitrary axis , c = cos ex+ sin ey. Due to the strain, there will be a compression 

(or stretch, if the strain is a compression) in the axis perpendicular to that of c, which 

we denote as n = sin ex - cos eg. This compression will be dependent on the poisson 

ratio v of graphene, which is about 0.17. 16 Remaining with the three nearest neighbors 

approximation, for each A atom (for B atoms, simply negate the~ components): 

so we now have (assuming units where a = 1): 

Rix = ( 2~ + ( 2~ cos e + ~sine) cos ea - ( - 2~ sine + ~ cos e) sin eva) 

R1y = ( ~ + ( 2~ cos e + ~ sin B) sin Ba - ( - 2~ sin B + ~ cos e) cos eva) 

R2x = ( 2~ + ( 2~ cos e - ~ sin e) cos Ba - ( - 2~ sin e - ~ cos e) sin e va) 
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Figure 5: Strain along an arbitrary direction. 

R2 = (-.! + (-1
- cos e - .! sine) sin ea - (- -1

- sine - .! cos e) cos eva) 
y 2 2./3 2 2./3 2 

R3x = - )3(1 + cosBcosBa - sinesinBva) 

R3y = - )3(sin e sin ea - cos e cos eva) 

To calculate the new E2D = ±J j(k)* J(k), J(k) = L k eikR:tk, k = 1, 2, 3 must be 

recomputed. To evaluate the transfer integrals, the approximation that tk scales as 
1
i 12 

will be used. Values of the band gap as a function of strain and angle were numerically 

computing through iterating through values of e from 0.0 to 1.0, and values of a from 0.0 

to 1.0. Figure 6 is plot of band gap as a function of strain and the angle of the strain: 

0.0 
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0.2 

0 
0.4 

0.5 

0.6 
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0.8 

O.!I 

u u u u u u ~ ~ u u 

o- =At 
t 

Band gap size 

ti.OeV 

O.OeV 

Figure 6: Plot of the band gap as a function of strain and the angle of strain . Note that a strain of greater than 50% 
is needed to induce a gap, a magnitude which would cause the graphene lattice to melt, and invalidate our three nearest 
neighbor approximation we used in our tight binding calculation. 
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As seen in Figure 6, graphene will continue to exhibit Dirac-like behavior until the 

strain is greater than 503, a magnitude which would cause the graphene lattice to melt 

and invalidate the three nearest neighbor approximation used in the tight binding calcu­

lation. 

3.2 Phonon-mediated inelastic tunneling 

In this section we will look into phonon-mediated inelastic tunneling, as we will return to 

it later. Phonon-mediated inelastic tunneling is caused by out of plane phonons at the K 

and K' points, which cause coupling between the nearly free electron bands at r and the 

Dirac fermions in the 7f bands near K and K'. 7 

Tunneling currents are determined by the local density of states near the tip, typically 

around 5 Aabove the sample.8 For graphene, according to Terseoff and Harmann21 , we 

should have t[ ~ iflr2 Nr(E) + iJ! K 2 N K(E) , where Nr is the density of states of the nearly 

free electron bands and N K ( E) is the density of states of the 7f bands. In the presence of 

phonon-mediated inelastic tunneling, we have t;'"" 104
.
7 Therefore, Nr(E), the density 

of states of the nearly free electron band, will dominate the tunneling density of states. 

We will discuss here the model developed by Wheling et al. 7 to explain how phonon­

mediated tunneling affects scanning tunneling spectroscopy. 11 The Dirac fermions at K 

and K' can be described by the Hamiltonian H = Lv=±,q vE(k)c~c, where c~ is the 

creation operator of an electron in the 7f band with a momentum q, and v = ± is an 

index for the conduction and valence bands. The nearly free electron bands at r have a 

minimum energy at Ea= 3.3 eV, and can be approximated by a fl.at band H = Lq d~Eadq, 

where d~ is the creation operator of an electron with momentum q. 

The out of plane phonons at K and K' can be described by Hph = nwa Lk alak, 

where a! is the creation of a phonon of frequency wa· The phonons cause scattering 

between the nearly free electron bands and 7f bands. This interaction can be described 

by V = A L v,q ,k ( dk+q t Cv,q + cLdk+q) ( ak + ak t). 

The noninteracting electron Green's function is described by 
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_l_ 0 0 iwn-Ea 

G0 (q, iwn) = 0 1 0 iwn-E(q) 

0 0 1 
iwn+E(q) 

where Wn are the fermionic Matsubara frequencies. The non-interacting phonon Green's 

function is described by D 0 (inm) = r}"'+~ 2 . Therefore, the aforementioned electron-
.H'm. Wa 

phonon interaction can be rewritten in matrix notation as 

0 >. 0 0 0 >. 

M _ = >. O O and M + = 0 0 0 

0 0 0 >. O O 

so that the electronic self-energy can be expressed as 

The self-energy is diagonal and for w small compared to the Dirac energy bandwidth 

("' 6 eV), the components are 2::1,1 (w + io) = L~,i(w + io) + i 2::~ , 1 (w + io), where: 

L~, 1 (w + io) ex (w - Wa) log I w;'a I + (w + wa) log I w~a I 

Integrating the interacting Green's function c-1 = G(o)-l - 2:(w) over momentum 

space gives the total density of states, N(w) = -~TrimG(r = 0, w + io). As shown in 

Figure 6, the resulting total density of states are V-shaped and indistinguishable from 

that of the 7r bands. The only difference is a small shift of the Dirac point that occurs 

with increasing coupling strength. 

At these low energies, the density of states in nearly free electron bands are described 

by Nr(w) = - 7r lw-E~t:~~+ic5) l 2 . This density of states will vanish for energies less 

then E" if there is no electron-phonon interaction. With the phonon-electron interaction 

present, for electron energy w > wa, where Wa is the phonon frequency, the nearly free 

electron bands will mix with the 7r bands, resulting in a band gap of width ±wa. Outside 

14 



a 

-;:; 
'§ 
~ 
$ 

"' 8 

0.8 

0.6 

0.4 

0.2 

0 

0.02 

·- .... 
0.01 

····· · ····· 
---- ---

.... 
I 

Oev--
0.3 eV --- -
0.5 eV •• ••• •• 
0.7 eV - · - · 

I .: 

0 L__ _ _____c __ -1..o.J~=><:.f;.,:::::::__ 

-J -0.5 0 

Energy (eV) 

0.5 

b 

0.05 

0.04 

~ 0.03 

~ 
0 0.02 
-' 

0.01 

0 
-! 

0.4eV - -
0.2 eV -- - -
O.OeV ••••••• 

-0.2 eV -·- ·--· -0.4 eV _,, ___ , 

--- , , 

, , , , 

I , 

I , , 

, 
I , 

· · · - ~. ~ ...... ,,;_. ,·' 
-·- .... _ ... .,,·' 

......... :~~.: ::~:.;-i:.::.:.~· - -~. ,.· ./ 
-0.5 0 

Energy (eV) 
0.5 

Figure 7: a . The density of states for coupling strengths >. = 0, 0.3, 0.5 , 0. 7 eV. The top pannel shows the total density 
of states while the lower panel shows t he density of states of the nearly free electron band. b. The density of states of 
the nearly free electron ba nd. Changing the chemical potentia l µ will causes the Dirac point to shift. (Images taken from 
Phonon-mediated tunneling into graphene. T.0 Wehling, et. a l 2008.) 

of this bandgap, the density of states of the nearly free electron band will resume to the 

V-shaped behavior of the density of states of the n bands. Since the tunneling spectra 

will be dominated by the density of states of the nearly free electron band , Wehling et. 

al 7 predict a t unneling spectra for graphene as depicted in Figure 7. This was observed 

by Z. Yhang et al. from Berkeley in 200S 5 , as shown in Figure 3. 

4 Results 

4 .1 Topography 

We conducted our STM graphene measurements at 77.7 K and pressures below 10-6 torr. 

To calibrate the STM to high accuracy, topography scans were taken of a graphite sample 

(Figure lS). The image exhibits a triangular lattice structure which is due to Bernal 

stacking. 

STM topography scans of graphene over a 2.2 nm by 5.0 nm region(Figure Sa) and S.6 

nm by S.6 nm (Figure Sc) region are shown. T he scans exhibit a hexagonal lattice struc-

ture, as well as significant corrugations. The height variations due to these corrugations 

are on the order of± 0.5 nm, over the range of 10 nm. 
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In figure Sb is a histogram of the height variations over rcg10n of Sa. In order to 

compare the corrugations of the graphene sample with that of a Si02 substrate, AFM 

measurements were taken of a Si02 substrate over a S.6 nm by S.6 nm region . Figure 8d 

shows the histogram of the height variations of both the Si02 substrate and the graphene 

sample over the S.6 by 8.6 nm region. The correlation between the histograms demonstrate 

that corrugations in the graphene are due to its partial conforming to underlying silicon 

dioxide substrate. 
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Figure 8: a. A STM scan of graphene over a 2.2 nm by 5.0 nm region. b. A histogram of the height variation over the 
region scanned in a). c. A STM scan of graphene over a 8.6 nm by 8 .6 nm region. d. A histogram of the heigh variations 
of a n 502 substrate and the height variations over t he region in c). The two histograms show apparent correlation 

4 .2 Conductance Maps 

Scanning tunneling spectroscopy measurements were performed over a 5.0 nm by 2.2 nm 

region . Conductance ( ~~) maps at various bias voltages are shown in Figure 9 and a 

spatial map of the Dirac voltage is shown in Figure 10. 

At low bias voltages, the conductance appears to correlate fairly well with the overall 

topography. As the bias voltage is increased, the overall conductance becomes more 
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Figure 9: a. A topography scan over a 2.2 nm by 5.0 nm region. b-d. Conductance maps at bias voltages of O meV, 80 
meV and 240 meV. As the bias voltage is increased , the overall correlation of the conductance with topography is reduced 

homogenous , indicating that the conductance modulations are primarily associated with 

the low energy charge excitations which are influenced by changes in topography and a 

strained lattice. 

Charge impurities in the Si02 substrate would cause a shift in the Dirac voltage and 

therefore could be a cause for the deviation from Dirac behavior found in the tunneling 

spectra. The spatial map of the Dirac voltage is fairly homogenous, while at low bias 

voltages, the spatial conductance maps follow the overall topography of the sample. 

The lack of correlation between the Dirac voltage and conductance maps at low bias 

voltage (Figure 10) indicates that charge impurities likely are not the main cause for the 

variations in the local density of states of graphene. 

4.3 Strain Maps 

In Figure 11 is a fast Fourier transform of the topography scan from figure 4a. We observe 

a distorted hexagon (Figure 11) , indicating significant distortion to the lattice structure 

of the graphene sample. 

In order to quantify these lattice distortions, the displacement u(x, y) = UxX + uyfj, 
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Figure 10: a . A spatial map of the conductance at a low bias voltage . b. A spatial map of the Dirac voltage. c. A 
histogram of the Dirac voltage over the spatial region in b . It is apparent from the histogram that the Dirac voltage is 
fairly homogenous in the spat ia l region in b. Overall , there is a lack of correlation between Dirac voltage and conductance 
at low bias voltage . 

Figure 11: A fast Four ier transform of the earlier 5.0 nm by 2.2 nm topography scan. The distorted hexagon indicates 
significant distortion to the lattice structure of the graphene sample 
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where u is the deviation of the local lattice vector from the equilibrium lattice vector, 

was used to compute strain maps over the topography region in figure 8a(Figure 12) . 

This displacement was computed by taking the Fourier transform of a group of atoms, 

computing the displacement of the local reciprocal lattice vectors, and inverse Fourier 

transforming that displacement back into real space. 
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Overall, we can see that the scalar strain appears roughly follow the topography. 

To investigate the correlation between low charge excitations and strain, a correlation 

number between a conductance map at low bias voltage (Figure 9) and the scalar strain 

(Figure 12a) was computed as follows: 

c = j(f(f') - J)(g(r + R) - g)d2r 

J AJ,J(O)A9 ,9 (0) 
where 

AJ,J(R) = J J(f') - ])(J(f + R) - f)d2r 

(1) 

and f and g are the low bias voltage conductance map and scalar strain map. 
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A value of -1 implies complete anticorrelation, + 1 indicates complete correlation and 

0 indicates no correlation at all. The correlation number for the scalar strain and low 

bias voltage conductance map ( 40 me V) was 0 .44. However , at highier bias voltage 

conductance maps (240 meV) , the correlation went down to 0.12 , indicating that strain 

has a much more pronounced affect on the low charge exitations of graphene. 

4.4 Phonon-mediated inelastic tunneling 

As discussed earlier, due to phonon-mediated inelastic tunneling, the tunneling density 

of states are dominated by the density of states of the nearly free electron bands Nr ( E). 7 

Therefore, to see the correlation between strain and the deviation in the tunneling spectra, 

Nr was fitted to the observed tunneling spectra, where: 

N (w) = _ L~, 1 (w+i5) 
r 7r lw- E u - 2:: 11 (w+ii5) 12 (1) 

with Eu = 3.3eV and the electron self-energy 

L:1,1 (w + ic5) = L: ~, 1 (w + ic5) + i L:~, 1 (w + ic5) , with: 

L:~ , l (w + ic5) ex (w - Wa) log I w\;a I + (w + Wa) log I w~a I 

L:~ , 1 (w + ic5) ex -8( lwl - wa) lw- sgn(w)wa l 

The phonon frequency, Wa is used as a fitting parameter. 

In Figure 13a is a line cut of tunneling spectra, along the direction depicted in 13g. 

The spectra along this line cut are primarily U-shaped, and from the strain map in 13g, 

correspond to a region of substantial strain. The theoretical fit to an observed tunneling 

spectra (Figure 13c) along this line cut agrees fairly well and corresponds to an out­

of-plane phonon frequency n.wa of 44 me V. In Figure 13b is a line cut with tunneling 

spectra exhibiting more V-shaped behavior. This line cut corresponds to a region of 

relaxed strain. The theoretical fit from a tunneling spectra (Figure 13e) in this region 

corresponds to a lower phonon frequency of nwa of 26 meV. Therefore, this apparent 

correlation between the observed tunneling spectra and strain maps seems to indicate 

that strain-induced modulations in conductance and phonon-mediated inelastic tunneling 
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are one of the primary reasons for the deviation of tunneling spectra in graphene from 

Dirac-like behavior. 

5 Current /Future Projects 

5.1 STM on gated graphene 

While phonon-mediated inelastic tunneling contributes to the deviation in the spectra 

from Dirac behavior, it is likely not the only cause. Given that the phonon-mediated 

tunneling is due to low energy exitations, we hope that by gating our graphene sample 

to change the the Fermi level, we may be able to gain insight into other causes for the 

deviation from Dirac behavior . 

Low Temperature STM 

1. Tube 
scanner and 
STM Tip 
2. Cryogenic 
microwave 
filter 
3. 
Trans· 
lmpedence 
pre-ampllfler 

Cryogenic Dewar 

Figure 14: A block diagram of the STM setup with gate voltage 

We currently have a gated graphene sample loaded within the STM and are attempting 

to conduct measurements. 
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5.2 Future projects: STM on graphene atomic switches 

We are interested in the physics behind graphene switching devices discovered by Professor 

Marc Bockrath 's research group. 22 A large current is applied accross a graphene sheet 

breaking the bonds between carbon atoms, forming a nano-scale gap. When the applied 

bias voltage is below 2 volts , the current remains negligably low. As the bias voltage is 

increased to the 2.5-4 volt range, the current increases dramatically, up to a maximum 

of 0.65 mA at around 5 V. Applying bias voltages of over 6 volts results in a negligable 

current once again. Thus, by applying different voltages corresponding to ON and OFF 

states, a graphene switching device can be constucted. Such a switching device has uses 

in logic gates and information processing applications. It is believed that the switching in 

the graphene occurs due to the formation of linear chains of carbon atoms. The formation 

and breakdown of the linear carbon chain depends on the applied bias voltage. These 

switching devices will also provide us with an opportunity to look at the edge states of 

graphene, and whether the edge states which form are armchair states or zizzag states. 

6 Conclusion 

In summary, we obtained atomically resolved scanning tunneling microscopy and spec­

troscopy of graphene. The topography scans exhibited corrugations in the graphene sam­

ple, which are due to its partial conforming to the underlying silicon dioxide substrate. 

More importantly, the observed tunneling spectra exhibited deviations from the expected 

Dirac behavior. Charge impurities are unlikely the main cause for this, as there was little 

correlation spatially between the Dirac voltage and low bias conductance maps. Instead, 

substrate induced strain in the graphene sample and phonon-mediated inelastic tunneling 

are likely the main cause for the deviation from Dirac behavior observed in the tun­

neling spectra. Because this phenomenon occurs with low energy exitations, gating the 

graphene sample will prove to be informative, and hopefully shed light into other causes 

for deviation from Dirac behavior. 
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7 Experimental Setup 

7 .1 Scanning Tunneling Microscopy 

The primary experimental tool used in these studies is the scanning tunneling microscope 

(STM). The STM is an excellent experimental tool to study graphene due to its atomic 

scale resolution. STM operates on the principle of quantum tunneling, where the con-

ducting tip of the microscope is brought to within subnanometer distance of a sample and 

an applied bias voltage causes electrons to tunnel through the vacuum in between the tip 

and the sample. 

The resulting tunneling current can provide extensive information about the sample 

surface. 19•20 Using the Fermi's golden rule , there is a transmission rate of electrons from 

the energy states of the sample to t he energy states of the tip: 

W = 
2
;; M?,o(Etip - Esampte) => 

(1) 

where f is the Fermi-Dirac distribution , p represents the density of states and n is 
Plancks constant. The barrier between the tip and the sample will be treated as a 10 

rectangular potential barrier with a width of d. Using time dependent pertubation theory, 

the wavefuctions for the exact Hamiltonian will be approximated as 5 : 

\Jt 5 (z) = ae-xz for z :::'.': 0 

\Jti(z) = bexz for z ::; d 

where x = J2m(~a- E). Thus, \It s(z) is a correct solution for z :S d and \Jti(z) is a correct 

solution for z :::'.': 0. Thus , inserting the general solution \Jt(t;) = c(t)\Jt 5 e -~,, + d(t)\Jtt e -!•' 

into the time dependent Schrodinger equation: 

H\Jt(t) = ind~it) where H =Ha+ Hr 
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which gives Mts =< WtlHr lWs >ex exp (-2xd). =? 

I ex exp (-2xd). 

Therefore, the resulting current is proportional exponentially to the distance between 

the STM tip and the sample , and can provide information about the topography of the 

sample. 

Now, consider (1), at low temperatures and with a constant tunneling matrix: 

Assuming that the tip density of states is constant, and taking the derivative with respect 

to \lb: 

:f~b ex Psample (EF - e\!b) 

so that dd~b is proportional to the local density of states of the sample. [1] Therefore, the 

tunneling current can provide information about both the topography and its derivative 

with respect to bias voltage information about the local density of states of the sample. 

Due to graphene's 2D nature and its conical band structure, its density of states would be 

linear as a function of energy, vashishing at the Dirac point implying a V-shaped tunneling 

spectra. 

7.2 STM specifics 

The measurements on graphene were conducted on a homebuilt , cryogenic STM capable 

of temperature measurements from room temperature down to 6.2K. The STM is also 

capable of magnetic fields up to 7 Tesla and achieving base pressures below 10-10 torr at 

6 K. 

7.2.1 Tube Scanner and Coarse Movement Stages 

The control and movement of the STM comes from the cylindrical tubescanner and the 

coarse movement stages. The tubescanner consist of piezo-electric crystal and provides 
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STMTip 
2. Cryogenic 
microwave 
filter 
3 . 
. Trans­
impedence 
pre-amplifier 

Cryogenic Dewar 

Figure 15: A block diagram of t he STM setup 
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fine control movement . Therefore, by applying voltages in the range from 10-100 volts 

accross the four quadrants of the tube scanner, the tubescanner can go from fully retracted 

to fully extended, providing a movement range 2 microns in the z direction. The tube 

scanner can also achieve lateral movement in both the x and y directions with a range 

of 10 microns. The spatial scans conducted by the STM are done through this lateral 

movement of the tubescanner. 

Side View Top View 

5cm 
1. 

1. Z-stage piezo stacks 
2. Sapphire casing 
3. Piezo tube-scanner 
4. Tip 
5. Sample 
6. Sapphire plate 

XY-Stage 

Figure 16: A diagram of the STM head 

While the tubescanner provides fine control movement of the position of the tip relative 

to the sample, coarse movement stages provide a much larger range of movement. The 

coarse z-stage moves the tubescanner 1 micron per step. This, combined with the piezo-

electric control of the tubescanner provides a safe method of bringing the tip within 

tunneling range of the sample. First , the voltage applied to the tubescanner is gradually 

increased. If no tunneling current is detected as the tube scanner becomes fully extended, 

the tube scanner is retracted, and the coarse z-stage moves a step closer to the sample. 

The process is therefore repeated until a tunneling current is detected . 
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The course XY stage provides a range of lateral movement of 1 mm, with 100 nm 

movement per step. The XY stage allows for the study of fairly imhomogenous samples. 

Additionally, it allows for the correction of the tip position, in case the tip is positioned 

over a conducting part of the surface but not over the part of the surface desired for study. 

7. 2 . 2 Cryogenics 

The STM is capable of maintaining a temperature of 6.2 K near the sample. This is 

achieved by placing the STM body inside a cryogenic dewar, and filling the dewar with 

either liquid nitrogen (77 K) or liquid Helium ( 4.2 K). The STM head is constructed from 

materials with low coefficients of thermal expansion so that the STM can operate in a 

large range of temperatures. 

3. 4. 

1m 1. Air table 
2. STM access 
3. Air cushions 
4. STM body 
5. He4/LN2 dewar 
6. 7T magnet 
7. STM head 

Figure 1 7: STM diagram 
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7.2.3 Modes of Operation 

The STM can conduct both topographic and spectroscopic scans. Topography scans 

are performed by moving the tip laterally over the sample over a specified range. This 

movement is achieved through the tubescanner. As the tip is moved over the sample, a 

constant tunneling current through a feedback system, which moves the tip away from the 

sample if the tunneling current is too high and closer to the sample if the tunneling current 

is too low. Because the tunneling current is exponentially proportional to the distance 

between the tip and the sample, a very precise measurement of sample topography can 

be through this method. The STM is often used for resolving individual atoms, as atomic 

resolution was achieved in our scans of graphene. 

Figure 18: A topography scan of graphite with atomic resolut ion. The scan was performed while calibrating the STM 
for high accuracy. The image exhibits a triangular lattice structure which is due to Bernal stacking. 

The STM can also be used for spectroscopy and conductance maps. In scanning 

tunneling spectroscopy, the tip remains at its position over the sample and the bias voltage 

is varied over a range of values. As a result, the tunneling current as a function of bias 

voltage can be measured, and ;~, the tunneling conductance, can provide information 

about the local density of states (LDOS) of the sample. By combining the topography 

mode and spectroscopy mode, spatial conductance maps can be taken with the STM. This 

is achieved by taking individual spectra at various locations of the sample and therefore 

providing spatial resolution of the local density of states of the sample. 
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7 .3 STM tip fabrication 

Tips for the scanning tunneling microscope (STM) are fabricated from platinum-iridium 

wire, mainly because platinum-iridium is unreactive with air and the process for fabricat­

ing tips from platinum-iridium is relatively simple. The fabrication process of platinum­

iridium tips involves first the mechanical shearing of platinum-iridium wires followed by 

the electrochemical polishing of the resulting tips. Mechanical shearing is accomplished 

using wire cutters to shear tips from a platinum-iridium wire. Only optically sharp t ips 

are kept, as optical sharpness is required so that the tip can be positioned exactly above 

the micron sized graphene sample. 

The electrochemical etching process involves placing the tips in a solution of calcium 

chloride dihydrate and an AC voltage of 5 V is applied between the solution and the tip 

for a few seconds. This sharpens the tip atomically, improving the quality of tunneling, 

as well as leaving a broad tip surface. The broad surface tip surface allows the tip density 

of states to be linear, so that the tunneling conductance remains a good approximation 

of the local density of states of the sample. 

7 .4 Frabrication of graphene sample 

The graphene sample under investigation in this project was prepared by Professor Chun 

Ning Lau's group from the University of California at Riverside and was fabricated through 

the process of mechanical exfoliation. 1
. The sample is several microns in size and is lo­

cated on top of a silicon dioxide substrate containing gold contact pads approximately 

160 microns away from the graphene sheet. Gold wires connect the pads to the graphene 

sample. These gold pads and wires were etched onto the substrate through photolithog­

raphy processes. In order to remove possible residual photoresist resulting from the pho­

tolithography process , the graphene sample was annealed at a temperature of 400 C0 for 

15 minutes in an oxygen environment using a Hevi-Duty high temperature oven with an 

Omega CN2011 temperature controller. 
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7.5 Positioning STM tip over the sample 

Due to the size of the graphene sample, which is barely resolvable to the naked eye, one of 

the most difficult tasks was positioning the STM tip over the graphene sample. In order to 

provide the needed magnification, an optical microscope was configured and used in this 

task. Even with this magnification, moving the sample on the XY stage right underneath 

the sample with complete accuracy is not achievable. In the scenario where the STM is 

operating and the tip is positioned over the surrounding gold, the XY stage must be used 

to reposition the tip over the graphene sample. This is a rather cumbersome task, as the 

STM has a maximum range of around 1 square micron in scanning. Therefore, our field 

of view while running the STM is at most 1 micron, while our precision using the optical 

microscope is limited to 10 microns. 

7. 6 Acknowledgements 

Overall , I would like to extend thanks to Professor Nai-Cheng Yeh, Marcus Teague and 

Andrew Beyer. I would also like to thank the NSF for funding this project. 

8 References 

1. Geim, AK. 'The rise of graphene' . Nature materials, 6(3), 183-191. (2007) 
2. Novoselov , K.S. 'Two-dimensional gas of massless Dirac fermions in graphene'. Nature 

438, 197-200 (2005) 
3. Andrei, E. 'Scanning Tunneling Spectroscopy of graphene a glimpse into the world of a 

relativistic particle ' arXiv:0803.4016 Nature (2008) (under review) 
4. Ishigami, M. 'Atomic Structure of Graphene in Si02 '. Nanoletters. 7(6), 1643-1648 (2007) 
5. Zhang, Y. 'Giant phonon-induced conductance in scanning tunnelling spectroscopy of 

gate-tunable graphene' . Nature physics 4.8 , 627-630. (2008) 
6. Parga, A.L . 'Periodically rippled graphene: growth and spatially resolved electronic struc­

ture' . Physical Review Letters. (2008) 
7. Wehling, T. 0. 'Phonon mediated tunneling into graphene. Phys . Rev. Lett. 101 216803 

(2008) . 
8. Rutter , G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219-22 

(2009) 
9. Landau, L.D. Lifshitz, E.M. Statistical Physics, Part I (Pergamon, Oxford , 1980.) 
10. Novoselov , KS. 'Two-dimensional atomic crystals'. Proceedings of the National Academy 

of Sciences of the United States of America 102.30 :10451-10453. (2005) 

31 



11. Du, X. Approaching ballistic Transport in suspended graphene. Nature Nanotechnology 
3, 491-495 (2008). 

12. Bolotin, K. I. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 
146, 351-355 (2008). 

13. Miao F. et al. Phase-Coherent Transport in Graphene Quantum Billards. Science 317, 
1530-1533 (2007) 

14. Martin , J. Observation of electron-hole puddles in graphene using a scanning single 
electron transistor. Nature Physics 4, 114-148 (2008) 

15. Obraztsov, A. N. Chemical Vapour deposition: Making graphene on a large scale. Nature 
Nanotechnology 4, 212-213 (2009) 

16. Heo, Jinseong. Probing electronic properties of carbon nanotubes. Ph.D thesis. California 
Institute of Technology. (2008) 

17. Saito , R. , Dresselhaus, G. Dresselhaus, M.S. Physical Properties of Carbon Nanotubes. 
(Imperial College Press, 1998) . 

18. Zhang, Y. Experimental observation of the quantum Hall effect and Berry 's phase in 
graphene. Nature 438, 201-204 (2005). 

19. Wiesendanger , R. (1994) Scanning Probe Microscopy and Spectroscopy: Methods and 
Applications (Cambridge Univ. Press , Cambridge, U.K.). 

20. C. Julian Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press 
New York (1993) 

21. Tersoff, J ., Hamann , D. R. Theory of the scanning tunneling microscope, Physical Review 
B 31 , p. 805 - 813 (1985) 

22. Standley, B. 'Graphene-based atomic-scale switches ' . Nanoletters (2008) 
23. Private communications/consultation with Professor Nai-Chang Yeh and Marcus Teague. 

32 




