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Abstract 

A number of efforts to determine function from sequence of RNA and DNA have 

been made with varying success. Here we study the determination of function from 

sequence of DNA and RNA through their secondary structure kinetics, specifically 

the series of transitions between secondary structures. This series of transitions or 

microscopic structure can be described by a system of ordinary differential equations 

that can be approximating using balanced truncation to determine the macroscopic 

structure. By doing so, we have been able to identify signature topological features of 

microscopic structure and mathematically characterize the corresponding classes of 

macroscopic structure. Thus we are now able to take large, complex systems, reduce 

them, and understand their behavior. In the future, we hope to be able to identify 

small microscopic changes that lead to large macroscopic changes and possibly phase­

transition like conditions between secondary states. Ultimately, this may lead to the 

development of a secondary-structure kinetics theory describing how one or more 

strands of DNA pair with one another to form different secondary structures and its 

potential future experimental verification. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

This work during the past summer and academic year has concerned understanding 

the secondary structure kinetics of RNA and DNA. Understanding protein folding 

for a long time has posed a problem of a similar nature to understanding the sec­

ondary structure kinetics of RNA and DNA. Theoretical approaches to understand­

ing protein folding have centered around the development of models of free energy 

landscapes containing the different intermediates through which a protein travels to 

achieve its lowest-energy conformation. These models have proved crucial to protein 

structure prediction and design. In the same way that theoretical approaches have 

been taken to understanding protein folding, we discuss a novel theoretical approach 

for understanding the secondary structure kinetics of RNA and DNA and its potential 

experimental implications. 

Understanding DNA and RNA hybridization kinetics at the level of secondary 

structure has promising potential application to molecular dynamics and nano-biotechnology. 

For example, in molecular biology, it may help us better detect pathogens, mutations, 

and play an important role in drug screening [l ]. It may also be crucial to under­

standing the activity of DNA and RNA catalysts [2]. Finally, this understanding will 

have important consequences for nanotechnology and DNA-based computing, e.g. for 

designing devices like DNA tweezers [3]. 

A number of people have set the stage for important work in this area. Some have 
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compiled databases of thermodynamic parameters for many motifs for the purpose of 

making accurate DNA structure prediction [4] and have implemented programs capa­

ble of prediction of secondary structure for pairs of RNA or DNA strands using these 

data like Pair Fold (http://www.rnasoft.ca/cgi-bin/RNAsoft/PairFold/pairfold.pl). Our 

work differs from these in that we hope to be able to understand the theory underly­

ing secondary structure kinetics and thus to be able to draw larger conclusions about 

the way that it occurs. 

T- T 
A- A- T- T ! I 

A- A 
T 
I 
T 
I! 

f-
A 

T- T (T:;lf\ 
A-A 0J 

Figure 1.1: Configuration space of the DNA strand AATT, excluding pseudoknots. 

A- A- T- T 

Figure 1.2: Digraph for the DNA strand AATT. 

We begin by considering one or more strands of DNA and the fashion in which 

they hybridize with one another. Consider the DNA strand AATT, for example. We 

will be considering all possible base-pairings, excluding pseudoknots (Figure 1.1). An 

example of a pseudoknot structure has been excluded in the figure shown. 

We assume that hybridization can occur only through certain elementary kinetic 
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steps. These are (i) the formation of a new base-pair, (ii) the breaking of an existing 

base-pair, and (iii) a shift from one base pair to another. Then we may depict the 

configuration space, containing all possible configurations of a set of DNA strands, as 

a graph with directed edges (Figure 1.2). Each node of the graph then corresponds 

to a possible secondary structure and each single-step transition is determined by 

thermodynamic considerations. Secondary structure dynamics can consequently be 

viewed as a random walk on this graph. The central question of my research and the 

question I will address is, "How do we take this graph and simplify it?" 

The goals of our research are to apply a model reduction scheme to this graph in 

order to arrive at a more intuitive understanding of large systems (with associated 

microscopic structure) so that we can predict the way hybridization occurs. Specif­

ically, we aim to be able to (i) identify topological features of microscopic structure 

that correspond to particular classes of macroscopic structure (of reduced systems) 

and (ii) to be able to mathematically characterize these. The larger goal will be to 

identify small changes in microscopic structure that lead to substantial changes in 

macroscopic structure. 

By gaining a greater grasp of the manner in which hybridization occurs, we then 

hope to be able to learn more about things governed by secondary structure kinet­

ics. We can begin by answering questions concerning, e.g. the time dynamics of 

ribozymes, RNA-based enzymes. We aim to be able to understand the mechanisms 

that stabilize specific structural folds. Furthermore, from studying the manner in 

which hybridization progresses, we hopefully will be able to create new RNA and 

DNA-based structures with specific functional behavior for the purposes of bioengi­

neering, e.g. for gene therapy. In addition, we hope that the theory we develop will 

help us understand disease processes involving pathogenic ribozymes in plants and 

animals such as Hepatitis delta virus. 

Concretely, we will be determining how long and with what likelihood it takes to 

transition from one secondary structure to another, with the ultimate goal of being 

able to predict the manner in which hybridization progresses starting with different 

configurations of DNA or RNA strands. We lay the foundation to accomplish the 
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goals we have outlined here in the next few chapters. 

1.2 An Input-Output Approach 

macroscopic picture 

hltp:l/chemistry.ucsc.edu/-wgscott/ 

physical system microscopic picture 

system dynamics 

Figure 1.3: The big picture. 

We propose approaching the problem of understanding the secondary structure 

kinetics of RNA and DNA in the following fashion. Imagine a physical system, such as 

that depicted in the initial sequence of Figure 1.3, whose time dynamics we would like 

to better understand. We will be interested in studying the corresponding microscopic 

picture underlying the transitions required to go from one secondary structure to 

another for this physical system. We can depict them using a directed graph where 

each node represents one possible secondary structure and the arrows connecting 

them the possible transitions between these structures (Figure 1.3). We may then 

approximate this microscopic picture by a simpler macroscopic picture, as shown in 

the figure to the right. Through such an approach, we hope to be able to gain insight 

into how hybridization occurs. 

More concretely and differently than others have done in the past, we will be 

treating our physical system as an input-output system. We are interested in studying 

the time dynamics for going from one initial state to some final state. So, the input 

will be the initial secondary state of the system and the output will be the final 

secondary state of the system. 
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We begin by considering a system with time varying input u(t) that drives a 

system with state x( t) and output signal y( t). We examine the input-output map 

and the system dynamics, which can be written as 

±(t) = J(x(t), u(t)) 

y(t) = h(x(t), u(t)). 
(1.1) 

We model the forward and reverse transitions between individual secondary struc­

tures each by a single rate, defining the transition-rate matrix A in which the coeffi­

cient rii defines the transition rate from state i to j: 

;tx = Ax(t), 

-I:rj1 r12 r1n 

jfl 

r21 -I:rj2 r2n 

A= #2 (1.2) 

rn1 rn2 -2.:rjn 

j=Jn 

In general, the matrix A will not be symmetric. Note that all rates are by definition 

nonnegative. 

Because our forward and reverse transitions are defined by a single rate, we may 

then write our system in matrix form as the linear system: 

x = Ax+Bu, 

y=Cx, (1.3) 

where A,B, and Care time-independent real matrices of sizes n x n, n x m , and 

p x n, respectively. B represents the initial secondary state (input of the system) 

encoded in the form of an initial probability distribution vector 
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B= 

1 

0 

0 

corresponding to the first state and C represents final secondary state (output of 

the system) encoded in the form of a final probability distribution vector 

C=[o O ... 1] 
corresponding to the last state. 

Figure 1.4: A simple 3-state system. 

To make this concrete, consider the example of the simple 3-state system depicted 

in Figure 1.4. We can write down its corresponding matrices as 

ri2 0 

A= -(r12 + r32) 0 

0 r32 0 
' 
B= 

1 

0 

0 

Next, to solve the approximate time dynamics of traveling from one initial state 

to some final state for a large system representing our model of single-step DNA 

hybridization of order n, we will use two input-output model reduction algorithms 

from control theory. We illustrate these in Figure 1.5. 

We will be applying these two algorithms to arrive at a lower order approximate 

model of the behavior of our system. The first of these will be the Kalman decompo­

sition, which eliminates any degrees of freedom that don't connect the initial to the 
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decomposition 
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balanced truncation 
(bounded error~ 

~ 1 1c - c" - 11 <_, ~2IoJ 

::::: ~ 

Figure 1.5: The model reduction scheme. 

final state to arrive at an n' order model. The second will be balanced truncation, 

which essentially rank orders the degrees of freedom of the problem and truncates 

the degrees of freedom that have the least effect on input-output characteristics to 

arrive at a simpler model of order n". This is possible because there often will be a 

wide gap between the least and most important degrees of freedom, allowing for the 

identification and removal of those less contributing degrees of freedom. The latter 

algorithm has a complexity of O(n2 ) in space and O(n3 ) in time. The mathematics 

underlying these two algorithms is discussed in some depth in chapter 3. 

It turns out that the model reduction scheme we are performing has a bounded 

error as we will see in the next chapter, giving us great control over our ability to 

capture the dynamics of our original model with a well-defined degree of accuracy. 

Our model reduction technique as a whole is particularly important because large 

systems are unwieldy to solve and understand, while small ones are often not. By 

being able to reduce large systems, we will be able to gain intuition into how they 

behave. We hope to be able to understand how particular microscopic topological 

features reduce to certain classes of macroscopic structure and then to be able to 

mathematically characterize how such systems evolve in time. We hope that our 

approach in the long run will be adapted to understand much larger scale systems 

and more complicated biological systems. 
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Chapter 2 

The Model Reduction Algorithm 

In this chapter, we will review in some depth the model reduction scheme that we 

will be applying to understand and make predictions about the manner in which 

hybridization occurs. Specifically, we will address the questions, "How does the model 

reduction algorithm work?", "How fast does it work?", "How did we implement it?", 

and "How well does it reduce the systems we will be encountering?" By addressing 

these questions, we hope to be able to provide some insight into the underlying 

methods of our research and to motivate the chapter to follow. 

2.1 Principles 

We begin by going over the mathematical principles underlying our model reduction 

algorithm. As briefly touched upon in Chapter 2, we will be applying two algorithms 

in succession to our system, the Kalman decomposition and balanced truncation. Our 

methodology is based on the work of Rahn [5], a former graduate student in the lab. 

We first discuss how the Kalman decomposition algorithm works. Any dynamical 

system can be described by a variety of coordinate systems (e.g. a simple pendulum 

can be represented in terms of the angle of the string with the vertical or its vertical 

displacement). The Kalman decomposition reduces a given system to its lowest order, 

exact model in order to simplify system analysis. 

We begin by examining the input-output map '11 : u r-+ y neglecting any internal 

behavior. Then we introduce the concepts of observability and controllability. If a 
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state is unobservable, it does not affect the output and if a state is uncontrollable, it 

is unaffected by the input. A minimal realization is a model in which all states are 

both controllable and observable. 

The goal of the Kalman decomposition is to obtain a minimal realization. To do 

so, we will need to equate our system to the controllable and observable part of our 

dynamical system. The Kalman Canonical Decomposition Theorem [6] states that 

given a dynamical system described by equation (1.3), a similarity transformation T 

exists such that the equivalent linear system 

Aco 0 .i113 0 Eco 

[TAT~' T: j 
A21 A:a .A23 .A24 Eco 

- 0 0 Aeo 0 0 cr-1 
0 0 .i143 Aco 0 

Ceo 0 Ceo 0 0 

can be computed, where c stands for controllable and o for observable (and their 

complements c,o for uncontrollable and unobservable, respectively). More impor­

tantly, however, we are interested in the transfer matrix, i.e. just the input-output 

behavior with no regard for internal behavior. Thus we have that the transfer matrix 

of the system is equal to its controllable and observable part, i.e. 

[ 
A B J _ [ ~co Eco j 
C 0 Ceo O 

Hence we have our minimal realization and the lowest order, exact model for our 

system. 

Next, we will look at how the balanced truncation algorithm works. The exact 

balanced truncation algorithm is well-suited to problems of small to medium size and 

has complexity O(n2) in space and O(n3) in time [8]. Intuitively, balanced truncation 



._' 

10 

involves identifying those degrees of freedom that are only weakly changed by the 

input and most weakly affect the output, and removing these. It is often handy 

when building simulations and theoretical models for the evolution of macroscopic 

quantities in large, complex systems, as we have here. 

We begin performing balanced truncation by first introducing the observability 

gramian of (C,A), called Yo, and the controllability gramian of (A,B), called Xe, which 

are matrices that provide useful quantitative measures of a state's observability and 

controllability: 

Yo = 100 

eA*r C *CeAr dT 

Xe= 100 

eAr BB*eA*r dT 

These terms constitute the solutions of the two Lyapunov equations [6) 

A*Ya + YaA + C*C = 0, AXc + XcA* +BB*= o. 

Figure 2.1: The observability and controllability ellipsoids. 

Alternatively to using these definitions and more intuitively, we may geometrically 

interpret the observability and controllability gramians by the introduction of the 

observability and controllability ellipsoids (Figure 2 .1), i.e. 

1 

Ea= {Yo2 xa: Xa E Cnandlxal = 1} 
1 

Ee= {XJxc: Xe E Cnandjxcl = l}. 
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Figure 2.2: The balancing transformation: alignment of the observability and con­
trollability ellipsoids. 

Then the largest prinicipal axes lie along the most observable or controllable 

directions. In order to arrive at a good approximate model, it would make most 

sense to eliminate the least observable and controllable states since these are the 

least important. By performing a balancing transformation (requiring A stable, i.e. 

Re(..\(A)) < 0), which results in the simultaneous diagonalization of the observability 

and controllability gramians, we align the observability and controllability ellipsoids 

(Figure 2.2), thus making sensible truncation possible. The diagonalization of both 

gramians under congruence transformations is made possible by the fact that the 

gramians are Hermitian and positive [7]. The resulting diagonal matrix is of the form 

0'1 

Thus we have a diagonal matrix with decreasing Hankel Singular Values (HSVs) 

along the diagonal. In order to arrive at an approximate model of order n", we 

must truncate the system only where the HSVs have a clear separation (i.e. are 

distinct), beginning with the smallest of such states, which are the least controllable 
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and observable. Partitioning our matrix as 

A mn" x n" n E i& 

our reduced model becomes 

This completes the process of performing balanced truncation on our system and 

the approximate n" order model produced preserves the stability of our system with 

bounded error 

k 

0-1 ::=; llG - G~11 I loo ::=; 2 L O"i, 

i=l 

where the o-i correspond to the distinct truncated HSVs [5]. 

Thus, by understanding the underlying mathematics of these two algorithms, we 

can better understand why they are so effective for our purposes, as well as have a 

greater appreciation for how the approximation scheme we have employed works. 

2.2 Speed 

The next most pressing concern is, "How fast can we reduce these types of systems?" 

This will give us an idea of how large a system we can handle and how practical our 

approach is for tackling these types of systems. 
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Data for the balancmr algorithm (N=lOO) 

t (s) n 

0.540 20 

1.230 50 

16.230 174 

231.910 410 

100 200 3.00 
I 

400 
X=n 

Figure 2.3: Plot of t(s) v. n for the balancmr algorithm. 

We benchmarked the longest step of our model reduction scheme balancmr, a 

cornrnand in MATLAB (Mathworks Inc., Natick, Massachusetts, USA) that performs 

balanced truncation, to see how large a system it could reduce to a 3-state system 

in times of order 0.5s, ls, 10s, and lOOs. We chose to use the rss (n, p, m) function 

provided in MATLAB to generate a random, stable, nth order model with m inputs 

and p outputs. Specifically, we ran rss (n, 1, 1) to generate a random stable model 

of order n with one input and one output. Running N=lOO trials and then using 

the profile command on a 1.5 GHz Power PC G4 with 1 GB of RAM, running Mac 
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OS X 10.4.3 and MATLAB 7.0.4.352 (R14) SP2 we obtained the results given in the 

table above and in Figure 2.3. 

From the figure, we conclude that with increasing time, the pace at which higher 

order models can be reduced using balanced truncation increases. One question that 

we raise for experimentalists to answer is, how do our randomly generated systems 

compare to typical systems involved in studying the secondary structure kinetics of 

DNA or RNA and how can we simulate more realistic systems? 

The study of the speed of model reduction as a whole is an interesting one and 

one which underlines the important practical constraints of applying this strategy 

to answer research questions in general. Since we are currently in the process of 

developing this technique, we will typically be dealing with systems of order 50 at 

maximum and thus conclude that our model reduction scheme is sufficiently fast for 

our purposes. In the future, it is valuable to know that the algorithms we are using 

can be adapted. For example, the balanced truncation algorithm, while in its exact 

form is well suited for small to medium problems like our current one, can be adapted 

to larger problems by approximate application [8]. This will be especially important 

since the size of DNA configuration space grows exponentially. 

2.3 Implementation 

I now discuss the implementation of the model reduction algorithm examined in the 

first section of this chapter. The corresponding MATLAB code may be found in the 

Appendix. Specifically, I will comment on how the two algorithms for reduction were 

implemented and what hurdles had to be overcome in order to accomplish the goals 

of the model reduction scheme as a whole. 

The implementation of the two algorithms, the Kalman decomposition and bal­

anced truncation, is a straightforward process in MATLAB, which is equipped with 

toolboxes containing these functions. These come in the form of a minimal option 

for constructing a state-space model using the ss (stable_matrix, 'minimal') com­

mand and the balancmr(stable_matrix,3) command to reduce a given system to 
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Figure 2.4: Block diagram of steady-state removal and restoration procedure. 

one of order 3, respectively. However simple these may seem, the balanced truncation 

algorithm requires that the transition-rate matrix A be stable, i.e. Re(.A(A)) < 0. 

This means that there is a need for the removal of the steady state that arises as a con­

sequence of the physical model of our system and otherwise invalidates the stability 

condition. Also, we will need to to restore the system once it has been reduced using 

the balanced truncation algorithm. This procedure as a whole has been illustrated in 

Figure 2.4. 

We begin by outlining the mathematical problem we will solve. Consider the 

linear state-space input-output model of earlier: 

x = Ax+Bu, 

y=Cx, (2.1) 

By the nature of our problem, A is a matrix containing one zero eigenvalue, cor­

responding to the steady-state and (n-1) negative eigenvalues, corresponding to the 

transient states. 

Performing balanced truncation on our system naturally requires that A be stable, 

i.e. Re(.A(A)) < 0. Then we must develop a method to remove this steady-state value 

and later restore it after balanced truncation has been performed. 

Our first step will be to diagonalize - or in the case of degeneracy, find the Jordan 

form J of our matrix A. For simplicity, assume that all our eigenvalues are distinct so 
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that we will be diagonalizing A using a transformation T: 

D = r- 1AT ) 

where D is a diagonal matrix made up of the eigenvalues of A, and T is a matrix 

whose columns correspond to the eigenvectors of A and are ru:ranged in an order 

corresponding to their eigenvalues appearing in the matrix D. Suppose that the zero 

eigenvalue appears in the qth row and column of D. Then we can define a new matrix 

V as the rectangular n x ( n - 1) matrix resulting from deleting the qth column of T 

and v-1 as the rectangular (n - 1) x n matrix resulting from deleting the qth row 

of r-1. Then we have a transformation v-1 that maps from the original state space 

onto the stable subspace of A. To apply this change of basis 

we substitute i (and x =Vi) into equation (2.1) to obtain 

i =: = v-1± = v-1(Ax +Bu)= v-1Avx + v-1Bu =Ax+ Bu 

y = Cx = CVx =Ci, 

which then yields that 

A= v-1AV,B = v-1B,C =CV 

Thus we have succeeded in obtaining a transformation to remove the steady-state 

dimension of the state-space. 

Once we've performed balanced truncation on our system to obtain Xr, we are 

then ready to restore our system to its original form by reincorporating the steady­

state value. To do so, we'll use an expression similar to (2.1) above for our reduced 

system: 

±o = IIoBu, 

Y = CrXr + Cxo, 

u = o(t) 
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where I10 is the orthogonal projector onto the steady-state (zero eigenvector) of 

A. Then fort> 0, since only these times make physical sense, 

xo = IloB. 

To compute I10 , it may be easier to think back to quantum mechanics where we 

could write 

B = L li)(i'jB. 
i 

Then we may write 

B = (Ilt + Ilo)B = IltB + I10 B, 

where t stands for transient and 0 refers to the steady-state. This simply means that 

Ilt = L li)(i'I and Ilo = !O)(O'j. 
i>O 

Then we can now write our final expression for the output 

Thus by introducing the factor CI10B, we are able to restore the steady-state 

contribution to our reduced system. 

We now discuss the code developed to formally accomplish this procedure. To 

achieve the goals discussed above, the zero eigenvalue of the transition-rate matrix A, 

corresponding to the steady-state of the system, must be removed. The code included 

in the appendix begins by looking for this zero eigenvalue, constructing an orthogonal 

projector onto the steady-state (zero eigenvector) that we will need later on, mak­

ing a map from the original state space to the stable subspace (by throwing out the 

components corresponding to the steady-state), and then performing the transforma­

tion from the original state-space to a strictly stable one. It then applies the Kalman 

decomposition to the resulting matrix using the ss (stable_matrix, 'minimal') com­

mand. 
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This is followed by performing balanced truncation on the resulting minimal order, 

exact model, reducing it to a system of order 3. It is at this point that the steady­

state behavior is restored using the orthogonal projector constructed earlier and the 

system is once again a good approximation of its original functional behavior. 

The steady-state removal and restoration hurdle was a major problem that had 

to be overcome and there still remains the need to restore the reduced system to 

continuous-time stochastic (CTS) form. The general idea behind this problem is 

given a reduced matrix A, "Can we restore it to CTS form (for which each column 

sums to zero, and typically diagonal elements are negative and off-diagonal elements 

are positive or zero) while simultaneously preserving its current eigenvalues?" This is 

a difficult problem not solved by former graduate student Ben Rahn and is currently 

being worked on by another graduate student, Kevin McHale. The most that can 

be said right now about this problem is that for an n x n CTS matrix, all of the 

eigenvalues must satisfy the relation 

llm(>.)J < t(7r) 
IRe(>.)I - co n . 

The proof of this relation is due to Bryan Shader. One idea I had to solve this 

problem would involve Lagrange multipliers through which the problem's constraints 

could be incorporated. However, as a whole, we have succeeded in producing a system 

whose functional behavior approximates the original, though it has lost the structural 

features of its digraph by coming out of CTS form. Thus we are able to compute 

effective transition-rates, but not yet study the digraph structure of these systems 

with confidence. 

2.4 The Statistics of Model Reduction 

It is appropriate to close this chapter by motivating the following chapter. We are 

interested in looking at the way large systems reduce to smaller systems. Specifically, 

we will be interested in the typical reduction of order under a fixed error bound. 

Recall that the error bound for systems using our model reduction scheme is given 
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by 

k 

0"1 S jjG - Gn11 lloo S 2 L O"i, 

i=l 

where the ai are the distinct truncated Hankel Singular Values (HSVs) of the 

system [5]. We will be interested in what typical order models we obtain as a result 

of reducing our system when the error is approximately 20% of the system as a whole. 
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Figure 2.5: Model reduction distribution under limited error bound. 

In general, we will at worst be dealing with a system of order 50 and more likely 

will be dealing with a system of order 20 or 30. I analyzed the distributions of model 

reduction of systems of order 20 and 30, with a sample size of N ;:::::: 20 for each. 

To accomplish the goals of my study I used the MATLAB command rss (30, 1, 1), 

e.g. to randomly generate a 30-order model, the command minreal to reduce it to 

its lowest order exact model (Kalman decomposition), and the command balancmr 

to truncate it according to its HSV plot (balanced truncation). The criterion for 

truncation was that the sum of the truncated HSV s was closest to 103 of the total 

sum of HSV s. The resulting distribution plots for initial models of order 20 and 30 

are given in Figure 2.5. The associated statistics for these plots have been tabulated 

in the table below. 
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Model reduction distribution statistics 

Initial Order (N) 20 (21) 30 (22) 

Average 5.238 3.955 

Median 5 4 

Standard Deviation 2.256 1.362 

From these results, we can infer that typically under the 203 error bound we will 

find that reduced models will be of order 4 or 5. Whether our systems will remain of 

this order when restored to CTS form is another question that must be answered in 

the future. Presuming this is so for simplicity of discussion, since many order 5 and 

some order 4 systems cannot be solved analytically, we will begin by analyzing all 

possible 3-state systems and then learn as much as we can from those 4-state systems 

that can be solved analytically in order to mathematically characterize the behavior 

of typical systems we will be obtaining using our model reduction scheme. 
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Chapter 3 

The Mathematical 
Characterization of Macroscopic 
Structure 

3.1 3-state Systems 

We begin by analyzing 3-state systems with the intent of gaining intuition into larger 

systems that reduce to such systems using our model reduction scheme. Specifically, 

we will be computing the probability P1i(t) of the transition from the initial state i 

to final state f, where 

To solve for P1i(t), we will have to solve the problem set up in Chapter 2 consisting 

of the system of equations (1.3), where P1i(t) will simply be the output of the system 

y( t). We restate these equations here along with some additional conditions for our 

problem: 

x=Ax+Bu, 

y=Cx, 

u = o(t) , x(O) = Xo , 

x E ~n, u E ~m, y E ~P 

We would like to solve this problem for t ~ 0 since no other times have physical 

meaning. We begin by solving the homogeneous equation 
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i: =Ax 

whose solution is well known to be 

Next we look at the inhomogeneous equation 

i: = Bo(t) 

whose solution is 

x(t)i = BB(t), 

where 8( t) is the Heaviside function defined by 

{

1, t ~ 0, 
B(t) -

0,t < 0. 

Since we are interested in time t ~ 0 we will simply take our solution to be 

x(t)i = B, t ~ 0. 

Adding our two solutions to obtain the general solution we have 

x(t) = eAtx0 + B + C. 

Since x(O) = x0 then 

x(O) =x0 +B+C;C= -B 

so that our general solution becomes 

However, we know that at time t=O, the initial state is specified by the initial 

probability distribution vector B so that 

x(t) = eAt B, 

; y(t) = CeAt B = PJi(t), t ~ 0. 
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Thus we have found the solution for P1i(t) that we will use for the remainder of 

our work. 

Exponentiation of the matrix A is relatively straightforward to accomplish by solv­

ing for the corresponding eigenvectors, from which one can construct a basis by which 

the original matrix can be diagonalized by its eigenvalues and then easily exponen­

tiated and transformed back using the original basis. In the case of degeneracy, this 

task can be accomplished using the Jordan canonical form, which also gives insight 

into the form of the solution. 

By mathematically characterizing the functional behavior of these simple systems, 

we will learn about their characteristic behaviors and thus will be primed to under­

stand systems that reduce to these simpler systems when we encounter them later 

on. 

Before we introduce the main results of this chapter, it is useful to note some of the 

more general properties of n-state systems that we have learned by studying 3- and 4-

state systems. We have found that the functional form for the time dependence of the 

transition from an initial to a final state has a number of characteristic properties. The 

functional form is dependent solely on the number of distinct or degenerate eigenvalues 

making up the system and their degree of degeneracy. The number of secondary states 

of a system determine the number of eigenvalues for a given system. It will be useful 

to term the eigenvalues of the system its eigenrates. Then these eigenrates are given 

by expressions involving the transition rates making up the system itself. Note that 

the eigenrates have been generally found to be real for all systems studied. 

When all of the eigenrates for a system are distinct (and real), the functional form 

for its time dependence consists of a linear combination of one exponential term for 

each eigenrate ->.i of the form e->.it. When an eigenrate is degenerate (and real), any 

number of similar exponential terms multiplied by a polynomial of increasing order 

may be added to the first purely exponential term up to a maximum order of one 

less than the order of degeneracy. This fact is a corollary of the Jordan Canonical 

Form Theorem, but can also be understood by inspecting the general form of an 

exponentiated matrix of Jordan form J multiplied by time, eJt [9]. To consider an 
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example, if we have a 5-state system with a degeneracy of 3, the functional form for 

the transition rate P51 ( t) from the initial to the final state will be 

where the eigenvalue 0 always occurs and is ignored in the counting of eigenvalues 

for the system. Each of the coefficients {a, b, c, d} is often a complex expression involv­

ing the transition rates of the system and is determined according to the structure of 

the digraph (e.g. Figure 3.1). Some of these may vanish, allowing for more flexibility 

in the number of functional forms resulting from the same digraph structure. 

We now introduce some of the main results of the chapter. We begin by charac­

terizing the functional behavior of all possible 3-state systems. In constructing these 

systems, we assume that all systems have a single absorbing final state. This means 

that once in the final state for a system, there is zero likelihood of exiting this state 

to return to any other state in the system. 

Here we enumerate all observed classes of functional behavior for a 3-state system 

resulting from analytically solving for their time dynamics. These classes of behavior 

were discovered by using rate-limiting conditions (e.g. .:\1 » .:\2) and degeneracy 

conditions (e.g . .:\1 = .:\2) to produce different functional classes across many different 

types of systems studied. Note that these have been written using the minimum 

number of parameters based on the fact that P31 (t = 0) = 0: 

Possible classes of functional behavior (3-state systems) 

1 - (1 + b)e-:>.it + be- >-2t 

1 - e->.it + be->-1tt 

Note the resonance (involving a polynomial) class of behavior that results from 

degenerate eigenvalues as distinguished from the other class of behavior that results 

from distinct eigenvalues. 

Next, we examine the 5 possible 3-state systems under the assumptions above. Be­

fore going on to state what we observed about these systems, we give the eigenvalues 

.:\1 , .:\2 and the coefficients for these systems, including two examples of how these are 
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determined. For every system, we will provide two solutions (or state that one doesn't 

exist), one for the case of distinct eigenvalues with general form 1-(1 +b)e->-1t+be->-2t 

and one for the case of degenerate eigenvalues with general form 1 - e->-it + be->-1tt. 

Note that some systems have no degenerate solution for positive rates. 

Figure 3.1: First 3-state system. 

Beginning with the system depicted in Figure 3.1 , we write down its corresponding 

matrices given by 

0 0 

A= 

0 

' B= 

1 

0 

0 

,c=[o o 1]. 

The eigenvalues of our system are visibly given by >.1 = r 21 and >.2 = r 32 . We 

start by considering the distinct case (i.e. >.1 =I >.2). Recall that P31 (t) = CeAt B. For 

the distinct case, we will exploit the ability of the matrix A to be diagonalized by 

its eigenvalues >.i and then easily exponentiated. Specifically, eAt = Sdiag[e->-it]s-1 , 

where S is the similarity transformation yielding the diagonal form of the matrix A. 

Constructing this similarity transformation using the eigenvectors of the matrix A we 

find: 

0 -l+!ll. 
r 32 

0 1 0 0 1 1 

S= 0 _!ll. 
r 32 

-1 , diag[e- >.it] = 0 e-r21t 0 ' 
5-1 = ---2:.ll.._ 

r21-r32 
0 

1 1 1 0 0 e-r32t _---2:ll_ -1 
r21-r32 

Then we may find P31 ( t) by multiplying the above matrices: 

1 

0 

0 
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Comparing this to the general distinct form expected 1 - (1 + b)e->.it + be->-2t we 

state the parameters of our solution for this system to be: 

Ai = r2i A2 = r32 b = --2:ll_ 
' ' r32-r21 

Next, we consider the degenerate case (i.e. Ai = A2) for the same system with 

corresponding matrices given above and eigenvalues Ai = r 2i and A2 = r 32 . We begin 

by setting r 32 = r 2i in the matrix A. As before, P3i(t) = CeAtB. Since we are dealing 

with degeneracy, we will employ the Jordan form J. Then we may write eAt = S eJt s-i, 

where Sis a similarity transformation yielding the Jordan form. Using an algorithm 

for finding a similarity transformation S constructed from a basis of eigenvectors such 

that a degenerate matrix A with real eigenvalue A= r 2 i assumes its Jordan form we 

find [9]: 

0 0 1 0 0 0 1 1 1 
r21 

S= 0 -1 i ]= 0 -T2i 1 s-i = -1 -1 0 
r21 ' ' 

1 1 0 0 0 -r2i -T21 0 0 

Using the well-known structure of a Jordan form when exponentiated we obtain: 

1 0 0 

0 0 

Thus we are now prepared to compute the value of P31 (t) by multiplying the above 

matrices and find: 
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Comparing this to the general degenerate form expected 1 - e-.\it + be-.\1tt we 

state the parameters of our solution for this system to be: 

Figure 3.2: Second 3-state system. 

Using this method again, for the next system in Figure 3.2 we found that its dis­

tinct solution is given by the parameters: 

>.1,2 = !(r12 + T21 + T32 ± .J(r12 + T21 + T32) 2 - 4r21T32), 

b = r r 
r21 r32-(r12+r21 +r32)(r12+r21 +r32- (r12+r21 +r32)2-4r21 r32)+ ~(r12+r21 +r32-y' (r12+r21 +r32)2-4r21 r32)2 

A degenerate solution for this system is not possible due to algebraic constraints 

(an example of such a constraint is given later in this chapter). 

Figure 3.3: Third 3-state system. 

For the system in Figure 3.3 we found that its distinct solution is given by the 

parameters: 

>.1,2 = !(r12 + T21 + T31 ± .J(r12 + T21 + T31)
2 

- 4r12T31), 

b = r31(r12-r21-r31+y'(r12+r21+r31)2-4r12r31) 

2(r12r31 +(r12+r21 +r31)(r31-r12-r21 +y'(r12+r21 +r31)2 -4r12r3i)+~(r12+r21 +r31-y'(r12+r21 +r31)2-4r12r31)2) 

A degenerate solution for this system is not possible due to algebraic constraints. 

For the fourth system shown in Figure 3.4 we found that its distinct solution is 

given by the parameters: 

Its degenerate solution is given by the parameters: 
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Figure 3.4: Fourth 3-state system. 

Figure 3.5: Fifth 3-state system. 

Finally, for our last 3-state system we found that its distinct solution is given by 

the parameters: 

>-1,2 = Hr12+r21 +r31 +r32±J(r12 + r21 + r31 + r32)2 - 4(r12r31 + r21r32 + r31T32) ), 
b _ r12r31 -r21r31-r~1 +2r21r32+r31r32+r31 (r12+r21 +r31 +r32) 2-4(r12r31 +r21r32+r31r32) 

- 2(o+.6+'Y) ' 

a = T12T31 + r21 T32 + T31 T32 

/3 = (r12+r21 +r31 +r32)(-(r12+r21 +r31 +r32)+J(r12 + r21 + r31 + r32)2 - 4(r12r31 + r21r32 + r311 

'Y = ~(-(r12+r21 +r31 +r32)+J(r12 + r21 + T31 + r32)2 - 4(r12T31 + r21r32 + T31T32))2. 

A degenerate solution for this system is not possible due to algebraic constraints. 

Next we look at the number of free parameters and classes of functional behavior 

observed for these systems. The number of classes of functional behavior was deter­

mined by studying rate-limiting conditions (e.g. >..1 » >..2 ) and degeneracy conditions 

(e.g. >..1 = >.. 2), and then numerically simulating that the associated classes could 

indeed be found for each of the digraphs. 
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To give an example of a very simple rate-limiting condition, consider the fourth 

system (Figure 3.4). Suppose that we would like to simulate the rate-limiting condi­

tion >-2 » ..\1 . Looking at its eigenvalues, this simply means that r 32 » (r21 + r 31 ). 

Numerically setting r 32 = 107 and r 21 = r 31 = 1 we obtain 

So we've been able to induce the class 1 - (1 + b)e->-1t + be->-2t, with b=O. Rate­

limiting conditions can become significantly involved as one can see from looking at 

the eigenvalues given above for some systems. More specifically for more complicated 

systems, one must solve for an algebraic condition involving one rate compared to 

the others and then numerically check that simulating such a condition results in the 

expected outcome. Sometimes when one rate-limiting condition fails, another may 

still work to induce a particular class. Inducing degeneracy is performed similarly by 

solving for a particular rate in terms of the other rates and can prove tricky as well. 

Sometimes a condition can prevent degeneracy from ever occurring. 

To give an example of a simple failure to produce degeneracy, consider the second 

system (Figure 3.2). We would like to induce the degeneracy condition ,\1 = ..\2 . 

Looking at the eigenvalues, this means that (r12 + r 21 + r 32)
2 = 4r21 r 32 or r 12 = 

-(r21 +r32)±2Jr21r 32 . We hypothesize that the rate r 12 is never positive (assuming 

the rates r 21 and r 32 are positive as required by our model) by observing that this is 

the case in Figure 3.6 in which the two possible functions for the rate r 12 are plotted 

as a function of r 21 and r32 • To show that this is true, let us maximize r 12 to see 
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whether we can obtain a positive value. Critical points occur at r 21 = r32 and r 21 = 0 

or r32 = 0. But we require that r 21 > 0, r32 > 0, eliminating the latter two points. 

Then at r21 = r32, r12 = -(r21 + r21) ± 2r21 = 0 or < 0. But r 12 > 0. Thus ..\1 i= ..\2 

and the corresponding degenerate class 1 - e->-it + be->-1tt is precluded by means of 

this algebraic constraint. 

The work outlined in this chapter as a whole involved solving a total of 10 systems 

analytically for their associated eigenrates made up of all the different transition rates 

for each system and then numerically simulating over 80 rate-limiting conditions to 

verify whether they led to particular classes of functional behavior. Some additional 

systems were also studied in the process of discovering these systems. 

Our observations for all 3-state systems are given below: 

Digraph 

3-state systems 

# of free parameters classes of behavior 

2 1 - (1 + b)e->-it + be- >-2t 

1 - e->-it + be->-1tt 

3 

3 

3 

4 

1 - (1 + b)e->-1t + be->-2t 

1 - e- >-it + be->-1tt 

Looking at this last table, we can draw some basic conclusions about 3-state 

systems as a whole. We note that when we call something a unique class of functional 

behavior, this means that it can only be induced in a particular 3-state system and 

no other. Then if a class of functional behavior is common to more one system, 
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it is not unique. As for our conclusions, no 3-state system with unique functional 

behavior has been found, a minimum of 1 class of functional behavior and maximum 

of 2 classes of functional behavior always occur, and the existence of reversibility in 

a 3-state system leads to a failure to generate degenerative (resonance) behavior and 

its associated class. 

We hypothesize that more complex systems (e.g. reversible systems) are less likely 

to reduce to simple systems than simpler ones (e.g. one-way connected systems). 

These mathematical characterizations of functional behavior for 3-state systems 

will form the cornerstone of our understanding of larger reduced models and partially 

completes one of the goals of our research, to mathematically characterize the func­

tional behavior of certain classes of smaller systems that we will later be studying 

topologically. 

3.2 4-state Systems 

Next, we would like to mathematically characterize the functional behavior of P1i(t) 

for 4-state systems as we have done for 3-state systems. However, we note that we 

will be limited in our analyses as not all 4-state systems can be solved analytically. 

This limitation stems from the fact that many 4-state systems possess characteristic 

polynomials of order greater than 4 and thus cannot be solved analytically. In con­

structing the few systems that can be solved analytically, we again assume that all 

systems have a single absorbing final state. 

As for 3-state systems, we begin by enumerating all observed classes of functional 

behavior for a 4-state system resulting from analytically solving for their time dy­

namics. Note that these have been written using the minimum number of parameters 

based on the fact that P41 ( t = 0) = 0: 

Possible classes of functional behavior ( 4-state systems) 

1 - (1 + b + c)e->.it + be->-2t + ce->.3t 

1 - (1 + b)e->.it + be->-2t + ce->-2tt 

1 - e->.it + be->-1tt + ce->-1tt2 
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Note the resonance (involving a polynomial) classes of behavior that result from 

degenerate eigenvalues as distinguished from the class of behavior that results from 

distinct eigenvalues. 

Next, we examine 5 simple systems under the assumptions above. Before going 

on to state what we observed, we give the eigenvalues Ai, ,\2, >.3 and the coefficients 

for these systems. For every system, we will provide three solutions (or state that 

one doesn't exist), one for the case of distinct eigenvalues with general form 1- (1 + 
b + c)e->-1t + be->-.2t + ce->-.st, one for the case of doubly degenerate eigenvalues with 

general form 1-(1 +b)e- >-. 1t+be->-.2t+ce->-.2tt, and one for the case of triply degenerate 

eigenvalues with general form 1 - e->-.it + be->-.1tt + ce->-.1tt2 . Note that some systems 

will have no doubly or triply degenerate solution assuming positive rates. 

Figure 3. 7: First 4-state system. 

Beginning with the system depicted in Figure 3. 7, we found that its distinct solu­

tion is given by the parameters: 

Its doubly degenerate solution is given by the parameters: 

Other permutations for double degeneracy yield similar expressions for b,c, as is 

true for the other systems we will examine. 

Its triply degenerate solution is given by the parameters: 

For the next system depicted in Figure 3.8, we found that its distinct solution is 

given by the parameters: 

A1 = r2i, A2,3 = ~(r23 + r32 + r43 ± J(r23 + r32 + r43) 2 - 4r32r43), 
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Figure 3.8: Second 4-state system. 

b C = r21r32r43 

' °'b,c+/3b,c+l'b,c' 

o:b,c = r21r32r43-(r21r23+r21r32+r21T43+r32T43)(r23+r32+r43±y'(r23 + r32 + r43)2 - 4r32T43), 

f3b,c = ~(r21 + r23 + r32 + T43)(r23 + r32 + r43 ± y'(r23 + r32 + r43)2 - 4r32r43)2, 

{b,c = -~(r23 + T3z + T43 ± y'(r23 + T32 + T43)2 - 4r32T43)3 

A doubly degenerate solution for this system has been omitted for brevity but is 

indeed possible. A triply degenerate solution for this system is not possible due to 

algebraic constraints. 

Figure 3.9: Third 4-state system. 

For the third system depicted in Figure 3.9, we found that its distinct solution is 

given by the parameters: 

Its doubly degenerate solution is given by the parameters: 

Its triply degenerate solution is given by the parameters: 
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Figure 3.10: Fourth 4-state system. 

For the fourth system depicted in Figure 3.10, we found that its distinct solution 

is given by the parameters: 

A1 = r21 + r31, A2,3 = ~(r23 + r32 + r43 ± J(r23 + r32 + r43) 2 - 4r32r43), 
b _ 2r21r32r43+r31r32r43 - r23r31r43-r31rl3=Fr31r43 (r23+r32+r43)2-4r32q3 
'C - 2(ab,c+.Bb,c+l'b,c ) ' 

ab,c = r21r32r 43+r31r32r 43-(r21r23+r23r31 +r21r32+r31r32+r21r43+r31T43+r32T43)(r23+ 

r32 + r43 ± J(r23 + r32 + r43) 2 - 4r32r43), 

f3b,c = ~(r21 + r23 + r31 + r32 + T43)(r23 + r32 + T43 ± J(r23 + r32 + T43)2 - 4r32T43)
2

, 

rb,c = -!(r23 + T32 + T43 ± J(r23 + T32 + T43) 2 - 4r32T43)
3 

A doubly degenerate solution for this system has been omitted for brevity but is 

indeed possible. A triply degenerate solution for this system is not possible due to 

algebraic constraints. 

Figure 3.11: Fifth 4-state system. 

Finally, for the last system depicted in Figure 3.11, we found that its distinct 

solution is given by the parameters: 

A - r + r A - r A - r b - r 21 c - r 31 
1- 21 31, 2- 42, 3- 43, -r42-(r21 +r31 )' -r43-(r21 +r31 ) 

Its doubly degenerate solution is given by the parameters: 
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Its triply degenerate solution is given by the parameters: 

Shown below are these 5 simple systems with their number of free parameters and 

classes of functional behavior. The number of classes of functional behavior for each 

of the digraphs was determined by studying rate-limiting conditions (e.g. Ai » A2 ) 

and degeneracy conditions (e.g. Ai = A2), and then numerically simulating that the 

associated classes could indeed be found: 
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4-state systems 

# of free parameters classes of behavior 

3 

4 

4 

5 

4 

1 - (1 + b + c)e->-1t + bc>-2t + ce->.3t 

1 - (1 + b )e->-1t + be->-2t + ce->-2tt 

1 - e->.it + be->-1tt + ce- >-1tt2 

1 - (1 + b + c)e->-1t + be->-2t + ce->.3t 

1 - (1 + b )e->.it + be->-2t + ce->-2tt , b =/=- -1 

1 - (1 + b)e->.it + be->-2t + ce->-2tt 

1 - e->.it + be->-1tt + ce->-1tt2 

From this table we see that in the group given there are a minimum of 2 classes 

of functional behavior and maximum of 3 classes of functional behavior, and that 

the existence of reversibility again leads to a failure to generate some degenerative 

(resonance) behavior and thus results in more limited functional behavior. 

Specifically, a single instance of reversibility prevents degeneracy between two of 

the eigenvalues (e.g. ,\1 =/=- >.2 ) of the system, thus precluding the triply degenerate 
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class of behavior from occurring. However, this does not prevent degeneracy between 

one of these eigenvalues and another from occurring (e.g . .\1 = .\3 ), thus permitting 

the existence of the doubly degenerate class of behavior l-(l+b)e->..1t+be->..2t+ce->..2tt 

with some restrictions (b =/= -l) due to rate-limiting conditions for the second and 

fourth digraphs in the table above. 

The fifth digraph is particularly interesting because though it possesses no re­

versibility, only doubly degenerate behavior is permitted and hence only one degener­

ative class of behavior occurs (in addition to the class of behavior that always occur 

with distinct eigenrates). It is the quintessential example that triply degenerate be­

havior can sometimes be prevented in systems lacking reversibility. 

We have found that for both 3- and 4-state systems the existence of reversibility 

leads to the functional form of its time dependence being more limited and, we hy­

pothesize more generally, that the more connected a system is, the fewer classes are 

permissible for its functional form. 

Another hypothesis we propose is that as a system increases in size with only 

one-way connections, its ability to be reduced by means of the model reduction algo­

rithm discussed earlier increases as a result of the greater number of opportunities for 

reduction. Thus this hypothesis predicts which systems will reduce well and which 

will not. This will be tested in future work. 

This concludes our mathematical characterization of 4-state systems, and rein­

forces some of the properties we have found for 3-state systems while adding addi­

tional depth to our understanding of smaller systems that we will later be studying 

topologically. 

3.3 The Trapping-state System 

Figure 3.12: The trapping-state system. 
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We now take the time to study a particular 3-state system of interest. We will 

be examining the trapping-state system depicted in Figure 3.12. Since this system 

possesses reversibility, it will naturally only assume distinct eigenvalues. Recall that 

its distinct solution of general form 1-(1 +b)e->-1t +be->-2 t is given by the parameters: 

A1,2 = -Hr12 + r21 + r31 ± J(r12 + r21 + r31)
2 

- 4r12r31), 

b = r31(r12-r21-r31+y(r12+r21+r31)2-4r12r31) 

2(r12r31 +(r12+r21 +r31)(r31-r12-r21 +y1(r12+r21 +r31)2-4r12r31)+i(r12+r21 +r31-J(r12+r21 +r31)2-4r12r31)2) 

We would like to explore our system's remaining degrees of freedom. To do so, we 

take the first step of scaling time out of our system by letting t -+ {
1 

since time is 

common to all systems that are produced and hence we can remove the freedom due 

to this variable. Equivalently we may set r 31 =l. One natural way of investigating 

the remaining freedom in the parameters of our system is by plotting b v. fi. The 

corresponding equations that we will plot are then given by: 

~ _ l+r21+r12-y(I+r21+r12)2-4r12 

>-1 - l+r21 +r12+y1(1+r21 +r12)2-4r12' 

b = (r12-r21-l+y (ri2+r21 +1)2-4r12) 

2(ri2+(ri2+r21 +l)(l-r12-r21 +y1(r12+r21 +1)2-4r12)+i(r12+r21 +1-J (r12+r21 +1)2-4r12)2) 

Figure 3.13: Parameter-space of the trapping-state system. 

Unfortunately this equation cannot be rewritten in terms of only two variables, 

so we perform a 3D parametric plot with y=b, x = fi, and z=O. Since b v. fi 
describes an area, we will simply obtain an area in the z=O plane. I let r 12 , r 21 be 

0 ... 39 (optimum values for maximum area). The plot is shown in Figure 3.13. 
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Thus we have a triangular-shaped parameter space. 

To more precisely characterize some of the features of the plot, we tried finding 

the critical points of~ v. b. Since this is a parametric function y = y(r12 , r 21 ), x = 

x(r12 , r 21 ) this simply meant using the chain rule to find when 

£1L = ..!!JL 8r12 + ..!!JL 8r21 = 0 
ax 8r12 8x 8r21 8x . 

Figure 3.14: Bounded area of the trapping-state system. 

Using numerical methods to look for solutions to this equation, no critical points 

were found for real, positive rates. However, rough bounds on all three sides for the 

area are given. These are graphically shown in Figure 3.14. The three bounding 

curves are 

b = 70~ (top left) 

b = 1.1(~ - 0.9)2 + 0.06 (interior) 

b = 0.09~ (bottom right). 

The intersections of these bounding curves lie at(~, b) = (0.7959, 0.0719), (~, b) = 

(0.0132, 0.925), (~, b) = (0, 0). Carefully inspecting the plot suggests that b =!= 1. This 

has been numerically confirmed by solving the original equation b=l, yielding only 

negative or complex rates. Our plot more broadly tells us that given certain observed 

kinetics, there is only a range of possible values for those parameters that have not 
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been experimentally measured. The investigation of the parameter space of other 

reversible 3-state systems may suggest more insightful properties of these systems as 

a whole, as well as other systems. However, it is a satisfying result to have some sense 

of the limits of parameter space as we have found them. 

Thus, so far in this chapter, we have succeeded in accomplishing one of the two 

goals of our research, to mathematically characterize and gain intuition into the func­

tional behavior of some of the smaller systems that will result from reducing larger 

systems in the remainder of our work. This understanding will prove crucial to our 

understanding of the signature topological features of microscopic structure that we 

will soon uncover and to eventually being able to make some predictions about the 

way in which hybridization occurs at the level of secondary structure. 

3.4 Distance between Two Digraphs 

Having learned a good deal about how 3-, 4-, and n-state systems behave, we con­

clude by proposing a measure of our own for investigating the difference between two 

digraphs A and B. The general idea behind coming up with this measure is as fol­

lows. Degenerate behavior is what allows us to distinguish between distinct digraph 

topologies, so why not try to measure the distance from maximum degeneracy for a 

given digraph and normalize this for comparability. Then, to extend this, why not 

measure the difference between the normalized distances from maximum degeneracy 

for two digraphs and thus be able to compare how much more different one digraph 

is than another. In this line of thought, we offer the following measure: 

~(A, B) = L (I.Ai - Ajl) - L (l.Ak - .All) ' 
i Ai,j A k Ak,l B 

\ _ A.i+Ai \ _ A.1c+A.1 
/\i,j = 2 ' Ak,l = 2 ' 

Aj is the minimizer of I.Ai - .Ajj(i #- j), 

.Ak is the minimizer of I .Ak - .Al I ( k #- l) 

In words, the idea is to sum over all of the eigenvalues for each digraph the 

minimum absolute difference between each eigenvalue and its closest neighbor, and 
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divide by their average to normalize the value. In doing so, a small difference between 

eigenvalues for a large average eigenrate will be quantified as a small difference, as 

it should, and a small difference of comparable size between eigenvalues for a slow 

average eigenrate will be quantified as a more significant difference. This makes 

sense, since slower eigenrates should have more of a rate-limiting effect on a system 

and hence should be given greater weight. We hope that this measure will be useful 

in predicting major macroscopic changes from small microscopic changes. However, 

this will have to be tested in future work to see whether it bears fruit. 
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Chapter 4 

The Signature Topological Features 
of Microscopic Structure 

Now that we have mathematically characterized some simple systems, we are well­

prepared to address the second goal of our research, to seek out signature topological 

features that correspond to particular classes of macroscopic structure. The identifi­

cation of these signature features will allow large, complex systems to be immediately 

reduced by recognition of these features within their structure and then mathemati­

cally characterized using the profiles developed in the previous chapter. And by doing 

so, we will lay the groundwork for understanding what small microscopic changes will 

lead to large macroscopic changes for our systems and thus gain greater insight into 

the manner in which hybridization occurs. 

So far, we have discovered two such signature topological features, the loop and 

the linear chain. These have been found by writing down the corresponding transition 

rate matrices A for many structurally similar digraphs and then reducing them using 

the model reduction scheme described earlier, and trying to generalize observations. 

We describe our findings here. 

4.1 The Loop 

The loop (Figure 4.1) is a particularly interesting feature because, regardless of its 

size, it can be reduced to a linear 3-state system. The feature was discovered by 

constructing many loops of different sizes and writing down their transition-rate ma-
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Figure 4.1: Reduction of a loop. 

trices and reducing them using the model reduction algorithm proposed earlier to the 

structure shown in the figure. The power of such a feature is that the loop effectively 

characterizes the opposing arrows of the reduced system, creating reverse reactions 

where these previously did not exist. This intuitively makes sense since the cycle 

that the loop represents effectively means reaching the same end state after a greater 

amount of time has passed (or the occupation of more states before reaching the final 

state), which is easily represented by adding reversible arrows to a 3-state system. 

Figure 4.2: Reduction of a linear chain. 

4.2 The Linear Chain 

The linear chain (Figure 4.2) is another important feature that is often present in 

many complex systems. It was discovered by constructing many linear chains of 

different lengths and observing that their corresponding transition-rate matrices could 

consistently be reduced to ones characteristic of the structure shown in the figure. 

The idea underlying this feature is that any large linear chain can be effectively 

represented by a short linear chain whose rates approximate the rates of the larger 

system. This result is fairly intuitive and makes sense. Since such a feature will often 
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be present, the applicability of using this topological feature to simplify systems is 

great. 

While we are very excited about what we have found, we offer the caveat that 

these must again be confirmed once CTS form has been restored (see Figure 2.4). 

Such form is important for correct physical interpretation and restoration to this 

form has proved a formidable task for graduate student Kevin McHale (and formerly 

Ben Rahn) to accomplish. 

In the future, hopefully more signature topological features can be identified, but 

these two provide a solid start for exploring what small changes in microscopic struc­

ture lead to significant changes in macroscopic structure and hence understanding 

secondary structure kinetics theory. 
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Figure 5.1: Example of a large system. 

5.1 Theoretical Implications 

Now that both some signature topological features of microscopic structure and their 

underlying macroscopic mathematical behavior have been established, we can begin 
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to consider the implications of our results. Consider the system shown in Figure 5. 1. 

The encircled regions represent portions of the system that may be simplified and this 

figure as a whole summarizes much of the work we have done. Since we are now able 

to understand both how some signature topological features are simplified and what 

their corresponding mathematical behavior is like, we have achieved a holistic view 

that will allow us to begin to think about the theory of secondary structure kinetics 

and to understand real systems in future work. 

5.2 Future Work 

A number of important areas exist for future exploration. In the previous two chap­

ters, we established the ability to predict macroscopic structure on the basis of sig­

nature topological features of microscopic structure, as well as developed an under­

standing of the underlying mathematical behavior of these features. We now propose 

a number of interesting areas for future research. 

Our first question is, "Can we quantify the difference between two digraphs A 

and Busing matrix norms, i.e. as llA- Bii?" More specifically, "Can we find a suit­

able metric to identify small microscopic changes that lead to significant macroscopic 

changes?" While we have proposed one possible measure of our own in an earlier 

chapter, we discuss some other possible measures here. 

Just as the Euclidean norm can be used to measure the distance between two 

vectors, we hope that a matrix norm such as the Frobenius norm, 2-norrn, 1-norm, 

or oo-norm will prove useful in measuring the differences between two digraphs. 

Tabulating these known norms alongside what our vector intuition suggests about 

them we have: 
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Matrix norms 

Measure Definition Hypothesis 

Frobenius norm llAl l} = L laijl 2 = tr(A* A) crude measure 
i,j 

2-norm 11 A I I 2 = .,/>:;;;;;; no intuition 

1-norm llAlli = m~ L laijl = the largest absolute column sum poor measure 
J . 

i 

oo-norm llAlloo = m~ L laijl=the largest absolute row sum good measure 
i 

j 

The Frobenius norm seems the crudest norm of the bunch, resulting in a magnitude­

like quantity similar to the Euclidean norm. The significance of the 2-norm is not 

immediately clear. The oo-norm may be interesting because it corresponds to the 

sum of the rates for different states whereas the 1-norm may be less so because it 

corresponds to the sum of rates for the same state. 

To test the utility of such norms for identifying small microscopic changes that 

lead to major macroscopic changes, we must devise pairs of digraphs whose difference 

leads to the loss of a signature microscopic topological feature. Then we hope to be 

able to use one of the above matrix norms or another measure to be able to distinguish 

such a change from one that leads to no loss of a signature topological feature. This 

work may ultimately lead to the identification of phase-transition like conditions for 

the systems we are studying. Thus our quest for a suitable metric is an important 

question that will hopefully allow us to make interesting conclusions about the way 

in which secondary structure kinetics proceeds and its theory as a whole. 

Our next question is, "How can our work be experimentally examined?" 

To experimentally test our work, we will need to specify what our initial conditions 

will be. One idea might be to engineer a strand with a particular function in mind, 

e.g. a nanoscale timer, since we are in such a great position to control the time 

dynamics, or delay, of our system. With a particular system in mind, say two specific 

strands of RNA, we must then generate all possible secondary structures. After we 

have these, we will need to construct a digraph from them and store this information 

in a transition-rate matrix. However, before we can do this, we will need to determine 
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the transition rates for our system. 

To compute the transition rates, we will need to use existing free-energy values 

that have been tabulated by others such as SantaLucia and Hicks [4]. Specifically, we 

will want to test two different measures for transition rates [10]. The first is called 

the Metropolis rate and is defined by 

where D.G = Gj - Gi· This measure makes uphill energy gradient steps more 

difficult, but treats downhill steps with equal probability. By contrast, the Kawasaki 

rate is defined by 

-AG 
rij = e 2kT • 

This symmetric definition accounts for the gradient in either uphill or downhill 

steps. The latter measure at first sight appears to be the better one because of its 

ability to differentiate between both uphill and downhill steps. However, both will 

have to be tested to be sure. Once the transition rates have been computed and 

the digraph reduced using the methodology outlined earlier, the next step will be to 

determine whether the transition rates computed hold out experimentally. This can 

be done using FRET (fluorescence resonant energy transfer), which allows for the 

measurement of nanometer scale distances between labeled sites on, e.g., RNA, and 

thus will permit us to study the secondary structure kinetics of RNA in realtime at 

the single molecule level. Such experimental work will determine whether the results 

of our theoretical work will be fruitful in application and hence is some of the most 

important work we will do in the future. 

Thus, it is whether our model is a sufficiently good one and whether we are 

able to find a way to identify what particular microscopic features play a role in 

significantly changing macroscopic features that will determine how well we will be 

able to understand secondary structure kinetics theory and apply our knowledge of 

it later on. 
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Appendix A 

Code for Model Reduction 

[t,s]=eig(A); 

d=diag(s); 

k=find(d==O); 

to=t (: ,k); 

ti=inv(t); 

tio=ti(k,:); 

po=to*tio; % construct orthogonal projector 

v=t; 

vi=ti; 

v(:,k)=[]; % throw out the k-th column of v 

vi(k,:)=[]; % throw out the k-th row of v 

Bt=vi*B; 

Ct=C*v; 

Dt=D; 

stable-111atrix=ss(At,Bt,Ct,Dt); 

stable-111atrix=ss(stable-111atrix,'minimal'); 

red_stable-111atrix=balancmr(stable-111atrix,3); 
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[a,b,c,d]=ssdata(red_stable....matrix); 

x=sym ( 'x ' ) ; 

y=c*expm(a*x)*b+C*po*B 


