From Sequence to Function through Secondary
Structure Kinetics of RNA and DNA

Thesis by

Alejandro Meruelo

In Partial Fulfillment of the Requirements
for the Degree of

Bachelor of Science

California Institute of Technology
Pasadena, California

2006
(Defended May 8, 2006)



S

1

© 2006
Alejandro Meruelo
All Rights Reserved



iii

Acknowledgements

I would like to thank my mentor, Professor Mabuchi for his guidance in selecting read-
ing relevant to my research, for fruitful discussion, and for giving me the opportunity
to pursue this project. I would also like to thank Ben Rahn for the seed materials for
the project, and Kevin McHale and Nathan Hodas for very helpful discussion; Pro-
fessor Mabuchi and Kevin McHale were also very helpful in reviewing this document.
This project was made possible by the support of the Mellon Mays Undergraduate
Fellowship (MMUF).



v

Abstract

A number of efforts to determine function from sequence of RNA and DNA have
been made with varying success. Here we study the determination of function from
sequence of DNA and RNA through their secondary structure kinetics, specifically
the series of transitions between secondary structures. This series of transitions or
microscopic structure can be described by a system of ordinary differential equations
that can be approximating using balanced truncation to determine the macroscopic
structure. By doing so, we have been able to identify signature topological features of
microscopic structure and mathematically characterize the corresponding classes of
macroscopic structure. Thus we are now able to take large, complex systems, reduce
them, and understand their behavior. In the future, we hope to be able to identify
small microscopic changes that lead to large macroscopic changes and possibly phase-
transition like conditions between secondary states. Ultimately, this may lead to the
development of a secondary-structure kinetics theory describing how one or more
strands of DNA pair with one another to form different secondary structures and its

potential future experimental verification.
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Chapter 1

Introduction

1.1 Problem Statement

This work during the past summer and academic year has concerned understanding
the secondary structure kinetics of RNA and DNA. Understanding protein folding
for a long time has posed a problem of a similar nature to understanding the sec-
ondary structure kinetics of RNA and DNA. Theoretical approaches to understand-
ing protein folding have centered around the development of models of free energy
landscapes containing the different intermediates through which a protein travels to
achieve its lowest-energy conformation. These models have proved crucial to protein
structure prediction and design. In the same way that theoretical approaches have
been taken to understanding protein folding, we discuss a novel theoretical approach
for understanding the secondary structure kinetics of RNA and DNA and its potential
experimental implications.

Understanding DNA and RNA hybridization kinetics at the level of secondary

structure has promising potential application to molecular dynamics and nano-biotechnology.

For example, in molecular biology, it may help us better detect pathogens, mutations,
and play an important role in drug screening [1]. It may also be crucial to under-
standing the activity of DNA and RNA catalysts [2]. Finally, this understanding will
have important consequences for nanotechnology and DNA-based computing, e.g. for
designing devices like DNA tweezers [3].

A number of people have set the stage for important work in this area. Some have
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compiled databases of thermodynamic parameters for many motifs for the purpose of
making accurate DNA structure prediction [4] and have implemented programs capa-
ble of prediction of secondary structure for pairs of RNA or DNA strands using these
data like PairFold (http://www.rnasoft.ca/cgi-bin/RNAsoft /PairFold /pairfold.pl). Our
work differs from these in that we hope to be able to understand the theory underly-
ing secondary structure kinetics and thus to be able to draw larger conclusions about

the way that it occurs.

e P i R
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A

Figure 1.1: Configuration space of the DNA strand AATT, excluding pseudoknots.

A-A-T-T

Figure 1.2: Digraph for the DNA strand AATT.

We begin by considering one or more strands of DNA and the fashion in which
they hybridize with one another. Consider the DNA strand AATT, for example. We
will be considering all possible base-pairings, excluding pseudoknots (Figure 1.1). An
example of a pseudoknot structure has been excluded in the figure shown.

We assume that hybridization can occur only through certain elementary kinetic
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steps. These are (i) the formation of a new base-pair, (ii) the breaking of an existing
base-pair, and (iii) a shift from one base pair to another. Then we may depict the
configuration space, containing all possible configurations of a set of DNA strands, as
a graph with directed edges (Figure 1.2). Each node of the graph then corresponds
to a possible secondary structure and each single-step transition is determined by
thermodynamic considerations. Secondary structure dynamics can consequently be
viewed as a random walk on this graph. The central question of my research and the
question I will address is, ” How do we take this graph and simplify it?”

The goals of our research are to apply a model reduction scheme to this graph in
order to arrive at a more intuitive understanding of large systems (with associated
microscopic structure) so that we can predict the way hybridization occurs. Specif-
ically, we aim to be able to (i) identify topological features of microscopic structure
that correspond to particular classes of macroscopic structure (of reduced systems)
and (ii) to be able to mathematically characterize these. The larger goal will be to
identify small changes in microscopic structure that lead to substantial changes in
macroscopic structure.

By gaining a greater grasp of the manner in which hybridization occurs, we then
hope to be able to learn more about things governed by secondary structure kinet-
ics. We can begin by answering questions concerning, e.g. the time dynamics of
ribozymes, RNA-based enzymes. We aim to be able to understand the mechanisms
that stabilize specific structural folds. Furthermore, from studying the manner in
which hybridization progresses, we hopefully will be able to create new RNA and
DNA-based structures with specific functional behavior for the purposes of bioengi-
neering, e.g. for gene therapy. In addition, we hope that the theory we develop will
help us understand disease processes involving pathogenic ribozymes in plants and
animals such as Hepatitis delta virus.

Concretely, we will be determining how long and with what likelihood it takes to
transition from one secondary structure to another, with the ultimate goal of being
able to predict the manner in which hybridization progresses starting with different
configurations of DNA or RNA strands. We lay the foundation to accomplish the
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goals we have outlined here in the next few chapters.

1.2 An Input-Output Approach

= = &

macroscopic picture

http://chemistry.ucsc.edu/~wgscott/

physical system microscopic picture

system dynamics

Figure 1.3: The big picture.

We propose approaching the problem of understanding the secondary structure
kinetics of RNA and DNA in the following fashion. Imagine a physical system, such as
that depicted in the initial sequence of Figure 1.3, whose time dynamics we would like
to better understand. We will be interested in studying the corresponding microscopic
picture underlying the transitions required to go from one secondary structure to
another for this physical system. We can depict them using a directed graph where
each node represents one possible secondary structure and the arrows connecting
them the possible transitions between these structures (Figure 1.3). We may then
approximate this microscopic picture by a simpler macroscopic picture, as shown in
the figure to the right. Through such an approach, we hope to be able to gain insight
into how hybridization occurs.

More concretely and differently than others have done in the past, we will be
treating our physical system as an input-output system. We are interested in studying
the time dynamics for going from one initial state to some final state. So, the input
will be the initial secondary state of the system and the output will be the final

secondary state of the system.
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We begin by considering a system with time varying input u(t) that drives a
system with state x(t) and output signal y(t). We examine the input-output map

and the system dynamics, which can be written as

#(t) = f(x(t), u(t))
y(t) = h(z(t), u(?)).

(1.1)

We model the forward and reverse transitions between individual secondary struc-
tures each by a single rate, defining the transition-rate matrix A in which the coeffi-

cient 7;; defines the transition rate from state i to j:

%x = Az(t),
= Z T T12 “e Tin
J#1
T21 o Z Tj2 Ton
A= J#2 (1.2)
Tni Th2 Saim, = Z Tin
L Jj#n d

In general, the matrix A will not be symmetric. Note that all rates are by definition
nonnegative.
Because our forward and reverse transitions are defined by a single rate, we may

then write our system in matrix form as the linear system:

z = Az + Bu,
y = Cr, (1.3)

rzeR"ueR™ yecRP,

where A,B, and C are time-independent real matrices of sizes n X n, n X m, and
p X n, respectively. B represents the initial secondary state (input of the system)

encoded in the form of an initial probability distribution vector
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corresponding to the first state and C represents final secondary state (output of

the system) encoded in the form of a final probability distribution vector

Ol pct |

corresponding to the last state.

&1 32
Y12

Figure 1.4: A simple 3-state system.

To make this concrete, consider the example of the simple 3-state system depicted

in Figure 1.4. We can write down its corresponding matrices as

—T91 T12 0 1
A= ror —(riz+rse) 0|,B=1]0 ,C=[0 0 1]-
0 T32 0 0

Next, to solve the approximate time dynamics of traveling from one initial state
to some final state for a large system representing our model of single-step DNA
hybridization of order n, we will use two input-output model reduction algorithms
from control theory. We illustrate these in Figure 1.5.

We will be applying these two algorithms to arrive at a lower order approximate
model of the behavior of our system. The first of these will be the Kalman decompo-
sition, which eliminates any degrees of freedom that don’t connect the initial to the
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Figure 1.5: The model reduction scheme.

final state to arrive at an n’ order model. The second will be balanced truncation,
which essentially rank orders the degrees of freedom of the problem and truncates
the degrees of freedom that have the least effect on input-output characteristics to
arrive at a simpler model of order n”. This is possible because there often will be a
wide gap between the least and most important degrees of freedom, allowing for the
identification and removal of those less contributing degrees of freedom. The latter
algorithm has a complexity of O(n?) in space and O(n?®) in time. The mathematics
underlying these two algorithms is discussed in some depth in chapter 3.

It turns out that the model reduction scheme we are performing has a bounded
error as we will see in the next chapter, giving us great control over our ability to
capture the dynamics of our original model with a well-defined degree of accuracy.

Our model reduction technique as a whole is particularly important because large
systems are unwieldy to solve and understand, while small ones are often not. By
being able to reduce large systems, we will be able to gain intuition into how they
behave. We hope to be able to understand how particular microscopic topological
features reduce to certain classes of macroscopic structure and then to be able to
mathematically characterize how such systems evolve in time. We hope that our
approach in the long run will be adapted to understand much larger scale systems

and more complicated biological systems.



Chapter 2
The Model Reduction Algorithm

In this chapter, we will review in some depth the model reduction scheme that we
will be applying to understand and make predictions about the manner in which
hybridization occurs. Specifically, we will address the questions, ” How does the model
reduction algorithm work?”, ”How fast does it work?”, "How did we implement it?”,
and ”"How well does it reduce the systems we will be encountering?” By addressing
these questions, we hope to be able to provide some insight into the underlying

methods of our research and to motivate the chapter to follow.

2.1 Principles

We begin by going over the mathematical principles underlying our model reduction
algorithm. As briefly touched upon in Chapter 2, we will be applying two algorithms
in succession to our system, the Kalman decomposition and balanced truncation. Our
methodology is based on the work of Rahn [5], a former graduate student in the lab.

We first discuss how the Kalman decomposition algorithm works. Any dynamical
system can be described by a variety of coordinate systems (e.g. a simple pendulum
can be represented in terms of the angle of the string with the vertical or its vertical
displacement). The Kalman decomposition reduces a given system to its lowest order,
exact model in order to simplify system analysis.

We begin by examining the input-output map ¥ : u — y neglecting any internal

behavior. Then we introduce the concepts of observability and controllability. If a
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state is unobservable, it does not affect the output and if a state is uncontrollable, it
is unaffected by the input. A minimal realization is a model in which all states are
both controllable and observable.

The goal of the Kalman decomposition is to obtain a minimal realization. To do
so, we will need to equate our system to the controllable and observable part of our
dynamical system. The Kalman Canonical Decomposition Theorem [(] states that
given a dynamical system described by equation (1.3), a similarity transformation T

exists such that the equivalent linear system

Aoo 0 A13 0 Bco
A21 Ac& A23 /‘124 Bca
TAT* TB _
= 0 0 A, O 0
. 0 . _
0 0 A As O
o PO R i e |

can be computed, where ¢ stands for controllable and o for observable (and their
complements ¢,0 for uncontrollable and unobservable, respectively). More impor-
tantly, however, we are interested in the transfer matrix, i.e. just the input-output
behavior with no regard for internal behavior. Thus we have that the transfer matrix

of the system is equal to its controllable and observable part, i.e.

A B A Hes
C 0 Ly 8
Hence we have our minimal realization and the lowest order, exact model for our
system.
Next, we will look at how the balanced truncation algorithm works. The exact

balanced truncation algorithm is well-suited to problems of small to medium size and

has complexity O(n?) in space and O(n?) in time [3]. Intuitively, balanced truncation
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involves identifying those degrees of freedom that are only weakly changed by the
input and most weakly affect the output, and removing these. It is often handy
when building simulations and theoretical models for the evolution of macroscopic
quantities in large, complex systems, as we have here.

We begin performing balanced truncation by first introducing the observability
gramian of (C,A), called Y,, and the controllability gramian of (A,B), called X, which
are matrices that provide useful quantitative measures of a state’s observability and

controllability:
20 *
iy = / et TC*Ce* dr
0. *
X.= | e“BBe*dr
0
These terms constitute the solutions of the two Lyapunov equations [(]

AY,+ Y, A+C*C=0,AX.+ X .A*+ BB* = 0.

Figure 2.1: The observability and controllability ellipsoids.

Alternatively to using these definitions and more intuitively, we may geometrically
interpret the observability and controllability gramians by the introduction of the
observability and controllability ellipsoids (Figure 2.1), i.e.

=

& = { X 8, 1 B € Cland|e,| =1}
By == {Xc%xc : 2, € C"and|z,| = 1}.
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Figure 2.2: The balancing transformation: alignment of the observability and con-
trollability ellipsoids.

Then the largest prinicipal axes lie along the most observable or controllable
directions. In order to arrive at a good approximate model, it would make most
sense to eliminate the least observable and controllable states since these are the
least important. By performing a balancing transformation (requiring A stable, i.e.
Re(A(A)) < 0), which results in the simultaneous diagonalization of the observability
and controllability gramians, we align the observability and controllability ellipsoids
(Figure 2.2), thus making sensible truncation possible. The diagonalization of both
gramians under congruence transformations is made possible by the fact that the

gramians are Hermitian and positive [7]. The resulting diagonal matrix is of the form

01

o))

3

ol
Il
Q
I

Op!

Thus we have a diagonal matrix with decreasing Hankel Singular Values (HSVs)
along the diagonal. In order to arrive at an approximate model of order n”, we
must truncate the system only where the HSVs have a clear separation (i.e. are

distinct), beginning with the smallest of such states, which are the least controllable
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and observable. Partitioning our matrix as

Ay A B
A: 11 12 ,B: 1 ’C:[Cl 02}’
A21 A22 BZ
An c Rn"xn”

our reduced model becomes

A An B
Gpr(s) = (s).
cy 0
This completes the process of performing balanced truncation on our system and

the approximate n” order model produced preserves the stability of our system with

bounded error

k
01 < |G = Gurlloo <2 03,

=1
where the o; correspond to the distinct truncated HSVs [5].
Thus, by understanding the underlying mathematics of these two algorithms, we
can better understand why they are so effective for our purposes, as well as have a

greater appreciation for how the approximation scheme we have employed works.

2.2 Speed

The next most pressing concern is, ” How fast can we reduce these types of systems?”
This will give us an idea of how large a system we can handle and how practical our

approach is for tackling these types of systems.
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Data for the balancmr algorithm (N=100)

t (s) n
0.540 20
1.230 50
16.230 | 174
231.910 | 410
A
3007
2007
V=t(s)
100t
s t t >
0 | 100 200 300 400
X=n

Figure 2.3: Plot of t(s) v. n for the balancmr algorithm.

We benchmarked the longest step of our model reduction scheme balancmr, a
command in MATLAB (Mathworks Inc., Natick, Massachusetts, USA) that performs
balanced truncation, to see how large a system it could reduce to a 3-state system
in times of order 0.5s, 1s, 10s, and 100s. We chose to use the rss(n,p,m) function
provided in MATLAB to generate a random, stable, n* order model with m inputs
and p outputs. Specifically, we ran rss(n,1,1) to generate a random stable model
of order n with one input and one output. Running N=100 trials and then using

the profile command on a 1.5 GHz PowerPC G4 with 1 GB of RAM, running Mac
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OS X 10.4.3 and MATLAB 7.0.4.352 (R14) SP2 we obtained the results given in the
table above and in Figure 2.3.

From the figure, we conclude that with increasing time, the pace at which higher
order models can be reduced using balanced truncation increases. One question that
we raise for experimentalists to answer is, how do our randomly generated systems
compare to typical systems involved in studying the secondary structure kinetics of
DNA or RNA and how can we simulate more realistic systems?

The study of the speed of model reduction as a whole is an interesting one and
one which underlines the important practical constraints of applying this strategy
to answer research questions in general. Since we are currently in the process of
developing this technique, we will typically be dealing with systems of order 50 at
maximum and thus conclude that our model reduction scheme is sufficiently fast for
our purposes. In the future, it is valuable to know that the algorithms we are using
can be adapted. For example, the balanced truncation algorithm, while in its exact
form is well suited for small to medium problems like our current one, can be adapted
to larger problems by approximate application [8]. This will be especially important
since the size of DNA configuration space grows exponentially.

2.3 Implementation

I now discuss the implementation of the model reduction algorithm examined in the
first section of this chapter. The corresponding MATLAB code may be found in the
Appendix. Specifically, I will comment on how the two algorithms for reduction were
implemented and what hurdles had to be overcome in order to accomplish the goals
of the model reduction scheme as a whole.

The implementation of the two algorithms, the Kalman decomposition and bal-
anced truncation, is a straightforward process in MATLAB, which is equipped with
toolboxes containing these functions. These come in the form of a minimal option
for constructing a state-space model using the ss(stable matrix, ’minimal’) com-

mand and the balancmr(stable matrix,3) command to reduce a given system to
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separate
w transient |[ steady-state >[restore CTS form m
behavior

balanced
truncation

Figure 2.4: Block diagram of steady-state removal and restoration procedure.

one of order 3, respectively. However simple these may seem, the balanced truncation
algorithm requires that the transition-rate matrix A be stable, i.e. Re(A(A)) < 0.
This means that there is a need for the removal of the steady state that arises as a con-
sequence of the physical model of our system and otherwise invalidates the stability
condition. Also, we will need to to restore the system once it has been reduced using
the balanced truncation algorithm. This procedure as a whole has been illustrated in
Figure 2.4.

We begin by outlining the mathematical problem we will solve. Consider the

linear state-space input-output model of earlier:

T = Az + Bu,
y = Cr, (2.1)

reR"ueR™ yeRP

By the nature of our problem, A is a matrix containing one zero eigenvalue, cor-
responding to the steady-state and (n-1) negative eigenvalues, corresponding to the
transient states.

Performing balanced truncation on our system naturally requires that A be stable,
i.e. Re(A(A)) < 0. Then we must develop a method to remove this steady-state value
and later restore it after balanced truncation has been performed.

Our first step will be to diagonalize — or in the case of degeneracy, find the Jordan

form J of our matrix A. For simplicity, assume that all our eigenvalues are distinct so
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that we will be diagonalizing A using a transformation T:
De=T" AT,

where D is a diagonal matrix made up of the eigenvalues of A, and T is a matrix
whose columns correspond to the eigenvectors of A and are arranged in an order
corresponding to their eigenvalues appearing in the matrix D. Suppose that the zero
eigenvalue appears in the ¢** row and column of D. Then we can define a new matrix
V as the rectangular n X (n — 1) matrix resulting from deleting the ¢** column of T
and V! as the rectangular (n — 1) x n matrix resulting from deleting the ¢** row
of T~!. Then we have a transformation V! that maps from the original state space

onto the stable subspace of A. To apply this change of basis
z—I=Vz
we substitute Z (and z = V) into equation (2.1) to obtain

F=% =Vl =V Az + Bu) = V'AVZ 4+ V-'Bu = A% + Bu
y=Cr =CV% = C%,

which then yields that
A=V1AV,B=V'B,C =CV.

Thus we have succeeded in obtaining a transformation to remove the steady-state
dimension of the state-space.

Once we’ve performed balanced truncation on our system to obtain Z,., we are
then ready to restore our system to its original form by reincorporating the steady-
state value. To do so, we’ll use an expression similar to (2.1) above for our reduced

system:

-%r = Arir =t BT’LL,
io = H()B’u,

Y= Crfi?r ~+ Cﬂ?o,
= §{t)
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where Il is the orthogonal projector onto the steady-state (zero eigenvector) of

A. Then for t > 0, since only these times make physical sense,
Ty = H()B =

To compute Ily, it may be easier to think back to quantum mechanics where we

could write
B = "i)(/|B.
Then we may write
B = (II; + IIp) B = II,B + Iy B,
where t stands for transient and 0 refers to the steady-state. This simply means that
I = ) | [i)(¢| and Il = [0){0'].

>0

Then we can now write our final expression for the output
i = C,i, + Cxo, & = e’irtBT or g == é’reA’tB, + CIlyB.

Thus by introducing the factor CIlyB, we are able to restore the steady-state
contribution to our reduced system.

We now discuss the code developed to formally accomplish this procedure. To
achieve the goals discussed above, the zero eigenvalue of the transition-rate matrix A,
corresponding to the steady-state of the system, must be removed. The code included
in the appendix begins by looking for this zero eigenvalue, constructing an orthogonal
projector onto the steady-state (zero eigenvector) that we will need later on, mak-
ing a map from the original state space to the stable subspace (by throwing out the
components corresponding to the steady-state), and then performing the transforma-
tion from the original state-space to a strictly stable one. It then applies the Kalman
decomposition to the resulting matrix using the ss(stable matrix, ’minimal’) com-

mand.



18

This is followed by performing balanced truncation on the resulting minimal order,
exact model, reducing it to a system of order 3. It is at this point that the steady-
state behavior is restored using the orthogonal projector constructed earlier and the
system is once again a good approximation of its original functional behavior.

The steady-state removal and restoration hurdle was a major problem that had
to be overcome and there still remains the need to restore the reduced system to
continuous-time stochastic (CTS) form. The general idea behind this problem is
given a reduced matrix A, ”Can we restore it to CTS form (for which each column
sums to zero, and typically diagonal elements are negative and off-diagonal elements
are positive or zero) while simultaneously preserving its current eigenvalues?” This is
a difficult problem not solved by former graduate student Ben Rahn and is currently
being worked on by another graduate student, Kevin McHale. The most that can
be said right now about this problem is that for an n x n CTS matrix, all of the

eigenvalues must satisfy the relation

The proof of this relation is due to Bryan Shader. One idea I had to solve this
problem would involve Lagrange multipliers through which the problem’s constraints
could be incorporated. However, as a whole, we have succeeded in producing a system
whose functional behavior approximates the original, though it has lost the structural
features of its digraph by coming out of CTS form. Thus we are able to compute
effective transition-rates, but not yet study the digraph structure of these systems

with confidence.

2.4 The Statistics of Model Reduction

It is appropriate to close this chapter by motivating the following chapter. We are
interested in looking at the way large systems reduce to smaller systems. Specifically,
we will be interested in the typical reduction of order under a fixed error bound.

Recall that the error bound for systems using our model reduction scheme is given
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k
g1 S ”é—' CAT"n”Hoo g 2202'7

=1
where the o; are the distinct truncated Hankel Singular Values (HSVs) of the
system [5]. We will be interested in what typical order models we obtain as a result

of reducing our system when the error is approximately 20% of the system as a whole.
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Figure 2.5: Model reduction distribution under limited error bound.

In general, we will at worst be dealing with a system of order 50 and more likely
will be dealing with a system of order 20 or 30. I analyzed the distributions of model
reduction of systems of order 20 and 30, with a sample size of N = 20 for each.
To accomplish the goals of my study I used the MATLAB command rss(30,1,1),
e.g. to randomly generate a 30-order model, the command minreal to reduce it to
its lowest order exact model (Kalman decomposition), and the command balancmr
to truncate it according to its HSV plot (balanced truncation). The criterion for
truncation was that the sum of the truncated HSVs was closest to 10% of the total
sum of HSVs. The resulting distribution plots for initial models of order 20 and 30

are given in Figure 2.5. The associated statistics for these plots have been tabulated
in the table below.
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Model reduction distribution statistics
Initial Order (N) | 20 (21) | 30 (22)
Average 5.238 | 3.955
Median 5 4
Standard Deviation | 2.256 1.362

From these results, we can infer that typically under the 20% error bound we will
find that reduced models will be of order 4 or 5. Whether our systems will remain of
this order when restored to CTS form is another question that must be answered in
the future. Presuming this is so for simplicity of discussion, since many order 5 and
some order 4 systems cannot be solved analytically, we will begin by analyzing all
possible 3-state systems and then learn as much as we can from those 4-state systems
that can be solved analytically in order to mathematically characterize the behavior

of typical systems we will be obtaining using our model reduction scheme.
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Chapter 3

The Mathematical
Characterization of Macroscopic
Structure

3.1 3-state Systems

We begin by analyzing 3-state systems with the intent of gaining intuition into larger
systems that reduce to such systems using our model reduction scheme. Specifically,
we will be computing the probability Py;(t) of the transition from the initial state i
to final state f, where

0< Prlt) < 1.

To solve for Py;(t), we will have to solve the problem set up in Chapter 2 consisting
of the system of equations (1.3), where Pf;(t) will simply be the output of the system
y(t). We restate these equations here along with some additional conditions for our

problem:

z = Az + Bu,
y = Cr,
o = (L), 2(0) = %,
zeR"ueR™ yeRP

We would like to solve this problem for ¢ > 0 since no other times have physical

meaning. We begin by solving the homogeneous equation
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= Ax
whose solution is well known to be
z(t) = etxy.
Next we look at the inhomogeneous equation
z==Bé(t)
whose solution is
z(t); = BO(t),
where 6(t) is the Heaviside function defined by

1,t >0,

0(t) =
0.1<0.

Since we are interested in time ¢ > 0 we will simply take our solution to be
z(t); = B,t > 0.
Adding our two solutions to obtain the general solution we have
z(t) = e*zo + B+ C.
Since z(0) = zo then
z(0) =2+ B+ C;C=-B
so that our general solution becomes
z(t) = ettzo, t > 0.

However, we know that at time t=0, the initial state is specified by the initial
probability distribution vector B so that

#(t) = ¢*B,
y(t) = Ce™B = Pyli), 1 = 0.
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Thus we have found the solution for Pf;(t) that we will use for the remainder of
our work.

Exponentiation of the matrix A is relatively straightforward to accomplish by solv-
ing for the corresponding eigenvectors, from which one can construct a basis by which
the original matrix can be diagonalized by its eigenvalues and then easily exponen-
tiated and transformed back using the original basis. In the case of degeneracy, this
task can be accomplished using the Jordan canonical form, which also gives insight
into the form of the solution.

By mathematically characterizing the functional behavior of these simple systems,
we will learn about their characteristic behaviors and thus will be primed to under-
stand systems that reduce to these simpler systems when we encounter them later
on.

Before we introduce the main results of this chapter, it is useful to note some of the
more general properties of n-state systems that we have learned by studying 3- and 4-
state systems. We have found that the functional form for the time dependence of the
transition from an initial to a final state has a number of characteristic properties. The
functional form is dependent solely on the number of distinct or degenerate eigenvalues
making up the system and their degree of degeneracy. The number of secondary states
of a system determine the number of eigenvalues for a given system. It will be useful
to term the eigenvalues of the system its eigenrates. Then these eigenrates are given
by expressions involving the transition rates making up the system itself. Note that
the eigenrates have been generally found to be real for all systems studied.

When all of the eigenrates for a system are distinct (and real), the functional form
for its time dependence consists of a linear combination of one exponential term for
each eigenrate —); of the form e~*¢. When an eigenrate is degenerate (and real), any
number of similar exponential terms multiplied by a polynomial of increasing order
may be added to the first purely exponential term up to a maximum order of one
less than the order of degeneracy. This fact is a corollary of the Jordan Canonical
Form Theorem, but can also be understood by inspecting the general form of an

exponentiated matrix of Jordan form J multiplied by time, e’* [9]. To consider an
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example, if we have a 5-state system with a degeneracy of 3, the functional form for

the transition rate Ps;(t) from the initial to the final state will be
Psi(t) = 1+ ae™t + be ™Mt + ce M2 + de 2,

where the eigenvalue 0 always occurs and is ignored in the counting of eigenvalues
for the system. Each of the coefficients {a, b, ¢, d} is often a complex expression involv-
ing the transition rates of the system and is determined according to the structure of
the digraph (e.g. Figure 3.1). Some of these may vanish, allowing for more flexibility
in the number of functional forms resulting from the same digraph structure.

We now introduce some of the main results of the chapter. We begin by charac-
terizing the functional behavior of all possible 3-state systems. In constructing these
systems, we assume that all systems have a single absorbing final state. This means
that once in the final state for a system, there is zero likelihood of exiting this state
to return to any other state in the system.

Here we enumerate all observed classes of functional behavior for a 3-state system
resulting from analytically solving for their time dynamics. These classes of behavior
were discovered by using rate-limiting conditions (e.g. A; > A;) and degeneracy
conditions (e.g. A\; = A2) to produce different functional classes across many different
types of systems studied. Note that these have been written using the minimum

number of parameters based on the fact that Ps;(t = 0) = 0:

Possible classes of functional behavior (3-state systems)
1 — (14 b)e Mt + b2t
1 — e Mt heMit

Note the resonance (involving a polynomial) class of behavior that results from
degenerate eigenvalues as distinguished from the other class of behavior that results
from distinct eigenvalues.

Next, we examine the 5 possible 3-state systems under the assumptions above. Be-
fore going on to state what we observed about these systems, we give the eigenvalues

A1, A2 and the coefficients for these systems, including two examples of how these are
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determined. For every system, we will provide two solutions (or state that one doesn’t
exist), one for the case of distinct eigenvalues with general form 1—(1+4b)e~1¢4be =2t
and one for the case of degenerate eigenvalues with general form 1 — e=*1? 4 be~1¢,

Note that some systems have no degenerate solution for positive rates.

Figure 3.1: First 3-state system.

Beginning with the system depicted in Figure 3.1, we write down its corresponding

matrices given by

—T21 0 0 1
A=| ry -1 0|, B=1]0 ,02[001]-
0 T32 0 0

The eigenvalues of our system are visibly given by A\; = 79; and Ay = 730. We
start by considering the distinct case (i.e. A\; # \z). Recall that Ps;(t) = Ce”tB. For
the distinct case, we will exploit the ability of the matrix A to be diagonalized by
its eigenvalues ); and then easily exponentiated. Specifically, e4! = Sdiagle=*!|S1,
where S is the similarity transformation yielding the diagonal form of the matrix A.

Constructing this similarity transformation using the eigenvectors of the matrix A we

find:

0 —-1+ % 0 1 0 0 1 ¢ I |
S = O —ra1 __1 ’ d’ia,g[e_)‘jt] — O 6_7'21t 0 - S_l = —Tr32 0 0
T32 721732
1 1 1 0 0 et ——fa_ 10
T21—732

Then we may find Ps;(¢) by multiplying the above matrices:



26
P;;(t) = Ce!*B = C(Sdiagle *%|S™1)B = 1 + —m2_¢ ™1t _ _TaL_—Tazt

T21—T32 T21—7T32

Comparing this to the general distinct form expected 1 — (1 + b)e 1 4 be ™2t we

state the parameters of our solution for this system to be:

A1 T21, A2 732, b T32—T21

Next, we consider the degenerate case (i.e. A\; = )) for the same system with
corresponding matrices given above and eigenvalues A\; = 79; and Ay = r35. We begin
by setting 3, = o in the matrix A. As before, Ps;(t) = Ce#*B. Since we are dealing
with degeneracy, we will employ the Jordan form J. Then we may write e4? = Se’/tS~1,
where S is a similarity transformation yielding the Jordan form. Using an algorithm
for finding a similarity transformation S constructed from a basis of eigenvectors such
that a degenerate matrix A with real eigenvalue A = r9; assumes its Jordan form we

find [9]:

0 0 —;-21-1— 0 0 0 1 1 1
S=10-1 X [, J=]0 —ry 1 [, §7=| -1 -10
1 1 0 0 0 —T921 —Tan 0 0

Using the well-known structure of a Jordan form when exponentiated we obtain:

1 0 0
e']t = 0 e T2t Tty
0 0 et

Thus we are now prepared to compute the value of P3;(¢) by multiplying the above

matrices and find:

PBl(t) = et B = C(SeJtS"l)B =1 _—e Tt _ e—'f‘mtrmt
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Comparing this to the general degenerate form expected 1 — e 4 be™ 1%t we

state the parameters of our solution for this system to be:

AL =X =r2,b=—Ty

Figure 3.2: Second 3-state system.

Using this method again, for the next system in Figure 3.2 we found that its dis-

tinct solution is given by the parameters:

1

A2 = 2(r12 + a1 + 32 £ /(r12 + ro1 + 132)2 — 4rars),

b= T21732
ra1ra2—(r12+r21+ra2) (r24ra+rsa—y/ (ria+ra1+7s2)2—4raima2 )+ 2 (ra+ra1 +rs2—y/ (T12+ra1 +rs2) 2 —dra; 732)?
A degenerate solution for this system is not possible due to algebraic constraints

(an example of such a constraint is given later in this chapter).

Figure 3.3: Third 3-state system.

For the system in Figure 3.3 we found that its distinct solution is given by the

parameters:

1
A2 = 3(ri2 + ro1 + 731 £ /(112 + To1 + 731)% — 4119731,
_ 731(r12—721—731+4/ (T12+721+731)2 —4r12731)

2(r12731+(r12+7214+731) (r31—T12—T21+4/ (F12+r21+731) 2 —4r1ome1 )+ 3 (ri2trar a1 —/ (P12t r21 +ra1 )2 —4712751)?)

A degenerate solution for this system is not possible due to algebraic constraints.

For the fourth system shown in Figure 3.4 we found that its distinct solution is

given by the parameters:

" - o IR
A=t +ra1, e =T b= s

Its degenerate solution is given by the parameters:
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Figure 3.4: Fourth 3-state system.

Al =Xy =191 +731,0=—1y

Figure 3.5: Fifth 3-state system.

Finally, for our last 3-state system we found that its distinct solution is given by

the parameters:

Ar2 = 2(riotrortraitrast/(riz + a1 + 731+ 132)2 — 4(r127s1 + TeaTa2 + T3T32)),

ri2731—T21731 —13; +2r21m32+ 31 maz+ 131/ (T12+721+731+732) 2—4(r12731 a1 Ta2+T3172)
b= .
2(a+B+7)

Q = T'12T31 + T21732 + 731732

B = (7”12+7'21+7°31+7‘32)('—(7'12+T21+’F31+7’32)+\/(7‘12 + 791 + 731 + 732)% — 4(T12731 + T21732 + T30

= %(‘"(7‘12'**7"21—*’7‘314-7'32)4‘\/(le + 791 + 731 + r32)% — 4(r12731 + ro1732 + 7”317”32))2-

A degenerate solution for this system is not possible due to algebraic constraints.
Next we look at the number of free parameters and classes of functional behavior
observed for these systems. The number of classes of functional behavior was deter-
mined by studying rate-limiting conditions (e.g. A\; > A2) and degeneracy conditions
(e.g. A1 = A2), and then numerically simulating that the associated classes could

indeed be found for each of the digraphs.
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To give an example of a very simple rate-limiting condition, consider the fourth
system (Figure 3.4). Suppose that we would like to simulate the rate-limiting condi-
tion A2 > X;. Looking at its eigenvalues, this simply means that 735 > (r9; + r31).

Numerically setting r32 = 107 and 79; = r3; = 1 we obtain
Pgl(t) ~1-— 6_2t.

So we’ve been able to induce the class 1 — (1 + b)e™™* + be~*2!, with b=0. Rate-
limiting conditions can become significantly involved as one can see from looking at
the eigenvalues given above for some systems. More specifically for more complicated
systems, one must solve for an algebraic condition involving one rate compared to
the others and then numerically check that simulating such a condition results in the
expected outcome. Sometimes when one rate-limiting condition fails, another may
still work to induce a particular class. Inducing degeneracy is performed similarly by
solving for a particular rate in terms of the other rates and can prove tricky as well.

Sometimes a condition can prevent degeneracy from ever occurring.

Figure 3.6: Plot of 715 = r13(re1,732).

To give an example of a simple failure to produce degeneracy, consider the second
system (Figure 3.2). We would like to induce the degeneracy condition A; = Xs.
Looking at the eigenvalues, this means that (ryp + 791 + 732)? = 4r91735 Or 113 =
— (791 + 732) & 24/T21732. We hypothesize that the rate ry2 is never positive (assuming
the rates r9; and 35 are positive as required by our model) by observing that this is
the case in Figure 3.6 in which the two possible functions for the rate r;5 are plotted

as a function of 79; and r3;. To show that this is true, let us maximize r15 to see
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whether we can obtain a positive value. Critical points occur at r9; = r33 and r9; = 0
or rzz = 0. But we require that ro; > 0,735 > 0, eliminating the latter two points.
Then at ro; = 732,712 = — (91 + 791) £ 2191 = 0 or < 0. But 712 > 0. Thus A\; # A,
and the corresponding degenerate class 1 — e 1t 4 be~1%t is precluded by means of
this algebraic constraint.

The work outlined in this chapter as a whole involved solving a total of 10 systems
analytically for their associated eigenrates made up of all the different transition rates
for each system and then numerically simulating over 80 rate-limiting conditions to
verify whether they led to particular classes of functional behavior. Some additional
systems were also studied in the process of discovering these systems.

Our observations for all 3-state systems are given below:

3-state systems

# of free parameters | classes of behavior

2 1— (14 b)e Mt 4 be?2t
1= " 2 he %

3 1 — (14 b)e Mt 4 pe et
3 1 — (14 b)e 1t 4 pe A2t
3 1 — (14 b)e Mt 4 pe~22t

| g~ E g hp Rty

4 1 — (14 b)e Mt 4 pe=22t

Looking at this last table, we can draw some basic conclusions about 3-state
systems as a whole. We note that when we call something a unique class of functional
behavior, this means that it can only be induced in a particular 3-state system and

no other. Then if a class of functional behavior is common to more one system,
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it is not unique. As for our conclusions, no 3-state system with unique functional
behavior has been found, a minimum of 1 class of functional behavior and maximum
of 2 classes of functional behavior always occur, and the existence of reversibility in
a 3-state system leads to a failure to generate degenerative (resonance) behavior and
its associated class.

We hypothesize that more complex systems (e.g. reversible systems) are less likely
to reduce to simple systems than simpler ones (e.g. one-way connected systems).

These mathematical characterizations of functional behavior for 3-state systems
will form the cornerstone of our understanding of larger reduced models and partially
completes one of the goals of our research, to mathematically characterize the func-
tional behavior of certain classes of smaller systems that we will later be studying

topologically.

3.2 4-state Systems

Next, we would like to mathematically characterize the functional behavior of Pj;(t)
for 4-state systems as we have done for 3-state systems. However, we note that we
will be limited in our analyses as not all 4-state systems can be solved analytically.
This limitation stems from the fact that many 4-state systems possess characteristic
polynomials of order greater than 4 and thus cannot be solved analytically. In con-
structing the few systems that can be solved analytically, we again assume that all
systems have a single absorbing final state.

As for 3-state systems, we begin by enumerating all observed classes of functional
behavior for a 4-state system resulting from analytically solving for their time dy-
namics. Note that these have been written using the minimum number of parameters

based on the fact that Py (t = 0) = 0:

Possible classes of functional behavior (4-state systems)

1 — (14 b+ c)e ™t 4 be2t + ce™ st
1 — (1 +b)e ™t 4 be~22t 4 ce™22't

1 — g~Mtp he—Mbf g pp—Aity2
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Note the resonance (involving a polynomial) classes of behavior that result from
degenerate eigenvalues as distinguished from the class of behavior that results from
distinct eigenvalues.

Next, we examine 5 simple systems under the assumptions above. Before going
on to state what we observed, we give the eigenvalues A;, Ay, A3 and the coefficients
for these systems. For every system, we will provide three solutions (or state that
one doesn’t exist), one for the case of distinct eigenvalues with general form 1 — (1 +
b+ c)e Mt + be*2t 4+ ce3t, one for the case of doubly degenerate eigenvalues with
general form 1— (1+b)e ?+be 2t +ce™2% and one for the case of triply degenerate
eigenvalues with general form 1 — e 1% + be =%t 4 ce~*1%2, Note that some systems

will have no doubly or triply degenerate solution assuming positive rates.

Figure 3.7: First 4-state system.

Beginning with the system depicted in Figure 3.7, we found that its distinct solu-

tion is given by the parameters:

it T21743 c = T21732
(r21—r32)(r32—7r43)’ (r21—743)(T43—732)

AL = Ta1, A2 = T32, A3 = 743, b
Its doubly degenerate solution is given by the parameters:

e o L1 _ (2ra1—ra3)ras | roiryz
A = 2 == Vi My = P 3 A= e, e AT

Other permutations for double degeneracy yield similar expressions for b,c, as is
true for the other systems we will examine.

Its triply degenerate solution is given by the parameters:
A=A =X3=ra,b=—ry,c=—3r3

For the next system depicted in Figure 3.8, we found that its distinct solution is

given by the parameters:

A1 =T21,Ag3 = %(7‘23 + 732 + Ta3 & \/(T23 + a2 + 743) — AT30743),



Figure 3.8: Second 4-state system.

? ab,c"’ﬁb,c""}'b,c 2

Qe = T21T32Ta3—(T21T23+HT21 32+ T21Ta3 47327 43) (To3+T32+TazE \/(Tzs + 733 + 743)% — 4739743),

Bpc = %(7‘21 + To3 + T3z + Ta3) (a3 + T3z + a3 £ /(To3 + T3z + 743)2 — 4r30743)2,

Voo = —3(T23 + T2 + Tag £ /(723 + T32 + T43)? — 4r3ors3)®

A doubly degenerate solution for this system has been omitted for brevity but is
indeed possible. A triply degenerate solution for this system is not possible due to

algebraic constraints.

Figure 3.9: Third 4-state system.

For the third system depicted in Figure 3.9, we found that its distinct solution is

given by the parameters:

_ 721 (r43—T42) o s 721732
(re1—raz—ra2)(r32+ra2—743)’ (re1—r43)(raz—r32—T42)

A1 =T21, A2 =T33 + T4z, A3 = T43,b

Its doubly degenerate solution is given by the parameters:

__ (r32+ra)(raz—ra3)
(r3z+raz—T43)

B s 2732743 +2T42T43—T32T42— T35 —T2s

A = Ag =T33 + Taz, Ag = T3, Tt )

) €=
Its triply degenerate solution is given by the parameters:

M =X =3 =732+ 7Ta2,b=—(rsa+7p),c= —%7‘32(7'42 + T32)



Figure 3.10: Fourth 4-state system.

For the fourth system depicted in Figure 3.10, we found that its distinct solution

is given by the parameters:

AL =T91 +T31, A3 = %(7'23 + 13+ 7143k \/(7‘23 + 739 + T43)? — 4T39743),

£ e 2721732743 +731 73243 —T23T31743— 731733 7317431/ (T23+732+743) 2 —4r3ras
2 2(ab,c+ﬁb,c+7b,c) 2

Qe = T21732T43+ 731732743 — (T21723+ 723731+ 21732+ 731732+ 21743+ 731743 +732743) (T23+
T3z + Ta3 £ /(23 + T32 + 743)% — 4732743),

3 2
Boc = 3(ro1 + ra3 + 731 + 32 + 7u3) (T3 + T3z + Tag £ /(723 + 732 + 1u3)? — Ar3araz)?,

Voo = —3(T23 + T30 + Tag £ /(723 + r32 + 143)? — 4T30743)°

A doubly degenerate solution for this system has been omitted for brevity but is
indeed possible. A triply degenerate solution for this system is not possible due to

algebraic constraints.

Figure 3.11: Fifth 4-state system.

Finally, for the last system depicted in Figure 3.11, we found that its distinct

solution is given by the parameters:

r

= - — P | RS P .
AL = To1 + T31, Az = T2, A3 = 743, b Fber i) ' ria—{rartrar)

Its doubly degenerate solution is given by the parameters:

N, W = — Tty .
AL = Ag = Ty + Tar, Ag = T, b= —H=AL-. ¢ T21
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Its triply degenerate solution is given by the parameters:
A=A =A3 =79 +731,0=—(r1 +73),c=0

Shown below are these 5 simple systems with their number of free parameters and
classes of functional behavior. The number of classes of functional behavior for each
of the digraphs was determined by studying rate-limiting conditions (e.g. A; > \9)
and degeneracy conditions (e.g. A; = A2), and then numerically simulating that the

associated classes could indeed be found:
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4-state systems

# of free parameters

classes of behavior

3 1—(14b+4 c)e ™ + be 2t 4 ce~ st

1— (1 +b)e Mt 4 be2t 4 ce ¢

1 — e~ 2% 4 b=t 4 ce~Mtg2
4 1— (14b+c)e ™Mt 4 bem?2t  ceot

1— (1+b)e ™Mt + be~22t 4 ce™ 2% b #£ —1
4 1— (14 b+ c)e ™t 4 bem?2t 4 ce st

1— (14 b)e~ M 4 be A2t 4 g2

1 — e ™Mt 4 be~ Mg 4 e Mit?
5 1— (14b+c)e ™t + be 22t 4 et

1— (1 +b)e ™Mt +be 2t 4 ce 28, b £ —1
4 1— (1 +b+c)e Mt + be2t  ce et

1 — (14 b)e M1t + be?2t + ce™ ¢

From this table we see that in the group given there are a minimum of 2 classes
of functional behavior and maximum of 3 classes of functional behavior, and that
the existence of reversibility again leads to a failure to generate some degenerative
(resonance) behavior and thus results in more limited functional behavior.

Specifically, a single instance of reversibility prevents degeneracy between two of

the eigenvalues (e.g. A; # Ag) of the system, thus precluding the triply degenerate
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class of behavior from occurring. However, this does not prevent degeneracy between
one of these eigenvalues and another from occurring (e.g. A\; = A3), thus permitting
the existence of the doubly degenerate class of behavior 1—(1+b)e~*1t-+be*2t 4 ce 2!t
with some restrictions (b # —1) due to rate-limiting conditions for the second and
fourth digraphs in the table above.

The fifth digraph is particularly interesting because though it possesses no re-
versibility, only doubly degenerate behavior is permitted and hence only one degener-
ative class of behavior occurs (in addition to the class of behavior that always occur
with distinct eigenrates). It is the quintessential example that triply degenerate be-
havior can sometimes be prevented in systems lacking reversibility.

We have found that for both 3- and 4-state systems the existence of reversibility
leads to the functional form of its time dependence being more limited and, we hy-
pothesize more generally, that the more connected a system is, the fewer classes are
permissible for its functional form.

Another hypothesis we propose is that as a system increases in size with only
one-way connections, its ability to be reduced by means of the model reduction algo-
rithm discussed earlier increases as a result of the greater number of opportunities for
reduction. Thus this hypothesis predicts which systems will reduce well and which
will not. This will be tested in future work.

This concludes our mathematical characterization of 4-state systems, and rein-
forces some of the properties we have found for 3-state systems while adding addi-
tional depth to our understanding of smaller systems that we will later be studying
topologically.

3.3 The Trapping-state System

Figure 3.12: The trapping-state system.
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We now take the time to study a particular 3-state system of interest. We will
be examining the trapping-state system depicted in Figure 3.12. Since this system
possesses reversibility, it will naturally only assume distinct eigenvalues. Recall that

its distinct solution of general form 1— (1+b)e 1t +be~*2t is given by the parameters:

1
Ag = —5(rie+ 711 +ra & V(712 + ra1 +731)% — 4r19731),
- 731(r12—721—731+4/ (r12+721+731 )2 —4r12731)

2(r12ra1+(ri2+r21+731) (P31 —r12—T21+/ (Miz+ra1+r31)2—4r12ma1)+ 3 (ra+rai+rs1 — 4/ (riz-+ra1+ran ) 2—4ria7sr )?)

We would like to explore our system’s remaining degrees of freedom. To do so, we
take the first step of scaling time out of our system by letting t — /\t—l since time is
common to all systems that are produced and hence we can remove the freedom due
to this variable. Equivalently we may set r3;=1. One natural way of investigating
the remaining freedom in the parameters of our system is by plotting b v. %}2 The

corresponding equations that we will plot are then given by:

1+r2y +7‘12—3/(1+7‘21 +r12)2—4r12

I+rat+riz+y/ (1+r21+r12) 24712’

L (7‘12—7'21—1+\/(7‘12+T21 +1)2—4r;2)

T 2(ria+(riztrai+1)(A—ria—ra+ (r1iz+r21+1)2—4r12)+3 (r1i2+r21 +1—\/(7‘12+7‘21+1)2—4T12)2)

.
A1

Figure 3.13: Parameter-space of the trapping-state system.

Unfortunately this equation cannot be rewritten in terms of only two variables,
so we perform a 3D parametric plot with y=b, z = %f, and z=0. Since b v. %
describes an area, we will simply obtain an area in the z=0 plane. I let ry5,75; be

0...39 (optimum values for maximum area). The plot is shown in Figure 3.13.
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Thus we have a triangular-shaped parameter space.
To more precisely characterize some of the features of the plot, we tried finding

the critical points of %‘f v. b. Since this is a parametric function y = y(rys,791),z =

x(712,721) this simply meant using the chain rule to find when

Figure 3.14: Bounded area of the trapping-state system.

Using numerical methods to look for solutions to this equation, no critical points
were found for real, positive rates. However, rough bounds on all three sides for the

area are given. These are graphically shown in Figure 3.14. The three bounding
curves are
= 70’%% (top left)
b= 1.1(52 — 0.9)? + 0.06 (interior)
b= 0.09% (bottom right).

The intersections of these bounding curves lie at (%, b) = (0.7959,0.0719), (%, b =
(0.0132,0.925), (%f, b) = (0,0). Carefully inspecting the plot suggests that b # 1. This
has been numerically confirmed by solving the original equation b=1, yielding only
negative or complex rates. Our plot more broadly tells us that given certain observed

kinetics, there is only a range of possible values for those parameters that have not
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been experimentally measured. The investigation of the parameter space of other
reversible 3-state systems may suggest more insightful properties of these systems as
a whole, as well as other systems. However, it is a satistying result to have some sense
of the limits of parameter space as we have found them:.

Thus, so far in this chapter, we have succeeded in accomplishing one of the two
goals of our research, to mathematically characterize and gain intuition into the func-
tional behavior of some of the smaller systems that will result from reducing larger
systems in the remainder of our work. This understanding will prove crucial to our
understanding of the signature topological features of microscopic structure that we
will soon uncover and to eventually being able to make some predictions about the

way in which hybridization occurs at the level of secondary structure.

3.4 Distance between Two Digraphs

Having learned a good deal about how 3-, 4-, and n-state systems behave, we con-
clude by proposing a measure of our own for investigating the difference between two
digraphs A and B. The general idea behind coming up with this measure is as fol-
lows. Degenerate behavior is what allows us to distinguish between distinct digraph
topologies, so why not try to measure the distance from maximum degeneracy for a
given digraph and normalize this for comparability. Then, to extend this, why not
measure the difference between the normalized distances from maximum degeneracy
for two digraphs and thus be able to compare how much more different one digraph
is than another. In this line of thought, we offer the following measure:

AAB)=Y" (LA—)\_TM)A‘%: (B%;—IM)B

3

EY — ANtA ¥ — A+
Mg = Ty Apg = =5

A; is the minimizer of |A\; — A;{(2 # j),
Ar, is the minimizer of |y — N\|(k # 1)

In words, the idea is to sum over all of the eigenvalues for each digraph the

minimum absolute difference between each eigenvalue and its closest neighbor, and
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divide by their average to normalize the value. In doing so, a small difference between
eigenvalues for a large average eigenrate will be quantified as a small difference, as
it should, and a small difference of comparable size between eigenvalues for a slow
average eigenrate will be quantified as a more significant difference. This makes
sense, since slower eigenrates should have more of a rate-limiting effect on a system
and hence should be given greater weight. We hope that this measure will be useful
in predicting major macroscopic changes from small microscopic changes. However,

this will have to be tested in future work to see whether it bears fruit.
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Chapter 4

The Signature Topological Features
of Microscopic Structure

Now that we have mathematically characterized some simple systems, we are well-
prepared to address the second goal of our research, to seek out signature topological
features that correspond to particular classes of macroscopic structure. The identifi-
cation of these signature features will allow large, complex systems to be immediately
reduced by recognition of these features within their structure and then mathemati-
cally characterized using the profiles developed in the previous chapter. And by doing
so, we will lay the groundwork for understanding what small microscopic changes will
lead to large macroscopic changes for our systems and thus gain greater insight into
the manner in which hybridization occurs.

So far, we have discovered two such signature topological features, the loop and
the linear chain. These have been found by writing down the corresponding transition
rate matrices A for many structurally similar digraphs and then reducing them using
the model reduction scheme described earlier, and trying to generalize observations.

We describe our findings here.

4.1 The Loop

The loop (Figure 4.1) is a particularly interesting feature because, regardless of its
size, it can be reduced to a linear 3-state system. The feature was discovered by

constructing many loops of different sizes and writing down their transition-rate ma-
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0

Figure 4.1: Reduction of a loop.

trices and reducing them using the model reduction algorithm proposed earlier to the
structure shown in the figure. The power of such a feature is that the loop effectively
characterizes the opposing arrows of the reduced system, creating reverse reactions
where these previously did not exist. This intuitively makes sense since the cycle
that the loop represents effectively means reaching the same end state after a greater
amount of time has passed (or the occupation of more states before reaching the final

state), which is easily represented by adding reversible arrows to a 3-state system.

Figure 4.2: Reduction of a linear chain.

4.2 The Linear Chain

The linear chain (Figure 4.2) is another important feature that is often present in
many complex systems. It was discovered by constructing many linear chains of
different lengths and observing that their corresponding transition-rate matrices could
consistently be reduced to ones characteristic of the structure shown in the figure.
The idea underlying this feature is that any large linear chain can be effectively
represented by a short linear chain whose rates approximate the rates of the larger

system. This result is fairly intuitive and makes sense. Since such a feature will often
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be present, the applicability of using this topological feature to simplify systems is
great.

While we are very excited about what we have found, we offer the caveat that
these must again be confirmed once CTS form has been restored (see Figure 2.4).
Such form is important for correct physical interpretation and restoration to this
form has proved a formidable task for graduate student Kevin McHale (and formerly
Ben Rahn) to accomplish.

In the future, hopefully more signature topological features can be identified, but
these two provide a solid start for exploring what small changes in microscopic struc-
ture lead to significant changes in macroscopic structure and hence understanding

secondary structure kinetics theory.
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Chapter 5

Discussion

Figure 5.1: Example of a large system.

5.1 Theoretical Implications

Now that both some signature topological features of microscopic structure and their

underlying macroscopic mathematical behavior have been established, we can begin
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to consider the implications of our results. Consider the system shown in Figure 5.1.
The encircled regions represent portions of the system that may be simplified and this
figure as a whole summarizes much of the work we have done. Since we are now able
to understand both how some signature topological features are simplified and what
their corresponding mathematical behavior is like, we have achieved a holistic view
that will allow us to begin to think about the theory of secondary structure kinetics

and to understand real systems in future work.

5.2 Future Work

A number of important areas exist for future exploration. In the previous two chap-
ters, we established the ability to predict macroscopic structure on the basis of sig-
nature topological features of microscopic structure, as well as developed an under-
standing of the underlying mathematical behavior of these features. We now propose
a number of interesting areas for future research.

Our first question is, ”Can we quantify the difference between two digraphs A
and B using matrix norms, i.e. as ||4 — B||?” More specifically, ” Can we find a suit-
able metric to identify small microscopic changes that lead to significant macroscopic
changes?” While we have proposed one possible measure of our own in an earlier
chapter, we discuss some other possible measures here.

Just as the Euclidean norm can be used to measure the distance between two
vectors, we hope that a matrix norm such as the Frobenius norm, 2-norm, 1-norm,
or oo-norm will prove useful in measuring the differences between two digraphs.

Tabulating these known norms alongside what our vector intuition suggests about

them we have:
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Matrix norms

Measure Definition Hypothesis
Frobenius norm | ||A||% = Z lai;|* = tr(A*A) crude measure
1,3
2-norm l|All2 = vV Amaz no intuition
1-norm |41 = ma.xz |a;j|=the largest absolute column sum | poor measure
g =
(3
co-norm l|4||loo = maxz |a;;|=the largest absolute row sum good measure
1
J

The Frobenius norm seems the crudest norm of the bunch, resulting in a magnitude-
like quantity similar to the Euclidean norm. The significance of the 2-norm is not
immediately clear. The oco-norm may be interesting because it corresponds to the
sum of the rates for different states whereas the 1-norm may be less so because it
corresponds to the sum of rates for the same state.

To test the utility of such norms for identifying small microscopic changes that
lead to major macroscopic changes, we must devise pairs of digraphs whose difference
leads to the loss of a signature microscopic topological feature. Then we hope to be
able to use one of the above matrix norms or another measure to be able to distinguish
such a change from one that leads to no loss of a signature topological feature. This
work may ultimately lead to the identification of phase-transition like conditions for
the systems we are studying. Thus our quest for a suitable metric is an important
question that will hopefully allow us to make interesting conclusions about the way
in which secondary structure kinetics proceeds and its theory as a whole.

Our next question is, ” How can our work be experimentally examined?”

To experimentally test our work, we will need to specify what our initial conditions
will be. One idea might be to engineer a strand with a particular function in mind,
e.g. a nanoscale timer, since we are in such a great position to control the time
dynamics, or delay, of our system. With a particular system in mind, say two specific
strands of RNA, we must then generate all possible secondary structures. After we
have these, we will need to construct a digraph from them and store this information

in a transition-rate matrix. However, before we can do this, we will need to determine
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the transition rates for our system.

To compute the transition rates, we will need to use existing free-energy values
that have been tabulated by others such as SantaLucia and Hicks [4]. Specifically, we
will want to test two different measures for transition rates [10]. The first is called
the Metropolis rate and is defined by

e, G; > Gy,
Tij =
1,G; 26,

where AG = G; — G;. This measure makes uphill energy gradient steps more
difficult, but treats downhill steps with equal probability. By contrast, the Kawasak:
rate is defined by

—AG
Tij = e 2T .

This symmetric definition accounts for the gradient in either uphill or downhill
steps. The latter measure at first sight appears to be the better one because of its
ability to differentiate between both uphill and downhill steps. However, both will
have to be tested to be sure. Once the transition rates have been computed and
the digraph reduced using the methodology outlined earlier, the next step will be to
determine whether the transition rates computed hold out experimentally. This can
be done using FRET (fluorescence resonant energy transfer), which allows for the
measurement of nanometer scale distances between labeled sites on, e.g., RNA, and
thus will permit us to study the secondary structure kinetics of RNA in realtime at
the single molecule level. Such experimental work will determine whether the results
of our theoretical work will be fruitful in application and hence is some of the most
important work we will do in the future.

Thus, it is whether our model is a sufficiently good one and whether we are
able to find a way to identify what particular microscopic features play a role in
significantly changing macroscopic features that will determine how well we will be
able to understand secondary structure kinetics theory and apply our knowledge of

it later on.
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Appendix A
Code for Model Reduction

[t,s]=eig(A);
d=diag(s);
k=find (d==0) ;

to=t(:,k);
ti=inv(t);
tio=ti(k,:);

po=toxtio; % comnstruct orthogonal projector

v=t;

vi=ti;

v(:,k)=[1; % throw out the k-th column of v
vi(k,:)=[]; % throw out the k-th row of v
At=vixA*v;

Bt=vix*B;

Ct=C*v;

Dt=D;

stable matrix=ss(At,Bt,Ct,Dt);

stable matrix=ss(stablematrix,’minimal’);

red_stable matrix=balancmr (stable_matrix,3);
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[a,b,c,d]=ssdata(red_stablematrix);
x=sym(’x’);
y=c*expm (a*x) *b+C*po*B



