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ABSTRACT 

I. A new method of angular methylation was developed 

in a synthesis of l-valeranone. This Claisen rearrangement-­

decarbonylation procedure was further investigated on the 

substrate cholest-4-en-3J-ol. 

II. The synthesis of the pentacyclic triterpene 

dl-germanicol is described. 
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INTRODUCTION 

The results of two independent research projects are 

presented herein: 

Part I: An Investigation of the Utility of the Claisen 

Rearrangement in Angular Methylation as Illustrated 

by the Synthesis of 1-Valeranone. 

Part II: The Total Synthesis of the Pentacyclic Triterpene 

dl-Germanicol. 

An introduction and a discussion of each project is 

given separately; a combined experimental section follows. 
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PART I 

THE INVESTIGATION 

OF THE UTILITY OF THE CLAISEN REARRANGEMENT 

IN ANGULAR METHYLATION 

AS ILLUSTRATED BY THE SYNTHESIS OF 1-VALERANONE 
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INTRODUCTION 

Angular methylation has long been one of the most diffi-

cult problems encountered in synthetic organic chemistry, 

especially in the synthesis of natural products. The diffi-

culty in this procedure resides both in the attachment of a 

methyl group to a ring fusion and in the stereospecif ic control 

of this process to give a product with either a cis or a trans 

ring fusion, Figure 1. 

--!loo Cb or Cb I 

cj_s trans 

I II !II 

Figure 1: Angular Methylation 

In order to add this methyl group to the carbon atom of 

a ring fusion, the angular carbon atom must either be adjacent 

to an activating group (Type A) or be functionalized itself 

(Type B). Four common methods of angular methylation are 

described below: 

1. Alkylation of a ketone (Type A) 

Treatment of the ketone IV with a base such as sodium 

hydride gave the corresponding sodium enolate V. The C-2 



4 

position was blocked with an n-butylthiomethylene group to 

prevent enolization in the wrong direction. The ~l( 9 )_ 

enolate was alkylated with methyl iodide to give, after removal 

of the blocking group, the angularly methylated ketone VI, 

d-valeranone
1

' 2 (Figure 2). 

- - - .. 
'( R:::: '( 

d-valeranone 

IV v VI 

Figure 2: Angular Methylation by Alkylation of a Ketone 

2. Cleavage of a methoxycyclopropane (Type B) 

Simmons-Smith cyclopropylation of the allylic alcohol VII, 

follo~ed by Jones oxidation and Wolff-Kishner reduction of the 

resulting cyclopropyl alcohol, yielded the methoxy-cyclopropane 

VIII, the cyclopropyl group of which was in the ~-configuration, 

the same configuration as the hydroxyl group of the starting 

material. Acid hydrolysis of this methoxy-cyclopropane (VIII) 

gave 1-valeranone (IX) directly. 3 

VII 

0CH
3 

VIII 
1-valeranone 

IX 

Figure 3: Angular Methylation by Methoxy-cylcopropane Cleavage 
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3. Conjugate addition of methylcopper complexes (Type B) 

In the presence of copper salts, methylmagnesium halides 

4 or methyllithium adds 1,4 to an o:,f-unsaturated ketone. 

Thus, reaction of octalone X with methyllithium and cuprous 

iodide gave the angularly methylated cis decalone XI in one 

step. 5 Under the same conditions, enone XII did not undergo 

a 1,4-addition,
2 

demonstrating the sensitivity of methylcopper 

complexes to steric hindrance. 

0 

x XI 

II , 

'( 0 '( 
XII XIII 

Figure 4: Angular Methylation by the Conjugate Addition 

.of Organocopper Reagents 

4. Conjugate addition of cyanide (Type B) 

Diethylaluminum cyanide in benzene (thermodynamic 

conditions) or triethylaluminum and hydrogen cyanide in tetra-

hydrofuran (kinetic conditions) add cyanide 1,4 to an cx,(1-

unsaturated ketone .(XIV). In the former case the cis-fused 

isomer XV usually predominates, and in the latter it is the 

trans-fused isomer XVII which is the major product. In each 
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case. the nitrile group can be reduced to the corresponding 

methyl group to give the angularly methylated ketones XVI 

and XVIII. 6 

XIV 

0 

CN 

xv 

~ 

XVII 

- - -
0 

XVI 

- - ..... 

XVIII 

Figure 5: Angular Methylation by Conjugate Addition of Cyanide 

Each of the above angular methylation procedures suffers 

from some deficiency, for example, low yield, harsh reaction 

conditions, or susceptibility to steric hindrance; no one 

method is suitable for all applications. Therefore another 

method of angular methylation was ~ought to supplement the 

four methods listed above. 

In 1961, Burgstahler and Nordin7 reported the use of the 

Claisen rearrangement to effect angular ethylation (Figure 6). 

The allyl vinyl ether intermediate XX was prepared by a 

mercury(II)~catalyzed transetherification of the allylic 

alcohol XIX with ethyl vinyl ether. On heating, the allyl 
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vinyl ether XX underwent a Claisen rearrangement to give the 

unsaturated aldehyde XX!. Catalytiri reduction of the olefinic 

double bond and thioketalization followed by Raney nickel 

desulfurization provided the angularly ethylated compound XXII. 

XIX 

XXI 

C2H50-CH=CH2 

Hg(OAc) 2 

- - - --

heat 

XXII 

Figure 6: Angular Substitution by Claisen Rearrangement 

. 8 9 
Since then, Ireland and coworkers, Buchi and White, 

and Mori and Matsui
10 

have successfully used this procedure 

to introduce a quaternary acetaldehyde group. 

A similar type of Claisen rearrangement was recently 

employed by Eschenmoser and coworkers. 11 In this modification, 

the allylic alcohol XXIV underwent an acetal exthange with 

N,N-dimethylacetamidedimethylacetal (XXIII) followed by loss 

of methanol. Claisen rearrangement then occurred to give a 

compound with a quaternary dimethylacetamide group (Figure 7). 

Since an angular ace tamide can be readily converted to an 

angular acetaldehyde by reduction with lithium dihydrodiethoxy-
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CH3-,-N(CH3 ) 2 

OCH3 

XXIII 

8 

~CH2=1-N(CH3 ) 2 
OCH3 

XXVI 

+ 

XXIV OH 

heat 

XXVII 

Figure 7: Amide-Acetal Claisen Rearrangement 

heat 

alumina te1 2 or disiamyl borane ,13 or electrolytic reduction ,
14 

the 

amide-acetal Claisen route could also be used to prepare 

angular acetaldehydes. 

Transformation of the angular acetaldehyde moiety to an 

angular m~thyl group would result in a new angular methylation 

procedure. The decarbonylation reaction reported by Tsuji and 

15 16 Ohno, and Wilkinson and coworkers appeared ideal for a one 

step conversion of an acetaldehycte·to a methyl group. Heating 

an alkyl aldehyde with an equivalent of tris(triphenylphosphine)-

chlororhodium(I) (XXIX) in benzene or acetonitrile effected a 

high yield decarbonylation to give the hydrocarbon (Figure 8). 

XXVIII XXIX 
heat 

R-H + Rh(03P) 2 (CO)Cl + 03 P 

xxx 

Figure 8: Decarbonylation 
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Studies on valeranone and cholestenol were undertaken to 

determine the utility of the proposed angular methylation 

procedure. The synthesis of valeranone was selected to illus-

trate the advantage of this procedure in synthetic chemistry. 

The cholestenol system was chosen as a model on which the 

reaction conditions could be standardized. 

In 1957 1-valeranone was discovered in the roots of the 

garden heliotrope, Valeriana officinalis, by Stoll, Seebeck, 

. 17 18 
and Stauffacher. A year later, Govindachari and coworkers 

isolated a compound, which they named jatamansone, from the 

oil of Nardostachys jatamansi and found that it was therapeu-

tically useful. in the treatment of heart seizures caused by 

electric shock . 
v 19 
Sorm and coworkers later showed that 

. t d 1 "d t" 1 Go . d h · 20 , 21 
Ja amansone an va eranone were 1 en ica . v1n ac ar1 

and Djerassi 21 proposed the structure XXXI for valeranone, 

0 

XXXI IX 

which was 
v 22 

later proved incorrect by Sorm, who then deter-

mined the correct relative structure (IX). 23 Finally, Klyne 

and coworker~ found that 1- valeranone had the absolute 

configuration shown in structure Ix.
24 

Valeranone has been successfully synthesized by Marshall 
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1 2 3 and coworkers ' in 1965 and by Wenkert and Berges in 1967. 

Both synthetic schemes began with carvomenthone. Marshall 

used !-carvomenthone to synthesize d-valeranone, while Wenkert 

employed the d form to synthesize the natural isomer, 

1-valeranone. 

Marshall's synthesis, 1 ' 2 outlined in Chart A, is 

straightforward. 1-Carvomenthone (A-1) was annellated with 

methyl vinyl ketone under basic conditions to give the keto-

alcohol A-2 which was readily dehydrated to the octalone A-3. 

The ketone function was removed by a three step sequence: 

lithium aluminum hydride reduction of the enone to an allylic 

alcohol (A-4), acetylation, and cleavage of the acetate group 

with lithium in ethylamine gave the octalin A-6. Hydro-

boration--oxidation of the octalin yielded theJ'-alcohol A-7 

which was then oxidized to the decalone A-8. Since enol 

acetate formation under equilibrating conditions gave a 1:1 

mixture of the two possible enol acetates, which could not be 

readily separated, the C-2 position of decalone A-8 was 

blocked by an n-butylthiomethylene group. Enolization of this 

blocked ketone (A-9) gave the desired enolate A-10. Methylation 

of this enolate in benzene produced a 3:1 mixture of 0-

methylated and C-methylated (A-ll)material. Alkaline hydrolysis 

of the methylated ketone A-11 yielded d~valeranone (VI). 

Wenkert's synthesis3 of 1-valeranone (Chart B) intro-

duced a new and highly successful method for angular 

methylation. d-Carvomenthone (B-1) was annellated with 1,4-
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dimethoxy~2-butanone, and the resulting keto-alcohol B-2 was 

·dehydrated with potassium hydroxide to the methoxyoctalone 

B-3. Lithium aluminum hydride reduction of this octalone 

gave almost exclusively the ~-allylic alcohol VII, which 

formed the corresponding l~,9~-cyclopropane B-4 on treatment 

with iodomethylzinc iodide (Simmons-Smith reaction). Jones 

oxidation of alcohol B-4 to the ketone B-5, followed by Wolff­

Kishner reduction of this ketone yielded the methoxycyclo­

propyldecalin VIII, which upon acid hydrolysis yielded 1-valer­

anone in excellent yield. 

In each of the above valeranone syntheses, the crucial 

step was the angular methylation. By employing the Claisen 

~earrangement--decarbonylation procedure in a synthesis of 

valeranone, its effectiveness as an angular methylation route 

could be compared with the methods used in the other two 

syntheses. 

Cholestenol, employed in the second part of this angular 

methylation study, has long been a popular substrate for 

investigating new reactions or determining the stereochemical 

features of well-known reactions because of the rigidity of its 

ring system and its availability. Ireland and Pfister25 have 

performed preliminary work on the Claisen rearrangement--decar­

bonyla tion method of angular methylation with cholestenol. The 

low and variable yields obtained prompted further investigation. 
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THE SYNTHESIS OF 1-VALERANONE 

1-Carvone (C-1 in Chart C) was used as the starting 

material in the synthesis of 1-valeranone since it was both 

readily available and the proper enantiomer for the conversion. 

The first four steps in this synthesis were developed by 

Marshall and coworkers during their studies on the valeranone 

system.
26 

Marshall found that the Birch reduction of carvone 

gave a higher yield of the desired product when a proton source 

was present during the reaction. Some over-reduction to the 

alcohol did occur, but Jones oxidation of this alcohol restored 

the ketone function. Thus, reduction of l-carvone on a 100-g 

scale with lithium and ethanol in liquid ammonia followed by 

Jones oxidation27 and distillation of the crude product 

afforded dihydrocarvone (C-2) in 74% yield. Addition of a 

catalytic amount of sodium ethoxide in ethanol to dihydro-

0 carvone, which had been cooled to -10 , followed by the addi-

tion of 0.5 equivalent of methyl vinyl ketone gave the homo-

annellated keto-alcohol C-3 in low yield, however by 

recycling the recovered starting material twice a good yield 

of the keto-alcohol was obtained ("38% conversion or 51% based 

on unrecovered dihydrocarvone). 

The unsaturated keto-alcohol C-3 was quantitatively 

hydrogenated in the presence of a platinum catalyst in ethanol 



0 

0 

0 

1. Li, NH3 
Et OH 

r2. Jones 
oxid. 

1-carvone 

C-1 

C-3 

16 

CHART C 

0 

LiAl(O-t-Bu) H - 3 

HO·' 

C-5 

base 

C-2 

C-4 

C-6 



17 

to afford the saturated keto-alcohol C-4 which, in turn, was 

dehydrated with hot aqueous oxalic acid to give the octalone 

C-5 in quantitative yield. 

The next step was the reduction of the octalone C-5 to 

the proper allylic alcohol required for the Claisen rearrange­

ment reaction. Since the synthesis of valeranone necessitated 

the insertion of an a:. methyl group at the C-9 position, it 

was evident that the hydroxyl group of the allylic alcohol 

also had to have an °'-configuration (alcohol C-6). One of 

the best reagents for the reduction of a byclic ketone to an 

equatorial alcohol is lithium aluminum tri-!-butoxy hydride. 28 

Reduction of the octalone C-5 with this reagent in refluxing 

tetrahydrofuran afforded an allylic alcohol in 91% yield. Nu­

clear magnetic resonance (nmr) analysis established that this 

was the expected quasi-equatorial isomer C-6. This alcohol, 

obtained in 34% overall yield from ~-carvone, was the precursor 

for all the compounds synthesized in this phase of the project. 

The first goal of the project was the conversion of 

this precursor to the cis-9,10-dimethyldecalin XXXII, which 

possesses the valeranone skeleton, , thereby providing~ test of 

XXXII 
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the angular methylation procedure. After this procedure had 

been developed on the model, the next objective was the 

modification of the route to include functionality at the C-1 

position, ultimately leading to 1-valeranone. 

Since the procedure for the Eschenmoser amide-acetal 

11 Claisen rearrangement is simpler than that for the vinyl 

7 ether Claisen rearrangement used by Burgstahler, the former 

method was chosen for this model study. Upon heating a solu-

tion of the allylic alcohol C-6 with four equivalents of N,N-

dimethylacetamidedimethylacetal in p-xylene, the unsaturated 

amide D-1 was isolated in a rather disappointing yield of 29% 

(Chart D). Angular methylation studies on the cholestenol 

system provided an explanation for this low yield, p 43. 

The unsaturated .amide D-1 was hydrogenated in ethanol in 

the presence of a 10% palladium-on-carbon catalyst to afford 

the saturated amide D-2 in quantitative yield. Reduction of 

this amide with lithium dihydrodiethoxyaluminate
12 

in ether 

gave a product which consisted of 89% aldehyde D-4 and 11% 

starting material by vapor phase chromatography (vpc). The 

crude reaction product on treatmen~ with semicarbazide hydro­

chloride and pyridine in methano1 28 gave pure semicarbazone 

D-3 in 51% overall yield from the saturated amide D-2. On 

heating in benzene solution with aqueous hydrochloric acid, 

the aldehyde D-4 was quantitatively regenerated from the semi-

carbazone. 

. 15 16 Decarbonylation ' of the purified aldehyde was 
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achieved by heating with tris(triphenylphosphine)chloro-

rhodium(!). Evaporative distillation gave a 43% yield of 

29 the desired hydrocarbon XXXII, the structural assignment 

of which was verified by the nmr and infrared (ir) spectra. 

Since this new angular methylation procedure worked 

satisfactorily in the model route, the synthesis of ~-valer-

anone, itself, was undertaken by the scheme outlined in 

Chart E. This scheme, a modification of the one used above, 

eliminated the 6.U2
) double bond hydrogenation; by leaving 

this double bond intact, provision was made for the eventual 

production of the C-1 ketone in valeranone. In addition, the 

vinyl ether Claisen rearrangement was used because of the poor 

yield observed in the amide-acetal procedure. Accordingly, 

treatment of the allylic alcohol C-6 with mercuric acetate in 
. 7 

ethyl vinyl ether, work-up and filtration through alumina 

gave the vinyl ether E-1 in greatly variable yields: 0-87% 

(Chart~). In the nine times that this reaction was done, 

no relationship between yield and experimental procedures 

could be deduced. The problem appeared to be in the filtration 

step; although filtration conditions were varied each time, 

the original yield of 87% was never again duplicated. This 

problem was encountered and finally resolved in the choles-

tenol series (p 44). 

On heating at 195° for three hours, the vinyl ether E-1 

rearranged to the aldehyde E-3 . . Vpc analysis of the crude 

product indicated that the aldehyde comprised 85-90% of the 
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mixture; the remainder was starting material and dienes, 

which originated from the thermal loss of acetaldehyde from 

the vinyl ether E-1. The aldehyde was isolated from the 

crude reaction product as the semicarbazone E-2 in 54% over-

all yield from the vinyl ether E-1. Hydrolysis of the semicar-

bazone regenerated the aldehyde E-3 in 93% yield. 

. 15 16 Decarbonylation ' of the aldehyde by tris(triphenyl-

phosphine)chlororhodium(I) in reflu4ing benzene afforded the 

angularly methylated octalin E-4 in medium to good yield 

(47-78%). It is interesting to note, in view of later devel­

opments, that the D.1 (
2

) double bond did . not interfere in any 

way with the decarbonylation reaction. 

Now, all that remained was the conversion of the double 

bond in octalin E-4 to a ketone function at the C-1 position. 

The first method attempted was hydroboration. Hydroboration--

oxidation of the olefin E-4 should afford a mixture of the 

C-1 and C-2 alcohols, which could be oxidized to the respec-

tive C-1 and C-2 ketones. Valeranone and its C-2 keto isomer 

could then be separated chromatographically. 

30 
Hydroboration of the octalin E-4 with the least hin-

dered hydroboration reagent, diborane, followed by oxidation 

with alkaline hydrogen peroxide afforded a 1:1 mixture of two 

alcohols by vpc analysis. Jones oxidation27 of the crude 

qlcohol mixture gave a single ketone which was obtained in 

62% yield from the octalin E-4 . . The nmr spectrum of this 

ketone indicated the presence of four «-keto protons. There­

fore1 the oxidation product had a keto function at the C-2 



23 

position (E-6), and the two alcohols (E-5) must have been 

epimeric at C-2. 

Such stereospecifity in the hydroboration of a 1,2-

disubstituted double bond was impressive as well as unexpected. 

A consideration of the steric environment about this double 

bond may offer an explanation for the results of this reaction. 

E-4a 

E-4 

E-4b 

Figure 9: Conformers of Octalin E-4 

The cis ring fusion in the octalin-E-4 allows two chair-

chair conformers (Figure 9), one with the isopropyl group 

axial (E-4a) and one with it equatorial (E-4b). The conformer 

with the axial isopropyl group should be less stable because 

of 1,3-diaxial nonbonded interactions between the isopropyl 

group and the C-1 carbon atom and the C-5 hydrogen, and, 

therefore, the conformer with the isopropyl group equatorial 
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(E-4b) should predominate and control the course of the 

reaction. Attack by diborane on the~-face of the cup-shaped 

conformer E-4b is hindered by the C-6/ and C-8;8 protons on the 

B ring. The hindrance is greater at the C-1 position than at 

the C-2 because of the proximity of the C-1 position to the B 

ring. Any ,,8-face attack by diborane would thus be directed to 

the C-2 end of the double bond to give, after oxidation, the 

C-2p alcohol. Attack on the ~-face . is hindered by the C-10 

methyl group which is axial to the A ring. Again, the hin-

drance is greater at the C-1 carbon because of its 1,3-diaxial 

interaction with the C-10 methyl. As a result, any oc..-face 

attack by diborane would lead to the formation of the C-2~ 

alcohol. 

In an attempt to exploit the proximity of the C-9 angu-

lar substitutent to the olefinic double bond and thereby 

obviate the problem of steric hindrance, the scheme outlined 

in Cha~t F was tried. The lactol F-3, which could be easily 

obtained from the aldehyde E-3, should be in equilibrium with 

the hydroxy-aldehyde F-4, which, in turn, should undergo decar-

bonylation to the C~l alcohol F-5, . which is one oxidation step 

from valeranone. The crude aldehyde E-3, obtained by Claisen 

rearrangement of vinyl ether E-1, was oxidized .with silver 

oxide8 to the carboxylic acid F-1. Treatment of this l,b-

t t d . d . th f 1 . f . . d 31 ff d d th v ~nsa ura e ac1 w1 re uxing ormic ac1 a or e e D-

lactone F'--2 in 58% yield from the vinyl ether E-1. Reduction 

f th 1 t . th d. . lb 32 ' 33 d f o e ac one w1 1s1amy orane in tetrahy ro uran 
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gave a 64% yield of the lactol F-3. The decarbonylation of 

the lactol was unsuccessful. Apparently the equilibrium 

between the lactol F-3 and the hydroxy-aldehyde F-4 greatly 

favors the lactol. The only volatile material isolated from 

the reaction mixture was the lactone F-2, which was obtained 

in 22% yield and was probably produced by a catalytic 

dehydrogenation of the lactol. 

Since reagents such as N-bromosuccinimide and peracids 

are not as sensitive as diborane to steric hindrance, such an 

oxidation of the double bond in octalin E~4 should lead to a 

mixture of C-1 and C-2 functionalized compounds, thereby cir-

cumventing the steric hindrance problem. The bromohydrin route 

is shown in Chart G. Treatment of olefin E-4 with N-bromo­

succinimide in aqueous dimethylsulfoxide 34 afforded a mixture 

of bromohydrins in 66% yield. The crude product was oxidized 

with Jones reagent
27 

in 83% yield to give one bromo-ketone. 

Reduction of the bromo-ketone with zinc dust in an acetic acid-­

sodium acetate buffer35 resulted in an excellent yield of the 

undesired isomeric ketone E-6, the same isomer as that pro-

duced by the hydroboration route (Chart E). Therefore, the only 

bromohydrin formed was the l-bromb-2-hydroxydecalin G-1, which 

on oxidation produced the l-bromo-2-decalone G~2. 

The final functionalization scheme employed epoxidation 

of the double bond of the octalin E-4 followed by hydride 

reduction of the resultant epoxide (Chart H). In this route 

steric hindrance should preclude attack by hydride at the C-1 



E-4 

0 

Br 

G-2 

27 

CHART G 

cf~Br 
0 

Zn 

HOAc 
0 

Br 

G-1 

E-6 

Jones 
oxid. 



28 

CHART H 

E-4 H-1 

Jones 

+ oxid. 
HO 

H-2 

+ 

1-valeranone 

E-6 IX 



29 

position of the intermediate epoxide. The resulting alcohol 

with a C-1 hydroxyl group could then be oxidized to valeranone. 

Octalin E-4 was epoxidized with m-chloroperoxybenzoic 

acid in dichloromethane.
28 

The product, isolated in 55% yield, 

was a mixture of two compounds by analytical thin-layer 

chromatography (tlc) and nmr spectroscopy, which indicated 

that both 0< and jJ epoxides were present in about a 1:2 ratio. 

Since both epoxides were expected to give C-1 alcohol upon 

reduction, the mixture was treated with the hindered reducing 

. 28 
agent, lithium tri-!-butoxy aluminum hydride, in refluxing 

tetrahydrofuran, however no reduction occurred. The epoxides 

were then reduced with less selective but more reactive 

reducing agents, lithium aluminum hydride28 (74% yield) and 

aluminum hydricte 36 (69% yield) to a mixture of two alcohols 

(H-2) in a 30:70 ratio. Jones oxidation27 of the alcohol mix-

ture gave a mixture of two ketones, !-valeranone (IX) and the 

2-keto isomer E-6, again, by vpc analysis, in a 30:70 ratio. 

E-6 

Figure 10: Reduction of the Epoxide Mixture H-1 
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It appears that steric hindrance had a negligible effect 

in the reduction of the epoxides. As shown in Figure 10, 

trans-diaxial opening of the 1:2 epoxide mixture would, after 

oxidation, yield the 30:70 ketone mixture. Therefore, it must 

be assumed that the reduction proceeded under stereoelectronic 

control rather than steric control. 

The isomeric ketones IX and E-6 were separated by prepar-

ative thin layer chromatography to give ketone E-6 in 35% 

yield and pure !-valeranone in 23% yield. The 1-valeranone 

was identified by comparison of its optical rotation and infra-

red spectrum, and the melting point of its 2,4-dinitrophenyl~ 

hydrazone derivative with those of the natural l-valeranone. 17,18 

The above work demonstrated that it is possible to insert 

an angular methyl group to give a compound having a cis ring 

fusion. To illustrate the flexibility of this synthetic pro-

cedure, the insertion of an angular methyl group to give a 

compound (I-10) having a trans ring fusion was undertaken. 

Conversion of a cis-fused S-keto-acetal to a bicyclo­

~~2.zj octane ring system has been accomplished by Ireland 

XXXIII 

---<°) . . 0 

HO© 
3 

OH 

xxxrv 
Figure 11: Conversion of a 6-Keto-acetal 

to a Bicycle [2. 2. 2] octane 
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d k 30 th . 11 d . an cowor ers on e system i ustrate in Figure 11. A 

similar transformation in the valeranone system can be effected 

by the conversion of the 2-decalone I-2 to the bicyclo ~.2.zj -

octane I-3 (Chart I). Eschenmoser and coworkers have found 

that a ~-keto-sulfonate cleaves under basic conditions to the 

corresponding unsaturated carbonyl compound37 (Figure 12). On 

t~e basis of this precedent, the success of the conversion of 

the bicyclo[2.2.2]octane I-3 to the trans-octalin I-5 was 

assured. Manipulation of the functionality in this octalin 

would then afford the trans-di(angular methyl) decalin I-10. 

KOH 

xx xv XXXVI 

Figure 12:ft-Keto-sulfonate Cleavage 

The unsaturated acetal I-1 was prepared in 93% yield by 

reaction of the unsaturated aldehyde E-3 with ethylene glycol 

d . lf . . d 38 an su uric ac1 . Hydroboration--oxidation30 of the unsat-

urated ~cetal followed by Jones oxidation of the resulting 

alcohol mixture aff6rded the decalone I-2 in 88% overall yield. 

The structural assignment of this ketone was confirmed by the 

nmr spectrum. Hydrolysis of the keto-acetal I-2 occurred in 
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aqueous hydrochloric acid in acetone30 with concomitant 

cyclization to the substituted bicyclo [2 .2 .2] octane I-3 in 

77% yield . 
28 

Treatment of the keto-alcohol I-3 with p-toluene-

sulfonyl chloride in pyridine led to the tosylate I-4. The 

yield based on unrecovered starting material was 94% or a 

. 74% conversion . Treatment of the tosylate with sodium meth­

oxide in methano1
37 

gave in 50-60% yield a variable mixture 

of methyl ester I-5 (R = CH3 ) and acid I-5 (R = H). The 

ester--acid mixture was reduced by lithium aluminum hydride in 

refluxing tetrahydrofuran to the unsaturated alcohol I-6 in 

96% yield, thereby obviating the need for separation of the 

ester from the acid. 

Collins oxidation (chromium trioxide--dipyridine complex 

in dichloromethane)
39

of t~e unsaturated alcohol I-6 proceeded 

in 84% yield to give the air-stable unsaturated aldehyde I-7 . 

. . 15 16 
Decarbonylat1on ' of this aldehyde with tris(triphenyl-

phosphine)chlororhodium(I) in refluxing benzene gave in 74% 

yield a 1:1 mixture of two compounds . The nmr spectrum of 

this mixture indicated that one of ·these compounds was the 

trans-di(angular methyl) octalin I - 8. The other product 

(I-9), a saturated hydrocarbon, was not identified. It is 

thought that this hydrocarbon was a bicyclo[2.2.~ heptane, 

originating from addition of an organorhodium decarbonylation 

intermediate across th~ double bond . The mixture of olefin 

I-8 and hydrocarbon I-9 was quantitatively hydrogenated 
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A Possible Structure for Hydrocarbon I-9 

in the presence of platinum in ethanol to a 1:1 mixture of 

the desired trans-di(angular methyl) decalin I-10 and the 

unchanged hydiocarbon I-9. 

The difficulty encountered in the decarbonylation 

reaction originated in the olefinic do~ble bond; therefore, 

this bond was reduced prior to decarbonylation. Since cata-

lytic hydrogenation of the unsaturated aldehyde with platitium 

in ethanol resulted in partial reduction of the aldehyde 

moiety, the double bond of the unsaturated alcohol I-6 was 

quantitatively hydrogenated giving the saturated alcohol I-11, 

which was oxidized with Collins reagent39 to the aldehyde I-12. 

This aldehyde was very air-sensitive and decomposed to several 

products after exposure to air for only an hour. The other 

three aldehydes prepared in this study: D-4 (cis, saturated), 

E-3 (cis, unsaturated), and I-7 (trans, unsaturated) were all 

stable in air. Because of this sensitivity, the saturated 

. 15 16 aldehyde I-12 was immediately decarbonylated ' to the 

desired angularly dimethylated tranS-decalin I-10 in 64% 

yield . 
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The above work demonstrates that it is possible to in­

sert an angular methyl group to give a compound with either 

a cis or a trans ring fusion with complete stereospecificity. 

The three main problems with this new procedure were the low 

yield of the amide-acetal Claisen reaction, the variable 

yield in the vinyl ether preparaton, and the side product 

possible from the decarbonylation of an unsaturated aldehyde. 

These problems were subsequently studied on the cholestenol 

system. 
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ANGULAR SUBSTITUTION STUDIES ON THE CHOLESTENOL SYSTEM 

Five reactions were studied in the cholestenol series 

(Chart J): (a) the reaction of cholest-4-en-3~-ol (J-1) with 

N,N-dimethylacetamidedimethylacetal to give the amide J-2, 

(b) the reaction of this cholestenol with triethyl ortho-

acetate to give the ester J-3, a procedure used by Johnson 

40 and coworkers with great success, (c) the synthesis of 

cholest-4-en-3~-yl vinyl ether (J-4) from the alcohol J-1, 

(d) the Claisen rearrangement of this vinyl ether to the 

aldehyde J-5, and (e) the decarbonylation of the unsaturated 

aldehyde J-5. The objectives of this study also included the 

determination of reaction conditions leading to the highest 

yields and the identification of any side products in these 

reactions. 

The three products of angular substitution: (a) amide, 

(b) ester, and (c) aldehyde originate by similar mechanisms. 

The mechanism for the first two, amide [Y = -N(CH3 ) 2)and 

ester [Y = -oc2H5], is shown in Figure 13. In each case the 

high reaction temperatures used cause rapid equilibration of 

the acetal XXXVII and vinyl XXXVIII forms of the reagent 

(N,N~dimethylacetamidedimethylacetal or triethyl orthoacetate). 

Cholestenol J-1 adds to the vinyl form XXXVIII to give the 

acetal XXXIX, which, upon loss of methanol or ethanol, 
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Figure 13: Mechanism for Amide and Ester Formation 

yields the substituted allyl vinyl ether XL. 

All the reactions so far have been reversible. Now, 

with the formation of the ch6lestenyl vinyl ether XL an 

essentially irreversible pathway out of the equilibrium occurs; 

the allyl vinyl ether undergoes a Claisen rearrangement to an 

angular acetamide (J-2) or acetic ester (J-3). If the equi-

librium mixture contains enough of the allyl vinyl ether XL 

and if ~he temperature is high enough to effect the Claisen 

rearrangement, all the allylic alcohol is eventually converted 

to the Claisen product. At the high temperature necessary for 

the Claisen rearrangement, the methanol or ethanol is driven 

from the reaction mixture. The loss of one of the reaction 
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products also favors the formation of the allyl vinyl ether. 

The mechanism for the formation41 and Claisen rearrange-

ment of the vinyl ether J-4 is almost identical to that shown 

above. Because ethyl vinyl ether is volatile (bp 36°), the 

reaction must be done at a low temperature. At this low 

temperature a catalyst is necessary for the addition of an 

alcohol to the ethyl vinyl ether; the catalyst used is 

mercuric acetate, and so the equilibration between the vinyl 

species XLI or XLIII and the acetal XLII actually becomes a 

reversible alkoxy-mercuration (Figure 14). Since the reaction 

XLIII J-5 

Figure 14: Mechanism of Vinyl Ether Formation 

temperature is too low for the Claisen rearrangement and 

distillative removal of ethanol, product formation is not 

favored. The equilibrium mi x ture must therefore be forced 
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toward product by the use of a large excess of one of the 

reactants, namely ethyl vinyl ether, which becomes the reaction 

solvent. The vinyl ether XLIII is then isolated and rearranged 

at a higher temperature. 

A major side reaction of these Claisen rearrangements 

is diene formation, resulting from loss of dimethylacetamide, 

ethyl acetate, or acetaldehyde from the vinyl ether XL 

(Figure 15). Abstraction of a proton from the C-2 position of 

the vinyl ether by the terminal methylene group gives the 

H 
II~ 

Y~O 

heat 

XL XLIV 

+ 

Figure 15: Mechanism for Diene Formation 

diene, identified in one reaction as 6 2 ' 4-cholestadiene 

(XLIV). Since vpc usually indicated the presence of two 

dienes, it is likely that the 6 2 ' 4-diene slowly isomerized 
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to the more stable 6 3 ' 5-diene during the reaction. The 

elimination occurred to a greater extent in the amide and 

ester product mixtures than in the aldehyde product, pre-

sumably because the electron-donating properties of the nitro-

gen and oxygen atoms in the vinyl ether XL[Y = -N(CH3 ) 2 and 

-OC2H5 Jare greater than that of hydrogen and increase the 

nucleophilicity of the terminal methylene. 

The best conditions found for the preparation of the 

amide J-2 were heating a solution of cholestenol and 

N,N-dimethylacetamidedimethylacetal in refluxing a-xylene 

0 (bp 140 ) for about 65 hours. At this time vpc analysis 

indicated that the reaction was complete: 70% amide J-2 and 

30% dienes. Removal of the volatile material at reduced pres-

sure and chromatography of the residue on silica gel afforded 

the amide in 65% yield, a much better yield than that obtained 

in the valeranone synthesis. The higher temperature used in 

this later study probably accounted for the higher yield. 

The optimum conditions for the preparation of the ester 

·J-3 were similar to those used above. A solution of choles-

tenol J-1 in freshly 'distilled triethyl orthoacetate was 

heated at reflux i142°) for eight days with distillative 

. removal of ethanol. Vpc analysis indicated that the reaction 

mixture contained 70% ester product J-3 and 30% dienes. Removal 

of the volatile material and chromatography of the residue gave 

a 60% yield of the ester J-3. Use of propionic acid as a cata-
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Iyst40 increased the reaction rate at the expense of yield 

and is therefore not recommended. 

The vinyl ether--aldehyde preparation was far more 

difficult to optimize. The best procedure found was heating 

a solution of the cholestenol and mercuric acetate in ethyl 

vinyl ether at reflux for 17 hours, followed by the addition 

of acetic acid to decompose the alkyl mercury complex. The 

crude product was chromatographed on silica gel to give a 78% 

yield of the vinyl ether J-4, which was thermally rearranged 

at 220-225° for five hours and then chromatographed to afford 

the aldehyde J-5 in an overall yield of 53%. 

Unfortunately, this procedure is sensitive to a great 

many factors. The mercuric acetate had to be recrystaliized. 8 

The ethyl vinyl ether had to be purified with great care. The 

vinyl ether J-4 had been successfully chromatographed on 

alumina by Burgstahler, 7 and Ireland and Pfister. 25 However, 

when alumina chromatography was attempted, the yield of product 

was low and variable. In contrast, silica gel chromatography 

was quite successful. All glassware had to be base-washed; an 

attempt to rearrange the vinyl ether in a new flask, which had 

not been washed with base, resulted predominately in diene 

formation. 

Incomplete rearrangement occurred when the vinyl ether 

was heated under the conditions used in the valeranone study, 

195° for three hours. Increasing the temperature (220°) and 

time (five hours) led to a better yield, although not as high 
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as that found in the valeranone system. Apparently the un-

favorable geometry of the steroid ring system necessitates 

the higher rearrangement temperature (Figure 16), which, in 

turn, produces more elimination products. Ring rigidity may 
y 

/f 
' '. /;"-.... ,/,· -......_ ,, 

XL a 

Figure 16: Transition State for Claisen Rearrangement 

explain why the rearrangements at 140° in the amide and ester 

preparations were so slow, 65 hours and 8 days respectively. 

A higher reaction temperature in a pressure vessel may decrease 

the reaction time but also increase the extent of side reac-

tions. In acyclic systems the unfavorable geometry is elim-

inated, and far shorter r~action times are needed. For 

40 
example, Johnson and coworkers converted the acyclic alcohol 

XLV to the ester XLVI in 92% yield in one hour. 

XLV 

CH3C(OC
2

H
5

) 3 

CH3CH2co
2

H 

heat 

XLVI 

Figure 17: Conversion of an Acyclic Alcohol to a Rearranged 
Ester 
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TABLE I 

CLAISEN REARRANGEMENT REACTIONS OF CHOLEST-4-EN-3fi-OL 

Yield 
Reagent Time Temperature of Isolated 

Product 

N,N-Dimethylacetamide-
140° dimethylacetal 65 hr 65% 

Triethyl orthoacetate 8 days 140° 60% 

Triethyl orthoacetate, 
140° 55%a propionic acid 32 hr 

Ethyl vinyl ether, 
36° b c mercuric acetate 17 hr 78%, 53% 

a vpc yield; b yield of vinyl ether; c overall yield to aldehyde 

A comparison of the three routes to angular substitution 

is presented in Table I. Although the vinyl ether--aldehyde 

route affords the lowest yield, the aldehyde can be directly 

decarbonylated, while the amide or ester must first be trans-

formed to the aldehyde. 

. 15 16 
The decarbonylation ' of the unsaturated aldehyde J-5 

with 1.0-1.5 equivalents of tris(triphenylphosphine)chloro-

rhodium(!) proceeded in very high yield (98- 99% mass recovery), 

and the ir spectrum of the product showed no aldehyde absorp-

tion. However, the nmr spectrum, vpc, and preparative silver 

nitrate chromatography demonstrated the presence of three 

compounds: the desired material, 5~-methylcholest-3-ene (J-6) ; 

the cyclopropane J-7; and an olefin, probably 5µ'-methylcholest-
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2-ene (J-8). These compounds were present in an approximate 

ratio of 65:15:20. The desired decarbonylation product J-6 

was identified by comparison (vpc and nmr) with authetic 

material prepared in these laboratories by Ireland and 

. . 25 42 
Pfister, and Muchmore by the sequence outlined in 

Figure 18. 

Li(CH3 ) 2Cu 

Cl-PDA , 
PDAO '~ 

XLVII XLVIII J-6 
I 

PDA-= (CH3 ) 2N-f~O 
N(CH3 ) 2 

Figure 18: Preparation of 5~-Methylcholest-3-ene by the Lithium 
Dimethylcopper--Phosphodiamidate Cleavage Route 

The identity of the cyclopropane was confirmed by an 

independent synthesis,* which is outlined in Chart K. Simmons­

Smith43 cyclopropylation of cholest-4-en-3ft-ol (J-1), followed by 

* . The f 1rst two steps of this synthesis were performed 
by J. Tilley in the Ireland laboratories. 
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Jones oxidation
27 

gave the cyclopropyl ketone K-2, which, 

after Wolff-Kishner reduction, 44 afforded the cyclopropane 

J-7. This cyclopropane was identical by ir, nmr, vpc, and tlc 

analysis with the decarbonylation side product. 

The assignment of the side product J-8 as 5fi-methyl­

cholest-2-ene was made from the nmr and ir spectra, and the 

vpc and silver nitrate thin layer chromatographic behavior 

of this compound. 

The mechanism for the formation of the two side products 

remains elusive. Although I-butene is partially isomerized to 

2-butene by tris(triphenylphosphine)chlororhodium(I) and 

1-pentene is isomerized to 2-pentene by bis(triphenylphosphine)­

carbonylchlororhodium(I), 45 treatment of the 6.3 olefin J-6 with 

either of these rhodium compounds in benzene (decarbonylation 

conditions) resulted in no isomerization to the c1 olefin J-8. 

Evidently, isomerization must occur before or during the 

decarbonylation step itself. Another unexplained fact is the 

selectivity with which the decarbonylation intermediates attacked 

the double bond. Unsaturated aldehyde E-3 underwent decar-

bonylation with no side product formation, whereas the unsatu-

rated aldehydes I-7 and J-5 experienced attack on the double 

bond. 
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The three-component mixture obtained by decarbonylation 

of aldehyde J-5 cannot be readily separated. The cyclopro­

pane J-7 was isolated by chromatography on silica gel 

impregnated with silver nitrate, but the isomeric olefins J-6 

and J-8 were incompletely separated by this method. Prepara­

tive gas chromatography would provide a means of separating 

these isomers, but this method is not suitable for a large 

scale manipulation. Alteration of the reaction conditions 

(using acetonitrile as the solvent, or reducing the tempera­

ture) did not eliminate the two side products. It must 

therefore be concluded that, in this case, the olefinic double 

bond would have to be reduced or converted to another func­

tional group before decarbonylation to one angularly methylated 

product could occur. 
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CONCLUSION 

The work reported above demonstrated that the Claisen 

rearrangement--decarbonylation method of angular methylation 

can be·quite useful, especially in cases where more direct 

routes fail. Moreover, this route provides for the insertion 

of a functionalized angular substituent, a process which 

could be applied to the synthesis of natural product analogs. 

Reaction conditions have been optimized to the point where 

the yields are competitive with those of other methods, and 

so a facile application of this procedure to other systems is 

foreseen. 
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PART II 

THE TOTAL SYNTHESIS 

OF THE PENTACYCLIC TRITERPENE 

dl-GERMANICOL 



53 

INTRODUCTION 

Triterpenes are a large diverse group of c
30 

isoprenoid 

natural products. Most triterpenes, especially the pentacyclic 

triterpenes, are only found in plants, but a few, for example 

squalene, ambrein, and lanosterol, do occur in animals. 

Although the first of the triterpenes was isolated in 1788, 46 

the size, complexity, and lack of functionality of members of 

this class of compounds prevented any structural elucidation 

until 1949. 47 Ruzicka and coworkers48 did much of the work 

on the structure determination of the triterpenes and also 

promulgated a theory on their biosynthetic orgin. 

This theory, now established for the triterpenes 

lanostero1 49 and 1-amyrin50 proposed that the cyclic triter­

penes originate from a concerted enzymatic cyclization of the 

polyene squalene (L-1), followed by a series of rearrangements 

(Chart L). The cyclization product is dependent upon the 

configuration which the squalene molecule assumes on a partic­

ular enzyme. A chair-chair-chair-boat-boat conformation is 

necessary in the biosynthesis of most pentacyclic triterpenes; 

the two known exceptions are hydroxyhopenone and davallic 

acid, which are produced from an all-chair conformation of 

48b squalene. 

The proposed biosynthetic pathway48b for lupeol (L-5), 

germanicol (L-7), and several other pentacyclic triterpenes 
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is illustrated in Chart L. In this pathway, the polyolefin 

squalene cyclizes to give a carbonium ion (L-2). A "pause"48b 

then occurs while the C-16 group undergoes a Wagner-Meerwein 

shift to the C-18 position giving "intermediate" L-3. Intra­

molecular attack of the terminal double bond on the C-17 posi­

tion of the carbonium ion affords a new bridged ion with a 

completed E ring. Either a proton from one of the terminal 

methyl groups of the ion L-4 can be lost to give lupeol (L-5), 

or the C-20 group can undergo a 1,2-shift to the C-22 position 

to give a new ion L-6. Loss of the C-17 proton by the ion 

L-6 affords germanicol (L-7). The ion L-6 can also produce the 

triterpenes ~-amyrin (L-8), taraxerol (L-9), alnusenone (L-10), 

and friedelin (L-11) by a succession of 1,2-shifts, followed 

by loss of a proton. 

The second of these triterpenes and the object of the 

work reported herein, germanicol (L-7), 51 was first isolated 

by Simpson in 1944 from Lactucarium germanicum, the dried latex 

of Lactuca virosa. 52 David, 53 who undertook the first 

structural study of germanicol (Chart M), found that the double 

bond in this compound would not undergo a catalytic hydrogen­

ation but did form an epoxide (M-1) with perbenzoic acid. The 

epoxide yielded the known compound oleana-11,13-dienol (M-2) 

on treatment with ethanolic sulfuric acid. This discovery, 

together with the determination of the germanicol empirical 

formula as c
30

H50o, established that germanicol was an isomer 
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of fi~amyrin (L-8). The infrared spectrum supported two 

structural assignments M-4 and M-5. Definite proof that 

germanicol had the structure L-7 (M-5b) was obtained in 1950 

by its synthesis from morolic acid (M-3). 54 This result was 

verified by the conversion of both lupeol (L-5) 55 and 

ft-amyrin (L-8) 56 to germanicol. 

The synthesis of germanicol was undertaken as the first 

part of a program to establish an efficacious general route to 

several of the pentacyclic triterpenes. The first synthetic 

objective in this program was the functionalized tricyclic 

intermediate with the general structure XLIX, which was then to 

be converted to pentacyclic compounds. 

F(g) 

FI (g) 

XLIX 

The original workers in this ten year long synthetic 

project, Dolfini and Ireland, synthesized the intermediate 

tricyclic keto-alcohol N-4 (Chart N).
57 

Homoannelation of 

methyldihydroresorcinol (N-1) with ethyl vinyl ketone yielded 

the bicyclic dione N-2, which was theh selectively protected 
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to give the tetrahydropyranyl ether N-3. Another homoannela-

tion with ethyl vinyl ketone, followed by acid hydrolysis of 

the tetrahydropyranyl ether, yielded the tricyclic enone 

N-4 in 19% yield. This compound lacked a methyl group at the 

* C-1 position. All attempts at methylation with base and methyl 

iodide failed. 

At about the same time the above work was done, Johnson, 

Brown, 58 and Schmiege1 59 developed another synthesis of the 

tricyclic system that eliminated the difficulties encountered 

in the methylation of enone N-4. They found that direct homo-

annelation of the dione N-2 with ethyl vinyl ketone, without 

protection of the saturated ketone function, resulted in a 

15% yield of the tricyclic dione 0-1. The dione was then 

selectively ketalized to the keto-ketal 0-2, which underwent 

* The tricyclic compounds discussed herein are named as 
derivatives of phenanthrene, and the pentacyclic compounds are 
named as picene derivatives. The numbering system used is 
that found in the Ring Index (A. M. Patterson, L. T. Capell, 
and D. F. Walker, "The Ring Index," American Chemical Society, 
Washington, D. C., 1960.). 

Although only one enantiomer is drawn, all compounds 
synthesized from methyldihydroresorcinol are racemic. 

phenanthrene picene 
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reductive methylation to afford the keto-ketal 0-3. Hydrolysis 

of the C-8 ketal and protection of the C-2 oxygen function as 

an acetate, followed by catalytic hydrogenation of the ~4b( 5 ) 

double bond, gave the tricyclic acetoxy-ketone 0-5 with the 

desired stereochemistry (Chart O). 

The most discouraging step in the sequence shown in 

Chart O was the second homoannelation, conversion of the 

bicyclic diketone N-2 to the tricyclic 0-1. A competitive base-

induced cleavage of the vinylogous fo-diketone reduced the yield 

of homoannelated product to 15%. The following step, a selec-

tive ketalization of diketone 0-1, proceeded in only 50% yield. 

Baldwin and Ireland were able to improve the yield 

60 
considerably by interchanging these two steps. Selective 

ketalization of the bicyclic diketone N-2 afforded the keto-

ketal P-1 in 94% yield (Chart P). Homoannelation of this enone 

(P-1) with ethyl vinyl ketone gave a 25% yield of the tricyclic 

enone 0-2 along with a 52% recovery of starting material. 

Recycling the recovered starting material twice resulted in an 

overall homoannelation yield of 46%. The yield for the con-

version of the bicyclic diketone to the tricyclic keto-ketal 

was therefore raised from 7.5 to 43%, a nearly five-fold 

increase. This improvement permitted the synthesis of the tri-

cyclic acetoxy-ketone 0-5 in an overall yield of 22% from methyl-

dihydroresorcinol. 

Since the acetoxy-ketone was available in reasonable 

quantities, the project was then directed toward the synthesis 
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of germanicol. The next important synthetic objectives were 

the construction of the remaining rings (D and E) and the 

insertion of the C-6bo<.. angular methyl group. The synthetic 

scheme-selected to attain these objectives involved conversion 

of the acetoxy-ketone to an exocyclic methylene ketone, fol­

lowed by a 1,4-addition of a benzyl Grignard reagent to this 

enone and then methylation of the resulting enolate at the C-8 

position. By following this route, Baldwin and Ireland were 

able to synthesize the diketone Q-11, one step removed from 

a pentacyclic germanicol intermediate (Chart Q). 

The exocyclic methylene ketone Q-7 was obtained from 

the acetoxy-ketone 0-5 through the intermediacy of the endo­

cyclic olefin Q-5. Treatment of the acetoxy-ketone 0-5 with 

methyllithium afforded the diol mixture Q-1. The secondary 

hydroxyl group of the diol, arising from methyllithium 

cleavage of the acetate group, was oxidized with Jones reagent 27 

to the ketone, and the tertiary hydroxyl, the result of methyl­

lithium addition to the C-8 carbonyl, was dehydrated with 

thionyl chloride in pyridine to give the isomeric keto-olefins 

Q-3. This olefin mixture was equilibrated with p-toluene­

sulfonic acid in benzene to give the thermodynamically more 

stable endo isomer Q-4, which upon treatment with ethylene 

glycol and p-toluenesulfonic acid gave the ketal olefin Q-5. 

The five step synthetic sequence from the acetoxy-ketone 0-5 

to the ketal olefin Q-5 was accomplished in 86% yield. 
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Photo-oxygenation61 of the ketal olefin Q-5 in pyridine 

solution in the presence of hematoporphyrin as the sensitizer, 

followed by reduction of the intermediate hydroperoxide with 

lithium aluminum hydride, afforded the allylic alcohol Q-6 in 

variable yields (45-67%). 60 

Oxidation of the allylic alcohol with Collins reagent39 

·gave the desired exocyclic methylene ketone Q-7 in 91% yield. 

The methylene ketone was then treated with m-methoxybenzyl-

magnesium chloride in ether. The m-methoxy group was used to 

introduce oxygen functionality in the E ring, which was 

necessary for the modification of this ring at a later stage 

in the synthesis. With or without cupric acetate catalysis, 

1,4-addition of the Grignard reagent to the enone predominated 

over 1,2-addition. 

Since direct methylation of the enolate produced by 

Grignard addition (Q-8) was unsuccessful, the enolate was 

quenched with acetic anhydride to afford the 1,4-adduct, enol 

acetate Q-9, in 71-74% yield. The enolate Q-8 was then regen-

erated from the purified enol acetate Q-9 with methyllithium 

in dimethoxyethane. Methylation of· the enolate with methyl 

iodide produced the keto-ketal Q-10, which was hydrolyzed to 

the diketone Q-11. The yield reported for this conversion 

from the enol acetate was 68%. 

The remaining work entailed the development of a large-

scale preparation of diketone Q~ll and its transformation into 

dl-germanicol. -
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DISCUSSION 

Before the synthesis of germanicol could be continued, 

it was necessary to prepare the diketone Q-11 in larger 

quantity. Both the aforementioned route and a new, epoxide 

cleavage route were used for this preparation. 

60 61 The photo-oxygenation procedure ' used for the con-

version of olefin Q-5 to the allylic alcohol (Figure 19) had 

the disadvantages of moderate yield, experimental difficulties 

on other than a small scale, and long reaction times. In an 

OH 

Q-5 L Q-6 

Figure 19: Photo-oxygenation of the Ketal Olefin Q-5 

effort to avoid these problems an alternate route was inves-

tigated. In .this route the olefin R-1 was epoxidized, and the 

product rearranged with base to . the allylic alcohol R-3 

(Chart R). This route has precedence in the work of Crandall 
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LI! 

Figure 20: Epoxide Cleavage by Lithium Diethylamide 

and Lin, 62 who cleaved the epoxide LI with lithium diethyl-

amide to obtain the exo-methylene allylic alcohol LI! 

(Figure 20) • 

* Since the carbonyl group of keto-olef in Q-4 was sen-

·sitive to the basic reaction conditions used, it required 

protection. The protecting group selected was the 2,2-dimethyl­

propylene ketal, for Heathcock63 has reported that an ethylene 

ketal is not stable to the extremely basic conditions used in 

the epoxide cleavage reaction. Apparently, an ethylene ketal 

can undergo a 19-elimina tion reaction with a strong base 

(Figure 21) . The dimethyl propylene ketal, lacking /3 protons, 

is stable. 

In contrast to the formation of the ethylene ketal Q-5 

in 84% yield with ethylene glycol, the six-membered ring ketal 

*All r~cemic materials in this part of the germanicol 
project were prepared from 20 g of keto-alcohol 0-4 left by 
S.W. Baldwin and 30 g of keto-ketal 0-3 prepared by J.H. Ham 
in the Ireland laboratories. 
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Figure 21: ,.a-Elimination of an Ethylene Ketal 

R-1 was obtained in only 58% yield with 2,2-dimethyl-1,3-

propanediol. The cause of this low yield is not immediately 

apparent, however vpc analysis of the crude reaction product 

indicated numerous side products. It is possible that the 

acid catalyst induced methyl group migrations. A similar 

rearrangement was proposed by Baldwin to rationalize the 

isomerization of the keto~olefin Q-4 during silica gel 
. 60 

chromatography (Figure 22). 

0 
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0 
or 

0 

Q-4 LV LVI 

Figure 22: Acid-Catalyzed Rearrangement of Keto-Olefin Q-4 
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Treatment of the ketal olefin R-1 with m-chloroperoxy-

benzoic acid resulted in the formation of the epimeric mixture 

of epoxides R-2 in 99% yield (Chart R). On exposure to 

lithium diisopropylamide in refluxing ether, the epoxide mix-

ture rearranged to a mixture of allylic alcohols. Collins 

oxidation39 of the mixture gave both endo- and exo-cyclic 

enones, from which the desired methylene ketone R-4 was sep-

arated by silica gel column chromatog~aphy. The yield for the 

epoxide formation, cleavage, and oxidation steps was 52%. 

The infrared spectrum of the crude oxidation product 

exhibited two carbonyl bands of equal intensity (1685 and 

1655 cm~ 1 ). The absorption at 1685 cm-l originated from 

-1 the desired exocyclic enone R-4, and that at 1655 cm was 

due to the endocyclic enone LVIII. This major side product, 

isolated in 35% yield in one reaction, was apparently the 

result of an oxidative rearrangement of the tertiary allylic 

alcohol LVII, which, in turn, was a side product of the 

epoxide cleavage reaction (Figure 23). Evidence for the 

origin of this side product was supported by the results of an 

epoxide cleavage with lithium diethylamide. Since lithium 

diethylamide is less sterically hindered than lithium diiso-

propylamide, it was expected to exhibit less preference for 

the p~imary protons of the C-8 methyl group and therefore to 

also abstract a C-6 proton. The nmr spectrum of the alcohol 

mixture obtained by using this base indicated that the pre-
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dominant isomer was, indeed, the tertiary allylic alcohol LVII. 

Moreover, Collins oxidation of this mixture produced an enone 

mixture in which the endocyclic enone LVIII was the main 

isomer. The infrared spectrum of this mixture had the two 

carbonyl absorptions corresponding to the enones LVIII and 

R-4 in a ratio of 3:1. 

A second side product of the epoxide cleavage was the 

saturated ketone LIX (Figure 23), which probably resulted from 

a C-7 proton abstraction. Although this saturated ketone was 

a minor side product in the small scale epoxide cleavage, 

a large scale cleavage resulted in a 20% yield of this ketone, 

which was isolated as the Grignard addition product LX (R = 

m~methoxybenzyl). It is possible that the formation of this 

side product was caused by the presence of a 25% excess of 

diisopropylamine in the large scale cleavage reaction mixture. 

The yield for the epoxidation, base cleavage, and Collins 

oxidation (52%) is comparable to that of the photo-oxygenation-­

Collins oxidation synthon (41-61%). However, if the olefin 

equilibration and ketal formation steps (84% yield for the 

five-membered ring ketal and 58% for the six-membered) are 

considered, the photo-oxygenation route is definitely superior. 

Improvement of the dimethylpropylene ketal formation or the 

suppression of the side products of epoxide cleavage would 

enhance the desirability of the epoxide route. 

The l,4~addition of m-methoxybenzylmagnesium chloride 
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to the methylene ketone R-4 in ether, followed by quenching 

of the enolate with acetic anhydride, formed the enol acetate 

S-1 in 56% yield, which was the same yield as that obtained 

using the ethylene ketal ketone Q-7. Treatment of the enol 

acetate S-1 (Chart S) with methyllithium in dimethoxyethane 

regenerated the enolate, which was alkylated with methyl 

iodide to give a mixture of keto-ketal S-2 (60%), dimethylated 

ketone LXI (16%), and another compound (20%), Which was 

considered to be the methyl enol ether LXII, since hydrolysis 

of this material yielded the unmethylated ketone LXIII. No 

unmethylated ketone, however, was found in the crude product 

mixture. Hydrolysis of ketal S-2 gave a 64% yield of dione Q-11. 

0 

~ 
H 

LXIII 

LXII 

OCH3 

Figure 24: Side Products from the House Alkylation 

of Enol Acetate S- 1 
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The next problem was the verification of the structure 

of the diketone Q-11. Preliminary aromatic solvent induced 

shift measurements by Baldwin and Ireland indicated that the 

C-8 methyl group of the keto-ketal Q-10 did have the antic- . 

ipated ct configuration. The collision complex of a ketone with 

benzene causes the nmr absorption of an axial methyl group 

adjacent to this ketone to experience a large upfield shift 

(20-30 Hz) relative to its position in pure deuteriochloro-

form. The absorption of an equatorial methyl group exhibits 

only a small upfield or downfield shift. 64 The observed 

shift of the C-8 methyl group signal of keto-ketal Q-10 was 

.17 Hz upfieldi which is consistent with the axial assignment.00 

This result was confirmed by a direct comparison of the 

racemic diketone Q-11 with the optically active diketone 

obtained by degradation of the tetracyclic triterpene euphol. 

65 . 66 Johnson, Crawford, and Hudrl1k isolated euphol (T-1) 

from euphorbium gum and degraded it to the lactone acetate 

T-8 (Chart T) by a modification of the procedures developed 

67 by Arigoni and coworkers. 

The lactone acetate was then.converted to the optically 

active diketone Q-11 by M. Dawson 68 by the sequence of 

reactions outlined in Chart U. Saponification of the lactone 

acetate T-8, followed by acidification, yielded the hydroxy-

39 lactone U-1, which was oxidized with Collins reagent to the 
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keto-lactone U-2. Protection of the ketone function as a 

ketal and reduction of the lactone moiety by disiamylborane69 

afforded the ketal lactol U-4, which reacted with m-methoxy-

1 · b ·d 69 t · th ct· 1 u 5 pheny magnesium romi e o give e io - . This diol, 

69 upon hydrogenolysis of the benzyl hydroxyl group, hydrol-

ysis of the C-2 ketal, and oxidation of the C-7 hydroxyl 

g~oup afforded the optically active diketone Q-11 in an over-

all yield of 57% for the eight steps. · The racemic and optically 

active diketones were identical by vpc, tlc, and ir and nmr 

(60 and 220 l'v1Hz) spectroscopy. 

The structure of the intermediate diketone Q-11 having 

~een established, the synthesis of germanicol was continued. 

The next two synthetic objectives were the construction of the 

D ~nd E rings by the acid~catalyzed cyclodehydration of the 

diketone and the insertion of the C-8a13 angular methyl group 

(picene numbering). 

In a model study, Baldwin and Ireland60 found that treat-

ment of the keto-ketal LXIV with polyphosphoric acid (PPA) 

did not afford the cyclodehydration product LXV but decomposed 

instead (Figure 25). In contrast, - the related diketone LXVI 

cyclized smoothly in PPA to give an excellent yield of the 

tetracyclic ketone LXVII. When they applied this procedure 

in a preliminary cyclodehydration of ketone Q-11, only decom-

position occurred. 

Therefore, the synthesis of the diketone Q-11 through the 

ethylene keta~~hoto-oxygenation route was repeated. As in the 
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Figure 25: Cyclodehydration in the Model System 

case of the methylation of the dimethylpropylene ketal enol 

ac~tate S-1 (Chart S), several products were observed in the 

conversion of the enol acetate Q-9 to the ketone Q-10. In 

addition to the desired monomethylated ketone Q-10, the crude 

product always contained some dimethylated (LXVIII), 0-

methylated (LXIX), and unmethylated (LXX) material (Figure 26). 

The last two contaminants were observable in the vapor phase 
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Q-10 LXVIII 

LXIX LXX 

Figure 26: Products from the House Methylation 
of the Enol Acetate Q-9 

chromatogram of the mixture and easily removed by preparative 

thin layer chromatography. The dimethylated ketone LXVIII 

had the same vpc retention time as · the ketone Q-10, and a 

chromatographic separation of these two compounds was difficult. 

Hydrolysis of the purified keto-ketal Q-10 afforded the di-

ketone Q-11 in 41% overall yield from the enol acetate. Treat-

ment of the pure diketone with PPA gave a 90% yield of the 

pentacyclic ketone V-1 (Chart V) . Because of these results, 
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it appears likely that the sample of diketone Q-11 isolated 

by Baldwin GO was very impure, since it gave numerous prod-

ucts on an attempted cyclodehydration. 

The pentacyclic ketone V-1 was reduced with lithium 

tri-!-butoxy aluminum hydride to the pentacyclic alcohol V-2. 

The styrene double bond (6
12b) of this alcohol could then be 

reduced by either a Birch reduction or a hydrogenation to 

afford a mixture of the pentacyclic alcohols V-3 (cis C/D 

ring fusion) and V-4 (trans C/D ring fusion). The stereo-

chemical assignment for these two structures was made from a 

comparison of the nmr spectra. One of the C/ D ring-fused 

.isomers had a qua ternary methyl absorption at 0. 40 6 . The 

position of this signal was very much farther upfield than 

the other four methyl resonances of this isomer and the five 

methyl signals of the other isomer. The upfield position of 

the methyl signal would be expected for the cis-fused compound 

V-3 since models reveal that only in the cis isomer does a 

methyl group (C-6a; CH3 ) lie in the shielding cone of an 

aromatic ring (ring E). 70 

The trans:cis product ratios ' differed for the reduction 

methods. Vapor phase chromatographic analysis indicated that 

the trans:cis hydrogenation product ratio was 25:75, while that 

for the Birch reduction was 55:45. Since the trans isomer was 

the desired one, a Birch reduction in the absence of a proton 

source was us~d to saturate th~ styrene double bond. After 



84 

CHART V 

0 0 
LiAl(OtBu) 3H 

Q-11 V-1 

OCH3 OCH3 

H2 --
HO HO 

y...,.2 V-3 

Li, l OCH3 
Li,NH3 0 

NH3 t-BuOH· - ' 

HO© 
3 

Li,NH3 ---HO HO 
t-BuOH; 
H 0 <±) 

V-4 3 V-5 



85 

.purification, the trans-fused product, pentacyclic alcohol V-4, 

was converted to the hydroxy-enone V-5 by a Birch reduction 

in the presence of a proton source, followed by acid 

hydrolysis and equilibration of the dihydroanisole intermediate. 

The preparation of the enone could be more conveniently 

accomplished by concurrent reduction of both the styrene 

double bond and the aromatic ring of the alcohol V-2. The overall 

yield for the hydride reduction of the ketone and this Birch 

reduction of the alcohol product was 45%. 

The angular methylation of the enone V-5 was performed 

according to procedures developed by Nagata and coworkers 6 

and modified by Welch and Ireland.
44 

Treatment of the enone 

with triethylaluminum and hydrogen cyanide in tetrahydrofuran 

(kinetic conditions) afforded the cyano-ketone W-1 as the 

only isolated product in a quantitative crude yield (Chart W). 

Nagata6 and Welch44 have found that kinetic hydrocyanation 

conditions, such as those used to prepare compound W-1, 

generally give a preponderance of trans-fused material in 

similar systems. Therefore, the D/ E ring juncture of the 

cyano-ketone W-1 was assumed to be trans. 

The conversion of the cyano-ketone W-1 to the corresponding 

methyl ketone W-5 .was accomplished by a four-step synthon. The 

ketone function was protected by ketalization. The resulting 

cjano-ketal W-2, which was obtained in 77% yield from the enone 

V-5, was then treated with diis6butylaluminum hydride to form 
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the imine W-3, which was immediately reduced to the methyl 

ketal W-4 ~nder Wolff-Kishner conditions. Finally, removal 

of the ketal protecting group by acid hydrolysis gave the 

hexamethyl ketone W-5 in 93% yield from the cyano-ketal W-2. 

All that remained in the synthesis of germanicol was 

the addition of the gem-dimethyl grouping at the C-11 posi­

tion, the formation of the ~12 double bond, and the removal 

of the C-10 carbonyl function. The first two transformations 

were to be accomplished by conversion of the saturated ketone 

W-5 to the ~,~-unsaturated ketone X-2 and then dimethylation. 

The .double bond of ketone X-2 was introduced by a 

bromination--dehydrobromination procedure used by Marshall and 

. 2 71 
coworkers, and Long and Green. This procedure (bromination 

with bromine in acetic acid, followed by dehydrobromination 

with calcium carbonate in refluxing dimethylacetamide) gave high 

2 71 
yields in cis decalin and steroid systems, ' however applica-

tion of this method to the ketone W-5 resulted in only a fair 

yield of the «,~-unsaturated ketone X-2. Bromination of the 

-1 ketone fir (CHC1 3 ) 1700 cm (C=O) J led to a mixture of bromo-

ketones X-1 [ir (CHC1
3

) 1715 cm-l (broad C=O)J (Chart X). 

Treatment of this mixture with calcium carbonate in dimethyl-

acetamide gave, after purification, the enone X-2. The yield 

for these two steps was 32%. The reason for this low yield is 

uncertain; perhaps only one of the bromoketone isomers elimi-

nated to give the enone X-2 and the others did not. 
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The original plan for the conversion of the hexamethyl 

ketone X-2 to the octamethyl ketone X-4 called for a simple 

dimethylation step, however three attempts at gem-dimethyla­

tion of this unsaturated ketone with methyl iodide and 

potassium !-butoxide only resulted in recovery of starting 

material. Forcing conditions led to the destruction of the 

enone. Evidently the C-12a~ proton of the enone is too hin-

dered to be abstracted by the base. 

This problem was solved by deconjugation of the enone 

prior to methylation. A ketalization--deketalization experi­

ment indicated that the 6
11 double bond could be deconjugated 

to the .D.12 position. The double bond of the enone X-2 was 

equilibrated with hydrochloric acid in refluxing methanol. From 

an inspection of the infrared spectrum (1715 and 1675 cm- 1 ) 

of the product, it appears that at equilibrium the ~,f- and d,~­

enones were present in a 2:1 ratio. After re-equilibration of 

the q,ft-enone fraction, obtained from the first acid treatment, 

a 67% yield of the 13,(-unsaturated ketone X-3 was obtained. 

Alkylation of this ketone with potassium t-butoxide and 

methyl iodide gave the dimethylated ketone X-4 in 42% yield 

after purification. The oxygen function at the · C-10 position 

was removed by a Wolff-Kishner reduction 44 to afford a 57 % 

yield of dl-germanicol. 
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CONCLUSION 

The synthetic germanicol was identified by comparison 

. * with a sample of natural d~german1col. Both the natural and 

the synthetic compounds exhibited a single spot (Rf = 0.65) 

on analytical thin layer chromatography (3.3% methanol in 

. chloroform). 0 The vapor phase chromatograms (270 , 4% SE-30) 

of both exhibited one major peak at .a retention time of 4.9 

min. Co-injection produced a chromatogram with a peak at the 

same retention time. As Figures 27 and 28 illustrate, the 

infrared and nmr (220 MHz) spectra for the dl and d forms of 

germanicol were the same. 

* The natural triterpene was prepared by reduction of 
germanicyl acetate, which had been kindly provided by 
Professor C. Djerassi, Stanford University. 
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EXPERIMENTAL SECTION* 

*(a) The compounds containing an asymmetric carbon atom, 
which are mentioned in Part I of this thesis and are described 
herein, are optically active; the "d" or "l" prefix has been 
omitted. 

The compounds of Part II, which possess an asymmetric 
carbon atom, with the exception of d-germanicol, are racemic. 
The "dl" prefix has been omitted. -

(b) Melting points (mp) were determined on a Kofler 
Micro Hot Stage or a Thomas Hoover capillary melting point 
apparatus and are uncorrected. 

(c) Infrared (ir) spectra were determined on a Perkin­
Elmer 237B grating infrared spectrophotometer. Solution 
_spectra were observed in 0 .1 or 0. 2 mm cavity cells using 
chloroform or carbon tetrachloride as the solvent and a 
polystyrene calibration band at 1601.4 cm-1. 

(d) Ultraviolet (uv) spectral determinations were taken 
on a Cary sp~ctrophotometer (Model 11). 

. 0 

(e) Optical rotation [cxJB measurements were performed 
on a Perkin-Elmer polarimeter (Model 141). 

(f) Nuclear magnetic resonance (nmr) spectra were 
determined on Varian A-60A, T-60, and HR-220 spectrometers. 
Silanor C [Merck, Sharp and Dohme deuteriochloroform containing 
1% tetramethylsilane (TMS) as the internal reference], unless 
otherwise mentioned, was used as the solvent. The chemical 
shifts are reported as 5 values in ppm relative to TMS = O. 

(g) Vapor phase chromatographic (vpc) analyses were 
performed on a F and M gas chromatograph (Model 810),equipped 
with hydrogen flame detectors. Helium was used as the carrier 
gas at a flow rate of 50-75 ml / min. Analyses were carried out 
on 6-ft x 0.125-in columns packed with 1) 5% SE-30 on Diato­
port S, 60/80 mesh, referred to as a 5% SE-30 column; 2) 10% 
SE-30 on Chromosorb P, 60 / 80 mesh, referred to as a 10% SE-30 
Column; 3) 4~ SE-30 on Chromosorb WAWDMCS, 80 / 100 mesh, referred 
to as a 4% SE-30 column; and 4) 10% SE-52 on Chromosorb P, 
60/80 mesh, referred to as a 10% SE-52 column. Relative peak 
areas were determined by a disc chart integrator. 
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(h) Analytical thin layer chromatography (tlc) was 
performed according to Stahl. (E. Stahl, "Dilnnschicht­
Chromatographie Ein Laboratoriumshandbuch," Springer-Verlag, 
Berlin, 1962.) Silica Gel G (E. Merck AG) on lx3-in micro­
scope slides was employed as the adsorbent. Components were 
detected with iodine vapor or spraying with a 5% solution of 
phoaphomolybdic acid in ethanol followed by heating at 100-
150 for a few min. 

Preparative thin layer chromatography (source of 
adsorbent, plate size, development solvent) was performed on 

·plates coated with a 0.1-cm layer of silica gel PF-254+366 
(Brinkman Instrument Co.) or commercially prepared plates 
coated with a 0.25-cm layer of silica gel (Analtech). Unless 
otherwise mentioned, the dimensions of the plates were 
20x20 cm. Bands were observed with the aid of ultraviolet 
light. 

Merck silica gel (0.05-0.2 mm, 70 / 325 mesh) was 
used for column chromatography. 

(i) Elemental analyses were performed by Spang Micro­
analytical Laboratories, Ann Arbor, Michigan, and Elek Micro­
analytical Laboratories, Torrance, California. 

(j) Reactions were run under an inert gas. For the 
preparation of the compounds of Part I up to the cholestenol 
study, nitrogen was used; thereafter, argon was used. 

(k) As reaction solvents, dimethoxyethane, ether, tetra­
hydrofuran, benzene, pyridine, and dichloromethane were dried 
by distillation immediately prior to use. The first three 
were distilled from lithium aluminum hydride. Dimethoxy­
ethane was distilled in an argon atmosphere. Benzene and 
pyridine were distilled from calcium hydride, dichloromethane 
from phosphorous pentoxide. 

Petroleum ether refers to· the fraction with a boiling 
point (bp) range of 30-600, which is supplied by J. T . Baker 
Chemical Co. 

. The solvents used for extraction in the work-up 
procedures were reagent grade quality. In addition, benzene 
was distilled from calcium hydride before use. 

(1) The brine referred to in the work-up procedure is 
an aqueous saturated sodium chloride solution. Dilute brine 
is a saturate d sodium chloride solution diluted with an equal 
part of water. 
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(m) Concentration at reduced pressure refers to 
evaporation on a rotary evaporator connected to an aspirator 
system (20 mm) followed by additional evaporation on a 
vacuum line (0.05-0.1 mm). The latter step was omitted in 
the preparation of volatile compounds. 

(n) The chloroform used for crystallization and 
chromatography was reagent grade, which was stabilized with 
0.75% ethanol. 
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Dihydrocarvone (C-2) was prepared by the procedure of 

26 
Marshall. · To a solution of 18.7 g (2.69 moles) of lithium 

wire (cut in small pieces and washed with dry petroleum ether) 

in 3.0 1 of liquid ammonia (distilled) was added 101.2 g 

(0.674 mole) of 1-carvone (Calbiochem.) in 830 ml of anhydrous 

ether over a period of 3 hr. Then, 200 ml of absolute ethanol 

were added over a 3.5-hr period. The reaction mixture was 

quenched with 170 g (3.2 moles) of ammonium chloride, and the 

ammonia was allowed to evaporate overnight. Dilute brine 

(1000 ml) was added to the residue, and the resulting mixture 

was extracted with five. 200-ml portions of ether. The combined 

extracts were washed with 200 ml of brine and dried (Na2so4 ). 

Benzene (200 ml) was added, and the solvents were removed at 

reduced pressure to give 107 g of a yellow oil, which was 

0 dissolved in 700 ml of acetone, cooled to 2 , and treated with 

150 ml of 8 N chromium trioxide in sulfuric acid (Jones 

reagent27 ). The excess Jones reagent was destroyed by the 

dropwise addition of isopropyl alcohol, and the color of the 

reaction mixture changed from brown to green. The mixture 

was neutralized with solid sodium bicarbonate and filtered. 

Distillation of the filtrate at atmospheric pressure removed 

most of the solvent. The residue was poured into 500 ml of 

brine and extracted with five 100-ml portions of ether. The 

combined extracts were washed with two 100-ml portions of 

brine. These washings were re-extracted with 200 ml of ether. 

Benzene (5 ml) was added to the combined ethereal extracts, 
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.and this pale yellow oil was distilled. After removal of 

the solvents, the pressure was reduced to 22 mm. The product, 

dihydrocarvone, was obtained as a clear, colorless oil, 

weighing 75.5 g (74% yield), bp 106-109° (22 mm); 

ir (film) 3080 (vinylic C-H), 1715 (C=O), 1645 (C=C), and 

-1 890 cm (C=CH2 ). 

7,8-Isopropenyl-9«.-hydroxy-lOc:x-methyldecal-2-one (C-3 ) 26 was 

prepared by the procedure of Marshall. To 68.4 g (448 mmoles) 

of dihydrocarvone (prepared by the above method), which was 

cooled to -10° and mechanically stirred, was added 2.7 ml of 

3 N (8.1 mmoles) ethanolic sodium ethoxide. To this yellow 

.reaction mixture was addedl8.75 ml (231 mmoles) of methyl 

vinyl ketone (Aldrich) over a period of 1.25 hr. The resulting 

emerald green solution was stirred at -10° for 15 min and at 

room temperature for 18 hr. It was then poured into 200 ml of 

brine and extracted with five 100-ml portions of ether. The 

combined extracts were washed with 50 ml of brine and dried 

(Na2so4 ). On distillation, first at atmospheric pressure and 

then at reduced pressure, 40.6 g of dihydrocarvone (bp 38-42°, 

0.1 mm) was recovered. The crude ~roduct (C-3) was left in 

the distillation pot. 

The recovered starting material (40.6 g, 263 mmoles) was 

treated as above with 1.6 ml of 3 N (4.8 mmoles) ethanolic 

~odium ethoxide and 11.1 ml (137 mmoles) of methyl vinyl ketone. 

The reaction · mixture was distilled from the same flask, which 
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was used above and still ~ontained the crude ketol C-3. The 

recovered dihydrocarvone (bp 41-43°,0.12 mm), which weighed 

22.9 g (150 mmoles), was homoannelated a third time with 

0.9 ml of 3 N (2.7 mmoles) ethanolic sodium ethoxide and 

6.3 ml (77.6 mmoles) of methyl vinyl ketone. Distillation of 

this product mixture from the flask used above afforded 17.1 g 

(25% recovery) of dihydrocarvone (bp 36-42°, 0.12 mm) and 

0 0 
56.4 g of crude ketol C-3 (bp 95, 0.06 nun} to 170, 0.15 mm), 

which crystallized upon seeding with a previously purified 

sample. Recrystallization of this material from ether--

petroleum ether gave two crops of crystalline ketol C-3: 

. 0 0 
21.5 g, mp 105-107 , and 9.4 g, mp 103-106 . The mother liquors 

were chromatographed on 1 kg of activity III Woelm alumina. 

Elution with 7.0 1 of 10% ether in petroleum ether and 1.0 1 

of 30% ether in petroleum ether gave only unidentified side 

products. Continued elution with 30% (1.5 1) and 50% (4.0 1) 

ether in petroleum ether afforded 9.7 g of ketol, which was 

recrystallized from ether--petroleum ether to give a third 

crop of ketol C-3: 7.2 g, mp 103-106°. The total yield of 

38.1 g represented a 38% conversion or a 51% yield based on 

unrecovered dihydrocarvone. 

ir (film) 3460 (0- H), 3080 (vinylic C-H), 1705 (C=O), 

1645 (C=C), and 890 -1 (C=CH2 ). cm 

!!!!!!' (CDCl 0 ) 
.J 

b 1.22 (s, 1, C-10 CH3 ), 1.70 (d' 3, J=l, vinylic 
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7~-Isopropyl-10~-methyl-1(9)-octal-2-one (C-5) 26 was 

synthesized by the method of Marshall. Platinum oxide (2.5 g) 

was added to a solution of 38.0 g (171 mmoles) of ketol C-3 

(prepared above) in 400 ml of absolute ethanol. This mixture 

was stirred under a hydrogen atmosphere for 18 hr and then 

filtered through Celite and 5 g of Merck silica gel to remove 

the colloidal platinum. The solvent was evaporated at reduced 

pressure to give 40.8 g of a very viscous oil, containing the 

saturated ketol C-4 and some solvent. 

ir (film) 3445 (0-H), 1700 (C=O), and 1360 and 1380 

(gem-dimethyl). 

-1 
cm 

TO the rirude ketol C-4 was added 400 ml of 10% aqueous 

oxalic acid; the resulting biphasic mixture was boiled vigor-

ou~ly for 9 hr, cooled and extracted with five 100-ml portions 

of a 2:1 ether-benzene solution. The combined extracts were 

washed with two 50-ml portions of saturated aqueous sodium 

bicarbonate and 50 ml of brine, and dried (Na2 so4 ). Removal 

of the solvent at reduced pressure and evaporative distillation 

(60-120°, 0.1 mm) of the residue afforded 35.4 g (100% yield 

from the unsaturated ketol C-3) of ' the octalone C-5 as a 

colorless oil: 

ir (film) 1675 (C=O), 1620 (C=C), and 1365 and 1380 

(gem-dimethyl); 

-1 
cm 

ill!!!' (CDC1 3 ) b 0.88 (m, 6, -CH(CH3 ) 2 ), 1.27 (s, 3, C-10 CH3 ), 

5.73 (s, 1, vinylic H). 
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Lithium Aluminum Tri-!-butoxy Hydride. 28 To approxi­

mately 38 g (1.0 mole) of lithium aluminum hydride (obtained 

from 45 g of Ventron lithium aluminum hydride by a Soxhlet 

extraction) in 2.0 1 of anhydrous ether was added over a 

period of 4 hr with stirring 253 g (3.41 moles) of t-butanol 

(purified by distillation from calcium hydride). During the 

addition, heat was evolved. A reflux condenser was used to 

prevent excessive loss of ether. The product precipitated as 

a white powdei, which was washed thoroughly with ether and 

dried under vacuum to afford 266 g of lithium aluminum tri-t-

butoxy hydride. 

7,,B-Isopropyl-lOi:x..-methyl-1 (9)-octal-2o:'.-ol (C-6). A pro-

72 
cedure used by Bell was modified for this reduction. A 

solution of 9.0 g (43;6 mmoles) of octalone C-5 (obtained in 

the manner described above) in 450 ml of tetrahydrofuran was 

added to a solution of 50.2 g (197 mmoles) of lithium aluminum 

tri-!-butoxy hydride in 750 ml of tetrahydrofuran. The cloudy 

solution was heated at a vigorous reflux for 2 hr and then 

cooled. Next, 20-ml portions of 10% aqueous sodium hydroxide 

and saturated aqueous sodium sulfate were added slowly. After 

the . resulting paste had been stirred at room temperature for 

18 hr, . the solvent was removed at reduced pressure and the 

white residue was dissolved in a mixture of 1.0 1 of saturated 

aqueous ammonium chloride, 500 ml of a 2:1 ether-benzene 

solution, and just enough 10% aqueous hydrochloric acid to 

effect solution of the aluminum salts. This mixture was 
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extracted with five 200-ml portions of a 2:1 ether-benzene 

solution. ·The combined extracts were washed with saturated 

aqueous sodium bicarbonate and brine. The washings were 

back-extracted with 100 ml of the ether-benzene solution. The 

combined organic extracts were dried (Na
2
so

4
). Removal of the 

solvent at reduced pressure afforded the allylic alcohol C-6 

as white crystals weighing 8.96 g (99% crude yield). In the 

same manner, another 14.75 g (71.5 mmoles) of octalone C-5 

was reduced with 64.0 g (252 mmoles) of lithium aluminum 

tri-!-butoxy hydride in 2.0 1 of tetrahydrofuran, and then 

quenched with 25 . 5-ml portions of 10% aqueous sodium hydroxide 

and saturated aqueous sodium sulfate. Upon work-up, 14.87 g 

(quantitative crude yield) of the allylic alcohol C-6 was 

obtained. The combined products were sublimed (70°, 0.07 mm) 

to afford 22.0 g (91% yield) of white solid, the allylic 

alcohol C-6: 

ir (CHC1 3 ) 3595 and 3410 (0-H), 1655 (C=C), and 1365 and 

-1 1380 cm (gem-dimethyl). 

A portion of the allylic alcohol obtained from another 

experiment was recrystallized from -petroleum ether for the 

0 analytical sample: mp 83-84 ; 

nmr (CDC1 3 ) d 0.84 (m, 6, CH(CH3 ) 2 ), 1.14 (s, 3, C-10 CH3 ), 

4. 22 (m, 1, CHOH) , 5. 29 ( s, 1, vinylic H); 

Anal. Calcd for c14n24o: C, 80.71; H, 11.61. Found: C, 80.77; 

H, 11.48. 
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9~-(N,N-Dimethylcarboxamidomethyl)-7ft-isopropyl-10~­

methyl-l-octalin (D-1). The procedure of Ning 73 was 

modified . . A mixture of 5.0 g (24.0 mmoles) of allylic alcohol 

C-6 (mp 73-80° after sublimation, prepared by the method 

described in the preceding experiment) and 6.35 g (47.7 mmoles) 

of N,N-dimethylacetamidedimethylacetal (Fluka) in 48 ml of 

p~xylene was heated in a sealed flask at 114° for 8 hr. After 

cooling, another 6.35 g (47.7 mmoles) of N,N-dimethylacetamide­

dimethylacetal was added and heating (114°) was continued for 

16 hr. After removal of the volatile materials at reduced 

pressure, the residue was chromatographed on 240 g of activity I 

Woelm alumina. Elution with ether and 10% methanol in ether 

gave 4.27 g of crude amide D-1. Recrystallization from 

petroleum ether afforded a small amount of purer material. The 

mother liquors were chromatographed on 100 g of activity III 

Woelm alumina; elution with petroleum ether and then ether gave 

1.94 g of purer amide. The combined purified fractions were 

crystallized from petroleum ether and gave 1.96 g (29% yield) 

of analytically pure unsaturated amide D-1 as white crystals: 

0 
mp <37 ; 

ir (film) 3000 (vinylic C-H), 1645 (C=O), and 1385 cm-l (gem­

dimethyl); 

nmr (CDC1 3 ) 6 0.87 (m, 9, ~11 cg
3

), 2.44 and 2.49 (s, 1 each, 

CH2-co)., 2.95 and 3.04 (s, 3 each, N-CH
3
), 5.63 (m, 2, 

vinylic H); 
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~· Calcd for c18H31NO: C, 77.92; H, 11.26; N, 5.05. 

Found: C, 78.06; H, 11.31; N, 4.99. 

9oc:-(N,N-Dimethylcarboxamidomethyl)-7,.6'-isopropyl-10a:-

methyldecalin (D-2). To a solution of 228 mg (0.83 mmole) of 

unsaturated amide D-1 (obtained by a procedure similar to the 

one described above) in 20 ml of absolute ethanol was added 

50 mg of 10% palladium on charcoal. This mixture was stirred 

under a hydrogen atmosphere for 4.5 hr and then filtered. The 

solvent was removed at reduced pressure to give 228 mg (99% 

crude yield) of saturated amide D-2 as a pale yellow oil: 

ir (film) 1645 (C=O) and 1385 -1 (gem-dimethyl); cm -
nmr (CDC1 3 ) l> 0.87 (m' 9, all CH3 ), 2.12 and 2.66 (d' 1 each, 

J=14., CH2-CO), 2.92 and 3.07 (s, 3 each, N-CH3 ). 

This material was used in the next reaction without further 

purification. 

A sample prepared by an identical procedure was purified 

for analysis by evaporative distillation at 133° (O.l mm). The 

infrared spectrum of this distilled material was identical to 

that of the crude material.obtained above. 

Anal. Calcd for c18H33No: C, 77.36; H, 11.90; N, 5.01 .. Found: 

C, 77.45; H, 11.99; N, 5.04. 

9~-Carboxaldehydomethyl-~-isopropyl-lO«~methyldecalin 

Semicarbazone (D-3). The procedure of Brown and Tsukamoto12 

was modified; A solution of 224 mg (0 .80 mmole) of amide D-2 

(prepared in the previous reaction) in 2 ml of dry ether was 
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cooled to o0
, while 0.89 ml of 0.523 M (0.46 mmole) lithium di-

hydrodiethoxyaluminate in ether was added over a period of 

1.5 hr. The cloudy solution was stirred at o0 
for another 

30 min, and then 4.5 ml of 2 N (9.0 mmoles) aqueous hydro-

chloric acid was slowly added. The reaction mixture was 

extracted with four 50-ml portions of a 2:1 ether-benzene 

.solution, and the combined extracts were washed with 50 ml 

portions of saturated aqueous sodium bicarbonate and brine. 

The washings were re-extracted with 50 ml of the ether-benzene 

solution. The combined organic phases were dried (Na2so4 ). 

Removal of the solvent at reduced pressure afforded 194 mg of 

an oil: 

ir (film) 3410 (0-H), 2720 (aldehyde C-H), 1720 (aldehyde C=O), 

-1 1640 (amide C=O), and 1365 and 1380 cm (gem-dimethyl). 

The aldehyde D-4 was isolated and purified as the semi-

b D 3 b th d f F . d F. 28 car azone - y e proce ure o 1eser an 1eser. A 

solution of the crude aldehyde in the minimum amount of 

methanol necessary to effect solution was treated with 0.5 ml 

of 2 M (1.0 mmole) aqueous semicarbazide hydrochloride and 

0.14 ml of pyridine. Two crops of crystalline semicarbazone 

0 
were obtained: 86 mg of white crystals, mp 171-173 , and 34 mg 

of cream-colored crystals, mp 164-168°, a total yield of 120 mg 

(51%): 

ir (CHC1 3 ) 3150, 3475, and 3540 (N-H), and 1690 cm-l (C=O). 

A sample of the semicarbazone prepared in a similar 

manner was recrystallized from benzene to give the analytical 



106 

sample as a white powder, mp 170-173°, the infrared spectrum 

of which was identical to that described above. 

Anal. Calcd for c17tt31N3o: C, 69.58; H, 10.65; N, 14.32. 

(D-4) . 

Found: C, 69.76; H, 10.67; N, 14.39. 

9~-Carboxaldehydomethyl-7fi-isopropyl-10~-methyldecalin 

The semicarbazone D-3 (122 mg, 0.42 mmole), which 

was obtained by a procedure similar to that described above, 

was dissolved in 25 ml of benzene. After the additon of 25 ml 

of 3 N aqueous hydrochloric acid, the mixture was heated at 

reflux for 3 hr, cooled, and then extracted with four 50-ml 

portions of a 2:1 ether-benzene solution. The combined 

extracts were washed with 50-ml portions of saturated aqueous 

sodium bicarbonate and brine. The washings were re-extracted 

with two 50-ml portions of the ether-benzene solution. The 

combined organic phases were dried. (Na2so4 ). Removal of the 

solvent at reduced pressure left 101 mg (103% crude yield) of 

the aldehyde D-4 as a pale yellow oil: 

ir (film) 2710 (aldehyde C-H), 1720 (C=o), 1365 and 1385 

(gem-dimethyl); 

-1 cm 

nmr (CDC1 3 ) b 0.85 (~, 9, CH3 ), 2.11 (d of d, 1, JAX=3, JA8 =14, 

CH2-CHO), 2.74 (d of ct, 1, JBX=4, JAB=l4, CH2-CHO), 

9.87 (d of d, 1, JAx=3, JBX=4, -CHO). 

This material was decarbonylated immediately without further 

purif ica ti on .. 
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Tris(triphenylphosphine)chlororhodium(I) (XXIX) was 

prepared by the procedure of Wilkinson. 16 A solution of 

3.0 g (11.4 mmoles) of rhodium trichloride trihydrate (Alfa) 

in 105 ml of hot absolute ethanol was added to a warm solu-

tion of 18.0 g (68.6 mmoles) of triphenylphosphine in 525 ml 

of absolute ethanol. A brown solid immediately precipitated. 

On heating the stirred mixture at reflux for 1.5 hr in a 

nitrogen atmosphere, the brown precipitate was replaced by 

reddish-purple crystals. The suspension was cooled, and 

the solid was washed twice with ethanol and twice with ether, 

and dried at reduced pressure to afford 8.84 g (84% yield) of 

tris(triphenylphosphine)chlororhodium(I) as reddish-purple 

crystals. 

9cx, 10()(.-Dimethyl..:7,8-isopropyldecal in (XXXII ). A reported 

15 procedure was modified •. To a solution of 101 mg (about 

0.42 mmole) of crude aldehyde D-4 (synthesized by the above 

procedure) in 10 ml of benzene was added 444 mg (0.48 mmole) 

of tris(triphenylphosphine)chlororhodium(I) (prepared by the 

procedure of Wilkinson16), and the resulting red suspension 

was heated at reflux for 22 hr. The solvent was removed at 

reduced pressure, and the residue was evaporatively distilled 

at 130-155° (10-12 mm) over a period of 6 hr to give 37.3 mg 

(43% yield from the . semicarbazone D-3) of analytically pure 

hydrocarbon XXXII as a clear, colorless oil: 

ir (film) -1 
1365 and 1380 cm (gem-dimethyl); 
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~ (CDC1 3 ) S 0.88 (m, 12, all CH3 ); 

Anal. Calcd for c15H28 : C, 86.46; H, 13.54. Found: C, 86.38; 

H, 13. 59. 

7~-Isopropyl-10«-methyl-1(9)-octal-2~-yl Vinyl Ether 

(E-1). A procedure used by Ireland and coworkers8 was modified. 

Ethyl vinyl ether (Eastman) was purified by heating at reflux 

over sodium for 3 hr and then distilling into a flask, which 

had been cleaned with hot chromic acid solution, rinsed with 

distilled water, and dried in an oven. To 400 ml of the 

purified ethyl vinyl ether was added 6.89 g (33.1 mmoles) of 

allylic alcohol C-6 (obtained by the procedure described above) 

and 3.32 g (10.4 mmoles) of mercuric acetate (MCB, recrystal­

lized from ethanol containing 0.02% acetic acid, and dried and 

stored at reduced pressure). The clear, colorless solution 

was heated at reflux for 17 hr; then 0.25 ml (4.4 mmoles) of 

acetic acid was added, and the solution was stirred for 3.5 hr 

at room temperature, before it was poured into a mixture of 

600 ml of petroleum ether and 90 ml of 5% aqueous potassium 

hydroxide. The organic layer was washed with three 90-ml 

portions of water and dried (Na2so~ and Na2co3 ). Removal of 

the solvent at reduced pressure afforded 8.3 g of a colorless 

oil, which was filtered through 240 g of neutral Merck alumina 

to remove the mercuric salts and starting material. Petroleum 

ether eluted 6.71 g (87% yield) of the vinyl ether E-1, as a 

clear, colorless oil: 
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ir (film) 3110 (vinylic C-H), 1605 and 1630 (C=C), and 

-1 1365 and 1385 cm (gem-dimethyl); 

nmr (CDC1 3) § 0.87 (m, 6, CH(CH3 ) 2 ), 1.15 (s, 3, angular CH
3
), 

4.00 (d of d, 1, JAX=7, JAB=l.5, -CH=CH2 ), 4.32 (d of d, 

1, JBX=l4, JAB=l.5, -CH=CH2 ), 4.0-4.6 (m, 1, CHOH), 5.37 

(m, 1, C-1 H), 6.39 (d of d, 1, JAX=7, JBX=l4, -CH=CH2 ). 

A portion of this material was evaporatively distilled 

at 80° (O .1 mm) to give the ,analyti.cal sample, the infrared 

spectrum of which was identical to that of the undistilled 

material. 

Anal. Calcd for c16H26o: C, 81.99; H, 11.18. Found: C, 82.04; 

H, 11.26. 

Repetition of this experimental procedure gave low and 

variable yields. 

9a-Carboxaldehydomethyl-7~-isopropyl-10~-methyl-l-

octalin Semicarbazone (E-2). A procedure of Ireland and co­

workers8 was modified. A sample (523 mg, 2.2 mmoles) of vinyl 

ether E-1 (prepared in the preceding reaction) was sealed in a 

Carius tube under a reduced nitrogen pressure. The tube was 

suspended in refluxing ethylene gly~ol (bp 196-198°) for 3 hr, 

cooled, and opened carefully. Vapor phase chromatography 

(200°, 5% SE-30) of the contents showed one major peak with a 

retention time of 3.9 min (85%) 

ir (film) 30l0 (vinylic C-H), and 1365, 1375, and 1385 
~ 

-1 
(gem-dimethyl), 2725 (aldehyde C-H), and 1720 cm (C=O). 
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A mixture of this material, 1.1 ml of 2 M (2.2 mmoles) 

aqueous semicarbazide hydrochloride, and 0.28 ml of pyridine 

was dissolved in enough methanol and ether to effect solution 

(total volume: 30 ml). After warming on a steam bath, the 

solution was filtered and boiled to dryness. The residue was 

crystallized from benzene, and crystalline semicarbazone E-2 

was obtained in two crops: 105 mg, mp 181°, which was used for 

0 
the analytical sample, and 248 mg, mp 178-180 (a total yield 

of 54%). 

Anal. Calcd for c17H29N30: C, 70.06; H, 10.03; N, 14.42. 

Found: C, 70.17; H, 10 . 10; N, 14.36. 

9<t-Carboxaldehydomethyl-7j3-isopropyl-10a:-methyl-l-

octalin (E-3). The saturated semicarbazone D-3 cleavage 

procedure was used. A mixture of 248 mg (0.85 mmole) of semi­

carbazone E-2 (mp 178-180°), 50 ml of benzene, and 50 ml of 3N 

aqueous hydrochloric acid was stirred and heated at reflux for 

3 hr, cooled, and extracted with four 100-ml portions of a 2:1 

ether-benzene solution. The extracts were washed with 100-ml 

portions of saturated aqueous sodium bicarbonate and brine. 

The combined washings were re-extracted with 100 ml of ether-

benzene. The combined extracts were dried (Na2so4 ) and then 

concentrated at reduced pressure to afford 186 mg (93% crude 

yield) of the unsaturated aldehyde E-3 as a pale yellow oil, 

which was used in the next reaction without further purifica-

tion: 
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ir (film) 3010 (vinylic C-H), 2725 (aldehyde C-H), 1720 (C=O), 

1650 (C=C), and 1370 and 1380 cm-l (gem-dimethyl); 

nmr (CDC1 3 ) & 0.85 (m, 9, all CH3 ), 2.46 (d, 2, J=3, -CH2-CHO), 

5.72 (s, 2, vinylic H), 9.91 (t, 1, J=3, -CHO). 

9~,10«-Dimethyl-7fi-isopropyl-l-octalin (E-4). The pro-

cedure used for the decarbonylation of the saturated aldehyde 

D-4 was followed. To a solution of 1.52 g (6.5 mmoles) of 

unsaturated aldehyde E-3 (prepared by the above procedure) 

in 150 ml of b~nzene was added 6.64 g (7.2 mmoles) of tris-

(triphenylphosphine)chlororhodium(I). After the red suspen-

sion had been heated at reflux for 39 hr, the solvent was 

removed by distillation first at atmospheric and then at 

reduced pressure. The residue was filtered through 45 g of 

Merck silica gel; ether was used as the eluant. After removal 

of the solvent, the residual oil was evaporatively distilled 

at 85° (0.03 mm) to give 1.04 g (78% yield) of olefin E-4 as a 

clear, colorless oil: 

ir (film) 3010 (vinylic C-H), 1650 (C=C), and 1370, 1375, and 

-1 1385 cm (gem-dimethyl); 

nmr (CDC1
3

) ~ 0.88 (m, 12, all CH3 }, 5.42 (m, 2, vinylic H). 

A similarly prepared sample had the same infrared spectrum 

and was submitted for analysis. 

Anal. Calcd for c15H26 : C, 87.30; H, 12.70. Found: C, 87.22; 

H, 12. 60. 
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9~,lOa:'.-Dimethyl-7~-isopropyl-2-decalone (E-6). The 

hydroboration--oxidation and Jones oxidation procedures 

used by Ireland and coworkers30 were modified. To a solution 

of 207 mg (1.00 mmole) of octalin E-4 (prepared in the pre­

ceding reaction) in 6.6 ml of ether was added 4.9 ml of 

0.213 M (1.04 mmoles) diborane in tetrahydrofuran.
74 

After 

the reaction mixture had been stirred at room temperature 

for 1.5 hr, 1.6 ml of 10% aqueous sodium hydroxide and 1.6 ml 

of 30% aqueous hydrogen peroxide were slowly added. The solu-

tion was heated at reflux for 30 min, cooled, poured into 

100 ml of brine, and extracted with five 25-ml portions of 

ether. The combined extracts were washed with 50-ml portions 

of water and brine, and dried (Na 2so4 ). Removal of the sol­

vent at reduced pressure afforded 225 mg (quantitative crude 

yield) of alcohol mixture E-5 as a clear oil. 

The crude hydroboration--oxidation product was dissolved 

in 14 ml of acetone and cooled in an ice bath, while 0.29 ml of 

8 N chromic acid (Jones reagent) 27 was slowly added with 

stirring. After 3 min, the excess oxidant was reduced with 

isopropanol, and 7.2 ml of 5% aqueous potassium carbonate was 

added to neutralize the acid. This reaction mixture was 

worked-up the same way as the alcohol mixture E-5 was and 

afforded 203 mg of a clear oil, the vapor phase chromatogram 

(200°, 10% SE-30) of which showed two peaks with retention 

times of 2.1 (12%) and 4.5 min (88%). Under the same condi-

tions, the chromatogram of the starting material (olefin E-4) 
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had one peak with a retention time of 2.1 min. The crude 

oxidation product was purified by preparative thin layer 

chromatography (Merck silica gel, 25% petroleum ether in ben­

zene) to give 150 mg of ketone E-6 as a clear oil: 

ir (film) 1720 (C=O), and 1375 and 1385 cm-l (gem-dimethyl); 

nmr (CDC1 3 ) 8 0.83 (m, 6, CH(CH3 ) 2 ), 0.98 (s, 3, C-9 CH3 ), 1.12 

(s, 3, C-10 CH3 ), 1.9-2.6 (m, 4, -CH2COCH2-). 

The assignment of the nmr signals for the C-9 and C-10 methyl 

groups was based on a comparison of this spectrum with that of 

the keto-acetal I-2. 

Evaporative distillation at 75° (0.02 mm) of the clear 

oil gave 138 mg (62% yield from the olefin E-4) of analytically 

pure ketone E-6. 

Anal. Calcd for c15H26o: C, 81.02; H, 11.79. Found: C, 81.06; 

H, 11.75. 

9~-Carboxymethyl-7~-isopropyl-10~-methyl-l-octalin (F-1). 

An oxidation procedure used by Ireland and coworkers8 was 

modified. The crude aldehyde E-3 (1.75 g, 7.5 mmoles) from 

Claisen rearrangement of vinyl ether E-1, was dissolved in 75 ml 

of absolute ethanol. To this solution was added 1.2 g (7.1 

mmoles) of silver nitrate dissolved in 13 ml of water and 1.2 g 

(30 mmoles) of sodium hydroxide in 49 ml of water. The 

black reaction mixture was stiried at room temperature for 

2_. 5 hr, poured in to 150 ml of water, and extracted with three 

50-ml portions of ether, which were then discarded . The aqueous 

layer was acidified with concentrated hydrochloric acid 
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and extracted with four 50-ml portions of ether. The combined 

extracts were washed with 50 ml of brine and dried (Na2so4 ). 

Removal of the solvent at reduced pressure afforded 1.12 g 

0 (70% yield) of the acid F-1 as white crystals: mp 95-98.5 ; 

-1 2:.!: (CHC1 3 ) 1700 (C=O), and 1370 and 1385 cm (gem-dimethyl); 

nmr (CDC1 3 ) 6 0.85 (m, 9, all CH3 ), 2.22 and 2.67 (d, 1 each, 

J=l3, -CH2co2H), 5.3-6.1 (m, 2, vinylic H), 11.19 (broad 

s, 1, C02H). 

A portion of this material was chromatographed on Merck 

silica gel. The petroleum ether eluant was discarded. Ether 

eluted the analytically pure, white crY:stalline carboxylic 

acid F-1, mp 97-99°. 

Anal. Calcd for c16H26o2 : C, 76.75; H, 10.47. Found: C, 76.77; 

H, 10.43'. 

The Lactonization of Octalin F-1 was accomplished with 

t .h d f . . h d d 7 5 
e proce ure o Dietric an Le erer. A solution of 500 mg 

(2.00 mmoles) of the carboxylic acid F-1 (prepared by the above 

procedure) in 120 ml of formic acid (98-100%, B and A) was 

heated at reflux for 1.25 hr, cooled, poured into 500 ml of 

water, and extracted with four 50-ml portions of a 2:1 ether-

benzene solution. The combined extracts were washed with two 

50-ml p6rtions of saturated aqueous sodium bica~bonate and two 

50-ml portions of brine, and dried (Na2so4 ). The solvent was 

removed at reduced pressure. The residue, a golden oil, was 

evaporatively distilled at 115° (0.02 mm) to give 486 mg (97% 

yield) of the lactone F-2 as a clear, colorless oil, which 
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solidified upon seeding. The infrared spectrum of this material 

was identical to that of the analytical sample, mp 40-45°, 

obtained earlier using this procedure: 

-1 
ir (CHC1

3
) 1770 (C=O), and 1370 and 1385 cm (gem-dimethyl); 

nmr (CDC1 3 ) ~ 0.87 (m, 6, CH(CH3 ) 2 ), 1.00 (s, 3, angular CH3 ), 

2.07 and 2.72 (d, 1 each, J=l7, -CH2co-), 4.10 (m, 1, 

;cHO-CO-); 

Anal. Calcd for c 16H26o2 : C, 76.75; H, 10.47. Found: C, 76.88; 

H, 10.42. 

The Reduction of the Lactone F-2 to the Lactol F-3 was car-

ried out by an adaptation of a procedure of Brown and 

Moerikofer33 which was modified by Ireland and Evans. 32 A 

solution of 0.59 g (8.5 mmoles) of 2-methyl-2-butene in 0.34 ml 

. 0 
of dry tetrahydrofuran was cooled to -20 while 4.05 ml of 

0. 48 M (1 . . 94 mmoles) di borane 7 4 in tetrahydrofuran was added 

over a period of 1 hr. The solution was stirred at o0 for 4 hr 

and then diluted with 3.0 ml of dry tetrahydrofuran. A solution 

of 251 mg (1.00 mmole) of the lactone F-2 (prepared in the 

preceding experiment) in 2.2 ml of dry tetrahydrofuran was added 

dropwise over a period of 15 min to· this disiamylborane solution, 

and the resulting reaction mixture was stirred at o0 for two 

hr and at room temperature for 10.5 hr. The reaction mixture 

was again cooled to o0 while 0.74 ml of water and 1.76 ml of 

30% aqueous hydrogen peroxide, which had been made basic (pH=8) 

with 10% aqueous sodium hydroxide, were slowly added. This 

mixture was stirred at room temperature for 1 hr. The solvent 
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was removed at reduced pressure. To the residue was added 

100 ml of benzene, and this mixture was washed with 50 ml of 

5% aqueous potassium hydroxide and three 50-ml portions of 

brine, and dried (Na2so4 ). Removal of the solvent at reduced 

pressure gave 227 mg of a cloudy oil, which was evaporatively 

distilled at 115° (0.03 mm) to afford 163 mg of analytically 

pure lactol F-3 as a clear, colorless oil (64% yield): 

ir (film) -1 3385 (0-H), and 1365 and 1380 cm (gem-dimethyl); 

nmr (CDC1 3 ) <5 · 0.85 (m, 6,CH(CH
3

)
2
), 0.93 (s, 3, angular CH

3
), 

3.82 (m, 1, ~CHO-CHOH-), 5.47 (m, 1, ~CHO-CHOH-); 

Anal. Calcd for c16H28o2 : C, 76.14; H, 11.18. Found: C, 76.26; 

H, 11.15. 

The Attempted Decarbonylation of Lactol F-3. The aldehyde 

E-3 decarbonylation procedure was used. A mixture of 151 mg 

(0.60 mmole) of lactol F-3 . (prepared in the above procedure) 

dissolved in 14 ml of benzene and 0.62 g (0.67 mmole) of tris­

(triphenylphosphine)chlororhodium(I) was heated at reflux for 

45 hr. 0 The vapor phase chromatograms (260 , 10% SE-30) of 

aliquots of the reaction mixture, which were taken during this 

time period, indicated that the three peaks corresponding to 

the vpc pattern of the starting material (retention times 1.3, 

2.2, and 3.1 min) were not decreasing. Therefore, 1.0 ml of 

concentrated hydrochloric acid was added to the reaction mix-

ture to shift the position of the lactol--hydroxy-aldehyde 

equilibrium. The reaction mixture first turned clear and 

then a yellow precipitate formed. After being heated at reflux 
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for 26 hr, the mixture was poured into ether, washed with 

saturated aqueous sodium bicarbonate and brine, and dried 

(Na
2
so4 ). The residue left after removal of the solvent at 

reduced pressure was chromatographed on 15 g of activity I 

Woelm alumina. Elution with petroleum ether and 5% ether in 

petroleum ether produced only unidentifiable material; elution 

w~th 50% ether in petroleum ether afforded 32 mg (22% yield) 

of the lactone F-2 as a yellow oil: 

ir (CHC1 3 ) -1 1770 (C=O), and 1365 and 1385 cm (gem-dimethyl). 

The infrared spectrum of this material was the same as that 

obtained in the lactonization of octalin F-1 experiment. 

l-Bromo~9~,100\-dimethyl-2-hydroxy-7,S-isopropyldecalin 

(G-1). The procedure of Dalton and coworkers34 was modified. 

To a solution of 206 mg (1.00 mmole) of octalin E-4 (prepared 

above) and 45 ~l (2.50 mmoles) of water in 5 ml of dimethyl­

sulfoxide (dried over Linde 4A molecular sieves) was added 

356 mg (2.00 mmoles) of N-bromosuccinimide. The resulting 

yellow solution was stirred at room temperature for 1 hr, 

poured into 50 ml of brine, and extracted with five 25-ml 

portions of ether. The combined organic extracts were washed 

with two 50-ml portions of wat~r and 50 ml of brine, and 

dried (Na
2
so4 ). Removal of the solvent afforded 292 mg of 

yellow crystals. Two recrystallizations from petroleum ether 

produced 25 mg of pure bromohydrin G-1 as white needles: 

0 
mp 88.5-91.5 ; 
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Anal. Calcd for c15H27Br0: C, 59.40; H, 8.97; Br, 26.35. 

Found: C, 59.17; H, 8.94; Br, 26.29. 

The mother liquors were chromatographed on 30 g of Merck 

silica gel. Elution with petroleum ether gave only unidenti-

fiable material; elution with 20% ether in petroleum ether 

produced 175 mg of bromohydrin G-1 as pale yellow needles; 

0 mp 85-89.5 ; 

-1 3550-3600 (O-H), and 1365 and 1385 cm (gem-di-

methyl); · 

nmr (CDC1 3 ) S 0.82-1.07 (m, 12, all CH3 ), 3.9-4.4 (m, 1, 

CHOH), 4.45 (d, 1, J=7, CHBr). 

The . total yield was 200 mg (66%). 

The Oxidation and Debromination of Bromohydrin G-1. The 

bromohydrin was oxidized by a procedure used by Ireland and 

30 coworkers. A solution of 173 mg (0.57 mmole) of bromohydrin 

G-1 (prepared in the preceding reaction) in 8 ml of acetone 

was stirred at o0 while 0.23 ml of 8 N chromic acict27 was added 

dropwise. The yellow solution was stirred at o0 for 2 min, 

quenched with excess isopropanol (the mixture became green) 

and 6.1 ml of 5% aqueous potassium . carbonate, poured into 

50 ml of brine, and extracted with four 25-ml portions of a 

2:1 ether-benzene solution. The combined extr~cts were washed 

with 50 ml of brine and dried (Na2 so4 ) . The residue left after 

removal of the solvent at reduced pressure was evaporatively 

distilled at 95° (0.01 mm) to ~fford 143 mg (83% yield) of 

the bromoketone G-2 as a pale yellow oil: 
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ir (film) -1 1720 (C=O), and 1375 and 1385 cm (gem-dimethyl); 

nmr (CDC13 ) § 0.84 (m, 6, CH(CH3 ) 2 ), 1.23 and 1.33 (s, 3 each, 

angular CH3 ), 3. 78 (m, 1, CHBr). 

The debromination step was perfomed according to a 

35 modified published procedure. A solution of 82 mg (0.27 

mmole) of the bromoketone and 44 mg (0.53 mmole) of sodium 

: a6etate in 0.44 ml of acetic acid was stirred at 100° while 

52 mg (0.81 mmole) of zinc dust was added. Stirring at 100° 

was continued for 25 min, and then the reaction mixture was 

cooled, diluted with ether, . and .filtered. The sol vent was 

removed from the filtrate at reduced pressure. The residue 

was added to 100 ml of ether, washed with 50-ml . portions of 

10% aqueous hydrochloric acid, saturated aqueous sodium bi-

carbonate, and brine, and dried (Na2 so4 ). Removal of the 

solvent at reduced pressure afforded 60 mg (99% crude yield) 

of ketone E-6 as an oil, the infrared and nmr spectra of 

which were identical to those of decalone E-6 prepared by 

the hydroboration--oxidation route. 

The Epoxidation of the Octalin E-4 was done according to 
. 28 

a standard procedure. A solution of 206 mg (1.00 mmole) of 

octalin E-4 (prepared by a previously described procedure) 

and 244 mg (1.20 mmoles) of m-chloroperoxybenzoic acid (85%, 

Aldrich) in 10 ml of methylene chloride was stirred at -20° 

for 2 hr and.at room temperature for 15.5 hr, then 120 mg 

(0.60 mmole) more of m-chlorope-roxybenzoic acid was added, and 

stirring was continued for 4. 5 hr. A 10% aqueous sodium sul-
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fite solution was added until a negative starch-iodide test 

was obtained. The reaction mixture was diluted with 50 ml of 

ether and washed with two 50-ml portions of 5% aqueous sodium 

bicarbonate and 50 ml of brine, and dried (Na2so4 ). After 

removal of the solvents at reduced pressure, the residue 

(232 mg of an oil) was purified to remove the starting material 

(octalin E-4). Preparative thin layer chromatography (Merck 

silica gel, petroleum ether) afforded 151, mg of epoxide, which 

0 was evaporatively distilled at 65 (0.03 mm) to give 121 mg 

(55% yield) of the purified epoxide mixture H-1 as a clear, 

colorless oil: 

ir (film) 
-1 . 

1365 and 1380 cm (gem-dimethyl); 

nmr (CDC1 3 ) 6 0.78 (m, 6, CH(CH3 ) 2 ), 0.91 (s, 2, angular CH
3
), 

0.95 (s, 1, angular CH
3
), 1.02 (s, 2, angular CH

3
), 1.13 

(s, 1, angular CH3 ), 2.61 and 3.22 (m, 1 each, C-1 and 

C-2 H); 

Anal. Galcd for c15H26o: C, 81.02; H, 11.79. Found: C, 81.13; 

H, 11.94. 

2 Marshall and coworkers have synthesized the optical isomer of 

the o<. epoxide, the nmr spectrum of which had angular methyl 

signals at 0.93 and 1.12 S. Therefore, it appears that the 

epoxid~ mixture prepared above contains the ~ and ~ epoxides 

in a ratio of 1:2. 

l-Valeranone (IX). A 114-mg portion (0.51 mmole) of the 

epoxide mixture H-1 from the preceding reaction was dissolved 

in 14.5 ml of tetrahydrofuran, and then 22.4 mg (0.59 mmoles) 
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of lithium aluminum hydride (Ventron) was added. This mix-

ture was heated at reflux for 21 hr. The vapor phase 

chromatogram (220°, 10% SE-52) of the mixture exhibited two 

peaks with retention times of 2.3 (70%) and 2.6 min (30%). 

The retention time of the starting material was 2.3 min. 

Another portion of lithium aluminum hydride (0.50 g, 13.2 

minoles) was added, and heating at reflux was continued for 

1.25 hr. At the end of this period, the vapor phase chromato-

gram of. the reaction mixture had no 2.3 min retention time 

peak. The reaction mixture was diluted with 50 ml of ether, 

quenched by the addition of excess ethyl acetate, 10% aqueous 

sodium hydroxide, and saturated sodium sulfate, and poured 

into 100 ml of ether. This mixture was washed with two 50-ml 

portions of brine, and dried (Na2so4 ). The residue obtained 

by removal of the solvent at reduced pressure was evaporatively 

distilled at 75° (0.03 mm) to afford 86 mg (74% yield) of a 

mixture of alcohols as a colorless oil: 

ir (film) 
-1 3350 (0-H), and 1370 and 1380 cm (gem-dimethyl). 

nmr (CDC1 3 ) cS 0.81-1.03 (m, 12, CH3 ), 3.33 (m, 0.3, C-1 CHOR), 

4 . 10 ( m , 0 . 7 , C- 2 CH OH ) . 

36 By a similar procedure, reduction of 194 mg (0.87 

mmole) .of the epoxide mixture H-1 with aluminum hydride, which 

was p~epared from 380 mg (10.0 mmole~ of lithium aluminum 

hydride and 441 mg (3.30 mmoles) of aluminum chloride, in 5 ml 

of refluxing tetrahydrofuran afforded a 69% yield of an 

alcohol mixture after 18 hr. This mixture was identical to 
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that produced in the lithium aluminu.m hydride reduction by an 

ir and nmr spectral comparison. 

The attempted reduction of the epoxide mixture with 

lithium aluminum tri-!-butoxyhydride in refluxing tetrahydro-

furan for .a period of 18 hr resulted in a 97% recovery of 

starting material. 

A portion of the alcohol mixture, which was obtained 

from the lithium aluminum hydride reduction of the epoxides, 

was oxidized with Jones reagent by the procedure used above. 

To a stirred solution of 83 mg (0.37 mmole) of the alcohol 

mixture H-2 in 5 ml of acetone at o0 
was added 0.15 ml of 

8 N chromic acid solution. The orange solution was stirred 

at o0 
for 2 min and then quenched by the sequential addition 

of excess isopropanol ·and 3.9 ml of 5% aqueous potassium car-

bonate. The mixture was poured into 50 ml of brine and ex-

tracted with four 25-ml portions of a 2:1 ether-benzene 

solution. The combined extracts were washed with 50 ml of 

brine and dried (Na2so4 ). Removal of the solvent at reduced 

pressure afforded 75 mg (91% crude yield) of a mixture of 

ketones: 

ir (film) -1 1700-1715 (C=O), and 1370 and 1380 cm (gem-di 

methyl). 

The vapor phase chromatogram (200°, 10% SE-52) of this oil 

showed two partially separated peaks with retention times of 

4.1 (30%) and 4.3 min (70%). 

A similar ketone mixture (123 mg) was obtained by a 
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Jones oxidation of 126 mg of the alcohol mixture from the 

aluminum hydride reduction of the epoxides. 

These two oxidation products were combined . A 162-mg 

portion of this mixture was separated by preparative thin 

layer chromatography (Merck silica gel, 5x20x0.l cm plate, 

8% ether in petroleum ether, extended development). The 

component with the lower Rf was the 2-decalone E-6, which 

weighed 71.5 mg (35% yield) and which was identified by 

comparison of its infrared spectrum with that of the 2-decalone 

prepared in a previous experiment. The 2,4-dinitrophenyl­

hydrazone derivative melted at 118-122° with decomposition. 

The faster moving component was evaporatively distilled 

at 65° (0.02 mm) to give 47 mg (23% yield) of 1-valeranone 

as a colorless oil. The 2,4-dinitrophenylhydrazone, which 

76 
was prepared by the method of Shriner and Fuson and crystal-

lized from ethanol, melted at 100-104.5° (literature: 2 104-

1050). The infrared spectrum of the synthetic !-valeranone 

17 was identical to the published infrared spectrum of the 

natural 1-valeranone. 

ir (film) 
-1 

1700 (C=O), and 1370 and' 1380 cm (gem-dimethyl); 

nmr (CDC1 3 ) b 0.86 (m, 9, CH(CH3 ) 2 

1~05 (s, 3, angular ' CH3 ). 

and one angular CH
3
), 

Anal. Calcd for c15H26o: C, 81.02; H, 11 . 79. Found: C, 81.11; 

H, 11. 88. 
0 

The specific rotation ([otJ 35 ) of the synthesized 
D 
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1-valeranone in ethanol was -42.1° ± 2.8°, which is in good 

agreement with the published value of -40.1°.
18 

9<X.- (2', 2 '-Ethylenedioxyethyl) -7,8-isopropyl-lOa..-methyl­

l-octalin (I-1). A procedure developed in the Johnson 

laboratories38 was followed. To a solution of 2.01 g (8.6 

mmoles) of the crude unsaturated aldehyde E-3 (obtained by 

the Claisen rearrangement of vinyl ether E-1) and 7.8 ml 

(113 mmoles) of ethylene glycol (redistilled) in 78 ml of 

dry tetrahydrofuran, which was cooled in a Dry Ice--isopro-

panol bath, were added 26 g of anhydrous calcium sulfate 

(Drierite) and 0.18 ml (2.6 mmoles) of concentrated sulfuric 

acid .. This mixture was kept at 3° for 13 hr, and then the 

acid was neutralized by the addition of 7.8 g (93 mmoles) of 

sodium bicarbonate. After 15 min the mixture was filtered and 

poured into 150 ml of 3% aqueous sodium bicarbonate and 400 ml 

of petroleum ether. The organic phase was washed with 100 ml 

of brine and dried (Na2so4 ). Removal of the solvent afforded 

2.24 g of crude acetal I-1 as a clear oil. In another experi-

ment, 1.29 g (4.7 mmoles) of crude aldehyde was treated with 

5 ml (89.5 mmoles) of ethylene glycol, 17 g of calcium sul-

fate, and 0.11 ml of concentrated sulfuric acid in 50 ml of 

tetrahydrofuran to give 1.35 g of crude acetal. 

The combined products (3.59 g) were chromatographed on 

200 g of activity III Woelm alumina. Elution with 300 ml of 

petroleum ether afforded 0.19 g of the vinyl ether E-1, which 

was identified by its infrared spectrum. Continued elution 
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with petroleum ether gave 3.2 g of acetal, which was evapo­

ratively distilled at 140° (0.09 mm) to afford 3.13 g (93% 

yield) of the analytically pure acetal I-1 as a clear, color-

less oil: 

ir (film) 3010 (vinylic C-H), 1650 (C=C), and 1365 and 1380 

(gem-dimethyl); 

-1 cm 

nmr (CDC1 3 ) 6 0.86 (m, 9, CH3 ), 1.70 (d, 1, J=5.5, -CH2-CH~g), 
1.90 (d, 1, J=4.5, -CH2-CH'~g), 3.90 (m, 4, OCH2CH20), 

4.98 (d of d, 1, J=4.5 and 5.5, -CH2-cH'::g), 5.3-6.0 

(m, 2, vinylic H); 

Anal. Calcd for c18H30o2 : C, 77.65; H, 10.86. Found: C, 77.76; 

H; 10.77. 

9~-(2' ,2'-Ethylenedioxyethyl)-7fi-isopropyl-10oc-methyl-

2-decalone (I-2). The procedure employed for the conversion 

of octalin E-4 to the decalone E-6 was modified. To a solu-

tion of 3.00 g (10.8 mmoles) of acetal I-1 from the preceding 

reaction in 71 ml of ether was added 23.7 ml of 0.48 M 

74 
(11.4 mmoles) diborane in tetrahyrdofuran . After this solu-

tion was stirred at room temperature for 2.5 hr, 11.4 ml of 

10% aqueous sodium hydroxide and 11.4 ml of 30% aqueous 

hydrogen peroxide were added slowly and sequentially. This 

solution was heated at reflux for 1 hr, cooled, poured into 

100 ml of brine, and extracted with five 100-ml portions of 

ether. The ciombined extracts were washed with 100-ml portions 

of water and brine, and dried (Na2so4 ). Removal of the sol-
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vent at reduced pressure left 3.39 g of a viscous, colorless 

oil; 

ir (film) -1 3400 (O-H),and 1365 and 1380 cm (gem-dimethyl). 

This oil was dissolved in 150 ml of acetone, and the 

solution was cooled in ice while 3.4 ml of 8 N chromic acid 

solution 27 were added dropwise. The orange mixture, which 

resulted, was stirred at o0 for 2 min more. Then excess iso-

propanol and 114 ml of 5% aqueous potassium carbonate were 

added, and this greenish mixture was poured into 100 ml of brine 

and extracted with four 100-ml portions of a 2:1 ether-benzene 

solution. The combined extracts were washed with 100 ml of 

brine and dried (Na 2so4 ). After removal of the solvent at 

reduced pressure, the oily residue was evaporatively distilled 

at 155° (0.05 mm) to afford 2.79 g (88% yield from the octalin 

I-1) of analytically pure decalone I-2 as a clear, colorless 

oil: 

ir (film) 
-1 

1710 (C=O), and 1365 and 1380 cm (gem-dimethyl); 

nmr (CDC1 3 ) S 0.84 (m, 6, CH(CH3 ) 2 ), 1.13 (s, 3, angular CH3 ), 

/0 /0) 1.71 (d, 1, J=5.5, -CH2-CH, 0 ), 2.07 (d, 1, J=4,-CH2-CH,0 , 

2.42 (m, 4, CH
2

COCH2 ), 3.88 (m, 4, OCH2CH
2
0), 4 ·.83 (d of d, 

,..o) 1, J=4 and 5.5, -CH2-CH,0 ; 

Anal. Calcd for c18H30o3 : C, 73.43; H, 10.27. Found: C, 73.31; 

H, 10.23. 
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Tricyclic Keto-alcohol I-3. The decalone I-2 was 

rearranged by a modification of a procedure of Ireland and 

30 coworkers. A mixture of 1.65 g (5.6 mmoles) of decalone 

I-2 from the preceding reaction, 75 ml of acetone, and 15 ml 

of 10% aqueous hydrochloric acid was heated at reflux for 

45 min, cooled, and poured into 200 ml of water. The 

reaction mixture from another deketalization--rearrangement 

[80 mg (0.27 mmole) of decalone in 3.5 ml of acetone and 

O. 7 ml of 10% aqueous hydrochloric acid) was added. The 

combined mixture was extracted with four 100-ml portions of 

a 1:1 ether-benzene solution . The combined extracts were 

washed with 100 ml of brine and dried (Na2so4 ) . Removal of 

the solvent at reduced pr~ssure afforded 1.43 g of white 

crystals, mp 163-175° , which were recrystallized from benzene--

heptane to give 1.13 g (77% yield) of keto-alcohol I-3 as 

0 white cryst~ls, mp 175-179.5 , the infrared spectrum of which 

was identical to that of the analytical sample, mp 178-178.5°, 

which was obtained in an earlier experiment: 

ir (CHC1 3 ) 3595 and 3400 (0-H), 1710~1725 (C=O) , and 1360 

and 1380 cm-l (gem-dimethyl); 

nmr (CDC1 3 ) D 0.90 (m, 6, CH(CH3 ) 2 ), 1 . 12 (s, 3, angular CH3 ), 

4 . 2-4.6 (m, 1, CHOH); 

Anal. · Calcd for c16H26o2 : C, 76.75; H, 10.47. Found, C, 76.51; 

H, 10.30. 
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The Tosylation of the Tricyclic Keto-alcohol I-3 was done 
. 28 

by a standard procedure. A solution of 1.13 g (4.5 mmoles) 

of the keto-alcohol I-3 (prepared in the preceding reaction) 

in 23 ml of pyridine (dried by distillation from calcium 

hydride) was cooled to o0 while 1.72 g (8.8 mmoles) of 

p-toluenesulfonyl chloride was added. This mixture was kept 

a.t 3° for 4 days, and then · t d · t 280 1 f 1 was poure in o m o ice-

water and 50 ml of ether. The aqueous phase was extracted with 

four 100-ml portions of a 2:1 ether-benzene solution. The 

combined organic phases were washed with 100 ml of water, 

two 100-ml portions of saturated aqueous cupric sulfate, and 

100-ml portions of saturated aqueous sodium bicarbonate, water, 

and brine, and dried (Na2so4 ). Removal of the solvent at 

reduced pressu~e left 2.01 g of a yellow oily s6lid, which was 

chromatographed on 140 g of Merck silica gel. Elution with 

300 ml of ether afforded 1.59 g of crude tosylate; further 

elution with ether (1100 ml) gave 248 mg (22% recovery) of 

starting material, the white crystalline keto-alcohol I-3, 

mp 165-167°. 

The crude tosylate was recrystallized from ether--

petroleum ether to give the keto-tosylate I-4 in two crops of 

0 0 white crystals: 1.07 g, mp 91-93.5 , and 0.27 g, mp 92.5-94 , for 

a total yield of 1.34 g (74% conversion or 94% yield based on 

unrecovered ~tarting material). The analytical sample , which 

was prepared by this procedure, · melted at 78.5-79°; however, 
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the ir and nmr spectra of this reaction product and the analyt-

ical sample were the same: 

ir (CHC1 3 ) 1730 (C=O), 1595 (aromatic), and 1175 cm-l 

( tosyla te); 

nmr (CDC1 3 ) 6 0.88 (m, 6, CH(CH3 ) 2 ), 1.08 (s, 3, angular cn
3
), 

2.44 (s, 3, aromatic CH3 ), 4.9-5.3 (m, 1, CHOS02 ), 7.2-

7.9 (m, 4, aromatic H); 

Anal. Calcd for c23n32o4s: C, 68.28; H, 7.97; S, 7.93. 

Found: C, 68.26; H, 8.00; S, 8.04. 

9fi-Carboxymethyl-7ft-isopropyl-10~-methyl-2-octalin and 

Its Methyl Ester . (I-5, R = H, CHsl. A variation of the method 

. . 37 ( 
of Eschenmoser and coworkers was used. To 35.0 g 1,500 

mmoles) of sodium dissolved in 700 ml of methanol (dried by 

two distillations from magnesium) was added 1.11 g (2.8 mmoles) 

of the keto-tosylate I-4 (prepared by the above procedure). 

This solution was heated at reflux for 22 hr and then cooled 

in a Dry Ice--isopropanol bath while hydrogen chloride gas 

was bubbled in at such a rate that an internal temperature 

of -20° to -30° was maintained. After the solution was acidic 

to litmus, the solvent was removed -at reduced pressure. To 

the residue was added 300 ml of water and 200 ml of ether. 

The resulting aqueous phase was extracted with four 100-ml 

portions of a 2:1 ether-benzene solution. The combined organic 

~hases were washed with 100-ml portions of water and brine, and 

dried (Na2so4). The 0.69 g of~ cloudy yellow oil, which was 
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left after the removal of the solvent ~t reduced pressure, was 

chromatographed on 70 g of Merck silica gel with 20% ether in 

petroleum ether. A 75-ml portion of this solvent mixture 

eluted 0.3 g of the ester, which was evaporatively distilled 

at 85° (0.03 mm) to give 244 mg (34% yield) of pure ester 

I-5 (R = CH3 ) as a clear, colorless oil: 

ir (film) 3005 (vinylic C-H), 1735 (C=O), 1640 (C=C), and 

-1 1370 and 1385 cm (gem-dimethyl); 

nmr (CDC1
3

) S 0.86 (m, 6, CH(CH3 ) 2 ), 1.00 (s, 3, angular CH3 ), 

2.52 (s, 2, CH2co2cH3 ), 3.62 (s, 3, co2cH3 ), 5.60 (m, 2, 

vinylic H); 

Anal. Calcd for c 17H28o 2 : C, 77.22; H, 10.67. Found: C, 77.16; 

H, 10.53. 

Further elution of the column with 175 ml of 20% ether in 

petroleum ether afforded 165 mg (24% yield) of the carboxylic 

acid I-5 (R = H) as a white solid: 

1705 (C=O), 1640 (C=C), and 1380 and 1400 

(gem-dimethyl). 

-1 cm 

nmr (CDC1
3

) 8 0.83, 0.92, and 1.01 (s, 3 each, CH3 ), 2.57 (s, 

2, CH
2
co2H), 5.62 (m, 2, vinylic H), 9.0-9.7 (broads, 

1, COz!!). 

The analytical sample, which was prepared by a similar 

procedure and recrystallized from pentane, melted at 116-118.5°. 

The infrared spectrum of this sample was identical to that of 

the material isolated above. 

Anal. Calcd for c 16H26o
2

: C, 76.75; H, 10.47. Found: C, 76.79; 
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H, 10.53. 

9p-(2'~Hydroxyethyl)-7~-isopropyl-10~-methyl-2-octalin 

To a solution of 10.9 mg (0.041 mmole) of ester 1-5 

(R = CH3 ) (prepared in the previous reaction) and 5.2 mg 

(0.021 mmole) of carboxylic acid 1-5 (R = H) (prepared by the 

above procedure) in 4.0 ml of tetrahydrofuran was added 40 mg 

(l.06 mmoles) of lithium aluminum hydride (Ventron). This 

cloudy solution was heated at reflux for 2 hr and then cooled 

to o0 while the excess hydride was destroyed by the addition 

of 1.0 ml of 10% aqueous sodium hydroxide~ The tetrahydro­

furan was removed at reduced pressure, and the residue was 

dissolved in dilute hydrochloric acid and extracted with four 

25-ml portions of ether. The combined extracts were washed 

with 25-ml portions of water and brine, and dried (Na2so4 ). 

The residue obtained. by removal of the solvent at reduced 

pressure was evaporatively distilled at 105° (0.04 mm) to give 

15.8 mg (108% yield) of the alcohol I-6 as a clear, colorless 

oil, which solidified on standing. 

When the reduction of the ester I-5 (R = CH3 ) was per­

formed separately on a larger seal~ and under similar conditions, 

a 98% yield of the alcohol I-6 was obtained; when the acid 

was reduced, a 96% yield of alcohol was obtain~d. 

The analytical sample, which was prepared by reduction 

of the ester .and evaporative distillation at 110° (O.l mm) 

was a white solid, which melted at 52-59°: 

ir (film) 3310 (0-H), 3015 (vinylic C-H), 1640 (C=C), and 
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. -1 
1365 and 1380 cm (gem-dimethyl). 

nmr (CDC1 3)60.83-0.98 (m, 9, CH3 ), 3.71 (t, 2, J=7.5, 

-CH2CH20H), 5.62 (m, 2, vinylic H); 

Anal. Calcd for c16H28o: C, 81.29; H, 11.94. Found: C, 81.46; 

H, 11.94. 

The Preparation and Decarbonylation of 9S-Carboxaldehydo-

methyl-7~-isopropyl-10~-methyl-2-octalin (I-7). The alcohol 

I-6 was oxidized to the aldehyde by a modification of the 

. 39 
procedure of Collins and coworkers. A solution of 116 mg 

(0.49 mmole) of the unsaturated alcohol I-6, which was a 

portion of the analytically pure material prepared by the 

above procedure, in 5.3 ml of methylene chloride was added to 

a stirred solution of 1.1 g (2.99 mmoles) of the chromium 

trioxide-dipyridine complex in 5.3 ml of methylene chloride. 

The dark bro~n mixture was stirred for 15 min, diluted with 

10 ml of ether, and filtered through 9g of acid-washed Merck 

alumina with 150 ml of methylene chloride. After removal of 

the solvent at reduced pressure, the residue was evaporatively 

distilled at 95° (0.08 mm) to give 97.1 mg (84% yield) of the 

unsaturated aldehyde I-7 as a clear, colorless oil: 

ir (film) 3010 (vinylic C-H), 2715 (aldehyde C-H), 1715 (C=O), 

-1 1640 (C=C), and 1365, 1370, and 1385 cm · (gem-dimethyl); 

nmr (CDC1 3 ) 6 0.88 (m, 6, CH(CH3 ) 2 ), 1.01 (s, 3, angular CH3 ), 

2.53 (d, 2, J=2.5, -CH2CHO), 5.63 (m, 2, vinylic H), 9.88 

(t, 1, J=2.5, CHO). 
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The procedure used for the preparation of the octalin 

E-4 was modified for the decarbonylation of the aldehyde I-7. 

A mixture .of 97 mg (0 .41 mmole) of the unsaturated aldehyde 

and 425 mg (0.46 mmole) of tris(triphenylphosphine)chloro­

rhodium(I) in 9.6 ml of benzene was heated at reflux for 

23 hr. Heptane was added to the boiling reaction mixture while 

the benzene was removed by distillation. The rhodium compounds 

precipitated as a yellow solid. The yellow supernatant solu­

tion was filte~ed through 3 g of Merck silica gel with 75 ml 

of petroleum ether. The solvent was removed at reduced 

pressure, and the residue obtained was evaporatively distilled 

0 at 60 (0.04 mm) to give 64 mg (74% yield) of a clear, color-

less oil: 

ir (film) 3010 (vinylic C-H), 1640 (C=C), and 1370 and 1380 

(gem-dimethyl); 

-1 cm 

nmr (CDC1 3 ) & 0.78-1.00 (m, 11, CH3 ), 5.57 (m, 1, vinylic H). 

The vapor phase chromatogram (160°, 5% SE-30) exhibited only 

one peak with a retention time of 6.0 min. However, the 

nmr spectrum had only one proton in the vinylic region, where 

two were expected, thereby indicating that more than one com-

pound was present. 

A portion of the decarbonylation product (39 mg, 0.19 

mmole) and 39 mg of platinum oxide in 20 ml of 95% ethanol was 

stirred under an atmosphere of hydrogen for 18 hr. After 

filtration, the solvent was removed by distillation at atmos­

pheric pressure. The residue on evaporative distillation (60°, 
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0.05 mm) afforded 39 mg (quantitative yield) of a clear, color-

less oil: 

ir (film) · 1370 and 1380 cm-l (gem-dimethyl); 

nmr (CDC1
3

) 5 0.78-0.88 (m, 6, CH(CH3 ) 2 ), 1.02 and 1.04 (s, 

total of 6). 

The vapor phase chromatogram of this oil showed two 

peaks with retention times of 6.0 (50%) and 6.7 min (50%). 

9,fi-(2'-Hydroxyethyl)-7,8-isopropyl-lOtt.-methyldecalin 

(I-11). To a solution of 231 mg (0.98 mmole) of the unsatu-

rated alcohol I-6 (prepared by a previously described pro-

cedure) in 180 ml of 95% ethanol was added 0.20 g of platinum 

oxide. This mixture was stirred under a hydrogen atmosphere 

for 48 hr, filtered, and concentrated at reduced pressure. 

The residue obtained was evaporatively distilled at 100° 

(0.03 mm) to afford 236 mg . (quantitative yield) of the satu-

rated alcohol I-11 as a clear, colorless oil. 

A sample was prepared for analysis by an identical pro-

cedure: 

ir (film) 
-1 

3300 (0-H), and 1360 and 1380 cm (gem-dimethyl); 

nmr (CDC1 3 ) & 0.87 (m, 6, CH(c.g3 ) 2 ), 1.05 (s, 3, angular CH3 ), 

3. 68 (t, 2, J=8, -CH2CH20H); 

Anal. Calcd for c 16H30o: C, 80.61; H, 12.68. Found: C, 80.77; 

H, 12.74. 

94-Carboxaldehydomethyl-74-isopropyl-10~-methyldecalin 

(I-12). Because of the sensitivity of the aldehyde I-12 to 

air, the Collins oxidation procedure used for the preparation 
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of the unsaturated aldehyde I-7 was modified. To a solution 

of 145 mg (0.61 mmole) of the alcohol I-11 in 2.9 ml of 

methylene chloride (freshly distilled from phosphorous pentox­

ide) was added under nitrogen a solution of 1.00 g (3.87 mmoles) 

of the chromium trioxide--dipyridine complex39 in 10 ml of 

dry methylene chloride. This mixture was stirred under nitro-

gen for 30 min and then filtered through 10 g of acid-washed 

Merck alumina with 75 ml of methylene chloride. The solvent 

was evaporated under a stream of nitrogen to give an oily 

residue, which was evaporatively distilled at 95° (0.03 mm) 

to afford 128 mg (89% yield) of the saturated aldehyde I-12 as 

a clear, colotless oil. 

The analytical sample was prepared by this procedure 

in an earlier experiment: 

ir (film) 2710 (aldehyde C~H), 1715 (C=O), 1360 and 1375 

(gem-dimethyl); 

-1 cm 

nmr (CC1 4 ) 6 0.88 (m, 6, CH(CH3 ) 2 ), 1.10 (s, 3, angular CH3 ), 

2.33 (d of d, 1, JAX=2.5, JAB=l4, -CH2CHO), 2.83 ( d of d, 1, 

JBX=2.5, JAB=l4, -CH2CHO), 9.79 (two superimposed 

doublets, 1, JAX=JBX=2.5, CHO); 

Anal. Calcd for c16H28o: C, 80.61; H, 12.68. Found: C, 80.77; 

H, 12.74. 

94,10~-Dimethyl-74-isopropyldecalin (I-10). A red 

suspension of 583 mg (0.63 mmole) of tris(triphenylphosphine)­

chlororhodium in a solution of 128 mg (0.54 mmole) of the 
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aldehyde I-12 (obtained in the preceding reaction) in 20 ml 

of benzene was heated at reflux for 66 hr. The benzene was 

displaced with heptane, and the red mixture was filtered 

through 5 g of activity III Woelm alumina and 5 g of Merck 

silica gel with 50 ml of petroleum ether. Removal of the 

solvent by distillation and evaporative distillation of the 

residue at 65° (0.03 mm) afforded 71.7 mg (64% yield) of the 

decalin I-10 as a clear colorless o~l: 

ir (film) -1 1370 and 1380 cm (gem-dimethyl); 

nmr (CDC1 3 ) o 0.87 (m, 6, CH(CH3 ) 2 ), 1.04 (s, 6, angular CH
3

); 

Anal. Calcd for c15H28 : C, 86.46; H, 13.54; Found: C, 86.45; 

H; 13.54. 

Cholest-4-en-3fi-ol (J-1). A solution of 12.3 g (32.0 

mmoles) of cholest-4-en-3-one (mp 77-80°, prepared in the 

Ireland laboratories by D. Muchmore) in 320 ml of tetrahydro-

furan was added to 32.6 g (128 mmoles) of lithium tri-!-butoxy 

aluminum hydride dissolved in 500 ml of tetrahydrofuran. This 

cloudy solution was heated at reflux for a period of 4 hr, 

cooled, and quenched by the addition of 52 ml of 10% aqueous 

sodium hydroxide. ThP whi.te mixture was stirred at room temper-

ature for 18 hr and then filtered. The filtrate was concen-

trated at reduced pressure. Ether was added, and the mixture 

was filtered again. Concentration of this filtrate gave 

l ·O. 5 g of white crystalline cholest-4-en-3,B-ol, mp 122-126°. 

This material was chromatographed on 1.0 kg of Merck silica 

gel with 10% ether in reagent grade chloroform. Material 
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eluted with the first 3 1 of this solvent mixture was discarded; 

further elution with 1.7 1 of solvent gave 9.1 g of white 

crystals, which were recrystallized from 100 ml of ethanol 

to afford cholest-4-en-3~-ol in two crops: 5.94 g, mp 130.5-

1310, and 3.01 g, mp 128-130°, for a total yield of 73%. 

2:_E (CHC1 3 ) 3605, 3450 (0-H), 1660 cm-l (C=C); 

nmr (CDC1 3 ) 6 0.68, 0.80, 0.90, and 1.05 (allCH3 ), 4.2 (m, 1, 

CHOH), 5.28 (s, 1, vinylic H). 

5~-(N,N-Dimethylcarboxamidomethyl)-3-cholestene (J-2). 

The proc~dure of Eschenmoser and coworkers11 was modified. A 

solution of 0.97 g (2.5 mmoles) of cholest-4-en-3fa-ol (mp 130.5-

1310, prepared in the previous reaction) and 1.67 g (12.5 mmoles) 

of dimethylacetamidedimethylacetal (Fluka) in 30 ml of o-xylene 

0 was heated at reflux (140 ) for 65 hr. The volatile material 

was removed at reduced pressure, and the residue (1.19 g of a 

yellow oil) was chromatographed on 60 g of Merck silica gel 

with ether. The material, which was eluted with 275 ml of 

ethe~ was discarded; further elution with 425 ml of ether 

afforded 0.74 g of a clear, colorless oil, which crystallized 

upon trituration with acetone to give 0.74 g (65% yield) of 

the amide J-2 as white prisms: mp 128-129.5°, the infrared 

spect~u~ of which was identical to that of the analytical 

sample, mp 126-128°, prepared by a similar procedure: 

- ·1 
ir (CHC1 3 ) 1620 cm (C=O); 

nmr (CDC1
3

) 6 0.65, 0.80, 0.86, and 0.90 (~l CH3 ), 2.05 (d, 1, 

J=l3, -CH2C01, 2.73 (d, 1, J=l3, -CH2CO-), 2.89 and 2.96 
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(s, 3 each, N-CH
3
), 5.3-5.8 (m, 2, vinylic H); 

Anal. Calcd for c
31

H
53

NO: C, 81.70; H, 11.72; N, 3.07. 

Found: c, 81.52; H, 11.81; N, 3.13. 

5~-Carboethoxymethyl-3-cholestene (J-3) was prepared by 

a modification of the procedure of Johnson and coworkers. 40 

A solution of 0.97 g (2.5 mmoles) of cholest-4-en-313-01 

·(mp 130.5-131°, prepared above) in 40 ml of triethyl ortho­

acetate (MCB, distilled at 142-147°) was heated at reflux 

(142°) for 8 days with concomitant slow distillative removal 

of ethanol. The volatile materials were then removed at 

reduced pressure, and the residue (1.27 g of a thick pale 

yellow oil) was chromatographed on 120 g of silica gel with 

10% ether in petroleum ether. The material obtained by 

elution with 240 ml of this solvent was discarded. Further 

elution with 120 ml of .solvent afforded 0.69 g of a clear, 

colorless oil, which, upon trituration with acetone, gave 

0.69 g (60% yield) of the ester J-3 as white crystals, 

mp 89-92.5°. The infrared spectrum of this material was 

identical to that of the analytical sample, mp 90.5-94°, 

which was prepared by a similar prdcedure: 

ir (CHC1
3

) 1720 (C=O), and 1370 and 1380 cm-l (gem-dimethyl); 

nmr (CDC1 3 ) S 0.65, 0.80, 0.86, and 0.92 (all CH3 ), 2.20 (d, 

1, J=l3, -CH2CO), 2.48 (d, 1, J=l3, -CH2CO), 4.10 (q, 

2, J=7 ,' -C02CH2CH3 ), 5.2-5.9 (m, 2, vinylic H); 

Anal. Calcd for c31H52o2 : C, 81;52; H, 11.48. Found: C, 81.71; 

H, 11. 60. 
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Cholest-4-en-3,6'-yl Vinyl Ether (J-4). The procedures 

of Burgstahler and Nordin, 7 and Ireland and coworkers
8 

were modified. Ethyl vinyl ether (Eastman) was purified by 

drying (Na
2
co3 ), distillation from sodium wire (bp 36°), and 

then distillation from calcium hydride (bp 36°). Mercuric 

acetate (MCB) was dissolved in ethanol containing 0.02% acetic 

acid, and the solution was filtered and cooled. The 

crystalline plates of mercuric acetate which formed were 

isolated by filtration and dried at reduced pressure. The 

reaction flask was cleaned with hot chromic acid solution, and 

then, with all the other glassware used in this procedure, 

washed with base, rinsed with distilled water, and dried in 

an oven. 

Ethyl vinyl ether (20 ml) was distilled into a 50-ml 

flask containing 0.97 g (2.5 mmoles) of cholest-4-en-3~-ol 
0 . 

(mp 130.5-131 , prepared above). To this solution was added 

0.82 g (2.55 mmoles) of recrystallized mercuric acetate. The 

slightly cloudy mixture was heated at reflux for 17 hr and 

then cooled. Acetic acid (62 ,.,u-1, 1.09 mmoles) was added, and 

the resulting clear solution was stirred at room temperature for 

3 hr, and poured into 150 ml of petroleum ether and 50 ml of 

5% aqueous potassium hydroxide. The aqueous layer was ex-

tracted with 50 ml of petroleum ether, and the combined 

organic extracts were washed with three 50-ml portions of 20% 

aqueous sodium chloride and dried (Na
2
co

3
). Removal of the 

solvent at reduced pressure afforded 1.11 g of a clear, color-
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~ess oil, which was filtered through 5 g of Merck silica gel 

with 200 ml of petroleum ether . The 0.81 g of an oil, which 

was obtained on removal of the solvent at reduced pressure, 

was used in the next step without further purification. 

In another experiment on twice this scale, the crude 

product was crystallized from acetone to give a 76% yield of 

the vinyl ether J-4 as needles: mp 55-56.5° (literature: 7 

mp 56-57°); 

ir (film) 3120 (vinylic C-H), 1605 and 1635 (C=C), and 1365 

and 1380 cm -1 (gem-dimethyl); 

nmr (CDC1 3 ) t5 0.70, 0.83, 0 . 93, and 1.08 (all CH3 ) , 3.97 (d of d, 

1, JAB=l.5, JAX=7, -OCH=CH2 ), 4.27 (d of d, 1, JAB=l.5, 

JBX=l4, -OCH=CH2 ), 4.32 (m, 1, C-3 H), 5.30 (s, 1, C-4 H), 

6.32 (d of d, 1, JAX=7, JBX=l4, -OCH=CH2 ). 

54-Carboxaldehydomethyl-3-cholestene (J-5) was prepared 

8 by modifying a procedure of Ireland and coworkers. The 

crude vinyl ether (0.81 g, 1.96 mmoles), which was obtained 

in the preceding reaction in 78% yield , was transferred to 

a 50-ml flask, which had been washed with chromic acid , base, 

and distilled wate~ and oven-dried~ The flask was then fill ed 

with argon and heated in an air bath at 220-225° for a period 

of 5 hr. The residue, which weighed 0.78 g, was chromate-

graph~d on 75 g of Merck silica gel with 10% ether in petroleum 

ether. The material which was eluted with 175 ml of this 

solvent was discarded; elution· with another 175-ml portion 

of solvent afforded 0.55 g (53% yield from the allylic alcohol 
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J-1) of the aldehyde J-5 as white crystals: mp 66.5-68° 

(literature: 7 mp 66-69°); 

ir (CHC1 3 ) 2760 (aldehyde C-H), 1715 (C=O), and 1380 

(gem-dimethyl); 

-1 
cm 

nmr (CDC1 3 ) S 0.67, 0.82, 0.88, and 0.92 (all CH3 ), 2.18 

(d of d, 1, JAB=l4, JAX=3.5, -CH2CHO), 2.55 (d of d, 

1, JAB=l4, J 8 X=3.5, -CH2CHO), 5.2-6.0 (m, 2, vinylic H), 

9.83 (two superimposed doublets, 1, JAX=J8 x=3.5, CHO). 

The Decarbonylation of 5~-Carboxaldehydomethyl-3-choles-

tene (J-5), The previously used decarbonylation procedure 

was modified. To a solution of 206 mg (0.50 mmole) of the 

aldehyde J-5 (mp 64-67°, p~epared by the above procedure) in 

20 ml of dry benzene was added 0.69 g (0.75 mmole) of tris-

(triphenylphosphine)chlororhodium(I) (Alfa Inorganics). On 

~eating at reflux for 20 hr, the red solution changed to a red 

suspension. The benzene was removed at reduced · pressure and 

was replaced with heptane. This mixture was filtered through 

a column, which was layered with 5 g of Merck silica gel and 

then with 5 g of Merck alumina, with 40 ml of petroleum ether. 

Removal of the solvent afforded 188 mg (98% crude yi~ld) of a 

clear, colo~less oil: 

ir (fil~) 3060 (cyclopropyl C-H), 3015 (vinylic C-H), 1650 and 

-1 
1665 (C=C), and 1370, 1375, and 1380 cm (gem-dimethyl); 

nmr (CC1 4 ) s 0.67, 0.87, 0.88, and 0.95 (all CH3 ), 5.1-5.7 

(m, 1.3, vinylic H). 
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The vapor phase chromatogram (220°, 4% SE-30) of this 

oil had two peaks with retention times of 9.0 and 9.8 min in 

a ratio of 2:1. Injection of a known sample of the desired 

olefin J-6, which was prepared by G. Pfister in the Ireland 

laboratories by an alternate route, 25 produced a chromato-

gram with one peak at a retention time of 9.0 min. A compari-

son of the nmr spectrum of the decarbonylation product with 

that of the pure olefin J-6 [(CDC1
3

) S 0.67, 0.83, 0.87, 0.88, 

0.93 (all CH3 )~ 5.1-5.7 (m, 2, vinylic H)] indicated that 

the decarbonylation product did, indeed, contain the olefin 

J-6. 

An 85-mg portion of the crude decarbonylation product was 

separated by preparative thin layer chromatography (Analtech 

silica gel impregnated with a 10% silver nitrate solution in 

1:3.28 water-methanol and then air-dried in the dark, 20xl0x0.l 

cm plate, hexane). One component (Rf= 0.4-1.0) was obtained in 

pure form from this plate. This colorless oil (8.1 mg, 10% 

0 
yield) had a vpc (220 , 4% SE-30) retention time of 9.8 min. 

Analytical tlc under the same conditions that were used for the 

preparative work showed a single s~ot at Rf= 0.65. This oil 

was identified as the cyclopropan~ J-7 by comparison with an 

authentic sample prepared by an alternate rout~, which is 

presented below. The ir and nmr spectra of these two samples 

were identical. Co-injection of these samples produced a 
. 0 

vapor phase chromatogram (250 , 4% SE-30) with a single peak 

at a retention time of 3 . 1 min. 
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Extraction of the remainder of the preparative tlc 

plate (Rf= 0-0.4) produced 74.6 mg (88% yield) of a colorless 

oil, which on vpc analysis (220°, 4% SE-30) gave two peaks 

with retention times of 9.0 and 9.8 min in a ratio of 3.5:1. 

Analytical tlc (silver nitrate impregnated silica gel, hexane) 

showed two spots (Rf= 0.25 and 0.35). 

nmr (CDC1
3

) S 0.67, 0.83, 0.87, 0.88, and 0.93 (all CH3 ), 5.1-

5.7 (m, 1.7, vinylic H). 

4~,5-Methanocholestane (J-7) was prepared by a modifi-

cation of the Wolf f-Kishner reduction procedure used by 

Ireland and Welch.
44 

To a solution of 49.8 mg (0.13 mmole) 

of the cyclopropyl ketone K-2 (prepared by J. Tilley in the 

43 
Ireland laboratories according to a published procedure ) 

in 8.5 ml of triethylene glycol (MCB) was added 0.85 ml (15 

mmoles) of 85% aqueous hydrazine hydrate (MCB) and 0.22 g 

(2.1 mmoles) of hydrazine dihydrochloride (Eastman). This 

0 solution was heated at 130-135 for 3.5 hr, and then cooled 

to 100° while 1.40 g (about 25 mmoles) of potassium hydrox-

ide pellets (B and A, 85%) were added. The temperature was 

0 then raised to 170 over a period of 20 min, while the vola-

tile material was removed by distillation under a stream of 

argon. The internal temperature of the reaction mixture was 

0 kept at 170-175 for a period of 6 hr while a slow stream of 

argon was allowed to pass over the surface of the mixture. 

After cooling, this mixture was added to 150 ml of brine and 

extracted with four 50-ml portions of ether. The combined 



144 

extracts were washed with ten 50-ml portions of water and 

50 ml of brine, and dried (Na
2
so4 ). Removal of the solvent at 

reduced pressure afforded 49.2 mg of the cyclopropane as a 

pale yellow oil, the vapor phase chromatogram (250°, 4% SE-30) 

of which had a single peak with a retention time of 3.1 min. 

-1 ir (CHC1 3 ) 3060 (cyclopropyl C-H), and 1375 and 1385 cm 

(gem-dimethyl). 

nmr (CDC1 3 ) ~ 0.20 (m, cyclopropyl H), 0.67, 0.80, 0.90, and 

0.95 (all CH3 ). 

This oil was evaporatively distilled at 190° (1.0 mm) 

to give 45 mg (94% yield) of the analytically pure cyclo-

propane J-7 as a clear, colorless oil; 

Anal. Calcd for c28H48 : C, 87.42; H, 12.58. Found: C, 87.54; 

H, 12.62. 

2,2-(2',2'-Dimethylpropylenedioxy)-l,l 4a~,8,8afi-

pentamethyl-l,2,3,4,4a,4ba,5,6,8a,9,10,10a~-dodecahydro-

phenanthrene (R-1). A solution of 0.5 g (1.82 mmoles) of 

the keto-olefin mixture Q-3 (prepared by the procedure of 

Baldwin and Ireland60 ) and 48 mg of p-toluenesulfonic acid 

monohydrate in 65 ml of benzene was heated at reflux for 

2.75 hr. After cooling and the addition of 28.5 g (274 

mmoles) of 2,2-dimethyl-1,3-propanediol (MCB), the solution 

was again heated at reflux for 37 hr. Then 1.0 g of sodium 

bicarbonate and 10 ml of water were added. This mixture was 

poured into 150 ml of dilute brine and extracted with three 

50-ml portions of ether. The combined organic phases were 
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·washed with five 50-ml portions of water and 50 ml of brine, 

and dried (Na2co3 ). Removal of the solvent at reduced pres­

sure yielded 0.95 g of pale yellow oily crystals. Tritura­

tion with acetone gave 406 mg (58% yield) of white crystal-

0 line ketal olefin R-1, mp 165-168.5 , the vapor phase chromato-

gram (220°, 4% SE-30) of which exhibited one main peak with a 

retention time of 4.6 min (85%). 

The analytical sample, which was obtained by an acetone 

recrystallization of identically prepared material, melted 

at 169-172°: 

ir (CHC1 3 ) -1 
1660 (C=C), 1390 (gem-dimethyl group), and 1110 cm 

(C-0 of ketal); 

nmr (CDC1 3 ) S 0.70, 1.00, 1.02, and 1.18 (s, 3 each, CH3 ), 

0 . 8 8 (s , 6 , CH 3 ) , 1 . 5 7 ( d , 3 , J = 2 , vi n y 1 i c CH 3 ) , 3 . 1-

3. 9 (m, 4; -OCH2-), 5.18 (m, 1, vinylic H); 

Anal. Calcd for c24H40o2 : C, 79.94; H, 11.18. Found: C, 79.92; 

H, 11.27. 

The Epoxidation of the Ketal Olefin R-1 was done 

28 according to a published procedure. A solution of 406 mg 

(l.13 mmoles) of the ketal olefin R-1 from the preceding 

reaction in 7.8 ml of dry methylene chloride was cooled to 

o0 while 273 mg (l.34 mmoles) of m-chloroperoxybenzoic acid 

(Aldrich, 85%) dissolved in 7.8 ml of dry methylene chloride 

was added over a period of 4 min. After stirring at room 

temperature for 1 hr, the reaction mixture was neutralized 

by the addition of 4 ml of 5% aqueous sodium bicarbonate. A 
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10% sodium sulfite solution was then added dropwise until a 

negative starch-potassium iodide test was obtained, indi-

eating complete decomposition of the excess peroxide. The 

reaction mixture was diluted with 150 ml of ether, washed with 

two 50-ml portions of 5% aqueous sodium bicarbonate, 50 ml of 

water, and 50 ml of brine, and then dried (Na2co
3
). Removal of 

the solvent at reduced pressure afforded 0.42 g (99% yield) 

of the epoxide mixture R-2 as a white foam. 

The analytical sample, which was obtained by acetone 

crystallization of identically prepared material, was an 

epimeric mixture: mp 138-158°; 

-1 ir (CHC1 3 ) 1390 (gem-dimethyl), and 1110 cm (C-0 of ketal); 

nmr (CDC1 3 ) 8 0.70, 1.00, and 1.05 (s, 3 each, CH3 ), 0.83 

and 1.18 (s, 6 each, CH3 ), 2.85 (m, 1, epoxide H), 3.1-

3.9 (m, 4, -OCH2-); 

Anal. Calcd for c24H40o3 : C, 76.55; H, 10.71. Found: C, 76.40; 

H, 10.72. 

2,2-(2',2'-Dimethylpropylenedioxy)-7-hydroxy-8-methylene-

l,l,4a~,8afi-tetramethyl - l,2,3,4,4a,4b«,5,6,7,8,8a,9,10,10a«­

tetradecahydrophenanthrene (R-3) was prepared from the epoxide 

mixture R-2 by a procedure of Crandall and Lin, 62 which was 

modified by U. Hengartner in the Ireland laboratories. 77 

A 1.67-ml portion of 2.66 M (4.44 mmoles) n-butyllithium in 

hexane (Alfa Inorganics) was added at room temperature to a 

stirred solution of 0.64 ml (4.56 mmoles) of distilled di-
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·isopropylamine (bp 83-84°) in 8 ml 0£ dry ether. A solution of 

0.42 g (1.12 mmoles) of the epoxide mixture R-2 (prepared as 

described above) in 8 ml of dry ether was added 5 min later. 

The pale yellow reaction mixture was heated at reflux for 17.5 

hr, cooled, poured into 150 ml of dilute brine, and extracted 

with four 50-ml portions of ether. The combined extracts were 

washed with 50 ml of 1 N hydrochloric acid, followed very 

quickly by 50-ml portions of saturated sodium bicarbonate 

solution, water, and brine. Drying (Na2co3 ) and removal of 

the solvent at reduced pressure afforded 0.40 g (95% crude 

yield) of a mixture of allylic alcohols as a white foam: 

·ir (CHC1
3

) 3605 and 3460 (0-H), 1705 (very weak C=O), 1635-

-1 1640 (C=C), 1390 (gem-dimethyl), and 1110 cm (C-0 of 

ketal); 

nmr (CDC1 3 ) 8 0.72 and 1.20 (s, 3 each, CH3 ), 0.88 and 1.05 

(s, 6 each, CH3 ), 0.93, 1.00, 1.15, and 1.27 (s, weak, 

CH3 ), 3.1-3.9 (m, 4, -OCH2-), 4.3 (m, 0.7, ~CHOH), 4.7-

4. 9 (m, 1 . 3, :::c=CH2 ) , 5. 6 (m, 0. 6, -CH=CH-) . 

This material was used in the next step (Collins oxidation) 

w~thout further purification. 

2,2-(2',2'-Dimethylpropylenedioxy)-8-methylene-1,1,4a~,~ 

8a,.g-tetramethyl-l,2,3,4,4a,4b~,5,6,8a,9,10,10a~dodecahydro-

7(8H)-phenanthrone (R-4) was prepared by a Collins oxidation of 

the allylic alcohol mixture obtained in the preceding reaction. 

A solution of 156 mg (0.414 mmole) of the crude allylic alcohol 
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mixture in 6.2 ml of dry methylene chloride was added at room 

temperature to a stirred solution of 644 mg (2.49 mmoles, 6 

equivalents) of the chromium trioxide--dipyridine complex39 

in 14.5 ml of dry methylene chloride. After stirring for 5 min, 

the brown suspension was filtered through 8 g of Woelm alumina 

(activity III) with 30 ml of methylene chloride. Removal of 

the methylene chloride and pyridine at reduced pressure left 

130 mg of white crystalline solid, the ir spectrum (CHC1
3

) of 

which exhibited equal intensity absorptions at 1655 and 1685 

cm- 1 , indicating both endo- and exocyclic unsaturated ketones. 

The white solid was chromatographed on 20 g of Merck 

silica gel. Elution with 65 ml of 1% ether in reagent grade 

chloroform gave 70 mg (52% yield from the epoxide mixture R-2) 

of white crystalline exocyclic enone R-4, mp 160-168°. 

The analytical sample was recrystallized from hexane: 

prisms, mp 166-170.5°; 

ir (CHC1 3 ) 1685 (C=O), 1610 (C=C), 1390 (gem-dimethyl), and 

-1 1110 cm (C-0 of ketal); 

nmr (CDC1 3 ) S 0.70, 0.90, 0.97, 1.06, 1.08, and 1.22 (s, 3 each, 

CH3 ), 3.1-3.9 (m, 4, -OCH2-), 5.02 (d, 1, J=l.5, :-C=CH2 ), 

5·.54 (d, 1, J=l.5, :::c=CH2 ); 

Anal. Calcd for C~4H38o3 : C, 76.96; H, 10.23. Found: C, 76.92; 

H, 10.32. 

Further elution of the column with the same solvent 

gave an approximately 20% yield of the endocyclic enone LVIII 
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as white needles, mp 176.5-183°. 

A comparable sample from an earlier experiment was 

crystallized from methylene chloride--ether to give the 
. 0 

analytical sample: needles, mp 175-180 ; 

ir (CHC1 3 ) 1655 (C=O), 1615 (C=C), 1390 (gem-dimethyl), and 

1110 cm-l (C-0 of ketal); 

nmr (CDC1
3

) c 0.73, 0.90, 0.98, 1.05, 1.13, and 1.20 (s' 3 

each, CH3 ), 1.85 (d' 3, J=l, vinylic CH3 ), 3.1-3.9 (m, 

4, -OCH2-), 5.70 (d' 1 ' J=l, vinylic H); 

Anal. Calcd for c24H38o3 : C, 76.96; H, 10.23. Found: C, 76.91; 

H, 10.22. 

When th~ epoxide cleavage reaction was done on a large 

scale [8.02 g (21.3 mmoles) of the epoxide mixture R-2 and 

lithium diisopropylamide, which was prepared from 14.9 ml 

(106 mmoles) of diisopropyiamine and 31.8 ml of 2.67 M 

(85 mmoles) ~-butyllithium in hexane, in 300 ml of ether], the 

product mixture contained a saturated ketone [ir (CHC1 3 ) 

1705 cm-l (C=0)1, which was assumed to be the ketone LIXon 

the basis of further reactions. This impurity was carried 

through the Collins oxidation reaction with the allylic alcohols. 

On purif ica ti on of the oxidation product, the ketone LIX was 

found to co-crystallize (hexane) and to co-chromatograph 

(reagent chloroform) with the desired exocyclic methylene 

ketone R-4. 
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2,2-(2',2'-Dimethylpropylenedibxy)-8-(2'-m-methoxyphenyl­

ethyl)-l,l,4a~,8a~-tetramethyl-l,2,3,4,4a,4b~,5,6,8a,9,10,10a«­

dodecahydro-7-phenanthryl Acetate (S-1) was synthesized by the 

conjugate addition procedure of Baldwin and Ireland. 60 A solu-

tion of 1.0 ml (7.42 mmoles) of m-methoxybenzyl chloride 

[prepared by J. Tilley and C. Lipinski in the Ireland labora-

78 0 
tories according to a published procedure, bp 132~134 

(20 mm)] in 23 ml of dry ether was added dropwise over a 

period of 40 min to 180 mg (7 .4 mmoles) of freshly cut 

magnesium shavings covered with 45 ml of dry ether. The 

Grignard reagent was stirred at room temperature for 2 hr and 

then cooled .to o0 (internal temperature) while a solution of 

923 mg (2.46 mmoles) of a 4:1 mixture of the unsaturated ketone 

R-4 and the ketone impurityLIX 0btained from the Collins 

oxidation of the large scaie epoxide cleavage product mixture) 

in 12 ml of dry benzene and 60 ml of dry ether was added drop-

wise over a 1.25 hr period . Each drop produced a transient 

amber color. After the addition was complete, the cooling 

bath was replaced by a water bath at room temperature, and the 

reaction mixture was stirred at room temperature for 1 hr. 

After quenching the enola te by the rapid addi ti.on of 2. 3 ml 

(24.4 mmoles) of acetic anhydride (twice distilled, bp 139-

1400), the resulting suspension was stirred for 19 hr, poured 

into 200 ml of dilute brine and 100 g of ice, and extracted 

with four 100- ml portions of ether. The combined extracts 
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were washed with 100-ml portions of water and brine, and dried 

(MgS04 ). Removal of the solvent at reduced pressure afforded 

2.00 g of a pale yellow oil. 

In an identical experiment, the reaction of 1.86 g 

(4.96 mmoles) of the same enone-ketone mixture with the 

Grignard reagent produced from 363 mg (14.9 mmoles) of mag-

nesium shavings and 2.0 ml (14.9 mmoles) of m-methoxybenzyl 

chloride and then reaction of the enola te with 4. 6 ml ( 48. 8 

mmoles) of acetic anhydride produced 4.28 g of oil. 

These two products were combined, and the volatile 

material (acetic anhydride and m-methoxyphenylacetone) was 

:removed by evaporative distillation at 100° (5)'-) to afford, 

after two recrystallizations from ether--benzene, 0.62 g 

(16% yield) of the side product, hydroxy-ketal LX as white 

0 plates, mp 172.5-177 . The nmr spectrum of this material was 

the same as that of the analytical sample isolated as a side 

product of a later experiment. 

The mother liquors, which weighed 4.05 g, were chromato-

graphed on 400 g of Merck silica gel. Elution with 30% ether 

in petroleum ether gave 2.66 g of the impure enol acetate S-1 

as oily white crystals and 0.22 g of cruder material. The 

larger fraction upon trituration with petroleum ether afforded 

1.78 g (51% yield) of the enol acetate S-1. The mother 

liquors from the trituration and the 0.22 g of crude enol 

acetate from the column chromatography were purified by 

preparative tlc (two Analtech. silica gel 20x20x0.25 cm plates, 
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reagent chloroform) to afford 0.35 g of impure enol acetate 

(Rf= 0.4-0.55). Trituration with petroleum ether gave 0.16 g 

of white crystals. The combined product, which weighed 

1.94 g (a 56% yield corrected for the presence of 10% ketal 

alcohol LX, which was isolated from the product mixture of 

the next experiment), melted at 140-142°. 

The analytical sample, which was prepared by the same 

procedure, was crystallized from petroleum ether: prisms, 

mp 137-141°; 

ir (CHC1
3

) 1740 (C=O), 1585-1600 (aromati.c), 1390 (gem-dimethyl), 

-1 and 1105 cm (C-0 of ketal); 

nmr (CDC1 3 ) 6 0.73 and 1.23 (s, 3 each, CH3 ), 0.90 and 1.07 

(s, 6 each, CH3 ), 2.17 (s, 3, acetate CH3 ), 3.1-3.9 

(m, 4, -OCH2-), 3.84 (s, 3, -OCH3 ), 6.6-7.4 (m, 4, 

aromatic); 

Anal. Calcd for c34H50o
5

: C, 75.80; H, 9.35. Found: C, 75.96; 

H, 9 .42. 

2,2-(2' ,2'-Dimethylpropylenedioxy)-8~-(2'-~-methoxyphenyl-

ethyl) - l,l,4a~,8~,8a~-pentamethyl-l,2;3,4,4a,4ba,5,6,8a,9,10,-

10a«.-dodecahydro-7(8H)- phenan throne (S-2). The procedure of 

Baldwin and Irelanct60 was modified. To the residue left by 

the evaporation of the solvent from 2.4 ml of 1 . 67 M (4.0 

mmoles) ethereal methyllithium (Alfa Inorganics) was added 

12 ml of dry dimethoxyethane . To the resulting cloudy solution 

was added dropwise over a period of 13 min 895 mg (1.66 mmoles) 

of enol acetate S-· l (prepared in the preceding experiment) 
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dissolved in 12.5 ml of dry dimethoxyethane. After stirring at 

room temperature for 1.3 hr, the pale yellow solution of the 

lithium enolate was quenched by the addition of 12 ml (27.4 g, 

194 mmoles) of methyl iodide (purified by two distillations 

from phosphorous pentoxide). After stirring for 5 min, the 

solution was poured into 100 ml of dilute brine and 50 g of 

ice, and extracted with four 50-ml portions of ether. The 

combined extracts were washed with 50 ml of water and 50 ml 

of brine, and dried (Na2co3 ). Removal of the solvent at 

reduced pressure afforded 0.87 g of the crude methylated 

ketone S-2 as a clea~ colorless oil. 

In another experiment, 0.99 g (1.84 mmoles) of the enol 

acetate was treated with 4.4 mmoles of methyllithium in 27 ml 

of · ctimethoxyethane and then with 13 ml (209 mmoles) of methyl 

iodide. After stirring for 10 min, the reaction mixture was 

worked up as above to give 1.07 g of crude ketone S-2 as an 

oil. 

The combined products were triturated with petroleum 

ether, which precipitated 0.20 g of the hydroxy ketal LX, 

mp 178.5-181°. Crystallization from benzene--ether afforded 

0 the Analytical sample: plates, mp 181.5-183 ; 

ir (CHC1 3 ) 3580-3610 (0-H), 1585-1600 (aromatic), 1390 (gem­

.dimethyl), and 1110 cm-l (C-0 of ketal); 

nmr (CDC1 3 ) S 0.70, 0.98, 1.02, 1.05, and 1.22 (s, 3 each, 

CH3 ), 3;1-3.9 (m, 4, -OCH2-), 3.80 (s, 3, -OCH3 ), 6.6-

7.4 (m, 4, aromatic), 0.88 (s, 6, CH~); 
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Anal. Calcd for c32e50o4 : C, 77.06; H, 10.10. Found: C, 77.00; 

H, 10. 09. 

The amount of this side product isolated from this experiment 

and the preceding one was 0.82 g or 21% of the Grignard 

reaction product mixture. 

The 1.74 g of mother liquors obtained from the tritura-

tion was chromatographed on 200 g of Merck Silica gel. Elu-

tion with 750 ml of 5% acetone in petroleum ether gave 0.33 g 

(20% yield) of 0-methylated material LXII as a viscous oil: 
. -1 

ir (CHC1 3 ) 1670 (C=C), 1585 and 1600 (aromatic), and 1390 cm 

(gem-dimethyl). 

The attempted crystallization of this compound resulted in the 

hydrolysis of the enol ether group, yielding the unmethylated 

ketone LXIII. Recrystallization of this ketone from methylene 

chloride--ether--petroleum ether afforded analytically pure 

material as a microcrystalline solid: mp 153-157°; 

ir (CHC1 3 ) 1705 (C=O), 1585-1600 (aromatic), 1390 (gem-di­

methyl), and 1115 cm-l (C-0 of ketal); 

nmr (CDC1 3 ) 8 0.73 .and 0.87 (s, 6 each, CH3 ), 1.05 and 1.25 

(s, 3 each, CH3 ), 3.1-3.9 (m, 4, -OCH2-), 3.79 (s, 3, 

-OCH3 ), 6.6-7.4 (m, 4, aromatic H); 

Anal. Calcd for c32H48o4 : C, 77 .. 38; H, 9.74. Found: C, 77.45; 

H, 9.73. 

Further elution of the column with 150 ml of the same 

solvent gave 0.26 g (15% yield) of the dimethylated ketone 
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LXI as an oil, which formed white crystals on trituration 

with petroleum ether, yielding the analytical sample: mp 130-

o 
131.5 ; 

ir (CHC1
3

) 1690 (C=O), 1585-1600 (aromatic), 1390 (gem-di­

methyl), and 1115 cm-l (C-0 of ketal); 

nmr (CDC1 3 ) 8 0.73, 0.87, 0.93, 0.97, 1.07, and 1.23 (s, 3 

each, CH3 ), 1.23 (d' 3, J=7, C-6 CH3 ), 1.28 (s, 3, C-8 &(. 

CH
3
), 3.1-3.9 (m, 4, -OCH -) 

2 ' 
3.82 (s, 3, -OCH3 ), 6.6-

7.4 (m, 4, aromatic); 

Anal. Calcd for c34H52o4 : C, 77.82; H, 9.99. Found: C, 77.97; 

H, 10.10. 

Elution With 450 ml of the same solvent gave 1.00 g 

(60% crude yield) of the desired monomethylated ketone S-2, 

which on trituration with petroleum ether afforded 0.89 g 

(53% yield) of white crystals, the nmr spectrum of which was 

identical to that of the analytical sample prepared by two 

recrystallizations from methylene chloride--ether: micro­

o crystalline solid, mp 168-172 ; 

ir (CHC1 3 ) 1700 (C=O), 1585-1600 (aromatic), 1390 (gem-dimethyl), 

and 1110 cm-l (C-0 of ketal); 

nmr (CDC1 3 ) S 0.73, 0.92, 1.07, and 1.22 (s, 3 . each, CH3 ), 

o '.85 (s, 6, CH3 ), 1.31 (s, 3, C-8a:.CH3 ), 3.1-3.9 (m, 4, 

-OCH
2
-), 3.80 (s, 3, -OCH3 ), 6.6-7.4 (m, 4, aromatic); 

Anal. Calcd for c33H50o4 : C, 77.60; H, 9.87. Found: C, 77.64; 

H, 9.76. 
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8(!- (2 '-._!!!-Methoxyphenylethyl )-1, 1, 4a(.j, Bo<, 8a,8-pen tamethyl-

3, 4, 4a, 4b~, 5, 6, 8a, 9, 10, 10a~-decahydro-2, 7(1H,8H)-phenanthrene~ 

dione (Q-11) was prepared by the deketalization method used 

by Baldwin and Ireland. 60 To 0.85 g (1.67 mmoles) of the 

keto-ketal S-2 (prepared in the above reaction) dissolved in 

80 ml of acetone was added 21.4 ml of 10% aqueous hydrochloric 

acid. After standing for 1 hr, the clear, colorless solution 

was poured into 800 ml of water and extracted with five 100-ml 

portions of ether. The combined extracts were washed with 

100 ml of water and 100 ml of brine, and dried (MgS0
4
). Removal 

of the solvent at reduced pressure afforded 0.71 g of white 

~rystalline .diketone Q-11, mp 141-151°, which was purified 

by recrystallizations from chloroform--ether and hexane. Two 

0 crops of white prisms were obtained: 0.39 g, mp 160-166 , and 

0 . 0 
0.09 g, mp 158-165 , the vapor phase chromatograms (300 , 4% 

SE-30) of which exhibited one major peak with a retention 

time of 3.5 min (97% for the first crop, and 86% for the sec-

ond). The total yield was 64%. Their and nmr spectra of 

this diketone were the same as those of the diketone Q-11, 

which was prepared by the hydrolysis of the ethylene ketal-

ketone Q-10. This hydrolysis procedure is presented below. 

2,2-Ethylenedioxy-8fi-(2'-m-methoxyphenylethyl)-l,l,4ap,~ 

8~,8a;3.;...pentamethyl-l,2,3,4,4a,4boc.,5,6,8a,9,10,10ac<-dodecahydro-

7(8H)-phenanthrone (Q-10) was prepared by a procedure of 

. 60 
Baldwin and Ireland. To the residue left by the removal of 
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the solvent from 1 . 66 ml of 1.75 M (2.91 mmoles) ethereal 

methyllithium (Alfa Inorganics) was added 8.6 ml of dry 

dimethoxy~thane. To the resulting cloudy solution was added 

dropwise over a period of 8 min 603 mg (1.21 mmoles) of enol 

acetate Q-9 (obtained from the hydroxy ketone 0-4 by the 

method of Baldwin and Ireland60 ) dissolved in 9 ml of dry 

dimethoxyethane. After stirring at room temperature for 

45 min, the enolate solution was quenched by the addition of 

8.6 ml (19.6 g, 139 mmoles) of methyl iodide (purified by 

distillations from phosphorous pentoxide and from magnesium 

sulfate). After stirring for 5 min, the solution was poured 

into 100 ml of brine and 50 g of ice, and extracted with four 

50-ml portions of ether. The combined extracts were washed 

with 50 ml of water and 50 ml of brine, and dried (MgS04 ). 

Removal of the solvent at reduced pressure gave 537 mg of a 

pale yellow oil . 

In another experiment, 625 mg (1.26 mmoles) of enol 

acetate Q-9 was treated with 3.01 mmoles of methyllithium and 

8.9 ml (144 mmoles) of methyl iodide in 18.4 ml of dimethoxy-

ethane, and worked up as above to produce 585 mg of a pale 

yellow oil. 

The combined products were triturated with hexane. The 

873 mg of solid obtained was crystallized twice from ethyl 

acetate--heptane to afford 430 mg (35% yield) of the keto-

. 0 
ketal Q-10 as white crystals, mp 151.5-154 . The vpc chromato-

gram (300°, 4% SE-30) of this material exhibited one main peak 
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at a retention time of 4.7 min (92%). 

Preparative tlc (Merck silica gel, 20x40x0.l cm plate, 

50% ether in petroleum ether) was used to separate the mother 

liquors into three fractions: keto-ketal Q-10 (Rf=0.25-0.35), 

dimethylated ketoneLXVIII(Rf= 0.35-0.45), and the 0-methylated 

compound LXIX (Rf= 0. 45-0. 55). 

The dimethylated ketone LXVIII was identified by ir and 

nmr spectral data: 

-1 1685 (C=O), 1585-1600 (aromatic), and 1385 cm 

(gem-dimethyl); 

nmr (CDC1
3

) S 0.88, 0.90, 0.93, and 0.97 (s, 3 each, CH3 ), 1.21 

(d, 3, J=7, C-6 CH3 ), 1 . 27 (s, 3, C-8oc. CH3 ), 3.78 (s, 3, 

-OCH3 ), 3.95 (s, 4, -OCH2-), 6.6-7.4 (m, 4, aromatic H); 

nmr (benzene) $ 0.75, 0.78, and 1.00 (s, 3 each, CH
3
), 1.05 

(s, 6, CH3 ), 1.07 (ct; 3, J=7.5, C-6 CH3 ), 3.40 (s, 3, 

-OCH3 ), 3.58 (s, 4, -OCH2-). 

The enol etherLXIX was identified from its ir spectrum: 

-1 ir (CHC1
3

) 1660 (C=C), 1580-1600 (aromatic), and 1385 cm 

(gem-dimethyl). 

The fraction containing the keto-ketal Q-10 was tritu­

rated with h~xane, and the solid obtained was crystallized 

from ethyl acetate--heptane to give an additional 71 mg 

(6% yield) of white crystals, mp 150.5-153°. The vpc chromato­

gram (300°, 4% SE-30) had one main peak with a retention time 

of 4.5 min (93%). 

The combined keto-ketal Q-10 product weighed 501 mg (41% 
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yield): white crystals, mp 151-154°; 

ir (CHC1 3 ) 1695 (C=O), 1580-1600 (aromatic), and 1390 cm-l 

(gem-dimethyl); 

nmr (CDC1 3 ) 8 0.83 and 0.87 (s, 3 each, CH3 ), 0.92 (s, 6, 

CH3 ), 1.28 (s, 3, C-8~ CH3 ), 3.79 (s, 3, -OCH3 ), 3.96 

(s, 4, -OCH2-), 6.6-7.4 (m, 4, aromatic H); 

nmr (benzene) S 0.72 and 1.03 (s, 6 each, CH3 ), 0.93 (s, 3, 

CH3 ), 3.42 (s, 3, -OCH3 ), 3.60 (s, 4, -OCH2-). 

A Deketalization of 2,2-Ethylenedioxy-8~-(2'-m-methoxy­

phenylethyl)-l,l,4aA,8a,8afi-pentamethyl-l,2,3,4,4a,4b~,5,6,8a,-

9,10,10a~-dodecahydro-7(8H)-phenanthrone (Q-10) was done 

according to the procedure ~f Baldwin and Ireland. 60 To a 

solution of 402 mg (0.86 mmoles) of keto~ketal Q-10 (prepared 

in the preceding experiment) in 40 ml of acetone was added 

10.8 ml of 10% aqueous hydrochloric acid. After 45 min, the 

clear solution was poured into 700 ml of water and extracted 

with four 100-ml portions of ether. The combined extracts 

were washed with 100 ml of water and 100 ml of brine, and 

dried (MgS04 ). Removal of the solvent at reduced pressure gave 

354 mg (100% yield) of the diketone Q-11: white crystals, 
. 0 

I!J.P 161-165 ; 

1700 (C=O), 1580-1600 (aromatic), and 1385-1390 

(gem-dimethyl) 

-1 cm 

nmr (60 and 220 MHz, CDC1 3 ) 8 0.87, 0.98, 1.05, 1.12, and 1.30 

(s, 3 each, CH3 ), 3.80 (s, 3, -OCH3 ), 6.6-7.4 (m, 4, 

aroma tic H). 
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The vpc chromatogram (300°, 4% SE-30) of these crystals 

had only one peak with a retention time of 2.7 min. The 

optically active diketone Q-11, which was obtained from the 

degradation of euphol, exhibited a single peak with an 

identical retention time. Co-injection of the two samples 

gave a single peak. Analytical tlc (Merck silica gel, 50% 

benzene in ether) of the racemic and optically active 

diketones gave a single spot at Rf= 0.50. The ir and nmr 

(60 and 220 MHz) spectra of the optically active material 

were identical to those of the racemic material (above). 

The Preparation of Polyphosphoric Acid (PPA). 28 To 

·100 ml of 85% phosphoric acid was slowly added 113 g of 

phosphorous pentoxide with mechanical stirring and occasional 

cooling in an ice bath to prevent overheating. The resulting 

0 clear, colorless liquid was heated at 130 for 1 hr, then 

cooled to room temperature, and used directly in the cyclo-

dehydration reaction. 

10-Methoxy-4,4,6a4,6b~,14bft-pentamethyl-l,2,4a~,5,6,6a,-

6b,7,8,14,14a«,14b-dodecahydro-3(4H)-picenone (V-1). The 
60 . 

cyclodehydration procedure of Baldwin and Ireland was 

modified. To a saturated solution of 327 mg (0.77 mmole) of 

pure diketone Q-11 (prepared above, mp 161-165°) in 2 ml of 

benzene was added 53 ml of polyphosphoric acid. The yellow 

viscous mixture was rapidly stirred at 50° (internal tempera-

ture) with a mechanically driven teflon stirring paddle for a 
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period of 30 min, then poured into 350 g of an ice--water 

mixture, and extracted with four 50-ml portions of benzene. 

The combined extracts were washed with 100 ml of saturated 

aqueous sodium bicarbonate and 100 ml of brine, and dried 

(MgS04 ). On removal of the solvent at reduced pressure, 

308.5 mg of oily white crystalline pentacyclic ketone V-1 

was obtained . Two crops of crystals, 167.5 and 53.5 mg, 

of ketone V-1 were produced on crystallization of the crude 

product from ethyl acetate--heptane. Preparative tlc (Merck 

silica gel, benzene) of the mother liquors gave another 60 mg 

of the ketone (Rf= 0.1-0.2). The combined product weighed 

281 mg (90% yield), mp 150~151.5°. 

The analytical sample was prepared in the same manner 

as the above material: mp 147.5-150°; 

ir (CHC1 3 ) 1695 (C=O), 1645 (styrene C=C), 1610 and 1570 

(aromatic), and 1375 and 1385 cm-l (gem-dimethyl); 

nmr (CDC1
3

) 8 0.97, and 1.03 (s, 3 each, CH
3
), 1.10 (broads, 

9, CH3 ), 3.76 (s, 3, -OCH
3
), 6.15 (two superimposed 

doublets, 1, JAX=JBX=2, vinylic H), 6.5-7.6 (m, 3, 

aromatic); 

Anal. Calcd for c28H38o2 : C, 82.71; H, 9.42. Found: C, 82.86; 

H, 9.36. 

3j3-Hydroxy-10-methoxy-4, 4, 6a,,s, 6bct, 14biS-pen tamethyl-1, 2 , ·-

3,4,4a«,5 , 6,6a,6b,7,8,14 Ll4a «,14b-tetradecahydropicene (V- 2~ . 

Lithium aluminum tri-.t-butoxy liydride (2.24 g, 8.8 mmoles), 

which was prepared acco r ding to a reported procedure,28 was 
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added to a solution of 0.38 g (0.93 nunole) of the pentacyclic 

ketone V-1 in 60 ml of tetrahydrofuran, and the resulting 

suspension was first heated at reflux for 3 hr and then 

cooled. Water was added to destroy the unreacted hydride. 

The resulting mixture was poured into 600 ml of 1% aqueous 

hydrochloric acid and extracted with four 100-ml portions of 

benzene. The combined extracts were washed with 100 ml of 

1% aqueous hydrochloric acid and then 100-ml portions of 10% 

aqueous sodium bicarbonate, water, and brine, and dried 

(Na2co3 ). Removal of the solvent at reduced pressure afforded 

0.39 g (quantitative crude yield) of a white micro-crystal­

line solid, the pentacyclid alcohol V-2, mp 176-184°. 

The analytical sample, which was obtained by recrystal-

lization from benzene of material prepared in an earlier 

0 experiment, melted at 185-188.5 : 

ir (CHC1 3 ) 3610 (0-H), 1640 (styrene C=C), 1570 and 1605 

-1 (aromatic), and 1370 and 1385 cm (gem-dimethyl); 

nmr (CDC1 3 ) 8 0.82 and 0.93 (s, 3 each, CH3 ), 1.02 (s, 9, 

CH3 ), 3.2 (m, 1 , CHOR), 3.77 (s, 3, -OCH3 ), 6.15 (two 

superimposed doublets , 1, JAX=JBX=2, vinylic H), 6.5-

7.6 (m, 3, aromatic H) ; 

Anal. Calcd for c28H40o
2

: C, 82~30; H, 9.87. Found: C, 82.14; 

H, 9.87. 

The 3;3-Hydroxy-10-methoxy-4,4,6a4,6bcx.,l4b,8-pe ntamethyl -

l,2,3,4 , 4a~,5,6,6a,6b,7,8,12b,13,14,14aQ,14b-hexadecahydro-
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picenes (V-3 and V-4). A mixture of 31.8 mg (0.08 mmole) of 

the alcohol V-2 (mp 185-188.5°) and 32 mg of 10% palladium on 

carbon (Engelhard) in 30 ml of absolute ethanol was stirred 

under a hydrogen atmosphere for 3 days. Removal of the 

catalyst by filtration, and evaporation of the filtrate at 

reduced pressure afforded an oily mixture of the cis and 

trans pentacyclic alcohols V-3 and V-4, weighing 29.6 mg (93% 
. 0 

crude yield), the vapor phase chromatogram (300 , 4% SE-30) of 

which exhibited two peaks with an area ratio of 3:1 at 

retention times of 2.8 and 3.3 min. 

ir (CHC1 3 ) 3600 (0-H), 1580 and 1610 (aromatic), and 1375 and 

1390 cm-·1 (gem-dimethyl); 

nmr (CDC1 3 ) b 0.40 (s, 2, C-6a CH3 ), 0 . 73, 0.97, and 1.27 (s, 

3 each, CH3 ), 0.80 (s, 4, CH3 ), 0.92, 1.07 , 1.12 , and 

1.23 (s, weak, CH3 ), 3.2 (m, 1, CHOH), 3.77 (s, 3, -OCH3 ), 

6.6-7.3 (m, 3, aromatic H). 

The nmr spectrum established that the predominant 

hydrogenation isomer was the cis C/ D ring- fused alcohol V-3. 

The Birch Reduction of the Styrene Bond of the Penta-

cyclic Alcohol V-2 was performed using a modification of a 

published procedure '!9 To a solution of 85 mg (O. 21 nunole) of 

the pentacyclic alcohol V-2 (prepared as described above) in 

40 ml of dimethoxyethane and 40 ml of tetrahydrofuran was added 

250 ml of liquid ammonia (distilled from lithium and sodium). The 

solution became slightly cloudy, however the addition of 20 ml 
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of tetrahydrofuran did not clarify it. Sodium (0.24 g, 10.4 

mmoles) was added, and the blue mixture was stirred at reflux 

for 1 hr and then quenched by the slow addition of 1.1 g (20.7 

mmoles) of ammonium chloride. The ammonia was allowed to evap-

orate under a slow stream of argon. The liquid in the flask 

was decanted and concentrated at reduced pressure. The concen-

trated material and the residue in the flask were mixed with 

150 ml of dilute brine and extracted with four 50-ml portions 

of benzene. The combined extracts were washed with 50-ml 

portions of water and brine, and dried (Na2co3 ). Removal of 

the solvent left 87 mg of a clear colorless oil, the vapor 

ph~se chromatogram (300°, 4% SE-30) of which had two major peaks 

with retention times of 2.8 (45%) and 3.3 min (55%). Tritura-

tion with eth~r gave 12.4 mg of the trans isomer V-4: white 

plates, mp 158-159.5°, and 36.7 mg of slightly cruder material. 

The purer material, the vapor phase chromatogram (300°, 4% SE-30) 

of which had one peak with a retention time of 3.3 min (97%), 

was recrystallized from benzene--methanol to give the analytical 

sample: prisms, mp 148-151°; 

ir (CHC1
3

) 3620 (O-H), 1585 and 1615 (aromatic), and 1385 

-1 ( and 1395 cm gem-dimethyl); 

nmr (CDC1
3

) G 0.80 (s, 6, CH3 ), 0.92, 1.01, and 1.08 (s, 3 

each, CH3 ), 3.2 (m, 1, CHOH), 3.76 (s, 3, -OCH3 ), 6.6-

7.3 (m, 3, aromatic H); 

Anal. Calcd frir c28H42o2 : C, 81".90; H, 10.31. Found: C, 81.94; 

H, 10 .20. 
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The 31 mg of mother liquors from the triturations 

afforded 15.1 mg of cis isomer as a micro-crystalline solid, 

mp 139-144°, on crystallization from ether--petroleum ether. 

0 The vapor phase chromatogram (300 , 4% SE-30) of this material 

had one major peak at a retention time of 2.8 min (91%). 

ir (CHC1
3

) 3615 (0-H), 1580 and 1610 (aromatic), and 1365, 

-1 
1385, and 1390 cm (gem-dimethyl); 

nmr (CDC1 3 ) S 0.40, 0.77, 0.81, 1.00, and 1.29 (s, 3 each, 

CH
3
), 3.2 (m, 1, CHOR), 3.80 (s, 3, -OCH

3
), 6.6-7.3 

(m, 3, aromatic H). 

3§-Hydroxy-4,4,6a~,6b~,14bfi-pentamethyl-l,2,3,4,4aa,5,-

6,6a,6b,7,8,12,12a~,12b#,13,14,14a~,14b-octadecahydro-10(11H)-

picenone (V-5). Because of the insolubility of the starting 

80 
material, a reported Birch reduction procedure was modi-

fied. A 10.2-mg (0.25 nunole) portion of the trans C/D ring 

fused pentacyclic alcohol V-4 (prepared in the preceding 

reaction) was dissolved in 15 ml of dimethoxyethane. Then 

40 ml of liquid ammonia (distilled from sodium and lithium) 

was added. A total of 47 mg (6.7 mmoles) of lithium was 

added over a period of 23 min to m~intain the deep blue color 

of the reaction mixture. Next, 0.72 ml (7.6 mmoles) of 

!-butanol (dried by distillation from calcium hydride) was 

added. After the blue color had disappeared, another 38-mg 

(-5.5 mmoles) ·portion of lithium and 0.48 ml (5.0 mmoles) of 
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t-butanol were added. After 45 min, the blue reaction mix-

ture was quenched by the addition of 0.99 g (18.7 mmoles) of 

ammonium chloride. After the ammonia had evaporated under 

a slow stream of argon, the residue was diluted with 150 ml 

of dilute brine and extracted with four 50-ml portions of 

benzene. The combined extracts were washed with 50-ml 

portions of water and brine, and dried (Na
2
co

3
). 

The residue left after the removal of the solvent at 

reduced pressure was dissolved in 15 ml of methanol with 

heating. To this solution was added 5 ml of 5 N aqueous 

hydrochloric acid and this mixture was heated at reflux for 

30 min, cooled, poured into 150 ml of dilute brine, and 

extracted with four 50-ml portions of benzene. The combined 

extracts were washed with 50-ml portions of saturated aqueous 

~odium carbonate, water, and brine, and dried (Na2so4 ). 

Removal of the solvent at reduced pressure afforded 11.5 mg 

of a white solid. 0 The vapor phase chromatogram (300 , 4% 

SE~30) of this material had two major peaks with retention 

times of 3.3 (45%) and 3.8 min (40%). The chromatogram of the 

starting material showed one peak with a retention time of 

~.3 miri. The nmr spectrum of the crude Birch reduction 

product exhibited a signal at 3.77 5 (s, 1, -OCH3 ). There­

fore, this crude product contained a large amount of starting 

material. 

Recrystallization of the product mixture from chloro-

f6rm--ether afforded 5.5 mg of pure pentacyclic enone V-5 
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as a white microcrystalline solid, vacuum mp 253-256°. The 

vapor phase chromatogram of this material had one peak at 

a retention time of 3.8 min. The ir and nmr spectra of this 

enone were the same as that of the analytical sample, which 

was prepared by ether--benzene recrystallization of material 

prepared by a similar route: vacuum mp 263.5-268.5°; 

ir (CHC1
3

) 3605 (0-H), 1660 (C=O), 1615 (C=C), and 1375 and 

-1 
1390 cm (gem-dimethyl); 

nmr (CDC1 3 ) S 0.76, 0.83, and 1.05 (s, 3 each, CH3 ), 0.93 

(s, 6, CH3 ), 3.2 (m, 1, CHOH), 5.80 (broads, 1, 

vinylic H); 

Anal. Calcd for c27H42o2 : C, 81.35; H, 10.62. Found: C, 81.44; 

H, 10. 60. 

The Birch Reduction of the Pentacyclic Alcohol V-2 was 

done according to the procedure given above. A 1090-ml portion 

of liquid ammonia was distilled from sodium and lithium into 

a solution of 0.31 g (0.76 mmoles) of the pentacyclic alcohol 

V-2 (prepared by a procedure described above) in 465 ml of 

dimethoxyethane. To this slightly cloudy solution was added 

2.62 g (380 mmoles) of lithium wire, which had been cut into 

2-cm pieces and washed with dry hexane. After this blue 

mixture had stirred at reflux for 1 hr, 43.4 ml (455 mmoles) 

of t-butanol was added. The blue solution was stirred for 

3.5 hr and then quenched by the slow addition of 28.4 g (530 

mmoles) of ammonium chloride. The ammonia was allowed to 



168 

evaporate under a slow stream of argon. The liquid in the 

reaction flask was concentrated at reduced pressure. The 

concentrated material and the white solid in the reaction 

flask were diluted with 500 ml of water and extracted with 

four 100-ml portions of benzene. The combined extracts were 

washed with 100-ml portions of water and brine, and dried 

(Na
2
so4 ). After removal of the solvent at reduced pressure, 

the white crystalline residue was dissolved in 465 ml of 

methanol by heating. To this solution was added 155 ml of 

5N aqueous hydrochloric acid, and the resulting mixture was 

heated at reflux for 30 min, and cooled. The solution was 

concentrated at reduced pressure to give an aqueous residue, 

which was poured into 500 ml of water and extracted with 

four 100-ml portions of benzene. The combined extracts were 

washed with 100-ml portions of saturated aqueous sodium bi­

carbonate, water, and brine, and dried (Na
2

so
4
). Removal of 

the solvent at reduced pressure left 0.31 g of a clear, color­

less oil, which was triturated with ether to give 0.16 g of 

crude pentacyclic enone y;...5 as white crystals. The mother 

liquors (157 mg) were chroma to graphed on 20 g of Merck silica 

gel with ether. Elution with 75 ml of ether gave two 

unidentified side products; further elution with 70 ml of 

ether afforded 44.3 mg of crude enone V-5 as a white solid, 

which was co~bined with 0.16 g obtained by trituration. 
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The crude enone was recrystallized from dichloromethane--

ether to give two crops of purified pentacyclic enone V-5 

as a white micro-crystalline solid: 103 mg, vacuum mp 258-261°, 

and 33 mg, vacuum mp 242.5-247° (45% yield). Their and nmr 

spectra of the combined product were identical to those of the 

analytical sample, which are reported in the preceding experi-

ment. 

8aft-Cyano-3~-hydroxy-4,4,6a4,6b~,l4b~-pentamethyl-l,2,3,-

4,4aa'.,5,6,6a,6b,7,8,8a,ll,12,12a<t,12b;.1,13,14,14act,14b-eicosa-

hydro-10(9H)-picenone (W-1) was prepared according to the 

procedure of Nagata and coworkers, 6 as modified by Welch and 

Ireland. 44 To a solution of 136 mg (0.34 mmole) of enone V-5 

(prepared in the preceding reaction) in 15 ml of tetrahydro-

0 . 
furan at 0 was added 1.92 ml of a tetrahydrofuran solution, 

which was cooled to o0 and which was 0.736 M in triethyl-

aluminum (1.41 mmoles, Texas Alkyls) and 0.540 Min hydrogen 

cyanide44 (1.04 mmoles, prepared by R. Farr in the Ireland 

laboratories). After stirring at o0 for 45 min and at room 

temperature for 37 hr, the pale yellow reaction mixture was 

poured into 150 ml of cold 5% aqueous sodium hydroxide and 

extr~ct~d with four 50-ml portions of benzene. The combined 

extracts were washed with 50-ml portions of 5% aqueous sodium 

hydroxide, w~ter, and brine, and dried (Na2so4 ). Removal of 

the solvent at reduced pressure left 148 mg (quantitative crude 

yield) of the cyano-ketone W-1 as a white micro-crystalline 
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solid, vacuum mp 294-298°. Their and nmr spectra of this 

material were identical to those of the analytical sample, 

which was prepared by a similar procedure and then recrystal-

lized from ethanol to give a white, micro-crystalline solid: 

0 vacuum mp 316-318.5 ; 

3600 (0-H), 2220 (-CN), 1720 (C=O), and 1390 

(gem-dimethyl); 

nmr (CDC1 3 ) S 0.78, 0.88, and 1.08 (s, 3 each, CH3 ), 1.00 

(s, 6, CH3), 3.2 (m, 1, CHOR); 

Anal. Calcd for c28e43No2 : C, 79.01; H, 10.18; N, 3.29. 

Found: C, 78.88; H, 10.14; N, 3.26. 

-1 cm 

8afi-Cyano-10,10-ethylenedioxy-3~-hydroxy-4,4,6a~,6b~,-

14b~~pentamethyl-l,2,3,4,4a~,5,6,6a,6b,7,8,8a,9,10,ll,12,12a~,-

12bA,13,14,14a~,14b-docosahydropicene (W-2). A ketalization 

procedure 6f Baldwin and Iielanct 60 was modified. Distilled 

ethylene glycol (38 ml) and p-toluenesulfonic acid monohydrate 

(100 mg, 0.53 mmole) were added to a solution of 189 mg (0.44 

mmole) of cyano-ketone W -1 (prepared by the above procedure) 

in 190 ml of benzene. This mixture was heated at reflux for 

10 hr in a flask fitted with a Dean-Stark trap, the receiver 

end of which was filled with benzene-washed Drierite to bind 

the azeotroped water. After cooling, the reaction mixture 

was poured into 400 g of ice-water and 200 ml of saturated 

sodium bicarbonate. The aqueous phase was extracted with two 

100-ml portions of benzene. The combined benzene solutions 
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were washed with 100 ml of saturated aqueous sodium bicarbonate, 

five 100-ml portions of water, and 100 ml of brine, and dried 

(Na2so4 ). Removal of the solvent at reduced pressure gave 

0.20 g of a pale yellow solid, which was identified as the 

cyano-ketal W-2 from the ir and nmr spectra. Recrystallization 

of this material from chloroform--ether afforded 158 mg (77% 

yield from the enone V-5) of cyano-ketal W-2 as a white, micro­

. 0 
crystalline solid, vacuum mp 313-317.5 . 

A sample prepared in an earlier experiment was recrystal-

lized from ethanol to give a white micro-crystalline solid: 

0 
vacuum mp 335-336.5 ; 

·ir 3605 (0-H), 2220 (-CN), and 1375 and 1390 
-1 

cm 

(gem-dimethyl); 

nmr (CDC1
3

) 5 0.78, 0.87, 0.95, 0.98, and 1.08 (s, 3 each, 

CH3 ), 3.2 (m, 1, CHOH), 4.00 (m, 4, -OCH2CH20-); 

Anal. Calcd for c30n47No3 : C, 76.71; H, 10.09; N, 2.98. 

Found: C, 76.83; H, 10.15; N, 2.98. 

4, 4, 6a,,1, 6b.x., 8a;1, 14b§-Hexamethyl-3;S'-hydroxy-l, 2, 3, 4, 4ac::(, ·-

5, 6, 6a, 6b, 7, 8, 8a, ll, 12, 12a~, 12b;S', 13, 14, 14a~, 14b-eicosahydro-

10(9H)-picenone (W-5) was prepared by a modificatiori of the 

44 procedure of Welch and Ireland, followed by removal of the 

ketal protecting group. 

To a solution of 158 mg (0.34 mmole) of cyano-ketal 

W-2 (prepared in the preceding experiment) in 60 ml of benzene 

was added at room temperature 1.36 ml of 0.567 M (0.77 

mmoles) diisobutylaluminum hydride (Kand K) in benzene. 
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After stirring for 1 hr, the reaction mixture was poured into 

150 ml of cold 3.3% aqueous sodium hydroxide and extracted 

with three 50-ml portions of benzene. The combined extracts 

were washed with 50-ml portions of water and brine, and dried 

(Na2so4 ). Removal of the solvent at reduced pressure gave 

0.16 g of the crude imine W-3 as a white solid: 

ir 3625 (0-H), 1630 (C=NH), and 

(gem-dimethyl). 

1380 and 1390 
-1 

cm 

The crude imine was heated in 22 ml of triethylene glycol 

(distilled) to effect solution. The solution was cooled to 

room temperature, and 2.2 ml (38.6 mmoles) of 85% aqueous 

hydrazine hydrate and 0.56 g (4.96 mmoles) of hydrazine dihydro­

chloride were added. This mixture was then heated at 130-135° 

(internal temperature) for 3.5 hr, and cooled to 110° while 

3.56 g (54 mmoles) of potassium hydroxide pellets (B and A, 

85%) were slowly added. The temperature of the reaction mixture 

was raised to 175-180° over a period of 10 min to allow for 

distillation of the volatile material under a rapid stream of 

argon. The argon flow was decreased, and heating (175-180°) 

was continued for 6 hr. After cooling, the cloudy reaction 

mixture was diluted with 500 ml of dilute brine and extracted 

with si~ 100-ml portions of benzene. The combined extracts 

were washed with ten 50-ml portions of water, and one 50-ml 

portion of brine, and dried (Na
2
so4 ). Removal of the solvent 

at reduced pressure afforded 0.16 g of a white solid: vacuum 
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ir 
-1 (CHC1

3
) 3600 (0-H), and 1375 and 1385 cm (gem-dimethyl); 

nmr(CDC1
3

) ~ 0.77, 0.86, 0.98, and 1.04 (s, 3 each, CH3 ), 

0.95 (s, 6, CH3 ), 3.2 (m, 1, CHOH), 3.88 (m, 4, -OCH2-). 

Because of the insolubility of this ketal (W-4), the 

60 standard deketalization procedure had to be modified. A 

solution of 0.16 g of the crude ketal in 80 ml of acetone 
. b 

and 40 ml of methanol was cooled to 10 while 33 ml of 10% 

aqueous hydrochloric acid was added. The resulting solution 

was allowed to stand at room temperature for 1 hr, poured 

into 700 ml of dilute brine, and extracted with five 100-ml 

portions of benzene. The riombined extracts were washed with 

100-ml portions of saturated aqueous sodium bicarbonate, 

water, and brine, and dried (Na2 so4 ). The solvent was removed 

at reduced pressure to afford 156 mg of the crude ketone W-5 

as a white solid, which was recrystallized from dichloro-

methane--ether--petroleum ether to give 142 mg of ketone W-5 

as a white micro-crystalline solid, vacuum mp 282-292°. The 

vapor phase chromatogram (300°, 4% SE~30) showed one major 

peak at a retention time of 3.1 min (91%). The overall 

yield for the three step conversion of the cyano-ketal W-2 

to the ketone W-5 was 93%. 

The analytical · sample was prepared by an aqueous ethanol 

0 crystallization of comparable material: vacuum mp 300-303.5 ; 

. -1 
ir (CHC1 3 ) 3600 (0-H), 1700 (C=O), and 1385 cm (gem-dimethyl); 
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nmr (CDC1 3 ) 6 0.78 (s, 6, ce
3
), 0.87, 0.99, 1.02, and 1.03 

(s, 3 each, CH3 ), 3.2 (m, 1, CHOH); 

Anal. Calcd for c28H46o2 : C, 81.10; H, 11.18. Found: C, 81.00; 

H, 11. 07. 

4,4,6ag,6b~,8a4,14b~~Hexamethyl-34-hydroxy-l,2,3,4,4a~,-

5, 6,6a,6b, 7, 8, Sa, 12acx, 12b,6', 13, 14, 14acx., 14b - octadecahydro-10 (9H )­

picenone (X-2) was prepared by bromination of the ketone W-5, 

followed by dehydrobromination. A procedure of Marshall and 

coworkers2 was modified for the first step. A stirred solu­

tion of 132 mg (0.32 mmole) of the pentacyclic hexamethyl 

ketone W-5 (prepared in the preceding reaction) in 13 ml of 

glacial acetic acid was cooled to 10-15° while 1.2 ml of 

0.313 M (0.37 mmole) bromine in acetic acid, which was also 

0.0075 M in hydrobromic acid, was added dropwise over a period 

of 14 min. The orange solution was immediately poured into 

150 ml of dilute brine containing 1.0 g (7.9 mmoles) of sodium 

sulfite and extracted with four 50-ml portions of benzene. The 

combined extracts were washed with two 50-ml portions of 

saturated aqueous sodium bicarbonate, 50 ml of water, and 50 ml 

of brine, and dried (Na
2
so

4
). Removal of the solvent at reduced 

pres~ur~ left 151 mg of a yellow solid, which was purified by 

precipitation from dichloromethane--ether--petroleum ether, 

treatment with activated charcoal in chloroform and filtration, 

and reprecipitation from the aforementioned solvent mixture 

to give 123 mg of the bromoketone X-1 as a pale yellow solid: 
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vacuum mp 177-181° (decomposition); 

ir (CHC1 3 ) 3620 (0-H), 1715 (C=O), and 1390 cm-l (gem-dimethyl); 

nmr (CDC1 3 ) 8 0.78 (s, 6, CH
3

), 0.87, 1.00, 1.03, and 1.06 

(s, 3each, CH3 ), 3.2 (m, 1, CHOH), 4.30 (m, 1, CHBr). 

The bromoketone X-1 (123 mg, 0.25 mmole) was dehydro­

brominated by the procedures of Marshall and coworkers, 2 and 

71 
Green and Long. To a solution of the bromoketone in 10 ml 

of dimethylacetamide (MCB, distilled, bp 166°) was added 0. 50 g 

(5.0 mmoles) of calcium carbonate (Merck). This slurry was 

stirred and, heated at reflux for 30 min, cooled, poured into 

150 ml of dilute brine, and extracted with four 50-ml portions 

of benzene. The combined extracts were washed with two 50-ml 

portions of 10% aqueous hydrochloric acid, and 50-ml portions 

of saturated aqueous sodium bicarbonate, water, and brine, and 

dried (Na2so4 ). Removal of the solvent at reduced pressure 

afforded 148 mg of a yellow oil, which was chromatographed on 

20 g of Merck silica gel with 50% ether in benzene. The first 

45 ml of eluant were discarded; the next 15 ml of eluant con-

tained 46.3 mg of an unidentified mixture, a white solid: 
. -1 

ir (CHC1 3 ) 3620 (0-H), 1725 (C=O), 1685 (C=O), and 1385 cm 

(gem-dimethyl); 

nmr (CDC1 3 ) S 0.78, 0.87, 0.95, 1.00, 1.03, and 1.05 (s, CH3 ), 

3.2 (m, 1, CHOH). 

This material decomposed at 160° when a va~uum melting point 

was attempted. 
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Further elution of the column with the same solvent afforded 

39.3 mg (32% yield from the saturated ketone W-5) of the cx.,f­

unsaturated ketone X-2 as a white solid: vacuum mp 235-242°; 

-1 
ir (CHC1 3 ) 3620 (0-H), 1670 (C=O), and 1385 and 1390 cm 

(gem-dimethyl) ; 

81 uv max (CH
3

0H) 236 nm (€ = 7300), calcd 227 nm. 

nmr (CDC1 3 ) S 0.81, 0.88, and 0.91 (s, 3 each, CH3 ), 1.03 (m, 

9, CH
3
), 2.23 (s, 2, CH2CO), 3.2 (m, 1, CHOH), 5.99 

(d of d, 1, J = 3 and 11, C-11 H), 6.98 (broad d, 1, 

J = 11, C-12 H). 

This material was recrystallized from di.chloromethane--

ether to give the analytical sample as a white solid: vacuum 

0 
mp 245-247.5; 

Anal. Calcd for c28H44o2 : C, 81.50; H, 10.75. Found: C, 81.30; 

H, 10.61. 

Attempted Dimethylation of the Enone X-2. The procedure 

employed was a modification of one successfully used by Ireland 
80 

and Mander. To 0.39 ml of 1.12 M (0.44 mmole) potassium 

t-butoxide in !-butyl alcohol was added a solution of 36.2 mg 

(0.09 mmole) of the enone X-2 (prepared as described above) in 

0.7 ~l Of !-butyl alcohol and 0.35 ml of benzene. After 

stirring for 1 hr, 55 /1 (O. 88 mmole) of methyl iodide (puri­

fied by distillation from phosphorous pentoxide) was added and 

stirring was continued for 18 hr, during which time a precipi-

tate formed. The reaction mixture was poured into 150 ml of 
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<lilute brine and extracted with four 50-ml portions of benzene. 

The combined extracts were washed with 50-ml portions of water 

and brine, and dried (Na
2
so

4
). Removal of the solvent at 

reduced pressure left 35.2 mg of an oily solid. The ir spectrum 

of this material indicated that little of no reaction had 

occurred: 

ir 3620 (0-H), 1670 (C=O), and 1385 and 1390 
-1 

cm 

(gem-dimethyl) . · 

4,4,6a~,6b«,8a~,14b8-Hexamethyl-3~-hydroxy-l,2,3,4,4a~,-

5,6,6a,6b,7,8,8a,9,12b~,13,14,14a~,14b-octadecahydro-10(11H)­

picenone (X-3) was prepared by acid equilibration of the enone 

X-2. The hydrolysis and equilibration procedure used for 

the preparation of the enone V-5 was employed. To 30.5 mg 

(0.074 mmole) of the ~,~-unsaturated ketone X-2 (prepared as 

described above) dissolved in 45 ml of methanol was added 15 ml 

of 5 ·N . aqueous hydrochloric acid. This solution was heated at 

reflux for 5 hr, cooled, and concentrated at reduced pressure. 

The aqueous residue was poured into 150 ml of dilute brine and 

extracted with four 25-ml portions of benzene. The combined 

extracts were washed with 25-ml portions of saturated aqueous 

sodium bicarbonate, water, and brine, and dried (Na2so4 ). 

Removai of the solvent at reduced pressure afforded 29 . 7 mg 

of a yellow solid, which contained a 2:1 mixture of enones X-3 

and X-2 according to the strengths of the carbonyl absorptions 

in the infrared spectrum: 
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J -1 ~r (CHC1 3 ) 1715 (~,,-enone) and 1675 cm (~,p-enone). 

The infrared spectra, which were taken after 30-min and 1-hr 

periods df reflux, showed these two carbonyl bands in ratios 

of 1:2 and 1:1, respectively. 

The crude mixture was crystallized from dichloromethane-­

o ether to give 15.4 mg of a white solid: vacuum mp 258-261 ; 

ir (CHC1
3 ) 3615 (O-H), 1715 (strong ~,f-enone C=O), 1675 

. -1 
(very weak o(,ft-enone C=O), and 1385 and 1395 cm (gem-

ciimethyl); 

nmr (CDC1 3 ) S 0.79, 0.86, 0 . 91, 1.00, 1.06, and 1.11 (s, 3 

each, CH3 ), 3.2 (m, 1, CHOH), 5.20 (m, 1, vinylic H). 

Anal. Calcd for c
28

H
44

o
2

: C, 81.50; H, 10.75. Found: C, 81.31; 

H, 10 .03. 

The mother liquors from this crystallization (14.3 mg, 

0.035 mmole) were re-equilibrated as above with 7 ml of 5 N 

aqueous hydrochloric acid in 21 ml of refluxing methanol for 

2.7 hr. After an identical work-up, 14.1 mg of a yellow oil 

was recovered, which was crystallized from chloroform--ether 

to afford 5.2 mg of the ~,(-unsaturated ketone X-3 as a 

white solid, the infrared spectrum of which was the ~ame as 

that given above. The total yield was 20.6 mg (67%) of ;1,f-

enone X-3. 

38-Hydroxy-4,4,6a8,6b«,8a4 , ll,ll,l4b~-octamethyl-l,2,3,-

4,4a~,5,6,6a,6b,7,8,8a,9,12b~ , 13,14,14a~,14b-octadecahydro-

lO(llH)-picenone (X-4) was prep~red by a modification of a 
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80 
procedure used by Ireland and Mander. A mixture of 0.82 g 

(21 mmoles) of potassium and 25 ml of !-butanol (distilled 

from calcium hydride) was heated at reflux until the metal 

had completely reacted (2 hr), affording a 0.84 M solution of 

potassium !-butoxide. To 0.24 ml of this solution (0.20 mmole 

of potassium !-butoxide) was added over a period of 6 min a 

solution of 16.7 mg (0.04 mmole) of the ~,(-unsaturated ketone 

X-3 (prepared as described above) in 0.5 ml of benzene and 

1.3 ml ~f t-butanol. The resulting clear yellow solution was 

stirred at room temperature for 10 min before 25 pl (0.40 

mmole) of methyl iodide (purified by two distillations from 

pho~phorous pentoxide) was added. A precipitate formed within 

2 min. The reaction mixture was allowed to stir at room temper-

ature for 10.5 hr, poured into 100 ml of dilute brine, and ex-

tracted with four 25-ml portions of benzene. The combined ex-

tracts were washed with 25-ml portions of water and brine, and 

dried (Na
2
so

4
). Removal of the solvent at reduced pressure 

left 17.7 mg of crude dimethylated enone X-4 as a yellow oil, 

the nmr spectrum of which exhibited methyl signals at 0.79, 

0.85, 0 . 91, 1.01, 1.03, 1.10 (strong), 1.22, and l.2S 6 (weak). 

~he nmr spectrum remained the same after this product was 

resubj~cted to potassium !-butoxide and methyl iodide accord­

ing to the above procedure. 

The crude product was purified by chromatography on 

5 g of silica gel. Elution with 11 ml of 50% ether in benzene 

gave no identifiable material; continued elution (4 ml) produced 
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·7.5 mg (42% yield, 28% overall yield from the ~,#-unsaturated 

ketone X-2) of the dimethylated ketone X-4 as a white solid: 

mp 211-223°, needles; 

3615 (0-H), 1705 (C=O), and 1360, 1380, and 1390 

(gem-dimethyl); 

-1 cm 

nmr (CDC1 3 ) S 0.79, 0.85, 0.91, 1.01, 1.03, and 1.22 (s, 3 each, 

CH3 ), 1.10 (s, 6, CH
3
), 3.2 (m, 1, CHOH), 4.99 (m,l, C=CH); 

The analytical sample was recrystallized from benzene-­

ether: mp 229-232°; 

Anal. Calcd for c30H48o2 : C, 81.76; H, 10.98. Found: C, 81.57; 

H, 10. 83. 

fil-Germanicol (L-7). Because of the small scale in this 

reaction, the previously described Wolff-Kishner procedure was 

modified. To a solution of 5.9 mg (0.013 mmole) of the octa-

methyl ketone X~4 (prepared in the preceding reaction) in 

3.8 ml of triethylene glycol (redistilled) was added 0.38 ml 

(6.6 mmoles) of 85% aqueous hydrazine hydrate and 97 mg (0.92 

mmole) of hydrazine dihydrochloride. This mixture was stirred 

at 135-140° (bath temperature) for 3.5 hr, and cooled to 110° 

while 0.62 g (9.4 mmoles, 85% pure) of potassium hydroxide 

pellets were added. The bath temperature was increased to 180-

o . 
185 over a period of 20 min, while a rapid stream of argon 

was us~d to remove volatile material from the reaction mixture. 

After 30 min, the argon flow was reduced. The bath tempera­

ture was maintained at 180-185° for 6 hr. The reaction mixture 

was then cooled, poured into 150 ml of dilute brine, and 
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extracted with four 25-ml portions of benzene. The combined 

extracts were washed with ten 10-ml portions of water and 

10 ml of brine, and dried (Na
2
so

4
). Removal of the solvent 

at reduced pressure afforded 6.0 mg (quantitative crude 

0 
yield) of a white solid, mp 214-218 , the nmr spectrum of 

which was identical to that of the natural d-germanicol. 

0 
The vapor phase chromatogram (300 , 4% SE-30) showed one 

major peak with a retention time of 1.7 min (82%). Recrystal-

lization of a 4.9-mg portion of this material from chloro-

form--methanol afforded 2.8 mg (57% yield) of pure germanicol: 

0 0 
needles, mp 224-229; vpc (300 , 4% SE-30): one peak at l.7min 

(98%). Material prepared in an earlier experiment, mp 219-223°, 

had ir and nmr spectra identical to those of a sample of 

natural d-germanicol, mp 175-177°1 prepared below. 

-1 ir (CHC1 3 ) 3600 (0-H), 1355, 1375, and 1390 cm (gem-dimethyl); 

nmr (60 and 220 MHz, CDC1
3

) b 0.76, 0.78, 0.91, 1.00, 1.04, 

and 1.10 (s, 3 each, CH
3
), 0.96 (s, 6, CH3 ), 3.2 (m, 1, 

CHOH), 4.88 (m, 1, vinylic H). 

The spectra are illustrated in Figures 27 and 28. 

0 The vapor phase chromatograms (270 , 4% SE-30) of 

synthetic and natural germanicol showed one major peak at a 

retention time of 4.9 min (96% and 99%, respectively). Co-

injection produced a chromatogram with one major peak at this 

retention time. 

Analytical thin layer chromatography (Merck silica gel, 

3.3% methanol in reagent grade chloroform) of each sample 
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gave one major spot (Rf= 0.65). 

A sample of synthetic germanicol, which was prepared 

for analysis by recrystallization from chloroform--methanol, 

melted at 220-223°, white needles. 

Anal. Calcd for c30H50o: C, 84.44; H, 11.81. Found: C, 84.35; 

H, 11.71. 

d-Germanicol. A solution of 7.8 mg (0.02 mmoles) of 

natural germanicyl acetate (mp 267-269°, provided by 

Professor C. Djerassi of Stanford University) in 5 ml of 

dry tetrahydrofuran was treated with 26.1 mg (0.69 mmole) of 

lithium aluminum hydride (Ventron). The mixture was heated 

at reflux for 30 min, cooled in an ice bath during the addition 

of excess ethyl acetate, poured into 100 ml of dilute brine, 

and extracted with 25 ml of benzene. The aqueous phase was 

acidified with 10% aqueous hydrochloric acid and then extracted 

with three 25-ml portions of benzene. The combined extracts 

were washed with 25-ml portions of 2% aqueous hydrochloric acid, 

water, and brine, and dried (Na2so4 ). Removal of the solvent 

at reduced pressure afforded 7.7 mg (a quantitative yield) 

of pure d-germanicol as white needles: mp 175-177°, literature53 

mp 180-181°; 

-1 
ir (CHCl~) 3600 (0-H), ahd 1355, 1375, and 1390 cm (gem~ 

~ 

dimethyl); 

nmr (60 and 220 MHz, CDC1
3

) 8 0.76, 0.78, 0.91, 1.00, 1.04, 

and 1.10 (s, 3 each, CH
3

), 0.96 (s, 6, CH3 ), 3.2 (m, 1, 

CHOH)~ 4.88 (m, 1, vinylic H). 
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PROPOSITION I 

A synthesis of the alkaloid murrayacine is proposed. 

Murrayacine, a newly discovered alkaloid, 1 is found in 

the plant Murraya koenigii Spreng. The carbazole skeleton of 

this alkaloid is the same as that of several other alkaloids 

from the same source. Three of these related alkaloids, 

murrayanine, girinimbine, and mahanimbine, are active against 

some human pathogenic fungi. 2 Murrayacine may also exhibit 

this property. 

1 
In addition to isolating murrayacine, Chakraborty has 

succeeded in determining its structure (1). The structure 

of girinimbine
1

'
3 (~,) is so similar that a synthesis of 

murrayacine would serve as a synthesis for both, because 

murrayacine 

1 _,...,, 

girinimbine 

1.. 

girinimbine can probably be prepared from murrayacine by 

reduction of the aldehyde group. Lithium aluminum hydride 

reduction of dihydromurrayacine (alkaloid l with a reduced 

pyran ring) produces dihydrogirinimbine. 1 
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Pyranocarbazole ring systems are virtually unknown, and 

30 no standard syntheses of this ring system are available. 

ln attempt to attach the pyran ring to a finished carbazole or 

tetrahydrocarbazole would probably result in the formation of 

Jndesired isomers or mixtures. The two synthetic schemes 

proposed avoid this problem. The first, Route A, employs the 

3orsche--Fischer tetrahydrocarbazole synthesis with a possible 

Japp--Klingemann modification. The second, Route B, uses an 

JXidative photochemical coupling reaction, which has been 

successfully used on diphenylamines, to prepare the required 

carbazole. 

Route A 

The Borsche--Fischer tetrahydrocarbazole synthesis 

was originally a condensation of phenylhydrazine with cyclo-

4 
hexanone to give 1,2,3,4-tetrahydrocarbazole (1). This 

method has also been used in the synthesis of glycozoline (4) 5 
.,,... ' 

which was prepared by a condensation of p-methoxyphenylhydrazine 

hydrochloride with 4-methylcyclohexanone followed by a chloranil 

oxidation. The synthesis of murrayacine by this procedure 

-
3 
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0 

4 .._._,, 

would require phenylhydrazine and the dimethylpyranocyclo-

hexanone 5 . ..,....,, 

The starting material selected for the synthesis of the 

dimethylpyranocyclohexanone Ji is 2,4-dihydroxybenzyl alcohol 

(Q), which has been prepared by the reaction of resorcinol 

with formaldehyde. 6 Reduction of this triol under the same 

conditions used for the reduction of resorcinol to dihydro-

resorcinol (hydrogenation in alkaline solution over a 5% 

7 rhodium on alumina catalyst) should afford 4-hydroxymethyl-

1,3-cyclohexadione (']_). 

~OH­
Hc!VOH 

Although the next step, C-alkylation of a 1,3-cyclo­

hexadione, is usually a low-yield reaction, Lukes and Hofman 8 

have obtained 2-allyldimedon in a crude yield of 53% by 

alkylating dimedon with allyl bromide in the presence of 

aqueous potassium hydroxide and copper powder, thereby 
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establishing that such a 1,3-dione system could be alkylated. 

Appl ica ti on of this procedure to the cyclohexadione ]_, and 

l-bromo-3-methyl-2-butene should result in the alkylated 

product~· 

The cycliza tion of the di one JL to the enone ~could be 

readily accomplished by acid treatment.
9

' 10 This cyclization 

could give two products (enones ,Q_ and lQ). Through hydrogen­

bonding, the hydroxymethyl group of the dione may have an 

influence on the ratio of the products. If this directive 

effect does not favor the formation of the enone JL, acetylation 

of the hydroxymethyl group or its transformation to an 

aldehyde may reverse this situation. After the cyclization 

step, the acetate group could be removed or the aldehyde 

reduced with sodium borohydride to the alcohol. 

10 .......... 

Since enone ~is a dihydropyran, it may not be easily 

oxidized to the corresponding pyran. Brown, Burton, and 

Stevens10 found that tetrafranklinone (!...!) could not be 

oxidized to franklinone by bromination--dehydrobromination. 
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- -~--

franklinone 

This problem may be circumvented by protection of the hydroxy-

methyl group of the olefin..§._, for example as an acetate, 

followed by epoxidation of the double bond and an acid-

catalyzed cyclization. The acetylated hydroxymethyl group 

may exert a favorable directive influence on the cyclization. 

Dehydration of the cyclization product, the alcohol 12, would .__, 

give the desired pyranocyclohexanone §_,after cleavage of the 

protecting group. If the dione .§._is too reactive and cyclizes 

acid 

0 0; 0 

base 

OH 
12 5 
~ ~ 

to the dihydropyranocyclohexanone JL prior to the epoxidation 

step, the dihydropyranocyclohexanone could be carried through 

the synthetic sequence presented in the next paragraph to 

· d · h d · h · h ox1· dati· on wi· th chlorani· 1S,ll-l3 
give i y romurrayacine, w ic on 

Or Se1eni. u1n di· oxi· cte13 h ld · ld · _ s ou yie murrayacine. 

Heat treatment of a mixture of dimethylpyranocyclohex-
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-

anone 5 with phenylhydrazine (possibly as the hydrochloride) 14 
........, 

should give the hydrazone 13. Since formation of hydrazones by ..__, 

this procedure can occasionally be a low yield process, the 

. 11 12 15 Japp--Klingemann ' ' reaction could also be used to pre-

pare this hydrazone. Before this reaction could be employed, 

the homologous aldehyde 14 of pyranocyclohexanone 5 must be 
~ ..__ 

prepared. Treatment of pyranocyclohexanone 5 with methoxy-.__, 

methylene Wittig reagent (excess), followed by acid cleavage 

0 

H pCH3 
1) 03P=CH 
2) H 0 © 

3 OHC 
~ 

C§}N® o~ 
Cle 2 

~ N-N 
I 

H 

5 14 .__, 

16 1 .__, 
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should yield the corresponding aldehyde !_1; reaction of this 

aldehyde with phenyldiazonium chloride would give the 

hydrazone !..9· Heat treatment (100-200°) with an acid catalyst 

(zinc chloride, aqueous hydrochloric acid, sulfuric acid)4,ll,l2 

should rearrange this hydrazone to the pyranodihydrocarbazole 

!..§. Treatment of compound l§ with chloranil, selenium 

dioxide, or palladium-on-carbon11 would result in aromatiza-

tion to the pyranocarbazole 1§. Oxidation of the alcohol 

16 function to an aldehyde by Collins reagent, or manganese 

dioxide in carbon tetrachloride
11 

should give the alkaloid, 

murrayacine. 

Route B 

In 1966, Carruthers17 synthesized glycozoline (17) by a .__,, 

convenient high-yield photochemical process. This reaction 

is synthetically useful as long as the ring substituents 

-
hv 

17 ......... 

either direct the coupling by blocking one of the ortho 

positions or are placed symmetrically on the benzene rings 

so that isomer formation is precluded. This reaction appears 

ideal for the preparation of murrayacine, since the le£t-hand 



197 

ring of this alkaloid (]) has no substi tuents and the right­

hand ring has one of the ortho positions blocked. 

The reaction of aniline with the pyranocyclohexanone ..Q.. 

should produce the Shiff base l§, the c.yclohexanimine ring of 

which on aromatization with selenium dioxide or 2,3-dichloro-

5,6-dicyano-l,4-benzoquinone13 should lead to the aryl amine 

19. Photochemical coupling of the two aromatic rings of amine ........, 

!] by Carruther ' s procedure (irradiation by a mercury vapor 

lamp), followed by a Collins or manganese dioxide oxidation 

of the product, should again yield murrayacine (!)· 

-

ClN 
I 

H 

The availability of the starting materials in these two 

syntheses and the advantages inherent in convergent syntheses 

should allow the two aforementioned routes to murrayacine to 

be competitive with that of the naturally isolated material. 
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PROPOSITION II 

A synthesis of the pentacyclo[8.4.0.0
2

'
7 .o3 '

12 .o6 '
1
1Jtetra­

decane ring system is proposed. 

rc 2 7 3 12 6 11 
The pentacycloL8.4.0.0 ' .0 ' .0 ' Jtetradecane ring 

system is apparently yet unknown. This is understandable both 

because of the complexity of this ring system and because 

numerous bi-, tri-, and tetracyclo ring systems, some of 

greater general interest, have not yet been synthesized or 

thoroughly studied. 

la lb 
~ .,,.., 

Hydrocarbon l, the parent compound in this ring system, 

has several interesting features. Unlike most bridged systems, 

there is little or no strain in the molecule, which is con-

structed of nin~ six-membered rings in a twisted boat confor-

mation. Models demonstrate that even the triene derivative of 

hydrocarbon ,J,, the 4,8,13-triene gj, is not very strained. 

As the figure above illustrates, hydrocarbon__L is based on a 
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twisted bicyclo[2.2.2]octane ring system (atoms 2, 3, 12, 11, 

6, 7, 1, and 10) on which three ethano groups are placed 

diagonally. The resulting molecule has a pleasing degree of 

symmetry (a c
3 

axis is present, passing through atoms 2 and 11) 

but is also optically active. Compound !.e- is the right-handed 

isomer and compound lb is the left-handed one. The hydrocarbon --
twistane (tricyclo@.4.0.o3 '~decane) is related to structure 

l for it can be considered a bicyclo[2.2.2Joctane system with 

only one ethano bridge added. 

Compound Ut could also be considered a bridged perhydro-

phenanthrene, which could be prepared by an intramolecular 

Diels- -Alder reaction, followed by reduction, as illustrated 

below. Intramolecular Diels--Alder reactions are known to be 

·~ 

4 s 

2 
w 

oO 

la 
~ 

reduction j • 

Diel ~­
Alder 
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facile, high yield reactions in both acyclic
1 

and cyclopenta­

dieny12 systems. Therefore, this intramolecular reaction, 

although unusual, appears to have a good chance of success. 

The cis~syn-cis nature of the ring fusions allows but does 

not force the molecule to assume a cup-shaped conformation, 

bringing the diene and dienophile into close contact. Since 

intramolecular reactions are much faster than intermolecular 

reactions, this transformation should be accomplished in good 

yield even without the presence of activating substituents. 

The synthesis of the unsymmetrical triene ~would pose 

many problems; therefore it would be more practical to prepare 

the symmetrical tetraene ±., which should just as readily under-

go an intramolecular Diels--Alder reaction to give two dienes 

§3. and §.9, which, in turn, could be reduced to hydrocarbonJ.,. 

The Diels--Alder reaction of tetraene 4 could occur in two 

Diels­

Alder 

.._...,, 

5a ........, 

+ 

5b 
~ 

different ways: condensation of the 5,7-diene with the 1-ene 

would give diene 5a (the right-handed isomer) and condensation 
~ 

of the 1,3-diene system with the 7-ene would yield dietie 5b 
'-J 
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(the left-handed isomer). The other two possibilities for 

condensation (reaction between the 1,3-diene and the 5-ene 

and between the 5,7-diene and the 3-ene) are not favorable 

since the products would contain a four-membered ring 

(diene 6 and its enantiomer) . .._., 

The tetraene ~could not be prepared by a direct 

hydrogenation of phenanthrene. 9-Phenanthrol (1) 3 has been 

hydrogenated to the corresponding cis-syn-cis perhydrophen-

anthrol in only 8% yield. Partial hydrogenation of phenanthrenes 

usually saturates the rings one by one with the d, 6 3 , 6 5 , and 

6 7 double bonds being reduced first. 

OH 

The starting material selected for the synthesis of the 

tetraene ,..! is dl-cyclohexen-4-ol (!.Q) , which has previously 

been prepared by hydroboration--oxidation of the commercially 

available 1,4-cyclohexadiene (9). 4 Collins oxidation5 of 
'-"" 

~lcohol !.9 should afford thej3,1-unsaturated ketone 11· 

The reductive coupling of cyclohexanones to form pinacols 

is a well known reaction. 6 ' 7 ' 8 Application of the pinacol 

formation procedure of Elagina and Kazanskii 8 to the ketone g 
should produce the dienic pinacol ~· Epoxidation of the pinacol 
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0 B2H6 crCoJ..1,..ills 00 Al _____. 
OXl.d. HgC1 2 

~ 10 11 .._...,. .....v 

@3H 

12 ...,.._, 13 ........., 

with peroxybenzoic acid9 should provide the diepoxy-pinacol ~· 

If a rearrangement of the double bond should occur during 

the pinacol formation, the procedure given below could be used. 

10 
---"' 13 

~ 

Epoxidation of the cyclohexenol lQ with peroxybenzoic acid has 

been reported to give 1,2-epoxycyclohexan-4-ol. 9 Collins 

oxidation of this epoxy-alcohol, followed by pinacol formation, 

should again afford the diepoxy-pinacol 12· 

The next step is the dehydration of pinacol !.J to the 

diene !§. Acid catalyzed dehydration of pinacols occurs in 

10 11 
competition with pinacol rearrangements, ' but (bicyclo-

hexyl)-1,l'-diol has been successfully dehydrated to bicycle-
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hexylidene with phosphorous oxychloride in pyridine (95% 

yield, no rearrangementl2 and with dimethyl sulfoxide (85% 

yield, 4% rearrangement). 13 Therefore dehydration should 

occur on treatment of the diepoxy-pinacol 13 with these 

reagents to give a statistical mixture of dienes 14, 15, and 
....,.._,. --

16. __.,. 

Now the diene !.§must be converted to the olefin!]. 

Bicyclohexylidene has often been used as a diene in Diels--

Alder reactions. Among the dienophiles which have been used 

with this diene are ethylene, 14 nitroethylene, 15 trans-dichloro-

th 1 16 l . 11 . 6 '7 hth . 6 d e y ene, aero ein, benzoquinone, ~-nap aquinone, an 

maleic anhydride. ll,l 3 ,l7 The yields of products range from 

30% to 90%. Barring an unlikely thermal decomposition of the 

14 

heat 

16 ........ 

epoxy groups, the diepoxy-diene 1§ should undergo a Diels--

Alder condensation with any of these dienophiles just as 

easily as bicyclohexylidene does. Condensation with ethylene 

should give a precursor for the basic . ring systemJ.,. Deriva-
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tives could be prepared by condensation of diene !.§ with the 

other dienophiles. 

The Diels--Alder product, diepoxydodecahydrophenanthrene 

17, could be converted to the tetraene 4 by two routes. In __.., .......... 

the first route the dodecahydrophenanthrene must be hydrogen-

ated to the perhydrophenanthrene !.§. There exist two possible 

hydrogenation products l.§ and ~' however an inspection of 

a model of the starting material t.z indicates that the desired 

diepoxide !..§would be the favored product. The two O'...protons 

at the C-8a and C-lOa positions tend to either force the C-9, 

C-10 ethano bridge up (#) in some conformations or to force 

the two end rings up in to a cup shape in other conformations . 

Because of this effect and irrespective of the stereochemistry 

of the epoxides, there is somewhat more steric hindrance on the 

~side of the molecule than on the C( side. Therefore, hydrogen­

ation should take place on the CX. side to give predominately 

the cis-syn-cis isomer !.§. Strong conditions may be necessary 

to effect this reduction for the hydrogenation of the Diels--

Alder adduct of bicyclohexylidene and nitroethylene with a 10% 

palladium-on-charcoal catalyst in 95% ethanol (Parr shaker) 

failed. 15 In contrast, the Diels--Alder adduct of bicyclo­

hexylidene and ethylene was epoxidized in 97% yield with per-

b . . d 11 th . . 1 . th t th . oxy enzoic ac1 ; . is success imp ies a ere is no 

extreme steric hindrance about the double bond. 

The two epoxy groups in compound 18 could be transformed ._...., 

to the four double bonds of tetraene _! by a three step sequence. 
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21 4 .......... 

On treatment with a mixture of zinc powder, sodium iodide, 

acetic acid, and sodium acetate the diepoxide ~ would 

undergo the Cornforth reaction18 to give the diene eg. 
Bromination of the diene should yield the epimeric tetra~ 

---

bromide mixture tJ. The bromines at the C-2 and C-3 positions 

would be trans to each other, and the bromines at the C-6 and 

C-7 positions would also be trans, therefore dehydrohalogen-

ation would be facilitated and should lead to the desired 

tetraene 1_. rather than vinyl bromides. 19 Another factor influ-

encing this dehydrohalogenation is the cis ring fusions. 

Elimination in a six-membered ring with a cis fusion usually 

produces a .6
1 

or a 1:::.
3 olefin, while elimination in a trans­

fused six-membered ring yields a 1:::.
2 olefin. 20 , 21 , 22 Thus, 

it could be predicted that dehydrobromination would indeed 

give the tetraene ±· Heating the tetrabromide mixture in 

collidine or treating it with ethanolic potassium hydroxide 

should effect this transformation. 
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The cupped shape of the cis-syn-cis perhydrophenanthrene 

ring system may prevent the above scheme from working. Should 

this difficulty occur, then the second pathway would be fol-

lowed. The reduction of the Diels--Alder adduct is post-

poned, and, therefore, most of the reactions are to be per-

formed on a less sterically hindered system, which is 

flattened by the 64a double bond. The diepoxyolefin lZ could 

be transformed by the Cornforth reaction18 into the triene g,?. 

Careful bromination of triene ~with two equivalents of 

bromine should give the tetrabromide mixture ~' which, upon 
. 23 

hydrogenation in a neutral medium with a palladium catalyst, 

should afford the saturated tetrabromide mixture. As before, 

dehydrobromina ti on should give the tetraene 1.,. 

- --

Next the tetraene 1.,. must be converted to the racemic 

dienes ~ and .§..&. Heating in a sealed tube should effect this 

Diels--Alder condensation. Hydrogenation of the dienes should 

yield the synthetic objective, hydrocarbon 1. 
'""" 
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If other derivatives of the hydrocarbon .l, are desired, 

they could be synthesized from the double bonds of diene .Q. 

or, as mentioned above, by the use of different dienophiles 

in the Diels--Alder condensation with the diepoxydiene 16, 
~ 

for example, nitroethylene would eventually give the amino 

derivative of hydrocarbon J.., which could be converted to the 

triene 24 by standard procedures. __, . 

24 
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PROPOSITION III 

A study of the products from Sommelet--Hauser rearrangement 
of benzyl-cyclicammonium quarternary halides is proposed. 

In 1937, Somm.elet1 discovered a novel rearrangement by 

allowing sunlight to fall on a dried sample of benzhydril-

trimethylammonium hydroxide (1). The unexpected product was 

hv ) 

o-benzylbenzyldimethylamine (2). This rearrangement was also - _.., 

achieved by Wittig, Mangold, and Felletschin2 in 1948, using 

phenyllithium in ether. Later, Kantor and Hauser~ were able 

to effect numerous similar transformations using sodamide in 

liquid ammonia. For example, dibenzyldimethylammonium chloride 

(;V rearranged under · these conditions to form o-dimethylamino­

benzyl toluene (§) in 95% yield. This rearrangement (first 

called simply the ortho rearrangement and later the Sommelet--

Hauser rearrangement) is generally thought to have the mechanism 

given in Figure 1 . 4 ' 5 Since the quaternary ammonium compound 

;L has no ;.1-hydrogens, a Hofmann elimination reaction is impos-

sible. The most acidic protons are those in the benzyl posi-
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base 

(±)'-../ CH 

6
N~ 65 

..('e 
. 

~ 

-

Figure .I: Mechanism of Sommelet--Hauser Rearrangement 

tion; abstraction of one of these protons by the base results 

in a benzyl carbanion (j), which attacks the ortho position 

of the other benzene ring to give, after tautaumerization, the 

amine 6 . ......... 

Although Hauser has mentioned that this ortho rearrange­

ment had great synthetic potential, 6 this potential has not 

been fully realiz~d. Hauser and coworkers, however, have used 

3 this rearrangement to synthesize hexamethylbenzene and sev-

eral benzene derivatives with ethyl, isopropyl, methoxy, 

chloro, hydroxy, and amide substituents on the ring.
6

'
7

'
8 

3 Attempts were made to rearrange benzyltri-g-propyl-

ammonium and benzyltri-n-butylammonium salts to the corre-

sponding amines but both compounds underwent Hofmann elimina-
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tion to give only unrearranged tertiary amine and olefin. 

9 In 1963, Bumgardner succeeded in synthesizing three 

amines 7 (R = cyclopropyl, benzyl, and vinyl) from the 
--..) 

corresponding quaternary ammonium compounds. All three 

rearrangements involved a carbanion other than methyl or 

benzyl and apparently represent the only successful rearrange-

ments with a different carbanion. 

So far, none of the workers in this field have attempted 

a rearrangement of any cyclic quaternary ammonium compound. 

It is felt that such an attempt may shed light not only on the 

electronic effects of the N-substituents but also on the steric 

effects of rigidly held and large substituents. To this end, 

it is proposed that the Sommelet-Hauser rearrangement be tried 

on a variety of cycl~c quaternary ammonium salts, both 

aliphatic and aromatic. 

A. Aliphatic 

The immediate difficulty that would be encountered in 
the attempted rearrangement of most aliphatic amines (cyclic 

or not) is ~-elimination. Benzylmethylpiperidinium halide would 

eliminate to form the unsaturated amine 9 and no rearrangement ........, 
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x8 ~\o 

I 
NaNH2 
~ 

8 
NH

3 
.._.., 

would occur. Similarly, a quaternary salt based on pyrollidine 

should give no ortho rearrangement product. 

An obvious choice for a study of this rearrangement is 

isoindoline for this compound has no ~-hydrogens and, of the 

cx.-hydrogens, those on the benzylic carbon are more acidic than 

those on the methyl group. On treatment with sodamide in liquid 

ammonia, benzylmethylisoindolium halide should undergo the 

rearrangement shown in Figure 2. The product 11 would give ..__,. 

the quaternary salt !_8 on reaction with methyl iodide. This 

salt could rearrange by two different pathways, only one of 

base 

18 ~a 

14 _.., 13 ....,._, 

Figure 2: Rearrangement on an Isoindoline System 
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which (path a) is favored. In the favored path, a compound 

with a 5,6,7,12-tetrahydrobenz[c,f]azocine ring system (!,9) 

would be formed. Although the benzylic protons are more 

acidic than the methyl protons, steric effects should hinder 

attack by the benzylic carbanion in path b. However, if such 

an attack occurs, a 9,10-dihydroanthracene (~) would be 

formed. Further rearrangement of amine 13 after methylation ......... 

appears to be geometrically impossible, however amine ~ 

after methylation should undergo further rearrangement, in 

which a series of methyl groups are placed on one of the 

aromatic rings. 

Another cyclic amine worthy of investigation is 2-aza-

bicycle [J, .2 .if octane (!.,§). Al though ,tB-hydrogens are present 

in its benzyl methyl derivative (~), their loss by a Hofmann 

10 elimination would be forbidden by Bredt's rule. A carbanion 

could be formed by loss of either a C-1 or C-3 proton and 

would attack the benzene ring to give amine U or ~' respec-

tively. Amine 17 should predominate since the C-1 proton is __, 

more acidic (Figure 3). Amines 17 and 18 could be methylated ........., 

and then treated with base to give two new ring systems !,2 

and e.g. It should be mentioned that the N-methyl protons of 
. 
the derivative !_§ would be as acidic as the C-3 protons and 

their loss would also lead to rearranged material. The product, 

the ortho methyl derivative of the starting material, is 

uninteresting and, therefore, not included in Figure 3. 
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base 

C-1 attacy 

18~:0 
0--

L base 

19 ..,,..., 
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§ID 18 

b 1.§ . - base 

\ C-3 attack 

Orb I 1s 

16 

l base 

20 

Figure 3: Rearrangement of an Azabicyclo[2.2.2]octane 

A third aliphatic amine, quinuclidine (l-azabicyclo­

[2.2.2]octane) (21), would also be a likely choice for this ..,,..., 

rearrangement. This amine does possess;-hydrogens, and 

Hofmann elimination is not forbidden by Bredt's rule. However, 
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h 
O

+ 8 

base -
~ 

h 

methyl attack 

------
base 

~ 
C-6 attack 

24 
~ 

Figure 4: Rearrangements in the Quinuclidinium System 

the standard Hofmann elimination reaction requires that the 

11 departing proton and the nitrogen atom be trans and coplanar. 

Quinuclidine has a fairly rigid ring system, and so it is 

possible that 13-elimina tion will not occur. Since N-benzyl­

quinucl idinium halide (22) is already a quaternary salt, no 
""' 

methylation step is necessary prior to the rearrangement, and 

therefore only one reaction pa th is available. This pa th should 

lead to the amine 23. Methylation of this amine and rearrange-._.., 

ment of the resulting quaternary salt could give two possible 

products, the amines M and g_§, hitherto unknown ring systems. 
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3. Aromatic 

Although the rearrangements described in the aliphatic 

section would probably succeed, it must be admitted that the 

aromatic case is somewhat doubtful. But, because even nega-

tive information is useful, the experiment should be attempted, 

especially since the starting materials are readily available. 

Pyridine forms quaternary salts with ease; these salts 

may exist in two forms, which may be in equilibrium: 12 

R-X + 0 N 
0 e~ 
@N X 

I quaternary 
R salt form 

~ N X 
I 
R 

pseudo­
base 

In pyridine the quaternary aromatic form is more prevalent 

than it is in other 
12 

nitrogen-containing aromatic systems, 

and therefore pyridine has bSen selected for this investigation. 

Benzyl chloride will react with pyridine to give benzyl-

pyridinium chloride (26), which could rearrange upon exposure 
......... 

to sodamide in liquid ammonia to give 2-(o-methylphenyl)­

pyridine (~) . The substituted pyridine ?.z could be methylated 

to the quaternary salt ~· Attack by the methyl carbanion is 

~he only geometrically feasible rearrangement, and the product 

of this rearrangement would have a 6,10b-dihydropyrido[2,l,Y­

isoindole ring system (Figure 5). 

The rearrangement of benzylquinolium halide or benzyl-

isoquinolium halide could be expected to follow an analogous 
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base -

base 
-+ 

Figure 5: Rearrangement of N-Benzylpyridinium Chloride 

pathway to give a derivative of the amine ~' in which a 

benzene ring is fused onto the heterocyclic ring. 

It is likely that almost all of the amines "produced" 

in these two sections could be re-alkylated with benzyl chloride 

and the rearrangements continued ad infinitum. 
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PROPOSITION IV 

The synthesis of streptolidine and methyl streptolidine 
is proposed. 

The amino acid streptolidine (]), also known as 

roseonine and geamine, was first isolated by Nakanishi and 

coworkers
1 

in 1954 as a product of the acidic hydrolysis of 

roseothricin, an antibiotic; these workers proposed the 

structure d, for this amino acid. Streptolidine was later 

found in the hydrolysates of geomycin, 2 streptolin, 3 and 

streptothricin. 3 . All these antibiotics are members of the 

streptothricin class because they contain the amino acid 

streptolidine and 2-amino-2-deoxygulose. In 1961, van Tamelen 

C0
2

H 

H2N -f:XCHCH2NHR 
H OH 

.1,. R = H 

~ R C~3 

4 
and coworkers proposed the structure i for streptolidine; this 

structure was later verified by Bowie, Bullock, and Johnson. 5 

Borders and coworkers 6 isolated streptolidine and methyl 

streptolidine (~) from the antibiotics LL-AC541 and LL-AB664 

and determined the structures of these antibiotics by chemical 

and spectral methods. Their structure proof placed the two 
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0 H /R Ho 0 
H- ;\O ' ' k H-<~f 

I \ 'rlY 
H NC- O 'N H OH 

2 0 CHj 'cocH NHCH=NH 
2 

LL-AC541 R 

LL-AB664 .R 

.£ R 

. .§., R 

new antibiotics in the streptothricin class and showed that 

in LL-AC541 and LL-AB664 streptolidine is present in the 

lac tam form (i) and that the C-7 hydroxyl group has the /3 
configuration. 

Despite its wide occurrence, streptolidine has never been 

synthesized. A synthesis would not only offer a final struc-

tural proof but also be a major step toward the synthesis of 

these antibiotics. Since the lactam form may be more useful 

synthetically, its synthesis will also be presented in this 

proposition. 

The streptolidine lactams .i, and &, can be prepared from 

7 
readily available materials . Goldberg and Sternbach in their 

synthesis of biotin prepared dl-cis-3,4-(1' ,3'-dibenzyl-2'­

ketoimidazolido )-2-keto-5-acetoxytetrahydrofuran (§) on a 

large scale by a four step procedure, starting with meso-

dibromosuccinic acid (commercially available). Van Tamelen 

and coworkers4 saponified and equilibrated this acetoxytetra-

hydrofuran ~ to obtain the trans- 2-imidazolidone J.,,, the 
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o{f> 
0 0 1 ,,co2H 

) ,~02H 
a<N:{ O< =t H 

0..JN H OAc 01 ~-CH2N02 
0

) CHO OH 

&.. .L 8 ......... 

starting material for the synthesis described below. 

Treatment of the imidazolidone 1, with ni tromethane and 

8 base should give the hydroxy-ni tro compound ~' which, on the 

9a 
basis of Cram's rule, will have the hydroxyl group in the 

wrong configuration (S). If, indeed, a preponderance of the 

wrong isomer (~) were formed, the product ratio could be 

reversed by oxidation of the alcohol Jl to the ketone followed 

by hydride reduction of this ketone to the alcohol !_9. Since 

imidazolidones are quite stable in the presence of mild acid, 7 

Jones oxidation
10 

should be ideal for the oxidation of alcohol 

8 . ...... 
. 4 . 

Van Tamelen and coworkers have successfully reduced the 

aldehyde .L to the corresponding primary alcohol with sodium 

borohydride without interference from the imidazolidone ring 

or the carboxylic acid; therefore, sodium borohydride would be 

a suitable reagent for the reduction of ketone jL to the alcohol 

10. Cram's rule predicts that this alcohol would have the __, 

desired configuration. Catalytic hydrogenation of the nitro-
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01 ,C0
2

H 

. o<;~? 
0 ) 1-cH2NHR 

OH 

11 12 .......... 

lla 
alcohol t_g will give the amino-alcohol !l (R = H) without 

reducing the imidazolidone ring12a or removing the benzyl 

t t . 13 pro ec 1ng groups . 

At this point in the synthesis, the primary . amino group 

should be methylated to give the N-monomethylated derivative 

(11, R .......... CH
3
), the precursor of methyl streptolidine (1_). 

Although monomethylation of a primary amine is not as simple a 

process as dimethylation, this procedure can be done effec-

14 tively with the method of Buck and Baltzly, given in Figure 1. 

R-NH 2 

0CHO 

(1) 

R-N=CH0 
H

2
,Pt 

HO Ac 

(2) 

H
2

)Pt 
R-N-CH20 R-NHCH3 cH

3 
HOAc , 3 aim 

(4) 

Eschweiler-Clarke 

methylation 

(3) 

Figure 1: Monomethylation of a Primary Amine 

A modification of this method should effect the monomethylation 

of the amine 11 (R = H). Condensation of the primary amine ......... 

with benzaldehyde will give the Schiff base. Since sodium 
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. 15 
borohydride will smoothly reduce an imine to an amine, 

this reagent will be used instead of hydrogenation to effect 

the reduction of the Schiff base to the secondary benzyl 

amine 12. The other functional groups should not be attacked 

by this hydride. The amine ~ could then be methylated by 

16 the Eschweiler--Clarke procedure or with methyl iodide. 

Removal of the benzyl group on the amine by hydrogenolysisllb 

(step 4) would yield the methylated amine !.1 (R = CH
3

). 

:P
O /R 

H NJ N 
2 \N I 

t I 

. H H 
OH OTHP 

13 ......... 14 -v R H or CH
3 

Birch reduction4 of the amino alcohol ~ (R = H or CH3 ) 

should remove the benzyl protecting groups without reducing 

the imidazolidone ring or the carboxylic acid. Heat treatment17 

of the debenzylated material will form the lactam !]. After 

protection of the _C-7 hydroxyl group as a tetrahydropyranyl 

(THP) ether, 18 vigorous alkaline hydrolysis12b should cleave 

the imidazolidone ring, yielding a diamine, which, in turn~ 

. 4 12c should react with cyanogen bromide ' to give the dl-imidazo-

pyridine 14. Removal of the THP protecting group with dilute ...,...., 

aqueous acid
18 

and resolution9b of the racemate will afford 
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the d and 1 enantiomers of both streptolidirie and methyl 

streptolidine lactams 4 and 5. In each case, the lactam .._..., 

ring may be cleaved by acid hydrolysis3 ' 6 to give 

streptolidine (1) and methyl streptolidine (2). The - --
correct (naturally occurring) enantiomers of streptolidine 

and methyl streptolidine can be determined by optical 

rotation measurements (natural streptolidine is dextro­

rotatory6). 

This synthetic route should make streptolidine avail-

able in large enough quantities for the synthesis of the 

streptothricin-class antibiotics (see Proposition V). In 

addition, slight modifications of the synthetic scheme would 

provide numerous streptolidine analogs for use in the syrithesis 

of hitherto-unknown compounds, which may be more effective 

antibiotics than the naturally occurring ones. 
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PROPOSITION V 

The synthesis of the antibiotics LL-AC541 and LL-AB664 and 
an approach to the synthesis of other streptothricin 

antibiotics are proposed. 

The antibiotics LL-AC541 and LL-AB664, which belong to 

the streptothricin class of antibiotics, were recently found 
. 1 

by Borders and coworkers to have the following structure: 

HO)-o, . +;Jo /R H- \0 \_)';NH-< ' 
H2NC- I \ H H 

11 I \ 

O O' 'N OH 
CH3 / 'cocH2NHCH=NH 

LL-AC541 R 

LL-AB664 R 

A synthesis would provide a valuable source of these anti-

biotics and could lead to the preparation of structural and ft1nc-

tional variants, which may have decreased toxicity and increased 

effectiveness as drugs. 

These antibiotics are composed of three basic parts: the 

heterocycle (streptolidine lactam), the sugar (a D-gulosamine 

urethane), and the acyl group attached to the amino group on 

the sugar; in the above antibiotics this acyl group is the 

formiminoglycyl group. Other members of the streptothricin 
. . 2 3 

antibiotics have the general structure l· ' Some examples of 

these antibiotics are streptothricin (n = 1), streptolin 

(n ~ 2), and geomyc~n (n = 4). Members of this group have the 
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-O:H\Nf'r 
0/ \ H~ 

/N\ OH 
H (COCH2-yH-CH2CH2CH2NH)nH n = 1-6 

NH2 

1 

heterocyclic moiety and the same amino sugar. The position 

of the urethane on this sugar has not yet been established. 

With the exception of the antibiotics LL-AC541 and LL-AB664, 

the antibiotics Of this class lack a methyl group on the amino 

group of the sugar and have this amino group acylated with a 

series of A-lysine units. The proposed synthesis of LL-AC541 

and LL-AB664 will therefore also provide a route for synthe-

sizing the other members of the streptothricin class. 

The synthesis of the heterocyclic component, streptolidine 

lactam (_~), has already been presented in the fourth proposi­

tion. The remaining problems are the synthesis of the sugar 

component ~ and the 9oupling of compounds 1_ and 1., to give the 

antibiotics. 

H{)O"' 5 0 

H- ~ 4 
1

1 

OH 
I \ 

I \ 

H
2

NC o' N 
0 cH:( bocH NHCH=NH 

2 
3 .......... 4 ..,.., 
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The first step in the synthesis of the sugar 1_ is the 

synthesis of the basic skeleton, 2-methylamino-2-deoxygulose 

(i)· There are several known syntheses of 2-amino-2-deoxy-

4 gulose; of these, the method of Sowden and Oftedahl could 

most easily be modified to give the necessary N-monomethyl-

derivative. 4c 
Therefore, treatment of D-xylose with nitro-

methane followed by acetylation should give the nitro-olefin 

Ji. Reaction of this nitro-olefin with methylamine instead of 

ammonia and then hydrolysis of the nitro group under Nef 

conditions ( sodium hydroxide followed by concentrated hydro-

chloric acid) should give 2-methylamino-2-deoxygulose 4 . ........ 

HC='=CHN02 I 
H-C-OAc 

I. 
AcO-C-H 

I 
H-C-OAc 

I 
H2C-0Ac 

5 .......,, 

0

1°\)-ocH20 

I ' 

· HO' /N, 
CH

3 
co2cH20 

7 
~ 

The next problem is to distinguish among the four 

hydroxyl groups and amino group of sugar 1_. Treatment of 

this amino sugar with benzyloxycarbonyl chloride in aqueous 

5 sodium carbonate would selectively protect the C-2 amino 

group. The hemiacetal hydroxyl group could be converted to 

a benzyl ether on heating in benzyl alcohol in the presence of 

hydrochloric acid. 6a The product, sugar&.., would then be 

allowed to react with benzaldehyde under acidic conditions 

6b 7 ; 
(ZnCl2) ' to afford the specifically protected sugar 1· 
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Next, the very sensitive urethane group must be placed 

on the sugar. Since it is not known whether the urethane group 

is on the C-3 or C-4 position of the sugar, a synthesis of each 

isomer is presented. In order to selectively place the 

urethane moiety at the desired position , the four other reac-

tive sites (three hydroxyls and an amine) must be blocked. The 

three hydroxyl groups will be protected as benzoates, since 

8 these groups can be removed in the presence of a urethane. 

A protected formiminoglycine group will both protect the C-2 

amine and eventually lead to the desired N-substituent. There-

fore, this group will be added prior to the urethane formation. 

Since an acetyl group may be removed in the presence of a 

6c 8 benzoate ' and protected N-formim1nogylcine groups, it will 

be used to mask the hydroxyl group where the urethane is 

desired. 

Three other restrictions are imposed by the nature of 

the antibiotic and the amino sugar, and the sensitivity of the 

N-glycoside, formiminoglycine, and urethane moieties: 

1) In aqueous solution the antibiotics are unstable 

above 
. 9 

pH 7. 

. 2) Under acidic conditions an N-+O acyl migration can 

6d occur between the cfi:; C-2 N and C-3 0 groups. 

3) Basic conditions can cause a similar o~N acyl 

. t. 6d nngra ion. 
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The following synthetic sequences should avoid these 

problems: 

I. The Synthesis of the C-3 Urethane Sugar 3a (Chart A) .__. 

Acetylation of the C-3 hydroxyl group of sugar 7 with 
~ 

acetic anhydride in pyridine, 6c followed by hydrogenolysis 

10 of the C-1 benzyloxy group, the carbobenzyloxy protecting 

11 6b 10 group on the C-2 amine, and the benzylidene acetal group ' 

on the C-4 and C-6 oxygens would yield the C-3 acetate ~· 

The next step is the addition of the formiminogylcine 

group onto the C-2 amine. This group must be protected since 

its basicity will interfere with the other steps and since it 

is only stable under acidic conditions and these subsequent 

steps are basic ones. 
. 13 

The o-nitrobenzyloxycarbonyl group, 

which can be quantitatively removed by simple photolysis, 

can be used to protect the formiminogylcine moiety for it would 

both reduce the basicity at the C-2 position and stabilize the 

formiminogylcine to base. Reaction of formiminoglycine and 

~-nitrobenzyloxycarbonyl chloride in pyridine should give the 

N-protected formiminoglycine 9 . ._ 

Treatment of t~e acetate 8 with the protected formimino-......., 

glycine and dicyciohexylcarbodiimide (DCC) 6e,l4 should yield 

a sugar with a protected formiminogylcamide group at the C-2 

position~ Acylation6c of the three hydroxyl groups with 

benzoyl chloride in pyridine, followed by selective removal of 

th C 3 t 1 ·th tl 1 · · Gc ' 8 h ld · e - ace y group wi me 1ano ic ammonia, s ou give 

the tribenzoate 10. ' 
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CHART A 

H-OOH 
, . . , \ 

Acd NHCH3 

Ho CCH NHCH=NC~o~ 2 2 II 

O NO 
2 

8 ........, 

BzoO o~ 
Bz = -0~ 

BzO . : \ OBz J)i ~ 0 -

. N 
HO CH/ 'cocH NHCH=NCO ,,.,::;::; 

3 2 0 
N0

2 10 
""""" 

CH/N'cocH NHCH=NCO 
3 2 0 

ll . 
""""" N°'2 

3a ........, 
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The urethane group can now be added onto the only 

unprotected hydroxyl group (C-3). There are several standard 

methods for forming urethanes. The two most obvious ones, 

reaction with carbamyl chloride15 and reaction with phosgene 

followed by ammonia, 16 are somewhat harsh and may lead to 

allophanate and carbonate formation, repectively. The method 

selected to effect this transformation is a mor~ recent pro-

8 cedure, which Vaterlaus and coworkers have successfully 

used on a sugar hydroxyl group. Therefore, the C-3 hydroxyl 

group of sugar !_9 could be acylated with p-nitrophenoxy-

carbonyl chloride in pyridine to give the aryl-alkyl carbonate, 

Which could then be cleaved with methanolic ammonia to the 

tribenzoate 11. Treatment of the tribenzoate with cold 

methanolic barium methoxide would remove the three benzoyl 

groups without harming the sensitive urethane moiety
8 

to afford, 

after photolysis, the C-3 urethane sugar ~· 

II. The Synthesis of the C-4 Urethane Sugar 3b (Chart B) 

This synthesis is similar to that of the C-3 urethane 

sugar 3a with two additional steps, which would keep the c~4 .__, 

group free while the ·other hydroxyl groups are protected. 

First, the C-3 hydroxyl group of the sugar ]._ could be 

benzoylated with benzoyl chloride in pyridine. 6c Acid hydrol­

ysis6b,'l of the benzylidene ace~al group, followed by a 

selective protection of the C~6 hydroxyl group as the 2'-alkoxy-

2'-methoxypropane17 and then acetylation6c of the remaining 

C-4 hydroxyl, would , give the protected amino sugar!_? . Mild 
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CHART .B 

CH3 C02CH20 
12 
"""-' 

HO 

AcOOOH 
, ' , ' 

Bzo' 'NHCH3 

HO 

Bzo,. 

13 ..,,,.,,, 

' \ 

Bz 

/N'-
CH3 COCH2NHCH=Ni0 

14 ..,..., 
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acid hydrolysis18 would regenerate the C-6 hydroxyl group, 

. 10 11 and hydrogenolysis ' would free the C-1 hydroxyl and the 

C-2 amino groups to give the amino sugar 13. Treatment of ..__, 

this compound with the protected formiminoglycine 9 and ...__, 

dicyclohexylcarbodiimide 6e,l4 should afford the C-2 protected 

formiminoglycamide, and reaction with benzoyl chloride in 

pyridine 6c should result in acylation of the C-1 and C-6 

hydroxyl groups. Removal of the C-4 acetyl group with 

methanolic ammonia would finally give the tribenzoate 14. 
. ...,._, 

As in scheme A, treatment of this tribenzoate with p-nitro-

phenoxycarbonyl chloride in pyridine followed by methanolic 

ammonia8 would produce the urethane (this time at the C-4 

position). Removal of the three benzoyl groups with barium 

methoxide8 and photolysis should yield the C-4 urethane 

sugar 3b. -........ 

The final step in the synthesis of these antibiotics, 

the coupling reaction, should be straightforward. In 1948, 

18 Todd and coworkers reported that a ;-pyranoside is produced 

by reaction of an aryl amine with an hexaldose in ethanolic 

ammonium chloride; mdre ~ecently, Bertha and Koziollek19 found 

that similar couplings with amino sugars also produced pyrano-

sides with the fl configuration at the C-1 position. Therefore, 

the antibiotics LL-AC541 and LL-AB664 could be formed quite 

easily by heating streptolidine lactam _£, the synthesis of 

which has been outlined in the fourth proposition, with the 

appropriate urethane sugar (~ or ~) in ethanolic ammonium 
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chloride, ideal conditions for stabilizing the antibiotics and 

for ensuring the j3 -conf igura ti on of the heterocycl ic base. 

Although only one of the sugars synthesized (3a or 3b) - ............ 

would, on coupling, yield the known antibiotics, it is quite 

possible that the other sugar would yield hitherto-unknown 

antibiotics, perhaps even more effective than the natural ones. 

Indeed, one of the advantages of the synthetic schemes described 

above is the opportunity for varying the functionality on 

virtually every site of the molecule, thereby providing a means 

of synthesizing many streptothricin analogues. 
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