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ABSTRACT 

The subject of this thesis is the study of the evolution of a negative muon captured in an atom 

and the formalism of energy loss associated with the muonic atom. The principal goals are to calculate 

reliably the muon x-ray intensities, given .the initial population of the muonic orbits, to invert the 

problem and deduce the initial distribution from the x-ray intensities, to provide the experimentalist 

with a reasonably simple and convenient tool to correlat·e his observations, and finally, to systematize 

some questions of theoretical interest. The early part of the history of the muon in matter, including 

the atomic capture and classical phase of the atomi c cascade are reviewed. In the quantal treatment of 

the transition rates, both radiative and electron Auger transitions are considered. In general, 

multipolarities up to E 3 and K, L, and M electronic shells are fully investigated. Multipole radiation 

is treated in the conventional way and presents no special problems . Magnetic type transitions between 

states with different principal quantum numbers are shown to be small. Auger electron ejection rates 

are more complicated and several approximations have been adopted. The basic results have been 

computed in terms of elementary functions. The relativistic retardation effect is significant at high 

transition energies, where Auger rates are unimportant. Similarly , the effect of the electron 

screening of the muon has no significant influence on the results. The calculation of the penetration 

makes the transition rates reliable . In the Auger transitions we have shown that magnetic multipoles 

can be safely neglected. The relative sizes of the rates corresponding to different multipoles are 

systematically studied. The El Auger rates are generally largest, but the EO and E2 transitions are 

also substantial . Penetration usually decreases rates, being mostly important for transitions with 

small continuum electron momentum. A comparison of our results is made with atomic photoelectric 

effect data and with the nuclear internal conversion coefficients. A general agreement is found, 

except around shell thresholds. The existing data of muonic x-ray intensities in iron and thallium are 

analyzed in a systematic way. The data are fitted with an initial Z-distribution and some other 

derived physical parameters. The quality of the fits is good. It is found that for Fe the initial 

Z-distribution is almost flat, whereas that for Tl is weighted toward s the high l values, sharper than 

statistical. As a result of the investigations and in order to make our findings usable, a computer 

program has been developed . This program is superior to the present standard one, including more 

precise calculation of transition rates , wider choice of parameters, and a flexible input/output 

section. 
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CHAPTER 0: INTRODUCTION 

Since the discovery of new particles, scientists have been using them to probe matter in a 

continuous effort to unravel the structure of the world around us in its very smallest detail. In 

particular, negatively charged particles are mostly suited for investigating the atomic and nuclear 

structure, since, provided they live long enough, they can be captured by the attractive atomic 

potential and in their cascade to lower energies they can give information about the features of the 

atom and the interactions between the particle and both the atomic electrons and the nucleus. 

The object of this thesis is to study the aforementioned processes with negative muons with the 

hope that at the end we can improve our understanding of the experimental data. More specifically we 

will concentrate on the quantal phase of the atomic cascade with the following goals in mind. a) Given 

the distribution of the muons at the onset of the cascade (sometimes referred to as "the initial 

Z -distrib~tion''), to calculate reliably the intensities of the muonic transition x rays. This 

calculation depends in practice on some other physical quantities, for example, the population and rate 

of refilling of the electronic shells; part of the problem is the study of the dependence of the x-ray 

intensities on these not precisely known parameters. b) The inverse problem of deducing the 

distribution of the . muons from the observed x- ray intensities is even more challenging. As one might 

expect the algorithms cannot be simply turned around! One has to work in an indirect way of searching 

for a good fit. The study of the feasibility of such a scheme and its reliability is equally 

important. c) After all work has been completed and to make the results more readily accessible to the 

parties interested, we provide the experimentalists with a reasonably simple tool to either predict (at 

least in principle) what results they should expect, or in retrospect to correlate their observations. 

d) As a byproduct of the above points we have derived results of theoretical interest. 

We have chosen to concentrate on muons and muonic atoms for various reasons. They are much 

heavier than electrons (as all known negative particles are), which means that energy levels are larger 

in absolute value, mean radii smaller for given quantum numbe r s and velocities smaller for a given 

position in the atom, thus enabling the use of adiabatic approximation techniques. What is more 

important for the specific choice is that their lifetime is long enough that the whole history of such 

a process can be studied without decay or other terminal effect taking place in the middle of the 

cascade. The absence of strong interaction with the nucleus makes life a lot easier and even the weak 

interaction can be neglected for the purposes of the cascade since the rate of nuclear capture is far 

too slow compared to the cascade rates. Due to the fact that muons can be produced in copious 

quantities in accelerators, experimental data exist for a variety of phenomena in a multitude of 

elements and compounds. Weighing all these factors, one can see that muons are the ideal test 

particles for the study of electromagnetic phenomena in matter. To make the above points more clear 

and to give a short reference to the typical sizes of effects we are dealing with, we have included in 

tables 0.1 and 0.2 some of the relevant quantities we will be working with. 

The subject of muonic atoms has been studied for some years now and a number of review articles 
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have been written; among the best known are references (1-5), which include extensive original 

bibliographies. Rather than summarizing th e results appearing in the review articles, we will only 

give a short account of the phenomen a of interest, and proceed with the subject 1n question. 

To present a general pi c ture of the history of the muon, th e problem can be broken down in six 

phases each of which has its own regions of validity and can be studied independently, given the 

results of the previous ones. 

1) !:!._igh Ener~i ~~ow-d~":'._'!..:_ This process has been studied extensively by several authors (6,7,8) 

and it is understood quite we ll. 

2) Low En<:_r:_gx_ ~~w-do":'..'!..:_ At some energy, the velocit y of the muon becomes comparable to the 

velocity of the outer shell electrons (of the order of aa ). This condition can be written as 

!.i m a 2 c 2 ;1:. E ,, 2 keV 
µ µ 

(0.1) 

This happens at an energy Eµ-2keV, corresponding to a wave length A - 0. 05A. From energies in the 

neighborhood of eq. (0.1) to capture, the energy loss formalism changes, one of the new features being 

large angle deflections. This proce ss and the following two have been studied by other authors 

(9,10,11), and by us (12,13], although it is not yet completely understood; it will be summar ized in 

the next chapter as a prelude to the core of the work . 

3) Captu~ The transition from positive energies (free stat e ) to negative energies (bound state) 

is of spec~al interest, especially if the target consists of a compound rather than a single element. 

At the time of capture the l -distribution is fixed; the evolution of this distribution is one of our 

major topics of interest. In contrast to previous expectations, capture does not take place through a 

thermalization process of degradation of the energy by increasingly smaller steps . 

!'.l_ Ear:.!.1_ Part ~X the Casc1'l_de._ Until the energy of the muon is low enough to be adequately 

described by manageable quantum mechanics, the cascade must be treated in the same framework as the 

slow down and capture . This happens at principal quantum number n ~20 and the quantal phenomena 

starting to play a role are electron shell states and thresholds. 

5) Late Part of the Cascade. Typically for n~20 a practical quantal treatment is feas ible a·nd 

the results obtained can be directly compared with observations. 

~ Decay ~<:. Nuclear "._ap~~ This stage depends much on the nature of the particle and the 

nucleus. The low lying states of the muon can provide invaluable information about the nucleus, as 

among other things the nucleus has to readjust in the presence of a charged particle in its proximity. 

This polarization of the nuclear states due to the muon has been studied and systematized, among 

others, by us (14], but these results are beyond the scope of this thesis. 

The bulk of this work is the exploration of step 5, give n the outcome of steps 4 (or 

conversely, we might be able to say something about the preceding steps 1 - 4) . One might ask why do 

we need a new cascade program. Although the nee d will become apparent as we proceed, it is simple to 
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TABLE 0.1 

Some Useful Properties of the Muon a nd Electron a). 

MUON ELECTRON 

Mass 105.65948(35) MeV 0. 5110034 (14) MeV 
206. 7686(7) m 

e 

Free lifetime (mean life) 2 .197134 ( 77) µsec stable 

Nuclear capture lifetime 1 1 b) 
'\, 0.006 sec 

in atom (Z,A) (mean life) ~ ( A-Z) stable 
eff l - 3 2A 

Magnetic moment 1.001165897(27) en c) 
1. 001159656 7 (35) en --- --

2m c 2m1Zc µ 

Compton wavelength 1. 86 7 590 ( 7) fm 386.15905(64) fm 

a) Entries from ref. [16]. 

b) Semiempirical formula from ref. [17]. 

c) Numerical value corrected for typographical error as per a later edition of ref. [16]. 

TABLE 0.2 

Comparative Properties of Muonic and Electronic Atoms a). 

QUANTITY Definition Expression Ratio between muonic Typical values for 
and electronic atoms muonic atoms 

(~)! n2 n2 .!_ m 
1 Atomic radius e 

Ze 2 
,,, __ 

5 fm (Z "'50) m m 207 µ 

(Zafc 2 m 
Energy levels E - ---m 1 "'207 few MeV (med. z , n = 1) n 2n2 m 

e 

«I.• cr)Z) 
m 

Fine structure <X Z4 m 1"'207 . 2 - .6 MeV in heavy m2r3 m atoms e 

Velocity at a b) <XJf ~"'1~ -4 
for electron v 5 x 10 Zc 

given point K - shell 

a) Some entries from corresponding table in ref. [ 2]. 

b) Assuming that the total energy is given. 
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note here that the predecessor of our code [15), the so called "Hufner program", was written in order 

to describe results for muons in very low states (typically n ~7). That program included dipole 

radiative transitions and the dipole part of the muon-electron interaction. The monopole Auger rates 

were treated in a very crude way. It was assumed that the muon orbit is much smaller than the electron 

orbits and thus the penetration could be neglected. For its intended range it performs well. However, 

in the later years experimental results have become available for transitions from much higher levels. 

Extension of this program to high quantum numbers is insufficient if not disastrous! A host of 

otherwise negligible effects has been ignored, which at higher quantum numbers plays a key role . Other 

multipoles besides dipole, and the so called penetration correction to the Auger rates are two 

outstanding ones . Along with some procedural improvements, our program takes into account all 

important effects. 

To preview the upcoming chapters, first we give some theory about the early stages of the muon, so 

that we can justify our later actions. Next comes the development of the theory with all ramifications 

of our expansion considered . Chapter has the comparison with other theoretical and experimental 

results, that gives us confidence about our treatment. Chapter 4 discusses the application mostly 

intended for the program, namely the comparison and fitting of the experimental data for the iron and 

thallium x rays. Chapter is dedicated to the computer program and its details. The appendices 

include a compilation of the formulas involved, a reproduction of some typical input and output and an 

index of the notation used. 
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CHAPTER 1: INITIAL HISTORY OF THE MUON IN THE ATOM 

To understand the main part of this work and to appreciat e its contribution to the whole 

framework , we must examine the history of the muon prior to its quanta! cascade . Moreover, we will 

gain insight about some parameters needed at the onset of the quanta! calculation. Since this work has 

been presented elsewhere in detail [9-1 3], we will limit ourselves to an overvi ew of the subjects with 

particular emphasis on the concepts most relevant to our main topic. References [12,13] constitute our 

contribution to th e classical part of the muon history. The work has been a collaboration of several 

researchers (cf. author list of papers) and the personal involvement of the auth or has been in the 

systematization of the details and deve lopment of th e computer programs, rather than in the planning of 

the major steps. 

1.1. Energy Lo~~ fro~ ~12..':. ~~~~inu~ As the muons are slowed down in a material medium (target), 

starting from high energies, their velocities become comparable (or smaller) to the typical Fermi 

velocities of the atomic e lectrons. Wher eas the mechanisms of energy loss of swift charged particles 

are well known and understood [6 ,7,8], there are seve ral probl ems assoc iat ed with the co rre sponding 

processes when the muons are slower than the electrons in th e atom. The stopping power of a target. as 

described, for example, by the expression [l ] 

dE 
ds 

(1.1) 

wher.e dE/ds is the energy loss per unit path length, 13 = v/c, N is th e density of atoms per unit 

volume, I is the mean excitation energy, and C and 6 are correction parameters, works fine at high 

energies, but such a description breaks down at low speeds, one reason being that the mean excitation 

energy I is hard to estimate. Thus quantum mechanical methods become complicated (the Born 

approximation fails, since the action integral is larger than fi) and unreliable, partly due to the 

large number of bodies involved . As early as thirty years ago, Fermi and Teller in a comprehensive 

paper [18] laid the fundamental physical picture, using classical methods with rough predictions of 

physically observable quantities (capture rates etc.). Since that time a compilation of several 

experiments by a variety of groups [19-23] demonstrate that the ea rly predictions, which depend 

smoothly on the atomic number Z, in reality show variations, which can be cor r e lated with the atomic 

shell structure or the chemical detai ls of the environment. Being motivated by the basically sound 

treatment of the classical description of the phenomena initiated by Leon and Seki [9], we undertook 

the task [12,13] of refining the theory by including as many featur es as deemed feasible. The result 

is an improved description of the processes of slowing down, capture and classical cascade. 

1. 1. 1. Just ifi~t io_i: of the ~~~~ ~~ach :_ The fact that until very low energies the muon 

wave function has many oscillations over the extent of the atom (e.g., at a muon energy of a few eV ~ . 
and most muons get captured at higher energies ~ their wavelength is much smaller than lA) suggests 

the use of a classical description of the muon motion, unlike the perturbation style approach of the 
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higher energies. At energies lower than about 2keV the muon-electron interaction is so strong that 

first order quantal calculations are simply wrong! Nevertheless, what makes a calculation still 

manageable in this region is the fact that the muon (at positionr) moves slowly compared to the nearby 

electrons. The ratio of velocities is given by 

v 
.J:l. 
v 
e 

m e 
m 

µ 
(1. 2) 

where we have assumed that the potential energy V(r) is the same for both particles. For the low muon 

en~rgies and electrons close to the Fermi surface we find that over most of the atom the muon moves 

with a velocity much smaller than the velocities of the electrons, that is 

(1. 3) 

This means that the motion of the slow muonic perturbation causes the electronic wave functions to 

adjust rapidly to the almost static field of the muon at r(t), and so we are dealing with a 

continuously changing two center problem for the atomic electrons. As a result of the presence of a 

negatively charged "impurity" in the atom, the density of electrons is diminished around the muon and 

the muon-electron interaction is shielded at large distances, the shielding length being of the order 

of [ 18] 

l/K (1.4) 

where the local reduced electron wavelength Xe is given by 

x (1. 5) 
e 

and it depends on the Fermi velocity VF at that point. This reduction of the interaction corroborates 

the reduction of the lowest order perturbation term (one quantum exchange between the muon and the 

atom). From the slow motion of the muon, it follows that the maximum energy loss in each quantal 

collision is limited by the classical maximum momentum transfer given by [18] 

/':, E' 
max 

(1.6) 

which is "'2/7 times the kinetic energy of the muon. Actually the most probable energy loss is only 

about 1/10 of the maximum value given in eq. 1.6. This means that the trajectory of the muon is not 

greatly modified by the energy loss. These arguments fully justify the use of the classical 

description of the muon trajectory and its interaction with the electrons. 

1.1.2. Description '?.~ i:._~ ~nerM 1:'.~ Mec~nis~:_ The starting point is the probability density 

distribution of the energy transfer E =nw from the muon to the electron cloud during the time interval 

dt, given by [26] 



d 2 p (w) 
dwdt 
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- Im---dk ( 1 ) 
k El (k,w) 

(1. 7) 

i 
where E (k,w) is the Fourier transform of the (local) longitudinal dielectric constant of the 

electrons treated as a free Fermi gas. The theory of electronic stopping, which we are employing here 

was developed by Lindhard and collaborators (24-26] . In that approach the ·electrons are treated as a 

Fermi gas and the dielectric constant is calculated in the time dependent self-consistent Hartree-Fock 

approximation. We have studied the ramifications of the theory including the variations of the 

e lectron density over the atom [private work ~ unpublish ed ] and we have found that the corrections are 

too small to significantly change the basic results . From eq. (1. 7) one can calculate the stopping 

power, by forming the average energy loss (per unit path length), i.e., 

dE' 
ds 

dE' 
dt 

d2p(w) 
dwd t dw 

(1.8) 

and performing the indicated integrations in (1 .7 ) and (1 .8 ) using the relevant approximations for the 

dielectric constant described in ref . [26]. In the present treatment [13] we keep the differential 

form of eq. 1.7 with respect to the energy loss and we simply integrate (1. 7) along the muon trajectory 

through the atom to obtain the spectrum of ene rgy losses dp (w)/dw along such a trajectory, specified by 

the energy of the muon (at infinity) and the impact parameter. This resulting distribution is sharply 

peaked at losses of a few eV and it falls off at high energies (up to the maximum energy loss allowed 

of 2m V ( t )vFI , eq. 1.6) only as l/w2
; large energy loss e s are rare, but contribute significantly e µ max 

to dE/ds at small distances . The calculation of dp(w)/dw for the collection of impact parameters from 

zero to the size of the atom and for energies from several hev to zero, is the result of this 

integration and all relevant quantities can be obtained from such a collection of distributions. 

One additional mathematical complication, which was in fact expec ted, is that the total 

probability p for any energy loss, given by 

p = Jdp( w) dw 
dw 

(1.9) 

is in practice larger than unity . This simply means that the possibility of multiple scatterings in 

one atomic encounter is nonnegligible. In view of this we must consider the probability 

that at time t the muon has lost the energy E (corrected for multiple scatterings). Such a quantity 

obeys the integral equation (13] 

_j_ (d Pt (E)) 
dt dE 

which connects the rate of change of 

J{ d,P (o) do 
dlidt 

(1.10) 

dP t (E) I de. (LHS) to the accumulation (1st term RHS) and 

depletion (2nd term RHS) of dP t (E)/dE via the "one interaction 11 energy loss dis·tribution 
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i p (w)/<LJdt . Equation 1.10 can be solved analytically in some approx~mation (ref. [13] treats a 

realistic case) or numerically by an iterative scheme. 

In our early treatment of th e problem [12] we used the average energy loss per unit path length, 

i.e., stopping power (1.8), as the basic quantity. When the corresponding integral i s evaluated, one 

finds that the stopping power is proportional to the velocity of the muon and, therefore repre sent s a 

frictional force. Specifically we get 

dE 
ds 

x<r) 

i-l:x
2

) 

i +~ x2 
v 

)J 

(1. 8') 

Such a force correctly describes the average behavior of the muon, but it is inadequate for the 

description of the capture process [13] . This is because the question whether the muon is captured or 

not is decided by the .condit ion that the energy loss is larger than the total energy minus the 

centrifugal potential barrier in the radial motion and not by the condition that the average energy 

loss is large enough . 

1.1.3. Comments on the Calculation. The detailed description of the atomic cloud presents some 

problems in a classical approach. We have used both the Lenz-Jensen potential [2 7], an analytic 

approximation of the Thomas-Fermi model adjusted for densities near the origin and at large distances, 

and the Hartree-Fock potential [28]. The final results for all three potentials are similar. Note 

that in all cases the probability is calculated using the assumptions of the Fermi gas model (for the 

derivation of the dielectric constant) , and only the details of the charge density are dependent on the 

particular potential used ~ this hybrid setup does not satisfy the Thomas-Fermi equations for the 

charge density. This regime breaks down at small radii (r< ao/Z ) and large ones (r>a0 ). For small 

distances th e statistical density is wrong (the Hartree-Fock is more accurate), but the muon spends 

little time there; on the other hand, the statistical model is not applicable for very low e l ectron 

densities but at large distances the probability for any significant energy l osses is trivially 

small. Another situation where this approach fails is at very low bombarding energies 

( E)J-$ Echemical) , where chemical effects may become important. 

In addition to the energy loss from co llisions with elect rons, the muon experiences energy loss by 

electromagnetic radiati on. The radiative losses have been treated in the lowest order (dipole) [29] 

and they give appreciable damping only for orbits coming very close to the nucleus ( 2'.<:; 10-
3 A), arising 

from the high accelerations at the turning pericenter points , since the dipole radiation power is 

proportional to the square of the acceleration. 

I. 1 .4. ~~~~~~°-~~ ~~ ~°-~~~~ ~~ !~~~~ S.°-~~~~°-~~ In the pres ently adopted probability oriented 

formulation it is relatively hard to incorporate the changes in the muon orbit due to the energy loss 

distribution; this was done in the case of the frictional force. A Monte Carlo type of calculation is 
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still possible, but quite time consuming. As pointed out above, the muon during t raversal of the atom 

on the average exchanges one quantum with the electrons and changes its total energy in a not very 

significant way. Thus, we decided to describe the trajectory by the elastic energy conserving one. 

Along this trajectory, the differential energy loss probability (1.7) is integrated; as we have seen, 

the errors introduced by moving along the elastic trajectory should not be too large, perhaps except at 

ve ry · low ene rgies, where our free atom theory breaks down anyway. The collection of energy loss 

probability distributions as a function of th e original muon energy and impact paramet e r constructed in 

sect. 1.1.3 will be used in the following in ord er to obtain more useful quantities. 

1.1 .5. Cross Sections. The quantities of interest are the (differential) cross section for the 

muon of energy E to lose energy e and the (total) cross section for the muon of energy E to be 

captured. The first is obtained by integrating dPt(e)/de over the atomic cross sect ion according to 

doe(E) 

de 
2TT 

dP ( e<E - Ebar(b )) 

de 
(1.11) 

where dP (e) /de has been integrated along the muon trajectory (sect. 1.1.4), Ebar is the hei gh t of 

the effective potential barrier [cf . ref. [12), fig. 4) and d is a parame ter characterizing the size 

of the atom [c f. ref. [12], eq. 5.1). Quantal corrections for small impact parameters, large · energy 

losses and bremsstrahlung have been included in the actual calculation [13). 

The capture cross section is a special case of (l .11) in the r eg ion e i! E - Ebar, given by 

o (E) 
cap 

2TT 

d J bdb 

0 
J dP(e) de 

de 

E - Ebar (b) 

(1.12) 

1.2 . Muon Capture fr~~ ~he ~ontinuum. Equation 1 .12 describes the cross section for capture; 

figure 1.1 shows a typical situation for the case of rubidium chloride. Note the exponential drop at 

high ene rgies, which nonetheless cannot be i gnored. One would think that at the l ow energies (below 

-10 eV) capture would be the strongest and above that almost none should occur; this is certainly not 

the case. The reason is that there is a dynamic competition between scattering and capture . To 

further elucidate the issue, figure 1.2 shows the associated scattering cross section (several 

energies) of fi g. 1.1. The importance of the high energy tails in these curves should be noted. 

We now define the funct ion P(E) as the probability per unit energy and per unit area of having a 

muon of energy E (not captured) in the medium. The evolution of P(E) as a function of E is governed by 

the integral-different ial equation of the steady state condition [12] 

P(E) { o (E) 
cap 

E 

+f 
0 

do (E) _ _ e __ 

de J 
do (E + c) 

e 
de 

P (E + e) de (1.13) 

where the LHS is the depletion of muons by capture or scattering to lower energies and the RHS is the 

feeding from the higher energ ies. The possibly divergent cross sections at e =0 exactly cancel, thus 



Capture cross section of rubidium chloride . 

10.0 

oCap (E) 

1.0 

E, eV 

-10 -
Figure 1.1 
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the lower limits of integration on both sides of eq. 1.13 could be replaced by some small energy E
0 

0. 

+ -
Figure 1.3 shows a numerical solution of this equation for the case of RbCl used in figs. 1.1 and 1.2. 

The slight increase of the function P(E) above unity at muon energies between 100 and 200 eV is related 

to the detailed form of the inelastic cross section. Capture starts at around 50 eV, where the capture 

c ross sections are still small. Only about 25% of the muons are captured near zero energy in this 

fairly typical case. This establishes rou ghly the relative role of capture in which the "free atom" 

picture described above is applicable. At smaller energies the chemical structure of the target plays 

a decisive role. 

1.2.1 . ~gular Momemtu~ ~ ~~!'.!_~r.!:.:_ The angular momentum dist r ibution of the muons is of 

importance at the onset of the quantal phase of the cascade, and it either has to be obtained from the 

earlier stages of the calculation, or otherwise fitted from the data. A combination of the two is even 

better, since so many unaccounted phenomena contribute to its precis e definition. This distribution at 

the moment of capture can be readily ca l cu lat ed from the capture probabilities and the distribution 

P(E ) . Inde ed, if we define the number of muons per unit energy captured with angular momentum L (in 

units of Ii) as N(L), then the differential form of this function due to muons captured within 6L of L 

is given by 

6 N(L) li2 L 6L 
m 

µ 

00 

f P(E) dE 
E 

211 J bdb ll(b2 - b~ (L,6L)) 

0 
f dP(E) 

dE 
dE 

t:-Ebar(b) 

(1.14) 

where the function ll(b 2
) assures that the angular momentum is between Land L+6L, being defined by 

if L(b ) E [L,L+6L] 

ll(b2 - bJ (L,6£)) (1.15) 

otherwise 

Also b0 (L,!:;L) stands for the solution of the impact parameter as a function of the angular momentum 

(from liL = ('lm EP b ). In the limit of infinitesimal 6L the integration over L collapses and a simpler 
µ 

result is obtained, viz. 

8.N(L) 
h 2 L 6L 

m 
µ 

11 f P(E) dE 
E f 

E - Ebar (L) 

dP(E) dE 
dE 

(1.16) 

If the integral s depending on L (or equivalently on b) do not in fact depend on L, then we get that 

6 N (L) LM (1.17) 

which is the well known statistical distribution. At the present time we have not studied in detail 

the behavior of these i ntegrals and the deviation of the angular di st ribution from the statistical one. 

This distribution as evolved in the classical part of the cascade, can serve as a gu ideline for the 

initial Z-distribution of the quantal cascade. 

1.2.2 Come._~nd~~ For completeness we should mention that the above techniques can be applied to 
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Figure 1.3 

Energy distribution of uncaptured muons and capture energy spectrum. 
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Ratio of muons captured in each species of binary compounds. 
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Experimental capture ratios for metal oxides . The numerous sources of the experimental data are not 

quoted. The full curve is the Fermi -Teller Z - law, while the dashed curve r epresen ts a simple power 

fit. Note that a smooth curve cannot possibly be consistent with all experimental data. 
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molecules, where the various constituents are treated as homogeneous mixtures, disregarding chemical 

bonds (but taking into account transfer of charge and distortion of the atomic potential). One of the 

advantages of treating binary compounds is the extensive collection of data (as an example a large 

number of oxides has been tested). In our treatment, each species of atoms or ions enters with its own 

capture and scattering cross section in the gen e ralized version of eq. 1.13 for the unique function 

P(E). A separate i-distribution can be evaluated for each species, and moreover, the ratio of muons 

captured in the various atoms can be calculated by noting that the number of muons per unit ene rgy 

captured at energy E for species i is 

N(i)(E) n .P (E) a (i) (E) 
1- cap 

(1.18) 

where ni is the (fractional) concentration of i. Th e total number ca !'tured in i is obtained by 

integrating (1.18) 

N. 
1, -

00 f N( i ) (E) dE (1.19) 

For a two component compound we can form N
1

/N
2

, which can be derive d from the experimental ratios of 

x-ray intensities. It has been predicted [18] under simple assumptions that this ratio is equal to the 

ratio of atomic numbers Z
1

/ Z
2

; although there is a wild variation in the data , it seems that the 

observed ratios are closer to unity than the "Z-law". As we have point ed out in ref . [ 13 J a 

considerable uncertainty in these numbers can be attributed to the chemical effects of the compound in 

the energy region of a few eV. Our calculations, although not consistently in agreement with the data, 

seem to be closer to experiment. To illustrate how complicated the matter is, figure 1.4 shows some 

data with attempted fits to describe them. 

1.3. Classical Part of the Cascade. The reasons of sect. 1.1 for the use of classical methods 

apply here too, since energies are small and the quantum numbers of the muon are large. We are going 

to describe the energy and angular momentum losses by the same equations of motion, but in doing so we 

must update the orbit of the muon (this is done in the avera~e formalism of ref. [12]), so that it will 

actually enter more tightly bound orbits. Direct computation is lengthy (the muon typically makes 

thousands of loops before descending to the region where the quantal cascade takes over). This 

calculation has been performed for a selected number of cases mainly as a check on the more indirect 

methods below. To give a visual idea of what a high eccentric orbit looks like, we have included 

figure 1.5. The alternative to following the orbit is to derive an equation describing the evolution 

of L and E. It is convenient to express L as a fraction of the maximum angular momentum Lmax(E) 

(corresponding to the circular orbit at energy E) This maximum L is determined from the equation 

E 

and the condition for maximum 

L2 (E) 
max 
2m r2 

µ 

+ V(r) (1. 20) 
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Figure 1.5 

Trajectory of a muon captured in an eccentric orbit. 
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Figure 1. 6 

Evolution of the angular momentum distribution in the classical part of the cascade. 
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d 

cir (
L2 (E)) ::? + V(r) 

If L is expressed as a fraction of Lmax(E'), i. e ., 

n(E) L (E) I L max (E) 

0 (1. 21) 

(1. 22) 

we find that the change of n over an entire loop of the muon is related to the energy loss !1E over 

the same period t
1 
~ t

2 
by 

ti J [ f(r) + i1I' ~~] dt 
ti µ 1 

L 
max 

where f is the friction coefficient (cf. eq. 2.10, ref. [12]) and 

dL 
~-

dE 
(1. 23) 

coming from the 

radiation. The use of the friction (i.e., average energy loss) is a demerit of the treatment at this 

point, but it can be justified by ~oting the relatively long time spent by the muon on this trajectory. 

Equation 1.23 can be solved numerically and a sample case is shown in figure 1.6. The vertical almost 

straight lines show that although there is an overall loss of angular momentum (a smaller orbit cannot 

support as much L as a large one), the quantity n is preserved and therefore the shape of the 

Z-distribution remains unchanged. For the circular orbits ( n = 1) this is exactly correct, whereas 

extremely eccentric orbits converge to more circular ones. In practice the distribution tends to 

accumulate some high L states, so that at the point where the quantal cascade takes over, the 

distribution is visibly steeper than the one at capture, as exhibited by figure 1. 7. 

1.4. Depolarization~ the ~uo~~ [30) The study of the loss of polarization of the captured and 

cascading muons can reveal information about the (weak) muon-nucleus interaction in addition to the 

solid state and chemical applications . The muon beams produced by decaying pions are almost fully 

polarized and the residual polarization in the muonic atom is measured from the asymmetry of the decay 

electrons, or from the circular polarization of the muonic x rays [31). Our goal is to study the 

deflection of the spin of the muon by electron collisions and by the spin-orbit interactions . Previous 

discrepancies by factors of 1.5 to 2 between the theory [5) and experiment, accounted by a slower 

cascade or additional depolarization mechanisms , have been substantially bridged and such additionai 

hypotheses may be unnecessary in many cases . The two mechanisms of depolarization are outlined next, 

the quantal case following . 

1.4.1. Spin Deflection in Muon-Electron Collisions. The Larmor precession angular velocity in 

such a collision (where the slow muon is treated as stationary) is given by 

(µ •r) (µ •r) 
3--e __ ~µ __ 

1'5 
(1. 24) 

where µ is the magnetic moment and r is the radius vector. Integrating rl over a muon loop (in a 

simplified fashion of a straight trajectory through the center of the atom) and inserting an estimate 



-16 -
Figure 1.7 

Angular momentum distribution at capture a nd l ater in the cascade . 
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Figure 1 . 8 

Muon spin precession angle as a function of energy and relative angular momentum. 
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for the minimum approach distanc e [18], we obtain the accumulated d e fle~tion angle ¢ for the spin 

m c 2 

e 
rdV/dr 

1~ ·µ - 3(µ ·r><J& ·r>l \ e µ e µ 
(1. 25) 

where P is the electron (number) density and r denotes a unit vector. The factor in braces is at most 

unity. Inserting a typical size of a muon orbit we get ¢-10-7
- 10-6rad. This, coupled with the fact 

that the muon makes 103 muon-electron collisions in the slowin g down and cascade processes, shows that 

there is insignificant depolarization caused by this mechanism. 

becomes larger than the line width [30], the mu on spin is no longer a "goo d quantum number" . The 

original polarization Pin= (oz) is then reduced by a factor 1/3. Classically one has to project the 

spin s on the angular momentum j axis (assumed random) and back to the original spin direction . Thus 

the net polarization is 
12n 

£ sin2 8 d(sin8) 

p pin 
~TT 

( 1. 26) 

J 
0 

d(sin8) 

The analogous quantal expression is 

p _i!_:__i_i_ 
(11) 2 (j)2 

for J l±~ (1. 27) 

As we shall establish below, j becomes a good quantum number at relatively large values of the 

principal quantum number n; this in conjunction with the fact that the L-distribution is peaked at 

high i values, makes . (1.26) and (1.27) practically equivalent. The large deflections experienced by 

the muon at each collision during the slowing down support the assumption that the direction of l (and 

therefore j) at capture is random . 

A detailed numerical calculation of the accumulated angle ¢ due to the Larmor precession, given 

by 

l f r(8) dV d8 
2m c dl" 

p 

(1.28) 

where the integral is taken around the orbit, has been performed. Figure 1.8 shows the iso- L lines as 

functions of the muon binding energy and relative angular momentum Tl. The point where ¢ "' 1 

determines the transition region for j becoming a good quantum number. Alternatively, the comparison 

between the total width of the quantum state (n, L) and the fine structure splitting, given by 

eV ( 1. 29) 

yields ¢ • 1. Note that for different i states, this takes place at different energies (or n values). 

1.4.3. Quantal Depolarization. In a transition i ~ f of multipolarity L the polarization is 

reduced by a factor 8, i.e., Pf= 8Pi [30], where 



B 
jljf+l) - l/lt+l) + 3/4 

ji(ji +l) - li(li +l) + 3/4 
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ji(ji+l) + jljf+l) - L(L+l) 

2 j lj f+ 1) 

This reduction has been programmed in the depolarization part of the computer program. 

(1. 30) 

To illustrate 

its use, we can analytically estimate the re sidual polarization of the muon at the ls state. By 

and considering the strong dipole transitions only ( lf=li -l ), assuming a statistical l-distribution 

using an approximation for the energy where the depolarization (l.27) becomes effective, we find that 

3 no +10/3 
20 no 

( 1. 31) 

where n
0 

is the spherical orbit at which the spin-orbit splitt in g ·equals the total decay width. 

Reference [30] compares our findings with other theories [32-38] and with experimental results 

[ 39 ,40 I. In the cascade program, the point at which (1.27) takes effect can be externally specified 

and the most straightforward way of determining it is by examination of the line width and spin-orbit 

energy output of a preliminary run. 

1.5. Semiclassical ~!1'.!_oach. A formalism halfway between the essen ti ally classical description 

of this chapter and the pure ly quantal one o f the following chapter can be obtained by considering the 

muon moving in a classical (Kepler like) trajectory through the atom, while the elect rons and their 

interaction with the muon are treated in a quantal sense. Since we are interested i n muon orbits that 

come quite close to the nucleus (penetrate the electron K-shell, for example), we can take exact 

Keplerian orbit s for the muon. We can describe both positive energy (hyperbolic) and negative energy 

(elliptic) orbits in this approach. The probability that between t ime t 1 and t 2 a transition 

(summarized in figu re 1.9) takes place, is given by the fi rst order perturbation result 

p ~ t dt 
( 1. 32) 

The various multipolarities of the interaction can be extracted by expanding the operator 

e2 /lr.(t) -r j in spherical harmonics as in the quantal cases of chapter 2. We will not e laborate on "]. p 

the mathematical details of transforming (1.32) into an algebraic formula for a transition rate. As 

the limits of integration tend to - 00 and +oo respectively, t he resulting formulas for the low 

multipolarities and low electronic shells involve Bessel functions (modified Bessel functions) for 

closed (open) orbits and all integrals can be evaluated in terms of these and other elementary 

functions. Similarly, for a Kepler orbit the multipol e radiative rates can be evaluated (this 

approximation is still adequate, since the orbits that radiate significantly come very close to the 

nucleus where the potential is essentiall y Coulomb l ike). 

We have compared these results for e lliptic orbits with both their classica l and quantal 

counterparts. For the comparison with the quantal results we have exami ned the rate for a dipole 

transition of the muon ( n1, l 1 ) = ( n,, ~) and the corresponding semiclass ical rate, using as an 

effective n the value 
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Figure 1.9 

Sc hematic r epresentation of the setup for a semic lassically treated muon Auger transition. 
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Comparison between the classical and semiclassical Auger rates. 
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and as an effective Z the value 

n e 

z e 
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( 1. 33) 

(1. 34) 

For transitions with all quantum numbers large the differences are l ess than 5% (often less than 1%). 

For large n1 - n, (and therefore Z1 , z., small) there is a marked deviation (up to factors of 3 - 5), the 

quantal rates being systematically smaller. For the comparison with the c lassical rates, we can 

examine these rates as a function of energy transfer to the electron. The probabilistic formulation 

ha$ been used for the classical results. Figure I .10 has the comparison of two such typical cases. 

The agreement is perfect, considering the fact that the semiclassical rate exhibits threshold effects 

at the binding energies of the corresponding shells. It is believed that at small energy loss es ( - a 

few eV) the classical formalism is superior. No such comparison can be readily made, because the wave 

functions of the valence electrons are in no acceptable approximation Coulomb like. 

The findings of this section have bridged the gap between a punely classical and a purely quantal 

description and the agreement of all three theories at their overlapping r egions reassures us that a 

smooth transition of formalism could be attained without severe change of the quantities involved. 
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CHAPTER 2: QUANTAL CASCADE AND TRANSITION RATES 

Armed with the results of the previous chapter and having an approximate idea of the distribution 

of muons at the energies where the transition from classical to quantal description occurs, we embark 

on the task of describing the subsequent energy loss and depolarization mechanisms in a full quantal 

regime. The pioneer work o f references (41-44) has been of great help, as we have sifted through the 

various possibilities to estab lish which phenomena can be safely neglected and which can be markedly 

improved . Appendix A contains most of the mathematical details and a compilation of formulas involved 

in this development. 

2.1. ~vervi~~ ~the Quant~ ~~~~~isms. The gene ral approach of a quantal calculation of 

transition rate s that cannot be solved exac tly , is in th e framework of perturbation theory. The 

justification of the implementation of thi s method ca n be validated by computing higher order 

corrections and showing that they are indeed sma ll. In the following we will ~estrict ours~lves to the 

lowest (nonvanishing) order terms in any perturbation series expansion. 

The fundamental formula used in relation to any transition rate between an initial state i and a 

' final state f is the Fermi go lden rul e, giving the reciproca l life time of such a transition 

1 
T 

(2 .1) 

where .~fi is the matrix e lement of the perturbation Hamiltonian operator, dN(E )/dE is the density in 

energy of the final states available, and ,) denotes a summation over propagation directions, 

polarization states, and magnetic quantum numbers (or other possible unobserved parameters). Note that 

most of the problem is concentrated in evaluating the matrix element of the perturbation Hamiltonian. 

In both radiative and Auger transit ions, it is useful to expand the interaction Hamiltonian into 

multipole terms. This is a mathematically general expansion in principle, but in our case, where 

la>« 1 (k is a typical wave number in the problem, derived, say, from the e nergy transfer, and 1' ran~es 

over the muonic orbit dimensions), such an expansion converges quite rapidly. Moreover, the various 

multipole parts connect initial and final states according to specific selection rules of the quantum 

numbers ; as a result for small quantum numbers, only a limited number of multipolarit ies is allowed in 

any case. In the following we will discuss in detail the two principal modes of energy loss and their 

implications on the cascade. 

2.2. Emission of Multipo~ Radiation. In figure 2.1 we show the transition of a muon between the 

two states indicated, all taking place in the Coulomb field created by the atom. The lowes~ order 

interaction HAmiltonian is given in the non-relativistic approximation by (4 5) 

.H'(A) 
e 

m c 
µ 

( 2. 2) 

where A is the vector potential, H is the magnetic field, O is the Pauli spin vector and P is the 

momentum operator. Furthermore, expanding in multipoles and separating the electric type terms from 

the magnetic type terms one obtains for the transition rates in the long wave length approximation 
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a 
where the "reduced" multipol e operators ."MLM are given by 

efi 
m c 

µ 
+ 

Note that the second term in each expression (2.4) arises from th e muon spin. 

(2. 3) 

(2.4a) 

(2.4b) 

For E (L) tran s itions the spin term is gene rally small, and if one ne g l ects it complet ely. the 

formulas of Appendix sect. A. I can be readily obtained. For th e magnetic type transitions, it turns 

out that all radial dependence drops out for L=l (due to the fact that 'l/( r>YlM) is not a function of 

r). But in such a case, the transition rate between stat es of differe nt n vanishes, due to the 

orthogonality of the radial parts of the wave functions. This means that Ml transitions in this 

approximation can go only between different fine structure components (such transitions are of no 

particular interest to us). However, higher M(L ) transitions can connect different n stat es, the 

intensity of such lines being exceedingly small. 

As a digression, we can estimate the relativistic correction s t o the Ml operator , which indeed 

provides some rate between different n states, due to its r> dependence. More specifically, the 

non-relativisti c operator 

eli 
2m c ( r, + µµ 8 ) • [ '\/ (r y lM ) J * 

µ 

becomes with the first order relativistic corrections [46] 

eli 
2m c 

µ 
{ 

1 w 2 
2 1 P

2 

l+-(-)r> +--10 c 2 m2c2 
p 

As an order of magnitude estimate (for n1 - n2<n1 ,n2 "'n) we can say that 

We will later see how this compares to the el ectric multipole rates. 

(2.5) 

(2.6) 

(2. 7) 

in the emission of a free photon, while the muon is making a quantal tr ansition in the field of the 

atomic potential, this photon can be virtual and interact with an atomic el ectron and get abs orbed by 

it, _ giving rise to an electron with increased energy. This second order proces s , de picted in figure 

2.2, not only cannot be neglected (as higher order), but under certain conditions it is the pre dominant 

channel of energy loss in a transition between t~o states. This process is, of course, nothing else 

than a quantal picture of the muon-electron collisions, described classically in chapter 2. The 
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Figure 2.1 

Schematic representat.ion of a radiative muon transition. 
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Schematic representation of a muon Auger transition. 
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interaction Hamiltonian in a non-relativistic app roximation is 

·~2 
- iKr>t2 e2_e __ _ + Angular momentwn re lated parts (2. 8) 

r 12 

It turns out that we can safe ly limit ourselves in the treatment of th e e lectri c part of the 

interaction indicated; an order of magnitude estimate for the magnetic type transition rates will 

follow later. Section A.3 has the mathematical development of th e rate formulas . One must rea lize 

that a considerable amount of effo rt has been devot ed in the calculation and verification o f these 

expressions. 

2 . 4. Improv~~~~ on the I~ansition ~~~~~ Whereas the formulation of the radiation is simple, 

straightforward, and quite reliable, the same is not even remotely true for the Auger transitions. The 

only possible flaws in the radiation are the us e of simpli f i e d wave functions for the muon and the 

neglect of the spin-related terms in the Hamiltonian. On the other hand, the Auger transitions suffe r 

from the elec tronic wave functions, which are more crude, and a host of other inaccuracies. We have 

investigated th e most obvious ones, arriving at some answers. Foll owing are some of the most important 

correct ion.s. 

2.4 . 1. Retardation. In a simple trea tment one omits the exponential factor in eq. 2.8 , 

pretending that the interaction is mediated by a photon of a range that is much shorter than its wave 

length. This is, of course, the limit of a four point interaction , where the ejection of the e lectron 

occurs "simultaneously " with the change of levels of the muon. The exponential retardation factor, as 

a direct result of relativity, provid es for the necessary oscillations of the photon field until it has 

been absorbed in the other vertex . As expected, the correction shou ld be substantial for hi gh energy 

transitions; figure 2 . 3 shows the modificati on of the ls and 2s rates as a function of energy, with 

this refinement. Since the onset o f any si gnificant deviation from unity occurs at energies 

liw :;,, ~mee 2 , where as we will see, Auger rates are small, this correction can be retained for academic 

purposes only, and in fact it has not been implemented i n the computer program. 

2.4.2. Electronic Screenin&_~ Ideally one would like to solve the full atomic potential with a 

muon in a parti cular state, in order to determine the modified eigenfunctions of the many body prob l em. 

This task is conceivably possible in a Hartre e -Fock self consistent manner; since this exceeds the 

scope of this thesis, we can only study the perturbation of th e muon on the atomic wave functions in a 

phenomena logic a 1 f.ash ion . Guided by classical considerations (24 ,25 ,26, and private work 

unpublished) of the "bubble" formed around the muon (i.e., the rarefaction of the electronic c l oud in 

the proximity of the muon) , we can simulate this reduction of the electromagnetic interaction by 

introducing a Yukawa type multiplicand in the expression of the Hamiltonian. Section A. 4 has some 

details on this; the impact of this refinement is discussed in section 2.5 . 

2.4.3. Penetration. This is not a conceptual correction per se, but rather the result of a 

mathematical complication, which, if neglected, leads to simplified expressions. This effect is 

related to the fact that the electron orbits lie partially inside the muon orbits. On the other hand, 
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Figure 2.3 

Effect of relativistic retardation on the Auger rates. 

Plot of the ratio !R of the rate with retardation to the rate without retardation versus the kinetic 

energy <J of the continuum electron . Note that due to the non-uniform convergence of these 

functions at the limit <J ~ 0, !R does not tend to unity, but to the following limits: 

llim !R
1 <J~o s 

(1 - 1;)2 I Br; l llim !R = - -- exp -- · 
:J'"'O 2s ( l + r;)" 1 + r; ' 

Figure 2.4 

Schematic representation of the strong dipole radiative muon transitions in the cascade. 
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these simplifications are of limited utility, since the corrections are i n the majority of interesting 

cases more sizable than the original terms. Section A.5 gives a comprehensive analysis of this 

computational effect, including a s tep by s t ep description of our effort to find a so lution that is 

numeri ca lly acceptable and computational ly efficient. Unfortunately, to list a detailed table of 

fitted coefficients and the accompanying analytical formulas would be rather lengthy and of special 

interest only. The reader can recover these results from the code of the cascade program. 

2. 5. Corrections. Up to now we have 

examined only half of the problem; the rates and their co rrect ions. The other half is the examination 

of these results in order t o so lidify our under s tanding of the underlying principles and, from the 

practical point of view, to be able to distinguish which rates are large, and thus hav e to be computed 

more accurately, and which are small and can be safely neglected. Following is a sys t ema tic discussion 

of the sizes of rates. 

2.5.l. Rad~tion Multipol~ Monopole radiation does not exis t, as exemplified by the fact that 

the radial parts of hydrogen like wave functions are orthogonal. The relative intensity of the various 

multipoles is found by using the order of magnitude estimates for the multipole matrix elements 

I ( i 1 r i I f) I (2.9a) 

w (Za) 2 /n 2 (2.9b) 

Then apart from factors of the order of unity, the ratio between two consecutive multipoles is roughly 

(Za) 2 

« l 
n2 

(2.10) 

In addition a similar rough estima te yields fron eq. 2.7 

f R (Ml) 

l"R(El) 
(2.11) 

The moral o f this is the well known fi nd ing in atomic physics that the hi gher multipoles fall off quite 

rapidly (for very small quantum numbers such high multipoles are not allowed). Experimentally 

transiti ons up to E2 have been observed (47 ,48 ] for high Z atoms. To be on the safe side we have 

included in our ca lculations terms up to E3. Note that for all practical purposes magnetic trans itions 

are non existent. 

The second compa rison of intensities may be done within th e same multipolarity and initial state , 

but with different final states. The st rong dependenc e of the rates is in the transition frequency w, 

the rates being proportional to 2L +l 
w Therefore, other things being equal, the transition with the 

smallest n2 is the most intense. This means that radiation tends to transfer the muon to the lowest 

available energy state. Finally, with the same initial state and f inal n 2 , the transition which has 

(if poAsible) ie LhP At ron g~Hl (1111 nrv;mn~nl nho11l mnlchin)I, Liu' n11mhcr of nod t> H of t he 

radial parts of the initial and final wave functions is the reason here), the transition(s) with larger 

l 2 being progressively less intense. Putting all three compar isons together we can assert that 
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Figure 2.5 

Comparison of the relative intensity of the multipole Auger electron transitions . 
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Examples of total conversion coefficients in the cascade. 
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r adiat i on tends to push the dist r ibut i on o f muons towards the hi gh states; figure 2.4 shows 

sc hemat i ca ll y a typical cascade sit uat ion with th e st rong transi tions from the initial l eve l n1 

indicat ed. Although the a ngu l ar mo~entum decreases, the r elat iv e angular momentum does i nc rease, due 

t o th e large r j umps in n . Whenever radiation is predomi nant, this picture is app licab l e. In the 

following s ub sect i on we will see the quite unsimilar features of the Au ge r rates. 

2.5 .2 . Auger Rat es. Th e Au ger rates decrease with increasi ng multipolarity much slower th an the 

radiative rates. In most cases, th e st r ong dipole transition is indee d the s trongest, but th is is not 

all of the s t ory; EO and E 2 transitions compete and cannot be safely neg l ec t ed. Oct upole and hi ghe r 

ones ca n be disregarded with no consequences; equa lly , th e Ml Auge r transitions are small since Ml 

radiation is down (eq . 2.10) and th e conversion coefficients (ratio of Auger r ate to radia t ion for the 

same muonic t ransiti on) are c l ose to the E2 r ates [49] . Fi gure 2.5 demonstrates three t yp i cal cases of 

the comparison of the multipolarities . Ex amination of t hese r ates and the radiative r ates confirms the 

fact that th e conversion coefficient increases with increasing order of the mul ti polarity [50]. 

Within each mul tipola r ity i t is instructive to examine the co ntributi on of each shel l and subshe ll 

(even each un r eso lved cont inuum l ) to the total width. The rul e of thumb - found empiricall y and in 

gener a l agreemen t with the fo rmulas - i s that th e sh e ll closest to threshold, i.e., the one with 

highest binding energy, and s till al l owed to go to th e continuum) contribut es the most, the ratio of 

intensities of co nse cutive s hel ls bei ng i n the range 5 10. However, unlike radiation, Auger 

transiti on int ens iti es a r e maxima l fo r the sma ll est change of energy ( prov i ded that a particular 

s ubshell is open). This ph enomenon coun t e rbalance s the ef fect of displacing the muons towards the high 

angular moment um states caused by the radi at ion. The total conver s i on coe ffi c ient for an initia l s tat e 

is usually larger th an uni t y for hi gh n
1 

and trivially sma ll f or n 1- l. Fi gu r e 2.6 shows this ratiQ fo r 

some specific cases; also figure 2. 7 depicts the ratios fo r th e contribution of shells to th e Auger 

width as a function of transition energy . Note that in figs. 2.5, 2.6, and 2.7 pene~ration has been 

included. There i s a wide variation of va lu es as th e quantities change r apid ly with y. Figure 2.8 

shows the energy and y dependence of th e dipole K, L, and M conve r s i on coeffic i ent s; note the 

s imilaritie s of th e cu rv es. Finally table 2. 1 shows th e r a ti os of the con tributi ons of the various 

portions (subshells and con tinuum l states) at threshold - this test is not fair, since at most one 

shell can be very c l ose to threshold. 

2.5.3. Corrections -- Penetration . Since we have seen that the Auger tran~itions are not 

particul ar ly important for sma ll n2 , or equally for l arge ~n , we can safe ly di s r egard the relativistic 

retardati on. Also we can dispose of the electron i c sc r een ing. As a demonstration, we show in figure 

2.9 the modificati on of the monopole operato r in th e presenc e of an unr eal is tica ll y st r ong sc r eening . 

On the othe r hand, penetration is quite important; to pinpoint th e exact size of it is rather hard : 

only a few gene ral remarks can be made. a) Penetrat i on i • most important for h igh muon princ ipal 

quantum numbers; for n1 ~ 5 it is insignificant by it se lf and by the fact t ha t rad iation is 

ove rwhe l mi ng. b) Pene tration is a necessi t y for monopol e transitions and cannot be a priori 
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Figure 2 . 7 

Dependence of the electron Auger rates on ener gy a nd elec tronic sh ell. 
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Figure 2.9 

Modification of the monopole operator due to electronic screening. 

Monopole penetration operator in arbitrary units as a function of radius. 
u.3 

a) From ref. [15 ] ("' rt) 

b) Fitted (c f . Appendix A) without screening 
a 

c) As in b) but with screening length l/A = 0.5(a0 /Z*) 

much shorter than that induced by the electrons (cf. 
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Figure 2 .11 

Derived fit for the effective nuclear charges . 
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Effective nuclear charges z* for eac h subshell for Z =26. Derived by pointwise equating the 

exact values of the wavefunctions (54) to the hydrogen-like formulas and numerically solving 

for Z*. The dot-and-dash line marks the value z* = 26. The positions of some muonic shells 

are also indicated in order to demonstrate the region of interest. 

TABLE 2.1 

Relative contributions of electronic shells at threshold. 

~L 
T. 

n' l' ( l ) Relative size 
The entries are normalized to the condition 

chat the ls rate is unity ~ penetration is Q 2 s 5.35 (-2) u 
not included . The itemization is with respect A 2 p (1) 2.63 ( 0) 
to subshell and continuum electron angular 0 2 p (3) 3. 74 (-2) R 
momentum in parentheses . Also the power of u Js 3.15 (-4) 
ten multiplying each entry is given in 

p 
3 p (1) 8. 77 (-1) 0 

parentheses. Note that these values L 3 p (3) 1. 20 (-4) 
are independent of atomic number Z. E 

3d (0) 1. 62 (-7} 

3 d ( 2) 2.74 (-2) 

3 d (4) 3. 97 (-3) 

2 s 6.69 (-2) 

~L 
0 

n'l'(l) Relative size c 2 p ( 2) 2.58 (+l) 
T. 

T 2 p (4) 1. 81 (-2) 
0 2 s 3.67 (-2) 3s 1.14 (-3) u 
I 2 p 1.01 (-1) 3 p (2) 6.65 ( 0) 
p 

p 

0 3 p (4) 8.33 (-9) 
0 3 s 5.48 (-3) 3 d ( 1) 7 . 32 (-1) L L 3 p 1. 70 (-2) 3 d (3) 2.60 (-2) 

E 
E 3 d 1.97 (-2) 3d (5) 2 . 90 (-4) 
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disregarded for higher multipolarities. c) With respect to electronic shells, it is mostly important 

for s electrons (typical reduction of rates is 30% for ls and up to 100% for 2s and 3s electrons), has 

essentially no effect for the 3d e lectrons and reduces the 2p and 3p rates by typica lly 5%. d) With 

respect to the muon1c states, the highly eccentric ones are affected more, whereas the spherical states 

do not penetrate much. e) The genera l trend, as we have mentioned in passing, is that penetration 

reduces rates. Nevertheless, for multipolarities E2 and higher there are natural zeroes in the 

expressions for the rates without penetration (cf. Appendix A and ref. [ 51]); in cases that rates 

are small due to y being in the vicinity of a zero, or in some other cases that cannot be readily 

systematized, penetration can increase the rates. Also for inh ere ntly smal l rates, the numerical 

inaccuracies of the penetration fits come in, but with inconsequentia l errors . .To demons trate the 

above points, we show in figure 2.10 some penetration graphs in the notation of ref. [ 52 J. 

Up to here we have considered effects under 

specific assumptions; now it is time to reconsider these approximations in the hope of estimating 

overall margins of safety. Hydrogen like non-relativistic wave functions, for example, are easy to 

work with, but are they really reliable? For some trans itions t here is a systematic cance lla tion of 

terms with small remainders; this precarious balance could be upset by the shifts of t he peaks and 

nodes of the true wave functions . Such corrections, however, will in fluence mostly small rates and 

will have no effect on the overall cascade. Let us summarize some problems of intermediate difficulty. 

1) Refilling~ ~lectronic ~hells. At present we handle the two ls electrons rather correctly 

according to ref. (53] and the rest in a crude way (refill or no r efill , i.e . , infinite or zero 

refilling rate respectively). A systematic a l gorithm fo r the lowest two or three shells is possible, 

but to i mplement this co rrectl y would r equire a substantial expansion of the computer code. For 

example, several refilling rates have to be introduced (2p,,.ls, 3p ""ls, ... ) and keeping track of t he 

probabilities of all electrons is quite complicated . The refilling processes can significantly 

influence the cascade, especially for low Z atoms. 

2) Effective Charge. To correct somewhat the electronic wave functions, we have introduced an 

effective charge z* for each shell . The best way to choose these numbers is to fit z* from t he 

Hartree-Fock wave functions (e.g . ref. (54]) in the region of sma ll radii, where we are most sensitive. 

Then an average value of the subshe ll z* could be used for the whole shell. Figure 2.11 shows such a 

fit and the derived effective charges. 

3) Initial Dis tribution of the Muon. This is a wide open question , where the classical portion of 

the cascade could serve as a guide. In the final version of the program we have made provisions tha t 

the initial population of the muon can be spread over the entire (n,l) spectrum, to account for 

"leakage" of muons through the starting n. The decision of how to spread th e muon popu i ation is up t o 

the ingenuity of the user, the agreement with the experimenta l data being th e final judge. 
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CHAPTER 3: TESTS AND COMPARISON WITH THEORY 

Apart from the obvious tests of verifying th e correctness of our expressions, there is a limited 

co llection of ways to get some confidence that our approach is the corrrect one. Here we describe some 

indirect ways of checking ourselves and we leave the comparison with the experimental muonic x-ray data 

for next chapter, since it deserves more attention . 

3. l . Theoretical Checks. As we have noted ear lier, there has been a lot of pioneer work in the 

field of Auger transitions. Some of of the rate formulas (no penetration) can be found in the early 

literature (55,56) and some of these results have been coded in the earlier generation cascade comput er 

program [15). Our results agree with thos e calculations to the l etter, except for one very important 

point. In the treatment of monopole tran s itions (K shell, l eading term of l/ y2 expansion (cf. eqns. 

A.2 1 and A.24) only, approximation for small radii) the version of the pr0gram in our possession, apart 

from the aforementioned approximations includes the simplification 

1 
TTY 

(3.1) 

This unnecessary liberty, valid for ny<<l is completely unacceptable where penetration, and therefore 

the monopole transition, is really important, ·i.e ., for y>,:- 1. In the region of interest the correct 

value of the expression 3.1 is approximately 2 and not a rapidly decreasin g function of y ; thi s means 

that monopol e rates (the only one presently used) are underestimated by factors of as much as 10 or 

more, where it really counts. This irregularity has been rectified in our work. 

3. 2 . Nuclear Internal Conversion Coefficients . The phenomenon of ejection of bound electrons to 

the continuum is not unique to exotic atoms. Radiation resulting from other phenomena has a chance to 

convert electrons to unoccupied states of the bound spectrum and more commonly to the continuum. In 

atomic physics one has the Auger transitions li ke the KLL, where a K she ll hole is filled by an L 

e l ectron with the simultaneous ejection of another L electron. In nuclear electromagnetic transitions 

a similar process takes place, that is, radiation instead of being emitted as a y ray gets absorbed by 

an atomic -electron which jumps free. The main difference is that nuclear dimensions a r e so small that 

penetration is almost non existent. It turns out that in the case of no penetration the conversion 

coefficient (that is, the number of electrons e j ected per y ray observed) is independent of the way 

that y ray was produced (nuclear or muonic transition or any transition for that matter). So we may 

compare our conversion coefficient s with those of nuclear calculations; Hager and Seltzer (50) made 

extensive calculations using self consist ent relativistic elect ronic wave functions. Figure 3.1 shows 

some typical comparison between our results and those of ref . (50). Note that for the rates that have 

natural zeroe s in the formulas, the nuclear calculations show a shoulder. For high e l ect ronic angular 

momenta and/or high multipolarities the conversion coefficients change too fast with energy and a 

meaningful comparison is impossible. In all these comparisons our rates are not particularly good 

around the threshold, where details make much more differe nce, like the precise position of the nodes 
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Figure 3.1 

Comparison of our results with nuclear internal conversion coefficients. 
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Comparison of the penetration effect with other calculations . 
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of th e bound and continuum states. Nevertheless the agreement in most of the energy range is 

acceptable, considering the approximations involved. 

3.3. Other Calculations of Penetration. Researchers in the past worried about the calculation of 

penetration; reference (52) is dedi ca ted to the evaluation of penetration alone. Again, since this is 

a specialized piece of work, they have implement ed sophisticated techniques in dealing with all the 

atomic subtleties. In particular for Z * 81 the relativistic effects treated exactly in ref. (52) are 

quite important. We have reproduced some of the relevant figures of their paper in figure 3.2, with 

our results superimposed; as one can see the two families of curves follow each other closely. 

Auger process conv e rsion coefficient and the rate of ejection of electrons via the photoelectric 

effect, shown in fi gure 3.3. The interested r eade r should consult refs. (9,57] for a detailed 

discussion . The final r esult is that without too many approximations the ratio of the conversion 

coefficient to the photoelectric cross section is given by 

C( Z) 1 1 

( z - 1)2 OT 
(3. 2) 

where C(Z) is the conversion coefficient and aT is the Thompson cross section defined by 

811 (-e22)2 - 0.665 barns 
3 m c e 

( 3. 3) 

Of course, for high energies we must include retardation for the comparison to make any sense. Figure 

3 . 4 shows such a comparison; we have plotted the combination 

f 
C(Z) 

(Z -1)2 aT (3.4) 

which ideally shou ld be unity . The data are from refere nce (58], which essentially are identical to 

those of refer enc e (59]. Note that in this case penetration has no meaning and that we have used 

dipol e transitions only. The problems around thresholds still plague us as in previous tests. The 

effective charges z* can be adj ust ed to get a better agreement, on the average. 

The comparisons above have shown that in general our formulation is sound; problems do exist 

around thresholds and a perfect agreement with results that are simply more accurate cannot be 

expected. A met hod of proceeding could be to empirically discover the necessary corrections needed to 

minimize the discrepancies and to us e them in calculating the transition rates. Rather than using such 

a non elegant solution, we c hos e to leave things as they are; we will be justified by the 

accomplishments of next chapter. 
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Figure 3. 3 

Schematic representation of the photoelectric electron ejection. 
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Comparison of our r esu lts with experimental photoelectric effect data . 
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CHAPTER 4: APPLICATIONS ON THE EXPERIMENTAL RESULTS OF IRON AND THALLIUM 

The acid test of our ~heory is to make sense of the ou tc ome o f spec ific muonic atom experiments. 

We have chose n two such exper imen ts (48,60], which are detailed enou gh for our theory t o give 

meaningful results . We shall take a closer look at them with th e specific goal to understand what is 

happen ing . 

4.1. General Comments on th e Experimen~ In view of th e curr ent s tate of t e chnology, we must 

keep in mind that th e present ex periment s ca n only me asure th e inten s ity of th e muon radiative 

transitions above an energy threshold, ove r a minimum of intensity and with a spec ific resolution; all 

ot her information, including th e Auger transitions, cannot be retrieved. Low ener gy transitions are 

nat urally weak (cf . the 00 E2L + 1 basic dependence), ar e overwh e lmed by the l ow energy nois e and in 

general cannot be eas il y seen. It is only fo r low quantum number s that individual fine structure 

components can be separated and on l y for high Z atoms; in e ff ect, the r ecent expe rimental techniques 

can di st inguis h only seve r a l tens of individual transitions and combinations thereof. Our goa l is to 

explain the ratios found, or, i f you like, we can predict these r atios fo r a future expe r iment. In 

trying to fit the existing data we can l ea rn something more about the muonic atom in its early stages , 

by re covering some of the derived paramet ers. Next we examine in detail the two experiments and see 

hat we can learn from them. 

4.2. Iron results ~ Thi s experiment pe rformed by a German group at the muon channel of SIN 

in Switzerland and reported in 1976, has quantitatively ob se rved 103 ind ividual transitions or 

combinations in the energy range of 3 to 1900 keV with a typicRl acc uracy of 5% for the majority of not 

very weak transiti ons . Five series of transitions were obse rved (K, L, M, N, and 0, representin g 

transitions to n2 = 1, 2, 3, 4, and 5 respectively). For the lower two series some of the fine 

structure components were distinguishable. To understand our problems with the quality of th e fi ts, we 

must pay a closer look at th e data. 

4 .2 .1. Features of th e Data. The multitude o f transi tions in all series make this expe riment 

invaluable for a real test. Fractional int ensiti es of weak lines are obs e rved down to a few hundredths 

of one percent (per captured muon) with errors not more than 30% at thi s level . Of cours e, there are 

some difficulti es in sepa rating th e c lose spaced weak lines, as figure l of reference (60] demonstrat es 

(for example, one observes a "'blo b" of transi tion s n1, all l 1 ~ ls for n1<o lO), but careful analysis has 

yielded values with quite tight errors on th em. The other unique feature of .this e xperiment is th at 

there are several transitions in each of the five series . Our ana lysis has shown that each series is 

mostly sensitive to a particular region of angu lar momenta in the initial l -distribution. Thu s th e 

presence of so many, affords us the precise determination of th e absolute muon population in an 

extended portion of the angula r momentum range. I n genera l, this is the best set of data available fo r 

this kind of exp~rime nt, and coupled to th e not so hi gh Z (so that muon wave functions are reliable 

down to th e ls l evel), make s it a good candidate for lhe de termination of the reliability of our 

predictions . 
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4 . 2.2. ~nternal Cons~tency Checks~ It is possible to calculate the consistency or degree of 

"reliability" of the data, practically independent of any cascade calculation. This is done by 

comparing the ratio of the intensities of the transition families 

np - ls 

2s (4 .1) 

to the prediction of the theory . This way th e population of the initial ~ta tes cancels and since the 

reliability of the calculation of r adiation is good (note that Za = 0.19<<1) , we can be quite sure of 

the calculation. As a further means of estimating any theoretical er~ors due to the imperfect wave 

fu11ctions, we have performed the calculation using the uncorrected Dirac energies for all states 

(except the ls) and then using the experimentally observed energies, including the effect of nu clear 

size, for all the low lying states. Table 4.1 compares the experimentally obs e rved ratios (with their 

derived errors) with both types of predicted values. The discrepancy is indicated in the form of 

chi-squared per degre e-of-freedom ( x2 /DF). If our predictions were perfect, this would give an 

unequivocal measure of the quality of the measurements and associated errors. Rather than blaming the 

discrepancies on the experiment, we can outright say that at least part of the disagreement is due to 

the imperfect calculation of the matrix elements (particularly the imperfections of the 2s wave 

function and the crucial position of the node for the cancellation with the highly oscillatory high-n, 

low-Z wave functions). In any case this check gives us an indication of what to expect in the 

comparison with the absolute rates. 

4.2.3. Details of the X-Ray intensity fits. This was the first trial of our program; we decided 

to group together the spin multiplets (this is not really necessary, but it reduces the number of 

transitions to some 60 without any loss of significance). The type of parameter fit for the initial 

Z-d istributi on was decided to be the quadra tic kind, since early runs of the program pointed to the 

fact that the population of the first few l states must be roughly equal (see also ref. [60]). A full 

(n,l) distribution was discarded, since it introduces an uncontrollable number of new choices. 

Furthermore, we had to make some choice for a few poorly determined parameters; the effective charges 

were taken from fittings of the wave functions around the origin (cf . fig. 2.11) and for the refilling 

we used values typically smaller than those found from atomic data [61] (atomic refilling wid th is 

approximately 0.8 eV) . Figure 4 .1 shows the Z -distribution of several fits and the principal 

specifications under which they have been obtained. To illustrate the sensitivit y of the scheme to 

small variations, we have plotted three similar distributions which, nevertheless give significantly 

higher x2
. Although the best x2 /DF of 4.3 can not be considered satisfactory, it determines the 

precise shape of th e Z-distribution (assuming a model) with quite tight limits (cf. fig. 4.1). The 

interesting feature of all fits close to the minimal x' i s the flatness of th e dis t ri bution (although 

an independent distribution is bad x2 /DF = 5 . 2, but still far better than the unacceptable 

statistical distribution~ x2 /DF ~ 20), predicted to a lesser extent by the fits performed by the 

experimenters, using the earlier cascade program. Table 4.2 shows the experimental measurements and 
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TABLE 4 .1 

Results of the internal consistency check of the iron data. 

n 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

np = ls 

8.17 ± 0.25 
2.82 ± 0.12 
1.75 ± 0.12 
2. 24 ± 0 .11 
2.10 ± 0.08 
1.54 ± 0 . 07 
2.03 ± 0.09 
1.44 ± 0 . 07 
1.37 ± 0.07 
l. 38 ± 0.07 
0.58 ± 0.06 
0.64 ± 0.06 
0.40 ± 0.06 
0.21 ± 0.06 
0.21 ±0 .06 
0. 26 ± 0. 06 

np = 2s 

1.21 ±0.10 
0.46 ± 0.06 
0. 36 ± 0. 04 
0. 4 3 ± 0. 04 
0. 34 ± 0. 04 
0. 29 ± 0 .04 
0.42 ± O.OJ 
0.17 ± 0.03 
0.33 ± 0.03 
--(4) 

0.18 ± O.OJ 
0.16 ± 0.03 
0.08 ± 0.03 
0. 06 ± 0. 03 
0.05 ± 0.03 
0.09 ± 0. 03 

2 

Ratio np ~ ls 
np = 2s 

6.75±0.60 
6.13 ± 0.84 
4.86 ± 0.63 
5.21±0.55 
6.18±0.76 
5. 31 ± 0. 77 
4.83±0.41 
8.47 ± 1.55 
4 .15 ± 0. 4 3 

3.22 ± 0.63 
4. 00 ± 0. 84 
5.00 ± 2.02 
3.00 ± 1.55 
4. 20 ± 2. 79 
2 . 89 ± 1.17 

Calculated 
Ratio (l) 

5.43 
5.26 
5.14 
5.16 
5 . 20 
5.21 
5.16 
5.14 
5.13 
5.13 
5.13 
5.13 
5.13 
5 .13 
5 . 13 
5 .13 

Total X for 15 ratios of intensities: 

All intensities are normalized to 100 muons. 

2 x 
(2) 

4 . 84 
1.07 
0 . 20 
0.01 
1.66 
0.02 
0.65 
4.62 
5 .19 

9 .19 
1.81 
0.00 
l. 89 
0.11 
3.67 

34 .91 

Calculated 
Ratio (o) 

T 

7.07 
6.34 
6.15 
6.04 
5.98 
5.93 
5.94 
5.91 
5.90 
5.89 
5.89 
5.89 
5.89 
5.89 
5.88 
5.88 

(1) Calculation performed us i ng Schrodinger energy value for the 2s muonic state. 

(2) The error used in the ratio (and hence in the X
2 

is calculated using the formula : 

where 6 s tand s for error. 

2 x 
(2) 

0.28 
0.06 
4 .19 
2.28 
0 . 07 
0.65 
7.33 
2.72 

16.56 

17. 96 
5.06 
0.19 
3.48 
0.36 
6.53 

67 . 72 

(3) Calculation performed using experimental energy for the 2s muonic state. (4) Not separable. 

Figur e 4.1 

Fitted angular momentum distribution for iron at the beginning of the cascade 
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Figure 4.2 

Plot of the observed and fitted x- ray intensi ties of the muonic transitions in iron. 
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TABLE 4.2 

De tailed comparison of observed a nd fitted x-ray intensi tie s for iron. 

II Transition(s) Observed Intensity Fit t ed I ntensi t y x2 

l n = 2 -- n = l 71.61± 1. 65 73.20 0. 93 

2 n = 3 ·- n = 1 8 . 17 ± 0. 25 7.69 3. 63 

3 n = 4 - - n = 1 2.82 ± 0 . 12 2 . 67 1.60 

4 n = 5 -n = 1 1. 7 5 ± 0 . 12 1. 83 0.41 

5 n = 6 ·- n = 1 2. 24 ± 0 .11 1. 95 7 . 01 

6 n = 7 -n = 1 2.10 ± 0.08 2 . 30 6.44 

7 n = 8 -n = 1 1.54 ±0 .07 1. 34 8.01 

8 n = 9 - n = 1 2. 03 ± 0 . 09 2.19 3.19 

9 n = 10 ··• n = 1 1.44 ±0 . 07 1.44 0.00 

10 n = 11 -n = l 1.37±0.07 1. 09 15 . 52 

11 n = 12 --n· = 1 1. 38±0 .07 1.16 10 . 05 

12 n = 13 ··• n = 1 0 . 58 ± 0.06 0 . 91 30.41 

13 n = 14 - n = 1 0 . 64 ± 0. 06 0.75 3.09 

14 n = 15 ·n = l 0.40 ± 0.06 0.50 2.52 

15 n = 16 ·- n = 1 0. 21 ± 0. 06 0 . 32 3 .53 

16 n = 17 -n = l 0.21±0 . 06 0 . 11 2.75 

17 n = 18 . • n = l 0.26 ± 0.06 0.55 23.08 

18 n = 3 . • n = 2 46. 60 ± 1. 32 45.95 0 . 24 

19 n = 4 __ .,. n = 2 7.87±0 . 29 8 . 23 1.5 5 

20 n = 5 .. • n = 2 3. 73 ± 0.17 4.12 5.24 

21 n = 6 -n = 2 3.42 ± 0.13 3 . 48 0.19 

22 n = 7 .• n = 2 2.78±0 .10 2 . 89 1. 29 

23 n = 8 .• n = 2 1. 59 ± 0 . 06 1. 27 28.05 

24 n = 9 - n = 2 2 . 28 ± 0 . 08 2. 36 1.01 

25 n = 10 -- n = 2 1.07 ± 0.08 1. 23 4.25 

26 n = 11 --n = 2 0.97±0.0lr 0 . 81 4.95 

27 n = 12 - n = 2 0 .10 ± 0 .07 0.85 4 .39 

28 n = 13 -n = 2 0.52 ± 0.07 0 . 61 1. 62 

29 n = 14 - n = 2 0 . 41 ± 0.07 0 . 47 0. 77 

30 n = 15 - n = 2 0.4 1 ± 0 . 06 0.30 3.58 

31 n = 16 -n = 2 0.33 ± 0.06 0. 18 6 .08 

32 n = 17 ·- n = 2 0 .16 ± 0. 06 0.06 2.65 

33 n = 18 - n = 2 0 . 30 ± 0 . 06 0. 32 0.10 

34 n = 4 ·- n = 3 33.21±1.17 31.21 2.93 

35 n = 5 - n = 3 7. 80 ± 0. 46 8.03 0 .25 

36 n = 6 - n = 3 4.57 ± 0.37 4.58 0.00 

37 n = 7 . n = 3 2.55 ± 0.20 2. 79 1.40 

38 n = 8 - n = 3 1.19 ± 0. 10 0.98 4.23 

39 n = 9 - n = 3 1.93 ± 0.19 1. 87 0.11 

40 n = 10 -n = 3 1.07±0 . 17 0 . 85 1.66 

41 n = 11 · n = 3 0.68±0 . 13 0.52 1. 43 

42 n = 12 - n = 3 0 . 34 ± 0. 06 0 . 53 10 .56 

Continued next page 
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TABLE 4.2 (continued) 

II Tr an sit ion ( s) Observed Intensity Fitted Intensity 

43 n = 13 - n = 3 0.23 ± 0.15 0.37 

44 n = 5 ·- n = 4 25.66 ± 1. 75 21.67 

45 n = 6 - n = 4 5. 6 3 ± 0. 85 6 .13 

46 n = 7 - n = 4 2.63 ± 0.14 2.72 

47 n = 8 • n = 4 1.54 ± 0.43 0.81 

48 n = 9 • n = 4 U.90 ± 0.22 1. 52 

49 n = 10 ·n = 4 0.82 !. U.13 0.6J 

50 n = 11 -n = 4 0.24 ± 0.10 0.37 

51 n = 12 -n = 4 0.26 ± 0.10 0.37 

52 n = 13 -n = 4 0.15 ± 0.03 0.25 

53 n = 6 -n = 5 9.90 ± 5.UO 11.56 

54 n = 7 -n = 5 2.62±0.28 2 . 96 

55 n = 8 - n = 5 0.73±0.06 0. 72 

5.6 n = 9 -· n = 5 1.14 ± U.16 1. 32 

57 n = 10 - n = 5 0. 48 ± 0 . 06 0.50 

58 n = 11 -· n = 5 0 .4 5 ± 0.06 0.29 
59 n = 12 .n = 5 0.41 ± 0.06 0.28 
60 n = 13 ..• n = 5 0.24 ± 0.08 0.18 

Total x2 for 60 transitions fitted : 

Figure 4.4 

Fitted angular momentum distributio~ for thallium at the beginning of the casca de . 

N(l ) 
0 .14 

0.12 

0.10 

0.08 

0.06 

0.04 

0.02 

CUNUlTlONS FOK FlT: 

Modified statistical l -distribution "' (2l + 1) 

Starting n value: 18 

Octupole transitions: NO 

Penetration cutoff y (all multipoles): 1.00 

Depletion of electronic shells: NO 

Refilling for electronic ls shell: 

Independent (in t he range 0 - 50 eV) 

40 transitions or combinations 

thereof 

a.l 
e 

Cl = 0 . 044 ± 0.014 

I = 47 .6 

x2 

0.84 

5.19 

0. 35 

0.46 

2.90 

7.97 

2.13 

1. 76 

1. 28 

10.85 

0.11 

1.46 

0.03 

1. 27 

0 .14 

7.39 

4.61 

0 . 51 

259.94 

0.00'--~_._~ ....... ~--'~~..__~_,_~__._~__....._~..__~_,_~_...~__....._~..__~_,_~_._~~'--~.._~~ 
0 2 4 6 8 10 12 14 16 l 



-43 -

TABLE 4.3 

De t ai l ed comparison of observed and fitted x-ray intensities f or tha l lium. 

II Transition (s) Observed Fitted x, 
Intensity Intens i ty 

1 n =7 -n =6 and n = 11 - n = 8 4S . S0±7 . 00 S0.93 0 .53 

2 n = 9 - - n = 7 8. 00 ± 1. 20 8 . 66 0 . 31 

3 n=l2-n =8 1. 30 ± 0. 20 l.S9 2.06 

4 n = 13 -n = 8 0.9S ± O.lS 0 . 87 0.31 

s n = 10 - n = 7 3 . 70±0.30 3 . 27 2. 04 

6 n = 8 - n=6 and n = 11 - n = 7 9 . 00 ± 1. 40 9.6S 0.21 

7 n = 6 - · n = S 60.00 ± 8.00 S8 . 04 0.06 

8 n=l2 --n=7 0.90 ± O. ! S 1.02 0 . 66 

9 n = 13 -n = 7 0.70 ± 0.09 0.63 O.S9 

10 n = 9 ·- n = 6 3. lS ± 0 . 34 3 . 17 0 . 01 

11 n=l0-n=6 1. 90 ± 0. 30 l.S6 1. 27 

12 n= ll-n =6 1.00 ± 0. 10 0.99 0.01 

13 n = 7 - n = S 10 . 40 ± 0 . 90 9 . 31 1. 47 

14 n= l2 - n =6 O.S7 ± 0. 16 0.66 0 . 33 

l S Sg~ - 4f 7-:2 1. 62±0.26 1. 0 2 S.37 

16 Sg,, - 4f ~ 36.60 ± s. 70 3S . 62 0 . 03 
'2 

17 Sg% -- 4f~ ' Sf 7 - 4d o: , and Sf 3j - 4d ~ 30.20±4.SO 39.S 4 0 . 02 
'2 '2 

18 Sf~ - 4d"% 1. 17 ± 0 . 26 1. 38 0.6S 

19 n = 8 -- n = S 2 . 80 ± 0. 30 2 . 63 0.32 

20 n =9 -n =S 2.60±0.70 1. 31 3 . 38 

21 9f; - Sd~and 9g% - Sf~ l. SO±O.SO 0. 18 6 . 98 

22 6g9 - 4fz 3.90 ± 0 . 80 4.00 0 . 02 
~ 1 

23 6g1.i - 4f ~' 6f ~ - 4d~' and 6f 5, - 4d-% 3 . 80 ± 0 . 80 3.9 1 0.02 
'2 

24 7g% -- 4f % and 7g~ 4f~ 1. 20 ± 0. 30 1. 09 0 . 13 

2S 7g7. -- 4fs. 1. 30 ± 0. 30 0.82 2 . S8 
"2 '2 

26 4d s - 3p.3 1. 00 ± 0 . 30 0 . 8 7 0 . 18 
'2 '2 

27 4d3 - 3p j ' 4d ~ -- 3p~' and 4f . - 3d_, 2.SO ± o.so 2.72 0.19 
'2 ·2 ~ '2 

28 4f 7, - - 3d5 38. 70 ± 7. 80 1,2 . 71 0.26 
·2 ~ 

29 4f 5 - - 3d 29.20±6.00 29 . 90 0 . 01 
':2 32 

30 2s t. - - 2p 1 O. SS±0.22 0 . 78 1. 13 
'2 ':2 

31 Sg 9 - 3d s (quadrupole) 0 .80 ± 0. 20 0.64 0 . 66 
'2 '2 

32 Sf 1 - 3d 5 and sf -- 3d 3. 80 ± 0 . 80 3.64 0.04 
·2 '2 4, S, 

2 '2 
33 Sf$ - 3d 2 . 10 ± 0. 40 2.42 0 .66 

'2 ~ 
34 Sg1 - 3d* (quadrupole) 0 . 40 ± 0 . 10 0 . 46 0. 35 

".:i 2 
3S 3p k - 2s ~ 0.71±0 . 18 0 . 44 2 . 2 7 

2 
36 3p ~ - 2s j, O.S4 ± 0.19 0.88 3 .17 

'2 2 
37 4d3 - 2p3 0. 30 ± 0 . 20 0 . 28 0 . 01 

'2 :::; 
38 4f % - 2p-J2 (quadrupole) and 4d5 - 2p-% l.SO ± 0 . 60 2 . 77 4 . 4S 

'2 
39 4f 1 - 2p~ (quadrupo l e) 1.10 ± 0. 30 1. 26 0.27 

40 4f ~ - 2p f, 
·2 

(quadrupole) 0 . 30 ± 0. 20 0 . 73 4 . 67 

Total x2 for 40 transitions fitted: 47.66 
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er rors together with our predictions and some ot her us efu l i nformation; not e that a substantial 

contribution to th e tota l x2 comes from a small number o f badly predicted lines. Figure 4.2 shows the 

same transitions (fine structure component" ad ded) plotted as a function of the initial n 1 for each 

series. Although we are two standard deviations off the measured values on t he average, we correctly 

reproduce all qualitative features of the data. The three arrows point to the quantum numb ers where 

major Auger transition channels open; the result of this is that the total width of these states is 

increased due to the additional Auger r a tes, and therefore radiation decreases in proportion. This 

phenomenon accounts for most of the highs and lows of the intensities within each series. Another 

in~eresting feature is the effect of the refilling rate of the K she ll electrons. It primarily affects 

the intensity of the transitions originating from the n 1 = l evel for th e fol lowin g reason. The K 

shell opens for /Jn = l a t n 1 = 8 and till then the population of the K shell is almost as much as the 

initial one; now the 8 • 7 Auger transition is so strong, that just about one full e l ectron is 

e jected . If there is no refilling, the Auger ra te from the n1 = 7 level is half of what it would have 

been with infinitely fast refilling, and the relative role of the radiation (which is typically as 

strong as the Auger r ates at chat level) is changed accordingly. Similar effects happen to a l esser 

extent at around n 1 = 17 for the L shell. So in effect we have two ways of changing the population of 

the muonic states, one by specifying a different number in the beginning which means chat a different 

number will trick l e through via the cascade . On the othe r hand one may change the refilling rate, 

which affects only a few selected regions of states . Other parame ters affect the branching ratios to a 

lesser extent (if those parameters are kept within rational limits). 

Another informative set of qu antities is shown in figure 4.3. As the different Auger channels 

open, the population of the respectively affected muonic states i ncreases; this increase is reflected 

i n the decrease of the radiation width as explained above and in the case of /Jn = 2 for K shell it 

carries over to the lower states moduto 2, viz. , thi s decrease of the radiative width occurs ~very 

other n 1. Finally at th e very low quantum numbers radiation becomes most important and the 

t -distribution becomes quite steep. 

Judging f rom the successful results above we can say that the fact that we ca nnot get a x2 /DF in 

the neighborhood of unity probably should not be ascribed to the data. Rather it appear s that we 

cannot fit perfectly data that a re typically 5% accurate with a theory that is not chat accurate. Note 

that the inaccuracies of the theory have not been included in the calculation of the x2
, since they 

are not randomly distributed and they can not be firmly estimated. Nevertheless, this aoes no t 

preclude the use of the program to fit experiments with simil a r features, since sensible fits can be 

derived and parameters can be determined with reasonable degree of certainty. This will become 

apparent in the analysis of the next experiment. 

4.3. Thallium Results This is an older experiment (1971) by a German-Swiss group a t the 

muon channel at CERN. The energy interval scanned rang ed fron 130 to 3500 keV. Only 40 sets of 

transitions were observed (none in the K series which starts at higher energies). 
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4.J.l. Features of the Data. In Lhis case there are few transitions with low intensities and the 

typical accuracy is 10% for the majority of lines. A large number of these transitions are between 

states of high n 1 and n2 (in these cases the fine structure components overlap and cannot be 

separated). Since there is no K series in the data (the K series is hard to ana lyz e due to the 

hyperfine splitting and has been reported elsewhere) and the L series i s short, the l -d istribution 

cannot be tested as closely as in the case of iron. In addition the high Z makes Auge r rates less 

important and that increases the rel iability of th e calcu l ation. Finally, there is no possibility of 

the internal consistency check of section 4 . 2.2. 

4.J.2. Details of the X-~':2'._ ~ntens_i_t:l. Fits. The modifie d statistical distribution 

( o: (Zl + l) e a i ) seemed appropriate and adequate for this case. It turns out that for thallium the 

initial l -distribution i s quite steeper than statistical, as shown in fi gu r e 4.4. The effective 

cha r ges were derived as before and a separate fit was run for them; the x2 /DF does not depend much on 

the effective charges and in this case the refilling rat e for the K shell is almost irrelevant if kept 

smaller than th e atomic value of 50 eV. Th e rest of the cond i tions together with the actual numbers 

are in table 4 . J, alongside the data and errors. The X2 /DF is about 1.2, which means that we can fit 

the results with reasonable accuracy and the r e liability of the calculation is comparab le to (or be tter 

than) the typical experimental accu ra cies. Note that the fit is slightly better when fast r efilling is 

assumed for the L-sh e ll. 

4.4. Other ex~erime~~~~ Muonic transitions have been observed for several years . Many other 

experiments exist (vide, for example, [62]), but the problem is that only a limited number of primarily 

low quantum number transitions have been recorded . Under these circumstances, reliable fits of the 

initial l - distribution and extrapolations to high levels are just about impossibl e. Future experiments 

with many precise transitions will provide tests for the theory, used either as a prediction guide or 

an analysis tool. Another side use of the program is the calculation of the polarization; there are 

several experimental results (cf. sect. 1 . 4) which can be checked. 

statistical, as predicted naively from the slow down processes or as calculated more accurately 

(fig. 1.7) , is not compatible with the data in either case, especially for iron, whose initial 

i - distribution is almost "flat", i .e ., independent of i. Thallium is about three standard deviations 

off an exact statistical distribution. The present theory is not adequate in accommodati ng the 

exper imental observations and it is left as a cha ll enge for future work on the capt ure mechani sms . 

More experiments of the quality of iron [60] would be des irabl e in order to facilitate the development 

of the theory. 

J 
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CHAPTER 5: DESCRIPTION OF THE CASCADE PROGRAM 

To make the results of our work usable, we have written a general purpose computer program, which 

incorporates severa l newly established findings . This program is an upgraded version of the program 

CASCADE [15] and a manuscript, consisting of a brief outline of the theory and a detailed description 

of the input and output options, has been accepted for publication in the Computer Physics 

Communications Journal [63]. A computer readable source and a sample test run is avai l able. This 

chapter gives an overview of the structure of the program, without going into the technical details; 

for a complete description, consult the writeup [64]. In figure 5 . 1 we have reproduced the hierarchy 

of the subroutines used, to g ive a schematic indication of the level of complexity involved . 

5. 1. General Features. The most important consideration for such a program is speed versus 

accuracy, for a program that requires too much time is not very practical, and conversely. if it is not 

sufficiently accurate, it is not of much use, anyway. Having this in mind , we incorporated most of the 

new results of the previous chapters; on th e other hand, disregarded other possible corrections in 

favor of practical considerations (computing speed and programming simp l icity) . Following is a 

recapitulation of the basic approximations made in the program. 

1) The wave functions for both the electrons and the muon have been taken as the simp l es t 

possible, viz. nonrelativistic hydrogen like . As a means of correcting the electronic wave functions, 

Figure 5 . 1 

Hierarchical arrangement of the subroutines in the program. 
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an effective cha r ge z* is adopted for each shell, to simu lat e the effect of the distortion of the 

atomic potential. A more exact calculation wo uld involve Hartree-Fock wave functions, which to a high 

degree of accuracy could be written as linear combinations of products of powers and exponentials of 

the radial coordinate (radial part) [28] and, therefore, the integrals of the matrix elements could be 

pe rformed in the same way as in the case of hydrogen like wave functions. When we consider the 

continuum electron states, the problem becomes quite complicated, if we want to have a n accurate 

description (especially nea.r the threshold), since there is a conti nuous dependence on the momentum of 

the electron. The present calculation is reliable away from the thresholds, but to· have a very exact 

pi~ture, it would require great sacrifice of computationa l speed. Cons~dering the muon, the induced 

error is small, since the high lying states a r e quite hydrogen like, whereas for the l ow lying states 

the radiation rates are so overwhelming, and conside ring the strong energy dependence of these rates 

( E2L + 1 ) b . . . . 
~ , the ranching ratios of the decay schemes are not much in fluenced by the detailed form of 

these wave functions. 

2) Multipolarities up to octupole and electronic she ll s up to M are considered. For the range of 

muon energ ies that the program is intended (n 1 ~ 20 ), these limitations are adequate, since the N and 

higher shell thresholds correspond to much higher n
1 

values, and we have seen that the octupole 

transitions already do not contribute significantly to t he rates. Once more, near thresholds (in the 

case of the L shell threshold for 6n = 1, for example) higher multipoles could be significant. An 

important remark is that the inclusion of EZ and to les ser extent E1 transitions changes the rates to 

such an extent that, .coup l ed with the larger 6 l involved, the fits for an initial l-distribution Are 

substantially different. 

3) The penetration as explained in Appendix A is treated approximately, but in a r eliable way . 

4) Auger transitions to bound electronic states have been ignored. 

5) As we have shown, the relativistic retardation and electronic screening effects, a l though 

simple enough to calculate, do not affect the rates in an appreciab l e ma nn er and, therefore, they have 

not been programmed. 

6) The population of the components of the muon fine structure doublets is treated statistically, 

wh ich i s sound as l ong as the radial parts of t he wave functions are the same. In practice this is 

quite adequate and it is corroborated by experimenta l findings [60]. 

7) The problem of electron refilling (the rate with which an atomic l evel i s refilled after the 

electron has been e jec ted via an Auger transition) is treated correctly for the K shell using an 

externally controlled ref illing rate [53], but it is rather crudely done for the higher shel ls, being 

taken either as instant (infinite rate) or none (zero rat e) according to the choice of the user. 

8) In the latest version of the program we have made provisions for the user to assign initial 

populations to the full (n,l) spectrum of muonic states. This extention of the original l-distribut i on 

at the starting n
1
, sho u ld fulfill any possible needs to that effect. 

Other phenomena disregarded are indeed negligible, such as electron-posit ron pair product ion by 

J 
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the muon, or higher order perturbation expansion terms. Since the program is expected to be run by a 

diverse gro up of users, stand ard FORTRAN IV features wer e implemented. 

5.2. ~':!.1:_ and Outp~~~ The primary object of the program is to compute the x-ray intensities of 

the muonic transitions and thereby allow the user to fit for some undetermined paramete rs by comparing 

the theoretical prediction s with the experimentall y observed intensities; conve rs e l y, given the 

required input parameters, one can predict what an experimental run should yield, and thereby use the 

results as a pre - expe riment guide line. In any case, the user must be able to specify what he wants the 

program to do and to be able to retrieve the r esults. In the fol l owing section we will discuss more 

closely th e kinds of specifications the user can input. The output includes a summary of quantities of 

interest resulti ng from t he cascade and a catalogue of x-ray intensities arranged in order of 

increas i ng transition energy. The user can punch any transitions that would be of particular int e r est , 

for further processing. 

5.3. Selection of Input Qptions~ The format of the input ha s been simpli fied and the user can 

override the internally set default parameters, if it is so desired, to adapt the program to the 

particular case . The interested reader shou l d consult ref. [64] for a comprehensive explanation of 

all options. Here we give a summary of the categories of parameters that are available. 

I) Specifications of the particular atom. Includes atomic weight, charge and effective charges, 

binding energies, population of electronic shells and refilling, and width of th e ls state. 

2) Data for the muonic states. Muon mass and ene r gies of the muonic states are included; 

selection of the initial distribution a nd population. 

also 

3) Choice of shells and multipo l arities involved. Within the limitations explained earlier, any 

subshell and/o r mult ipolarity can be considered or deleted. 

4) Specifications for the x-ray catalogue. Includes high and low energy limi ts for the 

transition, intensity cutoff , transit{ons to be punched, and conversion of energy to channel number. 

5) Parameters specifying the treatment of penetration. There are severa l ways of deciding if and 

where penetration is included in the computation. 

6) Various bookkeeping options incl udin g commands to skip printing portions of the output, 

commands to ca lculate a case and to exit from the program. 

Appendix B shows excerpts from the input of a test run accompanying the writeup of_ ref. 

porti ons of the output from the same run. 

5.4. Timi~ The timing of the program will depend very strongly on two fa ctors. 

[64], and 

a) The 

starting princ ipal quantum number of the cascade plays a very significant role, since the timing 

depends on n1 as a power between 4 and 5 thereof. b) The degree of inclusion of penetration is equally 

crucial; it takes a l ot of time to calculate its contribution, since for each sub-ra te calculated, at 

least one (and up to three) separate multipole like muonic matrix e l eme nt has to be eva luated (which is 

a lengthy double summation for high n 1 eccentr ic states). For the case illustrated the timing was just 

under l minute inc luding compilation, loading and system time. The time would have been several 
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minutes if penetration were included in its maximum al l owed degree, with sma ll changes in the outcome 

of the x-ray catalogue . To further e lucidate the timing, we include a short table of typical run s with 

the associated times in t abl e 5.1 below. 

TAB LE 5.1 

Sample run times for test runs of the program. 

Case: Thallium, starting n = 18 > modified stat istical l -dist ribut ion , pentration cutoffs at y = 1 ---- l 

Specific conditions for run Time(sec) 

1) EO - E3 (penetration) 49.9 
2) EO - E2 (pene tration) 30.6 
3 ) EO - E2 (pene tration, no M shel l) 21. 7 
4) Eo - E l (penetration) 15 .7 
5) EO - E2 (no penetrati on) 8 . 7 
6) EO - E l (no penetration) 6.5 

All runs wit h the Berkeley CDC7600, using FTN4 (high opt.) . 

5.5. Practical Considerations and Limitations. Although this reworked version of the MUONIC ATOM 

CASCADE program takes into account many mor e phenomena than its predecessor, it is limited in part by 

the approximations stated in subsection 5.1 and in part by programming and execution limitations. To 

fully utilize the capabilities of the program with the minimum cost (if that is of importance), our 

experience has shown that a few shortcuts could be taken. Some points of interest for fitting of 

experimenta l ly observed x-ray intensities follow. 

1) Start the cascade a few ni's above t he first transition to be fitted; n1 = 20 is not nec essary 

if, for example, the highest transition is from n 1 = 13. For a final fit, n 1 = 20 could be of interest . 

2) One usuall y fits for the initi al l -di stribution; three options are avai lable for that, plus 

the added option to fill the whole (n , l ) spectrum. 

3) In addition, the values of z* and width of K electron refilling cou ld be adjusted slightly fo r 

a better fit, especially for low Z atoms. 

4) For most cases multipoles up to E2 and al l subshells are important, especial l y for the high 

part of the cascade. 

5) Although penetration changes some rates dramatically , it can be eliminated in a variety of ways 

without serious conseque nces; some of the ways are 

a) The leading term of penetration is adequate in most cases, the following terms contributing 

progressively less in t he correction. 

b) For y<<l the penetration correction is small in all cases . 

c) For small muon quantum numbers, Auger rat es are smal l compared to radiative rates, and so 

pe netration does not a lt er the results. 

d) For the 3d electrons the penetration can be skipped, since it is small in a ll cases . 

6) Once the basic setup of a case is estab lishe d , only the parameters to be changed have to be 

specified in multi-fit runs. 
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CHAPTER 6: CONCLUSIONS 

In the course of our research of the past few years we have studied the fie ld of muonic atoms from 

their formation to their disintegration and the interaction of the muon with the surrounding electrons 

and the nucleus. In this thesis we have provided the missing link required to make a serious 

comparison with the experimental data. Although we have not formulated a theory that exp lains the data 

in a perfect way, we have pushed the problem one level higher, by taking into account several effects 

previously disregarded. Just as important as the primary objective of a cascade project are the 

intermediate results discovered . We have put the finger on several open questions and answe r ed some; 

moreover we have identified some issues still unresolved, so that the next generat ion can try to 

resolve them in a n effort to bring us closer to an accurate description of reality. As it stands now, 

we have a good knowledge of our achievements and limitations and the degree to which we can predict 

and/or explain the observables. We are confident that the researcher interested in pursuing the 

subject of muons in atoms furthe r can find the information presented here and in our other publications 

useful as a starting reference. We hope that our basic stipulations will withstand the scrutiny of 

time . Our encouragement is passed to those who undert ake the task of carrying the torch of knowledge 

to the future. 
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APPENDIX A: MATHEMATICAL DETAILS AND COLLECTION OF FORMULAS 

A.I. Multipole Ra~iati~ In a radiative tran8ition from state l to state 

E (L) (only eleclric type transitions considered here), the rate is give n by [65] 

2( L + 1) 

£ [(2£ +1)!! ]2 

where w is the transition frequency. We use for the dimensionless multipole i nt egra l 

l~2 

The "statistical" factor S(j 1 ,L ,j2 ) is given by 

which works out to simply 

4TT 

2L +l I J J ~~ ;2 Y;1 ~: j i d n J 2 
4TT 

(2j2 +1)( 2£ +1) 
(

j 1 L j 2
)

2 

-12 0 !1 

of multipolarity 

(A. l) 

(A. 2) 

(A. 3) 

(A.4) 

Since the radial parts of the wave functions of the spin - orbit doublets are, in our non relativistic 

treatment, identical, the matrix element A.2 de pends only on l
1 

, l
2 

and not on j
1 

,j2 • Thus we do not 

want to treat j explicitly, but rather l (we will eventually divide the total l 1 "" l 2 rate into its 

various j states according to their statistical weights). In such a case we may use a new statistical 

factor 

S(j1, L , j2 ) (A.5) 

Table A.I shows t he radiative rates for the three lowest multipolarities. 

A.2. Relati':_EO Intensitie~ "...!:~pin Multip~~ Assuming that the initial states are populat ed 

proportionally to their statistical weight, i .e ., o: (2j1+1), the relative intensity of the transition 

<il ,jl) "' u2 , j2) with respect to the tot al transition i l = i2 is given by 

(2j1+ l )S(j1 ,L,j2) 
(2l1+l)SU1 ,L,l,,;) 

(2jl +l) (2j2 +l) 
2(2L+l) (2li+l)(Zl,,;+1} 

[, j, )2 
0 ~ (A.6) 

Table A. 2 shows the unnormalized relative intensities up to octupole transitions, in reference to 

eq. A.6. Note that the Ramf' relntionR hold for the rclativr inlPnsilies of Auger transitions. 

described schematically by 
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Initial 

Muon 

Electron n', i' , j' (bound) 

the transition rate is given by [42] 

Final 

K , l ,j (cont inuum) 

ljJ,.1 (r>J) ljJ• l (r>2) d3r'1 d3r'2 l 2}mult. [, 

part 

(A. 7) 

(A.8) 

To obtain the variou s multipolarities, we expand l/r>11 in spherical harmonics (using, for the time 

being, the long wave length approximation eiKr' 12 "' 1 ) . The rate then becomes 

[, 

rL e" 

I ff * * 1< 
Rf'I (r•1 ) R,1 (r2 ) 

2 
r' 2 dr 12 

A n2 
R,.2 (r'l) R,2 (r2 ) 

L+l rl drl 2 2 

0 0 
r> (A. 9 ) 

x !Angular Par t l 2 x (Nw11ber of electr ons pr esent in subshell ) 

where we have mul t iplied by the number of el ectrons present in a particular subshell . At the end we 
\ 

will have to add the contributions of all final electronic states ( l ,j), since they are normally not 

observed . The angular part is separable (if one treats only, disre garding th e various j . states ) 

into an electronic and a muonic part, each similar to that of radiation, that is 

!Angular Part I 2 
C2l2 +1) C2l+l) 

(2L+l) c:'.'JC::l' (A.10) 

Table A.3 shows the angular parts for L = 0, 1 , 2, and 3. The case of L = 0 is g iven in anticipati on 

of the penetration, which permits th e oth erwise forbidden monopole transitions. Note that in the 

formulation of [42] the continuum wave functions ar e normalized as follows 

. (A.11) 

As a first approximation, we will assume that the muon moves completely inside the electron orbit , and 

there fore r< - r'1 and r'> - r2. In such a cas e , the two integrals of (A . 9) decouple. The mu on1c part 

is the multipole matrix element 1f2 (the same one as in radiation). The el ectronic part is mor e 

complicated, but it amounts in performing integrations of the general form 
00 

f M e-sr2 F (a·b·cr) 
1'"'2 1 l ' ) 2 

(A.12) 

and combinations thereof . The procedure for evaluating such integrals is described in ref. [42]~ the y 

yield Jacobi (hypergeometric) polynomials, which can be evaluat e d exactly in t erms of element a ry 

functions. For the more involved cases we us ed the algebraic manipulating computer language REDUCE-2 

[66]. Tables A.4, A.5, and A.6 show the compilation of all these rates classified by multipolarity and 

subshell. 
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A.4. in transit i ons. The exponent i al factor 

exp(i K.r> 12 ) in eq. A.8 represents the effecl of ret a rdalion. To take it int o account we use the 

expansion [29] 

iKr12 _e __ 

r,, 4n i K 2 
[,=0 

[, 

j [, (K.r>< ) h2tKr•» 2 
M= - £ 

(A.13) 

Using as before r < "' r 1 , r > = r 2 and assuming Kr1 « 1 one can safe ly use the leading term in the 

spherical Bessel function expansion 
(Kr) £ 

_.:.__i_:__ 

( 2£+1) ! ! 
(A.14) 

The muonic part of the transition matrix element is unchanged, whil e the operator in the e l ectronic 

part is modidified to 

(A.15) 

Another possible modification is to use a Yukawa type pot ential , viz . 

(A.16) 

to reflect the adiabatic screening of the muon charge by the electron cloud [67] . The screening 

parameter ;\ is related to th e density of the electron Fe rmi gas p by 

(A .17) 

For both modifications the calculational t echniques for evaluating the electronic integrals are similar 

to the ones used for the original unmodified integrals. The resulting modifications for a limited 

se lection of cases is shown in table A. 7; the importance of these results is discussed in chapter 2. 

A.5. Pen~tra~ion ~ffe~ ~~ ~uge~ :r:_~ansiti~~ To eva luat e the radial part of the matrix e lement 

(A.9) exactly, we have the choice of performing the elect ronic or the muoni c int egration first. Both 

possibilities have been investigated and each has its own merits . We will first discuss briefly the 

"exact" method (but otherwise inefficient). 

A.5. 1 . Muonic Integrals ~one ~irsr:_,_ The first (inside) integral is always incomplete, since the 

functional form of th e integrand changes at r
1 

= r
2

• In this case, we expand the Laguerre polynomials 

appearing in the muonic wave functions in power ser ies (finite). The resultin g integrated functions 

are incomplete gamma functions, which in turn are expanded in finite power series. Then the complete 

integrals ove r the electronic wave functions involve products of powers, exponentials and confluent 

hypergeometric functions (Kummer functions). According to the general procedure of ref. (42] the 

integrations yield Gauss hypergeometric functions, of relatively complicated indices and argument; 

they, in turn, can be expanded in power series. The result is that in orde r to evaluate one matrix 

element it is nec essary to perform four interlaced summations, two due to the Laguer re polynomials and 

one each due to the resulting incomplete gamma functions and for the expansion of the final 
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hypergeometric fu nctions . In principle, this met hod is exact, but in practice it takes too l ong to 

evaluate and it is subject to severe numerical instabilitie s , because of the extreme canc e llation 

taking place. Havi ng failed to produce a usable a l gorithm , we r esort to performing the integrals in 

t he reverse order. 

A.5.2. Electronic Done First. Rewriting t he integral s of (A .9 ) in a manner 

exemplifying th e contribution o f penetration, and using th e orthogonality properties of the radi a l 

parts o f th e elec tronic wave func t ions we obtain for th e radial double integral of (A.9) the following 

formula 

00 00 

J R~2 Cr) l"~ Rf'I (r1) ~ J R;2 (r2) 
1 

1'2 
dl" l L+l Re 1 (1'2) 2 dl"2 

0 
1'2 

(A .18) 
00 

\[ R;, (r,l [ ,;~ 1 

,;_] '"' l J * 2 Re_ 1 ( r2 ) r; R,_.2 (1"1) Rr1 (1'1) 1'1 dl"l L+l 
l"l 

where the first line is the part without penetration evaluated previously in sect. A.3 and the second 

line is the contribution from penetration. To eva luate the penet ration we not e that i f we can exp r es s 

the function in the br aces in a conveni ent form, th e complete muonic integr a ls could be done without 

the complications of sect. A.5.1. Not e also that we deal with a limit ed number of electronic states 

and multipolarities ( exce pt for tl1e continuous mome ntum of th e free ~lectron), so that we could make a 

table of t hese f unct i ons , which could be used with the muonic states. Since R. 1 ( 1'2 ) involves only 

powers and exponentials of r 2 , we cou ld study the case of 

n(_ l 

~l' cn1
l

1
M 

I'M exp - _2_ 
{ 

l" z} 
n1a0 

(A.19 ) 

where Cn'l'M are proportional t o th e Laguer r e coefficients of the electronic state (n', z'), bein g de fined 

(normaliz e d wave functions) as [42] 

C , = { (n' - l
1 

- l)! (n' + z') ! } ~ 
n' l M 2n ( 

22 )M+f 
n1ao 

(-l)M-l
1 

1 
(n'-1 - M)! (Z'+l+M)! (M -l')! (A. 20 ) 

It is therefore sufficient to st ud y one term of the type of (A.19), the general one bei ng for med by 

linear combinations thereof. Noting the functional form (A.11) of the continuum wave func t ion and 

using the definition of the parameter y 

y (A. 21) 

we can retain only the variable dependence of the function in braces (A.18) and i n light of (A. 19) we 

want to study the function (from here on l" is measured in units of Ga / Z) 

(A. 22) 

To single out th e y dependence of this function (and t he re fore end up with a "universal" expression 
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depending only on the integers M, n ~ L , and l ~, we expand the confluent hypergeometric function in 

terms of Bessel functions [68] 

1
F

1
(a;c;z) r(c) e~z(~cz - az)~ -~c 2 Aj(~z)~j (c-2a)4j Jc+j-l(y2cz-4az) 

j=O 

where A0 1, A1 0, A2 = ~ c and Aj (j > 2) are derived from the recursion: (A. 23) 

(n +l) An+l = (n +c - l) An-l + (2a -c) An _
2 

After working out the ar ithmetic and assuming that the series is rapidly converging, we obtain for the 

fi rst few terms in the expansion of 

(2Z' +l)! 
2z~+ti 2 

j =O 

1 j = 0 

0 j = 1 

z'+1 
y2 

1 1 

3 if 

j = 2 

j =3 

. (A. 24) 

Our strategy is to fit the integral in (A.24) by a convenient function. Since the muonic integral 

involves powers and exponentia ls, a candidate would be a combination of terms of the form 

Integm l "' Sr~ e - 00"1 

where N is an integer and the coefficients S and Ct depend on the indices z', M, L, .n'. and j. 

(A. 25) 

lf we 

consider the case of small r 1 (and therefor e r 2 ) we can expand the Bessel function in power series and 

get the leading behavior of the integral . It turns out that for such a case 

N = l I +M + j + 2 ~ 2 (A. 26) 

Using this fact and only one term of the type (A.25) we we re able to fit the first three nonzero terms 

in (A.24) for all cases of interest, and obtain quantities B and Ct. The fit was concentrated in a 

range of r 1 where the muonic wave functions are substantially different from zero. Typically the fits 

are 0.5% accurate (maximum deviation) for muonic wave functions up to n = 20. The fitte<l values S are 

very close to the exact values of the limit of small r 1 and Ct is in the 0.003 region, for the modified 

muonic matrix elements in the second line of (A.18), in units such that the maximum contribution to the 

muonic matrix element is from the region r
1 

- n 2
, n-n

1
, n

2
• 

Having evaluat ed g(r1 ), the outside integral of the penetration in (A.18) is a modified multipol e 

matrix element, the operator being a combination of an integer power and an exponential. The numerical 

methods of evaluating such a matrix element are very analogous to those of the genuine multipole matrix 

element. Finally we have to assemble the term by combining the various parts of (A.19), subtract it 

from the integral without penetration, and proceed as usual. There are 162 pairs of fitted number s S 

and a, a table too long and cumbersome to report here; the values of the fitted coefficients can be 

obtained from the data of the cascade program (64 ]. The full impact of this modification is discussed 

in detail in chapter 2. 
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Figure A.l 

Comparison of the fitted and exact pene tration functions. 
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Examination of the leading term in the l/y2 expa nsion for the ls monopole transition_s. 

, , 

SOLID LINE: Muonic wave function for n = 7, l = 5 (not multiplied by r;) in arbitrary units 

zero level indicated. 
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-1 .0 % 

-1.5 % 

LONG BROKEN LINE: ~ expression for the penetration f unction from ref . [lS}; vertical scale 

to the left. 

SHO~T BROKEN LINE: Exact expression for the penetration function (numerically calculated); 

vertical scale to the left. 

DOT- AND- DASH LINE: Deviation of fitted expression from the exact one. The plo tted quantity 

is °'i(Exact - Fitted)/(Exact+F'itted) . Vertical scale to the righ t in%. 

HORIZONTAL SCALE: Radius r 1 in unit s of a0 /Z*. 
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TABLE A. l 

Multipole radiat ive rates. 

L 

l 

2 

3 

r L 
R 

or 

L 
r R 

2 ~ 

= 
2( £ +1)(2£ +1) a w ( wz:µ) ( 2 J2 + 1 ) 
L [ ( 2L + 1) !! ] 2 

( j, 
L )' J2 L 

1
2 I I12 ' 

-~2 0 i, 

in our treatment 

' 

2 ( L + 1 ) ( 2 L+l ) aw ( ~ rL ( U2 + l) = (:' L :)' L 2 I I 12 I 
L [ ( 2£ + 1) ! ! J2 0 

4 ac 
3 a o 

l ac 
15 ao 

8 ac 
4725 ao 

I Ik 1
2 

(

E )' {Jl2,if l2 = l 1± l} m (f. -1) !. ( f. +l) 3 2 

Za (2 l2 + 1) ( 21. - 3) ( 2A-l) (2A+l) (2A+3) I I1 2 I 

Yi,if-Z,, = l1±3 

where 
l, + l2+l 

A = - -
2
-- for odd multipoles and 

l 1 + l2 
A = --

2
- fo r even ones . 

Also µ and a 0 i s the Bohr radius . 



- 58-

TABLE A.2 

Rela tive int ensities of radiative a nd Auger tra ns itions . 

Key o f nota tion 

< l l 
j l = l 1 + 1i 

Z1 Possible transitions of 

j l = l 1 - Yi the j - doublets between } ~ 
a b c d g i ven l states . Note that 

< ' 1 ! ' j 1 = l 1 + Yi not a ll transitions are 

z, = Z1 - M a llowed, in ge neral . 

j 1 = l 1 - ~ 

I n the nota tion o f the fol lowing table we have used l = Z1 f or simplicity . The t otal int e n si t y 

fo r each Z1 + 0_ line i s the produc t of the s t a tistica l weigh ts of Z1 and Z2 v i z ., ( 2Z+l ) ( 2l - 2M +l) . 

L M = 0_ - Z1 b d To tal 
minimum 

a c 
allowe d l 

o*l 0 ( Z+l) ( 2Z+l) Z( 2Z+l) - - ( 2l+ l )2 0 

1 (Z+l) ( 2Z - l ) (l -1) ( 2Z+l ) - 1 ( 2Z+l ) ( 2Z-l) 1 

1 

- 1 (l+2) ( 2Z+l) Z( 2Z +3) 1 - ( 2Z+l) ( 2Z+3) 0 

2 ( l +l) (2 Z- 3) (l - 2) ( 2Z+l) - 2 ( 2Z+l) (2l-3) 2 

2 0 ( Z+2) ( 2Z-l) (l - 1) ( 2l+3) 3 3 ( 2l+1)2 1 

-2 ( Z+3) ( 2Z+l) l ( 2l+5) 2 - ( 2Z+l) ( 2Z+S) 0 

3 ( Z+l) ( 2Z- 5 ) ( Z- 3) (2Z+l) - 3 (2Z+l) ( 2Z- 5 ) 3 

1 (Z+2) ( 2Z -3) ( Z-2) ( 2Z+3) 5 6 ( 2Z+l) ( 2l-l) 2 

3 

-1 ( Z+3) ( 2Z - l) ( Z-1) ( 2Z+5 ) 6 5 ( 2Z+l ) (2l+3) 1 

-3 (l+4) (2Z+l) l (2l+7) 3 - (2 Z+l) ( 2l+7) 0 

*l Auger t ran s i t ions only (with pene tration). 
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TABLE A. 3 

Angula r parts of multipole Auger transitions. 

L I Angular> part 1
2 

0 1 

1 ( 2 l2 + 1) A ( 2 l + 1) /\ 
1 -

(2 !.- 1) (2 !. +l) ( 2/\ -1 ) (2/\+l) 3' 

{" if l2 ; ,, } {" if l ; i' 

2 l A(A+ l) } A(A+ll 
5 (2l2 + l) (2A- l ) (2A+l) (2A+3 ) I (2/\-1) (2f\+1) ( 2f\+3) 

%, if Z2 : i , ± 2 %, if l; l±2 

r ' if l2 ; l 1 ± 

:) l (2 Zi +l) \ !. - 12 A \ A + 1) 
7 (2!.-3)(2!.-1)(2!.+1)(2 !.+3) 

s1., 
' if Li; i, ± 

3 

r ' if l ; i' ± : ) x ( 2l + 1) \ /\ - 1 ) /\ \/\ + 1 ) 
(2 /\- 3)(2/\-1)(2/\+l) ( 2/\+3) 

Yi ' if l ; i' ± 

{ '+ ;,+1 for odd multipoles 

where >. 

h_+-11_ for even multipoles 
2 

r;+ 1 for odd multi poles 

and /\ ; 

i' + l for even mul tipol es -2-
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TABLE A.4 

Dipole Auger r a tes (no penet r ation) 

In thi s and the followi ng two tables, the rates are shown for fully occupied elec tr onic shells. 

Also we use the notation Pn =exp{ y [ 2 t an-
1(*)- 11]} . 

rL=l = l n ac ( 2 z., + l) 
,\ eny ( z;r I Ib [2 x (Multiplier> ) A 3 ao ( 2,\-1) (2,\+l) sinh ( Tl y ) 

Elect r on 
Mu l t ip lier> 

state 

16 
y2 p2 ls - -

1 +y2 1 

2s 32 
y 2Cl+.1/l 

p~ 
(4+ y2 ) 2 

8 
y' (12 + lly2 ) p; 2p (4 +y2) 3 

L - shell 8 
y2 c 4 + 3y2 l c 4 + sy2 l 

p ~ 
total (4 +y2 )3 

16 y2 (1 + y2 ) (27 + 7y2 ) 2 

p~ -
3s 3 (9 +y2 )' 

128 y• (81 +96y 2 +19y 4
) 

p~ -
3p 3 (9 +y~)-

256 y6 (l+ y2 )(45+ lly2) p; -
3d 3 (9 +y2 )5 

16 y2 (81 + 78y2 + 13y') (81 +126y2 + 29y') 
p~ M - shell --

total 3 (9 + y2 )5 



- 61 -
TABLE A. 5 

Qua drupole Auger r a t e s (no penet r at i on ) 

{" H 
l2 

d , } 
Hy 

L=2 2 1T 0. c 
(2l2 + 1) 

_ _ >-_ ( A+l) e (zn· I II2 l
2 r = -

A 5 ao (2A-1 ) {2A+l) (2 >-+ 3) s inh( rry ) 
Yi, if l2 = l 1 ± 2 

x (Multiplier ) 

El ec t ron 
Mu l t i pl-ier 

s t a t e 

l s ( l = 2) 1 (l+ y2 ) I 9 pl -l \2 ---
9 (4 + y2 ) 

2s ( l = 2) - - --- 9 1 1 ( 4 + y2 ) { 4 + 5y2 r 
2 7. 32 ( 1 + y2 ) 4 + y 2 p 2 -

2p ( l = 1) 1 y2 
1 3 P2 +1) 2 - - --

2'· 5 (1 + y2 ) 

2p ( l = 3) 3 y2 (4+ y2 ) { 68 + 77y
2 p -lr -

29·5 (l + y2 ) (9+ y2 ) 4 + y 2 2 

3s ( l = 2) 1 (9+y2)2 { 729 + 11 34y
2 

+ 2 77y 2 
p3 _ 1 r 39 ( l+ y2 )(4 + y2 ) (9 + y2 )2 

3p ( l = 1) ---- --- P + 1 2· y 
2 

{ 24 + 11y2 r 
36· 5 ( 1 + y2 ) 9 + y 2 3 

3p ( l = 3) 
23 y 

2 
(9 + y2 ) { 11 37 + 1944y 2 + 439y' p3 _ l r 

39·5 ( l+ y 2 )(4+ y2 ) ( 9 + y2 ) 2 

25 ' 3d ( l = 0) 
y 

P! 
35.5 ( 9 + y2 ) 2 

3d ( l = 2) 2' y' 
{ 63 + n y2 p3 + l r 

39· 7 ( l+ y2 )(~ + y 2) 9 + y2 

3d ( l = 4) _L y' (9+ y2 ) { 10773 +145801/ + 3167!/ p3 _ 5 r 
311s·7 ( 1 +y2 ) (4 + y2 ) (16 + y2 ) ( 9 +y2 )2 
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TABLE A. 6 

Octupole Au ger rates (no penetration) 

r if z, -." } L=3 ~ 11 ac ( ,\ - 1) ,\ ( ,\ + 1) eny (Z*Y 2 r = ( 2Z2 + 1) 
s inh(ny ) Z I I fi_ I A 7 ao (2 ,\-3) (2 ,\-1) (2A+l) (2 >..+3) 

Y, ' if i, = l 1 ± 3 

x (Multiplier>) 

' Electron 
state 

Multipl i er 

ls ( l = 3) 
22 ( 1 + y2 ) ( 3 + 2y2 )2 

{ 1 + •l -lr -- 15 --
32.5 2 l <4+ y2 lC9+ y2 l 3+ 2y2 P1 

1 (4 +y2)(6 + y2 )2 
{ 2 + 3y

2 r 2s ( l = 3) 
27·32·52 y2 (1 + y 2 ) (9 + y2 ) 

15 - - p - 1 
6 + y2 2 

2p ( l = 2) 1 (4+ y2 ) 
/ 3 P2 + l l2 - -

(1 + yT) 27
• 3·7 

2p ( l = 4) 
1 (4+ y 2 )(68+13y2)2 { 116 + 149y2 p 

- 1 r 2ll.§. 7 (l+ y2 )(9+ y2) (16+ y2 ) 
5 

68+13y2 
2 

3s ( l = 3) 
i (9 +y2 )(27 +2y2 )

2 
{ 2 405 +900y2 +254y2 p _ lr --

3115 2 y2 (1+y2)(4+ y2 ) 2 (9+y2)(27+2y2 ) l 

3p ( l = 2) 
25 (9 +2y2)2 { 2 7 + 13y

2 r 
311 .7 . (1 +y 2) (4 +y2) 

- --2 pl+ 1 
9 + 2y 

3p (l=4) 
2l (9 +y2 ) (153+13y2 ) 2 

{ 5 
2349 + 3744y2 + 94 7y4 

pl - 1 r ---
314 ·52·7 ( 1 + y2 ) ( 4 + y 2) ( 16 + y2 ) (9 + y2 ) (153 + u y2 ) 

• 
5 2 

3d ( l = 1) _2 _ __ Y_ 12 p + ll 2 
39·5·7 (1 +y2 ) l 

25 y2 (9+y2) { 6 3 + 4 7y2 
pl + 1 r 3d ( l = 3) --

(1+ y2 )(4+ y2 ) 314·5 9 +y2 

2~5 y2 (9 + y2 ) (11 + y2) 2 { 1251+1850y2 + 439y4 p 
- 1 r 3d (l = 5) -

314·7 ( 1 + y2 ) ( 4 + y2 ) ( 16 + y2 ) ( 25 + y2 ) (9+ y2 )(ll+ y2 ) l 
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TABLE A. 7 

Selected results for retardation and electronic screening. 

Only the portion of the rate formula which is affected is given; the rest of the factors stay intact. 

DIPOLE 1 s I 

Old result: 
1 exp ( 4 y tan -

1 y ) 
(1 +y2 )2 

exp 2 y tan 
Modified result: 

{ -l( 2 y (1 + 0 ) } 
1 - s 2 

- ( 1 + E, ) 2 y2 

DIPOLE l - SHELL TOTAL 

Old result: <4 + sy2) <4 + 3{) exp \ 4 y tan-'(~) ) 
(4 +y2 )3 

Modified result : 

where 

(4+y2)(4+Sy2)(4+3y2) - $(4+y2)(4+5y 2 )(s2 -t,2 y2) + 16(4+7y2)(s
2 

+E,
2 y2

)
2 

{4(l+s)2 + (1+2s) 2 y2 }{4(1-s)2 + (1+2 s ) 2 y2 }2 

{
2 -1( 4y(1+2sl )} x exp y tan 

4(1-s2
) -y2(1+20 2 

6 = - and > ~'-Clo ( ii is the 15creening parameter here) 
c, z 

K 

K 
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APPENDI X B: SAMPLE IN PUT AND OUTPUT OF THE MUONIC ATOM CASCADE PROGRAM 

To illustrate some key f eatu res of th e program and the diversity of op ti on ava ilable to th e us er, 

we have r e produced portions of our test run . The first page i llustrates the input, while th e next 

three show key pages of the output. 

EXPLANATIONS OF THE PAGES REPRODUCED. 

PAGE B.l: This is part of the sample input; some cards involving the transitions to be punched have 

be e n removed. 

PAGE B.2: This is a page that shows at a g lance t he values and defaults of a ll parameters us ed in the 

program; it could be us e d as a title sheet, i f so desi r ed. 

PAGE B.3: Thi s page i s of interest if one wants to see why some fea tures ex ist in th e cascade; it 

summarizes important quantities, as populati ons and widths. 

PAGE B.4: This is th e final page of the table of inte nsities; t he transitions are identif i ed by 

quantum numbe r s and energy, and a channel numbe r is given if r equested. 




















