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ABSTRACT

The subject of this thesis is the study of the evolution of a negative muon captured in an atom
and the formalism of energy loss associated with the muonic atom. The principal goals are to calculate
reliably the muon x-ray intensities, given.the initial population of the muonic orbits, to invert the
problem and deduce the initial distribution from the x-ray intensities, to provide the experimentalist
with a reasonably simple and convenient tool to ;orrelaté his observations, and finally, to systematize
some questions of theoretical interest. The early part of the history of the muon in matter, including
the atomic capture and classical phase of the atomic cascade are reviewed. In the quantal treatment of
the transition rates, both radiative and electron Auger transitions are considered. In general,
multipolarities up to £3 and K, L, and M electronic shells are fully investigated. Multipole radiation
is treated in the conventional way and presents no special problems. Magnetic type transitions between
states with different principal quantum numbers are shown to be small. Auger electron ejection rates
ére more complicated and several approximations have been adopted. The basic results have been
computed in terms of elementary functions. The relativistic retardation effect is significant at high
transition energies, where Auger rates are unimportant. Similarly, the effect of the electron
screening of the muon has no significant influence on the results. The calculation of the penetration
makes the transition rates reliable. 1In the A&ger transitions we have shown that magnetic multipoles
can be safely neglected. The relative sizes of the rates corresponding to different wmultipoles are
systematically studied. The £E1 Auger rates are generally largest, but the EQ and E2 transitions are
also substantial. Penetration usually decreases rates, being mostly important for transitions with
small continuum electron momentum. A comparison of our results is made with atomic photoelectric
effect data and with the nuclear internal conversion coefficients. A general agreement 1is found,
except around shell thresholds. The existing data of muonic x-ray intensities in iron_and thallium are
analyzed in a systematic way. The data are fitted with an initial Z-distribution and some other
derived physical parameters. The quality of the fits is good. It is found that for Fe the initial
l-distribution is almost flat, whereas that for Tl is weighted towards the high 7 values, sharper than
statistical. As a result of the investigations and in order to make our findings usable, a computer
program has been developed. This program is superior to the present standard one, 1including more
precise calculation of transition rates, wider choice of parameters, and a flexible input/output

section.
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CHAPTER 0: INTRODUCTION

Since the discovery of new particles, scientists have been wusing them to probe matter in a
continuous effort to wunravel the structure of the world around us in its very smallest detail. In
parficular, negatively charged particles are mostly suited for in;estigating the atomic and nuclear
structure, since, provided they live long enough, they can be captured by the attractive atomic
potential and in their cascade to lower energies they can give information about the features of the
atom and the interactions between the particle and both the atomic electrons and the nucleus.

The object of this thesis is to study the aforementioned processes with negative muons with the
hope that at the end we can improve our understanding of the experimental data. More specifically we
will concentrate on the quantal phase of the atomic cascade with the following goals in mind. a) Given
the distribution of the muons at the onset of the cascade (sometimes referred to as '"the initial
l-distribution'), to calculate reliably the intensities of the muonic transition x rays. This
calculation depends in practice on some other physical quantities, for example, the population and rate
of refilling of the electronic shells; part of the problem is the study of the dependence of the x-ray
intensities on these not precisely known parameters. b) The 1inverse problem of deducing the
distribution of the muons from the observed x-ray intensities is even more challenging. As one might
expect the algorithms cannot be simply turned around! One has to work in an indirect way of searching
for a good fit. The study of the feasibility of such a scheme and its reliability 1is equally
important. c) After all work has been completed and to make the results more readily accessible to the
parties interested, we provide the experimentalists with a reasonably simple tool to either predict (at
least 1in principle) what results they should expect, or in retrospect to correlate their observations.
d) As a byproduct of the above points we have derived results of theoretical interest.

We have chosen to concentrate on muons and muonic atoms for various reasons. They are much
heavier than electrons (as all known negative particles are), which means that energy levels are larger
in absolute value, mean radii smaller for given quantum numbers and velocities smaller for a given
position 1in the atom, thus enabling the use of adiabatic approximation techniques. What is more
important for the specific choice is that their lifetime is long enough that the whole history of such
a process can be studied without decay or other terminal effect taking place in the middle of the
cascade. The absence of strong interaction with the nucleus makes life a lot easigr and even the weak
interaction can be neglected for the purposes of the cascade since the rate of nuclear capture is far
too slow compared to the cascade rates. Due to the fact that muons can be produced in copious
quantities in accelerators, experimental data exist for a variety of phenomena in a multitude of
elements and compounds. Weighing all these factors, one can see that muons are the ideal test
particles for the study of electromagnetic phenomena in matter. To make the above points more clear
and to give a short reference to the typical sizes of effects we are dealing with, we have included in
tables 0.1 and 0.2 some of the relevant quantities we will be working with.

The subject of muonic atoms has been studied for some years now and a number of review articles
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have been written; among the best known are references [1-5], which include extensive original
bibliographies. Rather than summarizing the results appearing in the review articles, we will only
give a short account of the phenomena of interest, and proceed with the subject in question.

To present a general picture of the history of the muon, the problem can be broken down 1in six
phases each of which has igs own regions of validity and can be studied independently, given the
results of the previous ones.

1) High Energy Slow-down. This process has been studied extensively by several authors [6,7,8]
and it is understood quite well.

2) Low Energy Slow-down. At some energy, the velocity of the muon becomes comparable to the

velocity of the outer shell electrons (of the order of oc¢ ). This condition can be written as
bmolc? 2 B~ 2keV ; (0.1)
u H

This happens at an energy Eu~2keV, corresponding to a wavelength X-0.05Z. From energies in "the
neighborhood of eq. (0.1) to capture, the energy loss formalism changes, one of the new features being
large angle deflections. This process and the following two have been studied by other authors
[9,10,11], and by us [12,13], although it is not yet completely understood; it will be summarized in
the next chapter as a prelude to the core of the work.

3) Capture. The transition from positive energies (free state) to negative energies (bound state)
is of special interest, especially if the target consists of a compound rather than a single element.

L
At the time of capture the l-distribution is fixed; the evolution of this distribution is one of our
major topics of interest. In contrast to previous expectations, capture does not take place through a
thermalization process of degradation of the energy by increasingly smaller steps.

4) Early Part of the Cascade. Uatil the energy of the muon 1is low enough to be adequately
described by manageable quantum mechanics, the cascade must be treated in the same framework as the
slow down and capture. This happens at princigal quantum number 7 =20 and the quantal phenomena
starting to play a role are electron shell states and thresholds.

5) Late Part of the Cascade. Typically for n20 a practical quantal treatment 1is feasible and
the results obtained can be directly compared with observations.

6) Decay or Nuclear Capture. This stage depends much on the nature of the particle and the

nucleus. The low lying states of the muon can provide invaluable information about the nucleus, as
among other things the nucleus has to readjust in the presence of a charged particle in its proximity.
This polarization of the nuclear states due to the muon has been studied and systematized, among\
others, by us [14], but these results are beyond the scope of this thesis.

The bulk of this work is the exploration of step 5, given the outcome of steps 1 - 4 (or

conversely, we might be able to say something about the preceding steps 1 - 4). One might ask why do

we need a new cascade program. Although the need will become apparent as we proceed, it is simple to



Some Useful Properties of the Muon and Electron >’

;3,A

TABLE 0.1
)

MUON

ELECTRON

105.65948(35) MeV

0.5110034(14) Mev

Mass
206.7686(7) me
Free lifetime (mean life) 2.197134(77) usec stable
Nuclear capture lifetime 1 N 5)
re— g ————r sec
in atom (Z,A) (mean life) % 0. 006 72 (1 -3 A -Z) stable
eff 24
Magnetic moment 1.001165897(27) 5% &) 1.0011596567(35) 52"
2

m C
u

Compton wavelength

1.867590(7) fm

386.15905(64) fm

a) Entries from ref. [1l6].

b) Semiempirical formula from ref.

c) Numerical value corrected for typographical error as per a later

[17].

edition of ref. [16].

TABLE 0.2

Comparative Properties of Muonic and Electronic Atoms a).

QUANTITY Defifition Expression Ratio between muonic Typical values for
and electronic atoms muonic atoms
-1 272 m
. 1 nh° 1 e 1
At = = T ~
omic radius <r > 7l = 207 5 fm (Z =50)
n u
Yo? :
Energy levels B - —(% m ;E ~207 few MeV (med. Z2 , n=1)
n e
m
Fine structure _(L_th_)3_2_> « 7%m =B wo47 .2 - .6 MeV in heavy
m°r . atoms
. m _
Velocity at a b) . « |1 e L 5x10 'Ze for electron )
given point m o 14 K - shell

a) Some entries from corresponding table in ref. [2].

b) Assuming that the total energy is given.
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note here that the predecessor of our code [15], the so called "Hiifner program', was written in order
to describe results for muons in very low states (typically n 7). That program included dipole
radiative transitions and the dipole part of the muon-electron interaction. The monopole Auger rates
were treated in a very crude way. It was assumed that the muon orbit is much smaller than the electron
orbits and thus the penetration could be neglected. For its intended range it performs well. However,
in the later years experimental results have become available for transitions from much higher levels.
Extension of this program to high quantum oaumbers 1is insufficient if not disastrous! A host of
otherwise negligible effects has been ignored, which at higher quantum numbers plays a key role. Other
multipoles besides dipole, and the so called penetration correction to the Auger rates are two
outstanding ones. Along with some procedural improvements, our program takes into account all
important effects.

To preview the upcoming chapters, first we give some theory about the early stages of the muon, so
that we can justify our later actions. Next comes the development of the theory with all ramifications
of our expansion considered. Chapter 3 has the comparison with other theoretical and experimental
results, that gives us confidence about our treatment. Chapter 4 discusses the application mostly
intended for the program, namely the comparison and fitting of the experimental data for the 1iron and
thallium x rays. Chapter 5 1is dedicated to the computer program and its details. The appendices
include a compilation of the formulas involved, a reproduction of some typical input and output and an

index of the notation used.
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CHAPTER 1: INITIAL HISTORY OF THE MUON IN THE ATOM

To understand the main part of this work and to appreciate its contribution to the whole
framework, we must examine the history of the muon prior to its quantal cascade. Moreover, we will
gain insight about some parameters needed at the onset of the quantal calculation. Since this work has
been presented elsewhere in detail [9-13], we will limit ourselves to an overview of the subjects with
particular emphasis on thé concepts most relevant to our main topic. References [12,13] constitute our
contribgtion to the classical part of the muon history. The work has been a céllaboration of several
researchers (¢f. author list of papers) and the personal involvement of the author has beean 1in the
systematization of the details and development of the computer programs, rather than in the planning of
the major steps.

1.1. Energy Loss from the Continuum. As the muons are slowed down in a material medium (target),
starting from high energies, their velocities become comparable (or smaller) to the typical Fermi
velocities of the atomic electrons. Whereas the mechanisms of energy loss of swift charged particles
are well known and understood [6,7,8], there are several problems associated with the corresponding
processes when the muons are slower than the electrons in the atom. The stopping power of a target. as

described, for example, by the expression [1]

" 2m v? 1
A LI P T TR g - B s gkt 1.1
ds muvﬁ 7 1-8 Z

where dE/ds is the energy loss per unit path length, B= vu/c , ¥ is the density of atoms per unit
volume, I 1is the mean excitation energy, and C and § are correction parameters, works fine at high
energies, but such a description breaks down at low speeds, one reason being that the mean excitation
energy I 1is hard to estimate. Thus quantum mechanical methods become complicated (the Born
approximation fails, since the action integral is larger than #) and unreliable, partly due to the
large number of bodies involved. As early as thirty years ago, Fermi and Teller in a comprehensive
paper [18] laid the fundamental physical picture, using classical methods with rough predictions of
physically observable quantities (capture rates etc.). Since that time a cdmpilation of several
experiments by a variety of groups [19-23] demonstrate that the early predictions, which depend
smoothly on the atomic number Z, in reality show variations, which can be correlated with the atomic
shell structure or the chemical details of the environment. Being motivated by the basically sound
treatment of the classical description of the phenomena initiated by Leon and Seki [9], we undertook
the task [12,13] of refining the theory by including as many features as deemed feasible. The result
is an improved description of the processes of slowing down, capture and classical cascade.

1.1.1. Justification of the Classical Approach. The fact that until very low energies the muon
wave function has many oscillations over the extent of the atom (e.g., at a muon energy of a few eV —
and most muons get captured at higher energies — their wavelength is much smaller than 12) suggests

the use of a classical description of the muon motion, unlike the perturbation style approach of the



higher energies. At energies lower than about 2keV the muon-electron interaction is so strong that
first order quantal calculations are simply wrong! Nevertheless, what makes a calculation still
manageable in this region is the fact that the muon (at position »r ) moves slowly compared to the nearby

electrons. The ratio of velocities is given by

, ' (1.2)

where we have assumed that the potential energy V(r) is the same for both particles. For the low muon
energies and electrons close to the Fermi surface we find that over most of the atom the muon moves

with a velocity much smaller than the velocities of the electrons, that is

m
(1.3)

~ L
T 14

Ncltc

_e
m
u

This means that the motion of the slow muonic perturbation causes the electronic wave functions to
adjust rapidly to the almost static field of the muon at # (%), and so we are dealing with a
continuously changing two center problem for the atomic electrons. As a res?lt of the presence of a
negatively charged "impurity" in the atom, the density of electrons is diminished around the muon and
the muon-electron interaction is shielded at large distances, the shielding length being of the order
of [18]

1/k = Jyao X 3 ’ (1.4)

e

where the local reduced electron wavelength X is given by
X =h/mov 15
e / e F ? : ( )

and it depends on the Fermi velocity Vg at that point. This reduction of the interaction corroborates
the reduction of the lowest order perturbation term (one quantum exchange between the muon and the
atom). From the slow motion of the muon, it follows that the maximum energy loss in each quantal

collision is limited by the classical maximum momentum transfer given by [18]

: = 1.6
AE ZmevFvu(t) " (1.6)

which is =2/7 times the kinetic energy of the muon. Actually the most probable energy loss 1is only
about 1/10 of the maximum value given in eq. 1.6. This means that the trajectory of the muon is not
greatly modified by the energy loss. These arguments fully justify the wuse of the classical
description of the muon trajectory and its interaction with the electrons.

1.1.2. Description of the Energy Loss Mechanisms. The starting point is the probability density

distribution of the energy transfer € =/w from the muon to the electron cloud during the time interval

dt, given by [26]
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d%p (w) e? f dk ( 1 )
= == Im|——— 5 (1.7)
dwdt ﬂﬁvu(t) w/v k EZ (k ,w)

where ez(k,w) is the Fourier transform of the (local) longitudinal dielectric constant of the
electrons treated as a free Fermi gas. The theory of electronic stopping, which we are employing here
was developed by Lindhard and collaborators [24-26]. In that approach the electrons are treated as a
Fermi gas and the dielectric constant is calculated in the time dependent self-consistent Hartree-Fock
approximation. We have studied the ramifications of the theory including the variations of the
electron density over the atom [private work — unpublished] and we have found that the corrections are
too small to significantly change the basic results. From eq. (1.7) one can calculate the stopping
power, by forming the average energy loss (per unit path length), {.e.,

(1.8)

2
€. L af, S0,

;i dt vu dwdt ’

and performing the indicated integrations in (1.7) and (1.8) using the relevant approximations for the
dielectric constant described in ref. [26]. 1In the present treatment [13] we keep the differential
form of eq. 1.7 with respect to the energy loss and we simply integrate (1.7) along the muon trajectory
through the atom to obtain the spectrum of energy losses dp(w)/dw along such a trajectory, specified by
the energy of the muon (at infinity) and the impact parameter. This resulting distribution is sharply
peaked at losses of a few eV and it falls off at high energies (up to the maximum energy loss allowed

of 2meUu(t)vF| eq. 1.6) only as 1/w?; large energy losses are rare, but contribute significantly

max’
to dE/ds at small distances. The calculation of dp(w)/dw for the collection of impact parameters from
zero to the size of the atom and for energies from several hev to zero, 1is the result of this
integration and all relevant quantities can be obtained from such a collection of distributions.

One additional mathematical complication, which was in fact expected, 1is that the total

probability p for any energy loss, given by

dp (w)
p=jdw d (1.9)

is in practice larger than unity. This simply means that the possibility of multiple scatterings in

one atomic encounter is nonnegligible. In view of this we must consider the probability d Pt(g) /de
that at time £ the muon has lost the energy € (corrected for multiple scatterings). Such a quantity

obeys the integral equation [13]

o (4P dPy(e-6)  dP.(®) | g2p(8) 4 , (1.10)
=l = " aédt

which connects the rate of change of dPt (e) /de (LHS) to the accumulation (lst term RHS) and

depletion (2nd term RHS) of dpﬁ (e) /de via the 'one interaction' energy loss distribution



&°p @)/ dwdt . Equation 1.10 can be solved analytically in some approximation (ref. [13] treats a
realistic case) or numerically by an iterative scheme.

In our early treatment of the problem [12] we used the average energy ioss per unit path length,
i.e., stopping power (1.8), as the basic quantity. When the corresponding integral is evaluated, one
finds that the stopping power is proportional to the velocity of the muon and, therefore represents a

frictional force. Specifically we get

2 4 2.2 L2
dE .4 me e 1 - 1 -3 X 1 -3 X )
ds 3m 73 _l 2\2 2 - g 2 u 2
2(1-%x%%) X 145% s

S

eZ
x(r) = nEvF(r) '

Such a force correctly describes the average behavior of the muon, but it 1is inadequate for the
description of the capture process [13]. This is because the question whether the muon is captured or
not is decided by the condition that the energy loss 1is larger than the total energy minus the
centrifugal potential barrier in the radial motion and not by the condition that the average energy
loss is large enough.

1.1.3. Comments on the Calculation. The detailed description of the atomic cloud presents some
problems in a classical approach. We have used both the Lenz-Jensen potential [27], an analytic
approximation of the Thomas-Fermi model adjusted for densities near the origin and at large distances,
and the Hartree-Fock potential [28]. The final results for all three potentials are similar. Note
that in all cases the probability is calculated using the assumptions of the Fermi gas model (for the
derivation of the dielectric constant), and only the details of the charge density are dependent on the
particular potential used — this hybrid setup does not satisfy the Thomas-Fermi equations for the
charge density. This regime breaks down at small radii (r<ao/Z) and large ones (r>q;). For small
distances the statistical density is wrong (the Hartree-Fock is more accurate), but the muon spends
little time there; on the other hand, the statistical model is not applicable for very low electron
densities — but at large distances the probability for any significant energy losses 1is trivially
small. Another  situation where this approach fails is at very low bombarding energies

(E

u.s Echemical)’ where chemical effects may become important.

In addition to the energy loss from collisions with electrons, the muon experiences energy loss by
electromagnetic radiation. The radiative losses have been treated in the lowest order (dipole) [29]
and they give appreciable damping only for orbits coming very close to the nucleus (1“610_3 Z), arising
from the high accelerations at the turning pericenter points, since the dipole radiation power is
proportional to the square of the acceleration.

1.1.4. Equations of Motion and Their Solution. 1In the presently adopted probability oriented

formulation it 1is relatively hard to incorporate the changes in the muon orbit due to the energy loss

distribution; this was done in the case of the frictional force. A Monte Carlo type of calculation is



still possible, but quite time consuming. As pointed out above, the muon during traversal of the atom
on the average exchanges one quantum with the electrons and changes its total energy in a not very
significant way. Thus, we decided to describe the trajectory by the elastic energy conserving one.
Along this trajectory, the differential energy loss probability (1.7) is integrated; as we have seen,
the errors introduced by moving along the elastic trajectory should ﬁot be too large, perhaps except at
very low energies, where our free atom theory breaks down anyway. The collection of energy loss
probability distributions as a function of the original muon energy and impact parameter constructed in
sect. 1.1.3 will be used in the following in order to obtain more useful quantities.

1.1.5. Cross Sections. The quantities of interest are the (differential) cross section for the

muon of energy £ to lose energy € and the (total) cross section for the muon of energy £ to be

captured. The first is obtained by integrating dpt(e)/de over the atomic cross section according to

_ d
do _(E) dP (e<E-E, (b))
= = om [bdb S (1.11)

de de
0

where dP (g) /de has been integrated along the muon trajectory (sect. 1.1.4), E is the height of

“bar
the effective potential barrier [ef. ref. [12], fig. 4] and d is a parameter characterizing the size
of the atom [ef. ref. [12], eq. 5.1]. Quantal corrections for small impact parameters, large "energy
losses and bremsstrahlung have been included in the actual calculation [13].

The capture cross section is a special case of (1l.l1) in the region € 2E - E given by

bar’

d 0
- dP(e)
ocap(E) = 27 /bdb f T de : (1.12)
0
E-B (b)

1.2. Muon Capture from the Continuum. Equation 1.12 describes the cross section for capture;
figure 1.1 shows a typical situation for the case of rubidium chloride. Note the exponential drop at
high energies, which nonetheless cannot be ignored. One would think that at the 1low energies (below
~10 eV) capture would be the strongest and above that almost none should occur; this is certainly not
the case. The reason is that there is a dynamic competition between scattering and capture. To
further elucidate the issue, figure 1.2 shows the associated scattering cross section (several
energies) of fig. 1.l. The importange of the high energy tails in these curves should be noted.

We now define the function P(E) as the probability per unit energy and per unit area of having a
muon of energy E (not captured) in the medium. The evolution of P(F) as a function of F is governed by

the integral-differential equation of the steady state condition [12]

de de
0 0

Eoao £ do (E+¢)
P(E) {Gcap(E) +[ & ds, = / —&  pP(E+e) de 5 (1.13)

where the LHS is the depletion of muons by capture or scattering to lower energies and the RHS 1is the

feeding from the higher energies. The possibly divergent cross sections at € =0 exactly cancel, thus
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the lower limits of integration on both sides of eq. 1.13 could be replaced by some small energy e, O.
Figure 1.3 shows a numerical solution of this equation for the case of ROCT used in figs. 1.1 and 1.2.
The slight increase of the function P(E) above unity at muon energies between 100 and 200 eV is related
to the detailed form of the inelastic cross section. Capture starts at around 50 eV, where the capture
cross sections are still small. Only about 25% of the muons are captured near zero energy in this
fairly typical case. This establishes roughly the relative role of capture in which the "free atom'
picture described above is applicable. At smaller energies the chemical structure of the target plays
a decisive role.

1.2.1. Angular Momemtum at Capture. The angular momentum distribution of the muons 1is of

importance at the onset of the quantal phase of the cascade, and it either has to be obtained from the
earlier stages of the calculation, or otherwise fitted from the data. A combination of the two is even
better, since so many unaccounted.phenomena contribute to its precise definition. This distribution at
the moment of capture can be readily calculated from the capture probabilities and the distribution
P(E)- Indeed, if we define the number of muons per unit energy captured with angular momentum L (in
units of /) as N(L), then the differential form of this function due to muons captured within AL of [

is given by

o d o
2 dP
ANCL) = EﬁAL /5%)—@" 2 [bdb N* - b (L,AL)) / —(—i(ei) e, (1.14)
H
0 0 E—E’bar(b)

where the function II(b? assures that the angular momentum is between L and L +AL, being defined by

1 if L(b) €[L,L+AL)
N -b§(L,00)) = : (1.15)
0 otherwise
Also b, (I ,AL) stands for the solution of the impact parameter as a function of the angular momentum
. .
(from AL = (ZﬂuE’ﬁ b ). 1In the limit of infinitesimal AL the integration over [ collapses and a simpler

result is obtained, viz.

8

2
ANGL) = hLALnf %@dE ipd—(;—)de ) (1.16)
0

If the integrals depending on L (or equivalently on ») do not in fact depend on L, then we get that
AN(L) <« LAL - 5 (1.17)

which is the well known statistical distribution. At the present time we have not studied in detail
the behavior of these integrals and the deviation of the angular distribution from the statistical one.
This distribution as evolved in the classical part of the cascade, can serve as a guideline for the
initial [-distribution of the quantal cascade.

1.2.2 Compounds. For completeness we should mention that the above techniques can be applied to
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Figure 1.3

Energy distribution of uncaptured muons and capture energy spectrum.
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Ratio of muons captured in each species of binary compounds.
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molecules, where the various constituents are treated as homogeneous mixtures, disregarding chemical
bonds (but taking into account transfer of charge and distortion of the atomic potential). One of the
advantages of treating binary compounds is the extensive collection of data (as an example a large
number of oxides has been tested). In our treatment, each species of atoms or ions enters with its own
capture and scattering cross section in the generalized version of eq. 1.13 for the unique function
P(E). A separate l-distribution can be evaluated for each species, and moreover, the ratio of muons
captured in the various atoms can be calculated by noting that the number of muons per unit energy

captured at energy E for species 7 is

(

N(i)(E) = niP(E')OC (E) : (1.18)

i)

ap

where 1. is the (fractional) concentration of Z. The total number captured in ¢ is obtained by
7

integrating (1.18)

v, = fm(i)(E) dg : (1.19)
0

For a two component compound we can form N, /N,, which can be derived from the experimental ratios of
x-ray intensities. It has been predicted [18] under simple assumptions that this ratio is equal to the
ratio of atomic numbers Z]/ZZ; although there is a wild variation in the data, it seems that the
observed ratios are closer to wunity than the '"Z-law". As we have pointed out in ref. [13] a
considerable uncertainty in these numbers can be attribuggd to the chemical effects of the compound in
the energy region of a few eV. Our calculations, although not consistently in agreement with the data,
seem to be closer to experiment. To illustrate how complicated the matter is, figure 1.4 shows some
data with attempted fits to describe them.

1.3. Classical Part of the Cascade. The reasons of sect. 1.l for the use of classical methods
apply here too, since energies are small and the quantum numbers of the muon are large. We are going
to describe the energy and angular momentum losses by the same equations of motion, but in doing so we
must update the orbit of the muon (this is done in the average formalism of ref. [12]), so that it will
actually enter more tightly bound orbits. Direct computation is lengthy (the muon typically makes
thousands of 1loops before descending to the region where the quantal cascade takes over). This
calculation has been performed for a selected number of cases mainly as a check on the more indirect
methods below. To give a visual idea of what a high eccentric orbit looks like, we have included
figure 1.5. The alternative to following the orbit is to derive an equation describing the evolution
of L[ and E. It is convenient to express [ as a fraction of the maximum angular momentum Lmax(E)

(corresponding to the circular orbit at energy E) This maximum L is determined from the equation

B ®
B o= —— i V) (1.20)
2m '

)
and the condition for maximum
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Figure 1.5

Trajectory of a muon captured in an eccentric orbit.
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Evolution of the angular momentum distribution in the classical part of the cascade.
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2 (B)
d
T <—m“—> + V(r) =0 . (1.21)

If L is expressed as a fraction of L (E), Z.e.,
max

n(g) = L(E)/ Lmax(E) . (1.22)

we find that the change of n over an entire loop of the muon is related to the energy loss AE over

the same period ¢, =¢, by

tp

Y dv
j [f(r) +m“r ar dt
dL
1am _ 8 - Ll —pax ; (1.23)
n AE t2 . max  dF
X (&Y
[ [2f(r)T+m (5) |et
wsorartias tl u -
where f is the friction coefficient (cf. eq. 2.10, ref. [12]) and Yy = 2[3 e?/c? coming from the
radiation. The use of the friction (Z.e., average energy loss) is a demerit of the treatment at this

point, but it can be justified by goting the relatively long time spent by the muon on this trajectory.
Equation 1.23 can be solved numerically and a sample case is shown in figure 1.6. The vertical almost
straight lines show that although there is an overall loss of angular momentum (a smaller orbit cannot
support as much L as a large one), the quantity n 1is preserved and therefore the shape of the
l-distribution remains unchanged. For the circular orbits (n=1) this 1is exactly correct, whereas
extremely eccentric orbits converge to more circular ones. In practice the distribution tends go
accumulate some high Z states, so that at the point where the quantal cascade takes over, the
distribution is visibly steeper than the one at capture, as exhibited by figure 1.7.

1.4. Depolarization of the Muons. [30] The study of the loss of polarization of the captured and
cascading muons can reveal information about the (weak) muon-nucleus interaction in addition to the
solid state and chemical applications. The muon beams produced by decaying pions are almost fully
polarized and the residual polarization in the muonic atom is measured from the asymmetry of the decay
electrons, or from the circular polarization of the muonic x rays [31]. Our goal 1is to study the
deflection of the spin of the muon by electron collisions and by the spin-orbit interactions. Previous
discrepancies by factors of 1.5 to 2 between the theory [5] and experiment, accounted by a slower
cascade or additional depolarization mechanisms, have been substantially bridged and such additional
hypotheses may be unnecessary in many cases. The two mechanisms of depolarization are outlined next,

the quantal case following.

1.4.1. Spin Deflection in Muon-Electron Collisions. The Larmor precession angular velocity in

such a collision (where the slow muon is treated as stationary) is given by

TRRTE (u or) (B or)
OF = —H o g€ M _ , (1.24)
1"3 I's

where p is the magnetic moment and » is the radius vector. Integrating £ over a muon loop (in a

simplified fashion of a straight trajectory through the center of the atom) and inserting an estimate
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Muon spin precession angle as a function of energy and relative angular momentum.
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for the minimum approach distance [18], we obtain the accumulated deflection angle ¢ for the spin

% mc‘2

4 o e ~ =

= Lot — - 3(p ow op (1.25)
¢ ey S prren [mom - 3 BB},

where p is the electron (number) density and # denotes a unit vector. The factor in braces is at most
unity. Inserting a typical size of a muon orbit we get ¢~107- 10™ad. This, coupled with the fact
that the muon makes 10° muon-electron collisions in the slowing down and cascade processes, shows that

there is insignificant depolarization caused by this mechanism.

1.4.2. Depolarization Due to the Spin-Orbit Coupling. When the spin-orbit coupling splitting

becomes larger than the 1line width [30], the muon spin is no longer a 'good quantum number". The
original polarization Py = <Oz> is then reduced by a factor 1/3. Classically one has to project the
spin s on the angular momentum J axis (assumed random) and back to the original spin direction. Thus

the net polarization is

L
[ sin%6 d(sinb)
(]
1
= N . .26
B Pin L 3Pin KLt
f d(sinB)
0
The analogous quantal expression is
-’2 A
b= p, S8 o dg fys 2 for j=1t% . (1.27)
in (8)2(j)2 3 "in 21 +1

As we shall establish below, J becomes a good quantum number at relatively large values of the
principal quantum number 7 this in conjunction with the fact that the l-distribution is peaked at
high 7 values, makes.(1.26) and (1.27) practically equivalent. The large deflections experienced by
the muon at each collision during the slowing down support the assumption that the direction of I (and

therefore j) at capture is random.

by

A detailed numerical calculation of the accumulated angle ¢ due to the Larmor precession, given
1
2n e
1

1 [r(e) g;" do , (1.28)

where the integral is taken around the orbit, has been performed. Figure 1.8 shows the iso-7 1lines as
functions of the muon binding energy and relative angular momentum n. The point where ® =1
determines the transition region for J becoming a good quantum number. Alternatively, the comparison

between the total width of the quantum state (#,l) and the fine structure splitting, given by

_ 0.15 z' eV , (1.29)
fose WL+

yields ® ~ 1. Note that for different . states, this takes place at different energies (or 7 values).

1.4.3. Quantal Depolarization. In a transition Z=f of multipolarity L the polarization is

reduced by a factor B, i.E.,Pf = BPi [30], where
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Je(da+l) - T.(L,.+1) + 3/4 o (T2 L) J.0G %) = L(E+1)
- BT of i i (1.30)
J;(; +1) - L, +1) + 3/4 2,7f(gf+1)
This reduction has been programmed in the depolarization part of the computer program. To illustrate

its wuse, we can analytically estimate the residual polarization of the muon at the ls state. By
considering the strong dipole transitions only ( Zf'=zi -1), assuming a statistical [ -distribution and

using an approximation for the energy where the depolarization (1.27) becomes effective, we find that

B = 3 no +10/3
1s 20 o 2

(1.,31)
where 7, is the spherical orbit at which the spin-orbit splitting equals the total decay width.
Reference [30] compares our findings with other theories [32-38] and with experimental results
[39,40]. In the cascade program, the point at which (1.27) takes effect can be externally specified
and the most straightforward way of determining it is by examination of the line width and spin-orbit

energy output of a preliminary run.

1.5. Semiclassical Approach. A formalism halfway between the essentially classical description

of this chapter and the purely quantal one of the following chapter can be obtained by considering the
muon moving in a classical (Kepler like) trajectory through the atom, while the electrons and their
interaction with the muon are treated in a quantal sense. Since we are interested in muon orbits that
come quite close to the nucleus (penetrate the electron K-shell, for example), we can take exact
Keplerian orbits for the muon. We can describe both positive energy (hyperbolic) and negative energy
(elliptic) orbits in this approach. The probability that between time ¢, and ¢, a transition
(summarized in figure 1.9) takes place, is given by the first order perturbation result
. ta

e [ 3 g

v (1) —rp]
(all electrons)

2
. (1..32)

4

The various multipolarities of the interaction can be extracted by expanding the - operator
e /[ri(t) ~rp| in spherical harmonics as in the quantal cases of chapter 2. We will not elaborate on
the mathematical details of transforming (1.32) into an algebraicvformula for a transition rate. As
the 1limits of integration tend to -® and +® respectively, the resulting formulas for the low
multipolarities and low electronic shells involve Bessel functions (modified Bessel functions) for
closed (open) orbits and all integrals can be evaluated 1in terms of these and other elementary
functions. Similarly, for a Kepler orbit the multipole radiative rates can be evaluated (this
approximation 1is still adequate, since the orbits that radiate significantly come very close to the
nucleus where the potential is essentially Coulomb like).

We have compared these results for elliptic orbits with both their classical and quantal
counterparts. For the comparison with the quantal results we have examined the rate for a dipole
transition of the muon (n,,Z;) = (n,,,,) and the corresponding semiclassical rate, using as an

effective n the value
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Figure 1.9

Schematic representation of the setup for a semiclassically treated muon Auger transitionm.
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- [2mna
and as an effective 7 the value
¥ L= %l +1 +1) - (1.34)

For transitions with all quantum numbers large the differences are less than 5% (often less than 1%).
For large n, - n, (and therefore 7, , 7, small) there is a marked deviation (up to factors of 3 - 5), the
quantal rates being systematically smaller. For the comparison with the classical rates, we can
examine these rates as a function of energy transfer to the electron. The probabilistic formulation
has been used for the classical results. Figure 1.10 has the comparison of two such typical cases.
The agreement 1is perfect, considering the fact that the semiclassical rate exhibits threshold effects
at the binding energies of the corresponding shells. It is believed that at small energy losses ( ~ a
few eV) the classical formalism is superior. No such comparison can be readily made, because the wave
functions of the valence electrons are in no acceptable approximation Coulomb like.

The findings of this section have bridged the gap between a punely classical and a purely quantal
description and the agreement of all three theories at their overlapping regions reassures us that a

smooth transition of formalism could be attained without severe change of the quantities involved.
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CHAPTER 2: QUANTAL CASCADE AND TRANSITION RATES

Armed with the results of the previous chapter and having an approximate idea of the distribution
of muons at the energies where the transition from classical to quantal description occurs, we embark
on the task of describing the subsequent energy loss and depolarization mechanisms in a full quantal
regime. The pioneer work of references [41-44] has been of great help, as we have sifted through the
various possibilities to establish which phenomena can be safely neglected and which can be markedly
improved. Appendix A contains most of the mathematical details and a compilation of formulas involved
in this development.

2.1. Overview of the Quantal Mechanisms. The general approach of a quantal calculation of

transition rates that cannot be solved exactly, 1is in the framework of perturbation theory. The
justification of the implementation of this method can be validated by computing higher order
éorrections and showing that they are indeed small. 1In the following we will restrict ourselves to the
lowest (nonvanishing) order terms in any perturbation series expansion.

The fundamental formula used in relation to any transition rate between an initial state 7 and a

\
final state f is the Fermi golden rule, giving the reciprocal life time of such a transition

1 21 2 dN(E)

== = S, . —t 2.1

T h S fi | dE ’ §
where ‘ﬂfi is the matrix element of the perturbation Hamiltonian operator, dV(E)/dE is the density in

energy of the final states available, and $ denotes a summation over propagation directionms,
polarization states, and magnetic quantum numbers (or other possible unobserved parameters). Note that
most of the problem is concentrated in evaluating the matrix element of the perturbation Hamiltonian.

In both radiative and Auger transitions, it is useful to expand the interaction Hamiltonian into
multipole terms. This 1is a mathematically general expansion in principle, but in our case, where
kr< 1 (k is a typical wave number in the problem, derived, say, from the energy transfer, and r ranges
over the muonic orbit dimensions), such an expansion converges quite rapidly. Moreover, the various
multipole parts connect initial and final states according to specific selection rules of the quantum
numbers; as a result for small quantum numbers, only a limited number of multipolarities is allowed in
any case. In the following we will discuss in detail the two principal modes of energy loss and their
implications on the cascade.

2.2. Emission of Multipole Radiation. In figure 2.1 we show the transition of a muon between the

two states indicated, all taking place in the Coulomb field created by the atom. The lowest order

interaction Hamiltonian is given in the non-relativistic approximation by [45]

_ e phthp  ohi (2.2)
HB) = nop - % oo oH

where 4 is the vector potential, H is the magnetic field, @ is the Pauli spin vector and P 1is the
momentum operator. Furthermore, expanding in multipoles and separating the electric type terms from

the magnetic type terms one obtains for the transition rates in the long wave length approximation
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OLM 2L+1
oM _ (1 _ _8m(L+1) 1w o | .\2
fiap = [T:li”f Liani)? B &) Ky 158 e
where the 'reduced" multipole operators‘ﬂg;; are given by
u ehw
E = L« M _l_ . L i 2.4
My = ety - 2575 g37 00 (ve 1y ] 3 (2eia)
u
Mo eR 1 L x efi . L * 2.4b
My = me Tt lve )] e by e[ w0ty ] : R

Note that the second term in each expression (2.4) arises from the muon spin.

For £(L) transitions the spin term is generally small, and if one neglects it completely, the
formulas of Appendix sect. A.l can be readily obtained. For the magnetic type transitions, it turas
out that all radial dependence drops out for L=1 (due to the fact that V(PYlM) is not a function of
r). But in such a case, the transition rate between states of different n vanishes, due to the
orthogonality of the radial parts of the wave functions. This means that M1 transitions 1in this

A} 9
approximation can go only between different fine structure components (such transitions are of no
particular interest to us). However, higher M(L) transitions can connect different 7 states, the
intensity of such lines being exceedingly small

As a digression, we can estimate the relativistic corrections to the M1 operator, which indeed

provides some rate between different 7n states, due to its r dependence. More specifically, the

non-relativistic operator

M eh ok
M )n.r.= ‘r,,uc (G +u, 80 [wirdy,d | ; (2.5)
becomes with the first order relativistic corrections [46]
2
M _ ek 1wl , , 1P *
M lM)Rel = Zmuc { I 2 10 (c) bl E—;E;; N (L-+uua)-[V(I’YlM)] 5 (2.6)

As an order of magnitude estimate (for n; - n,<n, ,n, ~n) we can say that

M . ek (za)?
<‘M‘1M)Rel>n1#nz T he n : 2.7

We will later see how this compares to the electric multipole rates.

2.3. Energy Loss via Ejection of Atomic Electrons (Auger Transitions). Whereas radiation results

in the emission of a free photon, while the muon is making a quantal transition in the field of the
atomic potential, this photon can be virtual and interact with an atomic electron and get absorbed by
it, giving rise to an electron with increased energy. This second order process, depicted in figure
2.2, not only cannot be neglected (as higher order), but under certain conditions it is the predominant
channel of energy loss in a transition between two states. This process is, of course, nothing else

than a quantal picture of the muon-electron collisions, described classically in chapter 2. The
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Figure 2.1

Schematic representation of a radiative muon transition.
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interaction Hamiltonian in a non-relativistic approximation is
-1Kry2
K, = e e + Angular momentwn related parts 5 (2.8)
Ly2

It turns out that we can safely limit ourselves 1in the treatment of the electric part of the
interaction indicated; an order of magnitude estimate for the magnetic type transition rates will
follow later. Section A.3 has the mathematical development of the rate formulasl One must realize
that a considerable amount of effort has been devoted in the calculation and verification of these
expressions.

2.4. Improvements on the Transition Rates. Whereas the formulation of the radiation is simple,
straightforward, and quite reliable, the same is not even remotely true for the Auger transitions. The
only possible flaws in the radiation are the use of simplified wave functions for the muon and the
neglect of the spin-related terms in the Hamiltonian. On the other hand, the Auger transitions suffer
from the electronic wave functions, which are more crude, and a host of other inaccuracies. We have
investigated the most obvious ones, arriving at some answers. Following are some of the most important

corrections.

2.4.1. Retardation. In a simple treatment one omits the exponential factor in eq. 2.8,

pretending that the interaction is mediated by a photon of a range that is much shorter than its wave
length. This is, of course, the limit of a four point interaction, where the ejection of the electron
occurs ‘'simultaneously’" with the change of levels of the muon. The exponential retardation factor, as
a direct result of relativity, provides for the necessary oscillations of the photon field until it has
been absorbed 1in the other vertex. As expected, the correction should be substantial for high energy
transitions; figure 2.3 shows the modification of the ls and 2s rates as a function of energy, with
this refinement. Since the onset of any significant deviation from unity occurs at energies
w2 %n%cz, where as we will see, Auger rates are small, this correction can be retained for academic
purposes only, and in fact it has not been implemented in the computer program.

2.4.2. Electronic Screening. Ideally one would like to solve the full atomic potential with a

muon in a particular state, in order to determine the modified eigenfunctions of the many body problem.
This task is conceivably possible in a Hartree-Fock self consistent manner; since this exceeds the
scope of this thesis, we can only study the perturbation of the muon on the atomic wave functions in a
phenomenological fashion. Guided by classical considerations [24,25,26, and private work —
unpublished] of the "bubble" formed around the muon (Z.e., the rarefaction of the electronic cloud in
the proximity of the muon), we can simulate this reduction of the electromagnetic interaction by
introducing a Yukawa type multiplicand in the expression of the Hamiltonian. Section A.4 has some
details on this; the impact of this refinement is discussed in section 2.5.

g;ﬁ;g; Penetration. This is not a conceptual correction per se¢, but rather the result of a

mathematical complication, which, if neglected, leads to simplified expressions. This effect is

related to the fact that the electron orbits lie partially inside the muon orbits. On the other hand,
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Figure 2.3

Effect of relativistic retardation on the Auger rates.
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Schematic representation of the strong dipole radiative muon transitions in the cascade.
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these simplifications are of limited utility, since the corrections are in the majority of interesting
cases more sizable than the original terms. Section A.5 gives a comprehensive analysis of this
computational effect, 1including a step by step description of our effort to find a solution that is
numerically acceptable and computationally efficient. Unfortunately, to list a detailed table of
fitted coefficients and the accompanying analytical formulas would be rather lengthy and of special
interest only. The reader can recover these results from the code of the cascade program.

2.5. Relative Importance of the Various Rates — Effects of Corrections. Up to now we have

examined only half of the problem; the rates and their corrections. The other half is the examination
of these results in order to solidify our understanding of the wunderlying principles and, from the
practical point of view, to be able to distinguish which rates are large, and thus have to be computed
more accurately, and which are small and can be safely neglected. Following is a systematic discussion
of the sizes of rates.

2.5.1. Radiation Multipoles. Monopole radiation does not exist, as exemplified by the fact that

the radial parts of hydrogen like wave functions are orthogonal. The relative intensity of the various

multipoles is found by using the order of magnitude estimates for the multipole matrix elements

2L
| (iloPe) ] ~ 2 (n~n, my) (2.9a)
(Za)L

w ~ (Za)?/n? . (2.9b)

Then apart from factors of the order of unity, the ratio between two consecutive multipoles is roughly
TL+1
2
< o L (2.10)
e n

In addition a similar rough estimate yields fron eq. 2.7

.FR(LD N (20 (2.11)
T (ED) i .

The moral of this is the well known finding in atomic physics that the higher multipoles fall off quite
rapidly (for very small quantum numbers such high multipoles are not allowed). Experimentally
transitions up to £2 have been observed [47,48] for high Z atoms. To be on the safe side we have
included in our calculations terms up to E3. Note that for all practical purposes magnetic transitions
are non existent.

The second comparison of intensities may be done within the same multipolarity and initial state,
but with different final states. The strong dependence of the rates is in the transition frequency w,

wZL'+l. Therefore, other things being equal, the transition with the

the rates being proportional to
smallest 7, is the most intense. This means that radiation tends to transfer the muon to the lowest
available energy state. Finally, wiph the same initial state and final 7,, the transition which has
ly=1,-1 (if possible) is Lhe satrongest (an argument about matching the number of nodes of the
radial parts of the initial and final wave functions is the reason here), the transition(s) with larger

¢

, being progressively less intense. Putting all three comparisons together we can assert that
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Figure 2.5
Comparison of the relative intensity of the multipole Auger electron transitions.
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Examples of total conversion coefficients in the cascade.
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radiation tends to push the distribution of muons towards the high [ states; figure 2.4 shows
schematically a typical cascade situation with the strong transitions from the initial level
indicated. Although the angular momentum decreases, the relative angular momentum does increase, due
to the larger jumps in n. Whenever radiation is predominant, this picture is applicable. In the
following subsection we will see the quite unsimilar features of the Auger rates.

2.5.2. Auger Rates. The Auger rates decrease with increasing multipolarity much slower than the

radiative rates. In most cases, the strong dipole transition is indeed the strongest, but this is not
all of the story; EO and £2 transitions compete and cannot be safely neglected. Octupole and higher
ones can be disregarded with no consequences; equally, the ¥1 Auger transitions are small since M1
radiation is down (eq. 2.10) and the conversion coefficients (ratio of Auger rate to radiation for the
same muonic transition) are close to the £2 rates [49]. Figure 2.5 demonstrates three typical cases of
the comparison of the multipolarities. Examination of these rates and the radiative rates confirms the
fact that the conversion coefficient increases with increasing order of the multipolarity [50].

Within each multipolarity it is instructive to examine the contribution of each shell and subshell
(even each unresolved continuum 7 ) to the total width. The rule of thumb — found empirically and in
general agreement with the formulas — 1is that the shell closest to threshold, <.e., the one with
highest binding energy, and still allowed to go to the continuum) contributes the most, the ratio of
intensities of consecutive shells being in the range 5 - 10. However, wunlike radiation, Auger
transition intensities are maximal for the smallest change of energy (provided that a particular
subshell is open). This phenomenon counterbalances the effect of displacing the muons towards the high
angular momentum states caused by the radiqtion. The total conversion coefficient for an initial state

is usually larger than unity for high 7, and trivially small for 7,~1. Figure 2.6 shows this ratio for

1
some specific cases; also figure 2.7 depicts the ratios for the contribution of shells to the Auger
width as a function of transition energy. Note that in figs. 2.5, 2.6, and 2.7 penetration has been
included. There 1is a wide variation of values as the quantities change rapidly with y. Figure 2.8
shows the energy and y dependence of the dipole K, L, and M conversion coefficients; note the
similarities of the curves. Finally table 2.1 shows the ratios of the contributions of the various
portions (subshells and continuum ] states) at threshold — this test is not fair, since at most one

shell can be very close to threshold.

2.5.3. Corrections —- Penetration. Since we have seen that the Auger transitions are not

particularly important for small n, , or equally for large A7, we can safely disregard the relativistic
retardation. Also we can dispose of the electronic screening. As a demonstration, we show in figure
2.9 the modification of the monopole operator in the presence of an unrealistically strong screening.
On the other hand, penetration is quite important; to pinpoint the exact size of it is rather hard:
only a few general remarks can be made. a) Penetration is most important for high muon principal
quantum numbers; for #; €5 it 1is insignificant by 1itself and by the fact that radiation is

overwhelming. b) Penetration is a necessity for monopole transitions and cannot be a priort
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Figure 2.7
Dependence of the electron Auger rates on energy and electronic shell.
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Figure 2.9

Modification of the monopole operator due to electronic screening.

Monopole penetration operator in arbitrary units as a function of radius.
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Figure 2.11

Derived fit for the effective nuclear charges.
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TABLE 2.1

Relative contributions of electronic shells at threshold.

MULT. n'l (1) Relative size
The entries are normalized to the condition

that the ls rate is unity — penetration is 3 2s 5.35 (-2)
not included. The itemization is with respect A Zp (1) 2.63 { 0)
to subshell and continuum electron angular g 2p (3) 3.74 (-2)
momentum in parentheses. Also the power of U 3s 3.15 (-4)
ten multiplying each entry is given in g 3o L) 8.77 (-1)
parentheses. Note that these values T; 3p (3) 1.20 (~4)
are independent of atomic number Z. £ 3-d (0) 1.62 (=7)
3d (2) 2.74 (-2)

3d (4) 3.97 (-3)

o 2s 6.69 (-2)

MULT. n't' (1) Relative size C 2p (2) 2.58 (+1)
o 2p (4) 1.81 (-2)

D 2s 3.67 (~2) 5 3s 1.14 (-3)
L 2p 1.01 (-1) % 3p (2) 6.65 ( 0)
E 5 3p (&) 8.33 (-9)
0 3s 5.48 (-3) g 3d (1) 7.32 (-1)
L 3p 1.70 (-2) . 3d (3) 2.60 (~2)
£ 34 1.97 (-2) 3d (5) 2.90 (-4)
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disregarded for higher multipolarities. c¢) With respect to electronic shells, it is mostly important
for s electrons (typical re?uction of rates is 30% for ls and up to 100% for 2s and 3s electrons), has
essentially no effect for the 3d electrons and reduces the 2p and 3p rates by typically 5%. d) With
respect to the muonic states, the highly eccentric ones are affected more, whereas the spherical states
do not penetrate much. e) The general trend, as we have mentioned in passing, is that penetration
reduces rates. Nevertheless, for multipolarities F2 and higher there are natural zeroes in the
expressions for the rates without penetration (¢f. Appendix A and ref. [51]); in cases that rates
are small due to y being in the vicinity of a zero, or in some other cases that cannot be readily
systematized, penetration can increase the rates. Also for 1inherently small rates, the numerical
inaccuracies of the penetration fits come in, but with inconsequential errors. To demonstrate the
above points, we show in figure 2.10 some penetration graphs in the notation of ref. [52].

2.6. Further Corrections and Open Questions. Up to here we have considered effects under

specific assumptions; now it 1is time to reconsider these approximations in the hope of estimating
overall margins of safety. Hydrogen like non-relativistic wave functions, for example, are easy to
work with, but are they really reliable? For some transitions there is a systematic cancellation of
terms with small remainders; this precarious balance could be upset by the shifts of the peaks and
nodes of the true wave functions. Such corrections, however, will influence mostly small rates and
will have no effect on the overall cascade. Let us summarize some problems of intermediate difficulty.

1) Refilling of Electronic Shells. At present we handle the two ls electrons rather correctly

according to ref. [53] and the rest in a crude way (refill or no refill, Z.e., infinite or zero
refilling rate respectively). A systematic algorithm for the lowest two or three shells 1is possible,
but to implement this correctly would require a substantial expansion of the computer code. For
example, several refilling rates have to be introduced (2p=1ls, 3p=1s,...) and keeping track of the
probabilities of all electrons 1is quite complicated. The refilling processes can significantly
influence the cascade, especially for low Z atoms.

2) Effective Charge. To correct somewhat the electronic wave functions, we have introduced an
effective charge 2* for each shell. The best way to choose these numbers is to fit Z* from the
Hartree-Fock wave functions (e.g. ref.[54]) in the region of small radii, where we are most sensitive.
Then an average value of the subshell 7* could be used for the whole shell. Figure 2.11 shows such a
fit and the derived effective charges.

3) Initial Distribution of the Muon. This is a wide open question, where the classical portion of

the cascade could serve as a guide. In the final version of the program we have made provisiouns that
the initial population of the muon can be spread over the entire (n,l) spectrum, to ~account for
"leakage'" of muons through the starting n. The decision of how to spread the muon popuiation is up to

the ingenuity of the user, the agreement with the experimental data being the final judge.
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CHAPTER 3: TESTS AND COMPARISON WITH THEORY

Apart from the obvious tests of verifying the correctness of our expressions, there is a limited
collection of ways to get some confidence that our approach is the corrrect one. Here we describe some
indirect ways of checking ourselves and we leave the comparison with the experimental muonic x-ray data
for next chapter, since it deserves more attention.

3.1. Theoretical Checks. As we have noted earlier, there has been a lot of pioneer work in the
field of Auger transitions. Some of of the rate formulas (no penetration) can be found in the early
literature [55,56] and some of these results have been coded in the earlier generation cascade computer
program [15]. Our results agree with those calculations to the letter, except for one very important
point. In the treatment of monopole transitions (K shell, leading term of 1/1/2 expansion (ef. eqns.
A.21 and A.24) only, approximation for small radii) the version of the program in our possession, apart
from the aforementioned approximations includes the simplification

eﬂy 1

sinh iy v Ty (&)

This unnecessary liberty, valid for Ty<1l 1is completely unacceptable where penetration, and therefore
the monopole transition, is really important, %.e., for y »1. In the region of interest the correct
value of the expression 3.1 is approximately 2 and not a rapidly decreasing function of y; this means
that monopole rates (the only one presently used) are underestimated by factors of as much as 10 or
more, where it really counts. This irregularity has been rectified in our work.

3.2. Nuclear Internal Conversion Coefficients. The phenomenon of ejection of bound electroms to

the continuum is not unique to exotic atoms. Radiation resulting from other phenomena has a chance to
convert electrons to unoccupied states of the bound spectrum and more commonly to the continuum. In
atomic physics one has the Auger transitions like the KLL, where a K shell hole is filled by an L
electron with the simultaneous ejection of another L electron. In nuclear electromagnetic transitions
a similar process takes place, that is, radiation instead of being emitted as a Y ray gets absorbed by
an atomic electron which jumps free. The main difference is that nuclear dimensions are so small that
penetration is almost non existent. It turns out that in the case of no penetration the conversion
coefficient (that is, the number of electrons ejected per Y ray observed) is independent of the way
that y ray was produced (nuclear or muonic transition or any transition for that matter). So we may
compare our conversion coefficients with those of nuclear calculations; Hager and Seltzer [50] made
extensive calculations using self consistent relativistic electronic wave functions. Figure 3.1 shows
some typical comparison between our results and those of ref. [50]. Note that for the rates that have
natural zeroes in the formulas, the nuclear calculations show a shoulder. For high electronic angular
momenta and/or high multipolarities the conversion coefficients change too fast with energy and a
meaningful comparison 1is impossible. In all these comparisons our rates are not particularly good

around the threshold, where details make much more difference, like the precise position of the nodes
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Figure 3.1

Comparison of our results with nuclear internal conversion coefficients.
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of the bound and continuum states. Nevertheless the agreement in most of the energy range is

acceptable, considering the approximations involved.

3.3. Other Calculations of Penetration. Researchers in the past worried about the calculation of

penetration; reference [52] is dedicated to the evaluation of penetration alone. Again, since this is
a specialized piece of work, they have implemented sophisticated techniques in dealing with all the
atomic subtleties. In particular for Z = él the relativistic effects treated exactly in ref. [52] are
quite important. We have reproduced some of the relevant figures of their paper in figure 3.2, with
our results superimposed; as one can see the two families of curves follow each other closely.

3.4. Comparison with the Photoelectric Emission of Electrons. There is a similarity between an

Auger process conversion coefficient and the rate of ejection of electrons via the photoelectric
effect, shown in figure 3.3. The interested reader should consult refs. [9,57] for a detailed
discussion. The final result 1is that without too many approximations the ratio of the conversion
coefficient to the photoelectric cross sgection is given by

BB el 2 (3.2)

o¥(z-1) (z-1? 9

where ((Z) is the conversion coefficient and O is the Thompson cross section defined by

2 \2
8n [ e .
g = = 0.665 barns 2 (35:3)
T 3 \m e?
e
Of course, for high energies we must include retardation for the comparison to make any sense. Figure

3.4 shows such a comparison; we have plotted the combination

P{¢/)

. (2 =1y g " (3.4)
o' (Z-1)

T

which ideally should be unity. The data are from reference [58], which essentially are identical to
those of reference [59]. Note that in this case penetration has no meaning and that we have used
dipole transitions only. The problems around thresholds still plague us as in previous tests. The

effective charges 2* can be adjusted to get a better agreement, on the average.

The comparisons above have shown that in general our formulation is sound; problems do exist
around thresholds and a perfect agreement with results that are simply more accurate cannot be
expected. A method of proceeding could be to empirically discover the necessary corrections needed to
minimize the discrepancies and to use them in calculating the transition rates. Rather than using such
a non elegant solution, we chose to leave things as they are; we will be justified by the

accomplishments of next chapter.
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Figure 3.3

Schematic representation of the photoelectric electron ejection.

Ks 2y d
E=0
Energy level diagram
of the transition
s Usd’
A
Xs\\—:" Feynman graph for the
N Ta
Atomic field N transition in the field
of the atomic potential
s P -
n, L s d E=huw

Figure 3.4
Comparison of our results with experimental photoelectric effect data.
.5
Z=10 Z =82
!

1.0\

\_/

. all thresholds / \ \
“below 1 keV
elow e Mv MI L

b

Plotted is the ratio f of eq. 3.4 versus the transition energy £. The value f =1 indicates

perfect agreement with experiment. Thresholds have been marked for the case of Z =82, in the

notation I = ns%z , II = np§i , III = np«'ﬁ , IV = nd; , V=

nd; .
2 2

II1 LI
by, 5 . : i 5 0« S )
10° 10" 10° E (ev) 10° 10" 10°  E (eV) 10




,37_

CHAPTER 4: APPLICATIONS ON THE EXPERIMENTAL RESULTS OF IRON AND THALLIUM

The acid test of our theory is to make sense of the outcome of specific muonic atom experiments.
We have chosen two such experiments [48,60], which are detailed enough for our theory to give
meaningful results. We shall take a closer look at them with the specific goal to understand what 1is
happening.

4.1. General Comments on the Experiments. In view of the current state of technology, we must
keep in mind that the present experiments can only measure the intensity of the muon radiative
transitions above an energy threshold, over a minimum of intensity and with a specific resolution; all
other information, including the Auger transitions, cannot be retrieved. Low energy transitions are

naturally weak (¢f. the « gl

basic dependence), are overwhelmed by the low energy noise and in
general cannot be easily seen. It 1is only for low quantum numbers that individual fine structure
components can be separated and only for high Z atoms; in effect, the recent experimental techniques
can distinguish only several tens of individual transitions and combinations thereof. Our goal is to
explain the ratios found, or, if you like, we can predict these ratios for a future experiment. In
trying to fit the existing data we can learn something more about the muonic atom in its early stages,
by recovering some of the derived parameters. Next we examine in detail the two experiments and see
hat we can learn from them.

4.2. Iron results [60]. This experiment performed by a German group at the muon channel of SIN
in Switzerland and reported in 1976, has quantitatively observed 103 individual transitions or
combinations in the energy range of 3 to 1900 keV with a typical accuracy of 5% for the majority of not
very weak transitions. Five series of transitions were observed (K, L, M, N, and O, representing
transitions to n,= 1, 2, 3, 4, and 5 respectively). For the lower two series some of the fine
structure components were distinguishable. To understand our problems with the quality of the fiks, we
must pay a closer look at the data.

4.2.1. Features of the Data. The multitude of transitions in all series make this experiment
invaluable for a real test. Fractional intensities of weak lines are observed down to a few hundredths
of one percent (per captured muon) with errors not more than 30% at this level. Of course, there are
some difficulties in separating the close spaced weak lines, as figure 1 of reference [60] demonstrates '
(for example, one observes a "blob" of transitionsn;, all I} = ls for 7;210), but careful analysis has
yielded values with quite tight errors on them. The other unique feature of this experiment is that
there are several transitions in each of the five series. Our analysis has shown that each series is
mostly sensitive to a particular region of angular momenta in the initial Z-distribution. Thus the
presence of so many, affords us the precise determination of the absolute muon population in an
extended portion of the angular momentum range. In general, this is the best set of data available for
this kind of experiment, and coupled to the not so high Z (so that muon wave functions are reliable

down to the 1s level), makes it a good candidate for the determination of the reliability of our

predictions.
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4.2.2. Internal Consistency Checks. It is possible to calculate the consistency or degree of

"reliability" of the data, practically independent of any cascade calculation. This is done by
comparing the ratio of the intensities of the transition families
np - ls
N

2s (4.1)
to the prediction of the theory. This way the population of the initial states cancels and since the
reliability of the calculation of radiation is good (note that Zo = 0.19<«1), we can be quite sure of
the calculation. As a further means of estimating any theoretical errors due to the imperfect wave
fuactions, we have performed the calculation using the uncorrected Dirac energies for all states
(except the ls) and then using the experimentally observed energies, including the effect of nuclear
size, for all the low lying states. Table 4.1 compares the experimentally observed ratios (with their
derived errors) with both types of predicted values. The discrepancy 1is indicated in the form of
chi-squared per degree-of-freedom (y? /DF). If our predictions were perfect, this would give an
unequivocal measure of the quality of the measurements and associated errors. Rather than blaming the
discrepancies on the experiment, we can outright say that at least part of the disagreement is due to
the imperfect calculation of the matrix elements (particularly the imperfections of the 2s wave
function and the crucial position of the node for the cancellation with the highly oscillatory high-7n,
low-7 wave functions). 1In any case this check gives us an indication of what to expect in the
comparison with the absolute rates.

4.2.3. Details of the X-Ray intensity fits. This was the first trial of our program; we decided

to group together the spin multiplets (this is not really necessary, but it reduces the number of
transitions to some 60 without any loss of significance). The type of parameter fit for the initial
l-distribution was decided to be the quadratic kind, since early runs of the program pointed go the
fact that the population of the first few ! states must be roughly equal (see also ref. [60]). A full
(n,1) distribution was discarded, since it introduces an uncontrollable number of new choices.
Furthermore, we had to make some choice for a few poorly determined parameters; the effective charges
were taken from fittings of the wave functions around the origin (ef. fig. 2.11) and for the refilling
we used values typically smaller than those found from atomic dafa {61] (atomic refilling width 1is
approximately 0.8 eV). Figure 4.1 shows the [ -distribution of several fits and the principal
specifications under which they have been obtained. To illustrate the sensitivity of the scheme to
small variations, we have plotted three similar distributions which, nevertheless give significantly
higher x2. Although the best XZ/DF of 4.3 can not be considered satisfactory, it determines the
precise shape of the l-distribution (assuming a model) with quite tight limits (cf. fig. 4.1). The
interesting feature of all fits close to the minimal ¥’ is the flatness of the distribution (although
an 7 independent distribution 1is bad — XZ /DF = 5.2, but still far better than the unacceptable
statistical distribution — y? /DF ~ 20), predicted to a lesser extent by the fits performed by the

experimenters, using the earlier cascade program. Table 4.2 shows the experimental measurements and
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TABLE 4.1

Results of the internal consistency check of the iron data.

2 2
) . np=ls Calculated Calculated
n np = ls np = 2s Ratio P =28 REa¥is (L) 2) Ratio (3) )
3 8417 11025 La:21.20+10 6.75*0.60 5.43 4.84 7.07 0.28
4 2.82:4:0.,12 0.46 +0.06 6:, 1.3 £:0..84 5..26 1.07 6.34 0.06
5 1.75%0:12 0.36 +0.04 4.86 %0.63 5.14 0.20 6: 15 4.19
6 2.24 £0.11 0.43+0.04 5. 21 #i0..55 5.16 0.01 6.04 2.28
7 2510 20,08 0.34 £0.04 6.18+0.76 5.20 1.66 5.98 0.07
8 1.54 £0.07 0.29£0.04 5, 3% £0..77 5.2 0.02 5.93 0.65
9 2.03:+0.09 0.42+0.03 4.83+0.41 5416 0.65 5.94 7.33
10 1.44 +0.07 0:17+0:03 8.47%1.55 5.14 4.62 5.91 2l
11 1.37 £0.07 0.33+0.03 4.15+0.43 5.13 5.19 5.90 16.56
12| 1.38%0.07 -=(4) - 5.13 -- 5.89 ==
13| 0.58+0.06 0.18+0.03 3.22%0.63 5.13 9.19 >.89 17.96
14| 0.64+0.06 0.16 +0.03 4.00 +0.84 513 1.81 5.89 5.06
15 0.40 £0.06 0.08+0.03 5.00 £ 2.02 513 0.00 5.89 0.19
16 0.21+0.06 0.06 £0.03 3.00 £1.55 5.3 1.89 5.89 3.48
17| 0.21+0.06 0.05%0.03 | 4.20%2.79 5.I3 0.11 5.88 0.36
18 0.26 £0.06 0.09£0.03 2,89+1.17 5413 3.67 5.88 6.53
{
2
Total yx for 15 ratios of intensities: 34.91 672 .72
All intensities are normalized to 100 muons.
(1) Calculation performed using Schrodinger energy value for the 2s muonic state.
(2) The error used in the ratiZo (and hence in the XZ is calculated using the formula:
ay _ | (hay a 2 ik
A(b) = l(z-) + (bzAb) ; , where A stands for error.
(3) Calculation performed using experimental energy for the 2s muonic state. (4) Not separable.
Figure 4.1
Fitted angular momentum distribution for iron at the beginning of the cascade
N(Z)

CONDITIONS FOR FIT:

Quadratic l-distribution « 1 + al + bl?

Starting n value: 18
a b X

Octupole transitions: NO
0.032 -0.0025 259.9

Penetration cutoff y (all multipoles): 1.00
————— 0.18 -0.01 331.8

Depletion of electronic shells: YES
sesmaes 0,02 0.00  863.7

Refilling rate for electronic ls shell: 0.25eV
——————— 0.00 0.00 311.2

62 transitions or combinations thereof




Plot of the observed and fitted x-ray
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Figure 4.2

intensities of the muonic transitions in iron.
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TABLE 4.2
Detailed comparison of observed and fitted x-ray intensities for iron.

# Transition(s) Observed Intensity Fitted Intensity X2

il =2 -n=1 71.61*1.65 73.20 0,93
2 =3 =y =1 8.17.%0.25 7.69 3.63
3 n=4 .pn=1 2.82%0.12 267 1.60
4 n=5 +n=1 1.7520.12 1.83 0.41.
5 n=6 -n=1 2.24%0.11 1.95 .01
6 n=17 —-n=1 2.10%0.08 +2.30 6.44
7 n=8 sn=1 1.54%0.07 L.34 8.01
8 n=9 wp=1 2.03%0.09 2.19 3.X9
9 n=10—-n =1 1.44 £ 0.07 1.44 0.00
10 n=11--n =1 1.37%0.07 1.09 15.52
11 n=12 -n=1 1.38%0.07 1.16 10.05
12 n =13 =-n =1 0.58%0.06 0.91 30.41
13 n=1%4—-n=1 0.64*0.06 0..75 3.09
14 n=15 -n=1 0.40%0.06 0.50 2.52
15 =16 --n =1 0.21*0.06 @.32 3:33
16 n =17 «n =1 0.21%*0.06 0.1k 2.5
17 n =18 -n =1 0.26 £0.06 0.55 23.08
18 n=3---n=2 © 46,60 % 1.32 4595 0.24
19 n=4 «n=2 7.87%0.29 8.23 1.55
20 n=5--+-n-=2 3.73%0.17 4.12 5..24
21 n=6 —-n=2 3.42%0.13 3.48 0:19
22 n=7+-n=2 2.78%0.10 2.89 1../29
23 n=8 «n=2 1.5910.06 1127, 28.05
24 n=9 . .n=2 2.28%0.08 2.36 1.01
25 n =10 --n =2 1.07+0.08 1:23 4.25
26 n =11--n = 2 0.97%0.07 0.81 4.95
27 no=12-n =2 0.70%*0.07 0.85 4.39
28 n =13 -n =2 0.52%0.07 0.61 1.62
29 n =14 -n =2 0.41*0.07 0.47 0.77
30 B =15—-n =2 0.41+0.06 0.30 3.58
31 n =16 —-n =2 0.33+0.06 0.18 ’ 6.08
32 Ho=17—-n =2 0.16 +0.06 0.06 2.65
33 n =18 -n =2 0.30 £0.06 0.32 0.10
34 n =4 .n=3 33.21 £1.17 31.21 2.93
35 n=5-n=3 7.80 £0.46 8.03 0.25
36 n =6 --n =3 4,57 £0.37 4.58 0.00
37 n =17 -+-n=3 2,55 20,20 2,79 1.40
38 # =8 —-m =3 1.19 %£0.10 0.98 4.23
39 n =9 <-n=3 193 20.19 1.87 011
40 n =10 -n =3 1.07 £0.1:7 0.85 1.66
41 n =11 -+n =3 0.68+0.13 0.52 1.43
42 n =12--n =3 0.34 *0.06 0.53 10.56

Continued next page
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TABLE 4.2 (continued)

# Transition(s) Observed Intensity Fitted Intensity X
43 n=13-n=3 05 23 £0.15 0.37 0.84
44 n=5 -n=4 25.66 £.1..75 21167 5.19
45 n=6 —n-=4 5.63%0.85 6.513 0.35
46 n=17 —n=4 2.63+0.14 212 0.46
47 n=8 ~n=4 1.54+0.43 0.81 2.90
48 n=9 +n=4 0.90 +0.22 Lwd2 797
49 no=10 -n =4 0.82+0.13 0.63 2.13
50 n=11 -1 =4 0.24 +0.10 0.37 1.76
51 n=12 =-n =4 0.26+0,10 0.37 1.28
52 n =13 ~n =4 0.15+0.03 0.25 10.85
53 n=6 —-n-=2>5 9.90 + 5.00 11.56 0.11
54 n=7 —-n=2>5 2.62+0,28 .96 1.46
55 n=8 -n=35 0.73+0.06 0.72 0.03
56 n=9 «.n=>5 1.14%0.16 3432 1.27
57 n=10-—-n =5 0.48 £0.06 0.50 0.14
58 ns=11 -n =275 0.45+0.06 0..29 7.39
59 n =12 «n =375 0.41 +0.06 0.28 4.61
60 no=13 -n =5 0.24+0.08 0.18 0.51
Total X2 for 60 transitions fitted: 259.94
{
Figure 4.4
Fitted angular momentum distribution for thallium at the beginning of the cascade.
N(L)
0.14}F
CONDITIONS FOR FIT:
0.12} Modified statistical l-distribution o« (27 +1) eOLZ
Starting n value: 18
0.10 Octupole transitions: NO
Penetration cutoff y (all multipoles): 1.00
Depletion of electronic shells: NO
0.08¢
Refilling for electronic 1ls shell:
Independent (in the range 0 - 50 eV)
0.06
40 transitions or combinations
thereof
0.04
o = 0.044 £0.014
0.02¢ ¥ = 47.6
0.00 i " " " i a & X A
0 2 4 8 10 12 14 16
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TABLE 4.3

Detailed comparison of observed and fitted x-ray intensities for thallium.

Total y? for 40 transitions fitted:

g Tesaultionts) Obi{fgiiny iizgsgity X
1 =7 -n=6 and n=11 -n=8 45.50 * 7.00 50.93 0.53
2 n=9 —-n=7 8.00 %1.20 8.66 0.31
3 n=12--n=8 1.30£0.20 1.59 2.06
4 n=13-n=8 0.95+0.15 0.87 0.31
5 n=10-n=7 3.70%0.30 3.27 2.04
6 n=8 +n=6 and n=11 - n=7 9.00%1.40 9.65 0.21
7 n=6 —-n=5 60.00 + 8.00 58.04 0.06
8 n=12--n=7 0.90£0.15 1.:02 0.66
9 n=13-n=7 0.70%0.09 0.63 0.59

10 n=9 -n=6 3.15t0.34 3.17 0.01

11 n=10-n=6 1.90%0.30 1.56 1.27

12 n=1l-n= 1.00£0.10 0.99 0.01

13 n=7 -n= 10.40 +0.90 9.31 1.47

14 n=12-n=6 0.57%0.16 0.66 0.33

15 5g76 ~4f25 1.62+0.26 1.02 T3

16 Sg% -Af% 36.60 + 5.70 35.62 0.03

17 Sgy, — Af%, 5f7 —~ 4d%, and Sf% - 4dg 30.20 + 4.50 39.54 0.02

18 5f§ - Ad% 1.17+0.26 1,38 0.65

19 s8-~n=5 2.80+0.30 2.63 0.32

20 n=9 -n=5 2.60+0.70 T3 3.38

21 9f3ﬁ - 5dg and 9g76 - 5f 1.50 +0.50 0.18 6.98

22 eg% - 4f75 3.90+0.80 4.00 0.02

22 6g76 = :f%, 6f75—- 4d%, and 6f5i 4d35 i.zgrg.ig i.;; z.(l)j

789 -+ 4f o and 7 4E o, .20+ 0. ‘ =

25 7276 -AfE ¥ % 1.30+0.30 0.82 2.58

26 4d§ — 3p3§ 1.00 +0.30 0.87 0.18

27 4dy —~ 3p45, 4d% -~ 3p35, and Af% -~ 3d, 2.50 £0.50 272 0.19

28 4f72, - Bd% 38.70 + 7.80 42.71 0.26

29 Af% ~3d% 29.20 +6.00 29.90 0.01

30 ZS% 'ZP% 0.55+0.22 0.78 1513

31 589 ~3ds (quadrupole) 0.80 +0.20 0.64 0.66

32 Sf% —~3d%and Sf%’ - 3d% 3.80 £ 0.80 3.64 0.04

33 S5fs ~-3d 2.10 +0.40 2.42 0.66

34 Sg% = Bd%2 (quadrupole) 0.40£0.10 0.46 0.35

35 3P;§ =25 0.71+0.18 0.44 227

36 3p3§ --ZS% 0.54+£0.19 0.88 317

37 4d3/2 - Zp% 0.30 +0.20 0.28 0.01

38 4f 5 — 2p3 (quadrupole) and 4dg - 2pg 1.50 +0.60 2577 4.45

B 2 3 4
39 Af?ﬁ - Zp::}5 (quadrupole) 1.10+0.30 1.26 0.27
40 4f.;2 -Zp% (quadrupole) 0.30+0.20 0.73 4.67
47.66
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errors together with our predictions and some other wuseful information; note that a substantial
contribution to the total x? comes from a small number of badly predicted lines. Figure 4.2 shows the
same transitions (fine structure components added) plotted as a function of the 1initial 7, for each
series. Although we are two standard deviations off the measured values on the average, we correctly
reproduce all qualitative features of the data. The three arrows point to the quantum numbers where
major Auger transition -channels open; the result of this is that the total width of these states is
increased due to the additional Auger rates, and therefore radiation decreases 1in proportion. This
phenomenon accounts for most of the highs and lows of the intensities within each series. Another
interesting feature is the effect of the refilling rate of the K shell electrons. It primarily affects
the intensity of the transitions originating from the 7, = 7 level for the following reason. The K
shell opens for An =1 at n;= 8 and till then the population of the K shell is almost as much as the
initial one; now the 8 = 7 Auger transition 1is so strong, that just about one full electron is
ejected. If there is no refilling, the Auger rate from the 7= 7 level is half of what it would have
been with infinitely fast refilling, and the relative role of the radiation (which is typically as
strong as the Auger rates at that level) is changed accordingly. Similar effects happen to a lesser
extent at around 7,= 17 for the L shell. So in effect we have two ways of changing the population of
the muonic states, one by specifying a different number in the beginning which means that a different
number will trickle through via the cascade. On the other hand one may change the refilling rate,
which affects only a few selected regions of states. Other parameters affect the branching ratios to a
lesser extent (if those parameters are kept within rational limits).

Another informative set of quantities is shown in figure 4.3. As the different Auger channels
open, the population of the respectively affected muonic states increases; this increase is reflected
in the decrease of the radiation width as explained above and in the case of An = 2 for K shell it
carries over to the lower states modulo 2, viz., this decrease of the radiative width occurs every
other »n,. Finally at the very low quantum numbers radiation becomes most important and the
l-distribution becomes quite steep.

Judging from the successful results above we can say that the fact that we cannot get a XZ/DF in
the neighborhood of wunity probably should not be ascribed to the data. Rather it appears that we
cannot fit perfectly data that are typically 5% accurate with a theory that is not that accurate. UYNote
that the 1inaccuracies of the theory have not been included in the calculation of the Xz, since they
are not randomly distributed and they can not be firmly estimated. Nevertheless, this does not
preclude the wuse of the program to fit experiments with similar features, since sensible fits can be
derived and parameters can be determined with reasonable degree of certainty. This will become
apparent in the analysis of the next experiment.

4.3. Thallium Results [48]. This is an older experiment (1971) by a German-Swiss group at the

muon channel at CERN. The energy 1interval scanned ranged fron 130 to 3500 keV. Only 40 sets of

transitions were observed (none in the K series which starts at higher energies).
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4.3.1. Features of the Data. 1In this case there are few transitions with low intensities and the
typical accuracy 1is 10% for the majority of lines. A large number of these transitions are between
states of high 7, and 7, (in these cases the fine structure components overlap and cannot be
separated). Since there 1is no K series in the data (the K series is hard to analyze due to the
hyperfine splitting and has been reported elsewhere) and the L series 1is short, the L-distribution
cannot be tested as closely as in the case of iron. In addition the high Z makes Auger rates less
important and that increases the reliability of the calculation. Finally, there is no possibility of
the internal consistency check of section 4.2.2.

4.3.2. Details of the X-Ray Intensity Fits. The modified statistical distribution
(=(2L +1)e S ) seemed appropriate and adequate for this case. It turns out that for thallium the
initial l-distribution is quite steeper than statistical, as shown in figure 4.4. The effective
charges were derived as before and a separate fit was run for them; the XZ/DF does not depend much on
the effective charges and in this case the refilling rate for the K shell is almost irrelevant if kept
smaller than the atomic value of 50 eV. The rest of the conditions together with the actual numbers
are in table 4.3, alongside the data and errors. The XZ/DF is about 1.2, which means that we can fit
the results with reasonable accuracy and the reliability of the calculation is comparable to (or better
than) the typical experimental accuracies. Note that the fit is slightly better when fast refilling is
assumed for the L-shell.

4.4. Other experiments. Muonic transitions have been observed for several years. Many other

experiments exist (pide, for example, [62]), but the problem is that only a limited number of primarily
low quantum number transitions have been recorded. Under these circumstances, reliable fits of the
initial l-distribution and extrapolations to high levels are just about impossible. Future experiments
with many precise transitions will provide tests for the theory, used either as a prediction guide or
an analysis tool. Another side use of the program is the calculation of the polarization; there are
several experimental results (¢f. sect. 1.4) which can be checked.

4.5. Conclusions on the Angular Momentum Distribution. As we have seen a distribution close to

statistical, as predicted naively from the slow down processes or as calculated more accurately
(fig. 1.7), is not compatible with the data in either case, especially for iron, whose 1initial
l-distribution is almost "flat", 7.e., independent of Z. Thallium is about three standard deviations
off an exact statistical distribution. The present theory 1is not adequate in accommodating the
experimental observations -and it is left as a challenge for future work on the capture mechanisms.
More experiments of the quality of iron [60] would be desirable in order to facilitate the development

of the theory.
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CHAPTER 5: DESCRIPTION OF THE CASCADE PROGRAM

To make the results of our work usable, we have written a general purpose computer program, which
incorporates several newly established findings. This program is an upgraded version of the program
CASCADE [15] and a manuscript, consisting of a brief outline of the theory and a detailed description
of the input and output options, has been accepted for publication in the Computer Physics
Communications Journal [63]. A computer readable source and a sample test run is available. This
chapter gives an overview of the structure of the program, without going into the technical details;
for a complete description, consult the writeup [64]. 1In figure 5.1 we have reproduced the hierarchy
of the subroutines used, to give a schematic indication of the level of complexity involved.

5.1. General Features. The most important consideration for such a program is speed versus
accuracy, for a program that requires too much time is not very practical, and conversely, if it is not
sufficiently accurate, it is not of much use, anyway. Having this in mind, we incorporated most of the
new results of the previous chapters; on the other hand, disregarded other possible corrections in
favor of practical considerations (computing speed and programming simplicity). Following 1is a
recapitulation of the basic approximations made in the program.

1) The wave functions for both the electrons and the muon have been taken as the simplest

possible, viz. nonrelativistic hydrogen like. As a means of correcting the electronic wave functions,

Figure 5.1

Hierarchical arrangement of the subroutines in the program.
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an effective charge 9 is adopted for gach shell, to simulate the effect of the distortion of the
atomic potential. A more exact calculation would involve Hartree-Fock wave functions, which to a high
degree of accuracy could be written as linear combinations of products of powers and exponentials of
the radial coordinate (radial part) [28] and, therefore, the integrals of the matrix elements could be
performed in the same way as in the case of hydrogen 1like wave functions. When we consider the
continuum electron states, the problem becomes quite complicated, if we want to have an accurate
description (especially near the threshold), since there is a continuous dependence on the momentum of
the electron. The present calculation is reliable away from the thresholds, but to have a very exact
picture, it would require great sacrifice of computational speed. Considering the muon, the induced
error 1is small, since the high lying states are quite hydrogen like, whereas for the low lying states
the radiation rates are so overwhelming, and considering the strong energy dependence of these rates

s E2L-+l

), the branching ratios of the decay schemes are not much influenced by the detailed form of
these wave functions.

2) Multipolarities up to octupole and electronic shells up to M are considered. For the range of
muon energies that the program is intended (n,< 20), these limitations are adequate, since the N and
higher shell thresholds correspond to much higher n, values, and we have seen that the octupole
transitions already do not contribute significantly to the rates. Once more, near thresholds (in the
case of the L shell threshold for An=1, for example) higher multipoles could be significant. An
important remark is that the inclusion of E2 and to lesser extent E3 transitions changes the rates to
such an extent that, coupled with the larger Al involved, the fits for an initial Z-distribution are
substantially different. .

3) The penetration as explained in Appendix A is treated approximately, but in a reliable way.

4) Auger transitiouns to bound electronic states have been ignored.

5) As we have shown, the relativistic retardation and electronic screening effects, although
simple enough to calculate, do not affect the rates in an appreciable manner and, therefore, they have
not been programmed.

6) The population of the components of the muon fine structure doublets is treated statistically,
which 1is sound as long as the radial parts of the wave functions are the same. In practice this is
quite adequate and it is corroborated by experimental findings [60].

7) The problem of electron refilling (the rate with which an atomic level is refilled after the
electron has been ejected via an Auger transition) is treated correctly for the K shell using an
externally controlled refilling rate [53], but it is rather crudely done for the higher shells, being
taken either as instant (infinite rate) or none (zero rate) according to the choice of the user.

8) In the latest version of the program we have made provisions for the wuser to assign initial
populations to the full (#,l) gspectrum of muonic states. This extention of the original l-distribution

at the starting n, should fulfill any possible needs to that effect.

Other phenomena disregarded are indeed negligible, such as electron-positron pair production by
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the muon, or higher order perturbation expansion terms. Since the program is expected to be run by a
diverse group of users, standard FORTRAN IV features were implemented.

5.2. Input and Output. The primary object of the program is to compute the x-ray intensities of
the muonic transitions and thereby allow the user to fit for some undetermined parameters by comparing
the theoretical predictions with the experimentally observed intensities; conversely, given the
required input parameters, one can predict what an experimental run should yield, and thereby use the
results as a pre—experiment guideline. In any case, the user must be able to specify what he wants the
program to do and to be able to retrieve the results. In the following section we will discuss more
closely the kinds of specifications the user can input. The output includes a summary of quantities of
interest resulting from the cascade and a catalogue of x-ray intensities arranged in order of
increasing transition energy. The user can punch any transitions that would be of particular interest,
for further processing.

5.3. Selection of Input Options. The format of the input has been simplified and the wuser can

override the internally set default parameters, if it is so desired, to adapt the program to the
particular case. The interested reader should consult ref. [64] for a comprehensive explanation of
all options. Here we give a summary of the categories of parameters that are available.

1) Specifications of the particular atom. Includes atomic weight, charge and effective charges,
binding energies, population of electronic shells and refilling, and width of the ls state. '

2) Data for the muonic states. Muon mass and energies of the muonic states are included; also
selection of the initial distribution and population.

3) Choice of shells and multipolarities involved. Within the limitations explained earlier, any
subshell and/or multipolarity can be counsidered or deleted.

4) Specifications for the x-ray catalogue. Includes high and low energy limits for the
transition, intensity cutoff, transitions to be punched, and conversion of energy to channel number.

5) Parameters specifying the treatment of penetration. There are‘several ways of deciding if and
where penetration is included in the computation.

6) Various bookkeeping options including commands to skip printing portions of the output,
commands to calculate a case and to exit from the program.

Appendix B shows excerpts from the input of a test run accompanying the writeup of_ref. [64], and
portions of the output from the same run.

5.4. Timing. The timing of the program will depend very strongly on two factors. a) The
starting principal quantum number of the cascade plays a very significant role, since the timing
depends on 1) as a power between 4 and 5 thereof. b) The degree of inclusion of penetration is equally
crucial; it takes a lot of time to calculate its contribution, since for each sub-rate calculated, at
least one (and up to three) separate multipole like muonic matrix element has to be evaluated (which is

a lengthy double summation for high 7, eccentric states). For the case illustrated the timing was just

under 1 minute including compilation, loading and system time. The time would have been several
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minutes if penetration were included in its maximum allowed degree, with small changes in the outcome
of the x-ray catalogue. To further elucidate the timing, we include a short table of typical runs with

the associated times in table 5.1 below.

TABLE 5.1

Sample run times for test runs of the program.

Case: Thallium, starting 7 = 18, modified statistical l-distribution, pentration cutoffs at y = 1

Specific conditions for run Time(sec)
1) EO0 - E3 (penetration) 49.9
2) EO - E2 (penetration) 30.6
3) EO0 - E2 (penetration, no M shell) 2L.7
4) E0 - El1 (penetration) 15:7
5) EO0 - E2 (no penetration) B T
6) E0 - E1 (no penetration) 6.5

All runs with the Berkeley CDC7600, using FTN4 (high opt.).

5.5. Practical Considerations and Limitations. Although this reworked version of the MUONIC ATOM

CASCADE program takes into account many more phenomena than its predecessor, it is limited in part by
the approximations stated in subsection 5.1 and in part by programming and execution limitations. To
fully wutilize the capabilities of the program with the minimum cost (if that is of importance), our
experience has shown that a few shortcuts could be taken. Some points of interest for fitting of
experimentally observed x-ray intensities follow.

1) Start the cascade a few n)'s above the first transition to be fitted; 7, = 20 is not necessary
if, for example, the highest transition is from n,= 13. For a final fit, n;= 20 could be of interest.

2) One usually fits for the initial 7-distribution; three options are available for that, plus
the added option to fill the whole (n,7) spectrum.

3) In addition, the V§1ues of Z* and width of K electron refilling could be adjusted slightly for
a better fit, especially for low Z atoms.

4) For most cases multipoles up to £2 and all subshells are important, especially for the high
part of the cascade.

5) Although penetration changes some rates dramatically, it can be eliminated in a variety of ways
without serious consequences; some of the ways are

a) The leading term of penetration is adequate in most cases, the following terms contributing
progressively less in the correction.

b) For y<<1 the penetration correction is small in all cases.

c) For small muon quantum numbers, Auger rates are small compared to radiative rates, and so
penetration does not alter the results.

d) For the 3d electrons the penetration can be skipped, since it is small in all cases.

6) Once the basic setup of a case is established, only the parameters to be changed have to be

specified in multi-fit runs.
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CHAPTER 6: CONCLUSIONS

In the course of our research of the past few years we have studied the field of muonic atoms from
their formation to their disintegration and the interaction of the muon with the surrounding electrons
and the nucleus. In this thesis we have provided the missing link required to make a serious
comparison with the experimental data. Although we have not formulated a theory that explains the data
in a perfect way, we have pushed the problem one level higher, by taking into account several effects
previously disregarded. Just as important as the primary objective of a cascade project are the
intermediate results discovered. We have put the finger on several open questions and answered some;
moreover we have identified some issues still unresolved, so that the next generation can try to
resolve them in an effort to bring us closer to an accurate description of reality. As it stands now,
we have a good knowledge of our achievements and limitations and the degree to which we can predict
and/or explain the observables. We are confident that the researcher interested in pursuing the
subject of muons in atoms further can find the information presented here and in our other publicatious
useful as a starting reference. We hope that our basic stipulations will withstand the scrutiny of
time. Our encouragement is passed to those who undertake the task of carrying the torch of knowledge

to the future.
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APPENDIX A: MATHEMATICAL DETAILS AND COLLECTION OF FORMULAS
A.1. Multipole Radiation. 1In a radiative transition from state 1 to state 2 of multipolarity

E(L) (only electric type transitions considered here), the rate is given by [65]
2L 2

L
/ HZ‘ (r) (zé) Ry (r) r*dpr
u

0

wa
e, 2ERD) aw(—k‘) L SGuald) (A.1)

R rreo+nit )2 Ze

where w 1is the transition frequency. We use for the dimensionless multipole integral

o b
= s ’/ RNM(;) Ri(r) rdr
N

0

. (A.2)

The "statistical' factor S(j, ,L,j, ) is given by

l z z z 2* L : 2 /
Gl b Bk e : ol a3 gy A.3
é(Jl: ,JZ) 2L +1 d;zjz YLM OnZlJl d § ’
m M m . 4

which works out to simply

5¢,, L,d) = (24 +1) (2L +1) : (A.4)

Since the radial parts of the wave functions of the spin-orbit doublets are, in our non relativistic

treatment, identical, the matrix element A.2 depends only on [ ,L

1 and not on g, ,J, . Thus we do not

2
want to treat j explicitly, but rather I (we will eventually divide the total 7, = I, rate into its

various j states according to their statistical weights). In such a case we may use a new statistical

factor

1.
b 5L W

S(h,L,) = z S(h,Lyd2) = QRL+1) (2L +1) . (A.5)
J2= la-% 0 0 0
Table A.l1 shows the radiative rates for the three lowest multipolarities.
A.2. Relative Intensities of Spin Multiplets. Assuming that the initial states are populated
proportionally to their statistical weight, Z.e., = (2j,+1), the relative intensity of the transition

(2,.4,) = (1,,4,) with respect to the total transition I, = I, is given by

(jl L JZ)Z
(25+1)S(G ,L,d2 ) P (25, +1) (24, +1) \-4 0 & (A.6)
Q@u+1ShL ,L,k) ’ (20, +1) (21, +1) (zx L Lz)z

0O 0 0

Table A.2 shows the unnormalized relative intensities up to octupole transitions, 1in reference to
eq. A.6. Note that the same relations hold for the relative intensities of Auger transitions.

A.3. Multipole Auger Transitions (no Penetration). 1In an Auger transition of multipolarity L

described schematically by
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Initial Final
Muon moLhd n2,L2 532
r 9t it 2 (A'7)
Electron n',l ,J3" (bound) K ,l ,J (econtinuum)
the transition rate is given by [42]
A
B o Sl ke o ey B b ) o, |
A = wa (T ) Yy (1 r Yo (1) oy () d'my APy 1 L (4.8)
12

part

To obtain the various multipolarities, we expand 1/r;, in spherical harmonics (using, for the time

TKr,,

being, the long wave length approximation @ ~ 1 ). The rate then becomes

L 2

A ﬁZ

o oo
.
* * < )
[] Buz () Rep (1) g Buy (1) Rey (1) rf dr, rl dr,
00 5 (A.9)

x |Angular Part|? x (Wuwmber of electrons present in subshell) s

where we have multiplied by the number of electrons present in a particular subshell. At the end we

\
will have to add the contributions of all final electronic states (Z,j), since they are normally not
observed. The angular part is separable (if one treats [ only, disregarding the various j. states)
into an electronic and a muonic part, each similar to that of radiation, that is

LY 7 L 1\

5 (27,+1) (21+1)
|angular Part|? = —————— . (A.10)
(2L+1)
0 0 0 0 0

Table A.3 shows the angular parts for L, = 0, 1, 2, and 3. The case of L = 0 is given 1in anticipation
of the penetration, which permits the otherwise forbidden monopole transitions. Note that in the

formulation of [42] the continuum wave functions are normalized as follows

Y7 n(%)

Me 141 I+ ikr, 1 . . . Ly
ez (r,) = S 2k e 2 p) (P (L4l-iy;2042;-2ikr,) | T(1+1-1y) | e D!

. (A.11)

As a first approximation, we will assume that the muon moves completely inside the electron orbit, and

therefore r. = »r) and 2 = r, In such a case, the two integrals of (A.9) decouple. The muonic part
is the multipole matrix element Iﬂ (the same one as in radiation). The electronic part 1is more

complicated, but it amounts in performing integrations of the general form

o0

/ r;w e_&‘ZlFl(a;b;crz) o TURL), F (a,M+1;b;e/E)

i EM+1 271 ¥

and combinations thereof. The procedure for evaluating such integrals is described in ref. [42]; they

(A.12)

0

yield Jacobi (hypergeometric) polynomials, which can be evaluated exactly in terms of elementary
functions. For the more involved cases we used the algebraic manipulating computer language REDUCE-2
[66]. Tables A.4, A.5, and A.6 show the compilation of all these rates classified by multipolarity and

subshell.
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A.4. Retardation and Electronic Screening Effects in Auger Transitions. The exponential factor
exp(ZKry;) in eq. A.8 represents the effect of retardation. To take it into account we use the

expansion [29]

@ L
iKsz 1 %
e _ 2 ; 3 . (A.13)
o ik z J (ke ) By tir) z vh @) Y, @)
=0 M=-L
Using as before r. = r,, r, =r, and assuming Kr <l one can safely use the leading term in the

spherical Bessel function expansion
(kr )L

J e = Gann (A.14)

The muonic part of the transition matrix element is unchanged, while the operator in the electronic

part is modidified to

1 1

_— = —_— ————l 2
I+ I+ [1 HPTOIASY) KZ”Z] : el
2

r,

Another possible modification is to use a Yukawa type potential, viz.

-Ar
. . Bl : (A.16)
12 T2
to reflect the adiabatic screening of the muon charge by the electron cloud [67]. The screening
parameter A 1is related to the density of the electron Fermi gas p by
2 )4
N = | bmpe . (A.17)
F

For both modifications the calculational techniques for evaluating the electronic integrals are similar
to the ones used for the original unmodified integrals. The resulting modifications for a limited
selection of cases is shown in table A.7; the importance of these results is discussed in chapter 2.

A.5. Penetration Effects in Auger Transitions. To evaluate the radial part of the matrix element

(A.9) exactly, we have the choice of performing the electronic or the muonic integration first. Both
possibilities have been investigated and each has its own merits. We will first discuss briefly the
"exact' method (but otherwise inefficient).

A.5.1. Muonic Integrals Donme First. The first (inside) integral is always incomplete, since the

functional form of the integrand changes at r = r,. In this case, we expand the Laguerre polynomials
appearing in the muonic wave functions in power series (finite). The resulting integrated functions
are incomplete gamma functions, which in turn are expanded in finite power series. Then the complete
integrals over the electronic wave functions involve products of powers, exponentials and counfluent
hypergeometric functions (Kummer functions). According to the general procedure of ref. [42] the
integrations yield Gauss hypergeometric functions, of relatively complicated indices and argument;
they, 1in turn, can be expanded in power series. The result is that in order to evaluate one matrix
element it is necessary to perform four interlaced summations, two due to the Laguerre polynomials and

one each due to the resulting incomplete gamma functions and for the expansion of the final
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hypergeometric functions. In principle, this method is exact, but in practice it takes too long to
evaluate and it 1is subject to severe numerical instabilities, because of the extreme cancellation
taking place. Having failed to produce a usable algorithm, we resort to performing the integrals in
the reverse order.

A:5:2; Electronic Integrals Done First. Rewriting the integrals of (A.9) in a manner

exemplifying the contribution of penetration, and using the orthogonality properties of the radial

parts of the electronic wave functions we obtain for the radial double integral of (A.9) the following

formula
[ee] o
Y Lgp ) 7 4 R* (r) ——= R (r) r?dr
R/I-Z(Pl) r f«l(rx R e2 V2 rL+l el 2 p
o S . " (4.18)
v r) r,
* 2
-/Rﬂz (r)) er (r)) r] dr, jRn £Ps) il T I R, (2s) 1’22 dr, "
r
2 1

0 0

where the first line is the part without penetration evaluated previously in sect. A.3 and . the second
line 1is the contribution from penetration. To evaluate the penetration we note that if we can express
the function in the braces in a convenient form, the complete muonic integrals could be done without
the complications of sect. A.5.1. Note also that we deal with a limited number of electronic states
and multipolarities (except for the continuous momentum of the free electron), so that we could make a
table of these functions, which could be used with the muonic states. Since R, (r,) involves only

powers and exponentials of r,, we could study the case of

nl_l 7
M r 2
R“ (2”2) o , Cn’Z’M r’ exp {— povy § (A.19)
M=1 0
where Cn'fM are proportional to the Laguerre coefficients of the electronic state (”:ZI), being defined

(normalized wave functions) as [42]

4

N A VR T A N YA (L 1
WM m e -1 M) (AL (i =D) el

It is therefore sufficient to study one term of the type of (A.19), the general one being formed by
linear combinations thereof. Noting the functional form (A.l1l) of the continuum wave function and
using the definition of the parameter y
*
Za
y = >
\/ZEK/mea + FiZKz/méc“

’ (A.21)

we can retain only the variable dependence of the function in braces (A.18) and in light of (A.19) we

want to study the function (from here on r is measured in units of au/Z)

g L
r

L
1 7 7
/| T 2 = . .
gr) = f Al T/ o~ ol & B (U 1eiy;2th2; 20er) (a.22)
L& r

0

To single out the y dependence of this function (and therefore end up with a ‘'universal” expression
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depending only on the integers M, n', L, and f), we expand the confluent hypergeometric function in

terms of Bessel functions [68]

(o]
. _ Yz % - he sd 4J
JFy (ase;2) = T(e) e®(4cz - az) z 4,02 (e~ g (\2ez -daz)

where 4, =1, 4, =0, 4, = e and Aj (j >2) are derived from the recursion: (A.23)

+ = +ec - - "
(n l)ArH-l (n+e 1)An__l + (2a c)An_2
After working out the arithmetic and assuming that the series is rapidly converging, we obtain for the

first few terms in the expansion of

1 =0
0 s g=1
4 > ’ pl ’ I"L I‘L
_ (2T +1)! ZJ 1+1 . 5(j-1) +M -r,/n - 1 2
g(l"l) —“—ZZ/+1/2 = yz ; =2 r, e JZZI+1+,j (ZVZZ"Z) I+ L_+1 dl’z o (A:24)
J=0 d ; 7, 7
3 y2 s o=
Our strategy is to fit the integral in (A.24) by a convenient function. Since the muonic integral

involves powers and exponentials, a candidate would be a combination of terms of the form
Integral ~ Br? & 5 (A.25)
where N is an integer and the coefficients B and O depend on the indices ZC M, L,,n: and J. 1f we
consider the case of small r; (and therefore r, ) we can expand the Bessel function in power series and
get the leading behavior of the integral. It turns out that for such a case
No= UM+ H+2 2 2 : (A.26)
Using this fact and only one term of the type (A.25) we were able to fit the first three nonzero lterms
in (A.24) for all cases of interest, and obtain quantities B and O. The fit was concentrated in a
range of r, where the muonic wave functions are substantially different from zero. Typically the fits
are 0.5% accurate (maximum deviation) for muonic wave functioms up to n = 20. The fitted values B are
very close to the exact values of the limit of small r; and @ is in the 0.003 region, for the modified
muonic matrix elements in the second line of (A.18), in units such that the maximum contributiom to the

: i ; 5 2
muonic matrix element is from the region r ~ n%, n~n, n,.

2

Having evaluated g(r,), the outside integral of the penetration in (A.18) is a modified multipole
matrix element, the operator being a combination of an integer power and an exponential. The numerical
méehods of evaluating such a matrix element are very analogous to those of the genuine multipole matrix
element . Finally we have to assemble the term by combining the variou; parts of (A.19), subtract it
from the integral without penetration, and proceed as usual. There are 162 pairs of fitted numbers B
and o, a table too long and cumbersome to report here; the values of the fitted coefficients can be

obtained from the data of the cascade program [64]. The full impact of this modification is discussed

in detail in chapter 2.
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Figure A.1

Comparison of the fitted and exact penetration functions.

0.4
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Examination of the leading term in the l/y2 expansion for the ls monopole transitions.
SOLID LINE: Muonic wave function for n=7, 1 =5 (not multiplied by rf) in arbitrary units --
zero level indicated.

LONG BROKEN LINE: rf expression gor the penetration function from ref. [15]; vertical scale
to the left.

SHORT BROKEN LINE: Exact expression for the penetration function (numerically calculated);
vertical scale to the left.

DOT-AND-DASH LINE: Deviation of fitted expression from the exact one. The plotted quantity

is Y%(Exact - Fitted) [ (Exact + Fitted). Vertical scale to the right in %.

HORIZONTAL SCALE: Radius r, in units of a,/2".
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TABLE A.1l

Multipole radiative rates.

2L ’ .\ 2
L g2
L _ 2(L+1)(2L+1) way ) J1 L2
== w 2jo+1 o .
R L[(20+1)1]2 ” (Z2+1) 48 % | 1z |
or in our treatment
2L L BB
L wa 1
r =M ow | —U ¢ 20a#-1.) [I1Lz|2
R Lpc2r+1)!] Ze 0
L
L
I‘R
£ \3
4 0e 1 [ m . 1|2
: 3 a0 g2 (m) (2L+1) oy |2l
E\S 1,if =1,
I ®e 1 . A (A+ 1) 2 |2
2 15 ao e (Za) (2L+1) (D=1 (23+1) (23)° lIle
Yo, 1f Lp=11%2
. Y, if la=1h1%1
8 ae 14 m (A-1)A(A+1) 3 |2
_=_ 22 e bE
4 4725 a0 z5° (m) 2L+ 3y (1) 2D (@) | It
% ,1if L=0L*3
Li+l+1 L+l
where A = — for odd multipoles and A = 2 for even ones.
m Auw .
Also u=_—, Ep=—H, and a  is the Bohr radius.
Mg my
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TABLE A.2

Relative intensities of radiative and Auger transitions.

lr=1,-0L

Key of notation

P =

da =

g1=

Li+h

Li-%

h+ks

Li-%

Possible transitions of
the Jj - doublets between
given ! states. Note that
not all transitions are

allowed, in general.

In the notation of the following table we have used 1 = [,

for simplicity. The total intensity

for each 7;> I, line is the product of the statistical weights of 7y and I, viz., (2141) (21-2AL+1).

L | A% =5=Ty a b c d Total ':i’l‘ci’:‘:‘;‘ y
o o (1+1) (21+1) 1(21+1) = - (21+41)2 0
1 (1+1) (21-1) (1-1) (27+1) - 1 (21+1) (22—'1) 1
1
= (1+2) (21+1) 1(21+3) 1 = (21+1) (21+3) 0
2 (14+1) (21-3) (1-2) (21+1) = 2 (21+1) (21-3) 2
2 0 (1+2) (21-1) (1-1) (21+3) 3 3 (21+1)* 1
-7 (143) (21+1) 1(21+5) ) = (21+1) (21+5) 0
3 (1+1) (21-5) (1-3) (21+1) = 3 (21+1) (21-5) 3
1 (1+2) (21-3) (1-2) (21+3) 5 6 (21+1) (21-1) 2
3
= CLE3) (27-41) (1-1) (21+5) 6 5 (22+1) (2143) 1
-3 (L+4) (21+1) 1(21+7) 3 ~ (2L+1)(272+7) 0

) Auger transitions only (with penetration).
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TABLE A.3
Angular parts of multipole Auger transitions.
i | Angular part |?
0 4

1 A A
| 328 HaThmian LMY moD @D
1., & L=l 1, if 1=0
2 5 (22,+1) (2-1) (2)+1) (2)+3) (2A-1) (2A+1) (2A+3)
%, if lp= L2 %, if 1=1%2

(A= A(A+]1)
(2L+1) 5353) (D-1) (20]) (2053)

~ |-

(A-1)AA+1)
(2A-3) (2A-1) (2A+1) (2A+3)

x (21+1)
% 5 if L= %3

hi%;l* for odd multipoles
where A=
L;——;Z for even multipoles
e é t 1 for odd multipoles
and A= p
1

for even multipoles
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TABLE A.4

Dipole Auger rates (no penetration)

In this and the following two tables, the rates are shown for fully occupied electronic shells.

1
Also we use the notation Pn = exp[ y [2 tan (%) - n] ] :

Y 4
L=l _ 2 Tmac A eV 2%\ g o
s =% o (25L+1) (73D (2D sinh(Ty) (Z) | T12 F % (Multiplier)
Electron
Multiplier
state
_7/2
1s 16 —— sz
l-*-y2
2s 2 LD pe
(4+yH?
I 2
¥ A2 +19%) 55
2p 8 273 P2
(4+y°)
204 + 32 $5y2
L - shell y (4+3y")(4 y)Pi
total (4 +y2)3
2 2 242
16 y (L+y°) (27 +7y°) 5
3s 3 9 +yz)" 3
2 4
128 y4(81+96y° +19y") P23
3p . 3 (9 +y2)"
256 y° (L+y%) (45 + 114°) p2
3d 3 (9 +3%)8 3
16 Y (8L+78y% +13y") (81 +126y% +295*)
M - shell 5 e P3
total 9 +y°)




Quadrupole Auger rates (no penetration)
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TABLE A.5

1y 48 &5 = Uy Yy
L=2 _ 2 mac : A(A+1) e 2*y 2 |2
I =5 o (22 +1) ) W) (Z3) sinnng) (z | 7|
Y%, Af s = 1) £2
X (Multiplier)
Electron Multiplier
state
1s (1=2) 1 G+ {op, -1}
= 9 (h+y?) 1
1 b+ 4 + 542 2
2s (1=2) 7.2 2 yz Pz_]-
23" (@ +y*) bty
1y
2p (1=1) - 2 {3p, +1}?
2%5 (1+4%) {3Ps + 1)
2
2p (1=3) 3 Yy ‘68+77y2P _12
25 (1+y?) (9 +y?) | 4+y? P
(9 +42)? 729 +1134y? +277y2 <
3 (1=2) l;' y yzz . Ps_l
3 @+ b+ 9 +y")
2 y? |2+t :
3 = = 2 7 +1
p (1=1) 385 (l+y2){9+y2 P,
3 2 2 2 4 2
3p (1=3) 2 y 2(9+y )2 1137 + 1944y* + 439y P -1
35 (L+y°) (4 +y°) (9 +y%)? :
2° 3
3 (1=0) et
3%5  (9+y°)
4 L bl 2
34 (1=2) 29 Yy 63+ 77y P, +1
37 L+yP)b+y?) | 9+
" Y9 +42) 10773 + 14580> + 3167 2
3d (1=4) 12 zy }/ 2 241{2 - P3 =2
3957 (1+27) (4 +y%) (16 +y2) 9 +4)
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TABLE A.6
Octupole Auger rates (no penetration)
%, if Lp=h 1
fl=3_ 2 mac (A=-1) A (A+1) e i G
v 2 2L+ 1) . —| | I |
e (2X=3) (2A-1) (2A+1) (2X+3) sinh(my) \ Z
%, t L=3%£3
X (Multiplier)
E]s.i;:tt;;on Multiplier
2 14 2 2 N2 2 2
fs (L=3) 2 (2 y>?(3+232 18 1+y2P .
3252 y? (4 +y*) (9 +y°) 3+2y% 1
1 (4+y*) 6 +y2)? 2 + 3y? 2
2s (1=3) oy el lis S p
2%3%5% 2 (L +y°) (9 +y*) 6+y
i (4 +y?) 2
2p (1=2) e T g g
2237 (L+y°) { P, }
2 Z 32 @ 2 2.
2 (1=4) 1 (4 -iz-y )(682+13y ) 2 116 149;2, P, -1
2887 (L+2)(9+2)A6+y") |0 68+13y
S CEm ) 2 (9+32) (27 +2y2)% [ 5 405 +9007 +254 1 z
s = = -
31352 21 +2)h+y?) |2 O+ @T+2f) P
2° (9 +2y%)? 27 +13y2 2
3p (1=2) g - zy)z Z:P3+l
3 QL Ey ) A £ET) 9+ 2y
5 ks 23 (9 +y%) (153 +13y2)> 2349 + 3744y° + 947y b1 2
’ 31527 (1 +4%) (4 +y?) (16 +y°) (9+2)(153+13y%) >
)
25 y? 5
3d (1=1) = 2 Lhp+1
57 (1+y2){ b+ Yy
2° 9 +y?) 63 +47y° Z
3d (1=23) T — 5 =~ P, +1
35 (L+y") (4+y") 9 +y
54 P8 25 (9 +yH) (11 +y%)? 1251 +1850y% +439y" p :
37 (L) G+ )6 +2) (25+yP) | O +) (A1 +y7) :




TABLE A.7

Selected results for retardation and electronic screening.

Only the portion of the rate formula which is affected is given; the rest of the factors stay intact.

DiPOLE 1s

1 =il
0ld result: T { 4ytan y }
A+y")

-g? - (1+E)%
{(L+8)%+ (1+8)%* H(L-8) + (L+8)*y*)

: - 1( e ) }
exp { 2 y tan
Modified result: 1

DiPoLE L - SHELL TOTAL

2 Y
0ld result: b3 )(24 +3) exp [ 4y tan (E) l
4+y°)°

G+ ) (4 +577) (4 +3y%) - 8(4 +y2)(4 +5y2) (8% —B2y%) + 16(4 +7y?) (8* +E2y)?

Modified result:
(4(1+8)% + (L+20)22 Ha(1-8)2+ (1+28)2 7 )

X exp Z?/tan-1 4y (1 ¥25) )
4(1-8%) - y* (1+28)°

and £ = %ﬂ () is the screening parameter here)

>

where & =

=
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APPENDIX B: SAMPLE INPUT AND OUTPUT OF THE MUONIC ATOM CASCADE PROGRAM
To illustrate some key features of the program and the diversity of option available to the user,
we have reproduced portions of our test run. The first page illustrates the input, while the next

three show key pages of the output.

EXPLANATIONS OF THE PAGES REPRODUCED.

PAGE B.l: This is part of the sample input; some cards involving the transitions to be punched have
been removed.

PAGE B.2: This is a page that shows at a glance the values and defaults of all parameters used in the
program; it could be used as a title sheet, if so desired.

PAGE B.3: This page is of interest if one wants to see why some features exist in the cascade; it
summarizes important quantities, as populations and widths.

PAGE B.4: This is the final page of the table of intensities; the transitions are identified by

quantum numbers and energy, and a channel number is given if requested.
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Summary of input parameters.

PAGE B.2
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Summary of the results at the end of the cascade (last page).

PAGE B.3

Buencsraneonenssnensune.
Ineannu®y
cosmemcsccrecenannnanaas
10¢3009°)
10e300p° |

10e90R® L nusezogncw SL o nO+{urs®S no+221°¢L
10eA004° 1 D04 4000 UledIhlo® L Gu+4Qb(°F  nosinpL’y
[0eI00RS T 0U+40UN°R  UNSASAL® | ann NO+ISLN L
LA L L L L LI LY LYY Ty LY ceoevavCaan O ORGP OO NOR 0O DM ne NS o
F0+300W° T 004304500 U0+3056° L FO+IRULY  S0eTuFL ¢
102000 ° L 0043000°9  UN+3IVOR®] h(+3290° L 043018 °¢
I04300K° 1 0043000°R  G0+Iwe6e° L MU+36n0°S  8644095°%y
0430051 00+3000°R  Vu+9ho°] “sa §0+3wl0°¢
ooanvavoss Meopoacerpgdnan®™ Uaseseeo Cassaaca ooa LR R Y
LO+R00RT L 0043000°A 00e3§06° | §0+38u5°2 ¢0+3L8u° )
I0+3008° 1 CUsYONN®R  VB+AEN6°T  §U+36UF°N  €0+3U04°§
TNeTaNRS L 00+3000°Q  UNIIANL6°[ FuedbU9e®]  To+I0E0°)
I043004° 1 003000°R  U0+3LR6°1  hoe3FuG°2 90e310L°
10e20ry® ] 0UFHCO0°R UG+3nbo" | sha ENeRLOY Y
LD L L LN L R N W W N ey esncoe®oan eeae eCSscoaessonmea LX) -—enaa
IN40AR° T Qued00p" R UNeI[NY° L 20+3C96°4 LN+39pPo°d
1043001 (0C4+30ANTR  UNe35RY® L E04+366H°L  10+35L¢°9
FO+0NRS T 00G+30G0"H  UN+3R26°L  £0+3160°2 0309 °
INe,00° 1 0043000°Q U0+3LS6°( F0+328h°n 20+39in°p
10430M8°(  0043000°9 0043u26°1 h0o+3S8h°1 20¢3u5L°n
1042005 [ 0044000°8 0V0+3I2RL"Y LXRY duedsee®y
ORI N RN RPN AN DD S kg D PN Sae0Sna BeaasSan Tascostet O nancunas
1043008° ] 0Ue3INUN°A  UDSISSL®] 20+44Zwh°h  0U0+3S08° ¢
F0+300E° 1 NU+4000°9  VOEIASAL L 20+3IGLP°9  1u+Jufe’)
1062300g° 1 0U+300N0°R  UN+3LEy® ) 20+3E1n°s 10+39F9°¢
1043008°1  00¢3INON°R  UNEIVAY* |  §0+369S°T 10+30R6°S
10+3008° 1 N0+3000°8 U0+3226°1 S0+3REIE  20+3u0n°}
1043006°1  0043NGN"Q  00+3§G6° 1 SO+3EIh%6 20eI0eL°)
F0+300R8°1 00+3000°8 00+30G6° 1 2 e 10+30ne°p
.l.ll.lll.'..lll"l!'l'I'l.ll'll".lIII'I"'I"'I' meEn - - ceoe L X
F04300g°1  00+3000°R  VO0+3wS6° | 20+3¢62°2 o00eUFL ¢
1043004° 1 00+3000°R UV0¢3y§6°1 2043F0N°E  uhedinn®§
T0e3008° ] 00+3000°Q  U0e3226°)  20+3h0¥°n  00+3968°Y
1043006 004400N0°R  VO+3I26° 1 20+3%908°9 neIugiy
I0e3009°1  00e30UN°A  UNeIHZ6°L  F0+43160° (1 10e3LP8°@
10400 00¢3000°A  UNeI N6l €0+3201°2 10+3L84°8
PO+INORTT 0u4y00n®H  U0D+INGo°] §0+390€°9 1Ne3¢Eo’w
1043000° ) DYs30UO°R  V0+3IEGH°] sax 10e3gTL°
LY X} ‘l"..'.'l'.ll....ll.l'lll.l'.lll.'lII.Ill.l."llll.llllll'llll
[04300w° [ 0043000°R  UN+ILR6°T 20430§2°T yneIsEe’n
TReINORT  0U+I00V0°R  UNST(/6°) 20¢32856°T UNe3IL2u°s
L0e3In0g® [ 00+3000°R  00+3¢GH° 1 2043601°2 UD+INTU®L
1043009°1  00+3000°R  V0¢3IYFH°1 2043¢%6°2 10+38141°)
T0eRONK T  NUS3IN0O°A  0V0+3926°| 204362h°n  1043000°¢
fNen0R° | N03NUN®R  VN+3J026°T 204316F°2L 10+388L°n
[0+3008°1  0043N0N°R  0V0e3126°1 €0+394h°L  10+3InT4 %6
1043008°( 0043000°8 U0+3IN26°1 £0+362u°N 10+3Lre’y
TN4300d°)  0N0+3000°4 0Ne3I2T6°1 vas L0+3180°%

vrusBay 1933w

VeINGLA"L

oge3nun®e
AL ghnnta

133739

EasconmMecana

OUnedyne® |y
—ne

unsaAgnL® g
Uneldpling®y

LA AL L L P T L L P T T T T L oy g gy eges

13393y

cemscene

LR g
mae eanw

Sn+48¢0°h
LX)

(AR)O=8

G0eupnG® |
10+ 3uny g

INV/QVy

L L L

meRcernseceumcnestseutonnesne
tu=35n8°1  uueduly®y v 1
RetiemnmagrrncsecncGratatntadonovncaSobntgane OB
CusaG L2 4 0=Ip0r e Ju=4L61°2 1NeLlL’s |02
Tuestue sax To=4098%2 yne3n96"g v 2

Y sa

U+ 3?65 E  10= )P % e 1= 4Pp9°2 10e30Ny°y 2 %
ot gbnnutl  ynedgtc®re 1y=40,5°2 ¢najuEe’e (S 3
VutdnoL™€ sax fu=4byl®2 §0e3ndL") [

L L L LR L P P LT L TP L LT LT T TP PR par oY

lutsdlon®6  19=3p21°1e 1y=4246°2 0=3¢00°y g n
Cu*+4868° 1 10=3218°8e [U=ghyt"2 ¢Ueddid’s ¢ 0
lut 399676 10m3951°ee (9240992 ,0m=3591°%y I oon
Voesuel” san Tu=342L9°% nhalyebe®9g 0 ¢n

et asadtalanncescttostennngne

10¢3Ly9°2  p0=30F2r"ym Ly=gnpl°E  [0=3¢96°9 n ¢S
Totafol™n  (Ne322r’te T0=40140°€ g0w345°g £ 15
Tus32el™8  40=3ebe®s® [u=3§9u°E  QumRg90°y ¢ ¢S
F0#4L5N"8  [0e4]0) ke 10=30¢b°E gU=35b60"} V5
loeg5e0”1 rae Tu=4542°F n0a3,9y°¢ [V

RoeasRoecsccaonana

Tues680°T  Jus3sa’se [ues§02°€ 10e3nbu’g & 49
1oeanyG 1 1023924°8e 10u=3ppl®L  0e3y28°) n 9
lo*Pel 2  (0D=35(2%1e Tyeihnl®f 20alpie”’ £ ¢9
fue3c0a’™s 10=3122%e Tu=3L12°¢ Ne3ibb’g 2 9
utgueRE  10e3g 0% e [u=32.2°F nue3i9y°g Vo9
tuts2gr=l san 10=3651°f nOe39589° 0 9

ces CemssmenatuecpatsnsloogEpgonlgea

004355078 Ine3¢fr’ne [uej 24¢°€ [0a3006°p 9 ¢4
Qu+3ina™9  J0=3ycy®re Tye3092°E  |0m3udy®| s &
lutsde0™ 1 (0e312r"ke luegpad"f g0e3neu’n n el
Tue Syl |0=3p0r°ae (U=36£2°F ¢le3qau’y L 0L
lotabes"f  J0=3¢oc”ee T023108°F §£0e3430°2 e
1u¢486672 LU= 50%0e Tu=4L98°S p0eIsli’p bl
Quegueo®y LY lueanin®t 90e3u06°y (RS
®ae cocRemow ensese e®ssancoa® L) Ceen@guomgoe
0u+40.2°E (0=3¢8s°ye |U=4E¢E°f (0=30f0°§ L 9
00435,47F  10=30F1"re 10=3E¢E°€ (0=3509°] 9 9
00¢3510°G  (0=3g21"te Ju=4n¢i°E ¢0e3pi¢®q 8 (8
V0436927 L (10=3ylg%se lu=3fef°f @20e30iu°g n @
Tu43882°1  10=3n0r°ge lo®urif®f §0m=3518°g £ 8
bu3e 272 10=35Fch® Ju=3508°F §oe3ile”y ¢ 9
Loed61i0 T J0=308u°8e 10=4Fn0°8 pl=36fs’g 1 /8
Out3Zne®s sam Tu=dbon*s  g0e=3gng®y 0 ‘8
cConanmue oeseNonra®as L X @ eoq
00¢3960° 1  J1G=3E58°1e 1u=324E°F [0e36Ni g
0u+32uB°T  [0=3}Fg ke Ju=3298°%E 0e3nng°y
Oyédnegn e 10=3y2e’te 1y=4291°¢ 20e3yly°y
00+380E" €  (0=23373°48 Tu=4hyr"f ¢ghejbe’g
00¢3196°0  [0eduls®se lu=zwui®f 20=3¢h1°}
U0+345297R  [0=3pnd®se Tu=3948°€ 30e395y°§
T0+¢36u8° 1 jue3 le®se 1U=360E°C nle300s°y
1043962°1T  1helphu®ie J0=360°E p0e3490°¢
Oy+3nge©n LE XS T0=36¢9°E $0=3wd¢’§

(A3) Qlw NG° 4V I0d

an°¥ylod

17 IN

NOl4vInepd



_saﬁ

Catalogue of x-ray intensities (last page).

PAGE B.4

6h2°02ES
1RO SRS
AGE°0RILS
€9 °€En1s
CLL AR T
1Latunos
£16°9662
LR9°Lnel
2§58 1042
£40°LLL2
Logtiogy
10§°9¢62
CI AR E Y
nig°sege
1R9°96¢P
“1R9°96§2
189°96E2
8L9°u8sg2
001°56591
009°GAST
0nE°ELNT
029°9h0n8
0RL°s0nT
808°0nEe
9no®ia0t
269°nsogs
168°9n01
tggeigoy

18g°0201

L]

=p)
249
aKd
L]
L 1%0)
Lk
Ll k]
2M9
LIh]
L]
2RI AY
2K
2H)J
L]
249
L]
8H9
849
8uY
Lk
L 0]
249
L1}
L k]

LI]

a*n

2y

LR}

38

L2 3]

L2}

Bupsn

2

PNBED

LYY ¥y

MUe62/L ¢
MUe3L9FL° L
NO®3659G°
noe34GuAL°9
nUeR450¢°g
fueySeL8°
fUe42120°1
fu=3run2®?
f0e39062°1
f0e325L6°¢
nOe3R9IN°n
fUe3fun9°9
20=3R962°1
20e326€1° 4
2ue3InPs°e
§0e3LnrA8° |
2ve3lnis®e
f0=36¢65°2
noe3anhL®g
10=396¢6°2
§U=306M1°}
T0=32162°§
Poe3lelv’s
hU=38Q46°n
n0eynGLe’ L
LI LI R
nue3h§Ga’s
noe3tylo®y

CUed4s651°

TINT
ainNT
SiNT
LR
LORID
3INT
2INT
SINT
SINT
=INT
BINI
2INI
EINT

BINT
ang®
2INT
2LnT
3UINT
3INT
SINT
2INT
3UINT
LI
sINT
2INT
3INT
2nT
2YNT

Sint

iny

o

(A3N) Teowaeuden
(A3M) Ienia9swin
(A3%)2154G5L 01N
(A3M)lubeSuwmin
(A3M)2L88megoun
(A3M)teniLu®buun
(A3¥)982210°950¢
(A3IM)OR2LRY°LNBE
(AIUIQ26ITH°IRLE
(A3M)BELCHU LLLS
(AP LOK°LOLE
(AM)HESV0S 9ESE
(A3¥)L2Lebrglsg
(A3N)05L81E°59¢€
(A3%)8ES0H9°95¢¢E
(AIN)9E60RY°AGET
(A3X)RESUNG YSES
(A3¥)LcLLL9y®ulst
(A3¥)0UN0ai®es92
(AM)000009°9ne2
(A34x)Nudune®sLin?
(A3IN)0uNuee°ynpe
(AIX)Nuouag sy
(A3u)Leeets®orae
(AIM)EnRsna® ey
(AdM) Tefes9°nGue
(A3M)28818E 9nue
(A3M)4MSuaL® g0

(A4¥)L1lvaw®ulue

2N3 diuz]
anN3 vilgs |
=n3 alus=)
2wl alus |
=t3 vilps |
N3 aluz?
an3 L2 N
elys?
2N3 vhoe)
2N alygsn
aN3 dlgs?)
=N3 viue’
BN alys)
aN3 vnoe
23 AY
=N73 viloe |
23 dlauen
an3 gly=
=N3 dle=n
ERE] algei
a3 aluz
=n3 alus?
=13 dalu= |
=N dglu=)
an3 wlug)
=nR aly3n
=n73 aluz
3 dluz
343 alus2

2st
ert
ers
org
2/

(441

2
/s
2/¢
2/¢
st
2/s1%
2/%

e’
2/¢

2/
2rs¢
2s¢e
s
es\

2/4

zel? )
=1
z¢ret
EX 4
sglel
gel?l
¢l
L X280
X
selel
earey
2érel
serel
2ereiy
aerer
=d0 Y
¢l
=¢r?l
XAt
sdrey
ecl’ |
agr’i
=¢reo
z¢r 2
ae @
=c¢l?e
agp’i

a¢l e

5¢12
®g‘2
g¢2
L Rt
gc1?
8¢’2
2g’e
gcee
zg1’g
2
s27‘e
=¢°e
8272
x¢i’e

L
8¢’¢
=¢*¢e
<12
gg2
z=Ne
8egl’e
rgle
=g‘e
‘2
ed1’¢
=<¢‘E
=<’y
=¢1§

xci’g

=¢n
BeN
2N
BN
BN
RIN
a¢N
BN
BN
BEN
B¢N
3¢N
82N
B¢N
32N
8¢\
8¢N

BN

AN
B¢N
BEN
ICN
KAZ
BEN
3N
uﬂz
8N

N

c/i

er’g
€r/s
e’é

erss

e/
/s
rs
/s
ess
m

Bnsmcansnecng

¢/4
479

4/
ési
7/
e/
ess
e/t
és8
é’s
é/%
€’
¢/8

(743

2i0°¢ 8¢ glin
i’y sl 1%y glin
gl{'¢ ali?y gln
sif’¢ sl sliN
30y w8l mlN
al‘¢ 8l%9 alN
alp’s 81’ aln
2ir’¢ vl’y aln
alp’s sl g gin
8ir’g 811’ aln
glr’d mliq’s aln
2’8 817' alN
sir’e alyfn aln
810 511%n giIN

LRV S S SRR
sl ’¢ sb'n

g11''¢ 8l ’n

sif’v 8iN'¢ alnN
alr’¢e a1’ alnN
s’V 2l gin
2lpr’d 217’ wlnN

elr'¢ gl =N
2i0° 817’0 gliN
slir’y glV’yligln
810’8 819 lalN
sif’s s211'yigin
210’¢ rl'ylaln

air’s 8l /wigln

LR R R R I R Ry T S R R N R R R Ry P R Y R P P Y PR R L N FY Y T P

ob1 s §$anly 40

HIHwNN

000°6L2 = (HY)3m DIn(LV

[V

8 bIdniN JInQdY

LR R R R PR R R R R R Y N R R R R R Y Y e Y Y Y ¥



,69¥

APPENDIX C: INDEX OF NOTATION

Reference is made to the equation or reference where some symbols are defined or used.

A : Vector potential (2.2).

a, : Bohr radius.

au = a,/u : Muonic Bohr radius.

b : Muon impact parameter.

c(2) : Internal conversion coefficient (3.2).

d : Atomic dimension parameter [ref. 12].

Ebar(b) : Barrier energy [ref. 12].

AEf.s. : Energy of fine structure splitting (1.29).

Em = ;gé : Energy measured in units of electron masses (Table A.l).
f() : Friction force coefficient function [ref. 12].

o : Hamiltonian operator (2.2)ff.

‘ﬂfi Matrix element of operator .9 between states 7 and f.
By (asbs2) : Confluent hypergeometric function [ref. 68].

,F) (a,bse;2) ¢ Gauss hypergeometric function [ref. 68].

1{} : Dimensionless multipole integral (A.2).

K = % : Transition energy wave number.

Lmax(E) : Maximum angular momentum at energy £ (1.20).

JMZM . : Reduced multipole operator (2.4).

N(E) : Density of final states.

N(L) : Angular momentum distribution of muons (1.14).

N<i)(5) : Energy distribution of captured muons in species (Z) (1.18)
Ni : Total number of captured muons in species (Z) (1.19).

n Ze : Effective n,l for semiclassical approach (1.33), (1.34).

n, Ly, jl;} : Initial and final quantum numbers of muon.

Moy lys g . )
n', 1, j’;} : Initial and final quantum numbers of electron.
Ly d .
P Polarization (1.26).
P, : Initial polarization.
in
Pl : Residual polarization at the muonic ls state (1.31).
s
p : Index used to refer to all electrons (1.32).
2
gagé%? : Probability density distribution of energy loss (1.7).
dPy(€) . Sy .
: Compound probability density of energy loss (1.9).
de
P(E) : Distribution function of uncaptured muons (1.13).
L= -1, Muon-electron position vector.
R : Radial parts of wave functions.

S : Summation over unobserved degrees of freedom of final states (2.1).



»10‘A

S : Statistical (angular) factor (A.4).

g = g Dimensionless retardation parameter (Table A.7).

T : Kinetic energy of the muon (1.23).

V(r) : Atomic potential energy.

y : Dimensionless parameter of the continuum electron energy (A.21).
7* : Effective charges (each shell)

a,B : Fitted coefficients for penetration (A.25).

B : Quantal polarization reduction factor (1.30).

Y : Classical radiation coefficient [ref. 12].

FZE? : Transition rate of multipolarity OL, projection ¥ between states ¢ aand f (2.3).
FE ,FR(GL) : Radiative transition rate of multipolarity L, KL, ML. <
Fk : Auger transition rate of multipolarity FL.

B : Fermi energy of electron gas (0.1).

gz(k,w) : Longitudinal dielectric constant of electron gas [ref. 26].
n(&) : Relative angular momentum at energy £ (1.23).

O?j : Complete angular part of bound state wave functions (A.3).
K : Wave number of continuum electron.

1/x : Shielding length (1.4).

1/X : Screening distance (A.17).

Xe : Reduced electron wavelength (1.5).

A, A : Angular momentum combinations (Tables A.l, A.3).

u,e : Indices for muon, electron.

U : Muon mass in units of electron masses (Table A.1l).

I : Magnetic moment.

£ = 2%5 : Dimensionless screening parameter (Table A.7).

0,0, : Number density of electrons [ref. 12].

ocap(E) : Integral capture cross section for muon at energy F (1.12).
ch(E)/dg : Differential scattering cross section for muon (1.11).
oY(Z) : Photoelectric cross section (3.2).

o : Thompson cross section (3.3).

T : Lifetime of a state (2.1).

) : Integrated precession angle (1.25).

x? : Measure of the reliabiiity of a fit (standard definition).
XZ/DF : Chi squared per degree of freedom.

U] : Full wave function of a state.

Q : Precession angular velocity (1.24).

Q : Designation for angular variables 0, ¢.
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