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ABSTRACT 

Mitochondrial cytochrome £oxidase catalyzes the four­

el ectron reduction of oxygen to water. The functional form 

of the protein contains two copper ions and two heme irons. 

Two of these metal centers, cytochrome ~3 and Cua , constitute 
3 

the oxygen reduction site. The other two metal centers, 

cytochrome a and Cua, are involved in electron transfer from 

cytochrome c to the oxygen reduction site. It is the struc-

ture and function of these four metal centers in cytochrome 

c oxidase which is the subject of this thesis. 

The metal centers constituting the oxygen reduction site 

of cytochrome c oxidase have traditionally been difficult to 

study because their coupled nature renders them EPR silent. 

It is shown that nitric oxide can uncouple these metal centers, 

and under appropriate conditions renders both metal centers 

observable by EPR. One of the nitric oxide complexes is 

an NO-bridge complex, demonstrating that the oxygen reduction 

site is between the two metal centers. Furthermore, this 

NO-bound complex allows us to calculate a distance between the 

metal centers of about 5 ~- Finally, with 15N-his isotopically 

labeled yeast oxidase it is shown that the fifth endogenous 

ligand to cytochrome ~3 is a histidine. 

The copper metal center involved in electron transfer, 

Cua, is shown to have a cysteine and a histidine as ligands. 

The substitution of 12 cn 2-cysteine into yeast oxidase does 

not perturb the eight line hyperfine pattern first seen on 

the Cua EPR signal at 3 GHz. This demonstrates that the 
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5=1/2 center interacting with Cu is probably cytochrome _a a 

at a distance of 10-13 ~. These studies represent the first 

time that ligands to any of the metal centers in cytochrome 

c oxidase have been unequivocally elucidated. 
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CHAPTER I: INTRODUCTION 

Cytochrome ~ oxidase is a membrane-bound protein which 

catalyzes the last step of cellular respiration, that of 

transferring electrons from cytochrome ~ to molecular oxygen 

in mitochondria(l). The overall reaction associated with 

this process is given by 

+ 4 Ferrocytochrome c + o2 + 4H ~ 4 Ferricytochrome c 

+ ZH2o. 

This reaction is now believed to be coupled to the pumping 

of protons across the mitochondrial membrane by cytochrome 

~oxidase in the generation of a pH and potential gradient. 

This potential energy is then somehow coupled to the produc-

tion of ATP*, the cellular energy source. It is the mechanism 

of oxygen reduction together with the proteints ability to 

conserve energy as a pH and potential gradient that have 

served as the focus for research conducted on cytochrome c 

oxidase. 

Largely because of the multi~subunit and transmembrane 

(highly hydrophobic) nature of cytochrome ~oxidase, it has 

been difficult to characterize its subunit composition. 

Recently, Capaldi(Z) has carefully characterized the beef 

heart protein and found that it contains ten subunits, one 

*Abbreviations used in this work: ATP, adenosine triphosphate; 
EPR, electron paramagnetic resonance; ENDOR, electron nuclear 
double resonance; EXAFS, extended x-ray absorption fine 
structure; PPD, paraphenylenediamine. 
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-
copy each of subunits I ~Vlii and two cop~es of subunit IX. 

The molecular weights of the subunits of the beef heart and 

yeast proteins are given in Table 1. The discrepancy between 

the composition of the yeast( 3) and beef heart protein 

subunits probably arises from the lack of a parallel careful 

study of the subunit structure for the yeast protein. The 

ten subunits of the beef heart protein sum to a molecular 

weight of about 130,000. In addition, cytochrome oxidase 

has also been shown(l) to contain four metal ions per 

functional unit, two irons in the form of heme a and two 

copper ions. 

Cytochrome ~ oxidase is one of the most complex and 

yet thoroughly studied membrane proteins. Its assembly into 

the inner mitochondrial membrane has served as a model for 

how other multi·subunit transmembrane proteins become inserted 

into the membrane. It has been found that the three largest 

yeast cytochrome c oxidase subunits are synthesized in the 

mitochondria(4), while ·the remaining subunits are synthesized 

in the cytoplasm. This result has also been found to be 

true of the human protein by Hare et al.CS)_ In addition, 

Peyton and McKemmie found evidence that the cytoplasmic 

subunits are synthesized as a single large precursor poly~ 

peptide( 6 , 7) from which the subunits are cleaved in an 

assembly process that is starting to be unraveled. However, 

these investigations on the large polypeptide precursor 

have been called into question(S~lO). Evidence for a precur~ 

sor to only subunit IV in rat liver(S) and for individual 
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Table 1: Subunit Composition of Yeast and Beef Heart 
Cytochrome ~ Oxidase 

Molecular Weight 

Subunit Beef Heart a Yeast b 

I 35,400 40,000 

II 24,100 33,000 

III 21,000 22,000 

IV 16,800 14,000 

v 12,400 12,700 

VI 8,200 12,700 

VII 4,400 4,600 

VIII 4,400 

IX 4,400 

a) Reference 2 

b) Reference 3 
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precursors to subunits V and VI in yeast(9) provide reason 

to question the results of Peyton and McKemmie. In addition, 

Onashi and Schatz(lO) were unable to repeat the work of 

Peyton and McKemmie. In any case~ the elucidation of the 

complex processing and membrane assembly of cytochrome ~ 

oxidase is sure to have implications in the growing field 

of membrane protein assembly. 

The macroscopic structure of cytochrome £ oxidase has 

been studied on two ~ dimensional arrays of the oxidized 

b b d . . 1 . (11) d mem rane~ oun protein us~ng e ectron m1croscopy an 

(12) variable angle electron microscopy · . Electron microscopy 

revealed very ordered arrays of cytochrome £ oxidase units 

in the membrane. On the other hand, the recent variable 

angle study reveaied a "tooth"-like three dimensional 

structure for the protein, with dimensions of 80x40xl10 R. 
The "roots" of the tooth protrude on the matrix side of the 

inner mitochondrial membrane. The prospect of a high ~reso~ 

lution x ~ ray crystal structure determination is quite remote, 

however, due to the large size of the protein and its hydro­

phobic character. Thus far, there is only one report of 

obtaining very small microcrystalline arrays(l 3) and one 

report claiming the growth of cytochrome £-cytochrome £ 

oxidase complex needle crystals(l 4), both of which are unsat~ 

isfactory for high~resolution x~ray diffraction studies. The 

lack of high~resolution x~ray structural information for 

cytochrome c oxidase necessitates the utilization of other 

techniques to obtain detailed information on the metal 
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centers, which are believed to be intimately involved in 

the electron transf~r and oxygen reduction processes. 

Spectroscopic studies have played an important role in 

the understanding of the role of the metal centers in the 

functioning of the protein. These studies began with 

the original optical characterization of cytochrome ~ and 

~3 by Keilin and Hartree(l 4). Subsequent investigations 

have included the use of optical, EPR, x ~ ray absorption, 

EXAFS, cryogenic enzymology, ENDOR and several other 

spectroscopies. From these studies has emerged a nomencla­

ture for the metal centers in cytochrome £ oxidase. Two of 

the metal ions have been referred to as cytochrome ~3 and 

Cu , due to their close proximity and combined involvement 
a3 

in the oxygen reduction reaction. The remaining two metal 

centers have been referred to as cytochrome ~ - and Cua due 

to their exclusive involvement in electron transfer from 

cytochrome £to the cytochrome a 3 ~cu oxygen reduction site. 
- a3 

These designations are ~onsistent with extensive optical 

and EPR studies indicating the lack of involvement of either 

cytochrome ~or Cua in the binding of any exogenous ligands. 

The relative proximity of the four metal centers within 

the protein matrix is of considerable interest because of the 

implications on the functioning and mechanism of the protein. 

However, this has proved to be a difficult problem to address. 

The proximity of cytochrome a and Cua with respect to each 

other and the cytochrome ~3 ~cua 3 site has been investigated 

by Brudvig and Chan(l 6) using EPR saturation and relaxation 
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technjques , It was found that cytochrome ~and Cua are 

between 10 and 13 ~ separated and that both of these metal 

centers are at least 10 R ()nd possible much farther) from 

the cytochrome ~3 r Cu a 3 site. The a~signment of a distance 

for the separation between cytochrome ~ and Cua remains 

tentative, however, until the EPR sigrial from the Cua 

center is better characterized. 

A complete understanding of the mechanism of electron 

transfer and oxygen reduction in cytochrome ~ oxidase 

necessitates a knowledge o£ not only the relative proximity 

of the metal centers, but also their ligand environments. 

The endogenous protein ligands will determine a metal center's 

redox properties, in addition to its ability to be substi~ 

tutionally labile, and thus influence the metal center's 

functional role in the protein. For cytochrome c oxidase 

none of the endogenous ligands to the four metal centers 

is known. Therefore, the determination of the ligand environ ~ 

ment of the metal centers in cytochrome c oxidase should 

greatly assist in the elucidation of their individual roles 

in the mechanism of action of this enzyme. 

This thesis will concentrate on spectroscopic studies 

carried out on cytochrome~ oxidase. rn Chapter II, NO is 

used as an EPR probe of the structure of the cytochrome a --3 

Cua oxygen reduction site~ Chapter liT involves studies 
3 

on cytochrome ~ oxidase isolated from auxotrophic yeast with 

the substitution of the isotopically labeled amino acids, 
15N h. . d. d 12cn . Th . . . h ~ lsti Ine an 2 ~ cysteine. ese Investigations ave 
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utilized EPR spectroscopy to study the isotopically substituted 

proteins in order to elucidate the ligands to and the nature 

of the Cu center. a 
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CHAPTER II: STRUCTURE OF THE OXYGEN BINDING SITE 

1. INTRODUCTION 

The oxygen r eduction site of cytochrome c oxidase is 

believed(!) to consist of cytochrome a
3 

and Cu Investigations 
- a3 

of these metal centers have been hindered by the fact that 

neither ion gives rise to an EPR signal in the oxidized protein. 

It has been shown by mag~etic susceptibility measurements( 2 , 3) 

that these two metal centers are antiferromagnetically coupled 

(Fea (III), S = 5/2, Cua (II), S = 1/2) producing aS= 2 ground 
3 3 

state. Optical spectroscopic studies of these two metal centers 

are complicated by the fact that Cua probably does not contri-
3 

bute significantly to the optical spectrum( 4) and that it is 

difficult to deconvolute the heme~dominated optical spectrum to 

yield the contribution due to cytochrome ~3 . However, since 

cytochrome a 3 is known(l) to bind N3, CN-, CO, NO and SH-, 

studies utilizing these ligands in conjunction with optical and 

EPR spectroscopies have allowed certain features of cytochrome ~3 
to be elucidated. 

Cytochrome ~3 has been found to be high-spin in both the 

oxidized (Fea (III), S = 5/2) and the reduced (Fea (II), S = 2) 
3 3 

proteins. Cytochrome ~3 becomes EPR visible as a high-spin 

heme in the partially reduced enzyme( 5), and as a low-spin heme 

in the N3- or CN-~bound partially reduced enzymes. Partial 

anaerobic reduction results in the reduction of cupric Cua 
3 

to cuprous (S = 0) in some of the protein molecules allowing 

the uncoupling of cytochrome a 3 from Cua . A disadvantage of 
- 3 

this approach is that only a subpopulation of enzyme molecules 
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is being observed, usually S-20 %, since most molecules have 

either zero or two electrons in the cytochrome a -Cu site -3 a 3 
rendering both ions EPR silent to conventional instrumentation. 

On the other hand, very little is known about Cua . It 
3 

was suggested on the basis of X-ray absorption spectroscopy( 6) 

that this copper ion is similar to a type 1 copper, implying 

that the endogenous ligands are two histidines, a cysteine 

and a methionine. In addition, this suggestion implies the 

presence of an intense charge transfer band in the visible 

spectral region. The interpretation of these x-ray absorption 

results have, however, been the source of considerable contro­

versy. In this regard, resonance Raman studies( 7) indicate 

that neither copper in cytochrome £ oxidase is a type 1 copper 

site. In addition, Brudvig and Chan(S) using Ag+ as a sulfhydryl 

modifying reagent have demonstrated that Cu does not have a 
a3 

cysteinyl ligand or contribute significantly to the protein's 

visible spectrum, and thus Cua is not a type 1 copper ion. 
3 

Further, since Cu has not previously been shown to bind 
a3 

ligands, its structure remains poorly defined. 

In an effort to further delineate the structure of the 

cytochrome a 3-cu site, the binding of NO to the reduced 
- a3 

d . d . d . h b . . d ( g -·13 ) NO . an ox1 1ze prote1n as een 1nvest1gate . 1s a 

paramagnetic molecule with an unpaired electron in an antibonding 

ng molecular orbital. This paramagnetism may be taken advan­

tage of in order to break the antiferromagnetic coupling 

between the cytochrome a 3-cu centers and to probe the 
- a3 

electronic structures of the metal centers. The binding of 
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NO to ferrous hemeproteins is well known(ll). In the case of 

fully reduced cytochrome c oxidase, NO binds to cytochrome ~3 ( 9 ). 

The EPR spectrum of this complex is very isotropic, with g = 
X 

2.09, g
2 

= 2.006, and gy = 1.97. The observed hyperfine pattern 

consists of nine equally spaced lines, and has been interpreted(S) 

in terms of the superposition of three sets of three lines 

arising from two non-equivalent nitrogens (I = 1) interacting 

with the unpaired electron. The larger of the two superhyper~ 

fine coupling constants (21.1 G) was assigned( 9) to the nitrogen 

of bound nitric oxide and the smaller coupling constant (6.8 G) 

was assigned to a nitrogen on the endogenous axial ligand 

of cytochrome ~3 . These assignments, while reasonable, need 

to be confirmed. The presence of an endogenous axial nitrogen 

ligand on cytochrome ~3 , as well as the assignment of the 

coupling constants to two nitrogens, can be verified by inves­

tigating the EPR spectrum of 15NO~ferrocytochrome £oxidase. 

The fifth nitrogen ligand on cytochrome ~3 could be 

contributed by any of a n~mber of amino acids, for example 

histidine, arginine, peptide nitrogen, and lysine. These 

potential fifth ligands vary greatly in their TI-bonding capa~ 

bilities, with histidine being a strong n~bonding ligand, and 

the remaining three ligands being predominantly u~bonding. In 

this regard, Kon and Kataoka(14 ) have shown that the g values 

and nitrogen superhyperfine splittings of the EPR signals of 

NO-bound hemin are dependent on the TI~bonding capability of 

the axially~bound nitrogen ligand opposite NO. With non~TI~ 

bonding ligands, such as amines, the EPR spectra exhibit axial 
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symmetry, with gx = gy = 2.07 and gz = 2.008. Also, the 

observed superhyperfine splitting attributed to the bound 14 NO 

nitrogen is typically 16 G, and no superhyperfine splitting is 

resolved from the nitrogen ligand opposite NO. In contrast, 

with strong TI-bonding ligands, such as pyridine, the EPR spectra 

exhibit rhombic symmetry, with g values and superhyperfine 

14 splittings similar to those of NO~bound ferrocytochrome £ 

oxidase. This result suggests that the endogenous axial ligand 

of cytochrome ~3 is a strong TI~bonding ligand, with histidine 

being the most likely candidate(9 ). 

Nitric oxide is also known to bind to certain ferric hemo-

proteins. The ferricytochrome £peroxidase-NO complex has been 

shown(ll) to be EPR silent from 4~296 K, while the ferricyto~ 

chrome £~NO complex has been shown by magnetic susceptibility 

b d . . (l S) I dd. . NO measurements to e 1amagnet1c t n a 1t1on, can react 

with both oxidized and reduced copper proteins(l 6 , 17 ). In 

particular, the reaction of NO with oxidized ceruloplasmin 

. "bl f h . b . . (16 ) . 1s revers1 e a ter a s ~rt 1ncu ation t1me suggest1ng 

the formation of a reversible copper~NO complex which is 

apparently EPR silent. 

These studies raise the possibility that NO might interact 

with at least one of the metal centers in the cytochrome ~3 -

Cu couple in fully oxidized cytochrome £ oxidase. If indeed 
a3 

NO does interact with one of the metal centers of the site to 

form a diamagnetic NO complex, the antiferromagnetic coupling 

between cytochrome a -Cu will be broken and the "unaffected" 
-3 a 3 

metal center should reveal itself in the EPR spectrum. 
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We have undertaken EPR studies of the interaction of NO 

with cytochrome £ oxidase as a spin probe of cytochrome ~3 ~ 

Cu site of both the oxidized and reduced states ?f the pro­
a3 

tein(l0, 12 , 13 ). In section 3.1, we report studies of the 

15NO-bound reduced beef heart protein and of the reduced 15N-

histidine substituted yeast protein to elucidate the presence 

of histidine as the endogenous axial ligand to cytochrome ~3 . 

In section 3.2, studies are reported on the interaction of NO 

with the oxidized protein, in which the antiferromagnetic 

coupling between cytochrome ~3 and· Cua is broken. Finally, 
3 

in section 3.3, we investigate the complex formed upon the 

addition of NO to the oxidized protein in the presence of 

azide, wherein new EPR signals are observed for cytochrome 

c oxidase which shed some light on the structure of the 

cytochrome a 3-cu site. 
- a3 

2. MATERIALS AND METHODS 

Beef heart cytochrome c oxidase was isolated by the 

procedures of Hartzell and Beinert(lS) and Yu et al. (l 9). 

All experiments described were carried out with the enzyme 

isolated by the procedure of Hartzell and Beinert unless 

otherwise stated. The purified enzyme was stored at 188K 

until use. The preparations contained 9~11 nmoles heme 

~mg protein as me asured by the pyridine hemochromagen assay (_2 O) •. 

The purified protein was dissolved in 0.5% Tween 20/50 m.M Tris~ 

HN03 , pH 7.4 to a protein concentration of approximately 

SO mg/ml with the exception of the Yu et al~ preparation which 

was dissolved in 0.5% Na,..cholate/50 mM phosphate,...HCl, pH 7.4. 
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The protein concentrations were then determined by the method 

of Lowry et al. ( 21 ). 

The growth of labeled yeast and the subsequent isolation 

of their mitochondria will be described in detail in Chapter 

III. Mitochondrial samples studied in section 2 were prepared 

by placing them in EPR tubes at a protein concentration 

of from 60~80 mg/ml. These samples were reduced with PPD and 

ascorbate at concentrations of ~2mM and 20mM, respectively, 
14 - 15 ~ followed by the addition of either N0 2 or N0 2 to a concen~ 

tration of 40mM and then freezing, evacuating, and placing 

the samples under an argon atmosphere. These anaerobic 

samples were allowed to incubate for 30 min; at 277K. followed by 

freezing at 77K. 

The protein~NO samples were prepared by the addition of NO 

(Matheson) to the anaerobic protein (with or without added 

ligands) to a pressure of one atmosphere, unless otherwise 

statedt The samples were made anaerobic by three cycles of 

evacuation and flushing w~th argon. These samples were allowed 

to equilibrate with NO for 10 minutes at 277K before being 

frozen at 77K. KF or NaN 3 were added to the oxidized protein­

NO complex from a sidearm on the EPR tube or optical cuvette 

to yield a final concentration of 100 mM, unless otherwise 

stated. The oxidized enzyme plus cyanide and NO complex was 

prepared by the addition of a 1:2 mole ratio mixture of solid 

KCN and KH 2Po4 to the enzyme while the sample was under vacuum. 

Then NO was admitted to the anaerobic sample after the desired 

period of incubation to give a final pressure of one atmosphere 
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without further evacuation of the enzyme solution. This 

KCN/KH 2P04 mixture resulted in a solution with pH 7.4 when 

added to the enzyme. The amount of KCN added would have given 

a final concentration of 100 mM. However, the major portion 

of the cyanide bubbled off as HCN, The actual concentration 

of dissolved cyanide, estimated from the partial pressure of 

HCN over the sample and the solubility of HCN in water, was 

about 2 mM. 

The EPR spectra were recorded on a Varian E~line Century 

Series X-band spectrometer equipped with an Air-Products 

Heli-Trans low temperature system. Optical measurements were 

carrier out at room temperature on a Beckman Acta CIII 

spectrometer. 

The intensity of the high~spin cytochrome ~3 EPR signals 

were determined relative to an external myoglobin standard 

and also relative to the low~spin cytochrome ~ EPR signal. The 

high~spin EPR signals were integrated by the method of Aasa 

et al. ( 22 ). The low-spin cytochrome~ EPR signal was inte­

grated by the method of Aasa and VanngRrd( 23 ) using the g = 3.0 

component to determine the total area. The low~spin 

cytochrome ~ EPR signal has been shown to correspond to 100% 

of one heme( 22 ), and on this basis the low~spin heme EPR 

signal was used as an internal standard. After correcting 

for the distribution of population among the spin sublevels 

of the high~spin ferric heme, the cytochrome ~3 EPR intensities 

determined using the internal cytochrome a standard were found 

to agree with those determined using the myoglobin standard 
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to within 10%. 

The intensity of the low-spin cyanoferricytochrome ~3 
EPR signal was determined relative to the low-spin cytochrome 

a EPR signal. All three g-values of the cyanocytochrome ~3 
EPR signal are not known since the signal is very anisotropic 

and the two high~field turning points have not been observed. 

Therefore, the cyanocytochrome ~3 EPR signal was integrated 

by the method of DeVries and Albracht( 24 ), using the g = 3~5 

component to determine the total area. 

3~ RESULTS 

3.1 Interaction of NO with Reduced Cytochrome· c Oxidase. The 

EPR spectra of 14NO- and 15NO~bound beef heart ferrocytochrome 

c oxidase are shown in Figure 1. Both NO~bound complexes 

exhibit EPR signals with gx = 2.09, g
2 

= 2.006, and gy = 1.97. 

In contrast, the fully reduced enzyme alone does not exhibit 

an EPR spectrum. When 14NO is bound to reduced cytochrome £ 

oxidase, the EPR signal of the complex exhibits a nine~line 

superhyperfine pattern, which can be interpreted in terms of 

the superposition of three sets of three lines arising from two 

non~equivalent nitrogens (I = 1) interacting with the unpaired 

electron (Fig. lA). The larger of the two superhyperfine 

coupling constants is 20.3 G and the smaller 6.8 G. When 15NO 

is used in this experiment, the 15NO~bound protein exhibits 

an EPR spectrum with a superhyperfine pattern of two sets of 

three lines (Fig. lB). This pattern is consistent with the 

presence of one 14N and one 15N nitrogen bound axially to 

cytochrome ~3 , with a 28.2 G splitting for the 15N and a 6~7 
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FIGURE 1 

EPR spectra of NO-bound reduced beef heart 

cytochrome £ oxidase with (A) 14No and (B) 
15NO, prepared by the addition of either 14NOz 

15 -or N0 2 to .16 mM cytochrome £oxidase. 

Conditions: temperature, 50 K; microwave 

power, 5 mW; modulation amplitude, 2G; micro~ 

wave frequency, ~.23 GHz. 
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BEEF HEART CYTOCHROME ~ OXIDASE- 14NO 

A 

203G 

9z! 2.006 9yt= 1.97 

BEEF HEART CYTOCHROME c OXIDASE-
15

NO 

8 

f 
9x =2.09 
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G splitting for the 14N ligand. The observed increase of the 

larger superhyperfine splitting from 20.3 G to 28.2 G upon 

b · . f 1 5NO f 14 . d h b . f h su st1tut1on o or NO 1s expecte on t e as1s o t e 

relat ive magnetogyric ratios of the two nitrogen isotopes. 

These observations allow one to assign the larger of the super­

hyperfine coupling constants to the nitrogen of the bound NO 

and the smaller coupling constant to a nitrogen on an endogenous 

axial ligand of cytochrome ~3 . 

The EPR spectra of 14 NO~ and 15NO-bound yeast ferrocytochrome 

c oxidase are shown in Figure 2. The NO~bound complex results 

from the addit1on of nitrite to the reduced protein( 25 ) according 

to reaction 1. 

- - + NOz + e + 2H ~ NO + H20 (1) 

It has been found that the addition of N0 2 to PPD plus ascorbate 

reduced mitochondria results in the production of the NO~ferro­

hemoprotein from cytochrome ~ oxidase only( 26 ). This allows 

one to add No; to reduced whole mitochondria and observe essen­

tially only cytochrome ~_oxidase EPR signals~ The g values and 

hyperfine parameters for the yeast protein spectra in Figure 

2 are identical to those of the beef heart protein~ 

The EPR spectra of 14No- and 15NO~bound 15N~histidine (95% 

15N in both ring positions) substituted yeast cytochrome ~ 

oxidase are shown in Figure 3. In contrast to the 14N~his NO~ 

bound protein spectra, the 15N~his hyperfine patterns have been 

altered. For the 15N~his, 15NO~bound p~otein the hyperfine 

pattern consists of two sets of doublets, with a 15NO nitrogen 

splitting of 27.5 G and a splitting of about 12 G for the 15N-
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FIGURE 2 

EPR spectra of NO-bound reduced yeast cytochrome 

c oxidase with (A) 14NO and (B) 15NO. The 

samples were prepared by the addition of either 
14 - 15 .. N0 2 or N0 2 to PPD and ascorbate reduced 

yeast mitochondria~ Conditions: temperature, 

30K; microwave power, 2 mW; modulation amplitude, 

2 G; microwave f'requency, 9.21 GHz. 
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FIGURE 3 

EPR spectra of NO-bound 15N-histidine substi-

tuted reduced yeast cytochrome £oxidase with 

(A) 14NO and (B) 15NO, prepared by the addition 

14 - 15 - 15 of either NOZ or N0 2 to reduced N-his 

labeled yeast mitochondria, Conditions: tern~ 

perature, 30K; microwave power, 2 mW; modulation 

amplitude, 4G; microwave frequency, 9.21 GHz. 
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his nitrogen. The 15N-his, 14NO ~ bound pro~ein hyperfine pattern 

consists of three sets of doublets, with splittings of 21 G 

and 10.2 G for the 14NO and · 15 N ~ his nitrogens, respectively. 

Thus, the substitution of 15N-his for 14N~his results in the 

involvement of an I = 1/2 15N nucleus rather than an I = 1 

14N nucleus in the NO-bound ferrocytochrome ~3 EPR signal. 

In addition,the increase of the smaller hyperfine splitting 

from about ·7 G to about 10 G is expected on the basis of the 

relative magnetogyric ratios of the two nitrogen isotopes. These 

results demonstrate the presence of histidine as the endogenous 

axial ligand to cytochrome ~3 . 

3.2 Interaction of NO with Oxidized Cytochrome c Oxidase. 

(J) Oxidized Cytochrome ~ Oxida·se --NO. The EPR spectrum of 

the oxidized cytochrome £ oxidase~NO complex is shown in Figure 

4. There are no changes in the intensity or position of the low-

spin cytochrome ~ or the Cua center EPR signals upon the addi~ 

tion of NO. However, a new rhombic high ~ spin heme EPR signal 

is observed which corresponds to as much as 58% of one heme, 

although the intensity of this high-spin heme EPR signal does 

depend on the method of preparation of the enzyme (Table 1). 

Since the cytochrome ~ EPR signal remains unchanged, the new 

high~spin heme EPR signal can only be attributable to cytochrome 

~3 . This rhombic high-spin heme signal has g values of gx = 

6.16 and gy = 5.82. The position of gz is obscured by the Cua_ 

signal. The high~spin signal intensities determined using 

a myoglobin standard were found to be independent of temperature, 

thus indicating that the zero-field splitting parameters (D) 

~re nearly equal for the two high~spin ferric heroes. Since D 
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Table 1. The fraction of the high~spin cytochrome ! 3 EPR 

signal observed for various preparations of oxidized cyto­

chrome c oxidase in the presence of one atmosphere NO. 

Preparation 

Hartzell and Be inert 

Hartzell and Be inert 

Hartzell and Be inert 

Yu et al. 

Yu et al. + 10 mM F 

+ 100 mM F~ 

"oxygenated'·' 

Fraction observed 

0.58 

0.61 

<0~05 

<0.05 

0.26 
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is known to be 9.1 cm- 1 for myoglobinC 27 ), then D for high~ 

spin cytochrome ~3 must also be about 9 cm-l The broad signal 

centered at about g = 1.97 in the oxidized cytochrome £oxidase­

NO EPR spectrum is also seen in the spectrum of the buffer plus 

NO sample (Fig. 4) and is presumed to be matrix-bound paramag­

netic NO. 

The binding curve of NO to oxidized cytochrome £ oxidase 

(Fig. 5) demonstrates that the intensity of the high-spin cyto-

chrome ~3 signal is dependent on the NO pressure. The pressure 

of NO corresponding to the appearance of SO% of the observed 

high-spin cytochrome ~3 E?R signal is about 65 mm Hg. This 

process of NO binding to oxidized cytochrome £ oxidase is 

reversible 7 since the high~spin cytochrome ~3 EPR signal 

disappears with removal of NO from the sample. (Fig. 4). 

We have found that the optical spectrum of oxidized 

cytochrome £oxidase remains unchanged upon the addition of 

NO (Fig. 6). The lack of any effect by NO on the optical 

spectrum of oxidized cytochrome £ oxidase indicates that no 

NO-heme interaction occurs. These optical results in conjunc-

tion with the EPR data strongly suggest the formation of a cyto-

+3 +2 chrome a 3 , Cu ~NO complex. 
- a3 

The addition of NO to oxidized cytochrome £ oxidase prepared 

by the method of Yu et al. does not produce a large high-spin 

cytochrome ~3 EPR signal. In this regard, we have found that 

the Hartzell and Beinert preparation of the enzyme, which 

exhibits a large high~spin heme EPR signal upon the addition of 

NO to the resting oxidized protein, does not exh i bit a high~spin 
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FIGURE 4 

The EPR spectra of (A) native oxidized cytochrome 

£oxidase; (B) NO added to (A) to a pressure of 

723 mm Hg;(C) NO removed from (B); (D) NO added 

to the buffer only. The signals at g = 3.03, 2.21, 

and 1.5 are due to cytochrome ~and the signals 

at g = 2.18, 2.03, and 1.99 are due to Cua. The 

temperature was ·7K, microwave power was 0.2 mW, 

modulation amplitude was lOG, and microwave 

frequency was 9.16 GHz for all spectra. 
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FIGURE 5 

The binding curve of NO to oxidiied cytochrome £ 

oxidase. The fraction of cytochrome ~3 observed 

is scaled such that 100% refers to the maximum 

high~spin heme EPR signal intensity observed. 

The maximum signal intensity was found to depend 

on the method of preparation of the enzyme (Table 

1). The pressure of NO represents the total 

pressure above the sample~ 
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FIGURE 6 

The optical spectra of oxidized and reduced 

cytochrome c oxidase in the presence and 

absence of NO and N;. 
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EPR signal when NO is added to this enzyme in the "oxygenated" 

state( 2S). 

(2) Oxidized Cytochrome c Oxidase-NO ~l~s Fluoride. In 

order to determine whether exogenous ligands compete with NO for 

the same binding site(s) in the protein, we have examined the 

addition of fluoride to the oxidized cytochrome ~ oxidase-NO 

complex. The addition of 100 mM fluoride to the oxidized 

cytochrome ~ oxidase~NO complex produces a change in the shape 

of the high~spin cytochrome ~3 EPR signal (Fig. 7) with no 

change in the total intensity~ The signal observed in the 

presence of fluoride appears to be due to a superposition of 

a nearly axial high-spin heme EPR signal and the more rhombic 

+3 c +2 high-spin heme EPR signal observed in the cytochrome a 3 , u -
- a3 

NO complex. Therefore, it appears that fluoride and NO can 

bind simultaneously to the oxidized protein and the resulting 

complex exhibits a nearly axial high~spin heme EPR signal~ 

Since the fluoride~bound Hartzell and Beinert preparation 

of the enzyme exhibits a new high~spin heme EPR signal upon the 

addition of NO, we have also examined the addition of NO to 

the fluoride-bound Yu et al. preparation of the protein. In 

the presence of 10 mM fluoride and NO, the protein isolated by 

the method of Yu et al. exhibits a nearly axial high-spin heme 

EPR signal which accounts for 26% of one heme (Fig. 7). 

As was observed for the Hartzell and Beinert preparation of the 

protein, the NO complex in the presence of fluoride is reversi-

ble upon removal of NO from the sample. 

·(3) Oxidized Cytochrome c Oxidase~NO plus Cyanide. Upon 
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FIGURE 7 

The EPR spectra of (A) oxidized cytochrome c 

oxidize prepared by the method of Hartzell and 

Beinert with NO added; (B) KF added to (A) to 

give a concentration of 100 mM; (C) oxidized 

cytochrome £ oxidase prepared by the method of 

Yu et al . . with 10 mM KF and NO. The tempera­

ture was 9 K, mi~rowave power was 0.05 mW, 

modulation amplitude was 12.5 G, and microwave 

frequency was 9.24 GHz for all spectra. 
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addition of cyanide to the oxidized protein~NO complex, the 

+3 high-spin heme EPR signal observed in the cytochrome ~3 , 

Cu+ 2 ~NO complex disappears. The oxidized cytochrome c oxidase­
a3 

NO plus cyanide EPR spectrum exhibits normal cytochrome ~ and 

Cua EPR signals. In addition, a signal is observed at g = 3.5 

+3 - . which is characteristic of a cytochrome ! 3 ~CN species. The 

intensity of this new EPR signal at g = 3~5 is equal to that of 

the high-spin cytochrome ~3 EPR signal induced by NO. For the 

Hartzell and Beinert preparation of the enzyme, this low~spin 
+3 -cytochrome ~3 ~CN EPR signal accounts for about 58% o£ one 

heme. Thus, cyanide binds quantitatively to cytochrome ~3 in 

the enzyme molecules in which NO induces the high~spin cyto~ 

chrome ~3 EPR signal. Further, it was found that preincubation 

of cyanide with the oxidized enzyme for several hours before 
+3 addition of NO resulted in the appearance of the cy. tochrome a --3 

CN EPR signal which now accounted for 100% of one heme. 

This represents the first time that 100% of both hemes in 

cytochrome £oxidase have been simultaneously observed by EPR. 

Finally, the low-spin cytochrome ~; 3 ~. CN~ EPR signal induced by 

the addition of NO completely disappeared upon the removal of 

the NO. This result indicates that both NO and cyanide bind 

simultaneously at the oxygen binding site, with NO forming a 

reversible complex with Cu+ 2 . 
a3 

The interesting result obtained with cyanide and NO addition 

to the Hartzell and Beinert preparation of the enzyme led us to 

investigate this combined ligand effect on the Yu et al~ prepa­

ration of the enzyme, in which NO does not induce a large high~ 



38 

spin cytochrome ~3 EPR signal~ The addition of cyanide 

followed by NO to the oxidized Yu et al. preparation of the 

enzyme res ulted in the appearance of a small low~spin cyto­

chrome a+ 3-CN- EPR signal. Interestingly, preincubation of 
-3 

cyanide with the oxidized enzyme for five hours or longer 

followed by NO addition resulted in the observation of the 
+3 -cytochrome a 3 -CN EPR signal corresponding to 100% of one 

heme (Figure 8). Varying the preincubation time of cyanide 

with the oxidized enzyme between five minutes and seven hours 

resulted in the observation of increasingly larger amounts 
+3 -of the cytochrome ~3 ·CN . EPR signal (Figure 9). Subsequently, 

Brudvig et al. ( 29 ) found that the increase in the cytochrome 

a+ 3-CN EPR signal intensity upon ~yanide preincubation -3 

directly paralleled the decrease in the intensity of a g' = 12 

EPR signal*, as shown in Figures 8 and 9. This result taken 

together with the "oxygenated" oxidase result (see Chapter 

II, section 3.1(1D demonstrate that at least three conforma-

tions of the oxidized protein exist. 

3.3 Interaction of NO with Oxidized Cytochrome c Oxidase 

in the Presence of Azide. The addition of azide to the oxidized 

protein-NO complex results in a dramatic change in the optical 

spectrum (Fig. 6). The Soret band shifts 8nm to lower energy 

and narrows substantially, while the a~band increases two-fold 

in intensity. The positions of the Soret bands for various 

*The g' = 12 EPR signal arises from a "forbidden" Ams = 2 tran­
sition from oxidized cytochrome c oxidase molecules in a confor­
mation in which cytochrome ~3 and Cua together form an S = 2 
state and cytochrome ~3 has nearly ax~al symmetry (E is close 
to zero). In this case, the ~ms = 2 transition occurs at an 
apparent g value _of 12 at X-band, and is thus labeled g' = 12. 
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FIGURE 8 

EPR spectra of the Yu et al. preparation of 

cytochrome £ oxidase in the presence of both 

cyanide and NO. In all cases one atmosphere 

of NO was added, mixed with the sample for 

two minutes, and then the sample was immedi~ 

ately frozen at 77°K. The samples contained 

0.2 ~~cytochrome£ oxidase and were prein­

cubated with approximately 2 mN HCN at 4°C 

before adding NO: (A) Five~minute preincu­

bation. Conditions: temperature, 16°K, 

microwave power, 0.5 mW; modulation ampli ~ 

tude, 16 G; microwave frequency, 9.23 GHz. 
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FIGURE 9 

Fraction of the Yu et al. preparation of 

cytochrome £ oxidase which exhibited an EPR 

signal at g'=12 and the fraction in which NO 

induced a low-spin cyanocytochrome ~3 EPR 

signal at g ~ 3.5 as a function of time of 

preincubation with cyanide. The concentra~ 

tions and EPR conditions were the same as in 

Figure 2. 
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cytochrome £oxidase species are compared in Table 2. It is clear 

from this spectral comparison that the effect of azide together 

with NO is to reduce cytochrome ~; 3 1 followed by the binding 
+2 of NO to cytochrome ~3 . We have obtained no evidence that this 

+3 process affects cytochrome ~ . 

' A possible scheme for the reduction of cytochrome ~3 is 

given in Reaction 2. This scheme predicts the production of 

+3 +2 Cytochrome ~3 + N3 + NO ~ Cytochrome a 3 + N2o + N2 (2) 

N20 which we have detected by mass spectroscopy. The substitution 
15 14 . of NO for NO results 1n an N20 parent peak located at 

M/e = 45, indicating that the nitrogen from NO appears in the 

N 0 molecule after the reaction. 2 No N20 is detected in the 

absence of cytochrome £oxidase, indicating that reaction 2 

probably occurs at the ligand binding site[s). Subsequently, 

Brudvig et al. ( 25 ) found that cytochrome £oxidase catalyzes 

not only reaction 2, but also the reduction of NO to N20, the 

oxidation of NO to N0 2 and the reversible oxidation of NO to 

No;. 
+2 The formation of the above cytochrome ~3 -NO complex 

+3 does not alter the low-spin cytochrome ~ or the Cua cen-

ter EPR signals~ (Fig. 10). As expected, the high-spin heme 
+3 +2 EPR signal observed for the cytochrome a 3 , Cu -NO complex 

- a3 

disappears upon the addition of N;. However, no EPR signals 

typical of NO-ferrohemoproteins (9 - 11 ) are observed for our 

+2 cytochrome ~3 .-NO complex. Instead, new EPR signals appear 

near g = 2 and at g = 4.34. These results were observed for cyto­

chrome oxidase c prepared by the method of Hartzell and Beinert 
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FIGURE 10 

The EPR spectrum of oxidized cytochrome £ 

oxidase in the presence of N; and NO. The 

inset is a blowup of the half-field transition 

region. The peak labeled with an asterisk (*) 

is not part of the triplet signal and is 

probably due to extraneous ferric iron. The 

temperature was 7K, microwave power was 2 mW 

(200 mW for the spectrum shown in the inset), 

modulation amplitude was lOG, and the micror 

wave frequency was 9.16 GHz. 
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as well as that prepared by the method of Yu et al. 

EPR transitions near g = 2 (6Ms = 1) and g = 4 (~Ms ~ 2) 

are characteristic of a triplet species with a small zero-field 

splitting. Accordingly, we have attributed the new EPR signals 

which we observe near g = 2 and at g = 4.34 to a triplet species. 

The ~Ms = 2 transition which we observe exhibits a four-line 

hyperfine pattern with a splitting of 97 gauss due to a copper 

nucleus C.IAn_l = 0~020 cm-.1). This value of 1~1 is indicative 

of a Type 2 copper ion (30). We propose that the triplet signals 

originate from magnetic coupling of the unpaired electron on 

the cytochrome ~; 2 -NO site with that of the cu:2 . This represents 
3 

the first EPR signal ever observed for Cu in cytochrome £ 
a3 

oxidase~ The ~M5 = 1 transition near g = 2 indicates that 

IDI~I3EI~0.07 cm~l where D and E are the axial and rhombic 

zero~field splitting parameters respectivelyC 31 ), 

We have found that the process of NO binding in this one-

quarter reduced enzyme complex cannot be immediately reversed 

by either the removal of the NO atmosphere or the subsequent 

addition of 02 . This is in strong contrast to the oxidized 

enzyme~NO complex where NO binding can be readily reversed, 

and in the reduced enzyme-NO complex where removal of the NO 

atmosphere followed by 02 addition results in the immediate 

displacement of the bound NO, A very slow reversal of NO binding 

in the one-quarter reduced enzyme, induced by removal of the 

NO atmosphere and subsequent 02 addition, results from the 

known(ZS) oxidation of NO to NOz in the one~quarter reduced 

complex. Thus, the stability of this one~electron reduced 
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complex taken together with the EPR results suggest that 

No b 'd b ' h +2 and Cu+ 2 • r1 ges etween cytoc rome ~3 a3 

4. DISCUSSION 

We have studied the interaction of NO with oxidized and 

reduced cytochrome c oxidase~ Different results have been 

obtained depending on whether NO interacts with the reduced 

protein or the oxidized protein in either the presence or 

absence of azide. In the reduced~NO complex with the yeast 

protein, it has been possible to identify the endogenous 

axial ligand to cytochrome ~3 • For the oxidized beef heart 

protein in the absence of azide, we have obtained evidence 
. +3 +2 

for a cytochrome a 3 , Cu ~NO complex. In the presence of 
- a3 

+2 
azide, the observations suggest that a bridged cytochrome ~3 ~ 

NO-Cu+ 2 complex is formed. In both of these oxidized protein 
a3 

complexes, the antiferromagnetic coupling between cytochrome 

~3 and Cua observed in the native oxidized protein is broken. 
3 

4.1 The Reduced~NO Yeast Cytochrome ~Oxidase Complex. 

Th b . . f 15N h. . d. f 14N h.. . d. . e su st1tut1on o 2~ 1st1 1ne or ~ 1st1 1ne 1n a 

histidine yeast auxotroph has allowed the isolation of 15N­

his isotopically labeled yeast cytochrome c oxidase. Nitric 

oxide binding studies with this labeled protein have allowed 

identif ication of histidine as the endogenous axial ligand 

to cytochrome ~3 . The original suggestion (9) of histidine 

as the axial ligand to cytochrome a 3 arose from evidence 

that a nitrogen atom was bound axially to cytochrome ~3 ~ 

This suggestion led to the logical hypothesis ( 32 ) of an 

imidazole bridge between cytochrome ~3 and Cua facilitating 
3 
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the strong antiferromagnetic interaction between these two 

metal centers. 

With the present definitive assignment of histidine as 

the axial ligand, two models for the oxygen binding site are 

possible (Figure 11). In model A, a strongly-bound imidazole 

bridges the iron and copper metal centers( 32 ), with the ligand 

binding site being the free axial position of the heme iron. 

In model B, the ligand binding site is between the two metal 

centers(33 ). However, since the results of the interaction 

of NO with the oxidized protein in the presence of azide 

provide the most discriminating evidence for the two modelsJ 

the relative merits of the two models will be discussed in 

section 4.4. 

4.2 Interaction of NO with Oxidized Cytochrome c Oxidase. 

We have shown that NO interacts with oxidized cytochrome ~ 

oxidase and breaks the antiferromagnetic couple between the 

iron and copper. The resulting complex exhibits a new high­

spin heme EPR signal which corresponds to as much as 58% of 

cytochrome ~3 . The optical spectrum of the oxidized protein 

remains unchanged upon the addition of NO. Taken together, 

these observations indicate that there is no NO-heme interac-

tion. M EPR · 1 b d for Cu+ 2 1·n the oreover , no s1gna s are o serve 
a3 

presence of NO. Therefore, it 
+2 +3 Cu to form a cytochrome a 3 , 
a3 -

sents the first solid evidence 

ligands. 

appears that NO interacts with 

Cu+ 2 -NO complex~ This repre­
a3 

that Cua binds exogenous 
3 

There are two ways in which NO might interact with Cu+ 2 
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FIGURE 11 

Two proposed structures for the cytochrome 

a ~Cu couple in oxidized cytochrome c 
-3 a 3 
oxidase: L stands for a possible ligand. 
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to produce an EPR silent species: (i) that NO reduces the 

copper or (ii) that NO coordinates to the copper to form an 

exchange coupled complex. We feel that the situation (ii) 

above is more likely, since the formation of our cytochrome 

+3 +2 a 3 , Cu -NO complex is easily reversible upon the removal 
- a3 

of NO. We have observed no signal which can be assigned to 

a Cu+ 2-NO triplet. Inasmuch as we do observe a high-spin 
a3 

cytochrome ~3 EPR signal which accounts for as much as 58% 

of one heme, we believe that Cu+Z and NO spins are antiferro­
a3 

magnetically coupled with a large exchange interaction rela-

tive to kT. In support of the contention that NO forms a 

strongly exchange coupled complex with cu: 2 , it is worth 
3 

noting that the temperature dependence of the high-spin 

cytochrome ~3 signal can be fit by taking only the Boltzman 

factor into account. This indicates that this metal center 

is magnetically isolated from cupric Cu , necessitating 
a3 

+2 that the Cu -NO complex be diamagnetic. 
a3 

When NO is added to .oxidized cytochrome~ oxidase, we do 

not observe a signal from 100% of cytochrome ~3 . This could 

arise because of a conformational heterogeneity of the enzyme 

molecules wnich renders only a subpopulation of the enzyme 

capable of ~inding NO. However , it is also possible that NO 

does bind to all of the cytochrome ~ oxidase molecules but 

that a conformational heterogeneity of the protein allows 

only a fraction to be observed by EPR spectroscopy. In order 

to observe a high~spin cytochrome ~3 EPR signal the interac~ 

tion of NO with cu:2 must dominate the exchange interaction 
3 
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+2 +3 between Cu and cytochrome ! 3 . It is probable that a change 
a3 

in conformation of the cytochrome a 3 ~ cu site will alter the 
- a3 

magnitude of the exchange interaction between these two metal 

centers. Thus, it is likely that more than one conformation 

of NO bound oxidized cytochrome£ oxidase exists: one in 

which the cytochrome a 3 ~cu interaction is large with respect 
- a3 

to the Cu -NO interaction resulting in an EPR silent cytochrome 
a3 

! 3 and another in which the Cua ~NO interaction dominates 
3 

resulting in an EPR visible cytochrome ! 3 . 

The binding studies with fluoride and cyanide to the 

oxidized protein~NO complex demonstrated the existence of at 

least three distinct conformations of the oxidized protein: 

(i) the conformation giving rise to the rhombic high~spin 

cytochrome ! 3 EPR signal upon NO addition, (ii) the confor­

mation in the Yu et al. preparation which gives rise to the 

axial high~spin cytochrome ~3 EPR signal immediately upon 

the addition of NO and fluoride, and (iii) the conformation 

which slowly binds cyanide to give the low~spin cytochrome 

+3 -! 3 ~CN EPR signal upon NO addition (40% of the enzyme mole-

cules isolated by the method of Hartzell and Beinert). These 

studies laid the ground work for the much more extensive 

conformational study of cytochrome £ oxidase of Brudvig et 

al.C 29 ). In this study(29 ), it was concluded that there 

are at least four distinct conformations and the sequence 

of their formation upon reoxidation of the reduced enzyme 

was elucidated. The sum of these conformations accounted 

for 100% of the enzyme molecules in both the Hartzell and 

Beinert and the Yu et al. preparations of the protein, 
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4.3 Interaction of NO with Oxidized Cytochrome c Oxidase 

in the Presence of Azide. We have shown that N3 addition to 
+3 +2 the cytochrome ~3 , Cu ~NO complex results in reduction of 

a3 
cytochrome ~3 to the ferrous state, followed by the binding 

of NO to the cytochrome ~3 moiety. Furthermore, EPR signals 

typical of a triplet species appear, originating from the 

thermally accessible S = 1 excited state of the antiferro~ 

magnetically coupled spins of the NO ~bound site and Cu+ 2 . 
a3 

+2 Magnetic coupling between the cytochrome ~3 ~NO complex and 

Cu + 2 could arise if NO bridges the two metal sites. 
a3 

Our proposal for the NO bridge is consistent with the 
(9 10) known affinity of NO for ferrous cytochrome ~3 ' as 

well as the affinity for cupric Cu established here( 12 ). 
a3 

The evidence (EPR and optical) that neither the removal of 

NO from the sample nor the subsequent addition of 02 results 

in the immediate displacement of NO in the cytochrome ~; 2 -
+2 NO - Cu complex, indicates that this bridge is a stable one. 
a3 

In contrast, the bindins of NO in the case of the fully 

reduced cytochrome c oxidase-NO complex (Fe +2 -NO) and in 
- . a3 

the case of cytochrome ~; 3 , Cua; 2-NO (Cu+ 2 ~NO) is reversible. 

The value of 1\
1
1, 0 ~ 020 ~m-1, obtained from the hyper­

fine splittings observed for the ~Ms = 2 transition of the 

h + 2 NO C + 2 . 1 . . . d . . f cytoc rome a 3 - - u tr1p et spec1es 1s 1n 1cat1ve o a 
- a3 

type 2 copper site. In this regard, recent resonance Raman 

studies( 34 , 35 ) have demonstrated that neither copper center 

in native oxidized cytochrome £ oxidase is a type 1 copper 

site. In addition, Ag+ binding studies by Brudvig and ChanC 33 ) 
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demonstrated that Cu is not a type 1 copper site. Taken 
a3 

together, these results suggest that the structure of Cu 
a3 

in the native oxidized protein may be similar to a type 2 

copper center. It has recently been found by Malmstrom 

et al. (35 ) that a Cu EPR signal can be induced from the 
a3 

partially reduced enzyme in the presence of both CO and 0 2 . 

This allows a state of the protein to be prepared in which 

cytochrome ~3 -co is reduced and Cua is oxidized. The EPR 
3 

signal observed from Cu , with g values of 2.28, 2.11, 2.05, 
a3 

and A11 =0.010 cm~l is quite similar to that of copper in 

superoxide dismutase(36 ) (g = 2.26, 2.10, 2.03; A11 = 0.013 

-1 em ). 

It is reasonable to assume that the structure of Cu is 
a3 

similar to that of the superoxide dismutase copper, for which 

three histidine imidazole ligands form a plane with the copper, 

while a fourth imidazole is bent slightly out~of ~plan~C 38 ). 

Furthermore, one axial position on the superoxide dismutase 

copper was found to be available for the coordination of exo-

genous ligands, analogous to the ability of Cu 
a3 

to bind NO. 

4.4 The Structure of the Cytochrome a -Cu 3-a3 
Site in 

Cytochrome c Oxidase. The findings reported here permit 

us to make some definite conclusions regarding the structure 

of the cy~ochrome ~3 ~cua 3 site. Two models which have been 

proposed for the cytochrome ~3 -copper site are shown in 

Figure 11. Our evidence that NO bridges the two metal senters 

+2 +2 in the cytochrome a ~NO-Cu complex strongly -argues in -3 a 3 
favor of model B. 
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Model B would allow formation of a bridged "peroxy" 

species as an intermediate in the reduction of molecular 

oxygen to water by cytochrome c oxidase. In this regard, 

the distance between cytochrome a 3 and Cu may be estimated 
- a3 

from the magnitude of D, the zero~field splitting in the 
+2 +2 cytochrome a 3 -NO-Cu complex. A value for IDI of 0.07 

- a3 
cm-l has been obtained from the breadth of the ~Ms = 1 

transition for this triplet state. 
0 

A distance of 3.4 A 

between the spin centers can be calculated assuming a purely 

dipolar interaction( 3S). However, spin·orbit and exchange 

interactions can also contribute to the zero~field splitting 

in triplets. These contributions to the zero~field splitting 

in the cytochrome a; 2 -NO~Cu+ 2 complex have been estimated( 39 ) 
- a3 

and appear to be quite small. Taking these considerations 

. d h f h h . h +2 1nto account an t e ·act t at t e sp1n on cytoc rome ! 3 -

NO lies primarily on the nitrogen of NO, we estimate that 

the distance between cytochrome a 3 and Cu is about 5 ~. 
- a3 

This distance is close to that expected if dioxygen bridges 

between the two metals. This close proximity is likely 

important in the stabilization and anchoring of reactive 

intermediates which are formed during the reduction of 

dioxygen to water. 

Model B also suggests the possibility of the formation 

of a ~~oxo bridge between these two metal centers after 

the complete reduction of 0 2 ~ It might be that the "oxygenated" 

enzyme produced by reaction of the reduced enzyme with o2 

consists of such a ~~oxo bridge at the cytochrome a -Cu -3 a 3 
site. It is possible that the "oxygenated" enzyme differs 
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from the oxidized "resting" enzyme only in terms of the 

nature of the bridging ligand! If this is the case, then 

the conformational difference normally associated with these 

two states of the enzyme might be understood. In any case, 

model B would seem to confer some degree of conformational 

flexibility on this part of the enzyme, inasmuch as cytochrome 

~3 apparently can accommodate a number of exogenous ligands 

of varying sizes as its sixth ligand. 

Our finding that Cua
3 

is similar to a type 2 copper in 
+2 the cytochrome a ~No~cu+2 complex suggests that Cu has a -3 a 3 a 3 

similar ligand environment in the native oxidized enzyme, 

i.e., square-planar coordination or octahedral coordination 

with a s~rong tetragonal distortion. For a d9 copper involved 

in square-planar coordination, it is well known that the 

unpaired electron is in a d 2 2 orbital, with the orbital 
X -y 

lobes directed towards the ligands in the square plane. · The 

strong antiferromagnetic coupling between cytochrome ~3 and 

Cu in the oxidized en~yme would be facilitated through a 
a3 

bridging ligand bound equatorially to Cu as is illustrated 
a3 

in Figure 12a. This model raises the exciting possibility 

of modulating the interaction of Cu with the bridging ligand, 
a3 

and hence cytochrome ~3 , via the binding of strong exogenous 

ligands above or below the square plane of Cu The attach~ 
a3 

ment of a strong ·field ligand to the axial position of Cua 
3 

should place the unpaired electron in a square plane containing 

the stronger ligand (Fig. 12b)~ When this occurs, the inter­

actions of the copper ion with cytochrome ! 3 will be modified. 



58 

FIGURE 12 

Proposed structure of the cytochrome a 3 - Cua 
- 3 

site in (A) native oxidized cytochrome £ oxidase 

and (B) NO-bound oxidized cytochrome c oxidase. 

R1 , R2 , R3 , and R4 denote endogenous ligands 

and L denotes the bridging ligand (which may 

or may not be endogenous). 
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This model explains the results of our EPR studies of the NO­

bound oxidized enzyme. If NO is a stronger field ligand than 

R2 and L (Fig. ' l2), then binding of NO to Cu in the axial 
a3 

position would shift the axes of the ligand field. In this 

manner, the antiferromagnetic exchange interaction between 

Cua
3 

and cytochrome ~3 would be greatly reduced; it would 

be eliminated if the Cu ·NO interaction results in a dia­
a3 

magnetic center at the Cu site~ In the latter case, the 
a3 

observation of an EPR signal from cytochrome ~3 will be 

allowed. This model also predicts that the appearance of 

the cytochrome ~3 high-spin EPR signal will depend on the 

nature of the bridging ligand, L, a prediction which is in 

accordance with our observations on the '·'oxygenated" enzyme 

and the effect of CN on the cytochrome ~+3 3 , Cu+ 2 ~NO complex. 
a3 

Finally, we consider the implications of our NO experiments 

on the mechanism by which cytochrome a 3-cu site reduces 
- a3 

oxygen. In this regard, it is important to compare the 

reduction of the prote~n under aerobic and anaerobic condi~ 

tions! When cytochrome c oxidase is reduced anaerobically, 

Cua is reduced before cytochrome ~3 . Also, when the fully 
3 

reduced enzyme is reoxidized anaerobically, cytochrome ~3 
is oxidized before Cua . These differences in reduction 

3 
potentials between the two metal centers have allowed 

cytochrome ~3 to be observed by EPR as a high~spin heme in 

a state where cytochrome a 3 is oxidized while Cu is 
a3 

reduced(S), However, it is clear from this work that in 

the presence of NO, the reduction potential of cytochrome 
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~3 becomes higher than that of Cu . This raises the question 
a3 

of whether or not the reduction potentials measured on the 

anaerobic enzyme have any direct bearing on the enzyme 

during its reaction with dioxygen. Presumably the coordination 

of dioxygen to the enzyme would also greatly perturb the 

reduction potential of cytochrome ~3 ! In fact, it is possible 
+2 +2 . that the cytochrome a 3 ~NO~Cu tr1plet state, which is 

- a3 

stabilized by NO, resembles a state formed during the reaction 

of the enzyme with dioxygen. Thus, the role of cytochrome 

~3 may be to anchor dioxygen to the enzyme while remaining 

in the ferrous state, and the role o£ Cua may be to receive 
3 

electrons from the cytochrome ~/Cua centers and sequentially 

transfer them to dioxygen. 
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STRUCTURE OF THE Cu CENTER 
a 

1. INTRODUCTION 

The Cua center of cytochrome £ oxidase was first charac­

terized by EPR by Beinert et al. (l). They noted that only 

half of the copper in the protein was accounted for by the 

EPR spectrum. That observation is consistent with the 

subsequent determination( 2 , 3) that the second copper (Cu ) 
a3 

was strongly exchange coupled with cytochrome ~3 to produce 

an EPR silent coupled site. In addition, Beinert et al.Cl, 4) 

found the Cua EPR signal to be unlike any EPR signal previously 

recorded for copper proteins or copper complexes. This latter 

observation has led to a considerable number of spectroscopic 

investigations aimed at elucidating the unique nature of the 

Cua center. 

The EPR signal of the Cua center is unique in two 

respects. First, one of the g values is below that of the 

free electron value of 2.0023. Second, copper hyperfine 

splittings are not observed with X-band EPR spectroscopy. 

The mechanisms most commonly used to explain the unique Cu a 

EPR propertie s are through extensive spin delocalization from 

Cua to its ligands(S, 6) or through the mixing of 4s and 4p 

orbitals into the 3d ground state brought about by distortion 

of copper into a near tetratedral geometry( 7). 

The spin delocalization mechanism for explaining the 

unique Cua EPR signal suggested the presence of a sulfur 

radical(S) rather than a Cu(II) ion. The proposal of a sulfur 

radical in cytochrome c oxidase did not ~eceive considerable 
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attention unt;il the x-ray absorption study of Hu et al. (B) . 

They interpreted the copper x ~ ray absorption edge as arising 

from one Cu(II) (Cu ) and a Cu(I) (Cu ) . The x-ray a
3 

a 

absorption edge studies together with the unique Cu EPR 
a 

properties and the Ag+ titrations of cytochrome £oxidase 

led to the model for the Cua center of Chan et al. (9 ,lO) 

shown in Figure 1. In this model, Cua is ligated to two 

cysteines and two histidines, with the delocalization of an 

electron from one of the cysteinyl sulfurs to Cua, resulting 

in a Cua(I)-S spin system. 

Following the presentation of this model for the Cua 

center, there has been a flurry of spectroscopic investiga-

tions aimed at determining the validity of a sulfur radical 

model. Some of the more enlightening studies will be 

described here. 

The measurement of the EPR signal of Cua at S-band (3 GHz) 

allowed the resolution of copper hyperfine for the X and Z 

orientations(11 ). The copper hyperfine couplings are 45 and 

~40 G in the Y and Z directions, respectively, both of which 

are small for copper. In addition, a 25 G hyperfine coupling 

due to a S = 1/2 site was resolved only in the Y orientation. 

This 25 G coupling could either be due to a strongly coupled 

proton or a static dipolar splitting of Cua by cytochrome ~( 12 ), 

if these two centers are sufficiently close (10-13 R). Recent 

ENDOR studies have lent some insight into the origin of this 

25 G coupling in the Cu EPR spectrum( 13 , 14 ). 
a 

The ENDOR spectra revealed at least one nitrogen coupling 
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FIGURE 1 

Proposed structure for the Cua center in 

cytochrome c oxidase. 
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and two strong proton couplings in the Cu center EPR signal. a 

However, the proton couplings were small, 4 and 6 G, and the 

ENDOR spectra did not reveal a 25 G proton coupling which could 

account for the 25 G coupling observed in the S~band EPR 

spectrum. These studies thus indicated that this 25 G coupling 

might arise from a dipolar splitting of Cu by cytochrome a. a -

In addition, the most recent ENDOR investigation of cytochrome 

c oxidase by Hoffman et al. (l 4) observed copper hyperfine 

couplings to Cua EPR signal that were essentially isotropic 

( I Ax I = 6 8 MH z , I Ay I = 9 8 MH z , I A z I = 9 0 MH z ) . This o b s e r -

vation led the authors to conclude that the best interpre-

tation of the Cua EPR spectrum is that it arises from a Cu(II), 

in support of the proposa1( 7) that the admixture of 4s and 

4p orbitals into the 3d ground state could account for this 

EPR spectrum. However, calculations taking into account 

the g anisotropy and the very small nearly isotropic copper 

hyperfine interaction of the Cu EPR signal(l 2), indicate 
a 

it is necessary to mix three times as much 4p orbital 

character as 3d in order to fit the EPR properties of the 

Cua center. Thus, it appears that the best description of 

the Cu center is that of a Cu(I)-S complex. a 

The exact nature of the ligands to Cua has been more 

difficult to ascertain. The presence of at least one nitrogen 

at the Cu center was implicated in the ENDOR studies and in a 

h A + . . ( g ' l O ) Th . b . 1 . h . . t e g t1trat1ons . e poss1 1 rty t at cysteine was 

a ligand to Cua was supporte~ by the similarity of the EPR 

properties of Cua and sulfur radicals. In addition, cysteine 
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would provide methylene protons adjacent to sulfur that 

could strongly couple to the electron spin. We thus ini-

tiated investigations with the yeast enzyme in an attempt 

to obtain isotopically labeled cytochrome £ oxidase so as 

to determine the ligands to Cua and the nature of its 

unique EPR properties. From our model shown in Figure 1, 

it was felt that isotopically labeled histidine and cysteine 

proteins would likely yield the most information. In this 

h h · · f l 5N h. . d. d c apter, we report t e 1ncorporat1on o - 1st1 1ne an 

12cn 2-cysteine into histidine and cysteine yeast auxotrophs, 

respectively. The isotopically labeled cytochrome £oxidase 

molecules were isolated from these auxotrophs and the 

EPR spectra were obtained. These studies have lent 

considerable insight into the nature of the ligands to Cua 

and origin of this metal center's unique EPR properties. 

2. MATERIALS AND METHODS 

Beef heart cytochrome c oxidase was isolated by the 

. ( 15) method of Hartzell and Beinert . The purified protein 

was dissolved in 0.5% Tween 20/50 mM Tris-HN03 , pH 7.4 to a 

concentration of 56 mg/ml. This preparation of the protein 

contained 9 nmoles heme ~/mg protein. 

All the chemicals used in the enzyme purifications were 

of enzyme grade when available, and otherwise they were 

reagent grade. All the chemicals used in the growth of yeast 

such as vitamins, amino acids and galactose were the highest 

grade available from Sigma; The labeled histidine used for 

yeast growth was 95% 15N in both histidine ring nitrogen 
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positions and was obtained from VEB BERLIN-CHEMIE, BERLIN-

ADLERSHOF. 

2.1 Synthesis of 12 cn 2-Cysteine. Cysteine was synthe­

sized according to the malonate condensation procedure of 

Crawhall and Elliot(l 6) as modified by BeilanC17 ) for use 

without the isolation and purification of intermediates. 

This procedure afforded the easiest approach to the specific 

labeling of the S carbon. Figure 2 outlines the synthesis. 

This procedure involved the condensation of formaldehyde 

with diethyl ((benzylthio)thiocarbonylamino) malonate (DTBM), 

followed by cyclization with thionyl chloride to give 

thiazoline. Saponification, decarboxylation and hydrolysis 

yields S-((benzylthio)carbonyl)) cysteine, which was cyclicized 

to 2-ketothiazolidine-4-carboxylic acid and finally hydrolyzed 

in acid to cysteine. Cysteine was oxidized to cystine, which 

was then isolated and recrystallized. Purified cystine was 

reduced to D,L-cysteine with tin and HCl. The expected yield 

was 48%. 

DBTM was synthesized from diethylaminomalonate in three 

batches, the average yield of which was 87%. 12 cn 2 ~cysteine 
was synthesized from DBTM and n2-formaldehyde (98% D, Stohler). 

n2-formaldehyde was prepared by refluxing paraformaldehyde 

(-cn2-o-) as a 0.5 M solution. The 12cn2-cysteine was 

prepared in six batches, the average yield of which was 28%. 

2.2 Preparation and Isolation of Yeast Auxotrophs. 

The wild-type haploid Saccharomyces cerevisiae strain. D273-

10B was mutagenized with ethylmethanesulfonate as described by 
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FIGURE 2 

Outline of the conversion of diethylamine 

malonate to cysteine with the isotopic label 

being introduced as formaldehyde. 
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F . k(18) 1n . Freshly grown yeast cells were suspended in 3% 

ethylmethanesulfonate at 30°C for 50 min. The cells were 

then washed three times by centrifuging and resuspension in 

sterile water, each time transferring the cell suspension to 

a new tube. The final washed and resuspended cells were 

diluted tenfold into liquid minimal media with the- desired 

growth factor (histidine if one is looking for a histidine 

auxotroph), which was cysteine and histidine together. These 

cells were allowed to grow for two days at 30°C, followed 

by plating out on petri plates (to about 100 colonies/plate) 

containing minimal media plus either histidine or cysteine. 

Cells that grew on minimal plus cysteine were then checked 

for growth in the absence of cysteine and checked for growth 

on defined media containing all amino acids except cysteine. 

Colonies that proved to be cysteine auxotrophs were then 

finally checked for respiratory-deficient mutations, charac-

teristic of "petiten mutants. Colonies that passed all the 

above tests were then stored on rich media at 4°C. Histidine 

auxotrophs were isolated by the same procedure as outlined 

above except the supplemented nutrient was histidine. The 

cysteine and histidine auxotrophs were labeled lOB Cysi 

lOB Hisi, respectively. 

2.3 Large Scale Yeast Growth. For the isolation of 

yeast mitochondria and cytochrome £ oxidase, the yeast cells 

were grown in a 350 liter fermentor which was interfaced to 

a Sharples continuous flow centrifuge. For growth of the _ 

wild-type yeast cells in the 350 liter fermentor the media 
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contained yeast nitrogen base components( 19 ), 1% galactose, 

1 Kg casamino acids (Difco), 11 g each uracil and adenine, 

11 g penicillin and 17 g streptomycin. In addition, 95% 

ethanol was added as an additional carbon source at a rate 

of about 1 gallon/day. A freshly grown yeast culture was 

used to inoculate the 350 liter fermentor to a level of 

6 about 10 cells/ml, and growth was allowed to proceed to 

about Sx10 8 cells/mi. All yeast growth was carried out 

0 at 30 C. The yield of yeast cells after 3 days of growth 

was about 5-6 Kg wet weight. 

The yeast auxotrophs were grown as described for the 

wild-type cells except the media contained yeast nitrogen 

base components, 1% galactose, 11% each uracil ~nd adenine, 

17 g of all 1-amino acids except either histidine or cysteine, 

11 g penicillin and 17 g streptomycin. In the case of the 
15 histidine auxotroph 2 g D,L-histidine•HCl (95% N2) were 

added to the media. For the cysteine auxotroph 6 g D,L­

cysteine•HCl (98% 12 cD 2) were added to the growth media. 

The starter cultures of the two auxotrophs were added to 

cell densities of about 3x10 6 cells/mi. The cultures 

were allowed to grow for about 2 - 3 days, with monitoring 

for revertants and contaminants every 12 hours. The cells 

were harvested when the increase in cell density began to 
7 level off (~3-SxlO cells /ml) , and at this point a sample of 

the culture was removed to determine the level of revertants. 

For both the cysteine and histidine auxotrophs the level of 

revertants at the completion of growth was less than 0.004%. 
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2.4 Isolation of Yeast Mitochrondria. Mitochondria 

were isolated from yeast by the method of Tzagoloff( 20) as 

modified by Shakespeare and Mahler( 2l). The yeast cells 

were frozen in liquid nitrogen c~soo g, wet weight) and trans­

ferred to a pre-cooled one gallon steel Waring blender. 

This frozen pellet was blended on high-speed until all chunks 

were reduced to a very fine powder. About 1400 mls of room 

temperature buffer, 0.4 M sucrose, SO mM Tris/acetate, 2 mM 

EDTA, pH 7.4 were added to the blender. This suspension was 

then homogenized for 2 minutes alternating between low and 

high speed. After adjusting the pH to about 7.S with XOH 

the suspension was centrifuged at 2000 xg for 1S min. The 

supernatant was adjusted to pH S.2 with acetic acid and 

centrifuged at S4,000 xg for 30 min, and the mitochondrial 

pellets were then resuspended in SO mM phosphate, 1% KCl, 

1 mM EDTA, pH 7.4. Since each liquid nitrogen treatment 

resulted in breakage of only between 1S - 20% of the yeast 

cells, this procedure w~s repeated until almost all cells 

were broken, as evidenced by the size of the light fluffy 

layer of broken cell debris in the 2000 xg pellet. The 

mitochondria were resuspended in the P04/KC1/EDTA buffer 

to a protein concentration of 20 mg/ml, as determined 

by the method of Lowry et al. ( 22 ). 

2.S Isolation of Yeast Cytochrome c Oxidase. Many of 

the published procedures for the isolation and purification 

of yeast cytochrome ~ oxidase were attempted, but none were 

particularly satisfactory. This probably results from the 
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fact that most yeast oxidase procedures were not designed 

to yield a pure preparation by EPR criteria, as was needed 

for this work. For this reason various porti.ons of several 

procedures were combined to yield a new method for the 

isolation of the. yeast protein which produced samples free 

from contaminating EPR signals. 

The isolated mitochondria at 20 mg/ml protein concentra­

tion were solubilized by the slow addition of 3 mg chelate 

(Calbiochem A grade) per mg protein as a 20% solution. All 

steps in the isolation were carried out at 0-4°C. To this 

suspension was added 176 g solid ammonium sulfate/liter (30% 

A.S.) with stirring. After ammonium sulfate addition the 

pH was adjusted to 7.4 and the suspension stirred for 4 hours. 

This suspension was centrifuged at 27,000 xg for 30 minutes, 

and the supernatant brought to 45% of saturation with the 

addition of 94 g solid ammonium sulfate/liter. After 

stirring for 15 minutes the suspension was centrifuged at 

27,000 xg for 20 minutes . . The pellets were resuspended in 

15 ml/g of original mitochondrial protein with 0.25 M sucrose/ 

SO mM Tris•acetate/0.5% chelate/pH 7.4 buffer and adjusted 

to 28% of saturation with a saturated ammonium sulfate 

solution (saturated at 4°C). All subsequent additions of 

ammonium sulfate were from a saturated solution. This 

solution was stirred 15 minutes followed by centrifugation 

at 27,000 xg for 20 min. The supernatant was adjusted to 

39% of ammonium sulfate saturation, followed by centrifuga­

tion at 27,000 xg for 20 minutes. These pellets were 
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resuspended in 2 ml/g of original mitochondrial protein 

with 1% Tween-80/20 mM phosphate/1 mM EDTA/pH 7.0 buffer. 

This solution was then dialyzed 24 hours against a 100-fold 

larger volume of 0,5% cholate/10 mM Tris•acetate/1 mM EDTA/ 

pH 7.4. This dialysis usually resulted in some precipita-

tion of protein which was removed by centrifugation at 

200,000 xg for 30 min. The clarified high~speed supernatant 

was applied to a cytochrome ~affinity column (1.5x30 em, 25 

em bed height) previously equilibrated with the above dialysis 

buffer. This cytochrome ~ affinity column was prepared by 

the linking of cytochrome ~ (Sigma Type VI) to CNBr·activated 

sepharose 4B (Sigma) by published procedures(23 , 24 ). After 

all the green protein solution had passed onto the column, 

the column was washed first with 100 mls of dialysis buffer 

followed by 100 mls of dialysis buffer containing 2% chelate. 

Very little green color eluted with these wash buffers, as 

it was mostly brownish-gold proteins that eluted under these 

conditions. The cytochrome c oxidase was eluted with 0.5% 

cholate/10 mM Tris•acetate/1 M KCl/1 mM EDTA/pH 7.4 buffer. 

The green fractions were collected and chelate was added 

(as a 20% solution) to a final concentration of 1.5%. This 

solution was then brought to 25% of ammonium sulfate satura-

tion and centrifuged at 20,000 xg for 10 minutes. The super­

natant was bro~ght to 38% of ammonium sulfate saturation and 

centrifuged at 20,000 xg for 10 minutes. The 38% A.S. pellet 

should be dark green and was dissolved in a small volume of 

dialysis buffer, so as to keep the protein concentrated for 



80 

EPR experiments. The protein solution was then stored at 

-85°C until use. 

2.6 EPR Spectroscopy. EPR spectra were typically 

recorded on .3-.4 ml samples of the enzyme at a protein 

concentration of 0.1-0.2 mM. The EPR spectra were recorded 

on a Varian E-line century series X-band spectrometer 

equipped with an Air~Products Heli-Trans low temperature 

system. 

2.7 NMR Spectroscopy. The 13c NMR spectra for 15N­

histidine and 12 cn2-cysteine were run on a JEOL FX90 and 

Varian XL-100 NMR spectrometers, respectively. In both 

cases D20 was used as an internal lock. Both samples were 

run under conditions of proton decoupling. The sample and 

instrumental conditions are given in the figure legends. 

3. RESULTS 

3,1 NMR of Labeled Amino Acids. The 13C-NMR spectra 

" f 1 5N h. . d. d 12 CD . h . F. 3 o 2- 1st1 1ne an . 2-cyste1ne are s own 1n 1gures 

and 4, respectively. The 13C-NMR spectrum of 15N2-histidine 

very clearly shows the splitting of the ring carbons by the 

1=1/2 15N nucleus. The 3c-carbon of labeled cysteine (Figure 

4) is seen as the most upfield carbon, and it is split into 

a quintet as expected. The intensity ratio for this quintet 

is 1:2:3:2:1, precisely as expected for -100% deuterium sub-

stituted. If the deuterium had dropped to a level as low 

as 90% during the synthesis of cysteine then the quintet 

intensity ratio would be expected to be about 1:2:6:2:1. due 

to the large nuclear overhauser enhancement in proton-decoupled 
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FIGURE 3 

13 C-NMR spectra of (A) 1M 14N-histidine in 

n2o and (B) 0.1 M 15N2-histidine in n2o. 
Spectra (A) and (B) were obtained with 

1000 and 40,000 scans, respectively. Both 

spectra were obtained with a 4,000 Hz 

spectral width and a 1 Hz line broadening. 
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FIGURE 4 

13 12 . C-NMR spectrum of 2M cn2-D,L-cyste1ne 

in D20. The spectrum was obtained with 

45,000 scans, 4,200 Hz spectral width and 

1 Hz line broadening. This sample 

contained about 50% 12cn2 -D,L-cysteine. 
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13C-NMR spectra. This observation demonstrates that the 

cysteine had retained the high isotopic enrichment purchased 

in the formaldehyde. 

3.2 EPR of Isolated Unlabeled Yeast Cytochrome c Oxidase. 

The EPR spectra of the protein fractions that eluted from the 

cytochrome£ affinity column with 0.5% chelate and with 2% . 

chelate are shown in Figure 5. It can be seen that very little 

cytochrome £oxidase eluted in either case. The optical 

spectra (not shown) bore out this conclusion. The main 

components eluting under low-salt conditions are iron-sulfur 

proteins and the mitochondrial cytochrome £ reductase. The 

EPR spectrum of the cytochrome c oxidase that eluted with 

1M KCl and precipitated at 38% of ammonium sulfate saturation 

is shown in Figure 6. This EPR spectrum compared very 

favorably with some of the best beef heart cytochrome £ 

oxidase EPR spectra. Therefore, the procedure for isolating 

yeast cytochrome c oxidase outlined in this work is very 

satisfactory for preparing protein samples for EPR spectro­

scopy. The overall yield of purified oxidase from 500 grams 

of yeast cells is about 15 - 30 mg protein. 

3.3 EPR of Isotopically Labeled Yeast Cytochrome c 

Oxidase. The EPR spectra of 15N-his and 12 cn 2-cys yeast 

cytochrome£ oxidase are shown in Figure 7. The EPR spectra 

for both of the isotopically labeled proteins are qualitatively 

similar to the EPR spectrum of the unlabeled yeast protein. 

However, differences are observed in the g=2 region of the 

Cua signal. These differences are accentuated in Figure 8 
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FIGURE 5 

EPR spectra of (A) 0.5% chelate and (B) 

2% chelate washes of the cytochrome c 

affinity column. Conditions: temperature, 

15K; microwave power, 1.0 mW; modulation 

amplitude, 16 G; microwave frequency, 9.23 

GHz; scan width, 4000 G. 
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FIGURE 6 

EPR spectrum of purified unlabeled yeast 

cytochrome c oxidase. The instrumental 

conditions were the same as for Figure 5 

except that the microwave power was 0.2 mW. 
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FIGURE 7 

EPR spectra of (A) unlabeled yeast oxidase, 

(B) 15N-his yeast oxidase and (C) 12 cn2-cys 

yeast oxidase. The instrumental conditions 

were the same as for Figure 5. 
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UNLABELED YEAST OXIDASE 

A 

15N-HIS YEAST OXIDA.SE 

B 

12co2-CYS YEAST OXIDASE 

c 

* * * * g=6.0 g=4.3 g =3.0 g=2.0 
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wherein the g=2 regions have been expanded. The major 

difference is that the g=2 region has sharpened up for the 

labeled proteins, allowing the resolution of previously 

obscured hyperfine structure. In the 15N-his oxidase EPR 

spectrum the hyperfine features near g=2.03 have sharpened 

slightly relative to the unlabeled protein spectrum. However, 

12 in the CD 2-cys oxidase EPR spectrum the hyperfine structure 

in the g=2.03 region is almost completely resolved. 

The origin of the spectral sharpening is the elimination 

of small hyperfine couplings to the unpaired electron. Table 

1 summarizes the various hyperfine interactions associated 

with the Cu EPR center, as determined by ENDORC 13 , 14 ). The 
a 

17 MHz isotropic nitrogen hyperfine interaction could arise 

from a histidine nitrogen bound to Cua. Substitution of 

15N-his would result in a reduction in the overall splitting 

of the 1=1 14N nucleus of 34 MHz (2A,12G) to 24 MHz (A,8.6G) 

for the I=l/2 15N nucleus. Thus, if histidine were a ligand 

to Cua (or two histidines) then the substitution of 15N-his 

should cause a narrowing of the EPR spectrum. Therefore, 

from the spectra in Figure 8 it can be concluded that there 

is at least one histidine ligand to Cua. 

The narrowing of the 12cn 2-cys oxidase EPR spectrum must 

arise from elimination of the methylene proton hyperfine inter-

actions with Cua. It is quite reasonable that the methylene 

protons of a cysteine bound to a copper ion would have hyperfine 

couplings of 12 and 19 MHz (4.3 and 6.8 G, respectively), 

especially if substantial spin density resided on the cysteine 
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Table 1. Hyperfine Interactions* Associated with the Cu 
Center a 

Nuclei Magnitude of Hyper fine Cou:eling (MHz) 

X y z 
Copper 68 98 90 

Proton 

a) weakly coupled 2.3 2.0 

1.2 1.3 

0.8 1.3 

0.3 0.4 

b) strongly coupled 12,19 (isotropic) 

Nitrogen 17 (isotropic) 

*From references 13 and 14 
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FIGURE 8 

EPR spectra of (A) unlabeled yeast oxidase, 

(B) 15N-his yeast oxidase and (C) 12cn2-cys 

yeast oxidase. The instrumental conditions 

were the same as for Figure 5 except that 

the scan range was 1000 G. 



95 

UNLABELED YEAST OXIDASE 

A 
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96 

sulfur. The elimination of these strongly coupled proton 

hyperfine interactions would be expected to lead to substantial 

narrowing of the EPR spectrum. Thus, the narrowing of the 

12 CD 2-cys oxidase EPR spectrum demonstrates that there is at 

least one cysteine sulfur ligand to Cu . 
a 

12 The resolved hyperfine structure in the CD 2-cys yeast 

oxidase EPR spectrum allows a more detailed analysis of the 

Cua center EPR signal. In this regard, the low-temperature 

S-hand (3GHz) EPR spectrum of beef heart oxidase was shown(ll) 

to exhibit resolved hyperfine structure (Figure 9). The 

hyperfine pattern along g =2.03 was found to arise from a y 

45 G copper interaction (1=3/2) in addition to a 25 G interac-

tion from a S=l/2 (or I=l/2) site. These splittings result in 

an eight line hyperfine pattern as shown in Figure 9. These 

magnetic field independent hyperfine splittings would give 

rise to the same eight line pattern at X-band (9GHz). This 

eight line hyperfine is shown in Figure 10 to fit very well 

12 to the splittings observed for the CD 2-cys protein at 

X-band. The two outermost hyperfine components emphasized 

with arrows in this spectrum (Figure 10) are each split 80 G 

from the gy value of 2.03, consistent with a total splitting 

of (3x45G)+(lx25G)=l60G. Thus, the substitution of deuterons 

for the methylene protons in cysteine yeast cytochrome £ 

oxidase does not change the hyperfine pattern along gy, but 

allows it to be resolved at X-band. 
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FIGURE 9 

S-band (3 GHz) EPR spectrum of Beef heart 

cytochrome £ oxidase taken from Froncisz 

et al. (11 ). The features labeled I thru VII 

are the newly resolved features. The eight 

line hyperfine stick diagram has been added 

assuming A=45 G for a 1=3/2 copper and 

A=25 G for a S or I=1/2 center. Modulation 

amplitude was 4 G. 
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FIGURE 10 

12 X-band (9 GHz) EPR spectrum of cn2-cys 

yeast cytochrome £oxidase. The instrumental 

conditions were the same as for Figure 8. 

The same eight line hyperfine stick diagram 

as shown in Figure 9 has been added to show 

the excellent fit with the newly resolved 

features in this ·12cn2-cys yeast oxidase 

X-band spectrum. The arrows emphasize the 

two outermost hyperfine components along 

g = 2.03 with a separation of 160 G. 
y 
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4. DISCUSSION 

The substitution of 15N-his and 12 cn 2-cys into yeast 

cytochrome £ oxidase has demonstrated the involvement of at 

least one histidine and one cysteine as ligands to Cua. 

These studies together with the results presented in Chapter 

II of this work represent the first concrete information 

regarding the ligands to the metal centers in cytochrome c 

oxidase. The determination of the involvement of cysteine 

and histidine as ligands to Cu now allows a more detailed a 

analysis of the Cua center EPR signal, in addi ton to providing 

clues as to this metal center~s role in the protein. We now 

consider certain features of the Cua center EPR signal in 

more detail. 

The hyperfine interactions observed along g · at S-band(ll) y 
12 and for the CD 2-cys yeast protein at X-band in this work 

correspond to a 45G coupling due to !=3/2 copper and a 

second coupling of 25G, resulting in the observed eight line 

pattern. The 25G hyperfine interaction is thought to arise 

from either a very strongly coupled proton or the dipolar 

splitting of Cua by cytochrome ~· The only reasonable 

candidate for a proton interaction of this magnitude would 

be a cysteine methylene proton. Thus, this work has ruled 

out the possibility that a nuclear spin causes the 25G splitting. 

Therefore, the most reasonable interpretation is that Cua 

is split by the S=l/2 cytochrome ~metal center. This 

interpretation is consistent with the EPR saturation work of 

Greenaway et al. (7) and Brudvig(l 2) that suggested that the 
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unusual saturation behavior of the Cua EPR signal could 

best be explained by a weak dipolar interaction between 

Cu and cytochrome a . Taken together these results 
a -

strongly support the calculation of Brudvig(l 2) which 

showed that cytochrome ! at a distance of 10-13 X from Cua 

could result in~ orientation dependent 25G (0.0025 cm- 1) 

static dipolar splitting of the Cua center EPR signal. 

It has already been concluded, from data presented in 

this chapter's Introduction and by Brudvig(12 ), that this 

metal center is best described as a Cu(I)-S system. However, 

it seems ·necessary at this time to consider the origin of 

the copper and nitrogen hyperfine couplings in the context 

of a Cu(I)-S complex. It is thus necessary to discuss the 

polarization of the inner shell paired as well as bonding 

electrons by the outer shell unpaired electron. The orbitals 

involved as formulated by Brudvig(12 ) are shown in Figure 

11 in the limit where all the unpaired electron spin density 

is localized in the sulfur 3p orbital. In order to get the . z 

observed isotropic copper hyperfine coupling of 85 MHz, 

Brudvig(l 2) has shown that it is only necessary to have 1.7% 

of one unpaired electron in the copper 4s orbital. Similarly, 

to account for the extremely small anisotropic copper hyper­

fine coupling of I2BI = 17 MHz it is necessary to mix 7% of 

one unpaired electron into a copper 4p orbital(12 ), These 

numbers (1.7% and 7%) agree well with the notion that copper 

obtains unpaired electron spin density from the donation of 

aspin polarized sulfur lone pair into a copper 4sp 3 hybrid 
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FIGURE 11 

Proposed model for spin polarization of the 

lf 3 4 3 d ·t 2sp 2 su ur p , copper sp an n1 rogen 
X 

orbitals by the unpaired electron in a 3pz 

b . 1 T k f B d . lZ or 1ta . a en rom ru v1g . 
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orbital. 

The origin of the nitrogen hyperfine coupling of 17 MHz 

can also be accounted for by a spin polarization model. 

However, in this case it is a second order effect since the 

3 approximately 1.0% spin density in the copper 4sp orbital 

will further polarize the other paired electrons of copper. 

The 17 MHz hyperfine coupling implies that 1% of one unpaired 

electron resides in a 2s orbital of nitrogen(12 ). The 

suggestion that the nitrogen hyperfine coupling arises from 

a second order spin polarization is consistent with the fact 

that the Cua nitrogen hyperfine coupling is about one half 

that observed for all other copper complexes( 2S) and proteins( 26 ). 

The final hyperfine interactions to be accounted for are 

the isotropic proton couplings of 12 and 19 MHz. Since it 

has already been demonstrated in this work that there is at 

least one cysteine ligand to Cua, it will be reasonably 

assumed that these proton hyperfine couplings arise from the 

cysteinate methylene protons adjacent to the sulfur atom 

on which the unpaired electron resides. For proton hyperfine 

interactions in sulfur radicals arising from h . . (27) yperconJugation , 

the magnitude of these interactions has been shown( 2S) to 

depend on the dihedral angle, ¢, between the sulfur 3pz orbital 

containing the unpaired electron and the C-H bond (Figure 12) 

according to equations (1) and (2). In equations (1) and 

(2) A1 and 
7T 2 A1 = A

0
p

5
cos ¢ (1) 

7T 2 0 A2 = A
0

pscos (¢-125 ) (2) 
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A2 are the isotropic proton couplings observed, A
0 

is a 

constant (A
0

=88 MHz for the N~acetyl cysteine neutral 

sulfur radica1( 2S)) and p: is then-spin density on the 

sulfur. The proton hyperfine couplings of 12 and 19 MHz 

require(l 2) th~t ~be close to 60° (Figure 12). With p:=0.84, 

A
0

=88 MHz and ~=59.5° the proton couplings A1 and A2 are 

calculated to be 19 and 12 MHz, respectively. The remaining 

16% of one unpaired electron is delocalized onto protons, 

nitrogen and copper through spin polarization. Thus, it has 

been shown thai all the hyperfine interactions associated 

with the Cua center EPR signal can be quantitatively as well 

as qualitatively accounted for by our Cu(I)-sulfur radical model. 

The unusual nature of the Cua center as envisioned in 

our model (Figure 1) must certainly be linked to its 

unique role in cytochrome c oxidase. In addition to this 

metal center's role of electron transfe~we have proposed( 9 ,lO) 

that the Cua center is involved in the pumping of protons 

across the inner mitochondrial membrane. In this regard, it 

has been shown that the Cua center is probably deeply buried 

within the protein matrix(lO) and thus reduction of this 

center would result in an isolated negative charge within 

a region of low dielectric constant. This would be expected 

to result in a large increase in potential energy of the Cua 

center which could then be coupled to the conservation of 

energy in cytochrome £oxidase. Our proposed scheme for this 

process is depicted in Figure 13~ This scheme involves 

pulling a proton from the mitochondrial matrix solution to 
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FIGURE 12 

Geometry of the sulfur 3p orbital with respect z 
to the adjacent methylene group for the Cu 

a 

center. This corresponds to the solution to 

equations (1) and (2) obtained from the 12 

and 19 MHz isotropic proton hyperfine couplings. 

The diagram is drawn such that the methylene 

carbon lies behind sulfur. 
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FIGURE 13 

A possible proton pumping mechanism in 

cytochrome c oxidase. 
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balance the negative charge. Upon transfer of an electron 

away from the Cua center, this proton would now leave an 

isolated positive charge in a hydrophobic environment, 

which could be expelled from the Cua center to the opposite 

side of the inner mitochrondrial membrane. Therefore, it may 

very well be that the unusual nature of the Cua center is 

directly related to its unique role of coupling electron 

transfer to proton pumping in cytochrome c oxidase. 
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CHAPTER IV: SU~~ARY 

The original goal of this research was to investigate the 

metal centers of cytochrome £ oxidase in an attempt to under­

stand their respective roles in the enzymatic functioning of 

the protein. When this work was initiated some three and one 

half years ago, the x-ray absorption edge spectrum of oxidized 

cytochrome £ oxidase had just been obtained. This x-ray 

absorption edge study found that one of the coppers appeared 

to be Cu(I) (Cua) even in the oxidized protein. The isotopic 

substitution studies reported in this work were designed to 

ascertain the ligands to Cua, in addition to probing the 

nature of the electronic structure of the Cua metal center. 

The x-ray absorption edge study together with the isotopic 

labeling studies reported in this work and all the other 

physical chemical measurements strongly support the contention 

that the best description of the Cua center is that of Cu(I)-S. 

In particular, the isotopic substitution studies indicate 

that there is at least one cysteine and one histidine as 

ligands to Cua. Perhaps the most important result of the 

isotopic labeling studies was that a careful analysis of 

the newly resolved nuclear hyperfine interactions associated 

with the Cua EPR signal in 12 cn 2-cys yeast oxidase indicates 

that cytochrome a is most likely interacting with Cu through a - a 

dipolar mechanism. This has allowed an estimate of the 

distance between the two metal centers in cytochrome £ 

oxidase whose function is the transfer of electrons to the 

oxygen reduction site. 
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The oxygen reduction site of cytochrome £ oxidase has 

been known to consist of the cytochrome ! 3 metal center. 

The involvement of Cu in oxygen reduction had been much 
a3 

more speculative, however. The model receiving the most 

favor when this work began, envisioned an imidazole bridge 

between Cua and cytochrome !3· There had not been any 
3 

conclusive data to suggest that Cu 
a3 

was capable of binding 

exogenous ligands. Nitric oxide binding studies of cytochrome 

c oxidase have greatly increased our understanding of the 

structure of the two metal centers constituting the ligand 

binding site, in addition to their respective roles in the 

reduction mechanism. 

Nitric oxide binding studies of the isotopically labeled 

reduced yeast protein have demonstrated conclusively that 

histidine is the axial ligand to cytochrome ! 3 . However, 

these studies did not address the question of the position 

of the imidazole vis-a-vis the Cu center. The nitric oxide --- - --- a3 
binding studies involving the oxidized protein in the presence 

of azide did address this question. This one electron reduced 

NO-bound protein complex gave rise to a triplet state whose 

EPR spectrum revealed new information about the oxygen 

binding site. The EPR parameters together with the chemical 

stability of this NO-bound complex led to the conclusion that 

nitric oxide bridges the two metal centers in this one 

electron reduced protein complex. This conclusion carried 

with it the implication that the already identified histidine 

axial ligand to cytochrome ! 3 was distal vis-~-vis Cua
3

. 
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The EPR spectrum of the triplet state represented 

the first time that Cu had been observed by EPR, allowing 
a3 

substantial structural information to be extracted. This 

EPR spectrum allowed a distance between Cu and cytochrome 
a3 

~3 of 5 ~ to be calculated. In this triplet state Cu was 
a3 

also found to be square planar or octahedral with a strong 

tetragonal distortion, ruling out the suggestion that Cu 
a3 

is a Type 1 or blue copper center. Furthermore, these nitric 

oxide binding studies demonstrated for the first time that 

Cu was capable of binding exogenous ligands. It was also 
a3 

found that it is possible to modulate the exchange interaction 

between Cu and cytochrome ~3 by varying the exogenous 
a3 

ligands. 

The results presented in this work represent a contribu-

tion to the understanding of the overall role of the metal 

centers in the structure and enzymatic function of cytochrome 

c oxidase. An overall picture of the metal centers in the 

protein is depicted in Figure 1. Further studies will be 

necessary to completely elucidate the structure of the metal 

centers in the absence of high resolution x-ray crystal data·. 
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FIGURE 1 

The four metal centers in cytochrome c oxidase. 
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