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Abstract

The crystal structures of three iodide-containing quasi-one-
dimensional conductors, (tetrathiotetracene)2(1od1de)3 (high disorder),
tetrathiotetracene-iodide, and (hexamethylenetetraselenofulvalene)-
(iodide)x were solved by single crystal X-ray diffraction methods.
These three iodides are single charge-carrier conductors and allow a
comparison of such competing effects as disorder, interchain coupling,
and overlap.

The crystal structure of metallic (tetrathiotetracene)z(iodide)3

(high disorder), TTT_I_ (h.d.), was solved at room temperature (~294° K),
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164° K, 74° K, and at 19° K. At all four temperatures the lattice
symmetry remained orthorhombic and the structures were successfully
refined in the space group Cmca. During slow cooling the diffuse Tayer
lines were also carefully monitored. In contrast to TTFC10_67, even
with slow cooling the iodide chains do not three-dimensionally order,
and there are no distortions in the TTT Tlattice to 19° K. A model of
the iodide chains is presented which explains the positions and intensities
of the diffuse layer lines and also explains why three-dimensional
ordering at low temperatures is not observed.

The structure of semiconducting tetrathiotetracene-iodide (TTTI)
was studied at room temperature. The structure consists of two ordered
lattices which are incommensurate along ¢, the stacking axis. The unit

cell dimensions for Lattice 1 (triclinic, CT) are a = 13.028(2), b =

16.445(2), ¢ = 3.643(1) R and o = 90.81(1)°, 8 = 96.11(1)°, and vy = 91.11(1)°.



For Lattice 2, ¢ = 4.78 R. The positions of all of the layer lines,
including the two "sixth" Tayer lines, which are observed on X-ray
oscillation photographs of crystals of TTTI rotated about €, can be
explained by the presence of two lattices. The measured density d = 2.09
g/cm3 and refinement of the [001] projection (hkQ reflections) confirmed
that the overall stoichiometry is TTTI (1:1). For a complete data set
collected with copper e fadiation, the refinement of Lattice 1 converged
to R = 0.102. For the 1132 reflections with FO2 = 30(F02), R = 0.081.
The overlap between adjacent TTT cations in the same stack in TTTI is
significantly different from that observed in TTT213 (h.d.). There is
also very little interchain coupling in TTTI.

Hexamethylenetetraselenofulvalene-iodide, HMTSF-I,, is triclinic,
PT, with the unit cell parameters a = 8.056(4), b = 12.740(4), c = 8.016(3) A
and o = 81.72(4)°, B = 67.73(5)°, and v = 102.64(4)°. For a complete
data set of 4213 reflections collected with monochromatized molybdenum
K, radiation to 26 = 60° the structure refined to R = 0.097. For 2042
reflections with FO2 > 3o(F02), R = 0.051. The hydrogen atoms were not
located. There is disordered iodide and solvent at 1/2,1/2,1/2. The
HMTSF cations stack along a. A new type of alternating overlap between
adjacent HMTSF molecules was observed. The magnitude of the d.c.
electrical conductivity at room temperature suggests that this phase of
HMTSF-1, is semiconducting.

These iodide-containing structures show three different types of
iodide behavior in quasi-one-dimensional conductors. In TTT213 (h.d.)

the slip-stacking and large interchain coupling favor formation of a
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metallic state at high temperatures. At low temperatures the disordered
iodide chains have a major effect on the transport properties by allowing
states to exist in the semiconductor band gap. In TTTI the iodides are
no longer disordered but still dominate the physical properties by
causing a modulation of the TTT lattice. There is very Tittle inter-
chain coupling in TTTI. In HMTSF-I, the iodide is probably of minor

importance.
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Chapter 1

Introduction

Quasi-one-dimensional conductor is a label which has been given
to materials that exhibit highly anisotropic, "one-dimensional",
electrical conductivity. Conduction in the perpendicular directions
in these materials is usually 103 to 10° times less than along the
axis of high conductivity. Conductivity is not the only anisctrcpic
property of these materials. They also have direction-dependent optical,
magnetic and mechanical properties. An example of a quasi-one-dimensional
material which has been studied in great detail is tetrathiafulvalene-
tetracyanoquinodimethane (TTF-TCNQ). TTF and TCNQ are two planar
organic molecules (see Figure 1) which together form a charge-transfer
complex. TTF is an electron donor and TCNQ is an electron acceptor.
In crystals of the complex the TTF molecules are stacked on top of
each other and next to the TTF stacks are stacks of TCNQ molecules.
The significance of this arrangement is that the TTF molecular orbitals
are spatially close and it is energetically favorable for intermolecular
orbital interaction and the formation of a "band". The TCNQ molecules
also stack and the molecular orbitals also form a “band". Because
there is charge transfer between the TTF and TCNQ molecules the bands
become only partially filled and TTF-TCNQ exhibits metallic conductivity
and metallic behavior parallel to the stacking direction. Conductivity

1

parallel to the stacking direction is ~500-700 Q" cn~! at room

temperature and ~5 o1 em! perpendicular to the stacking
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direction (1). Many quasi-one-dimensional conductors formed from
organic donor-acceptor complexes with similar arrangements of separate
cation and anion stacks are known (1). The best organic quasi-one-
dimensional metal known is hexamethylenetetraselenofulvalene-tetra-
cyanoquinodimethane (HMTSF-TCNQ) (2). It has a room temperature
conductivity of ~2000 o1 e~ and, in contrast to TTF-TCNQ which
undergoes a phase transition to an "insulating" state, HMTSF-TCNQ
remains highly conducting to below 1° K (2). For comparison, copper,
a good three-dimensional metal, has a conductivity of 5.88 x 10° o-!
cm™! at 295° K (3). Liquid mercury, a poor three-dimensional conductor,
has a conductivity of ~10000 ' cm~! at 295° K (3).

The conductors formed from organic donor-acceptor charge-transfer
complexes, such as TTF-TCNQ and HMTSF-TCNQ, are two-carrier systems.
Electrons are conducted along the anion stacks and holes along the
cation stacks. This makes the interpretation of their properties
complex. The properties of single charge-carrier systems, in principle,
are easier to interpret. Studies of single charge-carrier systems help
toward a better understanding of the effect of disorder, impurities,
intermolecular overlap, and interchain coupling. The TTF halides and
pseudo-halides (SCN~, SeCN”) have been extensively studied for these
reasons (for example 4,5,6,7,8).

The interpretation of solid-state physical properties ultimately
depends on a knowledge of the underlying crystal and molecular structure.
Although X-ray diffraction always emphasizes crystalline perfection,

it is a convenient method for determining the actual internal structure



of a crystal. X-ray diffraction studies of the iodides of HMTSF and
tetrathiotetracene (TTT) (Figure 1), which are single charge-carrier
quasi-one-dimensional conductors, were undertaken to determine their
stoichiometry, the role of disorder, the effect of variations in
intermolecular overlap and interchain coupling, and in the case of
the temperature-dependent structural studies of TTT213 the nature of
its phase transitions.

A11 of the crystallographic data reduction and structural computations

necessary for this study were done with the CRYM crystallographic

computing system and an IBM computer 370/3032.
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Chapter 2
Temperature-Dependent Studies of

Highly-Disordered (Tetrathiotetracene)z—(Iodide)3

Introduction

Tetrathiotetracene* (TTT) is a planar organic molecule which as
long ago as 1965 was known to form organic donor-acceptor charge-
transfer complexes (1,2). These early charge-transfer complexes had
resistivity values of 2-15 @ cm. Although Marschalk and coworkers
were the first to report the syntheses of ion-radical salts of TTT
(3,4), Perez-Albuerne and coworkers reported in 1971 that the halide
and thiocyanate salts of TTT formed highly conducting powders (5).
The iodide salt, of poorly defined stoichiometry, had a powder
resistivity of 0.71 @ cm. Eventually single crystals of TTT213 were
grown and temperature-dependent conductivity measurements indicated
that TTT,.I. was metallic (6,7). Additional electrical, magnetic, and

23

optical studies of crystals of TTTZI3 grown at the Jet Propulsion

Laboratory (JPL), Pasadena, have shown that for temperatures of
100°<T<300° K TTTZI3 is metallic (8). The d.c. conductivity at room
temperature is about 1000 9'1 cm'] parallel to the crystal needle axis.
At about 100° K abrupt changes in the conductivity, ESR Tinewidth, and

thermoelectric power (TEP) suggest that a phase transition has occurred.

*naphthaceno[5,6-cd:11,12-c'd"' Jbis[1,2]dithiole.



Below 20-30° K the electrical and magnetic properties indicate that
TTT2I3 has undergone an additional phase transition to a nonmetallic
state (8).

The basic structure of TTT213 is known at room temperature (6,9).

However, temperature-dependent structural information would clarify the
nature of the phase transitions at ~100° K and ~20°-30° K and would
help clarify the role of disorder. For these reasons, an extensive

temperature-dependent X-ray diffraction study of TTT213 was undertaken.

Single crystals of TTT_I_ are grown from hot nitrobenzene solutions
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of TTT and iodine (12) by slow-cooling (V. Hadek and R. B. Somoano, JPL).

TTTZI3 crystals are long, dark, well-formed, six-sided orthorhombic
needles which give golden reflections off the faces. The needle axis,
the axis of high conductivity, is g. For a C-centered TTT lattice, the
crystallographic axes and the indices of the faces are oriented as

shown below. (b is perpendicular to the page.) The a and c axes

o (100)
(101) (101)
S
(107) (101)
(100)

a

have almost the same lengths but can be distinguished because the 800
and 0012 are weak reflections whereas the 1200 and 008 are both strong
reflections. Two general features of X-ray oscillation photographs

of crystals of TTT, I, rotated about b are the presence of layer lines

2°3
with three-dimensional Bragg diffraction spots and the presence of



several incommensurate diffuse layer lines. (See, for example,
Figure 15.) The lattice giving rise to the three-dimensional diffraction
spots is referred to as the TTT lattice. However, this is not meant
to imply that only the TTT molecules contribute to the diffraction
pattern. By just slightly varying the crystallization conditions,
crystals of TTT213 with varying amounts of disorder can be obtained.
The variations in disorder, as observed by X-ray diffraction, have
been correlated with observed variations in conductivity and thermo-
electric power measurements (10, Appendix A). The variations in the
amount of disorder can be determined, with oscillation photographs or
diffractometer scans, by the variation in beading or diffuseness of
the strongest diffuse layer Tine. At room temperature the highly-

disordered material, TTT,I. (h.d.) has very little beading on the
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strongest diffuse layer 1ine. Crystals of TTT213 (h.d.) were obtained

from JPL for the temperature-dependent structural studies reported

here.



2.1 Room Temperature Structure

Experimental

A crystal of TTT213 (h.d.) with the dimensions 0.06 x 0.123 x 0.60 mm
was used for room temperature data collection. Unit cell parameters
for the TTT lattice were obtained from a symmetry-constrained (orthor-
hombic) least-squares fit of the angular settings (26, ¢, x) of ten
reflections carefully centered with a beam splitter (Table I). The
room temperature data were obtained with nickel-filtered copper K,
radiation on an automatic, General Electric, quarter-circle diffractometer.
Intensities were collected with 1° per minute 26-6 scans. Backgrounds
were collected for 20 seconds on each side of the scans. The integrated
intensities were corrected for Lorentz and polarization effects. Weights
were based on counting statistics and corrected for proportionality
error (11). No more than two observations contributed to a weight.
Absorption corrections based on a rectangular solid (p = 274.108 cm'])
(12) were applied to the data (13). The final, complete data set for
the TTT lattice consisted of 919 reflections of which 713 reflections

2 2). No violations of the systematic absences hkf, htk

had F © > 30(F
0 — (¢}
odd; h0%, h and 2 odd; and hkO, h odd were observed suggesting the
space group Cmca. This agrees with what Smith and Luss reported (9).
Preliminary atomic coordinates were determined from a three-dimensional
Patterson map. Successive improvements to the model were based on

three-dimensional Fourier and difference Fourier maps. The hydrogens
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Table I

Crystal Data for TTT213 (h.d.) ~294° K

18.347(3) A

a:

b= 4.962(1) & | (A = 1.5418 A)

c = 18.454(3) R

o =8 =vy=90.0°

V = 1680.0(9) 7 =2 d_ = 2.147

Orthorhombic, Space group Cmca
Linear absorption coefficient (CuKa), u = 274.108 cm™!

Crystal dimensions 0.123 mm X 0.60 mm X 0.06 mm

S

S
G
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were included in the refinement after they were observed on a difference
Fourier map. After trial and error the electron density in the iodide
channels was determined to be best fit by using two iodine atoms with
variable populations and highly anisotropic temperature factors. The
iodine atoms in the model are actually correlated because they both
represent a single broad maximum of electron density and, therefore,
only their populations and temperature factors were allowed to vary
during refinement. The best coordinates for the iodine atoms were
determined from difference Fourier sections. With the exception of

the iodine atomic coordinates, all of the parameters were refined by

the full-matrix least-squares method. Structure factors were calculated
using the real part (fO + Af') of sulfur and iodine atomic scattering
factors which had been corrected for anomalous dispersion (14). The
refinement converged to R = 0.061, and the goodness-of-fit = 3.96 for

the entire data set (15). For 713 reflections with FO2 > 30 (FOZ)

b

R =0.054. A final three-dimensional difference Fourier map showed

residual density ranging from -0.7e/R3 to +0.6e/R3.
Discussion

Listed in Table II are the atomic coordinates and thermal parameters
for the room-temperature structure. Shown in Figure 1 is an [010]
projection of the struéture. The TTT molecule has 2/m symmetry and
only one-quarter of the molecule is crystallographically unique. The

iodine atoms are in channels which parallel B. As schematically shown
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PROJECTION DOWN b-AXIS OF TTT, I3
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Figure 1



below, each TTT molecule is slipped with respect to neighboring

molecules, but the entire stack is parallel B.

o]
\‘.SZA

-l; o

There are uniform TTT-TTT spacings along the stack because a TTT to

()

TTT translation along gAdefines the lattice spacing.

As can be seen in Tables III, XI and Figure 2 (16) the TTT molecule
is the same as reported by Smith and Luss (Kodak) (9) and very similar
to neutral TTT (17). In general there are no features in this room
temperature structure which might suggest that there is any significant
difference in the TTT framework between the TTT213 crystals from JPL
and those from Kodak. From the description given by Buravov, et al.,
(Chernogolovka) (6) their TTT2I3 crystals also have the same framework.
Mihdly, Jafossy, and Griiner (Budapest) did not report any structural
data but apparently believe that their TTT,I3 crystals have the same
structure as the Kodak and Chernogolovka crystals (18). However, the
physical properties of TTT213 crystals are dependent on which laboratory
grew the crystals. This suggests that variations in the properties
of TTT213 may arise from variations in the iodide channels.

Shown in Figure 3 is the electron density of the iodide channels

based on the refinement of the TTT lattice. Shown in Figure 4 are

the corresponding difference Fourier sections which indicate that a
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Table ITI

TTT Geometry in TTTZI3 (h.d.) ~294° K (CuKu)

Bond Lengths, K* Interior Bond Ang]es*
C1-C1 1.422(10) C1-C1-C2 119.6(8)°
C3-C3 1.455(8) C1-C2-S 114.1(3)
C5-C5 1.438(10) C2-S-S 95.5(2)
C1-C2 1.387(7) C2-C1-C2 20.8(8)
C2-C3 1.413(6) C1-C2-C3 122.2(4)
C3-C4 1.412(6) C2-C3-C3 118.2(7)
C4-C5 1.349(7) C3-C3-C4 118.2(7)
S-C2 1.746(4) C3-C4-C5 121.7(4)
S-S 2.080(2) C4-C5-C5 120.1(8)
H1-C4 1.01(6) H1-C4-C3 113(3)
H2-C5 1.875) H1-C4-C5 125(3)

H2-C5-C4 121(3)
H2-C5-C5 119(3)

Direction cosines of the plane normal 0.0, -0.6700, 0.7424 (best plane
calculation of inner carbon rings).

TTT tilt angle to b 47.93°.
Interplanar spacing 3.324 R (b= 4.962 R).

*The deviation in the last decimal place is given in parentheses
(assuming isotropic atoms).
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reasonable fit has been obtained for the observed and calculated
electron density. Figure 3 shows that there are not discrete iodide
sites in a spacing of b = 4.96 R. The two broad maxima are related

by symmetry and are only 4.96 ﬂ/Z = 2.48 R apart. This distance is

too short for any chemically reasonable iodide species. That there is
also significant electron density at the minima, suggests that Figure 3
represents an average of, perhaps, several iodide configurations
present in different channels throughout the structure. This could

be caused by slippage of the iodide chains parallel to B. The minimum
and maximum are 12.9 e~/R3 and 32.9 e-/A3 respectively. The refined
population, the only iodine parameter from Table II of any significance,
gives a stoichiometry of TTTIy 471+.08. The Kodak crystals exhibit
minima and maxima of 16 e~/R3 and 37 e-/R3 for a refinement based on

a stoichiometry of TTTI].S. (The iodine population was not refined.)
The difference in the maximum and minimum electron densities between
TTT213 (h.d.) and the Kodak crystals could be due to different size
grids in the Fourier maps. The similarities between the structural

and photographic data reported for Kodak crystals (9) and the data
obtained for TTT213 (h.d.) suggest that the physical properties of
crystals from Kodak and JPL ought to be similar, as, in fact, they

are (10). It is unfortunate that there is no detailed structural
information available for the Chernogolovka or Budapest crystals for
comparison with the Kodak and JPL crystals. Detailed information about
the Chernogolovka crystals would be especially interesting because those

crystals have different properties from those of JPL or Kodak.
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2.2 Low-Temperature Structures

Experimental

For the low-temperature studies a new, locally designed and built,
goniometer was used. The goniometer is used on a modified, full-
circle Syntex P1 automated diffractometer. The outer shell of the
goniometer is a sphere which has kaptan-sealed entrance and exit
slits for the X-rays. The volume enclosed by the sphere is evacuated.
Inside the crystal is enclosed by two additional,cooled, inner shells.
The innermost copper shell surrounding the crystal is attached directly,
mechanically and thermally, to the extended tip of the cryocooler
(extender). The cryocooler is a Cryogenics Technology Inc. closed-
cycle helium gas refrigerator rated to cool to ~10°-14° K. The crystal
is cooled by a copper heat-transfer cable which thermally links the
top of the phi-shaft to the cold, inner shell (19).

The crystal of TTT,.I. (h.d.) used for data collection, the fifth

2°3
one of six studied, was a six-sided needle 0.333 mm long and had a

cross-sectional area of 0.00686 mmz. The crystal was mounted on a
glass fiber with Armstrong Tow-temperature epoxy resin. The glass
fiber was mounted onto a copper pin which was inserted directly into
the copper block at the top of the phi-shaft. Crystal alignment was
accomplished by bending the copper pin. At room temperature the

crystal was set high, above the center of the diffractometer, to allow

for shrinkage at low temperatures. Temperatures were continuously
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monitored at the extender (extended tip of the cryocooler) and just
underneath the copper pin at the top of the phi-shaft. The temperature
of the innermost copper shell could also be measured. At temperatures
between 18.5° and 25.5° K the diode measuring the phi-shaft temperature
gave correct, accurate readings. Between 26.5° K and 1liquid N,
(77.4° K) the diode gave low readings, the largest correction being
+4.7° at 35.5° K. No calibration was done at higher temperatures.
Unless otherwise stated, the temperatures reported are the observed
uncorrected temperatures at the phi-shaft. The rate at which the
crystal was cooled could be controlled by how often the temperature
at the extender was lowered. From room temperature (~294° K) to
~164° K the fifth crystal was cooled at 10° per 30-60 minutes in 2°
steps. After every 10° the crystal was equilibrated for one to
twelve hours while peak intensities and scans of several reflections
were obtained.

At 164° K a data set was collected with monochromatized molybdenum
Ky radiation. The unit cell parameters listed in Table IV were
obtained from a constrained least-squares fit of the 26 values for
thirty computer-centered reflections (20). The symmetry during the
least-squares fit was constrained to be orthorhombic. Intensities
of the TTT lattice reflections were collected with 1° per minute 26-6
scans. Total time of background counting was 25% of the amount of
time spent scanning a reflection. Backgrounds were collected on each

side of a reflection. The observed range of temperatures at the
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Table IV
Crystal Data for TTT213 (h.d.)

Orthorhombic, Space group Cmca
Z=2
Linear absorption coefficient (MoK ), u = 33.5225 em” 1,

Crystal dimensions: Tength 0.333 mm

cross-sectional area 0.00686 mm2

.063mm
.054
—_— -c.
.045
T
~164° K ~78° K ~19° K

a = 18.285(3) & 18.246(4) R 18.225(3) &
b= 4.957(1) 4.947(1) 4.950(1)
c= 18.351(3) 18.284(5) 18.242(6)
V= 1663(1) A3 1650(1) A3 1646(1) R3

(MoK _, A = 0.71069 R)
ol
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phi-shaft during data collection was 163.7° and 167° K. The temperature
at the extender varied by #0.1°.

After 366 hours of data collection cooling was resumed. The rate
of cooling was 10°/hour in 1° steps with peak scans every ten degrees.
Below about 90° K the crystal was cooled at 5°/hour in 0.5° steps
with peak scans every ten degrees to ~74° K. At 74° K a data set
was again collected with monochromatized molybdenum K, radiation.

The unit cell parameters listed in Table IV were obtained from a
symmetry-constrained least-squares fit of the 20 values of twenty-

nine computer-centered reflections (20). Intensities were collected as
at 164° with 1° per minute 26-6 scans. The total time for background
counting was 20% of the amount of time for each scan at Tow angle

and 30% at high 26 values. The background counting time was changed
during the data collection if the scan width was also changed. The
percentage was chosen so that the background on each side of a
reflection was collected for 25-45 seconds. A shell of data for a
primitive cell was collected to check that the centering condition had
not changed. No violations were observed. During the data collection
the average temperature at the phi-shaft was about 73°-74° K with a
total range of about three degrees. The innermost cold shell surrounding
the crystal was at 62.7° K.

After 377 hours of data collection, cooling was resumed. The
temperature was lowered at 0.1° per minute with equilibration and
peak scans every ten degrees until the lowest temperature, 20° K, was
reached. During the first fifty-five hours of data collection the phi-

shaft temperature gradually dropped from ~20° K to 18.9° K at which
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point the heater was turned on to prevent any further temperature drop.
During the remainder of the data collection the temperature at the phi-
shift remained between 18.6° and 19.6° K. Intensities were collected

as before with 1° per minute 20-6 scans. Total time for background
counting was 25% of the scan time per reflection for low-angle reflections
and 35% at high angles. Part of the data was collected for a primitive
cell to check for violations of the lattice centering. In addition

to the complete data set obtained for the octant hk%, part of octants
hk% and hk% were also collected to check if the lattice symmetry had
changed. No violations of the orthorhombic lattice symmetry or of the
C-centering were observed. Towards the end of the data collection a
slight decay of about 2% in the intensities of the check reflections

was observed. The unit cell parameters listed in Table IV were obtained
from a symmetry-constrained least-squares fit of twenty-two computer-
centered reflections (20).

The integrated intensities for all three sets of data of the TTT
lattice were corrected for Lorentz and polarization effects and for |
absorption (u = 33.5225 cm']) (12,13). No correction was made for
the sTight decay observed towards the end of the data set collected
at 19° K. The weights used in refinement were based on counting
statistics. No more than two observations contributed to a weight.

The F, for reflections with more than one observation is a weighted
average of the F2 values (21). No reflections were observed at 164° K

74° K, or 19° K which would violate the space group Cmca.
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Initial atomic coordinates for the structure at 164° K were
obtained from a three-dimensional Patterson map. Successive iterations
of structure factor calculations followed by Fourier synthesis were
used until all the atomic coordinates, except for the hydrogen
atoms, were known. The real part (f0 + Af') of the atomic scattering
factor corrected for anomalous dispersion was used for iodine and
sulfur for the structures at all three temperatures (14). As at
room temperature two iodine atoms were used to fit the electron density
in the channels at 1/4, y, 1/4. Their positions were determined from
difference Fourier sections. A1l of the structural parameters, except
the iodine coordinates, were refined by the full-matrix least-squares
method. After the structure was partially refined, the hydrogen atoms
were observed on a three-dimensional difference Fourier map. The
hydrogen parameters were included in the final least-square cycles.

The refinement converged to R = 0.082, with a goodness-of-fit = 1.42
for the complete data set of 1338 reflections of which 1160 reflections
)

b

had FO2 greater than zero (15). For the 731 reflections with FO2 3_30(FO

R = 0.042.

The carbon and sulfur atomic coordinates from the 164° K structure
were used as input to the initial structure factor calculations for the
74° K structure. The iodine atomic coordinates were determined from
Fourier and difference Fourier sections. After preliminary refinement
the hydrogen atoms were located on a low-angle difference Fourier map.
Full-matrix least-squares refinement was used to refine all of the

structural parameters except for the iodine coordinates. The structure
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in space group Cmca converged to R = 0.081, with a goodness-of-fit = 1.42
for a complete data set of 1670 reflections of which 1506 had F 2

greater than zero. For the 982 reflections with FO2 > 3o(F02),

R = 0.042.

Because there were no observed violations of the systematic
absences for the space group Cmca or any indications for a change in
lattice symmetry, initial structure factor calculations for the
structure at 19° K were based on the sulfur and inner-ring carbon
atom coordinates at 74° K. The atomic coordinates were gradually added
through successive iterations of structure factor-Fourier calculations.
The data set at 19° K had h02 reflections to 26 = 108° and hk2, k > 0
reflections to 26 = 70°, so a low-angle cut-off of the data was used
during the early phase of structure determination. The electron density
in the channel could still be fit reasonably well with two iodine
atoms representing the broad maximum. For the final full matrix least-
squares refinement the complete data set was used. For the space
group Cmca the refinement converged to R = 0.073, with the goodness-of-
fit = 1.35 for the complete data set of 1984 reflections, of which 1792
reflections had FO? greater than zero. For the 1194 reflections which
had F % > 30(F ), R = 0.039.

Listed in Tables V, VI, and VII are the atomic coordinates
and thermal parameters. The bond Tengths and bond angles for the
refined structures at 164° K, 74° K, and 19° K are listed in Tables VIII,

IX, and X. Complete lists of the observed and calculated structure

factors are in Appendix C.



Table

Atomic Coordinates and Thermal Parameters for TTTZI

v

(MoKa)
X
11 .25
12 .25
C1  .03904(21)
C2  .07679(15)
C3  .03948(16)
C4  .07619(20)
C5 .03876(19)
S .17154(5)
n
11 .0240(7)
12 .0332(27)
c1 .0136(19)
C2  .0134(13)
€3 .0209(15)
c4 .0249(17)
C5  .0431(22)
S .0151(4)
X
HT .1298(17)
H2  .0667(18)

Y

;e
.182

0

.18186(58)
.36770(63)
.55735(67)
.73805(75)
.15337(18)

| =<

.5594(61)
.8703(66)

27

Z

25
.25

0

.04458(16)
.08940(15)
.13443(17)
.17622(17)
.03883(5)

U33

N

.1333(16)
.2064(18)

Populations

1.1335(183)
.4655(180)

.0024(15)
.0017(16)
.0037(18)
.0033(18)
.0020(5)

|

1.52(0.71
2.11(0.77

)
)

.0050(5
.0239(1

E]

)
6
0

.0011(11
.0007(11
.0056(13
.0055(14
.0021(4)

)

)
)
)
)

3 (h.d.) at ~164° K

.0025(20)
.0045(15)
.0034(15)
.0036(14)
-.0009(15)
-.0051(4)



Atomic Coordinates and Thermal Parameters for TTT_.I

Table VI
(MoKu)
X
I1 25
I2 .25
Cl .03913(18)
C2 .07685(12)
C3  .03972(13)
C4 .07657(15)
C5 .03894(15)
S 17211(4)
n
Il .0125(5)
12 0148(17)
Cl 0086(14)
c2 .0091(10)
C3 .0120(10)
C4 0152(12)
C5 0247(14)
S 0092(3)
X
H2 .0671(15)
H1 .1297(15)

Y

+3L8
.189

0

.18273(53)
.36936(55)
.56009(58)
.74221(65)
.15388(15)

Y22

.3318(39)
.1879(105)
.0107(17)
.0096(12)
.0093(12)
.0130(14)
.0106(12)
.0131(3)

Y

.8734(59)
.5595(57)

28

Z

Bl
29

0

.04472(13)
.08954(12)
.13460(13)
.17640(12)
.03901(3)

N

.2085(14)
.1326(14)

2

Populations

1.1230(138)
.3757(135)

U2

0

0

0
.0009(12)
.0000(12)
.0011(14)
.0018(14)
.0011(4)

(9

.0015(1
.0022(1

3 (h.d.) at ~74° K

Y23

0
0



Atomic Coordinates and Thermal Parameters for TTT

Table VII
(MoKa)
X
I1 .25
12 .25
Cl .03937(15)
c2  .07700(10)
C3 .03965(11)
C4 .07696(12)
C5 .03897(13)
S .17235(3)
n
11 .0045(3)
12 .0115(10)
Cl .0068(9)
C2 .0073(7)
C3 0078(6)
C4 0110(8)
C5 0174(9)
g 0066(2)
X
H1 .1281(17)
H2 .0672(17)

Y

+3e9
.201

0

.18251(44)
.37076(48)
.56103(51)
.74358(57)
.15438(13)

Y22

.3132(63)
.2624(132)
.0085(13)
.0066(9)
.0074(9)
.0107(10)
.0099(9)
.0093(2)

Y

.5641(61)
.8788(65)

29

Z

25
wE8

0

.04485(12)
.08976(11)
.13477(12)
.17650(11)
.03909(3)

Y33

.0072(4)
.0081(9)
.0066(9)
.0089(7)
.0076(6)
.0084(7)
.0064(7)
.0149(

2)

Z

«1322(17)
.2088(18)

1.014(211)

.4916(211)

=

12
0
0
0

.0002(9)
.0014(9)

-.0010(10)

.0002(11)

-.0005(3)

B

1.58(0.68)
1.75(0.70)

Populations

Y13

.0013(3)
.0054(6)
)

0

.0006(6
.0001(6)
.0026(6)
.0020(7) .
.0012(2) -.

o3 (h.d.) at ~19° K
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Table VIII
TTT Geometry in TTT213 (h.d.) ~164° K (MoKa)

H2-C5-C4 119(2
H2-C5-C5 121(2

Bond Lengths, R* Interior Bond Angles¥*
C1-C1 1.428(8) C1-C1-C2 119.5(6)®
C3-C3 1.444(6) C1-C2-S 113.8(2)
C5-C5 1.417(7) C2-S-S 95.8(2)
C1-C2 1.399(5) C2-C1-C2 120.9(6)
C2-C3 1.411(4) C1-C2-C3 121.5(3)
C3-C4 1.420(4) Cc2-C3-C3 118.9(6)
C4-C5 1.363(5) C3-C3-C4 118.2(6)
S-C2 1.742(3) C3-C4-C5 121.7(3)
S-S 2.084(2) C4-C5-C5 120.1(6)
H1-C4 0.98(3) H1-C4-C3 118(2)
H2-C5 0.999(33) H1-C4-C5 120(2%

)

Direction cosines of the plane normal 0.0, -0.6690, 0.7433 (Best plane
calculation of inner carbon rings).

TTT tilt angle to b 48.02°.

Interplanar spacing 3.316 R.

*The standard deviations in the last decimal place are given in parentheses
(assuming isotropic atoms).
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Table IX

TTT Geometry in TTT213 (h.d.) ~74° K (MoKa)

Bond Lengths, R* Internal Bond Angles*
C1-C1 1.428(7) C1-C1-C2 119.5(6)°
C3-C3 1.449(5) C1-C2-S 113.7(2)
C5-C5 1.421(6) C2-S-S 95.8(1)
C1-C2 1.400(4) C2-C1-C2 121.1(5)
C2-C3 1.408(3) C1-C2-C3 121.8(2)
C3-C4 1.422(4) C2-C3-C3 118.8(4)
C4-C5 1.367(4) C3-C4-C5 121.6(2)
S-C2 1.747(5) C4-C5-C5 120.2(5)
S-S 2.087(1) H1-C4-C3 117(2)
H1-C4 0.97(3) H1-C4-C5 122(2)
H2-C5 1.01(3) H2-C5-C4 119(2;

H2-C5-C5 120(2

Direction cosines of the plane normal 0.0, -0.6673, 0.7448 (best plane
calculation of inner carbon rings).

TTT tilt angle to B 48.14°,

Interplanar spacing 3.301 A.

*The deviations in the last decimal place are given in parentheses
(assuming isotropic atoms).



Table X

TTT Geometry in TTTZI3

*
Bond Lengths, R

c1-C1 1.435(6)
€3-C3 1.445(4)
C5~-C5 1.420(5)
C1-C2 1.399(3)
C2-C3 1.415(3)
C3-C4 1.423(3)
C4-C5 1.369(3)
S5=G2 1.747(2)
S-S 2.090(1)
H1-C4 0.93(3)
H2-C5 1.03(3)

Direction cosines of the plane normal 0.0, -0.6657, 0.7462 (best plane
calculation of inner carbon rings).

TTT tilt angle to b 48.26°.

Interplanar spacing 3.295 R.

*The deviations in the last decimal place are given in parentheses

32

(h.d.) ~19° K (MoKa)

Internal Bond Angles*

C1-C1-C2
C1-C2-S
C2-S-S
C2-C1-C2
C1~-C2-C3
C2-C3-C3
C3-C4-C5
C4-C5-C5
H1-C4-C3
H1-C4-C5
H2-C5-C4
H2-C5-C5

(assuming isotropic atoms).

119.4(5)°
113.7(
95.7(
121.3(
121.9
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Discussion

ORTEP drawings (16) of the TTT molecule at 164° K, 74° K, and 19° K
are shown in Figures 5, 6, and 7. There is nothing unusual with the
geometry of the TTT molecules. Table XI lists, for comparison, the
bond lengths of neutral TTT (17), the bond lengths of TTT in Kodak's
TTT213, and the bond lengths as a function of temperature for TTT,1, (h.d.).
The geometry of TTT in all of the structures is very similar. The S-S
bond seems to lengthen with decreasing temperature. The orientation of
adjacent TTT molecules in the same stack remains about the same at 19° K
as at room temperature (Figure 8). The angle of the TTT tilt to the
b axis increases slightly with decreasing temperature. The interplanar
distance between TTT molecules decreases as the temperature is lowered
(Tables VIII, IX, X).

A comparison of Figure 3 with Figure 9 indicates that, except for
a loss of thermal motion perpendicular to the channel and a general
increase in coherently scattering electron density, the channel
structure remains the same at 164° K as at room temperature (~294° K).

At 294° K the maximum and minimum electron density in the channel are
12.9 e/f\3 and 32.9 e/ﬂ3. At 164° K the minimum and maximum are 26.9 e/ﬂ3
and 58.4 e/ﬁ3. Although the amount of coherently scattering electron
density in the channel continues to increase with decreasing temperature,
the channel structure at 19° K is essentially the same as at room
temperature (Figures 11 and 13). The position of the broad maximum

does shift a 1ittle (Table XII). Figures 10, 12, and 14 are the
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Section Z= 0.25 Section X= 0.25

TTT,l3 (h.d.) at 164°K

Difference Fourier Sections through lodine channel

Contoured at 0.5 electrons / A3 interval
———-—-—negative contours

zero and positive contours

Figure 10
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0.2 X 0.3 0.2 'z 0.3
N 0 N
& U k»/ 0 h
B <>/5e'/fka
H [ (o)
ﬁ 0 (\ 1 q
Section Z= 0. 25 Section X= 0. 25

TTT,I, (h.d.) at T4°K
Electron Density along Iodine Channel

Contoured at 5 electrons/[ox3 intervals beginning at zero

Figure 11
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Section Z= 0. 25 Section X= 0. 25

TTT,I, (h.d.) at 74°K
Difference Fourier Sections through Iodine Channel

Contoured at 0.5 electrons/?%3 intervals
————— — negative contours

zero and positive contours

Figure 12
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0.2

l'/— fie-/‘g3

1\ LU (TR

Section Z= 0. 25 Section X= 0. 25

1 \

TTT,I, (h.d.) at 19°K
Electron Density along Iodine Channel

Contoured at 6 electrons /&7 intervals beginning at zero

Figure 13
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Section Z= 0. 25 Section X= 0. 25

TTT,I, (h.d.) at 19°K
Difference Fourier Sections through Iodine Channel

Contoured at 0. 5 electrons/A’ intervals
————— — negative contours

zero and positive contours

Figure 14
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Table XII

Maximum and Minimum Electron Density at 1/4, y, 1/4 in TTT h.d.).

o153 (

~294° K 164° K 74° K 19° K

: o3

Maximum 32.9 58.4 83.5 112.4 e/A
Position* 0.28 0.29 0.28 0.34

Minimum 12.9 26.9 35.3 55.0  e/R°
Position* 0.03 0.03 0.04 0.04

*y, in fractional coordinates.
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difference Fourier sections at 164° K, 74° K, and 19° K. The difference
Fourier sections show that using two iodine atoms to represent the
disordered iodide channel is not a perfect representation, especially
at 19° K, but it is adequate. No additional information would be
obtained by including more fractional iodine atoms to better represent
the broad maximum. The root-mean-square (rms) displacements perpendicular
to the channel at 19° K are ~0.1 . Small displacements off 1/4, y, 1/4
are possible, but the rms displacements are too small to suggest that
any large kinks occur in the iodide chain.

The similarity of the iodide channels at 19° K, 74° K, and 164° K
suggests that the "TTT" lattice sees only average, disordered iodide
channels which never order. The TTT lattice does not appear to distort

at low temperatures.

Temperature Dependence of the Diffuse Layer Lines

Although there is apparently no information in the TTT lattice
(three-dimensional Bragg reflections) to suggest any phase transitions,
the TTT lattice does not contain all of the structural information.

The phase transitions could be related to changes that might only
affect the diffuse layer lines. Figure 15 is a room-temperature X-ray
oscillation photograph of a single crystal of TTT213 (h.d.) rotated
about B and taken with nickel-filtered copper K, radiation. The layer
lines for the TTT lattice (b = 4.962 K) are labelled on the left side

of the photograph. Because the diffuse layer lines are incommensurate
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with the TTT lattice, they do not really represent a supercell.
However, for convenience the diffuse layer lines have been labelled as
shown on the right side of the photograph. At room temperature there
is very slight beading along the intense, diffuse, k = 3' layer line,
but no beading on the other diffuse layer lines. The diffuse layer
lines can be explained by the presence of one-dimensional chains of
iodine atoms which are not correlated perpendicular to the chain
direction. The beading on the k = 3' layer indicates that there is
some very weak, short-range order between the chains. Lowering the
temperature of the crystal could cause any of three effects to occur:
(i) the chains could three-dimensionally order amongst themselves into
a lattice incommensurate with the TTT lattice, (ii) the chains could
order with respect to the TTT lattice causing the formation, probably,
of a supercell, or (iii) the chains could remain disordered and uncorrelated.
Figure 16 is an oscillation photograph about b of a TTT213 (h.d.)
crystal at 120+10° K. The crystal had been rapidly cooled in a stream
of cold N, gas. There is a definite increase of beading on the k = 3"
layer, but no apparent beading on the other diffuse Tayers. A Weissenberg
photograph of the k = 3' layer at ~120° K (Figure 17) shows that the
increased beading is not due to additional ordering but to a loss of
thermal motion. The size and shape of the diffraction 'spots' (blobs
really) at 120° K are about the same as at room temperature indicating,
still, only short-range chain-chain ordering. An X-ray photograph at
~120° K obviously will not give information about a phase transition at

~100° K.
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A Weissenberg Photograph (k = 3')

of TTT213 (h.d.) at ~120 + 10° K (CuKa)

Figure 17
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During the slow-cooling of the fifth TTT_I_ (h.d.) crystal (see

23
the previous Experimental Section) the k = 3' layer was carefully
monitored. In addition, a sixth crystal of TTT213 (h.d.) was put on
the low-temperature diffractometer to monitor just the diffuse layer
lines during slow-cooling. The sixth crystal was cooled in the
following manner. From room temperature (~294° K) to 164° K the
crystal was cooled between 2° per five minutes and 5° per forty-five
minutes, with equilibration and peak scans every ten degrees. The
phi-shaft was actually cooling at 0.1°/10 secs at the higher temperatures
and 0.1°/25 secs at temperatures near 164° K. At 164° K omega scans,
based on an orientation matrix for the 'spots' on the k = 3' layer,
were collected for k = 1', 3', 5', 6', 7', and 9'. From 164° K to
76° K the temperature was turned down py 2° every five minutes,
although the actual cooling rate at the phi-shaft was ~0.1°/35 secs.
Every ten degrees the crystal was allowed to equilibrate and the peak
scans were collected. At 76° K omega scans, based on an orientation
matrix for 'spots' with k = 3', were again collected for reflections
with k =1', 3', 5',6', 7' and 9'. From 76° K to 24° K, the Towest
temperature attained with the sixth crystal, the temperature was
turned down at a rate of 0.2° per five minutes. The phi-shaft was
actually cooling at ~0.1°/45 secs. At 24° K omega scans of reflections
with k =1', 3', 5', 6', 7', and 9' were collected with an orientation
matrix for 'spots' with k = 3'.

There is no evidencé from the slow-cooling experiments with the

fifth and sixth TTT213 (h.d.) crystals studied at low temperatures that
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the beading on the diffuse layer lines ever collapses to sharp reflections
corresponding to Tong-range, three-dimensional ordering. The iodide
chains remained disordered with only short-range chain-chain order
from 294° to 19° K. Patterson maps calculated from intensities of
only diffuse layer 'spots' at 164°, 76°, and 27° K confirm that the
diffuse layer lines are caused solely by scattering from the iodide
chains. |
Shown in Figures 18, 19, and 20 are scans at various temperatures
of reflections on the diffuse layer lines.* Although the 33'4 certainly
increases in intensity with decreasing temperature (Figure 18), the
full-width at half-height (FWHH) remains about the same. At 136° K
the FWHH is about 1.38° w ( ~.1° w), at 96° K FWHH =~ 1.65° w, at
48° K FWHH = 1.26° w, and at 20° K FWHH = 1.38° w. Figure 19 shows
the effect of temperature on a different reflection, the 13'0. At
room temperature with molybdenum K, radiation the 13'0 cannot really
be resolved with diffractometer scans, although it can be seen on a
135 hour, room temperature Weissenberg photograph taken with copper
K, radiation. With decreasing temperature the 13'0 gains in intensity,
but the peak shape continues to indicate only short-range coherent
scattering. The intensity gain with slow cooling is completely
reversible. The room temperature scan of the 13'0 in Figufe 19 was

actually run after the crystal had been cooled to 24° K and warmed

*The h and 2 indices in Figures 18, 19, 20, 21, and 22 and references to
them in the text refer to an A-centered TTT lattice. For comparisonwith
C-centered TTT indices h and & should be interchanged. In Figures 18 -
22 the index k is really k'.
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back to room temperature. Figure 20 shows scans of three reflections
on the diffuse layer lines at 24° K and, for comparison, a TTT lattice
reflection, the "2 4 4". The "2 4 4" is really 422 for the C-centered
(Cmca) TTT lattice. The intensity scale for the diffuse reflections
is expanded by five times that of the TTT lattice reflection. The
full-widths at half-height for the omega scans are: 13'0, FWHH ~ 1.22° w,
73'8, FWHH ~ 1.22° w, 47'2, FWHH ~ 0.9° w, "2 4 4", FWHH ~ 0.24° + .05° w,
and for 808 (not shown in Figure 20), FWHH ~ 0.24° + 0.05° w. For
13'0, 73'8, and 47'2 the estimated error in measuring the FWHH is
about #0.10° w. Figures 18-20 show that from 294° K to 19° K the
iodide chains, even with very slow cooling, do not achieve long-range
coherency.

Figure 21 is a plot of the integrated intensities from omega scans
of several reflections on the diffuse layers and one h0% reflection
as a function of temperature.* Figure 22 is a similar plot of the
integrated intensities from omega scans of several TTT lattice
reflections. Figures 21 and 22 are really a summary of the effect

of slow-cooling on TTT_ I, (h.d.). Except for a possible anomaly at

23
85-90° K and a general leveling-off of intensities below about 40-50° K,

with very slow cooling there is no evidence for a structural phase
transition in TTT, I, (h.d.) from ~294° K to 19° K. The TTT lattice

2°3
remains orthorhombic with Cmca symmetry and does not form a supercell.

*A11 of the scans in Figures 21 and 22 were run with a large, 5 mm
cotlector aperture. A normal 1T mm collimator was used on the mono-
chromator for the primary X-ray beam.
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Reflections with k = 3' and k = 7' are incommensurate with the stacking
axis of the TTT molecules (Table XIII). The diffuse layers with k = 1",
5', 6', and 9' apparently remain diffuse. No reflections from these
layers were observed. The intensities of the reflections on the two
diffuse layer lines, k = 3' and k = 7', do increase. But, reflections
on these layers remain very broad and weak even at 19° K indicating no

long-range three-dimensional ordering.
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Table XIII
TTTZI3 (h.d.)

b Number of Unit Cell Parameters? "
Reflections Reflections a b [ Temperature
hk2 (Cmca) 22 18.259(6) 4.933(4) 18.341(8) 164° K
h3'% 5
hOg 7 18.266(9) 9.614(17) 18.342(13) 164? K
hk¢ (Cmca) 32 18.208(6) 4.924(2) 18.265(8) 76° K
h3'% 8 18.212(28) 9.569(19) 18.252(43) 76° K
h3'2 8
hog 9 18.215(7) 9.564(11) 18.268(8) 76° K
hke (Cmca) 36 18.192(6) 4.923(3) 18.235(8) 24° K
h3'¢ 10 18.158(31) 9.601(21) 18.230(52) 24° K
h3'¢ 10
hOL 14 18.193(6) 9.584(13) 18.238(8) 24° K
h7'% 4
ho% 14 18.195(6) 9.732(5) 18.238(8) 24° K

AValues in this table are from the sixth crystal used for low temperature
studies and should not be compared to values from the fifth crystal
(Table I). The sixth crystal was not as well centered. Cell edge
lengths are from a symmetry-constrained (orthorhombic) least-squares
fit of 206 values.

bh and & are the same as for the TTT lattice, Cmca.
k' is the diffuse layer index (Figure 15).

Cphi-shaft temperature.
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2.3 Discussion of the Diffuse Layer Lines

There are many causes for the appearance of diffuse scattering in
the reciprocal space of seemingly ordered, three-dimensional crystals (22,
23). The causes can be broadly classified as from either thermal
(dynamic) effects or structural (static) effects. The temperature-

dependence studies of TTT_I_ (h.d.) suggest that the major cause of

23
the diffuse layer lines is structural disorder. The anionic species
in the channels of TTT213 are commonly assumed to be 13', and that
random shifts along B of the 13' units in the channels will cause the
diffuse layer lines observed on the X-ray diffraction photographs (9,
24, 25). This is a fairly reasonable explanation. However, the room-
temperature structure of low disorder TTT213 (JPL crystal) suggests
that the disorder be best accounted for by assuming,in addition to chain
slippage, the presence of small amounts of I~, I, and possibly, other
polyiodide species (26). Chemically this is quite reasonable. Iodine
is known to form a variety of polyiodide species with strong inter-
molecular interactions (27, 28, 29). A report by Beyeler in 1976 of |
the successful modeling of the X-ray diffraction pattern of the ionic
conductor K1.54 M3y 77 Tiz 23 016 (30) suggested that a similar approach
might help to better understand the diffraction pattern for TTT213 (h.d.).
In K1.54 Mgo.77 T17.23 0]6 the potassium cations are in channels.
Beyeler modelled the potassium ions by assuming a random collection of

cells of varying length and large displacements of the ions. He gave

no details about how he calculated his final interference function.
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The first model of the iodide chains in TTT I3 (h.d.) assumes a

2
collection of randomly occuring 13', 12, I spacings. Guinier (31)

has shown how to calculate the interference function for such a model.
For three spacings the distribution of these spacings is a sum of three
delta functions h(x) = p16(x-d]) + pzd(x-dz) + p36(x-d3). The
probability of each spacing, dj, occurringis Pys and Py = 1-p]-p2. The
crystal in real space is built from the convolution of h(x) with

itself an infinite number of times and this function is z(x). The
Fourier transform of z(x) gives the interference pattern of the crystal

in one-dimensional reciprocal space. The transform of h(x) is

H(s) = [h(x)exp(2misx)dx = ijexp(Zwisdj) . Equation 1
J

Therefore,

transf z(x) = Z(s) = 1 + H(s) + H2(s) + H3(s) + ...
+ HE(s) + [H*(s)12 + [H*(s)13 + ...

If h(x) had been represented by a single delta function, ie. a lattice
with a single repeat spacing a, then Z(s) would be the interference
function (or diffraction pattern) for a one-dimensional grating and
Z(s) =1+ 2 g cos(2mna). Since gpj =1, |H(s)| (equation 1) is
always less tﬂél one when N > 1 (except at s = 0) and so Z(s) is a

geometric progression which can be expressed as
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Z(s) = 2 Real [T:H%ETJ -1.

This is the same result that Wright obtained (32). Hendricks and Teller (33)
and Méring (34) also calculated this same result but expressed Z(s) in

the form

1-R?

=T Equation 2
1+R"-2Rcos ¢

Z(s)
where Rei¢ = ijexp(Zﬂisdj) = H(s) (35). On the basis of known bond.
lengths and vgn der Waal's radii (29,36), an 13- spacing would be ~10.1 R,
an I2 spacing ~7 K, and an I~ spacing ~4.3 R for non-interacting
species. Shown in Figure 23, as a function of |§| (35), are a series
of computer-generated plots of Equation 2 in which the probabilities
and spacings have been]varied. The parameters for each plot are listed
in Table XIV. These plots demonstrate that the positions and the
intensities of the diffraction lines are sensitive to changes in the
probabilities and spacings. Figure 24 is a 135 hour X-ray oscillation
photograph of TTT213 (h.d.) rotated about B. The photograph was taken
in a cylindrical camera with monochromatized molybdenum B radiation.

The film was wrapped in 0.005 inch aluminum and after development the
back emulsion of the Kodak No-Screen X-ray film was removed. This
oscillation photograph exhibits a weak k = 1' diffuse layer line, a

weak k = 2' diffuse layer Tine next to but incommensurate with the

TTT lattice line, a very strong k = 3' Tine with possibly two components,

a weak k = 4' line again next to, but incommensurate with the TTT
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Interference function, Z(s) (Equation 2).
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lattice line, a k = 5' diffuse layer Tine, a moderately strong k = 6'
line clearly displaced from the TTT 1iﬁe, a moderately strong k = 7'
1ine, and two or three broad, very weak diffuse 1ines at higher angles.
Although none of the plots in Figure 23 are an exact replication of the
oscillation photograph, the similarities are encouraging.

Further improvements in the model ought to include the effect of
slight atomic displacements (ie. "thermal" parameters or "temperature
factors"), the effect of different spacings containing different
amounts of scattering matter (ie. structure factors), and the effect,
perhaps, of slight variations in the spacings and nearest-neighbor
correlations. A model with different spacings for different iodide
species is very similar to stratification in clays. Several people
have worked out the expected diffraction patterns for clay with
interstitial material. One of the more recent and fairly complete
treatments of this problem has been published by Wright (32). His
intensity expression is used here to model the diffraction pattern
of the iodide chains in TTT213 (h.d.). This is a one-dimensional
model and represents, essentially, the diffraction pattern expected
for one infinitely long chain.

Wright has assumed in the derivation of his model that there is a
basic layer with some spacing which represents the majority of the
structure. But, the basic layers do not always come in perfect succession;
occasionally there are layers of other material, with different spacings,

in between the basic layers. Although this model allows for the
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possibility of an I~ following an 13' in the chain, I_ or I~ species

2
For this model of an

3
would always be bordered on either side by I

3 -
infinite chain the intensity would be given by the expression (32)

2 _ + 2 2 2 ;
|A(s)|” = 2[88 /(1-a)]rea1 = [Fp 1™+ pylFql™ # p2|F2| Equation 3
where
B = Fp * pyFre s p2F2e
ip,/2 idn/2
+_ - * * 7] * 12
B'=F " +piFye + p2F2 @
i
- k
and o = gpke
p, are probabilities and Epk =1. Fb is the structure factor for the
basic layer, in this case 13'. F] and F2 are structure factors for
I, and I". When an 13" follows an 13- the structure factor for the

nonexistent interstitial material is zero, but there is a term in a

for the probability of an I3' following an I3 O is the phase

shift due to the spacing of an 13' plus the spacing for the k species.
Included in the structure factors are terms of the form exp(-BsinZQ/Az)
to account for thermal motion of the atoms (37). Preliminary calculations

of Equation 3 showed that I,  following 13- is a prominent feature of the

3
iodine chains. Shown in Figure 25a are computer-generated plots of Equation 3.
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The parameters for each plot are listed in Table XVa. The effect of a

slightly asymmetric I_~ is negligible. The probabilities of each

3
species primarily determine the intensities of the various lines,
although the spacings do affect the intensities. The plots show
basically the same diffraction pattern as in Figure 24. The plots
indicate that 70-80% of the 13' will have 13' as nearest neighbors,

but there is a small percentage of 12 and I” present.

The oscillation photographs have broad diffraction lines, especially
at high angles, which the plots in Figure 25a do not have. Two effects
could cause the observed broadening. The mosaic blocks in the crystal
could be very small or the spacings of the iodide species could be
variable. Because the TTT lattice in TTT2I3 (h.d.) gives rise to very
normal, sharp reflections, there is no reason to assume unusually small
mosaic blocks. However, the spacings of the iodide species could,
realistically, be quite variable. 13', 12, and I~ are known to form
“"polyiodide" species with a wide range of inter- and intramolecular
I-I distances (27,28,29,38,39). For the case when the variations in
the spacings are much smaller than the average spacings and the
variations have a normal distribution about the average spacings,
Wright has derived the following modifications to Equation 3. For
spacings dk (dk is the basic plus interlayer spacing) with a deviation
of Ak (Ak <<dk), then

o = Jp exp(2misd Jexp(-2r2s%n, %)
k

k
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Table XVa
Parameters for the Plots of the Wright Model

Figure 25a - No deviations in the spacings

Constants in all five plots II( 2) = 2.70 &
spacings: 1,7+ I, = 16.7 Bo13m+17 =143 157+0=99R%"
A .
asymmetric 1" 1,-I.=2.838  1I,-I. = 3.04 A
B(I;) = 8.0 B(I,) =10.0 B(I))=2.0 B(I,) =4.0 B(I) =3.0
_____ prip et Jg Tl W8 LS T WO Ly rbOE
B
symetric 1,7 I.-I. = I, -I_ = 2.92 R
B(I) = B(I;) = 8.0 B(I,) =4.0 B(I") = 3.0
probabilities: same as in A
¢
asymmetric 13' (same bond lengths as in A)
B(I,) = 3.0 B(I))=4.0 B(I) =20 B(I,) =4.0 B(I") =6.0
_____ probabilities: I3 *1p0.15 1y +1,0.5 15+0,070
D

symmetric I3' (same bond lengths as in B)
B(Ia) = B(Ib) = 3.0 B(IC) = 2.0 B(Iz) =4.0 B(I') =6.0

probabilities: same as in C

* 17 are nearest neighbors
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Table XVb
Parameters for the Plots of the Wright Model (32)

Figure 25b - With deviations in the spacings

- I -1 .
Constants in all four plots; asymmetric I3 S
Ib—IC = 2.97 A

B(I,) = B(I,) =2.0 B(I)=1.0 B(I,) =3.0 B(I") =3.0 DII(12)=2.7OA

________ S S < R ¥ S -
E
N 1 . - = A - = - = *
Spacings: 13 +I2 16.7 A 13 +1 14.0 I37+0 = 9.6
Deviations: 0.5 K 0.3 0.3
Probabilities: 0.18 0.04 0.78
F
Spgcings: 1,71, = 16.7 R I+ = 14.3 13740 = 10.0%
Deviations: 0.5 R 0.3 0.3
Probabilities: 0.18 0.04 0.78
]
(o]
i . "~ = i - o= = *
Spacings: I+, = 17.0 A I,7+17 = 14.3 1,740 = 9.6
Deviations: 0.5 A 0.3 0.3
Probabilities: 0.18 0.04 0.78
H
Spacings: 13 +I2 =16.7 A I3 +1” Ly ) = 9.7%
Deviations: 0.5 ﬂ 0.3
Probabilities: 0.20 0.0 0.80

* 13" are nearest neighbors.
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Plot of the Wright Model (see Table XVa)
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& i Pl £
B = Fp+ Ekakexp(1wsdk)exp( mes€a, °/2)
= 21 - o =725ing
and ¢y = 2rsd, (|s] = s _(n_i__o)_

This treatment assumes that the deviations, A , will not cause a change

k
in the structure factors. For the iodide chain this is reasonable,
because the Ak are being used to represent the deviations in inter-
molecular spacings caused by variable amounts of interaction between
iodide species. Shown in Figure 25b are computer-generated plots of
Equation 3 but small deviations for the spacings have been included.
Table XVb Tists the parameters for the plots shown in Figure 25b. Not
only do small deviations in the spacings cause broadening of the peaks
at high angles,but the deviations seem to act as a "smoothing" function.
With small spacing deviations Equation 3 is fairly insensitive to small
changes in the other parameters. (Compare the changes in the parameters
listed in Table XVb with the plots of Figure 25b,) Figure 26 is an
X-ray photograph of TTT213 (h.d.) taken as the photograph in Figure 24
was with monochromatized molybdenum K radiation. The Kodak No-Screen
X-ray film was wrapped in 0.005 inch aluminum and after developing the‘
back emulsion was removed. This is a 72.6 hour exposure of a stationary
crystal with a cylindrical camera. (The powder rings are not from the
TTT213 (h.d.) crystal.) Optical film scans were made of the photographs
in Figures 24 and 26 and of three other oscillation photographs taken
under the same conditions but with different exposures (40). Figure

27 shows two of the film scans plotted as a function of IZI. The
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optical density plotted for the 135 hour exposure is an average of ten
0.1 mm scans of a 1 mm strip parallel to b. The optical density

plotted for the 72.6 hour exposure, stationary photograph is an average
of five 0.1 mm scans of a 0.5 mm strip parallel to E. Also in Figure 27
is plot E of Figure 25 b. Plot E (the parameters are listed in

Table XVb) shows all of the major features seen with the optical film
scans. Although the fit may not be perfect, this one-dimensional

model of the structure of the iodide chains can explain all of the major
features of the TTT213 (h.d.) diffuse diffraction pattern. Although

not seen with the film scans, the diffuse layers k = 3' and k = 7'
actually consist of two components. This can be explained by the
presence of two average spacings for 13' in the chains, for example

I3” spacings of 10.0 R and 9.6 A.

Although the model is not perfect, in general it shows excellent
agreement with the observed diffraction pattern. The agreement is good
enough to say that, besides 13', there is some finite amount of 12
and probably a small amount of I~ present in the channels. This is a
different conclusion from thatof Isett and Perez-Albuerne (41). They
interpret their Raman data as indicating the presence of less than 2%
I, in Kodak crystals. The structural report by Smith and Luss and
their descriptions of their X-ray photographs suggest, however, that
the Kodak crystals are similar to the JPL crystals structurally. The
presence of small amounts of 12 and I” in the channels would certainly

explain why the iodide chains never three-dimensionally order. Although
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at higher temperatures there is undoubtedly dynamic disorder, there
is also, built into the structure, static disorder. The occasional
mistake of an I2 or I” in the channel would prevent any long-range
chain-chain ordering even at lTow temperatures.

From the information reported by Kaminskii, et al., (42) for
Chernogolovka crystals and the diffuse X-ray scattering experiments done
by Megtert, Pouget, Comgs and Fourme on Chernogolovka crystals at Tow
temperatures (43) the model presented here may not be a valid description
of the Chernogolovka crystals. Some caution should be used in assuming
that this model is completely valid for any TTT_I_ other than for

23

TTT213 (h.d.) crystals grown at JPL since it is apparent that

crystallization conditions can strongly effect the iodide composition

of the resulting crystals.
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2.4 Conclusions

The results of this study on TTT213 (h.d.) crystals grown at JPL
are as follows:

(i) The room-temperature structure of the TTT lattice in TTTZI3 (h.d.)
is the same as reported by Smith and Luss (9).

(ii) There is primarily I3” present in the channels, but 12 and 1~
are also occasionally present causing "mistakes" in the chains and
preventing long-range chain-chain coupling.

(iii) With very slow cooling the TTT lattice in TTT213 (h.d.)
apparently shows no structural phase transition to 19° K.

(iv) With very slow cooling the iodide chains never order which is
consistent with (ii).

However, as mentioned in the Experimental Section for the Tow-
temperature structures, all of the temperature-dependent data was
collected on two crystals of TTT213 (h.d.), the fifth and sixth crystals
studied. It might be of interest to mention what happened to the first
four crystals.

The first crystal was cooled at a rate which would have cooled the
crystal from 294° to 20° K in about 15-24 hours. The crystal shattered
at 80-90°. The only piece of the crystal which could be found after

warming to 294° K was the end of the crystal which was still firmly

attached to the glass fiber.
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The second crystal was cooled about twice as slowly, but cracked
at ~90° K during the cooling. X-ray photographs of the crystal after
warming to room temperature confirmed that the crystal really had split
and remained split at room temperature.

The third crystal was coated with G. E. varnish after it was
mounted on the glass fiber. It was cooled at a much slower rate.

From 294° to ~90° K the temperature was lowered at ~1° per 5-10 minutes.
From ~90° to 27° K the temperature was lowered at ~0.1° per 5 minutes.
The crystal survived to the lowest temperature attained, ~27° K.

During the data collection at 27° K the check reflections exhibited
substantial decay.

Because a complete, reliable data set was not obtained from the
third crystal, a fourth crystal, also coated with G. E. varnish, was
cooled. This crystal was cooled rapidly from ~294° K to 27° K in
about four hours. After 70 hours of data collection the check
reflection intensities became very erratic, suggesting the structure
was unstable and was changing with time.

The most reliable data collected from the third and fourth
crystals were merged to form an almost complete data set. Solution of
the structure using this data set suggested that the end rihg of the
TTT molecule was substantially bent away from planarity with the rest
of the molecule. At room temperature the tilt of the end ring away
from planarity is ~1° (+.2°). This same tilt was observed at 164° K,
74° K, and 19° K with the good data from the fifth crystal. However,

with the combined data set from the third and fourth crystals, the
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end ring appeared to be tilted ~3° (#0.2°) away from the planarity of
the rest of the TTT molecule. It is not known whether this is the
result of the fast cooling or of a systematic error in the data caused
by merging data sets from crystals cooled at different rates. The k = 3'
reflections observed with the fourth crystal also showed differences

from the fifth and the sixth crystals. For the fifth and sixth

crystals, reflections with h odd, k = 3' (h and & here refer to the
C-centered TTT lattice) were always absent. There were very, very

weak intensities for reflections with h odd, k = 3' collected from the
fourth crystal.

Although the data from the third and fourth crystals are somewhat
unreliable and the third and fourth crystals were the only ones coated
with G. E. varnish, the possibility still exists that cooling rate may
affect the structure. Point-by-point sampling of reciprocal space
with a diffractometer is extremely inefficient and time-consuming.

It is possible that there was additional information such as satellites
in regions of reciprocal space which were not scanned. The loss of
the first two crystals may suggest the existence of a structural phase

transition. Crystals of TTT_.I_ (h.d.) are often reported to break on

23
cooling (8). Measurement of the transport properties on crystals

cooled at very slow rates have not been done.
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Chapter 3

Structure of (Tetrathiotetracene)-(Iodide)

Slight variations in the crystallization conditions of the tetra-
thiotetracene (TTT)-iodine system can lead to variations in the amount
of disorder in TTT213 and, also, to other phases (1,2,3). When semi-
conducting crystals with a physical morphology very similar to metallic
TTT213 were obtained at JPL, it was of interest to determine why the
material was semiconducting (Appendix B) rather than metallic. To
help elucidate why the material was semiconduéting, a crystal structure

determination was undertaken.

Experimental

The crystals of this phase were usually very thin, fragile needles
with golden reflections. The density was measured by flotation to be
2.09 g/cm3. Initial X-ray oscillation photographs, taken with the
crystals rotated about their needle axes, showed an ordered structure
with a plethora of layer 1lines which could not be indexed on the
basis of a single lattice. At least ten crystals were examined by
X-ray photographs and all exhibited an identical diffraction pattern.
The diffraction pattern can be indexed by assuming two interacting
lattices. (This is discussed in more detail later.) It was decided
that the Tattice with the repeat spacing of about 3.641R along the

needle axis would be studied first.
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Initial X-ray photographs of this 1attice_suggested a monoclinic
cell. However, careful centering of fifteen reflections with a beam-
splitter on a General Electric quarter-circle diffractometer and
comparison of the integrated intensities of "equivalent" reflections
confirmed that the unit cell chosen from the photographs actually has
C-centered triclinic symmetry. Al1 possibhle hkO reflections to 26 =
155.0° were collected with 1° per minute 26-6 scans on an automatic
General Electric quarter-circle diffractometer using nickel-filtered
copper Ka radiation. Backgrounds were collected for thirty seconds
on each side of a scan. Equivalent Friedel-related reflections were
combined by taking a weighted average of the F02 (4). Weights were
based on counting statistics and no more than two observations
contributed to a weight. The structure in projection was solved from
the two-dimensional, UVO Patterson projection. Partial refinement
of the projection indicated the stoichiometry as TTTI (1:1) in
agreement with the measured density. The crystal had dimensions of
0.83 mm x .008 mm x .517 mm (Table I). Absorption corrections (5)

(n = 212.875 cm~1) were applied to the data set and full-matrix least-
squares refinement continued until the refinement converged.

A complete three-dimensional data set for c = 3.643 R was
collected, as before, with 1° per minute 26-6 scans using nickel-
filtered copper radiation on a General Electric quarter-circle
diffractometer. Thirty second backgrounds were collected on both
sides of a scan. Equivalent Friedel-related reflections were combined

to yield a data set of 1620 reflections of which 1512 had Fo2 > 0.



88

Table I
Crystal Data TTTI (Lattice 1, ¢ = 3.643 A)

a = 13.028(2) A @ = 90.81(1)° (A = 1.5418 A)
b = 16.445(2) 8 = 96.11(1)

c= 3.643(1) y = 91.11(1)

v = 776 RS =2 F.W. = 479.4

d= 2.053

d = 2.09(3)

Triclinic, Space group CT
Linear absorption coefficient (CuKa), u = 212.875 cm1.

Crystal dimensions 0.083 mm x 0.008 mm x 0.517 mm.
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The same crystal used to collect the hkO data was used for the complete
three-dimensional data collection. Absorption corrections for the
stoichiometry TTTI (u = 212.875 cm™!) were applied to the complete

data set. The z coordinates of most of the atoms were obtained from
the three-dimensional Patterson map. Iodine and sulfur atomic
scattering factors were corrected for anomalous dispersion, and the

real parts (fo + Af') were used in the structure factor calculations (6).
After the positions of all the atoms (except hydrogens) were determined,
the structure was refined by the full-matrix least-squares method.

The weights used in the least-squares refinement were based on counting
statistics. On a low-angle difference Fourier map of the approximately
refined structure, very large, weak blobs of electron density were

seen in positions that were geometrically correct for hydrogen atoms.
The hydrogen atoms were included in the final least-square cycles,

but were not refined. During the final least-square cycle all shifts
were less than one-third of the corresponding standard deviation.

Final atom coordinates and temperature factors are listed in Table II.
The full matrix least-squares refinement converged to R = 0.102, with
the goodness-of-fit = 4.7 for the complete data set (7). For 1132
reflections with Fo2 3_30(F02), R = 0.081.

Discussion

Shown in Figure 1 and listed in Table III are bond lengths and

bond angles, and their estimated standard deviations (assuming isotropic
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Refined Atomic Coordinates for TTTI (Lattice 1, c = 3.643 R)

X
0

.25896(17)
.25951(17)
.44396(60)
.39217(63)
.39269(63)
.44302(67)
.55460(65)
.39062(71)
.60321(74)
.44277(86)
.55050(82)

32
.402
.67
<59

Y
0

.06298(14)
.05920(14)
.00078(53)
.07140(52)
.07028(53)
.14283(51)
.14147(51)
«21558(55)
.21412(56)
.28337(56)
.28219(57)

.205
.326
W
w303

L
0

.94596(81)

.08012(81)

.01076(291)
.91656(261)
.09972(252)
.81213(253)
.80716(266)
.71329(284)
.70358(271)
.61511(318)
.61810(298)
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Refined Temperature Factors for TTTI (Lattice 1, c

H1

H1!
H2'

-0826(70)
.0782(67)

00 00 00 O
(@l oo Na]

Y22

.0349(5)
.0559(12)

e

.4702(43)
.0460(18)
.0449(18)
.0380(59)
.0239(54)
.0193(51)
.0158(48)
.0253(55)
.0321(59)
.0194(52)
.0477(76)
.0314(62)

.0067

Uy

.0020(4)
.0180(10)
.0116(10)
.0150(36)
.0145(37)
.0076(37)
.0142(38)
.0070(37)
.0166(44)
.0044(44)
.0190(47)
(47

)

-

643 R)

Va3

.0075(11)
.0006(12)
.0016(13)
.0078(44)
.0072(42)
.0082(42)
.0046(40)
.0038(42)
.0072(47)
.0015(44)
.0030(51)
.0073(48)
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Table III
TTT Geometry in TTTI (Lattice 1, c = 3.643 R)

Bond Lengths, A* Bond Angles*
C1-Cl 1.471(18) C1-C1-C2 118.5(1.6)°
C3-C3' 1.456(12) c1-c1-c2' 119.0(1.6)
C5-C5' 1.403(15) c2'-Cl1-C2 122.3(8)
C1-C2 1.383(13) c2'-S'-S 96.3(3)
c1-c2! 1.394(13) c2-s-S' 95.4(3)
C2-C3 1.414(12) C1-C2-S 113.1(7)
c2'-c3' 1.396(12) C3-C2-S 124.2(7)
C3-C4 1.421(13) c1-c2'-s' 112.7(7)
Cc3'-C4' 1.416(13) c3'-c2'-S' 125.3(7)
C4-C5 1.366(14) C1-C2-C3 122.7(8)
C4'-C5' 1.348(14) c1-c2'-C3' 122.0(8)
C2-S 1.753(9) c2-C3-C3' 118.1(8)
c2'-s! 1.742(9) c2'-C3'-C3 119.5(8)
S-S 2.075(7) C2-C3-C4 123.2(8)
C3'-C3-C4 118.7(8)
H1-C4 0.93 C3-C3'-C4' 116.7(8)
H1'-C4' 0.88 C3-C4-C5 121.3(9)
H2-C5 0.91 C3'-C4'-C5! 122.6(9)
H2'-C5"' 0.92 C4-C5-C5' 119.7(1.0)
C4'-C5'-C5 120.9(1.0)

Direction cosines of the normal to the TTT best plane: 0.0162, 0.2834,
0.9469.

Interplanar distance 3.56 R.

*The numbers in the parentheses are the deviations. The hydrogen atoms
were not refined.
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atoms) for the TTT molecule. The TTT molecular geometry is very similar
to that of a TTT molecule in TTT213 (previous Chapter or neutral TTT (8)).
However, the arrangement of cation stacks and anion channels is much
different in TTTI than in the conducting TTT213. An [001] projection of
TTTI is shown in Figure 2. Whereas in conducting TTT213 the crystal
structure suggests significant interchain coupling, each TTT stack in
TTTI is essentially isolated by surrounding iodides from neighboring
TTT stacks. There might be only very weak interchain coupling through
S-H2 contacts (~3.10 R) or S'-H2' contacts (~3.04 R), although these
distances are approximately equal to the sum of the van der Waals radii
(3.05 K) (9). The overlap of adjacent TTT molecules in the same stack
is also significantly different in TTTI from that of TTTZIB' Two
adjacent molecules in the same stack viewed perpendicular to the
molecular plane are shown in Figure 3. Because there is more overlap
in TTTI than in TTT2I3 and since the stoichiometry implies a half-filled
band, one might expect either a good conductor or a dimerized semi-
conductor. The transport properties (Appendix B) do suggest semi-
conductor behavior, but the TTT molecules do not appear to be dimerized.
However, the interpretation of transport properties in the presence
of two incommensurate Jattices is not well understood (10).

As mentioned before the actual crystal structure of this phase
consists of two lattices. Shown in. Figure 4 is an X-ray oscillation
photograph of TTTI rotated about the needle axis, 3; and taken with

nickel-filtered copper radiation. In the approximate position of a

sixth layer line there are actually two distinct layer lines. Careful
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[001] Projection for TTTI

Figure 2



96

(V $9°€=9 ‘| 3511187 JO 1UBWIAUI4AI BY} UO paseg)

*aue|d Jejndajow ayl o1 Jejndipuadiad pamaln
‘0Bl UOIIRD AWeS 3y} Uj ‘sajndajow auadesralolylena) burioqubian

1111 ‘(8p1po|)(auadesialotyiena] ) bunonpuooiwag

Figure 3



97

(™nJ) 111l 40 ydeabojoyd uoLie| LSO Aey-X Uy

Figure 4



98

measurements of the layer line spacings and the presence of two "sixth"
layer lines strongly suggest that a single lattice description of the
TTTI structure is inadequate. The layer line spacings obtained from
oscillation photographs of two different TTTI crystals are Tisted in
Table IV. These measurements are not absolute, but the measurements

for each set of layer line spacings are internally consistent. Although
the spacings cannot be fit to a single lattice in the ¢ direction,

they can be quite adequately fit by assuming the presence of two
incommensurate repeat distances in the € direction. Structures
exhibiting two or more incommensurate lattices are rare, but have been
reported (for example 11,12,13). Conceptually TTTI can be viewed as con-
sisting of two structures modulating each other. C. K. Johnson has
reported an elegant analysis of the TTF715 structure, which also
consists of two incommensurate lattices (13). Following the indexing
method suggested by Johnson, Figure 5 is a graph of the "selection rule"
2 = 4w + 3t where 2 represents the indexing of an approximate supercell
and w and t represent indices of the two sublattices. This graph
suggests there might be two layer lines of slightly different spacings
for £ = 2 and two layer lines of slightly different spacings for 2 = 6.
Although two slightly separated layer lines at 2 = 2 were not observed,
perhaps for lack of intensity, two slightly separated layer lines at

2 = 6 were definitely observed. The actual positions of the layer
lines can be fit by assuming that planes of spacing 3.642 R are
periodically displaced by an error occuring every 4.787 R. The period

of displacement would occur every Q number of planes (11,14). For
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Table IV

Layer Line Spacings of TTTI

Crystal #] Crystal #2 Inter"pr_'etationa ggiﬁ?ﬁg:gd
15.07 A 15.57 & 1, T 15.26 A
6.86 6.98 Ts 2 6.97
4.75 4.79 0, 1 4.78
3.62 3.65 1, 0 3.64
2.93 2.94 2, T 2.94
2.458 2.465 3y 2 2.47
2.385 2.391 0, 2 2.39
2.064 2.069 1, 1 2.07
1.822 1.817 2, 0 1.82

a
w,t w is the index for Lattice 1; t is the index for Lattice 2.

Pd =+ ¢y/(Jw] = [t]/Q), c; = 3.642 & and Q = 1.314.
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TTTI, Q = 4.787/3.642 = 1.314 planes. If Q equalled a whole number of
planes (or a rational fraction), then the periodic error becomes part

of the repeat pattern of an exact supercell. For example, if Q = 4 ﬂ/3 R =
1.3333, then the structure could equally well be described by a supercell
with a repeat of 12 R. In TTTI Q is very far from being a rational
fraction. If the periodic displacement is small, James has shown that

¢
additional layer lines will be observed at spacings d =-T—r—rLr75

wizitl/

(11,14). James calls the extra lines "ghosts" or satellites, but théy
could equally well be described as the interference cross terms from
the diffraction of two lattices. Shown in the last column of Table IV
are the calculated d spacings for TTTI using the w and t indices found
from the graph in Figure 5 and based on the values of cq = 3.642 R,
Co = 4.787 K, A= 1.5418 A (CUKa). With the exception of the first
layer line the agreement is quite good suggesting that TTTI does consist
of two lattices incommensurate along ¢, but commensurate in a*,b*.

Although only the structure of lattice 1 (c=3.64 ) has been solved
and refined, by analogy to other 'known channel :structures, such as
TTF41g (13), TTFBr, (15) s TMTSF(SCN)x (16), one can postulate that
lattice 2 (c ~4.78 ﬂ) is due to the iodide atoms. This is reasonable
considering that refinement of the hkO projection of both lattices
indicated the stoichiometry as TTTI (1:1) which, assuming complete
charge-transfer implies I°. Two times the van der Waals radius of I~
is ~4.3 A which is intermediate between the lattice spacings 3.64 R
and 4.79 R. In the lattice 1 structure the iodide is at x = O, y =0,

z = 0 (Figure 6) but the root-mean-square (rms) displacement along ¢ is
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approximately 0.69 R which is about 3.6 times as large as the rms
displacement in the other two directions. Difference Fourier sections
through the iodide (Figure 7) indicate that positioning the iodide at
0,0,0 in Tattice 1 is a reasonable model but the iodide does appear to
be at x = 0, y = 0, z ~ 0.197 occasionally. Dy_g for z =10 to z=1.197
is about 4.4 R or the expected van der Waals distance between I~ atoms.
This structural determination has shown that:

(A) the crystals have golden reflection and look very similar

to TTT213

(B) this phase is apparently semiconducting

(C) the stoichiometry of this semiconducting phase is TTTI (1:1)

(D) the structure consists of two lattices which are incommensurate

along 3} the needle axis of the crystal

(E) the two repeat distances along ¢ are e = 3.643(1) R and

c, = 4.79 A,

In 1976 Buravov, et al., (1) reported crystallizing two phases of
tetrathiotetracene-iodide. One phase was the highly conducting TTT213;
the other was a semiconducting phase with the reported stoichiometry of
TTT4I4. Their crystal data for this TTT4I4 is listed in Table V.

Except for an approximate quadrupling of Cq» their unit cell is the
same as TTTI. Although they reported solving the hko projection and
were attempting the three-dimensional structure, the only structural
information reported was "the existence of parallel stacks of NBDT [TTT]

and I along the c-axis is characteristic of the structure" (1). Either

Buravov and coworkers did not notice the existence of two incommensurate
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Table V

Comparison of the Unit Cell Parameters of TTT4I4 and TTTI

a b
TTT4I4 TTTI

a = 13.036(2) R a = 13.028(2) &
b= 16.435(2) b= 16.445(2)

c = 14.582(2) c = 3.643(1)

a = 90°42'(3) a= 90.81(1)°

B = 83°49'(3) B = 96.11(1)

y = 88°53'(3) y = 91.11(1)
Space group, C1 Space group, CT

. 1. Buravov, G. I. Zvereva, V. F. Kaminskii, L. P. Rosenberg,
M. L. Khidekel, R. P. Shibaeva, I. F. Schegolev, and E. B. Yagubskii,
J. Chem. Soc. Chem. Comm., 720 (1976).

bThis study (Lattice 1, see text).
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lattices and used an approximate supercell or they were able to
crystallize a semiconducting TTTI with an ordered, single lattice
structure. If they did crystallize an ordered, semiconducting TTTI,
it would be of interest to know if the TTT molecules were dimerized
as would be expected for a static Peierls distortion arising from

the half-filled band.
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Chapter 4

Structure of (Hexamethy]enetetrase]enofu]va]ene)(Iodide)X

Hexamethylenetetraselenofulvalene-tetracyanoquinodimethane (HMTSF-
TCNQ) is the best organic metal known (1). At 300° K its conductivity
is ~2000 "1 cm™! and increases with decreasing temperature to about
110° K. Between 45° and 75° K the conductivity goes through a broad
maximum and then decreases with decreasing temperature. But the low
temperature state appears to be semi-metallic. At 1° K the conductivity
is ~600 21 cm™1. Crystals of HMTSF-TCNQ remain conducting to 0.045° K (1).
HMTSF-TCNQ is a two charge-carrier system. It would be of interest to
synthesize a single-carrier conductor based on HMTSF for comparison

with HMTSF-TCNQ.

Experimental

Single crystals of HMTSF—Ix were prepared by R. Williams at
Caltech. HMTSF, supplied by Dr. D. Cowan and Dr. P. Shu of Johns
Hopkins University, was chemically oxidized to HMTSF(C104)X by a very
dilute solution of H202 and HC]O4 in acetonitrile. Solutions of HMTSF(C104)x
in acetonitrile and tetrabutylammonium iodide in acetonitrile were
allowed to slowly diffuse together. Single crystals of HMTSF—Ix grew
near the interface.

Two crystalline modifications of HMTSF—IX were obtained by diffusion.

Both crystalline modifications formed dark needles. One modification
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formed very poor quality crystals and had a repeat spacing along the
needle axis of 10.24 R. The second modification, the one reported
here, formed nice, dark needles. Initial X-ray diffraction photographs
showed the crystals to be triclinic with a repeat spacing along the
needle axis, a, of about 8.08 R

A single crystal with the dimensions 0.396 mm x 0.058 mm x 0.066 mm
was chosen for data collection. Based on a least-squares fit of
thirty-eight 26 values obtained with a Syntex P2] diffractometer the
unit cell parameters were determined to be a = 8.056(4) R, b = 12.740(4) R,
8.016(3) R, and o = 81.72(4)°, g = 67.73(5)°, y =102.64(4)° for

c

A = MoK, = 0.71069 R (Table I). The numbers in parentheses represent
the estimated standard deviation in the last decimal place. A complete
data set to 20 = 60° was collected on an automated Syntex P24
diffractometer with monochromatized molybdenum Ka radiation. Intensities
were collected with 1° per minute 20-6 scans. The time spent collecting
background was 50% of the amount of time spent scanning a reflection,
or about one minute for each side of a scan. The integrated intensities
were corrected for Lorentz and polarization effects. The weights
assigned to the reflections and used in the refinement were based on
counting statistics. No more than two observations contributed to a
weight.

Initial selenium atom coordinates were found from a three-dimensional

Patterson map. Preliminary structure factor-Fourier calculations were

based on the noncentric space group P1. After most of the atom
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Table I
Crystal Data for HMTSF-IX

a = 8.056(4) R
b = 12.740(4)

c = 8.016(3)

o = 81.72(4)°

B = 67.73(5)

y =102.64(4)

V =715.2(9) &3
Z=2
Space group PT

Linear absorption coefficient (MoK ), n = 111.938 cm! (for the
stoichiometry HMTSF210.64).

Stoichiometry ~HMTSF,Ij 3
Crystal dimensions 0.396 mm x 0.058 mm x 0.066 mm

Se Se
HMTSF = <::j: >F=q< :l::>
Se S
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coordinates had been determined and crudely refined, the center of
symmetry (inversion center) became obvious. A1l subsequent calculations
were based on the space group PT. The real parts of the atomic
scattering factors of iodine and selenium after correction for

anomalous dispersion (fO + Af') were used for structure factor
calculations (2). There are two HMTSF molecules per unit cell, and

they are related to each other by the inversion center. Preliminary
least-squares refinement of the structure suggested that the stoichiometry
was ~(HMTSF)Z(I)O.M/um’t cell. Absorption corrections based on this
stoichiometry (u = 111.938 cm™!) were applied to the data set (3,4).
Although the crystal used for data collection had six faces parallel

to 3, two of the faces were too small to measure. So for the

absorption corrections the crystal was approximated as being bounded

by the major faces, the (001), (001), (010) and (0T0) faces, and the
ends by the (100) and (100) planes.

After several full-matrix least-squares refinement cycles the
HMTSF molecule was refined but the iodine at 1/2,1/2,1/2 would not
converge. Difference Fourier sections about 1/2,1/2,1/2 showed that
a single iodine atom at 1/2,1/2,1/2 was a poor description of what
was actually present. Further refinement of the structure was
accomplished by adjusting the "solvent" atoms, based on the appearance
of the difference Fourier sections, followed by a Teast-squares
refinement of all of the HMTSF parameters and the population and

temperature factors of the iodine. The "solvent" atoms were assumed
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to be approximately equal to carbon in scattering power and were given
carbon atomic scattering factors. An unsuccessful attempt was made

to find the hydrogen atoms on a low-angle three-dimensional difference
Fourier map. The hydrogens have not been included in the structure.
The structure was judged to be refined when the R value stopped
changing and the difference Fourier map looked reasonable. The fina]l
difference Fourier map showed a maximum range of -2.3 e/ﬁ3 to +2.1 e/ﬂ3.
A11 shifts in the final least-squares cycle were less than 1/3 o.

For the complete data set of 4209 reflections (3611 reflections had
Fo2 > 0) R =0.098, with a goodness-of-fit of 1.65 (5). For the 2038
reflections with F 2 > 30 (F,%), R = 0.051. Listed in Table I are

crystal data. Listed in Table II are refined atomic coordinates and

thermal parameters.
Discussion

One of the primary objectives of a structure determination of a
quasi-one-dimensional conductor which contains halide is to determine
its stoichiometry. Because one can assume with some confidence that
all of the halide present will be as X~, knowing the amount of X~
in the structure will make the calculation of the number of charge
carriers (holes) easy. This is valuable for interpretation of the
transport properties. Unfortunately, stoichiometry is the most poorly
defined parameter of this structure. The "refined" value of 0.3144

iodines per two HMTSF molecules is, obviously, dependent on the amount
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Table Ila

Atomic Coordinates

X Y.

I .5 .5

Sel -.36099(14) .09124(8)

Se2 -.18153(14) .12862(8)

Se3 -.14371(14) .05500(8)

Sed .05146(14) .27062(7)

Cl -.19470(116) .04781(67)
C2 -.39847(120) -.14949(66)
C3 -.52680(143) -.26156(73)
C4 -.48679(155) -.26479(74)
C5 -.35653(137) -.14793(75)
C6 -.30915(133) -.08978(69)
C7 -.12495(123) .13476&71)
C8 -.03743(122) .27965(69)
C9 -.01853(172) .34484(83)
Cl10 .08380(183) .46475(74)
C11 .17392(143) .45430(66)
C12 .06052(128) .33674(65)

L

B
.20432(12)
.33786(12)
.22328(12)
.09138(12)
.02878(109)
.01729(108)
.04128(134)
.16303(131)
.29290(124)
.16280(118)
.08311(106)
.27695(118)
.41394(137)
.28498(143)
.07938(133)
.09765(113)
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of "solvent" assumed to be present. By assuming that only iodide or
disordered CH3CN is present, it is reasonable to also put part of a
carbon atom at 1/2,1/2,1/2. For 0.39C with a B = 12.0 at 1/2,1/2,1/2,
there is also ~0.3144I at 1/2,1/2,1/2. But the actual amount of
iodide present could differ from that value by as much as 30%.

Another possibility is that the "solvent" is not always CH4CN but
could occasionally be C104-, which would affect any calculations of
the amount of charge transferred. Listed in Table III are the atomic
coordinates, populations, and thermal parameters used to model the
electron density at and about 1/2;1/2,1/2. The populations and
temperature factors are not meaningful and are highly correlated.

The temperature factors for the "solvent" atoms were chosen arbitrarily.
An attempt was made to use electron microprobe analysis to determine
the amount of iodine present in the crystals. Although selenium was
found, no iodine was found. Because of the fairly unstable nature of
the crystals in solution (6), it was felt that the lack of iodine
could be attributed to decomposition of the crystals in the electron
beam.

The HMTSF molecule looks quite normal. ORTEP drawings (7) of
the HMTSF molecule are shown in Figure 1. There are no significant
differences between the HMTSF geometry found in this structure
determination and the HMTSF geometry in HMTSF-TCNQ(F4) (8). Figure 2
is an ORTEP showing the arrangement of HMTSF molecules in one cation
stack. The HMTSF molecules slip back and forth much the same as in

TMTSF-Bry g (tetramethyltetraselenofulvalene) (9). The orientation of



Table III
X
SOLC .5
SOL1  .558
SoL4 .38
soL2 .36
SOL3 .52
SOL5 .51
SOL8  .301

=<

D
woel
.45
.466
355
.478
477
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Bond lengths of HMTSF in HMTSF-Ix ( in anst.roms)

The numbers in parentheses are the estimated standard deviation of the last decimal place.

Bond angles of HMTSF in HMTSF-Ix (in degrees)

The numbers in parentheses are the estimated standard deviation of the last decimal place.

Figure 1
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One cation stack along @ in HMTSF-Ix

Figure 2
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Neighboring HMTSF molecules in the same cation stack viewed perpendicular to
the molecular plane. The two molecules are related by the inversion center at 0, 0, 0.

Neighboring HMTSF molecules in the same cation stack viewed perpendicular to
the molecular planes. The two molecules are related by the inversion center at %, 0, 0.

Figure 3
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neighboring HMTSF molecules, which are in the same cation stack and
related by the inversion centers at 0,0,0 and 1/2,0,0, is shown in
Figure 3. The amount of slippage of the HMTSF molecules related by
the inversion center at 0,0,0 is the same as in TMTSF—BrO.SZ, HMTSF-TCNQ,
and other TMTSF, HMTSF, and related structures (for example, 9,10,11,12).
However, the neighboring HMTSF molecules related by the inversion
center at 1/2,0,0 show a different amount of slippage (See Figure 3).

The room temperature conductivity of HMTSF-IX is ~1.3-1.7 ! cm™! (13).
The temperature-dependence of the conductivity has not been measured.
The apparent stoichiometry (1:0.157) certainly suggests that the band
formed from overlapping HMTSF orbitals is only partially occupied and
that HMTSF-IX could be metallic. This is reasonable for a tight-binding
model, but assumes that the HMTSF molecules are all evenly spaced.
However, the HMTSF molecules are not required by the lattice symmetry
to be evenly spaced. The results for three least-squares, best plane
calculations are 1isted in Table IV. These results suggest that one
* cannot unequivocally state that the HMTSF molecules are, or are not,
equally spaced. Also influencing the electronic properties of
HMTSF-Ix is the presence of a random potential caused by the random
occurrence of iodide and "solvent" at 1/2,1/2,1/2. To confirm that
there was no superperiod and that the occurrence of iodide and "solvent"
was, indeed, random, a very long exposure (92 hours) X-ray oscillation
photograph was taken of HMTSF-Ix with nickel-filtered copper Ky,

radiation. The film was wrapped in aluminum foil to eliminate some
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Table IV

Least-square, Best Plane Calculations? and Interplanar Spacings for HMTSF-I,

Plane 1
b . s c
Atoms SD Deviations
Sel .001 -0.0374
Se2 .001 0.0292
Se3 .001 0.0352
Sed .001 -0.0435
C1 .009 -0.0070
c7 .0091 0.0235

Direction cosines of the plane normal -0.9226, 0.5698, -0.1827

Interplanar spacings: dj = 3.52  d, = 3.91 A

Plane 2
Atoms SDb DeviationsC
Sel .001 -0.0824
Se? .001 -0.0194
Se3 .001 -0.0069
Se4 .001 -0.0892
&l .009 -0.0516
Cé .009 0.0498
C6 .010 0.0842
c7 .0091 -0.0226
c8 .0094 0.0941
cl2 .0092 0.0440

Direction cosines of the plane normal -0.9230, 0.5692, -0.1840

Interplanar spacings: d] = 3.61 d2 = 3.83 R

Plane 3
Atoms spb Deviations®
Sel .001 -0.1438
Se? .001 -0.0745
Se3 .001 -0.0471
Sed .001 -0.1231
Cl .009 -0.1005
ce .009 -0.0085
Cc3 .010 -0.0913
C5 .010 :0.1586
C6 .010 0.0348
c7 .0091 -0.0690
C8 .0094 0.0483
C9 .O}O 0.1770
2) 5 6:81%

(Continued)
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Table IV (Continued)

Plane 3 (Continued)

Direction cosines of the plane normal -0.9220, 0.5724, -0.1879

Interplanar spacings: d; = 3.70 do = 3.72 A

dy. Schomaker, J. Waser, R. E. Marsh and G. Bergman, Acta Cryst., 12,
600 (1959).

bCoordinate standard deviations from full-matrix least-squares calculation.

CDeviations, in R, from the calculated best plane. Al1 atoms contributed
to the best plane with weights of one.
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of the Tonger wavelength fluorescence. There was no indication of
any diffuse layer lines or of a supercell.

Figure 3 graphically shows that the overlap between adjacent
HMTSF molecules is unique. What a HMTSF molecule "sees" above itself
is not the same as what it "sees" underneath itself. This additional
potential will cause additional band gaps, although not necessarily
at the Fermi surface. Of course, in this HMISF-I, structure, since
the stoichiometry is ill1-defined, the energy of the Fermi surface is
equally ill-defined. This structure is the first example of a new
type of alternating cation overlap in quasi-one-dimensional conductors.

Because of the subtle interactions of the random potential
caused by the disorder at 1/2,1/2,1/2, the band width, the amount
of interchain coupling, and the potential from the alternating over]ap
patterns, a definitive statement about the cause of the apparently

semiconducting behavior is difficult to make.
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Chapter 5

Summary

The three quasi-one-dimensional conductors studied here have shown
a variety of interesting distortions and disorder. Understanding
these distortions, disorder, énd the overall structures of these
materials is important for understanding their physical properties.

Prior to Tow-temperature structural studies of TTT213 it was not
known whether or not the iodine atoms would order during the phase
transitions or whether or not the TTT lattice would undergo a static
distortion. For very slow cooling crystals of TTT213 (h.d.) do not
appear to undergo a static distortion. Although all regions of
reciprocal space cannot be conveniently sampled with a diffractometer,
there was no indication of a major structural phase transition and
the iodine chains never achieved long-range three-dimensional ordering.
The lack of three-dimensional ordering can be rationalized by assuming

the presence of iodides other than I3 I2 or I” or other polyiodides
will cause static disorder which will not, obviously, be eliminated

at low temperatures. This is in contrast to TTFC].67 (1). Because

the disorder of the chlorides in TT‘FCl.67 is primarily dynamic disorder,
as the temperature is lowered the chloride atoms gradually order and
the TTF cations no Tonger "see" a random potential from the chlorides.

With the decrease in the random, screening potential from the chlorides,

electrons on the TTF molecules feel the effect of electrons on other
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TTF molecules and couple. Coupling allows an overall decrease in the
energy of the system. This electronic coupling gives rise to what is
described as an electronically driven static Peierl's distortion (2,3,4).
With the electronic coupling, a new band gap forms at the Fermi

surface and the periodicity of the underlying lattice changes. That
change in the lattice has been observed, crystallographically, in
TTFC10.67 (1). That a similar effect is not observed in TTT213 (h.d.)
suggests that the static disorder remaining in the iodide chains at

low temperatures may cause a random potential sufficient to prevent
strong electronic coupling (5). This is consistent with the observation
that the phase transitions are most prominent in the crystals with the
least disorder (Appendix A).

TTTI is an ordered, quasi-one-dimensional semiconductor which
has not dimerized as would be expected for an exactly half-filled band.
But since transport properties in crystals with two incommensurate,
yet interacting, lattices are not understood, the interpretation of
the graphs in Appendix B as being typical of a semiconductor could be
incorrect (6).

HMTSF—IX exhibits an interesting structure. There are primarily
five features of the structure which should significantly affect its
transport properties. (a) Although the stoichiometry could not be
determined accurately from the X-ray data, there are indications that
HMTSF-Ix is a non-stoichiometric complex. (b) There are no real

"channels" in the structure. The random disorder of iodide and
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"solvent" is localized about the coordinates 1/2,1/2,1/2 in the unit
cell. (c) The HMTSF molecules may or may not be evenly spaced.

(d) Each HMTSF molecule "sees" its two neighbors on either side in
the same stack differently. (e) There is probably significant inter-
chain coupling. The magnitude of the conductivity in HMTSF--IX at
room temperature suggests a semiconductor. This is not understood in
light of its apparent non-stoichiometry and significant interchain
coupling, but the other effects, (b) - (d), could be dominating and
those three effects would favor semiconducting behavior.

These iodide-containing structures have shown three different
types of iodide behavior in quasi-one-dimensional conductors. In
TTT213 the iodide chains are at least as important, if not more
important, than the TTT molecules in determining the observed physical
properties. The retention of disorder in the iodide chains at Tow
temperatures has important effects on the low-temperature transport
properties. In TTTI the iodides are no Tonger disordered but are
certainly still dominating the structure and causing a modulation of

the TTT lattice. In HMTSF-Ix the iodide is probably of minor importance.
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Bis(tetrathiatetracene)triiodide [(TTT),I;] is a quasi-one-dimensional organic metal consisting of segregated
stacks of tetrathiatetracene (TTT) cation radicals and polyiodide chains. The TTT and iodine (I) sublattices
are incommensurate with respect to each other, and the iodine lattice exhibits considerable disorder. In this
paper, we report measurements of the conductivity and thermoelectric power of single crystals of TTT,l; in
which the degree of disorder is varied. The disorder is modified by crystallization processes and is
characterized by x-ray studies. (TTT),I; exhibits metallic behavior at high temperatures (100°K < T <
300°K) even in the presence of considerable disorder. Below 100°K, (TTT),I; undergoes a broad metal-
nonmetal transition. The effects of disorder on this transition and on the low-temperature transport
properties are discussed. The present results are compared with data on (TTT),l, taken by other

investigators.

INTRODUCTION

Quasi-one-dimensional organic metals have been
the subject of intense interest during the past few
years. This interest is due to the many exciting
and unusual effects associated with the electronic-
ally driven instabilities possible in a one-dimen-
sional electronic system. Most of the organic met-
als studied have been charge-transfer compounds
such as tetrathiafulvalenium-tetracyanoquinodi-
methanide, TTF-TCNQ, and its derivatives.'
These compounds have two types of charge car-
riers with electrons propagating along the accept-
or (TCNQ) chain and holes along the donor (TTF)
chain. They exhibit metallic behavior down to low
temperatures (~60-100 °K), but then undergo a
metal-to-nonmetal transition that results in a non-
metallic ground state at 7 =0 °K. The stabilization
of the metallic state and an understanding of the
roles of disorder, impurities, and interchain cou-
pling on the metal-to-nonmetal transition have
been important goals for many researchers in this
field."

In this paper we describe the effects of disorder
on the transport properties and metal-to-nonmetal
transition in bis (tetrathiatetracene)triiodide,
(TTT),l,. This study is of particular interest for
several reasons: (i) In contrast to TTF-TCNQ and
its derivatives, (TTT),L, is a single-carrier sys-
tem with holes propagating along the TTT cation
radical stack.?™ (ii) (TTT),I, has a high room-
temperature conductivity and exhibits metallic be-
havior down to ~ 100 °K where a broad metal-to-
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nonmetal transition commences. Thus the trans-
port properties are quite similar to those observed
in the two-carrier systems. (iii) The iodine lat-
tice in (TTT),1, exhibits disorder,® and the degree
of disorder can be varied somewhat systematical-
ly by crystallization processes,® therefore, the
effects of variable disorder in a given compound
may be studied. (iv) Superconducting fluctuations
at ~35 ° K have been reported’ in (TTT),L. It is
suggested that the fluctuations are due to one-di-
mensional effects that become dominant when dis-
order disrupts the interchain coupling. Our re-
sults are compared with those found in other stud-
ies of (TTT),I;.

SAMPLE PREPARATION AND CHARACTERIZATION

Tetrathiatetracene (TTT) (Fig. 1) was synthesiz-
ed according to the procedures described by Perez-
Albuerne.®? TTT was recrystallized twice from
purified nitrobenzene and subsequently gradient
sublimed three times in vacuum. Single crystals
of (TTT),L, were obtained by recrystallization
from nitrobenzene. TTT and iodine (L) were re-
fluxed separately for approximately 1 h in purified
nitrobenzene prior to mixing. Upon adding the
iodine solution to the TTT solution, the resulting
mixture was placed into a temperature bath at
~95°C. Depending upon the TTT concentration,
the mole ratio X of L, to TTT, and the cooling rate,
single crystals of (T TT),l, with various degrees of
disorder in the iodine lattice could be obtained.

655 ®©1979 The American Physical Society
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FIG. 1. Molecular
structure of tetrathiatetra-
cene (ITT).
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Three different kinds of crystals were grown: (a)
highly disordered (hd)—crystals with a highly dis-
ordered iodine lattice were grown using a TTT
concentration of 3 x10™ moles/liter, a mole ratio,
X=1.0, and a cooling rate of 3°C/h; (b) medium
disordered (md)—these crystals were grown with
the same concentrations and mole ratio as in (a),
but with a slightly faster cool-down rate; and (c)
least disordered (ld)—crystals with the least-dis-
ordered iodine lattice were grown using a concen-
tration of 5 x10™* moles/liter, X=0.5, and a cool-
ing period of ~ 6 days.

The crystals were typically 3-6 mm long and ex-
hibited a brilliant golden reflection. The crystal
structures including the disorder of the iodine lat-
tice were studied by x-ray diffraction. Oscillation
and Weissenberg photographs were taken at room
temperature and at approximately 120 °K, and dif-
fractometer data were obtained at various tempera-
tures ranging from 300 °K to ~27°K using a low-
temperature diffractometer developed locally for
this specific purpose.® A description of some of
the preliminary x-ray results is given in this
paper. A detailed report on the crystallographic
work will soon be reported.'®

The room-temperature crystal structure, as
determined from diffractometer studies, agrees
with that reported by Smith and Luss® and by
Buravov et al.® The TTT subcell is orthorhombic
with space group Cmca, independentof the degree
of disorder of the iodine lattice. Figure 2 shows
a (010) projection of the crystal structure of
(TTT),I,. The TTT molecules stack uniformly in
a slipped configuration and form segregated chains
lying parallel to the b axis (the axis of high conduc-
tivity). The iodide ions lie in channels situated be-
tween the TTT stacks, and also form ch. ins
parallel to the b axis. Figure 3 shows an oscilla-
tion photograph taken at room temperature of a
highly-disordered (hd) crystal. It is seen that
there are two different sets of layer lines. One
set consists of sharp well defined spots (see lines
0, 2, and 4, Fig. 3) associated with the TTT lat-
tice, while the other set is made up of diffuse
lines (see 1 and 3, Fig. 3) associated with the io-
dine lattice. In particular, the diffuseness of the
intense third-layer line clearly indicates the pres-
ence of disorder. Thus the iodine chains may be
slipped relative to one another, along the direction
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FIG. 2. (010) Projection of the crystal structure of
(T'TD,]I, (from Ref. 5). O—sulfur; e—iodine; o—car-
bon; &—hydrogen.

parallel to the stacking axis (b axis), such that
there is a loss of horizontal registry in the iodine
lattice. Oscillation photographs of a medium dis-
ordered crystal shows weak spots superimposed
on the diffuse third-layer line. These spots are
very faint and broad, but indicate that some order-
ing of the iodine lattice is present, e.g., the iodide
chains may be more strongly coupled, resulting in
the occurrence of some degree of horizontal regis-
try. In the crystal designated as being least dis-
ordered (ld), sharper spots are observed on the
diffuse third-layer line. Patterson maps calculat-
ed from diffractometer data using (k3!) reflections

O—-N u »

FIG. 3. X-ray oscillation photograph of a highly dis-
ordered crystal of (T'I'T).l, taken at room temperature,
using Ni filtered Cu K, ra liation. The numbers label
the layer lines.
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alone from an Id crystal at room temperature and
a hd crystal at 160 °K and 27 °K showed only con-
tributions from the iodide chains. This indicates
that the disorder is due solely to the iodide chains
and there is little or no contribution to the third-
layer line from the TTT subcell. We would like to
point out that the ld crystals still exhibit consider-
able disorder in the iodine lattice. Thus it is be-
lieved that small changes in the degree of disorder
are being observed.

The classification of the crystals into the three
categories, namely, highly disordered, medium
disordered, and least disordered, is arbitrary and
based on the degree of diffuseness of the third-lay-
er line observed in x-ray oscillation photographs.
However, various crystals from the same batch,
as well as other batches prepared under the same
conditions, exhibit the same degree of diffuseness
in the diffraction pattern, and hence we feel that
the oscillation photographs provide a useful indica-
tor to estimate the extent of disorder. These con-
clusions were confirmed by single-crystal diffrac-
tometer scans of peak profiles of third-layer spots.
The peak profiles of third-layer spots of highly
disordered (TTT),l, crystals are very weak, broad,
and barely resolvable above the background at
room temperature. For the least disordered cryst-

OF DISORDER ON THE TRANSPORT PROPERTIES...

als, the peak profiles are sharper and well re-
solved on the third-layer line, indicating an in-
crease in the order of the iodine lattice, in agree-
ment with the data obtained from oscillation photo-
graphs.

EXPERIMENTAL RESULTS

The electrical conductivity o along the needle b
axis was measured by a standard four-probe tech-
nique using aquadag (graphite paint) for electrical
contacts. Measurements were made using both dc
and ac (16 Hz) techniques. The two types of mea-
surements agreed quite well.

Figure 4 shows the temperature dependence of
the normalized conductivity for crystals with dif-
ferent degrees of disorder. Values of the room-
temperature conductivity are given in Table I.
The conductivity increases with decreasing tem-
perature, as expected for a metal. There is a
broad maximum near 100 °K, below which the con-
ductivity decreases with decreasing temperature.
Similar temperature dependences for the conduc-
tivity have been observed in other quasi-one-di-
mensional systems.':'" Both the peak value of the
normalized conductivity 7,/0,;, and the tempera-
ture at which the peak value occurs, T, decrease

2.4 T T T T T T T
2.2 P00 - a (TT7), 15 (hd) N
088‘”5(
2.0 N )”‘”‘m,&&o o x (T, 1y (md)
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FIG. 4. Temperature dependence of the normalized conductivity of (TTT),I;.
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TABLE I. Transport parameters of (TTT),L,.

ORT Sgr T, Tya?
(TTT),ly @ em) @V/°K) 0,/ 0t (°K) (°K)
highly disordered 1000 + 250 34 $0.2 1.66 82 24+1
medium disordered 850 + 250 40.7£ 0.6 2.1 92 ~30
least disordered 500 + 250 42 £04 2.2 100 3/5¢t1

* Determined from dIn p/dT.

with increasing disorder (see Table I). Figure 5
shows In[a(T)/0(300 °K)] versus reciprocal tem-
perature 1/T for the three kinds of crystals. Note
that crystals from the same batch agree quite well
The maximum rate of change in slope observed

in 1d crystals at ~35 °K occurs at lower tempera-
tures with increasing disorder. Measurements of
the conductivity,®? ESR linewidth,* and high-field
magnetoresistance™!? of hd crystals have attributed
this change to the actual metal-to-nonmetal tran-
sition occurring at T',_, ~ 24 °K. The other thingto
note is that the magnitude of the conductivity at low
temperaturese.g., T~ 13 °K, increases withdisor-
der.

The thermoelectric power was measured along
the b axis by a technique described in detail else-
where.'®* The thermoelectric power (S) of several
crystals with different degrees of disorder is
shown in Fig. 6. The room-temperature values
are small and positive for all the samples studied
and are shown in Table I. As can be seen, the
agreement between samples from the same batch
is quite good, and the thermoelectric power (TEP)
decreases with decreasing temperature down to
~60°K as expected for hole conduction along a
metallic TTT chain. Note that the magnitude and
temperature dependence of the TEP in the high-
temperature range (300 °K> T >100 °K) does not
vary significantly with change in the degree of dis-
order. Below 60 °K, the thermopower increases
in a manner suggestive of nonmetallic behavior.

Another interesting feature is the variation of
the peak value of the TEP at 21 °K as a function
of disorder. The peak TEP values scales with the
degree of ordering and varies from 40.2uV/°K
for the hd crystals to 255 +15 uV/°K for the 1d
samples (see Table II).

DISCUSSION

The crystals of (TTT),I; grown under different
crystallization conditions exhibit different degrees
of disorder. A room-temperature crystal struc-
ture of the 1d (TTT),L, using third-level data indi-
cates that the iodine is present in a polyiodide
chain with less than full occupancy of all sites.!®
Since there is no well-defined unit such as I, it
seems unreasonable to determine stoichiometry

from repeat distances observed in oscillation
photographs.

Temperature-dependent x-ray diffraction studies
to 27 °Kof hd crystals have shown that the iodine
chains do not completely order. An oscillation
photograph at 120+ 10 °K of hd crystal was taken
after rapidly cooling the crystal in a stream of
cold N, gas. Beading along the diffuse third-layer
line increased in intensity as compared to the
room-temperature oscillation photograph. How-
ever, Weissenberg photograph (h37) at 120+ 10 °K
showed that there was a significant decrease in
normal thermal motion, but the diffuse spots had
the same size and shape as at room temperature,
indicating residual disorder in the iodine chains
and only short-range chain-chain coupling. Thus the
apparent intensity gain of the diffuse spots is prob-
ably due to a loss of thermal motion, but also, per-
haps, to some coalescing of the diffuse background.

Preliminary work on a low-temperature diffrac-
tometer® to 27 °K indicates that the iodine chains
are disordered and minor structural changes may
depend on the rate of cooling. Throughout the tem-
perature range studied, the spots on the diffuse
third-layer remain quite broad (in the 26 and w di-
rections) as compared to normal Bragg reflections
from the TTT lattice. The intensities of the broad
spots do increase with decreasing temperature.
There is no major structural change in the TTT
lattice down to 27 °K.

The effect of disorder on the conductivity and
the TEP can be discussed best by considering
three separate temperature ranges: high tempera-
tures, 300 °K>7 >100 °K, intermediate tempera-
tures, 100 °K>T >20°K, and low temperatures,

T <20°K.

High-temperature region: 300 °K > 7> 100 °K

In this temperature range, the conductivity in-
creases with decreasing temperature characteris-
tic of a metal. The resistivity was fitted to

p(T)=p, +aT", (1)

with y=2.20 for crystals with the least disorder.
y decreases to 1.90 for the most highly disordered
crystals. This is the trend one would expect since
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increasing disorder should inhibit metallic trans- localized states and that the disorder is not large
port. The metal-like temperature dependence plus enough to cause localization at high temperatures.
the high value of the room-temperature conductiv- The peak value of the normalized conductivity de-

ity suggests that electron transport occurs via de- creases with increasing disorder. This is similar
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FIG. 6. Thermoelectric power S of (T'TT),I;.

to what has been observed in TTF-TCNQ, where
the disorder was due to excessive thermal cycling"
or radiation damage.'* However, in contrast to
TTF-TCNQ, the temperature of the conductivity

TABLE II. Comparison of peak TEP, S,, and normal-
ized low-temperature conductivities, o(13 °K)/ogr, of
(TTT)I,.

S, (21°K)
(TTT),,y uV/°K) (13 °K)/opr
JPL
Least disordered 255 5 =107
Medium disordered 144 5 =107
Highly disordered +0 8 x10?
Kodak 40 3.3 > 107!
Budapest? 20 ~0.1
Chernogolovka (Cher.)
Ordered (77 ~ 110 K) 270 Pt
(T5 ~ 60 °K) 110 ~5 1072
Most
disordered (T} ~ 35 °K) ~30 e

2Unannealed.
®Data unavailable,

maximum, Ty, in (TTT),L does not increase with
disorder but shifts to lower temperatures.

The TEP of (TTT),l, at high temperatures may
be described by a one-dimensional tight binding
model. In this case, the thermoelectric power ob-
tained from the Boltzmann equation is

S==(7k3T /6lelt) cosms6/(1 - cos®n36)], (2)

where ¢ is the transfer integral and 6 is the num-
ber of conduction electrons per molecule. Al-
though the TEP decreases linearly with decreas-
ing temperature, characteristic of a metal, it
does not extrapolate to zero at T=0°K. This in-
dicates that energy-dependent scattering process-
es may be important. Nevertheless, the overall
linear dependence of the TEP suggests that the
room-temperature value and Eq. (2) may be used
to obtain an approximate value of the electronic
bandwidth, yielding W=4/=0,7 eV, assuming 5=3.
This value is consistent with the bandwidth obtain-
ed from magnetic susceptibility studies.> The
temperature dependence of the TE P does not vary
significantly with disorder throughout this tem-
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perature range. This should be contrasted with
the temperature dependence of the conductivity,
which does change with increasing disorder. This
is what one would expect since the thermoelectric
power, unlike the conductivity, is a zero-current
measurement and should be less sensitive to dis-
order.

In summary, (TTT),l is metallic throughout the
temperature range 100 °K< T <300 °K, even in the
presence of observable disorder. This suggests
that the rms value of the disorder potential does
not dominate the electronic bandwidth.

It is useful to compare the electronic properties
of (TTT),L, with those of the halides and pseudo-
halides of TTF.!® In both systems, electronic
transport is by one carrier only; holes, which
propagate along the cation radical chains. Also,
there is disorder in the nonconducting anion chains
in both types of compounds. While both systems
have high room-temperature conductivities and
exhibit metallic behavior at high temperatures,
the TTF halides and pseudohalides undergo a me-
tal-to-nonmetal transition at relatively high tem-
peratures, i.e., ~200°K, while (TTT),l; remains
metallic to below 100 °K. We believe that the rea-
son for this different behavior lies in the nature
of the stacking of the cation radicals along the
chains. In the TTF halides and pseudohalides, the
TTF molecules stack in an eclipsed fashion which
maximizes the wave-function overlap along the
chains and leads to large electronic bandwidths
of the order of 1-1.2 eV. In (TTT),L,, the TTT
molecules are stacked in a slipped fashion which
results in smaller bandwidths. Thus (TTT),L, is
another example of the empirical trend relating
the stability of the metallic state and small elec-
tronic bandwidths.'” This indicates that the more
stable metallic state observed in TTF-TCNQ and
its derivatives is not critically dependent upon the
presence of two different types of conducting
chains, and that slipped stacking is favorable for
obtaining a more stable metallic state, among
other things. Naturally, the nature of the inter-
chain coupling may vary considerably with the
type of stacking, with slipped stacking being con-
ducive for the development of significant trans-
verse bandwidth.

Intermediate temperature range: 100 °K > T > 20 °K

Below 100 °K, the conductivity decreases with
decreasing temperature, indicative of a broad
transition from metallic to nonmetallic behavior.
With increasing disorder, the change is further
smeared out, with the conductivity falling less
rapidly with decreasing temperature.

From previous ESR, high-field magnetoresis-

tance and conductivity studies®:® of hd (TTT),L,

the metal-to-nonmetal transition temperature T, _,
(as determined from the temperature dependence
of dinp/dT), is found to be at ~24°K. Thus the
region between Tp and T,., represents a transition
regilon between metallic and semiconducting states
which has been broadened by the pronounced dis-
order. As the disorder diminishes, both 72 and

T y-1 increase with T,.,~35° K for the 1d crystals
(see Table II).

The TEP of the least disordered sample attains
a minimum value of ~25 uV/°K at ~100 °K, and
then rises steeply to a value of 270 uV/°K at
21 °K. The TEP always reaches a maximum value
at ~21°K, regardless of the degree of disorder.
However, the magnitude of the TEP at this tem-
perature decreases with increasing disorder.
This, again, indicates that disorder is smearing
out the transition and creating states in the single-
particle gap.

The TEP in the semiconducting region is very
sensitive to the degree of disorder, in contrast to
its behavior in the metallic state. Thus the mag-
nitude of the peak value of the TEP at ~21 °K may
be used as a rough indicator of the degree of dis-
order in (TTT),L, compounds. Similar relation-
ships between the magnitude of the peak value of
the TEP at low temperatures and the presence of
disorder can be found in other quasi-one-dimen-
sional organic metals,'®

Low-temperature range: T < 20 °K

Asseenin Fig. 5, (TTT),L; exhibits a change of slope
inthe Ino/og, vs 1/T plotat about ~24 'K in 1d crys-
tals. Withincreasingdisorder, the slope inthe low-
temperature side decreases significantly. Also,
the change in slope is less evident in the hd cryst-
als, We believe that these facts indicate that be-
low ~ 24 °K, (TTT),L is a disordered semiconduc-
tor. Conductivity studies to very low temperatures
(~ 100 mK) are in progress in order to further
elucidate the conduction processes in the nonmetal-
lic state. As the disorder increases, states are
formed in the gap resulting in a reduced effective
gap and an increased conductivity at low tempera-
tures. Since the value of the conductivity at low
temperatures, e.g., 13 °K, appears to vary con-
siderably with disorder, we feel that it (as well
as the peak TEP) may serve as a rough indicator
of the degree of disorder in the crystal (see Table
II).

(TTT),Ly has been the subject of several previous
studies.?™® Since the results of Kaminski ef al.®
(Chernogolovka, Lab) are quite unusual and differ-
ent from the results of Isett e/ al? (Kodal Lab),
Mihaly et al.* (Budapest Lab), Somoano e/ al.’ [Jet
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Propulsion Laboratory (JPL)|, and those discuss-
ed in this paper, it is useful to make a more de-
tailed comparison. It has been shown that (TTT),I,
can form crystals with varying degree of disorder
in the iodine lattice. Comparing the properties of
samples prepared by different groups, therefore,
involves an assignment of the relative amount of
disorder. As has been suggested earlier in this
paper, rough indicators of the disorder,are the
magnitudes of the low-temperature conductivity
and the peak value of the TEP at ~ 21 °K.

The values of the normalized conductivity at
~13 7K and the peak values of the TEP for samples
from various laboratories are shown in Table II.
These two indicators suggest that the Budapest
samples are the most disordered. The Kodak sam-
ples are similar to our hd samples. X-ray data
on the Kodak samples® support this conclusion,
since no diffuse spots are seen on the third-layer
lines of oscillation photographs of these crystals.
In addition, derivative analysis?® of the Kodak con-
ductivity data reveals a transition at T,.,~21°K.

The degree of ordering of the Chernogolovka
samples is obtained from the work of Kaminski
el al.,® and the samples are labeled by their val-
ues of T;. Comparison with these samples is dif-
ficult since the values of o (13 °K)/0g, are known
for only one sample. Nevertheless, a comparison
does offer some insight. The most ordered sam-
ple from the Chernogolovka. Lab gives a peak TEP
value in good agreement with our ld sample., As

-the disorder increases, the conductivity peaks of
the Chernogolovka samples sharpen up and both
T, and Ty, decrease. In addition, the conductivity
continues to increase in a metallic fashion with in-
creasing disorder to yield high values of 0, /ogy 9.
This behavior is quite different from that found in
the JPL, Kodak, and Budapest samples. The dom-
inant effect of disorder in the latter samples is to
smear the transition from the metallic to the semi-
conducting state and to decrease T, and T,.. Dis-
order inhibits metallic transport but enhances the
low-temperature conductivity in the semiconduct-
ing state by providing states near the Fermi level
in the single-particle gap. It is important to stress
that x-ray studies of the JPL samples at 27 °K in-
dicate that structural disorder is still present.
The dominant effect of disorder in the Chernogolov-
ka samples is to decrease Tj and T, only.

The reason for the difference between the prop-
erties of the Chernogolovka samples and those
from other laboratories is presently unknown.
However, we believe that a significant factor is
the tendency of the iodine lattice to order at low
temperatures in the Chernogolovka samples. This
effect was observed in recent x-ray diffuse scatter-
ing studies of the highly disordered Chernogolovka
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samples by Comés,'® It is not known whether the
ordering of the iodine lattice occurs gradually or
discontinuously, and the actual degree of ordering
is unknown. Nevertheless, electron scattering by
disorder should decrease at low temperatures,
thus allowing large values of the conductivity (and,
hence, 0,/0,;) to be attained prior to T,.,. An ob-
vious question associated with this point is: why
doesn’t the iodine lattice of the JPL, Kodak, and
Budapest samples show signs of significant order-
ing? At present, the answer is unknown. Slight
differences in the exact nature of the disorder, the
presence of impurities, subtle differences in the
interchain coupling, and differences in the amount
of excess iodine between the Chernogolovka Lab
samples and ours could contribute to differences
in the tendency to order. This occurrence of low-
temperature ordering is at variance with the mod-
el suggested by Abrahams et al.” They suggest that
the disorder disrupts the interchain coupling mak-
ing the system more one dimensional such that
superconducting fluctuations at ~35 K occur. This
suggestion may be premature. It should be stress-
ed that the occurrence of ordering in the iodine
lattice at low temperatures does not provide a sin-
gle consistent explanation of the differences ob-
served in (TTT),l, in different laboratories. How-
ever, we feel that this feature will play a promin-
ant role in any eventual model that consistently ex-
plains the overall behavior of (TTT),I;. Obviously,
additional low-temperature structural studies
would be quite valuable,

CONCLUSIONS

Crystals of (TTT),L; have been grown using dif-
ferent crystallization parameters to yield samples
with varying degrees of disorder in the iodine lat-
tice. (TTT),l, is metallic at high temperatures
(T >100°K), even in the presence of observable
disorder. A metal-to-nonmetal transition occurs
at T,.;~24-35°K. The effects of disorder are to:
(i) reduce the maximum in the conductivity at high
temperatures, (ii) broaden the metal-to-nonmetal
transition over a large temperature range, (iii) de-
crease the metal-to-nonmetal transition tempera-
ture T,.;, and (iv) enhance the conductivity in the
nonmetallic state. In particular, the low-tempera-
ture conductivity and thermoelectric power are
rough indicators of the degree of disorder. A com-
parison of measurements made on (TTT),L; at dif-
ferent laboratories indicates that tendencies for
the iodine lattice to order at low temperatures
may lead to the very different behavior observed
in the conductivity by different researchers.
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Appendix B
Conductivity and Thermoelectric Power Measurements of

(Tetrathiotetracene)(Iodide)

Two graphs are shown for the conductivity and thermoelectric
power of TTTI as functions of temperature. The measurements were

made by R. B. Somoano and S. K. Khanna at the Jet Propulsion Laboratory.
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Appendix C

Observed and Calculated Structure Factors

The following pages 1list the observed and calculated structure

factors for the room-temperature, 164° K, 74° K, and 19° K (Cmca)
structures of TTT213 (h.d.), for TTTI, and for HMTSF-IX. For each
hke the numbers from left to right are 10|F,|, 10|F.|, and 1O(F02-FC2)/

o(F,2).
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310 300
130 139
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161 141
239 228
73 56
181 87
12 3
68 122
127 93
167 165
53 46
231 192
57 55
-59 28
154 120
174 155
115 22
175 100
11 121
9 1 L
714 723
516 526
856 838
1410 1405
549 547
1022 1026
26 11
730 718
402 387
602 600
512 479
190 135
555 563
-128 173
277 292
320 357
113 69
732 T44
198 196
501 529
136 93
225 278
237 211
10% 142
272 268
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TTT213 (H.D.) MOLYBOENUM 14K PAGE

3 343 353 -3 13 227 50 28

4 705 759 -33 14 98 37 4 1 9% 193
5 312 334 -8 15 300 262 10 2 108 89
6 450 465 -7 16 265 231 13 3 88 73
7 223 244 -6 17 82 50 3 4 109 26
8 340 319 8 18 165 172 =1

9 102 114 -1 19 94 65 3 0 2 L
10 536 512 12

11 519 526 =3 21 1 L 0 1380 1437
12 92 42 4 1 219 199
13 272 245 8 1 304 315 -3 2 296 285
14 -100 10 -6 2 262 238 6 3 1352 1376
15 200 70 22 3 358 342 5 4 1027 1039
16 108 66 6 4 439 452 -5 5 888 385
17 131 51 13 5 64 50 0 6 469 471
18 487 457 20 6 639 653 =7 7 2039 2003
19 -29 59 -3 7 242 241 0 8 667 604
20 379 424 -17 8 607 595 5 9 1471 1441
21 216 178 10 9 314 315 0] 10 969 935
22 199 165 7 10 161 233 -13 11 662 674

23 147 126 3 11 36 131 =T 12 259 133
12 122 90 3 13 723 717
17 1 L 13 391 351 13 14 1344 1323
14 217 221 0 15 525 626
1 480 502 -11 15 260 304 -10 16 -142 67
2 346 327 7 16 417 404 7 17 T46 746
3 223 203 5 17 222 191 9 18 241 232
4 363 361 0 19 437 457
5 169 32 19 23 1 L 20 188 125
6 645 643 1 21 664 656
7 182 145 7 1 354 368 -4 22 130 83
8 655 644 6 2 272 291 -5 23 196 136
9 159 . 201 -8 3 477 414 26 24 367 338
10 317 351 -11 4 643 640 1 25 69 131
11 450 420 13 5 298 269 7 26 171 73
12 -124 128 -17 6 537 500 16
13 297 222 -8 7 =S8 99 =9 2 2 L
14 230 134 21 8 400 360 14
15 399 350 18 9 170 218 -8 0 647 681
16 358 241 9 10 319 320 0 1 91 33
17 235 184 18 11 214 263 -9 2 185 9
18 175 183 =2 12 -122 108 -11 3 1007 989
19 177 163 3 13 317 317 0 4 828 821
20 310 319 =3 14 -94 62 =5 5 593 590
21 -66 137 -13 6 545 543
25 1 L 7 543 573
1S | S 8 1098 1081
1 175 134 5 9 271 225
1 -186 48 -21 2 -105 17 -5 10 481 468
2 80 62 1 3 192 116 11 11 269 438
3 253 244 2 4 -92 153 -14 12 214 150
4 127 249 -24 5 170 204 =5 13 176 105
5 232 154 18 6 120 35 6 14 92 77
6 343 323 7 7 201 13 20 15 192 201
7 176 221 -10 8 123 221 -—14 16 308 284
8 132 175 -7 9 103 71 2 17 519 513
9 115 91 2 10 187 53 16 18 431 418
10 167 96 10 11 -92 64 =5 19 290 309
11 65 7 2 20 412 420

12 -128 3 -8 27 1 L 21 379 385
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288 287
29+ 263
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151 76
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343 325
657 648
146 94
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TTT21I3 (H.D.) MOLYBDENUM T4K PAGE 6

3 361 371 -4 15 400 366 11 12 430 398 21
4 476 482 -4 16 341 362 -9 13 800 791 7
5 82 105 =2 17 310 285 11 14 319 311 4
6 357 255 0 15 317 313 2
7 78 76 0 22 2 L 16 275 295 -11
8 468 456 5 17 127 151 -6
9 222 192 7 -18 174 -14 18 -92 13 -8
10 246 223 6 182 67 14 19 111 24 12
11 -113 142 -17 108 129 -2 20 141 36 19
12 211 251 -9 193 196 0 21 131 84 9

405 337 24 22 123 113 2
207 203 0 23 158 121 9
267 254 3 24 109 82 4

18 93 -3 25 190 152 10
301 270 8

13 -92 35 -5
14 175 100 10
15 223 201 4
16 270 229 16
17 109 117 -1

18 237 146 28 344 258 23 3 3 L
19 -90 48 -6 230 148 le
20 297 321 -8 157 9 11 1487 1477 7

260 197 12
-158 83 -l4 958 949 9
56 - 97 =2 392 367 18

1
2 224 178 21
3
4
97 175 -9 5 384 355 20
6
7
8
9

21 -128 159 -22

18 2 L
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0 195 52 21 2713 238 18
1 265 235 8 24 2 L 239 145 34
2 485 490 -2 241 259 =
3 195 198 0 0 434 393 13 502 434 50
4 283 246 11 1 165 16 13 10 424 396 18
5 104 727 -12 2 -95 123 -11 11 5+7 540 S
6 379 347 13 3 294 313 -5 12 180 193 -4
7 354 358 -1 4 293 262 7 13 678 658 17
8 201 131 13 5 220 239 -3 1% 285 252 15
9 421 403 4 6 266 201 14 15 650 656 -5
10 183. 141 7 7 595 6l4 -7 16 -61 43 -5
11 =94 71 =T 8 -165 91 -1l4 17 362 364 -1
12 456 417 14 9 406 378 9 18 234 229 2
13 213 226 -2 10 405 369 11 19 121 34 14
14 263 219 10 11 284 238 10 20 -69 38 -5
15 273 243 7 21 320 312 4
16 262 263 0 26 2 L 22 150 15 22
17 212 249 -12 23 478 462 11
18 46 64 =1 0 394 343 16 24 129 150 -4
19 340 362 =7 1 142 4 9 25 368 399 -16
2 175 22 14
20 2 L 3 450 444 2 5 3 L
4 307 264 10
0 70 4 2 5 387 384 -5 1 318 304 8
1 469 451 7 2 553 522 27
2 667 644 12 1 3 L 3 488 466 18
3 542 555 -6 4 137 111 6
4 121 94 3 1 567 550 17 5 301 267 18
5 eo03 819 -8 2 216 170 22 6 176 17 24
6 223 2217 0 3 431 401 25 7 172 97 18
7 567 557 4 4 165 23 32 8 279 267 S
8 445 455 -3 5 301 242 34 9 350 295 30
9 753 742 5 6 367 342 17 10 137 132 1
10 234 49 27 7 158 69 20 11 391 385 3
11 -105 140 -14 8 109 76 5 12 -66 34 =5
12 458 436 8 9 617 603 11 13 466 434 22
13 -103 47 -6 10 517 507 7 1+ 11% 151 -8
14 -111 89 =9 11 1075 1079 =3 15 4217 423 3
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88 110
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1236 1232
347 320
659 708
204 238
188 223
168 218
-93 90
36 114
351 362
326 258
451 422
187 103
524 521
164 128
444 439
153 57
290 295
135 174
-135 15
-80 17
324 324
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609 652
540 532
207 190
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1%+ 49
135 92
-66 36
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415 430
135 129
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-127 152
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400

2423
3998
2856
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37 86 -9 =21 4 =24 =9 16 19 =2
13 6 =iy -16 11 -8 -7 =15 18 -9
23 6 -5 39 44 -11 -5 +6 25 33
34 33 =3 10 16 -4 -3 39 45 -11
29 -42 =1 25 11 16 =1 37 14 28

1 15 2T ~-1lé6 1 10 18 =5
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=kl 15 28 -18 6 83 80 6
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138 179 {4 =1 313 210 7
46 53 =3 0 472 466 6
T+ 317 10 1 283 278 6
219 229 il 2 218 286 -10
551 569 =23 3 46 54 -2
450 432 22 + 130 127 1
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7 =51 18 -8 2 80 82 0
1 K 3 8 73 92 -7 3 436 436 0
9 438 500 «2 4 7160 752 7
-15 82 63 5 10 737 729 7 5 122 134 -7
=14 -80 13 -13 Ll 651 637 19 6 4y l+ +
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=12 515 524 -11 13 -63 24 -12 8 322 321 1
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-10 -41 2% -6 15 197 180 12 10 508 512 =5
-9 65 715 =2 16 222 214 6 11 71 46 9
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15 212 266 5 6 592 515 19 5 255 241 18
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HMT SF-1 MCLYBDENUM RAD. PAGE 9
9 356 35« 2 11 120 17 21 -5 -87 72 -19
10 147 134 10 12 29 46 =3 -4 -40 56 -7
11 =TT 10 -17 13 92 94 0 -3 59 50 1
12 T4 92 -8 l% -13 28 =2 =2 289 282 4
12 102 110 -3 -1 241 259 -11
14 135 127 % 2 K 9 0 63 14 5
15 53 51 J 1 125 104 6
-6 125 126 0
2 K 7 =5 =77 10 -12 3 K -7
-t 163 166 19
11 254 270 -12 -3 333 393 -11 -14 -29 14 =1
10 207 221 -19 -2 273 279 -6 -13 200 190 5
=9 94 1 L8 =1 =45 50 =10 =12 314 352 16
-b 67 94 -9 0 =35 66 -14 -11 185 190 -2
=T 128 128 P 1 118 S8 11 =19 =51 +9 -8
-6 152 168 -11 2 450 433 21 -9 T4 58 E
-5 298 280 21 3 522 513 11 -3 4% 54 =1
-4 48 3 6 * 5?2 93 0 =] 299 238 9
) 198 1848 9 5 93 12 -6 -6 184 130 2
-2 562 557 7 6 -196 16 =29 =5 30 67 6
=1 472 454 18 7 8d 107 =9 -4 93 16 12
(0] 94 111 =7 3 216 203 11 =3 226 225 0
1 107 125 -3 9 8% 99 -6 =2 189 163 15
2 5% 2 -5 10 251 246 K -1 64 4 7
2 444 441 3 11 83 105 -8 0 135 154 -8
4 17 682 33 12 - 32 32 =4 1 93 67 6
5 259 28¢ =24% 13 =69 21 -10 2 163 173 -2
6 75 B2 =3 3 250 260 -6
7 19 44 =5 2 K 10 4 79 22 8
8 78 16 1
9 267 260 8 -3 199 251 =37 3 K =6
10 46 7 2] ~2 236 239 -2
11 311 291 2% =1 115 12 17 =15 o1 4 7
12 184 184 D 0 -74 3 -12 -14 149 131 7
13 -102 5 =2+ 1 167 157 6 -13 L7 107 17
14 65 20 3 2 =52 2 -18 =12 -42 37 -5
15 85 82 1 3 82 53 g —1I 18 31 -1
* 29 49 ~3 =10 85 53 8
2 K 8 5 112 86 1l =9 255 251 3
6 124 118 3 -8 414 480 ~5
=0 29 +3 =1 7 169 153 10 =7 277 296 -16
-8 220 231 -8 8 32 15 2 -6 141 143 =1
- 519 547 -32 9 45 33 2 =5 71 83 =3
-6 412 +23 =12 10 66 38 6 -4 81 113 -12
=5 149 117 19 =3 505 597 -1
iy 76 35 11 2 K 11 -2 401 4l2 -10
-3 100 16 11 -1 76 13 11
=2 433 4817 -5 3 3 9 4 0 169 160 5
=1 517 518 =1 4 73 63 2 1 -5% +3 -8
¢ 165 168 =2 5 47 7 4 2 117 114 1
1 103 &4 29 3 132 123 3
2 232 235 =3 3 K -8 + 185 18+ 0
2 101 114 =8 5 295 325 =20
4 mr 56 -3 =12 156 123 12 6 T% 55 3
5 39 25 2 =11 -36 9 ~2 7 117 63 13
1 204 165 6 -10 15 7 8
7 130 1C4 17 -9 96 31 13 3 K =5
8 312 3C8 . -8 1e) 155 -6
9 133 120 L) -1 389 369 15 -16 -46 54 1T
10 -59 15 =9 -6 249 254 -3 -15 45 L 3
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