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ABSTRACT

Seiberg-Witten theory has been an important tool in studying a class of 4-manifolds.
Moreover, the Seiberg-Witten invariants have been used to compute for simple
structures of symplectic manifolds. The normal connected sum operation on 4-
manifolds has been used to construct 4-manifolds. In this thesis, we demonstrate
how to compute the Seiberg-Witten invariant of 4-manifolds obtained from the
normal connected sum operation. In addition, we introduce the application of the
formula on the existence of symplectic structures of manifolds given by the normal

connected sum.

In Chapter 1, we study the Seiberg-Witten theory for various types of 3- and 4-
manifolds. We review the Seiberg-Witten equation and invariants for 4-manifolds
with cylindrical ends as well as closed and smooth 4-manifolds . Furthermore, we
explain how to compute the Seiberg-Witten invariants for two types of 4-manifolds:

the products of a circle and a 3-manifold and sympectic manifolds.

In Chapter 2, we prove that the Seiberg-Witten invariant of a new manifold obtained
from the normal connected sum can be represented by the Seiberg-Witten invariant
of the original manifolds. In [Tau0O1], the author has proved the case of the operation
along tori. In [MSTO96], the authors have proved the case of the operation along
surfaces with genus at least 2 when the product of the circle and the surface is
separating in the ambient 4-manifold. In this thesis, we show the proof of the

remaining case.

In Chapter 3, we prove the existence of certain symplectic structures on manifolds
obtained from the normal connected sum of two 4-manifolds using the multiple
gluing formula stated in Chapter 2. We explain how to construct covering spaces
of the manifold and compute the Seiberg-Witten invariant of the covering spaces by
the gluing formula. From the relation between the Seiberg-Witten invariants and

symplectic structures, we prove the main application.
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Chapter 1
BACKGROUND ON THE SEIBERG-WITTEN THEORY

In this chapter, we briefly review various types of the Seiberg-Witten equations
and the invariants. We follow [Mor95], [MST96, Section 2] and [HT99]. The
Seiberg-Witten equation gives a relation between a connection of a certain bundle
and a section of a certain vector bundle. Before introducing the equation, we shortly

review the background knowledge from differential geometry.

1.1 Background from differential geometry

Let X, Y be a smooth manifold. Let 7X denote the tangent bundle of X. Suppose
that 7 : E — X is a vector bundle. We define C*(E) to be the space of sections of
E. If f : Y — X is a map, then we define the space

JE ={(y.e) €Y X E|f(y) = n(e)}

and a map f*E — Y by (y,e) — y. Then, f*E is a vector bundle over Y. We call
f*E — Y pull-back vector bundle of E over Y.

For n : E — X, we can construct the following short exact sequence of bundles:
0 1"ESTE D n°'TX — 0. (1.1.1)

The image of i in TE is considered as the subspace of "vertical" tangent vectors
since it vanishe in 77 X. We can choose a "horizontal" subspace of TE which is
complementary to i(n*E). The choice of this horizontal subspace which splits the

short exact sequence 1.1.1 is formally called a connection.

Definition 1.1.1. A connection on E is amap A : TE — n*E such that

e Aoi:n"E — n*E is a identity map

e for a € C, a multiplication map m, : E — E commutes with A. In other

words, m), A = a - A.

If the connection is given, then we can differentiate sections of a bundle with respect

to the given connection. The concept of this differentiation is called covariant
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derivative. The covariant derivative measures how much a section deviated from
the "horizontal" subspace. Let 7 be the restriction of the bundle map 7*E — E on
each fiber.

Definition 1.1.2. The covariant derivative Vp : C¥(E) — C*(T*X ® E) is defined
as follows: for y € C¥(E), VA(W) : T, X — E\ is the composition

I8 A * 7
T.X — Tlﬁ(x)E — (JT E)W(x) - E,.

Definition 1.1.3. Suppose that © : E — B is a vector bundle and A is a connection
on E. The curvature 2-form Fa € Q*(X, End(E)) is defined by the 2-form which is
equal to dA + A A A in local coordinates.

Suppose that X is a smooth Riemannian 4-manifold. We have the hodge star
operator * from the set of 2-forms on X, QZ(X), to itself. We call a 2-form F
self-dual (respectively, anti-self-dual) if xF' = F (respectively, xF' = —F). The set
Q?(X) has a decomposition into Q2 (X) & Q2 (X), where Q2 (X) and Q?(X) are the

set of self-dual two forms and anti-self-dual two forms respectively.

Spin‘-structure

Definition 1.1.4. Let X be a smooth manifold and G be a Lie group. A principal G

bundle over X is a surjective map n : P — X and a G action on P satisfying:

® The action of G on P respects «, i.e., for g € G,p € P, n(p) = n(p.g).
e The action of G is free and transitive on 1~ (x) C P for each x € X.

® On an open ball U c X, =Y (U) c P is diffeomorphic to U X G through the

G-equivariant and fiber-preserving diffeomorphism.

Moreover, given a vector space V and a representation of G, p : G — Aut(V), we
define the associated vector bundle Vp to be the the space obtained from (P X V)
quotient by the equivalence relation (p.g,v) ~ (p, p(g)v)

Suppose that X is a n-dimensional oriented Riemmanian manifold. Let Fr — X
be the frame bundle of X. In other words, F'r — X is the principal SO(n)-bundle.
For n > 3, the fundamental group of SO(n) is isomorphic to Z,. Let Spin(n) be

the connected double cover of SO(n) and 7 : Spin(n) — SO(n) be the covering
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map. Lety : Spin(n) — Spin(n) be the nontrivial covering transformation of 7.
Moreover,
Spin©(n) = Spin(n) x U(1)/Z,

when a nontrivial element 1 € Z, sends (x, y) to (¥/(x), —y). Then, the canonical

projection Spin€(n) — SO(n) is well-defined.

Definition 1.1.5. A Spin®-structure on n-dimensional oriented Riemannian manifold
X is a principal Spin©-bundle F on X with a map F — Fr such that the following

diagram commutes:

F x Spin‘(n) —— F

N

X

S

FrxS0(n) —— Fr

Figure 1.1: Definition of Spin°-structure

We associate the complex vector bundles S(P) over X from the representations
of Spin‘(n). These associated vector bundles are distinguished from other vector
bundles over X through the fiberwise action of 7*X. The action from Clifford
multiplication,

cl : T*X — End(S(P)),

has the following properties:

* cl(v) =~

o If |[v| = 1, then cl(v) is unitary.

Henceforth, we examine more details for 4-dimensional manifolds. Suppose that
X is 4-dimensional. Now, we define two C2-representation, s, s— of Spin‘(4). We

have the following relations:

.« SUQ2) = { Z

al®> + |b|> = 1fora,b e c}

e UR)=SUR)xU()/x1



. SO(4) = SU2) x SU(2)/«1
o Spin(4) = SU(2) x SU(2)

o Spin‘(4) = (SU(2) x SU(2) x U(1)/=1

We define s, : Spin(4) — Aut(C?) = U(2) to be
Si(h_, h+, /l) = (hi, /l)

Definition 1.1.6. With these two representations s.., s—, S+(P), S_(P) are two associ-
ated C? vector bundles to P. S(P) denotes S+(P)® S_(P). We call S(P) the complex

spin bundle. We call sections of these spinor bundles spinors.

For v € T*X, the action cl(v) sends S,(P) to S_(P) and S_(P) to S,(P). More
specifically, the action
cl:T*X ® S, (P) — S_(P)

is described as the matrix multiplication. On each fiber, ¢/ is a map from R* @ C?

-b
to C2. We identify R = {(a i
b a

:a,beCsz}and

cl(x,¥) = xy.

Likewise, ¢l : T*X ® S_(P) — S.(P) is defined by

cl(x, ) = —-xy.

Definition 1.1.7. We define the Dirac operator Dy : C®(S(P)) — C®(S(P)) when

the connection A is given as the composition of the two maps:
.V - -
Co(S(P)) 225 c=(T*X @ S(P)) < C=(S(P)).

Since cl maps Sy (P) to S_(P) and vice versa, the Dirac operator maps C*(S,(P))
to C®(S_(P)) and vice versa. Dy, is the Dirac operator restricted to C *(S§%(P)).

Remark 1.1.8. A Spin-structure P € Sy is equivalent with the vector bundle
S(P) = S.(P) @ S_(P) with the Clifford action. For a € H*(X,Z), let E be the
line bundle satisfying that ci(E) = a. The action of a sends S to S ® E. With this
H?*(X,Z) action, Sx is an affine space modelled on H*(X,Z).



1.2 Seiberg-Witten theory for closed 4-manifolds

Let X be a smooth, closed, oriented Riemannian 4-manifold with Spin¢-structure
and let g be a Riemannian metric on X. Let P be a Spin¢-strucure on (X, g). For
a unitary connection A on the determinant line bundle of P and a section ¢ of
S, (P), the Seiberg-Witten equations SW associated to a Spin°-structure P are the

following:

Fi=qW)
Di(y) =0,

where D, is the Dirac operator and F is the self-dual part of curvature 2-form
Fy4. Here g is a quadratic form from S, (P) to the set of purely imaginary self-dual
2-forms, Q2(X;iR). We can describe q(y) = ¢ ® " — @Id.

The index of the elliptic system defined from the equations SW is given by

c1(£)” = 2x(X) +30(X))

d(P) = .

from the Atiyah-Singer index theorem.

For a generic C* self-dual real two-form 4 on X, we define the perturbed Seiberg-

Witten equations SWy, like the following:

Fy =q()+ih
DX(¢) = 0.

Let m be the set of (A, ) satisfying the equation SWy,. The solution set m has a
C*(X, S") action on itself, where C*(X, S') is the set of smooth functions from X
to S'. The action is defined as follows: for g € C®(X, S'),

g(Ay) = (A-2g""dg, gy).

This action is called gauge transformation. Let the moduli space M(P, h) be a
quotient of the solution space m by C*(X, S'). We call M(P, h) the moduli space
of the SW}, equation. Moreover, we define MO(P, h) to be a quotient of the solution
space by {¢ € C*(X,S") : ¢(x) = 1}, where * € X is a fixed base-point. When A
is the set of unitary connections of the determinant line bundle of P, we define

B(P) := (A x C(5,(P))/gauge transformation.
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We define b7 (X) to be the dimension of any maximal subspace of the second
cohomology H?(X,R) on which the intersection form is positive definite. When
by > 0, for generic h, the moduli space M(P, h) is smooth. For one-parameter
family of perturbations i, M°(P, h) has a principal circle bundle structure over the
moduli space M(P, h) since we expect no reducibles in the solution space. We

remark that we introduce the perturbation term / to make the moduli space smooth.

Now we define the Seiberg-Witten invariant from this moduli space M(P, ). Orient-
ing the moduli space is equivalent to fixing the orientation of H%(X,R), H!(X,R),
H?(X,R). With a properly fixed orientation on the moduli space M(P, h), we
have a principal circle bundle M°(P, h) over the moduli space M(P, h). Let ¢ €
H*(M(P, h)) be the corresponding Chern class of this circle bundle.

If the dimension of the moduli space is 2/, which is even, then we define the Seiberg-

Witten invariant by / c!. If the dimension is odd, then we define the invariant
M(P,h)
to be 0. Moreover, if b3 (X) > 1, then it is independent from the choice of the metric,

i.e., an invariant of X. However, if b;(X ) = 1, then the invariant depends on both

the manifold X and the metric on X.

Therefore, when b3 (X) > 1, this gives a function
SW : {Spin®-structures on X} — Z.

It is often to use a function on the characteristic classes which amalgamates the
information of SW. Let C(X) € H?(X, Z) be the subset of characteristic cohomology
classes. We recall that characteristic cohomology classes are cohomology classes
whose mod two reduction is equal to the second Stiefel-Whitney class. We have
SWy : C(X) — Z, which is defined by the following:

SWy(k) = Z SW(s).
Spin€-structure s

and its determinant line bdundle L
c1(L)=k

1.3 Seiberg-Witten equation for closed 3-manifolds
We introduce the Seiberg-Witten invariant for 3-manifolds. Let N be a 3-dimensional

Riemmanian manifold. Let Py — N be a Spin®-structure on N. Since
Spin©(3) = SUQR) x U(1)/x1 = U(2),

Spin¢(3) has the standard representation on C2. From this standard representation,

there is an associated irreducible complex vector bundle S(Py) unique up to iso-



morphism. The Clifford action ¢l : T*N — End(S(P)) is given by:

c1<e1)=(é i),cxez):(? ‘01),(:1(@):(? (’))

where ey, e,, e3 is a standard basis of R3. With this Clifford action, the Dirac operator
D4 for 3-dimensional manifolds is defined in the same way from Definition 1.1.7.

The 3-dimensional Seiberg-Witten equations SW? for Py — N are given by:

Fp=q(y)
Da(y) =0,

where A is a unitary connection on the determinant line bundle of Py and ¢ is a
section of S(Py).

We have the perturbed Seiberg-Witten equation for 3-manifolds. For any sufficiently
small closed real two-form 4 on N, we define the perturbed Seiberg-Witten equations
SWf’1 :

Fo=qW)+ih
Da(y) = 0.

N = S' x C case

In this subsection, we examine the special case: N = S I C, where C is a oriented
surface with genus at least 2. We consider a Spin¢-structure Py, whose determinant
line bundle £ has a degree +(2 — 2g) on every component of C where g is the genus

of each component of C.

Proposition 1.3.1. [MST96, Proposition 5.1., Corollary 5.3.]

o [f the solution exists on the Spin°-structure Py, then Py is a pull-back Spin®

structure induced from a Spin®-structure on C.

e For a sufficiently small closed real two-form h on N, there is a unique solution

to the perturbed Seiberg-Witten equations (S Wfl) :

Fp=q() +ih
Da(y) = 0.
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This solution represents a smooth point of the moduli space in the sense that

its Zariski tangent space is trivial.

We remark that Proposition 1.3.1 is originally proved only for a connected surface
C in [MST96]. However, the statement is also true when C is disconnected since

the solution restricted to each component satisfies Proposition 1.3.1.

1.4 Seiberg-Witten equation for cylindrical 4-manifolds
In this section, we focus on the case in which a smooth and oriented Riemannian
4-manifold X is orientation-preserving isometric to / X N, where N is a closed

oriented three manifold and 7/ is a (possibly infinite) open interval.

We follow [KMO7, Chapter II] and [MST96, Section 6]. We fix a Spin®-structure
Py on N. Henceforth, we consider L#-version of the configuration space C(Py).
The configuration space C(Py) is the set of pairs (A, ) where A is an le-connection
on the determinant line bundle of Py and ¢ is an le—section of the associated bundle
S(Py). C*(Py) is a subset of C(Py) which consists of only irreducible solutions, i.e.,
W # 0. The gauge group G(Py) is the group of L%-maps from N to S'. Moreover,
B(Py) is the space of C(Py) modulo the gauge group action G(Py) and 8*(Py) is
the space of C*(Py) modulo the gauge group.

First, we introduce the Chern-Simons-Dirac functional f on the configuration space
of N. We fix a background C*-connection Ag on the complex spin bundle S(P).
Suppose that f : C(Py) — R is defined to be:

f(A,:,b):/FAO/\a+1/a/\da+/(w,DAw)dV01,
N 2 Jn N

where a = A — Ag. We remark that the Seiberg-Witten equation of N is equivalent
with the equation that the gradient of the Chern-Simons-Dirac functional f vanishes.

Lemma 1.4.1. [MST96, Lemma 6.4.] We have a natural homomorphism
¢: G(Py) — H'(N,Z)

defined as follows: for o € G(Py), i.e. o : N — S, there is an induced map
on the first cohomology o* : H'(S',Z) — H'(N,Z). Let [g] be the fundamental
cohomology class of H'(S',Z). Then, c(o) = o*([g]).

Moreover,

flo-(Ay) = f((Ay) + 2n{c(0) U c1(L), [N]).



Therefore, f descends to
f: B(Py) — R/27Z.

Furthermore, the map c is surjective and its kernel is the component of identity
Go(Py) inside G(Py). We define B*(Py) by the quotient of C*(Py) by Go(Py).

Then, f also descends to a function

For the Seiberg-Witten theory on 4-manifolds with boundary, we have a notion of
energy, which has a necessary role on the compactness argument of the moduli space.
We note that the Chern-Simons-Dirac functional f is related to the topological
energy &P defined in [KMO7] in the way that the difference of the functional f on

both ends is equal to the topological energy of the solution on the cylinder.

We formulate the Seiberg-Witten equation of I X N. Let ¢t denote /-direction
coordinate. The Spin®- structure on X = I X N is naturally given by P = I x Py
over I x N. The associated complex spin bundle S(P) = S(Py) @ S(Py), which
is a 4-dimensional complex vector bundle. The plus spinor bundle S, (P) is the
first summand and the minus bundle S, (P) is the second summand. Moreover, the
Clifford action ¢l : T*X — End(S(P)) is given by:

0 -1 0 =)
I 0)’CZX(V)_((:1(V) 0 )

0
Iv(—) =
CX(at)
forv e T*N.

Definition 1.4.2. A 4-dimensional Spin® connection A on X = I X N is in temporal
gauge if its covariant derivative
d
Va=—+V
A= B

for a I-direction-dependent Spin® connection B on S(Py).

With a covariant derivative V 4 in temporal gauge and the Clifford action, the Dirac
operator Dy for a connection A is defined from Definition 1.1.7. If we restrict the
Dirac operator on the set of sections over the plus spinor bundle, then

d

DY = — + Dy.
AT g TN

Now, we are ready to define the Seiberg-Witten equation for X. With the Spin®-
structure P = I x Py — I X N, we introduce the Seiberg-Witten equations SWey
on/ X N:



10

Fp = q(¥)
D}(¥) =0,

where A is a unitary connection on the determinant line bundle of P and ¥ is a
section of S, (P). The Seiberg-Witten equation is equivalent with the gradient flow

equation of the Chern-Simons-Dirac functional in the following way.

Proposition 1.4.3. [MST96, Proposition 6.6.] We fix an open interval 1. If a con-
figuration (A(t), y(t)) in a temporal gauge for the Spinc-structure I x Py — I x N
satisfies the Seiberg-Witten equations, then it gives a C®-path in C(Py) satisfying

the gradient flow equation

(A Y)

TR AL

Two solutions to the Seiberg-Witten equations are gauge-equivalent if and only if the

paths in C(Py) that they determine in temporal gauges are gauge-equivalent under
the action of G(Py).

We define a finite energy solution on the cylinder.

Definition 1.4.4. For each solution of the Seiberg-Witten equation over I X N, it has
the associated flow liney : I — C(Py). We call a C*®-solution of the Seiberg-Witten
equation on I = (a, b) X N, where I is possibly infinite whose associated flow line

y : I — C(Py) satisfies
,dim fr) = £ () < 0

a finite enery solution on the cylinder.

N = S x C case

In this subsection, we assume that N = S! x C where g(C) > 1 and the determinant
line bundle of Py is induced from a line bundle on C whose degree is equal to
+(2 — 2g). Under this assumption, the moduli space of X N has an exponentially
decaying property from [MST96, Section 6] because the solution moduli space of

the Seiberg-Witten equation for N consists of a single non-degenerate point.

Proposition 1.4.5. [MST96, Corollary 6.17.] There are positive constants €,5 > 0
such that for any T > 1 if (A(t), () is a solution to the Seiberg-Witten equations
on [0, T] X N in a temporal gauge and if for eacht, 0 < t < T, the equivalence class
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of (A(t), ¥(t)) is within € in the L%—topology on B*(Py) of the solution [Ao, Yo] of
the Seiberg-Witten equations on N, then the distance from [A(t), y(t)] to [Ag, Yo] in
the le-topology is at most

dy exp(=ot) + dy exp(—6(T — 1)),

where d, is the le—distance from [A(x), ¥ (x)] to [Ag, ¥o] when x =0, T.

Let n be a harmonic one-form on C. We introduce the perturbation term from n on
the Seiberg-Witten equation on cylindrical manifolds. We define the equation SWy
on R X N:

Fr =q@)+i(kn +dt A n)
Dy(y) =0,

where x is the complex-liner Hodge-star operator on N, dt is the one-form of R-
direction and & = %xn + dt A n. We denote the associated Seiberg-Witten equation
on N is SW3  :

Faw = q@)) + i(xn)
D (¥ (1)) = 0.

Moreover, we introduce the perturbed functional f,, corresponding to SW,.

fn(A,w):/FAO/\a+l/aAda+/(w,DAw>dV01—/i(*n)/\a,
N 2 N N N

where a = A—Ag. Analogously, the solution to SW), in a temporal gauge is equivalent
to the gradient flow equation of f; for the path in C(Py). In addition, a static solution
to SW;, is equivalent to a collection of solutions to San. This is from [MST96,
Claim 6.24]. Moreover, the advantage of the perturbation term » is that the solution

of the perturbed equation is always static if the energy of the cylinder R X N is finite.

Proposition 1.4.6. [MST96, Proposition 6.30.] We fix K > 0. For all sufficiently
small non-zero harmonic one-forms n on C and h = xn+dt A n, if a solution y(t) for
—00 < t < oo to the equation SW), satisfies that f,(y(t)) has a finite limit ast — +oo

and the difference of these limits is at most K, then the solution is static.

We summarize the description of the static solution in the configuration space from
Proposition 1.4.6 and [MST96, Lemma 6.31.]. The critical points of f, in 8*(Py)
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are nondegenerate and form a discrete subset. These critical points map to the

solution of SW? in B*(Py) by the natural quotient map.

There exist constants K > 0 depending only on N satisfying the following statement:
We choose a sufficiently small contractible open neighborhood v of the critical point
for f, in B(Py). Let y(¢) be a C'-path in the configuration space C(Py) which solves
the gradient flow equation for f, on [0, T] X N. If f(y(T)) — f(y(0)) < K, then the
image of y in 8*(Py) is a path with endpoints in the same component of the preimage
v € B*(Py) of v.

Therefore, if the values {f(y(#)},eor] are included in a sufficiently small interval,
then the corresponding path y is included in the contractible open neighborhood
of a solution of SW} in B*(Py). This idea is necessary to prove Theorem 2.2.1 in
Chapter 2.

1.5 The exponential decaying property of the cylinder contained in a closed
4-manifold.

Let M be a smooth Riemmanian 4-manifold and N be a smoothly embedded inside
M. N has its product neighborhood [—1, 1] X N inside M. We define the family
of Riemannian manifolds M; = (M, g;) by varying the metric g; on [—1,1] X N.
Let ds2, d6% and do? be the usual metric on [-1,1],S' and C. We assume that
gli-11)xN = dr? + d6? + do? locally. Then, we define the family of functions {As}s>1
from [—1, 1] to R such that

* A, are smooth and identically one on [—1, —%] and [%, 1],

® /ls(t) > O on [_%’ %]a
1

. /_21 As(t) = s.
2

We define g, = g out of the cylinder [-1,1] X N and g, = A2(¢)dt? + d6? + do?
on the cylinder [—1, 1] X N. This is a way of stretching the cylinder inside M by
changing the metric on the cylinder. Let [—%, %] X N C M be T;. We have a natural
isometry from [0, s] X N to T,. We remark that M — T are all diffeomorphic for all
s > 1. Henceforth, T; = [0, s] X N denotes the cylinder inside Mj.

We fix a Spin‘-structure P on M and let Py be the restriction of P to N. Now we
introduce a family of perturbations 4, of the Seiberg-Witten equation to simplify

the solution on the cylinder 7. Let ¢ : My — [0, 1] be a smooth function such that:
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* ¢, is identically 1 on Tj,
* ¢, isidentically Oon M — [-1,1] X N,

* For all s, ¢4 has the same value on (M, — Ty).

Let n be a real harmonic one-form on C. We abuse the notation n in a way that
also denotes the pull-back 1-form from n on N = § L' C. After that, dt A n is a
two-form on [—1, 1] X N. Let x be the Hodge star operator for N from the set of
one-forms to two-forms. %7 is a two-form on N = S! x C. In addition, we abuse a
notation that xn also denotes the pull-back two-form of xn on [—1, 1] X N. We define
hs := ¢s(*xn + dt A n), hence h is a self-dual and smooth two-form on [—1, 1] X N.
The perturbed Seiberg-Witten equations SWy, is given by:

Fy =qW) +ihg
Di(y) = 0.
Proposition 1.5.1. [MST96, Corollary 7.5.] There exists a constant K > 0 depend-
ing only on M and P such that: For a harmonic one-form n # 0 on C which is
sufficiently small, for s > 1, and for a solution (A, ) to SWj, on Mj, the restriction
of (A, ¥) on the cylinder Ty = [0, s] X N satisfies that for t € [0, s], L%—distance from
A(t), Y (t) to a static solution is at most K exp(—dd(t)) for d(t) = min(t, s — t) and 6
from Proposition 1.4.5

1.6 The moduli space of 4-manifolds with cylindrical ends

In this section, we study the perturbed Seiberg-Witten equation on an oriented and
smooth 4-manifold X with cylindrical ends [—1,00) X N for a closed 3-manifold
N, which is not necessarily connected. Henceforth, the submanifold N inside X
denotes {0} x N c X. Under this assumption, we define a compact and smooth
moduli space which consists of solutions to the perturbed Seiberg-Witten equation
on X. We mainly follow [MST96, Section 8] and [KMO7, Section 24].

We fix a Spin‘-structure P on X. The restriction of P to N is denoted by Py. The
Seiberg-Witten equation for cylindrical 4-manifolds also works for X. For each C*-
solution (A, ) to the Seiberg-Witten equation on X with respect to P, there exists a
temporal gauge for P restricted to the cylindrical end satisfying that [A, ¥ ]1[0,00)xN
corresponds to a flow-line y : [0, 00) — C(Py), that is a solution of gradient flow

equation for f. For the associated flow line v, if

lim f(y(1) = f(7(0)) < o0,
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then we call the solution (A, ¢) finite energy solution.

Suppose that C is an oriented surface which is not necessarily connected. Let

C = |_| Cqa, where C, is a component of C. We assume that each C, has a genus
a

g > 2 for all . We are mainly interested in the case N = S! x C. We fix a Spin¢-
structure P on X. We assume that the determinant line bundle of P restricted to
S x C, is isomorphic to the pull-back of the line bundle on C, whose degree is

equal to +(2g — 2) on C,.

We need two perturbation terms to the equation. The first perturbation term has a
form %xn + dt A n on the cylindrical end [0, o) X N to use the exponential decaying
property on cylindrical ends Moreover, there exists a set of perturbation terms,
which makes the moduli space regular from [KMO7, Proposition 24.4.7.]. By adding
another perturbation by purely-imaginary two form y}, we achieve the regularity of

the moduli space.

To summarize, for a unitary connection A on the determinant line bundle of 2 and
a section ¥ of the plus complex spin bundle S, (P), the perturbed Seiberg-Witten
equation SWy, py on X is as follows:

Fi=q)+igx(h) +iu

Dy =0.

* Wy is a generic and compactly supported self-dual two form.

¢ nis a harmonic one-form on C and & = xn + dt A n, that is a two-form on the
cylindrical end as defined in SW),_.

* ¢y is a C*™ function which is identically 1 on [0, c0) x S x C and vanishes off
of [-1,00) x S' x C.

Let /V((ﬁ, n, j13 ) be the set of all finite energy solutions to the SW,, . - The space
obtained from M(P, n, Uy) quotient by the gauge transformation group which con-

sists of C®-change of gauge is denoted by the moduli space M(P, n, My)-

Definition 1.6.1. For each solution (A, ) of the Seiberg-Witten equation on X, we
define

1
A)=——= [ FaNAFa.
c(A) a2 Jy ANTA

We call c¢(A) the Chern integral of the solution.
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The Chern integral defines a continuous function from M(P, n, uy) to R. Let
M(P,n, uy) be the inverse image of one-point set {c} for ¢ € R. We show
that M.(P, n, Uy) is compact. The main ingredient of the proof is that the solution
on the cylindrical ends with finite energy is always static from Proposition 1.4.6. We
remark that without the cylindrical perturbation term n the compactness property

may not be true.

Proposition 1.6.2. We fix cyg. For sufficiently small nonzero harmonic one-form n

on C and ¢ < co, M.(P,n, M) is compact.

Proof. The proof is same as the proof of [MST96, Proposition 8.5.] which proves
the case that the cylindrical end is connected. O

If £ is the determinant line bundle of P, then ¢(L£) = ZLM.[F '4]. The index of the

Fredholm complex is equal to
1
71e(4) = 2x(X) = 30 (X)]

and the moduli space is the set of zeros of the Fredholm complex. Therefore,
the moduli space M.(P, n, ) becomes a smooth and compact manifold with the
expected dimension %[C(A) -2x(X)-30(X)].

Exponential decaying property of the moduli spaces.

The other way to investigate the moduli spaces for cylindrical 4-manifolds is to
show the analogous results in [MST96, Section 8]. The statement is exactly the
same as [MST96, Corollary 8.6], except that we allow that the cylindrical end may

be disconnected.

Proposition 1.6.3. With the notations above, let N = S' x C and X be a complete
Riemannian 4-manifold with cylindrical-end isomorphic to [-1,00) X N. Let P be
a Spin€-structure whose restriction to N is isomorphic to the pull back from C of a
Spin structure whose determinant line bundle has degree +(2—2g). Then for any c
the following holds for any sufficiently small harmonic one form n # 0 € Q'(C;R)
and every ¢ > co: There is a constant T > 1 such that if (A, ) is a finite energy
solution to the equations SW), with Chern integral c, then for every t > T the
restriction (A(t), ¥ (t)) is within exp(—z(t — T)) in the Lf—topology of a solution to
the equations SWy,, on N, where the constant 7 depends only on N. The same result

holds when the curvature equation is replaced by

Fy=qW)+ih+iu"



16

or any sufficiently sma , com actly su orte , Self-daua two-form on .
for any sufficiently small, compactly supported, self-dual two-form u* on X

Orientations of the moduli space.

We introduce a way to orient the moduli space M(P, n, ) for 4-manifolds X with
cylindrical end. Let X be a 4-manifold with cylindrical end and let T be a cylindrical
neighborhood of infinity in X. We define H*(X, T;R) to be the maximal subspace
of the second cohomology group H% (X, T;R) whose intersection pairing is positive

semi-definite. With notations above, we have the following proposition.

Proposition 1.6.4. [MST96, Corollary 9.2.] To orient the moduli space of finite
energy solutions to the Seiberg-Witten equations on a cylindrical-end manifold X,
it suffices to orient H (X, T;R) & Hi (X, T;R).

Remark 1.6.5. Let M be a closed manifold containing the cylinder T = N XR as a
submanifold, where N is a compact 3-manifold inside M. We can orient the moduli
space for M by orienting H' (M, T;R) & Hi(M, T;R). This is from the same logic
in [MST96, p.772]. We use this remark to trace orientations when gluing moduli

spaces.

1.7 Relative Seiberg-Witten invariant for manifolds with two cylindrical ends
Originally, the Seiberg-Witten invariant is defined for closed manifolds; however, it
can be extended to 4-manifolds with cylindrical ends, which is called the relative
Seiberg-Witten invariant. On the assumption that the moduli space for such a
manifold is smooth and compact, the relative invariant is analogously defined as
the original Seiberg-Witten invariant. The authors defined the relative invariant for
4-manifolds with a connected cylindrical end [0, o) x S' X ¥ with a oriented and at
least genus 2 surface C in Section 9.2 of [MST96]. We extend the definition to the

case where C is disconnected and has two components.

Definition 1.7.1. Let M be an oriented, complete, Riemannian four manifold with
cylindrical ends T isometric to [0, 00) x S' x C, where C = Cy | | C5 and Cy, C5 is an
oriented, connected surface with g(Cy) = g(C») > 1. Let Py be a Spin®-structures
whose restriction on S' x C; is isomorphic to the pullback of a Spin® structure on
C; whose determinant line bundle is degree (2g — 2) for i = 1,2. We defined the
smooth and compact moduli space M(Py, n, u*). This is the space of solutions of
the Seiberg-Witten equation with a small perturbation n, u* whose Chern integral

is equal to c.
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Let ¢y be the first Chern class of the universal circle bundle over this moduli space.
When the dimension of the moduli space is 2d, we define the relative Seiberg-Witten
invariant SW.(Px) by the pairing of c1¢ and M (Py, n, u*). If the dimension is
odd, then we define SW.(Px) = 0. This relative Seiberg-Witten invariant is the same
for all n and u*.

1.8 Seiberg-Witten Invariant for the product of a circle and closed 3-manifolds
In this section, we discuss the Seiberg-Witten invariant of 4-manifolds S ' N, for
a compact, oriented and connected 3-manifold N with b;(N) > 0, is related to the
Alexander polynomial of the 3-manifold N [MT96]. Before the statement, we need
two notations. First, let

H(X) = HX(X,Z)/Tors

be a non-torsion part of the second cohomology H*(X, Z) for a closed manifold X.
Second, we have the Seiberg-Witten invariants SW : H 2(X, Z) — Z for 4-manifolds
X. We have the natural quotient map ¢ : H*(X,Z) — H(X). Then, we define

SWy= D, SWx(2q(2)
7€H*(X,Z)

in the group ring Z[H(X)].

Theorem 1.8.1. /[MT96] Let N be a compact, oriented and connected 3-manifold
with bi(N) > 0 such that the boundary of N is empty or a disjoint union of tori.
Let p : S' X N — N be a natural projection and p, : HN) — H(S' x N) be
the induced homomorphism by p. Obviously, there exists a natural homomorphism
®, : Z[H(N)] — Z[H(S' x N)] induced by 2p.. When bi(N) = 1, H(N) =
H{(N,Z)]/Tors = Z. Let t be a generator of H(N). Then, there exists an element
& € £p.(H(N)) such that

EDr(Ay) ifbi(N) > 1

SW Iy =
TN (1= )NI2AN) ifby(N) = 1.

1.9 Seiberg-Witten Invariants for symplectic manifolds (X, w)

Suppose that X is a closed and smooth 4-manifold with b3(X) > 1. In addition,
let w be a symplectic 2-form on X and w A w gives the orientation on X. In this
section, we discuss the Seiberg-Witten invariant of X for the simple Spin©-structures
following [Tau94] and [Tau95].
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Let Sy be the set of Spin©-structures on X. From Remark 1.1.8, we know that
H?(X,Z) has an action on Sy and the action is free and transitive. When X is sym-
plectic, Sy with naturally fixed base Spin©-structure has one-to-one correspondence
with the second cohomology group . More precisely, for an element e € H*(X, Z),
the corresponding Spin¢-structure has the plus spinor bundle S, = E@®K~'E, where
the complex line bundle E satisfies that c;(E) = e and K is the canonical bundle
induced from almost complex structure J compatible with w. Therefore, we regard

the Seiberg-Witten invariant as
SWy : H(X,Z) — Z.

Theorem 1.9.1. [Tau95, Theorem 1, 2] Let the first Chern class of the associated
almost complex structure on (X, w) be Kx. Then, SWx(Kx) = +1. Moreover, for
c € H*(X,Z) with SWx(c) £ 0,

|- [w]] < Kx - [w].

Furthermore, equality holds if and only if c = +Kx.
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Chapter 2

SELF-GLUING FORMULA OF THE SEIBERG-WITTEN
INVARIANTS.

2.1 Introduction

The Seiberg-Witten monopole invariant for 4-dimensional manifolds was introduced
by Witten in 1994 and has been actively studied in various aspects. It has been
interesting to show how the invariants of different 4-manifolds are related and how

to compute the Seiberg-Witten monopole invariant from such relations.

M M
Figure 2.1: Self-Gluing Formula

We have a variety of versions of gluing formulae on 4-dimensional monopole
invariants. Suppose that two cylindrical end 4-manifolds X, X_ with ends isometric
to [—1,00) X N for a 3-manifold Y with b;(N) > 0 are given. Let X = X, Uy X_
be a closed 4-manifold satisfying b3 (X) > 1. Under this setting, the Seiberg-Witten
invariant of X is given by the product of the projection of the Seiberg-Witten
invariants of X, X_ in [CWO03]. We call this formula Product Formula. In
particular, we consider the case that N is the product of the circle and an oriented
2-surface. When the genus of the surface is at least 2, the similar product formula
is proved in [MST96]. When N = T3, the product formula is introduced in [Tau01].
Moreover, in [TauOl], the author proved how the Seiberg-Witten invariants are
determined when we glue two isomorphic submanifolds embedded in one connected
4-manifold. We call this formula Self-Gluing formula. In Figure 2.1, the black

circles denote isomorphic 3-dimensional submanifolds N. We remove an open
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neighborhood of N from the left manifold and obtain the right manifold after filling
the boundaries at infinity. The Self-Gluing formula explains the relation of the

Seiberg-Witten invariants of two manifolds in Figure 2.1.

The combination of the product formula and the self-gluing formula enables us
to compute the Seiberg-Witten invariants of the manifold obtained from gluing
two 4-manifolds along multiple 3-manifolds embedded inside, which is called as
Multiple Gluing Formula. In this thesis, we generalize the self-gluing formula for
the product of the circle and the surface with genus at least 2 in Theorem 2.2.1 and

prove the multiple gluing formula in Theorem 2.5.1.

2.2 Setting and Outline

Let M be a closed oriented four-manifold and let N = S' x C ¢ M, where C is
an oriented surface with genus g > 1. When N is a separating submanifold inside
M, let X and Y be the two components of M \ N. We fill X,Y by gluing D> x C
naturally along the boundaries S! x C. X, ¥ denote the resulting manifolds. Morgan,
Szabo and Taubes showed the product formula on the Seiberg-Witten invariants in
[MST96]. In other words, the Seiberg-Witten invariants of X and ¥ with properly
fixed Spin‘-structures determine the Seiberg-Witten invariant of M with the induced

Spin‘-structures.

In this note, we want to investigate the case when N is non-separating inside M. We
consider a neighborhood N, nbd(N) = N x (0,1) = §' x C x (0, 1) inside M. Let
M = M\ nbd(N). Hence, M is a smooth 4-manifold with two boundary components
N x {0} and N x {1}. We fill two boundaries of M by a natural map

D*xC— M.
Let the resulting manifold be M.
Conversely, we can also obtain M from M by the following operation. Let Cy, C, be
homeomorphic to C. Suppose that there are two smooth embeddings Cy, C; — M.
In addition, the homology classes [C}],[C2] € H>(M,Z) have infinite order and
[C1]> = [C2]? = 0. Moreover, [Ci] - [C>] = 0. In other words, the self-intersection
number of Cy, C, are both zero and the intersection number of C; and C; is also

zero. These additional conditions allow that there are regular neighborhoods of C;

and C,, which are diffeomorphic to D? x C; and D? x C, respectively. Let
M =M\ (D*>xC,uD?*xGC).

After that, we glue the two boundaries of M by a map
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S'xC; — S'x G,
(x,y) — (&, f()).

X denotes a complex conjugate of x and f : C; — (), is a diffeomorphism.
Consequently, the resulting manifold becomes the original manifold M. In this
chapter, we verify the relation between the Seiberg-Witten invariants of M and M.

Now, we are ready to introduce the main theorem of this chapter.

Theorem 2.2.1 (Main Theorem). Let M, M be two closed and oriented Sfour man-
ifolds related as described previously. Suppose that by(M) > 1. It follows that
b3 (M) > 1. Suppose that k € H*(M,Z) is a characteristic cohomology class
satisfying k| = p*ko where ko € H*(C; Z) satisfies

(ko,[C]) =2¢ =2

and p : N — C is the natural projection. Let K(k) be the set of all character-
istic classes k' € H*(M;Z) satisfying that the restrictions of k and k' on M are
isomorphic and k* = k2. Similarly, let K(k) be the set of all characteristic classes
k € HX(M;Z) with the property that the restrictions of k and k on M are isomorphic.

Then we have the following formula:

Z SWy (k') = Z SW (k).
k’eK(k) keR(k),
k*=k2-(8g-8)

We call this formula self-gluing formula. Prior to the proof of the self-gluing
formula, we briefly review the product formula [MST96, Theorem 3.1] and a sketch

of its proof which gives the idea.

Theorem 2.2.2. [MST96, Theorem 3.1] Supppose that b} (X), b;’(? ) > 1. It follows
that b3 (M) > 1. Suppose that k € H 2(M;Z) is a characteristic cohomology class
satisfying k| = p*ko, where ko € H*(C;Z) satisfies

(ko, [C]) = 2¢ = 2.

Let kx and ky be the restrictions of k to X and Y. Consider the set K(k) of all
characteristic classes k' € H*(M;Z) with the property that k'|x = kx, k'ly = ky
and k'* = k2. We define Kx (k) to be all | € H*(X; Z) which are characteristic and
satisfy l|x = kx. The set Ky(k) is defined analogously. Then for appropriate choices
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of orientations of H' (M), H'(X), H'(Y) and H>(M), H>(X), H>(Y) determining the

signs of the Seiberg-Witten invariants, we have

Z SWy (k') = (—1)2MN) Z SW(1)SWy (L), 2.2.1)
k'eK(k)
where b(M,N) = bi(X, N)bf(Y, N), and the sum on the right-hand-side extends
over all pairs (11, 1) € Kx(k) X Ky (k) with the property that

B+15=1k*- (82 -9).

It is to be understood in Equation 2.2.1 that the Seiberg-Witten invariant of any
manifold with by = 1 is the C*-negative Seiberg-Witten invariant where C* is the

cohomology class Poincare dual to C.
Remark 2.2.3. Given the second cohomology class x of non-negative square,
SWi 1 C(X) = Z

is defined to be C*-negative Seiberg-Witten invariant.

We summarize a sketch of the proof of Theorem 2.2.2 which gives a motivation of
the proof of the main theorem. First, they define the moduli space of the perturbed
Seiberg-Witten equations for one cylindrical end 4 manifolds X and Y. They show
the moduli spaces are smooth and compact with the correct dimension, which is
given by the index theorem. This is reviewed in Section 1.6. Next, by gluing together
two configuration spaces of X and Y, they show that the union of the product of the
two moduli spaces with fixed Chern integral is diffeomorphic to the moduli space
of the original manifold M. Then, they define the relative Seiberg-Witten invariants
for one cylindrical end 4-manifolds, that is reviewed in Section 1.7. The above
diffeomorphism between moduli spaces implies that the Seiberg-Witten invariant
of M can be represented by the product of the relative Seiberg-Witten invariants of
X and Y. Last, the relative Seiberg-Witten invariants of X and Y are equal to the

Seiberg-Witten invariants of X and ¥ respectively, which implies the statement.

We show that the relative Seiberg-Witten invariants of M is equal to the Seiberg-
Witten invariant of M up to orientations in Section 2.4 by generalizing the glu-
ing theorem of the Seiberg-Witten moduli spaces for 4-manifolds with boundary
[MST96, Theorem 9.1.]. From Generalized Product formula, the relative Seiberg-
Witten invariant of M is equal to the usual Seiberg-Witten invariant of M up to

appropriate summations and orientation terms.
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Moreover, we express the Seiberg-Witten monopole invariant of 4-manifolds ob-
tained from gluing two 4-manifolds along multiple numbers of certain kinds of
3-manifolds in Section 2.5. It is from the direct application of the product formula
in [MST96] and Main Theorem 2.2.1.

2.3 Relation between two moduli spaces over M and M.

Suppose that N = S' xC is smoothly embedded inside M. Let g be the chosen metric
on M so that the metric g is isometric to the product metric on the neighborhood of
N inside M. Let M be M\ N, which is an oriented four manifold with two cylindrical
ends [—%, o) X Ny, [—%, o) X N,, where N; and N, are homeomorphic to N. We
give the Riemannian metric on M induced from (M, g).

In Section 1.4, we defined a family of manifold M = (M, g;) for s > 1 by varying
metric g;. This is equivalent to stretching the cylinder [—1, 1] X N. In addition, we

have a different view of stretching the cylinder.

For all s > 1, let M, be the manifold with boundary obtained from truncating M at
{%} X Ny, {%} X N,. Let M; be the closed Riemmanian four manifold obtained by
gluing
S S
{3hxm — {3 xm
(zw) — (Zw)

from M. A family of manifolds M parameterized by s € [1, o) is isometric to
(M, g5) given a family of metrics {g;} on M defined in Section 1.4. Let N. be
{%} X Nj, {%} X Ny, respectively. Let Ty be the cylinder inside M bounded by
N_,N;.

We add one remark that any two-form w on M can be extended to the two-form on
M, in a obvious way so that on the restriction of w to the cylindrical part 7, the

two-form is nonzero and constant.

For all positive e, let M (P, n, ,u}l) be the moduli space of finite energy solutions
to the perturbed equations with Chern interal e. By choosing sufficiently small and
generic n and u}l, we can arrange that M, (P, n, ”XZ) is a smooth and compact
moduli space.

Let S be the set of isomorphism classes of Spin® structures P on M with the property
that P|;; = P;;. S, denotes the subset of S, which consists of Spin¢ structures whose

determinant line bundle £ satisfies c;(£)> = e. For P € S, with e > 0, there is the
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corresponding Spin® structures P over M;. For large s, supp(,u;‘gl) C M. Then, for

any s sufficiently large, ;! denotes a self-dual form on M;, which is equal to ,u}l.

We define M(Py, hy, u*) to be the moduli space of solutions to the perturbed SW

equations SWj, 4+ :
Fi=qW)+i¢gs(xn+dt An)+iu'.

Da(y) = 0.

* ¢ : My — [0, 1] is defined similarly as ¢x in SWiytyzs,-
* hy = ¢y(*kn + dt A n).

Theorem 2.3.1. With the notations and assumptions above, suppose that n is suffi-

ciently small and generic and s sufficiently large. There is a diffeomorphism

Me(Pian i) = || M(Boon, i), 2.3.1)
PeS,

determined by gluing the two boundary parts of the solution and deforming slightly

so as to be in the solution moduli space.

The proof follows the standard gluing arguments and limiting arguments. The
original description for the arguments is from [DK90, Chapter 7]. We describe how

to construct @ and why @ is bijective.

Proof. We define amap ®. We first fix » > 1. Foranelement[A, V] € M,(P;;, n, ,u;[;[),
we consider the restriction [A, W]|;_y; in a temporal gauge. The restricted solution

is represented by two curves

y1: [r,00) = C(Py)
¥2 1 [r,00) = C(Py)

at two cylindrical ends.

lim; o y1(t) = [A,¥1] and lim;— y2(t) = [A2,¥2]. Then both [A},¢] and
[A2, Y] are solutions of SWEH in C(Py). Therefore, there exists a gauge trans-
formation g € G(Py) such that [A},¢] = g - [As,¥2]. We can extend this gauge
transformation into [r, c0) X N, which is equal to the identity near {r} X N, and

equal to g near the infinite end, hence this gauge transformation extends to the
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gauge transformation of M in a way that is in the component of the identity outside
[r, 00) X N;.

After the gauge transformation, we can assume that lim;_,, y1(¢) and limt — ocoy;(t)

are equal in 8*(Py).

We can pick large enough ¢ > r such that f,(y;(¢)) and lim,_, yi(f) are close

enough and f,(y2(¢)) and lim;_,« y>(¢) are also close enough. Therefore, the path

v1, y2 are included in the contractible open ball of the critical point of f,,.

Figure 2.2: Gluing the path in 8*(Py).

Schematically, in 8*(Py), two curves are approaching as in the left figure of Figure
2.2.

The black dot represents the solution of § an in B*(Py) and the circle denotes a
contractible open neighborhood. By connecting two curves and perturbing smoothly
in the contractible open neighborhood, we can get a solution in M(P;, n, u*) for an
induced Spin¢-structure P;. Since the moduli space M, (P, n, ”;71) is compact, for
a sufficiently large s, we can define a map @ for all elements in M, (P, n, ”;71)' The
map is naturally injective from the definition since the value ®([A, ¥]) is invariant

under perturbations in a contractible open neighborhood.

Furthermore, we show that the map is surjective. For [Ay, @] € M(Pg, n, uh),
the restriction of [Ay, @] in the tubular neighborhood of N becomes the curve
inside the contractible open neighborhood of the critical point of f, as in the right
figure of Figure 2.2. Therefore, we perturb the path and divide it into two paths
approaching to the critical point as the left figure of Figure 2.2. Then, we construct
the [A, @] € M(Py,n, “}4) which maps to [Ay, Dy]. O

There is a formula between the relative invariant of M and the original invariant of
M, followed by Proposition 2.3.1.
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Theorem 2.3.2. With the notations defined in the above section, let S, be the
set of Spin¢-structures P on M such that the restriction on M is isomorphic to
Py; and its determinant line bundle L satisfies that ci(£)? = e. By orienting
HY(M,T) ® Hi(]\;[, T), we fix the sign for the relative Seiberg-Witten invariant of
M. Moreover, this determines the orientation H'(M) @ Hi (M) which fix a sign of
Seiberg-Witten invariant of M. With these fixed orientations, we have the following
formula:

D SW(P) = SWe(Pyy).
PeS,

2.4 The Generalized Gluing Theorem for moduli spaces

In [MST96, Theorem 9.1.], the authors explained how to glue two configuration
spaces for 4-manifolds with connected cylindrical ends. If we glue two one-
cylindrical-end 4-manifolds, then the moduli space of the resulting manifold is
represented by the product of the moduli spaces of the two original manifolds. We
naturally generalize the gluing theorem to the case that one of the two original
manifolds have two cylindrical ends.

Let X denote a 4-manifold with two cylindrical ends and let Y denote a 4-manifold
with a cylindrical end. Y has a connected cylindrical end T = [0, c0) X N, where
N = S! x C and C is an oriented, connected surface with genus g > 1. Let C
and C, be homeomorphic to C. X has two cylindrical ends 7; = [0, o0) X N;, where
N; = $' X Ci(i = 1,2). In addition, let 7* := [0, s] X N and T} := [0, s] X N;.

We fix Spin¢-structures Py and Py whose determinant line bundles restricted to
N, N1, N, are all isomorphic to the bundles pulled back from C, Ci, C; of a line
bundle of degree (2g — 2) on C, Cy, C, respectively. As we discussed in Section
2.3, we truncate X,Y at N, X {s} and N X {s}. By gluing along N, X {s} C X
and N X {s} C Y, we obtain a new cylindrical-end 4-manifold M;. Let T’° denote
the cylinder 7; UT* ¢ M. Let S be a set of Spin®-structures P on M such that
Plx = Px|x, and Ply = Pyly,. We have the following diffeomorphism between
moduli spaces:

| | Me(Pxn i) X Mey(Prom i) S | | Mo(Pon, o). 2.4.1)

ci+cr=e Pes

The same argument in [MST96] can be applied to show that the gluing map induces

diffeomorphism.

Theorem 2.4.1 (Generalized Gluing Theorem). We follow the notations S, Mg, X, Y, N1, N2, N
defined above. By orienting H (X, T; UT»;R) & Hi (X, T1UT»:R)and H'(Y,T;R)®
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Hi (Y, T;R), we can orient the moduli spaces that appeared on the left hand side.
With these choices of orientation, we can determine the orientation of the moduli
spaces on the right hand side by orienting H' (M, T'"*; R) & H; (M, T, R). With the

choices of orientations, we have the following product formula:

~ 1 2 ~ ~
D SWelP) = (=1)7 KT S (Pr)SWes(P).

PesS c1t+c=c

The orientation term (—1)b1(X’T1UT2)b22(Y ) in Theorem 2.4.1 comes from Remark
1.6.5 and [MST96, Section 9.1.].

In [MST96, Section 9.4], the relative invariant of D? x C is computed, where C is a
connected and oriented genus g > 1 surface. The invariant SW,.(P) is zero, unless
¢ = 4g — 4. In the case of ¢ = 4g — 4, the relative invariant is equal to 1 with the
proper orientation which orients the moduli space positively. Thus, the following
corollary comes from Product formula when we glue D> x C and X, which is a

4-manifold with cylindrical end [0, 00) x S! x C.

Proposition 2.4.2. [MST96, Corollary 9.9] Let X be an oriented Riemannian four-
manifold with a cylindrical end isometric [0, 0) X S x C, where C is a connected
and oriented surface with genus g > 1. Let X be the closed four manifold obtained
by filling in X with D* X C. Then for Spin®-structure P — X, satisfying that the
determinant line bundle L of P has degree (2g — 2) on {0} x C, we have

SW(P) = SWe(P|x),

where
¢+ (4 -4g) = (ci(LA[X]).

Schematically speaking, if there is an D?> x C embedded inside the four-manifold,
then the relative invariant of the manifold obtained by removing D? x C is equivalent
to the invariant of the original manifold. Thereafter, we want to prove that even if
we remove another D? x C inside the resulting manifold, the relative invariant still

remains unchanged.

Proposition 2.4.3. Let X be a compact and oriented 4 manifold with two cylindrical
ends T; = [0, 00) X N;, where N; = S' X C;and i = 1,2. Let g(Cy) = g(C;) = g > 1.
We fill {0} X N; by gluing D> x C;. Let X be the manifold obtained X by filling
two cylindrical ends with D* x C; for i = 1,2. Then, for Spin¢-structures P — X,
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whose determinant line bundle L restricted to {0} X C; is a pull-back from the degree
(2g — 2) line bundle on C, we have the following formula:

SW(P) = SWe(PIx),

where
¢ +8—8g = (ci(L)%[X]).

Proof. Let X; be the manifold obtained from X by filling {co} X N; part. Let P be a
Spin‘-structure on X whose determinant line bundle on {0} X C; is the pull-back of
degree (2g —2) line bundle on C;. First, we remark that there is a naturally extended
Spin¢-structure P’ on X;. We use Theorem 2.4.1 for X and D? x C;. Then

SW.(P') = SW,,(P)

with the property that ¢; + 4 — 4g = c¢. Then the statement is followed by Corollary
9.9 of [MST96]. m]

With Proposition 2.4.3, we verify the relationship between M and M. We are ready

to show the Main Theorem.

Proof of Main Theorem. From Proposition 2.4.3 and Theorem 2.3.2, the main the-

orem follows naturally. O

2.5 The gluing formula along multiple boundaries whose type is S! x C.

In this subsection, we assume that X, X, are compact, oriented, smooth 4-manifolds.
Suppose that there are connected, oriented disjoint surfaces Xy, ---,%; — X, X»
whose genus are at least 2. Suppose that the intersection number of X; and X; are all
zero for all i, j = 1,2,---, 1. Suppose that the manifolds X, Xé are obtained from
X1, X2 by removing the neighborhoods of surfaces D?*x 3, fori =1,2,---1. Then,
0X| =0X) = (S'xZ)u---u(S' xZ)). We glue the boundaries of X/, X} along
natural diffeomorphisms. Then, we call the resulting manifold X. Moreover, we
assume that b3 (X1), b3 (X2), b3 (X) > 1.

Theorem 2.5.1. We start with the characteristic cohomology class k € H*(X,Z)
satisfying that k|gis, = Pkt where k' € H*(Z;, Z) satisfies (k',[Z;]) = 2g(Z;) — 2
and p : S' X X; — ¥ is a natural projection fori = 1,2,--- 1. Let kx: € HZ(XI.’, Z)
be the restriction of k on X for i = 1,2. Let K(k) be the set of all characteristic
classes s € HX(X,Z) such that slx; = kx;, slx; = kx;. Moreover, we define Kx, (k)
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Figure 2.3: Multiple Gluing Formula, / = 3.

as the set of all characteristic classes s € H*(X;, Z) such that slx; = kx; fori =1,2.

With the appropriate choice of orientation,
(1% D, SWx(s) = ) SWx,(51)SWx,(52) 25.1)
seK (k)

where the right hand side sums over (s1, s2) € Kx, (k) X Kx,(k), satisfying that
!
s% + s% = s> - Z(Sg(Zi) -98).
i=1

Proof. 1t is easily proved by applying Theorem 2.2.1 and [MST96, Theorem 3.1.]
repeatedly. We put the orientation term on the left hand side, which is different

from the convention in the original paper [MST96] for the convenience in Section
34. ]

Remark 2.5.2. As an analogue of [MST96, Remark 3.2.], two different elements in
K(k), Kx, (k), Kx,(k) differ by linear combinations of [X;]*, which is a cohomology

class which is dual to the second homology class [X;], with integer coefficients.



30
Chapter 3

APPLICATION ON THE EXISTENCE OF THE SYMPLECTIC
STRUCTURE.

3.1 Introduction

Mccarthy and Wolfson defined an operation between two symplectic 4-manifolds,
which is called a symplectic normal connect sum [MW94]. The symplectic normal
connect sum is a construction of a new symplectic 4-manifold from two symplectic
manifolds M, M,. Let X;,%, be symplectic submanifolds embedded in M, M,
respectively. Suppose that X; has self-intersection number n > 0 and X, has self-
intersection number —n < 0. Let N{(Z;), N2(Z;) be the tubular neighborhoods of %;
inside M; for i = 1,2. Suppose that N;(;) is contained in the interior of N(Z;).
Let W; C M; be the complements of the interior of N;(Z;) inside N»(%;). Let
f 1 £1 — X, be a diffeomorphism. Then there exists an orientation preserving
diffeomorphism f : W; — W, induced from f such that f(ON>(Z1)) = ON;(Z,).
We glue My, M, along f. The resulting manifold is defined to be the symplectic
normal connect sum, denoted by M# f-Mz. It is shown that M # sz is symplectic
in [MW94]. We call X the surface inside M;# sz came from X and X,. There

exists a natural converse of the statement.

Question 3.1.1. If(Ml#sz, Y) is a symplectic pair, then (M1, X1) and (M, 2, are

also symplectic pairs.

We examine whether the question is true in restricted cases. We consider two
simple types of 4-manifolds. Suppose that M = S' x Y for a compact, oriented
and connected 3-manifold and that £; ¢ ¥ ¢ S! x Y is an incompressible oriented
surface with genus g > 2. Let X, be a surface homeomorphic to ;. Suppose that X
is a Xp-bundle over an oriented surface B with positive genus. The self-intersection
number of X is zero since ; € Y c S! x Y. The self-intersection number of X, is
also zero since its tubular neighborhood is a product from the definition of the fiber
bundle. Therefore, we can construct X¥, which is a normal connect sum of (M, %)
and (X, X»).

Theorem 3.1.2. When b1(Y) = 1, XY has a symplectic form w and its canonical
structure K, satisfying (K, [Z]) = 2g(Z) — 2 if and only if Y is a surface bundle
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over the circle.

We note that when g(X;) = g(X,) = 1, the question is true when M; = S! x Y where
Y is a manifold obtained from S> by O-surgery along a knot K and £; = S' x K’
where K’ is a dual knot of K inside Y and M, is a torus bundle over a surface and

2, is a fiber torus.

3.2 Outline

In this section, we prove Theorem 3.1.2 by following steps. The following tech-
niques might be applied to prove Question3.1.1 for more general cases. For fibered
three manifolds ¥, Theorem 3.1.2 can be easily shown. We focus on non-fibered
manifolds. In Section 3.3, we construct covering spaces of X¥. We first construct
covering spaces X of X and M of M, respectively, and glue multiple copies of X, M
in a specific way to get a covering space XY over X¥. In Chapter 1, we introduced
the main ingredients to compute the Seiberg-Witten invariant of XY, If we assume
that X¥ has a symplectic structure, then the constructed covering space XY also
has a symplectic structure. However, we show that XY cannot have a symplectic
structure due to the obstruction from the Seiberg-Witten invariants in Section 3.4.

This completes the proof of Theorem 3.1.2.

3.3 The construction of the covering space XY,
We first prove that when the surface bundle over the surface is given, arbitrary
covering space over the fiber can be extended to a covering space over the total

space.

Lemma 3.3.1. Let X be a connected and orientable surface with genus g which is
more than 1 and £ be a connected, orientable surface with genus ng —n + 1 for
a positive integer n. Suppose that a finite n-sheeted normal covering p : £ — X
is given. Let X be a X-bundle over B. Then, there exists a S-bundle X over an
oriented surface B such that there exists a covering p : X — X satisfying that the

restriction of p on the fiber ¥ is isomorphic to p.

Proof. We fix a basepoint x € B C X. Let X be a fiber of x € X. Henceforth,
I' := m(Z, x). The surface bundle X corresponds to a short exact sequence of

fundamental groups [Got68, page 51]:

1—>F:7r1(2,x)—>7r:7r1(X,x)i>F:nl(B,x)—> 1.
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Note that ¢ is a quotient map from (X, x) to (B, x). Let A denote the normal
subgroup p. (71 (£, %)) of T for a fixed ¥ € p~'(x). Let N be the normalizer of A in
mie., N = {g en:gAg! :A}.AﬁNandFﬂNSinceFﬂﬂ.

We first show that N/T is a surface group. If we show that N /I is a finite index
subgroup of 7 /T, then it must be a surface subgroup. Let A be the set of subgroups
of I whose index is equal to [I'/A|. Clearly, A € A and A is a finite set since I is
finitely generated.

m has an action on A: for g € mand H € A,
g-H:gHg_1 € A.

This action naturally defines the map ® : 7 — Perm(A), where Perm(A) is a
permutation group of A which is finite. Obviously, N = {g e n|g- A = A}.n/N is
a finite set since ker ® < N and x/ker ® = Perm(A) is finite. Therefore, N/I" is a

surface group since it is a finite index subgroup of the surface group n/I".

There is a short exact sequence
l1—T/A—> N/A— N/T — 1. (3.3.1)

Lemma 3.3.2. For a finite group G and a surface group S, suppose that there is a

group extension H satisfying
l—-G—H—>S— 1.

Then, H always contains a surface subgroup, which is also isomorphic to a proper

subgroup of S.

Proof. LetCbethecentralizerof GinH. i.e. C ={h € H: hx = xhforall x € G}.
We show that C is a finite index subgroup of H.

* H has an action on itself defined by conjugation:
g-x=gxg 'forallg,x € H.

» Since G < H, g - G = G. Therefore, the action gives the homomorphism ¢
from H to Aut(G), the automorphism group of G. Since Aut(G) is a finite

group, ker ¢ becomes a finite-index subgroup of H. Moreover, ker ¢ = C.
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We have the following short exact sequence:
l1—-CnNnG—C—§ —1, (3.3.2)

where S = C/C N G. If we define a map @ : §* — S by the natural inclusion,
then this map is well-defined. Moreover, @ is injective. Therefore, S’ = C/C NG
is isomorphic to a finite-index subgroup of § = H/G.

It is easily seen that C N G is contained in the center of C. Therefore, a short exact
sequence 3.3.2 represents a central extension. This central extension corresponds to
an element inside H>(S’, CNG). Note that if the corresponding element is zero, then
the short exact sequence is splittable. H>(S’, C N G) is finite and has only torsion

elements since C N G is finite.

We examine an arbitrary finite-index subgroup T of S’. Let n be [T : §’]. Suppose
that ¢ € H*(S’,C N G) is the corresponding element to the short exact sequence
3.3.1. Then, na € H*(T,C N G) is the corresponding element of the short exact
sequence

1 —-CNnG—q¢ (1) —>T—1, (3.3.3)

where ¢~(T) is a subgroup of C.

Since C N G is a finite group, there exists a positive integer m such that ma = 0. If
we use this m to pick the subgroup 7', then the short exact sequence 3.3.3 becomes
splittable. Hence, the surface group T becomes a subgroup of ¢~ !(T) < C < H.
Moreover, T < §’ < §. Therefore, the statement is proved. m]

We prove Lemma 3.3.1 based on Lemma 3.3.2. We apply Lemma 3.3.2 to the short
exact sequence 3.3.1. From the lemma, there exists a surface subgroup H of N/A,
which is also a subgroup of 7/I". Let H be isomorphic to the fundamental group of
X5, which is an oriented surface with genus 4 > 1. With H, the following diagram

(%) commutes.

q

1 > A s g Y(H) s H 5 1
o 11l
1 > T > > /T > 1

We construct the covering p. First, we consider a covering space B’ over B corre-
sponding to H, that is a subgroup of 7/I" = (B, x). Then, there is a pull-back
Y-bundle X’ over B’ and the covering map X’ — X.
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X — X

Lo

B —— B

Next, we construct a covering space § : X — X’ corresponding to ¢~'(H). Finally,
this (X, p) is a covering space over X. From the (%) diagram, the restriction of 5 on

the fiber is equal to p. Therefore, Lemma 3.3.1 is proved. O

If we apply Theorem 1.8.1 to ¥, then

SW o fq)z(Ay) if bl(Y) > 1 (3 3 4)
T (1= 128y) iE BT = 1. -

To make the Seiberg-Witten invariant of S! x ¥ easy to compute, we choose the
covering ¥ such that Ay is almost trivial. The following three theorems make it easy

to deal with the Alexander polynomials of covering spaces.

Proposition 3.3.3. [FVI1I, Proposition 3.6] Let N be a 3-manifold and let a :
m1(N) — G be an epimorphism onto a finite group. Let Hg be H(Ng) and H be
H(N). Let nt,, : HG — H be the induced map. Then the twisted Alexander polynomi-
als of N and the ordinary Alexander polynomial of N satisfy the following relations:

If bi(Ng) > 1, then

7.(Axg) ifbi(N) > 1
(a—1P1.(Ang)  ifbi(N) = Limn, = (a)

a
N

If by(Ng) = 1, then by(N) = 1 and

A% = ﬂ*(ANG).

We call ¢ € H(N) fibered if ¢ is dual to a fiber of a fibration N over S!. Friedl and

Vidussi proved the vanishing theorem of the twisted Alexander polynomial.

Theorem 3.3.4. [FVI3, Theorem 2.3] Let N be a compact, orientable, connected
3—manifold with (possibly empty) boundary consisting of tori. If $ € H'(N) is not
fibered, then there exsits an epimorphism « : n11(N) — G onto a finite group G such
that

A% s=0.



35

«.:
e

Figure 3.1: Description of XY where [ = 2,r = 3

Proposition 3.3.5. When b((Y) = 1 andY isnot fibered, there exists a normal finitely
sheeted covering space « : Y — Y such that n.(Ay) = 0, where r. : Z[H(Y)] —
Z|H(Y)] is an induced homomorphism by the covering map 7.

Proof. This statement is straightforward based on Proposition 3.3.3 and Theorem
3.3.4. We can pick an epimorphism « : m1(Y) — G onto a finite group G such
that the covering space ¥ over Y corresponding to ker a satisfies that 7.(Ay) = 0 €
ZIH(Y)]. O

Remark 3.3.6. In case of b (Y) > 1, we cannot have the result in Proposition 3.3.5,
however we have a slightly weaker result. From [FV13, Equation (5)],

(tM06 —12¢(AY) i bi(N) > 1
$(AF) ifbi(N) = 1.

@  _
Ng —

Theorem 3.3.4 asserts that we can pick ¢ € H'(N) such that AY 6= 0. For both
cases, p(Ay) = 0. Combining with Proposition 3.3.3, ¢(n.(Ang)) = 0. We visit this

remark later and explain the case bi(Y) > 1.

We have all of the ingredients necessary to construct the covering space of X! by

gluing several copies of X and S! x ¥ together.

Lemma 3.3.7. There exists a finite cover XY of XY satisfying b;()(: Yy > 1.

Proof. The following construction is an analogue of [Nil7]. We start with a finite

normal covering space ¥ over Y and a covering map p : ¥ — Y. Then, there is a
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covering spaces p : S' x ¥ — S! x Y defined by

(z.y) = (" p(y))

for a fixed positive integer m > 1. Henceforth, M, M denote S'xY, S'xY respectively.
Let [ be the number of components of p~!(X). [ > 1 since [ > m. Since p is normal,
all the components of p~!(X) are homeomorphic. Let ¥ be the oriented surface
homeomorphic to the component of p~!(2). Let pls : £ — X be a n—fold covering.
We apply Lemma 3.3.1 to pls. Then we get a covering space p : X — X. Letr be
the number of components of 5~'(X). Note that r is divisible by [71(B) : H] > 1

with the notation in Lemma 3.3.1, hence r > 1.

We take r copies of S' x ¥ and [ copies of X. For each copy of §' x Y, there are
[ copies of £. On the other hand, for each copy of X, there are r copies of &. We
correspond each £ in one copy of S! x ¥ to £ ¢ p~!(Z) for each copy of X. For each
pair of £ in M and £ in X, we remove the neighborhoods of £ and glue along their
boundaries S' x £. The gluing maps are all given by a lifting of the gluing map
between S! x Y and X. After gluing all, this forms a covering space XZI over XV
which retracts onto K, ;, a complete bipartite graph. Remark that X f ; is a nlr-fold
covering of X¥. We show that XII satisfies the condition. Figure 3.1 describes the

caseof / =2 and r = 3.

We show that b] (X rKl) > 1. From the definitions of Euler characteristic and signature,
X(XY) = 2b5(XY) = 2b1(XY) + 2) — o (XY).

It is known that o(X) = (2 — 22)(2 — 2b) where g(X) = g and g(B) = b and
1 (S x £) = 0. Therefore, it is easily shown that y(X?) = (2 — 2g)(-2b). From the
Novikov additivity property and o(S' x £) = 0, o-(X¥) = o(X). We cannot specify
the exact value of o-(X); however, it has a bound

—(b-1D(g-1) (b-1(g-1)
2 2 ’

which is proved in [Kot98]. Therefore,

<o(X) <

DY) = by~ 1+ 5 (X + o (X))

=010 = D=1+ ) + ()

(b-1)g—-1)

>(1—1)(r—1)—1+%(2b(2g—2)— >

) > 1.
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3.4 Proof of Theorem 3.1

First, we consider a case in which Y is a surface bundle over S'. If Y is a surface
bundle over S!, then S! x Y has a symplectic structure according to Friedl and
Vidussi [FV11]. XY is a normal connected sum of two symplectic 4-manifolds
S! x Y and X along symplecticamally embedded surfaces X. As a result, (X?, w) is
symplectic. Moreover, based on adjuction formula, the canonical symplectic form
K,, satisfies that (K, [Z]) = 2g — 2 since [Z]* = 0 in X7.

Before moving to the other case, we define the following notations.

* Let Z be S' x Y \ nbd(X), where nbd(X) is an neighborhood of X, homeomor-
phic to D> x X.

e Let X’ be X \ nbd(X).

XY is obtained from gluing Z and X’ along their boundaries.

Second, suppose that Y is not a surface bundle over S' and that X has a symplectic
structure. Now, by Lemma 3.1, there exists a covering map p : XY - xY¥ satisfying
the conditions stated in the lemma. If we consider the submanifold p~!(Z) c X Y,
then p~!(Z) has r components. We pick one component among them and call it M 1
The boundary of M| consists of / copies of § I'x £. We fill the boundaries of M
by D? x X trivially. Then, we get a closed manifold M; which is homeomorphic to
S' x Y. Moreover, let M} = XY\ M. Then we fill the boundaries of M} by D* X £
trivially. We call the resulting manifolds M,. Remark that M; is homeomorphic
to S x Y. Conversely, if we do a normal connected sum between My, M, along [
copies of ¥ repeatedly, then the resulting manifold becomes XY . The first procedure
involves gluing two separated 4-manifolds, while the next involves self-gluing / — 1
times. We use the two gluing theorems for M;, M, and XY. We use Theorem 2.5.1

when a Spin¢-structure P is given on XY,

Henceforth, we say that K € H*(S! x C,Z) satisfies the pull-back condition for an
orientable surface C when K |51, € H*(S'xC,Z) = p*(ko) where p : S'xC — Cis
a natural projection and ko € H?(C, Z) satisfies that (ko, C) = 2g(C) — 2. From now
on, H?(-) denotes a cohomology group with integer coefficients if not specified.

Suppose that w is a symplectic 2-form on XY. Let K, € H*(XY, Z) be the canonical
class of the symplectic structure w on XY . Since K, is not torsion from the assump-

tion (K, [Z]) # 0, we can perturb w € H*(XY,R) to be a rational cohomology class
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and then scale w properly so that [w] € H*(XY,Z). We show that K,, satisfies the
pull-back condition. Based on adjunction inequality, for any closed curve @ which
is homologically nontrivial in C, T2 =S'xa e S'xC, (K., S! x @) = 0. Moreover,
from the assumption

(Ko, [E]) = 28(%) - 2.

Consequently, K, satisfies the pull-back condition.

Let Q) be the pull back 2-form of w on XY Let KoeH 2(X~ ¥ Z) be the canonical class
of the symplectic structure Q on XY, Kq = p*(K,). Likewise, Ko € H*(S' x %)
fulfills the pull-back condition on every component. In conclusion, we can use
Theorem 3.1.2 for this canonical structure Kgq. i*{,i; denote the natural maps
HX(XY,Z) — HZ(M{) and HX(XY,Z) — H2(Mé) induced by inclusion maps
Ml’ , Mé s XY, Henceforth, K M K M; denote i*l‘(KQ), i;(KQ) respectively. We pick
k € HZ(X~Y, Z) which also satisfies the condition that k|5 = p*(ko). Then, the
restriction (k — Kq) on S! x £ becomes zero. Moreover, let kny = i7(k), kmy = i5(k).

Then, kM]/ -K M and ksz - KMZ' vanish on the boundary.

We focus on the element (k — Kg) — [Q] in H4(X~ Y Z) = Z. We can decompose
the integer corresponding to (k — Kg) — [Q] in the following way. First, [F] =
PD[(k — Ko)] € Hy(X"), where a surface F € Co(X") has no intersection with
S! x ¥. Next, F can be decomposed into F; + F, for F; € G(M)), F, € Co(M3).
Then,

(k = Kq) — [Q] = PD[F] — i{[Q] + PD[F] — i5[Q]. (3.4.1)

The equation 3.4.1 verifies the relationship between Spin‘-structures k € H 2(X~ Y Z)

and its restrictions to M{, Mé.

We add the equation in Theorem 2.5.1, (=1)* X gy SWx (s) = X SWay, (s1)SWay, (52)
for k € H2(X") satisfying that

1. klgiys = p*(ko) where p : S' x £ — £ and kg € H*(Z) satisfies that
(ko, [£]) = 28(2) - 2.

2. k—[Q] =Ko —[Q]eZ

3. kK =K3.

It is known that only K satisfies all of the above properties (1)-(3) and SW # 0.
Therefore, the left hand side is exactly equal to SW(Kq) which is +1 or —1 from



39
Theorem 1.9.1. The right hand side becomes Z SWar, (21)SWar, (22)
(ZA|,f2)€H2(M|)XH2(M2)
for (71, 2>) € H*(M;) x H*(M>) satisfying
1. 72+ 5% = k* - (4g — D)
2. There exist [F1], [F2] € Ha(M{), Hy(M3) such that
s FINOM{=FNoM; = ¢

* (Zilu; — Kyy) = j1(PD[F1]) and (Z2|m; — Kmy) = j2(PD[F2]) where
j1: HX(M[,0M}) — H*(M)), j» - HX(M}, dM}) — H*(My}) are natural

maps.

3. [F1], [F2] determined in (2) satisfy that PD[F1] — i{[Q]+ PD[F,] — i5[Q] =

0.
Now we see
> SWr, (2)SWar,(22) = D SWar(22)(D | SWy, (1) (3.4.2)
(Z1,22)eH>(M1)xH*(M>) k%) 2

We want to prove that the inner sum Z SWpy,(Z1) in the right hand side becomes
zero. Remark that if SWy,, (Z1) # 0, then 212 = (. Therefore, the first condition does
not need to be considered in the inner sum of Equation 3.4.2. Let Z,, be a set of
71 € H*(S' x Y) such that the corresponding F; satisfies PD[F|] — ij[Q] = m. In
other words, we show that Z SW,(Z1) = 0 for all m.
0 €Zm

We have the formula for the Seiberg Witten invariants. For h € H*(S' x Y), [h]
denotes the quotient element in H(S! x ¥) = H*(S' x Y)/Tors. If two elements
x,y € H*(S' x Y) satisfy that [x] = [y], then x € Z,, is equivaltent to y € Z,, since

the result of cup products does not depend on the torsion part. Let
Ay = Z gh-h
heH(Y)

for g, € Z. We have the natural projection p : S! x ¥ — ¥ and the induced map
p* HY)— H(S'xY)= HY)® (Z® H'(Y)/Tors). The image of p* is included

in the first summand.

First, suppose that b;(Y) > 1. Then from Theorem 3.3.4,

SWai 5 = ED2(Ay).
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From Kunneth formula, H*(S' x ¥) = H*(Y) @ (H'(S') ® H'(Y)). Since ¢ €

+p*(H(Y)), & supports on the first summand of H(S' x ). Conclusively,
SW,,. = EDa(Ay)

= > SWuWlhl= Y gn-@h+é).

heH(M)) heH(S1xY)

Therefore, we can summarize the equality:

1. > SW(h) = g forl € H(Y) c H(S! x 7).
heH*(S'xY),
[h]=21+£€H(S YY)

2. Otherwise, Z SW(h) = 0 where k is not represented by 2/ + £.
[h]=k

We define ¢ : H*(S' x Y) — H(Y) to be the composition of trivial quotient maps

H*(S'xY) - H(S' xY) - H(Y)and n, : H(Y) — H(Y). Therefore,

for each x € H(Y). This is equivalent with

> SWap(h) =0
heH*(S'xY)
¢(h)=x

for each x € H(Y).

Lemma 3.4.1. If 5, w € H>(Y) ¢ H*(S' xY) satisfy that $(2) = ¢(W), then

€7y <= WweLZ.

(3.4.3)

(3.4.4)

Proof. Let F, F,, be the 2-chain corrsponding to Z, W respectively. We observe that

the covering p restricted to M| is isomorphic to the covering p; : § I'xY - S'xy
restricted to M. Let p’ : M{ — p(M]) = Z. Recall that Z = §' XY \ D> x X.

The diagram 3.2 commutes. The horizontal maps are covering maps p, p’ and the

vertical maps are natural inclusion maps.

Recall that Q = p*[w]. Therefore, i7[Q] = p™*[w]|z]. Moreover, we also have the

4
following commuting diagram 3.3.
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xr L xY
I

M}/L)Z

Figure 3.2: Covering diagram

MILSIXY

T ]

M —r 7z

Figure 3.3: Covering diagram

Hence,

PD[F;] — i{[Q] = ([F:].51[Q])
= ([Fz]. p" [wlz])
= (P (F)] [wlz])
= PD[p'(F)] — [wlz]
= (P'(F2). [wlz]).

The second commutative diagram indicates that p’(F;) = p’(F),). Therefore, the

statement is true.

Finally, based on Lemma 3.4.1, the inner sum of Equation 3.4.2 can be decomposed
into the sum of Equation 3.4.4 for some x. Therefore, the inner sum of Equation

3.4.2 becomes zero.

Second, suppose that b;(Y) = 1. Since by(Y) = 1, n, : HY) — H(Y) is a homo-

morphism from Z — 7Z. Since this homomorphism is not trivial, m, is injective.

Therefore, m.(Ay) = O implies that Ay = 0. Therefore, Z SW(h) = 0 for all
[h]=1

I € H(S' x Y). Therefore, the inner sum of the right hand side is also zero.

Therefore, this is a contradiction because Equation 3.3.2 is not true. This implies

that X¥ does not have a symplectic structure and hence concludes the proof of
Theorem 3.1.2.
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Remark 3.4.2. We add remarks in a more general setting. First, in case of bi(Y) > 1,
according to Remark 3.3.6, we need to show the corresponding equation to Equation

3.4.3: for eachm € Z,

gn=0
Y—mn*(h)=m

for a non-fibered y € H'(Y). Moreover, to extend the results to the case of by(Y) > 1,

Lemma 3.4.1 is transformed into: for two Z, w satisfying that
Y — n(2) =y¢ — n(W),

the statement 7 € Z;, <= W € Zy is true. However, we cannot use the same proof
in Lemma 3.4.1 since the 2-form w on X' does not have the unique corresponding
2-formon S' x Y.



[CWO03]

[DK90]

[FV11]

[FV13]

[Got68]

[HT99]

[KMO7]

[Kot98]

[Mor95]

[MST96]

[MTO96]

[MW94]

[Nil7]

43
BIBLIOGRAPHY

Alan L. Carey and Bai Ling Wang. “Seiberg-Witten-Floer Homology
and Gluing Formulae”. In: Acta Mathematica Sinica 19.2 (Apr. 2003),
p. 245. 1ssN: 1439-7617. por: 10.1007/s10114-003-0262-6. URL:
https://doi.org/10.1007/s10114-003-0262-6.

Simons K. Donaldson and Peter B. Kronheimer. The Geometry of Four-
manifolds. Clarendon Press, 1990.

Stefan Friedl and Stefano Vidussi. “Twisted Alexander polynomials de-
tect fibered 3- manifolds”. In: Annals of Mathematics 173 (3 2011),
pp- 1587-1643.

Stefan Friedl and Stefano Vidussi. “A vanishing theorem for twisted
Alexander poly- nomials with applications to symplectic 4-manifolds”.
In: J. Eur. Math. Soc. 15.6 (2013), pp. 2027-2041.

Daniel H. Gottlieb. “On fibre spaces and the evaluation map”. In: Annals
of Mathematics 87 (1968), pp. 42-55.

Michael Hutchings and Clifford H Taubes. “An introduction to the
Seiberg-Witten equations on symplectic manifolds.” In: Symplectic Ge-
ometry and Topology (las/Park City Mathematics Series, V. 7). Vol. 7.
Providence, RI: Amer. Math. Soc., 1999, pp. 103-142.

Peter B. Kronheimer and T. Mrowka. Monopoles and Three-Manifolds.
Cambridge University Press, 2007.

Dieter Kotschick. “Signatures, monopoles and mapping class groups”.
In: Math. Res. Lett. 5.1-2 (1998), pp. 227-234. 1ssn: 1073-2780.

John W. Morgan. The Seiberg-Witten equations and applications to the
topology of smooth four-manifolds. Princeton University Press, 1995.

John W. Morgan, Zoltdn Szabd, and Clifford H. Taubes. “A product
formula for the Seiberg-Witten invariants and the generalized Thom
conjecture”. In: J. Differential Geom. 44.4 (1996), pp. 706-788. por:
10.4310/jdg/1214459408. urL: https://doi.org/10.4310/
jdg/1214459408.

Guowu Meng and Clifford H. Taubes. “SW = Milnor torsion”. In: Math-
ematical Research Letters 3 (5 1996), pp. 661-674.

John D. Mccarthy and Jon G. Wolfson. “Symplectic normal connect
sum”. In: Topology (1994), pp. 729-764.

Yi Ni. “Fintushel-Stern knot surgery in torus bundles”. In: Journal of
Topology 10 (1 2017), pp. 164—-177.



[TauO1]

[Tau94]

[Tau95]

44

Clifford H. Taubes. “The Seiberg—Witten invariants and 4—-manifolds
with essential tori”. In: Geometry and Topology 5 (2001), pp. 441-519.

Clifford H. Taubes. “The Seiberg Witten invariants and symplectic
forms”. In: Mathematical Research Letters (1994), pp. 809-822.

Clifford H. Taubes. “More constraints on symplectic forms from Seiberg—
Witten invariants”. In: Math. Res. Lett. 2.1 (1995), pp. 9-13.



