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ABSTRACT

Quantum field theory (QFT) is a powerful theoretical framework for studying a wide
variety of physical phenomena, ranging from high energy scattering of elementary
particles to condensed matter physics. The behavior of QFTs can differ dramatically
between different energy or length scales. Renormalization group flows describe
how the behavior of a QFT changes with the energy scale, and a typical flow starts
and ends at fixed points. Such fixed points can often be described by non-trivial
scale invariant QFTs, which in many cases also enjoy an enchanced — conformal —
symmetry. Conformal quantum field theories (CFTs) are thus the simplest examples
of QFTs, living at the endpoints of renormalization group flows. Any complete
understanding of general RG flows (and thus general QFTs) must then necessarily

include the understanding of these basic fixed points.

While two-dimensional conformal field theory is by now a classical textbook subject,
only in the last decade has there been a significant advance in our understanding of
general higher-dimensional CFTs. The work of Rattazzi, Rychkov, Tonni, and Vichi
has revived the old subject of conformal bootstrap by applying numerical methods of
linear programming to the so-called bootstrap equations. Since then a lot of progress
has been made on both numerical and analytical frontiers. However, perhaps the
majority of the work up to date concerns itself mainly with correlation functions of
scalar local operators, which are the simplest objects in a conformal field theory.
While in part this is simply because these objects provide a natural starting point,
another important factor is the complexity of the description of non-scalar operators

in higher dimensions.

In this dissertation we attempt to fill this gap by generalizing the existing methods
to operators of general spin. This turns out to be a fruitful approach since in many
cases the generalized point of view reveals a beautiful mathematical structure which
allows us to obtain new results or find a more conceptual explanation of the existing
ones. And, of course, simply having the technology to work with new types of

objects allows us to perform calculations which were not possible before.

We begin in Chapter 2 by describing the kinematic structure of correlation functions
of operators with spin. We reduce classification and construction of conformally-
invariant tensor structures to simple representation-theoretic questions, generalizing

and simplifying pre-existing approaches in a way that is useful for both numerical



vii
and analytical analysis. In Chapters 2 and 3 we provide concrete tools for working

with kinematics of 3d and 4d CFTs, and in the latter case we describe aMathematica

package which greatly simplifies the calculations.

In Chapter 4 we turn to the problem of computation of conformal blocks, which
are the basic building blocks for four-point correlation functions. These functions
are parametrized by spin representation of four “external” and one “intermediate”
operator. It has been known for some time how to relate the conformal blocks
with different external representations (but the same intermediate one) by means of
conformally-invariant differential operators. We show that the basic objects in this
approach are in fact conformally-covariant (as opposed to conformally-invariant)
differential operators and give their complete classification. This point of view
allows us to observe a multitude of new properties of these operators and solve the
problem of changing the intermediate representation of a conformal block. This
gives a concrete algorithm for computation of any conformal block in terms of the

simplest one (with four external scalars).

However, this algorithm requires a non-trivial amount of symbolic calculation while
for numerical purposes it is desirable to reduce this amount to a minimum. To this
end, in Chapter 5 we generalize the exceptionally simple recursion relations for co-
efficients in a certain series expansion of scalar conformal blocks. These recursion
relations follow from Casimir differential equation, which we rephrase in terms of
representation-theoretic data, thus allowing a straightforward generalization. Our
new recursion relations pave a way to a completely numerical algorithm for comput-
ing general conformal blocks. As a byproduct, we find that the general conformal
blocks are naturally expanded in terms of SO(d) matrix elements in Gelfand-Tsetlin

basis, which replace the Gegenbauer polynomials found in the scalar case.

Moving to the more analytical side, in Chapter 6 we consider the problem of inversion
formulas, which give the scaling dimensions and three-point coefficients of primary
operators in terms of a four-point function in which they are exchanged. Such
inversion formulas in Euclidean signature have been known for a long time both for
scalar operators and for operators with spin. Recently an intrinsically Lorentzian
inversion formula was derived from these by Caron-Huot in the case of a four-point
function of scalar operators. This new formula helps to systematize analytic results
in large-spin perturbation theory and also shows that the three-point coefficients and
scaling dimensions of local operators can be analytically continued in spin. We

find a remarkably simple generalization of this formula to operators with spin. For
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this, we introduce a new class of conformally-invariant integral transforms, known
as Knapp-Stein intertwining operators in mathematical literature, and use them to
give a simple derivation of the Lorentzian inversion formula. Remarkably, we find
that a version of this formula exists at the level of operators, providing an analytic
continuation of physical operators in spin. The analytically-continued operators
are non-local and we argue that they are localized on a null line. We discuss the
relevance of these null-ray operators for Regge physics and prove a novel positivity
condition for the leading twist light-ray operators in CFTs with light scalars.

In the rest of the dissertation we present some concrete computations in conformal
bootstrap. First in Chapter 7 we discuss a simplified version of the bootstrap equa-
tions in a collinear configuration, in the limit of large external scaling dimensions
and for a four-point function of scalar primaries. We show that a subset of the
bootstrap equations can be solved analytically in this limit and imply a symmetry
property for the coarse-grained spectral density of the operator product expansion
(OPE). We also find another analytic bound, valid for finite scaling dimensions,
which marginally strengthens previous bounds on OPE convergence and has an

advantage of being a strict inequality instead of an asymptotic one.

Finally, in Chapter 8 we present a direct application of our analysis of conformal
kinematics in 3d by performing numerical bootstrap study for the four-point function
of the stress-energy tensor. We numerically reproduce the celebrated Hofman-
Maldacena bounds on the coefficients of stress-energy tensor three-point function
and find new universal upper bounds on the scaling dimensions of the lightest singlet
operators in various spin sectors, valid for general 3d CFTs. For example, it follows
from our analysis that any 3d conformal field theory must have light scalar operators
and we conjecture that the 3d Ising model maximizes the scaling dimension of the
lightest parity-odd scalar. Under reasonable assumptions, we put strong constraints

on the stress-energy three-point function in this model.
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Chapter 1

INTRODUCTION

Conformal field theories (CFTs) play an important role in modern physics. In
general, physical systems which exhibit some form locality, Poincaré (or Euclidean)
invariance, and scale invariance can be reasonably expected to also enjoy conformal

symmetry.

A large class of examples of this kind of behavior is provided by low-energy (or
long-distance) limit of quantum field theories. To be more precise, if a quantum
field theory (QFT) has no gap in its energy spectrum above the vacuum state then
it can have a non-trivial low-energy scale-invariant fixed point. If the original QFT
is furthermore local and unitary, most often it is the case that its fixed point is also
conformally-invariant, thus being described by a CFT. Among the simplest ones are
the Wilson-Fischer [9] and Banks-Zaks [10] fixed points.

Another class of examples is provided by long-distance behavior of second-order
phase transitions in statistical physics systems, such as the critical point at the end of
liquid-vapor transition line in ordinary water, order-disorder transitions in various
types of magnets, and superfluid transition in “He. In these cases the CFT is most
naturally understood in Euclidean signature and describes statistical correlations in
equilibrium. Quantum criticality, for example in thin-film superconductors, on the
other hand, leads to CFTs which are naturally Lorentzian and describe dynamics in

real time.

In asymptotically safe quantum field theories the high-energy (UV) behavior is also
often described by a CFT, and the original theory can be understood as a relevant
deformation of the UV CFT [11].

Finally, certain (or even all) conformal filed theories are believed to be equivalent
to theories of quantum gravity in Anti-de Sitter (AdS) space via the AdS/CFT
correspondence [12—15]. Namely, a conformal field theory on the d-dimensional
conformal boundary of (d + 1)-dimensional asymptotically AdS space is equivalent
to a UV-complete theory of quantum gravity inside the AdS space. Since conformal
field theory is perfectly mathematically well-defined, AdS/CFT correspondence

provides a rigorous handle on non-perturbative effects in quantum gravity.
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This ubiquity of appearances of conformal field theories in modern physics makes
them extremely interesting objects to study. In the rest of this chapter we first give a
brief introduction into a mathematical description of CFTs and conformal bootstrap,

and then overview the main results of the following chapters.

1.1 Formal conformal field theory

First and foremost, a conformal field theory is a quantum field theory. In this
dissertation we mostly keep in mind those conformal field theories which satisfy
the usual Wightman axioms [16], but of course our results on kinematics, which
depend only on the properties of the conformal group, are valid more generally. In
this section we review some of these axioms and specialize to the case of conformal

symmetry. For a change [17-19], our starting point will be in Lorentzian signature.

We consider a quantum field theory on R"¥~!, with a positive-norm Hilbert space
H of states defined on a spacial slice. Poincaré-invariance means that H is a
unitary representation of the universal cover of Poincaré group. This representation
can be described by anti-hermitian generators P,, and M,;, subject to commutation

relations!

[Pya P,] =0, [M/.tw P,] = nV/lPu - ny/lpv’
[M,uw Mo-p] = nVO'Mﬂp - nuo'Mvp + anMO'/J - n,upMO'v- (11)

Physical momentum operators are given by $,, = i P,,. In particular, the Hamiltonian
is Hpoincare = i P°. We assume that the QFT satisfies energy positivity, which means
that

Hpoincaré = 0. (12)

Together with Poincaré invariance this implies that the spectrum of $# is contained
in forward null cone. We also assume a unique vacuum state |€2) which is invariant

under all symmetries.

A QFT further possesses a set of local operators, denoted by O(x), which transform
naturally under the Poincare group as specified by finite-dimensional representations
of the Lorentz group? Spin(1, d—1). The local operators are assumed to be operator-
valued tempered distributions (in particular, we can take their Fourier transforms)

with a sufficiently large dense domain of definition. Furthermore, the span of states

"'We use mostly plus convention for Lorentz metric.
2To simplify the notation, we often leave the Lorentz indices implicit.



of the form
f dxy - dxn f(x1, .. x)01(x1) - On(X,) Q) (1.3)

is dense in H .3 The axiom of micro-causality requires that for spacelike-separated

points x and y, (x — y)> > 0,

[01(x), 02(y)] = 0. (1.4)

A theorem of Osterwalder-Schrader [20, 21] says that the Wightman functions of
such a QFT, defined as the vacuum expectation values

(Q[O1(x1) + - - On(x2)1€2), (1.5)
can be analytically continued to Euclidean signature to yield correlation functions

(O1(x1) - - Op(xp)), (1.6)

satisfying Euclidean analogues of the above axioms and vice versa. The Euclidean
correlators are reflection-positive, permutation-symmetric and, of course, covariant
under Euclidean isometries.# Due to this theorem there is no real difference between

studying Euclidean and Lorentizian QFTs.

We would like to study conformally-invariant QFTs, by which we mean QFTs
whose Euclidean correlation functions are covariant under finite conformal transfor-
mations. To be more precise, the local operators split into primaries and descendants
(which are spacetime derivatives of primary operators), and the conformal group
acts homogeneously on primary operators (see chapter 2). Recall that for d > 2 the
connected Euclidean conformal group is SO(1,d + 1), and for d = 2 we will restrict

to the global conformal group SO(1, 3).

Invariance of Euclidean correlation functions implies existence of new anti-hermitian
symmetry generators D and K, which correspond to dilatations and special confor-

mal transformations and satisfy the commutation relations
[D, Py] = P,u’ [D, Ky] = _K/b [D, M,uv] =0,
[K/b K,] =0, [K;u Pyl = 277/JVD - 2M/1Va
[M,uV’ Kal= UV/le - 77,u/lKv- (L.7)

3More generally we can imagine states which can be created from the vacuum only by a non-local
operator. In this thesis we mostly study correlation function of local operators, so we will not take
this subtlety into account.

“We are omitting some details; for precise statements see [20, 21].
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In Lorentzian signature this implies conformal invariance of correlation functions
on the Lorentzian cylinder R X §4-1 [22] (besides the obvious invariance under

infinitesimal conformal transformations in Minkowski space R14-1).

Conformal symmetry implies that the asymptotic operator product expansion (OPE)

01(x)05(0) = > co(x)0(0) (1.8)
o

valid for small x actually converges [23] on the vacuum in the form
01001 = Y [ @x fo(x.x10G 1) (19)
o

Together with completeness of the states (1.3) this implies that the full Hilbert space
is densely spanned by single-operator states

fddxf(x)O(x)IQ). (1.10)

It suffices to use primary operators above, and conformal symmetry implies orthog-
onality of such states corresponding to different primary operators. This is known

as operator-state correspondence.

In what follows O(x) denotes primary operators, unless stated otherwise. As noted

above, the two-point functions are diagonal in the sense
(QIOT(x)0'(NIQ) «x 500, (1.11)

and thus the form of the contribution of a primary O to the OPE (1.9) can be

computed from the three-point function®

<Q|0T(y)01(X)02(0)IQ>=fddx'fo(x,X’)<QIOT(y)0(X')IQ>- (1.12)

Since, as we discuss in chapter 2, the two- and three-point functions are fixed by
conformal symmetry up to a finite® number of three-point coefficients (also known
as OPE coeflicients), the function fo(x, x”) can be determined from this equality
in terms of OPE coefficients using only conformal symmetry. This implies that

the knowledge of the quantum numbers of primary operators and of the discrete

>Specifically, by going to momentum space, the convolution in the right hand side becomes
multiplication by the Fourier transform of the two-point function, and Fourier transform of fo is
trivially extracted. (Up to a natural ambiguity which arises due to the fact that O(x")|Q) in (1.9)
contains only positive-frequency modes in x’.)

®For each three-point function.
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set of their OPE coeflicients allows one to compute any Wightman function (or a
Euclidean correlator) by a repeated application of (1.9). For this reason the set of
quantum numbers of primary operators and OPE coeflicients is called “the CFT
data.”

The knowledge of the CFT data thus completely defines the conformal field theory,
at least as far as local correlation functions or the vacuum superselection sector is
concerned. The ultimate goal thus would be to compute this data from the basic

self-consistency conditions which we now discuss.

1.2 The conformal bootstrap
Since the operators at spacelike separations commute, it is possible to compute a
given Wightman function using the OPE in several different ways. For example,

consider a four-point function
Q1O (x1)02(x2)O03(x3)O4(x4)|€2). (1.13)

We can compute this four-point function by first taking O; X O, OPE on the left
vacuum and then O3 X O4 OPE on the right vacuum. A simple way to describe this
is to insert a complete set of states in the middle, and it is convenient to use the

momentum eigenstates

|0(p1)) o f d?xeP*0(x)|Q), (1.14)
normalized as”

OPI0(9)) = 2m)*6%(p - q). (1.15)
We then have

(Q|O01(x1)02(x2)O03(x3)04(x4)|2)

dd
:Zf (Zﬂl;d(Q|01(x1)02(x2)|0(p))(0(p)|03(X3)04(X4)|Q>. (1.16)
o

Since the three-point functions are kinematically determined up to a finite number

of OPE coefficients, the above sum can be rewritten as
(Q|O1(x1)02(x2)03(x3)04(x4)|Q2) = Z f120fo134G1234,0(x1, X2, X3, X4),
o

(1.17)

"This formula is correct for scalar O, for operators with spin see discussion in [24].



6

where G is a kinematically-determined function and f are the OPE coefficients (for
simplicity we assume that there is a single OPE coefficient for each three-point
function). Specifically, we have
d‘p
(2m)d

G1234,0(x1, X2, X3, X4) =f (QO01(x1)02(x2)10(p)){O(P)|03(x3)04(x4)|L2),

(1.18)

where in the right hand side we use some standard three-point functions instead
of physical ones. The function G is usually called the conformal block and the
expansion (1.17) is known as the conformal block expansion. This expansion can

be shown to converge exponentially fast for Euclidean configurations of x; [25].

Now let us assume that all x; are spacelike-separated. In this case, using micro-
causality, we can arbitrarily rearrange the operators in the Wightman function (1.13)

and repeat the same procedure. For example, we can write

(Q|O01(x1)02(x2)03(x3)04(x4)|€2) = (Q|O3(x3)O2(x2)O1(x1)O4(x4)|€2)
= Z f320f0114G32140(x3, X2, X1, X4). (1.19)
0

This leads to a non-trivial consistency condition

Z f120f0134G12340(x1, X2, X3, X4) = Z f320f0114G3214,0(X3, X2, X1, X4).
0 0

(1.20)

This equation is known as four-point crossing equation, or sometimes as the “boot-
strap equation.” It expresses a consequence of associativity of operator product
expansion, and in fact one can show that if all possible four-point crossing equations
are satisfied, then the operator product expansion is associative. In other words, no

new constraints come from higher-point functions.

The “bootstrap” philosophy [26-28] is then to study CFTs by solving the full set of
crossing equations (1.20). In 2-dimensional conformal field theory, where conformal
algebra enhances to infinite-dimensional Virasoro algebra, the notion of a primary
field is stronger and the sum in (1.20) can in rational theories be replaced by a
finite sum over Virasoro primaries. Similarly, the number of crossing equations for
Virasoro primaries becomes finite and an analytic solution is relatively simple [29].
However, little progress has been made for irrational theories in d = 2 or for general
CFTs in d > 2 until the work [30] which showed how highly non-trivial information

can be extracted even from a single crossing equation. For a comprehensive review
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we refer the reader to [18, 31]. Here we only review the subject as much as is useful

for motivating the questions addressed in this thesis.

1.3 Numerical conformal bootstrap
For simplicity, let us consider the crossing equation (1.20) when all operators are

identical real scalars ¢. In this case it reduces to

D 1folPGo(xr, x2,x3,x4) = ) 1 fol’Go(xs, x0, x1,x0). (1.21)
o (0]

Since we are considering a Wightman function of scalars, the conformal blocks G

are scalar functions. From conformal invariance it follows that
1
Go(x1,x2, X3, x4) = ———Go(u, v), (1.22)
¢ ]
X1o X3y
where Ay is the scaling dimension of ¢ while u and v are the conformally-invariant

cross-ratios

2 .2 )

RSP REY! _ Y3Xy (1.23)

Cx2x2, T ox2x2, '
13%24 13%24

The equation (1.21) then becomes
D 1folFow,v) =0, (1.24)
o
Fou,v) = u**Go(u,v) = v 2Go(v,u). (1.25)

In a way, the key idea of [30] is to lower our expectations. Instead of trying to find all
possible solutions of this equation, let us try to prove that it doesn’t have solutions.
Of course, this shouldn’t be possible since it is easy to construct a theory® with
any value of A4 allowed by unitarity. But we can try to impose some restrictions
on what kind of operators O are allowed to appear in ¢ X ¢ OPE and show that
under these assumptions there is no solution, thus proving that these assumptions
are inconsistent. For example, we can try to prove that there must be a non-identity
scalar in ¢ X ¢ OPE by assuming that there are no scalars and showing that then the

equation has no solution.

How can we show that there is no solution? One way to do this is to find a linear

functional « that can act on functions of u and v such that a[Fp] is non-negative for

8Generalized free theory of scalar field.



1.41----

0.52 Ay

Figure 1.1: Schematic form of the allowed region (shaded) for pairs of Ay and the
dimension A of the lightest scalar in ¢ X ¢ OPE in d = 3. The boundary is given
by the plot of Aglzin(Aq;). The kink happens close to the dimensions A, ~ 0.52

and A, = 1.41 of the spin and energy fields in 3d Ising CFT. The current best
bounds on these dimensions (obtained by bootstrap) are Ay = 0.5181489(10) and
Ae = 1.412625(10) [8].

all O allowed by unitarity and positive for O = 1 the unit operator. If we find such

a functional, then we can prove that (1.24) has no solutions by applying « to it,

> IfolPalFol = 0. (1.26)
o

Indeed, since this is a sum of non-negative terms which is equal to zero, all terms
have to be zero. But it is easy to check that f1 # 0 and by assumption a[F|] > 0, so

this is not possible.

As to be expected, it is impossible to find an @ non-negative on all unitarity O
(since by the above argument that would disprove existence of unitary CFTs with
scalar operators), but a non-trivial result is that we can find an @ which is non-
negative on all unitary O except non-identity scalars [30]. This disproves existence
of solutions to (1.24) without non-identity scalar operators and thus proves that

non-trivial scalars must appear in ¢ X ¢ OPE in any unitary CFT.

Before explaining how one can find such linear functionals in practice, let us com-
ment on how unreasonably powerful this general approach turns out to be. One can
try to get more refined information by trying to find @ as above, but also non-negative

on scalars of scaling dimension above some A (here ¢ is just a notation and not



a real operator). In other words,

alF1] >0, a[Fp] >0 all non-scalar O allowed by unitarity,
a[Fpl], all scalar O with Ag > Aj. (1.27)

If such an « exits it then follows that there must exist a scalar in ¢ X ¢ OPE
with dimension below Ag‘zin. We can ask what is the minimal value of Ag‘zi“ for
which such an a can be found. Of course, there is a possibility that A‘;‘z‘“ =
oo, but in practice it turns out that Aglzm is finite [30]. One can then plot the
dependence of Ag‘;“ with respect to Ag in 2 < d < 4 and find a curve which is
smooth everywhere except for a kink at A4 extremely close to scaling dimension of
spin field of d-dimensional Ising CFT and A 5> extremely close to scaling dimension
of energy density field [32, 33] (figure 1.1). It is then a natural conjecture that
Ising CFT saturates this bound precisely at the kink. If this conjecture is correct
(for which we now have overwhelming evidence), this allows us to determine the
scaling dimensions A, and Ay using the above methods. Development of this
idea has led to the most precise determinations of critical exponents of 3d Ising
CFT [8, 34, 35]. What’s more, using the fact that Ising CFT saturates the bound,
it turns out to be possible to determine the entire low-lying spectrum of operators
in ¢ x ¢ OPE and the corresponding |fo|?> from the single (or a few) crossing
equation (1.24) [31, 34, 36]. Other theories can be identified in a similar manner,
such as critical O(N) models [8, 37, 38], Gross-Neveu-Yukawa models [39, 40], and
many others. Furthermore, even without singling out a concrete theory, numerical

bootstrap still yields strong universal bounds on CFT data [7, 41].

The search for « is most efficiently done numerically on a computer. For this, one

first writes u = zz and v = (1 — z)(1 — Z) and looks for @ in the form

(1.28)

alF] = Zan,maz"agF‘ 1
n,m =2=3

where «a,,, are real coefficients. In practice one truncates the search space by
n+m < A for some large A. To check for positivity of a[Fp] one uses the fact
that only traceless-symmetric tensors of even spin can appear in ¢ X ¢ OPE due to
conformal selection rules, and thus we can write «[F, s] where J is even and non-
negative and A > J+d —2 as required by unitarity [24, 42].° It turns out that large-J
and large-A behavior of a[Fy ;] is such that it typically suffices to check positivity

9For J = 0 we have A > %
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for a finite number of spins J and a bounded range of A. In first papers [30, 43—46]

the approach was to discretize A so that we get the inequalities, schematically,
a[Fa 120, J=0...0pax, i=1...N, (1.29)

where A, =J+d -2+ ﬁ'(AmaX —J —d +2). One can also normalize a[Fyp] = 1.
The search for coefficients @, , then becomes a finite-dimensional linear program

which can be solved numerically on a computer for any given value of Ay.

A more modern way [35-37, 47] to ensure positivity of a[Fa ;] is based on the fact

that the conformal block G ; has a meromorphic representationin A [36, 37, 48, 49],
1
-A (c0) (k)
Gaj=hy'+ —h,. 1.30
ol "Gay = hy Ek AA (1.30)

Here p and h are functions of z and 7 but not A. The first important feature of this
representation is that it can be truncated to keep only a finite number of poles in A,
in a quickly convergent manner. The second is that the poles A; x are all below the
unitarity bound A > J + d — 2. This implies that using this approximation we can

write for a[Fjy s] for a given J

a[Fasl=Qs(A) ) anmP}" (A), (1.31)

where Q;(A) is some explicitly positive prefactor and P;’m (A) are polynomials in

A. We thus only need to make sure that

D anmPy" () 2 0 (1.32)

for A in some range, which depends on our assumptions and which for simplicity
we take to be A > Ag > J + d — 2. Itis then a theorem that the positivity holds iff

we have a representation

1

2 annP""(B) = 3 (A) + (A= Ao) ) pi(A) (133)

for some polynomials r; and p;. Using this, one can phrase positivity as a finite-
dimensional semidefinite problem which can be efficiently solved on a computer [35].
The advantage here is that this approach does not require discretization or a cutoff

for A, which is nice conceptually and also simplifies and speeds up the calculations.
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1.4 Overview of the results

1.4.1 Chapters 2 and 3

Part of the goal of this thesis is to develop techniques which allow to extend the
methods of numerical bootstrap above to more general crossing equations (1.20).
Specifically, the most general Wightman function, restoring the Spin(1l,d — 1) in-

dices, has the form
QIO (x1)057 (x2) 057 (x3) O, (x4) 12). (1.34)
Correspondingly, its conformal block decomposition has the form

= 3 ol sa (G ™ an (x1, X2, X3, x4), (1.35)
O ab

where a and b label the independent conformally-invariant tensor structures allowed
for three-point functions (0;0,0) and (O 030;) respectively.

Thus the very first step is to undertand the constraints of conformal invariance
on three-point functions and on four-point functions (equivalently, on the index
structure of the conformal block in (1.35), i.e., find the analog of (1.22)). This is
the subject of chapters 2 and 3.

In the literature these questions have been most often addressed using embedding
space (or essentially equivalent) methods [39, 50-56], which rewrite the correlation
functions in terms of objects on which the conformal group acts linearly. This makes
it easy to write out a few conformally-invariant building blocks and combine them
in all possible ways to write out some tensor structures for physical correlators. A
problem with this approach is that it often overcounts the tensor structures (i.e.,
produces an overcomplete basis), especially in the more physically relevant low
dimensions. For example, for a four-point function of stress-energy tensors in 3d,
which we discuss in chapter 8, these methods produce at least a hundred too many

structures.

In chapter 2 we take a different approach,!® which is based on the idea of “gauge-
fixing” conformal symmetry. Specifically, we use the fact that if a correlator is
known for some standard configuration of operator insertions, conformal symmetry
then determines its values for some other configurations. For 1-, 2-, and 3-point
functions just one standard configuration is enough to completely determine the

correlator. For n-point functions with n > 3 there exist non-trivial conformal

10A similar but less general and systematic analysis have been performed in [23, 51].
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moduli of n points, and we need a continuous family of standard configurations
parametrized by several conformally-invariant cross-ratios. Restricting attention
to standard configurations solves part of the constraints of conformal symmetry.
However, even the values of the correlator in standard configurations have to satisfy

certain invariance conditions.

We classify these invariance conditions and find counting rules for tensor structures
of the most general n-point functions. For example, for n > 2 the tensor structures
for an n-point function of distinct primaries in Spin(1, d — 1) representations p; are

in one-to-one correspondence with the elements of the invariant subspace
(P1® -+ ® py) P2y = min(n, d + 2). (1.36)

Moreover, our analysis actually shows how one can not just count but also construct
these tensor structures. We explain this in detail in the case of d = 3 (which
will be used extensively in chapter 8). In general dimensions we work out the
constraints of permutation symmetries, conservation conditions,!! and establish a
one-to-one correspondence of counting of CFT tensor structures with counting of
tensor structures for massive scattering amplitudes in one dimension higher. We
also study how analyticity of Euclidean correlators is related to analyticity of the
functions of conformal-cross ratios u, v which multiply the conformally-invariant
tensor structures in generalizations of (1.22), a question important for numerical

bootstrap techniques.

In chapter 3 we review some results in the literature related to kinematics of 4d CFTs
and complete them using the analysis of chapter 2. Furthermore, we implement the
resulting techniques in a Mathematica package with a view towards applications

in numerical bootstrap.

1.4.2 Chapter 4

Another important problem in applying numerical conformal bootstrap to operators
with spin is to compute the general conformal blocks, especially in the form (1.30).
There exist many approaches to this problem. The most direct one is to use
Zamolodchikov-type recursion relations [36, 37, 48, 49], but it is problematic be-
cause these recursion relations are not known in general. Another approach is to

solve conformal Casimir equations, satisfied by the conformal blocks, either analyt-

"For counting only.
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ically [57, 58] or in power series [59, 60]. Analytic solution is difficult in general,!?
but in even dimensions can be obtained by combining methods described below and

results of [57]. Power-series solutions are discussed in chapter 5.

Yet another approach is to use conformally-invariant differential operators to relate
more complicated conformal blocks to simpler ones [39, 61, 62]. Specifically, one
considers conformally-invariant differential operators %, and %34 which act on
coordinates and spin indices only of operators 1 and 2 or 3 and 4. It turns out that
one can construct ¢ which act on functions which transform according to one set
of Spin(1, d — 1) irreps, but produce functions which transform according to a new
set. In other words, they change the spin of external operators. One can show that

applying these differential operators to a conformal block

ool
D Danes ((Giazso Dby (X1, X2, X3, x4), (1.37)

) 34,a/§(t

one obtains another conformal block which corresponds to a new set of Spin(1, d—1)
irreps of external operators. To see this, one uses the representation (1.18) for the
conformal block and studies the action of these operators on three-point structures
(Q[O01(x1)02(x2)|0(p)) and (O(p)|O03(x3)O4(x4)1€2), which simply produces new

three-point structures of the same form, but with new representations.

This allows one to write any conformal block in terms of a simplest “seed”” conformal
block which exchanges O with given quantum numbers. For example, if O is
a traceless-symmetric tensor, the seed block is the well-studied scalar conformal
block [36, 37, 57, 63, 64]. However, since a scalar conformal block can only
exchange traceless-symmetric tensors, for other types of O the seed blocks are more

complicated and have to be computed in some other way.

In chapter 4 we greatly generalize these methods by observing that the conformally-
invariant operators %), can be written as contractions of conformally-covariant

differential operators,
D1y = DDy 4, (1.38)

where A is an index in a finite-dimensional irreducible representation (irrep) W of
the conformal group, and operators O); act on coordinates and indices of a single
operator. We then show that these conformally-covariant operators ©); can be

understood as computing the decomposition of tensor product of the Verma module

12Notably, it has been found in sufficient generality in 4d CFTs [58], although the solutions are
perhaps too complicated to be convenient for numerical computations.
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of O; and the finite-dimensional irrep W into irreducible components, which allows
us to give a complete classification of operators 9;. This also clarifies how these
operators should be constructed in general. Since these operators can change the
representation of the primary operator they act on, in what follows we call them

“weight-shifting operators.”

This generalized point of view allows us to observe new properties of these operators
and thus of the conformally-invariant operators. For example, applying a weight-
shifting operator to a three-point function and contracting with a conformal Killing

tensor, we find an object with transformations properties of a four-point function,
(D01 (x1)02(x2)03(x3))wa (x4). (1.39)

Here w is a conformal Killing tensor, and as such satisfies a very constraining
differential equation. In fact, one can show that the space of four-point functions
which satisfy the same equation as (1.39) is finite dimensional. Moreover, we show
that the set of four-point functions of the form (1.39), over all D and O; such that
the resulting four-point function has fixed quantum numbers, form a basis of this

space. But then so do the objects
(O1(x1)(D502)(x2)03(x3))wa(x4), (1.40)

since there was nothing special in operator O;. This implies that there must exist
a linear relation between bases (1.39) and (1.40). These bases can be interpreted
as conformal blocks, and this linear transformation can be interpreted as a finite-

dimensional crossing transformation.

Using this transformation, we show how to compute expressions of the form

’ ’
aj@raiay

70 ((Gigza0  iap) (X1, X2, X3, X4), (1.41)

13,(11(1

in terms of conformal blocks. This would be hard to do without our crossing trans-
formation, since the operator Z;3 acts simultaneously on (Q|O;(x1)O2(x2)|O(p))
and (O (p)|O03(x3)04(x4)|Q) in (1.18). We show that this expression is equal to a
linear combination of conformal blocks exchanging operators in the tensor product
W ® O, i.e., D3 changes the intermediate representation in a well-defined way.
This observation allows us to reduce all seed blocks (and thus all blocks) to scalar

conformal blocks, and even scalar O.

We thus find a relatively simple algorithm which allows one to compute arbitrary

conformal blocks. We explicitly reduce all seed blocks to the scalar case in 3d
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and 4d. Furthermore, our methods interact nicely with the other approaches to
conformal blocks and explain some previously known formulas. For example, if
one can find the scalar conformal block in a given dimension analytically (as is the
case in all even dimensions), our techniques immediately yield analytic expressions
for all conformal blocks. One can also use our techniques to derive Zamolodchikov-
type recursion relations for general conformal blocks, as we illustrate in the case of

fermionic blocks in 3d.

1.4.3 Chapter 5

In chapter 5 we study general conformal blocks from a more computational per-
spective. To facilitate numerical analysis of more general crossing equations, it is
desirable to have a computer program which would be able to efficiently compute
approximations of the form (1.30) for any required conformal block given the set of

data which specifies it. This data is

1. scaling dimensions and Spin(1, d — 1)-irreps of external operators,
2. Spin(1, d — 1)-irrep of the intermediate operator,

3. a pair of three-point tensor structures to use on the left and on the right
of (1.18),

4. technical information on the requested precision of the approximation.

While the methods described in chapter 4 do allow us to compute general conformal
blocks, they still require a non-trivial amount of case-by-case analysis and sym-
bolic calculation with differential operators. The goal of chapter 5 is to study the

possibility of having a more numerically straightforward algorithm.

Our discussion is based on the following observation in the case of scalar blocks.
Writing z = re and 7 = re™?, one can show [59] simply from scaling and Spin(d)
invariance in Euclidean signature that the scalar conformal block in the right hand
side of (1.22) can be written as (recall u = zz and v = (1 — 2)(1 — %))

oo  jotn

d-2
Go(z D) =12 Y 3" Aur"C 7 (cosh), (1.42)

n=0 j=jo—n

where CJ(.V) are the Gegenbauer polynomials and A, ; are some yet undetermined

coeflicients (which are understood to be equal to 0 for j < 0), while Ap and jo
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are the scaling dimension and spin of O. Using the Casimir differential equation
satisfied by conformal blocks [57], one then shows that the coefficients A, ; satisfy

a simple recursion relation
— + . - .
Np,j = Cn—l,j—lAn—L]—l + Cn—l,j+1An—1sJ+1' (1.43)

for some known coeflicients cij. Starting from a normalization condition for A,
this allows one to efficiently compute the coefficients A, ;. In section ?? we discuss
how the series (1.42) can potentially be efficiently translated into approximations of
the form (1.30).

Our approach is then to generalize the representation (1.42) and the recursion re-
lation (1.43) to the case of arbitrary conformal blocks.!> We first explain that a
natural language to discuss the index structure of general conformal blocks is given
by so-called Gelfand-Tsetlin (GT) bases for Spin(d) representations. The elements
of a GT basis are classified by their transformation properties with respect to a chain

of subgroups
Spin(d) 2 Spin(d — 1) 2 Spin(d —2) 2 --- 2 Spin(2). (1.44)

This sequence of subgroups is natural from the point of view of conformal correlation
functions since n > 3 points in Euclidean R¢ are left invariant by a Spin(d + 2 —
n) subgroup of the conformal group. In particular, we show that in general the
Gegenbauer polynomials in (1.42) should be replaced by a matrix element of a
particular rotation in a GT basis. We explain how these matrix elements can be
efficiently computed using the known facts about representation theory in GT bases

and provide lots of examples.

We then explain how the scalar recursion relation (1.43) can be derived from purely
representation-theoretic manipulations, bypassing the Casimir differential equation
(but still using the quadratic Casimir of the conformal group). This allows an almost
straightforward generalization of (1.43) to general conformal blocks. We find that
when the external operators have non-trivial spin, the appropriate generalization of
the coeflicients Cij is expressed in terms of 6 j-symbols of Spin(d — 1). This makes

numerical implementation of the generalized recursion relations straightforward in

13Steps in this direction were also taken in [60], albeit on a case-by-case basis and using more
ad-hoc techniques. (A possible advantage of that work is that they write their recursion relations
for a faster-converging series expansion of [59], although these recursion relations are much more
complicated. It appears to us that it is perhaps easier to solve the recursion relations in our form and
then convert the resulting series to the form of [59, 60].)
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3d, 4d, and in some other cases which we discuss. We test our recursion relations in a
number of examples, finding a perfect agreement with the previously known results.
To demonstrate the power of our method, we explicitly compute the coefficients c:fj

for general blocks in 3d and for fermion blocks in 2n dimensions.

1.4.4 Chapter 6

In chapter 6 we turn our attention to a rather different problem. A natural question
one can ask when attempting an analytic solution of (1.20) is whether given a
four-point function of primary operators one can recover the CFT data which it
contains, i.e., the scaling dimensions and products f12¢ fp+34 0of OPE coeflicients
for all the intermediate operators O. We will call any formula which accomplishes
this an inversion formula. The reason this might be useful is that then one can try
to plug the 7-channel expansion (1.19) into an inversion formula for the s-channel

expansion (1.17) and try to directly constrain the CFT data.

The most straightforward way to invert the s-channel expansion is to expand the
four-point function in the OPE limit 1 — 2 and read off the contributing conformal
blocks. This is possible since the OPE limit expansion is organized according to
scaling dimension of intermediate operators. Another way to invert the expansion
comes from harmonic analysis on the Euclidean conformal group Spin(1, d+1) [65].

One first defines a function c(4, j) as a conformally-invariant Euclidean integral
c(A ) = f d¥xy -+ dx4(01 (x1) - - Oa(x4))Fj (X1, X2, X3, X4). (1.45)

Here fA, j(x1, X2, X3, x4) is the conformal partial wave (CPW), a close cousin of
conformal block G. Unlike G, F is single-valued in Euclidean space and can be
defined by

Fpj(x1,x2, X3, x4) = aGpj(x1, X2, X3, X4) + BGy_p j(x1, X2, X3, X4) (1.46)

for some known constants @ and S, where G is the conformal block with external
dimensions A; replaced by their shadow dimensions d — A;. One then shows that
the function c(4, j) has poles in complex A-plane at scaling dimensions of physical

operators appearing in O; X O, OPE with residues proportional to fi20 fo+34-

Unfortunately, both these inversions methods turn out to be not very helpful for
analytic analysis of crossing equation, since they both probe the s-channel OPE
limit of the four-point function, and in this limit any finite number of terms of ¢-

channel OPE is useless. However, recently a Lorentzian inversion formula for scalar
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four-point functions was derived in [66, 67] which partially solves this problem.

This formula computes the same function c(4, j) and has the form

c(A, j) =kpj f d¥xy - d? %4083, 611[62, $4llG jra-1.a-as1 (X1, X2, X3, X4)

+ (1 & 2), (1.47)

where the integral is now over Minkowski space with some restrictions on causal
relationship between the points and «, ; is some known coefficient given by a product
of I'-functions. The advantage of this formula is that the poles in c(4A, j) come from
the integral probing a lightcone limit of operators 1 and 2. The part of this limit
which is important for large j is also the lightcone limit in 7-channel, and the behavior
of the four-point function in that limit can be approximated by a finite number of
conformal blocks in ¢#-channel, corresponding to the smallest values of “twist” A — j.
This allows to systematize and put on firm ground the analytical approach to solving

the crossing equation known as large-spin perturbation theory [68, 69].

Another interesting feature of (1.47) is that it is manifestly analytic in spin j.!# This
implies that the CFT data computed by (1.47)—the scaling dimensions of local
operators and the products of OPE coeflicients—can be analytically continued in
spin.!> This implies that the local operators of different spins organize into families

connected by this analytic continuation.

In chapter 6 we generalize the Lorentzian inversion formula (1.47) in two important
directions: to operators of arbitrary spin and to operator level. In other words, we

show that one can define the operators

Op,j(x,2) = f d?x1d? xyKa j(x1, X2, X, 2) 01 (x1)02(x2), (1.48)

where z is a null polarization vector, K ; is a kernel well-defined for complex j, and
as usual we suppress the Lorentz indices of local operators. The matrix elements of
Qa,j are then computed by an appropriate generalization of the scalar formula (1.47)
and for integer j the residues of Oy ; in A are related to the local operators of the
theory. More generally, we argue that for any complex j the poles of O ; come
from the region of integration where O; and O, are confined to the light ray defined

14“The conformal partial wave I*:A, ;j can also be analytically continued in spin, but it is not single-
valued in the region of integration in (1.45) for non-integer j.

5This is true for the lowest dimension operators of every spin, but for higher-dimensional
operators one can imagine that c(A, j) has cuts instead of poles at non-integral j. This question
requires further investigation.
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by z and thus the residues of these poles are non-local light-ray operators. For
example, in the theory of generalized free scalar fields we show that residues of Q4 ;

are proportional to

;fdsduqs]((s+u)z)¢2((s—u)z)u—f—1 (1.49)
L'(-j)

when O, ; is inserted at past null infinity. For non-negative integer j this localizes!6

to u = 0 and becomes a null integral of a local operator.

The key to these generalizations is to notice that the conformal block appearing
in (1.47) has scaling dimension j + d — 1 and spin A — d + 1, i.e., the roles of spin
and scaling dimension are exchanged. From mathematical point of view, this is a
particular affine Weyl reflection of a weight of the conformal group. It turns out
that this Weyl reflection is not related to harmonic analysis on Euclidean conformal
group Spin(1l,d + 1) but instead to harmonic analysis on Lorentzian conformal
group §(3(2, d). It is an element of the so-called restricted Weyl group which is
isomorphic to order-8 dihedral group. In harmonic analysis the restricted affine Weyl
reflections are implemented by so-called Knapp-Stein intertwining operators [70,
71]. One can translate these intertwining operators to the CFT language, where they
become conformally-invariant integral transforms which one can apply to primary
operators. By studying properties of these integral transforms we simplify the
derivation [66, 67] of (1.47) to the point where the generalizations discussed above
become straightforward. We furthermore manage to rewrite the generalization
of (1.47) in terms of natural objects so that the analogue of the non-trivial coefficient

K, gets replaced by (2ri )~!, thus giving an elegant formulation of the general result.

We also obtain other results which naturally follow from the above discussion. First,
we give a generalization of some of the formulas used in conformal Regge theory in
terms of the new integral transforms, arguing that the light-ray operators discussed
above dominate, in an appropriate sense, the Regge limit of a time-ordered four-point
function. Finally, we prove a novel continuous-spin version of (a higher-spin version
of) averaged null-energy condition [72, 73] for CFTs which contain a sufficiently
light scalar operator.

1.4.5 Chapter 7
In chapter 7 we study some truncations of the scalar crossing equation (1.21) and
related equations. The goal here is to clarify some general questions about conver-

gence rate and dominant contributions to the Euclidean OPE expansion.

16There is an appropriate ie-prescription which we have omitted for simplicity.
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The first simplification that we make is to consider (1.21) only for vu + v = 1,
which is the same as z = 7 = x. We furthermore replace conformal blocks by their
large scaling dimension limit. In the case of identical external scalars this leads to

the following representation for the four-point function G(x)!7>18
G(x) = f dA px e g(A)dA, (1.50)
0

where p = and for convenience we have replaced a discrete sum by an

—4x
(14+V1-x)2
integral over an “OPE density.” We then study the derivatives of the crossing

equation at x = %, which gives

G| =0,  k=01,2.... (1.51)

=

xX=

For large A and Ay, derivatives with k < VA simplify as

9, P20 2k+1
2k+1 A —2A4 [ Ox A —2A
0 ptxT e —( Iy ) poxTe, (1.52)

Using this simplification we show, for example, that for x > % the four-point
function (1.50) is dominated by states with

20,

1-—x

A<A, = , (1.53)

7

and furthermore bound the contribution of states above this threshold as

1 2
G(x) 1+ Tor+1 (%)’

f dA pPx e g(A)dA < (A=A (1.54)
A

where T is the Chebyshev polynomial, and k£ <« \/Z¢. We interpret this in terms
of an approximate reflection symmetry which the crossing equations imply for the

integrand of (1.50): it must be approximately reflection-symmetric around A, /2.

We repeat the same kind of analysis for several other crossing equations: for the
modular invariance equation of 2d partition function, for “scaling block™ version of
four-point function, and for the four-point function in large dimension limit. We
also derive a version of Cardy formula for these equations, which in the partition

function case is equivalent to that of [74].

17We use notation G(x) for the four-point function, which conflicts with our previous notation
for the conformal block to match the notation of chapter 7. We hope this does not cause confusion.
18There is another technical approximation which goes into this. It is explained in chapter 7.
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Finally, we consider the scaling block version of four-point function for finite scaling
dimensions. This version is obtained from (1.50) by replacing p — x and can be
interpreted as an exact truncation of the crossing equations. For it we derive an

analytic upper bound on

1
G(3)

f dA x2722 g (A)dA, (1.55)
A

where (s) superscript distinguishes the OPE density in this case from the OPE
density in (1.50). Our bound shows that this quantity decays exponentially at large A,

improving the bounds of [25] in two aspects. First, it is asymptotically stronger by a
1

factor of A”2 and second, it is valid for finite A (i.e., it is not asymptotic as in [25]).

1.4.6 Chapter 8

In chapter 8 we perform numerical bootstrap analysis of a particularly important
four-point function—that of the stress-energy tensor. Importance of this four-point
function comes from its universality, since stress-energy tensor is present in any
local conformal field theory. We work in 3d and assume conservation of space

parity (although some results are valid also in parity-violating theories).

Analysis of this four-point function is complicated by the fact that the stress-energy

tensor is a conserved operator, i.e., we have
9,T" =0 (1.56)

as an operator equation. This leads to differential equations on its four-point function.
Specifically, the Euclidean correlator can be written in the form

97
(TTTT) = ) Q' (x1, x2, X3, x4)81(2 2, (157)
I=1
where the conformally-invariant tensor structures Q; carry all the spin indices and
are constructed in chapter 2. Conservation equation (1.56) then leads to a system of
first-order differential equations
97 _
(A0 + Ao+ Cigi(D =0, J=1....,188. (1.58)
I=1
There exist relations between these equations, which can be analyzed using methods
of [75] and chapter 2. The analysis shows that these equations determine all 97

functions g; in terms of 5 arbitrary functions and a set of boundary conditions. We
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carefully examine these equations and determine a complete and independent set of
Taylor coefficients of functions g; near z =7 = % Since the conservation equations

are crossing symmetric, it suffices to impose crossing symmetry only on this set.

Another challenge is the computation of the conformal blocks. For this we use the
methods described in chapter 4, although since all bosonic representations in 3d are
traceless-symmetric tensors the old results of [61] already suffice. Due to a large
number of tensor structures it turns out to be crucial to adapt these methods to work

with the construction of tensor structures in chapter 2.

After setting up the numerics, we first study lower bounds on the central charge Cr,

defined as the coefficient of two-point function of stress-energy tensor
(TT) o< Cr, (1.59)
as the function of the coeflicients nr and np of the three-point function
(TTT) = ng{TTT)p + np{TTT)F. (1.60)

Here (TTT)p and (TTT)F are the three-point functions in the theories of a single
free real scalar and a single free Majorana fermion respectively.!® We find that the
lower bound is of order 1 for non-negative np and np, but diverges if any of the
parameters is less than 0. In this way we recover the celebrated Hofman-Maldacena
bounds [76]

ng,ng > 0. (1.61)

This represents a nice complement to the recent proof using analytic bootstrap
methods [73, 77].

We also study the lower bound on Cr under additional assumptions about the
spectrum. In particular, by imposing a lower bound on the scaling dimension of the
lightest parity-odd scalar we find both upper and lower bounds on Cr, which force
Cr ~ 1 and imply a small nr/np ratio. We expect that 3d Ising CFT is consistent
with the assumption imposed on the light spectrum, which allows us to estimate np
and np in this theory by comparing our bounds with the known value of Cr. We
find 0.01 < nr < 0.02.

We also study bounds on Cr assuming dimension gaps in other sectors, finding
universal upper bounds on dimensions of lightest operators in these sectors. See

section 8.4 for a complete summary.

9Dye to the Ward identity Cr = ng + np our parameter is actually tan 8 = nr/np.
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Chapter 2

COUNTING CONFORMAL CORRELATORS

This chapter is essentially identical to:

P. Kravchuk and D. Simmons-Duffin, Counting Conformal Correlators, JHEP 02
(2018) 096, [1612.08987].

2.1 Introduction

To apply conformal bootstrap techniques [26, 27, 30] to operators with spin, one
must first understand the space of conformally-invariant tensor structures. This
problem has been addressed previously for various types of operators in various
dimensions [39, 50-56, 78, 79]. However, no completely general construction or

classification of tensor structures currently exists in the literature.

The approaches [39, 53-56, 79] follow the strategy of defining basic conformally-
invariant building blocks, and then multiplying them in all possible ways. While
this strategy makes it easy to build conformally-invariant structures, it is not always
convenient for bootstrap applications. This is because the building blocks satisfy
nontrivial algebraic relations, which give rise to redundancies between structures
built from them. As an example, of 201 possible parity-even combinations of the
building blocks of [53] for the four-point function of identical spin-2 operators,
only 97 are linearly independent in 3 dimensions. It is possible in principle to
find relations between the 201 structures, and then choose a “‘standard” basis of 97
independent structures. However, this task is technically complicated and one may

wonder if this step can be omitted completely.

In this chapter we discuss a different approach, which extends the formalism of [51,
78] to n-point functions. Based on the simple idea of “gauge-fixing” the conformal
symmetry, our approach makes it possible to avoid the problem of algebraic relations
completely in many cases. Furthermore, it applies uniformly to any operators in
arbitrary representations of SO(d), being essentially equivalent to invariant theory

of orthogonal groups.

The basic idea is simple. Consider a three-point function (O} (x1)05?(x2)05’ (x3)),
where the operators O; transform in representations p; of the rotation group SO(d),

and a; are indices for those representations. Using conformal transformations,


http://dx.doi.org/10.1007/JHEP02(2018)096
http://dx.doi.org/10.1007/JHEP02(2018)096
https://arxiv.org/abs/1612.08987
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we can place the operators in a standard configuration, say (Of‘ (0)0;2(6)0;13 (00)),
where e is a unit vector. The correlator must then be invariant under the “little group”
for this configuration, which is the group SO(d — 1) of rotations that preserve the
line through 0, e, co. Such invariants are given by
50(d-1)
ResS0@)

SO(d-1) Pi ’
i=1

2.1)

where Resg denotes restriction from a representation of G to a representation of
H C G, and (p)" represents the H-invariant subspace of p (i.e., the singlet sub-

representations).

We generalize this argument in several directions: to arbitrary n-point functions, to
incorporate permutation symmetries between identical operators, and most nontriv-
ially to deal with conserved operators like currents J# and the stress-tensor 7#¥. For
three-point functions involving conserved operators, the conservation conditions
become linear relations between tensor structures. However, for general n-point
functions, conservation constraints become differential equations which are quite
complicated to analyze [75]. The conclusion of [75] is that such correlators can
be parametrized by a smaller number of functions of the conformal invariants of
n points. For example, a parity-even four-point function of stress-tensors in 3d is
parameterized by 5 scalar functions of conformal cross-ratios. We find a simple

group-theoretic rule for counting these functions.

Besides simplicity, there are several motivations for characterizing the space of ten-
sor structures in representation-theoretic language. Firstly, it is an obvious first step
towards finding a general representation-theoretic formula for conformal blocks in
d > 2 dimensions. Many examples of conformal blocks (not to mention supercon-
formal blocks) have been computed using a variety of techniques [36, 37, 49, 54, 56—
61, 63, 64, 80—82], but no one technique has yet proved completely general and effi-
cient. Secondly, similar language might be helpful in classifying superconformally-

invariant tensor structures, about which much less is known.

Importantly for numerical applications, our approach allows us to construct the
tensor structures explicitly. We work out the tensor structures of non-conserved

operators in 3d as an example.

It is well known [53, 56, 76] that the number of conformally-invariant tensor struc-

tures for a correlator in d-dimensions is equal to the number of Lorentz and gauge
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invariant tensor structures for a flat space scattering amplitude in d + 1-dimensions.
We demonstrate this relation by interpreting our group-theoretic counting rules in

the S-matrix context.

2.2 Conformal correlators of long multiplets
In this section we describe in detail the construction and counting of tensor structures
for correlators of long conformal mulptiplets (local operators not constrained by

differential equations).

2.2.1 Conformal invariance
Consider a Euclidean CFT; on R?.! A conformally-invariant correlation function

of n primary operators Ol.“i (x;) in representations p; of SO(d) can be expressed as

N
(011 (x1) ... O (x) = Y Q" (xi)g (w, (2.2)
I=1

where g’ are scalar functions of the conformal invariants u of n points, and the
possible tensor structures Q?“”a" are constrained by conformal invariance. When
some of the operators O; are identical, these structures are further constrained by
symmetry with respect to permutations. When one or more of the operators is a

conserved current, the correlator also satisfies nontrivial differential equations.

Let SOo(d + 1, 1) be the identity component of the conformal group. Conformal

transformations U € SOp(d + 1, 1) act on primary operators as

UO“(x)U™" = Q(x")* p*,(R(x")"H O (x), (2.3)

where P
Q)R (x) = 2, (2.4)

ox”

with Q(x) > 0 and R(x) € SO(d). This leads to the following transformation of

the correlator

(01" (x) ... 03" (x) = || [ 6 n RGH™H (O] (x)) ... O (7).
i=1
(2.5)

! Actually, we work on the conformal compactification S¢ of R, which means we can place op-
erators at infinity. We will sometimes use the non-standard definition O(co) = limy _, L*0(Le),
with e a fixed unit vector. The advantage of this definition is that we don’t apply an inversion to
0, so O is treated more symmetrically with other operators in the correlator. The disadvantage is
that the definition depends on e, so it breaks some rotational symmetries. However, in most of our
computations these symmetries will already be broken by other operators in the correlator.
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When some of the operators are fermionic, a small clarification is required. By
construction, R(x) is an element of SO(d). However, it is the double cover Spin(d)
of SO(d) that acts on a fermionic representation. One therefore must lift R(x) €
SO(d) to some R(x) € Spin(d). A natural point of view is to assign R(x) to an
element r of the double cover Spin(d + 1, 1) of the conformal group SOy(d + 1, 1):
first we assign R(x) = id to the identity of Spin(d + 1,1) and then define R on
the rest of Spin(d + 1, 1) by continuity. This is consistent because Spin(d + 1, 1)
is simply-connected. The invariance of correlation functions under the center of
Spin(d + 1, 1) is then simply the selection rule that the correlation function has to

contain an even number of fermions.

To faciliate group-theoretic arguments, we write

gl (xy, .. xy) = <O§ll(x1) N (x")>’ (2.6)

and define the action of the conformal group on g as follows. Letr € Spin(d +1, 1)

be a conformal transformation. It uniquely defines elements
R, (x") € Spin(d), Q. (x") >0, (2.7)

as described above. We define the action of r on g by

n
(r@) = (xiv o x) = [ [ Q)™ 05, (R (xi))g” 2 (7 ey, ™ ).
i=1

(2.8)
With this definition, conformal invariane of the correlator is simply the statement
that

rg =g. (2.9)

We will often parametrize operators by polarizations, O(s, x) = s,0%(x). In this

case g becomes a function of s; as well as x;, and the above action becomes

(re)(sinxi) = | | Q)™ g (R (x) ™ s ), (2.10)
i=1
where for simplicity of notation we implicitly assume that s; transforms in the dual

representation p.’.

In a parity-preserving theory the above analysis should be extended to include
reflections in O(d). When fermions are present, one must specify a double cover

Pin(d) of O(d) which will act on the spinor representations. In the following
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discussion this choice will be encapsulated in the representation theory of Pin(d),
and we therefore simply assume that a choice has been made which consistently
defines an action of the disconnected conformal group on the correlators. In the
following we will often refer to SO(-) or O(-) groups when we really mean their
double covers if fermionic operators are involved. We hope that this will not cause

confusion.

2.2.2 Conformal frame

Consider a four-point function of scalars,

g(x1,x2,x3, x4) = (O1(x1)02(x2)O03(x3)Os(x4)) . (2.11)

It is well-known that g(x;) only depends on two variables, the cross-ratios u and v,

2 .2 2 .2
X12X34 X14%23
U= . v= : (2.12)
x2 x2 x2 x2
13%24 13%24

where x;; = x; — x;. The usual way to see this is to “fix” the conformal symmetry:
choose a 2d half-plane @, a vector e € da, and use conformal symmetry to set
x1 =0, x3 = e, and x4 = co. The remaining symmetry is just the SO(d — 1) of
rotations that fix e. Using these, we can put x; in @. Let us call the set of such

configurations (when xp, x3 and x4 are fixed and x, € a) a conformal frame.

Since any configuration can be mapped by a conformal transformation to a conformal
frame configuration, it’s clear that the full correlator g is uniquely fixed by its
restriction go to conformal frame configurations. These are parametrized by two

coordinates for the point x; in @, which we can choose to be u and v.

With the coordinates x; brought to a conformal frame configuration y;, go must still
be invariant under the “little group.” More precisely, let St(y) € SOo(d + 1,1) be
the group of conformal transformations that stabilize the y;. Conformal invariance

requires that for any & € St(y),

go(yi) = (hgo) (yi)- (2.13)

For scalars this is automatic, since St(y) is always a rotation group, and scalars
are invariant under rotations. (For y in the interior of conformal frame, St(y) is
the SO(d — 2) of rotations orthogonal to @, and for y on the boundary Sz(y) is the
SO(d — 1) that fixes e.) Assuming that (2.13) holds, we can consistently define the
full correlator g starting from go by writing

g(xi) = (rx80)(xi), (2.14)
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where r, is any conformal transformation such that y; = r;lxi is in the conformal
frame. The definition (2.14) doesn’t depend on the choice of r, for the usual reason:
any other r’, satisfies r;, = ryh for some h € St(y), and this gives rise to the same
g(x;) because of (2.13).

This approach clearly generalizes to n-point functions of operators in arbitrary
SO(d) representations — the only new ingredient is that the invariance (2.13) under
the stabilizer subgroup S?(y) is now a non-trivial constraint. Quite generally, the
configuration space of n points on the sphere splits into orbits under the action of
the connected conformal group; we define the conformal frame to be a submanifold
of the configuration space which intersects each orbit at precisely one point. Then

all of the above works verbatim.

This is perhaps most striking for four-point functions in 3 dimensions. In this case,
the stabilizer subgroup is generically the trivial SO(3 —2) = SO(1)! So spinning
four-point functions in 3d are almost no different from scalar ones. We return to this

point in section 2.4.3.

Note that the above discussion showed that St(y)-invariance of g¢ is sufficient for
g to be well-defined, but not necessarily smooth. If we require g to be smooth,
we must impose more refined conditions for gy on the boundaries of the conformal
frame. We discuss this point in appendix A.1. As we discuss in section 2.4.4, these

conditions are important for formulating the bootstrap equations.

2.2.3 n-point functions
Consider the general case of n > 3 points. For convenience, we define m =
min(n, d + 2). To specify a conformal frame, we choose a flag of half-subspaces?

a;, i =2,...m— 2, such that

dima; =1,
oa; = aj_1, 1 > 2,

0aj) = Re, (2.15)

and «; is the linear subspace spanned by «;. We first put operators 1,2, 3 at 0, e, oo,
as before. We then use the remaining SO (d —i + 3) to bring the i-th operator to lie in
i, fori =4,...,m. If n > m, we have already used all the conformal symmetry

2If m = d + 2, then a4 should be the full linear subspace instead of a half-space. This is because
when we fix the position of the last operator, we can only use SO(d + 3 — m), which is trivial in this
case.
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to fix the positions of the first m operators, and the remaining n — m operators can

be anywhere.

After this is done, a generic conformal frame configuration has stabilizer subgroup
SO(d + 2 — m). It follows that the conformally-invariant tensor structures are given
by

SO(d+2-m)
) (2.16)

n
SO(d) ,
(ReSSO(d+2m) ® Pi
i=1

Again, Resg denotes the restriction of a representation of G to a representation of
H C G, and p; are the SO(d) representations of the O;, and (p)” denotes the
H-singlets in p.

This counting rule is consistent with the result of [56]. For simplicity, consider
three-point functions. In [56], they show that the number of three-point structures
for general tensor operators is the same as the number of traceless-symmetric tensors
(TSTs) of SO(d) in

X)-

Pi- (2.17)
i=1

This is equivalent to (2.16) because the only SO (d) representations that give singlets
after restriction to SO(d — 1) are TSTs, and each TST gives exactly one singlet.

We can also count the dimension of the conformal moduli space Mn =M,/S0(d+
1, 1) of n points, where M,, is the configuration space of n points on the sphere. By

counting the unconstrained coordinates of the operators in conformal frame we get,

m-2
dim M, = Zdimai+d(n—m) - W+d(n—m). (2.18)
=2

This is of course also equal to
dim M,, = dim M,, — dim SO(d + 1, 1) + dim SO(d + 2 — m). (2.19)

Examples. Let us work out some simple examples of (2.16) in 3d. Let £ denote
the spin-¢ representation of SO(d), and (s) denote the charge-s representation of

SO(2) = U(1). For the trivial representation of the trivial group, we write e.

3Because Resg is a functor, we can restrict the representations before taking their tensor products.
This sometimes simplifies calculations.
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Consider an n-point function of non-identical vectors in 3d. When n = 3, the

structures are given by SO(2)-singlets in

(Resggggl)®3 - (he e )~

=B)e32)e6(l)e70)d6(-1)83(-2)® (-3). (2.20)

In particular, there are 7 structures.

Let us emphasize that, despite the title of this chapter, (2.16) actually gives the space
of structures, not just the number. For example, consider a three-point function of
vectors J;(s;, x;) = sf‘ Jiu(x;), where sf‘ are polarization vectors. Restricting to the
conformal frame configuration (Jj(s1,0)J2(s2, €1)J3(s3,0)), we can write seven

invariants under the SO(2) of rotations in the 2-3 plane:

1,11 1 b 1 b 1 b
$18583, S| 0apS5S3, S5 05581,  S30apS|8,
1 b 1 b 1 b

S| €abS5 53, Sy €abS587, 83 €apSTSs, 2.21)

where 6,5 and €., are the two-dimensional metric and epsilon symbol.

The correlator is then given by (2.14). Alternatively, we can map the structures

(2.21) to the embedding-space structures of [53] using the dictionary#

tJ

1
i
b
Sapsis; = Hij + ViV,
b

€abS?s

The resulting expressions will automatically be free of redundancies.
When n > 4, the stabilizer SO(5 — m) is trivial, and
(Resf?D1)™" = (30)°" = 3", (2.23)

so we have 3" structures. In embedding space structures for n > 5, this corresponds
to the fact that there are 3 linearly-independent V structures for each operator, and
all H structures are redundant. For n = 4, we have two V structures per point and
the H structures are replaced by e€(Z;, Py, P2, P3, P4) in the notation of [53].

“Here, we use the nonstandard definition of an operator at infinity described in footnote 1.



31
2.24 Parity

If one wishes to distinguish parity-even and parity-odd structures, one has to note
that the stabilizer group is actually O(d + 2 — m) (for n > 3). There are two cases

now,n<d+2andn >d + 2.

In the former case, n < d+2, the stabilizer subgroup contains a parity transformation.
Therefore, parity of the correlator can be naturally defined on the conformal frame
— parity-even structures are scalars under O(d + 2 — m) and parity-odd structures
are pseudo-scalars. Another way to state this is that reflection fixes the conformal
frame and thus all the conformal invariants u of n points are parity even, and parity

is a property of the tensor structure.

In the latter case, n > d + 2, the stabilizer subgroup is trivial. Looking at the
construction of the conformal frame, we see that parity actually acts within the
conformal frame.> This means that there exist parity-odd conformal invariants u
of n points, and it is actually quite easy to construct one. In the embedding-space

formalism of [53] it can be written as

€(P1 - Pyy2)
VP12P23 -+ - Pay1a2Paia

(2.24)

Note that the condition n > d + 2 enters this construction naturally. Using this

invariant, all the tensor structures can be chosen to be parity-even. Parity of the

correlator is then the property of the coefficient functions g’.6

Examples. Let us apply the above discussion to n-point functions of parity-even
vectors in 3d. We denote the parity-even/odd spin-¢ representations of O(3) by £*.
The spin-¢ representations of O(2) are denoted ¢ and the scalars/pseudoscalars are

denoted 0*.7-8 Finally, the parity-even/odd representations of O(1) are denoted o=.

5This is consistent with our definition of conformal frame, since that definition used only the
connected component of the conformal group.

®If in the definition of conformal frame we used the full conformal group, then parity would not
act on the conformal frame, but it also would not be a part of the stabilizer. Rather, r, would contain
the parity transformation for some x;, and in that case the parity of the correlator would be supplied
as extra information in the definition (2.14).

"Though we sometimes use the same notation for representations of different groups (for example
scalars/pseudoscalars of O(2) and O(3)), we hope that the relevant group will be clear from context.

8Note that spin-¢ representations of O(2) do not come in distinct parity-even and parity-odd
versions. This is because €,, gives an isomorphism between the parity-even vector and the parity-
odd vector in 2d. For spin-£ representations, we can act with €,, on one of the vector indices to get a
parity-changing isomorphism. The only exception is the scalar representation, which comes in two
versions 0F, differing by a sign under reflections. Because of the € isomorphism, we have 0*® £ = ¢£.
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For three-point functions, we have

®3 3
(Reso1*) = (100°)” =3032061040" ©30", (2.25)

so 4 of the 7 structures are parity-even and 3 are parity-odd, which is consistent with

the explicit expressions (2.21). For four-point functions, we have

®4 4
(Resggif) = (2 o @ o_)® =4le* @407, (2.26)

so 41 of the 81 structures are parity-even, and 40 are parity-odd. For n > 5, parity-
odd cross-ratios exist and all structures can be chosen to be parity even. This is

easily seen to be in accordance with the discussion after (2.23).

2.2.5 Permutation symmetry
In this section we consider the constraints of permutation symmetries from the point
of view of the conformal frame. Derivations of some technical results of this section

are collected in appendix A.2.

Correlators involving identical operators are (anti-)symmetric under permutations

of those operators.® We can define the action of permutations on the correlator g by

(rg) (X1, .oy Xp) = 8OO (X, L X)), (2.27)

with a — sign for an odd permutation of fermions. In terms of polarizations,
() (s, xi) = 28 (Sr(i)s Xn(i))- (2.28)
Invariance under a permutation 7 is simply the statement that
ng=g. (2.29)

Of course, in order to impose this consistently with conformal invariance, the

quantum numbers of the exchanged operators should be equal.

Applying a permutation 7 to a conformal-frame configuration p = {x;} yields a
new configuration p which is generically not in the conformal frame. To compare
the value of the correlator at 7p with the value at p, one must find a conformal
transformation that brings 7p back to the conformal frame. More precisely, choose

for every 7 a conformal transformation r, such that the configuration x; = r 1xﬂ(,-)

°In principle it might be interesting to consider also permutations which exchange non-identical
operators, in order to switch between conformal frames differing only by the ordering of operators.
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belongs to conformal frame (in general r, can depend on x;). Then invariance (2.9)

and (2.29) of the correlator requires
rxmg = §&. (2.30)

By construction both the left hand side and right hand side depend only the values
of g on the conformal frame and thus this requirement can be phrased in terms of

80-

Depending on whether x; = x;, this either restricts the number of tensor structures
allowed for go by constraining its value at a single point of the conformal frame, or
simply relates values of g¢ at different points in the conformal frame. An example
of the latter case is the crossing-symmetry equation for four-point functions. In the
former case we say that the permutation is “kinematic”. The permutations which

satisfy x; = x; (and thus preserve the cross-ratios u) form a subgroup Sl,f“ C S,.

For n < 3 the conformal frame consists of a single point, so permutations simply
give linear relations between tensor structures and we have SX" = S,. For four-
point functions, S}fin is the group of permutations that preserve u# and v. This is
S}fn = Z% = {e, (12)(34), (13)(24), (14)(23)} in cycle notation. For higher-point
functions, SXI" is trivial because no nontrivial permutation preserves all the cross-

ratios.

Let us be more explicit and assume that the correlator is invariant under a subgroup

IT C S,,. In terms of polarizations we have for any n € I1, using (2.8) and (2.27),

(ramg) (s ;) = () (Rry (x) ™ siy v ) [ [ 2 () = g x)) | [ 2 xa),
] i=1

n
i=1 1=
(2.31)

where
si = Ry, (Xn(i) ™ Sy (2.32)

and the scaling factor with s is trivial if the scaling dimensions are invariant under
m, which we assume. Suppose that the permutation is kinematic, 7 € 1", then the

invariance condition becomes

80(si, x;) = go(s}, xi), (2.33)

and basically constrains the value of go(-, x;) € ®i pi. Therefore, we see that there
is an action of ITX" on @i pi which both permutes and twists the tensor factors.

The tensor structures should be invariants of this action.
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Since only Sé‘in and S}fin are non-trivial, it is easy to consider the permutations on
a case by case basis. We do this in appendix A.2. In particular we describe there
all r, and the induced R, , which are required for practical calculations with tensor
structures. For example, we use these results in our account of 3d tensor structures

in section 2.4.

In the remainder of this section we derive group-theoretic rules for counting the

permutation-symmetric tensor structures.

2.2.5.1 Three-point structures

In the case of three-point structures with non-trivial permutation symmetry we can
have either IT¥" = §, or 1" = §5.

Let us start with IT¥" = S,, where we have two identical operators O; = O,. Instead
of going to the usual conformal frame, it is convenient to choose the configuration
(O1(—e)03(0)O0; (e)), where e is a unit vector. This gives a function g(s;, e). By
analogy with the usual conformal frame, it is sufficient to ensure that g(s;, e) is

covariant under SO(d) rotations (where we allow e to rotate as well as the s;).

Before taking permutation symmetry into account, the tensor structures are in one-
to-one correspondence with traceless symmetric tensors in p; @ py ® p3. (As we
explained in section 2.2.3, this is equivalent to the space of singlets in 2.16.) Each
such tensor of spin ¢ can be contracted with e, ... e, to give the corresponding .

Now, permutation symmetry demands

3(s1, 52, 53, €) = (52, 51, 83, —€) = =(=1){ 3 (52, 51, 53, €), (2.34)

where the + sign is determined by the statistics of the operators O; = O,, and the last
equality is valid if § comes from a spin-¢ traceless-symmetric tensor in p; ® p2 ® p3.
We find

Proposition 1 (S;). S>-symmetric tensor structures are in one-to-one correspon-
dence with even-spin traceless symmetric tensors in §2p1 ® p3 plus odd-spin
traceless-symmetric tensors in A p1®p3. Here, S2 denotes the symmetric square for
bosonic arguments and exterior square for fermionic arguments, and A% is defined

analogously.

Now consider the case of $3 symmetry with 3 identical operators. The full symmetry
group is generated by permutations (12) and (123). We have already discussed



35

(12). We can generate the cyclic permutation (123) by exponentiating the action of
(P* + K")e,. This moves the operators along the line spanned by e but does not

rotate their polarizations, giving the condition

8(s1, 52, 53,€) = g(s3,51,52,€). (2.35)

Together, (2.34) and (2.35) give the trivial representation of S3 when ¢ is even and

the sign representation when ¢ is odd. This leads to

Proposition 2 ($3). S3-symmetric tensor structures are in one-to-one correspon-
dence with even-spin traceless symmetric tensors in S p; plus odd-spin traceless-

symmetric tensors in A3 ;.10

In both propositions 1 and 2, the parity of the structure is determined by the intrinsic

parity of the traceless symmetric representations.

2.2.5.2 Four-point structures

Let us now count four-point structures. Recall that in the absence of permutation

symmetries, the space of tensor structures is

4 0(d-2)

Resggg)_z) Pi . (2.36)

i=1
The most natural generalization to symmetric correlators would be to symmetrize
the tensor product by the kinematic symmetries of the correlator, including factors
of (—1) for odd permutations of fermions. It turns out that this is almost correct,
except that one does not need the (—1)’s. This is due to the fact that the conformal
transformation that compares the permuted and unpermuted correlator also gives a

(—1) for an exchange of fermions. The general statement is

Proposition 3 (Z, and 72 5)- The space of tensor structures for four-point functions

with permutation symmetry TIKim s

[pkin) 0(d=2)

0@
eSod2) ®pl : (2.37)

10The distinction between § and S has disappeared because all three operators are necessarily
bosonic.
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where TTM™ acts by a simple permutation on the tensor factors, regardless of the
fermion/boson nature of the operators, and the parentheses mean taking the invariant

subspace.!!

We prove proposition 3 in appendix A.2.2.2. There are two non-trivial options for
1kin: 7, and Z%. In the former case we simply need to compute the symmetric
square of a representation. Indeed, without loss of generality assume that the non-

trivial permutation is (13)(24), and so p; = p3 and py = p4. It is easy to see that

s \2
) pi| =S*(p1©p2). (2.38)
i=1

The latter case is a bit more involved. First, all the representations have to be
identical, p; = p2» = p3 = ps = p. The relevant formula is then, as we show in

appendix A.3,
ZZ

4 2
X)pi| =p'e3(rpes)), (2.39)
i=1
where © represents the formal difference!? in the character ring.

Examples. As examples, consider n-point correlators of identical parity-even vec-

tors in 3d. For n = 3, we have the following identities among O(3) representations:
st =3*
A1 =0 (2.40)

By proposition 2, it follows that there are no nontrivial three-point structures. For

n = 4, using proposition 3 with T = Z% and equation (2.39), we have
Qe*@e) 03 (N 22e" @0 ) @S (20" @eT)) = 170" @ 1007,  (241)

so there are 17 parity-even structures and 10 parity-odd structures in a four-point
function of identical vectors. Finally, for n > 5, kinematic permutations are absent,

so there are 3" structures (which can be taken to be parity-even).

0(d)
0(d-2)’

120ne can think about representations in terms of characters. Since characters are functions, there
is no problem with taking differences. Alternatively, one can think of a reducible representation as a
formal sum of irreducible representations with non-negative coefficients. Then, taking a difference of
representations is equivalent to taking differences of these coefficients. Some coefficients may end up
being negative, in which case the result is called a “virtual" representation. The representation (2.39)
is guaranteed not to be virtual.

"1One can also project to singlets of ITX" after applying Res
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Consider an example with two identical Majorana fermions and two identical scalars,
all parity-even. We have the following O(2, 1) identity

1
52E =1". (2.42)

Using proposition 3 with ITN" = 7, and equation (2.38), we find the space of
four-point structures
et @e, (2.43)

so there are 2 parity-even structures and 1 parity-odd structure. This agrees with [81].
Note that it was essential not to include (—1) for a permutation of fermions in

proposition 3.

2.2.,6 Summary: tensor structures of long multiplets

The discussion above can be summarized as the following theorem.

Theorem 1. The conformal correlator involving n > 3 operators in representations

pi can be written as

(0" (x1) ... O (x)) ZQ“' gl (), (2.44)

where u is a set of coordinates on the conformal moduli space M, of n points

X1...Xp

dim M,, = m(mT—.%) +d(n—-m), m=min(n,d+2), (2.45)

and the conformally-invariant tensor structures Qy are in one-to-one correspon-
dence with scalars (for parity-even structures) and pseudo-scalars (for parity-odd

structures) in the representation of O(d + 2 — m) given by

0@
€S0(d+2-m) ® Pi- (2.46)

If parity is not conserved, one simply replaces O(-) groups with SO(-) groups above.
If n > d +2, then one can form parity-odd cross-ratios, and parity of the correlator
is rather a property of the functions g' rather that the structures Q;, which can all

be chosen to be parity-even.

When n = 3 or n = 4 the correlator (2.44) can have a group TIN" of permutation
symmetries which leave u invariant, and thus impose constraints on the structures

Qy. The spaces of structures in these cases are described in propositions 1, 2, and 3.
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2.3 Conservation conditions

We now consider correlation functions of operators that satisfy conservation condi-
tions. We are mainly interested in the number of “functional degrees of freedom"
in such correlators — i.e., the number of functions of cross-ratios needed to com-
pletely specify the correlator [75]. For simplicity, we mostly restrict our attention
to traceless symmetric tensor conserved currents, of which spin-1 currents and the
stress tensor are prime examples. We describe the modifications required for more

general operators at the end of this section.

Correlation functions involving conserved currents are constrained by differential
equations such as
N

0 0

P (JH-H(xy) o) = ) Q) (x;)g" (u) = contact terms.  (2.47)

1

When n > 4, these are differential constraints on the functions g;(u). In general,
the full set of conservation equations is not independent and this makes it not
immediately clear how many degrees of freedom there actually are. The purpose
of this section is to classify the relations between these equations and motivate a
group-theoretic rule for the number of degrees of freedom of such correlators for

n>4.

Our rule will also classify “generic” three-point functions—i.e., three-point corre-
lators where at least one operator has generic dimension A. When the dimensions
of operators are non-generic, extra three-point structures can appear. The simplest
example occurs for a three-point function of a conserved current and two scalars,
(Jup1¢2). Generically, no structure exists for such a correlator, but a special struc-
ture becomes possible when the scalars have equal dimensions A; = A,. These
special structures are related to the contact terms on the right-hand side of (2.47).
For higher-point correlators, non-generic structures have a fixed x; dependence, so

they do not contribute to the number of functional degrees of freedom.

Our strategy is to understand the relations between equations (2.47). In general, if
we have a system of equations
Dg =0, (2.48)

where g is a vector of Ny unknown functions and D is a N1 X Ny matrix with differen-
tial operator coefficients, we say that there are relations between the equations (2.48)

if there is an N> X N; matrix D, such that

D,D; =0. (2.49)
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Note that here D, Dg = 0 independently of (2.48). There is a sense in which D,

can be complete. Namely, we say that D; is a compatibility!®> operator for D iff
any other D, satisfying D>»D; = 0 can be expressed as D, = QD, for some matrix
differential operator Q. It can happen that there are further relations between the

relations D>, i.e., an N3 X N> matrix D3 such that
D3D, =0, etc. (2.50)

If at some point this sequence of compatibility operators terminates —i.e., fori > iy

we have N; = 0 — then we can compute a version of the Euler characteristic
N =) (-1)'N. (2.51)
i=0

We expect that N is the true number of functional degrees of freedom parametrizing
a solution to (2.48). Note that by the number of functional degrees of freedom we
mean the functional parameters which depend on the same number of variables as

the original equation.

Consider first the simplest case of conservation of a spin-¢ traceless-symmetric

current,

which can be phrased as setting to zero a spin-(£ — 1) operator

0
VHIHET (x) = wJﬂﬂl...#[—l(x). (2.53)

If the current J has scaling dimension A; = d +{ -2, then the conservation equation
is conformally-covariant, meaning simply that V transforms as a primary operator.
Note that V is still conserved, but 0V = 0 does not constitute a relation between the
conservation equations in the above sense — it only holds if the original equation
is satisfied. In fact, there is no differential operator which annihilates the left hand
side of (2.52).

Since V is a primary, inserting it into a correlator we find

Ni,N

(it Ly = Qe oy g () = 0, (2.54)
1=1,J=1

13This name comes from considering the equation Dg = f. The function f is compatible with
this equation only if D,f = 0. Systems of equations for which a non-trivial D, exists are known as
overdetermined systems.
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where the structures Q; are the conformally invariant structures suitable for the
correlator on the left. Note that the structures Q are in one-to-one correspondence
with singlets in

[Rp®...]1=[]®[,m]®..., (2.55)

where we use [ - ] to denote the restriction to SO(d + 2 — m). On the other hand, the

structures Q are given by the singlets in
[(-1)® ... ]=[-1]®[p2]®.... (2.56)

If there is only one current in the correlator, then there are no relations between the
equations and the number of degrees of freedom is given by the number of singlets

in
([€]®[p2]®...)e([{’—1]®[p2]®...):([f]e[é’—l])@[pz]éb.... (2.57)

Here the © is the formal difference!“ in the character ring of SO(d + 2 — m). The

idea now is to note

S0(d) SO(d) _
Resgo -1yl © Resgo iy (E = 1) = e, (2.58)

where ¢’ is the spin-¢ traceless symmetric representation of SO(d — 1).'5 Therefore,

we see that the number of degrees of freedom is given by the singlets in
[1®[p2]®... (2.59)

One may wonder if this rule holds more generally — i.e., whether one can compute
the number of degrees of freedom in any correlator involving conserved operators by
simply replacing the SO(d) representations of these operators with their “effective”
SO(d — 1) representations in Theorem 1. This is indeed so'6, and in section 2.3.1
we show in examples how this rule works in the situations when we have several

conserved operators or when there are permutation symmetries.

In the example considered above the primary V obtained from J did not have any
null states of its own, so it was easy to count the number of degrees of freedom in
the correlator (2.54). For operators J satisfying more general conformally-invariant

differential equations it may turn out that V itself has a null descendant V’, and thus

14See footnote 12.

1SNote that SO(d — 1) is the little group for massless particles in d + 1 dimensions. We will make
use of this fact in section 2.5.

16As we note in the beginning of this section, for three point functions this is only true for
sufficiently generic scaling dimensions of the operators.
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satisfies a conformally-invariant differential equation expressed as V' = 0. Now V’
can turn out to have null descendants V”, and so on. A simple class of examples
when this happens are the differential forms from the de Rham complex. Repeating
the above analysis, we see that the effective SO(d — 1) representation we should use
in this situation is

[plevieV]eD'le..., (2.60)

where p is the SO(d) representation of J and v is the SO(d) representation of V

and so on.

We expect that quite generally this alternating sum gives an actual representation of
SO(d —1). Indeed, we have V = DJ for some conformally invariant differential
operator . Because of translation invariance 9 has constant coefficients, and thus
the equation

DIJ=0 (2.61)

is in momentum space a simple linear equation for the amplitude J. In particular, for
each fixed momentum p, the space of solutions is a finite-dimensional representation
of SO(d — 1) which leaves p invariant. It is easy to convince oneself that this is the
representation which (2.60) is computing.

In applications to unitary conformal field theories we are only interested in operators
J with the scaling dimension saturating some unitarity bound — these are the only
operators which are unitary and have null descendants at the same time. A detailed
classification of such operators can be found in section 5 of [83] (see also [42, 84]),
here we only give a short summary. Among these operators, some can be classified
as free and the rest, which we will call the unitary conserved currents, satisfy
first-order differential equations. In 3d and 4d all unitary conserved currents are
generalizations of (d — 1)-forms and they do not have the analogue of V’. In 5d
and 6d there appear unitary conserved currents which generalize (d — 2)-forms, and
they have V’ but not V”. Given the classification in [83], it is an easy exercise to
find the effective SO(d — 1) representation for arbitrary unitary conserved currents
ind <6.

2.3.1 Multiple conserved operators and permutation symmetries
Let us see how the rule (2.59) behaves when there are several conserved currents in

the correlator. Consider for example the case of two currents J; and J,. We then
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have the equations
Mdp...)=0, (2.62)
(S1Va..)=0. (2.63)

But there is a relation between these equations. Taking the remaining divergences

in both equations we arrive in both cases at
AZE ) (2.64)

and by taking the difference we obtain O regardless of whether V; = 0 or not. This
thus leads to a number of relations. This number is equal to the number of tensor
structures in (V| V, . ..). Therefore, we need to add it to the number of degrees of

freedom,
(e 1e1) e (1e1e16 - 1) 6 (16 - N@16]) @ (16 - N o1e - 11)
=[f] @ (6] (2.65)
It is easy to see that this generalizes to any number of conserved operators.

Consider now the case when the operators J; and J, are identical, {1 = ¢, = € and
there is a kinematic permutation expressing this. Assume that n = 4 and the other
operators are scalars for simplicity. In this case the equations (2.62) and (2.63)
are equivalent, since the tensor structures for (J;J; . . .) are chosen to be symmetric.
Then we can use just one equation, say (2.62). However, it is still subject to relations.
In particular, if we take an extra divergence to get to the equation (2.64), we will
find that it is symmetric in permutation of V’s, and thus antisymmetrizing the V’s
we get 0. Since it is a non-trivial operation which we applied to (2.62), it constitutes

a relation among equations (2.62). Therefore we need to look for scalars in
S*[¢]e ([f]@[f— 1]) ® A*[€-1]. (2.66)
Incidentally, the following relation holds in the character ring,
s (x1—x2) = 32X1 - Xi1x2+ /\2)(2- (2.67)

It can be easily derived from the character formulas (A.32) and (A.33). We therefore

see that the prescription works even when there is a permutation symmetry,
S1¢1 =51 e (1@ 16~ 11) @ A% - 11 (2.68)

The techniques above also allow us to keep track of parity by simply replacing SO
groups with O groups.
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Examples (Conserved four-point functions in 3d and 4d). As examples, let us
compute the number of functional degrees of freedom in a four-point function of
identical, conserved, parity-even, spin-¢ currents in 3d and 4d. Applying propo-
sition 3, equation (2.39), and the discussion above, we must find the number of

O(d - 2) scalars " and pseudoscalars e~ in
p=[1"e3(NI1eSL]). (2.69)
In 3d, [¢’] is the restriction of the spin-¢ traceless symmetric tensor of O(2) to O(1),
which is simply [¢'] = e* @ e~. Plugging in we easily find
p3a=5e" @20, (2.70)

so there are 5 parity even and 2 parity odd degrees of freedom. Note that the answer
is independent of £. As we will see in section 2.5, this is related to the fact that

massless particles in 4d always have two degrees of freedom, regardless of helicity.
In 4d, it is convenient to use characters of O(2). O(2) is a semidirect product
U(l)=Zy ={(x,5) : x e U(1),s = +1}, (2.71)
with the multiplication rule
(x1,51)(x2, 52) = (X1x3', 5152). (2.72)

The spin-j representation j has character

xe(x,s) = L S(xj +x7)), (2.73)

while the scalars o and pseudoscalars e~ have characters 1 and s, respectively. [¢’]
is the restriction of the parity-even spin-¢ representation of O(3) to O(2), namely
l=te (-1 ---dlae, (2.74)

which has character

l+sxltr—x -3 11—y
X115, 8) = = T (2.75)
X2 —x"2

Plugging (2.75) into equation (A.36) for the character of a Z%—invariant tensor
product, we find

Xp4d(-xas)
T4s|1[x2—xCz ) 3 (200 21\ )
= 3 Z % _% +Z ﬁ + 3 (35 +3€+1)
X2 — X

_@+3)(+2)(L+ 1) N 4e+ 1)t - 1)s

2.
c z + .. (2.76)
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where “...” represents sums of spin-j characters (2.73). The constant term in
(2.76) is the number of parity-even structures and the coefficient of s is the number
of parity-odd structures. Plugging in £ = 1,2, we obtain 7 + Os and 22 + 3s,

respectively, in agreement with [75].

2.4 Correlation functions in 3d
In this section we consider in detail correlation functions in three dimensions, in
order to exemplify how our formalism gives the tensor structures rather than just

their number, and how this can be applied in practice.

2.4.1 Conventions for SO(2,1)
In this section we will be working in Lorentzian signature in order to allow Majorana
spinors. Our conventions for spinors will be those of [39]. In this subsection we

describe the basic notation.

The primary operators in 2+1 dimensions transform in representations of Spin(2, 1) ~
Sp(2,R). The smallest such representation is the two-component Majorana spinor
%, the fundamental of Sp(2,R)

we. (2.77)

This representation is equivalent to its dual

Va, (2.78)

due to the invariant symplectic form of Sp(2,R)

Qaﬁ:Qwﬁ:( 10

0 1
, Ya = QaptfP. (2.79)
We have 1 ® 1 = S21 @ A2} = 1@ 0. The equivalence between S21 and the vector

representation of Spin(2, 1) is established by the gamma matrices (y*)“ g,

o (0 1y, fo1} 5 (1o 0.50)
Voo T o) Y T o a1 |

More precisely, we have
V= Qoo ()7 gv P, 2.81)

Generally, all finite-dimensional representations of Spin(2, 1) are the symmetric
powers of the Majorana representation, £ = S % We therefore represent an arbitrary
real operator O of spin ¢ as

0120 (y), (2.82)
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and we will use index-free notation by introducing a polarization spinor s,
O(5,X) = Sqy -+ + Sap, O 1020 (x). (2.83)

We need to make a choice of Pin(2, 1) group to consider parity. Reflection x! — —x!

is generated by
v — £y'y, (2.84)

2 — —x? is generated by

and reflection x

Y — Y2y, (2.85)

as can be checked by considering the induced action on the vector representation.
The sign ambiguity reflects the fact that it is a double cover Pin(2,1) of O(2,1)
which acts on spinors, so there are twice as many “reflections” as in O(2, 1).

2.4.2 Three-point structures

We choose the standard positions for the three operators by picking

x1 =(0,0,0), (2.86)
x2 = (0,0, 1), (2.87)
x3 = (0,0,L), (2.83)
and considering the correlator
g0(s1:52,53) = lim L2 (0 (51, x1)O02(52, %2) O3 (53, x3)) . (2.89)

The connected component of the stabilizer subgroup in this case consists of boosts

Elzl(i 9). (2.90)
210 —i

&
($i)a == (2.91)

s; — e Kig with

Writing

i
we see that &; has charge +1/2 under these boosts, and Ei has charge —1/2.
According to the general rule, the three-point functions are in one-to-one correspon-

dence with stabilizer-invariant functions go(s;). Clearly, one can choose a basis for

such functions consisting of monomials

3
192931 = nff’Jrq'fi “ (2.92)
i=1
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with ¢; € {-¢;, ..., {;} subject to

gi = 0. (2.93)

e

i=1

If parity is conserved, then stabilizer subgroup also contains parity transformation
si — 1. This simply exchanges &; and Ei. Therefore, structures of definite parity

are given by
3

3

Li+qizli=ai Li—qizlitai

[aaqsl® = | |67 9E ™ < [ | &79&™, (2.94)
i=1 i=1

and now sets ¢; and —g¢; are identified.

Permutations. Consider the permutations, starting with the transposition (12).
According to the general rule, we need to apply a transformation which brings
the operators back to the conformal frame position after the permutation. We are

interested in the Spin(3) elements
Ry (x) (2.95)

induced at the insertions of the operators. These are computed in the appendix A.2

with the result that for all transpositions there are /2

at all insertions, inducing
s; iyosﬂ(i), under which &; — iEﬂm and Ei — F&r(). Taking into account the

precise signs, we find the action of the permutations

(12) : [q1q2q3]F = £(=D)* 06 goq1 4314, (2.96)
(13) : [q1q2q5]F = £(=D) 6 g gog 1, (2.97)
(23) : [q1qaq3]* > +£(=1)"0 %611 gagn]*. (2.98)

If the permutations are symmetries of the correlator, the signs in front of ¢; above
can all be chosen to be +, since, e.g., for permutation (12) £3 has to be integral for
the full correlator to be bosonic. Under these permutations the tensor structure has
to be symmetric or anti-symmetric depending on whether the exchanged operators

are bosons or fermions. Redefining the permutations as

(12) : [q1aq3]* = (=12 [qq1931%, (2.99)
(13) : [q1aq3]* = (=D [g3qq1 1%, (2.100)
(23) :[q1q2q3]* = (=D [q1g3g21%, (2.101)

we now have the requirement that the tensor structure is symmetric regardless of the

nature of the operators.
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Counting. Let us now count the number of structures, assuming all the operators
to be different. By counting all possible combinations of ¢; one easily recovers the

result of [53] for the number of 3-point structures,
N3y (61,00, 63) = (261 + 1)(26, + 1) — p(p + 1), (2.102)

where p = max(¢; + £, — €3,0) and €1 < €, < €3. Unless all three operators are
bosons, g; = 0 is not a solution, and thus there is an equal number of parity-even
and parity-odd structures. In case all three operators are bosons, g; = 0 gives a valid
parity-even structure. In this case the number of parity-even structures is larger
than the number of parity-odd structures by 1. We then have for the number of

definite-parity structures

N3q(€1, 62, €3) £ K

N3y (1,62, 03) = > ;

(2.103)

where k = 1 when all the operators are bosonic, and x = 0 otherwise.

In the case when there are identical operators, there are two options. The first option
is that there are two identical operators, say {; = ¢,. The second is that all three

operators are identical. In the first case one can show

N (61, €1, C3) .\ (-6
2 2

Nz (6y & b, 63) = |61+ 135 £ min(Ley + 31, L5574D)],

(2.104)
and in the second case
1
Nig(©) = 2 [N (6O + (=D (30 + 3 £315] £ 3) + 12 1] . (2.109)

These formulas can be obtained either from propositions 1, 2 and character formulas
of appendix A.3 or from the above description of permutations by computing the

character of S, or S5 on the space of tensor structures [g;¢>g3]*.

2.4.3 Four-point structures

For four operators, we choose the following conformal frame

x1 =(0,0,0), (2.106)
xy = (1, x,0), (2.107)
x3 =(0,1,0), (2.108)

x4 = (0, L,0), (2.109)
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and consider the correlator
go(sint,x) = lim L* (01 (s1,x1)O1(s2, x2)O3(53, x3)O3(s4, x4)) .~ (2.110)
We will mostly use the parameters
Z=x-1 Z=x+1, (2.111)

such that under the continuation to Euclidean time fr = if, we will get the usual

holomorphic and anti-holomorphic coordinates.

2 5 —x2. Therefore,

Note that the stabilizer subgroup is just the O(1) of reflections x
any function of s; with appropriate homogeneous degrees will give us a valid 4-point

structure. More precisely, we can write

80(si,2,2) = Z[Q16]2Q3Q4]g[q1qzqsq4](Z, 2), (2.112)
qi
where A
+a.=ti—qi
[a2q3qa1 = | | £77"&"™ (2.113)
i=1

with £, £ asin (2.91) and ¢; € {=¢; ... ¢;).

The action of spatial parity is, according to (2.85), s; > yas; or & — &;, Ei > —Ei.
Therefore,

[9192q3q4] = (=12 5% g1 g2 g3qa). (2.114)

We see that the structures we have chosen already have definite parity.

Permutations and crossing symmetry. Consider now how the four-point func-
tions transform under the permutations. Since we are working in Lorentzian signa-
ture now, we need to perform an analytic continuation of the phases in appendix A.2.

Doing this, we obtain the following formulas for the nontrivial permutations,

(12)(34) : [q192q3g4] = n((z = DI E27E) [grg1qaq3], (2.115)
(13)(24) : [q192q3qa] > n(BTHNTR(] = )T RB)[g3gaqiqp],  (2.116)
(14)(23) : [q19293g4] = n((=2) T 4" P)[qugsgaqn . (2.117)

Here n(x) = x/VxXx, where X is x with z and 7 exchanged. The possible (—1)’s from
permutations of fermions are already taken into account. Note that if a structure

is fixed by a permutation, the phase factor is automatically 1. This is due to the
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hidden triviality of these phases mentioned in the appendix A.2. This means that

any structure can be symmetrized to give a non-zero result,

1
(1993qs), = —— Z nlq19293q4]1 # 0O, (2.118)
LT T —
where ngy, 4,454, i the number of elements in 18" stabilizing [g1¢2g394]. With this

notation a ITX"-symmetric four-point function can be rewritten as

80(si,2,2) = Z (91929394 ; 81 4243941(Z ) (2.119)
g: /TIk
where the sum is over some set of representatives of orbits of IT<" action on the set

of all tensor structures (possibly of definite parity).

For four-point functions it is convenient to also consider the action of the permutation
(13), which is often used to write down a bootstrap equation for a four-point function

containing identical operators. From the results of appendix A.2, it acts as

(13) : [q1g2g3ga] = (-1)ITLB" B g395q1 4], (2.120)

and this already accounts for the (—1) sign coming from a possible permutation
of fermions. For the symmetrized structures the action is, including the change
z—o1-z2

(19293qa), = (—D)PTRTB™4 (q3grq1G4), . (2.121)

The crossing equation for the full four-point function, in the case when the operators

1 and 3 are identical, is

Z <QI CIZCI3Q4>Z g[q1q2q3q4](Z, 2)
gi /TTkn

= Z (B3q2q194), (=D)NTRTBHgr g (1 = 2,1 =72). (2.122)

g; /TIkn

Note that the crossing permutation (13) maps orbits of TT<" into orbits, so this basis

essentially diagonalizes the crossing equation.

Counting. Itis easy to count the number of four-point structures. Clearly, the total

number of structures is

4
Nsa(6r, 6,65, 6) = | |26+ 1), (2.123)

i=1
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and as discussed in section 2.2.3, this result is valid for all higher-point functions,

N3g(by...0) =] |26 +1), n=>4. (2.124)

1

n
=

One can see from (2.114) that if there is at least one half-integer spin, then the
number of parity even structures is equal to the number of parity odd structures
(for such a spin ¢; — g; is even exactly as often as it is odd). Performing an explicit
computation in the case when all spins are integral, we arrive at the direct analog

of (2.103)
N3q(€y,€2,€3,€4) £ &

2 2
where « = 1 when all spins are integral and « = 0 otherwise.

N (€1, 60,63, 04) = (2.125)

If there are non-trivial kinematic permutations, these are IT<" = Z, or IT¢" = Z%. In
each case we can either use proposition 3 and (A.36) or count the number of orbits
of TTKIM action on [¢192g394] structures, which can be done using Burnside’s lemma.

The result in Z, case is
Ni (b & b, 03 & £y) = % [N (€1 1.5, 63) + 261 + 1203 + D], (2.126)
Ny (b1 & by, b5 & L) = %N;d(fl,fl,fg,, t3). (2.127)

The result in Z% case is
N (6) = % [Nt + 320+ 1), (2.128)

1
N3 (0) = N3, (6.6.L.0). (2.129)

2.4.4 Example: 4 Majorana fermions
As an example, let us consider in detail the case of four identical Majorana fermions.

This is a relatively simple yet non-trivial case for which we can compare to [39].

Let us start by analyzing the generic three-point functions for operators which
appear in the OPE expansion. First, consider the three point function of two distinct
Majorana fermions and a spin-£3 operator. Using (2.94) and (2.93), we find the

following structures,

1%, L -1 01% (2.130)

8=

1
L,

For ¢3 = 0 we can only have g3 = 0, and thus only 1 parity-even and 1 parity-odd

structures remain. If the fermions are identical, then we need only the structures
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symmetric under the exchange (12)’ given by (2.99). This leaves for even {3
[%5 %’_1]+’ [%, _%’O]ia (2131)
and for odd ¢3

=11 (2.132)

=

(3,

This is in complete agreement with [39].
Let us now turn to four-point functions. First, using (2.123), we immediately find
that there are 2* = 16 tensor structures. According to (2.125), 8 of them are
parity-even and 8 are parity-odd. Using (2.114) we can write down the parity-even
structures, denoting g = +% with T and g = —% with |,
771 LU
UL LT

(2.133)
T LLTITL
TUTL LTI

Assuming that the fermions are identical, we simply perform the Z% symmetriza-
tion (2.118) of these structures, obtaining 5 = (843 22)/4 (c.f.(2.128)) independent

parity-even structures,

(TS I S SV, (AT, (UL - (2.134)

We can also easily form crossing-symmetric and anti-symmetric structures us-
ing (2.122),

[
[
[
[

symmetric: (TT17), (TLTLY, (LWL, (TTLL) + (LTTL), (2.135)
anti-symmetric: (TTl1) = ({TT0). (2.136)
We thus have 4 crossing-even structures and 1 crossing-odd structure, which lead

to 4 crossing-even equations and 1 crossing-odd equation.!” This again coincides
with the results of [39].

We can very explicitly write down the standard basis of crossing equations,

—m —m —m —~m
9"0 g = 0"9 g = 0"9 g = "9 (girnu + gurr) = 0. o+ m odd,
(2.137)

—m
0"9" (g — uru) =0, n+ meven,
(2.138)

"Note however that “crossing parity” is not a real invariant and can be modified by a structure
redefinition.




52

where all functions are evaluated at z = 7 = 1/2. However, there is an important
subtlety. When we expand the four-point function in conformal blocks, we will find
that the result is smooth (as a function of x;). As we discuss in appendix A.1, not
any choice of g4, 4,43441(2, 27) leads to a smooth correlator, and a finite number of
boundary conditions need to be imposed on derivatives of g[y,4,45¢41(2,2) at z = z.
This effectively gives relations between equations (2.137) and (2.138). These are

easy to classify, and we work out the present example in appendix A.1.

Note that [39] used 4-point tensor structures constructed using embedding-space
building blocks. They did not have to perform the aforementioned analysis of
the boundary conditions. However, there was a different problem which required a
similar analysis — since their coefficient functions, unlike those in the present work,
do not represent physical values of the correlator but rather have to be multiplied by
their tensor structures first, it is not guaranteed that they do not have singularities.
In fact, it was found in [39] that their coefficient functions for conformal blocks
diverge as (z — Z)™> near z = Z. The solution was to multiply these functions by
(z — Z)° at the cost of introducing relations between the Taylor series coefficients,
which are similar to ours. What is different is that in our case we have a simple
classification of these relations, whereas in [39] they were handled in a brute-force

way by numerically finding linearly independent vectors of crossing equations.

2.5 Scattering amplitudes

In this section we establish the equivalence of the counting of conformal correlators
in CFT, with counting of scattering amplitudes!® in flat space QFT .1, generalizing
results of [53, 56, 76] to arbitrary spin representations. The basic idea is quite
simple — the conformal frame approach can be applied to scattering amplitudes in

QFT441, and it yields equivalent group-theoretic formulas.

Let us formulate the counting problem for amplitudes in the simplest case of
traceless-symmetric spin ¢ particles (we will generalize to other representations

later in this section). We can describe the scattering amplitude A(p;, ;) as a

Lorentz-invariant function of the momenta p;, pl.2 = —ml.z, >ipi = 0, and trace-

less symmetric polarizations gi‘“'““”". For all particles the polarizations satisfy the

M.
g

transversality condition (p;),, = 0. For massless particles we in addition get

8The spaces of scattering amplitudes of spinning particles have been considered, for example,
in [85-91]. We thank Massimo Taronna for pointing out these references to us.
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the gauge equivalence
{/v‘l---ﬂfi ~ é“,ul---,ufi +p(ﬂl/l,u2--~ﬂ[), (2_139)

where A is the parameter of the gauge transformation which is itself transverse. The
scattering amplitude A(p;, {;) should be invariant under this transformation. That

is, A should be a function of the gauge equivalence classes of ¢;.

A general solution to the above requirements has the form

N
Api &) = Y Tipi &) (58,0, (2.140)

=1
where T; are the tensor structures encoding the non-trivial dependence on the
polarizations and momenta, and s, t, . . . are the kinematic invariants of n particles,
i.e., the Mandelstam variables. Our goal in this section is to find the number N of
tensor structures and prove that it is equal to the number of tensor structures in a

certain conformal correlator.

2.5.1 Little group formulation

Note that for a fixed p, the solutions ¢ to the transversality constraint p,,, J#1--#¢ = 0,
as well as the gauge equivalence classes of such solutions are transformed into each
other by the little group L(p) which is the subgroup of the Lorentz group leaving p
invariant. The little group in QFT44; is SO(d) in the massive case and SO(d — 1)
in the massless case (formally itis /SO(d — 1), but for particles with a finite number
of internal degrees of freedom the translations of /SO act trivially). In the case
considered above (; live in traceless symmetric representations of the respective

little groups.

In order to have a general treatment, we will adopt this little group point of view
on the particle polarizations. Instead of specifying a polarization ¢, we specify
an element & of some representation of L(k), where k is a standard!® momentum
with k2 = p%. Accordingly, for each momentum p we specify a standard Lorentz
transformation?® R(p) such that R(p)k = p. Now instead of A(p;, {;), we have a

function of the little group polarizations &; which we denote S(p;, ;).

YFor concreteness, for massive particles of mass m we can choose k = (m,0,0,...) and for
massless particles k = (1, 1,0,0,...) with signature (—, +, +,...).

20In general we need to allow R(p) to belong to the disconnected components of the Lorentz
group, since in general we may want to have momenta in the past lightcone (or treat in and out
particles separately). Alternatively, we may consider the complexification of the whole setup, as
anyway is required for the treatment of 3-point on-shell amplitudes. Either way, for simplicity of the
discussion we ignore these subtleties.
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To see the correspondence between the two descriptions, for example in the case of
massless traceless symmetric particle, we can put € into correspondence with a po-
larization i (&) with transversality and gauge invariance defined by the momentum
k. This then specifies {,(¢) = R(p){i(g), which now satisfies transversality and

gauge invariance defined by p. We can now set

S(pi» €1) = A(pi £p; (&) (2.141)

This establishes the isomorphism between the descriptions S(p;, €;) and A(p;, ;).
It also makes it easy to see how the Lorentz invariance is stated for S(p;, ;) — since

for each Lorentz transformation A we have
A(Npi, Agi) = Api, $i)s (2.142)
then in terms of S(p;, £;) we should have
S(Api, RIAP) ' AR(p)e) = S(pi, &0). (2.143)
This formula makes sense because
R(AP)™ AR(p) ki = ki (2.144)
and thus
R(Ap)™'AR(p) € L(ky), (2.145)

which can act on g;. This condition appears more complicated than (2.142), but
the advantage is that this is the only condition we require of the amplitude (in
contrast to requiring the gauge invariance and imposing the transversality constraints
for A(p;, £;)). This makes it extremely easy to classify tensor structures for the

amplitudes, as we now show.

2.5.2 Conformal frame for amplitudes

We now simply repeat the analysis of section 2.2.2 for the amplitudes. The Lorentz
group acts on the configuration space of the momenta p;, and splits this space
into orbits. We chose a “scattering frame” — a submanifold of the momenta
configuration space which intersects each orbit at precisely one point. It is easy to
show that the dimension of scattering frame is the same as the dimension of the

conformal frame at the same n (number of operators or particles) and d.
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A scattering amplitude is now completely specified by its values on the scattering
frame. These values, as in section 2.2.2, have to be invariant under the subgroup of

Lorentz group which fixes the scattering frame.

It is easy to see what this subgroup is. First, n generic momenta, due to the
conservation condition ); p; = 0, span an (m — 1)-dimensional linear space P,
where m = min(d + 2,n). The subgroup which fixes # depends only on the rank
of the restriction of the Lorentz metric onto #, which coincides with the rank of
Gram matrix G of any n — 1 momenta in . The determinant det G is an algebraic

function of the particle masses m; and the kinematic invariants s, ¢, u, . . ..

For n > 4 we have non-trivial kinematic invariants, and thus for a generic set of
these invariants det G # 0 and the metric on ¥ is full rank. This implies that # is
stabilized by a subgroup SO(d +1—-(m—1)) = SO(d + 2 — m).

For n = 32! we have no non-trivial kinematic invariants, and det G is determined
solely by the masses. For a generic set of masses, detG # 0, and we again get
SO(d + 2 — m). This case corresponds to the generic three-point functions as

discussed in section 2.3. For simplicity, we only consider this generic case.

Now, we need to understand how the stabilizing subgroup St = SO(d + 2 — m) acts
on the little group polarizations. Assume that A fixes all the p;. In this case, we
have

gi = R(p) 'AR(p)e. (2.146)

We can say, alternatively, that St is naturally a subgroup of each L(p;), which in

turn are put in an isomorphism with L(k;) by

L(k;) = R(pi) "' L(p)R(p). (2.147)

This defines a restriction of representations of L(k;) to representations of St =
SO(d + 2 — m). Assume that the particles transform in representations p; of L(k;).
We then immediately find that the space of tensor structures for scattering amplitudes

is
SO(d+2—m)

n
X Ressoi, o i . (2.148)
i=1

Its dimension is equal to the number of tensor structures in a conformal correlator

if the SO(d) representations of the non-conserved local operators in CFT,; are

2IFor n = 3 we need to consider complexified kinematics in order to have an on-shell amplitude.
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identified?? with the representations of the massive little group SO(d) in QFT 4.1,
and the effective SO(d — 1) representations of local operators (as described in
section 2.3) are identified with the representations of the massless SO(d — 1) little
group. It is in principle straightforward to extend this result to include parity and
permutations symmetries. For example, it is not hard to check that kinematic

permutation groups match in CFT; and QFT 4.
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Chapter 3

GENERAL BOOTSTRAP EQUATIONS IN 4D CFTS

This chapter is essentially identical to (with the omission of section 5 of the original

paper):

G. F. Cuomo, D. Karateev and P. Kravchuk, General Bootstrap Equations in 4D
CFTs, JHEP 01 (2018) 130, [1705.05401].

3.1 Introduction

In recent years a lot of progress has been made in understanding Conformal Field
Theories (CFTs) in d > 3 dimensions using the conformal bootstrap approach [26—
28, 92, 93] (see [18, 19] for recent introduction). In this chapter we focus solely on
d = 4. The 4D conformal bootstrap allows to study fixed points of 4D quantum field
theories relevant for describing elementary particles and fundamental interactions.
It promises to address the QCD conformal window [10] and may be useful for

constraining the composite Higgs models; see [94] for discussion.

In the conformal bootstrap approach CFTs are described by the local CFT data,
which consists of scaling dimensions and Lorentz representations of local primary
operators together with structure constants of the operator product expansion (OPE).
The observables of the theory are correlation functions which are computed by
maximally exploiting the conformal symmetry and the operator product expansion.
Remarkably, the CFT data is heavily constrained by the associativity of the OPE,
which manifests itself in the form of consistency equations called the crossing or

the bootstrap equations.

The bootstrap equations constitute an infinite system of coupled non-linear equations
for the CFT data. In a seminal work [30] it was shown how constraints on a finite
subset of the OPE data can be extracted numerically from these equations. In 4D
the approach of [30] was further developed in [35, 43—47, 94—101]. In 3D a major
advance came with the numerical identification of the 3D Ising [32, 34] and the
O(N) models [8, 36-38]. An analytic approach to the bootstrap equations was
proposed in [68, 69] and further developed in [31, 102-110]. Other approaches
include [101, 111-114].


http://dx.doi.org/10.1007/JHEP01(2018)130
https://arxiv.org/abs/1705.05401
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Most of these studies, however, focus on correlation functions of scalar operators,
and thus only have access to the scaling dimensions of traceless symmetric operators
and their OPE coefficients with a pair of scalars. In order to derive constraints on the
most general elements of the CFT data, one has to consider more general correlation
functions. To the best of our knowledge, the only published numerical studies of a
4-point function of non-scalar operators in non-supersymmetric theories up to date
were done in 3D for a 4-point function of Majorana fermions [39, 40] and for a

4-point function of conserved abelian currents [115].

One reason for the lack of results on 4-point functions of spinning operators is
that such correlators are rather hard to deal with. In order to set up the crossing
equations for a spinning 4-point function, first, one needs to find a basis of its tensor
structures and second, to compute all the relevant conformal blocks. The difficulty
of this task increases with the dimension d due to an increasing complexity of the
d-dimesnional Lorentz group. For instance, the representations of the 4D Lorentz

group are already much richer than the ones in 3D.

The problem of constructing tensor structures has a long history [39, 50-53, 56,
78,79, 116, 117]. In 4D all the 3-point tensor structures were obtained in [54] and
classified in [55] using the covariant embedding formalism approach. Unfortunately,
in this approach 4- and higher-point tensor structures are hard to analyze due to a
growing number of non-linear relations between the basic building blocks. This
problem is alleviated in the conformal frame approach [1, 23, 51]. In [1] a complete
classification of general conformally invariant tensor structures was obtained in a

non-covariant form.

The problem of computing the conformal blocks for scalar 4-point functinons was
solved by a variety of methods in [32, 37, 54, 59, 118-121]. Spinning conformal
blocks were considered in [39, 49, 54, 56, 60, 61, 81, 82, 122, 123]. Remarkably,
in [61] it was found that the Lorentz representations of external operators can be
changed by means of differential operators. In 3D, this relates all bosonic conformal
blocks to conformal blocks with external scalars. These results were extended to
3D fermions in [39, 81] completing in principle the program of computing general

conformal blocks in 3D.

Results of [61] concerning traceless symmetric operators apply also to 4D, but are
not sufficient even for the analysis of an OPE of traceless symmetric operators since
such an OPE also contains non-traceless symmetric operators. The first expression

for a 4D spinning conformal block was obtained in [122] for the case of 2 scalars and
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2 vectors. A systematic study of conformal blocks in 4D with operators in arbitrary
representations was done in [62], where the results of [61] were extended to reduce a
general conformal block to a set of simpler conformal blocks called the seed blocks.

In the consequent work [58] all the seed conformal blocks were computed.

The goal The results of [1, 55, 58, 62] are in principle sufficient for formulating
the bootstrap equations for arbitrary correlators in 4D. Nevertheless, due to a large
amount of scattered non-trivial and missing ingredients there is still a high barrier
for performing 4D bootstrap computations. The goal of this chapter is to describe
all the ingredients needed for setting up the 4D bootstrap equations in a coherent
manner using consistent conventions and to implement all these ingredients into a

Mathematica package.

In particular, we first unify the results of [55, 58, 62] with some extra develop-
ments and corrections. We then use the conformal frame approach [1] to solve the
problem of constructing a complete basis of 4-point tensor structures in 4D in an
extremely simple way. We provide a precise connection between the embedding
and the conformal frame approaches making possible an easy transition between

two formalisms at any time.

We implement the formalism in a Mathematica package which allows one to work
with 2-, 3- and 4-point functions and to construct arbitrary spin crossing equations
in 4D CFTs. The package can be downloaded from

https://gitlab.com/bootstrapcollaboration/CFTs4D.

Once it is installed one gets an access to a (hopefully) comprehensive documentation
and examples. We also refer to the relevant functions from the package throughout

the chapter as [ function].

Structure of the chapter In the main body of the chapter we describe the basic
concepts applicable to the most generic correlators with no additional symmetries
or conservation conditions. We comment on how these extra complications can be

taken into account, and delegate a more detailed treatment to the appendices.

In section 3.2 we outline the path to the explicit crossing equations for operators of
general spin, abstracting from a specific implementation. In section 3.3 we describe

the implementation of the ideas from section 3.2 in the embedding formalism. In


https://gitlab.com/bootstrapcollaboration/CFTs4D#cfts4d
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section 3.4 we give an alternative implementation in the conformal frame formalism.

We conclude in section 3.5.

Appendices B.1 and B.2 summarize our conventions in 4D Minkowski space and 6D
embedding space, as well as cover the action of - and 7 -symmetries. appendix B.2
also contains details of the embedding formalism. In appendix B.3 we give details
on normalization conventions for 2-point functions and seed conformal blocks.
Appendices B.4 and B.5 contain details on explicitly covariant tensor structures. In
appendix B.6 we describe all 3 Casimir generators of the four-dimensional conformal
group. Appendices B.7 and B.8 cover conservation conditions and permutation

symmetries.

3.2 OQOutline of the framework

The local operators in 4D CFT are labeled by (¢, £) representation of the Lorentz
group SO(1,3) and the scaling dimension A.! In a CFT one can distinguish a
special class of primary operators, the operators which transform homogeneously
under conformal transformations [92]. In a unitary CFT any local operator is either a
primary or a derivative of a primary, in which case it is called a descendant operator.

A primary operator in representation (¢, {) can be written as?
Bi...Br
Ouy ol (%), 3.1)

symmetric in spinor indices «; and 8 ;. Because of the symmetry in these indices,
we can equivalently represent O by a homogeneous polynomial in auxiliary spinors
s* and s 5 of degrees ¢ and ¢ correspondingly

O(x,55) = s --- 55 ..-EBZOff,fjff(x). (3.2)

We often call the auxiliary spinors s and s the spinor polarizations. The indices can

be restored at any time by using

OB""B?(x) _ ﬁ ﬁ 9 0 O(x,s,5) (3.3)
ay...ap - f‘ZY ! 8Sai agﬁj 9 Dy . .

In principle the auxiliary spinors s and s are independent quantities; however without

loss of generality we can assume them to be complex conjugates of each other,

'In this chapter we consider only the consequences of the conformal symmetry. In particular, we
do not consider global (internal) symmetries because they commute with conformal trasformations
and thus can be straightforwardly included. We also do not discuss supersymmetry.

20ur conventions relevant for 3+1 dimensional Minkowski spacetime are summarized in ap-
pendix B.1.



61

se = (54)*. This has the advantage that if O with £ = £ is a Hermitian operator,
e.g., for € = £ = 1,
i
0, 5(x) = (0pa(v)) (34)
then so is O(x, s, 5),

O(x,575) = (O(x,573)". (3.5)

More generally for non-Hermitian operators we define
0(x,55) = (0(x,55)"; (3.6)

see (B.8) for the index-full version.

Conformal field theories possess an operator product expansion (OPE) with a finite
radius of convergence [23, 25, 78, 124]

O1(x1,51.51)02(x2, 52, 52) = ) D A% = BulBry, By B . YO (2, 5.5), (3T)
O a

where B, are differential operators in the indicated variables (depending also on
X1 — Xx2,5;,8j, where j = 1,2), which are fixed by the requirement of conformal
invariance of the expansion. Here A’s are the OPE coefficients which are not
constrained by the conformal symmetry. In general there can be several independent
OPE coefficients for a given triple of primary operators, in which case we label them

by an index a.

The OPE provides a way of reducing any n-point function to 2-point functions,
which have canonical form in a suitable basis of primary operators. Therefore, the
set of scaling dimensions and Lorentz representations of local operators, together
with the OPE coefficients, completely determines all correlation functions of local
operators in conformally flat R">3. For this reason we call this set of data the CFT data
in what follows.? The goal of the bootstrap approach is to constrain the CFT data by
using the associativity of the OPE. In practice this is done by using the associativity
inside of a 4-point correlation function, resulting in the crossing equations which
can be analyzed numerically and/or analytically. In the remainder of this section we

describe in detail the path which leads towards these equations.

3Besides the correlation functions of local operators one can consider extended operators, such
as conformal defects, as well as the correlation functions on various non-trivial manifolds. In order
to be able to compute these quantities one has to in general extend the notion of the CFT data.
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3.2.1 Correlation functions of local operators

We are interested in studying n-point correlation functions

fa(@1 ... pa) = IO (p1) ... O (p,)I0), (3.8)

where for convenience we defined a combined notation for dependence of operators

on coordinates and auxiliary spinors

pi = (X, 5;, 5;). (3.9)

We have labeled the primary operators with their spins and scaling dimensions.
In general these labels do not specify the operator uniquely (for example in the
presence of global symmetries); we ignore this subtlety for the sake of notational
simplicity. For our purposes it will be sufficient to assume that all operators are
space-like separated (this includes all Euclidean configurations obtained by Wick
rotation), and thus the ordering of the operators will be irrelevant up to signs coming

from permutations of fermionic operators.

The conformal invariance of the system puts strong constraints on the form of (3.8).
By inserting an identity operator 1 = UU", where U is the unitary operator imple-
menting a generic conformal transformation, inside this correlator and demanding

the vacuum to be invariant U|0) = 0, one arrives at the constraint
0.l Cnsln 0. Cnsln
©Ol(Uto{ru)... (Uto{u)i0y = 010 o). (3.10)
The algebra of infinitesimal conformal transformations, as well as their action on
the primary operators are summarized in our conventions in appendix B.1.
The general solution to the above constraint has the following form,
Ny
i 5 50) = ) gn(w) Ty (x5, 53, 50), (3.11)
=1

where T/ are the conformally-invariant tensor structures which are fixed by the con-
formal symmetry up to a u-dependent change of basis, and u are cross-ratios which
are the scalar conformally-invariant combinations of the coordinates x;. The struc-
tures T/ and their number N, depend non-trivially on the SO(1, 3) representations

of O;, but rather simply on A;, so we can write

T (xi 51,57) = Ko ()T (i, 50, 50), (3.12)
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where all A;-dependence is in the “kinematic” factor K,* and all the the A; enter K,
through the quantity _
{+ ¢

K=A+ — (3.13)

Note that T and T are homogeneous polynomials in the auxiliary spinors, schemat-

ically,

n
I AT i<l
T~ ] sl (3.14)
i=1
In the rest of this subsection we give an overview of the structure of n-point corre-

lation functions for various n, emphasizing the features specific to 4D.

2-point functions A 2-point function can be non-zero only if it involves two
operators in complex-conjugate representations, (£, Zl) = (Ez, {»), and with equal
scaling dimensions, Ay = Aj;. In fact, it is always possible to choose a basis
for the primary operators so that the only non-zero 2-point functions are between

Hermitian-conjugate pairs of operators. We always assume such a choice.

The general 2-point function [n2CorrelationFunction] then has an extremely

simple form given by

—(t0) 7 2k Ta101E 20118
05 (PO (B2) = 5oy 115 [1] [P'] (3.15)
N——

=7 =T,

where Ciop) 1S @ constant. There is a single tensor structure T, and the building
blocks I/ are defined in appendix B.4. Changing the normalization of O one

can rescale the coeflicient €00 by a positive factor. The phase is fixed by the

requirement of unitarity, see appendix B.3. We can make the following choice

— 'f—z o (_ [_E o _ 'Z_g
Cooy=t - Co0) = (=) Cooy=1t (3.16)
)5—2

where the factor (— appears due to the spin statistics theorem.

3-point functions A generic form of a 3-point function [n3ListStructures,

n3listStructuresAlternativeTS] is given by?>

— - > N3
0 (p, )OX;Z’Q)(pz)OX?’&)(P3)> = % Z 20,0500 155 (3.17)

1
a=1

“4This does not uniquely fix the factorization, and we will make a choice based on convenience
later.

SFor notational convenience we use lowercase index a instead of capital index I to label the
3-point tensor structures.
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where the kinematic factor [n3KinematicFactor] is given by

K = | |1y, (3.18)

i<j
The necessary and sufficient condition for the 3-point tensor structures Tg’ to exist
is that the 3-point function contains an even number of fermions and the following

inequalities hold,
|6 — €| < €;+ €+ b + €, for all distinct i, j, k. (3.19)

A general discussion on how to construct a basis of tensor structures T% is given in
section 3.3. For convenience we summarize this construction for 3-point functions

in appendix B.5.

The fact that the OPE coefficients enter 3-point functions follows simply from using
the OPE (3.7) and the form of (3.15) in the left hand side of (3.17). It is also clear

that one can always choose the bases for 8, and ‘Tg‘ to be compatible.

There is a number of relations the OPE coefficients 4
(010,03)

simplest one comes from applying complex conjugation to both sides of (3.17). On
the left hand side one has

have to satisfy. The

(010,03)" = (030,0). (3.20)

Using the properties of tensor structures under conjugation summarized in ap-
pendix B.4, one obtains a relation of the form

a * _ ab b
(/1(010203)) =C /1<535251>’ (3.21)

where the matrix C“ is often diagonal with +1 entries. Other constraints arise from
the possible - and 7 -symmetries (see appendix B.1), conservation equations (see
appendix B.7), and permutation symmetries (see appendix B.8). Importantly all
these conditions give linear equations for A’s, which can be solved in terms of an
independent set of real quantities A as
Ny A A
om0 = ), Pioroonlioo0n N5 < Na. (3.22)

a=1

It will be important for the calculation of conformal blocks that we can actually

construct all the tensor structures T% in (3.17) by considering a simpler 3-point
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—/ —/
function with two out of three operators having canonical spins (¢}, ¢;) and (£, {;),
chosen in a way such that the 3-point function has a single tensor structure

(£1.61) (L)
O 2
A A)

e O™ = A Teea. (3.23)

A simple choice is to set as many spin labels to zero as possible, for example

-/ —_ —_

O=0,=0,=0, € =|6:-13] (3.24)

As we review in section 3.3.2 one can then construct a set of differential operators

D acting on the coordinates and polarization spinors of the first two operators such
that

T5 = D Tyeea- (3.25)

We will call the canonical tensor structure Ty..; a seed tensor structure in what
follows. Our choice of seed structures is described in appendix B.3. When the third
field is traceless symmetric, one has obviously 72 = 0, thus relating a pair of generic

operators to a pair of scalars [61].

4-point functions and beyond In the case n = 4 one has

_ _ _ _ Ny
OV (PO (9O (9O (pa)) = > ghwv) T, (3.26)
I1=1

where gi(u,v) are not fixed by conformal symmetry and are functions of the 2
conformally invariant cross-ratios [ formCrossRatios]

2 2 2 2

Xy _ Xiatos 397
-2 2 -2 2 (3.27)
X7, X X7, X
13724 13724

In most of the applications it will be more convenient to use another set of variables

(z,7) [changeVariables] defined as

u=2zz, v=>0-2)(1-2). (3.28)

We classify and construct all the 4-point tensor structures T4 [n4ListStructures,
n4listStructuresEF] in section 3.4. Following the literature we choose the

kinematic factor [n4KinematicFactor] of the form®

Xo4 K1—K2 X14 K3—K4 1
X14 X13 Xy X3y

®In section 3.4 we never separate the kinematic factor which has an extremely simple form
I(1+K2

(zz)" "7 in the conformal frame.
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The case of n > 5 point functions is similar to the n = 4 case with a difference that
the number of conformally invariant cross-ratios is 4n — 15. We briefly discuss the

classification of tensor structures for higher-point functions in section 3.4.

In general 4- and higher-point functions are subject to the same sort of conditions
as 3-point functions. Reality conditions and implications of - and 7 -symmetries
are not conceptually different from the 3-point case. However, implications of
permutation symmetries and conservation equations are more involved than those
for 3-point functions, see [75], due to the existence of non-trivial conformal cross-

ratios (3.27). See also appendices B.8 and B.7 for details.

3.2.2 Decomposition in conformal partial waves

Since the OPE data determines all the correlation functions, the functions gi(u, V)
entering (3.26) can also be computed. To compute gi(u, v) we use the s-channel
OPE, namely the OPE in pairs O;0; and O304. One way to do this is to insert a

complete orthonormal set of states in the correlator

1

fa =, (010,0504) = |%;«)102|\P><\P|0304>. (3:30)
By virtue of the operator-state correspondence, see for example [18, 19], the states
|'¥') are in one-to-one correspondence with the local primary operators O and their
descendants 0"O. This allows us to express the inner products above in terms of the
3-point functions (0;0,0) and (0030;) with the primary operator O and its conju-
gate 0, resulting in the following s-channel conformal partial wave decomposition

1 1
(010:0504) = Z Z 410,0,0) <01020><00304>/1<0030 y (3.31)

The objects W4 are called the conformal partial waves (CPWs).”7 The summation
in (3.31) is over all primary operators O which appear in both 3-point functions
(010,0) and (0050,) and we can write explicitly

DEDIDIY 02)
1t-f|=0 (=0 A

where i labels the possible degeneracy of operators at fixed spin and scaling di-

mensions (coming, for example, from a global symmetry). Note that according to

7In this chapter “conformal partial waves” are what we usually call “conformal blocks” and
“conformal blocks” mean what we would normally call “components of conformal block”. We hope
that this doesn’t cause confusion.
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properties of 3-point functions (3.19), there is a natural upper cut-off in the first

summation
00 |6~Climax
Z Z (3.33)
£|=0 |- fl 0
where
1€ = Clmax = min(€y + €1 + o + €o, €3+ O3 + L4 + €a). (3.34)

Furthermore, if the operator O is bosonic then |£ — El assumes only even values;
if the operator O is fermionic |[£ — EI assumes only odd values. The CPWs can be
further rewritten in terms of conformal blocks (CB) and tensor structures as

Ny

Wab . — Gl,ab B ’ TI’ 335
(010,0){00504) Z <01020><00304>(u V) ( )

inducing the conformal block expansion for gi

I a 1 ab b
, = E E A A7 . 3.36
g4(l/t V) s—OPE 5 - (010,0) (0102())(00204)( V) (00;04) ( )
a,

Computation of conformal partial waves The computation of CPWs is rather
difficult. Luckily there is a way of reducing them to simpler objects called the seed
CPWs by means of differential operators [61, 62].

For example, the s-channel CPW appearing due to the exchange of a generic operator

00, p=1e-7 (3.37)
by using (3.25) can be written as

ab _mna b seed
Wio0:0100100 = P1010:0) 700,00V 700 e 0) 7007 00y (3-38)

where ¥; are the operators with the same 4D scaling dimensions A; as O;, see
section 3.3.2. The seed CPWs are defined as the s-channel contribution of (3.37) to

the seed 4-point function
<7_'1(0,0) 7_‘2([770) ?_'3(0’0) ﬁ(O,P)>. (339)

An important property of the seed 4-point function (3.39) is that it has only p + 1
tensor structures. We will distinguish two dual types of seed CPWs, following the
convention of [58],

P _ d : 7
Wseed = W<s;'le(0o0)7‘2(17,0)0><5173(0§0)ﬁ(0917)>’ lf g - g S O’ (3'40)

(r) — seed . =
Wdual seed — W<7.—1(0,0)7;(17,0)0><57_;(0,0)ﬂ(0,17)>’ lf t-¢20. (341)
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The case Ws(ge) J= Wc(i% | seeq TEPTOduUces the classical scalar conformal block found
by Dolan and Osborn [118, 119]. The seed CPWs [seedCPW] can be written in

terms of a set of seed conformal blocks He(p ) (z,7) and ﬁip)(z, 7) as8

p

W =Ky Y (2P HP (2, [12][1]" (3.42)
e=0

Wt seea = K i(—Z)”'e 7 o[ ] (3.43)
e=0

where the tensor structures are defined in appendix B.4.

The seed conformal blocks H e(p ) (z,z) and ﬁip) (z,z) were found® [plugSeedBlocks,
plugDualSeedBlocks] analytically in (5.36) and (5.37) in [58] up to an overall
normalization factors, denoted there by c{i W and Eg’_p. Given the choice of seed 3-
point tensor structures (B.96)-(B.99) and normalization of 2-point functions (3.16),
we can fix these factors as

b, =Dl and @ _ =27 (=) if; (3.44)

see appendix B.3 for details. Other relevant functions are [plugCoefficients,

plugKFunctions, reduceKFunctionDerivatives, plugPolynomialsPQ].

The Casimir equation A very important property of the CPWs is that they satisfy
the conformal Casimir eigenvalue equations [119, 120]'° which have the form

_ ab _
(@” E") W<01020><50304> =0, (3.45)

where n = 2,3,4 and €,, €3 and €4 are the quadratic, cubic and quartic Casimir
differential operators respectively [opCasimirnEF, opCasimir24D]. They are
defined in appendix B.6 together with their eigenvalues [casimirEigenvaluen],
where the conformal generators £,y given in appendix B.2 are taken to act on 2
different points

Lyun = Liun + & un, (3.46)

with (ij) = (12) or (ij) = (34) corresponding to the s-channel CPWs!!.

8The factors (—2)P~¢ are introduced here to match the original work [58].
Notice slight change of notation Hy,ey¢ (2, Z) = Gpere (2, 7). This change is needed to distinguish
Hpere(2,2) = Ghere(u(z,2), v(2,2)).
19DK thanks Hugh Osborn for useful discussion on this topic.
"'Notice that the eigenvalue of €3 taken at (ij) = (34) will differ by a minus sign from the
eigenvalue of €3 taken at (ij) = (12).
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The n = 2 Casimir equation was used in [58] for constructing the seed CPWs. Given
that the seed CPWs are already known, in practice the Casimir equations can be

used to validate the more general CPWs computed using the prescription above.

Conserved and identical operators, #— and 7 —symmetries As noted in sec-
tion 3.2.1, in general there are various constraints imposed on 3- and 4-point func-
tions, such as reality conditions, permutation symmetries, conservation, and £ —
and 7 — symmetries. Recall that the most general CPW decomposition is given
by (3.36),

I a Lab b
_ 1 ab P 47
sl 5 E;Zb“ ©010:0) 6,0,05G0,00 " 0.0, (3.47)
a,

According to the discussion around (3.22), the general solution to these constraints

relevant for this expansion is

(010,0) = Z 0.0/ 0,000y W A5, = Z G0:00 G000
’ ’ (3.48)
Besides that, if the pair of operators O; and O, is the same as the pair of operatirs
O3 and Oy, there has to exist relations of the form

Ab - Z Nbe e (3.49)
b

(00;04) (00;04)" (0,0,0)

Once the relations (3.48) and (3.49) are inserted in the general expression (3.47), the
resulting 4-point function will satisfy all the required constraints which preserve the
s-channel.!? In particular, the “reduced” CPWs corresponding to the coeflicients
A will also satisfy these constraints automatically. Note that by construction the

reduced CPWs are just the linear combinations of the generic CPWs.

3.2.3 The bootstrap equations
The conformal bootstrap equations are the equations which must be satisfied by the
consistent CFT data. They arise as follows. The s-channel OPE (3.30) is not the

only option to compute 4-point functions, there are in fact two other possibilities.

12Possible constraints which do not preserve s-channel are permutations of the form (13), etc.
Such permutations, if present, are equivalent to the crossing equations discussed below.
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One can use the t-channel OPE expansion

fa oop (O1(p1)02(p2)03(p3)04(ps)) =

1 1 1 1
+(O3(p1)02(p2)01(p3)04(p4)) Do = £(01(p1)04(p2)O3(p3)02(p4)) e
(3.50)
or the u-channel OPE expansion
——
Ja S (O1(p1)02(p2)03(p3)04(p4)) =
1 1 1 1
£(04(p1)02(p2)O03(p3)01(p4)) Do = £(01(p1)O3(p2)02(p3)O04(p4)) -
(3.51)

In the above relations we permuted operators in the second and third equalities to
get back the s-channel configuration. Minus signs are inserted for odd permutation

of fermion operators.

In a consistent CFT the function f; is unique and does not depend on the channel
used to computation it, leading to the requirement that the expressions (3.30), (3.50)
and (3.51) must be equal. These equalities are the bootstrap equations. To be
concrete we write the s-¢ consistency equation using (3.31) and (3.50)

= a ab b
J4 s—OPE ; /l<01OzO)W<01020><50304>/l<50304>» (3.52)

_ a ab b
T one ; 40,0.:0%,0,0,0@0,00 @0,04) . (3-53)

P1P3
In this example the tensor structures Tﬁ transform under permutation of points
pi < pjas
— aplJ ~J
props My opy T0,0,0:0,7 (3.54)

since they form a basis. Further decomposing these expressions using the basis of

1
Ti0,0,010,)

tensor structures one can compute the unknown gi(z, 2)

1 — _ a Lab —\ b
84(2.2) s-OPE ; Zb: ’1<01020>G<0,020><50304>(Z’ Z)/1<50304>’ (3.55)
a,

1 = 1J a J,ab =\ b
= el N N2 GHh o (l—z1-Da
8422 Fop = Mpiops 5L (03020 0:0:0x30109 1 T #1500,
a.

(3.56)
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Equating (3.55) and (3.56) we get N4 independent equations. In a presence of addi-
tional constraints discussed in appendices B.1, B.7 and B.8, not all the N4 equations
are independent, and one should chose only those equations which correspond to the
independent degrees of freedom. In the conventional numerical approach to confor-
mal bootstrap, when Taylor expanding the crossing equations around z = 7 = 1/2,
one should also be careful to understand which Taylor coefficients are truly inde-
pendent. Among other things, this depends on the analyticity properties of tensor

structures T4, see appendix A of [1] for a discussion.

3.3 Embedding formalism
This section is meant to be a summary and a review of the embedding formalism
(EF) [52-54, 125] approach to 4D correlators. The discussion is based on the

works [55, 62] with some developments and corrections.

The key observation is that the 4D conformal group is isomorphic to SO (4, 2), the
linear Lorentz group in 6D. It is then convenient to embed the 4D space into the
6D space where the group acts linearly, lifting the 4D operators to 6D operators.
In particular, the linearity of the action of the conformal group in 6D allows one to
easily build conformally invariant objects. However, non-trivial relations between
these exist, posing problems for constructing the basis of tensor structures already
in the case of 4-point functions. This motivates the introduction of a different

formalism described in section 3.4.

The details of the 6D EF, its connection to the usual 4D formalism, and the relevant
conventions are reviewed in appendix B.2. In this section we discuss only the
construction of n-point tensor structures and the spinning differential operators.
Our presentation focuses on the EF as a practical realization of the framework
discussed in section 3.2.13

Embedding Let us first review the very basics of the EF. We label the points in
the 6D space by XM = {X*, X*, X~}, with the metric given by

X2 = XX, + XTX. (3.57)

The 4D space is then identified with the X* = 1 section of the lightcone X? = 0,

and the coordinates on this section are chosen to be x* = X*.

I3Note that most of the results discussed in section 3.2, like the explicit construction of 2- and
3-point tensor strucutures [53-55] and the existence of the spinning differential operators [61, 62]
were originally obtained within the EF.
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A generic 4D operator 0511 ,'.'.'ff(x) in spin-(¢, £) representation can be uplifted ac-

cording to (B.66) to a 6D operator OZI‘Zf (X) defined on the lightcone X? = 0 and
by

totally symmetric in its both sets of indices. We can define an index-free operator

O(X, S, S) using the 6D polarizations S, and Eb by

O(X,S.5) = 0L (X)Syy ... 0,5 ... 5. (3.58)
b

The 6D operators are homogeneous in X and the 6D polarizations,

- 7 L+ ¢
0(X,S,S) ~X_KS€S€, K=A+T. (3.59)

It is sometimes useful to assign the 4D scaling dimensions to the basic 6D objects
as .
A[X]=-1 and A[S]=A[S]= -5 (3.60)

According to (B.69) there is a lot of freedom in choosing the lift O(X, S, S). We
can express this freedom by saying that the operators differing by gauge terms
proportional to SX, SX or SS are equivalent. Note that O(X, S, S) is a priori defined
only on the lightcone X? = 0, but it is convenient to extend it arbitrarily to all values
of X. This gives an additional redundancy that the operators differing by terms

proportional to X2 are equivalent.

The 4D field can be recovered via a projection operation defined in appendix B.2,

O(x,55) = 0(X,S,9)| (3.61)

proj
which essentially substitutes X, S, S with some expressions depending on x, s, s
only. All the gauge terms proportional to SX, SX, SS or X? vanish under this

operation.

Sometimes it is convenient to work with index-full form OZII"';”(X ) and to fix part
by

of the gauge freedom by requiring it to be traceless. We can restore the traceless

form from the index-free expression O(X, S, §) by

¢ ¢

2 _

0a1...a[(X) — _ _ aai ab' O(X, S, S), (362)
Db T T+ 0+ 0 (I,-_II ) ,u ’
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where 14 5 5 P P
=[S =—+85-—+3 -5 ——], (3.63)
( /N B )5Sa (as-as)
a - 0 9 d
abs(5~—+s-—_+3)—b—sb(—_). (3.64)
N aS 95 3S - aS

Correlation functions A correlation function of 6D operators on the light cone
must be SO(4,2) invariant and obey the homogeneity property (3.59). Consequently,

it has the following generic form

_ _ Nn
OL®) . O Py = Y g (UT!(X,S,T), (3.65)
I=1

where T'(X, S, S) are the 6D homogeneous SU (2, 2) invariant tensor structures and
g7 (U) are functions of 6D cross-ratios, i.e. homogeneous with degree zero SO(4,2)
invariant functions of coordinates on the projective light cone. We also defined a
short-hand notation

P=(X,S,5S). (3.66)

Tensor structures split in a scaling-dependent and in a spin-dependent parts as
— — L 7.
T'(X,8,9) = K, 7'(X,8,5), T/, ~ || $'S;". (3.67)
i=1

The object K,, is the 6D kinematic factor and 77 are the SO (4, 2) invariants of degree
zero in each coordinate. The main invariant building block is the scalar product!>

Xij = -2(X; - X). (3.68)

The 6D kinematic factors [n3KinematicFactor, n4KinematicFactor] aregiven
by

K[+Kj_Kk

Kx=X,", K; l—[Xl.; ) (3.69)

i<j

14These operators are constructed to map terms proportional to SS to other terms proportional to
SS. In the equivalence class of uplifts, given an operator O(X, S, S) one can find another operator
0'(X,S,5) = 0(X, S, S)+(SS)(. . .)o which differs from O by terms proportional to S and encodes
a traceless operator OZ]‘Z; (X). Since after taking the maximal number of derivatives the SS terms

can only map to zero, we can safely replace O by O’. The action on O’(X, S, S) is proportional to
the action of % and % and thus provides an inverse operation to (3.58).

I5Notice a difference in the definition of X;; compared to [55, 58, 62]: Xi'}.ere = —ZXE?‘”C.
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and
K3 *K4

[ Xoa\ 2 (Xia) 2 1
X2 X2

34
We also define the 6D cross-ratios by taking products of X;; factors. For n = 4 only

12

two cross ratios can be formed

2 yv2 2 yv2
_ X12X34 _ X14X23
St e (3.71)
X13X24 X13X24

With these definitions, under projection we recover the usual 4D expressions:

=u, V

2
proj

proj proj

=. (3.72)

proj

Finally, given a correlator in the embedding space one can recover the 4D correlator

, (3.73)

©OL ). 0L (p,)y = (O R 0L B,y
proj

Ay

with the projections of the 6D invariants entering the 6D correlator given in the

formula (3.72) and appendix B.4.

3.3.1 Construction of tensor structures
Let us discuss the construction of tensor structures T,{ (X, S, S). In index-free nota-
tion, this is equivalent to finding all SU (2, 2) invariant homogeneous polynomials in
S, S. All SU(2,2) invariants are built fully contracting the indices of the following
objects:

5%, €anedr €% Xiap X;'s Sk Sy (3.74)

With the exception of taking traces over the coordinates tr[Xl-ij .. -inl], 16 all
other tensor structures are built out of simpler invariants of degree two or four in S
and S.

List of non-normalized invariants By taking into account eq. (B.50) and the
relations (B.68) and (B.72), it is possible to identify a set of invariants with the
properties discussed above. These can be conveniently divided in five classes. The
number of possible invariants increases with the number of points n. Below we
provide a complete list of them for n < 5 and indicate their transformation property
under the 4D parity. In what follows the indices i, j, k, [, . . . are assumed to label

different points.

16 A1l such traces can be reduced to the scalar product X;; = —Tr[Xin] /2.
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Class I constructed from S; and § ; belonging to two different operators.

n=2: 1N = (58 o,
.. _ _ P i
>6:

Class II constructed from S; and S; belonging to the same operator.

. — — P . .
n>3: ]]l.k = (SinXkS,') — _Jllcj = J]l-k,

. — — — P .
n=5: Ju = SXXXXnS) — ~Ju (3.76)
n>7

Class III  constructed from §; and §; belonging to two different operators.

n=3: K = (5X.S) I K = 3X5)),

ij Y vV P i Y. XY ©
n>5: K/ = ($XiXiXuS) e Kin = SXiXX,S), GTD
n

Class IV  constructed from S; and S; belonging to the same operator.

. — — P —i - — —
nx4: Ly = SXXXS) — Ly = SXXX/S)),
n>6:

(3.78)

Class V constructed from four S or four S belonging to different operators.

n>4: MM = (5,855 o M = (S5,55). (379

Basic linear relations Simple properties [applyEFProperties] arise due to the
relation (B.50). For instance
Iy=-J, K!=-K|, K=-K; (3.80)
for n > 3. Consequently not all these invariants are independent and it is convenient
to work only with a subset of them, for instance J ]’ < K]l:] , F,:]. For n > 4 other
properties must be taken into account:
ij o ij i qi ijkl _ pglijk) g0k _ ikl
Ly + Iy ==Xl Ly, =Ly, M7 =MY", M™ =M . (3.81)
These can be used in analogous manner to work only with a subset of invariants, for

. [<j 4> i
instance I'~/, "/, L!

— 1234 _ , .
et TS Licwap M 1234 and M 7. Another important linear relation is

Ji

X = 0, (3.82)

where m is allowed to be equal to i.
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Non-linear relations Unfortunately, even after taking into account all the linear
relations above, many non-linear relations between products of invariant are present,
see equations (B.122) - (B.125) for n > 3 relations [applyJacobiRelations]

and appendix A in [62] for some n > 4 relations.!” We expect that they all arise

from (B.73).18 As an example consider the following set of relations

ijkl _ —1( ik il Jl prik
MM = 2 x V(K KV - KK, (3.83)
—ijkl 1 (=ik =il —jl —ik
M =2x;' (K K; -K; K ). (3.84)

. —ijki

They show that M¥*! and M V™" can be rewritten in terms of other invariants; hence
class V objects are never used. All the relations obtained by fully contracting (3.74)
with (B.73) in all possible ways, involve at most products of two invariants in class
I — IV. In fact, we will see in section 3.4.2 that all non-linear relations have a
quadratic nature. However, these quadratic relations can be combined together to
form relations involving products of three or more invariants.!® See appendix B.5

for an example of such phenomena in the n = 3 case.

Normalization of invariants The 7/(X, S, S) are required to be of degree zero
in all coordinates. It is then convenient to introduce the following normalization

factors

1
Nijg = ———— (3.85)

\/Xinijki.

Using these factors [normalizeInvariants, denormalizeInvariants] itis

possible to define normalized type I and type II tensor structures

=17 [0 = Nyl

f_ i o i
kl = kP ij=Njk‘]jk’ jkim = jkNlmijzm’ (3.86)

and normalized type III and type IV tensor structures

RV =N/K!, R = NuwK)

A ;
k= kim kim’ ijl= jlejkl’ (387)

"Mind the difference in notation, see footnote 20 for details.

181n principle the Schouten identities might also contribute, see the footnote at page 26 of [54];
we found however that the Schouten identities, when contracted, give relations equivalent to (B.73)
forn < 4.

19In other words, we have a graded ring of invariants and an ideal / of relations between them.
The goal is to find a basis of independent invariants of a given degree modulo /. In principle, I is
generated by a quadratic basis, but it is not trivial to reduce invariants modulo this basis. One would
like to find a better basis, e.g., a Grobner basis, which then will contain higher-order relations.
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2ij ]
with the analogous expressions for parity conjugated invariants K, , K;,,, and L

In appendix B.4 we provide an explicit 4D form of these invariants after pI’O]CCthIl.

Notice the slight change of notation from previous works?2°.

Basis of tensor structures Given an n-point function, one can construct a set of
tensor structures [n3ListStructures, n3ListStructuresAlternativeTS]

[n4ListStructuresEF] by taking products of basic invariants as

7! =
[T B T T G (Bl T2l )" ) K]
1,],...

n>2 n>3 n>4 n>5

(3.88)
The subscripts stress that for a given number of points n not all the invariants are
defined. The non-negative exponents # are determined by requiring T,{ to be of
degree (¢, £) in (S, S)). Generally, not all tensor structures obtained in this way
are independent, due to the properties and relations discussed above. The number
of relations to take into account increase rapidly with n. For n < 3 the problem
of constructing a basis of independent tensor structures has been succesfully solved
in [54, 55]; we review the construction for n = 3 in appendix B.5. However
the increasing number of relations makes this approach inefficient to study general
correlators for n > 4, mainly because many relations which are cubic or higher order
in invariants can be written. In section 3.4 an alternative method of identifying all
the independent structures is provided. Using this method we will also prove in
section 3.4.2 that any n-point function tensor structure is constructed out of n < 5

invariants, namely the invariants involving five or less points in the formula (3.88).

3.3.2 Spinning differential operators
Let us now discuss the EF realization of the spinning differential operators used

in (3.25) which allow to relate 3-point tensor structures of correlators with different

spins?!
G0 AT )
00D 0Dy ~ by 0 0 0D (3.89)
20The correspondence with the notation of [55, 58, 62] is as follows: i~ Ly, -2 i,i]l ~

. 21 —_ 21
T =2 f;k ~ Jijk N-2K ~ Ki i, \/—_ZKkJ ~ Kk, ij, V—_Si;kl ~ Kijxin N-8Ljy ~
E,’,jkl, where the expressions in the Lh.s. represent our notation and the expressions in the r.h.s.
represent their notation.
2I'This relation is of course purely kinematic, it holds only at the level of tensor structures and
does not hold at the level of the full correlator.
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The operators?? D;; are written as a product of basic differential operators which
were found in [62]

Dy ={ [[] Vit atnt DY) (3.90)

i,j=12

The exponents are determined by matching the spins on both sides of (3.89). The
basic spinning differential operators are constructed to be insensitive to pure gauge
modifications and different extensions of fields outside of the light cone as stressed
in (B.74). The action of these operators in 4D can be deduced by using the projection
rules given in (B.76).

We provide here the list of basic differential operators?® entering (3.90) arranging
them in two sets according to the value of Al = |£; +{; — Z,- - Zjl =0,2. ForA¢ =0

we have
1— _ =N 0 0 =
Di] = —- iZME Si(XjM_N - XjN—M) ~ 8iSis
2 p X, 6Xl. 5
o~ — _N .. .. —q —
D;j = S X;X Si_N +21Y Siq =218 — ~ SiS,
) X! 9Sja as; (3.91)
Ilj = lSj ~ SiS',
_ o2 =1
Vlj = [Xz ]]b b ~ Si ]SJ :
For A¢ = 2 we have 5
d,‘j = SJY,'—_ ~ Ei_lSJ‘
aS; (3.92)

_ _ 0 =
d,’j ESle'a—Si ~ Si Sj.
Note that for any differential operator D;; we necessarily have Al even, since it has

to preserve the total Fermi/Bose statistics of the pair of local operators.

The basic spinning differential operators described above carry the 4D scaling
dimension according to (3.60), thus it is convenient to introduce an operator = which
formally shifts the 4D dimensions of external operators in a way that effectively
makes the 4D scaling dimensions of D;; vanish. The action of Z on basic spinning
differential operators is defined as

EID;j1fn = (Dij fn) . E[Dijlfn = (Dijfa) (3.93)

j—>Aj+1 Ai—Ai+1

22We distinguish the operators D here and the operators D described in section 3.2.1 because
acting on the seed tensor structures they generate different bases. The basis spanned by D is often
called the differential basis.

Z3Notice a change in the normalization of the basic spinning differential operators compared
to [62].
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and

Eloplfn = (op fn) (3.94)

Ai—A+1721850;+172
where op denotes any of the remaining spinning differential operators.?* These
formal shifts of course make sense only if the scaling dimensions appear as variables
in f,,. The use of the dimension-shifting operator = allows to keep the same scaling

dimensions in the seed CPWs and the CPW related by (3.38).

The relevant functions in the package are [opDEF, opDtEF, opdEF, opdbEF,
opIEF, opNEF] and E.

3.4 Conformal frame

For sufficiently complicated correlation functions one finds a lot of degeneracies in
the embedding space construction of tensor structures. There exists an alternative
construction [1, 51] which provides better control under degeneracies. More pre-
cisely, it reduces the problem of constructing tensor structures to the well studied

problem of finding invariant tensors of orthogonal groups of small rank.

Our aim is to describe the correlation function f,(x, s, s) whose generic form is
givenin (3.11). The conformal symmetry relates the values of f,(x, s, s) at different
values of x. There is a classical argument, usually applied to 4-point correlation
functions, saying that it is sufficient to know only the value f,(xcF, s,s) for some
standard choices of xcr such that all the other values of x can be obtained from
some xcr by a conformal transformation. This conformal transformation then
allows one to compute f,(x,s,s) from f,(xcrF,s,s). The standard configurations
xcr are chosen in such a way that there are no conformal transformations relating
two different standard configurations, so that the values f,,(xcr, s, s) can be specified
independently. Following [1], we call the set of standard configurations xcr the

conformal frame (CF).

The usefulness of this construction lies in the fact that the values f,,(xcr, s, s) have
to satisfy only a few constraints. In particular, these values have to be invariant
only under the conformal transformations which do not change xcr [1]. Such
conformal transformations form a group which we call the “little group”. The little
group is SO(d + 2 — n) for n-point functions in d dimensions.?> For example, for

4-point functions in 4D it is SO(2) =~ U(1). One can already see a considerable

24The shift in the last formula can alternatively be implemented with multiplication by a factor
172
1

2For n > 3 and generic x. The little group is trivial for n > d + 2.
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simplification offered by this construction for 4-point functions in 4D, since the

invariants of SO(2) are extremely easy to classify.

We use the following choice for the conformal frame configurations xcf forn > 3,

xk'=1(0,0,0,0), (3.95)
xy = (- 2)/2,0,0,(z +7)/2), (3.96)
x4 =(0,0,0,1), (3.97)
xk'=(0,0,0,L), (3.98)
b= (x2, x5,0,x2), (3.99)

where if n = 3 we can set z = 7 = 1/2 and if we have more than 5 operators, the

unspecified positions xs¢ are completely unconstrained.

Here L is a fixed number, and we always take the limit L — +co to place the
corresponding operator “at inifinity”. In this limit one should use the rescaled

operator Oy
O4 — Oy L™ (3.100)

inside all correlators to get a finite and non-zero result.

0 .1

x
5
the conformal frame and thus are essentially the conformal cross-ratios. Note

The variables z, 7, x xg, and the 4-vectors xg, x7, ... are the coordinates on
that we have 2 conformal cross-ratios for 4 points, and 4 n — 15 for n points with
n > 5. Notice also that for 4-point functions the analytic continuation with z = 7"
corresponds to Euclidean kinematics. It is easy to check that there are no conformal
generators which take the conformal frame configuration (3.95) - (3.99) to another

nearby conformal frame configuration.

3.4.1 Construction of tensor structures

3.4.1.1 Three-point functions

As shown in appendix B.5, an independent basis for general 3-point tensor structures
is relatively easy to construct in EF, and there is no direct need for the conformal
frame construction. Nonetheless, in this section we employ the CF to construct
3-point tensor structures in order to illustrate how the formalism works in a familiar

case.2°6

26The CF construction of 3-point functions is not implemented in the package.
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The little group algebra so(1,2) which fixes the points xy, x», x3 is defined by the
following generators
MY, M M2 (3.101)

see appendix B.l for details. According to our conventions, the corresponding

generators acting on polarizations s, are

1 1 i
01 1 02 2 12 3
SOl — _— S22 _ o St = —& 102
277 27 277 (3.102)
and the generators acting on 5% are
=01 1 =02 1 =12 i
S = 50'1, S = 50'2, S = %0’3. (3.103)

3

It is easy to see that if we introduce ¢, = s, and 7, = O'QBE’B , then ¢ and 7 transform

in the same representation of so(1, 2).

General 3-point structures are put in one-to-one correspondence with the so(1,2) =~
s11(2) conformal frame invariants built out of 7; and 7;, i = 1,2,3. This gives an
explicit implementation of the rule [1, 23, 51] which states that 3-point structures

correspond to the invariants of SO(d — 1) = SO(3) group
- - — \S0(3 - - - \S0(3
(CLtn e @i e @)V = (aetiehehetel) . (3.104)

Using this rule, we can immediately build independent bases of 3-point structures,
for example by first computing the tensor product decompositions
_ €i+zi _
teli= @ jn  Gi+li+leven) (3.105)
Ji=lti=ti]
and then for every set of j; constructing the unique singlet in j; ® j, ® j3 when it

exists.

A more direct way, which does not however automatically avoid degeneracies, is
to use the basic building blocks for SO(3) invariants, which are the contractions
of the form {'t;,, t7f;, and 7l7;,. It is then straightforward to establish the

correspondence with the embedding formalism invariants
Iij o ZT,'tj, le:k oC fit,’, K;{J o titj, Elkj o lTiZTj, (3.106)

where it is understood that i, j, k are all distinct. Up to the coefficients, this dictionary

is fixed completely by matching the degrees of s and 's on each side.
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Correspondingly, as in the embedding space formalism, we have relations between

these building blocks, which now come from the Schouten identity?’
(AB)C, + (BC)A, + (CA)B, = 0. (3.107)
For example we cantake A =1;, B=1t;,C =7 ;j and contract (3.107) with f to find
(tity) (Fjtx) + (it ) (titr) + (1) (txfx) = 0, (3.108)
which corresponds via the dictionary (3.106) to an identity of the form
#KIVE] + #1F 19 + 4D = 0. (3.109)

This gives precisely the structure of the relation (B.122). We thus effectively
reproduce the EF construction.

Finally, let us briefly comment on the action of # in the 3-point conformal frame.
The parity transformation of operators (B.26) induces the following transformation

of polarizations
s¢ = i5%, P sy = t—-ic’h, oot (3.110)

The full parity transformation does not however preserve the conformal frame since
it reflects all three spatial axes and thus moves the points x, and x3. We can

reproduce the correct parity action in the conformal frame by supplementing the
in§03

full parity transformation with iz boost in the 03 plane given by e~ =iozont
and by 03¢="" 3 = —jcr3 on 7. This leads to
t—>f, - -t (3.111)

Note that according to (3.111) the transformations properties of (3.106) under parity
match precisely the ones found in (3.75) - (3.77).
3.4.1.2 Four-point functions

In the n = 4 case the little group algebra so(2) =~ u(1) which fixes the points

X1, X2, X3, X4 is given by the generator

M2 (3.112)

Z"Which itself follows from contracting €#” with the identity AjoBsgC,) = 0 valid for two-
component spinors.
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Note that the algebra so(2) is a subalgebra of the 3-point little group algebra so(1, 2)

discussed above. According to (3.102), its action on both ¢ and 7 is given by
S2= 253 (3.113)

This generator acts diagonally on ¢ and 7, so that we can decompose

S R I I T S 7]
, Sp=|> t=so =", f=o’ 35" =|2|. (3.114)

Note that our convention 54 = (s,)* implies that £ = ¢* and 77 = n*. Appropriately

Sa

defining the u(1) charge Q we can say that

Ql¢1= Q7] =+1 and Qly] = O[] = —1. (3.115)

Tensor structures of 4-point functions are just the products of £, €, , 77 of total charge
Q = 0. These are given by [CF4pt ,nd4listStructures]

qQ 92 93 q4| _ —qitli)2 qitli) 2T +i/2—g + 02
[ ]=H?‘lfﬂ* P g

4 @ T3 44 S (3.116)
g € {=Ci)2, ..., 62}, G; € (=Ci/2, ..., Ci]2),
subject to
4
2, =7)=0. (3.117)
i=1

It is clear from the construction that these 4-point structures are all independent,
i.e. there are no relations between them. It is in contrast with the embedding space

formalism, where there are a lot of relations between various 4 point building blocks.

As a simple example, consider a 4-point function of a (1, 0) fermion at position 1, a
(0, 1) fermion at position 2 and two scalars at position 3 and 4. The allowed 4-point

tensor structures are then

+2 0 00 -0 00
> and | 2 : (3.118)
0 +3 00 0 -3 00

To compute the action of space parity, we need to supplement the full spatial parity
(3.110) with a 7 rotation in, say, the 13 plane in order to make sure that parity

preserves the 4-point conformal frame (3.95) - (3.98). In this case the combined
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transformation is simply a reflection in the 2°’nd coordinate direction. It is easy to

compute that this gives the action
§ >~k E—if n— -, 7. (3.119)

Note that this does not commute with the action of u(1) since the choice of the
13 plane was arbitrary — we could have also chosen the 23 plane, and u(1) rotates
between these two choices. It is only important that this reflection reverses the

charges of 1(1) and thus maps invariants into invariants.

From (3.119) we find that the parity acts as

AT B A I E
91 92 93 4 a @ 93 qa

P (3.120)

From the definition (3.116) we also immediately find the complex conjugation rule

%

Q92 93 94| _ 91 92 43 4 (3.121)

41 92 93 944 q 92 q3 44

According to (B.36), by combining these two transformations we find the action of

time reversal

R S ST e (3.122)
91 492 93 44 91 492 93 44
3.4.1.3 Five-point functions and higher
In the n > 5 case there are no conformal generators which fix the conformal frame.
It means that all £, € , 77 are invariant by themselves.2® This allows us to construct

the n-point tensor structures

n - _
ql q2 e q —qi+ti ]2 _qi+L; 259 +€[/2—_i tif2
. B e I o T H A (3.123)
91 492> --- 4y i=1

with the only restriction

gi € (=6i/2, ... 6;]2), q; € {=;]2,...(i[2). (3.124)

Z8More precisely, there is still the Z, kernel of the projection Spin(1, 3) = SO(1,3), which gives
the selection rule that the full correlator should be bosonic (in this sense &, £, 17, 17 are not individually
invariant).
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3.4.2 Relation with the EF

In practical applications, 3- and 4-point functions are the most important objects. It
is possible to treat 3-point functions in the CF or the EF. Since the latter is explicitly
covariant, it is often more convenient. On the other hand, 4-point functions are
treated most easily in the conformal frame approach. This creates a somewhat
unfortunate situation when we have two formalisms for closely related objects. To

remedy this, let us discuss how to go back and forth between the EF and the CF.

Embedding formalism to conformal frame It is relatively straightforward to find
the map [toConformalFrame] from the embedding formalism tensor structures to
the conformal frame ones. First one needs to project the 6D elements to the 4D ones
and then to substitute the appropriate values of coordinates according to the choice

of the conformal frame.

For 6D coordinates according to (B.65) and the definition of the conformal frame
(3.95) - (3.98) one has

X1 =(0,0,0,0,1,0),
X =0zZ-2)/2,0,0,(z+72)/2,1,-22),

(3.125)
X3 =1(0,0,0,1,1,-1),
X4 =(0,0,0,L,1,~L?),
and for the 6D polarizations according to (B.71) one has
. _ <\ =Pa u
(Si)a = #E‘;); O S (3.126)
_xi O-,u (Si)ﬁ (Si)d

In the last expression it is understood that all the coordinates x belong to the
conformal frame xcr (3.95) - (3.98).

The final step is to perform the rescaling (3.100) and to take the limit L — +oo.
There is a very neat way to do it by recalling that 6D operators O according to (3.59)

are homogeneous in 6D coordinates and 6D polarizations, thus
O(S1, Say X)L = O(Sy, Sa, Xa) L0474 = O(S4/L, Sa/L, Xa/LP).  (3.127)

It is then clear that the final step is equivalent to the following substitution of the 6D

coordinates at the 4th position

X4 — Llim X4/L2 =(0,0,0,0,0,-1) (3.128)
—+00
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and for the 6D polarizations

_ . -\ =B
(S4)a — lim (S4)a/L = Y , (S4)d — lim (S4)a/L — (54)ﬁ0-3 .
L—+o00 _0.3 [ 5tco

(s4)p
(3.129)

Conformal frame to embedding formalism As discussed in section 3.4.1.2, 4-
point tensor structures are given by products of &;, Ei, ni, n; with vanishing total U (1)
charge. It is easy to convince oneself that any such product can be represented (not

uniquely) by a product of U(1)-invariant bilinears
E& Ty Emp. EM, (3.130)

where i, j = 1...4. For n > 5-point a general tensor structure is still represented
by a product of bilinears, see footnote 28, but since there is no U(1)-invariance

condition, the following set of bilinears should also be taken into account
&€ mimy. EE Wl W€ Emy (3.131)
wherei,j =1...n.

These bilinears themselves are tensor structures with low spin. Noticing that the EF
invariants are also naturally bilinears in polarizations we can write a corresponding
set of EF invariants with the same spin signatures. Translating these invariants
to conformal frame via the procedure described above [toConformalFrame],
one can then invert the result and express the bilinears (3.130) and (3.131) in
terms of covariant expressions. We could call this procedure covariantization
[toEmbeddingFormalism]. The basis of EF structures is over-complete so the

inversion procedure is ambiguous and one is free to choose one out of many options.

Since there is a finite number of bilinears (3.130) and (3.131) there will be a finite
number of covariant tensor structures they can be expressed in terms of after the
covariantization procedure. It is then very easy to see that one needs only the class
of n = 4 tensor structures to cover all the bilinears (3.130) and the class of n = 5

tensor structures to cover all the bilinears (3.131).

The ambiguity of the inversion procedure mentioned above is related to the linear
relations between EF structures. Non-linear relations between EF structures arise

due to the tautologies such as

(L)) = (EOEmD- (3.132)
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This observation in principle allows to classify all relations between n > 4 EF

invariants.

Example. By going to the conformal frame we get

Jy; = z—%glfl - E—Llﬁlm, By=-z& &+ 2. Ty =-&&+Tm.
(3.133)
Inverting these relation one gets
— z-1 _ 21 o1 — z—1 71 71
161 = ) ((Z -1+ J24)’ mn = ) ((Z -1+ J24)'
(3.134)

We see right away that the invariants J213,

easily get arelation between them by plugging (3.134) to the third expression (3.133).

le4 and J314 must be dependent. One can

The obtained relation will match perfectly the linear relation (3.82).

Note that there is a factor 1/(z —7) in (3.134), which suggests that the structure Elf 1
blows up at z = Z. This is not the case simply by the definition of £ and &; instead, it
is the combination of structures on the right hand side which develops a zero giving
a finite value at z = 7. However, this value will depend on the way the limit is taken.
This is related to the enhancement of the little group from U (1) = SO(2) to SO(1,2)
at z = z. At z = Zz it is no longer true that Elfl is a little group invariant. This
enhancement implies certain boundary conditions for the functions which multiply
the conformal frame invariants. See appendix A of [1] for a detailed discussion of

this point.

3.4.3 Differentiation in the conformal frame

Now we would like to understand how to implement the action of the embedding
formalism differential operators such as (3.91) and (3.92) directly in the conformal
frame. We need to make two steps. First, to understand the form of these differential
operators in 4D space. This is done by using the projection of 6D differential
operators to 4D given in appendix B.2. Second, to understand how to act with 4D
differential operators directly in the conformal frame. We focus on this step in the
remainder of this section. For simplicity, we restrict the discussion to the most

important case of four points.

A correlation function in the conformal frame is obtained by restricting its coordi-
nates x to the conformal frame configurations xcr. The action of the derivatives

0/0s and 0/J's in polarizations on this correlation function is straightforward, since
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nothing happens to polarizations during this restriction. The only non-trivial part is
the coordinate derivatives d/dx;: in the conformal frame a correlator only depends
on the variables z and 7 which describe two degrees of freedom of the second

operator and it is not immediately obvious how to take say the d/0x; derivatives.

The resolution is to recall that 4-point functions according to (3.10) are invariant
under generic conformal transformation spanned by 15 conformal generators Ly .

By using (B.57) one can see that it is equivalent to 15 differential equations

1y +Louy + 8 un +Lamn) falxi, s, si) = 0. (3.135)

The differential operators ¥; y/n defined in (B.58) together with (B.76) and (B.77)
are given by linear combinations of derivatives d/0x;, d/ds; and d/ds;. Out of
15 differential equations (3.135) one equation (for Li;) expresses the little group
invariance under rotations in the 12 plane and thus when restricted to the 4-point
conformal frame (3.95) - (3.98) does not contain derivatives d/0x;. The remain-
ing 14 equations allow to express the 14 unknown derivatives 0/ 8xfl restricted to
the conformal frame in terms of d /Gxg, 0 /8x%, 0/ds; and 0/0s;. Higher-order

derivatives can be obtained in a similar way by differentiating (3.135).

Computation of general derivatives can be cumbersome, but in practice it is easily
automated with Mathematica. We provide a conformal frame implementation
of the differential operators (3.91) - (3.92) [opD4D, opDt4D, opd4D, opdb4D,
opI4D, opN4D] as well as of the quadratic Casimir operator [opCasimir24D]
acting on 4-point functions. As a simple example (although it does not require

differentiation in x), we display here the action of V|, on a generic conformal frame

structure
q 492 q3 44 _
V| 2 _'|gz2)
91 492 493 44
(61 +2g)E+2G) a1 -5 @ @3 @ _
=- 1 _ 7y 2 &)
q1 42— 35 43 4q

6 —2q0) (62 -2gy) |q1 + 1 (s 7
206G ety 2B s (33
4 q, 4 t35 43 44

Other operators, e.g. (3.91), give rise to more complicated expressions which how-

ever can still be efficiently applied to the seed CPWs.
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3.5 Conclusions

In this chapter we have described a framework for performing computations in 4D
CFTs by unifying two different approaches, the covariant embedding formalism and
the non-covariant conformal frame formalism. This framework allows to work with
general 2-, 3-, and 4-point functions and thus to construct the 4D bootstrap equations
for the operators in arbitrary spin representation, ready for further numerical or

analytical analysis.

In the embedding formalism we have explained the recipe for constructing tensor
structures of n-point functions in the 6D embedding space. We have also summa-
rized the so called spinning differential operators relating generic CPWs to the seed
CPWs. The conformally covariant expressions in 4D are easily obtained from the
6D expressions by using the so called projection operation. For the objects like
kinematic factors and 2-, 3-, and 4-point tensor structures we have performed the

projection operation explicitly.

The construction of a basis of tensor structures in the embedding formalism requires
however the knowledge of a complete set of non-linear relations between products
of the basic conformal invariants. Starting from n = 4 it is rather difficult to find
such a set of relations and thus the embedding formalism turns out to be practically

inefficient for n > 4. This problem is solved using the conformal frame approach.

In the conformal frame we have provided a complete basis for (n > 3)-point tensor
structures in a remarkably simple form. For instance in the n = 4 case the tensor
structures are simply monomials in polarization spinors with vanishing total charge
under the U(1) little group. In the n < 4 cases the little group is larger and
constructing its singlets becomes harder whereas the embedding formalism is easily
manageable. Since the embedding formalism is also explicitly covariant it becomes

preferable for working with 2- and 3-point functions.

With practical applications in mind, we have found the action of various differential
operators on 4-point functions in the conformal frame formalism. We have also
shown how to apply permutations in the conformal frame. These results allow
one to work with the 4-point functions (and, consequently, the crossing equations)

entirely within the conformal frame formalism.

We have established a connection between the tensor structures constructed in the
embedding and the conformal frame formalisms. The embedding formalism to

conformal frame transition is straightforward and amounts to performing the 4D
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projection of the 6D structures and setting all the coordinates to the conformal
frame. The conformal frame to the embedding formalism transition is slightly more
complicated since it is not uniquely defined due to redundancies among the allowed
6D structures. After “translating” all the basic 6D structures to the conformal frame

one inverts these relations by choosing only the independent 6D structures.

Finally, we have implemented our framework as a Mathematica package freely
available at https://gitlab.com/bootstrapcollaboration/CFTs4D. It can perform any
manipulations with 2-, 3- and 4-point functions in both formalism switching between
them when needed. A detailed documentation is incorporated in the package with

many explicit examples.

In the appendices we made our best effort to establish consistent conventions; we
have provided a proper normalization of 2-point functions and the seed confor-
mal blocks and summarized all the Casimir differential operators available in 4D.
We have also given some extra details on permutation symmetries and conserved

operators.

It is our hope that this work will aid the development of conformal bootstrap methods
in 4D and will facilitate their application to spinning correlation functions, such as
4-point functions involving fermionic operators, global symmetry currents, and

stress-energy tensors.

Acknowledgments

We thank Alejandra Castro, Tolya Dymarsky, Emtinan Elkhidir, Gabriele Ferretti,
Diego Hofman, Hugh Osborn, Jodo Penedones, Riccardo Rattazzi, Fernando Rejon-
Barrera, Slava Rychkov, Volker Schomerus, David Simmons-Duffin, Marco Serone
and Alessandro Vichi for useful discussions. We particularly thank Marco Serone
for his valuable comments on the draft and Emtinan Elkhidir for collaboration on
the initial stages of this work. DK and PK are grateful to the organizers of Boostrap
2016 workshop and the Galileo Galilei Institute for Theoretical Physics where the
main ideas of this project were born. PK would like to thank the Institute for
Advanced Study, where part of this work was completed, for hospitality. This work
is supported in part by the DOE grant DE-SC0011632 (PK).


https://gitlab.com/bootstrapcollaboration/CFTs4D#cfts4d

91
Chapter 4

WEIGHT-SHIFTING OPERATORS AND CONFORMAL
BLOCKS

This chapter is essentially identical to:

D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight Shifting Operators and
Conformal Blocks, JHEP 02 (2018) 081, [1706.07813].

4.1 Introduction

Concrete results in conformal representation theory have played a crucial role in the
recent resurgence of the conformal bootstrap [6, 30-32, 34-39, 41, 4347, 94-101,
110, 114, 122, 126-158]. Compact expressions for conformal blocks with external
scalars [57, 63] were crucial for the development of modern numerical bootstrap
techniques [30]. Subsequently, techniques for computing blocks of operators with
spin [2, 39, 53, 54, 58, 60-62, 81, 82] have led to universal numerical bounds on
wide classes of CFTs [39, 41, 159], in addition to analytical results like proofs of the
conformal collider bounds [77, 160—162] and the average null energy condition [73],
and new results on the Regge limit in CFTs [163—165]. In parallel developments,
harmonic analysis on the conformal group [65] has played an important role in
several recent works [66, 166—170], including the large-N solution of the SYK
model [171-174]. Relationships between Witten diagrams and conformal blocks

have also received recent attention [175—180].

More sophisticated analyses will require new results for operators with spin. Several
efficient techniques for dealing with spinning operators have been developed over the
last decade, including index-free/embedding-space methods [39, 53, 54, 61, 79, 82],
the shadow formalism in the embedding space [54], “differential bases” for three-
point functions [39, 61], and recursion relations [41, 49, 81]. While these methods
are superior to naive approaches, they still aren’t enough to solve some difficult
problems. For example, the shadow formalism lets one write integral expressions
for general blocks, but the integrals are difficult to evaluate in practice in all but the
simplest cases. The differential basis approach lets one compute spinning blocks

in terms of simpler “seed blocks,” but doesn’t explain how to compute the seed


http://dx.doi.org/10.1007/JHEP02(2018)081
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blocks.!

In this work, we introduce new tools that dramatically simplify computations in
conformal representation theory, particularly involving operators with spin. The
first key idea is to consider a (fictitious) operator w(x) that transforms in a finite-
dimensional representation W of the conformal group. By studying the OPE of
this highly degenerate operator with a non-degenerate operator O(x), we find (in
section 4.2) a large class of conformally-covariant differential operators D), that can
be used for computations. Here, A = 1,...,dim W is an index for W, and v is a

weight vector of W (i.e., a common eigenvector of the Cartan subalgebra).?

The action of D} on O(x) shifts the weights of O by the weights of v, in addition
to introducing a free A index. For this reason, we call D), a weight-shifting oper-
ator. For example, weight-shifting operators can increase or decrease the spin of
0.3 Weight-shifting operators can be written explicitly using the embedding space
formalism [27, 39, 52-54, 82, 92, 125, 186-188], e.g. (4.45) in general spacetime
dimensions, (4.72) in 3d, and (4.79) in 4d. However, our construction applies in-
dependently of the embedding space formalism, and in fact works for generalized

Verma modules of any Lie (super-)algebra.*

A second key observation is that weight-shifting operators obey a type of crossing

equation,

D} (0 (x1)0x(x2)03(x3)) W = " (-} DY (O1(x1)05(x2)03(x3)),
Oé,v’,b

4.1)

which we derive in section 4.3. Here, a and b label conformally-invariant three-point
structures that can appear in a correlator of the given operators. The coeflicients
{---} are examples of 6j symbols (or Racah-Wigner coeflicients) for the conformal

group (which in this case are computable with simple algebra). Equation (4.1) lets

'A recursion relation for seed blocks in 3d was guessed in [81] by solving the Casimir equation
order-by-order in an OPE expansion. Expressions for seed blocks in 4d were derived in [58] by
solving the Casimir equation using a suitable ansatz.

2Some examples of such operators appear in the conformal tractor calculus, which originally
deals with the case of tensor W [181, 182]. The theory of local twistors [183—185] deals with the
case of spinor W. The primary interest of these theories is in curved conformal manifolds. Part of
our results can be viewed as a classification of differential operators involving tractor or local twistor
bundles in the conformally flat setting. It is an interesting question whether our results generalize to
the curved setting.

3When D}, lowers the spin of O, its missing spin degrees of freedom are (roughly speaking)
transferred to the index A for W.

4Our construction is based on the “translation functor” of Zuckerman and Jantzen [189, 190].
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us move a covariant differential operator acting on x; to an operator acting on x;.
As we will see, this provides enough flexibility to perform a variety of computations
involving weight-shifting operators. We also introduce a diagrammatic language

that makes these computations easy to understand.

As an application, in section 4.4 we focus on computing conformal blocks and
understanding some of their properties. In section 4.4.3, we derive an expression
for a general conformal block involving operators (both external and internal) in
arbitrary representations of SO(d) in terms of derivatives of blocks with external
scalars.> This generalizes the beautiful result of [61] for conformal blocks of
symmetric traceless tensors (STTs). Our weight-shifting operators also explain
where the differential operators of [61] come from (as we discuss in section 4.3.5).
Our formula can be simplified in special cases. For example, in section 4.4.4 we
give new expressions for so-called “seed blocks” in 3d and 4d CFTs in terms of

derivatives of scalar blocks.

Our techniques also give a new way to understand many identities and recursion
relations satisfied by conformal blocks. In section 4.4.5, we rederive and explain
diagrammatically several identities relating scalar conformal blocks with different
dimensions and spins.® In section 4.4.6, we discuss how to use derivative-based
expressions for blocks to find recursion relations of the type introduced by Zamolod-
chikov [48, 193] and used in numerical bootstrap computations [36, 37, 41, 143,
149, 194].

In section 4.5, we comment on some additional applications beyond computing
conformal blocks. Weight-shifting operators are helpful for studying inner products
between conformal blocks that appear in inversion formulae [66, 168—170]. By
integrating weight-shifting operators by parts, one can reduce inversion formulae for
spinning operators to inversion formulae for scalars. In particular, one can express
6j symbols for arbitrary generalized Verma modules of the conformal group in
terms of 6 symbols for four scalar (and two STT) representations. We pursue this

idea in more detail in [195].

A related idea is “spinning-down” a crossing equation: by applying spin-lowering

operators to both sides of a crossing equation, we can express it in terms of a crossing

3The rough idea is that weight-shifting operators allow us to exchange a tensor product W ® Vj ¢,
where W is finite-dimensional, and V, ¢ is the generalized Verma module of a symmetric traceless
tensor (STT) operator. This tensor product then contains many new types of generalized Verma
modules that can include operators in non-STT representations of SO(d).

®These identities can also be understood using techniques from integrability [123, 191, 192].
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equations for scalar operators. Spinning-down may be useful in the numerical

bootstrap—it could perhaps obviate the need to explicitly compute spinning blocks.

Finally, in section 4.6, we discuss further applications and future directions. We

give several details and examples in the appendices.

4.2 Weight-shifting operators
4.2.1 Finite-dimensional conformal representations

Let W be a finite-dimensional irreducible representation of SO(d + 1,1). We

can think of W in two different ways. Firstly, W is a vector space with basis e?
(A =1,...,dim W), in which the action of the conformal group is given by
g ¢! = Dp(g)e”, (4.2)

where Dp(g) are representation matrices.

Secondly, W is the conformal representation of a (very) degenerate primary operator
w?(x). Under the subgroup SO(1, 1)xXSO(d) c SO(d+1, 1) generated by dilatations

and and rotations, W decomposes into a direct sum”’
W — @(Wi),-, je N (4.3)

Here, (p)a denotes a representation of SO(1,1) X SO(d) with dimension A and
SO(d) representation p. The dimensions in the decomposition (4.3) are integer-
spaced and must be invariant under the Weyl reflection A — —A, which implies that

they are integers or half-integers.?

The lowest-dimension summand in (4.3) is spanned by the multiplet w(0) which has
scaling dimension —j and carries an index a for the SO(d) representation W_; (which
is always irreducible). Because it has the lowest dimension in W, it is annihilated
by K, and thus is a primary. The position-dependent operator w*(x) = e*Pwa(0)
is a polynomial in x of degree 2 because the representation W contains only 2; + 1
levels of descendants. In other words, almost all descendants of w“(x) are null
and this is reflected in the fact that w(x) satisfies a particular generalization of the

conformal Killing equation that admits only polynomial solutions.
We can relate these two pictures by expanding w*(x) in our basis

w?(x) = wh(x)et. (4.4)

7] is equal to the sum of all Dynkin labels of W, with spinor labels counted with multiplicity %,
which is the same as the length of the first row of the SO(d + 1, 1) Young diagram for W.
8In general this Weyl reflection also acts non-trivially on the SO(d) representations.
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The coefficients in this expansion w¢ (x) are conformal Killing (spin-)tensors. As
an example, consider the adjoint representation H of the conformal group. Under
SO(1, 1) x SO(d), it decomposes as (here and throughout, “e” denotes the trivial

representation)

H = (haeee e (. (4.5)

The operator w#(x) is thus a vector with dimension —1. A basis for W = H is
given by e* € {K*, D, M*, P*}, and the coefficients w',(x) in this basis are the

usual conformal Killing vectors on R¢,
wh(x) = K* = 2x"D + (x84 — x,65) M + (2x"x, — x*64)P". (4.6)

In this case the differential equation satisfied by w#(x) is the usual conformal Killing

equation,
o*w”(x) + 0"w*(x) — trace = 0. 4.7)

4.2.2 Tensor products with finite-dimensional representations
Consider a primary operator O with SO(1, 1)xXSO(d) representation () for generic
A. The conformal multiplet of O is a generalized Verma module which we denote

VA p-° Under a conformal transformation x” = g(x), O transforms in the usual way'°

g 0%(x) = Q)2 p*h(R(x)"H O (x),
x'H

QxR (x") = /

: 4.8
Fp (4.8)

where R4, € SO(d) and p%,(R™") is the action of R™! in the representation p.

We would like to understand the decomposition of the tensor product
W ® Vp p, 4.9)

when W is finite-dimensional. This is equivalent to finding primary operators built

out of w(x) and O’ (x). Formally, we must take an OPE between w*(x) and 0’ (x),

Recall that a generalized Verma module (also called a parabolic Verma module) is roughly-
speaking obtained by starting with a finite-dimensional representation of a subgroup (in this case
SO(1, 1)xSO(d)) and acting with arbitrary products of lowering operators (in this case the momentum
generators P). See, e.g. [196]. This is the usual construction of long multiplets in conformal field
theory.

10When we think of O%(x) as an operator on a Hilbert space, then g - O%(x) means U, 0¢ U,
where U, is the unitary operator implementing g. Equation (4.8) should thus be understood as
defining the action of g on the value O(x) rather than the function O.
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treating them as operators in decoupled theories.!! The simplest primary in the OPE

is
w?(0) ® 0°(0), (4.10)

which is primary because it vanishes under the action of the special conformal
generator 1 ® K,, + K, ® 1. This particular state is not generally in an irreducible
representation of SO(d). Decomposing it further, we obtain primary states in
irreducible representations 4 € W_; ® p of SO(d) and with scaling dimensions
A—j.

To find the other primaries in the OPE, we can use the following trick. Define
M =W ® Vj , and consider the factor space M’ = M /(®,P,M), i.e., treat all total
derivatives in M’ as zero. Then any two states in M differing by a descendant will
be equal in M’. As we show in appendix C.2, for generic A the tensor product M
decomposes into a direct sum of simple generalized Verma modules, and in this
case it is easy to see that the non-zero states in M’ are in one-to-one correspondence

with the primary states in M.

We can easily find a basis for M”: given any expression of the form 9 - - - Iw*(0) ®
d---00(0), we can “integrate by parts” and move all the derivatives to act on w.

Thus a basis for M’ is given by the non-trivial states of the form!2
Oy - By, w(0) ® OY(0). (4.11)

Note that because w has a finite number of non-zero descendants, M’ is finite-

dimensional.

To find the primaries in M corresponding to this basis, we need to add total deriva-
tives with the same scaling dimension to the above basis elements. This leads to the

following ansatz with some undetermined coefficients cy,
€18y, -+ 0, W (0) ® O(0) + 28y, - -+ 8y, W (0) ® Dy, O°(0) +.... (4.12)

After projecting onto an irreducible SO(d) representation 4 € W_;,,, ® p, we obtain

an ansatz for a primary in representation (A)a—j+,. We can fix the coefficients ¢

' We are not assuming that w¥ (x) is an operator in a physical theory — it is simply a mathematical
object that serves as a useful tool for understanding consequences of conformal symmetry.

121f 0" (0) had null descendants (for example, if it itself were the primary of a finite-dimensional
representation), it would be possible that some of these states are total derivatives and thus vanish in
M'’. Since we assume that A is generic, this does not happen.
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up to an overall normalization by requiring that the state (4.12) is annihilated by
1® K, + K, ® 1. In this way, we find a primary operator of scaling dimension A +i
for each of the irreducible components in W; ® p and everyi = —j, ..., J.

It is not hard to confirm that these primaries account for all the states in W ® Vj ,,
by checking that the SO(1, 1) X SO(d) characters agree. We thus conclude

J
WeViy = P Vawa  (generic A). (4.13)

i=—j AeW;®p

As a simple example, consider the case where W = [] is the vector representation of

SO(d+1, 1) and p s the trivial representation of SO(d). We have the decomposition
1= (010 ([ Do ® (841, (4.14)

so the primary state of W is the scalar w(0) of scaling dimension —1. We thus find
[1®Vae =Va-16®VA[] © Vatle- (4.15)

According to the above discussion, we have the following ansatz for the primaries

in this decomposition

Va-1e 0 ¢-(0) = w(0) ® O(0),

Vary: Vu(0) = 118,w(0) ® O(0) + 1w(0) ® 8,0(0),

Varle o $+(0) = b10*w(0) ® O(0) + by, w(0) ® 3*O(0) + b3w(0) ® 9*0(0).
(4.16)

Recalling that d,, is the same as the action of P, and using the conformal algebra in

appendix C.1, we find

(19K, +K,®1)-¢_(0) =0,
(1®K,+K,®1)-V,(0) = 26,,,(Aty — 11)w(0) ® O(0),
(1®K,+K,®1)-¢,(0) =2(Aby — db1)d,w(0) ® O(0)

+2 (b3 (2A - d +2) = by) w(0) ® 3,0(0). (4.17)

It follows that these states are primary if

t = At,

Ab
b = 73(2A— d+2), by=b32A-d+2). (4.18)
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We must assume that A is generic because e.g. for A = 1, V,, becomes a primary
descendant of ¢_, V, = d,¢_. In this special case, there are not sufficiently
many primaries to account for all states of dimension A. In particular there is no
combination of descendants which gives d,w(0) ® O(0), and consequently [ ® V),
does not decompose into generalized Verma modules of primary operators. These
subtleties will not be important in this work, and we will always assume A to be

generic.

4.2.3 Covariant differential operators from tensor products

Consider now the primary state (4.12), and let us write it in the form
0"(x) = e* ® (D) 0" (x), (4.19)
where the differential operators D4 are defined by!3
(DA DO"(x) =75y, (1081 - 047w ()0 (x)
+020M - WG (1) OP(x) + L) . (4.20)

Again, the ¢; are chosen so that O’“(0) is a primary transforming in the representation

(A)a . Here, 7t} is a projector onto the SO(d) representation 2 € W_;,,, ® p.

bur-u

By construction, O’ transforms under a conformal transformation as
g0 (x) = Q)M 1R (X)) 0" (x). 4.21)
On the other hand, we also have

g-0°(x)=g-e*®g - (DA0)(x)
= Dp*(g)e? ® g - (DAO0)“(x). (4.22)

It follows that
g (DA0)(x) = QUM A 4(R7H (X)) DAB (g7 (DO (). (4.23)

In other words, D4 takes a primary operator that transforms in (p)a to a primary
operator that transforms in (1), up to the additional action of the finite-dimensional

matrix Dp?(g~!). We summarize this situation by writing

Dyt [A p] = [A, 2] (4.24)

3Note that D4 depends explicitly on x. This is because Py, acts non-trivially on W and thus
these operators are translation-covariant rather than translation-invariant.
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Here, for all practical purposes [A, p] is just a convenient notation. We give it a

precise meaning in appendix C.2.

Notice that D40 has a lowered index for W, so it transforms in the same way as the
basis elements of the dual representation W*. For this reason, we will say that D4
is associated with W*. Similarly, exchanging W and W*, D4 is associated with W.
This convention will be useful when we discuss the action of differential operators

on tensor structures in section 4.3.1.

This general construction shows that there exists a huge variety of conformally co-
variant differential operators, corresponding to tensor products with different finite-
dimensional representations. In fact, as explained in appendix C.2, all conformally-
covariant differential operators acting on generic Verma modules arise in this way.

For reference, let us summarize this result in the following

Theorem 2. The conformally-covariant operators D : [A, p] — [A — i, A] associ-
ated with W are (for generic A) in one-to-one correspondence with the irreducible
components in the tensor product decomposition

J

WeVs, = P Vair (4.25)

i=—j Ae(Wi)*®p

When the Dynkin indices of p are sufficiently large, Brauer’s formula (also known
as Klimyk’s rule) [197, 198] implies that the tensor products simplify, giving
WeVap= D Vaspir (4.26)
(6,m)ell(W*)
Here, II(W*) denotes the weights of W* (with multiplicity). A consequence of
(4.26) is that for generic A, p, the number of differential operators acting on [A, p]
and transforming in W is equal to dim(W~*). Further, each operator is labeled
by a weight vector of W* (i.e., an element of W* which is an eigenvector of the
Cartan subalgebra) and shifts (A, p) by that weight. For this reason, we call the D4
weight-shifting operators.

One of the most important weight-shifting operators comes from the adjoint repre-
sentation of the conformal group, W = H The tensor product H ® Vp p always
contains Vj , itself as a factor. The corresponding DAL [A, p] — [A, p] are the

usual differential operators generating the action of the conformal algebra (see e.g.

[19D),
A A A ay 1 Av
DY =w?-0+ E(@ “w?) — E(G”w )Suy, 4.27)
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where w4 are conformal Killing vectors (4.6), and S, are the generators of SO(d)

rotations in the representation p.

4.2.4 Algebra of weight-shifting operators
What is the algebra of weight-shifting operators?'4 Before answering this question,
let us rephrase our construction in a slightly different language. Recall from (4.19)

and (4.20) that we identify primaries in W ® Vj , of the form
0" (0) = " ® (D) 0" (0). (4.28)

Note that 0"“(0) € W ® Vj , but it transforms in the same way as the primary of
Var.a. This means that (4.28) gives a homomorphism

(O VAf,/l > W VA,p, (4.29)

defined by mapping the primary of Vas, to the right hand side of (4.28). The action
of @ on descendants follows by acting with P, ® 1 + 1 ® P, on (4.28).

Composition of differential operators is equivalent to composition of the corre-

sponding homomorphisms in the opposite order. Specifically, suppose

D : VA’,p’ ->W® VA’p,
Dy Vi = Wa ® Var . (4.30)

Then

(1®@D1) oDy : Vparpr > W@ Wi ® Va,
(1® ®)(D(0"(x))) = ezB ® 6114 ® DrpDi1a0(x). 4.31)

Thus, to find the algebra of weight-shifting operators, we must express the right-
hand side of (4.31) in terms of homomorphisms associated to the irreducible factors
of W, ® Wj.

As we will see in the next section, the embedding formalism lets us define weight-
shifting operators that make sense even when p is a generic (i.e., not necessarily
dominant) weight. For example, the spin € of a symmetric traceless tensor operator
aiz’ where Z is a polarization vector. The operator Z - ai is

can be written as Z - >
then well-defined when acting on functions of non-integer homogeneity in Z.

14The results of this section are not used in the rest of this work. The reader should feel free to
skip this section on first reading.
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The correct way to understand differential operators with generic weights is to
consider homomorphisms between Verma modules as opposed to generalized Verma

modules. Consider the triangular decomposition
g=9-®bh&g,, (4.32)

where ) is the Cartan subalgebra, and g. are generated by positive/negative roots
of g. Let M, be the Verma module of g with highest-weight A, and denote the

corresponding highest-weight vector by x ;.15

Let W be a finite-dimensional representation of g. For each weight-vector'® w € W,

we can construct a g-homomorphism

OV My - WeM, u=a1—-wtw, (4.33)
such that
DV(x)=wx,+.... (4.34)
Here, “..." is a sum of terms of the form
€y CuW® € g, lq, Xy (4.35)

where e., € g. are raising/lowering operators. Their coefficients are fixed by
demanding that ®%/(x,) is g.-primary, i.e., that it is killed by 1 ® e, + €, ® 1 for
all positive roots @. Finally, the action of @' on g_-descendants of x, is fixed by
g-invariance. The construction of @' is completely analogous to the construction
of ® in (4.29) above. The vector (4.34) is the analog of the primary state (4.12).

Weight-shifting operators in the embedding space are in one-to-one correspondence
with the homomorphisms @Y. In particular, they are labeled by weight-vectors of
W. This is consistent with our argument based on Brauer’s formula in the previous

section.

The homomorphisms (4.34) have been studied in [199]. Given two finite-dimensional

representations V, W with weight-vectors v € V, w € W, they satisfy the algebra

(18 @Y_,,) 0 @) = 0]V, (4.36)

A-wtv

SWhen A = (A, p) with p a dominant weight of so(d), then M, is reducible and contains the
generalized Verma module V, , as a subfactor.
16Not to be confused with the conformal Killing tensors w” from the previous section.
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where
J(1) € Aut(V e W) 4.37)

is an invertible operator called the fusion operator. The fusion operator thus com-
pletely encodes the algebra of weight-shifting operators. It satisfies a number of
interesting properties, and is closely related to solutions of the Yang-Baxter equa-
tions and integrability [199]. Most importantly for our discussion, the Arnaudon-
Buffenoir-Ragoucy-Roche equation gives an explicit expression for J(A) in terms of
generators of g [200]. In principle, this answers the question posed at the beginning
of this section. In practice, we will not need such a general answer in this work. We

leave further exploration of the fusion operator and its applications to the future.

Another point of view on the algebra of weight-shifting operators is given by a

special kind of 6 symbols, as we explain in appendix C.4.

4.2.5 Weight-shifting operators in the embedding space

Our construction of weight-shifting operators is extremely general, but it is in-
convenient for computations because it is cumbersome to find the primary states
O’. For practical computations, we can use the embedding formalism [27, 39, 52—
54, 82,92, 125, 186—188], where the conformal group acts linearly. The tradeoff is
that coordinates in the embedding space satisfy constraints and gauge redundancies,
and we must take care to find differential operators respecting these conditions. The

above construction tells us precisely when this should be possible.

The formalism described in [53] makes it easy to study operators in tensor repre-
sentations of SO(d). Symmetric traceless tensors (STTs) of SO(d) are particularly
simple. We will describe this case first in order to make contact with the examples
above. However, our primary interest is in general representations, and for these it

will be useful to use specialized formalisms for different spacetime dimensions.

4.2.5.1 General dimensions

In the embedding formalism, the conformal compactification of R? is realized as

the projective null cone in R*!!, We take the metric on R?*1! to be

d
X2 = XX = —X*X" + Z X, X", (4.38)
u=1
A primary scalar O(x) lifts to a function on the null cone O(X) with homogeneity

0(1X) = 17%20(X). (4.39)
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It is convenient to arbitrarily extend O(X) outside the null cone, introducing the

gauge redundancy
O(X) ~ O(X) + X*>A(X). (4.40)

A tensor operator O H£(X) lifts to a tensor O™ (X)) in the embedding space,

subject to gauge redundancies and transverseness

O™ (X ) ~ QM (X ) 4 XA (), (4.41)
X, O™ (X) = 0, (+42)

in addition to the homogeneity condition (4.39). For symmetric tensors, it is useful

to introduce a polarization vector Z"” and define
OX,Z)=0""(X)Zm, " Zm,. (4.43)

Because of (4.41), we must take Z - X = 0, and because of (4.42), we must identify

Z ~ Z + AX. Finally, when O™ "™ is traceless, we can impose Z2 = 0.

We can summarize these constraints as follows. Let I be the ideal generated
by {X 2X -7 Zz}, and let R be the ring of functions of (X, Z) invariant under
Z — Z + AX. Symmetric tensor operators are elements of R/(R N I) which are
homogeneous in both X and Z. For a differential operator in X, Z to be well-defined

on this space, it must take R — R and also preserve the ideal RN 1.

The construction in section 4.2.3 tells us when such operators should exist. For
example, consider the case where W = [] is the vector representation of SO(d+1, 1)
and O(X, Z) has spin ¢ and dimension A. Given the decomposition (4.14), we should
be able to find differential operators with a vector index in the embedding space,

taking!”

DV [A - [A-1,0),
DO [A L] = [AL-1),
DY LA €] = [A L +1],
DA L] — [A+ 1,0]. (4.44)

"There will also exist differential operators producing other representations in the tensor product
of the vector and spin-¢ representations of SO(d) (generically there is also the hook Young diagram).
According to (4.26), when acting on general (non-STT) representations generically there are d + 2
operators corresponding to the vector representation. However, to describe these we would need a
formalism with more polarization vectors as in [82].
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Our strategy for finding them is to start with a suitable ansatz and fix the coeflicients
by requiring that 9,, preserve R and RN 1. (We give more details in appendix C.3.)
We find

D0 =X,

DY~ = (A—d+2—5)5"+xi (d—4+25)i—za—2
mo ) azr ez2)

d
DM =+ N Zp + XpZ - —,

oX
o2 92 o 9
+0
_ X, esZy—2  hez LT
D = Crgnmm + 2Xmamg ¥ lngmay T @l ox
o 02 o 92 a\* o2
X,z 2% iez.z- 2% ox, |z 2] L
Tt Xz - 0x LY ax a2 T ( ax) PYZ
(4.45)

where the coeflicients ¢; are given in appendix C.3. For now, we simply quote

d
ﬂ:—z(——l—A). (4.46)
(&) 2
Thus, when acting on scalar operators O(X), D0 is proportional to the familiar
Todorov operator [201]

d 0 1 9? 0

+0
—+X === Xn—=+0|—=]|. 4.47
D OC(2+ ax)axm 2 max2 (az) (447)

This simplified version of D}* (together with D-0) appears in tractor calculus,

where it is known as Thomas operator [181, 182].

The overall normalization of our differential operators is a convention. It is useful to
choose conventions where the coefficients ¢; are polynomials in A, £ of the smallest

possible degree. If we like, factors of A, € can then be replaced with

0 0
A=-X - —, t=7 —, 4.48
0X 0z (4.48)
so that D can be expressed without reference to the operator it acts on.

Note that when acting on scalar O there a unique non-vanishing operator of the
lowest scaling dimension, D,°. According to theorem 2, this is true in general.
From the discussion in section 4.2.2 it follows that this operator should correspond
to multiplication by the conformal Killing tensor w4 (x) as in (4.10). This gives a

general way of finding w4 (x) from embedding space formalism.
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For example, one can check that the primary operator w(x) corresponding to the

vector representation of the conformal group is given by
w(x) = wp(x)e™ = " D0 = X"e,, = ey + xFe, + xe, (4.49)

where e, e_ and e, form the light cone coordinate basis of the vector representation.

It solves the equation
0,0,w(x) — trace = 0. (4.50)

Let us now revisit the example from section 4.2.2. Let O(x) be a scalar primary of

dimension A, as in section 4.2.2. We then compute '8

e"® Z),,]OO(x) =w(x) ® O(x),
" ® DYFO(x) = 7 (Ad,w(x) ® O(x) + w(x) ® 3,0(x)) ,

e" @ DNO(x) = %azw(x) ® O(x) + c19,w(x) ® 3*O(x) + cow(x) ® 92O (x),
(4.51)

where ¢; are as in (4.45). Itis easy to see that this is consistent with (4.16) and (4.18).
Naturally, " ® DY~O(x) vanishes when O(x) is a scalar.

4.2.5.2 1 dimension

To find the most general conformally-covariant differential operators, it is useful to
employ a formalism specialized to the given spacetime dimension. The simplest
case is 1-dimension, where the conformal group is Spin(2, 1).!° The Lorentz group
is Spin(1) = Z, (see below) and the primary operators are labeled by a scaling
dimension A and a spin s = +. We will denote the corresponding Verma modules
by Vas. Because the global 2-dimensional conformal group is a product of 1-

dimensional groups, the results of this section can also be applied in 2-dimensions.

Note that the simply-connected conformal group is Spin(2,1) ~ SL(2,R). It acts

by Mobius transformations,

a b ax+b
: , d—bc=1. 4.52
( ) x_>cx+d a c ( )

c d

!8Recall that on the Poincare section we have X = (1, x% x*) and Z = (0,2(x - z), 2") = 2/, X
where the coordinates are ordered as (X, X~, X#).
19We use the conventions of [39] for 2+1 dimensions.
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The subgroup which fixes the origin is given by b = 0. We can exclude special
conformal transformations by setting ¢ = 0. The remaining subgroup is a product
of dilatations R, parametrized by |a| and the Lorentz group Z, parametrized by the

sign of a. This is why we say that Spin(1) = Z,.?°
The vector representation of Spin(2, 1) is equivalent to the symmetric square of the
spinor represenation, and in the embedding formalism we can define

Xap) =V Xm Vg = Qaar (Y™ p. (4.53)

In this notation the constraint X? = 0 can be solved as

X@p) = XaXps (4.54)

where y, is a real spinor in the fundamental representation of SL(2,R). Note that
X is odd under the center of SL(2,R). This parametrization has the advantage that

now the embedding-space operators can be taken to depend on y,
O(ly) = A172290(y), 1>0. (4.55)

Notice that both y and — y correspond to the same X. The correct transformation

property of O( x) under this transformation comes from the Z;-spin,
O(—x) =s0(y). (4.56)

This property will be important for the construction of tensor structures in sec-
tion 4.3.4.1.

The embedding formalism in terms of y is useful because the conformal group
still acts linearly, but now there is no analogue of the ideal / which needs to be
preserved by the embedding space differential operators. We have the following

relation between y and X derivatives,

0
a_)(“ = ()’m)ﬂa)(ﬁ

0
—. 4.57
X (4.57)
Using this relation in an arbitrary differential operator written in terms of y will
automatically produce the terms necessary to preserve the ideal / in X-space. For

example, we can recover the 1-dimensional version of the operator Z);,;O (ctf. (4.47)),

my(aB)
™) 9x" 1P

ox 2

a 0 g 1\ 0 1 i
— (X ), 4.
> ( ) 0X, 2" ax? (458)

20The fields which have spin s = + are the usual scalars on the circle. The fields which have
s = — are anti-periodic fermions.
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A general embedding space differential operator is an arbitrary combination of y,

and 0, = 667. The combinations irreducible under Spin(2, 1) are

Z)LJY’]Z...(ZJ' = X(Ch e /\/(l/j_ia(l/j_iH e aa/zj), l = _.ja .. .] (459)

Of course, we can also add combinations of y,d“, but these simply act as scalars
due to (4.55), so we can ignore this possibility. By construction, this differential
operator transforms in the spin-j representation of Spin(2, 1), changes the scaling

dimension by 7, and exchanges bosons with fermions if j is half-integer,

DA, s] - [A+i, (-1)Hs]. (4.60)

It is easy to find the group-theoretic interpretation for D/, Indeed, the spin-j

representation decomposes as

J
i = Pu=n, 4.61)
=

which means that for a generic A we have the tensor product decomposition

J
J ® Vas = €D Vavi s (4.62)
i==j
Thus, we find explicitly the expected one-to-one correspondence between the differ-
ential operators 9/ and the terms in this tensor product. We also see explicitly that
the differential operators are labeled by the weights of the spin-j representation, in

accordance with (4.26).

Let us see what our operators look like in x-coordinate space. It is easy to check
that the usual Poincare section X* = 1 corresponds to y! = x, y?> = 1.2!. We can
therefore write the embedding space operator in terms of the x-space operator as

(multiplying also by sign y? for s = —)

1 P%
We therefore see that y| and y; derivatives act as
0 0
o =—=—, 4.64
T oy ax (464)
0 0
Oh=—==—x—-2A. 4.65
2 dx? Yox (4.63)

These formulas are valid for higher order derivatives if we follow the convention

that A in the last formula is increased by % by every 0,.

21 And also to minus these values, since there is a redundancy y ~ — .
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4.2.5.3 3 dimensions

In 3-dimensions, we use the formalism and conventions of [39].22 The confor-
mal group is SO(3,2), which has Sp(4,R) as a double cover. The most general
Lorentz representation is the 2¢-th symmetric power of the spinor representation
of SO(2,1), where ¢ € %N. An operator O%!""*2(x) lifts to an embedding space
operator Q%2 (X)) with 2¢ indices for the fundamental of Sp(4, R), satisfying the

homogeneity property
04 (X)) = 17 Bo~tguax (X, (4.66)
It is useful to introduce a polarization spinor S,, and define
O(X,S) =Sy, -+ S84, O (X). (4.67)
The polarization spinors are constrained to satisfy
S, X% =0, where Y= X", (4.68)

where (I7,,)¢; are generators of the Clifford algebra of SO(3,2). For convenience,

we also introduce the notation
Xup = QueXEp, X% = x QP (4.69)

where Q,. = Q% is the symplectic form for Sp(4, R).

Arbitrary finite-dimensional representations of SO(3,2) can be obtained from ten-
sors of the spinor representation §. Thus, all the weight-shifting operators in
3d can be obtained from products of weight-shifting operators for S. Under
SO@3,2) — SO(1,1) x SO(2, 1), we have the decomposition

S - (S)_% @ (S)% 4.70)

Thus, we should be able to find differential operators with a fundamental index for
Sp(4,R) that take

D (AL - [Axd )], 4.71)

22In particular, we use Lorentzian signature in this section.
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Note that again the differential operators are labeled by weights of S, consistently
with (4.26). They are given by

DC;-F = Sa
0
—_x, %
Da abaSb
0
D;+ =2(A - 1)(8X)abeCSc + Sa (Sbec(aX)cdg)
d
@;-:«A—1x1+5—Ax%yf——2u+€—AmaAaw“Qwi1
6Sb an
0 0
— Sy —X.0(00)%Q, r— . 4.72
(6Sc d( X) fan) ( )

We have determined the coefficients by demanding that these operators preserve the
ideal generated by X2 and S,X%,. The differential operators (4.72) are analogous
to yo and % in the 1-dimensional case. By taking products of them, we can build
weight-shifting operators in arbitrary representations of SO(3, 2), analogous to the

1d operators (4.59). See also appendix C.4.

4.2.5.4 4 dimensions

In 4d, we can use the embedding space formalism of [2, 54, 55, 58, 62, 202]. Our
conventions are those of [2]. A general Lorentz representation is now labeled by two
weights (¢, £), where £, £ € Zs. (Spin-£ symmetric traceless tensor representations
correspond to the case £ = £.) An operator O®!"*¢@14(x) lifts to an embedding
space operator

O(X.8.5) =S4y -S4, -+ 5 7O (X), (4.73)
4

where we have introduced polarization spinors S, 5 transforming as left- and right-
handed spinors of SO(4, 2), or equivalently fundamentals and anti-fundamentals of

SU(2,2). The polarization spinors satisfy

sX”=0 §X,=0 35S, =0, (4.74)
where23
X = X0 X,, X =IoX™ (4.75)

230ur conventions for the conformal algebra and embedding space in 4d are those of [2].
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Let us also introduce the shorthand notation

0 0
()— = —, 8@ = )
S 53" > a8,
0 —ab —mab O
— m —_— — —_—
Ou = iy 9" =" (4.76)

General representations of the conformal group SO(4,2) can be obtained by ten-
soring with the left and right-handed spinors. Thus, our algebra of differential
operators is generated by those associated with the spinor representations. To label
these operators, it is convenient to use (4.26). Let us denote the weights so that the
highest weight of the Verma module for O is (2A, ¢, Z). Then the representations S

and S consist of the following weights,

II(S) = {(—=+,0), (= —=0), (+0,+), (+0,-)}, 4.77)
I1(S) = {(~,0,+), (— 0, ), (+,+,0), (+, — 0)}. (4.78)

Note that basis vectors for S are e (so that we can contract them with S,) and for

S the basis vectors are e,,.

According to (4.26), the operators D¢ associated with S are then labeled by the
weights (4.78) of 8* = S, and the operators D,, associated with S are labeled by the
weights (4.77) of S’ = S. These operators have the following explicit expressions,
—a
D ilO+ =S ’
—ab
DLy =X b,
—ab — —
D =T S+ S (S805),
a _ 7T aa  Ta4 —ab . —a —=bd .
DY o = bcdg + bS (9505) + cXpcd 95— S (Xped 9505 ),

——+0

Z)a = Sa,
E;_O = Xabab,
D = 405" + S.(S00s),
D, = bedy, + bSa(50s) + X dupdg, — Sa(X* Dpadg 00, (4.79)
where
_ ¢ ¢ - _ ¢, ¢
a—l—A+§—§, a—l—A—§+§,
b=2((+1), b=2(L+1),

c=-2+A-0GL (4.80)
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The coefficients above come from requiring that the operators preserve the ideal
generated by the relations (4.74), together with X?> = 0. We have added these
operators to the CFTs4D Mathematica package described in [2].

4.3 Crossing for differential operators

The results of section 4.2 give us a large variety of conformally-covariant differential
operators. In the present section we consider their action on conformally-invariant4
correlation functions of local operators. The result of such an action is a conformally-
covariant n-point function, which can also be interpreted as a conformally-invariant
(n+1)-point function that includes the degenerate field w*(x). We will first describe
the structure of such correlation functions and then establish a convenient graphical
notation for the action of the differential operators. This will help us elucidate a rich

structure of such actions at the end of this section.

4.3.1 Conformally-covariant tensor structures

Consider an n-point correlation function with an additional formal insertion of
an element e of the finite-dimensional representation W of the conformal group
SO + 1,1),

(O (x1) -+~ O (x)Y* = (0% (x1) - - O (x)e™). (4.81)

Note that this is a purely formal construct, i.e. this expression is simply a shorthand
for a function of n points which carries indices a;, A, and has transformation
properties identical to those satisfied by a correlation function under the assumption
that

Uye®U;' = g - e, (4.82)

and g - e is defined by (4.2).

As discussed in section 4.2.1, we can also view (4.81) as a (n+ 1)-point conformally-

invariant correlation function with the primary w’(y) of W,
(O (x1) - O (xa)w” (y)) = (O} (x1) -+~ O (xa)eHywi (), (4.83)

subject to the conformal Killing differential equation satisfied by w”(y). This
interpretation will be useful to us later on. In this section we stick with (4.81).

24We are making a distinction between conformally-covariant and conformally-invariant objects.
For us, the former carry finite-dimensional SO(d + 1, 1) labels, whereas the latter do not.
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Similarly to the usual conformally-invariant correlation functions, we have an ex-

pansion in tensor structures,
(O (x1) -+ O (xp)ey = T A (x)g! (w), (4.84)

which now carry the SO(d + 1,1) index A. Here u are the conformal cross-

ratios of points x;. The structures T¢1-4»4

can be constructed using embedding
space methods, since there one explicitly works with objects which transform in
fundamental representations of SO(d + 1,1). In this subsection we are going to

classify such tensor structures by extending the conformal frame approach of [1, 23].

The basic idea is to maximally use conformal symmetry to bring as many x; as
possible to some standard positions x. The resulting configuration x; will be
invariant under the subgroup G, € SO(d+1, 1) of the conformal group that stabilizes
n points. In particular

SO(1,1) xSO(d) n =2,
Gn = (4.85)
SO(d +2-m) n >3,

where m = min(n, d + 2). The tensor T(x}) transforms as an element in?*

W X)(p)a (4.86)
k=1

and by construction is invariant under G,. It is easy to check [1] that this is the
only restriction for the tensor T“l""’"’A(x;) and the conformally-covariant tensor
structures are then in one-to-one correspondence with the invariants of G,,2¢
. Gn
We Qs | - (4.87)
k=1

In practice we always use the decomposition (4.3) in this formula and identify the

tensor structures with

j Gn

G}(W%®é§@wm : (4.88)
k=1

i=—j

2In writing a tensor product of representations of different groups, we assume that each rep-
resentation is restricted to the largest common subgroup. In (4.86), we implicitly restrict W to
SO(1,1) x SO(d) c SO + 1,1).

26The notation (p)* denotes the H-invariant subspace of p, where p is a representation of G and
HCG.
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4.3.2 Tensor structures and diagrams
Let us work through some examples of covariant n-point functions and the counting
rule (4.88). At the same time, we will introduce a useful diagrammatic language for

describing tensor structures and differential operators.

4.3.2.1 Invariant two-point functions

Let us denote a conformally-invariant two-point structure by

(010) = 9 ——>—0, - (4.89)

It is well-known that there is at most one such structure, but let us re-derive this fact

in the language of section 4.3.1, where it corresponds to the case n =2 and W = e.

Given x; and x,, we can apply a conformal transformation to set x; = 0 and
xy = oo. Then the group G» = SO(1,1) x SO(d) which fixes the two points
consists of dilatations and rotations around 0. Sending the second operator to
infinity has the effect that O, effectively changes the sign of its scaling dimension,
and transforms in the reflected representation?’ pg under SO(d). Thus, two-point

structures correspond to the G,-invariants in

(p1)a, ® (P2)-n,- (4.90)

There is at most one such invariant, which exists iff p; = ( pg )* and A; = Ap. The
dual-reflected representation, which we denote by (p12D )" = p; is the same as the

complex conjugate representation in Lorentzian signature.

4.3.2.2 Differential operators

A differential operator D4 : O — O’ takes a conformally-invariant structure for O
to a conformally-covariant structure for O’, or equivalently an invariant structure for
O’ and W:

DNO -y ~ (20 - ). (4.91)

?’Given a representation p with generators P the reflected representation is defined as pﬁv =

P,’j /P“,’/ oy, Where P is a spatial reflection matrix. Formally, conjugating by reflection is an outer
automorphism of SO(d), and hence permutes the representations of SO(d).
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We denote such a differential operator by
O/

p@A W (4.92)

)

The label a runs over the possible operators classified by theorem 2. We use a wavy

line to indicate a finite-dimensional representation.

4.3.2.3 Covariant two-point functions

Consider acting with a differential operator D4 : [A}, p;] — [A}, 21] on an
invariant two-point function. In diagrammatic language, this is denoted by connect-
ing an outgoing arrow from the two-point function with an incoming arrow for the
differential operator,

9

(DA (0% (x1)0%(x2)) = W (4.93)

o))

The result can be interpreted as a covariant two-point structure for O, O,, and W.
Such structures are counted by SO(1, 1) x SO(d)-invariants in
j/2

P Wi & (11)s; ® (p5)-a,. (4.94)

i=—j/2
Invariants exist whenever A1 = Ay—i = Aj—iand 4, € (Wi)*®(p§)* = (W)*®p;.%8
Note that these are exactly the conditions for the existence of DA in theorem 2. Thus,
the number of non-vanishing diagrams (4.93) is precisely equal to the number of
tensor structures for (0201 e). In other words, all covariant two-point structures can

be obtained by acting with differential operators on an invariant two-point structure.

28We have assumed that A; = A, and pP1 = (pg )* so that {O;0;) is nonvanishing.
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4.3.2.4 Invariant three-point functions

We denote conformally-invariant three-point structures by

(0))

(010,057 = 0s - (4.95)

O
The label a runs over possible tensor structures, which are classified by Gz =
SO(d - 1) singlets
(1 ® p2® p3)> 7D, (4.96)

A physical three-point function is a sum over tensor structures with different OPE

coefficients A,,,

N3
(010205) = > 1,1 (010,05)™, (4.97)

m=1
where N3 = dim(p; ® p2 ® p3)5°@~1 . When there is a unique three-point structure

(N3 = 1), we often omit the index m.?°

4.3.2.5 Covariant three-point functions

Consider now acting on an invariant three-point structure with a differential oper-
ator. Let us begin with a three-point structure (OlOzOg)(“), and suppose that O

transforms in the representation [A3z + i, A]. The label a runs over singlets in
(p1® pr® 2)°0, (4.98)
By theorem 2, we have a differential operator DDA [A3+i, 1] = [As, p3] whenever
pzeEWN)*"®1 o A1€W;®p;s. (4.99)

By acting with D4 on <01020§>(“), we can form a covariant three-point structure
for (010,03¢™),
0> 0;

Ol
(DDA (O (x)OP (1) 0% (1))@ = (@———b) . (4.100)

0, w

2Since we never work with physical three-point functions (4.97), there is no danger of confusion.
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Let us count the number of diagrams (4.100) by summing over the allowed O%, a

and b. Taking into account the selection rule (4.99), we have

J

D, D, dim(pe ey

i=—j 1eW;®p3
_ SO(d-1) _ SO(d-1)
J J
:dim@ EB P1® P ®A = dim @Wi®p1®p2®p3
i=—j 1eW;®p3 i=—j
(4.101)

According to (4.88), this is precisely the total number of covariant three-point struc-
tures for (010,03¢%). In other words, generically, every conformally-covariant
three-point structure can be obtained by acting with differential operators on conformally-

invariant three-point structures.

Note that according to the discussion in section 4.2.1 we can interpret the conformally-
covariant three-point functions as conformally-invariant four-point functions involv-
ing a degenerate primary w“(x). Analogously, we can interpret (4.100) as conformal
blocks for these four-point functions. We have just proven a highly degenerate case
of the folklore theorem which states that that the number of such conformal blocks is
equal the dimension of the space of degenerate four-point functions.3° Importantly,

in our case this number is finite. This brings us to a very powerful observation.

4.3.3 Crossing and 6 symbols

The diagrams (4.100) give a basis for the finite-dimensional space of covariant three-
point structures (O;0,03¢”). However, this is not the only interesting basis. The
distinguishing feature of (4.100) is that it selects a particular operator O} appearing
in the O; X O, OPE. In other words, it diagonalizes the action of the Casimir
(L1 + Ly)? acting simultaneously on Oy, O, (equivalently O3, w). However, we may
wish to select an operator in a different channel, e.g. O] € O, x O3. This would
correspond to starting with a three-point structure (010203>(’") and acting with a
differential operator D4 : O] — O1.

These two bases are related by a linear transformation, which gives a type of crossing

30In the non-degenerate case we have the number of families of conformal blocks and the number
of “functional degrees of freedom.”
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equation for differential operators,

0)) 03
02 03
ab
> = Or 0 0 ’ 4.102
(@) (b) _OZO3W0§ o . (4.102)
P mn
O W
0 %4
In equations, (4.102) reads
DEMO1(x1)02(x2) 0 (x3))@
ab
0, 0, O " , .
= > 40 T DEKO; (x1)0(x2) 03 (x3)) ™. (4.103)
Of.mn Os W 03 mn

Note that the sum over O is finite with O] taking values in the tensor product
01 ® W. The coefficients in this transformation are called Racah coefficients, or
6j symbols.3">32 The 6 symbols for operator representations (generalized Verma
modules) of the conformal group have seen some recent interest for their role in
the crossing equations for CFT four-point functions [168—170]. Here, we have a
degenerate form of these objects, where one of the representations appearing is
finite-dimensional. These degenerate 65 symbols enter in a degenerate crossing
equation (4.102) where the objects on both sides live in a finite dimensional space.
One can ask what happens if we consider 6 symbols with more finite-dimensional
representations. As we show in appendix C.4, such 6 symbols are related to the

algebra of conformally-covariant differential operators.

A useful analogy for understanding (4.102) is to consider a four-point function
containing at least one degenerate Virasoro primary in a 2d CFT. The shortening
condition on the degenerate primary implies that its four-point function lives in
a finite-dimensional space spanned by a finite number of conformal blocks. The
crossing transformation for these blocks is a finite-dimensional matrix. Similarly in

(4.102), the left-hand side can be interpreted as the conformal block for O} exchange

31 Technically, Racah coefficients and 6; symbols are sometimes defined to differ by various
normalization factors. We will not distinguish between them and use both terms to refer to the
coefficients in (4.102).

326 symbols depend only on a set of representations and three-point structures. However, for
brevity, we often label them with operators O; transforming in those representations, as in (4.102).
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in a four-point function (O;0,03w). Because w satisfies a highly-constraining dif-
ferential equation, the crossing transformation for this block is a finite-dimensional

matrix.

4.3.4 Examples

Because the space of covariant three-point structures is finite dimensional (its di-
mension is given by (4.101)), it is straightforward to find the degenerate 6 symbols
by direct computation: we apply differential operators on both sides and invert a

finite-dimensional matrix. Let us work through some examples.

4.3.4.1 6;j symbols in 1 dimension

3-point functions Before computing the 6 symbols, we need to choose a basis of
three-point structures. The three-point functions in 1-dimension are not completely

trivial, and it is important to get them right in order to have well-defined 6 symbols.

According to the discussion of section 4.2.5.2, there are two types of fields with
different “spins” s = +. The fields with s = + are the usual scalars. The simplest

three-point function for the scalars is

1

|x 1 x2| 214827853 yg y3|B2t8s=A1 | gy |As+AI-AL T
(4.104)

(DT (Y 1)P3 (x2)@F ()™ =

Here we have added the label (+) to indicate that this is a parity-even three-point

structure. We need this because there in fact exists a parity-odd three-point structure,

ix2)Oax3)(x3x1)
|X1X2|A1+A2_A3+1 |X2X3|A2+A3_A1+1 |X3X1 |A3+A1—A2+1 ’
(4.105)

(DT (x1)D3 (x2)®F (xa)) ) =

This is related to the fact that unless we allow reflections, all conformal transforma-
tions preserve the cyclic ordering of three points on the circle S'. One can see that

this structure is parity-odd from the parity transformation y — .

We will compute the 6 symbols for differential operators in the fundamental rep-
resentation which, according to (4.60), change the spin s. Therefore, we will also

need the parity even and parity odd structures for the three point function with two
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§ = — operators,
_ + - (-) _ (X3x1)
(P Or)®; (r2) @3 (xs)r™ = |y 1 x 2 A+AA3] g 3| AatAs=Ar| g gy [AstAI—Ao ]
(4.106)
_ . _ +) _ (x1x2)(x2x3)
(B1 )3 Qr2) 3 (sl = Ly 1 2 AH8a=8st | o g AotAa=Aitl | yg y [ AstA1=Ao”
4.107)
The difference between s = + and s = — tensor structures is in their transformation

properties under (4.56).

6j symbols As noted above, we will specialize to W = F being the fundamen-
tal representation of SL(2,R), which has weights A = i%. The corresponding

differential operators are

DY =08, D = xa (4.108)

a

It will be convenient to contract each differential with a polarization spinor y4,
giving x7D;. This spinor may be interpreted as the coordinate of the fourth
operator in representation [—%, —]. The operator y4D™ is even under space parity,

while the operator y49~ is odd under space parity.

The definition of 6 symbols in this case is

[A2, 52] [A3, s3]
[A3 £ 3, —s3]
[A1, 51] F

[A2, 5] [A3z, 53]

B R LI '

_ . 4.109
[A3, 53] F [As £ 1, —s3] N [A, —s1] ( )

[A1, s1] F

We don’t need to label the vertices for differential operators, since there is always

a unique choice of differential operator for the given dimensions. For example, on
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the left-hand side, when the internal line has dimension A3z + %, the F-differential

operator must be D*. The notation “.” on the 6j symbols means there is a unique

corresponding structure or differential operator.

It is now straightforward to compute the objects above. Let us take for example
s1 = s2 = +, s3 = — and specialize to the case when both sides of (4.109) are

parity-odd. For the left-hand side we then have,

[Az, +] [A3, -]
1
[As + 2, ] _ (x4x3)
a8t A 12|y o | Bt A=A L2 | gy [ At A=A+ /2]
[Ag, +] F
[A2, +] [Az, -]
1
45~ 2. +] _ (A1 + A3 — Ao = 1/2) (vax ) (xix2) (x2x3)
B |1 2| A1+A2=A343/2 |y 5| A+ A=A+ 1/2| gy [As+A1=A2+1/2
[Aq, +] F

(Ao + A3 = A = 1/2) Qrax2) (X 1x2) (X3 x 1)
| 1 x2| 2182785312 gy |Aat As=AIF 12| yog gy [AstAi=Ao+] /27

(4.110)
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For the right-hand side,

[A2’ +] [A37 _]

1 3 ax) (i x2)(x2x3)
[Ar + %»=1 = |1 x| A1+82=85+3/2| vy 1| Mot As=A1+1/2| 3y | A +AI=A2+1/2

[A1, +] F
[A2, +] [As, -]

| 3 (Ar + A3 = Ay = 1/2) (x4 x3)
2> _] - |X1X2|A1+A2—A3—1/2|X2X3|A2+A3—A1+1/2|X3X1|A3+A1—A2+1/2

[A —

[A1, +] F
—(Ar + Ay — A3 = 1/2)(xax2)(x1 x2)(x3x1)

|1 X2 21827854312 g g [AotAs=AI+1/2| oy |As+Ar=Ao+1/2°

(4.111)
After using the Schouten identity
rax)(x2x3) + (xax2)(xax) + (raxs)(xix2) =0, (4.112)
we can solve for the 65 symbols
1 +.
[A, +] [A2,+] [Ay +§,—] _ A+ A -A3-1)2 4.113)
[As, =] F [A3 + 2A1 -1 ’ '

[Ar, +] [Ag, +] ]
A3, —] F A3 +

1

= — 4.114
TNEEE ( )

1
+ 2
As,—-] F — 1+ 2A1 -1
(4.115)

(A1, +] [Ag +]
A37 _] F

A+ A3 —=A1—1/2
=— . 4.116
2A1 -1 ( )

{M&]Myﬂ

%'_ (A1 + 85 =8 = 1/2) (A1 + 8y + 85 =3/2)
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4.3.4.2 6j symbols in 3 dimensions
3-point functions It is also possible to find the general 6; symbols for the spinor
representation S of the 3d conformal group. To do that, it is convenient to use the

conformal frame basis of three-point structures from [1].33 To construct this basis,

one contracts the 3d primary operators with polarization spinors s,
O(s,X) = Sq, *** Sa,, O (). 4.117)
The three point-functions are then evaluated in the configuration

f3(51, 52, 83) = (O01(51,0)02 (52, €)O3(53, 0)), (4.118)

where e = (0,0,1) and O(s3, ) = lim;_ L**30(s3, Le). The polynomial f3
should be invariant under boosts in the 0-1 plane. A basis for such polynomials is

given by the monomials
3 o
(g5l = | | &7, (4.119)
i=1

where s; = (&, E,-) and g; = —¢; .. . {;, subject to the constraint ) ; g; = 0.

It will also be convenient to think about the covariant three-point functions as four-

point functions with the degenerate spinor primary w®(x) of dimension —%. We

construct an analogous basis for four-point tensor structures by evaluating
(01 (51,0)5,w* (2) 01 (52, €)O3(s3, ), (4.120)

leading to a monomial basis [q1, ¢, ¢2, g3], where g = J_r%.“ The configuration
(4.120) is still invariant under boosts in the 0-1 plane, so we again have the condition
qg + 2. gi = 0. We have introduced only one cross-ratio z because w®(x) is a

degenerate field. In fact, the general solution to its Killing equation is given by
w(x) = wo + xty,wy, (4.121)

and thus it is sufficient to know its values for x = ze to determine it completely.
Note also that this equation implies that a general four-point function of such form

is linear in z.

30ur conventions in this section are those of [1, 39, 81].
3*Notice that we used a configuration different from the one used for four-point functions in [1].
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To obtain these degenerate four-point functions, we think about the three-point
functions as four-point functions with an identity operator at coordinate x and act

with the operators
Df* = QD1 D;t 5T, (4.122)

where x = ze, and X7 formally shifts the scaling dimension and spin of the operator

i, so that ;—’i doesn’t change the dimensions and spins.3> In this notation we have3¢

[AZ, fz] [A3’ 53]
. [A3 ¥ 3,63 F 5]
D3*[q192q3] = qi :
[A1, ¢1] Saw?®

[A2, 52] [A3, s3]

(@)

Di*[q19243] = INEZNIES R (4.123)

[A1, 1] Saw?

Our goal is therefore to find the transformation between the bases ;i[qlqzqﬂ and

Di*[q19243]

6/ symbols It is obvious that since the operators D;** contain a finite number of

derivatives in the polarization spinors, they take a three-point structure [g¢2¢3]

to four-point structures (g1, g, g5, ¢5] for (4.120) with g/ differing from g; by only

finite shifts. We can say that D* are local in g-space. It turns out that the

inverse operation, which expresses an arbitrary four-point function (4.120) in terms

of D¥*[q192¢3], is also local in g-space. In this language the 6 symbols essentially
++

give the composition of the inverse to Di* with D3* and are thus also local in

g-space. This allows us to write down a general expression for these 6 symbols.

The number of shifts in g for which the 6 symbols are generically non-zero is how-

ever rather large. We therefore take an indirect approach in this section, describing

35In other words, the components of D" are essentially the conformal Killing spinors s, w%(x).
36As in the 1d case, we omit the labels for the differential operators in the diagrams (4.123)
because the differential operator is always fixed by the given representations.



124

how the 6 symbols can be straightforwardly generated from relatively simple ex-
pressions. Our strategy will be to write the action of DT* and D™ on [q1¢42q3] in a
form from which both the direct action and the inverse can be easily obtained. One
can then simply substitute the inverse of DT* into the expressions for D3*[q142¢3]

to generate the general 6 symbols.

First, we evaluate the expressions for D3*[q1¢2¢3] and Di*[q1¢2g3]. This can be
done relatively easily in a computer algebra system. The result can be expressed in

terms of the four-point tensor structures [q1, ¢, g2, g3], for instance,

Dy [q19293] = z(61 + q1 + Pla1 — 3. +3. @2, q3] — 261 — @1 + D + 3. 5. 42 3]

(4.124)
We will now describe these actions in a compact form. We first define
Atlq1g2q3) = (=D~ % (&1 % q1 + D7) [q19203], (4.125)
These operators satisfy
Aq192431 = F2(201 + Vg1 F 3, £5,42.43]- (4.126)

Note that this solves the inversion problem for the linear terms z[q, g, g2, g¢3] and
is also sufficient to find the action D;*[q142q3]. We then define the analogous

operators

Bilq19293] = (—Df_ FlhFq+ %)D;+) lq1293) + Ci lq1q2q3),  (4.127)

where the correction term Cj is a linear combination of A7 given below. The

operators B;—’ act on [q1¢2¢g3] as follows,

((Al +q1— B+ (G Fqr+ %)Bf) (9192931 =

=420+ D(A1 = DG+ A1 =D = AL+ 2)[q1 F 3, £5, 92, 431 (4.128)

This solves the inversion problem for the constant terms [q1, g, ¢2, g3] and is also

sufficient to write down the action of B ;—“ and thus also of Dfi.

We can describe the action of D* and its inverse in a similar fashion. In particular,
we define
Aflq192q3] = (-D3~ F (L3 F g3 + )D3*) [q10243], (4.129)

Bilq12931 = (-D3~ F (63 7 g3 + HD}Y) [q10243] - Cilquqaqs].  (4.130)
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The correction term C5' is defined below. For these operators we have the analogue
of (4.126)

Ai[q192q3] = (203 + Dlg1, £3, 42, g3 F 51, (4.131)

and the analogue of (4.128),

Bilqiqaq3] = — 42263+ D(A3 — (A3 F g3 — Dq1. £53, 2, g3 F 3]
+42(20 + 1) (A3 = (G F g3+ Dlgn F5.92.q3 £ 5] (4.132)

We can use these expressions to find the action of D3 and then substitute the expres-
sions (4.126) and (4.128) for the four-point functions z[q1, ¢, ¢2, ¢3] and [q1, g, ¢2, g3]
in terms of D™ to find the 6j symbols. As a simple example, we find for £; = 0,

A +A)—A3-=-2
2(2A; - 3)
1
+ 3
8(A1 - 35)(A1 —2)

D37[000] = - D™ (1-1.0. 31+ 13.0.+11)

D™ (l-3.0.+31 - [+3.0.-31).  (4.133)

from where we can read off the for example the following 6 symbol,

[000](—-)
[A1,0] [A2,0] [A;+ 3, %1} _ Mitdombsm2 ey
(43,01 S [A3+3.5] Clochi 2(2A1 - 3)
The correction term Cj* is given by
Cilgiq2q3] =(€1 + q1 F $)(€3 — ¢3) AT (g1 — 1, g2, g3 + 1]

(1 —q1 £ )3+ @) AT g1 + 1, g2, g3 — 1]
— (L1 +q1 F D - ) ATq - Lgp + 1,¢3]
+ (1 —q1 £ 32+ @) ATg1 + 1,2 — 1, g3]
F2(03 F @3) (A = 2)AT[q1 F 1, g0, g3 + 1]
+2(0 F ¢2) (A —=2)AT[q1 F 1,2 £ 1, ¢3]
£ 2(A1 F g1 = 3) (A1 + Do = Ay = D ATq1, 42, 3]
+2(01 F q1 + (A1 - DATq1, 4. 431 (4.135)

The correction term C§ is obtained from the above expression by replacing 1 < 3
in the coeflicients, replacing A; by A3, and exchanging the shifts applied to ¢; and

g3 in the three-point structures. Note that Cg—“ enters (4.130) with a minus sign.
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4.3.5 Differential bases from 6; symbols

The crossing equation (4.102) will be our key computational tool in this work.
Using it, we can perform a variety of calculations with differential operators. As a
brief example, consider contracting both sides of (4.102) with a differential operator
Z)(c) 0, — 0", which we denote

O, w

(4.136)

”
Ol

Here, the incoming arrow for W indicates that this operator is associated to the dual
representation W*. Let us connect the incoming W line in (4.136) with the outgoing

W line in (4.102), i.e., contract the A indices. In equations, we find

D) DOXO, (x1)05(x2) 04 (x3)
ab

01 0 01" eonn )
- Z 1 W2 O} DIEL;)qD)(clM<01(xl)Oz(x2)03(X3)>( ), (4.137)
O’ m,n 3

mn

where we have given the differential operators subscripts x; to indicate which leg

they act on.

The composition of differential operators Z)gcill))(c'f)A on a single leg corresponds

to a bubble diagram

o
D(C)D(H)A — = Oi ONn' N (4 138)
A 0, w O, W 00y )
oy

This vanishes unless the representations for O] and O’ are the same, in which case
it is proportional to the identity (at least for generic scaling dimensions A’, A”).
The reason is that (4.138) represents a homomorphism between generalized Verma

modules, which are irreducible when the scaling dimensions are generic. The
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constant of proportionality, given by the symbol in parentheses on the right-hand
side of (4.138), is actually related to another type of 6j symbol, as we explain in
appendix C.4. For now, we take (4.138) as a definition of these symbols.

Using (4.138) with O] = O

{/» we can simplify the right-hand side of (4.137) to

obtain

0 03

ab cn
_ 01 0, O 0
o, w o \ow

mn

(4.139)

The left-hand side of (4.139) is a conformally-invariant differential operator Z)Xil D)(Cf)A
acting on a three-point structure at two different points. The right-hand side is a
sum of structures where the representations at those points have been modified. The
existence of such invariant two-point differential operators was a key observation
of [61]. Here, we see that they factorize into a product of covariant differential
operators, each acting on a single point. Indeed, it is easy to verify that all “basic”
differential operators in [61] are of this form, with W being either the vector or the
adjoint representations of the conformal group. Furthermore, from the discussion
in section 4.2.4 and appendix C.4 it follows that arbitrary compositions of the basic
differential operators of [61] are also of the form (4.139) with more complicated
representations W. In this sense, (4.139) gives a more fundamental point of view

on such operators.

The main purpose of the differential operators in [61] was to raise the spins of the
operators they act on. Here, we see that it is also possible to lower spins, an idea

that we discuss briefly in section 4.5.

Another observation of [61] is that (4.139) can sometimes be inverted to express
a basis of tensor structures in terms of differential operators acting on simpler
structures. For example, when one of the operators Oy is a traceless-symmetric

tensor, one can write three-point structures involving Oy in terms of derivatives of
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three-pt structures involving scalars. In our notation, this reads

O
O
\\¢1
O/z:Z("') W ::>—>—05' (4.140)

9)
0))

Here, the dashed lines denote scalar operators ¢1, ¢>. Note that the labels b, ¢
determine the dimensions of ¢1, ¢, in terms of Ag,, Ap,, respectively. Thus, the
right-hand side will involve derivatives of scalar structures with dimensions shifted
by half-/integers from those of Oy, O,. In equations, we write

(010,00 = 751019 p1 6200, (4.141)

where Z is a combination of derivatives dy,, dy, and formal operators %;; : A; —
A; + j that shift the dimensions A, A;. We have suppressed SO(d) indices in (4.141)
for simplicity.

The coeflicients (. ..) expressing 9;?3;3102 in terms of products of weight-shifting
operators Z)(b)AZ)X) are determined by inverting (4.139). In writing (4.140), there
are infinitely many possible choices of representation W and labels b, c. Generically,
we expect that it should always be possible to choose enough W, b, c’s to solve
(4.140). This was shown explicitly in [61] when O;, O, are traceless-symmetric

tensors.3”

For simplicity, we will sometimes write (4.140) as

0O
O
O = ::;>._>_ 0, - (4.142)
0}
9))

37Tt would be interesting to characterize the minimal set of W’s needed to build all possible
structures.
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4.4 Conformal blocks

4.4.1 Gluing three-point functions

A general conformal block can be expressed as the integral of a product of three-
point functions. For simplicity, consider the case where the external and inter-
nal operators are scalars. Given three-point functions (@;(x1)@2(x3)¢(x)) and
(@(¥)P3(x3)P4(x4)), the following object is a solution to the conformal Casimir
equation with the correct transformation properties to be a conformal block,

1 1
A f dx d’y(01 (P20 Sy (0D B3 (xa)Ba(xa). - (4143)

(x

where A = Ag. This can be understood, for example, by writing the integral in a

manifestly conformally-invariant way [54].383°

Let us denote the operation which glues two ¢-correlators by+°

_ d, d 1
|§) < (S| A d'xd y|¢(x)>m<¢()’)| = -
(4.144)
We should choose the normalization Na by demanding that
O --<-e - X-x-- = O --<--0¢ - (4.145)

That is, we demand that the shadow integral acting on a two-point function (@¢)
gives the identity transformation. In the case of scalars, this fixes the normalization
factor to be [54, 63, 65]

(A - HT (4 - A)

N = RO RTESE (4.146)

3In Euclidean signature, we take the range of integration of x, y to be all of R%. In this case
(4.143) produces a solution to the conformal Casimir equation with the wrong boundary conditions
to be a conformal block. However, the conformal block can be extracted by taking a suitable linear
combination of analytic continuations of the integral [54]. One can alternatively isolate the conformal
block by performing the integral in Lorentzian signature over a domain defined by the lightcones
of the four points x1, x3, x3, x4 [203]. Calculations involving differential operators are insensitive to
these issues because the differential operators always transform trivially under monodromy. Thus,
our methods allow us to study spinning versions of any of the solutions to the Casimir equation.

3We expect that (4.143) only converges when A lies on the principal series A € % +iR. We
obtain a general conformal block by analytically continuing in A.

“OInstead of thinking of the gluing operation (4.144) in terms of shadow integrals, we can
alternatively think of it as simply a sum over normalized descendants of ¢. The only properties of the
gluing procedure that we use in this work are that it is bilinear, conformally-invariant, and satisfies
the normalization condition (4.145).
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For spinning operators, O glues to its dual-reflected representation O — i.e., the

representation with which O has a nonzero two-point function,

|O0a,p) »< <OZ,pT| = 0 >—X——0f

1
= N,

9% (x - y)

d d
fd xd Y|0A,a(x)>m

O} . (4.147)

Here, t%®(x — y) is the tensor structure appearing in the two point function of the
shadow operators (QOT). We will not need the explicit expression, but simply the

normalization condition

0 X O = O0——0- (4.148)

A general conformal block is given by

0 0
.
W = (0100 b P(010,00) = (@—F———% (5
0y O
(4.149)

To perform computations with differential operators and shadow integrals, we must
understand how to move differential operators from one side of a shadow integration
to another — i.e., how to integrate by parts. This can be done purely diagrammati-
cally, just from the definition (4.148).

First, consider a two-point function. Moving a differential operator past a two-point

vertex is a special case of the definition of a 6 symbol,

1 o’
1 o’

0 ot 1 o]
= ’ . (4.150
;{0' w O} ot - (4150

em

ot 4
oli w

A three-point vertex where one of the legs is the unit operator 1 is simply a two-

point vertex. We could of course omit the unit operator from the above diagram,
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but we have temporarily included it to emphasize that (4.150) is a special case of
(4.102).4" Again, the notation “." means there is a unique corresponding structure

or differential operator.

Now, let us add shadow integrals onto both O and O’ in the above diagram. Using
(4.148), we find

oC

1 O/T OT

O/ OT
0] /Cg X ()’Jr = Z o W O [0) —)—X+?+ O’T
w

W
(4.151)

Equation (4.151) essentially implements two integrations by parts in the double
integral (4.144), allowing us to move a differential operator from one side of a

shadow integral to another. In symbolic notation it has the form

oC

o" 1 oF

0 DA 4.152
o w ol 10=¢ | (4.152)

D0y = (07| = )

m
om

4.4.2 Spinning conformal blocks review

The expression (4.149) for a general block can be combined with the “differential
basis" trick (4.140) to express certain conformal blocks as derivatives of scalar
blocks [61]. Suppose the exchanged operator O = Oy is a traceless-symmetric

tensor of spin £. Applying (4.140) twice, we find

0, (05
o)} 05
Oy Oy Y. O O <
a X b) = > X <
O O
O Oy
(4.153)

Note that the right-hand side is a differential operator acting on conformal blocks

with external scalars. In equations (4.153) reads

,b)010,0;0. 0,0 b)030.
G(Aﬂ,lf) 1020304 (1) = 9(1(;]1()]52] 29(1(53;43 4G¢A§}g¢2¢3¢4(xi)- (4.154)

41To be precise, we have established (4.102) only for non-degenerate operators O;. However,
as explained in section 4.3.2.3, the objects on either side of (4.150) span the space of covariant
two-point functions, which provides the missing ingredient.
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The objects in (4.154) and (4.141) carry SO(d) indices which we have suppressed

for simplicity.

Note that symmetric traceless tensors (STTs) are the only representations that can
appear in an OPE of two scalars. Because .@;?;?iaj can’t change the representation
of the exchanged operator, the expression (4.154) only works for conformal blocks
with an exchanged STT. This is sufficient to compute all bosonic blocks in 3d, since
all bosonic (irreducible) 3d Lorentz representations are STTs. However, in general

there exist blocks which cannot be computed using (4.154).

To compute more general blocks, an approach advocated in [54, 61] is to identify the
simplest set of blocks with general exchanged representations — so-called “seed”
blocks — compute them using some other method and apply the trick (4.154) to
those.#? However, our new techniques will make it simple to modify (4.153) and

(4.154) to compute any type of conformal block (including seed blocks).

4.4.3 Expression for general conformal blocks
The basic idea is to allow the differential operators acting on the left and right to be

conformally-covariant, instead of simply invariant,

(a,0)01020304 N _ p(a)A 5y(b)
GO (xi) = gleft @right

AGL P (xy), (4.155)
where A is an index for some finite-dimensional representation W of SO(d + 1, 1).
The exchanged operator then lives in the tensor product W ® V, ¢, which can contain

primaries with more general Lorentz representations. We must be careful to choose

(a)A Q)
@left and @right

contributes. However, this can be done easily and systematically using the techniques

4 so that precisely one irreducible subrepresentation of W ® Vi,

we have developed.

Let us begin with the object we would like to compute: a conformal block for the
exchange of an operator O transforming in Vj ,,

02 03

+
ng,b)01020304 (x;) = a Y% X 9 b . (4.156)

O Oy

42Seed blocks for 4d theories were classified in [62] and computed in [58] using the Casimir
equation. In 3d, there are two types of seed blocks: external scalars with exchange of spin ¢ € Z, and
external fermion+scalars with exchange of spin-£ € Z + % A recursion relation for the latter type of
3d seed block was computed in [81].
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Let W be a finite-dimensional representation of the conformal group such that
W* ® Vj,, contains a spin-¢ STT representation O,. We can introduce a bubble of
W and O in the middle of the diagram, so that the shadow integral itself involves a

spin-¢ representation. Note that

Oy

()W«—(ﬁ

=) o' 1 ol (o) ' (4.157)
“Zio, w oo \ow) Q7o '

p

where we have used (4.151) to move the differential operator D4 from one side
of the shadow integral to the other, and (4.138) to simplify a product of differential

operators Z)(p)AZ)Xl) on a single leg. Thus, we have

,0)010,0;0
Ggl )010,03 “(x;) =

0, Os
0 T
1 ?\@ O iy & O @\{ . (4.158)
an W
Ol W 04

om pn
anEZ o' 1 0O o' . (4.159)
o, W 0 oW

We do not sum over m, n in (4.158) — rather we can choose any m, n such that M,,,

where

iS nonzero.

Now we use crossing to move the W vertices to the external legs. Let us focus on
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the left-hand side of the diagram (4.158),

9

o, 0, o) O
{1 2 } o (4.160)

0

(@)L O

[

o W O

rs

O',r,s

O, w
O w

Now O, and O’ participate in a three-point vertex with an STT operator O, so we
can use (4.140) to obtain

= O 0, O (4.161)
Orrs o, W O

Thus, we find

‘ 1 o )
B $16:0¢) = \/T@)(“ 140(0,0,0(x )@,

am
1 0, 0, O ,
(@A _ 1 Oz (5)A £(r)0'0;
where Z," = —m O,E” {05 O} D Dy > (4.162)

rs

where the x subscript indicates that Z))(Cm)A acts on the operator O(x). Similarly,

1

(b) _ (n) b
D g A(P48300) = \/M_MZ)A?X<O4O3OT(X)>( )
bn
1 Oy O3 O ,
(2 4 3 W) 410’0
‘@rightA B M O’ tu {O€ w* OT} z)"4»A‘9¢4¢3 K (4.163)
7 tu

Together with (4.159), this gives (4.155).

Schematically, applying .@&F@;@Lt 4 to a scalar block results in a graph with the
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% #
b =), ¢ S (4.164)

The inner object is a conformal block for external scalars (dashed lines). Weight-

topology

shifting operators dress it in a way such that (a component of) the tensor W ® Oy
propagates from left to right.

The above calculation has the advantage of being extremely general. However, it
requires us to make non-canonical choices of W and the differential operators m, n.
Different choices for these objects will result in naively different, but equivalent
expressions for our conformal block in terms of derivatives of scalar blocks. In
some cases, to obtain the simplest possible expression, we may want to proceed

slightly differently.

4.4.4 Expression for seed blocks
Let us consider for example the problem of computing the seed blocks. For simplicity
of discussion, we will restrict to the case of even d. The case of odd d can be analyzed

similarly43 (for example, we construct the 3d seed block in section 4.4.4.1).

As mentioned above, seed blocks are the simplest conformal blocks that exchange
a primary O in a given SO(d) representation. In particular, we can always choose
the external operators in a way such that there exists a single three-point structure

on either side of the block, for example

9 03

'

Y
1

'

0,

P4
(0)

4

The complication in the case of odd d is that when O is a fermion, we cannot choose the
external operators so that there is a single tensor structure on each side of the seed block. Instead,
the minimum is two. This is related to the fact that the irreducible fermionic representations of
SO(d — 1) are necessarily chiral when d is odd.
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where O; and O3 are scalars, while O, and O, transform in representations which
are obtained from that of O by, for example, removing the first row of the SO(d)
Young diagram.

To express this seed block in terms of scalar blocks, let us first focus on the left

three-point structure. We can write

9
\E_L = : (4.166)
;

O,

where due to the uniqueness of the tensor structures, we are free to choose n, m and
W as long as O is a scalar and Oy is a STT. In what follows, we will perform
manipulations with the operator labeled by m, but we will leave n untouched. For
this reason, it is convenient to choose W and »n so that n is a O-th order differential
operator. According to theorem 2, this means that the primary of W* should
transform in the same representation as O, i.e., (W*)_; = (W;)* = p», where p; is
the SO(d) representation of O;.#4 On the other hand, the condition for existence of

the structure on the left is
(p® p2)°0U D 20, (4.167)

where p is the representation of O. This is equivalent to saying that there is a STT

in the tensor product p ® p» = p ® (W;)*. In turn, this leads to
p € STT® W;. (4.168)

According to theorem 2, this implies that we can use an order-(2j + 1) differential

operator associated to W* in place of m.

#Such a W* always exists. In fact, there are infinitely many choices differing by the value of j,
and the W* with minimal j is obtained by prepending a O to the list of Dynkin labels of p; (in the
natural ordering where the vector label is the first and the spinor labels are the last).
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We can now use (4.151) to move m to the right three-point structure to find the piece

W

Zog 1 o]
o w o Ot

, (4.169)

Cc
oC

Oy

to which we can apply a crossing transformation to find

yy ot ot |os o 0
- o w* o |o wr of

" ’
¢ Ozab e

(4.170)

We now use (4.140) to write the full seed block as
0, O3

o 04
4.171)

The advantage of this over the more general (4.164) is that we have been able to

choose the differential operator n to be of zeroth order, and we also avoided acting
with differential operators on one of the legs. This reduces the order of the full
differential operator acting on the scalar conformal block relative to the general

expression. Let us now consider some examples.

4.44.1 Example: seed block in 3d

Our first example is the fermion seed block in 3 dimensions. The SO(3) representa-

tions are labeled by a single (half-)integer £. If £ is integral, then the representation
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is bosonic, and operators O, can be exchanged in a four-point function of scalars. If
¢ is half-integral, then the representation is fermionic and O, can be exchanged in a

scalar-fermion four-point functions

Wa, (51, X1) A, (x2) P, (X3)A, (54, X4)). (4.172)

It is therefore possible to express any conformal block in terms of a scalar or
fermion-scalar block. The latter were computed in [81] by a Zamolodchikov type
recursion relation. In this section we will show how the fermion-scalar block can be
expressed as a third-order differential operator acting on a scalar conformal block,

thus reducing all conformal blocks in 3d to derivatives of scalar blocks.

For ease of comparison, we will follow the conventions of [81]. Let us review basic
properties of (4.172). On each side of conformal block there exist 2 three-point

structures, which can be defined using the 5d embedding formalism as

¢2
% -1
+) _ _ (S150)(S0X1X280)" "2
<l//A1¢A20A’€> - O = A1+A2—2A+[—% A2+A—§1+t’—% A1+A—§2+{+%’
X12 X20 XOI
2}
$2

\

\
Ky

-1
) _ _ ($1X250)(S0X1X280)" 2
<WA1¢A20A’[> - O = Ap+hg-Aetrd  AgrA-Ap+er) A1+A—A2+€—%’
b X

2 2 )
12 X20 XO]

3}
4.173)

and analogously for the right three-point function (1 — 4,2 — 3). Here the index 0
refers to the intermediate operator O, of dimension A, and we labeled the three-point

structures by their P-parity. Accordingly, there exist 4 conformal blocks, which can

43Since our analysis is purely kinematical, we will label operators by their scaling dimensions
and spins.
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be expanded in a basis of four-point tensor structures,

(5] ?3

b > O O { : b =\l
Geea(S1:80.20) = (a x D) =Y gD (s 154 x0).
=1

21 Ya
4.174)

Asindicated, there exist 4 four-point tensor structures Ti. Out of them, two structures
are parity-even and participate in conformal blocks G**, G™~, and two are parity-odd

and participate in G*~ and G~*. We give their exact form in appendix C.5.

We now compute the seed blocks using the algorithm#® from section 4.4.4, and we
will use the spinor representation W = S of the 3d conformal group to translate
traceless-symmetric representations into fermionic representations. The first step is
to write the left three-point structures in the form (4.166). Let us define the scalar
three-point structures as

é2

\
\

X (SoX1X280)
(da,94,0n0) = Y—— Op T T A b Al AiA Al AjrA Ayl (4.175)

X, ° Xy ° X °

/ 12

1

b1

In (4.166) we will use the zeroth order operator D" in place of n. For m we can

01

take any differential operator of the appropriate parity. A simple choice is to use
D, for the parity even structure, and D, for the parity-odd structure. We then
have
+ 1 - —+
Wa, da,000)F) = C_i<2)1+D0_><¢Al+%¢A20A+%,K¢%>' (4.176)

It is easy to find by a direct computation that
Ci=1, C_-=20+1. (4.177)

Note that OA+ 1, is the operator which is going to be exchanged in the scalar
LF 5
block. If we chose different operators for m (i.e., D*¥) in (4.166), then we would
relate the seed block to different scalar blocks (in particular, it doesn’t make sense

to mix these choices).

46Because we want to follow the conventions of [81], some minor modifications to the algorithm
are required, such as reordering of the operators.
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Crossing of 2-point functions The next step is to learn how to push the operators
D, * through the shadow integral. For that we need to fix the normalization of
two-point functions, which we choose to be

(81 82)%

A+L
X12

(Onc(S1, X1)Onr(S2, X2)) = i (4.178)

The definition of 6 symbols (4.150) is in our case

ﬂz_,a_(OM%ﬁ%(Sl, X1)0A+%’€¢%(52, X2)) =
. (-3)
OA+l =3 1 O -
= 2 D1 7{O0pe(S1, X1)On (82, X2)).  (4.179)
Oay S 0 1, ,
A+2,€+§ .(+¢)
We can explicitly compute
0 1 o v
1 AL ;
SR = : , (4.180)
Oar S O 1, , SEA-—1D(A-C-1)
A+§,g—§ .(+_)
0 1 on |7
A3 0+ Al _ i@+ @.181)
Ore S O 1 4A-D(A+ ) '
A+§,€+7 o (+4)

and use these coefficients in (4.151) to arrive at (4.169). At this point, we have

expressed the seed block in the form

b
G (S1 54, X;) =

«(-%)
1 JOp1 1 Oc o )
= — { 2 Q dZ)L:((/”AH%(ﬁAZOM%ﬁ%) < Dg,d<0A,f¢A3tﬁA4><b),

(4.182)

where »< stands for shadow integral.
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Crossing of three-point functions Now we are going to perform the crossing

transformation on the right three-point function to write it as

b(+7F)
¢A3 l/’A4 l//A3+%

D i{Onepaya)” = Z

b/

D A0
Ore S O 1,1 s A*%’“

A+§,€¢§ (=)

b(+F)
¢A3 l,//A4 l/’

1
2 DI O
3.d 1,1¥
Ore § O 1,1 A+7.0%5
A+§,€+§ b

")
%WA3+%WA4>

Az— (b
e % Ya)" .
(+-)

(4.183)

To proceed, we need to choose a basis of tensor structures for three-point functions

of the type <OA+%,3¢%¢A3%¢A4>‘ We define
SIS S3X1 X283 (S153)(S2853)(S3 X1 X2.83)¢ !
t1:<12><3123>+<13><23><3123> , (4.184)
Xg Xf—l
12 12
SISHNS3X1X283)0 _(S1S3)(S283)(S3. X1 X5 83) !
t2:<12><3123> L 2 {8183)(8253(53 X1 X553) ’ (4.185)
Xg Xf—l
2 12
($3X1X,83)¢!
f= ST Xn(SISNSX8) (4.186)
Iy Iy 2
X1 " Xps X5
($3X1X,83)¢!
Iy Iy 2
X1 " Xpy X5

where the first two structures are parity-even and the second two are parity-odd.+”

In terms of these structures we set
W10 ® = il 4.188
Y1y20¢ T T A tAy Ayl Dythy A+l Dy+hy-Agil (4. )
2 2

: X3 X

12 31

4TWe choose this peculiar basis only for the purposes of presentation, because in it 6 symbols
have the simplest form. In practice we used the basis (4.119), in which we know the general 6;
symbols for the spinor representation.
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We can now compute the 6j symbols in (4.183). For example, the only non-vanishing
symbols for b = + and D** on the left of (4.183) are

+(++)
dny Ya, $A3+%
Ore § O 1,1
A+§,f+§ 1(=-)
LA-DA+C+A A= DA+ L+ A3+ Ay -3
_ (_1)5_,_5( 2)( 3 4 23)( 3 4 2), (4189)
A3—§
+(++)
¢A3 '7[/A4 wAS‘F% ]
Ore § O 1,1
A+§’[+§ 2(—-)
TA+C+M—A—D(A-DA+C+A3+A-3) -4
I AR L )(3 PR ITY a90)
A3—§
& v v +(++)
Ay YA, _L TA+C+A3—A4 -1
aE = (-3 2y (4.191)
Ore S OA+%,€+% " 4(A3 - 5)(A3 = 2)
& v v +(++)
Ay Y _L TA-DA+C-A3+A4+ 1
O S OA” =(—1)"+2( X . S 2). (4.192)
AL A+%,€+% 4(50) 2(A3 - E)(A3 -2)

The other symbols vanish due to space parity. The are 12 more non-vanishing 6;
symbols for other choices of b and of the operator on the left, which we won’t list

here since they represent only an intermediate step in our calculation.

Differential basis The final step is to express the three-point structures

A+5,0+

Opd a1V 190" (4.193)

in terms of derivatives acting on scalar thee-point structures. This is standard, and
this particular case was solved in [39], so we do not explain it in detail. We only
note that the operators which create the parity-even structures ¢ and #, should be

parity even,
1, 1 ~ (DD, (D7D, (4.194)
while operators which create parity-odd structures have to be parity-odd,

13, 14 ~ (D7YDH), (DIYDH). (4.195)
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The recursionrelation Assembling everything together, we arrive at the following
expressions for the seed blocks in terms of third-order differential operators acting

on scalar blocks,

)

seed’ " seed

Gt G- :Vl(@;+@;_)(@;+@I+><¢Al+%¢A2¢A3+1¢A4_%
+ V2<Z)1_+Z)3__><D;'+Z)Z+><¢AI+%¢A2¢A3 ¢A4+%>

V(DI DINDI DI, 19m0816, 1)

i
2
+ V4(Z)1‘+D§"_)(Z)3—+DZ+)(¢AI+%¢A2¢A3 ¢A4+%), (4.196)
Gl Gota =Dy Dy KD DI NG, 10, )
+ V2<Z)1_+Z)3__><Z)3_+Z)Z+><¢Al+%¢A2¢A3+1 ¢A4+%>

Ry
2

vl DT DUDTT DN, | 19019, 1 . (4.197)

V(D] DINDS DI, 1 dndnd,

The coeflicients v; are different for each of the blocks, and we give the explicit
expressions in appendix C.5. The scalar blocks in the above expressions for G,
correspond to exchange of [A + %, - %], while for G_; the exchanged primary is

1 1
[A+ 50+ 5]

Decomposition into components Note that the scalar conformal blocks have the

form
2\¥ /[, 2\F
1 X\ [ X4 B, =
(Pa1Pnbnsb0) = 8 mims (xT) (xT Gz,f(z, 2), (4.198)
12 34 24 13
where a = —%A 12, B = %A34, and depend essentially only on @ and £ and not the
individual dimensions A;. We then see that e.g. for G, we only need the scalar
a_gll’ﬁ_% a—}‘,ﬁ+% . . .
blocks G | ["and G | . There exists a second-order differential operator
A+§,€—§ A+§,€—§
(see [64] and section 4.4.5) which relates these two blocks,
s P L P
G | [(z2)~(0:0:+..0G | [(372). (4.199)
Atg:l=3 263
a/—l,,3+§
In (4.196) only a first order operator acts on G ‘1‘ 14 , and thus we can use (4.199)
A+§,€—§

to reduce (4.196) to another third-order operator acting on the single scalar block.
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In particular, we can write

[_%a 07 0’ _%] + [%’ 0’ 07 %]
2

[_%, 07 07 %] + [%’ 07 07 _%]
2 b
(4.200)

G++ — gii-+ (Z, z)

seed

+85,'(2,2)

where the tensor structures are defined in appendix C.5 and

1 1
: -5 1 I
o = i(=1)"2 ——A'+A22+2 ++ YT
,Z2) = DG
S D= e o naon SN

1
B3
1

2

(z2,2). (4.201)

The differential operators D" are given by“

D} (2,7) =20:D, — 20.D; — (28, - Zé‘z)z(i (=20 - (1 -D)
L= f)(i =3 o 7o+ #wz ~D2),  (4202)
2z

D3%(2,7) =V Dz + VzD; + (V. + Vz) ((1=2)0. - (1 -D)%)

20+ 1)(A-€-3)(A-3)
1 ,

2(z-72)
A-OA-€-3)
B 4

(Vo +V2) +
(4.203)

where

D =22(1-2)0 -~ (@ + B + )20, ~a'Bz o =a-3p =B~}

(4.204)

V, =20, + = (4.205)

and D7, V7 are defined by exchanging z and Z.

The same reduction to a single block happens for G__,. For G!_, and G|, the
situation is a little trickier since there is a second order differential operator acting
on the “wrong” scalar block. However, it turns out that its second-order piece is
in fact coming precisely from the dimension shifting operator, and we again can
reduce to a third-order differential operator acting on a single scalar block. Explicit
expressions for these blocks can be written in a compact form given in appendix C.5

together with an explanation of the normalization conventions.

“In simplifying these expressions for the differential operators we made use of the quadratic
Casimir equation satisfied by the scalar conformal blocks.
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4.4.4.2 Example: seed blocks in 4d

In 4-dimensions the operators in a generic spin representation are labeled by 2

non-negative integers*® ¢ and ¢
Onp = 00, (4.206)

It is convenient to distinguish different classes of representations by a parameter p
defined as
p=le-1l. (4.207)

Operators with p = 0 are the symmetric traceless tensors. Using (4.96) one can
easily check that any given four-point function can exchange operators with only a
finite number of different values of p. This implies that contrary to the 3-dimensional

case, in 4-dimensions we need infinitely many seed conformal blocks, parametrized
by p.

A calculation of the general 4-dimensional seed conformal blocks was first per-
formed in [58], where the explicit expressions for p < 8 were found. In this section
we perform an alternative computation of the seed blocks by using our new ma-
chinery and the strategy outlined in section 4.4.4. Our approach is to express the p
seed blocks in terms of the p — 1 seed blocks. Knowing such a relation allows one
to apply it recursively p times to get an expression of the p seed block in terms of
the derivatives of the scalar p = 0 Dolan-Osborn block [57, 63]. Since the latter
is known in terms of » F| hypergeometric functions, this also gives hypergeometric

expressions for the seed blocks, equivalent to those in [58].5°

Let us note that the explicit hypergeometric expressions of [58] are quite complex
already for p = 2. In numerical conformal bootstrap one usually requires simple
rational approximations to conformal blocks [35, 36, 47], which are hard to construct
from these expressions. On the other hand, our differential recurrence relation is
rather simple, and we thus hope that it will find applications in the numerical

bootstrap.

As in section 4.2.5.4, it will be convenient to use the 6d embedding formalism
described in [2, 54, 55, 58, 62]. In what follows we use the conventions of [2],

and all the computations are performed using the Mathematica package described

“YNotice a difference in conventions relative to the 3-dimensional case where £ can be half-integer
for fermionic operators.
SOWith normalization conventions derived in [2]. We performed the check for p < 4.
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therein. To avoid repetition, the notation and conventions from [2] will be used in

this section without explanation.>!

A simple choice for the seed four-point function where the operator Of’f) with a

given p can be exchanged in the s-channel is>2
<7:1(070) 7:2(1’,0) 7:3(010) ?:‘(O’P)>. (4208)

The conformal block associated to the exchange of Of’g) in the seed 4-point function
is -
P) = (00 g0 5Dy | HED £(00) £Op)
W&Z =(FyFy O,") (0, FyUFT) (4.209)

We distinguish 2 cases depending on the sign of £ — £. Using the convention of [58]

we define the “seed">3 and “dual seed" conformal blocks as

wP =w? <y, (4.210)
&t
Wg;)al seed = W;’;), > Z 4.211)

The seed and the dual seed conformal blocks can be further decomposed into

components as

V4
- — [2421€[2421P—€
W, =% Z(—Z)p ‘HY @71 [1#]" (4.212)
e=0
—(p) < —(p) aar 1€ [a4n1P—€
Wdual seed = Ka Z(_z)p_eHe (z,2) [142] [I[gﬂ . (4.213)
e=0
The parameter e = 0,..., p labels the possible 4-point tensor structures. In this

section we focus solely on the seed blocks He(p )(z, 7). The case of the dual blocks

ﬁip) (z,7) is completely analogous and will be addressed in appendix C.6.

The calculation essentially follows the algorithm in section 4.4.4, the main difference
being that we go from exchange of (¢, £+ p) to (£, {+ p — 1) instead of going directly
to an STT exchange. The calculation is also largely analogous to the 3-dimensional

3IThe only difference is that we avoid using the terminology of [2, 58, 62] in which “conformal
partial waves” refer to what we normally mean by conformal blocks, while “conformal blocks” refer to
the coordinates in a basis of four-point tensor structures. When there is a danger of misinterpretation,
we call the latter simply the components of conformal blocks. We do so to avoid the possible
confusion with conformal partial waves from harmonic analysis.

3The seed 4-point functions are chosen so that there is a unique conformal block for the exchange

of Of’[). There is an ambiguity in choosing the seed 4-point function, and here we use the convention
of [58].
331n this paper we sometimes use “primal seed” to distinguish from the dual seeds.
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calculation in section 4.4.4.1. For convenience, we start the algorithm from the right

three-point structure instead of going from the left.

We first rewrite the right three-point function entering (4.209) as

—(t+p,0) —(t+p-1,0)

—at0 —
©Op "FSOFI) = Dy Dacon) Opirp FOVFCT). (4214

—— 140 —
The subscript 0 indicates that Z)0+ acts on the internal operator O. We would like

to move it across p< (integrate by parts) using the rule (4.152).

Crossing of 2-point functions The definition of the 6 symbol entering (4.152)

in the present case is

—+0— —(l+p,0) — —
Dy, (O) (X1, 81,5D0 P (X2, 82, 52))
——+0 —({+p-1,0) — _ —
=ADy, <0A+52 (Xl,Sl,Sl)Off}j’z’ D (Xs, $5,82), (4.215)
where
—(L+p.0) —(t+p-1,0)) *(+0)
_ ) Oa 1 Opuip .
A = Ol g O&’Ap) =2i({ + p)(A - g -DA-C- ’5’ -2).
A+1/2 A o (=+0)
4.216)
Applying (4.152) and (4.214) to (4.209) we arrive at
. —t0- —(L+p-1,0) _
Ws(fzd — ﬂ 1 (Z)() 5 D4,—0+)<FA(?’O)FA(IZ)’O)OS’KHJ)) > <OA+1/2 FA(?,O)FA(:)»P 1)>,
4.217)

—+0-
where D, now acts on the left three-point function.

Crossing of 3-point functions We now use the crossing equation for the 3-point

function

2
A0~ 1 (0,0) H(p0) ALLE+P) _ A0 L(1,0)  H(p.0) AEL+P-1)
Do, <FA1 FA2 OA >_ZB(n)Dla <FA|+1/2FA2 0A+1/2 >(n)+

n=1

2

0, £(01)  (p.0) AEL+P—1)\(n)
Zc Dy, (FM PO ™ (4.218)
n=1

where 8™ and C™ denote the 6 symbols

FOO g0 gao )T
8" = ([%L 1) A %ﬁiﬂ)
oLl 5 ol ’
A+1/2 A (n)(==0)
FOO g0 gon )T
CW=1 Wy & i) (4.219)
sL+p— sLTp : '
0A+1/2 S OA

(n)(+0-)
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The 3-point functions in the right-hand side of (4.218) have the following form

0 0 L. : ~ A 1 Kl
s +p—1
<F(1, ) F(P )O( 14 ))(l) — 7(3| [32]17 1| ]13 |€ 1( 2 ,

A+1727 A YA+1)2 f31[?123
713 732
(FOV g0 gllep=Dyi) _ ger j321p=11 j3 161 =1 (4.220)
A=1727Ay  YA+1)2 -3 12 jepol '
12

Again, we can find the 6 symbols 8 and C™ by an explicit calculation,
C(A +A2+A—f—p—6)
4(A -2)

(4(€+p+1)(A1—A2+€+§+1)+(A1—A2+A+€)(2A—4£—3p—6)),

g - _PAI-2+A+HQA-2—p-H(A1 + M+ A-L-p-6)
B 4(A - 2) ’
1y _ (QA+p=-2)(A1 =AM -A+L+p+2)
4(A1=3)(A1-2) ’
@ _ PE2A+20+p+ (A A -A+l+p+2)
4(A1-3)(A1 -2) '

/D - g2 _

C

C

(4.221)

Differential basis The last step is to relate the 3-point functions entering (4.218)

. . 0,0) (p=1,0) A(LL+p-1
to the seed 3-point functions (F A(i 'F A(Z >Oi HJ;‘; )

using the differential basis trick. This is standard [61, 62], so we simply note that

» with shifted dimensions by

we use the following differential operators

1,0 ,0) ~ (L E+p—1 ——+0 ——+0
<FA(1+3/2FA<I; )Og+1+/127 Hw o~ (D] Doas0), Do Dy )

—+0+ ——+0

, -
<FA(?,—1;/2FA(1270)02€_1712] Dym -~ D, - D2440), (Di-0+- Dy ). (4.222)

The recursion relation Combining the expressions (4.217), (4.218), and the dif-

ferential basis (4.222) we find the following recursion relation

») _
WA,f; AL ALA3AL T

A+0 A+ 1A= T AL A+

_ —0 ——+0 1
A ‘(m(@l Dy-0) D7 Dayro) W

—0 ——+0 1
(D) Di—0+)(Disro- Dy ) WP | |
A+§,f; AL A +75,A3,A4+ 5

2 2
—+0- —+0+ (p-1)
+Vv3 (1)1 : 1)4,—0+)(Z)1 : Z)Z,++O) W 1 1 1
A+§,f; A]-l,Az—z,A3,A4+§

—+0- ——+0 (p-1)
tva(Dy - Da—0+)(Di-0+- Dy )W 1 b
A+5.0 AL A 75,0304+ 5

(4.223)



149

where the coeflicients v; are given explicitly by

A+ A M+ DA A+ M+ O+ 2)(A+ A+ A= —p—6)

" 40 —2)(20s +p—4)
(A A =D L p+ A+ A — Dy —L—=2p=2)(A+ A + Ay~ —p—6)
"2 8(AI—2)(A— 1) ’
3 “A+A—M+L+p+2
e 4(A1 =3)(A1 =220 + p—4)
by = (FA+A =M+ l+p+2)(-A+ A1+ M+ 0+ 2p=2)(A+ A1+ Ay —C—p—6)
4 = — .

8(A1 —3)(A1 - 2)
(4.224)

Decomposition into components By using (4.212) one can write the recursion
relation (4.223) at the level of components of the seed conformal blocks He(p )(Z, 2).

First let us notice that according to [58] the components He(’7 ) (z, 7) of the seed blocks

depend on the external scaling dimensions A; only via the quantities

a=a?, P=bpPrp-e L=p-e, (4.225)
where A —A 2 Az — A 2
a? = _%'rp/’ pP) = +3—+4—p/' (4.226)

Let us now analyze the expression (4.223). Almost all the conformal blocks entering
the right hand side of (4.223) correspond to the same parameters a‘”) and b” (the
difference in p is compensated by a difference in A;). The only exception is the
conformal block

wr D | ; (4.227)
A+§,f; A1+1,A2—75,A3,A4+5

2’ 2
which contains a'”’ —1 and 5. Just as in the case of 3-dimensions in section 4.4.4.1,
we can use a dimension shifting operator to simplify the structure of the recursion
relation (4.223). The only difference is that we need to shift the external dimensions
of a general seed block. This can be done by generalizing the construction of

dimension-shifting operator outlined in section 4.4.5. We find

(p-1) _ o1 a0 A0 -1
w 1 1 1 = & (Dl,+—0'DZ )(@l,++O'D2 )W 1 1 1°
A+5.C, A1+1,A2——,A3,A4+— A+5.C, Al,A2+—,A3,A4+—
2 2 2 2 2 2
(4.228)
where

=-(p+ DA -DA1=2)(A+ A1 =M+ O)(A+ A1 = Ay - €-2). (4.229)
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Note that this is in fact completely analogous to the differential basis trick, except

that instead of changing the external spins, we change the external dimensions.

Plugging the relation (4.228) in (4.223), stripping off the kinematic factor and

decomposing this relation into components according to (4.212) one obtains a

recursion relation for the seed blocks of the form

( Al _ _ _ _

1Y 2.5) = === (Do B @D - 2Dy BV D) + 470, HY  (29)))
(4.230)

where the conformal block in the 1.h.s depends on [A, ¢; Ay, Aj, Az, A4] while the

conformal blocks in the r.h.s. depend on [A + %,f; A, Ay + % Az, A4 + %]. The

differential operators D; are given by

Dy =V:(b,"1D¥ " v (50 1D

k(k-2)

B 1+ cg_l

Dy =zV=[B) ") + 7 IDYTHTD v BT+ P DD
+k (zDi”‘l’e‘” -z ;p“’e“’)

+ Q7 + DZELIB 1z =) Llal - (k= 2)(k = 77} = 1)(z = Z) BIK],

+k (Dy’“"’) - ;P“’e)) — (" LB

] , (4.231)

(4.232)
Dy =Y = p — falBk - ) - 1] (4.233)

where the coeflicient k is AAsl 3
ks ——+ —. 4.234
2 4 ( )

The elementary differential operators>* used here are
D) = x*(1 - x)07 - ((a+ b+ 1)x* — cx) dy — abx, (4.235)
Vilul = —x(1 = x)0x + ux, (4.236)
L{ul = V [pu] = Vzlul, (4.237)
44 —

Blul= = ((1- 28— (1-D)8) + 4 (4.238)

and we also use the following short-hand notation
D(Pae) = D(ag,b€§cg)' (4239)

>4Exactly the same differential operators (except for V,[u]) enter the quadratic Casimir equation
for the seed blocks [58]. Note that here the definition of L differs by a factor of z — Z.
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4.4.5 Dimension-shifting and spin-shifting

Using our techniques, we can explain some of the identities for scalar conformal
blocks which were derived by Dolan and Osborn in [64]. For the ease of comparison,
in this section we use the notation of [64], which we now briefly recall. The scalar

conformal block is defined as

(DA, (x1) P, (x2) Ol (X3)Pa, (X4))

: (
- A1+Ay  Az+Ay
X2 X3y

X24

—2a X 2b
) (ﬁ) Faa,(a, b, x, %), (4.240)
X14

X13

where x and X are the standard Dolan-Osborn coordinates denoted by z and 7 in the

rest of this paper,
2 .2 2 .2
=2 (- = 2 (4.241)
X13%24 X13%24
and
a= —lAlz, b= lA34, (4.242)
2 2

while the parameters A; are defined as

1 1
L=54+0, L=50A-0. (4.243)

Operators 7; Let us consider acting on (4.240) with the following contraction

of the vector operators (4.45),
-0 -0 _ _ .2
=207 - D7 = =2X1 - X4 = xi,. (4.244)

The resulting four-point function will have scaling dimensions at positions 1 and 4
shifted by —1. Accordingly, we can remove the prefactor for the new set of scaling

dimensions to find the resulting action of this operator on Fy, 4,,
(x?)‘%F/M2 (a, b, x,X). (4.245)

This operation is equivalent to the following diagram,
[A2,0] [A3,0]
L VW4

\ 1

b , (4.246)
[A1,0] ¥ < [A4, 0]

’

hrnrmmmnnnnas
Y 0 X

[A; —1,0] (As— 1,0]
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and thus according to our general analysis can be expanded using the finite-
dimensional crossing (4.102) in terms of scalar conformal blocks with shifted

external dimensions and the internal representations appearing in
oAl =[A-L{e[Al+1]d[AC-1]0[A+ L {]®..., (4.247)

where . .. represents non-STT representations which do not appear in a four-point
function of scalars. In the notation of [64], this corresponds to an equality of the

form

(a+5,b+

() 2Fy (0 b) =r )

=

(a+ b+ +sF

1
/11+%/12—% 2

=

1
-5 da—

1 1 1 1
+tF 1 1(a+5b+3)+uF 1 1(a+5b+5),
/l]-j/lz-kj( 2 2) A1 z 2+§( 2 2)

(4.248)
where the coefficients r, s, f,u are some combinations of the 6 symbols (4.102).
This is precisely the equation (4.18) in [64]. Dolan and Osborn also introduce k-th
order differential operators Hj for k = 1,2, 3, which act on F,,,, in the same way
but with different sets of coeflicients ry, sg, tx, ux. In particular, they all increase a

and b by % In our formalism we can also find 3 other operators with such a property,

Dz = Dl_o . D;O,
Dry = D50 D°,
Dy = D30 D, (4.249)

all of which also exchange the vector representation in a way similar to (4.246),
and thus act in the same way as H. In fact, one can express Hj in terms of these

operators, and we provide explicit expressions in appendix C.7.

Operators F;  Another class of operators introduced in [64] can be interpreted as
exchanges of the adjoint representation of conformal group. The simplest of such
exchanges is given by

Fo = 8D, 1, D50, "D, (4.250)

1,[m

whose action on the functions F,,, is equivalent to

I 1
Fo=—+=-1, (4.251)

X

=
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which is precisely how 7 is defined in [64]. The action of this operator on a

conformal block corresponds to the following diagram,

[Az—l 0] [A3—10]
[A2,0 Q’”\z [A (] {ﬁg [A3,0]
(4.252)
[A1,0] [A4,
(A —'1,0] [As — 1,0]

where the individual differential operators have indices in the vector representation
and are then joined into the adjoint representation H € [] ® []. Therefore, it

decomposes into scalar blocks appearing in the tensor product

H®[A,€]:[A—1,€+1]69[A—1,€—1]69[A+1,€+1]69[A+1,€—1]69[A,€]69...,

(4.253)

(3 2

where represents non-STT representations which do not appear in scalar

conformal blocks. Thus there exists an identity of the form
%F/ll Ao = rOF/ll Ar—1 + SOF/ll—l Ao + tOF/11+1/12 + uOF/ll Ar+1 + WOF/ll A2s (4254)

with coeflicients r, 5o, to, 4o, wo being some combinations of the 6j symbols (4.102).
This is precisely (4.28) of [64]. The operators ¥ with k = 1, 2, 3 can be constructed
analogously.

Operator D®  Finally, let us consider the identity (4.50) of [64], which is55

(xX)* DO (xx)P7Fy, 1, (a, b, x, %) = (A1 + b) (A2 + b — €)Fy, 1,(a, b+ 1, x,%).
(4.255)

We see that the left hand side of this expression gives a differential operator which

shifts b by 1. In our formalism, it is extremely easy to construct this operator, namely

Z)+O . .Z)_O
—\e=b+l (&) (,\b—e — 3 4 4.0
(xx) D (xx) B Dd—2-Ay) (4.256)

From the definition it is clear that it simply shifts b by 1. The coeflicient in the right

hand side of (4.255) can be easily expressed in terms of 6 symbols (4.102).

SNote that there is a typo in the second part of (4.43) in [64]. The correct definition is
1
D® = (xX) 2H,.
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4.4.6 Recursion relations for conformal blocks
In sections 4.4.3 and 4.4.4 we have managed to express an arbitrary conformal block

in terms of derivatives of scalar blocks, schematically

Gap =) ck(MDLGYE (4.257)
k

where [A, p] is the representation of the exchanged operator, Dj are some A-
independent differential operators, and c; (A) are rational functions. All ingredients
in this formula implicitly depend on the dimensions and representations of the ex-
ternal operators, as well as on p. In practice we often have a generic spin parameter
¢ in p, and we can keep it generic in this formula as we did in the examples in
sections 4.4.4.1 and 4.4.4.2. The spins ¢ are then finite shifts of £, £y = € + 6¢y.

Explicit examples of such expressions are given in (4.196), (4.197) and (4.223).
They readily allow us to compute the spinning conformal blocks numerically. But
they also allow us to analytically infer properties of the spinning blocks from the

known properties of the scalar blocks.

For example, a general method for numerical computation of conformal blocks is
based on Zamolodchikov recursion relations [48, 193]. The basic idea is that for
certain values A; of the scaling dimension A the generalized Verma module for
the representation [A, p] has null descendants [A’, p’], which lead to poles in the
conformal block for [A, p] with the residue being proportional to the conformal
block for [A}, p'],
R;

~ -y

where R; are certain coefficients, which in the case of spinning blocks generically are

Gap ot (4.258)

matrices rotating the left and right three-point structures in G. For fixed p there are
in general several infinite families of poles A;. If we know the asymptotic behavior

of the conformal blocks for A — oo,
Gap ~ ' heo ps (4.259)

where r is the radial coordinate of [25, 59] and h., is some relatively eas-
ily computable function, then we can write the conformal block as a sum over
residues [37, 49]. The resulting approximation is perfectly suited for numerical

applications based on semidefinite methods [36, 37, 41].

To accomplish this program, one needs to understand the pole positions A;, the

’
i

representations of null states [Al’., 0%], and the residue matrices R;. This data has
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been determined for general scalar blocks [36, 37] as well as some examples of
spinning blocks [41, 49, 81]. Although the classification of the poles A; and the null
states [A;, p;] is known [49, 196, 204], the computation of the residue matrices R;

may not be an easy task.

Our expression (4.257) is perfectly suited for this problem. Indeed, from it the pole
structure of G, , is completely apparent. In particular, the poles in G, , are given
by the poles of the scalar blocks in the right hand side, and a finite3¢ number of poles
of the coefficients cx(A). The residues of the poles are easy to compute. Indeed,
any residue is given by a sum of differential operators D; acting on some scalar
blocks. Using the techniques of section 4.4.3, it is easy to express the action of Dy
on a general scalar block as a sum over conformal blocks which can appear for the
given external operators,>’

DG ~ " Gy (4.260)

Ap!

In other words, our techniques allow us to translate the known recursion rela-
tions for scalar blocks into recursion relations for general conformal blocks. This
approach has already been used in [41] for the exchange of traceless-symmetric
representations. The new ingredient here is that we can now derive the recursion re-
lation for general internal representations. For example, using the equations (4.196)
and (4.197), we re-derived the recursion relation of [81] for the scalar-fermion seed

blocks exchanging a fermionic representation.

In [49] the residues of the conformal blocks were computed explicitly by considering
the action of the differential operators 9); corresponding to the null states on the
three-point functions, and the behavior of the norm of the null state near the pole.
We expect that the conformally-covariant differential operators can be useful also in
this approach. For example, the null state differential operators O, can be obtained
by the translation functor from a set of basic operators [205]. In our language this

means that one can write the operators D; as
D; o« DaD/ DA, (4.261)

where D! are some simpler differential operators (for instance, many null states can
be obtained from 9’ = d the exterior derivative acting on differential forms.). The
action of D; on a three-point function can then be computed by applying a crossing
transformation to move 9D* on a different leg and then acting with D.

For a fixed .
7In particular, substituting these expressions in (4.257), we get a tautology.
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4.5 Further applications

4.5.1 Inversion formulae and ‘“‘spinning-down” a four-point function
Orthogonality relations between conformal blocks are useful tools for analyzing
crossing symmetry. By exploiting orthogonality, we can derive inversion formulae
that express OPE data in terms of an integral of a conformal block against a four-
point function [65, 201]. Applying an s-channel inversion formula to a 7-channel
conformal block expansion, we can study crossing directly in terms of CFT data.>8
The coeflicients relating t-channel blocks and s-channel blocks are sometimes called

b

“crossing kernels.” Inversion formulae and crossing kernels for scalar operators
have been discussed recently in [66, 168—170]. Here, we briefly describe how our
techniques are perfectly suited for studying inversion formulae and crossing kernels
for spinning operators. We will omit details, and simply highlight how weight-
shifting operators can be used in these computations. We leave detailed discussion

and examples for later work [195].

Our starting point is a conformally-invariant pairing between a four-point function of
operators O; in representations [A;, p;] and a four-point function of shadow operators

5,~ in representations [d — A, p;‘]. This can be written

4
1

F,G = dd ; Faaaa iGa1a2a3a4 ;

< ) Vol(SO(d+1,1))f 1:1[ X \ayazas (Xi) (x;)

(o p

_ (F] @ . (4.262)

(),

In our diagrammatic language, an incoming line for O is equivalent to an outgoing

line for O, and connecting lines means contracting indices and integrating over
Euclidean space. To get a finite result for (¥, G), we must divide by the volume of
the conformal group acting on all four points x;. In practice, this means gauge-fixing

and inserting the appropriate Faddeev-Popov determinant.

Consider first the case of scalar operators O;. An orthogonal basis with respect to

the pairing (-, -) is given by linear combinations of blocks that are single-valued in

38Note that the integral in an inversion formula in general does not commute with the sum over
conformal blocks in the #-channel, so this analysis must be done carefully.
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Euclidean space,

1
Fae = 3 (GA,f + SA,de—M), (4.263)

where A = % + iv is restricted to the principal series.>® The constant Sx, depends
on A, ¢ and the external dimensions A;, and will not be important for the current
discussion. We call the Fp, “Euclidean partial waves.” Orthogonality follows
from the fact that the Casimir operator is self-adjoint with respect to (-, -), together
with the fact that F is single-valued so there are no boundary contributions from
integrating by parts. See [66] for more details.

A four-point function of scalars has a Euclidean partial wave decomposition of the

form

2+tc>o

glx)) =1+ Z 56 —c(A {)Fa¢(x;) + discrete series. (4.264)
4 joo
The decomposition (4.264) is not the usual conformal block decomposition, but it
is closely related. When g(x;) is a four-point function in a unitary CFT, we expect
that c(A, €) has (shadow-symmetric) simple poles in A on the real axis

-1
1 She

A L) ~ —CA. . . 4.265
(A0~ > —en AT ITACK (4.265)

i
We can then deform the A-contour in (4.264) to the right for Ga ¢ and to the left for
G- to obtain

g(xi) = 1+ ) caiGae(xi). (4.266)
Al
Thus, positions of poles in c(A, ¢) encode the spectrum of the theory, and the residues

encode products of OPE coefficients.5°

(a,b)
F Ap

C(ab) (A, p) are additionally labeled by a pair of three-point structures (a, b). An

For spinning operators, the Euclidean partial waves and their coefficients

inversion formula for the coefficients is given by®!

MEDED(A, e (A, p) = (FSD, g), (4.267)

59We must also include the so-called “discrete series" in non-even dimensions [63].

OWhen deforming the A-contour, one must take into account poles in the blocks themselves,
which interact in an intricate way [65, 66, 166].

61'We sum over raised and lowered pairs of three-point structures (a, b).
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where, roughly speaking,®?

<F(C Py o b>> ~ M D@D (A )5, 6(A = N). (4.268)
Pictorially,
O;
(FoD, g) = [0) (d] 0, . (4.269)
Oy

One of our main observations is that spinning conformal blocks can be written as
derivatives of scalar blocks. Schematically, we have
~spin _ scalar
F\PT = D,
D= > di(A pltascpD DY D DO (4.270)
1

The operators Z)l.(“i YAi are spin-raising operators transforming in W;, acting on the

point x;. Here, f runs over invariant tensors in (W; @ W, ® W3 ® Wy)*.

To compute the pairing (4.269), it is useful to integrate D by parts,
<FSF’“1 g) = (F3'™, D*g), (4.271)

where D" is the adjoint of © under the pairing (-, -), given by replacing each Z)l.(a)
with its adjoint (Z)l.(a))* (since we can integrate by parts individually on each leg).
The adjoints (Z)l.(“" ))* are spin-lowering differential operators, and the right-hand
side of (4.271) is a pairing between scalar four-point functions. We can thus proceed
to study it in the same way as we study four-point functions of scalars. For example,
one can derive spinning versions of the CFT Froissart-Gribov formula [66] using

these techniques.®> We call this trick “spinning-down” a four-point function.

%2We are neglecting an additional term proportional to §(A + A’ — d) that is unimportant for the
current discussion.

930ne of the consequences of the Froissart-Gribov formula is that CFT data can be analytically
continued in spin. When non-STTs can appear as internal operators, analytic continuation in spin
can be understood by expressing Vj ,, as a subrepresentation of Vy » ® W for some fixed W, and then
analytically continuing in £. This is equivalent to analytically continuing in the length of the first
row of the Young diagram for p.
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In pictures, the right-hand side of (4.271) is

(R gy~ ) 7 (4.272)

where the dashed lines represent scalars.
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4.5.2 6j symbols for infinite-dimensional representations
If we plug in a 7-channel partial wave for g, then we can simplify (4.272) further by
using crossing to move the differential operators to the internal leg:
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The symbol {- - - }* represents a product of four 6j symbols of the type in (4.102), and
the factor (- - - ) is the result of taking a conformally-invariant product of differential
operators on the right internal leg. For simplicity, we have omitted labels and shown
only the topology of the various diagrams. Dashed lines represent scalar operators,

and solid lines represent operators with spin.
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Equation (4.273) expresses an inner product of general spinning blocks in terms of
inner products of scalar blocks. Such inner products are examples of 6 symbols for
the conformal group, where all the representations are infinite-dimensional principal
series representations. The corresponding graphs have the topology of a tetrahedron.
The equality (4.273) is an example of a general set of relations between infinite-
dimensional 6 symbols that we can derive as follows. We start with a tetrahedron
graph and introduce a bubble with a finite-dimensional representation W on one of
the lines. We can then move the vertices of the bubble to a different internal line

and collapse it.

(4.274)

The above is essentially the pentagon identity for a mixture of finite-dimensional
(degenerate) and infinite-dimensional representations. Because the crossing kernel
for degenerate four-point functions is so simple, the pentagon identity becomes a
useful tool for computing infinite-dimensional crossing kernels. The 6j symbol for
six scalar representations of the conformal group was computed in [206] in terms
of a four-fold Mellin-Barnes integral. That result, along with relations of the type

illustrated in (4.274) in principle allows one to compute an arbitrary 65 symbol.
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4.6 Discussion

In this work, we introduced new mathematical tools for computations in confor-
mal representation theory. These include the construction of weight-shifting op-
erators summarized in theorem 2, the observation that they satisfy the crossing
equation (4.102), and our discussion of how weight-shifting operators interact with
conformally-invariant projectors (4.151). For concrete computations, we introduced
the embedding space operators (4.45), (4.72), and (4.79). We explored in detail how
these tools can be applied to compute conformal blocks. We also discussed some
applications to harmonic analysis and inversion formulae. We plan to expand on the

latter in future work [195].

However, many directions remain unexplored. One natural question is how weight-
shifting operators interact with short multiplets of the conformal group. For sim-
plicity, we specialized to simple generalized Verma modules (long multiplets) in
this paper. However, we expect new phenomena in the presence of shortening con-
ditions. Some questions include: How is the tensor product decomposition 4.13
modified for short multiplets? How are shortening conditions reflected in the zeros
and poles of 6 symbols? Is the spinning-down procedure of section 4.5.1 useful

when external operators are in short multiplets?

Our construction of weight-shifting operators and their crossing equations is very
general. Asnoted in the introduction, it also applies to generalized Verma modules of
any Lie (super-)algebra.®* In particular, supersymmetric weight-shifting operators
should be useful for computing and studying superconformal blocks and tensor
structures. It will be interesting to construct such operators and explore their
applications. The question of how weight-shifting operators interact with shortening
conditions becomes even more interesting in the superconformal case, since there

are a wide variety of interesting short superconformal multiplets (see e.g. [83]).

As discussed in section 4.2.4, the algebra of weight-shifting operators is governed
by the fusion matrix J (A1), which is closely related to solutions to the Yang-Baxter
equation and integrability [199]. Does this structure have an interesting role to play
in conformal field theory? Is it related to the “superintegrability” of conformal
blocks discussed in [123, 191, 192]?

It may also be interesting to explore the role of weight-shifting operators in holo-

%4In the language of [168], it works in a GFT for any group G.
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graphic calculations.®> We expect that they should help in the computation of Witten
diagrams for operators with spin. Natural questions include: What is the flat-space
limit of weight-shifting operators? Are they useful for amplitudes calculations (for
example are they related to the differential operators introduced in [208])? Weight-
shifting operators may also be helpful for exploring spinning amplitudes in the

conformal basis of [209].
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Chapter 5

CASIMIR RECURSION RELATIONS FOR GENERAL
CONFORMAL BLOCKS

This chapter is essentially identical to:

P. Kravchuk, Casimir recursion relations for general conformal blocks, JHEP 02
(2018) 011, [1709.05347].

5.1 Introduction

Numerical conformal bootstrap is a very general and powerful approach to quantum
conformal filed theories (CFTs), based on the idea of analyzing the crossing symme-
try [26-28] of correlation functions in unitary CFTs by methods of semidefinite pro-
gramming [30, 35-37, 47]. In recent years, this approach has proven to be extremely
useful in extracting non-perturbative information about concrete CFTs, such as the
critical exponents and structure constants of 3d Ising CFT, O(N) and Gross-Neveu
models [8, 31, 32, 34, 36-40], as well as a host of other results [6, 41, 43—46, 94—
101, 110, 114, 122, 126-158]. Crossing symmetry of the four-point functions of
such fundamental operators as spin-1 conserved currents or the energy-momentum
tensor has also been instrumental in deriving universal constraints valid for general
CFTs [7, 41].

The practical implementation of numerical conformal bootstrap relies heavily on
two technical requirements: the knowledge of conformal blocks and the ability to ef-
ficiently solve the semidefinite programs. An efficient semidefinite solver SDPB, de-
signed specifically for bootstrap applications, was introduced in [35]. This solver is
able to solve the most general semidefinite programs which typically arise in confor-
mal bootstrap, thus eliminating the technical obstructions related to semidefinite pro-
gramming. The situation with conformal blocks is different. The simplest conformal
blocks—those with external scalar operators—are very well studied by now and there
exist simple and efficient techniques for their computation [37, 57, 59, 63, 64, 80].
Some of these techniques, such as Zamolodchikov-like recursion relations, iterative/-
analytic solutions of conformal Casimir equations or shadow integrals have been
extended to conformal blocks of operators with spins [41, 49, 54, 58, 60, 81, 82, 122].

Another approach to spinning conformal blocks is to relate them to simpler confor-
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http://dx.doi.org/10.1007/JHEP02(2018)011
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mal blocks by means of differential operators [39, 61, 62]; recently it was shown that
the most general conformal blocks can be reduced in this way to scalar blocks [3].
While these methods do allow us to calculate any given non-supersymmetric con-
formal block, all of them currently require a nontrivial amount of case-specific

analysis.

In order to facilitate the conformal bootstrap studies with spinning operators it is
therefore desirable to have a simple and general algorithm for numerical computation
of conformal blocks which can be implemented on a computer, ideally avoiding
the need for symbolic algebra. The first step in this direction was undertaken
in [1], where a general classification and construction of conformally-invariant
tensor structures was given. In this paper, we take another step towards this goal
by formulating a general Casimir recursion relation for the z-coordinate series
expansion of general spinning conformal blocks in any number of dimensions. For
a conformal block exchanging a primary operator O, the recursion relation takes the

form

(C(Aps1g) = COONAL = = N FpmyiaAomeYpmam)™ 6.1

mye I:I ®IYld

where the matrices A, ,, encode the contribution of descendants at level p and in
Spin(d) representation my in z-coordinates, A, = Ap + p, C give the conformal
Casimir eigenvalues, while v and y are some matrices. Similar recursion relations
have been recently considered in [60]. Our improvement over these results is in
that the structure of our recursion relation is much simpler (in particular, it is one-
step, i.e., it relates levels p and p + 1, similarly to the scalar recursion relation
in [59]) and we are able to remain completely general and write the coefficients y
and 7y in terms 65 symbols (or Racah coefficients) of Spin(d — 1). Thus, in our
form, the Casimir recursion relations can be immediately translated into a computer
algorithm in all cases when the 6 can be computed algorithmically. This includes
the general conformal blocks in 3 and 4 dimensions as well as seed blocks in general
dimensions. Importantly, since we solve all representation-theoretic questions in
terms of Clebsch-Gordan coeflicients and 65 symbols, our analysis is applicable to
all spin representations without any caveats, i.e., it applies equally well to spinor
representations and is free from the redundancies which plague the less abstract

approaches in low dimensions.!

]Assuming, of course, that Clebsch-Gordan coefficients are known.
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This paper consists of three main parts. The first part is section 5.2 in which we
review the basics of the representation theory of Spin(d) and give a brief summary
of the required facts from the theory of Gelfand-Tsetlin (GT) bases. The advantage
of GT bases is that they allows us to work very explicitly with completely general
representations in arbitrary d, at the same time being perfectly compatible with the
conformal frame construction of [1]. Moreover, many explicit formulas for matrix
elements and Clebsch-Gordan coeflicients are available in these bases. These facts

make them our main computational tool in this paper.

In section 5.3 we use these tools to study the contribution of a general R X Spin(d)
(dilatationsxrotations) multiplet to a given four-point function. In section 5.3.1 we
express the answer in terms of an explicit basis of three- and four-point functions
(constructed using the Clebsch-Gordan coefficients of Spin(d — 1)). The functions
P which replace the Gegenbauer polynomials (which appear in scalar correlation
functions) are some particular matrix elements of ¢’ in a GT basis. In sec-
tions 5.3.2-5.3.5 we consider the R X Spin(d) contributions in some simple special
cases. In section 5.3.6 we prove the folklore theorem which states that the number
of four-point tensor structures is equal to the number of classes of conformal blocks.
In section 5.3.7 we study the properties of P-functions and explain how they can be
efficiently computed in practice by organizing them in so-called “matroms” [210]
and deriving a recursion relation for these matroms. We also discuss the simplifica-
tions in the low-dimensional cases of d = 3 and d = 4. In appendix D.4 we relate
the functions P to irreducible projectors studied recently in [82] in the case of tensor

representations.

In section 5.4 we study the Casimir recursion relations for general conformal blocks.
We start by rederiving the scalar result of [59] in section 5.4.1 using an abstract
group-theoretic approach. In section 5.4.2 we extend this approach to general
representations and derive the formulas (5.280) and (5.281) for y and ¥ in terms
of 6j symbols of Spin(d — 1). In sections 5.4.3-5.4.4 we discuss how these 6;
symbols simplify in the case d = 3 and for the seed blocks in general d.? For more
specific examples we explicitly work out the recursion relations for scalar-fermion
seed blocks in d = 3 and d = 2n and compare them to the known results. In
section 5.4.5 we briefly discuss the problems associated with a practical solution of

the Casimir recursion relation and suggest some possible workarounds.

2We do not discuss the case of general blocks in d = 4, where these 6] symbols are also known,
only to keep the size of the paper reasonable — the application of the general formula is completely
mechanical.
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We conclude in section 5.5. The appendices D.1 and D.2 contain some explicit for-
mulas and details on our conventions. The appendix D.3 elaborates on comparison
to known results. In appendix D.4 we explain the relation between GT and Cartesian

bases for tensor representations.

5.2 Representation theory of Spin(d)
We will be studying conformal blocks for the most general representations of
Spin(d), which requires a certain amount of mathematical machinery. In this section

we review the relevant representation theory and establish important notation.

We will be working exclusively in the Euclidean signature (the results can be easily
translated to Lorentz signature by Wick rotation). This means that we work with
the compact real form of Spin(d), which double covers SO(d). As is well known,
the basic properties of these groups depend on the parity of d. If d = 2n, then the
Lie algebra of Spin(d) is the simple? rank-n Lie algebra D,, with Dynkin diagram
shown in Fig. 5.1a. If d = 2n + 1 then the relevant algebra is the simple rank-n Lie
algebra B, with Dynkin diagram shown in Fig. 5.1b.

An-1
A A A3 s A A A3 Ap-1_ Ay
An
(a) D,, algebra (b) B, algebra

Figure 5.1: Dynkin diagrams of so(d) algebras.

It is standard to specify the irreducible representations* by non-negative integral
Dynkin labels A; associated to the nodes in the Dynkin diagram. The representa-
tions in which only one A; is non-zero and equal to 1 are called the fundamental
representations. The fundamental representation associated with A1 (i.e., the one
with labels A; = 9;1) is the fundamental vector representation R4.5 More generally,
the fundamental representations associated with A; withi < d/2 — 1 are the exterior

powers of the vector representation, A'RY. The nodes 4,1 = a, A, = ¢ in D, case

3Semi-simple for d = 4: D, = A| ® A is equivalent to two copies of su, algebra.

“We are interested in representations over C, since the physical Hilbert space is complex.
However, we often treat the representations which are real (in the sense of being representable by
real matrices) as being over R.

SUnless d < 4 when A corresponds to one of the spinor representations.



168

correspond to the two chiral spinor representations. Similarly, the node 4, = b
corresponds to the unique spinor representation in B, case. A general representa-
tion can be obtained by tensoring the above “fundamental” representations together
and taking the irreducible component with the highest weight (i.e., by imposing the

maximal symmetry and tracelessness conditions on the resulting tensors).

For us it will be more convenient to label the representations by generalized Young
diagrams, constructed as follows. To a given set of Dynkin labels of Spin(d) we

associate a vector of numbers my; with components, for d = 2n,

+
md,1=/11+/12+...+/1n_2+a26, (5.2)

+
md’2=/12+/13+...+/1n_2+a26, (5.3)

a+c
Map2 = Ay + > (5.4)
a+c
Mdp-1 = ——, (5.5)
a—c
Mmdqn = h (56)
and ford =2n + 1,

b
mq 1 =/11+/12+...+/ln_1+§, (5.7)

b
Mgo = Ao+ A3+...+ A, +§, (5.8)

b
Mgn-1 = Ap-1 + > (5.9)
b
mq, = 5 (5.10)
This gives all possible sequences satisfying
Myl = My > ... Myp—1 = |Mgpl, for d = 2n, 5.11)
Mgl > Mgy > ...mg, >0, ford =2n + 1,

and consisting either entirely of intergers (bosonic representations) or entirely of
half-integers (fermionic representations). The dimensions of these irreducible rep-

resentations are given in appendix D.2.

When my is bosonic, we can think of |mg| as giving the length of k-th row in

a Young diagram, with the caveat that for d = 2n the diagrams of height n can
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correspond to self-dual tensors (m,, > 0) or anti-self-dual tensors (mg, < 0).

Because of that, we will often represent the vectors my; by Young diagrams, for

example,
(5,0,0,...)=[LTTT] (5.12)

(5.3,1,0,..) = T, (5.13)

0,0,..)=e. (5.14)

Note that we denote the empty diagram corresponding to the trivial representation

by . We will also sometimes use the notation

J= 111 (jboxes), (5.15)

G, ) = -0 (j boxes in 1st row). (5.16)

Note, however, that we do not restrict our analysis to bosonic representations only.

For future convenience, we define

n

mgl = > Imagl, (5.17)

k=1

which gives the number of boxes when m, can be represented by a Young diagram.

Examples For example, consider d = 2. Strictly speaking, this case does not fall
under the above discussion, since Spin(2) is not semi-simple. However, the vectors
m; can still be used to label the representations, and this will be important to us in the
following. The vectors m, are one-dimensional, with a single (half-)integral entry
m = my,1. The corresponding representation is the one-dimensional representation
which associates to rotation e?12 the phase factor e=?.6 This is 4n-periodic for
half-integral m, corresponding to the need to consider the double-cover Spin(2)
instead of SO(2).

Now consider d = 3 corresponding to By case. In this case the vector mj3 consists
of a single component equal to b/2, where b is the unique Dynkin label. In other

words m3 = (j), where j is the usual spin of Spin(3).

The case d = 4 corresponds to D;. We have two Dynkin labels, which we will
denote by [} = a/2,lr = c/2. For example, the vector representation is given by

®We choose the minus sign for future convenience.
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(U, lg) = (%, %), while the Dirac spinors are (%, 0) @ (0, %). The vector my is two

dimensional with the components,
m4:(lL+lR,lL—lR). (518)

We see that for traceless-symmetric representations with /; = [g we recover the one
row Young diagram, while for example for the representations (1,0) or (0,1) we

recover the diagram H with self- or anti-self-duality condition.

5.2.1 Dimensional reduction

Labeling the representations by the vectors m, is convenient for describing the
rule for dimensional reduction from Spin(d) to Spin(d — 1). More precisely, an
irreducible representation my; decomposes into a direct sum of irreducible represen-

tations my_; of Spin(d — 1), which we can write as

mg= (D Ny, mao, (5.19)
my_j€my
where Ny ¢, denote the multiplicity with which m,_; appears in the irreducible

decomposition of my. It turns out that all multiplicities are equal to one,
N::;il =1, Vmy_; € my. (520)

We say that dimensional reduction is multiplicity-free. The representations my_; €

my are described by the following rule [210]:

From Spin(2n+1) to Spin(2n): For an irreducible representation m,; of Spin(d),
d = 2n + 1, and an irreducible representation my_; of Spin(d — 1) the relation
mg_; € my holds iff both representations are of the same statistics (fermionic or

bosonic) and satisfy

Mgl = Mg-1,1 = Mg > Mg_12 > ... 2 Mg, = |mg_1,] > 0. (5.21)

From Spin(2n) to Spin(2n—1): For an irreducible representation m,; of Spin(d),
d = 2n, and an irreducible representation my_; of Spin(d — 1) the relation my_; €
my holds iff both representations are of the same statistics (fermionic or bosonic)

and satisfy

Mg = Mg-11 = Mga > Mg—12 = ... = Mg_1ap-1 = |Mmg,| > 0. (5.22)
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Examples Consider first the reduction from Spin(4) to Spin(3). The constraint is
ma > m3 > |myol, (5.23)

which in terms of j, [;, [g reads
lp+1lr>j > lp —Igl|. (5.24)
Together with the constraint that the Fermi/Bose statistics is preserved, we find that
J=r—=Irl L= Irl+1,....0p + IR. (5.25)

This is the same as saying that j € [} ® g, where [ and [ are interpreted as Spin(3)

spins, which coincides with the familiar reduction rule.

Consider now the reduction from Spin(3) to Spin(2). For a given m3 = (j) we

have the following constraint on m, = (m),
JjzIm| =0, (5.26)

and m should be (half-)integral simultaneously with j. In other words, m = —j, —j +
I,...j. It is no accident that the relation between j and m is the same as in the
basis elements |j, m), because the Spin(2) irreps are one-dimensional. This in fact
is a very powerful observation which generalizes to higher dimensions, as we now

discuss.

5.2.2 Gelfand-Tsetlin basis
The fact that the dimensional reduction is multiplicity-free allows one to define a
convenient basis for the irreducible representations of Spin(d). To construct it, one

first fixes a sequence of subgroups
Spin(d) D Spin(d — 1) D Spin(d —2) O ... D Spin(2). (5.27)

In practice, we pick an orthonormal basis ey, ...e; in R4, and the Spin(d — k)
subgroup in the above sequence is defined as the one preserving the basis elements
e, ...,er. Then, given a representation my, we can consider an irreducible com-
ponent my_; € my with respect to Spin(d — 1). Since the dimensional reduction is
multiplicity-free, by specifying the numbers m,_; we uniquely select an Spin(d—1)-
irreducible subspace inside the representation space Vi, of the representation my.

We can then continue to build a sequence

mg>smg_1>5mMy>...35My, (5.28)
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which uniquely selects a Spin(2)-irreducible subspace inside Viy,. Since Spin(2) is
abelian, all such subspaces are one-dimensional. Therefore, if we in addition make

a choice of phases, the above sequence specifies a unit vector in Vy,,.

Let us now denote a sequence of my, k = d,d — 1,...,2 by M . Call a sequence
M, admissible if (5.28) is satisfied. The above construction associates to each
admissible sequence a vector M) in Viy,. It is an easy exercise to show that the
set of |Miy) over all admissible sequences (with my fixed) forms an orthonormal
basis in Vin,. This is the Gelfand-Tsetlin (GT) basis [211], and the sequences Mty

are known as Gelfand-Tsetlin patterns.

Analogously to the well-known formulas for the matrix elements of Spin(3) gen-
erators between the |j, m) states, Gelfand and Tsetlin have derived formulas for the
matrix elements of Spin(d) generators in Gelfand-Tsetlin basis for arbitrary rep-
resentations [210-213]. We provide these formulas for reference in section 5.2.3
and appendix D.2. Availability of such general formulas is one of the reasons why
Gelfand-Tsetlin bases are useful. For our purposes the more important reason is
that these bases play nicely with the inclusions (5.27), which appear naturally in

construction of conformally invariant tensor structures [1].

Choice of phases Before proceeding further, let us make a general comment about
the choice of phases for vectors |Mi;). This choice is not going to be important in
the discussion that follows — it only influences the explicit expressions for Spin(d)
matrix elements, Clebsch-Gordan coefficients, etc. Therefore, we should only worry
about it when we compute these quantities, and we can make a choice which is the
most convenient for our purposes. For example the formulas given in appendix D.2
correspond to some particular choice of phases. We have made this choice so that
it is compatible with the explicit constructions in the the examples below, unless

explicitly stated otherwise.

Notation As we mentioned above, for us the utility of GT bases comes from
their compatibility with the nested sequence (5.27), which plays an important role
in classification of conformally-invariant tensor structures [1]. Unfortunately, this
means that we will have to dive into the structure of the sequences i, quite often.

Because of that, it is important to establish a well-defined notation.

Firstly, we will always explicitly write the space dimension d to which a weight m,

corresponds as a subscript. Secondly, the GT patterns in representation with highest
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weight m; will be denoted by the capital Fraktur letter i,;. Distinct patterns in the
same m, will be distinguished by primes, i.e., M/. The subscript on the pattern
indicates the dimension d corresponding to the first weight in the pattern. This
weight is kept fixed and equal to m; when we write summation as
> (5.29)
My

In all summations it is assumed implicitly that only admissible sequences are in-
cluded.

Furthermore, my, for k < d’ is always used to denote the components of the GT

pattern 9ty . In particular, this means that the pattern 9t;_; is the tail” of the pattern

EDIDI (5.30)

My mg My

I, and we have, for example,

We also occasionally write Mty = my M,_1, etc, arranging the right hand side either
vertically or horizontally, whichever way leads to more compact expressions. We

also sometimes write out the GT patterns explicitly as
gﬁd =mgy,mg_q,...,Mp. (531)

If we have m; = e, then necessarily m; = o for i < k. We therefore often write the
patterns out only to the first trivial representation, replacing the rest by dots. For

example,

My = LU T, e,... (5.32)

hasmy =eforall k < d - 2.

Different representations and patterns are distinguished either by different letters
(i.e., uz and Uy vs my and M), accents other than primes (i.e., my and iﬁid VS my
and 9t;), or upper indices (i.e., mé and M 411 vs my and ;). To reiterate, the lower

index only “addresses” inside one pattern.

Our final comment concerns the use of GT patterns as indices. We will assume that

the upper GT indices, such as

oMa, (5.33)

"This is slightly in tension with our convention on primes. We will understand that 9t !y is the

tail of SUE;I, ie., mt’i_l is not necessarily the same as my_; (which would be the case if we gave the

priority to the prime notation rule and understood M/, _, as another pattern in my_1). Note also that

by this convention m/,_, € my, etc.
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behave as ket states |9t;), while the lower indices behave as the dual bra states (9)¢;],

ie.,
[My, O™ (0)] = > (0| M,y [MgYO™4 (0), (5.34)
0",
[Outy (0), My = > (DI My, 1) Oy, (0). (5.35)
w;

5.2.2.1 Bilinear parings

The most basic invariants of Spin(d) are the bilinear parings, such as the paring
between a representation and its dual, or the invariant inner product in real repre-
sentations. A bilinear pairing between irreducible representations m; and uy is a

singlet in the tensor product
my ® u,. (5.36)

Schur’s lemma implies that there is at most one such singlet, which exists iffm, = u,
i.e., when the representations are mutually dual (equivalently, complex conjugate).
The duality acts on the Spin(d) irreps as follows. For odd d all irreps are self-dual,
myp,.; = my,., as well as for d divisible by 4, my; = my,. For d = 4k + 2 the
duality acts non-trivially by exchanging the spinor nodes on D1 Dynkin diagram,

resulting in

Mgy = Maks2i, 1L <n=2k+1, (5.37)

M4k+22k+1 = —M4k+22k+1- (5.38)

It is quite easy to write down the formula for the singlet in my; ® my in GT basis.
Indeed, it has to be singlet under all groups in 5.27 and thus the above discussion
implies that it must be of the form

Z Lo, | My) ® [My), (5.39)
My

where My is obtained from GT pattern M, by replacing all representations with

their duals, and the coeflicients {y, are yet to be determined. Let us define

(=DMt = 1, (5.40)
(=DM =1, (5.41)
(_1)m4k+2 — (_1)m4k+2,2k+1’ (542)

d
(-D% = [ J=nm. (5.43)
k=2
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With the choice of phases as in appendix D.2, the coeflicients {uy, are proportional

to (—1)™a 8 In what follows, we will use the notation
<*Jﬁd,9J_t;,|0> = L, O, (5.44)
so that the singlet (5.39) can be written as

D (g, M0) [Ny} @ M), (5.45)
My, M
Note that this is a special case of Clebsch-Gordan coefficients, which suggests the

normalization condition

D01, g )M, Uagl0) = > (Vi Wgl0)) (Mg, UglOy = 1. (5.46)
Wy, Ny Wy, My

It corresponds to the requirement that (5.45) has unit norm. This implies

(-1)%

(Mg, M |0) = Sa - (5.47)

1mimy

Whenever my; = my these coefficients have a definite symmetry under permutation
of the two tensor factors. For bosonic representations they are always symmetric,
while for fermionic they are symmetric if d = 0,1,7 mod 8 and anti-symmetric for
d =3,4,5 mod 8, as can be easily verified by using the explicit formula above.®

Fermionic representations are never self-dual for d = 2,6 mod 8.

5.2.2.2 Vector representation

To gain some familiarity with GT bases, it is perhaps a good idea to start with the
vector representation of Spin(d). The vector representation is also going to play an

extremely important role in section 5.4.

First of all, for d > 3, under dimensional reduction the d-dimensional vector repre-
sentation splits into two irreducible components — a scalar and a (d — 1)-dimensional
vector. For d = 3 we obtain three representations, the +1, o, —1 representations of

Spin(2). This means that the GT basis for vector representation consists of the

8We have not proven this statement, but we have checked it on a large sample of representations
in various dimensions.

91f these coefficients are symmetric, then the self-dual my is real and otherwise it is pseudo-real
(quaternionic). This statement is specific to Euclidean signature (in Lorentzian dual and complex
conjugate representations are not the same), but the symmetry properties are signature-independent.
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following elements,

[[],e0...,00) (5.48)
(1, e, ...,0 @), (5.49)
[, O, [, ..., e, @), (5.50)
[, O, O, ...y [, @), (5.51)
|\, O, O, ..., O, +1), (5.52)
[, O, O, . O =1, (5.53)

Given that each sequence contains the d — 1 irreps (5.28), it is easy to see that the

above gives exactly d basis vectors.

Let us consider the element (5.48). By definition, it lives in the trivial representation
of Spin(d — k) for k > 1 and thus has to be proportional to e;. Similarly, (5.49) is
invariant for k > 2 and thus has to be a linear combination of e; and e;. Since it
also has to be orthogonal to (5.48), it can only be proportional to e,. Repeating this

argument, and making a choice of phases, we find

[, e,0,...,00) =(—1)%, (5.54)
[[1,[],e...,0 )= (—l)d_lez, (5.55)
Hj’ D’ D’ cees @ .> = (_l)d_2€3$ (556)
100 T, Cyee s [, 0) = (1) eq-, (5.57)
0,00, 00,y (41 = (—1)2—6"‘1\/;’60’, (5.58)
10, O, D,...,D,—n:(—l)l%. (5.59)

In the above expressions the phases are chosen to be consistent with the formulas for
the matrix elements in appendix D.2 and the interpretation that M;; “rotates from i

to j7,
M,-je,- =e;j. (560)

Note that according to our conventions for Spin(2) representations described earlier,

we have

My_1q100, 1, 0, Ol £y = w0, O, O, .00y O 21D, (5.61)
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This approach generalizes to other representations. In appendix D.4 we consider

the relation between GT and Cartesian bases in tensor representations of Spin(d).

Let us now look at the inner product between vectors. Note that maz4224+1 is only
non-zero in the GT patterns (5.58) and (5.59) and for k = 0. Thus (=1)™ is —1 for
these two patterns and 1 otherwise. Finally, these two patterns are mutually dual,
while all other patterns are self-dual, so that according to (5.45) and (5.47) we get

the following pairing, up to normalization,

[(J,e,..00|],e..0+ |1, [ L,e.. )|, ],e...0+...
—,.., L+ | ],....,,=-D—=L....,[L=-D®|1,..., 1, +1).

(5.62)
From (5.54)-(5.59) we see that this is equal to
d
Z e ® e, (5.63)

i=1

which is the usual pairing between vectors.

5.2.2.3 General representations in 3 dimensions

We now consider the case of general representations in d = 3 (n = 1). As before,
the representations my are labeled by a (half-)integer j = m3; > 0, which is the
usual spin, and the representations my are labeled by a (half-)integer m = my;. The
representations my € mgs are givenby m = —j,—j + 1,..., j. The GT basis vectors

are then
|Mi3) = [m3,my) = |j, m). (5.64)

We can choose conventions such that this coincides with the basis of Spin(3)
representations familiar from the theory of angular momenta. Indeed, let us first

define the anti-Hermitian generators

Iy = 3€aMyy, (5.65)
which are then subject to the commutation relation (see appendix D.1),

Uy Iy] = €uvaly. (5.66)

Their Hermitian analogues J,, = il, satisfy the familiar Spin(3) commutation

relations

[J,u’ Jy] = ieyv/lj/l- (5.67)
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If we now define

—>
M
[\&)
M
(O8N
1l

2, 3, 1, (5.68)

then the operators J, satisfy the same commutation relations. By definition, we

have
J31j,m)y = ili|j,m) = iMp3|j, m) = i(=im)|j, m) = m|j, m). (5.69)

We have performed the index relabeling (5.68) precisely so that | j, m) are eigenstates
of J3, making contact with standard angular momentum conventions. In particular,
the standard [214] formulas for action of J; coincide with d = 3 case of formulas

in appendix D.2.

5.2.2.4 General representations in 4 dimensions

Ind =4 (n=2), we have

my = (€1,02) = (Ip + [g, I — IR), (5.70)
mg ==l —Igl|lp—Irl+1,....I0+1g, & jel QI (5.71)
m=m=-j,—j+1,...,], (5.72)

and thus we can write
[M4) = |1, Lg; j,m). (5.73)

It will be convenient to connect this to the basis which arises from the exceptional
isomorphism Spin(4) ~ SU(2) x SU(2). To define this latter basis, we write

1
Q/J = Ml/.b I/l = EGﬂV/lMV/l’ IJ’ V’ /l € {2’ 37 4}7 (5'74)

where €734 = 1. Then the Hermitian operators

, i , i
Jh=ill = E(IM +Qu). JX=ilf = 5(1# -0, (5.75)

obey the commutation relations
I = iemaly, (5.76)

[ T8 = i€ a s, (5.77)
[Jr, T8 = 0. (5.78)
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We can then define, similarly to 3 dimensions,

1=3 2=4 3

2, (5.79)

and construct the conventional basis states for the algebras J 5, J 5 ,

[, mp; g, mg) (5.80)

subject to the usual condition
I L, my; lgomg) = melle, mp; Lr, mg), (5.81)
JgRllLa mp; g, mg) = mg|lp, mp; [g, mg). (5.82)

Let us now relate the bases (5.73) and (5.80). First, note that the generators J; = il,

of the Spin(3) which preserves the first axis are given by
_ gL, gR
Jp=Jg+J5, (5.83)

and thus under this Spin(3) the state (5.80) transforms as a tensor product state in

l; ® lg. We can therefore simply set

U lgsjomy= > (L, mps g, melj, )L, mes Lg, mg), (5.84)

mp+mpr=m

where
(lL, mL;lR, lej, I’I’l> (585)

are the Clebsch-Gordan coeflicients of Spin(3). Itis easy to check that this definition
is consistent with the definition of GT basis. Note that (5.84) essentially fixes our
choice of phases through the phases of Spin(3) CG coefficients. The resulting
phase conventions are consistent with appendix D.2 if one uses CG coefficients
(j1, m1; jo; ma|j, m) which differ from [214] by a factor of (/=i 10

For future reference, let us give the expression for M1, = Q,. We have

10These CG coefficients will still differ from the vector CG coefficients of D.2 by a factor of —i
when j = j; and j, = 1, but the matrix elements in 4d will be consistent.
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5.2.3 Clebsch-Gordan coefficients and matrix elements

In the next sections we will find that a lot of calculations (for example, three-
point tensor structures and Casimir recursion relations) involve manipulations with
Clebsch-Gordan coefficients (CG coeflicients). In this section we therefore discuss

the structure of these coefficients in GT bases.

CG coeflicients essentially establish an equivalence between a tensor product and

its decomposition into irreducible representations,
> B Ve (5.87)
mdemtli®mfl
More specifically, we have the relation between basis vectors
M) = DT (MMM [My), (5.88)
m emem? Vg

where (‘.mdlﬂﬁéimz) are the CG coefficients. This equation has to be modified
somewhat if there are multiplicities in the tensor product,

MEMZ) = Y (D, M) (Vg 1), (5.89)
(md,t)em(ll®m3 My
Here ¢ counts the possible degeneracy. Inverse transformation is given by
My, ) = Z (MU (Mg, 1) |2, (5.90)
mlm2

where (‘Jﬁéiﬂtfll%d,t) = (%id,tlﬂﬁéﬂﬁfl)*. Note that there is an ambiguity in the

definition of CG coeflicients. Indeed, the decomposition

WMD) = T UM IR M1y, (591

(mg.r)em) @m?Z Ma.t’
where U is a unitary matrix, is also perfectly fine from the point of view of Spin(d)
invariance. One thus has to fix this freedom for every choice of mil and mz. We
will not try to fix the general conventions here, and work on a case-by-case basis in

the examples.

GT bases exhibit a set of relations between the CG coeflicients of the nested
groups (5.27). Indeed, let us write the GT patters in CG coefficients (5.89) in
the form M,; = m,; Vi, _q,

(Mg, t|MIM2Y = (my Mgy, tfml M, sm?2 M2 ). (5.92)
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Thinking about Spin(d — 1)-invariance, we see that must necessarily have

1 2
1 ap2 .2 qp2 my | m, my, )
(mg Mgy 1y, MG smZ NG _) = > O @t 2
7 \Md-1|m,_ m ,
tt’
(5.93)
where the constants
1 2
m; (M, m,
5.94
mg_; |m!  m? (5-94)
a-1Mg-1/,,

are the so-called Spin(d) : Spin(d—1)isoscalar factors,!! while (Mt _1, ¢’ |EIJ?£11_1*JJ?§_1 )
are the CG coefficients of Spin(d — 1). This can be iterated, and since the CG co-

efficients of Spin(2) are extremely simple,
(mlm'm?y = 6, 1 omos (5.95)

it follows that the knowledge of CG coefficients of Spin groups is equivalent to the

knowledge of the isoscalar factors.

For example, the Spin(3) : Spin(2) isoscalar factors are essentially the Spin(3) CG
coeflicients, due to the aforementioned triviality of Spin(2) CG coeflicients. One
can show that the Spin(4) : Spin(3) isoscalar factors are essentially equivalent to
Spin(3) 9j symbols [215].

For our applications we in principle need the most general CG coefficients of
Spin(d — 1) groups — simply the knowledge of all possible conformally-invariant
three-point tensor structures already implies the knowledge of all possible Spin(d —
1) CG coeflicients (see section 5.3.1). We are not aware of a general formula for
Spin(d — 1) CG coefficients valid for general d.!?> For the most physically relevant
cases d = 4,3 one can use the well-known CG coefficients of Spin(3) ~ SU(2) or
the trivial CG coefficients of Spin(2) ~ U(1). Due to the exceptional isomorphism
Spin(4) ~ SU(2)xSU(2), we also know the general CG coeflicients of Spin(d—1)
for d = 5. Let us note that the case d > 6 is qualitatively different since tensor
products in Spin(5) and larger groups are not multiplicity-free. Luckily, for each
particular choice of a four-point function there is only a finite number of relevant
three-point tensor structures and thus also of Spin(d — 1) CG coefficients. For any

given tensor product, the problem of finding CG coefficients is a finite-dimensional

1 Also known as reduced CG, reduced Wigner coefficients, or reduction factors.
12See [216, 217] for partial progress in this direction.
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linear algebra problem and can in principle be solved on a computer, although
phase conventions and resolution of multiplicities need to be carefully addressed.

See [218] for an approach to Spin(5) CG coefficients.

For the applications to Casimir recursion relations, we will need a special infinite
class of CG coeflicients of Spin(d) — the CG coeflicients involving a vector repre-
sentation. The good news are that these CG coefficients are known for general d in

closed form.

Spin(d) matrix elements and Clebsch-Gordan coefficients with vector repre-
sentation It turns out that Clebsch-Gordan coefficients for vector representation
are closely related to the matrix elements of Spin(d) generators. Indeed, let us

consider the matrix elements of M,

My, My) = Z(%tglwmmz@ ), m/, = my. (5.96)
0,

The piece M,|My) transforms under Spin(d — 1) in the representation [ ] ® my_;.
The vectors on the right, on the other hand, transform in irreducible representations
of Spin(d —1). For fixed my, my_; this therefore has precisely the form required of
a CG decomposition, so that we have

/ m m ’
O Mgy = ¢ M T Mgy, ) (5.97)
m,_, my-1
fOl’ some constants
m/
R V] (5.98)
m,_ Mg-1

known as reduced matrix elements. This is essentially a version of Wigner-Eckart
theorem. Note that the tensor product with vector representation is always multi-
plicity free and thus we don’t need any extra labels. This follows from Brauer’s
formula [197] and the fact that all weights in the vector representation have multi-
plicity 1. The [] label for M is supposed to indicate that we are looking at M,
which is a vector under Spin(d — 1).

Let us consider an example by setting ¢ = 2, which is equivalent to u = [[], e, .. .]
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in terms of GT patterns. We then find

’ _ m m ,
(W, | M2 Mgy =(~D! - <yl md"l><imd_1|w?d_1; .0
d—1 -

=(-H¥! (M), Mg_ase,...)

’
mg |, ]| Md m,  |mg_j[]
mg-| mg., e

’

1 |mg-1 [
mg_»

m 5 5.99
my, | m My 0+ (5:99)

v ] e
d—

2
Here we used the definition of the isoscalar factor (5.93) and the triviality of CG
coeflicients when one of the factors is the trivial representation. We also made use
of the relation (5.55). Note that this implies the constraint m’d_1 € [1®my_;. Due
to the structure of the nested sequence (5.27) the matrix elements of My for all
1 < k < d -1 follow from the matrix elements of M, for Spin(d — k + 1). Itis an

easy exercise to show that My .1 generate the whole Lie algebra of Spin(d).

We therefore find that the reduced matrix elements (5.98) and the simplest vector

isoscalar factors

my [ | m;
my-; ® My

(5.100)

allow the computation of the most general Spin(d) matrix elements. There exist
relatively simple closed-form expressions for these quantities [212, 213], which we

provide in appendix D.2 for the ease of reference.!3

These quantities in fact also completely determine the vector CG coefficients. In-

deed, given the isoscalar factor (5.100), it only remains to find the second isoscalar

factor!4
_ m’
i (5.101)
my [ ]im)_,
It can be easily computed by considering the expression
Mg; [, o, ... [Mi2| D) (5.102)

3Note that our phase conventions differ from those in [212, 213].
4For d = 3 we can have (+1) instead of lower [ ] in (5.101). The corresponding isoscalar factors
can be obtained completely analogously. See appendix D.2.3.
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and evaluating it via isoscalar factors and reduced matrix elements in two different
ways (acting with M on the left and on the right). Action on the left produces,

among other terms, the term
Mg; 1, [, o, ... |N), (5.103)

which is proportional to the sought for isoscalar factor. See appendix D.2.2 for

details.

5.3 Structure of spinning correlation functions and conformal blocks

In this section we apply the formalism of GT bases to study the general structure
of radially-quantized correlators or conformal blocks. At this stage, no distinction
is made between correlation functions and individual conformal blocks, so we use

these two terms interchangeably.

5.3.1 Contribution of a R X Spin(d)-multiplet

Consider a 4-point correlation function, radially quantized so that the points 1 and
2 lie inside the unit sphere, whereas the points 3 and 4 lie outside (or on) the unit
sphere. One can then insert a complete basis of states on the unit sphere, organized
in representations of R X Spin(d) (dilatations X rotations), and ask what is the
contribution of a single representation. This question was answered in [59] for
four-point functions with external scalar operators, exchanging traceless-symmetric
tensors on the unit sphere (the only representations allowed in this this case). The
case of four-point functions of tensor operators was addressed in [60]. Unfortunately,
as mentioned in the introduction, the approach of [60] requires a non-trivial amount
of case-by-case analysis and the knowledge of irreducible projectors. The goal of

this section is to give a more general alternative treatment.

For concreteness, we will work in the radial kinematics of [59].15 Namely, we
chose an orthonormal basis in R?, labeling the axes by integers from 1 to d, and we

introduce a complex coordinate w in plane 1-2 as
w=Xx] +Iix). (5.104)
We then place all four operators in this plane, setting their coordinates to

wi=-p, wra=p wi3=1 wy=-I, (5.105)

I3The same approach also works in other kinematics. For examples, we will switch to Dolan-
Osborn [57, 63] kinematics in section 5.4. The analysis in that case is only slightly different due to
the presence of an operator at infinity.
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for some p € C. Any non-coincident configuration of four points can be brought
to a configuration of the above form by a conformal transformation, with p being

related to the familiar cross-ratios u and v. We assume |p| < 1.

We also fix the sequence of groups (5.27), defining Spin(d — k) to be the subgroup
of Spin(d) which fixes the first k axes. This defines for us Gelfand-Tsetlin bases for
the representations of Spin(d). We will accordingly denote the primary operators
by

0™ (), (5.106)

where the sequences iUti label the Gelfand-Tsetlin basis vectors as in section 5.2.2,
and we use the upper index i to label the operators in order to avoid confusion with

ml

the dimension label, ﬂﬁl =m’, m 5

& d-1r
We are interested in the radially-quantized four-point function
md s 02 0!
010, ‘(=105 “(M)O, “(p)O, “(-p)|0). (5.107)
It turns out that it is more convenient to work with
m4 !

010, (- 1)0 d(l)rDe9M120 d(1)0 4(=1)|0), (5.108)

where p = re'?, D is the dilatation operator and M v 18 the anti-hermitian rotation

generator in the plane u-v.'¢ The relation between (5.107) and (5.108) is given by

010 (10 (1)rP ™20 (101" (~1)[0) =
S Y ) R™ (6)(010." (- 10} (1002 ()0 (-p)I0).

*JJ? ! m;

RN
(5.109)

where R are the matrix elements of the rotations in the plane 1-2 in Gelfand-Tsetlin

basis,

Rl /] i
Ry (0) = (1”2 0t). (5.110)

Recall that according to our conventions the primed patterns belong to the same

representations as unprimed ones. Clearly, the two forms can be used interchange-

—Ay-

ably. The reader may recognize the factor ~*1722, which appears in many formulas

16See appendix D.1 for our conventions on conformal algebra. Our definition of M, differs by a
sign from e.g. [19].
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for scalar four-point functions, and is often stripped off as in here by multiplying by

r+8i+22 The matrices R play a similar role for the spinning degrees of freedom. !

Consider now a contribution from a R X Spin(d) multiplet with scaling dimension

A and in representation my of Spin(d),

9m3 S
S H010; (=104 (1) | A, M)A, Myl rPeM2034 (1104 (1) [0) =

My
m 03 , ;A2 0!
= > 010, (=105 “(1)|A MY Digle”™ 2100 KA, MO0, 4 (1O, (=1)]0).
Mg, M,
(5.111)

’

Here m/, = my. This expression consists of three main ingredients: the two three-
point functions

M4 2 !

010, d(—l)Ozj?Z(l)lA, Mgy and  (A,MO, “(1)O; “(=1)[0), (5.112)

and the matrix elements
(Mgl (5.113)

In order to proceed further, we need to understand the structure of these objects.

5.3.1.1 Three-point functions

The three-point functions (5.112) are some tensors in the Gelfand-Tsetlin indices,
whose values are constrained by the requirement of conformal invariance. To be
precise, for three-point functions involving R X Spin(d) multiplets, the only intrinsic
restrictions come from R X Spin(d) invariance.'® Of these, only the Spin(d — 1)
subgroup which fixes the first axis imposes the restriction directly on (5.112), while
the other generators in R X Spin(d) can be used to determine the values of these
three-point functions for different positions of O; (we have essentially done this
above). Even in the case when the R X Spin(d) multiplet in question is a conformal

primary, Spin(d — 1)-invariance is the only restriction on the tensors (5.112) [1].

In particular, the allowed tensor structures for, e.g.,

m2 g
A 024 (10 ™ (- 1)(0) (5.114)

Importantly, the action of R here is only on the labels of the external operators. Because it
commutes with the stabilizer group Spin(d — 2) of four points, it can be though of as a change
of the basis of four-point tensor structures. We study the matrix elements such as R further in
sections 5.3.1.2 and 5.3.7.

18The extrinsic restrictions, relating the contribution of the descendant multiplets to the primary,
are discussed in section 5.4.
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are in one-to-one correspondence with the Spin(d — 1) invariant subspace

)Spm(d l)’ (5115)

where the bar indicates taking the dual!® representation. Because dimensional
reduction is multiplicity-free, such singlets are in one-to-one correspondence with

singlets in

’ 1 2
m, m, ; ®my_, (5.116)
overallm/,_, € my, m;_ | € m . Such a singlet exists whenever m/,_, appears in
m)_ ®m?_,, in which case we write

(m),_,t)em)  om’ , (5.117)

where the extra label #’ is needed if m/,_| appears in the tensor product with multiplic-
ity.20 If (5.117) holds, we can build an invariant using Spin(d — 1) Clebsch-Gordan

coeflicients. More explicitly, we have

(A, |0, "(1)0 " _1)10y = Za i ‘“(Smd LI M2, (5.118)

where A’s are the three-point coeflicients unconstrained by symmetry, and we recall
that 9t,_; is defined as

EUtd =mgmg_g..., M — gﬁd—l =my_,myg_o,..., M. (5.119)

It is understood that if m’ 1 ¢ m | ® m> -1 then the Clebsch-Gordan coefficient

vanishes and the corresponding A is undeﬁned.

Analogously, for the second three-point function we have?!

3
(010, (-0} (1) A, W—Zﬂ L O D Mg, 1), (5.120)

md 1.r
where we now have a 3j symbol instead of Clebsch-Gordan coefficients (the dis-
tinction is of course rather formal).

Note that (5.118) and (5.120) give a somewhat unusual way of writing the three-point
function, since the spin indices of the operators directly select which three-point

19Equivalently complex-conjugate, since all representations of compact Spin(d) are unitary.

201f ¢ < 5, then tensor products in Spin(d — 1) are multiplicity-free and the sum over ¢’ can be
dropped.

2I'The coefficients 1 are in general not complex conjugates of A.
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coeflicients A appear in the right hand side. A perhaps more intuitive equivalent
form of (5.118) is

~1 ~72
m, My, _ , napl 2
Z Z /1,7,:1 v Ol ) 6mg_l,ﬁ,3_15m;_l,mé_l<imd_1,t|md_1,smd_l> ,

(5.121)

where the object in the curly braces is the three point tensor structure, and it
is made explicit that the three-point coefficients are labeled by two Spin(d — 1)

representations m)_, and m>_, and a pair (m/, ") € m}  ® m> ;. We will

1
d-1 d-1 d-1°
sometimes use a shorthand notation to denote such composite labels. Namely, for
the right three point function we use the label
_ =1 ~2 ~ ’ ~ ’ ~1 ~7)
a=m,_,m;_,m, 1), (m,_,,t')em,_ ®@m_,. (5.122)

Similarly, for the left three-point function we use

b=(m)_,my ,Mg_1,1), (Mg_1,f) €M, ®m) . (5.123)

It is instructive to consider the case of 3 dimensions. In this case, we are considering

the three-point functions
(A, j',m' |03 (1)O]™™ (= 1)[0). (5.124)

The Spin(2) invariance basically tells us that the spin projection has to be conserved,

m’ = m; + my, and the Spin(2) Clebsch-Gordan coefficients are
(m'|my, ma) = S my+my - (5.125)
We can therefore write
(A, ', m 0P (1O (=1)10) = Sy oy AL (5.126)
Analogously, for the other three-point function we have
OIO™ (=DOL™ (=D)IA, j,m) = 1y, Somytmysm- (5.127)

We discuss the 3d case further in section 5.3.3.

In order to study the most general four-point functions, we need to know the most
general three-point functions (5.118) and (5.120) and thus the most general Spin(d—

1) CG coefficients. Unfortunately, as discussed in section 5.2.3, to the best of our
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knowledge there is no general closed-form expression for such CG coeflicients valid
for general d available in the literature, but there are important special cases when

such expressions are available.

Besides the cases considered in section 5.2.3, an important scenario is when, say,

Lli = mfi = e, in which case the required CG coefficients are trivial in any d.

This happens, for example, in a certain choice of four-point functions for the so-

m

called seed blocks. These are the simplest conformal blocks which exchange a
given intermediate Spin(d) representation my;. We discuss this case further in

section 5.3.5.

5.3.1.2 Matrix elements

Consider now the matrix elements (5.113). An important feature is that the Spin(d)
element ¢?"12 commutes with the standard Spin(d — 2) subgroup which fixes the
axes 1 and 2. On the other hand, the Spin(d) representation m; decomposes into
irreducibles under Spin(d — 2), and by Schur’s lemma this implies that e?*12 acts
by identity times a constant inside of these irreducible components. More precisely,
we have

Myl = Pmd’m"‘j_l (6)Sm, o, - (5.128)

my-_j,m

One can arrive at the same conclusion by examining (5.99). The functions P::;”'?I‘;’,z (6)
-1LMy_

will play the role of Gegenbauer polynomials for the spinning conformal blocks.
We will describe their structure, basic properties, and how to compute them in sec-
tion 5.3.7. For now, note that they are labeled by an Spin(d) representation my, two
Spin(d — 1) representations m_1, m;l_l € my, and one Spin(d — 2) representation
my ., € my_j,m,_,.

Itis again useful to look at the case of three dimensions. Here, Spin(d—2) = Spin(1)

is trivial, and according to (5.128) we have (recall that m3 = j and my = m)
P! (0) = (omle™2|j,m'y = (jomle 05 )jm'y = ) (-6), (5.129)

where d; . (0) is the small Wigner d-matrix familiar from the representation theory

of Spin(3). For other examples see section 5.3.7 and appendix D.4.
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5.3.1.3 Putting everything together

We can now combine (5.118), (5.120) and (5.128) to rewrite (5.111) in the following
terrifying form,

a4 3 a2 a1
3010, (=1)03 (1) A, M)A, Myl M0, (1)0}  (~1)]0) =
0y

_Z Z Z/l My fﬁdl/l yRE Y APmdde (0))(
m; t my_j,t my_;,m
i md 1-t my_)
md v N
EUES =3 ﬁ'll glnl
d-1 r Bd-1|"%
X 93(4‘ 4 mg_, ‘md g‘md 1t =2 'E]ﬁz , (56.130)
m; d-1"""d
where following selection rules on the summation variables hold,
~ i
m, , €my,
’ ’ ~ 1 ~72
(m,_,0') €m,_; @m,_;,
_— —3 ~4
(my_1,1) €Emy_, ®m,_,,
my_, € md_l,m;,_l cmy. (5.131)

Using the shorthand notation (5.122) and (5.123) for the three-point tensor structures,

we can rewrite (5.130) as

- m3 m!
DI rAP::"_I:lI‘ilz (6) X Z‘b‘md_zla " (5.132)

a,b Mg N M

We have also introduced a four-point tensor structure

gﬁ3 =3 ﬁ'll ED?I

d-1 ’ r d—-1 d
4‘ —4 md_l,tmd_z‘md_l,t 5 N (5133)

Ny my_, m,_, 10

which we will define momentarily. Before doing that, let us comment briefly on the
structure of (5.130) and (5.132).

There are two complications compared to the case of external scalar operators. First,
there are many possible three-point tensor structures, and we have to sum over the
contributions from different pairs of three-point structures. This is done in the first
two sums in (5.130) or equivalently the first sum in (5.132). Indeed, according to
d " ~?1—1’ m/,_,t) such that m/,_,,
selects an irreducible component in m' -1® m’ 51 uniquely determines a three-point

the discussion around (5.118), the set ¢ = (m! t

tensor structure for the operators 1 and 2, and an analogous statement holds for
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b and the operators 3 and 4. Second, there are many four-point structures, and a
single pair of three-point structures can contribute to many four-point structures.
This is the last sum in (5.130) and (5.132). As we discuss below, the role of m,_»
representation is to specify a way of gluing the two three-point structures into a
four-point structure. Note that the three-point structures do not depend on m,_;, but
the angular functions P and the four-point tensor structures do. We stress that the

structures (5.133) form a basis of all four-point tensor structures, as we now explain.

The definition of (5.133) follows straightforwardly from the construction,

03 m’ m! (ML
d d-1 ’ r d-1 d
- my_p, fmgomg; ,,r° _
M4 | me w2 a2
d "Md-1 d-1""'d
_ 3 4 ’ ’ 1 2
= > O M, Mgy, )0, (W, 1Y, MG X
My M,
X O — 0 ~ 0.3 =3 O —4 5.134
ml iy O O, O s (5.134)
Here m;z—z = my_,. Note that for every choice of ﬁiii—l’ my_q, m;,_ Mg-2,1, ', this

is a function of im;, i.e., an element of
m) ®m; ® m) ® m). (5.135)

Furthermore, it is clear from the definition that it is Spin(d — 2) invariant. This

means that it is an element of

4, (5.136)

(m} ®m} @ m} ® m}
which is the space of four-point tensor structures [1, 123].

The set of structures (5.134) with the parameters restricted by (5.131) spans (5.136).
Indeed, we have

Spin(d-2) — .
1 2 3 4\5P _ 12 34 \Spin(d-2)

(m} @ m; @ m} ® m) = P m emi) . (5.137)

mb%l Emb@mz

3t emd omd

d

where the sum is taken with multiplicities. Because the dimensional reduction is

multiplicity-free, we have that Spin(d —2) singlets in m}lz_l ®@m>*  are in one-to-one

d-1
1234 12 34

correspondence withm =" e m -, m_” .

This enumeration is implemented by (5.131) as follows. By specifying fﬁll_l, fﬁz_l, m/,_ .7

. . 12 , . 1 2 ..

we first select a general Spin(d — 1) representationm”, ~m/,_, inm,®m;,. Simi-
=3 =4 ; . 34 3 omd

larly, m)_,,m;_,,my_y, 7 selectageneral Spin(d—1)irrepm;’ ~mgy_;inm,;®m;.

1234

The “gluing” representation m ;=5

is then identified with m _5.
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5.3.2 Example: Scalar correlators
Let us see how we can recover the Genegenbauer expansion for scalar four-point

functions. For scalars we have mil = (0,...0) = e, and the only Gelfand-Tsetlin

patterns are [e] = (e,...). Similarly, fﬁil_] = o. In (5.130) we only need to sum
overm/,_, € 171611_1 ® 17131_1, thus only m/,_, = e is allowed and there is no need in '

label. Similarly, m;_; = . The sum over my_; is restricted tomy_» € my_j, m;i_l ,

and thus we only have m;_, = . The unique component of the unique four-point

[[0]
[o]

Equation (5.130) collapses then to

structure is

[e]
=1. 5.138
4 o

D OIOF (=DOL (1)1A, Ma)(A, Mylr P2 0L (1) O (- 1)10)

My

= A2 1. A PR (6). (5.139)

We needm,_q, m:i_l € my, and thus for scalars we get the condition m; > e, which
is only satisfied if my is traceless-symmetric, my; = j = (j,0,...,0). Finally, as
we show in (5.202) later in this section, Plj'.(@) is proportional to a Gegenbauer

polynomial. Taking (5.202) into account, we reproduce the result of [59]

D IO (=10 (1)1, M)A, MylrP 208 (1) O (- 1)0)

My
)
—/1.’.;.’. AC] (9) 5140
= AT , (5.140)
¢’

5.3.3 Example: General 3d correlators
Consider now the case d = 3. Letus first write the four-point tensor structure (5.134).
Since d = 3, the sums in (5.134) are trivial, as well as my_, is. Furthermore,
Spin(d — 1) = Spin(2) tensor products are multiplicity-free, so the labels 7 and #’
are also trivial. We then find, using (5.127) and (5.126),

[Jé, m3|m3 H , my|j1, my

. _ m|lm” _" ",
Ja, malmy ma\ ja, ny

:| = 5m’,m1 +my 5O,m+m3 +my 5m1,1711 5m2,ﬁ12 51’}13,1’713 6m4,1%4 .

(5.141)

Since the tensor product of Spin(2) representations m, m, contains only one rep-

resentation, m; + my, we do not need to specify m’ separately. The same holds for
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m. We can thus simplify this tensor structure as

[13, m3|ms mp|ji, m

Ja, malmgmol jo, mz] = Oy O iy Oma i O (5.142)

Before moving further, let us understand the meaning of this expression. It is a four-
point tensor structure in the sense that by fixing m; we have a tensor with indices

m;, i.e., an element of
J1®j2® j3® ja. (5.143)

Note that these structures form a complete basis for such tensors, which is consistent
with the fact that Spin(d — 2) = Spin(1) is trivial and so there is no invariance

constraint on conformal frame four-point structures [1].22

As noted above, we can essentially drop md_l,m’d_l,md_z, t,t" in (5.130). Us-
ing (5.129) and (5.142) we can rewrite (5.130) as

2 L0105 (=1)OP ™ (DIA, j, m)(A, j, mIrPe™202"™ (1) (=1)|0) =

m
_ Z AN (0) [ﬁ n”Z Zi Z; 2 Z;] (5.144)
P
where summation is over
m; = —ji,—ji+1L...Ji (5.145)
and the last line of (5.131) also restricts

|my + ma|, [m3 +my| < j (5.146)

as well as that m + my and m3 + my are integral or half-integral simultaneously with

J, so that small Wigner d-matrix is well-defined.

5.3.4 Example: General 4d correlators

We now consider the case of the general correlation functions in d = 4. The use-
fulness of this example comes from the fact that while being not very different from
the most general case, it can still be formulated using only the familiar ingredients

from representation theory of Spin(d — 1) = Spin(3) ~ SU(2).

220ne can be more pedantic by taking Spin(1) = Z,, in which case there is a constraint which
simply says that m; + my + m3 + my (equivalently, j; + j» + j3 + j4) must be an integer, i.e., the
correlator should contain an even number of fermions.
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First, we need to construct the three-point tensor structures. Consider for example
the right tensor structure (5.118) parametrized by the data (5.122). We can write in
4d

a= (1o J), (5.147)
where j; € I! ® I', and j’ € 1 ® Ig where (I1,lg) is the representation of the
exchanged operator. The constraint in (5.122) then takes form 7 € ;1 ® fg In
particular, we do not need a multiplicity label because the tensor products in Spin(3)

are multiplicity-free. The three-point functions take the form

(AL 1g; Jm' 103 ™ (1HO]™ (=1)]0)

= Aj1jnin$J s 1 L1 mas jo, ma)

= Z G500 (', m'|j1,mys jo, ma)}. (5.148)

a=(j1,j2J")

Here, for notational simplicity, we have omitted the mi part of the GT pattern for the
primary operators O;. The second line of this equation gives the more traditional
form of the three-point functions as a sum over tensor structures labeled by a.
Finally, (j’, m’|ji, my; jo, mp) is the SU(2) Clebsch-Gordan coefficient. Similarly,

for the left three-point function we have

OIO"™ (=1)OL"™ (DA, 11, g3 j, m)
= A(js,juj) <Ol s mas j3, ms3; j, m)

Z A5 50516,,7.0, 50,01 ja, ma; j3, m3; j, m)}, (5.149)

b=(j3:ja-J)

and the constraint from (5.123) is simply 76 73 ® ﬂ since all SU(2) irreps are self-
conjugate. Here (0|}, m4; j3, m3; j,m) is essentially the SU(2) 3j symbol. Note
that this parametrization of three-point structures is essentially the same as the one

mentioned in [2].

The four-point tensor structures (5.134) can also be computed as

Jj3.m3|J3 ‘m y jl‘jl,ml
Jasmal jy Jolj2, m2
= (0| jg, ma; j3, m3; j, m)j’, m|j1,my; jo,ma)d, =6, 6. =6. (5.150)

JLJ1 J2d2 033 Jasja’

Recall that the labels m; parametrize the representations of the Spin(2) which rotates

in the plane 3-4. This plane is orthogonal to the plane 1-2 in which we place our
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operators, and thus this Spin(2) it the stabilizer group of the four points and, as usual,
the four-point tensor structures have to be invariant under it. Using the constraints
my +m3 +m = 0 and m = m; + my coming from the CG coefficients, we find
my4 + m3 + my + m; = 0 which is precisely the required invariance condition. Of
course, this comes as no surprise since it was guaranteed by construction. Note that
this basis of four-point tensor structures is different from the one in [2], since it is

not an eigenbasis for rotations in plane 1-2.

The final formula (5.130) takes the following form in 4d,

D QIOF™ (=1)OL™ ()|A, 11, Lgs j, mKA, 11, Lgs j, mle®™2rP O™ (1) O™ (=1)[0) =

Jj.m
=Sy ad []3’ ‘b‘ ‘ Jim ] ik (g) (5.151)
ab m J4, My Joa.ma | JJ

where the four-point tensor structure and the three-point labels a, b are described
above, while the P-function is given below in section 5.3.7 by equation (5.212). The

range of summation over m is restricted to be —min(; 7’), —min(z 7’)+ ..., min(z 7’).

5.3.5 Example: Seed conformal blocks in general dimensions

Our last example concerns an especially simple case which occurs for every d. The
simplification is based on the fact that the CG coefficients are trivial when one of
the representations is trivial. Choosing two of the four operators operators to be
scalars, we can ensure that the CG coefficients for both the right and the left three-
point function simplify, with the correlator itself still being sufficiently general. If
fact, as will be clear from the construction, the so-called seed blocks for arbitrary

intermediate representations can be chosen to be of this form.

Let us choose the operators O and Oj to be scalars. Then the general result (5.130)

simplifies as

31010 (=1)03 (1) A, M)A, imd|rDe9M120§”3(1)01(—1)|0> =

m,
— Z Z /1_2 -1 AP:::dmd42 (0))(

~i md ) d- d

[.
X 4|~
EITEdm

[ ]
g My 1‘md 2’md 1 ~2 ’gﬁz
d-

,  (5.152)
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with the four point-structures given by the specialization of (5.134),

° ) ‘ ‘ ) )
— mgy_o(m —_ =
gﬁ4 m4 d 1 d-1 2 EUEZ
d d—1
— ! ’ 2 —
= <0|9ﬁd 1° mtd—l>5‘]ﬁd_2,ﬂﬁ"172<9ﬁd_1 |9ﬁd—1>5m§_1,1ﬁ3_15m2 l,"‘*i L
Mg, M,_,
4
(—1)Ma-

— 5ﬂJi3_],9sz_15‘Jﬁd_z,‘)Ji;_25932;,_1,%?3_15m2_ w2 Omt @t =
My M, 4/dimm

d-1
4
(=¥ 5 s 5. s 5 (5.153)
B imme ml_me Oml G Ol mg 5 Omy ,my m 2,93%_2’ '
1mm
d-1

where we made use of (5.47). The constraints (5.131) reduce in this case to

m,  em, i=24 (5.154)
my_ € IYICZI_I € my, (5155)
mg_; €M) _ €my. (5.156)

Note that for any m, there exists a choice of mil such that these constraints can be
satisfied, and thus arbitrary intermediate representations can be exchanged in this

simplified setup. In fact, for a given my, in even d, we can always choose m, so that

d
there is a unique choice available for fflil_] (and thus a unique three-point function

on either side). For this, set, for example??

(5.157)

where the choice in the second equality is determined by the statistics of my. In odd
d, this only reduces down to two choices for each of ﬁil_l if the representations are
fermionic (but still one choice for bosonic representations). This is because in the
case of odd d the outer automorphism of Spin(d—1) (given by reflection) necessarily
acts non-trivially on fermionic representations of Spin(d — 1), but trivially on the

representations of Spin(d). Therefore, the number of three-point tensor structures

23This is choice is different from the one used in d = 4 in [2]. In fact, in even d it doesn’t matter
what we choose mfl to be, and the choice in [2] corresponds to m = |mgq,,|. Our choice (5.157)
has the advantage that 1s also works in odd dlmensmns see below Also note that there is some

freedom in choosing m independently of m
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involving fermionic representations is always even, and we simply cannot have less

than 2 non-trivial structures.

If we think about the state |A, 9t;) as being a conformal primary, then the choices
of external representations described above give us a valid choice for the so-called
seed blocks for exchange of primary m, — they lead to the minimum number of
three-point tensor structures on both sides of the four-point function. The equa-
tions (5.152) and (5.153) then give the leading contribution to the OPE limit of such

seed conformal blocks.

As a concrete example, consider the scalar-fermion blocks in even dimensions.

Specifically, we take

m; =5+, (5.158)
m),=(%....5-D. (5.159)

This is slightly different from the prescription (5.157) unless d = 4k + 2, but it is
more convenient to have a uniform choice of representations for all even d. Under
dimensional reduction both mﬁ and mi restrict to a single representation, and thus

necessarily
m,_,=m,_ =D (5.160)

These representations further restrict to a direct sum of (%, e +%) and (%, e —%)

in d — 2 dimensions, so that there are two four-point tensor structures
([ ]

[smj RPN (3. ,%)'smf,]‘

Correspondingly, there are two types of m, that can be exchanged, each with a single

e

(5.161)

1 1 1 1
CR (ER

three-point tensor structure on either side,
+ -1 1
m; = (j,5,...,%5). (5.162)

From (5.130) we find that the contribution of the representation m to the four-point

function (5.108) is given by

A U ED Gt 3) (gt 3 (5o3)
DA P TIE T  oy + PUTTRN T )|, (5.163)
I (55573)(5573) (5555)(55045)
where
o.m?2 o.m?
= A5 5.164
* my,_m g my ( )
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Here m; index of OPE coefficients labels the exchanged representation. We find
explicit expressions for the above P-functions in section 5.3.7.3, with the result

given in (5.196).

5.3.6 Example: Conformal block/Four-point tensor structure correspondence
As another simple application of the above formalism, let us discuss the folklore
theorem which states that the number of classes of conformal blocks which con-
tribute to a given four-point function is equal to the number of four-point tensor
structures [55, 75]. We will consider the simplest case where the only relevant
symmetry is the connected conformal group (i.e., no space parity or permutation
symmetries for identical operators). In our formalism this theorem becomes essen-
tially a tautology. Because of that, this section basically reiterates what was already

said, with a slightly different focus.

First, let us explain what is meant by classes of conformal blocks. Each conformal
block contributing to a four-point function is parametrized by the dimension A and
the Spin(d) representation my of the exchanged primary operator, as well as by
a pair of three-point functions a and b. From the previous discussion, we can

parametrize the three-point functions as follows,

~1 ~7 ’ ’
a=m,_,m;_;,m, 1),

(md 1’ffld 17md 1, t), (5.165)
subject to (5.131). In particular, the constraint
m,  em, (5.166)
gives us finitely many choices for m , for fixed m and the constraints

’ ’ ~1 ~72
(md_l,t ) € m,  Qmg,

(Mgp,1) € m)_ @my_, (5.167)

thus give us finitely many choices of (m’, .,#) and (my_1,¢). The intermediate

d-1°
representation is then constrained by my—j, m/,_, € my. This leaves infinitely many
choices of my for a given four-point function. However, the allowed m, organize
into natural families. Indeed, let us denote my = (j, my_»), i.e., j is the length of

the first row of the generalized Young diagram of j and m,_; encodes the remaining
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rows.?* The following two statements are then equivalent,

4 o = —~ ’ . ’
mg_,m;  €my = (j,my) & My Emg,m, andj = mg_11,Mmy q;.
(5.168)

This leaves only a finite number of choices for m;_;.

The infiniteness of the number of conformal blocks is therefore only due to the
generic parameters A and j. If we consider any two conformal blocks differing by
only these two parameters to belong to the same class, we obtain a finite set of classes
parametrized by a pair of three-point structures (5.165) subject to (5.166)-(5.167)

and a my,_; subject to
My o €my_p,m)_. (5.169)

The statement of the theorem is that the number of such classes is equal to the
number of four-point tensor structures. Indeed, we already saw that the four-point

tensor structures (5.134) are parameterized by exactly the same data.

For conformal blocks this statement is, strictly speaking, only a counting statement
and thus it would be interesting to get a more physical understanding of this. Note
however that the matroms Py, gm’,_ > @s discussed in section 5.3.7.3 link together,

in some sense, the spaces of R X Spin(d) blocks and four-point tensor structures.

5.3.7 P-functions

In this section we discuss general properties of the GT matrix elements P, as well as
their explicit calculation in various situations. This section is rather technical and
mostly independent from the sections to follow, and thus can be skipped on the first

reading.

5.3.7.1 Basic properties
First, recall the definition (5.128)

<g‘nd|eeM12|gﬁé> — Pmd,md—2

my_m)_,

(6)0m, 7, - (5.170)

There are a lot of properties of P which follow immediately from this definition as

a matrix element. For example, the simplest property of P is given by substituting
0=0,

mg,mg_p
P 0)=0 ro
md—l,m;,_l( ) Ma-1.m,_

(5.171)

24Note that indeed my_; is always a dominant weight for Spin(d — 2).
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Furthermore, P is 2r-periodic for bosonic representations and 2m-antiperiodic for
fermionic representations. More generally, we know from the standard representa-
tion theory arguments that the spectrum of i M, consists of (half-)integers ranging

from —m, 1 to my 1, and thus all P-functions have the form

mg,1
Paate? @)= ), cne™, (5.172)
m=—niq,1

where c¢,, are coefficients which depend on the indices of P, some of which may

vanish.

Reality properties can be obtained by applying Hermitian conjugation to the defini-

tion above and noting that M,,, are anti-Hermitian, resulting in, for real 6,

(Pm”’m“ (9)) = PR (-0). (5.173)

mg_j,m) 1 Md-1
Note that we also have
D O )W g2 [0 ) = ORI )W e M2y (5.174)
n, n’,

due to the invariance of (0|9;M’,). Contracting with <img’Wd|o> on both sides

we find

dimmg " (O g)}DV ]2 [y KNI 4]0 = (D |e™M12 90y,
T
(5.175)

This implies, in terms of P-functions,

(=] yma-1- m/,_ ledmd > () = mgmd 2 () = (Pmdmd 2 (9))* (5.176)

my_m),_, mg-—g mg_j,m;
The group composition property for the matrix elements

Z<wzd|e91M12|sm;l><9ﬁ;|e"2M12|sJJt;;> = (Myle O+ Mz jgp/ry (5.177)
S]JE:I
gives the sum rule
Z P2 (1) Ppi™2 (62) = P2 (61 + 62). (5.178)
d—l

In particular, substituting 6, = -6, m;;_l = my_1, we find, for real 0,

2 1Pmete @ = 1, (5.179)
m;_,

and thus

| pama-2 (0)| <1 (5.180)

my_ m
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5.3.7.2 Orthogonality relations

The matrix elements of group representations obey Schur orthogonality relations

which read as
1
M| RV )My | RID R=— = )T 181
Lpin(d)< dl | >(< d| | >) d dlmmdé‘gﬁd’gjzdémd’md (5 3 )

Here the §-symbols also compare m; with m,. The group integral in the left hand

side is understood to be over Haar measure normalized as

f dR = 1. (5.182)
Spin(d)

Let us set My = iﬁid_l and M/, = Eﬁ?;_l in (5.181) and do Spin(d — 1) sums.
Equation (5.181) then becomes

f (mdimd_l |R|mdiUE;,_1)(fﬁdEUt;_l |R_l |Eldﬂjtd_1>dR =
a1,

dimmg_; dimm’
_ a1 o i (5.183)

dimmy

We then write R as R = KAK’, where A = ¢?M12 for some 0 and K, K’ € Spin(d -
1).25 In the left hand side K and K’ cancel out due to Spin(d — 1) invariance of the

contractions, resulting in

f (m My BOM2m N, Nmg M, e B2 m My, )dR =
Spin(d)

My, D,
- Zdimmd_z f P::ZI:'liz (Q(R))( “‘d“‘” (Q(R))) (5.184)
mg_o Spln(d)

By using explicit coordinates on Spin(d) one can show that, for d > 2

f f(O(R))dR = F(—%) f " ind2 g f(6)do (5.185)
Spin(d) Var (&) Jo ' '

Putting everything together, we obtain the following orthogonality relation

Z dimmy_, f phamd-2- (g ( prRama-2 (9)) sin?™% 9do =

mg_j,my_, mg_jm_,

_ VAr(43) dimmg dimmy,_

1
i - N
r) dimmy Omgy- (5-186)

This follows from a standard choice of coordinates on Spin(d), which follows from
Spin(d)/Spin(d — 1) = §4°! : an element on the sphere can be obtained from a fixed point by
KA and K’ comes from Spin(d — 1) equivalence class.
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5.3.7.3 Computational techniques

In the remainder of this section we discuss how P-functions can be computed in

practice, first in general and then in specific examples.

The conceptually simplest computational scheme follows immediately from the

OM12 Tndeed, since we know the matrix

definition (5.128) as a matrix element of e
elements of Mj, (see section 5.2.3 and appendix D.2), we can find the matrix
corresponding to My, in any given representation and then exponentiate it by the
standard methods. When doing this, one can reduce the amount of calculation by
taking note of the structure of the right hand side of (5.128). Following this strategy,

we simultaneously produce

) e () (5.187)

mg-;,m;, ,

with fixed m; and m,; for all choices of my_; and m/,_,.

This strategy is therefore somewhat of an overkill for our purposes, since in a four-
point function the possible choices of representations m,—; and m’,_, are prescribed
by the spins of external representations, while m; and m,_, take on all the values
allowed by each pair of m;_; and m;,_l .26 Fortunately, there exist techniques which

compute PM¢Md2

S () for fixed my—; and m/,

{
Let us fix my_; and m:i_ |- Furthermore, write my = (j, my_,), i.e., define j = my
and think of the rest of my as a (d — 2)-dimensional weight m;_,. Note that
my_j, m),_, € my requires j > max(mgq-1,1, m;,_l’ |)- Assuming that this holds, it is

easy to check that the following two statements are equivalent,
my > md_l,mil_l — ﬁld_z S md_l,mzl_l. (5188)

In other words, my_, satisfies the same requirements as my_,. This means that

we can arrange Pl(l{’md‘z,)’md‘z(e) into a square matrix P{mH . (6) with rows and

d-1Mm,_ My

columns labeled by m,_, and my_; respectively. Such matrices are discussed, for
example, in [210] (and references therein), where they are shown to satisfy certain
second-order matrix differential equations, and methods for solving these equations
are developed. Following the terminology of [210], we will refer to these matrices

as “matroms.” Note that the size of the matrom is independent of j and is only

’

d-1°
matrom appear in a given four-point function.

determined by m;_; and m Furthermore, all (if any) components of a given

26 Also, the size of the matrix which one needs to exponentiate grows with the spin mg 1, which
makes this approach computationally more intensive.
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Potentially, the results described in [210] may allow one to find analytic in j expres-
sions for the matroms P{n o, in terms of known special functions. Unfortunately,
we were not able to devise a complete computational algorithm based on these re-
sults.?” However, since in numerical applications one requires P{n o, for all j
up to a certain cutoff, it is convenient to use a recursion relation in j as described
below. Expressions analytic in j can still be obtained in a number of cases, as we

discuss in the next subsections.
The basic idea is to consider the product
(Mgl ([, 0, |2, 0, ) = (Myle?21 M) cos 6. (5.189)

The left hand side is a matrix element in my ® [ ] and thus can be decomposed as a

sum of matrix elements in various irreducible representations,

my \( my []
my_j j\my_, e

(Mgl ([0, .. ["M2] [, 0,...) =
my []

—_ *
my )
, .
mg_; e Illd_1

(5.190)

= > <ﬁldwtd_1|e"M12|ﬁmdwt;,_l><

myemyQ[ |

One can easily see that in terms of matroms this leads to the following recursion

relation,
AP+ ATPT 4+ BP = cos O P, (5.191)

where A;T', B/ are some matrices,?® and we have suppressed the dependence of
everything on my,_;, m/,_, for simplicity of notation. Starting from the smallest
possible j (for which we can compute P/ by, say, exponentiation), one can use this

relation to find P/ for higher .

As an example, consider the matroms in d = 2n with my_; = m;_ | = (%, R %),

which will be useful in the example of section 5.3.5. There are two representations

’

d-1°
fermionic representations in d — 2 dimensions. We therefore have a 2 X 2 matrom

in the dimensional reduction of my_; = m my_, = (%, e i%), i.e., the two

1

oyt

)

veey

1
""’_E)

A
NI
i
NI—
:—/
=
NoI—

o= 8O- &

1 1
(Fsent3)
sy )

1 1
(Zrent3)

—
N|—
~—

O~ & o-— &

~
S
~
~

(6)

A
NTE
=
Nol—
NI—
~
N
N
=
NoI—
NI—
N

T
I

(5.192)

=
=
N

~

S

N
1=
°l
=
= N
~~ M
RI—
I
NI—
Z

~~

S

N

A
=
N
=
Rl—
l—
A=

1
,...,j)

—~
=

)s

—
=

"1t is an interesting problem to complete the results described in [210] to find a general algorithm
for constructing analytic expressions for generic matroms.
28The matrices A are, importantly, diagonal, which makes it easy to invert A;.’.
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For example, one can easily check that for any d

o012 p+if)2

T\ o2 io2) (5.193)

8=

|

By using the explicit formulas for the isoscalar factors from appendix D.2.2, one

can show that the recursion relation (5.191) reduces in this case to

L1
J+2n J=73 4i- n—1 0 1) . .
_—12PJ+1 + —23PJ ! + — - 3 P/ = 2COS9PJ,
jtn—5 jtn—3 (+n-3G+n-3)\1 0
(5.194)
where n = d/2. For instance, applying this relation twice, we find
5 1. 3- 5 1. 3.
pret_n-l Tiilem2i0 4 o720 4 Letail  JHELet3i0 4 ¥l 4 Lomail
T on— 1\ Lntl +die o edio L ,-3i0 Ll ~3i0 L ,~di6 1 +di0 |
n =1\ 3a5em 2 + e + 36720 3ien0 o2 + ™
(5.195)

valid for any d = 2n. The general solution can be expressed in terms of Jacobi

polynomials as?°

(5.196)

5.3.7.4 Contribution of R X Spin(d) multiplets in terms of matroms

Having introduced the matroms P in the previous subsection, it makes sense to
reanalyse (5.132) in terms of them. For fixed a and b as in (5.122) and (5.123)
denote by

T (5.197)
the column vector built out of four-point tensor structures

3
gﬁd
4
EIRd

1
M}

5.198
e (5.198)

’b’md_z a

2970 find this solution, we first diagonalized the recursion relation and then matched it to the
recursion relation for Jacobi polynomials. The Jacobi polynomials entering this expression can in
principle be expressed in terms of linear combinations of Gegenbauer polynomials.
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with my_; running through all allowed values. Also, denote Pia = P]m ;.
d-1,My_

Finally, let

A% (5.199)
be the row vector built out of
—b
/lA,mdAZ,md (5.200)

corresponding to all my = (j, my_p) which can contribute to the given pair a, b
according to (5.131), summed over degenerate multiplets. If we are considering the
contribution of a single R X Spin(d) multiplet, then this vector contains a single non-
zero element, but at this point it is convenient to also allow several contributions.
We then have

3 ¢ 1
b A pMg,mg_ 9ﬁd Jﬁd
Z Z Z Apm Ahm," Py . (0) % 4‘b‘md—za 2| =
mg,mg1=j a,b Mg ‘ Mt B Emd Emd
=% Y AP (0) - T (5.201)

a,b

As we discuss in section 5.3.6, in this equation Aﬁ?“ correspond, roughly speaking,
to the space of conformal blocks, while T? correspond to the space of four-point
tensor structures. The matroms link these two spaces together, giving a realization
of the folklore theorem [55, 75] (see section 5.3.6).

In the rest of this section we consider some more explicit examples. First, we recover
the Gegenbauer polynomials relevant to the scalar correlation functions and then we

consider the low-dimensional cases d = 3 and d = 4.

5.3.7.5 Scalar matrom

Let us consider the simplest P-function Pl'. (8), which is the only component of the
simplest scalar matrom PJ;,.(H). Analogously to the example considered above, we
could write down the recursion relation (5.191) for this matrom and recognize that,
together with the initial condition P, (6) = 1, it is solved by

C](.V) (cos )

PLO) = =
()

(5.202)
where v = (d —2)/2. However, it is instructive to take another approach to arrive at
this result. Consider the tensor given by

Moo R

e, e’ —traces. (5.203)
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Obviously, this tensor is an element of j of Spin(d). On the other hand, it transforms

under the trivial representation of Spin(d — 1). Therefore, we have

M.l — traces o [j,o,...). (5.204)

€

Acting with 12 we find that
e™M2jj e ..y oc et (B) - el (0) — traces, (5.205)
where e (8) = cos ey + sin fe;. This implies

Pi(0)
=(j,o,... |eeM12|j, o ...y (e ey — traces)(e‘l“(é’) . --efj(e) — traces).

(5.206)

The right hand side of this equation is known to be proportional to the Gegenbauer
polynomial CJ(.V)(el -e1(0)) = C](.V)(cos 0). Combining this with the normalization
condition P{'. (0) = 1, we recover (5.202).

This strategy generalizes to other tensor representations and also allows one to relate
P-functions to the irreducible projectors studied recently in [82]. We discuss this

further in appendix D.4.

5.3.7.6 3 dimensions

We now consider the case d = 3. As discussed in section 5.3.1, the 3-dimensional
GT matrix elements P;; ,m,(H) are given by (5.129),30

/ — (i OMiyy: 1N _ /: Zi0s s N q)
P (0) = (Gymle"M 2 j,m"y = (j,m|e™ "% j,my = d, . (=0). (5.207)

Note that in 3d all matroms are 1 X 1 and coincide with the above functions. There is

not much to add here, except for the explicit formula for the small Wigner d-matrix

& (6,
&, ()
_ m—m’ (J + m/)'(J - m,)‘ . ﬁ e ﬁ mm (m’—m,m’+m)
=(-1) \/ GrmlG—m)! sin ) cos ) Pj_m, (cos 8),

(5.208)

where in this expression P,(,a’b) are the Jacobi polynomials.

30We use the convention consistent with Mathematica’s WignerD[{ j,m,m’},6].



207

5.3.7.7 4 dimensions

In 4d we have the following definition of GT matrix elements PJlel R (9),

PR (0) = (U, Igs j, mle™ 2111, 1g; ', m). (5.209)

We can compute them by going to the SU(2) X SU(2) basis,
PR (G) = (I, Lgs j, mle™ 2|1, Lgs ', m)

Ly’
. oM .
= E g (I, mp; g, mple” 2|, my ;[ g, my)x

mp+mR=mm; +mp=m

X (jymllp, mps Lg, mr){l, my; Lg, mylj’, m). (5.210)

Using (5.86), we find

<lL, my; lR, leeGMn ”L’ m,L’ lR’ m}e> = <lL9 mpr; lR, lee_i0J§L+i0‘]§R |lL, m/L’ lR’ m;e>
_ e_i(ml‘_mR)émLm’LémRm}q’ (5.211)
and thus
ZLZH:R m+k m-k m+k . m—k
piEIRm™ 9y = <J's m‘lb s ><1L’ e J" m>e_ik9'
Ji 5 2 2 2 2
(5.212)

Note that in this formula the summation is over (half-)integral values of k for (half-
)integral values of ¢; = I; + [g, and whenever the Clebsch-Gordan coeflicient is
undefined, we assume that it is equal to zero. Thus the range of summation is

effectively restricted to
{2l —m,....2lp —m}N{=2lg +m,...,2lg + m}. (5.213)

For example, if m = [} + [, then only k = [} — [ enters the sum. (Also necessarily

J=J =l +Igr)

5.4 Casimir equation

In this section we derive Casimir recursion relation for the series expansion of
spinning conformal blocks. We first rederive the results of [59] for scalar conformal
blocks in a more streamlined way and then extend these results to arbitrary spinning
conformal blocks. As an example, we explicitly work out the recursion relations for

general 3d conformal blocks and for general seed blocks in arbitrary d.
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In this section we will work in coordinates different from those in section 5.3. In

particular, we set
wi =0, wry=2 w3=1 wg=+o00. (5.214)
We use the following definition of O4(+0),
O4(+e0) = lim L*04(Ley). (5.215)

Note that we do not act in any way on the spin indices of O4 when taking this limit.3!
The results of section 5.3 translate to this case without essential modification (except

for changing the insertion point of the operators in all formulas).

We use (5.214) because the Casimir recursion relations take the simplest form in
these coordinates, analogously to the case of scalar blocks [59]. The recursion
relations in p-coordinates, unfortunately, take a much more complicated form [60,
80].

5.4.1 Review of scalar conformal blocks

Consider the scalar conformal block for exchange of a primary operator O

Go(s, ¢) = (0l¢a(c0)3(1)|0]sP e’ 2, (1)¢1(0)|0), (5.216)

where z = se'”, we have used the convention (5.108) for writing the four-point

functions,3? and |Q]| is the projection operator on the conformal family of O,

O1= > 1Ay Mg, gX(A, My, ql, (5.217)

pZO,md,‘JJEd,q
where the sum is over an orthonormal basis of descendants of O. Here A, = Ag +p
is the scaling dimension of a level-p descendant, my is the Spin(d) representation
of the descendant, and ¢ labels the possible degeneracies which arise when there

are several descendants in representation my at level p.

3'When O is tensor, one often acts on its indices with reflection along e; when taking this limit.
This is done because O4(o0) defined our way effectively transforms in the representation reflected to
m‘:]. When mfl is tensor, its reflection is equivalent to mfl and thus one may find it convenient to act
on Oy with the map which furnishes this equivalence. More generally, the reflected representation
can be different from m‘["l and thus there is no benefit in acting on spin indices of O4 within our
general treatment.

321n the scalar case (5.108) differs from (5.107) only by the factor shitha
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The results of section 5.3 and in particular 5.3.2 tell us what is the most general
contribution of a single term of (5.217) to (5.216). We therefore have

. (V)(cose)
Go(s. ¢) = ZZZAPM p.jsqS PL(H)_ZZAPJS Wy
p=0j=0 ¢ p=0 j=0 C (1)
(5.218)
We have defined
Apj= D A0 Aonia: (5.219)
q

The range of j is in fact restricted by the spectrum of descendants at each level p so
that [j — jo| < p, but we will ignore this by assuming that A, ; = 0 for p, j outside
this range. While this expansion respects R X Spin(d) symmetry, it doesn’t tell us

what the coeflicients A, ; are.

These coefficients are constrained by consistency of expansion 5.217 with the full
conformal symmetry. It was noticed in [57] that it suffices to ensure consistency with
the action of the quadratic conformal Casimir operator. Usually this is condition
is formulated in a form of differential equation [57, 64]. When applied to (5.218),
this equation immediately yields a one-step recursion relation for the coefficients
Apj [59].

(Cpj = Cojo)Apj =T,

p—1,j— 1Ap-1j-1 + Fp 1]+1Ap—1,j+1a (5.220)

where coefficients Flfj are given by33

Ap+J A1) Ap+j+A3)(j+d- 2)

1-*+
2j+d-2
- (Ap—j-d+2-An)A, J—d+2+A34)J
T, =— Srd—3 (5.221)

with A;; = A; — A;, while the Casimir eigenvalues are given by
Cpj=0p(Ap,—d)+j(j+d-2). (5.222)
This result is remarkably simple, much simpler than the intermediate steps in the

derivation of [59] would suggest. In fact, it is not a priori obvious from that

derivation that the recursion relation should take such a simple form. For example,

31In [59] these coefficients are given with Aj; = Az4 = 0, but it is trivial to generalize their
argument.
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when repeated in p-coordinates, essentially the same derivation leads to a much
more complicated recursion relation. We are therefore motivated to look for a more

conceptual derivation of (5.220), which manifests this simple structure.

Let us start from the definition of the conformal Casimir operator,
C= D(D - d) + CSpin(d) - P-K, (5.223)

where Cspin(q) is the Spin(d) quadratic Casimir defined as

1
CSpin(d) = _EM,uvMﬂv- (5224)

The key property of C is that it commutes with all conformal generators and thus
acts on all the descendants of O by the same eigenvalue as on O. That eigenvalue

can be computed by
ClO) = (D(D —d) + Cspina) — P - K) |0) = C(0)|0), (5.225)

C(0) = Ao(Ag = d) + Cspinia)(m9), (5.226)

where we used K,|O) = 0, and Cspinq)(my) is the Spin(d) quadratic Casimir

eigenvalue corresponding to the Spin(d) representation my. It is given by

Ld/2]
Cspintay(Ma) = >~ may(max +d = 2K). (5.227)
k=1

For future convenience, let us define for any (not necessarily primary) R X Spin(d)

multiplet the number

C(Amy) = A(A - d) + Cspinay(my). (5.228)
It is the eigenvalue of the operator

C=C+P-K=D(D-d)+Cspina- (5.229)

Note that P - K = KT - K > 0 for A above unitarity bound and thus we always have

in such cases

C>C. (5.230)

Since C takes the same eigenvalue on all states in a conformal multiplet, we have

|0|C = |0|C(0). (5.231)
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This implies the following operator version of the Casimir equation,
(01¢a310ICs M2 d2$110) = C(O)01pap3O1s”e" M2 a1 10).  (5.232)

For notational simplicity, we have omitted the positions of the operators, which are
the same as in (5.216). The standard Casimir differential equation can be obtained
by acting with C on the right in the left hand side of this equation and expressing this
action in terms of derivatives in 6 and s. We will take another approach, rewriting
the left hand side instead as

(0lp4¢3101CsP ™24, |0)

= (0l4¢301(C — P*K,)s” ™2 4,110)

= (01¢4310ICsPe"™12 9,1 10) — (0l pap3| O PH K 5P "2 95 1 |0)

= (01¢p4¢3101Cs” ™2 9,1 |0) — (0§43 PX|O|KusPe™ 21 10),  (5.233)

where in the last line we have used the conformal invariance of the projector |O],

i.e., that it commutes with all conformal generators. Rearranging, we find
(0la¢3101(C = C)s ™2 ¢2110) = (Olpag3 P*IOIK 15”2 ¢2110). (5.234)

We will now derive the recursion relation (5.220) by evaluating both sides of this

equation with the help of (5.217).

5.4.1.1 Left hand side

To warm up, let us consider the left hand side of this equation first. Using (5.217),

we find

(01¢4¢3101(C = C)s” ™2 ¢2110)
= > (0lgad3lAp Mg, gX(Ap My, qI(C = C)sP ™21 10)

pvmd’mtdyq
= ). (Cpmo) - C(A0,0)) (019493185 Mg, 4X(Ap, Mg, gl 57 ™2 29110
P’md,‘md»fl
o o CJ(.V) (cos ¢)
= D D Crj = Cojo) Ay s 0" e, (5.235)
p=0 j=0 C] (1)

where the last line follows similarly to (5.218), and we also made use of the fact that
we arranged the descendants into R X Spin(d) multiplets. We can already see that
we are on the right track — the coefficients in this expansion exactly reproduce the
left hand side of the recursion relation (5.220).
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5.4.1.2 Right hand side
Let us now analyze the less trivial right hand side of (5.234). We first look at the

contribution of a single term of (5.217). For simplicity of notation, we will omit the

degeneracy index ¢ for now and restore it later. We thus consider

D 01ag3PH 1A, MaX Ay, Mal K s e 2421 10). (5.236)
My

Left three-point structure We will first evaluate the left three-point function
by commuting P on the left. We have (see appendix D.1 for our conventions on

conformal algebra)

(014 (00)@3(1) Pyl Ap, Ma) = —(0l¢pa(00)d, 3 (1)[Ap, My). (5.237)
The crucial point is that the knowledge of (0[¢4(c0)¢3(1)|Ap, My) and R X Spin(d)

invariance allow us to evaluate

(0f¢4(c0)3(x)[Ap, Ma) (5.238)

for any x € R?. In particular, we can compute the right hand side of (5.237). For

example, note that

(0]¢4(0)d1¢3(1)[Ap, My) = = (Olpa(00)p3(1)(D + Az — Ag)|Ap, Ma)
== (Ap + A3 = Ag)(0[¢h4(c0) p3(1)|Ap, Myg).  (5.239)

Here the first equality follows from action of D on the left while the second equality
follows from action on the right. The minus sign in front of A4 is due to the fact that

we placed O; at infinity. Analogously, for u # 1,

(0[¢94(0) 8,3 (1)|Ap, Ma) = —(Olpa(0)p3(1) M| Ap, Ma). (5.240)

Here we can act with M, on the right by using the representation m, for M;,. As

we discussed in section 5.2.3, such actions can be described by means of a reduced

matrix element,

my
7’

O M a1y = (

m ’
MD} ¢ ><‘Jﬁd_1|%_1ud_1>. (5.241)
d—1

We conclude

m| ™

my
/

0l¢4(c0)p3 (1) P | A, My) =
(0lgp4(c0) 3 (1) P74 |Ap, My) %( my_

)(933;_1 M1 Wg—1)X¥
d-1

X (01pa(00)p3(1)|Ap, M), (5.242)
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whereuy; =uy_| = [].

Note that the states P |Ap, My) are just some other descendants of O. It is conve-
nient to decompose them into the irreducible representations of Spin(d) by defining
the states

P, Ap Mg Ma) = > (MgllglMa) PUIA, M), (5.243)

M,y

where my € [ | ® my and <9Jtdlld|i]:ftd) are the vector Clebsch-Gordan coefficients.
We can decompose this sum according to Spin(d — 1) symmetry of the three-point
functions as

1P, Apmg; M) = 3 PLI 1A, M) (Wgs [y, 19M)
My

0 PUIA, M XM IMg),

TR
my
m;_;

uyi=[ |
my; [ |
my D‘ my

=pLI*|A,, my EI:ﬁd—1>< _
mg_; e

+ PY A, M _
Z 1 d>(md—1 L] |mg_q

Mg Uy

ug_i=[ ]

)(Wd-lud-lliﬁfd-ﬁ-

(5.244)

Here we made use of (5.93) and of the triviality of CG coeflicients involving the
trivial representation. Using equations (5.54), (5.239) and (5.242) we then find

~ 34
(Olpa(c0)d3(1)|P, Ay my; My) = [“l.‘gd“:d] (0164(c0)p3(1)|Ap, my My_y),
- P

(5.245)
where
m, my]* J my; []| my
— =(-1) (AP+A3—A4) — —
my |, my_; e (my |
by Mgy 0] M| ma L ma ) g6
o \Md-1 my_; J\mg_ []|mg_

As we discuss in appendix D.2.4, the two terms in the last expression are in fact

my
~ >
mg_1

(5.247)

proportional to each other,

Z my my my [ |
my_ my_; [\my_; []

mg-j

MU T ) = (-D)* ' (my D|fﬁd>(~md -
my_; mg-; ®
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where (my []|my) is given by (D.36)-(D.38). This leads to

~ 34
[“16’ m"] =(=1) (&, + Asq — (my Dhﬁd))(l“
mg;_q » m

— ) (5.248)
mg-|

Note that we have not yet actually specialized to the case of scalar operators, except
in deriving (5.242).34 Let us do this now.

We start by observing that we necessarily have my_; = e in order for both sides
of (5.245) to be non-trivial — both sides are proportional to Spin(d—1) CG coeflicient
(o,...;0, ... |ﬁd_1> which defines the three-point structures, see equation (5.120).
The selection rule my € my ® [], combined with the requirement that in the
scalar case my = j and my are both traceless-symmetric, leaves only two options,
my = j(x1), in notation of appendix D.2. We therefore only need to compute

[j(il) j]

34
) (5.249)
p

According to (5.248) we have
jeEn §*
[

p

it

= (-1 (Ap + Mg = (] Dlj(il))(

j(fl)). (5.250)

By using the explicit expressions from appendix D.2 we find

=D 34:(—1)d(A +A3—j—d+2) 1 (5.251)
. p T3 2j+d-2 '

j+D 1% j+d-2

= (=DUA, + Asg + )| ———.
(=D(Ap + A4 + ) 2rd—2

(5.252)
p

One can already recognize here parts of the recursion coefficients F[f in (5.221). In
order to obtain the complete expressions, we need to consider the right three-point
structure.
Right three-point structure We now consider the right part of (5.236),

(B My K pusPe™M282110) = 5571 (A, MalKue™22¢110).  (5.253)

Let us denote

(Ap, Mg; K, Uy| = (Ap, My| Ky, (5.254)

3*For more general operators there will be extra contributions (which we discuss in section 5.4.2)
to (5.242) and thus also to (5.245). The formula (5.248) for the universal contribution (5.245) will
remain the same.
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and write

(Ap Mal K€M 9rp110) = > (Mgl M)x
M,

X (Ap, M| Ky, p2¢110). (5.255)

We first compute (A, iJJt:ilKu‘/jm(p] |0) in the same way as we computed the left

three-point function. We can make a shortcut by noting
(B M | Krpr $2110) = ((0lpapy PUa| A, ML) (5.256)

and reusing the results for the left three-point function. This gives us

_ i, mq 21 _
(K, Ap,mg; My |¢2¢110) = | | 2 (Ap,mg M, _y1h20110),  (5.257)
m,_; |,
where
i, my |
[ T ] (5.258)
m,., |,
is given by an analogue (5.248) with A3, A4 replaced by A, Aj, and we defined
(K, Ay mgs M| =" (G WA, W Koy, (5.259)
AT

Finally, note that we can rewrite the Spin(d) matrix element in (5.255) as

MUl Uy = > " (Mg g1 Mg Mg €12 |90 (I [,
my=m, 9t N,
(5.260)

where the summation is over my € my ® [ ]. Note that the CG coeflicients here are
the same as in (5.243) and (5.259), explaining the usefulness of these definitions.

Combining the results By combining equations (5.243), (5.245), (5.255), (5.257),
(5.259) and (5.260) we can rewrite (5.236) as
D 01ag3PulAp, Ma)(Ap, Mgl KH 572621 10) =
Ny
_ 3 T~ 21\*
3 2l )
_ | my- m
mge[|@mg 9,0, p d-1 1p
X (0]¢p4(00)p3(1)| A my My 1 )X
X (Mgle?™12| My

X (Ap, mg M| $2(1)¢1(0)[0). (5.261)
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’

d
contribution (5.111), except that the state (A,, my) now contributes as a state with

Here m’, = m,. The right hand side of (5.261) now has the same form as the generic
dimension A, and spin m; € [ ] ® my with a relative coefficient determined
by the representation-theoretic data through (5.248). In the scalar correlator case
these contributions have the form determined by (5.139). It is trivial to account for

possible degeneracies and arrive at the following result

D OlgagsPulAp, My, XA, Ma, qIKHsP ™22 10) =

p,md,‘JJId,q
NN . o C;V)(cose)
= ZZ(rp_l’j_]Ap—l,j—l +rp—],j+]Ap_laj+l)s orp C(V)(l)
p=0 j=0 J
(5.262)
where
. .134 (1. 21\ *
+1 +1
r;j _ [J( ).]:| ([J( )J] ) . (5.263)
g ® [ ]
P 14

Given the definition of (5.258) together with the formulas (5.251) and (5.252) we
immediately recover the result (5.221) of [59]. By comparing (5.262) with (5.235)

we also recover the required recursion relation (5.220).

This derivation may seem much more elaborate than that of [59]. However, it has
several advantages. The first is that the recursion relation is determined not by some
particular identities satisfied by Gegenbauer polynomials,3> but instead by a simple
set of representation-theoretic data — by the reduced matrix elements and isoscalar
factors. The second is that it is completely general and only a few modifications are
required to find the recursion relations for the most general conformal blocks, as we

now discuss.

5.4.2 Spinning conformal blocks

5.4.2.1 Difference from the scalar case

Let us now consider the general case of spinning conformal blocks. Looking at the
derivation of scalar recursion relation, one can see that the first essential deviation

in the spinning case happens in (5.240), which needs to be replaced by (recall that

30f course, given the representation-theoretic interpretation of Gegenbauer polynomials
from (5.202), the identities satisfied by Gegenbauer polynomials can also be understood from
representation-theoretic point of view.
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u # 1 in this context)

m4 n3 m4 N3
(010, “(0)0,05 “(1)]Ap, My) = = (010, *(00)O; (1) My 4| Ap, My)

, my m’
= D ODIM,IM3N010, 4 (00)05 ¢ (1)|A,, M)
ms
m 03
+ D O IMy G010, (00)05 (1| Ay, Mg).
mt
(5.264)
Analogously to (5.239), the relative sign for action on Oy is required because we
have placed that operator at infinity. This forces this operator to transform in the
reflected representation, which is essentially defined by replacing the generators
for My, with —M,, hence the relative sign.>¢ Note that this does not affect the
Spin(d — 1) representations, and so the results of section 5.3 regarding three-point

functions still hold.

To proceed, we need to put these new contributions into a form similar to (5.245).
Let us focus on the contribution from O3 which is proportional to

’ m4 3
> M 010, 4 (00) 05 (1) Ay Ma). (5.265)
anj

As is already familiar, we start by writing out the matrix element as

m’ m’
<9ﬁ:,3|M“‘d-ll*m2>:<m,3d MR ). (5.266)
d—-1 d—-1

We then recall from (5.244) that in the end we would like to contract (5.265) with

<9Jtd_1ud_1|9ftd_1>. We are therefore led to consider the combination (we have

3

temporarily omitted the summation over m’;_|

and my_)

, —_ m’i4 w\/S
DO I W YDy U 191 X010, (0)O5 ¢ (1)]Ap, Ma) =
g MG My
(5.267)

At this point, we should recall the structure of the three-point functions (5.120),

leading to

4

—~ —m’3
= DL O G M W W [ YOI NG Mg, 1) A
Uy ‘))25’7 1 ilnd_] Wt

(5.268)

36This is most easily understood by considering the radial quantization as the limit of NS quanti-
zation [18] with poles at the positions of O; and Oy as Oy is taken to +oo.
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By separating the sum over ¢, we find the objects

DL OO Uy YW W g KOING I My, 1) =
Ug MG Mgy
(5.269)

These objects have the same invariance properties as 3j symbols, and thus should

be expressible in terms of them,

3)

m m3 m,_ _
:Z N md_l mdl O M3 _ My, ). (5.270)
t d-1

I:]&-lk

tt’
The constants

3)

4 3 =
m; , m,, my
73

(5.271)
D mg—q md—l

1’

are known as 6j-symbols or Racah coefficients of Spin(d — 1).373% We added a
label (3) to the notation for the 65 symbol to distinguish its definition from the
definitions (5.282)-(5.285) for the operators 1, 2,4 which will appear later.3®* Note

that we can represent this equality schematically as

(5.272)

3

1 and

Restoring the OPE coeflicients and the summations over f,my_; and m

37Up to inessential normalization conventions. We will not make a distinction between the two
terms.

BInterestingly, a different kind of 6j symbols recently played an important role in another
approach to conformal blocks [3].

390f course, there is only one type of 6; symbols for a given group, and this label is superficial.
The 6 symbols with different labels can be obtained from the 6 symbols of the form (5.271)
by certain permutations of columns and introduction of normalization factors. Such relations are,
however, convention-dependent, and we therefore avoid using them and instead use the labels such
as (3).



219

adding the isoscalar factor from (5.244) we find

g)/3

>l yolo, 4 (00)03 4 (1)1 Ay Mg YW Wt [Ty
M3 Mg gy

o[ ™a O my _
my_j [ ]|my_;
= (010,400 (1) | Ap mg Ty, (5.273)

where prime on the three-point function indicates that the OPE coefficients A have
been replaced with 2 defined as

4

d 1 —
(/l )md lt/ -
m’ m’ \( m, | m m! m m m? . m
E d 1yl d d d d-1 d-1 d-1 A hd-rMa-1
3 3 n 3 mgy_p,! :
s m) m;,  J\my 1] {mg_y 0 mgy mj .

(5.274)

We can easily perform a similar analysis for the contribution of O, as well as for the
operators O; and O; in the right three-point function. Note that the right hand side
in (5.273) has essentially the same form as the universal contribution (5.245), and
thus we can continue to derive the recursion relation in an exact analogy with the

scalar case.

5.4.2.2 The general form of the recursion relation

It is now straightforward to finish the derivation of the Casimir recursion relation.
The operator version of the Casimir equation is given by the spinning analogue
of (5.234),

4 2 3 1
01002 10](C - C)sPe™20210™ 10y = (00,0, P10 |K 5P 20240 0).

(5.275)

Completely analogously to the scalar case, the contribution of a single term of (5.217)

to the left hand side of this equation is given by (5.130) multiplied by the difference
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of C and C eigenvalues

!

> ol0,’ 10241 A, Mg (A M) (€ — €)sPe™M201"100 0y =

My

_Z 2, 2, (Clpmy) ~CONLY Py dumji,dl s Pate (0)
t md lt my_»
d 1!
EIR3 m> ml iUtl
sm“‘”[f lmd_l,t'md_z‘m;,_l,t ~;’ l'smz (5.276)
m;_,

Introducing the shorthand notation (5.122) and (5.123), restoring the dependence of

A on p,my and g, and summing over the possible degeneracies q we find

4 s 3
3 (010,403 8, M. )8 M gI(C — C)sPe203'40}"410) =
Ma.q

SIR]
=3 D (Cbpma) = C(O)) At ™ Pz 0) | ofmaalal 21
a,b mg_ d
(5.277)
where the OPE matrix A is defined as
b
Apcénd Z /lp my.qpmag: (5.278)

Following the discussion of scalar recursion relations in section 5.4.1 and the mod-

ifications mentioned in the beginning of this section, we can find
n),

mh My oM
> (010,40, P\ A, M)Ay Myl Ky, 5P 120, "401"10) =
My Uy
— m3 m!
_ = b a Ap+1 mg,mg_p d d
= 2 2 D Tama D W) P 0) | ofmaaa]
mye| |®@my a,b My d d
(5.279)
Here the matrix vy is defined as
m!_ m> — my |my [\ m m
d-1Mg-1 _ _1\d _ _ * d-1"d-1
Wpmain gy o™ = (D (8 = Ar2 = (my DIy T
2 2\ ~ ~ 2 1 @
+ Z ( My 10| ™a )( my | my D) m,_; Mg Mgy | mymi,
2 ” o/ ’ ” ’ m’, .t
2 m’ d—1 md—l md—l md—l [] md_l md_l ] arr -
d-1" " d-1 t't
1 \*/ = ~, 2 W
_ Z ( My |40 ™a )( my | my D) my_p Mg Mgy | mG g
1 71 m’ m’ 1 ’ m/, .t ?
w! oy, \Md-1 m,_ d-1 [ Mgy Lm0 my o

(5.280)
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while the matrix 7y is defined as

4

Fpamgin, D M1 = (1) (4, +A34—<mdm|md>)(

3)
3 3 iyt 4 3 ol ’
+ Z My g0 Ma | Mg L] mg |, my o Mg | omgmg
~ my_1,t
m’; m’_ J\mg1 []jmgy [| [ 3 !

mdD

A A B A . - @
— Z m, M m, )( my []| my ) m;_, my, Mg szz_rmf-u
4 4 m 4 mg_t
T, \I m; | J\My-1 LHmg-y [ \mg—y  [J ml, o
(5.281)
The 6 symbols are defined as solutions to the following equations:
Z UFEN |ED?§_IED?;1_1>(ED?2_IHQ_1|imé_1>(i)’3vtgl_l|iIR’d_1u:i_1) =
RUSAIR L KA1
2 W
m d—1 md 1 7”19m2 1
= Z , @2 ML, (5.282)
7m0 omy

t!t//
” 1 ” ’ 2 o~y ’ ’ _
D O IO MG O N I O 10 =
mer o M
(2)

1
é—l O, 713 mL D, (5.283)
_1 't

Do O M (Mg, IR W YWy Wy M) =
Mme g1 My

m

1

3)

_ dl my_; oMt m3 ‘iﬁ ’
_1,.1)), (5.284
Z k de -y OI4_ M3 (My_1, 1)), (5.284)
1’
D O M (Mg, N 10 Mgy )M Wy (M) =
M g1, Mg

4
3 “4)

_ —1 my_; 4 3 - ’
Z b O M (Myo1, 1)), (5.285)
I md 1 D md 1 "

Reintroducing the degeneracy index ¢ in (5.279) we find
m a3 m2 !
D010, 105 P | Ap, MaXAp, Mal Ku,sPe™120, 40, |0) =

*JJEd,IId,q
m3 m!
_ — _ ba A +1 pMmy,mgy_ 2 d d
= 2 2 omami Mo s P 0) | plma a2
mye[ |®my a.b Mg d d

(5.286)
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Comparing (5.277) and (5.286) we arrive at the following recursion relation

(CAps1s M) =CONAY o= > FpmpiiaNrmaYpmin)" (5:287)

mye D ®my

Equation (5.287) represents the main result of this paper. It gives a recursion relation
for the power series coefficients A of a completely general conformal block. This
relation has the same structure as the scalar recursion relation (5.220) and can be
solved starting from p = O in a straightforward way. The main difficulty lies in
evaluation of the coefficient matrices y and y, so let us discuss this in some more
detail.

Suppose that we have chosen a concrete four-point function for which we wish

to evaluate the conformal blocks, i.e., we made a choice of m!,. If we look at,

i

b
say, (5.281), we see that all the sums are finite and the number of terms is independent
of my 1 or my 1, which are the only weights that can be arbitrarily large for the given
four-point function. Moreover, each term contributes to a single element of the
matrix y. Furthermore, we see that m; and m, only enter into the simple quantities
(isoscalar factors for vector representation and reduced matrix elements) for which
closed-form expressions are known (see appendix D.2). Similar remarks apply
to (5.280). This means that if we compute for the given four-point function a
finite number of 6j symbols (5.282)-(5.285), we can then express the matrices y
and y as closed-form analytic expressions in m; and my, thus obtaining a closed-
form analytic expression for the recursion relation (5.287). If we know all the
CG coeflicients in (5.282)-(5.285), then the calculation of a finite number of 6;
symbols is a simple linear algebra problem, so we can assume their knowledge to

be equivalent to the knowledge of CG coefficients.

As discussed in section 5.2.3, in several important cases the CG coefficients are
known analytically (and so are 6j symbols). In these cases we can write closed-
form expressions for y and y. In the rest of this section we consider two such

situations: general blocks in d = 3 and seed blocks for general d.

5.4.3 Example: General conformal blocks in 3 dimensions

As discussed above, the only non-trivial ingredients in the recursion relation (5.287)
are the 6 symbols entering the expressions (5.280) and (5.281). In d = 3 these sym-
bols simplify dramatically. However, before computing them, we need to understand

a small subtlety which arises in d = 3.
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In the derivation of the recursion relation, we have encountered isoscalar factors

such as

my [ |
mgy_; []

ml
4 ) (5.288)
m,_y

In d = 3 this presents a problem since we should instead use the isoscalar factors

m, +1

(m3 []

m/
3 ) (5.289)
m,

because the vector representation is reducible in 2d. One can still use the formulas
of appendix D.2 to compute the value of (5.288), but we need to interpret it in terms
of (5.289). Such an interpretation, together with a analogous discussion for reduced
matrix elements is given in D.2.3. Using these, one can check that (5.246) still holds
in d = 3 and we can still simplify it using the sum rule from appendix D.2.4. The
formulas of section 5.4.2 can also be seen to remain valid if we interpret the sum
over U, in (5.282)-(5.285) as a sum over up = (+1) and up = (-1).

Consider, for example, the equation (5.282) for the 65 symbol related to Oy,

Z (R 1R TR 0L X0 00 R 12 ) =

mg_l,ué_l,an;_l

(D

m,, m’, m! _

=> {mf’ll dD—l md—l O, 13 MLy (5.290)
d-1 d-1

tll//

(5.291)

In d = 3, taking into account the subtlety discussed above, this equation simplifies

to

7
w==x1 my ] m

(1
m’ nmp mj
Z 5m’,m2+m1 5m{+u’,m15171’,m’+u’ = , 6171’,m2+m1~ (5.292)

It is solved by

ool T . (5.293)
1

(D —
m my m L, m—mj=m-m ==l
0, otherwise
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2
m m m l, my-mi=m"-m"=+1
T 2 : (5.294)
m, m  [] 0, otherwise
TR 1 ! m 1
, mhi—mz=m-m==
el M : (5.295)
L] m m; 0, otherwise
@ | , _ !
m m m , m,—my=m-—-m==
R o (5.296)
m [] my 0, otherwise
Recall that the right OPE coefficients in 3d are parametrized as A""""2. We then
have, according to (5.280) forf: Jjx1,
(Aypjja)™™ =
j—mp—my+0 [ +mp +my+0
—(Ap—Aptj— 51,—)\/(1 mp —mp ++)(J+mp+m i,+)/1m|m2

(2j+ D +6x4)

(o +umy)(jo —umy + 1)(j £ umy £ umy)(j £ umy £ umy + 1)

_ Z + _ : Qi (ma—u)
s 4 +6:02j + 1)
N Z N (J1 +umy)(j1 —umy + 1?(j + um i.umz)(j +um; +umy + l)ﬂ(ml_u)mz’
s 4 +0:02j + 1)
(5.297)
and forfzj
(Ayp )™M =
+
—(Ap—App - 1)uﬂm1m
ViG+1)
N Z 4 (Jo + uma)(jo —umy + 1)(j + L‘iml +umy)(j — umy —umy + 1) mimw
= 4jG+1)
B Z o |G um) Gy —umy + 1D+ umy + ump) (= umy = umy + 1) gy iym,
e 4j(j+1) '

(5.298)
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Similarly, from (5.281) we find

m3ms4 _

Fpjjr1 )

(J—m3—mg+06+4)(j+m3+my+ 5¢,+)ZM3m4
(2j+ 1) +06++)

—(Ap+Ags k- 6i,_)\/

B Z . (j3 —um3)(j3 +umsz + 1)(j F umz F umy)(j F ums ¥ umy + I)Z(m3+u)m4
B 4(j+0+)2j+1)

u==+1

N Z N (Ja —umy)(jg + umy + 1?(]' Fums ¢ umq)(j F umsz ¥ umy + l)zm3(m4+u),
4 +0+4)(2j + 1)

(5.299)

u==+1

Fp "™ =
+ —
(Ap + Agy — 1)
ViG+1D)
Z (j3 —um3)(jz +umz + 1)(j —umz —um3)(j + umz + umg + 1) —(m3+uyms
+ u — A
4j(j+1)

u=+1

B Z y (Ja —uma)(ja + umag + 1)(j —umz — uma)(j + ums + umyq + 1)7"3('"””)
4j(j+1) '

u=+1

(5.300)

5.4.3.1 Scalar-fermion block in 3 dimensions

As a concrete example, consider the scalar-fermion blocks in 3d [3, 81]. In this case

we have j| = js = % and j, = j3 = 0. Matrices A then have the indices

[\m4ﬂﬂ

DLy my = £y, (5.301)

In terms of these coefficients the conformal block takes the form, according to (5.144),

Ol 93101 ™oy 10y = H° ST AP (=0)6 Oy
r?zl,ﬁ4 p=0 j=0

(5.302)

The intermediate representations are m3 = (j) with half-integral j > % The

Casimir eigenvalue is given by

Cpj=B8p(Ap=3)+j(j+1). (5.303)
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Using equations (5.297)-(5.300) we find

. 3 . 3
il . Jt35 tl 1 Jt5 ¢l
(AYpjj+1)"2 = —(Ap = A2 + j) 3G+ 1)/1 2+ 5 G+ 1)/1 2, (5.304)
1 J _% 1| _% =1
(Aypjj-1)"2==(Ap=App—j-1) 5 72 -5 o 172, (5.305)
s 1 Ao Gy Ll
(i) 2 =F(Ap — A — N3 ———2"2 F ;——==-2%2,  (5.306)
ViG+1D JG+1)
3 1 43 1
— —+l ]+— —_—t= ]+— —F=
T D72 = =By + Asa+ 5 +21)/l 241 G +21)/1 2, (5.307)
1 1 1
_ L J—5 .1 J—5—5i
¥pjj-1 D)2 ==(Bp+ D34 —j—1) 2}.24—2 -1 2}.21 2, (5.308)
= s 1 +1 G+ l) —=1
V)2 = 2(Ap + Ay 1)%m/1—2 +1 = +2 l)z 2. (5309

Using this in (5.287) we immediately obtain the recursion relation for coeffi-

cients (5.301). For example, we have

. it
(Cpj = Cojo)N, 7 = =Bp1=An+j =Dy 1 + Az +j-1) 27 Moo
Fe Lo 1]
Jt3 -5+5
; 1/ 72 A72%2
—(Ap-1—App+j-1D3 T A5
J
Fe Lo 1]
Jt3 +5-35
1 : 227272
— z(Ap_l + Azg + J— 1) 2] Ap—l,j—l
il 11
1743 ,-273
12 A S+ (5.310)
where “...” represent contributions from A,_;; and A,_; ;1. We compare the

conformal block generated by this recursion relation with the known results [3, 81]

in appendix D.3, finding a perfect agreement.

5.4.4 Example: Seed conformal blocks in general dimensions

We have already considered the seed blocks in section 5.3.5. Here, as in previous
subsections, we start by computing the 6 symbols (5.282)-(5.285). Since in the
seed block case the operators O; and O3 are scalars, we do not need the 6 symbols

for them.
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For O, the equation for the 6 symbol specializes to

D O I O W I T [ =

” ’ ’
M2 A W

2 2 @
m m ° ~,
=4 4t O, 1M2_ ), (5.311)
a1

and we can simplify the left-hand side to

(M, M2 ) (5.312)
which implies that simply
(2)
2 2
Mt M * Ly (5.313)
m;, m;, []

whenever the selection rules are satisfied. Similarly, equation (5.285) specializes to

DT O Mg M 10 Wy )W Wy Mg =

M g1 Mgy
()
mg e my 4
i b ,4 O1M;_  My-1), (5.314)
m, ] m,,

and the left hand side can be reduced to
+(0]IMG_ Myy), (5.315)

4 "4
where the sign is equal t04° (—1)™4-1"™4-1 unless m},_, = m’; | and d = 4k in which

case it is equal to —1. To see this, one can use the identity

D COIMUE Mg YW 10 Mg = = > (ORI M Y 1 g ),
met ",

(5.316)

where the sign is as above. Up to normalization, it has to be true because both sides
have the same Spin(d — 1) invariance properties. Up to a phase, the normalization
can be determined by fully contracting each side with its Hermitian conjugate. The
sign can then be found by setting ;1 = ([], e,...) and examining the phase on
both sides using (5.47) and the formulas in section D.2.2.

“OHere, as before, (—1)™< is defined as 1 unless d = 4k + 2 in which case it is equal to
(_1)m4k+2,2k+1 .
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This implies that

4
i 4

4 7t _
m) e m} _ -1 m’  =m/  andd =4k . 5317)
m'j'_l L] m;f‘_l (-1 Y ~ML otherwise

It is now straightforward to substitute these 6 symbols into the expressions (5.280)
and (5.281) for the matrices v and 7y to obtain closed-form analytic expressions
for them. The final general expression is not particularly illuminating, so we do
not write it out explicitly. Instead, let us again consider a specific example, the

scalar-fermion seed blocks in d = 2n dimensions.

5.4.4.1 Scalar-fermion blocks in d = 2n dimensions

We have considered the structure of these blocks in section 5.3.5. The OPE ma-
trices A are 1 X 1 and there are two types of exchanged representations, j* =

(J, %, e, %, i%). Thus, we can label the OPE matrices as

Apjs- (5.318)

We can arrange them into a vector as in section 5.3.7.4,

A,
Ay = 7. (5.319)
Ap’j,_

We furthermore have

Oej =FG+D*a(G-D aj". (5.320)
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Equation (5.280) reduces to

1] +2n—3
AYpjr e = (Qp —Ap + )| z————F—

l

] +] 1'+2n—§
—-(%V@foT) 2+l J 2

V2n -1 2]+n—l

) 1]+2n——
=(Ap—Ap+jx) 3 (5.321)
]+n——
Ay (Ap— A —j—d +2) i3
+— 2— —
pi*.(G-D* 1 2]+n_%

J__
- —V2n—1) pl
(2 V2n -1 2]+n—3

=(Ap-Ap—j—d+2F1) i" (5.322)
2j+n-13

2n -2
A e = (A —A — +l 1
Tririr = (Bp = Az 2)\/(2] +2n-3)2j+2n-1)

_(im)(+21(]+n—l)\/ | 2n—% )/l
2 V2n -1

2j+2n-3)2j+2n-1)

n-1
=(Ap—Ap-n+3IF(G+n-1),[1— : P
’ ’ 2G+n-HG+n-1b
(5.323)
Similarly, we find from (5.281)
_ . n-11 1]+2n—%
Ypjeenzd =(Bp + Ay +j £ (=1)"""3) Sl (5.324)
tn-3
= _ ~ _ 11 J=3
’ylj’ji’(j_l)i/l _(Ap +A34_] -d+27F (—1)n ) 2] +n—% (5325)
Yowwd =(Ap + Ay —n+ L E (1) G +n— 1)), [ n-l Pl
o ’ 2Gj+n-3(+n-1
(5.326)

Finally, the Casimir eigenvalue is given, according to (5.227) and (5.228)

Cpj =Dp(Ap —2n) + j(j+2n-2) + (2n - 2)8(2" =3, (5.327)
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The recursion relation (5.287) can then be put into the form

(C CO]())Ap] = p 1,j- 1Ap—1,j—1 +1 Ap—l,j+1 +F 1j-1 p—l,ja (5.328)

p-Lj-1 p-
where
= (Ap— i+ j + 2) (8 + Ag +j + (=1 1) 2 25
J P 12 27P 34 2]+2n—1
3
(A= Azt ) = (B + Mg+ j = (11 H LTS
P 2787 2]+2n—1 0 1
(5.329)
L1 o0
F‘:A+A—'—2+2—1A+A—'—2+2——1”‘— +
i =Qp+An—-j-2n 3)(Ap+ Az —j—2n (=D )2]+2n—3 -
+ (A, + A —2n+2+ LA, +A —2n+2+ (=)' J=2 00
p 12— n 3 p 34 —J n 2]+27’l 3lo 1)
(5.330)

Fg’j = (Ap —Ap—j—-2n+ %)(AP + A3z —n+ % _ (_l)n—l(j +n-1)x

y 2n -2 0 0|,
2j+2n-3)2j+2n-D |1 0

+(Ap—An+j-DBy+Au—n+ 3+ D" +n-1)x

y -2 0 1
2j+2n-3)2j+2n-1\o o/
(5.331)

The full conformal block can then be expanded by using a generalization of (5.201),

(O a3101s% ™2y, 10y = > )" 58PN, ;- PI(O) - T, (5.332)

p=0 j=0
where T = (t,,7_) and the matrom P/ is given by (5.196). In appendix D.3 we
compare the conformal blocks obtained from this recursion relation with the known

expressions in 2d (n = 1) and 4d (n = 2), finding a perfect agreement.

5.4.5 An efficient implementation?
We have derived the Casimir recursion relation for general conformal blocks. Our

derivation relies on the knowledge of a number of 6j-symbols of Spin(d—1). As we
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have discussed, there are important cases, such as general blocks in 3d and 4d or seed
blocks in general dimensions, where these symbols are readily available. In other
cases, they can be computed as soon as the relevant Clebsch-Gordan coefficients are
known. These Clebsch-Gordan coefficients are needed anyway for the three-point
functions (and can be derived from them), so it is reasonable to assume that the 6;

symbols are computable in all cases of interest.

If the relevant 6 symbols are known, then our results provide a closed-form ex-
pression for the recursion relation (5.287). This is a quite general result, so it is
interesting to discuss the possibility of employing it for an efficient computation of
spinning conformal blocks. Assume that we have fixed numerical values for scaling
dimensions and spins of the external operators and the spin of the intermediate
primary and would like to compute the conformal block and its derivatives as a
function of the intermediate dimension Ap. The simplest approach is to naively
iterate the recursion relation and find the coefficients of the power series expansion

in z-coordinates.

This approach has several obvious disadvantages. Firstly, the z-coordinate expan-
sion converges much slower than the p-coordinate expansion [59]. Secondly, the
coeflicients of the expansion are going to be some complicated rational functions
of Ap, manipulations with which are costly. Moreover, the difference of Casimir

eigenvalues in (5.287),
C(Ap + n,my) — C(O) =2nhAp + n® — nd + C(my) — C(mg), (5.333)

produces a lot of apparent poles at various rational values of Ap. We however know
that the conformal blocks can only have poles at (half-)integral values of Ap [49].
This implies that there must be a lot of cancellations, which make the direct analytic

even less optimal. Let us discuss some possible solutions to these problems.

The first problem can be in principle avoided by converting the z-coordinate ex-
pansion into a p-coordinate expansion. It is possible because we have the relation
z=4p+ O( pz), so if we know the expansion of f(z) to order ZV, we can compute
expansion of f(z(p)) to the same order p". If the coefficients in expansion of
f(z) are numbers, and we aim to evaluate f (%), then this conversion can be done
efficiently by defining zﬁ‘\, to be equal to the p-series of z¥, truncated at order p"
and with p set to p = 3 —2V?2 (the value corresponding to z = %). Then the number
f(1/2) can be computed by simply replacing z* in its z-expansion by the numbers

zg‘\,. These numbers can be precomputed once for any given N.
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However, as we noted above, in our case the coefficients of z-expansion are com-
plicated rational functions and thus this conversion would have to be performed
using symbolic algebra. To solve this problem, it is convenient to recall that for any
conformal block G(Ap) (for simplicity of notation we keep the dependence only on
Ao explicit) the function H(Ap) = | pI_AO G(Ap) is a meromorphic function of Ap
with either single or double#! poles and a finite limit at infinity#2 [37, 48, 49]. In
odd dimensions this function only has single poles, so let us consider this case for

simplicity.#> We then can write
R;
H(Ap) = H(0) + ) ———, (5.334)

where A; are the locations of the poles and R; are some coeflicients.#4 The function
H (c0) can be computed in closed form for a general conformal block by a suitable
choice of the basis of four-point structures. Expansion (5.334) is often used to
derive rational approximations to conformal blocks, required for numerical analysis
using SDPB [35, 37]. For this, note that different terms in this expansion are
suppressed by powers p" for some positive n;. Thus, one can keep only the finite
number of terms with n; < M for some sufficiently large M. Since the derivatives
of G are determined by derivatives of H, it is sufficient to compute the derivatives
of R; and H (oo) numerically in order to obtain the rational approximations required
for numerical bootstrap applications.

Our recursion relation can be used to determine R; and their derivatives numerically.
Indeed, on each step of the recursion relation we explicitly divide by a linear function
of Ap (5.333). Thus, we know exactly when we produce poles and we can compute
their residues and how they change on each step of the recursion. If we select a
subset of A;, we only need to track the derivatives of the residues at these poles,
which are simply numbers. We can avoid dealing with the apparent poles at rational
Ao by tracking only the A; allowed by representation theory [49]. This is similar
in spirit to multiplication of polynomials in Fourier space (as in FFT polynomial

multiplication), except we are working with rational functions. This approach should

“I'We are not aware of a direct proof that at most second-order poles appear in even d (see
e.g. [49, 196] for a discussion). However, since the scalar blocks have at most second-order poles,
the results of [3] imply that there are at most finitely many higher-order poles in any given conformal
block. Also, standard arguments from complex analysis show that at most double poles can appear
from collision of two single poles, which can possibly be used to show that at least the blocks which
can be analytically continued in dimension d have at most second-order poles.

42 At least for Ap-independent choice of three-point functions.

“3The same approach should work in even dimensions, with minor modifications.

44R; are known to be proportional to other conformal blocks. We do not use this fact here.
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allow us to efficiently compute the numerical z-series of derivatives of R;. We can

then use the aforementioned procedure to resum it into p-series at 7 = %

Note that in this scheme it is most convenient to take the derivatives in z-coordinate.
These derivatives do not necessarily have the fastest rate of convergence among
other simple choices.4> A related problem is that it is not obvious what is the best
basis of four-point tensor structures in terms of convergence.*® The approach based
on (5.334) somewhat solves this ambiguity — it is a well-defined procedure to keep a
finite number of poles in (5.334), and we can then compute R; to an order N higher
than M, eliminating the possible discrepancies between various choices. Indeed, if
we keep the number of poles that we track fixed, then the complexity of computing

each new order grows only because the range of allowed values for m,; expands.

In order for the above program to succeed, we need to be able to efficiently compute
derivatives of these P-functions. It appears that this problem is largely solved by
the recursion relation (5.191) which can be easily implemented numerically for any
choice of representations given the availability of closed-form formulas for vector
isoscalar factors. We still need an initial condition for the recursion relation. As we
discussed previously, it can be obtained by direct exponentiation of M,. However,
in numerical applications we do not even need this. We only need a first few
derivatives of P-functions at 8 = 0, which are given by matrix elements of powers

of Mj,, making the computation even easier.

5.5 Conclusions

The two major results of this paper are

1. The general form (5.130) of a R X Spin(d)-multiplet contribution to a general

four-point function of operators with spins.

2. The Casimir recursion relation (5.287) (and the formulas (5.280) and (5.281)
for the relevant coeflicients) for the amplitudes A, of these contributions

to a general spinning conformal block.

The first result is expressed in terms of certain special functions P (5.128), which

we have studied in detail in section 5.3.7. We have described the basic properties of

4Choice of the coordinate matters: the derivative d f(z)/df (z) converges much faster than the
derivative of df (z)/dz.

46The choice of basis matters as well, because the bases can differ by z-dependent factors: even
if £(z) converges quickly, f(z)/(1 — z)'°° may converge much slower.
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these functions (including orthogonality relations) as well as a practical approach
to their calculation. In appendix D.4 we have furthermore related these functions
to the irreducible projectors of [82].47 We have studied how (5.130) simplifies in
some special cases, namely for d = 3,4 and for seed blocks in general d. We have
also proven the folklore theorem which states that the number of four-point tensor

structures is the same as the number of classes of conformal blocks.

Our second result paves a way to an algorithmic computation of general conformal
blocks. The expressions (5.287), (5.280) and (5.281) give a closed-form recursion
relation for the coeflicients of the z-coordinate expansion of a general conformal
block, if the relevant 65 symbols of Spin(d — 1) are known. There is a finite number
of such 6 symbols for any given conformal block, and they can be straightfor-
wardly computed if the corresponding Clebsch-Gordan coefficients are known. The
required CG coeflicients are indeed known in many important cases. In particular,
we have explicitly worked out the case of general conformal blocks in 3 dimensions
and the seed blocks in general dimensions. To illustrate the recursion relation in
explicit examples, we have studied the scalar-fermion seed blocks in d = 3 and
d = 2n, comparing to the known results when possible. Finally, in section 5.4.5 we
have briefly discussed a strategy for an efficient numerical implementation of the

recursion relation (5.287).

Many extensions of these results are possible. For example, the scalar-fermion seed
blocks can also be straightforwardly obtained for d = 2n + 1, we have omitted
this case only to keep the size of the paper reasonable. For the same reason
we have not written down the explicit formulas for the case of general blocks
in d = 4, even though these can be obtained (in terms of SU(2) 6j-symbols)
mechanically from the general expressions. Extension to d = 5 is also possible,
due to Spin(5 — 1) =~ SU(2) x SU(2). An interesting problem is to develop a
numerical algorithm for computation of general Spin(d — 1) CG coefficients and
6/ symbols. Combined with the recursion relation (5.287) this would constitute the
first completely general algorithm for computation of conformal blocks.#® It is also
interesting to implement this recursion relation efficiently, perhaps along the lines

of section 5.4.5. Finally, there is always the question whether these results can be

“TWe believe that this is not the most optimal way for computation of explicit examples of
functions P, and one instead should use the methods described in 5.3.7. Nevertheless, this relation
does provide expressions which may be useful in analytical applications.

“8Here by an “algorithm” we mean an actual complete algorithm which can be straightforwardly
translated into a computer program. Techniques (not algorithms) for computing completely general
spinning conformal blocks are already known [3, 49, 54, 60].
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extended to superconformal case. We hope to address some of these questions in

future work.
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Chapter 6

LIGHT-RAY OPERATORS IN CONFORMAL FIELD THEORY

This chapter is essentially identical to:

[5] P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field
theory, 1805.00098.

6.1 Introduction

Singularities of Euclidean correlators in conformal field theory (CFT) are described
by the operator product expansion (OPE). However, in Lorentzian signature there
exist singularities that cannot be described in a simple way using the OPE. One
of the most important is the Regge limit of a time-ordered four-point function
(figure 6.1) [166, 188, 219-222].! The Regge limit is the CFT version of a high-
energy scattering process: operators O; (x1) and O3(x3) create excitations that move
along nearly lightlike trajectories, interact, and then are measured by operators
O>(x2) and O4(x4). In holographic theories, the Regge limit is dual to high-energy
forward scattering in the bulk [224].

Figure 6.1: The Regge limit of a four-point function: the points xi, . . ., x4 approach
null infinity, with the pairs x1, x, and x3, x4 becoming nearly lightlike separated.

In Lorentzian signature, the OPE O; x O; converges if the product O;O; acts on the

'In perturbation theory, Lorentzian singularities correspond to Landau diagrams [223]. Tt is
possible that this is also true nonperturbatively.
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vacuum (either past or future) [78]. That is, we have an equality of states
0,0/1Q) = " fijOxIQ), (6.1)
k

where k runs over local operators of the theory (we suppress position dependence,
for brevity). Thus, in figure 6.1 the OPEs O; X O3 and O X O4 converge because they
act on the past vacuum, and the OPEs O, x Oz and O; x Oy converge because they
act on the future vacuum. (Here we use the fact that spacelike-separated operators
commute to rearrange the operators in the time-ordered correlator to apply (6.1).)
However, each of these OPEs is converging very slowly in the Regge limit. They
can be used to prove results like analyticity and boundedness in the Regge limit
[160, 225], but they are less useful for computations (unless one has good control
over the theory). Meanwhile, the OPEs O; X O, and O3 X Oy are invalid in the
Regge regime.

The problem of describing four-point functions in the Regge regime was partially
solved in [166, 167, 224]. The behavior of the correlator is controlled by the analytic
continuation of data in the O; X O, and O3 X O4 OPEs to non-integer spin. For
example, in a planar theory, the Regge correlator behaves (very) schematically as
(010,0304)
(010:)(030s)
Here, f120(J) and f340(J) are OPE coeflicients that have been analytically contin-

1 = f120(Jo) faao(Jo)e' o™V + ... (6.2)

ued in the spin J of O. The parameter t measures the boost of Oy, O, relative to
03,04. Jy € R is the Regge/Pomeron intercept, and is determined by the analytic
continuation of the dimension Ay to non-integer J.?2 The “...” in (6.2) represent
higher-order corrections in 1/N? and also terms that grow slower than ¢’/o=1 in the

Regge limit t — oo.

A missing link in this story was provided recently by Caron-Huot, who proved
that OPE coefficients and dimensions have a natural analytic continuation in spin
in any CFT [66]. The analytic continuation of OPE data in a scalar four-point
function (@1 Pr¢3¢4) can be computed by a “Lorentzian inversion formula,” given
by the integral of a double-commutator {[@4, ¢1][$2, #3]) times a conformal block
G j+d-1.A-d+1 With unusual quantum numbers. Specifically, A and J are replaced
with

AJ)=>J+d-1,A-d+1) (6.3)

In d = 2, the Regge regime is the same as the chaos regime. In d > 3, it is related to chaos
in hyperbolic space. See [174, 226] for discussions. Note that Jy — 1 plays the role of a Lyapunov
exponent, and it is constrained by the chaos bound to be less than 1 [225, 227].
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relative to a conventional conformal block. Caron-Huot’s Lorentzian inversion
formula has many other useful applications, for example to large-spin perturbation
theory and the lightcone bootstrap [31, 68, 69, 102-104, 106, 162, 228, 229], and
to the SYK model [172, 173, 230, 231].3

However, Caron-Huot’s result raises some obvious questions:

* Can operators themselves (not just their OPE data) be analytically continued

in spin?

What is the space of continuous spin operators in a given CFT?

Do continuous-spin operators have a Hilbert space interpretation (similar to

how integer-spin operators correspond to CFT states on S¢~1)?

What is the meaning of the funny block in the Lorentzian inversion formula,

and how do we generalize it?

Answering these questions is important for making sense of the Regge limit, and
more generally for understanding how to write a convergent OPE in non-vacuum

states.

It is easy to describe continuous-spin operators mathematically. Consider first a
primary operator O*!""#/(x) with integer spin J. Let us introduce a null polarization

vector z, and contract it with the indices of O to form a function of (x, z):
O(x,2) = 0" MW (X)zy, -2y (22 =0). (6.4)

The tensor O#'"#/(x) can be recovered from the function O(x,z) by stripping
off the z’s and subtracting traces. Thus, O(x, z) is a valid alternative description
of a traceless symmetric tensor. Note that O(x, z) is a homogeneous polynomial
of degree J in z. The generalization to a continuous spin operator O is now
straightforward: we simply drop the requirement that O(x, z) be polynomial in z

and allow it to have non-integer homogeneity,

O(x, 1z) = 70(x, 2), 1>0, JeC. (6.5)

Continuous-spin operators are necessarily nonlocal. This follows from Mack’s

classification of positive-energy representations of the Lorentzian conformal group

3In the 1-dimensional SYK model, the analog of analytic continuation in spin is analytic contin-
uation in the weight of discrete states in the conformal partial wave expansion [67, 172].
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SO(d, 2) [232], which only includes nonnegative integer spin representations.* CFT
states have positive energy, so by the state-operator correspondence, local operators
must have nonnegative integer spin, and conversely continuous-spin operators must
be nonlocal. Mack’s classification also shows that continuous-spin operators must

annihilate the vacuum:
O(x,2)IQ) =0 (J & Zso), (6.6)

otherwise O(x, z)|€2) would transform in a nontrivial continuous-spin representa-

tion, which would include a state with negative energy.

If continuous-spin operators annihilate the vacuum, how can we analytically con-
tinue the local operators of a CFT, which certainly do not annihilate the vacuum?
The answer is that we must first turn local operators into something nonlocal that
annihilates the vacuum, and then analytically continue that. The correct object turns

out to be the integral of a local operator along a null line,

[ ae0@an= [ da0mmanz, g, 6.7)

oo oo

This can be written more covariantly by performing a conformal transformation to

bring the beginning of the null line to a generic point x:>
L[O](x,2) = f do(-a) 0 (v = 2,z2). (6.8)
—oo a
This defines an integral transform L that we call the “light transform." The expression

(6.7) corresponds to L[O](—c0z, ), where x = —coz is a point at past null infinity.

After reviewing some representation theory in sections 6.2.1 and 6.2.2, we show in
section 6.2.3 that if O, ; has dimension A and spin J, then L[Ox s](x, z) transforms

like a primary operator with dimension 1 — J and spin 1 — A:
L:(AJ)->0-J,1-A). (6.9)

In particular, L[Op ;] can have non-integer spin. The average null energy operator

& = L[T] (the light transform of the stress tensor) is a special case, having dimension

“For non traceless-symmetric tensor operators, we define spin as the length of the first row of the
Young diagram for their SO(d) representation. For fermionic representations spin is a half-integer
and for simplicity of language we include this case into the notion of “integer spin” operators.

>As a — 07, the point x — z/a diverges to future null infinity, and the integration contour should
be understood as extending into the next Poincare patch on the Lorentzian cylinder. We give more
detail in section 6.2.3.2.
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—1 and spin 1 —d. We will see that L is part of a dihedral group (Dg) of intrinsically
Lorentzian integral transforms that generalize the Euclidean shadow transform [54,
233]. These Lorentzian transforms implement affine Weyl reflections that preserve
the Casimirs of the conformal group. For example, the quadratic Casimir eigenvalue

is given by
GAJ)=AA-d)+J(J +d-2), (6.10)

and this is indeed invariant under (6.9). The transformation (6.3) appearing in Caron-
Huot’s formula is another affine Weyl reflection. The Lorentzian transforms do not
give precisely a representation of Dg, but instead satisfy an interesting “anomalous”
algebra that we derive in section 6.2.7. Mack’s classification implies that L[Oy ;]
must annihilate the vacuum whenever O, ; is a local operator. This is also easy
to see directly by deforming the @ contour into the complex plane, as we show in
section 6.2.4.

We claim that the operators L[O, ;] can be analytically continued in J, and their
continuations are light-ray operators.® As an example, consider Mean Field Theory
(a.k.a. Generalized Free Fields) in d = 2 with a scalar primary ¢. This theory

contains “double-trace” operators

(o1 (u,v) =, v)B) d(u, v): + (. ..) (6.11)

with dimension 2A4 + J and even spin J. Here, : : denotes normal ordering and we
have written out the definition up to total derivatives (which are required to ensure
that this is a primary operator). We are using lightcone coordinatesu = x—t,v = x+t,
and for simplicity focusing on operators with 0, derivatives only. The corresponding

analytically-continued light-ray operators are

0,(0, =)

lF(J+ 1) | | |
= f f ((s+ze)1+1 (—S+i6)1+1) 0, v+ 5)p(0,v—5):.

(6.12)

When J is an even integer, we have

. J
lr(J+1)( 1 ! ):‘95“) (J€2Z20).  (6.13)

2r (s +ie)*  (s—ie)lH! ds’

5Note that L[Oa,71(x, z) has dimension 1 — J and spin 1 — A. Thus, analytic continuation in J is
really analytic continuation in the dimension of L[O, ;] away from negative integer values. We will
continue to refer to it as analytic continuation in spin, since J labels the spin of local operators.
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Thus, when J is an even integer, O; becomes

as!
= f dv :$3] ¢:(0,v) = L[[¢$]71(0, —c0) (J € 2Z5p). (6.14)

oo

(o) o J
0;(0, —0) = 2‘Jf dvf dsa 9(s) :90,v+ 5)p(0,v —5):

By contrast, when J is not an even integer, Oy is a legitimately nonlocal light-ray
operator whose correlators are analytic continuations of the correlators of L[[¢¢]/].
In particular, three-point functions (O;0,0;) give an analytic continuation of the
three-point coefficients of (O10;[¢¢] ;).

Similar light-ray operators have a long history in the gauge-theory literature [234,
235] (see [236-239] for recent discussions). There, one often considers a bilocal
integral of operators inserted along a null Wilson line. Such operators were discussed
in [76], where they were argued to control OPEs of the average null energy operator
&. In perturbation theory, it is reasonable to imagine constructing more operators
like (6.12). However, it is less clear how to define them in a nonperturbative
context where normal ordering is not well-defined, and there can be complicated
singularities when two operators become lightlike-separated. It is also not clear

what a null Wilson line means in an abstract CFT.

Our tool for constructing analogs of O; in general CFTs will be harmonic analysis
[65]. Given primary operators Oj, O,, we find in section 6.3 an integration kernel

KA,J(xl, X2, X, 7) such that

Opy(x,2) = f dx1d?x2 K j(x1, X2, X, 2) 01 (x1) 02 (x2) (6.15)

transforms like a primary with dimension 1 — J and spin 1 — A (when inserted in a
time-ordered correlator). The object O, y is meromorphic in A and J and has poles
of the form

Opy(x,2) ~ 0iy(x,2). (6.16)

1
A—NA(J)
We conjecture based on examples that poles must come from the region where
X1, X2 are close to the light ray x + R>0z (we have not established this rigorously
in a general CFT). The residues of the poles can thus be interpreted as light-ray
operators O; j(x, z) that make sense in arbitrary correlators. Furthermore, when J
is an integer, the residues are light-transforms of local operators L[O]. Thus the
0. give a analytic continuations of L[O] for all O € O; X O;.
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In section 6.4, we show that (03040, j) can be computed via the integral of a
double-commutator ([O4, O1][O,, O3]) over a Lorentzian region of spacetime. This
leads to a simple proof of Caron-Huot’s Lorentzian inversion formula. The contour
manipulation from [67] is crucial for this computation. However, the light-ray
perspective makes our proof simpler than the one in [67]. In particular, it makes it
clearer why the unusual conformal block G j,4-1A-4+1 appears. The reason is that
the quantum numbers (J + d — 1, A — d + 1) are dual to those of the light-transform
(I = J,1—=A) in the sense that the product

dxd?z6(z%) O1-71-a(%, 2)O0Ja-1.a-d+1(X, 2) (6.17)

has dimension zero and spin zero. Our perspective also leads to a natural generaliza-
tion of Caron-Huot’s formula to the case of arbitrary operator representations, which
we describe in section 6.4.2. Subsequently in section 6.5, we generalize conformal
Regge theory to arbitrary operator representations as well, along the way showing
that light-ray operators describe part of the Regge limit of four-point functions as

conjectured in [222].

As mentioned above, the average null energy operator & = L[T] is an example of
a light-ray operator. The average null energy condition (ANEC) states that & is
positive-semidefinite, i.e., its expectation value in any state is nonnegative. Some
implications of the ANEC in CFTs are discussed in [76, 240, 241]. The ANEC was
recently proven in [72] using techniques from information theory and in [73] using
causality. By expressing & as the residue of an integral of a pair of real operators
d(x1)¢p(x2), we find a new proof of the ANEC in section 6.6.7 Furthermore, &
is part of a family of light-ray operators &; labeled by continuous spin J, and our
construction of light-ray operators applies to this entire family. This lets us derive a

novel generalization of the ANEC to continuous spin. More precisely, we show that
(Fl&,1¥) = 0, (J € Ry ), (6.18)

where &; is the family of light-ray operators whose values at even integer J are

given by
&j =L[0On,,,(1).7] (Je2zZ J=2), (6.19)

where O, (s).s is the operator with spin J of minimal dimension. Here, Jpin < 1

min

is the smallest value of J for which the Lorentzian inversion formula holds [66].

7Our proof requires the dimension Ay to be sufficiently low, though we expect it should be
possible to relax this restriction.
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We conclude in section 6.7 with discussion and numerous questions for the future.
The appendices contain useful mathematical background, further technical details,
and some computations needed in the main text. In particular, appendix E.l in-
cludes a general discussion of continuous-spin tensor structures and their analyticity
properties, appendix E.3 contains a lightning review of harmonic analysis for the
Euclidean conformal group, and appendix E.8 gives details on conformal blocks

with continuous spin.

Notation
In this work, we use the convention that correlators in the state |Q2) represent physical

correlators in a CFT. For example,
QIO -+ 041) (6.20)
is a physical Wightman function, and
(01 On)a ={QIT{O; - - - On}12) (6.21)

is a physical time-ordered correlator.

Often, we discuss two- and three-point structures that are fixed by conformal invari-
ance up to a constant. These structures do not represent physical correlators — they
are simply known functions of spacetime points. We write them as correlators in
the ficticious state |0). For example, if ¢; are scalar primaries with dimensions A;,
then

(0[¢p1(x1)P2(x2)$3(x3)|0)
= ! (6.22)

. A] +A27A3 . A2+A3 *A] . Al +A3*A2
(x%2+zet12) 2 (x%3+zet23) 2 (x%3+zet13) 2

denotes the unique conformally-invariant three-point structure for scalars with di-
mensions A;, with the ie-prescription appropriate for the given Wightman ordering.

Similarly,

1

(Dr(x0)¢20)$3(x3)) = ——— %o . e
(x, tie)” 2 (x5;+i€)” 2 (x7;+ie)” 2

(6.23)

denotes the unique conformally-invariant structure with the ie-prescription for a
time-ordered correlator. In particular, (6.22) and (6.23) do not include OPE coeffi-

cients.
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6.2 The light transform

This section is devoted to mathematical background and results that will be needed
for constructing and studying light-ray operators. We first review some basic facts
about the Lorentzian conformal group and its representation theory, with an empha-
sis on continuous spin operators. We then introduce a set of intrinsically Lorentzian
integral transforms, which generalize the well-known Euclidean shadow transform,
and study their properties. One of these transforms is the “light transform” men-

tioned in the introduction. It will play a key role in the sections that follow.

6.2.1 Review: Lorentzian cylinder

Similarly to Euclidean space R, Minkowski space My = R?~!! is not invariant
under finite conformal transformations. In Euclidean space, this problem is easily
solved by studying CFTs on ¢, the conformal compactification of R. In Lorentzian

signature, the problem is more subtle.

The simplest extension of Minkowski space M, = R?~b! that is invariant under
the Lorentzian conformal group SO(d,2) is its conformal compactification M.
The space M can be easily described by the embedding space construction [27,
52,92, 125, 186-188]: it is the projectivization of the null cone in R%2 on which
SO(d, 2) acts by its vector representation. If we choose coordinates on R%? to be
XL xO ... X4 with the metric

X2=—(XH?2 - (X"2+ (XH2 + ...+ (XD (6.24)
then the null cone is defined by
X N2+ X2 =xXH2+...+ (XD (6.25)

If we mod out by positive rescalings (i.e., by R;), we can set both sides of this
equation to 1, identifying the space of solutions with S' x §9~!, where the S! is
timelike. To get M, we mod out by R rescalings,® obtaining MS, = S' x §9°1/Z,,
where Z, identifies antipodal points in both S! and S¢~!. Minkowski space My C

M, can be obtained by introducing lightcone coordinates in R42,

x*=x"'zx¢ (6.26)

8In the Euclidean embedding space construction based on R?*!:! we usually just take the future
null cone instead of considering negative rescalings, but in R%? the null cone is connected and this
is not possible.
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and considering points with X* # 0. Using R rescalings we can set X = 1 for such

points, and the null cone equation becomes
X ==X+ (XH2+ ..+ (xITHA (6.27)
If we set x* = X* for u = 0,...d — 1, this gives the standard embedding of R¥~11,
(X' X7, XH) = (1, 5% x4). (6.28)

One can check that the action of SO(d, 2) on X induces the usual conformal group
action on x*. The points that lie in M\ M, have X * = 0 and thus X*X,, = 0 with
arbitrary X~. They correspond to space-time infinity® (X* = 0) and null infinity
(XH #0).

By construction, M; has an action of SO(d, 2) and is thus a natural candidate for the
space on which a conformally-invariant QFT can live. However, it is unsuitable for
this purpose due to the existence of closed timelike curves that are evident from its
description as S' x §971/Z, with timelike S'. This problem can be fixed by instead
considering the universal cover My = R x S9°1,10 which is simply the Lorentzian
cylinder. It was shown in [22] that Wightman functions of a CFT on R?~1! can be
analytically continued to Md. Indeed, one can first Wick-rotate the CFT to R¢, map
it conformally to the Euclidean cylinder R x S9!, and then Wick-rotate to My (of

course the actual proof in [22] is more involved).

To describe coordinates on Md, it is convenient to first consider the null cone in
R%? mod R,. It is equivalent to S' x §9~! defined by

X2+ XD =xH? +. L+ (xD =1, (6.29)
and we can use the parametrization

X—l

Il
(@)
Qo
7]

A

X° = sin T,

Xi=¢, i=1...d (6.30)

where & is a unit vector in R?. Here 7 is the coordinate on S' with identification 7 ~

7 + 2n, and taking the universal cover is equivalent to removing this identification.

In M the infinite future, the infinite past and the spatial infinity of Minkowski space are
identified. The past neighborhood of the future infinity, the future neighborhood of the past infinity
and the spacelike neighborhood of the spatial infinity together form a complete neighbourhood of
the space-time infinity in M.

10For d = 2 this is not the universal cover.
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Figure 6.2: Poincare patch M, (blue, shaded) inside the Lorentzian cylinder /Wd in
the case of 2 dimensions. The spacelike infinity of M, is marked by co. The dashed
lines should be identified.

The coordinates (7, €) with 7 € R then cover Md completely. Minkowski space
M can be conformally identified with a particular region in Md by using the
embedding (6.28). This gives

0 sint

X = —
CoST +e

x’:—d, i=1,...d-1, (6.31)
CoST +e

in the region where cos 7 + ¢ > 0 and —7 < 7 < 7. This region consists of points
spacelike separated from 7 = 0, € = (0,...,0,—1), which is the spatial infinity of
My (see figure 6.2). We will refer to this particular region as the (first) Poincare
patch. Note that the null cone in R%?> modulo R, contains two Poincare patches —
one with X* > 0 and one with X* < 0. The relation between Wightman functions

on M, and Md (in their natural metrics) for operators reads as!!

QIO (x1) -+ Ou(x)IQ)m, = | [(cosTi + €D (QION (71, 81) - On(T, €IV 7.
i=1
(6.32)

Let us discuss the action of the conformal group on Md. First of all, because we

have taken the universal cover of M;, it is no longer true that SO(d, 2) acts on Md.

""When applied to operators with spin, this identity does not produce a nice function on Md,
because in typical bases of spin indices on Minkowski space translations in 7 act by matrices which
have singularities. Therefore, in order to have nice functions on Md one has to perform a redefinition
of spin indices [22].
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Instead, the universal covering group SO(d,?2) acts on Md. Indeed, the rotation
generator M_; generates shifts in 7 and in SO(d, 2) we have e¥™-10 = 1, whereas
this is definitely not true on /Wd because T + 7+ 2. In the universal cover §(3(d, 2),

this direction gets decompactified so that the action becomes consistent.

6.2.1.1 Symmetry between different Poincare patches

There exists an important symmetry 7 of /\7‘1 that commutes with the action of
SO(d,2). Namely, if we take a point with coordinates p = (7, €) and send light rays
in all future directions, they will all converge at the point 7 p = (7 + n, —€). The
points p and 7 p in My correspond to the same point in M, and thus 7~ commutes

with infinitesimal conformal generators and therefore also with the full §(v)(d, 2).

When d is even, 7 lies in the center of §6(d, 2) and we can take

(]’ — enM_1’0enM1’2+ﬂM3’4+m+ﬂMd71’d. (633)

For odd d only 72 lies in SO(d,?2). But if the theory preserves parity, i.e., we have

an operator P that maps x' — —x! in the first Poincare patch, then we can take
T = eﬂ'MO,—l+7TM23+~~~+7TMd—1,dP. (634)

If the theory doesn’t preserve parity, 7 can still be defined as an operation on

correlation functions in the sense specified below.

If 7 exists as a unitary operator on the Hilbert space (d even or parity-preserving
theory in odd d), then we can consider its action on local operators. For scalars we

clearly have
T ()T~ = ¢(T x), (6.35)

up to intrinsic parity in odd d. To understand the action of 7~ on operators with spin,

it is convenient to work in the embedding space, where we have for tensor operators
TOX,Z1, 22, ... Z)T ' = O(=X,~Z1,~Za, . .., ~Zy). (6.36)

Here the point —X is interpreted as the point in the Poincare patch which is in imme-
diate future of the first Poincare patch, and Z; are null polarizations corresponding
to the various rows of the Young diagram of O. Again, in odd dimensions we might

need to add a factor of intrinsic parity.
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Note that the above action on tensor operators can be defined regardless of the
dimension d or whether or not the theory preserves parity. We will thus define 7

as an operator which can act on functions on Md according to
(T -O)X,Z1,Zs,...2Z,) = O(-X,-Z1,—- 2>, ...,—Zp), (6.37)

where again —X is interpreted as corresponding to 7 x. As discussed above, in
even dimensions this always comes from a unitary symmetry of the theory defined
by (6.33), but in odd dimensions it may not be a symmetry (even if the theory
preserves parity). In such cases we can still use 7~ thus defined to study conformally-
invariant objects, similarly to how we can separate tensor structures into parity-odd
and parity-even regardless of whether the theory preserves parity. To have a uniform

discussion, we will use this definition of 7~ action in what follows.

Finally, let us note that in even dimensions for tensor operators

TOx)|Q) = ™Mo (x)|Q),
(QIO(X)T = ™00 (x), (6.38)

where N is the total number of boxes in the SO(d — 1, 1) Young diagram of O. This
follows from the fact that the representation generated by O acting on the vacuum
is irreducible. One can check the eigenvalue by considering this identity inside a
Wightman two-point function. The same relation holds in parity-even structures
in odd dimensions (in particular, in two-point functions) and with a minus sign in

parity-odd structures.

6.2.1.2 Causal structure

The action of §(3(d, 2) on Md preserves the causal structure of the Lorentzian
cylinder [22]. This property will allow us to define conformally-invariant integration
regions. We usually label points in Md by natural numbers and we write 1 < 2
when point 1 is inside the past lightcone of 2 and 1 ~ 2 when 1 is spacelike from
2. Furthermore, we write 1* for 77*!1 (more generally, 1% for 77*¥1). That is,
17" is the point in the “next” Poincare patch with the same Minkowski coordinates
as 1. Similarly, 17 is the point in the “previous” Poincare patch with the same
Minkowski coordinates as 1. Some causal relationships between points can be

written in different ways, e.g., 1 ~ 2 if and only if 27 < 1 < 2% (figure 6.3).
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-

Figure 6.3: 1 is spacelike from 2 (1 ~ 2) if and only if 1 is in the future of 2~ and the
pastof 27 (27 < 1 < 2%). The figure shows the Lorentzian cylinder in 2-dimensions.
The dashed lines should be identified.

6.2.2 Review: Representation theory of the conformal group

We will also need some facts from unitary representation theory of the conformal
groups SO(d + 1, 1) and SO(d, 2). These groups are non-compact and their unitary
representations are infinite-dimensional. We will mostly be interested in a particular
class of unitary representations known as principal series representations, and also

their non-unitary analytic continuations.

Unitary principal series representations of SO(d + 1, 1) are the easiest to describe.
In this case, a principal series representation &, ,, is labeled by a pair (A, p), where
Ais a scaling dimension of the form A = % +is with s € R and an p is an irreducible
SO(d) representation. The elements of &, , are functions on R¢ (more precisely,
on the conformal sphere S¢) that transform under SO(d + 1, 1) as primary operators
with scaling dimension A and SO(d) representation p. The inner product between

two functions f“(x) and g“(x) (where a is an index for p) is defined by

(f.g) = f dx(f*(x))*g"(x). (6.39)

This is positive-definite by construction. It is conformally-invariant because while

g transforms with scaling dimension A = £ + is in p of SO(d), f* transforms

2
with scaling dimension A* = % —is in p* of SO(d), and thus the integrand is a

scalar of scaling dimension A + A* = d, as required for conformal invariance. The

representations Ep, p are important because the representations of primary operators
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that appear in CFTs are their analytic continuations to real A.'? Also, & , appear

in partial wave analysis of Euclidean correlators [65].

The pair (A, p) can be thought of as a weight of the algebra soc(d + 2) if we define
—A to be the length of the first row of a Young diagram, and use the Young diagram
of p for the remaining rows. Through this identification, the unitary representations
of SO(d + 2) have non-positive (half-)integer A. For SO(d + 1,1), we instead
have continuous A because the corresponding Cartan generator D o« M_; 441 of
SO(d + 1, 1) is noncompact (i.e., it must be multiplied by i in order to relate the Lie

algebra so(d + 1, 1) to the compact form so(d + 2)).

In SO(d, 2) there are two noncompact Cartan generators (D and My;), and both of
their weights become continuous. Thus, the unitary principal series representations
Pa.s.a for SO(d,2) are parametrized by a triplet (A, J, 1), where A € % + iR,
J € —% +iR and A is an irrep of SO(d —2). Here the pair (J, 4) can be thought of
as a weight of SO(d), where J is the component corresponding to the length of the
first row of a Young diagram. In this sense we have a continuous-spin generalization
of SO(d) irreps.

To make sense of functions with continuous spin, we follow the logic described
in the introduction. Let us first review the case of integer spin, and take A to be
trivial for simplicity. The elements of integer spin representations are tensors that

are traceless and symmetric in their indices
FHUTH (x). (6.40)

We can always contract f with a null polarization vector z# to obtain a homogeneous

polynomial of degree J in z,

fx,2) = A" ()2, 2y, (6.41)

The tensor f#1""#/(x) can be recovered from f(x, z) via

gy (X) = Dy, - Dy, f(x,2), (6.42)

JI(52),
where

Ho_(4-2,. 9)o 1 9
r 2 z 0z )] OzH 2Z'u6z2

121t will not be important to give a precise meaning to this “analytic continuation”; in most of the
discussion we only use &, ,, as a guide for writing conformally-invariant formulas. The same remark

(6.43)

concerns representations of §(3(d, 2) below.
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is the Thomas/Todorov operator [181, 182, 201]. Thus, the two ways (6.40) and

(6.41) of representing f are equivalent.

The generalization to continuous spin is now as stated in the introduction: we can
consider functions f(x, z) that are homogeneous of degree J in z, where J is no
longer an integer and f(x, z) is no longer a polynomial in z. More precisely, the
elements of P j are functions f(x, z) with x € Mg and z € Rf_l’l a future-pointing

null vector that are constrained to satisfy
f(x,az) =a’ f(x,z), a>0. (6.44)

The object f(x, z) transforms under conformal transformations in the same way as
functions of the form (6.41) would. The operation of recovering the underlying

tensor (6.42) only makes sense when J is a nonnegative integer.'3

To describe representations P4 s 1 with non-trivial 4, we can make use of an analogy
between the space of polarization vectors z and the embedding space. The embed-
ding space lets us lift functions on R? with indices for an SO(d) representation to
functions on the null cone in d + 2 dimensions with indices for an SO(d + 1,1)
representation. In the present case, A is a representation of SO(d —2), so we can lift
it to a representation of SO(d — 1, 1) defined on the null cone z%2 = 0 in a similar way.
For example, if A is a rank-k tensor representation of SO(d — 2), then we consider

functions
fal...ak (x, Z), (645)

with @; being SO(d — 1, 1)-indices, where f obeys gauge redundancies and trans-

verseness constraints [53]

fal...ak (X, Z) ~ fal...ak ()C, Z) + Zaihal...ai—lai+1...ak (X, Z), (646)
Zaifal...ak (x’ Z) - O (647)

Additionally, f should be homogeneous (6.44) and satisfy the same tracelessness and

symmetry conditions in g; as A-tensors of SO(d—2).'4 Other types of representations

13 Also, f(x, z) should satisfy a differential equation in z. This differential equation is conformally
invariant and is essentially a generalization of the (d — 2)-dimensional conformal Killing equation,
similarly to the equations discussed in [3]. Such equations only exist for nonnegative integer J and
express the fact that f(x, z) is actually polynomial in z.

14To make more direct contact with integer spin, instead of (6.46) one can use

D, f4 % (x,2) =0, (6.48)

where D is the Todorov operator acting on z. In this case, for integer spin tensors the function
Sk (x, z) is given simply by contracting z,, with the first-row indices of the tensor.
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can be described by adapting other embedding space formalisms. In most of this

chapter we focus on trivial A for simplicity.

We can define an inner product for Lorentzian principal series representations by

(f,8) = f dxD 22 f* (x, 2)g(x, 2), (6.49)
L d¥z0(2%6(Z?)
d-2_ _
D Z = —Vol . . (650)

Here the integral over z replaces the index contraction that we would use for integer
J. The measure for z is manifestly Lorentz-invariant and supported on the null
cone. Together with the measure, the integrand is invariant under rescaling of z.
Thus, we obtain a finite result by dividing by the volume of the group of positive
rescalings, vol R,;. The z-integral is exactly the kind of integral considered in [54] in
the context of the embedding space formalism. Here, we have adapted it to describe

SO(d - 1, 1)-invariant integration on the null cone 22 =0.

In section 6.2.3 we will use analytic continuations of $, ;. to find interesting re-
lations for primary operators in Lorentzian CFTs. But before we can do this, we
should note that these representations are constructed on M€, which is unsatisfac-
tory from the physical point of view. We can construct similar representations of
§(3(d, 2) consisting of functions on Md, which we call SBA, 7.1- These representa-
tions behave very similarly to 5 ;1 but there is an important distinction. While
the representations P, s, are generically irreducible, their analogues 5A, J,A are not.
Indeed, the action of 7 on /Wd commutes with the action of §(3(d, 2) and thus
F?SA, 7.1 decompose into a direct integral of irreducible subrepresentations in which

7 acts by a constant phase.

6.2.3 Weyl reflections and integral transforms

Given the principal series representations described in section 6.2.2, we can ask
whether there exist equivalences between them. Equivalent representations must
have the same eigenvalues of the Casimir operators,'> and these eigenvalues are
polynomials in the weights (A, p) (for SO(d + 1,1)) and (A, J, 1) (for SO(d, 2)).
For example, the quadratic and quartic Casimir eigenvalues for P ; (with trivial 1)

are

CG(Pry) =AA-d)+J(J +d-2),
Ci(Pry)=(A-1)(d-A-1)J2-d-1J). (6.51)

1SHere we mean all Casimir operators, not just the quadratic Casimir.
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The “restricted Weyl group” W’ is a finite group that acts on these weights, doesn’t
mix discrete and continuous labels, and leaves the Casimir eigenvalues invariant.
Conversely, if two principal series weights have the same Casimirs, they can be

related by an element of W’.

For example, in the case of SO(d + 1, 1), the restricted Weyl group is W’ = Z,. Its
non-trivial element Sg € W’ acts by

SE(A, p) = (d - A, p®), (6.52)

where pR is the reflection of p. Other transformations exist that leave all Casimir
eigenvalues invariant, but Sg is the only one that does not mix the integral weights
of p with the continuous weight A.

In the case of SO(d, 2), there are two continuous parameters that can mix, and
thus the restricted Weyl group W’ is larger. It is isomorphic to a dihedral group of
order 8, W’ = Dg.!6 This group has a faithful representation on R? where it acts
as symmetries of the square. Its action on A = % +isand J = —% + ig can be
described by taking s and ¢ to be Cartesian coordinates in this R?. It is easy to see
that this action preserves the eigenvalues (6.51). Altogether, the elements of W’ are

given in table 6.1.17

As mentioned above, the representations defined by weights in an orbit of W’ have
equal Casimir eigenvalues, which means that potentially they can be equivalent.
This indeed turns out to be true [70, 71]. Equivalence of representations means that
there exist intertwining maps between &, p) and E,,(a p), as well as between Pa 5,2)

and PW(A,J,/I) forallw e W'.

The intertwining map between SO(d + 1, 1) representations Epp and Ey_p pr is

well-known [54, 65, 233]: it is given by the so-called shadow transform
0°(x) = SE[01*(x') = f d’x'(0%(x)0; (x YO (x'). (6.53)

Here O € Ey-nrpks O € Epp, we use dagger to denote taking the dual reflected
representation of SO(d), and (5“(x)52(x’)> is a standard choice of two-point

16This also turns out to be the Weyl group of BC, root system, which was recently studied in the
context of conformal blocks in [191, 242]. It would be interesting to better understand the connection
of the present discussion with that work.

7To check thzgihe action on A is as in the table, one can consider the 4d case. The eigenvalues of
all 3 Casimirs of SO(2, 4) are written out, for example, in appendix Fof [2] with £ = J+ A, €= J - A
and AR = — 1. More generally, by solving the system of polynomial equations expressing invariance
of these explicit Casimir eigenvalues, one can check that W’ is indeed isomorphic to Ds.
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w order A J’ A
1 1 A J A
Sx =LS,L 2 d-A J AR
Sy 2 A 2-d-J AR
S =S| 2 d-A 2-d-J A
L 2 1-J 1-A 1
F =S,LS; 2 | J+d-1 A-d+1 A
R =S,L 4 1-J A-d+1 aR
R =LS; 4 | J+d-1 1-A AR

Table 6.1: The elements of the restricted Weyl group W’ = Dg of SO(d, 2). Each
element w takes the weights (A, J, 1) to (A, J’, ). The order 2 elements other than
S are the four reflection symmetries of the rectangle, while S is the rotation by 7.
The center of the group is ZDg = {1,S}. Finally, the element R is a /2 rotation.
The group is generated by L and S, with the relations L? = S% =(LSH*=1.

function for the operators in their respective representations. The integration region

is the full R¢ (more precisely, the conformal sphere S¢).

According to our discussion above, in Lorentzian signature there should exist 6
new integral transforms, corresponding to the other non-trivial elements of W’.
There in fact exists a general formula for these transforms, valid for any element of
W’ [70, 71].'8 However, it is most naturally written using a different construction of
Pa.7.1, and the conversion to the form appropriate for our purposes is cumbersome. !°
Thus instead of deriving these transforms from the general result we will simply
give the final expressions and check that they are indeed conformally-invariant.

Furthermore, we will lift these transforms to representations ﬁA, 7. of §6(d, 2).

Although the Lorentzian transforms we define are only necessarily isomorphisms
when acting on principal series representations $, .., it is still interesting to con-
sider the analytic continuation of their action on other representations, like those
associated to physical CFT operators. For example the action of L will be well-
defined on physical local operators. The result of this action will generically be a
primary operator with non-integer spin. One can then ask how such operators make
sense in a CFT and what properties do they have. In this and the following sections
we will be able to answer these question by studying the examples provided by

integral transforms. In appendix E.1 we study the same questions on more general

18In the mathematical literature, these transforms are known as Knapp-Stein intertwining opera-
tors.
19See [65] for an example of this conversion in the case of the shadow transform (6.53).
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grounds (by using unitarity, positivity of energy, and conformal symmetry) and

reach similar conclusions.

6.2.3.1 Transforms for Sp,S;, S

Let us start with the Lorentzian analogue of (6.53). The idea is to essentially keep
the form (6.53) while generalizing to continuous spin,
1
— d. s ’ -
SAlOl(x,2) =i L/zx dx —(x — x/)2(d_A)O(x JA(x —x")2), (6.54)

xHx,
x2

IH(x)=6"-2 (6.55)

The integrand is conformally-invariant because /(x — x") performs a conformally-
invariant translation of a vector at x to a vector at x’. The factor of i is to match
a Wick-rotated version of the Euclidean shadow transform, although we still have
Sg = (=2)7S, after Wick rotation because of our convention for two-point func-
tions (E.24).

We must specify a conformally-invariant integration region for x’. The essentially
unique choice is to integrate over the region spacelike separated from x. If x is
at spatial infinity of My, then this region is the full Poincare patch M, C Md,
and for integer J the integral is simply the Wick rotation of the Euclidean shadow
integral (6.53). If, however, x is inside the first Poincare patch, then the integral
extends beyond the first Poincare patch on the Lorentzian cylinder Md. All other
conformally-invariant regions defined by x are translations of the spacelike region
by powers of 7 or unions thereof. The two-point function in these regions differs
from the two-point function in the spacelike region only by a constant phase, and
thus the most general choice of S, differs from the above by multiplication by a
function of 7 .2° The possibility of multiplying by a function of 7 is present for all
the transforms we consider and we just make the simplest choice. The choice (6.54)

is natural because of its relation to (6.53).

For S;, the integral transform is
S,[01(x, 2) = f D27 (=27- ) 0(x, 7)), (6.56)

where the measure D? 27 is defined in (6.50). We call this the “spin shadow
transform.” Note that this is essentially the same as the shadow transform in the
embedding space [54], with X replaced by z and d replaced by d — 2.

20In particular, there is no ambiguity in representations P, ;. of SO(d, 2).
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The transform for S, which we call the “full shadow transform,” is simply the

composition of the commuting transforms for S, and S,

O, I(x-x")7)

R
S[01(x, 2) = (S,80)[0](x,2) = i f | dWDT ((x _Zx,z)z)(d_m

(_2Z X I(.Xf _ x/)ZI)Z—d—J

(x — x7)2(d=18) O, 2).

= (SaS)[O0](x,2) = if dx' D2y

x'~x

(6.57)

These two forms of S are equivalent because I(x — x”)? = 1, for spacelike x — x’
I(x — x") is an element of the orthochronous Lorentz group O*(d — 1, 1), and the

measure of the z-integration is invariant under O*(d — 1, 1).

The second line of (6.57) can also be written as
S[O1(x.,2) =i f d*x'D?7(0% (x,2)0% (', 2))O(x', 7)), (6.58)
x'=x

where OF denotes the representation with dimension d — A and spin 2 —d — J. Here,
we are using the following convention for a two-point structure

(=2z1 - I(x12) - 22)7

2A )
X2

(O(x1,21)0(x2, 22)) = (6.59)
which differs by a factor of (—2)” from some more traditional conventions. Our

conventions for two- and three-point structures are summarized in appendix E.1.3

6.2.3.2 Transform for L

The integral transform corresponding to L is

L[O](x.2) = f " da (ca) ™0 (x _Z z) . (6.60)
_ (04

(o)

Because it involves integration along a null direction, we call L the “light transform.”
Although most of the transforms in this section are only well-defined on nonphysical
representations like Lorentzian principal series representations, the light transform
is significant because it can be applied to physical operators as well. Note that it
converges near @ = +oo only for A + J > 1.2! In unitary theories it can therefore
be applied to all non-scalar operators and to scalars with dimension A > 1 (which

includes all non-trivial scalars in d > 4).

2IFor Lorentzian principal series Re(A + J) = 1 but for non-zero Im(A + J) the integral still
makes sense.
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Before discussing conformal invariance, let us describe the contour of integration
in more detail. The integral starts at @« = —oco, in which case the argument of O is
simply x. It then increases to @ = —0, and in the process O moves along z to future
null infinity in M. As @ crosses 0, the integration contour leaves the first Poincare
patch M, and enters the second Poincare patch 7 M, C Md. Finally, at @ = +o0
itends at 7 x € 7 M. In other words, the integration contour is a null geodesic
in Md from x to 7 x with direction defined by z (figure 6.4). This is obviously a

conformally-invariant contour.

Figure 6.4: The contour prescription for the light-transform. The contour starts at
x € M, and moves along the z direction to the point x* = 7 x in the next Poincare
patch 7M.

It turns out that no phase prescription is necessary to define (—a) ™~/ for a > 0,
because the naive singularity at @ = 0 is cancelled in correlators of O. To see this,
note that (6.60) is equivalent to the following integral in the embedding formalism
of [53],

L[OI(X, Z)

f B da (-a)™770 (X - g z)

oo

f ) da O(Z - aX, X), (6.61)

oo

where in the second equality we used the homogeneity properties of O(X, Z) in the
region a < 0, together with gauge invariance O(X, Z + BX) = O(X, Z). In (6.61)
it is clear that the point @ = 0 is not special (see also appendix E.2.1 for yet another

explanation).
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The embedding space integral (6.61) makes conformal invariance of the light-

transform manifest: it is SO(d, 2) invariant, and gauge invariance
L[O](X,Z + BX) = L[O](X, Z) (6.62)

can be proved by shifting @ by £ in the integral. It is also clear from homogeneity in
X and Z that the dimension and spin of L[O](X, Z) are 1 —J and 1 — A, respectively.
(Note that the parameter a carries homogeneity 1 in Z and —1 in X.) Finally,
(6.61) confirms the prescription that the integral goes between x and 7 x. Indeed,
according to the discussion in section 6.2.1 the embedding space covers two Poincare
patches and 7~ X is simply —X. The integral in (6.61) starts at the argument Z + co X
which is the same as X modulo R, and ends at Z — coX which is —X = 7 X modulo
Ry .

Let us describe another way of writing L that will be useful. Equation (6.60)
expresses L in a conformal frame where x is in the interior of a Poincare patch. In
this case, the integration contour extends from one patch into the next. However, if
we place x at past null infinity, the integration contour fits entirely within a single

Poincare patch. Specifically, in the integral (6.61), let us set??

Z = (1,y%y),
X =(0,-2y-z,-2) (6.63)
to obtain
L[O](x, 7) = f da O(y + az, 2). (6.64)

Here, x = y — coz. Equation (6.64) is simply the integral of O along a null ray from
past null infinity to future null infinity, contracted with a tangent vector to the ray.
As an example, the “average null energy” operator is given by

& = f daT,,(@z)2z” = LIT](~coz, 2), (6.65)

o)

where T, is the stress tensor. It follows from our discussion that & transforms like

a primary with dimension —1 and spin 1 — d, centered at —coz.

22This choice reverses the role of X, Z relative to the usual Poincare section gauge fixing. However,
it still satisfies the required conditions X> = Z> = X - Z = 0. To obtain these expressions, consider
the usual Poicare coordinates for a point shifted by —Lz for large L,

X=(,(x-Lz)%x-Lz)~Lx(0,-2x-z-7),
Z=(0.2z-x2) =L x ((1.a%x) - X),

from where the new gauge-fixing follows.
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6.2.3.3 Transforms for F,R, R

The transforms for the remaining elements F, R, R € Dg are compositions

F =S,LS,,
R= S]L,
ﬁ = LSJ. (666)

For example,
F[O](x, 2) = f dD (00 (-2 - )T (=20 - )M O + 4, 2)

+ f deD (00 (=2 - )T (=20 )M N(TO)(x - ¢, 7).
(6.67)

Note that here the second term involves an integral over the second Poincare patch
T M. Similarly to the light transform, here we integrate over all future-directed
null geodesics from x to 7 x. Because we integrate over all null directions, we call
F the “floodlight transform.”

Similarly, we have
R[O](x,2) = f d75(0(0) (=22 - O RO + 4, 0)

+ f dCo((HOL) (=22 - O IMNT O (x - £, ), (6.68)

R[O](x,z) = f daD?27 (—a)™ 2724 (_ 7. )24 0 (x—é,z'). (6.69)

As an example, R[T] = S,[L[T1]] is given by integrating the average null energy
operator & = L[T] over null directions. This is equivalent to integrating the stress
tensor over a complete null surface, which produces a conformal charge. We can
understand this more formally as follows. Note that the dimension and spin of R[T’]

are given by
R(d,2) = (-1, 1). (6.70)

These are exactly the weights of the adjoint representation of the conformal group.
Conservation of 7" ensures that R[7T'] transforms irreducibly, so that it transforms

precisely in the adjoint representation. In other words, conservation equation for T
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becomes the conformal Killing equation for R[7T’]. It can thus be written as a linear

combination of conformal Killing vectors (CKVs):23

R[T](x,z) = Qwa(X)Z,u
=K-7z-2(x-2)D + (xpzy — X,2,)M"? +2(x - 2)(x - P) — x*(z - P).
(6.71)

Here, A is an index for the adjoint representation of the conformal group, wﬁ (x)
are CKVs, and the Q4 are the associated charges. On the second line, we’ve given
the charges their usual names. We can see from (6.71) that inserting R[7'] at spatial
infinity x = oco gives the momentum charge. This is a familiar fact from “conformal
collider physics” [76]. Similarly, when J is a conserved spin-1 current, R[J] has
dimension-0 and spin-0, which are the correct quantum numbers for a conserved

charge.

6.2.4 Some properties of the light transform
As noted above, the light transform of the stress-energy tensor is the average null
energy operator L[T] = &. The average null energy condition (ANEC) states that

& is non-negative,
(P|EIY) > 0. (6.72)

Non-negative operators with vanishing vacuum expectation value (Q|E|Q) = 0 must
necessarily annihilate the vacuum |Q) [243].2425 Indeed, using the Cauchy-Schwarz

inequality for the inner product defined by &, we find
(PSP < (PIEI¥NQIEIQ) =0 (6.73)

for any state |'¥). Thus E|Q) = 0.

In fact, we know that L[O]|Q) = 0 for any local primary operator O — not just the
stress tensor. Indeed, if O has scaling dimension A, then L[O] has spin 1 — A, which
in a unitary theory is a non-negative integer only if A = 0 or A = 1. However, in
these cases J = 0 and the light transform diverges. For all other scaling dimensions

L[O] is a continuous-spin operator and thus must annihilate the vacuum. This

23See [3] for more discussion of writing finite-dimensional representations of the conformal group
in terms of fields on spacetime.

24We thank Clay Cérdova for discussion on this point.

2ntuitively, the vacuum must contain the same amount of positive-& states and negative-&
states in order for (Q|&|Q) to vanish. Since there are no negative-& states, the vacuum only contains
vanishing-& states and is thus annihilated by &.
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makes it possible for other null positivity conditions (like those proved in [73] and
section 6.6) to hold as well. In the rest of this subsection we check explicitly that
L[O]|QQ) = 0 for all A + J > 1 and make some general comments about properties
of L.

Lemma 1. The light transform of a local primary operator, when exists (i.e A+ J >

1), annihilates the vacuum, 26

L[O]|Q) = 0. (6.74)

Proof. We will show that for any local operators V;,
Q[Vy(xn) - - - Vi(xL[O](y, 2)|Q) = 0, (6.75)

which implies the result. Let us work in a Poincare patch where y is at past null

infinity and for simplicity assume that the x; fit in this patch; other configura-

tions can be obtained by analytic continuation. Using a Lorentz transformation

we can set z = (1,1,0,...,0) and parameterize the light transform contour as
v=u

X0 = (T’ %, 0,0,.. ) for v € (—oo, c0). We are then computing

f Av(QIV, () - - Vi (x1)O (0, 2)|Q) =

o0
(o)

= lim0 dv{Q|V,(x, —ineéy) - - - Vi(x1 —i€éy)O(xp, 2)|Q), (6.76)
e—+

—0o0
where éy is the future-pointing unit vector in the time direction. The above ie
prescription arranges the operators so that they are time-ordered in Euclidean time,
and this is precisely how the Wightman function should be defined as a distribution.

Let us now write
Xy —ikeéy =y +ily, k=0,1,...n (6.77)

where both y; and {; are real vectors. Positivity of energy implies that Wightman

functions are analytic if {j is in the absolute future of {4 for all k [16]:%7

fo>41> > (6.78)

This condition clearly holds when the xj; are real. If we then give an arbitrary

positive imaginary part to v while keeping u and other components of x( fixed,

26For general spin representations J must be replaced by the sum of all Dynkin labels with spinor
labels taken with weight %

2TFor example, it is easy to check that under this condition (y;x + i{, +)> # 0 for all Vik, and thus
there are no obvious null cone singularities. More generally, see appendix E.1.
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Figure 6.5: Relationships between the imaginary parts . A deformation of v in
the positive imaginary direction is shown in blue.

{o = Im(v)z will remain in the future of {1 = —€é (see figure 6.5). Therefore, the
integrand is an analytic function of v in the upper half plane. If we can close the v

contour in the upper half plane, that would imply the required result.

According to the discussion around (6.60), conformal invariance implies that the
integral (6.60) is regular as « — -0, which in turn implies that the integrand
of (6.76) decays as |[v|™~” for real v. We will now show that this is also true for

complex v in the upper half-plane, so we can close the contour as long as A+ J > 1.

To compute the rate of decay in v, we can use the OPE for the operators V;, which
converges acting on the left vacuum.?® The leading contribution at large v will be
from O in this OPE, leading to a two-point function of O. Because v is moving in
the direction of its polarization z, the decay of this two-point function is governed

not by A but by A + J. Indeed, we need to consider the two-point function
(0(0,2)0(u, v; 2)). (6.79)

The problem is then essentially two-dimensional: the statement that v is along
z means that O has definite left and right-moving weights of the 2d conformal
subgroup. Invariance under the 2d conformal subgroup then selects the component
of 7z’ with the same weights, so the two-point function is proportional to

(Zrl _ ZIO)J

(0(0,2)0(u, v 2)) AT AT (6.80)

28For this argument it is important that ie-prescriptions and positive imaginary part of v smear
the operators so that we are working with normalizable states. An argument from the Euclidean
OPE is that the ie shifts separate the operators on the Euclidean cylinder, and Lorentzian times do
not affect convergence of the OPE. The operators in the right hand side of the OPE can be placed
anywhere in Euclidean future of O. Alternatively to (but not logically independently from) the OPE
argument, we could have just started with (Q|OL[O]|Q) in the first place, since states of the form
f dx F(x){Q|O(x) are dense in the space of states which can have a non-zero overlap with L[O]|Q).
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Let us see this explicitly in the case of traceless-symmetric tensor O,

(2, 0" (x0)2y)”

(uv)?

(0(0,7)0(u, v;2)) , (6.81)

where we have x( = %vz + %uzL. Here z+ = (=1, 1,0,...) is the basis vector for the

u coordinate and we have (z - z*+) = 2. The numerator is then
2u u
LI (x0)zy = (7 2) = — (5 - v+ 3 - 2u) = (@ =)= (6:82)
uv v
This indeed leads to the expected form (6.80).

In summary, we can close the v contour in the upper half plane to give zero whenever
A+J > 1. O

Recall that the condition A + J > 1 is true for all non-scalar operators in unitary

CFTs, and for all non-identity scalar operators in d > 4 dimensions.

As as simple corollary of lemma 1, light transforms of local operators not acting on

the vacuum can be expressed in terms of commutators. For example,
(QIO1L[03]0,|Q) = (QI[0), LIO3]10,|Q) = (Q|O1[L[03], 0:]1Q).  (6.83)

Note that these commutators vanish at spacelike separations, so the integral in
the light transforms only receives contributions from timelike separations. More
explicitly, we can understand the commutators (6.83) as follows. In the integral

f da(—a)™27(Q|0,05(x - z/a, 2)0,|Q), (6.84)

oo

there is one singularity in the lower half-plane where 3 becomes lightlike from 1
and another in the upper half-plane where 3 becomes lightlike from 2 (figure 6.6).
If we deform the contour to wrap around the first singularity (3 ~ 1), we obtain
the commutator [0, O3]; if we deform the contour around the second singularity
(3 ~ 2), we obtain [O3, O,].

Lemma 1 has the following simple consequence for time-ordered correlators:

Lemma 2. Let O be a local primary operator with A + J > 1. In a time-ordered

correlator
WVp...V,LIODa, (6.85)

if the integration contour of L[O] crosses only past or only future null cones, the
transform is zero. Note that on the Lorentzian cylinder, generically, the contour

crosses the null cone of each V; exactly once.
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3~2
C

D)
3~1

Figure 6.6: Contour prescriptions for the « integral in the light transform of a three-
point function (6.83). The black contour corresponds to (Q|O;L[03]0,|Q), the
blue contour corresponds to (Q|[O1, L[O3]]10,|Q), and the red contour corresponds
to (Q|O01[L[O5], 02]|€2).

Note that here the notation (6.85) means that L is applied to a physical time-
ordered correlation function, as opposed to time-ordering acting on the continuous
spin operator L[O]. (Since continuous spin operators are necessarily non-local, it
is unclear how to define the latter time-ordering in a Lorentz-invariant way, see
appendix E.1.) We also use the subscript € to stress that we mean a physical

correlation function, as opposed to a conformally-invariant tensor structure.

Finally, let us note that if we use the usual Wightman ie-prescription,?® the light
transform of a Wightman function is an analytic function of its arguments, including
the polarizations. This follows simply from the fact that it is an integral of an analytic
function. This is consistent with our statements concerning analyticity of Wightman

functions of continuous-spin operators in appendix E.1.

6.2.5 Light transform of a Wightman function
As a concrete example, and because it will play an important role later, let us

compute the light-transform of the Wightman function

J
(22 ©X23 X%3 -2z X13 X§3)
<0|¢1(X1)0(X3, Z)¢2(X2)|0> = AM+A—A+T A +A-Ao+] Ao+ A-A+J° (686)
12 13 23

where ¢; are scalar operators with dimensions A;, and O has dimension A and spin
J. (Our three-point structure normalization differs by a factor of 2/ from some more
conventional normalizations. Our conventions are summarized in appendix E.1.3.)
In the above expression, the Wightman ie prescription is implicit. As discussed
at the end of the introduction, we use the convention that expectation values in the
state |Q2) denote physical correlation functions, whereas the expectation values in the

state |0) denote two- or three-point tensor structures fixed by conformal invariance.

1In other words, add small Euclidean times to the operators to make the expectation value
time-ordered in Euclidean time.
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Figure 6.7: Causal relationships between points in the light transform (6.87). The
original integration contour is the union of the solid blue line and the dashed line.
The solid blue line shows the region where the commutator [¢, O] is non-zero.

The same comment applies to time-ordered correlation functions (- - -)o and (- - -)

respectively.

Because the light-transform of a local operator annihilates the vacuum (lemma 1),

it is equivalent to the commutators

(0191 L[O]¢2]0) = (0¢1[L[O], ¢2110) = (0l[¢1, L[O]142(0). (6.87)

Specifically, let us compute the third expression above,

(01 [¢1(x1), LIO1(x3, 2) | ¢2(x2)|0)
= f da(-a)™7/(0| [¢1(X1),0(x3—é,z)]qﬁz(xz)l(»- (6.88)

oo

Since the light transform of a Wightman function is analytic (see section 6.2.4 and
appendix E.1), we can compute it for any choice of causal relationships, and obtain
the answer for other configurations by analytic continuation. We will work with the
configuration in figure 6.7. All points lie in a single Poincare patch. The points 1
and 2 are spacelike separated, and the integration contour starts at 3 < 1 and ends
at 3* > 2. The commutator [¢, O] vanishes at spacelike separation, so the upper
limit of the integral (6.88) gets restricted to the value of @ when 3 crosses the past

null cone of 1.

In our configuration, we have

(z-x13) <0, (6.89)

L ';13) Lk ';23).
13 123

(6.90)
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The first inequality follows because z and x3 are future-pointing and x3 is not null.
The second inequality expresses the fact that the null cone of 1 is crossed before the

null cone of 2.

Taking into account that x2, = ¢ |x2,] for the ordering ¢10 and x?, = e™""|x?,| for
the ordering O¢;, and restricting the range of integration to the past lightcone of 1,

we find

(Ol[¢1(x1), LIO11(x3, 2)¢2(x2)10) =

_2ex3) ( ) 2 . 2 )f
i i ALt 2, da/(—a)‘A_J 27 - x23 X1 27 X13 X35
- 2 A1+A2—A+J| |A1+A_A2+J Ap+A-A+J’°
- X1 X13/ Xo3r
(6.91)
where x’3 = x3 — z/a. Note that the factor (...)” in the numerator is independent of

a because z is null. We thus need to compute

_2(zx13)

X2 1
13 da'(—a')_A_J

_ A+ A—A1+J
|x13’|A1+A A2+Jx23/

—00
+00
1
= da
2(z-x13) A +A-Ay+J Ay +A-A1+J
7, laxi, —2(z-x13)|7 7 (ax3; —2(z-x23))" 2
A+A | —Ar+J
T(A+7- DT (1 - S8get) I (2(z x13)  2(z-x23)
- A=A +Ar+] _ Ay +A—A1+J] 2 2
F(—1§ = ) |xp3[Ar+A=AH 02 1 13 X3

(6.92)

By (6.89), a has constant sign, which allows us to go to the second line. Because
of (6.90), the function of z which enters (...)!"~/ is positive, so the result is
well-defined.

Putting everything together, we find

(011 (x1) L[O](x3, 2) ¢2(x2)]0)

2 2 \1A
(2z X3 X7y — 22 X13 x23)
= L(¢192[0]) 5 Aty -(-D)+(-8)

A +(1=J)=Ag+(1-A) Ag+(1=J)-Aj+(1-A) ?

(x1, ? (=x73) ? X33
(6.93)
where
TA+J -1
L1210 = ~2mi—e e T2 (6.94)

F( 5 )F(A_A1;A2+J) :

)1—A—J
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The result (6.93) indeed takes the form of a conformally-invariant correlation func-
tion of ¢; and ¢, with an operator of dimension 1 — J and spin 1 — A. Note how
continuous spin structures arise in a natural way from the light transform. Note also
that (6.93) is pure negative-imaginary in the configuration of figure 6.7, where all
quantities in the denominator are real. This is related to Rindler positivity as we

discuss in section 6.6.1.

Although we did the computation in a specific configuration, we have expressed
the result in terms of an analytic function of the positions. Because the result
should be analytic, the resulting expression (6.93) is valid for any configuration.
The ie-prescription in (6.93) is the same as for the original Wightman function. In
particular, if we move x3 back into a configuration where all the points are spacelike

separated, we obtain a phase

. A 1-J)-A 1-A
- 1+(1=J)=Ay+(1-4)

e 2 (6.95)
coming from —x% becoming negative. This phase will play a role in section 6.2.7.

6.2.6 Light transform of a time-ordered correlator

Finally, let us discuss the light-transform of a time-ordered correlator (O;O,L[O3]).
By lemma (2), this is nonzero only if 2~ < 3 < 1 (asin figure 6.7) or 1~ <3 < 2. In
the first nonzero configuration 2~ < 3 < 1, the time-ordered correlator is equivalent
to the Wightman function (0|Q;030,|0) along the entire integration contour of the

light transform. The other nonzero configuration diftfers by 1 < 2. Thus, we have

(O10,L[03]) = (0|O1L[03]0,10y0(2" < 3 < 1) + (0|O;L[03]0110)0(1" < 3 < 2).
(6.96)

Note that here the standard Wightman functions (0|0;030,|0) and {(0|0,030,|0)
(on which the light transforms act) are related to each other by analytic continuation

and not by merely by relabeling the operators in the standard tensor structures
0] ...]0).

For example, consider the three-point structure (6.86), now assumed to have ie

prescriptions appropriate for a time-ordered correlator. From (6.96) and our com-
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putation for the Wightman function (6.93), the light-transform is

(¢102L[0](x3,2)) = L(¢1¢2[0])

) ) 1-A
(22 " X23 X753 — 22 X13 x23)
X 02" <3<1)

) A +Ay—(1-J)+(1-A) ) Ay +(1-0)=Ag+(1-A) ) Ay +(1-J)=Ap +(1-A)
(x 2 —X 2 X
12 13 23

1-A
(—I)J (2Z *X13 x%3 - ZZ X223 X%B)
+ (1" <3 <2).

5 A|+A2—(12—J)+(1—A) 5 A|+(l—J);A2+(1—A) 5 A+(=D-A1+(-A)
X1 X3 X3

(6.97)

The factor of (—1)” in the second term comes from the fact that the original structure

(¢1,0) picks up (—1)7 when we swap 1 <> 2.30

6.2.7 Algebra of integral transforms

The L-transformation in (6.93) has the curious property that L? is a nontrivial
function of Ay, Ay, A and J, even though it originates from a Weyl reflection (A, J) <
(I = J,1 — A) that squares to 1. Specifically, its square acting on a three-point
Wightman function is given by

(0l¢p1 (x1) L2[0](x3, 2) $2(x2)0) = @, 0,,0.7¢01p1 (x1) O (x3, 2)$2(x2)10), (6.98)

where

i AA=Bg+T L i A=) =Ag+(1-8)
an g = €77 L(d1¢2[07]) Xe 2 L(¢1¢2[0])

4
(A+J—=1)sinm(A+J)

(eiﬂ(Al—Az) _ eiﬂ(A+J))(ei7r(A1—A2) _ e—iﬂ(A+J))'
(6.99)

The phases in the first line of (6.99) are from (6.95).

Note that the square of the light transform does give back a three-point function of
the same functional form as the original. However, the coefficient a, a, A 7 depends
on Ay, Ay in a non-trivial way that cannot be removed by redefining L. by some
function of A, J alone. This is in contrast to the Euclidean shadow transform, which
squares to a coefficient N (A, J) that is independent of the correlation function it

acts on (appendix E.3.2).

30As we explain in appendix E.I, time-ordered correlators with continuous spin do not make
sense, so we must assume J is an integer in this computation. This means that the factor (—1)’
is unambiguous. The light transform (¢;@,L[O]) still gives a sensible continuous-spin structure
because the result (6.97) is no longer a time-ordered correlator, e.g. it has 6-functions.
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This “anomaly” in the group relation L> = 1 occurs for the following reason.
The group-theoretic origin of L. only guarantees that it squares to a multiple of
the identity when acting on principal series representations 5 ; defined on the
conformal compactification of Minkowski space M¢. However, here we are applying
it to the space 5A, 7 defined on the universal cover Md. The squared transformation
L2 still commutes with §(3(d, 2), so it becomes a non-trivial automorphism of the

representation Py ;.

By Schur’s lemma, nontrivial automorphisms can only occur in reducible represen-
tations. Indeed, as discussed in section 6.2.2, ﬁA, 7 is reducible and its irreducible
components are the eigenspaces of 7. Within these irreducible components L2

must act by a constant, and thus we should have
L= fi.(AJ,T). (6.100)

Furthermore, note that L2[O](x, ) only depends on the values of O between x
and 7 %x. This means that f1.(A, J,7) must be at most a quadratic polynomial in
7. Finally, because L2[O] vanishes when acting on the past or future vacuum,

SL(A, J,7) should have roots at the eigenvalues of 7 in O|Q) and (Q|O inside

+in(A+J)

a correlation function,3! which are e In fact, as we show explicitly in

appendix E.2.1,

T

T _ TARD)) (- _ im(A+T)y
A+ -Dsmnar ' ~¢ A )

L>=f.(AJT) =

(6.101)

in(A1=A2) i5 the eigenvalue of ¢ acting on O

This immediately implies (6.99) because e
in the Wightman function (0|¢; (x1)O(x3, z)$2(x2)]0). To see this, write the action

of 7 on O as
011 (x1)T O(x3,2)T ' $a(x2)|0) (6.102)

and use (6.38).

In fact, we can also turn this reasoning around and use the relatively simple com-
putation (6.99) to fix the polynomial fi (A, J, 7 ) in general. This will be helpful in
appendix E.7 where we will need the statement that for general Lorentz irreps p the

ratio

fL(A7 p77—)
(T =T =y

31Here we need the adjoint action as O — 707!, cf. equation (6.38).

(6.103)
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where v is the eigenvalue in (6.38) corresponding to (A, p), is independent of 7.

More generally, this reasoning implies that relations between restricted Weyl re-
flections w € Dg also hold for the corresponding integral transforms, but only up
to multiplication by polynomials in 7~ with coefficients depending on A and J. In

the remainder of this section we derive these modified relations between integral

transforms.

First of all, some relations hold by construction given the definitions in section 6.2.3,

S = 8,81 =SSy,

F =S,LS,,
R=S,/L,
R=LS,. (6.104)

Furthermore, we already know that (for simplicity, we consider only 5A7 7.2 with
trivial A1)

L> = fi(AJ,T), (6.105)
S2 = f1()), (6.106)

where we have suppressed the dependence on ¢t. Here f1 is a quadratic polynomial
in ¢ defined in (6.101), while f;(J) depends only on J and is equal to the square of
Euclidean shadow transform in d — 2 dimensions:

md-1 1

(J+Sysina(J + HTENIU +d -2)

fiJ) = (6.107)

That is, f;(J) = N(-J,0) in d — 2 dimensions, where N (A, J) in d dimensions is

given in (E.53). These equations allow us to compute
RR = fL(A2—-d - J,T)f;(J), (6.108)
RR = fL(A J, 7)) fr(1 = A). (6.109)
As we show in appendix E.2.2, there is another relation,
Sa =i7 ' LS/L. (6.110)
Together with S = S;SA = SaS; this implies

S=i7'R?=iT 'R’ 6.111)
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and thus we find

S?2 = _T2R7R
= T2 A2=d= LT DA +d= L1 =d+AT)f,(1-A).
(6.112)

Due to S? = =7 2(S;L)* = =7 "2(LS,)*, we also have

(LSH* =S/ = faA2—d— LT fr(DLd+d—1L1—d+AT)f(1=A).
(6.113)

At this point it is obvious that f; and f;. completely determine the relations between
all integral transforms, since Dg is generated by L and S; modulo L? = S% =
(S;L)* = 1 and we have already found the generalization of these relations to the
integral transforms L and S; in (6.105), (6.106), and (6.113).

A convenient way to summarize these results is by using normalized versions of L
and S;. Specifically, we define
f oL 1
O T(A+J = 1) (T = ein+y
I'(=J)
Si—= RN
T I +%52)

(6.114)

Sy

(6.115)

where A and J in there right hand side should be understood as operators reading
off the dimension and spin of the functions they act upon. One can then check the

following relations
I2=1, §2=1, (LSH* = S,L)* = 1. (6.116)

These normalized transforms therefore generate the dihedral group Dg without any
extra coefficients. Note that L. is very non-local because it has 7~ in the denominator.
In particular, by doing a Taylor expansion in 7~ we see that it involves a sum over
an infinite number of different Poincare patches. Thus, even though L satisfies a

simpler algebra, we mostly prefer to work with L.

6.3 Light-ray operators
In this section, we explain how to fuse a pair of local operators Oy, O; into a light-ray
operator Q; ; which gives an analytic continuation in spin J of the light-transform of

local operators in the O; X O, OPE. This amounts to defining correlation functions

QIVi .. . ViO; jVisr ... V4 |Q) (6.117)
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in terms of those of O; and O,
VI ... ViO102Vis1 ... V| Q). (6.118)

When J is an integer, O; ; is related to a local operator in the O;0, OPE, and
these correlation functions are linked by Euclidean harmonic analysis [65]. Our
strategy will be to start with this relation, rephrase it in Lorentzian signature, and
then analytically continue in J. By the operator-state correspondence, it suffices
to consider just two insertions V;, and for simplicity we will also restrict to scalars
01 = ¢1 and O, = ¢;,. (The generalization to arbitrary spin of Oy, O, will be
straightforward.)

6.3.1 Euclidean partial waves

Consider a Euclidean correlation function (¢;¢,V3V4)q, where the V3 and V, are
local operators of any spin (not necessarily primary) and ¢y, ¢, are local primary
scalars. By the Plancherel theorem for SO(d + 1, 1) (due to Harish-Chandra [244]),
such a correlation function can be expanded in partial waves P, ; that diagonalize

the action of the conformal Casimirs acting simultaneously on points 1 and 2 [65],32

2+loo d ~
W3Vad192)a = Zf (A, ) f dxPy; " (x3, X4, X0 oy () 162).
(6.119)

Here, O has spin J and dimension A € % + iR* on the principal series. The
factor u(A, J) is the Plancherel measure (E.53), which we have inserted in order to
simplify later expressions. For traceless-symmetric O there is no difference between
representations O' and O, but we will keep the daggers in what follows with the

view towards the more general case.

Let us make two technical comments about the applicability of this formula. It
follows directly from L?(G) harmonic analysis on SO(d + 1,1) if A; — A; is pure
imaginary (possibly 0) and (V3Vi¢¢2)q is square-integrable in the sense that

f dx1d 0 xRN VVa0162)0 (V3 Vadi 2))" < 0. (6.120)

32For general spin operators we should also include contributions from a discrete series of partial
waves.



273

This is precisely the situation when the conformal Casimir operators acting on points
1 and 2 are self-adjoint and we can perform their spectral analysis.33 Neither of these
conditions is satisfied by a typical correlator in a physically-relevant CFT. Lifting
the restriction of square integrability is conceptually easy and is similar to the usual
Fourier transform: non-square integrable correlation functions can be interpreted

as distributions (of some kind) and their partial waves also become distributions.34

Relaxing the restriction A — A, € iR, on the other hand, seems to be hard to do from
first principles, since the Casimir operators are not self-adjoint anymore. We will
thus not attempt to do this here and instead adopt the following pedestrian approach:
we will imagine multiplying correlation functions by products of scalar two-point
functions xi'(j.(si" with k = 1 so that the scaling dimensions of external operators
will formally become principal series (this will of course modify the conformal
block decomposition of these functions).3> We perform harmonic analysis for these
modified functions and then remove the auxiliary two-point functions by sending
k — 0. For this to make sense we have to assume that the final expressions can be

analytically continued to k = 0.

With these comments in mind, we may proceed with (6.119). Using the bubble
integral (E.52), we find that P, ; is given by

PZ’IJ'"‘” (X3, X4, X)
_ -1 —
:(<¢1¢20*>,<<}7{$§0>)E f dx1d (V3 Va1 62) (@ BLOM 1 (x)), (6.121)

where

~ 227¢ (1
(<¢1¢20*>, <${$§0>)E - AL

~ 2dvyol(SO(d - 1))’ (6.122)

is the three-point pairing defined in appendix E.3.1. In anticipation of performing

the light-transform, let us contract spin indices of O with a null polarization vector

33The reason why it is important to have Aj — A, € iR is that the adjoint of a Casimir operator acts
on functions with conjugate shadow scaling dimensions A;f. This is a different space of functions
than the one (VaV4¢1¢2)q lives in unless Z:.‘ = A;, which is the case when A; € % + iR are principal
series representations. It furthermore turns out that only A; — A, is important for the argument, since
Ay + A; can be changed by multiplying (V3V4é;$2)q by a two-point function xfz for some ¢, and
such two-point functions cancel out in equations.

34The distributional contribution to the partial wave can be analyzed by subtracting a finite number
of contributions of low dimensional operators to make the function better behaved. This analysis was
essentially performed in [66] and in generic cases amounts to a deformation of A-contour in (6.119).

33Note that such two-point functions have the right Wightman analyticity properties, and thus do
not spoil the analyticity of physical correlators which we use in the arguments below.
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zH to give

~ -1 —_
Py y(x3, X4, %,2) = (<¢1¢20*>, (] <$ZO>)E f d*x1d"xo(V3Vap162)0 (8] 3O (. 2)),
(6.123)

where O(x, z) = OF""H (x)zy, -+ Zyy-

Physical correlation functions (V3V4O,)q of operators O, in the ¢; X ¢, OPE are

residues of the partial waves,

F12:V3Vi0u(x. ) = = Res u(A, NSE(b1$200 ) Pa s (x3, x4, X, 2)

=Jx

(6.124)

Here, Sg(¢1¢2 [(F)VT]) is the shadow transform coefficient (E.55), and f1,. is the OPE
coefficient of O, € ¢; X ¢,. Equation (6.124) is a simple generalization of the

standard result for primary four-point functions. We derive it in appendix E.3.3.

6.3.2 Wick-rotation to Lorentzian signature
To obtain the promised analytic continuation of L[OQ], we need to first go to

Lorentzian signature, and then apply the light transform.

We thus Wick-rotate all the operators ¢y, ¢o, V3, V4, O to Lorentzian signature by

setting
T=(>0+eL, (6.125)

where 7 and ¢ are Euclidean and Lorentzian time, respectively. In more detail, we
simultaneously rotate the time coordinates of each of the operators ¢1, ¢, V3, Va4, O.
For the operators V3, V4, O, this means we analytically continue in the coordinates
X3, X4, X. The operators ¢y, ¢, are being integrated over in (6.123), and we rotate
their respective integration contours simultaneously with the analytic continuation of
X3, X4, x. Simultaneous Wick-rotation turns Euclidean correlators into time-ordered
Lorentzian correlators. The result is a double-integral of time-ordered correlators

over Minkowski space

P j(x3, x4, X, 2)

=~ (410207 (418}0) f

-1
i 12ddxlddxzwzvml¢z>a<${$§0(x,z>>.

(6.126)
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(a) Integration region in (6.128) (b) Region § in (6.128) which con-
tributes to the residue.

Figure 6.8: The configuration of points within the Poincare patch of co. Point 4 is in
the future of x and 3 is in the past of x*, while x is null separated and in the past of
oo. The shaded yellow (red) region is the region of integration for 1 (2) after taking
the light transform, in the first term in equations (6.127) and (6.128). The dashed
null line is spanned by z. Note that in (b), for d > 2 the region § extends in and out
of the picture, while the dashed null line doesn’t.

Here, we have chosen a generic point x, on the Lorentzian cylinder Mvd and written
Minkowski space as the Poincare patch that is spacelike from this point.3¢37 All the
points 1,2, 3,4, x are constrained to lie within this patch. The minus sign in (6.126)

comes from two Wick rotations in the measure dtidm = —dt;dt,.

6.3.3 The light transform and analytic continuation in spin

Let us now move O(x, z) to past null infinity and perform the light transform. We
choose 3,4 such that 3~ < x < 4, so that the left-hand side is nonzero, see figure 6.8a.
Since O is on the Euclidean principal series, the condition Re(A+ J) > 1 is satisfied

and we can plug in (6.96) to find
L[Pas1(x3, x4, X, 2)

_ -1
=~ (010:00.@30)) [, _,_ ax1d?xa(aVi10230(08]LIONx ) 310)

+(1 o 2). (6.127)

3%In particular the result must be independent of which point we choose for x.,. The spurious
dependence of formulas on x. will go away soon.

37Note that we do not place O(x, z) at infinity before performing the Wick rotation, in contrast to
[67]. The reason is that in our case the region of integration for 1, 2 is independent of the position of
O so it is easier to analytically continue in the position of O.
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See the discussion below (6.96) for the precise meaning of the (1 < 2) term.

Let us now define

On(x,2)
_ H(AD)SE(9142[0)
(16200 @ F0))

d?x1d"x2(01¢ LIO1(x, 2)$310)d12 + (1 © 2).

(6.128)

It is implicit here that x is null separated from co. This expression makes sense (at
least formally) for continuous J. The euclidean three-point structure (ﬂ (}5;0) that
we started with is single-valued only for integer J. However, due to the particular
Wightman ordering the structures in (6.128) are well-defined for any J, as discussed
in appendix E.1. In order to continue to non-integer J, we must also choose an
analytic continuation of the prefactors in (6.128), which we discuss in more detail
below. One consequence is that we have two different analytic continuations: one

from even values of J that we denote O ,, and one from odd values of J that we

AJ?
denote O INE

For integer J, (6.127) and (6.124) imply that the residues @;f , defined by

Of;(x,2) ~ 0% (x, 2), (6.129)

1
have the same three-point functions as light-transforms of local operators in the
¢1 X ¢ OPE. (We include a + subscript on A¥(J) because the positions of poles in
the (A, J) plane are in general different for the even/odd cases.) To be precise, when
J is an integer, the residue of a time-ordered correlator, where time-ordering acts
on ¢ and ¢, inside the definition of O%F

A
(V3V40y 5 (x, 2))o, (6.130)

agrees with
F120V3V4L[O; yDa. (6.131)

for a local operator O; ;, where + is determined by (1)’ = +1.

We now claim that, for any J, the residue in (6.130) comes from a region S where
¢1 and ¢, are simultaneously almost null-separated from x and from each other;

see figure 6.8b. Indeed, we always expect singularities in correlators when points
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are null-separated. In integrated correlators, such singularities can be removed by
ie-prescriptions. However, lightlike singularities in the region S are not removed
because they coincide with boundaries in the integration regions for x1, x,. In a time-
ordered correlator, we can also have singularities at coincident points. However, we
expect singularities related to the ¢; X ¢, OPE to come from 1 being lightlike to 2

and not from other coincident limits.

Let us focus on the first term of (6.128). For this term, it is guaranteed that 1 > 3,
2 <4,and 1 > 2. In the region S we furthermore have 1 < 4 and 2 > 3, i.e., we
have the ordering 4 > 1 > 2 > 3, and the contribution of the first term of (6.128)
to the time-ordered correlator (6.130) agrees with its contribution to the Wightman

function
<Q|V4©§JV3|Q>. (6.132)

The same obviously holds for the second term, and, moreover, (6.131) agrees with

the Wightman function
f120(QIV4L[O; s1V31€). (6.133)

Since any state in CFT can be approximated by local operators V; acting on the
vacuum in an arbitrarily small region, this implies that we can interpret (6.128)
and (6.129) as operator equations. Furthermore, by construction, for non-negative

integer J we must have, as an operator equation,
0f) = fioLlOis]  (J € Zso, (1) = 1) (6.134)

for some local operator O, ;.

For non-integer J the definition (6.128) with (6.129) provides an analytic contin-
uation in J of L[O; s]. As we will show in section 6.4, it is precisely the matrix
elements of (O)i ;and @;—j , Which are computed by Caron-Huot’s Lorentzian inversion
formula. As discussed above, the residues @;f , should only depend on the region
of the integral where ¢ and ¢, are almost null-separated. In fact, it is natural to
expect that the residue is further localized onto the null line defined by z. Thus we
refer to them as light-ray operators. In the next subsection we show this explicitly
in the case of mean field theory (MFT).

In our argument for the existence of light-ray operators, it is not necessary that @X, 7

be a meromorphic function with simple poles. We expect that any non-analyticity in
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(O)i ; inthe (A, J) plane should come from the region where ¢, and ¢, are lightlike-
separated. Thus, for example, it should be possible to define light-ray operators
by taking discontinuities across branch cuts of @i ; (f they exist). Determining
the analyticity structure of OX’ ; inthe (A, J) plane is an important problem for the

future.

As mentioned above, to analytically continue O} ; in spin, we must choose an

analytic continuation in J of the prefactors

H(A D)SE(916210")
((#16:200.180))
TJ+9HMd+J-AT(A-1) DAL p Al
2724T(J + DI(A — %’)F(A +J-1) r(d—A+J;-A1—A2)F(d—A+12—A1+A2)'
(6.135)

= (=1’

Additionally, the term in (6.128) with (1 < 2) has a prefactor differing by (-1)”.
Because of the (—1)”’s, we must make two separate analytic continuations from
even and odd J, leading to (O)i ;- In general, we expect the spectrum of light-ray
operators to be different in the odd and even cases. For example, in MFT with a real
scalar ¢, the analytic continuation of even-J two-¢ operators is nontrivial, but there

are no odd-J two-¢ operators.

The analytic continuation of the remaining I'-function factors in (6.135) is deter-
mined by requiring that they be meromorphic and polynomially bounded at infinity
in the right half-plane. This is important for the Sommerfeld-Watson resummation
discussed in section 6.5.2. The expression (6.135) satisfies these conditions, so
provides a good analytic continuation. When ¢1, ¢, are not scalars, then we can
relate the prefactor to a rational function of J times (6.135) using weight-shifting
operators [3, 195], and this provides a good analytic continuation in that case as

well.

Although we have assumed scalar ¢, ¢, in this section for simplicity, the gener-
alization to arbitrary representations O1, O, is straightforward. We discuss some

aspects of the general case in section 6.4.2.

6.3.4 Light-ray operators in Mean Field Theory
In this section we explicitly show that O, are light-ray operators in Mean Field

Theory (MFT). For simplicity, we assume that the scalar operators in (6.128) are
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distinct fundamental MFT scalars. More generally, we can imagine that they belong
to two decoupled CFTs.

The kernel in (6.128) is obtained from (6.93) by sending x3 to past null infinity

according to the rule
O(-z00,2) = lim L*O(-Lz, 7), (6.136)
—+400
i.e.

(0l¢TL[O]4]|0) =

1-A
271 (z XXt =z x x%)

= L(4!4}10) (6.137)

Ay +Ap+I-A A -Ay+2-A-J Ap-Aj+2-A-J
(x3)" 2 (-z-x1)" 2 (2-x)" 2

The expression (6.93) was written for 1 > 3,3 ~ 2,1 =~ 2. With these conditions,
the ratio above is positive. In the integral we need to relax 1 ~ 2, which is done by
adding i€ to x(z) and —ie to x?, according to the Wightman ordering above. We now

introduce lightcone coordinates by writing

X; = %Zvi + %z'u,- + X; (6138)

withz2 = 0,7’-z = 2and x;-z = x;-z = 0. Since this requires z’ to be past-directed,
the ie-prescription is equivalent to adding a positive imaginary part to «; and v, and

negative to up and vi. We then find for the integral in the first term of (6.128)

2I-1(, 2 2\
12V + upXy —uixs ) r(x1)da(x2)

1
4_1 f dulduzdvldVQdd_ledd_2X2

Ay +Ay+T-A A~y +2-A—J w
2 (—I/tl ) 2 u2

(6.139)

2
(Ui2vi2 + X7,)

We have temporarily suppressed the light transform coefficient L(gf{ @[0]).

The integration region has u; < 0 and u, > 0. Let us assume for now that v, > v,
and make the change of variables

uy = —ra,

u =r(l —a),

1
x; = (rva1)2w;. (6.140)



280

The integral becomes

A=Ay —~Dy+
2]—1 -1- 2

1 (! v
Z f da f dvidvyd® 2w, d4 2w, 21
0 (1+w

(e1-a) + (1 - )W +awd) ™

A +Ao+T-A  A|-By+2-A-J Ay—A|+2-A-J
a 2 (1-a 2

2
12)

Cdr _A-a-ay-T 1 1
Xf - T pi(=ra, vy, (rva1)2w) o (r(1 — @), va, (rva1)2wp). (6.141)
0

In the second line, we have isolated the integral

Cdr _sdtg-y 1 1
f - T p1(=ra,vi, (rv21)2wi) o (r(1 — @), va, (rva1)2wy).  (6.142)
0

The region r ~ 0 corresponds to ¢; and ¢, being localized near the light ray defined
by z.

Now imagine expanding the product of field operators in a power series in r. This
is possible since we have assumed that ¢; and ¢, do not interact and thus there is
no lightcone singularity between them.3® We find terms of the form

1 1 a+b
rn+m+2(a+b)(_a,)n(1 _ a,)mV221( + )W?Wg (6143)

Only terms with even values of a + b contribute, since the w; integral is invariant
under w; —» —w;. Therefore, N = n+m+ %(a +b) > 0 is an integer and the integral
over r takes the form

®d A-Ay-Ay—J-2 2
f A= . (6.144)
0 7 A—A —A—J-2N

The pole comes from the region of small . We can see this by imposing an upper
cutoff on r: the residue will be independent of it. (In particular, we can make the
cutoff depend on @ and w; thereby cutting out arbitrary regions around the null ray
and the residue won’t change.) The pole is at

A=A +Ar+J+2N, (6.145)

which for integer J are precisely the locations of double-trace operators [¢1¢2]n, .
For every N, the residue of (6.142) only depends on a finite number of derivatives

of ¢; on the null ray, and thus is localized on it, as promised in the introduction.

BIf we consider ¢y = ¢ = ¢, then in MFT we have ¢(x1)¢(x2) =: d(x1)d(x2) :
+(Q|d(x1)d(x2)|Q). The singular term is positive-energy in x, and negative-energy in x;. But
in (6.128) we are integrating against <O|$1L[O]$2|O), which has the same energy conditions on x
and x,. Since the integrals pick out the term with vanishing total energy in both x; and x,, the
singular piece does not contribute to (6.128).
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For simplicity, let us focus on the leading twist trajectory with N = 0. The residue
of (6.142) is then

—2¢1(0,v1,0)$2(0,v2,0) (6.146)

and the residue of the integral (6.141) becomes

2) 1-A1-Ax—J

L[ g i 27 (a1 = @) + (1 - )W} + aw)
7\[0 af Wi W2 (1+W%2)d—A1—A2a,—A1+1—J(1_a,)—A2+1—J

X f dvidvy(vy1 +i€) 77 $1(0,v1,0)$2(0, v2, 0). (6.147)

The first line is an overall coefficient which we compute in appendix E.4 and
here simply denote by R(Aj, Az, J). In the second line, we have restored the ie
prescription for v;, which allows us to relax the assumption v, > v;. (The factor

(v21 +i€)~'7/ is understood to be positive for positive vo; and real J.)
p p

Combining everything together, we conclude that the leading twist operators Oy, ;

are given by

00,7 (=290, 2)

(-1’
4

=i f dsdt ((t +ie)" ™ + (1) (=t +ie)'™7) $1(0, s = ,0)$2(0, 5 + £, 0),
(6.148)

where we have included the contribution of the second term in (6.128), performed

the change of variables vi = s — ¢, v = s + ¢, and used the identity
H(A 1)SE(414207) _ (-1’22
((¢16:0.(3510)) 4

E

L($| S [ODR(A1, Ao, J) (6.149)

The analytic continuations from even and odd J are
+ i F N—1=J s N—1=J

05/ (~200,2) =+~ f dsdt ((t +ie)™ ™ + (=t +ie)" ) ¢1(0,5 = 1,0)¢2(0, 5 +1,0),
? T

0y ;(~z00,2) = _4L f dsdt ((t +i€)™ ™ = (=t +i€)™" ™) $1(0.5 = 1,0)92(0, 5 + 1,0).
’ Vs
(6.150)
These are exactly the null-ray operators advertised in the introduction. We can
check that they are indeed primary by lifting their definitions to the embedding
space, where they are variants of

~ f - dadf ¢1(Z — aX)$(Z - BX)(a - B)~' 7. (6.151)

(o)
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We discuss conformal invariance of this embedding-space integral in the next sub-

section.
For integer J both kernels for the 7-integral are equal to

t+ie) "+ (=) (-t +ie)' =

_ =Dt 9
T+ 1o

IRLY AR Y
(D a—é(t). (6.152)

((t +ie) =t - ie)_l) = —2mm(w

Thus, for integer J we find

(=D’

00,7(=z00,7) = T+

d “
5 #1(0,5.0)(3)62(0.5.0) = L1 42l01(~z9,2).
(6.153)

Since total derivatives vanish in the integral over s, it follows that for integer spin
Q0.7 is given by the light transform of a primary double-twist operator of the form
[f1¢2]0s(x,2) = ﬂaﬁl(ﬂ(z -0) o (x) + (z-9)(...). (6.154)

’ rJ+1
Let us check that these operators are correctly normalized. It was found in [245]

that the full expression for the primary [¢1¢2]o.7 is

[P1d2]0,s(x, 2)

J

~ YL - k)!r(AE_Jrl?c];r(Az eyt CRRIICICRN )
(6.155)
and in our case ¢, is given by
e o
“= I“EJ—I-:I) ;) kK1(J = k)T (A, +1k)1"(A2 T Tk (6.156)
If we write now
(Br1d2ld1¢2]0.00 = f120(P1$20,), (6.157)

and

([p192]0,s[P102]0,0)0 = Ci(O,;0)), (6.158)
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where in the right hand side we use the standard structures defined in appendix E.1.3,
then our normalization conventions are such that C;/ f1o; = 1.3° It is a straightfor-

ward exercise to show using (6.155) that

ﬂ_ 1\ 2 1 B
fi2g =CDTU+ I)CJ;) kK'(J=k)ITA + T(As +J — k)

1. (6.159)

In doing the calculation it is convenient to use the same null polarization vector for
both operators in (6.158).

6.3.4.1 Subleading families and multi-twist operators

Although we will not compute the residue of O ; for N > 0, let us comment on the
form of the light-ray operators that we expect to obtain, as well as on some further
interesting generalizations. For simplicity, in this section we ignore i e-prescriptions,
the difference between even and odd J, and normalization factors. As mentioned

above, the leading double-twist operators are essentially the primaries

00 (X,Z) = f dadB ¢1(Z - aX)$(Z - BX) (@ - B/ (6.160)

The fact that O is a primary follows from conformal invariance of the integral on the
right-hand side. According to the usual rules of the embedding space formalism [53],

conformal invariance is equivalent to

1. homogeneity in X and Z with degrees —Agp and Jp, and

2. invariance under Z — Z + A1X.

The former requirement is fulfilled due to homogeneity of the measure da df, the

“wavefunction” (@ — 8)~/~!, and the original primaries ¢;, which leads to

Ao =1-1,
Jo=1-A1-Ary—J. (6.161)

The latter requirement is due to translational invariance of the measure da df and

the wavefunction (o — 8) /=1

39To be more precise, if O is an operator in ¢; X ¢, OPE, we are computing [¢1$2]; = f1200/Co,
which is independent of the normalization of O. Using [¢]¢,]; instead of O then yields the claimed
normalization condition.
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This leads to two simple observations. The first is that since the only requirement on
¢; is that of being a primary, we can dress them with weight-shifting operators [3].
For example, let D,, be the Thomas/Todorov differential operator which increases
the scaling dimension of a primary by 1 and carries a vector embedding space index

m. Then we can define

On,(X, Z)

) f dadB(Dy, Dy $1)(Z = aX)(D™ -+ D" )(Z = fX) (e = f)~' 7.

(6.162)
By construction, we now have
Ao=1-1J,
Jo=1-Ay—A,—J-2N. (6.163)

With appropriate i e-prescriptions for @- and -contours, for integer J these operators
reduce to light transforms of the local family [¢1¢2]n,s. It is clear how (at least in

principle) this construction generalizes to non-scalar ¢;.

The second observation is that this construction straightforwardly generalizes to

multi-twist operators. In particular, define

Oy (X, 2) = fdal---dan¢1(Z—a1X)---¢n(Z—anX)¢f(a1,-.-,an),
(6.164)

where ¢ is a wavefunction which is translationally-invariant and homogeneous,

l//(a’l +ﬁ’---’an+ﬁ) :W(Oll’---,a’n),
w(day, ..., day) = 277 (..., ). (6.165)

We can easily check that Oy, is a primary with scaling dimension and spin given by
Ao =1-1,

Jo = 1—J+ZA,1. (6.166)
i=1

Subleading families can be obtained as above, by dressing with weight-shifting

operators. The generalization to non-scalar ¢; is also clear.
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X
(e0] [e.0]
X
(a) After taking the light transform (b) After reducing to a double com-
but before reducing to a double com- mutator.

mutator.

Figure 6.9: The configuration of points within the Poincare patch of x., at various
stages of the derivation. The blue dashed line shows the support of light transform
of O(x, 7). The yellow (red) shaded region shows the allowed region for 1 (2). In the
right-hand figure, we indicate that x is constrained to satisfy 27 < x < 1. Note that
after reducing to a double-commutator, the yellow and red regions are independent
of xo (as long as x is lightlike from x).

6.4 Lorentzian inversion formulae

In this section we show that matrix elements of O, ; are computed by a Lorentzian
inversion formula of the type discussed by Caron-Huot [66]. Our derivation will
borrow some key steps from [67]. However the light transform will simplify the
derivation to the point where its generalization to external spinning operators is
obvious. In particular, after using the light transform in the appropriate way, it will
be immediately clear why the conformal block G j.,4-1A-4+1 and its generalizations
appear. For simplicity, we will present most of the derivation with scalar operators

and generalize to spinning operators at the end.

6.4.1 Inversion for the scalar-scalar OPE
6.4.1.1 The double commutator

Our starting point is the light-transformed expression (6.127). Let us concentrate
on the first term in (6.127). Because of the restrictions 3~ < x <4 and 2™ < x < 1,

the lightcone of x splits Minkowski space into two regions, with 2,3 in the lower
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region and 1, 4 in the upper, see figure 6.9a. Thus, we can write the integrand as
(QIT (Va1 )T {$2V3}12)(01$] LIO](x, 2)$310). (6.167)

Recall that in our notation, expectation values in the state |Q2) denote physical
correlation functions, whereas expectation values in the state |0) denote two- or
three-point structures that are fixed by conformal invariance. (For instance, three-

point structures (0] - - - |0) don’t include OPE coefficients.)

We can now use the reasoning in lemma 1 to obtain a double commutator.4® Consider

a modified integrand where ¢; acts on the future vacuum,
(Q¢1VaT {$2V3)|2)(01$]LIO](x, 2)$3]0). (6.168)

Imagine integrating ¢ over a lightlike line in the direction of z, with coordinate v
along the line. Because ¢ acts on the future vacuum, the correlator is analytic in
the lower half vi-plane. Furthermore, at large v;, the product of correlators goes
like

Ay Ay +Ap+A+] -2
Vv = = @ -
1 v 2

1

Here, the first factor comes from the estimate (6.80) of (Q|¢; - - - |QQ) using the OPE
and the second factor comes from direct computation using the three-point function
(6.93). Thus, we can deform the v; contour in the lower half-plane to give zero

whenever
Re(2(d-2)+ A1 —Ay+A+J)>0. (6.170)

This condition is certainly true for A € % +ico and J > 0, assuming (for now) that
Re(A; — A1) = 0 (see section 6.3.1).

Consequently, the x; integral vanishes if we replace (6.167) with (6.168), so we can

freely replace
T{Vap1} — T{Vag1} —d1Vy = [V, ¢110(1 < 4). (6.171)
By similar reasoning, we can replace

T{p2V3} — [¢2,V3]0(3 < 2). (6.172)

40This argument is the same as the contour manipulation in [67].
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Overall, we find a double commutator in the integrand, together with some extra

restrictions on the region of integration

fm dx1dxx(Q[Va, 11162, V3] QXOIG]LION(x, 2)$410) + (1 & 2).
3<2<x”

(6.173)

Note that the spurious dependence on the point at infinity x., has disappeared
because the commutators are only nonzero if x < 1 <4 and 3 < 2 < x*, and these

restrictions imply that 1,2 lie in the same Poincare patch as 3,4, x.

In terms of Op ; we have

(V40n,y(x, 2)V3)q =
A DS of
N f ., d'x1d x2(QI1Va, ¢111g2, VANIQ)OI 6] LIO(x, 2)$310)
((¢1¢20T>,<${@0>)E 3<2<xt

+ (1 & 2). (6.174)

This gives a Lorentzian inversion formula analogous to the Euclidean inversion
formula (6.121). It is different from Caron-Huot’s formula [66] in that it is not
formulated in terms of cross-ratio integrals and it is valid for non-primary or non-
scalar V;. The form of the inversion formula above will be useful in section 6.6 where
we discuss the average null energy condition and its generalizations. Note also that
the generalization to operators O; and O, with nonzero spin is straightforward. In
the rest of this subsection we show how to reduce (6.174) to a cross-ratio integral in
the form of [66].

6.4.1.2 Inversion for a four-point function of primaries

To obtain an integral over cross-ratios, let us specialize to the case where V3 = ¢3
and V4 = ¢4 are primary scalars. The partial wave P, ; in this case is fixed by

conformal invariance up to a coeflicient:
(A, D)SE($192(0 1) Pa s (x3, x4, x5, 2) = C(A, J) (3640 (x, 2)). (6.175)
OPE data is encoded in the resiudes of C(A, J) by (6.124),

f120.f340, = _EGAS C(A ). (6.176)
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The matrix element (¢4On ;(x, 2)$3)q is the light-transform of (6.175), so (6.174)

becomes
C(A, J){0l¢4L[O](x, 2)3|0)

A DS o'
- DT D f __, dx1d"x2(Q1¢4, 11192, $311Q0IF| LIO](x, 2)6110)
(01020081 8}0)) P35

+ (1 & 2). (6.177)

For reasons that will become clear in a moment, let us replace x4 — x;; (equivalently
act with 74 on both sides). This converts the condition 3~ < x < 4into 3~ < x < 4%.
At the same time, let us make the change of variables x, — xJ in the integral. We
obtain

C(A, 1)(0l¢4-L[O](x, 2)¢310)
H(A N)SE14200)
(01620081 310))

X f3 i d?x1d"x2 Qs+, $11[¢2+, $311Q)0|¢ LIO](x, 2) 45, 10)
+ (1 & 2). (6.178)

Explicitly, the structure on the left-hand side is (under the additional constraint
3>4)

(0l¢4+L[O](x0, 2)$310)

1-A
(=1)7 (22 - xa0 x%) = 22 - x30 53

= L(¢3¢4[0])

(6.179)

Ag+Az3+J-A Ag—Az3+2-A-J Ay —Ag+2-A—-J
G 720 I St €779 R St G200

where L(¢3¢4[0]) is given by (6.94). This expression comes from making the

replacements 1,2,3 — 3,4%,0 in the second line of (6.97) and using xl.24+ = —xl.24
and z - x4+ = —z - x40.#' Similarly, the structure in the right hand side is

(014! L[O](x0. 2) 65.10)

1-A
27 - X10 X2, — 22 - X20 X2
= L($! [0 - ( = o — >0, (6.180)
Al +A2 +J-A Al *A2+27A7J A2 7A1 +2-A-J
(—xf) " T (a7 (g ?

“IThese relations follow from the embedding space representation of these quantities as in-
ner products with X4. An alternative way to obtain this result is to use (0|@4+L[O]¢3]0) =
01T 4T ~'L[O1¢310) = e 724(0|¢4L[O]¢3]0) and then (6.93) with replacements 1 — 4,2 —
3,3 — 0, analytically continued. The factor (=1)’ comes from the fact that the standard struc-
ture (E.25) depends on formal ordering of operators and we need (¢3¢4O) by convention.
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which follows from (6.93) by using the same rules.

We would now like to express the coefficient C(A, J) as an integral of the double-
commutator (Q|[d4+, ¢1]1[¢2+, $3]|1Q) against a conformal block. Both sides of the
above equation transform like conformal three-point functions. We can pick out the
coefficient C(A, J) by taking a conformally-invariant pairing of both sides with a

three-point structure that is “dual” to the one on the left-hand side.

In other words, in order to isolate C (A, J), we should find a structure T such that
(7. (012 LION(x, 2)¢310)), = 1, (6.181)
with the pairing (-, -); defined in equation (E.79) as
(000010100

B f d¥x3dx4d?xD?7
5, vol(SO0(d,2))

(03(x3)04(x2)0 (x, D)XO] (x3)0] (x4)0%" (x, 2)).
(6.182)

(Note the causal restrictions in the integral.) It will be convenient to write (6.181)

using the shorthand notation
T = (0144 L[O](x, 2)$310) ™" (6.183)

For the pairing (6.181) to be well-defined, (0|¢4+ L[O]¢3 |0y~ must transform like a
three-point function with representations (EOFT@;), where OF has dimension and
spin

AoF =J+d-1,

Jor = A—d+1. (6.184)

The quantum numbers of OF are precisely those appearing in Caron-Huot’s block.
We will see shortly that this is not a coincidence. Explicitly, the dual structure
(0]¢4+L[O]¢3]0)! is given by (again for 3 > 4)

(0l¢p4+ L0 (x0, 2)$310)~"

A—-d+1
2M2y0150(d-2)) (D (22 xa0 ) — 22 x30 25
- L Io) Ag+hy—J+A-2d+2 Ay-J-Ay—A+2 Ay—J—By—A+2
(¢3¢4[ ]) (_xi:s) 4773 5 xiO) 4 23 (xgo) 3 24

(6.185)
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This follows easily from the alternative characterization of the paring (6.182) given

in appendix E.S5.

Finally, pairing both sides of (6.178) with (0|¢4+L[O]¢3|0)~!, we obtain

ddX1"'ddX4
CAJ) = ﬁ s T o Qs Al 31D Hay (xi) + (1 © 2),
1>2 vol(SO(d, 2))

(6.186)

where

Hp j(x;)
_ M DSE($142[0))
(<¢1¢25*>, @ <$ZO>)E

fz d*xD722(01¢ L[O](x, 2)&5. 100l 64+ L[O] (x, 2)$310) .
<x<l1

(6.187)

In the integral for C(A, J), all the pairs of points x; are spacelike separated except
for 1 > 2 and 3 > 4. The causal relations in (6.186) and (6.187) come from the
causal relations in (6.178) and (6.182) which are, together,

47 <3 <2<x<1<4"<3", (6.188)

Recalling that a ~ b is equivalent to a~ < b < a* (figure 6.3), we easily find that

the above relations are the same as

1>x>2 3>4,

1=3, 1=4 2=3, 2=x4. (6.189)

Now the benefit of performing the light-transform becomes clear. The integral (6.187)
over the diamond 2 < x < 1 precisely takes the form of a well-known Lorentzian in-
tegral for a conformal block. Note that the integral (6.187) is conformally-invariant
and is an eigenfunction of the conformal Casimir operators acting on points 1,2
(equivalently 3, 4) by construction. Importantly, the integral over x stays away from
the region near 3, 4, see figure 6.10. Thus, we can determine its behavior in the OPE
limit 3 — 4 by simply taking the limit inside the integrand. (This limit corresponds
to the Regge limit of the physical operators at 1,2%,3,4%.) Any eigenfunction of
the conformal Casimirs is fixed by its OPE limit, so this determines the full func-
tion. Thus, it’s clear that Hy j is proportional to a conformal block, with external

operators ﬂ s 51, and an exchanged operator with the quantum numbers of OFT,
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o4

Figure 6.10: After (temporarily) relabeling the points 2= — 2 and 4~ — 4, we have
a configuration where 1 > x > 2 and 3 > 4, with all other pairs of points spacelike
separated. This is the same configuration as in figure E.2 of appendix E.8.2, where
we compute the Lorentzian integral for a conformal block. The integration region
for x is shaded yellow. Importantly, it stays away from 3 and 4, so the 3 — 4 limit
can be computed inside the integrand.

We perform this analysis in detail in appendix E.8.2. Using the result (E.179), we
find

2 2 2
qn.J X4 X4 A —
Hp j(xi) = R Y (XT) (xT) G rra-1.8-a01 0 X0;
—x2)2 —x§4) b 24 13
(6.190)
where
dg = —(c1y/ ZolS0W ~2)) p(A, 1Se(@16210DL($16200)) 5,5,
T ~ J+d-1,A—d+1
(<¢1¢2()T>, <ﬂ$§0>)5 L(¢3¢4[0])
F(A+J+2A1—A2)F(A+J—§1+A2)F(A+J+2A3—A4)F(A+J—2A3+A4)

_ 52 _
= =2°vol(SO(d - 2)) 167T2F(A + DI'A+J-1)

(6.191)

(The quantity bi’l}Az is defined in (E.178) and the conformal block G is defined in ap-
pendix E.8.1.) Factors other than bi‘}Az come from (6.187) and the structures (6.180)
and (6.185). In the proof of the Lorentzian inversion formula in [67], performed
without using the light transform, one obtains an expression for Hy ; as an integral

over a region totally spacelike from 1,2%, 3,4*, which is harder to understand.
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6.4.1.3 Writing in terms of cross-ratios

Finally, let us replace 2* — 2 and 4% — 4 so that the physical operators are again

at the points 1, 2, 3,4. The inversion formula reads

dix;---d¥xy
C(A, J)=ﬁ 1—<QI[¢4,¢1][¢2,¢3]IQ>(T THA (X)) + (1 & 2).
>1 vol(SO(d, 2))

(6.192)

Here, 7; ~I denotes a shift x; — x: or, more generally, application of the 7 ! to the

operator at i-th position. In the integrand, we can isolate quantities that depend only

on cross-ratios, times a universal dimensionful factor |x 2| ~2%|x34]| 724,
(Qllps, 1112, $311Q)(T, ' T3~ Ha s (x:))
1 (Ql[¢a, d11[h2, P3112)
= G , 6.193
PP TR sractaman B G9)
where
. 1 el \ 278 (e |27
T (x;) = ( ) Ladll : (6.194)
U x|t xag st | [xgy |x13]

Since we now have a fixed causal ordering of the points, we do not have to worry
about an i€ prescription in these expressions and we can simply take absolute values

of spacetime intervals.

We can gauge-fix (6.192) to obtain an integral over cross-ratios alone. As explained

in [67],4? the measure becomes

dix) - dixy 1 1 VeV dydy |- x|
o i 2d . 92d = |
vol(SO(d, 2)) |x121“|x34] 2°4vol(SO(d -2)) Jo Jo x2x° | xx
(6.195)
Putting everything together, we find
cA )
_ a7 f f d)(d)c X = X 2 (Qllg, ¢1llg2, $311Q) 5, 0 T)
22dyol(SO(d — 2)) 0 T2 (x;) J+d-1A-d+1 A

42We use a definition of the measure on §(V)(d, 2) which differs from the one [67] by a factor of
24,

X |X — X‘ (Q[[¢4, P21[¢1, P311€2)

TA: i(x;) GJ+d LA- d+1(X’X)

(6.196)
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Here, GA, 7(x, x) denotes the solution to the Casimir equation that behaves as
Asl A+ . . e — . .
(=x) Z (=x) =z fornegative cross-ratios satisfying | y| < |x| < 1. This precisely

coincides with Caron-Huot’s Lorentzian inversion formula.

6.4.1.4 A natural formula for the Lorentzian block

To make it easy to generalize the above result to arbitrary representations, let us
write it in a more transparent way. First we need to introduce more flexible notation
for a conformal block. Let
(010,0)(03040)
(00)

denote the conformal block formed by gluing the three-point structures in the nu-

(6.197)

merator using the two-point structure in the denominator. We describe the gluing
procedure in more detail in appendix E.8.1. In particular, the gluing procedure is
well-defined (for a restricted causal configuration) even if O is a continuous-spin

operator. Using this notation, the coefficient function C(A, J) is defined by

—+lOO dA O O
(P1620304)0 = Z f_ = il < (;g;‘f"‘ ) (6.198)

where O has dimension A and spin J.

Using the same notation, we claim that the function Hya j(x;) in (6.192) is given by

1 (72(¢16:LIO1) " (Ta(p3¢4L[O])) !

Has(xi) = == (L[OIL[O])"! ’

(1>2,3>4).
(6.199)

In the numerator, (72(¢1¢,L[01))~! is the dual structure to 75(¢;$>L[O]) via the
three-point pairing (E.79). It is given by (6.185), with the replacement 3,4 — 1, 2.
Note that while we have written the structures in the numerators in terms of light
transforms of time ordered products, they can alternatively be written in terms of

Wightman functions for the kinematics we are considering, since

T{p1$:LIO0]) = To(0|$,L[O]4110)  (whenl>2, 1,2x0),
Ta($304LIO]) = Ta(0|¢sL[O]¢3|0) ~ (when3 >4, 3,4~0).  (6.200)

The structure (L[O]L[O])~! in the denominator is dual to the double light-transform
of the time-ordered two-point function (OQ) via the conformally-invariant two-point

pairing,

((L[O]L[O])‘l, (L[O]L[O])) =1. (6.201)

L
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Here the pairing (-, -); for two-point functions is defined in (E.72). In order for the
pairing in (6.201) to be conformally-invariant, (L[OIL[O])~! must transform like a
two-point function of OF.

We have already computed the three-point structures in the numerator, so to verify
(6.199), we need to compute (L[O]L[O]). Here, it is important to treat two-point
structures as distributions. By lemma 2, (O (x1, z;)L[O](x2, z2)) vanishes if xo > x;
or xp < x; — i.e., it vanishes almost everywhere. However, it is nonzero if x; is
precisely lightlike from x;. Specifically, (O(x1, z1)L[O](x2, z2)) is a distribution
localized where x; is on the past lightcone of x1.43 In fact, it is proportional to the

integral kernel for the “floodlight transform” F.

Let us now actually compute (L[O]L[O]). It is useful to think of this structure as
an integral kernel K, defined by

(Kf)(x,2) = f d’x' D72 (LIO](x, D)LION, ) f (', 2). (6.202)
In (6.202), we can integrate one of the L-transforms by parts, giving

(Kf)(x,2) = f dx' D727 (LIO1(x, )0 (¥, ))T 'LIfD)(¥, 7). (6.203)

To simplify (6.203) further, we can express the time-ordered two-point function
(O0) in terms of integral transforms and use the algebra derived in section 6.2.7.
When x, x” are spacelike, (O (x, z)O(x', 7')) is precisely the kernel for S. However, S
is supported only in the region x ~ x’, whereas the time-ordered two-point function
has support everywhere. More precisely, keeping track of the phases as we move

x, x" into different Poincare patches, we have

(2z7-7(x—x)+4z- (x-x)7 - (x - x))’
((x = x)% +ie)?*/

=Sl1+ Z o A+ Dgn | Z i (AT g—n

n=1 n=1

_ =2i7 sinn(A+ J)
=5 (T - ei”(A“'J))(f]‘ — e—in(A+J)) : (6204)

(O(x,2)0(x', ) =

“3Note that this is different from treating two-point functions as physical Wightman functions, so
there is no contradiction with previous discussion.
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Plugging this into (6.203), we find
=207 sinn(A+J)

_ -1
K =1LS (7 - ein(A+J))(7' _ e—in(A+J))T L
_g =2isinm(A+J) 2
(7‘* _ ein(A+J))(r]* _ e—in(A+J))
=27
— 2
A+J - 1S’ (6.205)

where in the second line we used that L, S, 7 commute with each other, together with
the formula L? = f; (J+d—1,A—d+1,7), where f; is given in equation (6.101).
The arguments of f; come from the fact that K acts on a representation with
dimension J + d — 1 and spin A —d + 1.

The kernel of S in the last line is the two-point function of an operator with spin

1 — A and dimension 1 — J. Thus, using our two-point pairing (E.72), we find

A+J-1

P 224=2y01(SO(d - 2))(OF OF), (6.206)

(LIOIL[O])™! =

where (OYOF) is the standard two-point structure (E.24) for an operator with di-
mension J +d — 1 and spin A —d + 1. Combining this with the three-point structures
in the numerator, and comparing with the result (6.190) for Hp j(x;), we verify
(6.199).

Note that (6.199) is independent of a choice of normalization of the integral transform
L. In fact, it depends only on the three-point structures (¢ $>0), (¢3¢40), the two-
point structure (OO), and the existence of a conformally-invariant map between
representations Pa j a1 and Pi_j1-a4 (Which L implements). The formula would
still be true if we chose different normalization conventions for two and three-point
functions, because this would change the definition of C(A, J) in a compatible way,
via (6.198). Because it is essentially independent of conventions, we call (6.199) a

“natural” formula.

6.4.2 Generalization to arbitrary representations

6.4.2.1 The light transform of a partial wave

The derivation in the previous section is straightforward to generalize to the case
of arbitrary conformal representations ¢; — O;. In this case, three-point functions

admit multiple conformally-invariant structures (0;0,0)?, so partial waves Pg (4
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carry an additional structure label.44 They are defined by

2-HOO d
(V3V40100)q = Z f 1A D) f d*xPo,(q) (x3, x4, X)(O7 (x)0102).
(6.207)

(Here, we implicitly contract the SO(d) indices of Py ) and the operator 5T.)

The logic leading to the double-commutator integral (6.173) is essentially un-
changed. We find

L[PO,(LI)](x3’ x4’ x’ Z)
= ~((010:07“.0{0]0)")5'
x f 1 @01d"x(QI[Va, O11[02, V51IQ)O0IO]LIO(x, )0 [0)”

3<2<xt

+ (1 & 2), (6.208)

where ((O; 025T><a>, ((F)VIT(F)E())U’))E1 is the inverse of the three-point pairing (E.50)
defined by

(010,07 (01 0]0Y") ' (010,09, (0] 00y = 65 (6.209)

6.4.2.2 The generalized Lorentzian inversion formula

To generalize the remaining steps leading to the Lorentzian inversion formula, we
seemingly need to understand of all the factors entering the expression for Ha j(x;)
(6.190). However, this is unnecessary because the generalization is obvious from
the natural formula (6.199).

The coefficient function C,;(A, p) we would like to compute is defined by

(0 ~— ab(A 0) . (6.210)

d_joo (00%)

§+ioo dA 0,00 (0,0,0)®
O4>Q_Zf (010,0")'(05040)

p,a,b

where O has dimension A and SO(d)-representation p. Here, we sum over principal

series representations &y p, as well as three-point structures a, b. The obvious

#4The possible structures in a three-point function of spinning operators are classified in [1].
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generalization of (6.186) and (6.199) is

Cab(A, p)

1 dd . dd
——— | L C 20104, 011105 0511
2rti J321 vol(SO(d, 2))

1

-1 -
_17_1(75<0102L[0’f]><“>) (72(0s0;LIOD?)
X
> (LIOIL[O™])"!
+(1 o 2). (6.211)
The dual structures in the numerator are defined by
((7010:L10H) " T010,L107D)) = 6,

L
(00510 ®) " TiOs0LIOD ) =5 (6212)

L

where (-, )7, is the three-point pairing defined in (E.79). The two-point structure in
the denominator is the dual of (L[O]L[O']) via the two-point pairing (E.72).

-1
Note that the structure (%(OIOZL[OT])(“)) transforms like a three-point function
of representations <5j 5; O'F) and similarly for the operators 3 and 4. In (6.211),
we are implicitly contracting Lorentz indices of O; with their dual indices in these

structures.

6.4.2.3 Proof using weight-shifting operators

Equation (6.211) follows if we prove the generalization of the expression (6.199) for
H, with H defined using the appropriate generalization of (6.187). Specifically, the
definition of H becomes

HA p (ap) (X))
= — (A, p")SE(0102[01)¢ (010,09, (0] 0] 0) )" x
x f d*xD*2(0|0/LIO](x, 2)05.10)” ({0104 LI0](x, 2)0310)") .
2<x<1
(6.213)

We want to prove that

| (50,0:L10)@) ™ (T0s0sL10n®) !

2ni (LIOIL[O])~!

Our proof will proceed in two steps. Here we are going to show that if for a given

HA p(ab)(xi) = — (6.214)

p (6.214) is valid for some “seed” choice of SO(d) irreps of external operators, it
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is then valid for all choices of external irreps. In appendix E.7 using methods of [3]
we show that validity of (6.214) for traceless-symmetric p implies its validity for

seed blocks for all p. Together these statements imply (6.214) in full generality.

Generalizing the external representations It is convenient to consider the struc-

ture defined by

T, = u(A, p")SE(010:[071) (010,07, (0] 0} 0)D) (0] 0], 0)¥.
(6.215)

We can check that
T, = (070),(0T0) £ ((010:S L[0T ), (6.216)

where all pairings and inverses are Euclidean. Indeed, we can compute the Euclidean

paring
(T4, (010:SE[OT ) =8£(0102[0 ) (T, (010,07 P)
=u(A, p")SE(010:[0T),SE(010:[01)
=u(A PN (A p)64 = (070),(0T0N 6y, (6.217)

Here we used the relation (E.56) between the Plancherel measure and the square of
the Euclidean shadow transform. Importance of the structures 7, comes from the
fact that it is the light transform of their Wick rotation which enters (6.213).

We now choose some other SO(d) irreps o/ and p), for operators O] and O} such

that there is a unique tensor structure4>
(0,050". (6.218)
We then can write
T, = (070),(0" 0T, ™' D12 (0] 05SE[OT ), (6.219)

where Dy, are contractions of weight-shifting operators acting on points 1 and
2 [3, 61].4¢ We can use this to write

Ha paby(xi) = DioaHy , ) (X0 (6.220)

45Tn odd dimensions and for fermionic p the number of tensor structures is always even, and so
it is not possible to make this choice. However, there we can make a choice such that there is only
one parity-even structure, which will be good enough.

46Note that ‘7;‘1 D12,q47; are differential operators which can be interpreted in Euclidean signature.
In particular, if D24 = Dy, AD? for A transforming in an irreducible representation W of the
conformal group then 7, “1D15.47; is proportional to D, 4 with coefficient equal to the eigenvalue
of 7 in W.
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where H’ is given by (6.213) with O] and O) instead of O; and O, and using the

unique tensor structure on the left of H'.

On the other hand, we can write

54 (T2, (010:SE[OT Y )

T ((070), (00N
= (7' D12.g (O, 048 L[0T, (010,801 )
= ((O1058E[O0" )™ (T, D124T2) (01028 [0 ), (6.221)

where we integrated the differential operators ‘75‘11)12,51‘75 by parts inside the Eu-

clidean pairing. This produces new operators @12, &

of weight-shifting operators.4’” We thus conclude that

which are again contractions

(7,7 D124T) (01028 [0 = §{0]0;SE[O™). (6.222)
Canceling Sg on both sides (it is invertible on generic tensor structures) we find
(7, D124T2)" (010,07 = 64(01050"). (6.223)
We now want to show that
Di2a(TH{O;0LIO' )] = (T(010:LI0 D), (6.224)

where the inverse structure is understood with respect to Lorentzian pairing. This
follows by doing the above calculation in reverse and in Lorentzian signature. First,
we apply L to both sides of (6.223) and use 7* = 7 !,

7,~' D, 7010, LIOT ) = 64(0;O5LIO]), (6.225)
Then, we apply 7 to both sides and take Lorentzian contraction with (72(0{ OéL[OTD)Z1
(70 O5LIO N, D, ;T (01 O LIO ) ), = 65, (6.226)
and finally integrate by parts,
(D12.4(T(O1O5LIO ), T (010, LIOTY ) = 65, (6.227)

This is equivalent to (6.224) The crucial point here is that integration by parts

leads to the same operation on the weight-shifting operators both in Euclidean

#TFor details see appendix E.6 and [3, 195].
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and Lorentzian signature (on integer-spin operators). A way to summarize this

calculation is by saying that
(T(010,LI0"]);! and  T2:((010:SE[0' )7 (6.228)

have the same transformation properties under weight-shifting operators acting on
1 and 2.

This implies that if (6.214) is true for Oi and Oé, it is also true for O; and O,, since
we can simply apply D12, in both (6.213) and (6.214). Since exactly the same tensor
structure appears for the operators O3, Oy in (6.213) and (6.214), an analogous (even
simpler) argument works for this tensor structure as well. In conclusion, if (6.214)

holds for a seed conformal block, it holds for all conformal blocks with the same p.

6.5 Conformal Regge theory
6.5.1 Review: Regge kinematics
Consider a time-ordered four-point function of scalar operators (¢ ---¢4). Its

conformal block expansion in the 12 — 34 channel takes the form

(@1(x1) - pa(xa)y = > pasGl,(x:)
AJ

Ay —Aq Az—-Ay

1 xf4 AT A; —
= A+hy Az +hy )CT XT ZPAJGA:J(X’X)9

(x},) "7 (x3) "2 24 13 AT

(6.229)

where pj ; are products of OPE coeflicients. This expansion is convergent whenever

x> X € C\[1,0) [25]. However, it fails to converge in the Regge limit.48

To reach the Regge regime, which was originally described for CFT correlators in

[166], let us place the operators in a 2d Lorentzian plane with lightcone coordinates

x1 = (=p,=p),

x2 = (o, p)s

x3 = (1, 1),

x4 = (—1,-1). (6.230)

The usual cross-ratios are given by

_4p —_ 4p
T a+p?r YT aep?

“8The other OPE channels 14 — 23 and 13 — 24 are still convergent, though they are approaching
the boundaries of their regimes of validity, as discussed in the introduction.

X (6.231)




301

ol

Figure 6.11: The Regge limit in the configuration (6.230). We boost points 1 and 2
while keeping points 3 and 4 fixed. This configuration is related by an overall boost
to the one in figure 6.1.

It is also useful to introduce polar coordinates

p=re? =rw, p=re? =rwl (6.232)
In Euclidean signature, r and 6 are real. By contrast in Lorentzian signature, r
is real, 6 becomes pure-imaginary (it is conjugate to a boost), and p, p become
independent real variables. To reach the Regge regime, we apply a large boost to
operators 1 and 2, while keeping 3 and 4 fixed (figure 6.11). More precisely, we
take

0 =it +e€, (t > o0), (6.233)
so that
p=rete  p=reiE (t = o). (6.234)

Here, we use the correct ie prescription to compute a time-ordered Lorentzian
correlator when ¢ > 0. With this prescription, the cross-ratios behave as follows.
As t-increases, y moves toward zero. Meanwhile, 'y initially increases, then goes

counterclockwise around 1, and finally decreases back to zero (figure 6.12).

The only difference between the Regge and 1 — 2 OPE limits from the perspective
of the cross-ratios y, y is the continuation of 'y around 1. In both cases, we take
X- ¥ — 0. This is because the Regge limit resembles an OPE limit between points
in different Poincare patches. This observation was made in [236]. Specifically,

the configuration in figure 6.11 is related by a boost to the one in figure 6.13. The
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Figure 6.12: The paths of the cross ratios y, xy when moving from the Euclidean
regime to the Regge regime. In the Euclidean regime, y, y are complex conjugates
(gray points). As we boost x1, x2, the cross ratio y decreases towards zero, while y
moves counterclockwise around 1 before decreasing towards zero. For sufficiently
large ¢, y follows the same path as y, but we have separated the paths to clarify the
figure.

Regge limit can thus be described as 1 — 27 and 3 — 47. The cross-ratios y, y are
unchanged when we apply 7 to any of the points, which is why they still go to zero

in this limit.

Figure 6.13: Another description of the Regge limit is x; — x; and x3 — x. The
points x3, x, are shown in gray. The cross-ratios y, x associated with the points
1,2, 3 and 4 are the same as those associated with 1,27,3 and 4.

To understand what happens to the conformal block expansion (6.229) in the Regge
regime, we must compute the monodromy of Gi" ; (x> x) from taking y counter-

clockwise around 1. This was described in [66]. Firstly, we have the decomposition

pure

S _ TU+d-r(-J-%2%) _
Gﬁfj()(, X) = 8&ny 60+ 22 (ex)  (6.235)

rJ+SHr-J A

where gzu;e is the solution to the conformal Casimir equation defined by

pure

8ny X X) =X

A-J A+J
2 2

X (1 + integer powers of x/x, x) (x<xyxl.
(6.236)

X



303

For small y, gzu;e has a simple form in terms of a hypergeometric function [64],

_ as _

ggtl;e(/\/, X) = x 2 kars(x) X (1 +0(x)) (x < 1), (6.237)
. _7 — Ap - A - _

kyn(x) = Y2 F (h - % h + %, 2h, )(), (6.238)

where A;; = A; — A;. The monodromy of gzu;e as y goes around 1 can then
be determined from (6.237) using elementary hypergeometric function identities,

keeping y small so that the approximation (6.237) remains valid.

Let us defer discussing the precise form of the monodromy until section 6.5.3, and
focus on one important feature. Note that k,7(x) is a conformal block for SL(2, R).
In particular, it is a solution to the conformal Casimir equation (a second-order
differential equation) with eigenvalue (% — 1). Under monodromy, it will mix with

the other solution, which differs by h — 1 — h. In terms of A, J, this becomes
A)>0=-J1=-A), (6.239)

i.e., it is the affine Weyl reflection associated to the light transform. After mon-

odromy, in the limit y, y — 0 each block contains a term

X¥?1_A51—J - U=t (t>1). (6.240)

In other words, the monodromy of each block grows as e/~1"

in the Regge limit.
Because the sum (6.229) includes arbitrarily large J, the OPE expansion formally

diverges as t — oo.

In what follows, it will be important to understand the large-J limit of conformal
blocks in slightly more detail. We compute this in appendix E.8.3. The result is
(J1>1

A1p—A34

(1-w2)T (2 + rLZ w2 - %)% (I+5)d+rw)

pure

gA,J (X’Y) ~

(6.241)

where w = €/ and f1_a(x) is given in (E.185). For us, the most important feature
of (6.241) is that its J-dependence is w~/. Note that the small-w limit of (6.241) is

1-J — p(J=1xt

consistent with the claim that gzu;e grows as w in the limit t — oo.

6.5.2 Review: Sommerfeld-Watson resummation
Taking the monodromy of 'y around 1 requires leaving the region |p| < 1 where

the sum over A in the conformal block expansion converges. The conformal partial
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wave expansion gives a way to avoid this problem: we replace a sum of the form

A lppl2/? with an integral over A € % + iR. This integral is better-behaved when
Bl > 1.

In the Regge limit we still have the problem that each individual block grows like
e/=D"_This can be dealt with in a similar way: by replacing the sum over J with
an integral in the imaginary direction. This trick is called the Sommerfeld-Watson

transform.

Let us begin with the conformal partial wave expansion

—+too dA
(Br1(x1) ¢4(x4>>—z f 5 CA DEY (x0),

——lOO

. 1 . SE(¢1¢2[0])
Fh(xi) = 5 (GAt (%) + ————— (x ») (6.242)
A U O ) Giras
For integer J, the coeflicient function C(A, J) can be written
C(A J) =CHA D) + (=D, D), (J €2), (6.243)

where C' comes from the first term in the Lorentzian inversion formula (6.196),
and C* comes from the second term with 1 < 2. (The superscripts ¢ and u stand
for “t-channel" and “u-channel.") Each of the functions C"*(A, J) has a natural
analytic continuation in J that is bounded in the right half-plane. This follows from
(6.196), since the conformal block GYi Jrd—1A-d+
X> X € [0, 1] when J is in the right half-plane.

(x> x) is well-behaved in the square

Let us split the partial wave F AA"J into two pieces
F(xi) = Faus(xi) + Has (xi), (6.244)
where Fa ; behaves like w~/ at large J,

Fa(xi) =

1 x%ﬁt) ’ <X%4) T ( pure — SE(¢1¢2[O]) pure )
A+A by | 2 5 18, X))+ ——————¢ (X x) s
182 5 ( 2 2 AJ S 3¢4[O]) 8a- AJ

(6.245)

2
(x1,

and Hy y(x;) represents the remaining terms, which behave like w/*94=2

J. We must treat the two terms in (6.244) differently in the Sommerfeld-Watson

at large
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transform. Let us focus on the first term. The sum over integer spins can be written

as a contour integral

o IA —inJ u A
Y e Tasn = - par =D ED g
7=0 r —e
(Re(8) € (0, 1), Im(0) = 0), (6.246)

where the contour I' encircles all the nonnegative integers clockwise. Here, we
have carefully chosen the analytic continuation of C(A, J) so that the integrand is
bounded at large J in the right half-plane whenever 6 satisfies the given conditions.

For this, we use the fact that ¥ ;(x;) behaves as w™/ at large J. Because the other

term in (6.244) behaves as w/*¢=2 at large J, we must replace e~/ — €™/ to get

an integral for that term that is valid in the same range of 6.

The contour integral (6.246) is more suitable than a naive sum over spins for
continuing to the Regge regime. Recall that the issue with a sum over J was that
a conformal block with spin J grows as ¢/~17 in the Regge limit. Because the
integrand in (6.246) is well-behaved at large J, we can deform the contour I to a
region where Re(J) < 1, so that its contributions die as t — ©0.4° In doing so, we
may pick up new poles in C*'(A, J) with real part Re(J) > 1. The rightmost such
pole will dominate the correlator in the Regge limit. Denote the deformed contour,

including these new poles, by I'” (figure 6.14).

After deforming the contour, we now have a representation of the correlator that is

valid in the strip
Re(0) € (0, ), Im(O) > 0, (6.247)

which includes the angle 6 = it + € required for a time-ordered Lorentzian correlator.
Thus, we can continue to the Regge regime. The continuation of Hy ;(x;) does not
give a growing contribution in the Regge limit, so let us ignore it for the moment.

We find that the four-point function behaves as

SHS GA CI(A, J) + e CH(A, J
<¢1(x1)---¢4(x4)>~—56/d1ﬁ PBCEDre T ED g ).

Lice 2mi 1 — e=2miJ

(6.248)

4 A natural choice is the Lorentzian principal series Re(J) = —42.
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Figure 6.14: Integration contours in the J plane. The contour I" (blue) encircles all
the integers clockwise. The deformed contour I'” runs parallel to the imaginary axis,
asymptotically approaching Re(J) = —% at large imaginary J. In deforming the
contour, we must ensure that [ avoids non-analyticities, like a pole at non-integer
J, branch cuts, or other singularities. Here, we show a single non-integer pole at
J = j(v) and possible non-analyticities in the shaded region. However, this is only
an example—we don not know the structure of the J-plane in general.

where F, 7(x)® denotes the continuation to Regge kinematics, including the mon-

odromy of y around 1 and phases arising from the prefactor in (6.245).5°

In planar large-N theories, the rightmost feature of I'” is conjectured to be an isolated

pole J = j(v) where A = % + iv. Assuming this is the case, we obtain

(p1(x1) -+ - Pal(x4))

(™ dvy C'(§ +iv,J) + e ™/ CU (% +iv, ]) o
~ 2 Lx, 2 R8s | — g27i) Fd iy 0D

(6.249)

6.5.3 Relation to light-ray operators

The appearance of the affine Weyl transform (6.239) is suggestive that Regge kine-
matics should be related to the light transform and light-ray operators. To see how,
let us finally compute 7(x)C using (6.237). We find

26mT(A+ HI(A+J - 1)
F(A+J;A12)F(A+J2_A12)F(A+J;A34)F(A+J2_A34)

Fas(x)° = - T% (x))G1-7.1-a(x> X)

+..., (6.250)

S0Representing the correlator as an integral over both A and J is natural from the point of view
of Lorentzian harmonic analysis, where principal series representations are labeled by continuous
A= %l +isand J = —% +it. However, it is not immediately obvious how the representation (6.248)

is related to the Plancherel theorem for §()(d, 2). We leave this question for future work.
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where T2 (x;) is the product of |x;;|’s given in (6.194). Here, we have explicitly
written the term that is growing in the Regge limit. The “...” represent other
solutions of the Casimir equations that do not grow in the Regge limit, coming from
both 7 ; and Hjy ;. The above expression is valid in the configuration 4 > 1,2 > 3,

with other points spacelike-separated.

Comparing with (6.190) and (6.199), we immediately recognize

(T<¢1¢2L[0T]>)(7’<¢3¢4L[0]>)
(LIOIL[O™])

Fas(x)° =T, 77! ., (6.251)
where we use the notation for a conformal block introduced in section 6.4.1.4.
Equation (6.251) is the main observation of this section. In the case where Regge
kinematics is dominated by an isolated pole (6.249), the residue Res;-;(,) means
that coeflicients in the integrand can be interpreted as products of OPE coefficients
for light-ray operators. This is because a nontrivial residue comes from the neigh-
borhood of the light ray.>! Plugging (6.251) into (6.249), we find a sum/integral of
conformal blocks for these light-ray operators.

In the gauge-theory literature, the object that controls the Regge limit of a planar
amplitude is called the “Pomeron” [246, 247]. Here, we see that for planar CFT
correlation functions, the Pomeron is a light-ray operator: it is proportional to the

rightmost residue in J of Oy, for A € % + iR.

The observation (6.251) also lets us immediately generalize conformal Regge theory

to arbitrary operator representations. In the Regge limit, we have
(O1(x1) - -~ O4(x4))
+lOO
) 2 dA Cap(A, J, )
T Z 95 djf 2mi 1 — e2miJ

1 (T2(010,LIOT ) ) ({0304 LIO)P)

e
N (LIOILIO™])

(6.252)

Here, C,1 (A, J, A) is the unique analytic continuation of C,p (A, p) such that %e‘lw
is bounded for large J in the right-half plane and 6 € (0, ). The weight J is the
length of the first row of the Young diagram of p, and A represents the remaining
weights of p, as discussed in section 6.2.2. The indices a, b run over three-point

structures.

31 The same is true if the Regge limit is dominated by a cut instead of a pole, though now we have
a doubly-continuous family of light-ray operators, parameterized by v and J along the cut.
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As before, it is straightforward to argue that (6.252) is the only possibility consistent
with the scalar case and with weight-shifting operators. It would be interesting to
verify it more directly, and in general to characterize all monodromies of blocks
in terms of the integral transforms in section 6.2.3. Note that (6.252) displays a

beautiful duality with the generalized Lorentzian inversion formula (6.211).

We can try to interpret (6.251) as a contribution to the non-vacuum OPE of ¢;¢; in
the following way. We construct light-ray operators as an integral of the form (6.15),
which together with conformal symmetry implies that we should be able to write,

schematically,
D10 = f dv 8B, j)[Qo,j(»)] + other contributions. (6.253)

Here B is a kind of OPE kernel which is fixed by conformal symmetry, and the
equation should be interpreted in an operator sense. The representation (6.251)
suggests that (6.253) is a good version of the OPE in non-vacuum states, with the

first term giving the only possibly-growing contribution in the Regge limit.

The “other contributions" can perhaps be understood by studying the terms that we
ignored above, coming form H, ; and part of ?‘A% We expect that they can be un-
derstood more systematically using harmonic analysis on the Lorentzian conformal
group §(3(d, 2). (We hope to address this in future work.) In a finite-N CFT, the
correlator saturates in the Regge limit — i.e., it eventually stops growing. Thus,
the details of these terms will presumably be important for determining the actual

behavior of the correlator in the Regge limit.>2

6.6 Positivity and the ANEC

The average null energy condition (ANEC) states that & = L[T] is a positive-
semidefinite operator. The ANEC was proven in [72] using information theory and
in [73] using causality. The causality-based proof [73] proceeds by isolating the
contribution of & in a correlation function and using Rindler positivity to show that
the contribution is positive. Isolating & requires using the OPE outside its naive
regime of validity. However, the authors of [73] give an argument that one can still

trust the leading term in the OPE in an asymptotic expansion in the lightcone limit.

From our work in section 6.3, we now have an alternative construction of & as a
special case of a light-ray operator. Using this construction, we can avoid asymptotic

expansions and any technical issues associated with using the OPE outside its regime

>2We thank Sasha Zhiboedov for discussions on this point.
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of validity. Beyond technical convenience, our approach gives extra flexibility. The

authors of [73] also prove a higher-spin version of the ANEC:
Ey=L[X;] >0, (J=2,4,...), (6.254)

where X is the lowest-dimension operator with spin J.3334 Our construction lets

us generalize this statement to
&5 20, (J €Rsy,)s (6.255)

where Jnin < 1is the smallest value of J for which the Lorentzian inversion formula
holds [66]. Here, &;(x, z) denotes the light-ray operator with dimension and spin
(1 -—J,1—-A), where A, J are real and A is minimal. This result follows by writing
a sum rule for all light-ray operators, and simply observing that it is positive by
Rindler positivity when (A, J) satisfy the above conditions. When J is an integer,
(6.255) reduces to (6.254). However, when J is not an integer, (6.255) is a new

condition.

A possible connection between Lorentzian inversion formulae and the ANEC was
first suggested by Caron-Huot using a toy dispersion relation [66]. In this section,

we are simply making the connection more precise.

6.6.1 Rindler positivity
Rindler positivity is a key ingredient in the causality-based proof of the ANEC [73],

so let us review it. Given x = (¢, y, X) € R4+L1 define the Rindler reflection

X =(tyX) = (-1,-y"X). (6.256)

Rindler conjugation maps an operator in the right Rindler wedge to an operator in

the left Rindler wedge. For traceless-symmetric tensors, it is defined by
O(x,z) = 0'(x,2). (6.257)

More generally, Rindler conjugation is given by5 = JOJ,where J = U(R(y, 7))CPT,
with R(y, ) a rotation by = in the y7 plane, where 7 = it. Note that Rindler conju-

gation does not change the order of operators

0,0, = 0,0,. (6.258)

33More precisely, X; can be the lowest-dimension operator with spin J in any OPE of the form
0" x 0.

34The proof of the higher-spin ANEC in [73] relies on some assumptions about subleading terms
when the OPE is used as an asymptotic expansion outside of its regime of convergence. We thank
Tom Hartman for discussion on this point.
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The statement of Rindler positivity is that
QIO+ 0,0 - 0,|Q) > 0, (6.259)
where O; are restricted to the right Rindler wedge
Wr ={,v,X) : uv>0, argv € (-%,5), X € RY2), (6.260)

(Here, we use lightcone coordinates u =y —t,v =y +1.)

To establish (6.259) for general causal configurations of the O;, [248] appeals to
Tomita-Takesaki theory. However, this is not necessary as argued in [73]. We can
summarize their argument as follows. Because the operators O - - - O, act on the

vacuum, we can perform the OPE to replace

01+ 0,1Q) = > Clxi, x,3)0(x)|Q), (6.261)
0

where C(x;, x, 0y) is a differential operator. We are free to choose x to be any point
in ‘W (we cannot choose x to be timelike from the X;). Truncating the sum, we
approximate the right hand side by a local operator. The expectation value (6.259)
then becomes a Rindler-reflection symmetric two-point function. Positivity of this
two-point function is a consequence of reflection-positivity, since the two points are

spacelike-separated.

6.6.2 The continuous-spin ANEC

Following [73], we will prove
(QIVE,VIQ) > 0, (6.262)

where V is any local operator located at a point xy = (0,9,0) € Wk in the right
Rindler wedge. Here, &', is a continuous-spin light-ray operator of spin-J with
lowest twist, oriented along the null direction z = (1, 1, 6). As argued in [73], it

follows that &, satisfies the positivity condition
¢2HQIR-V) (1 = -is) &, (R-V)(t = i6)|Q) > 0, (6.263)

where R rotates by % in the Euclidean yt-plane, with 7 = it, and R - V represents
the action of R on V at the origin. States of the form (R - V) (¢t = i9)|Q) € H are

dense in H, by the state-operator correspondence. Thus,

E,=e2g, (6.264)
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is a positive operator.

Let ¢ be a real scalar primary. We will produce &, by smearing two ¢ insertions.
For simplicity, we will not attempt to divide by OPE coefficients in the ¢ X ¢ OPE.
Thus, when J is an integer, we will actually have &; = fs4x,L[X /], where X is the
lowest-twist operator of spin-J in the ¢ X ¢ OPE and fy4x, is an OPE coeflicient.
In particular &, in this section differs from the usual ANEC operator by a factor of

Soor-
From (6.174), we have

(VO (—0z,2)V) = f e o, A1 X2AQUV, )G (x2), VIIQ) Ky (x1, %2),
2iu(A, ))Se(¢plO)) | ~ _
K y(x1,x2) = LICERAGIL ])<0|¢(X1)L[0](—00z,z)qﬁ(xZ)IO).

(¢$0), (pdOY)E
(6.265)

We have included a factor of 2 from the term 1 < 2 in (6.174), and we should
interpret the prefactors in K ; as being analytically continued from even J. The

matrix elements of &; are defined by
{QIVE,VIQ) = Res i(VO} ,(—00z, 2)V), (6.266)

where A, is the location of the pole in O} , with minimal real A. The expression
(6.265) is guaranteed to be convergent for A € % + iR on the principal series. In

particular it converges at A = ‘51. Our strategy will be to show that i (V@X’ (x5, 2)V)

d
2

(figure 6.15). It follows that the first pole we encounter must have positive residue.>>

is strictly negative as we move rightward along the real axis starting from A =

The kernel K, ; is given by

27iu(A, J)SE(pplO1) L($4[O1) (z-xox% =z xpxd) ™A
Kaj(x1,x2) = — — — —.
(<¢¢O>, <¢¢O>)E x?gd’_A-h](—Z . xl)%(z . xz) 2
(6.267)

We would like to show that K j(x1, x2) is a positive-definite kernel when integrated
against Rindler-symmetric configurations of xj, x,. Note that this is a stronger

condition than Kx ;(x, x) > 0 point-wise.

SRequiring negativity for all A between % and the first pole is stronger than necessary. It should
be possible to improve our proof by establishing negativity only for A sufficiently close to the first
pole.
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i(VO} V) positive residue
A=4d A
negative l

Figure 6.15: We show that l(VO+ V) is negative for A between 4 5 (the principal
series) and the first pole. It follows that the first pole has positive residue.

Consider first an inversion x — x’ = % that places &, at null infinity. In this
conformal frame, the three-point structure (O|¢L[O]#|0) becomes translationally
invariant. Thus our kernel should be a translationally-invariant function of x/, x7,
times some scale-factors that depend independently on xy, x>. Indeed, it is easy to
check

1-A

(z-xzx%—z-xlx%)
2Ap—A+T 2-J-A 2-J-A
12¢ ( Z: X1) 2 (Z X2) 2

( , ,) 1-A
—~ —~ J+A=2 J+A-2 (2 (X5 — X
_ 2Ag 2A ’ 2 ’ 2 ( 2 1 )
=X, "X, (—z . xl) (z . x2) — . (6.268)

(xlz _ x/1)2A¢—A+J

Because our kernel originates from the light-transform of a three-point structure,
it inherits Rindler positivity properties. These are made clear by going to a kind
of complexified Fourier-space in the inverted coordinates xi. Define lightcone
coordinates x~ = u = y—tand x* = v = y +¢. One can prove the following identity

which is valid in the right Rindler wedge u, v > 0:

ul-A 72-2A5—]
Wy-A+T 2 DAs—A 2Ap+J+A—d
w+2) 7 a TR,
2A +A+J d-2
xf Ak (—k) T =k A f()
k>0
fk(x) =e 2k+u+ k™ v+th (6269)

Here, the notation £ > 0O indicates that & is restricted to the interior of the forward

null cone. This ensures that k*u is positive and k~v is negative, so that the integral
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is convergent. The complexified plane wave fj(x) is designed to satisfy

Jk(X)" = fi(=X). (6.270)

Putting everything together, we find

2A +A+J—-d-2
Koot =Kas [tk (=075 (O i)@'
k>0
(6.271)
where
J+A-2 17+ 17— .7 >
1 u\ : —skTu+5kTv+ik- X
i) = — (;) exp( = : (6.272)
21—d—A+]+2A¢,1"(J + c_l)l'*(]+d+l—A)r(A _ )
Ky = (6.273)
)F(J+A+d 2A¢)F(J A+22d 2A¢)
Consequently, we can write
_ d 5 ZA +A+J—-d-2 1-A —~—
i(VOy ;(=00z,2)V) = —7<A,Jf d%k (=k7) (=k7) (O Ox),
k>0
O = f d*x Y (x)[p(x), V1. (6.274)
Xy <x<o0og
The coefficient K, s is positive whenever
d>A-J>2(d~-Ayp). (6.275)

This is also the condition for K j(x1, x2) to be integrable without an ie prescription.
When these conditions hold, the minus sign in (6.274) ensures that the first nontrivial
residue in A is positive. This proves the ANEC and its continuous spin generalization
in this case.

Let us understand the condition A — J > 2(d — Ag) in more detail. When this
inequality fails, two things happen. Firstly, the factor

J—A+2d-2A,
r (6.276)

2

in Kx; may no longer be positive. Secondly, the kernel Ka j(x1, x2) develops
a naively non-integrable singularity along the lightcone. To make sense of this
singularity, one must take into account the appropriate i€ prescription for x1, x5. This

turns K j(x1, x2) into a non-sign-definite distribution, and then we cannot conclude
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anything about the sign of (6.274). To get the strongest result, we should pick ¢ to
be the lowest-dimension scalar in the theory. The spin-2 ANEC then follows if Ay <
%. Large-spin perturbation theory [31, 68, 69, 77, 102—-104, 106, 162, 228, 229]
and Nachtmann’s theorem [68, 160, 249, 250] imply that the minimum twist A — J
at each spin J is always less than 2A4. Thus, we can ensure A — J > 2(d — Ay)
if Ay < 4 This condition is also sufficient to ensure d > A — J. Thus, the

2
continuous-spin ANEC follows if Ay < %.

6.6.3 Example: Mean Field Theory

The continuous spin version of ANEC is easy to check in MFT. (This is essentially
the same calculation as in [73, 251].) We have already computed the leading twist
operators &, = @& ; in section 6.3.4. In this section we need the straightforward

generalization of (6.150) to the case of identical operators,

] t —t
& =0;, = ;—ﬂfdsdt(t+ie)_l_1 :¢(%z)¢(%z) :, (6.277)

with a future-directed null z. We can explicitly compute these operators in terms of

creation-annihilation operators using

_1 dd d , .
¢(x) = NA: jg;>0 (2ﬂI;d Ip|Ae2 (aT(p)e_’px + a(p)elpx), (6.278)

where Ay is the scaling dimension of ¢ and

d-2

Na=—oma

r(AA-%42)>0. (6.279)
The creation-annihilation operators satisfy the commutation relation

[a(p),a’ (¢)] = 2n)*6%(p - q). (6.280)

Plugging (6.278) into (6.277), we find

d d . .
. f ; pd : qd f dsdi(t + i)' |a’ (p)a’(qre 2P 20
p,q>0 (271') (27T)

+ a(p)a(q)e%(P+51)‘zs+%(P_Q)'ZI
+ aT(p)a(q)e—%(P—C])'ZS—%(P+Q)'Zf

(6.281)
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The first two terms under the integral vanish because s-integration restricts (p + g) -
z = 0, which is impossible since both p and ¢ are in the forward null cone. This
is consistent with the requirement that @& ; should annihilate both past and future
vacua. Since (p + g) - z < 0 we can close the 7-contour in the upper half-plane for
the third term (for J > 0) and thus it also vanishes. We are left with the last term,
where we can close the 7-contour in the lower half-plane. Specifically, we get for s
and ¢ integrals

T(J+1) 2
(6.282)

. . 2 —imegel J
fdsdt(t + ie)—l—Je%(P—q)~zs+%(p+q)-zt _2n°6((p—q) - 2)e 2 (J+D) (—(P +q) - Z) .

Combining with the rest of the expression we find, using the lightcone coordinates

p=2zpy/2-7p,/2 +pwithz- -2 =2,

_1
2

in

—izyg
7re2NA

&= Taan ), wePiA (POAPY. (6.283)
0
where
d Vdd—Z
A(py) = f| | p(T)dpa(pu, P D). (6.284)
PI<pupv
For &; = e%rJS’J we then obtain
1
N 2 oo
Ag o
&y = mﬁ dpup, A" (pu)A(py) 2 0, (6.285)

which is manifestly non-negative.

6.6.4 Relaxing the conditions on Ay

The conditions (6.275) are stronger than necessary because we have not assumed
anything about the quantity that K y(x1, x2) is integrated against. We can somewhat
relax them as follows. Note that poles in i <V©A, 7(—00z,7)V) come from the region
where xp, xo are near the lightray Rz. In this region, we expect the correlator
(QI[V, d(x1)][d(x2), V]|Q) to depend most strongly on the positions vy, v, of the
operators along the light-ray and simple invariants built out of the relative position

X1 — X2, since V, V are far from the light ray.
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To be more precise, consider the integral over xi, x, in the coordinates of sec-
tion 6.3.4,

27iu(A, J)SE(¢$lO1) L($B[O])
(¢O), (pPOY)E

_I_A*Al —Ay+J
2

21

7J-1 2)1‘A

2
Ap+Dy+J-A  Ap-By+2-A-J Ay—Ap+2-A-J
1+w)" 2 a 2 (l-a)~ 7

v a(l—cx)+(1—a)w%+aw

f L avidvadad®=wid?*w,

A=Ay - Az

Xr ¢(-ra, vy, (FVz1)2W1)¢(r(1 —a), v, (FV21)2W2) (6.286)

The most important quantities built from x, are
2 _ 2
Va1, X7, =rvar (1 +w2). (6.287)

Let us make the approximation that, to leading order in r, the correlator (v, olle, V1)

depends only on vy, v, and x%z. That is, let us replace

1 i
d(=ra,vi, (rva1)2w)o(r(1 = a), va, (rv21)2wy)

~ ¢(—%(1 +w2), vl,O)cp (g(l + w2), v, o). (6.288)

This approximation would be valid, for example, if we could perform the OPE
d(x1) X ¢(x7), since the leading terms in the OPE depend only on v,; and x%z

However, our assumption is weaker than assuming that we can perform the OPE.

After rescaling r — r/(1 + w2), we can now perform the integrals over @ and w.,

following the methods in appendix E.4. The result is

i(VOy, ;(—00z,2)V)

2d+J -4 20g-At] 28y -A-J-2
f—a’md\/zr Ty, 0 (QIV, 65 vi, 0]1[¢(5, v2, 0), V]IQ)

21
pd+J—4 dr 28s-A+J 0o A+J=2A4 -
- dr 2 f dk k7 QB O (1)),
A+J+2-2A4 r 0
al’ (—2 )
(6.289)
where
O (r) = f dv e M [¢(5,v,0), V1. (6.290)
0

The integrand in (6.289) should be correct to leading order at small r, which

means the leading residue of i (V(O)A, j(—=00z, 2)V) should be correct. This residue is
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manifestly positive whenever

A+J+2

A
¢ < 5

(6.291)

For example, this proves the continuous spin ANEC for all J > 2 if the lowest-

< d+4

dimension scalar in the theory has dimension A, <

6.7 Discussion

We have argued that every CFT contains light-ray operators that provide an analytic
continuation in spin of the light-transforms of local operators. This gives a physical
interpretation of Caron-Huot’s Lorentzian inversion formula [66]. Our construction
involves smearing two primary operators O, O, against a kernel to produce an
object O, ;, and then taking residues in A to localize the operators along a null ray.
We have not shown rigorously that the integral localizes to a null ray (as opposed
to a lightcone). However, we expect this is true based on the example of MFT and
the fact that it’s true for integer J. More generally, we expect that any singularity
in the (A, J)-plane should lead to a light-ray operator. (For instance, one could
take the discontinuity across a branch cut instead of a residue.) It would be nice to
understand better the structure of the (A, J)-plane in general CFTs. We know that for
nonnegative integer J, the object Op ; has simple poles in A at the locations of local
operator dimensions. However, we do not know how it behaves for general complex
J.5¢ We also have not addressed the question of whether different operators Oy, O,
produce different light-ray operators. We expect that in a nonperturbative theory,
the same set of light-ray operators should appear in every product O;0;, if allowed

by symmetry. It would be nice to show this rigorously.

Light-ray operators have the advantage over local operators that they fit into a more
rigid structure, due to analyticity in spin. However, unlike local operators, they are
not included in the Hilbert space of the CFT on S¢~! because they annihilate the
vacuum. One way to realize them as states is to double the Hilbert space (with time
running forwards in one copy and backwards in the other). The O; ; then become
states in the doubled Hilbert space.5” A general message is that the doubled Hilbert
space contains interesting structure that is not visible in a single copy, and it would

be interesting to explore this idea further.

In planar N = 4 SYM, beautiful pictures of the (A, J)-plane have been constructed using
integrability [252-255].

570, j itself is a somewhat violent state. However, we can regularize it by acting on the thermofield
double state with some temperature 5. We thank Alexei Kitaev for this suggestion.
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We have seen that light-ray operators enter the Regge limit of CFT four-point
functions. It would be nice to understand the actual spectrum and OPE coefficients
of continuous-spin light-ray operators in important physical theories (e.g. the 3d
Ising model, N = 4 SYM, and more), in order to determine what the Regge
limit actually looks like in those theories.>® Such operators have been explored in
weakly-coupled gauge theories (see e.g. [234-239]), and it would be interesting to
study other perturbative examples. For example, can one write a continuous-spin

generalization of the Hamiltonian of the Wilson-Fisher theory [256]?

Another important question is the extent to which light-ray operators form a complete
basis for describing the Regge regime. Indeed, in our discussion in section 6.5, we
ignored certain non-growing contributions in the Regge limit. It would be interesting
to include them and give them operator interpretations. Perhaps lightcone operators
or other types of nonlocal operators play a role. This question is also interesting in
1 dimension, where the analog of the Regge regime is the so-called “chaos regime”

of a four-point function.

In any spacetime dimension, we can ask: is there a complete basis of nonlocal opera-
tors transforming as primaries in Lorentzian signature? Identifying a complete basis
could help in developing a generalization of the OPE that is valid in non-vacuum
states. (The usual OPE still works as an asymptotic expansion in non-vacuum states,
but we would like to find a convergent expansion.) Such a generalization would be

a powerful tool for studying Lorentzian physics.

Relatedly, it would be interesting to study OPEs of light-ray operators with each
other, especially the ANEC operator & = L[T].5° In “conformal collider physics"
[76] one considers ANEC operators starting at the same point &(x, z1)E(x, z2)
(usually taken to be spatial infinity x = oo, so that the light-rays lie along future null
infinity), and it is natural to study the limit where their polarization vectors coincide
z1 — 2. This question was explored in [76], where it was argued that the leading
term in the & X & OPE in N = 4 SYM is a particular spin-3 light-ray operator that
can be described in bulk string theory using the Pomeron vertex operator of [224].
It would be nice to determine a systematic expansion for this limit in a general CFT.
Such an expansion could be useful for computing energy correlators and studying

jet substructure in CFTs. Light-ray operators could also be useful for understanding

38Besides planar N = 4 SYM, another CFT where the Regge limit of a four-point function has
been computed is the 2d (supersymmetric) SYK model [174].
We thank Sasha Zhiboedov for discussion on this point.
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aspects of deep inelastic scattering and PDFs.6°

In this work, inspired by Caron-Huot’s beautiful result [66], we have been led to
an unusual hybrid of Euclidean and Lorentzian harmonic analysis, i.e., harmonic
analysis with respect to the groups SO(d + 1,1) and §6(d, 2). However, many
of the resulting formulae suggest that it might be fruitful to start with §()(a’, 2)
from the beginning. For example, after applying the Sommerfeld-Watson trick,
Regge correlators are written as an integral over A and J, which is suggestive of an
expansion in Lorentzian principal series representations (this observation was also
made recently in [257]). It will be important to develop this area further and explore

its implications for many of the above questions.®!

The intrinsically Lorentzian integral transforms introduced in section 6.2.3 have
been a key computational tool in this work. These transforms have a natural group-
theoretic origin as Knapp-Stein intertwining operators for SO(d, 2), but they can also
be applied to representations of §(3(d, 2). In this work, we have focused primarily
on the light-transform, but the remaining transforms may also have interesting
applications. For example, it would be interesting to compute the full monodromy
matrix for spinning conformal blocks in terms of intertwining operators, generalizing
(6.251). Steps in this direction have already been taken in [242].

One concrete result of this work is a generalization of Caron-Huot’s Lorentzian
inversion formula to four-point correlators of operators in arbitrary Lorentz repre-
sentations. Caron-Huot’s original formula has already proven useful in a variety of
contexts [258-264],6% and we hope that our generalization will be similarly useful.
For example, one might try to determine all four-point functions in theories with
weakly-broken higher spin symmetry, generalizing the results of [262]. It would also
be interesting to study inversion formulae in the context of stress-tensor four-point

functions, perhaps making contact with the sum rules in [240, 267].

An important application of Lorentzian inversion formulae is to the lightcone boot-
strap and large-spin perturbation theory [31, 68, 69, 77, 102-104, 106, 162, 228,
229]. Lorentzian inversion formulae make it particularly simple to study OPE coeffi-
cients and anomalous dimensions of “double-twist operators” [68, 69] and averaged

OPE data for “multi-twist" operators (see e.g. [263, 264]). An important problem

%OWe thank Juan Maldacena for this suggestion.

6'We thank Abhijit Gadde for emphasizing this idea.

92See also [265, 266] for applications of Lorentzian inversion formulae to quantities other than
vacuum four-point functions. It would be interesting to understand whether light-ray operators offer
a useful perspective on these works.
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for the future is to disentangle individual multi-twist trajectories. It is likely that
this will require studying crossing symmetry for higher-point functions. We hope

that light-ray operators will offer a useful perspective on this problem.

Another result of this work is a new proof of the average null energy condition
(ANEC), obtained by combining the causality-based proof of [73] with the idea of an
inversion formula. Our proof has some technical advantages over [73]. For example,
it does not use the OPE outside its regime of validity, and it also allows one to move
away from the asymptotic lightcone limit. However, it also has disadvantages.
In particular, our proof requires the CFT to contain a sufficiently low-dimension
operator, and this condition is absent in [73]. It would be interesting to understand
whether this condition can be relaxed further while still using an inversion formula.
Another technical point that is worth clarifying is the role/necessity of Rindler
positivity, as opposed to the more easily-established “wedge reflection positivity”

[248] or the traditional positivity of norms.

The ANEC has a growing list of interesting applications in conformal field theory
[76,240,241,268-270]. However its higher-spin generalizations [ 73] have been less
well-explored. We have additionally proven that the ANEC holds for continuous spin
—i.e., on the entire leading Regge trajectory. It would be interesting to understand
the implications of this result, for example in a holographic context. (See [271] for
recent work on shockwave operators, which are holographically dual to light-ray
operators.) It would also be interesting to understand the information-theoretic role
of continuous-spin operators. How do they behave under modular flow? Can they
appear in OPEs of entangling twist defects? The ANEC can be improved to the
quantum null energy condition (QNEC) [272, 273], which was recently proven in
[274] together with a higher integer spin generalization. Is there a continuous-spin
version of the QNEC?
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Chapter 7

REFLECTIONS ON CONFORMAL SPECTRA

This chapter is essentially identical to:

H. Kim, P. Kravchuk and H. Ooguri, Reflections on Conformal Spectra, JHEP 04
(2016) 184,[1510.08772].

7.1 Introduction
Modular invariance and crossing symmetry relate ultraviolet and infrared properties
of conformal field theory and impose strong constraints on its energy spectrum and

operator product expansion (OPE). In two dimensions, the partition function,

Z(1) = tr gho~% gl 41, (7.1)

2T and

is invariant under the modular transformation, T — —1/7, where g = e
is the torus modulus. In any number of dimensions, a four-point function on the
sphere,

G(x) = {0l¢(2)p(1)p(x)¢(0)[0), (7.2)

is invariant under the crossing transformation, x — 1 — x, where x is the Dolan-
Osborn coordinate [118]. The use of modular invariance was initiated in [275].
The conformal bootstrap program to exploit crossing symmetry was pioneered in
[26, 27], was developed further in two dimensions starting with [29], and is currently

undergoing a renaissance in higher dimensions starting with [30].

The quintessential application of modular invariance is the Cardy formula [275],
which describes the spectral density for a large scaling dimension A with a fixed
value of the central charge c. In [25], crossing symmetry was used to estimate the
spectral density weighted by the OPE coefficients, for large A with a fixed value of
the scaling dimension A of the external operator ¢ in (7.2).

In this paper, we will study the different limits:
A, ¢ — oo, with A/c: fixed, (7.3)
for the partition function,

A, Ag — oo, with A/Ag : fixed, (7.4)


http://dx.doi.org/10.1007/JHEP04(2016)184
http://dx.doi.org/10.1007/JHEP04(2016)184
https://arxiv.org/abs/1510.08772

323

and
A Ay, d — oo, with A/d, Ag/d : fixed, (7.5)

for the four-point function. Here d is the spacetime dimension.

The limit (7.3) for the partition function was considered in [74], where it was
shown that the Cardy formula holds for A > ¢/6 under a certain condition on light
spectrum, strengthening the result of [275], which held only in the limit A > ¢. In
this paper, we will describe an approximate symmetry of spectral decomposition
of the partition function, which can be used to motivate this result. Moreover,
this symmetry suggests some bounds for the spectral density, which we derive by
independent techniques. We employ a similar approach to study the limit (7.4) of
the four-point function to derive properties of the spectral density weighted by the
OPE coefficients as a function of A. This approach proves to be universal and we

apply it also to the case of large spacetime dimension.

7.2 Results
7.2.1 Partition function
To study the partition function in two dimensions, we will use the following simpli-

fied expression:
Z(1) = f g“ n(A)dA, (7.6)
0

where n(A) is the density of conformal primary states with scaling dimension A.
This formula ignores contributions from Virasoro descendants, which will turn out
to be subleading in 1/c in what follows. Another interpretation is that n(A) is the
density of all states, not just the primaries, in which case the above formula is valid
literally. The spins of primary states are not visible when ¢ is real and 7 is pure

imaginary, which we will assume throughout the paper.

Our basic observation is that modular invariance Z(7) = Z(-1/7) implies the

following approximate reflection symmetry in the space of scaling dimension A:

— _ c

Te(8) = Toaje (1 + 1755 — 17PA) x [P (1.7)
where w.(A) is defined by

1 ¢
we(A) = %q“ﬁnm), (7.8)

wr(A) = Ke(A) * w (), (7.9)
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and * denotes convolution, (f * g)(x) = f f(x —y)g(y)dy. Here the kernel K,
smears the integrand of (7.6) over the interval of size £, v/c < & < c. Note however
that K. decays rather slowly outside of this interval — see section III.A.1. With this
definition, w, measures the significance of A in the partition function averaged over
the small interval of the size & to smooth out the sum of delta-functions in n(A).
Since A is bounded below by 0 in any unitary theory, w,(A) approximately vanishes

for A < —&. The reflection symmetry (7.7) maps this to

wr(A 2 Ar) =0, (7.10)
where the edge A; is given by
1 c
Ar=|1+—]|—. 7.11
' ( |r|2) 12 (D

We can estimate how fast the integrand of (7.6) decays above this threshold A > A,

IT| <1, as
2

I+ T4 (%)’

f B we(A)dN < (7.12)
A

where Toy,+1(x) is the degree (2ko + 1) Chebyshev polynomial of the first kind and
ko is chosen so that ky < /c. In the limit of ¢ — oo, the half decay width of the
right hand side is ~ ¢/kg > +/c.

Of course, from Cardy formula one expects exponential rather than polynomial
decay, but this formula shows the specific threshold value A, beyond which there
can be no dominant contribution to Z (7). From the discussion in [74] it follows that
there exist theories which essentially saturate this bound, i.e., for which the integral
(7.6) is dominated by states at A;.

This happens in theories satisfying the sparse light spectrum condition, defined in
[74] as

n(A/) g eZnA’

for0 < A <c/12, (7.13)

where the inequality should be understood in an averaged sense. The essence of
this condition is that the partition function for the low temperature phase |7| > 1 is
dominated by the vacuum state (in particular, the maximum of w.(A) is at A = 0).
In this case, the reflection symmetry shows that the maximum of w (A) jumps to the

edge A; in the high temperature phase |7| < 1, and gives a prediction on the value
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of this maximum. With 7 changing in the high-temperature phase the maximum at
A; scans through the region A > ¢/6, allowing one to obtain information on n(A)
in this region. Rigorous microscopic estimates were made in [74], and the resulting

Cardy-like formula is

7(A) = exp (2n % (A - 1_62) ; 0(00‘)), (7.14)

for A > ¢/6 and the average density of states,

A+e’
n(A) = éfA‘ n(AHdAN, (7.15)

withe' ~c*, 1/2 < a < 1.

7.2.2 Four-point function

In this section we consider the four-point function of identical scalar operators of
scaling dimension Ag. We insert the four operators on one two-dimensional plane,
which we identify with the complex plane of variable x. We insert three scalars
at 0, 1, co and the fourth scalar at the Dolan-Osborn coordinate x. This four-point
function (7.2) can be expressed as a sum of the spectral density weighted by the OPE
coefficients and the conformal block #a¢(x) for the scaling dimension A and the
spin ¢, see e.g., [25]. Here and throughout the paper, we assume that the coordinate

xisrealand 0 < x < 1.

As a by-product of our work, we find an expression for ¥ ¢(x) for general ¢ in the
scaling limit (7.4), when external operators are identical scalars. In Appendix A,
we will solve the fourth order differential equation derived in [80] for the conformal

block to show, for x < 1,

)\~ 5 +K(ALp)
Faclx) = p*[1- £
’ 16
X (1+0(1/A)), (7.16)
where p is the radial coordinate,
4x

S B— 7.17
ENTIRR ey (17

introduced in [25] and discussed further in [59]. Note that this approximation breaks
down when x — 1. This should be kept in mind when interpreting the formulas

below. In general the results of this section apply to the limit Ag — oo with x kept
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fixed. In this limit, spin dependence of the conformal block is only through the

exponent (A, £, p), which behaves as
k(AL p) >0, (A—€~A), (7.18)
1
— > (A =€+ d — 2 : unitarity bound).

Here in the first case ¢ can be on the order of A, but has to stay away from the
unitarity bound. Between the two cases x can acquire p dependence. However,
the results in the two regimes suggest that the factor (1 — p?/16)~4/2+«(A6p) in the
conformal block (7.16) is altogether negligible in the large A analysis in this paper,
just as Virasoro descendants are negligible in the partition function as in (7.6). Thus,

we can express the four-point function in the scaling limit (7.4) as

G(x) = f B PP x0g(A)dA, (7.19)
0

where g(A) is the spectral density weighted by the square of the OPE coefficients,
which is non-negative when ¢’s are identical. One can of course keep this subleading
factor in what follows without affecting the conclusions. Note that though we made
no assumptions on the spins of the intermediate states, the spectral decomposition

of G(x) is blind to them for real x and large scaling dimensions.

One can also view (7.19) as an exact expansion, in which we have discarded the
structure of conformal multiplets and treat primary and descendant operators on
equal footing. This is the radial coordinates expansion of [25, 59]. Below we also
consider another kind of “descendant” expansion, which corresponds to a different

choice of coordinates.

Since the spectral decomposition of the four-point function (7.19) is similar to that
of the partition function (7.6) in these limits, crossing symmetry G(x) = G(1 — x)
implies a similar reflection symmetry in A. Let us introduce the “branching ratio”

of ¢(x) X ¢(0) turning into operators of dimension A,

_ LA aa
Yx(A) = cof g(A), (7.20)
Yx(B) = Kag(B) * yx (D), (7.21)

with K, averaging over intervals of the size VA) < & < Ag. In terms of this

quantity, the approximate reflection symmetry is expressed as

_ _ 1 1-—x
V(D) =Y (ﬁ (ZAO - V1 - xA)) — (7.22)
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The reflection of ¥, (A < —¢) = 0 is then

Y (A2 A) =0, (7.23)
where the edge A, is given by
A 2 A (7.24)
= 0- .
! V1-x

As in the case of the partition function (7.12), we can estimate how fast y, (A) decays
above the threshold A > A, x > 1/2 as

2

Yo (A)dA" < —, (7.25)
J. T ()

with kg < VAg. Note that the half-decay width is ~ Ag/kg > VAg. This can
be compared to the conformal block expansion of the correlation function of the

generalized free field,

1 1
G(x) = i + T + 1, (7.26)

which can be shown, as long as x is away from 1, to have a saddle point at A = A, of
width ~ vAy. In this order-of-magnitude sense the bound (7.25) is almost saturated.

We can also perform the “descendant” expansion in the standard coordinates de-
scribed in the beginning of this section (see e.g., [25]), again treating primary and

descendant operators on equal footing,
G(x) = f xA72206 ) (A)dA, (7.27)
0

where we added the superscript ) to g(A) to note the fact that we are expanding
G(x) in what we will henceforth call “scaling blocks”. We use a similar notation
for branching ratios 7§S), 7;3). All of the above results also hold in this case, with
the modification that now

Ay = , (7.28)

the reflection relation is

—(s _ 2 l-x \1-x
7O =7, (—Ao - A) : (7.29)
X X X
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7.2.2.1 Finite-Aq bounds
So far, our statements have been in the limit (7.4) of large A and Ay. In the case of

the scaling block decomposition of four-point function, we can derive inequalities
which are valid at finite A and Ay. For example, for 2 < 4A¢ < A,

00 1
(s) ’ ’
L 71/2(A )dA < 1+F(A—2A0+1)F(2A0)’ (7.30)
JEnE
where 1
() A) = A28 ,(5) (A). 7.31
7B) = G @) (731

Note that this bound also implies a bound on individual delta-function contributions
to g, since they are all positive. If we keep Aq finite and take A — oo, this

inequality becomes
280-%

® A
f Yih(A)AN < V2r
A

In this limit, this inequality is stronger than the asymptotic bound of [25],

N 2720 A2
D AN < , 7.33
fA Yip(A) T G(1/2) 22T (2A¢ + 1) o

However, the Cardy-like asymptotic of [25],

A
f g (A)dN ~
0

suggests by differentiation that one can expect the stronger convergence rate of

A2A0

QA+ 1) (7.34)

f YO (AN o APTI27A (7.35)
A

While (7.30) is weaker than this expectation, it has the advantage that it is rigorous
and holds for finite A and Ay.

In fact, the method we use for proving this bound is quite general and can be used for
construction of finite A and Ag analytic bounds for (7.19) as well. We have checked
that these bounds are asymptotically at least as strong as those of [25], still having
the advantage of being valid for finite values of A. Given the improvement of (7.30)
over (7.33), one might expect that an improvement is possible for (7.19) as well. We

hope to return to this question in future.

So far, we did not assume that the four-point function is dominated by a saddle point.

If we make this assumption, our results have simple explanation. Let the location of
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the saddle point in the expansion of G(x) be A(x), which has to obey the reflection

relation imposed by crossing symmetry,

A(x)=2A0  A(l - x) =24
X B 1—x '

(7.36)

dlog G(x)
dlog x

relation G(x) = G(1 — x). In unitary theory A(x) > 0, which implies, by the above

This is most easy to see if we note that A(x) —2A¢ = and apply the crossing

relation,

2A¢

A(x) < A = ] (7.37)

7.2.2.2 Cardy formula

An analogue of the sparse light spectrum condition (7.13) for the four point function

can be introduced, namely,

g9 <24,
for 0 < A < 2A. (7.38)

Again, this should be understood in some averaged sense, such that this condition
would imply that the four-point function for |x| < 1/2 is dominated by the vacuum
state. Then, by the reflection symmetry, the maximum of y,(A) jumps to the edge
A; for |x| > 1/2. This, exactly as in the case of the partition function, can be

translated into a statement on g‘*)(A), which reads, for A > Ay, = 4A,,

g,(A) =exp

240
~Alog |1 -2+
iy

A
+2Ap log (— - 1) +0(Ap) |, (7.39)

2A¢

where 1/2 <@ < 1,and g is g integrated on the scale § ~ AZ.

7.2.3 Four-point function in large spacetime dimension

So far we have only discussed the limits where the operators considered were heavy
compared to any other scales we had, and in particular far away from the unitarity
bounds. Some interesting phenomena happen near unitarity bounds, such as that a
scalar field has to become free as its scaling dimension is pushed toward the bound.
In this section we consider a limit in which we take not only the scaling dimension
of the external scalars, but also the number of spacetime dimensions d to be large.

In fact, when the number of spacetime dimensions is taken to be large, the unitarity
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bounds force all the operators to become heavy. We are then able to apply the same

methods as before, but now to all operators in the theory.

Recall that the unitarity bounds are

d-2 d
A > ) for non-identity scalars, (7.40)
A>Cl+d-2~C+d for operators with spin, (7.41)

and thus the natural limit is the double scaling Ag ~ d — oo. In this limit we can
see the gap between the identity and the lightest allowed scalars and the difference
between the lightest scalars and the lightest spin operator. Appearance of these

features means that now we have to distinguish several classes of operators.

It turns out that for us there is no difference between spin and scalar operators, since
on the real line x = X the conformal blocks in a large number of spacetime dimension
do not depend on spin (for details on conformal blocks see Appendix F.2). However,
the gap above the identity is important and the identity operator has to be treated

separately.

As mentioned before, we can apply almost the same methods as we used in other
limits. A new feature is that the duality relation is now non-linear and is not
as pleasant to manipulate as in the above discussions. However, it carries more
information, since we are now able to take our external scalars close to the unitarity

bound.

Let us introduce the duality relation. We state it in the following form,
Ax(D) = =A(A)1-s. (7.42)

This has to be understood as an implicit relation between the symmetry-related
scaling dimensions A in the conformal block expansion at x and A" at 1 — x. Here

A, is given by

1 dlog x2MF, (x)
) = & £ o,

and F} is the spin-independent conformal block. The explicit form of A, is cum-

(7.43)

bersome, but is straightforwardly obtained from (F.36) for A > 0. For the identity

operator Fp(x) = 1, and so we get A, = —2/x. One can easily obtain the range of
A, corresponding to the unitary range A € {0} U [d/2, +00). It is given by

el 1 2

X 200x(1 —=x) x

+00

, (7.44)
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A A
(@) 6p = 1 (b) 59 =1/2

Figure 7.1: Allowed range for A, as a function of x for 69 = 1 and 69 = 1/2.

where 69 = Ag/d. Now, let us apply the duality relation to this range — in this
way we will obtain the allowed range for the saddle point in the conformal block

decomposition. The result is, in terms of A,

Axe{_%}u{lfx}

(7.45)

[ 1 2 1 2
U

_— =, +
200x(1 —x) x 26px(1—-x) 1-—x

This range is plotted in Fig. 7.1. The case of dp = 1 is generic and is shown in
Fig. 7.1a. As the external scalar gets heavier, d¢ gets larger and the range fills the
region between the curves corresponding to the identity operator and its dual image.

An interesting thing happens as d¢ approaches the unitarity bound 1/2, Fig 7.1b.
The allowed range for A, shrinks into three points. This is the manifestation of the
fact that a scalar at the unitarity bound has to be free. Let us remind the reader of the
reasoning. The unitarity bound A > (d —2)/2 expresses non-negativity of the norm
of a descendant of ¢, which thus becomes null at the unitarity bound. This implies
that ¢ satisfies the free field equation of motion A¢ = 0 as an operator equation,
and all the correlation functions of ¢ are harmonic away from singularities. Then
one can take for example the four point function of ¢ and subtract the free field four
point function. The result G is still harmonic and the OPE limits imply that it has
singularities weaker than those of free field, 1/ |x]472. But 1/]|x|9"2 is the weakest
singularity a harmonic function can have. Thus, G is harmonic everywhere, tends
to zero at infinity, and is therefore 0. So the four point function of ¢ is that of the
free field, which in turn implies that the ¢¢ OPE is also free.

Note that the above argument explicitly imposes the equation of motion of ¢ on the

four point function. It is not a priori obvious that the crossing equation for this four
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point function alone should also imply that ¢ must be free at the unitarity bound.
However, it seems to be the case as the numerical results suggest (e.g., [30] in four
spacetime dimensions). From our perspective, it is true as long as one excludes
the middle curve in Fig. 7.1b. If this is done, then duality at x = 1/2 tells us that
there are to equally important saddle points, and for other values of x one of them
dominates, just as in the previous discussion. The resulting behavior is characteristic

of the free field, to the accuracy of our approximation.
Section III is devoted to derivations. Some of technical details are discussed in

appendices, including the derivation of (7.16).

7.3 Derivations
7.3.1 Modular Invariance

7.3.1.1 Reflection Symmetry

Here we discuss the derivation of the reflection symmetry (7.7). We do not try to
make the derivation very detailed or completely rigorous, since we only use (7.7) as

a heuristic device, and our other derivations are independent of it.

Parametrizing 7 in the partition function as,
T=ie" 2, (7.46)

the modular transformation T — —1/7 becomes the reflection x — 1— x. Therefore,

§2k+1
WZ(T(X))’)C:UZ =0, k=0,1,2,---, (7.47)
and this can be expressed the integral constraints on w(A) as,
= ¢ 7Qk+1)
f [A - —] weei(A)dA = 0, (7.48)
0 12

where w; (A) is defined by (7.9) and the bracket symbol [A — ¢/12]%**D) is defined
by,

9

N
[y](N) = eZnyeX (_ii) e—27ryex
x=0

21 0x

:yN(1+M+-~). (7.49)
2y

When N < +/|y|, we can approximate [y]?Y) by the monomial y". Note that if we

A—c/12

use the full Virasoro character instead of g , this approximation is still valid. It
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is in this sense in which we said previously that Virasoro descendants are subleading.

Therefore,

00 ¢ \2k+1
f (A - —) wi(A)YdA = 0, (7.50)
. 2

for k < VA, VAo, assuming that the region near A = ¢/12 does not make a major
contribution to the integral, which is consistent with results we will find. This
suggests that w;(A) is approximately symmetric under reflection at A = ¢/12:

wi(A) = w; (% - A) . (7.51)

If the dominant contribution came from ¢/12, approximate symmetry like this would
be self-evident.

Of course, one cannot expect a literal equality like this — in the end, we only have
a finite number of equations (7.50). To formulate a more precise statement, let us
look at the case of general 7. For 7 # i, we have for any k > 0,

ok , oF
720 = (D = Z(r(1 - 2), (7.52)

which, with similar approximations, translates into

fom [27r|7'| (A - TCZ)]kwT(A)dA _

S k
:fo [ﬁ (é—A)] w_1)r(A)dA, (7.53)

for k < +/c. This is now an equality between some polynomial moments of w;
and w_/¢, which after some linear changes of arguments and densities w can be

translated into

o0 nc/6|7|
f ﬂkw;(/l)d/l = f /lka)'_l/T(—/l)d/l, (7.54)

rltle/6 —o0

where A is a rescaled version of A, and «’ is the rescaled and renormalized version
of w. We will see below that with k bounded above by +/c, the integrals can
be restricted to finite intervals of size ~ ¢, up to 1/c errors. Then one has an
equality of polynomial moments of two functions on finite interval. In other words,
their convolutions with any polynomial kernel coincide, provided the degree of the
polynomial is bounded by v/c. One can then try to pick a delta-like kernel K.(1),
for example,

(7.55)

2 22\
E ’

K() =(
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where [ is twice the size of the interval to which we restrict the integrals in (7.53).
Then, restoring the original variables, we have the required claim (7.7). Note that
this particular delta-like kernel would average over regions of size > ¢3/4. One can
do better, for details see [276].

7.3.1.2 Bound on Tail

As discussed in Section 7.2.1, the reflection symmetry (7.7) suggests that w.(A)
approximately vanishes for A > A.. To understand how good the statement is, we
should estimate an upper bound on w;(A) when A goes above the threshold A;. At

T = i, the conditions on w;(A) are,

f wi(A)dA = 1,
0

o0 c 12k=1
f [A - — w;(A)dA =0, (7.56)
0 12

and,
w;(A) > 0. (7.57)

What we want to do is to estimate an upper bound on w;(A) at a particular value A
by maximizing the value of w;(A) under these conditions. This is a typical linear

optimization problem.

Generally speaking, the maximum value (optimal value for the primal problem) of
¢ - X subject to
A¥=b, and ¥ >0, (7.58)

is equal to the minimum value (optimal value for the dual problem) of b- y subject
to
ATy > ¢ (7.59)

This is a statement of the strong duality theorem of linear programming [277], which
is valid for finite-dimensional vector spaces. In our case, X is an infinite dimensional
vector whose entries are values of w; (A) at different values of A, A is a set of integral
transforms mapping w; (A) to the left-hand side of (7.56), and b= (1,0,0,---) asin
its right-hand side. Although we still expect the strong duality to hold in our case,
we really need only the weak duality, which says that the optimal value for the dual
problem (in fact, any feasible value) puts an upper bound on the optimal value of
the primal problem. This weaker duality is straightforward to see. Indeed, let x be

a solution to (7.58), then for any y a solution to (7.59) we have

b-y=%-ATy>%-¢& (7.60)
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Before discussing what the dual problem is in our case, we first note that maximizing
w,-(Z) does not make much sense, since w; appears only inside the integrals in the
constraint equations, and thus its value at a point is irrelevant unless w; has a delta-
function singularity at A. Therefore, it only makes sense to maximize the coeflicient

of delta-singularity in w; at A.

It is an easy exercise to check that in our case the dual minimization problem then

is to minimize yy, subject to

Po(A) >0, YA >0, (7.61)
Po(A) 2 1, (7.62)
where
o0 ¢ 12k=1)
Po(A) = A-S . 7
0(A) yo+;[ 1w (7.63)

Setting A = ¢/12 we get yp > 0, and thus if PO(Z) > 1, we can always decrease yg
by dividing y by Po(A). Thus we may assume Po(A) = 1.

For convenience, we consider 4 = y/yg, and then the minimum value of yy is equal

to the minimal value of 1/ P(Z), where

o0 2k=1)
P =1+ [A _ < A (7.64)
k=1

12
with A;’s being variables, subject to P(A) > 0 for all A. This is the form of the dual
problem most suitable for our purposes. For a different perspective on this problem
see [278].

We can find a weaker bound on w;(A) by utilizing the conditions (7.56) for a
restricted set of k’s, suchas k =0,1,2,..., kg for some ky < c. Let us first consider
the case of 7 = i again. For k < ¢, we can approximate [A — ¢/12]%%) by the

monomial (A — ¢/12)*. Our task is then to minimize 1/ Py, (Z), where

ko c \2k-1
Po®) =1+ (A - E) A (7.65)
k=1

under the condition Py (A) > 0 for A > 0. This is the same problem as maximizing
the degree (2kp — 1) odd polynomial,

ko

o =) (a-5) a (7.66)

k=1
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under the condition, Q,(A) > —1 for A > 0. Since Qy,(A) is odd under the

reflection A — ¢/6 — A, within the reflection symmetric interval 0 < A < ¢/6,
Ok, (A) > —1 also implies Qi,(A) < 1. Namely,

|0k, (A)] <1, for0 < A < c/6. (7.67)

Under the condition A > ¢/6, the maximum of QkO(Z) is achieved by the degree

(2ko — 1) Chebyshev polynomial of the first kind Ty, (x) with x = 2552 [279].

Notably, the polynomial is independent of A.

We were so far optimizing the coefficient of delta function in w,-(Z). However, it
turns out that the bound we found is also a bound for the integral fzoo w;(A)dA.
Indeed, optimizing this integral would replace (7.62) with Py(A) > 1 for all A > A.
It is easy to check that Py corresponding to the Chebyshev polynomial solution
satisfies this stronger constraint as well. This in fact can be generalized to many
cases of the form ffo f(A)w;(A)dA. Therefore,

1

wi(A)dN < —, (7.68)
fA 1+ T2k0+1 (—AC/CI/ZIZ)

for A > ¢/6. Similarly, for a general value of |7| < 1, the tail at the threshold A,

can be bounded as,

2

T (52)

foo w(AdA < (7.69)
A

for A > A;. To see this, recall the condition (7.54), which for odd powers of A can
rewritten as -
f AL (da =0, (7.70)

a
and a = max{r|t|c/6,nc/6|7|} and W () = %[W’T(/l) + w’_l/T(/l)]. Here it is
understood that w;(A) = 0 for A < 0. It is also easy to see the normalization

foow;’(/l)d/l =1, (7.71)

a

and thus the problem is reduced to 7 = i case. It then follows

& 1
ﬁ W7 ()dA < — (7.72)
1 1+ Topy-1(A/a)

for 1 > a which then easily implies the claim.
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Note that in the inequality (7.69) in the denominator is the polynomial which has
the largest value for A > A;, subject to the requirement of taking values in [0, 2] for
0 < A < A;. In this way, it wins over any polynomial such as (7.55), especially if
one takes / to be asymptotically larger than A; and the degree of K. smaller than
that of the Chebyshev polynomial. More precisely, K. can be used as f in the
aforementioned generalized bound on f f(A)w-(A)dA. This justifies truncating
the integrals in (7.54).

7.3.2 Crossing Symmetry

Unlike the case of the partition function in two dimensions, where contributions
from Virasoro descendants are subleading in 1/¢, conformal descendants play an
important role in the large A asymptotics in the four-point function (unless one makes
a careful choice of the configuration of the four points [59]). For example, the large
A conformal block behaves as pA as we saw in (7.16) whereas the contribution of
each local operator is x*, and their difference is not negligible in the large A limit.
On the other hand, it is easier to derive various bounds on the spectral decomposition
of the four-point function if we use x*. Thus, we will start with the warm-up exercise

with the expansion,
G(x) = f xB7280 g (A)dA, (7.73)
0

where we treat all the local operators (including conformal descendants) indepen-

dently.

7.3.2.1 Reflection and Bounds

Crossing symmetry G(x) = G(1 — x) means G(x) is symmetric under reflection at

x = 1/2, and therefore,,

2k+1
WG(X)|)C:1/2 =0, k=0,1,2,---, (7.74)
which is equivalent to,
f [A = 240] Dy (A)dA = 0. (7.75)
0

The bracket symbol [A — 2A0]® in this subsection is different from the previous

one and is the falling Pochhammer symbol,
aN

=yo-DOh-=2)---(y=-N+1). (7.76)
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(V)

When N < +/|y], we can approximate [y]") ~ y¥. We can then repeat the analysis

(s)

for the partition function and find that y, 1’

(A) is approximately reflection symmetric,

Yih(A) = 1), (480 - A). (7.77)
In general,
—(s _ 2 l-x \1-x
Y (A) =y ( Ao - — A) —. (7.78)

In particular, y{” (A < 0) = 0 means,
YA > A = (7.79)
where

Ay = Ao. (7.80)
1-x

In this limit, we can also solve the linear optimization problem to find,

1
(s) ’ ’
Yy (AYaN < — (7.81)
Jo s s

for A > 4A¢. For general x, we can bound y,(A) for A > A, by,

(o] 2
() /A7 ’
YO (AN < S— (7.82)
j; 1+ T2k0+1 (—AAfoz/z)

(s)
12

in (7.77), while the reflection symmetry for x # 1/2 relates y(s) to y(s) asin (7.78).

The bound is stronger for x = 1/2 since y,’;(A) is invariant under the reflection as

The latter bound can be improved in a neighborhood of x = 1/2.

For y(v) (A), we can also derive bounds at finite values of A and A, without approx-
imating [y]") by yV because of the simple structure (7.76) of the bracket symbol.
As we explained in the case of partition function, the problem is to maximize P(A)
given by
P(A) = 1+ ) [A=200] % 4y, (7.83)
k=0
at a particular value of A while maintaining P(A) > 0O for all values of A.

However, as we noted before, any P(A) satisfying the constraints will lead to an

upper bound on the optimal value of the primal problem. We can use

[A _ 2AO](2k+1)
[_2A0](2k+1)

P(A) =1- , (7.84)
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as an ansatz for such a P(A). To check that P(A) > 0, we note that [-2A0]***D < 0
and [A — 2A¢]%*D > 0 for A — 2A¢ > 2k, and it is easy to show that

[A _ 2A0](2k+1)
[_2AO](2k+1)

<1, (7.85)

for A—2A¢ < 2k, provided Ag > 1/2 (this condition can be weakened). Maximizing
this ansatz P(A) at a particular value of A by using k as a variable gives the bound
(after a natural interpolation of the right hand side, which happens not to invalidate
the bound),

o0 1
(s) ’ ’
fA YipA )dA” < | 4+ [A—2A0+DICAY) * (7.86)
r(52)r(%)

The above analysis of the limit Ag — oo is easily carried over to the case of conformal

blocks. One just has to note that

_ n
ﬂpr_ZAO ~ (alogp—AXZAo) pr—2A0

ox" o0x
A 200\
= - 20 A (7.87)
xV1 —x X

to see that a polynomial approximation can be made again. It is then straightforward

to derive the corresponding formulas for the conformal block case.

7.3.2.2 Cardy formula

Derivation of the Cardy-like formula (7.39) for the OPE coefficients is essentially
equivalent to the partition function case in [74]. We outline the main steps here.

First, the analogue of light sparse spectrum condition is interpreted using crossing

symmetry as, for x > 1/2,
log G(x) = =2A¢log(1 — x) + O(1). (7.88)

Then, one divides the spectrum into light and heavy parts, L = [0,2A¢ + €) and
H = [2A¢ + €,+). Here € is some fixed positive number, which can be taken
exponentially small in YVAg. A scaling dimension A is then picked inside the heavy

spectrum and the latter is further split into three parts,

Hy = [2Ag + €A —6), Hs = (A+6,+00), (7.89)
H> = [A -6, A + 6. (7.90)
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Here 6 is some averaging scale which will turn out to be restricted by 6 ~ Ag,
a€(1/2,1).

The idea is now to show that if A = 2A0/(1 — x), then G(x) is essentially due to
contributions from H,, G ~ G[H,]. To that end, one first bounds G[H>] < G, as

well as
GlH,] = f XA72B0g O (A)dA > xA2RHEO (), (7.91)
Hy
where
gy () = f g (A)dA. (7.92)
H,

This leads to an inequality for g(”(Z), which, upon picking an optimal value of x,
reads for A > 4A as

-~ - 2A
logz (A) < ~Alog (1 - TO) +

+ 2A¢ log (A - 1) —dlog (1 — @) . (7.93)

2A¢ A
One also gets a different inequality for 2Ay < A < 4Ao. Then one replaces ¢ in
these inequalities with a new ¢’ and takes the latter to be sufficiently small while
keeping the ¢ in H; fixed. This allows one to bound the contribution from H; and
Hj3 up to log Ag error terms. The contribution from L is also bounded [74]. It then
follows that given 6 ~ A%, @ € (1/2,1) H, dominates the 4-point function, and the
inequality (7.93) turns into the equality (7.39).

7.4 Discussion
In the present paper we studied implications of modular invariance and crossing
symmetry in certain scaling limits. We have found that all these cases share certain

general features, in particular

1. A truncated set of crossing equations limits to a problem about polynomial
moments of the branching ratios. This leads to an approximate duality relation

for the branching ratios at crossing symmetric points.

2. The duality relation motivates tail bounds for the integrals of the branching
ratios. These bounds are threshold bounds in the sense that they constrain the

set of dominant scaling dimensions.
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3. “Sparseness” of the light spectrum implies universality of the couplings of
heavy spectrum. Such theories almost saturate the tail bounds. We discussed

this only in two cases, but it is clear that this is a general feature.

These facts have a natural explanation if one assumes that a single saddle point
dominates the expansions. Indeed, in this case the location of saddle point can be
determined easily by taking appropriate log-derivative of the four-point or partition
function. The crossing relation then imposes an equation on this location in a
straightforward way. Note, however, that at no point we made such an assumption.
In fact, one can assume that several competing saddle points may exist at some
points, and in this case our duality relation maps their positions to the crossing
symmetric expansion. This happens for example for generalized free field, which at
x = 1/2 exhibits two saddle points — one at A = 0 and one at A = 4A¢ (in scaling

blocks). These two saddles are correctly related by the duality relation.

Besides this general features, we have also found features specific for some of the

cases, in particular

1. For scaling block expansion of four point function we were able to use an
ansatz incorporating infinitely many derivatives to produce an exponentially
decaying tail bound. This bound is a strict inequality valid without taking any

limit whatsoever.

2. For the large spacetime dimension limit of the conformal block expansion, we
were able to see a manifestation of unitarity bound for external scalars without

the use of the free scalar equation of motion.

Most of our results used some kind of a limit, and thus are not applicable to the
bootstrap of light operators. However, one may hope that some qualitative features
also carry over to the case of light operators, and thus may provide useful intuition.

Let us discuss possible implications for numerical analysis.

In some cases, the four-point amplitude G(x) is dominated by operators near the
saddle point A(x). This observation may have applications to numerical bootstrap
methods. which often employ derivatives of the crossing relation at x = 1/2. This
mostly probes operators near the saddle point A(1/2). To learn about the other parts
of the spectrum, apart from taking more and more derivatives at x = 1/2, one may

consider the crossing relation at different values of x. In the case of scaling blocks,
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it is natural to expect that O(1) changes in 1/(1 — x) resultin O(Ap) changes in A(x)
and that the width of saddle point is on the order of \/Zo. Therefore, in order to have
the spectrum up to A = A evenly covered, one may use the bootstrap equation at
O(A+Ay) points x so that 1/(1 — x) is distributed evenly with spacing of the order

of 0(1/vAy).

Another observation is that gaps in OPE spectrum can render the parts of spectrum
symmetric to them difficult to study. An example is the generalized free field four

point function, which is

1 1 1
2Ag + (1 _x)2A0 + 1

G(x) = (7.94)
x

It can be easily seen to be dominated by the vacuum term x4 for x < 1/2. As

discussed above, this forces a discontinuity in A(x) at x = 1/2, with A(1/2 +0) =

4A¢. In this theory there are no operators in the interval (0,2Ag), but there are

operators in [2Ag,4A¢), which by the approximate symmetry never dominate the

four-point function.
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Chapter 8

THE 3D STRESS-TENSOR BOOTSTRAP

This chapter is essentially identical to:

A. Dymarsky, F. Kos, P. Kravchuk, D. Poland and D. Simmons-Duffin, The 3d
Stress-Tensor Bootstrap, JHEP 02 (2018) 164, [1708.05718].

8.1 Introduction

The conformal bootstrap [26-28, 30] (see [18, 19, 280] for reviews) uses basic
consistency conditions to bound the space of conformal field theories. By making
fewer assumptions about the theories being studied, one can derive more universal
bounds.! The original bounds [30, 43, 44, 46, 47, 95, 96, 126] apply to theories
with scalar operators of various dimensions. Bounds from fermionic correlators
[39, 40, 81] apply to theories with fermions, and the recent bounds in [41] apply to
any 3d CFT with a continuous global symmetry.

Perhaps the minimal possible assumption about a CFT is the existence of a stress
tensor. Indeed, a stress tensor (i.e. a conserved spin-2 operator whose integrals are
the conformal charges) is necessarily present in any local CFT.? In this work, we
study the constraints of conformal symmetry and unitarity on a four-point function
of stress tensors in 3d CFTs. For simplicity, we also assume a parity symmetry, so
our bounds apply universally to any unitary parity-preserving local 3d CFT. This
birds-eye view of local CFTs with spacetime symmetry O(3,2) is similar in spirit

to the views of superconformal theories achieved in [133, 140, 151, 281].

An advantage of a numerical approach is that we can make contact with analytic
results, but we also have the flexibility to perform more sophisticated studies that
are currently not analytically tractable. For instance, we numerically recover the
conformal collider bounds [73, 76, 77, 287], but we can additionally study how these

bounds are modified under various assumptions about the spectrum of the CFT. As

By contrast, one can study a specific theory by inputting characteristic features that distinguish
the theory in question. In this sense, the conformal bootstrap was successfully applied to extract
precise properties of the 3d Ising model [8, 31, 32, 34, 36, 111]. Families of critical O(N) models
[8, 37, 38, 45, 137], Gross-Neveu-Yukawa models [39, 40], and various supersymmetric theories
[133, 136, 138-144, 150-152, 281, 282] have also been studied in this way.

2Examples of theories without a stress tensor include boundary/defect theories [127, 129, 283]
and nonlocal theories like the Long-Range Ising model [284-286].
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we discuss below, we also find a host of new universal bounds constraining, e.g., the

spectrum of low-dimension scalar operators.

The bootstrap equations are consistency conditions on the conformal block decom-
position of 4-point functions. Written in terms of CFT data, they are quadratic
constraints on OPE coefficients. Self-consistency or “feasibility” of these con-
straints can be efficiently analyzed using semidefinite programming [19, 35, 36, 47].
Formulating the bootstrap constraints for stress tensors in a way suitable for semidef-
inite programming involves several steps, which we briefly describe below. First
is the task of writing 3- and 4-point functions of stress tensors in an explicitly
conformally-invariant way. We do this using a combination of the embedding for-
malism of [53] and the conformal frame formalism of [1]. The second step is to
get rid of the degeneracies associated with permutation symmetry and conservation.
This is done by identifying a minimal set of linearly-independent crossing equations,
slightly refining the approach of [75]. These steps are explained in detail in section
8.2. Finally, the third step is the calculation of conformal blocks which is done in
section 8.3 by translating the approach of [61] to the conformal frame formalism.

In this way we obtain a set of bootstrap equations suitable for numerical analysis.

In the rest of the paper we analyze the bootstrap constraints supplemented by various
additional assumptions about the spectrum. In section 8.4.2 we numerically repro-
duce, in full generality, the conformal collider bounds on the “central charges” of
unitary theories [76, 287], previously discussed in the context of the analytic boot-
strap in [77, 162]. Our main result here is a lower bound on the central charge Cr
as a function of the independent parameter in the stress-tensor three-point function,
characterized by the angle 6 defined in (8.80). In section 8.4.3 we study constraints
on the spectrum of the lightest parity-even and parity-odd scalars in general unitary
3d CFTs. Some of the results are shown in figure 8.8. In particular, we find that
any unitary CFT must necessarily have both light parity-even and light parity-odd
singlet scalars in its spectrum. This is similar to a recent finding that unitary 3d
CFTs with global symmetries must have low-dimension scalars in the OPE of two

conserved currents [41].

Quite generally, we find that when the gaps in the spectrum of scalar operators are
sufficiently large to exclude large N theories (by excluding some double-trace oper-
ators), the allowed region for OPE coefficients Cr and 6 is compact—in particular,
there exists an upper bound on the central charge. This suggests that theories with

large Cr must necessarily have double-trace operators in 7 X T" OPE. Furthermore,
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this may potentially point to the existence of new strongly-coupled theories residing
inside these compact regions. We observe the same phenomenon when imposing a

gap on the dimension of the second lightest spin-2 operator in section 8.4.4.

In section 8.4.5 we discuss theories with a gap A4 in the spectrum of spin-4 parity-
even operators. In full consistency with the Nachtmann theorem, we observe that
when A4 approaches 6, the lower bound on Cr grows indefinitely for all 6, in accord
with the expectation that the corresponding theory is dual to weakly coupled gravity
in AdS4. Finally, section 8.4.6 is devoted to studies of the 3d Ising model. Under the
assumption of no relevant parity-odd scalars, and by imposing the known values of
the central charge and the dimensions of certain light operators, we obtain a window
0.01 < 6 < 0.05. Under stronger but still plausible assumptions we obtain a tighter
bound 0.010 < 6 < 0.019. We also find an upper bound on the parity-odd scalar
gap Aoqa < 11.2. We conclude with a discussion in section 8.5.

8.2 Conformal structures

8.2.1 3-point structures

To set up the bootstrap equations for the 4-point function (T77T) in 3d CFTs
preserving parity, we first need to understand the possible 3-point functions (T7TO)
between the stress tensor 7#” and various operators O in the CFT. The purpose of
this section is to classify such 3-point functions, and thus the operators which can
be exchanged in the OPE decomposition of (TTTT).

First of all, only bosonic operators O can appear in T X T OPE, and so without loss
of generality we can assume that O is a traceless symmetric tensor primary of spin
¢. Furthermore, since T is a singlet under all global symmetries, O must be a singlet

as well. However, O may be even or odd under space parity.

The 3-point functions (T7TO) should be conformally-invariant, symmetric with re-
spect to permutation of the two 7 insertions, and satisfy the conservation equation

for the stress tensor,
0,T"" = 0 + contact terms. 8.1)

Such 3-point functions have the form

Nrro

(TTO) = ) A (TTO) ), (8.2)

a=1
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where (TTO) ) are 3-point tensor structures which form a basis of solutions to the
above constraints, and /l(TaT)O are OPE coefficients. We can always choose a basis

(a)
such that /ITT o are real.

The 3-point tensor structures (T70),) can be classified using e.g. the conformal
frame formalism of [1]. We will also need to perform manipulations with explicit
expressions, which we can obtain by constructing the tensor structures using the 5d

embedding space formalism of [53, 61].

In this latter formalism, the parity-even 3-point tensor structures are constructed
from basic invariants denoted by H;; and V;, where i and j index the operators in the
3-point function. The structure H;; increases the spin by one unit for operators i and
J, while V; does so only for the operator i. For example, a general 3-point structure

for (TT ¢) with a scalar ¢ of dimension A is given by?
aH?, + BHVIVa + yVEVE
(=2X1 - X2) " (22X, - X3) 3 (<2X5 - X)d

(IT¢) = (8.3)

where the constants «a, 5, y are subject to linear constraints coming from conserva-
tion of T and permutation symmetry, while X; are the embedding space coordinates
of the operators [53]. For sufficiently large ¢ there are 14 different combinations of
H;; and V; which give the correct spins for the three operators in (T70). Not all of
them are independent, since there exist non-linear relations between the invariants
H and V, which were classified in [53]. In our case there is a single redundant

structure
(-2
HypHys H3 V77, (8.4)
which can be expressed in terms of other structures.

Using the results of [53], it is straightforward to impose permutation and conser-
vation constraints on these tensor structures. An analogous construction works for
parity-odd tensor structures [53]. We will not need the explicit expressions for the
tensor structures in this “algebraic” basis, but rather in the so called differential
basis, which we describe in section 8.3.# The explicit expressions in the differential

basis are provided in appendix G.1.

Here, let us summarize the counting of 3-point tensor structures. Let Oy denote a

primary operator of spin £ and a scaling dimension A strictly above the unitarity

3We assume that the stress tensors are at positions 1 and 2, while the intermediate operator is at
position 3.
“We will still use input from the algebraic basis to perform calculations in the differential basis.
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bound. This restriction is important since the number of solutions to conservation
equations can increase at special values of A.5 In fact, this is what happens for A = 3
and £ = 2, i.e. when Oy—, = T is the stress tensor itself. With these conventions, the

counting of 3-point tensor structures is given by the table:

o) Nrro
Qo 1"+1°
0, 1" +1"
T 27417

O,n>2 |2V +1°
Oxps1,n 22 1-

where we have separated parity-even and parity-odd tensor structures (indicated by
the + superscripts). For O = T, the tensor structures are invariant under permutations
of all three operators. Note that the parity-odd tensor structure for (777) does not
appear in a parity-preserving theory, since T is necessarily parity-even, as can be

seen from the Ward identity discussed below.

8.2.1.1 Ward identities

As mentioned above, the 3-point function (7T has two allowed parity-even tensor
structures, which can be realized in the theories of a free real scalar and a free

Majorana fermion,
(TTT) = ng{TTT)g + np{TTT)f. (85)

There exists a non-trivial Ward identity for this correlator. Indeed, one can construct
the dilatation current J g = x, T from one of the three stress-tensor operators, and
integrate it over a surface surrounding another stress-tensor operator put at x = 0 to

obtain, schematically,
fx(TTT)dS = A (TT). (8.6)

This Ward identity implies a linear relation between the coefficients np, ng and the

2-point function (TT). The latter can be parametrized as

(IT) = Cr{IT)s, 8.7)

Note that the conservations constraints are linear with coefficients dependent on A. The rank
of a parameter-dependent linear system is always constant at generic values of the parameters and
can only decrease at special values.
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where (T'T)p is the 2-point function (77 in the theory of a free real scalar and Cr
is the “central charge." The Ward identity then must be of the form

Cgng + Cpnp = Cy. (88)

The constants Cp, Cr are simply the central charges of the free real scalar and free
Majorana fermion respectively, where our normalization for C7 implies Cp = Cr =
1. However, in the sections below we will often write results in terms of the ratio

Cr/Cp so that they also hold for other normalizations of Cr.

8.2.2 4-point structures
The 4-point function (TTTT) should satisfy the following properties, which interact

with each other in nontrivial ways:

¢ conformal invariance,

permutation symmetry,

e conservation,

regularity (analyticity).
We will address each property in turn, culminating in a minimal set of crossing
symmetry equations suitable for applying numerical bootstrap techniques.

It is useful to use index-free notation to encode different tensor structures. Let us

write
T(w,x) =w,w,TH (x), (8.9)

where w/, is an auxiliary polarization vector. Because T"" is traceless, we can take

w,, to be null, w? = 0. We can recover T as

T* (x) = D,D) T (w, x), (8.10)
where DY is the Todorov operator [201]
d-2 o\ o 1 92
D = | — = =wH , 8.11
v ( 2 v Bw)awﬂ 2" Gw - ow @10

with d = 3 the spacetime dimension. Note that the Todorov operator preserves the

ideal generated by w2,
D (W f(w) = wi(...), (8.12)

so it is well-defined even though w is constrained to be null.
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8.2.2.1 Conformal invariance

To study the above properties, it is useful to fix a conformal frame and use represen-
tation theory of stabilizer groups to classify tensor structures, following [1]. This
approach makes it easy to deal with degeneracies between tensor structures in low
spacetime dimensions, and will also help us understand regularity conditions on the

z = z line. We work in Euclidean signature throughout.

Using conformal transformations we can place the four operators in the 1-2 plane in

the following configuration:

8(z, 2, wi) = (T(w1, 0)T (w2, 2)T (w3, 1)T (w4, 0)). (8.13)

1

We have z = x! +ix? and 7 = x! —ix?, with the direction perpendicular to the plane

3

being x°. For brevity, we have written only the holomorphic coordinate of each

operator.

We define the operator at infinity in a non-standard way, where we do not act with

an inversion on the polarization vector,
T(w, o) = lim L**T(w,L), Ar=3. (8.14)

The virtue of this convention is that the polarization vectors are treated more sym-

metrically, so it will be easier to understand the action of permutations.

We will consider parity-preserving theories, so the group of spacetime symmetries
is O(4, 1). The points 0, z, 1, co are stabilized by an O(1) = Z, subgroup of O(4, 1)
consisting of reflections in the x* direction (perpendicular to the plane). The 4-point
function g(z, Z, w;) must be invariant under this stabilizer subgroup or “little-group."
Little-group invariance then guarantees that g(z, z, w;) can be extended to an O (4, 1)-

invariant function for arbitrary configurations of the 7'(wj;, x;).

Let £* denote the parity-even/odd spin-¢ representation of O(3), and let * denote
the even and odd representations of O(1). Each operator T'(w, x) transforms in the

representation 2* of O(3). Little-group invariants are O(1) singlets in

®4 4
(ResoD27) = (3e" @ 207)% =3130" @31207, (8.15)

where Res g p denotes the restriction of a representation p of G to a representation of
H C G. Inparticular, there are 313 parity-even tensor structures (and 312 parity-odd

tensor structures).
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These structures are easy to enumerate. Define components of the polarization

vectors
w=w*=w!+iw?
w=wi=w—iw?
w? = w. (8.16)

For each “helicity” h € {-2,-1,0, 1,2}, we can construct a unique monomial [/]

with degree 2 and charge 4 under rotation in the z-plane,

[-2] =@ [-1]=00’ [0]=wo, [1]=wd’, [2]=> (8.17)

(Using the fact that w,w* = (w°)? + ww = 0, we can ensure that the degree in w?
is at most one.) Let [hhyh3hs] denote a product of the corresponding monomials
for each polarization vector wl.” .6 It is easy to verify that there are 313 structures
[h1hyhshs] which are even under parity w® — —w?, i.e. such that 3; 4; = 0 mod 2.
The 4-point function is a linear combination of these structures, with coefficients

that are functions of z and 7,

2w = D [hhohshalgimnshshg (2.7)- (8.18)
>i hi even

Using rotations around the x; axis, we can relate the point (z, 7) toits reflection in the
imaginary direction (z, z). Invariance of the full correlator under this transformation

implies
8l hohsha](Z 2) = &l=hy~hy,—h3,~ha](Z> 2)- (8.19)
Meanwhile, reality” of g implies
8l hah3ha) (25 2) = &[—hy—hy—hy—ha] (Z> 2)5 (8.20)
where we used the notation ?(E, 2) = (f(z,2))", from which it follows that
8lhihahsha) (25 2) = 8ny hyhsha) (2 2)- (8.21)

In other words, the functions g, n,n;3n4) (2, 7) must have real coefficients in a Taylor

series expansion in powers of z and Z.

®This definition differs from the one based on spinor polarizations in [1] by a numerical factor.
"Reality of (TTTT) follows from a combination of space parity and Euclidean Hermitian conju-
gation.
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8.2.2.2 Permutation invariance

The 4-point function (T'(wy, x1) - - - T (w4, x4)) must be invariant under permutations
of the four operators. Permutations that change the cross-ratios z,z lead to non-
trivial crossing equations that we explore later. However, permutations that leave
Z, 7 invariant, which we call “kinematic permutations,” give constraints on tensor
structures alone [1, 75]. In our case, the group of kinematic permutations is (in

cycle notation)

T8 = {id, (12)(34), (13)(24), (14)(23)} = Z; X Z5. (8.22)

As shown in [1], ITX"-invariant tensor structures are in one-to-one correspondence
with

(8.23)

4 Hkin
0(3)
QResp12'|
i=1
where ITN™ acts on tensor factors in the natural way, and ()¢ denotes the G-invariant
subspace of p. These can be counted using
(p*H=% = pte3(n*p e Sp), (8.24)

where © represents the formal difference in the character ring. Plugging in p =

3e" @ 20 to(8.24), we find
(et @ 207)®H)22%%2 — 97 e* @ 780, (8.25)

so there are 97 permutation-invariant parity-even structures.

| n | n | s | n

id 1 1 1 1
(12)34) | -1-2) | -(1-2) | -(1-2) | —(1-2)
(13)24) || z(0-2) |z =2) | z(1=2) | z(1 -72)

(14)(23) -z -z -z -z

Table 8.1: Permutation phases for a 4-point function of identical operators, computed
in [1].

To write the structures explicitly, we must be more specific about the action of
permutations on polarization vectors. A permutation 7 € IT<" acts on a monomial
[hi] as

m ] - n(ri () i iy, (8.26)
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where n(x) = 4/x/X is a phase and the r; () are given in the table 8.1. Permutation-

invariant structures are given by symmetrizing with respect to this action:

1
(hyhahshs), z—([h1h2h3h4]
Mp hyhshy

+n(1 = z) rhrhsha p, by by hg)

+n(2)" T hy by oy

+ n(z)Mthehehay (g - z)‘h1+”2+h3'h4[h3h4h1hz]), (8.27)

where my p,n,n, i the number of elements [T8" which stabilize [hhohzha]. We
have also added an index z to the symmetric tensor structures to indicate that they
depend on z and Z. Here, it’s clear that independent IT<"-invariant structures are
in one-to-one correspondence with orbits of Z; X Z; when acting on quadruples
[71h2h3hs]. Making a choice of representative for each of the 97 parity-even orbits,

we can write

gTw) = > (uhahsha): ginnsshsl (2. (8.28)
hi|Z3
>.i hi even

Note that the functions g[s, n,n;1,1(2, 27) are the same as those appearing in (8.18).

8.2.2.3 Conservation

Imposing conservation of 7% (x) gives nontrivial differential equations relating the
functions g, n,h;141(2, 7). These equations can be solved up to some undetermined
functions of z,7 that we call “functional degrees of freedom.” Conversely, after
imposing conservation, the functional degrees of freedom fix the entire correla-
tor (modulo boundary terms that we discuss below). Thus, an independent set
of crossing-symmetry equations should make reference to functional degrees of

freedom alone.

In [75], it was shown that there are 5 functional degrees of freedom in a 4-point
function of stress tensors in 3d. We can obtain the number 5 with a simple group-
theoretic rule from [1]. To account for conservation, we simply replace

Reso})2" > Resg )2 =o' @ o (8.29)

in (8.23). Here, O(2) can be interpreted as the little group of a massless particle

in 4 dimensions, and 2 on the right-hand side of the arrow represents the spin-2
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representation of O(2). Plugging p = e @ e~ into (8.24), we find 5 " ® 27, 50

there are indeed 5 parity-even functional degrees of freedom.

Let us see more explicitly how these 5 degrees of freedom come about. Because
the permutation group ITN" acts freely on the four points, it suffices to impose

conservation at one of the points, say x,. The conservation equation is
0
Dy, - 0_<T(W2’ x2) ) =0, (8.30)
X2

where D,, is the Todorov operator (8.11). Restricting to the conformal frame

configuration (8.13), this gives®

3 3 D3
= — w0, | 050, + |z — Wiz | 0,07 + ﬂ g(z,Z,wi) =0, (8.31)
2 2 77—z
where
: 1 _
Loy =i Zk: (wg (9 = 05,) + 5 (i - wk)(?wg) (8.32)

is the generator of rotations in the 2-3 plane acting on polarization vectors. In (8.31),
w, @, w? refer to wo, W, wg, respectively. The last term in the conservation equation
is naively singular at z = 7. However, the singularity will be cancelled by zeros in
the action of £,3. These complications stem from the fact that z = 7 is a locus of
enhanced symmetry, where the little group becomes O(2) instead of O(1). We will
study these issues in more detail below.

Following [75], we can solve (8.31) by thinking of one of the directions in the z-z
plane as “time" ¢ and the other as “space” ¢ and integrating away from a constant

time slice. The conservation equation then has the structure
(A0, + Bos + C)g =0, (8.33)

where A, B, C are linear operators on the space of tensor structures. The number of
functional degrees of freedom is the dimension of the kernel of A.

In our case, it is convenient to choose z as the time direction, with 7 as the space
direction. The operator A is then A, = (% - wzﬁwz) 0w,, which vanishes on any

structure that is independent of w,. This restricts the helicity 4, to be either 1 or

8The Todorov operator in the first two terms simplifies because of our choice of tensor struc-

tures (8.17), which is at most linear in 0.
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2. Because permutations IT<" act freely, all helicities must be either 1 or 2, so the

kernel of A, is spanned by the five structures

(2222),, (1111),, <(1212),, (1122),, (2112),. (8.34)

When integrating the conservation equation, we can set the coefficients of these
structures to anything we like. In practice, it will be useful to use a slightly different

basis of functional degrees of freedom. Let
|
(hihaohshs); = 3 ((hihohshg); £ (=h1,—hy, —h3,—h4);), (8.35)
and define the corresponding coefficient functions

g[ih]/’lzh3h4] (Z7 E) = g[h1h2h3/’l4](za z) + gﬁ—_hl’_hz’_h&_hﬂ(z’ E) (836)

Equation (8.19) implies

g[ihlhzh3h4](z’ Z) = ig[i}“hzhﬂu] (Z, Z) (837)

We will take the functions g[tll hohs h4](z, 7) as our functional degrees of freedom.
Fixing these functions is sufficient to remove ambiguities when integrating the
conservation equation in the z-direction. By working in a Taylor expansion in z, 7,
it is easy to argue that fixing gf;” Iohshal (z,7) removes ambiguities when integrating
in any direction. In particular, later we will integrate the conservation equation in

the x» = Im z direction.

As explained in [75], in order to consistently integrate (8.33) away from a spatial
slice, the initial data might need to satisfy additional constraints. Suppose N is a
matrix such that NA = 0. Acting with N on (8.33), we obtain

(NBO; + NC)g = 0. (8.38)

This constraint turns out to be first class, meaning that we only need to impose it on
the initial data. Our initial slice will be the line z = Z. Because this is a locus of
enhanced symmetry, we must take care while analyzing the conservation equation

around it.

8.2.2.4 Regularity and boundary conditions

For numerical bootstrap applications, we would like to write the crossing equations in

a Taylor series expansion around the point z = 7 = % The line z = 7 corresponds to
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the four points x; becoming collinear, which means the stabilizer group is enhanced
from O(1) — O(2). Since the tensor structures have to be invariant under the
stabilizer group, we can see that there are boundary conditions at z = 7 which the
functions g, n,n;h,) have to satisfy in a well-defined correlator. As we will now
show, smoothness of the correlator places further constraints on the Taylor expansion

of g(h, nyh3hy) around this locus.

Consider the 4-point function after fixing x1, x3, x4, but before rotating x, into the

1-2 plane,
g(x2, w;i) = (T (w1, 0)T (wa, x2)T (w3, €)T (w4, 0)). (8.39)

Here, ¢ = (1,0,0) is a unit vector in the 1-direction. We want the correlator to
be smooth in x;. In particular, it should have a Taylor expansion in the directions

orthogonal to e,

gleaw) = D gk W )Y Y™ (8.40)
n=0,(=0
where y, = (x2), — e, (x2 - e) is the projection of x, onto the directions orthogonal
to e, and x = e- x». The coefficient functions g, (w;, x) are symmetric tensors of
the stabilizer group O(2), built out of polarization vectors. Let us count them. Let 0*
denote the parity-even/odd scalar of O(2), and let £ denote the spin-¢ representation
of O(2). Each operator transforms in the representation

p=Resg32"=2@01a0". (8.41)

Although Z, X Z, permutations act in a way that depends on x and y,, the leading-
order in y action is simply the obvious permutation of polarization vectors, because
the phases n(r;(r)) are trivial on the line z = 7.2 Thus, for the sake of counting
new permutation-invariant tensor structures at each order in y,, we can use (8.24),

which gives
(pPH2*22 = 220" @30 @ ... (8.42)
Equation (8.40) implies that a polarization structure transforming in £ of O(2) can

appear starting at order ¢ in the y-expansion. From (8.42) we see that at zeroth order

in y, there are 22 parity-even permutation-invariant structures that can appear (out

In fact, as shown in [1], we can define polarization vectors Ww; = w; + O(y), which permute
with trivial phases to all orders in y. We can then use these polarization vectors in (8.40).
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of 97 total).!° In order for the 4-point function to be well-defined at z = Z, only the

coeflicients of these 22 structures can be nonzero.

It turns out that thanks to the conservation equation, this is the only condition that
we have to worry about. In general, since (8.42) gives O(2) spins up to 8, in the
absence of the conservation equation we would have to write similar conditions for
the first 8 orders in Im z. However, as the derivation above shows, these constraints
follow from O(2) invariance. In particular, the conservation equation is compatible
with (8.40) in the sense that it produces a recursion relation for the coeflicients g,,.
Therefore, as long as the zeroth order constraints are satisfied, higher orders follow
automatically.!! We have explicitly verified this by working order-by order in a

Taylor expansion in Im z.

Thus, our initial conditions include 22 undetermined functions of a single variable
Re z. We can take 5 of these to be the restrictions of our two-variable degrees of
freedom to the z = 7 line, g[J;” hohshal (Re z, Re z) where the h; are given in (8.34).
Even though the structures (h;hyh3h4)} do not lie in the 22-dimensional subspace
of O(2) singlets, we can choose the coefficients of other structures to cancel the non-
O(2)-invariant parts. The projection of the 5 bulk structures onto the O(2)-invariant
subspace at Imz = 0O is five-dimensional. Thus, there are exactly 22 — 5 = 17

remaining one-variable degrees of freedom.

Finally, the constraints (8.38) give 8 independent first-order equations that these
univariate functions must satisfy. Thus, in addition to 5 two-variable degrees of
freedom, we have 9 one-variable degrees of freedom and 8 integration constants.
We are free to choose these however we like, as long as the projection of the

corresponding structures to the O(2)-invariant subspace is 22-dimensional.

8.2.2.5 Summary and crossing equations

Altogether, we choose the following functions as our undetermined degrees of

freedom.

19Tncidentally, 22 is also the number of functional degrees of freedom in a 4-point function of
stress tensors in 4d. This is because the stabilizer group of a generic configuration of 4-points in 4d
is O(2), while the little group for massless particles in 5d is O(3). Thus, the representation theory
computation is the same as the one here (see [1, 75]).

"10One should make sure that the choice of independent two-variable degrees of freedom does
not contradict the regularity constraints. Or, equivalently, that these degrees of freedom are indeed
independent from the point of view of the recursion relation for (8.40). We have checked that it is
true for our choice of two-variable degrees of freedom.



» Two-variable degrees of freedom:

+ —
8[22221(% 2),

+ —
811122)(2 2)»

* One-variable degrees of freedom:

ng)OOO](Z)’
8o1121(2),
gf;)011](1),
g[JE),o,_U](Z)a

* Integration constants:

+ = + -
g[ml](z, 2), g[1212](z, 2),

+ —
82112)(2 2)-

g[+0101] (2)s g[+0202] (2),
g[+1012](Z),

g[+1001](2),
8-100.11(2)-

S0 (1/2). &hooz (1/2).
Sho112(1/2). 81 102(1/2),
g1 (112, 8102172,
g (/2. 8 (1/2).

The statement of crossing symmetry is simply

. _
8l hyhsha1 (% 2)

= 8lhha g (1 = %1 -2).
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(8.43)

(8.44)

(8.45)

(8.46)

We have chosen the set of helicities in our independent degrees of freedom (8.43),

(8.44), and (8.45) to be invariant under h; <> h3. Thus, crossing symmetry becomes

a constraint on these degrees of freedom alone.

As usual, we Taylor-expand the crossing equations around z

following system, parametrized by n < n,n +n < A.

* Two-variable equations:

0202 805 (1/2,1/2) =0,
0roZgh 1 (1/2,1/2) =0,
010l gh15(1/2,1/2) =0,
08100y (1/2,1/2) = (=) 702028115 (1/2,1/2).

(n + 7 odd),
(n +nodd),
(n +nodd),

7 to obtain the

(8.47)
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* One-variable equations

80001 (1/2) =0, (n odd),
Agiion(1/2) =0, (nodd),
9'800y(1/2) =0, (n 0dd),
A1 (1/2) = ()" 3281103 (1/2),
g0y (1/2) = (=)"8gf 0011 (1/2),
978100-1.11(1/2) = ()"0 g1 00.17(1/2). (8.48)

* Integration constants

8l00221(1/2) = &fa0021(1/2),
810.1-1.21(1/2) = 81 1021 (1/2),
810-1.1.21(1/2) = & _1.02(1/2),
gho11(1/2) = gy 1. (1/2). (8.49)

Note that the analysis of the conservation constraints was necessary to make sure
that the crossing equations we write are independent. We have explicitly verified
that this indeed is the case by Taylor expanding to some finite order A and checking
that, modulo the conservation equation, the full set of crossing equations is indeed
equivalent to (8.47)-(8.49) and that there are no linear dependencies among the
equations (8.47)-(8.49).

8.3 Conformal blocks

We compute the conformal blocks for (TTTT) using the approach of [61]. In this
approach, the conformal blocks for external operators with large spins are obtained
by acting with differential operators on simpler conformal blocks, known as seed
blocks, exchanging the same intermediate representation. Since in our case we only
need the conformal blocks for the exchange of traceless symmetric operators, we

can take the scalar blocks as our seeds. This is exactly the case studied in [61].

Consider the contribution of a single primary state |O%) and its descendants PO

to the 4-point function,

Z (T (wa, x4)T (W3, x3) P81 OPYO0 31 B).a( a{ O K MT (o, x2)T (w1, x1)).
{AL{B}

(8.50)
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Here a and B are indices in the SO(3) irrep of O, {A} and {B} are multi-indices
such that

PiAl  pAi . pAn (8.51)

and Qqa)p(p) is the matrix inverse to (OF|K'B!PA1O®). The inner products

in (8.50) are derivatives of the 3-point functions

(OPIT(wa, x2)T (w1, x1)) = A% (OPIT (W2, x)T (W1, X1))(a), (8.52)

(T (W, x3)T (w3, x3)|0%) = (119} (@ (T (e, x4)T (w3, x3)[0%),  (8.53)
where A are the OPE coefficients and the objects multiplying them are the tensor

structures. We choose our tensor structures so that the OPE coefficients Ao are

real. The sum over contributions (8.50) can be then written as

(T Owa, x)T (w3, x3)T (wa, x)T (w1, 1)y = D" AD A G ap(wi xi), (8.54)
0
where we defined the conformal block

Go.up(Wi, x;) =

Z )T (W, x4)T (w3, x3) PBNOPYO 318 (41 (O LK AT (o, x2)T (w1, X1))(a)-
{A},{B}

(8.55)
Note that if O is parity-even then both a and b should correspond to parity-even
structures, and if O is parity-odd then both a and b should correspond to parity-odd
structures. The corresponding conformal blocks will have different properties in
what follows, and we hence refer to these cases as even-even and odd-odd respec-

tively.
The main observation in [61] was that one can find conformally-invariant differential
operators Z)l.(ja) (wj, w;) acting on a pair of points such that'?

(O°IT (W, x))T (W1, X1))(a) = Dy5’ (W1, w2)(O%|$2(x2) 1 (x1)),

)T (W4, x4)T (w3, x3)|0F) = DI (w3, wa)(pa(x4)¢3(x3)|0F).  (8.56)

Here in the right-hand side the operators act on some standard scalar 3-point func-

tions, 3 which we choose to be, in the formalism of [53],

£
V 3
_ 3
($19203) = A +hyBy—ly  DytAy—Di+l3  Azth|-Ag+ly’ Xij =-2X; - Xj‘ (8.57)
2 2 2
X12 X23 X31

12The existence of the Z)l.(j“) can be understood in terms of “weight-shifting operators" [3].

130f course, this relation is purely kinematical (i.e., between tensor structures), and the operators
¢; do not actually exist in the physical theory.



360

Conformal invariance of these differential operators means that the same rela-
tions (8.56) hold even if we insert P8} or K4} in these 3-point functions. We
thus find

Gap (Wi x;) = D@ (w1, w2) D) (w3, wa) Gocatar (X, (8.58)
where the scalar block is given by

Gicalar Wi X0) = D (94(x4)$3(x3) P'”|0P)0 1510110 1K' M 92 (x2) p1 (x1)-

{A}L{B}
(8.59)

This relation can also be seen directly from the OPE as discussed in [61]. The

problem of calculating conformal blocks then reduces to three subproblems:

1. Construction of the conformally-invariant differential operators Z)l.(j“) which
satisfy (8.56).

2. Computation of the scalar conformal blocks Gicajar-

3. Performing the differentiation in the right-hand side of (8.58).

8.3.1 Differential basis
Construction of the differential operators Z)l.(ja) has been discussed in [61]. Let us
first consider the operators D{;) and restrict ourselves to parity-even structures.

They are constructed as products of the basic operators
D11, D1, D21, Dy, Hia, (8.60)

where the first order operators D;; increase spin at position i by 1 while decreasing
the scaling dimension at position j by 1. The operator Hj is just multiplication by
the structure Hj, and it increases the spin and the scaling dimension by 1 at both
positions. These operators do not commute, but their algebra closes, so that one can

consider the following general ansatz,
(a) _ (a) n12 Y13 Y123 M1 M2y 2 +N3+mi o +n13+mm;
Dy, = Z CnipmaymzmmyHiy Dyy Doy Dyp Doy Xy 2 , (8.61)
njj,Mg

where the parameters in the sum are constrained so that the resulting operator
increases spin by 2 at both points. Here %; is a formal operator which increases the

scaling dimension at position i by 1. This is needed because various terms in the
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sum change the scaling dimensions by different amounts. Accordingly, (8.58) should
actually contain several types of scalar blocks differing by the scaling dimensions of
the external operators. We will return to this issue when we discuss the calculation

of these scalar blocks.

One can check that the differential basis ansatz (8.61) contains 14 different operators.
This is the same as the number of algebraic (not yet conserved or symmetric) tensor
structures for (TTO;) one can build out of H;; and V; for £ > 4. We can therefore

find a change of basis between the algebraic and differential bases.

We can then easily formulate the conservation and the permutation symmetry con-
straints for (T'TOy) in the algebraic basis and then translate these constraints to the

differential basis. This results in a system of linear equations for the coeflicients c,

Z M, (D)l = 0. (8.62)
Hijs iy
The coefficients in this equation are rational functions of the dimension A of the
exchanged primary O, and thus the solutions are rational functions of A as well.
Consistently with the discussion in section 8.2.1, we find that there exist 2 solutions
for even ¢ > 4. To simplify the numerical evaluation of (8.58), we choose a basis of
the solutions c,(,,a])mk which is polynomial in A of the lowest possible degree. These

degrees are 6 and 4 for the two solutions.

In the above discussion we have glossed over a slight subtlety that in the algebraic
basis in 3d, there is one tensor structure (8.4) which is redundant and can be expressed
in terms of other structures, so the number of independent structures is actually 13.
There is also a corresponding relation in the differential basis. If we were to ignore
this relation, we would find more solutions to the conservation constraints. Taking

it into account, we can use it to simplify the form of the solutions c,(fJ)mk

A similar procedure works for ¢ < 4, the only difference being that there appear new
relations in the differential basis (while the algebraic basis simply becomes smaller).
These relations are easily controlled by the transformation matrix which expresses
the differential basis structures in terms of the algebraic ones. We then use these

relations to find the simplest form of the non-redundant solutions of (8.62).

The parity-odd structures can be treated in a similar way, except that we generally
find more redundancies than in the parity-even case. We describe the construction of
parity-odd differential basis in appendix G.1, together with the explicit expressions

for the coefficients c,(,?j),mk. In both the parity-even and the parity-odd cases the
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operators Z)gz) can be obtained by applying a simple permutation to the operators

(a)
Z)12 .

8.3.2 Computing the scalar blocks
Since (8.61) involves the formal dimension-shifting operators X1 5, there are several
scalar conformal blocks entering (8.58), which differ by the dimensions A; of the

external scalars.

Let us analyze the dimensions of the scalar at positions 1 and 2. The exponents

in (8.61) are constrained by the spins of the stress tensors
nip+ni3+my =nip+ny3+mp = 2. (863)

On the other hand, the dimensions of the scalar operators in each term are given by

Al :AT+n12+n23 + my, (864)
A =Ar+npp+ ni3 + mp. (8.65)

It follows that the sum
A +A=2A7+4=10 (8.66)

is the same for all the terms. On the other hand, the difference is
A=Ay = Ay = np3 —ny3 + my — my = 2(my — my), (8.67)
and one can see that it takes all even values —4 < A, < 4. The same is true for As4.

The analysis for parity-odd operators is similar, with the result that A} + A, = 9,

while A, assumes all odd values —3 < Aj» < 3. The same is true for Asy.

Note that the scalar blocks essentially depend only on the differences Aj> and Azg.
Furthermore, there is a Z; XZ, group of permutations of the external operators which
preserves the OPE s-channel and the cross-ratios,'# and thus acts in a simple way
on the conformal blocks. The elements of this group change the scaling dimensions

of the scalar blocks according to

(12)(34) . A12 - —A12, A34 - —A34, (868)
(13)(24) . A12 Ad A34, (869)
(14)(23) 1 Ajp & —Aag. (8.70)

4Of course, we can also use the permutations which change the cross-ratios, but in practice it is
easier to have all scalar blocks with the same arguments.
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We thus only need to compute the scalar blocks with Aj> and A3y in a fundamental
domain for these transformations, and then all the other blocks can be easily inferred.

It is easy to check that a fundamental domain is given by
A1 = |Azgl. (8.71)

The resulting fundamental set of the parameters A, A34 for the scalar blocks is

Ap
° ° 4£ ° °
[ ] | 3r ] [ ]
° 20 °
[ ] 1r ]
-4 ) 2 g o

Figure 8.1: Parameters of scalar conformal blocks for the even-even (blue dots) and
odd-odd (red squares) cases.

shown in figure 8.1. There are 9 scalar blocks required for the computation of even-
even (TTTT) blocks, and 6 scalar blocks required for the computation of odd-odd
(TTTT) blocks.!> In practice we compute them efficiently using the pole expansion
of [36, 49] evaluated on the diagonal z = Z combined with the recursion relation
implied by the Casimir equation to evaluate scalar block derivatives away from the

diagonal.

8.3.3 Applying the differential operators

To finish the calculation of the stress-tensor conformal blocks, it is necessary to
apply the differential operators Z)l.(j“) to the scalar blocks. The embedding-space
definition of these operators, givenin [61], seems inadequate for this purpose because
the embedding-space 4-point tensor structures in 3d contain many degeneracies.
Therefore, it is convenient to reformulate these operators directly in the conformal

frame basis constructed in section 8.2.2.1.

I5Note that by using the dimension-shifting differential operators [3, 120] we can reduce this set
to just one scalar conformal block for each parity.
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The first step is to convert the embedding-space expression for the differential
operators to explicit expressions in 3 dimensions. For this purpose, we consider an

explicit uplift of 3 dimensional primary operators to embedding space operators,

1 LXK
O(Z.X) = 550 (Z“ -7 F) (8.72)

where on the right-hand side we have the 3d operator O (w, x). Applying embedding-
space differential operators to this expression, we reproduce on the right-hand side
the corresponding differential operators in 3 dimensions. Choosing a different
uplift will yield the same result due to the consistency conditions imposed on the

embedding space differential operators.

With the 3-dimensional expressions at hand, we can understand the action of the
differential operators in the conformal frame. In the conformal frame, some of
the operators are placed at fixed positions. In order to apply derivatives in these

constrained directions, we simply solve the equations

4
Z Ly ag{TTTT) = 0 (8.73)
k=1

for these derivatives. Here L are the conformal generators acting on point k. For
example, consider the equation corresponding to L,p = D the dilatation operator,

4
0
(xk - — + Ar){TTTT) = 0. (8.74)
= 0x k
Here A7 = 3 is the scaling dimension of 7. We give expressions for the other
generators in appendix G.2. Evaluating this equation in the conformal frame 6 (8.13)

we find

_ 0 _

(20; + 207 + — +6)g(z, 7, wi) = 0. (8.75)

dx5

Here %g(z, Z, w;) should be understood as %(TTTT) evaluated in conformal
)C3 X3

frame. This allows us to conclude

0 _ _ _
@g(z, W) = —(20; +20; + 6)g(2, 7, w;). (8.76)
3

By using (8.73) with L4p equal to translations, special conformal transformations,

and rotations we find 3 + 3 + 3 = 9 more equations which allow us to solve for the

16 And taking into account that we should replace x4 - 6%4 by —2Ar since we put operator 4 at

—2Ar

infinity. This has to do with the fact that the correlator decays as x,
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remaining 9 derivatives — all derivatives in x; and x4, 2 unknown derivatives in x3
and 1 unknown derivative in x;.!7 Note that the equations for special conformal
and rotation generators will involve derivatives in w; in addition to z and 7 (see
appendix G.2). In practice we solve these equations in Mathematica. We do not
write out the solution explicitly since it is rather complicated. Note that if we need

higher-order derivatives, we can differentiate (8.73) and proceed analogously.

As a result, taking into account also (8.18), we can write for any 3d differential

operator D

— VYRR L A _
D([h1h2h3h4]g[h.h2h3h4](Z, Z)) = E [y Ry s D o g 8Lk o] (2 2)s
h’

(8.77)

where D{Z’]] are differential operators in z and z. In this equation, we can keep the
spins ¢; and the parameters A; as variables, in which case h! differ from #; by finite
shifts. Using in place of D the basic differential operators (8.60) and their parity-odd

analogs, we obtain their counterparts in the conformal frame.

This allows us to efficiently compute the more complicated compositions (8.61)
directly in conformal frame without encountering any redundancies in tensor struc-

tures in intermediate steps. In the end, we find expressions for the (TTTT) blocks

of the form
Nscalar . .
(G ) ( —) _ Z Z i,mn,ab (A ¢l —)amanGAglz)’A(sg( —) (8 78)
A,i’,ab [h]h2h3h4] Z’Z - a[h]h2h3/14] Y aZaZ Z ? A,f Z,Z ) .
i=1 mn

where a are some rational functions of z,z, £, and polynomial in A,'® while Aig
and Ag’z are the parameters of the scalar conformal blocks from the fundamental
region (8.71). The derivative order is m+n < 8 for even-even blocks and m+n < 10

for odd-odd blocks; Ngcatar is 9 and 6 respectively.

The functions a contain powers of (z — z) in their denominators, but these get
canceled when one takes into account that the scalar blocks are symmetric under
7z < 7. For example, if we rewrite the above expression in coordinates z + 7 and
(z—7)?, then the functions a manifestly have only the OPE singularities. This is to be
expected, since the functions entering the decomposition (8.18) must have the same

1"We have just found 1 derivative in x3 from Lap = D and the two derivatives in x; are simply
the z and 7 derivatives.
18Because of our polynomial choice of the solutions cf,‘f]?,mk to (8.62).
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singularities as the physical correlator. Therefore, we can take further derivatives
directly in this expression, and then evaluate it at z = 7 = 1/2 to find the derivatives
of (TTTT) blocks in terms of linear combinations of the derivatives of scalar blocks
with coefficients polynomial in A. Substituting rational approximations for the
derivatives of the scalar blocks then immediately yields rational approximations for
(TTTT) blocks suitable for use in SDPB [35].

8.4 Numerical bounds

In this section we discuss how to use the crossing equations and conformal blocks
derived in the previous sections to compute numerical bounds on the OPE coeffi-
cients and scaling dimensions appearing in the 7 x T OPE. Further details of our

numerical implementation are given in appendix G.3.

8.4.1 Initial comments: Cr and 6
To begin, let us return to the conformal block decomposition of the stress-tensor

4-point function in a general 3d CFT,

(" a
(TTTTy = A2,,Gy + C—TJ;T)TA(TZ’T)TGW ) A A Goan (879
o

where we have explicitly separated the contribution of the identity operator and the

stress tensor itself. We have also assumed that the CFT in question possesses a

1
Cr

function of the canonically-normalized stress tensor 7.

unique stress tensor. The factor =- comes from the fact that Cr enters the 2-point

The OPE coefficient A7r; of the identity operator is just the coefficient in the 2-

point function (T7T), and thus is essentially the central charge Cr. At the same

time, the OPE coeflicients for the stress tensor itself are given by /l(TlT)T = np and

2
Arrr

independent. It is therefore convenient to introduce the following parametrization, !°

= nr. Due to the Ward identity constraint (8.8), these three coefficients are not

cos 8
=Cr——— 8.80
"B T$in6 + cos 6’ ( )
in @
np = Cp—2 (8.81)

sinf +cos 8’

Note that 6 = tan™! (np/np) is m-periodic, so we can assume that § € (-n/4,37/4),

where the denominators are positive. We also renormalize the 4-point function

19 Another, perhaps more natural, parametrization would be ng = Cr cos? 8, np = Crsin?6’.
However this parametrization doesn’t allow us to numerically test negative values of np and ng so
we adopt the one in the text in order to probe the conformal collider bounds.
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(TTTT) so that Cr appears only in one of the terms,

_ 1 A
C;ATTTT) = Gy + C—T®“”GT,ab + ) A A Goa
(0]

1
= Gr+ = 0"Grap+ ) MG par (8.82)
T v

ES -1 .. . . . b -
where /l(T”T)O =C; A(T‘IT)O and the positive-semidefinite matrix ®“” is given by

B 1 cosZ 6 cos @ sin @
(sin@ + cos0)2 \cos#sind  sin% 6

(8.83)

We have also defined the positive-semidefinite OPE matrix Mgfo to be the sum
of /i(T“T)Oi(Tl? o over the operators O with scaling dimension A and in the O(3)
representation p. Of course, the operators appearing in the T x T OPE are singlets
of global symmetries and we generically do not expect there to be any degeneracies.
Therefore, we expect that all matrices M , have rank 1. However, without additional
assumptions the operators are allowed to have arbitrarily close scaling dimensions,
which is numerically indistinguishable from a degeneracy in the spectrum. In other
words, even if we had a way of constraining all M , to have rank 1, numerically
this would make no difference unless we also input assumptions about gaps between
operators. The stress-tensor four-point function written in the form (8.82) is suitable
for numerical analysis using the standard methods which we review in appendix G.3.
Here, let us make some initial comments about our assumptions and on the kind of

bounds we can expect to find.

Note that C, 1@ is essentially a special case of the OPE matrices M, o We only
consider the theories with a unique spin-2* conserved operator, and this is reflected
in the fact that we explicitly assume O to have rank 1 by writing (8.83). Unlike in the
case of generic My ,, this constraint matters. Indeed, parity-even spin-2 operators
strictly above the unitarity bound only have a single OPE coefficient and thus are
clearly distinguishable from T even if their scaling dimension is arbitrarily close to

3. It is therefore more appropriate to think about 7" as an isolated operator.2°

It is important to note that although this assumption on the form of ® is non-trivial,
it does not necessarily imply that this CFT has a unique conserved spin-2* operator.

Indeed, consider a decoupled system of any number N > 2 of CFTs, all of which

20 Although not completely appropriate — there is still a direction in the 3-dimensional space of
symmetric matrices ® which can be “altered” by spin-2* operators with A = 3 + €. This direction,
however, coincides with (8.83) only if 6 — —n/4 + nk.
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satisfy (8.83) with the same value of 8. If the stress tensors in these theories are 7;,
then the stress tensor of the full system is
N
T=>T. (8.84)
=1

1

We also have Cr = }; Cr,. It is easy to check that (TTTT) in this system satis-
fies (8.82) and (8.83), even though each T; is a distinct conserved spin-2* operator.

This also shows that for any value of 6 which is allowed by the crossing symmetry
of (8.82) the central charge Cr is unbounded from above — we can simply take
N copies of the same CFT for arbitrarily large N. In the limit N — oo, the
corresponding four-point function approaches that of the mean field theory (MFT).
The stress-tensor 4-point function in MFT is dual to the 4-point scattering of free

spin-2 massless particles in AdS4 and is given by Wick’s theorem,
(TTTT) =TTYXTT) +(TTXTT) +TTXTT). (8.85)

In this theory Cr is formally infinite. In other words, it gives a unitary solution to
crossing symmetry for which the second term in (8.82) vanishes. In particular, its

existence shows that any value of 6 is formally allowed unless one excludes C7 = oo.

From the above discussion it follows that we cannot put upper bounds on Cr or
constrain 8 without extra assumptions which go beyond unitarity, parity invariance,
crossing symmetry and existence of a unique stress tensor. Importantly, this is not
a technical obstruction of the associated semidefinite problem. As we noted, T
is effectively an isolated operator and thus there is no a-priori problem with such
bounds. The problem is more physical in nature and ultimately due to existence
of the MFT. We will repeatedly see that as soon as MFT is excluded by additional

assumptions, these bounds become possible.

8.4.2 General theories

Given that MFT has infinite central charge, we can hope to exclude some values of
0 by assuming that Cr is finite. One way this can be possible is if there exists a
0-dependent lower bound on Cr which diverges for some values of 6. Of course,
numerically we might not reproduce the divergence but instead see a finite bound

which grows as we improve our numerical approximation (i.e. increase the derivative
order A).

This is indeed what happens. In figure 8.2 we show a series of lower bounds on Cr

as a function of 6 for derivative orders A = 3,..., 19, with no assumptions beyond
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unitarity, crossing symmetry, parity conservation, and the existence of a unique
stress tensor. The behavior of the bound differs dramatically depending on whether
0 € [0, /2] or not. For 6 € [0, /2], the bound appears to converge to a finite value.
Strikingly, for 6§ < 0 or 6 > m/2 the bound diverges with growing A.

Cr lower bounds, A=3,...,19

W

Cr/Cp
[\

-0.5 0.0 0.5 1.0 1.5 2.0

Figure 8.2: A series of lower bounds on Cr as a function of 6, valid in any unitary
parity-preserving 3d CFT. The shaded region is allowed.

These numerical results strongly suggest that for unitary parity-preserving theories
with finite Cr, 0 necessarily lies in the interval [0, r/2]. Note that 6 € [0, /2]
corresponds to ng, ng > 0, which is equivalent to the conformal collider bounds [76,
287]. We have thus essentially recovered the stress-tensor conformal collider bounds
using the numerical bootstrap.?! Note that the recent analytical proof [77] of the
conformal collider bounds uses the lightcone limit of the crossing equation. The
analysis of [31] suggests that numerical bootstrap techniques at high derivative
order can probe the lightcone limit of the crossing equation (despite the fact that
the numerical bootstrap usually involves expanding the crossing equation around
a Euclidean point). Thus, it is perhaps unsurprising that we make contact with

analytical results at large A.

When the conformal collider bounds are saturated (ng = 0 or ng = 0), the theory

is expected to be free [288]. Our lower bounds at § = 0, 7/2 are consistent with the

21Similar conformal collider bounds for OPE coefficients of conserved currents were recovered
numerically in [41].
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existence of the free boson theory (6 = 0) and the free fermion theory (6 = 7/2),
though they are not yet saturated by those theories. However, the bounds continue
to change as we increase the derivative order A. It is possible that at sufficiently
large A, our lower bound will become Cp at each endpoint. We do not currently

have enough data to perform a reliable extrapolation to A = oo (as in, e.g. [140]).

8.4.3 Scalar gaps
8.4.3.1 Parity-even scalar gaps

Let us now explore how the bounds on Cr and 6 change when we impose further
restrictions on the CFT data. It is natural to ask: what is the allowed space of (6, Cr)
in theories with no relevant parity-even scalars in the 7 X T OPE — i.e. CFTs in
which no tuning would be required if all global symmetries (including parity) were
preserved microscopically. Denoting the dimension of the lowest-dimension parity-
even scalar by Aeyen, we show a bound on theories with Aeyen > 3 in figure 8.3. The
free fermion at & = x is allowed (the lowest-dimension parity-even singlet in the
free-fermion theory is 1//28#;0"6“;0&, which has A = 6), whereas the free boson is
of course excluded. The lower bound on Cr falls quickly as 6 varies between 0 and

n, dipping below Cp only for a small range 6 € [1.3, «].

Cr lower bound, Agyen = 3.0

Cr/Cp
IS

Figure 8.3: A lower bound on Cr as a function of 6 in 3d CFTs with no relevant
parity-even scalars.

As we increase the imposed gap in the parity-even scalar sector, Aeyen > AT | the
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lower bounds on Cr get stronger, while still remaining consistent with the existence
of the free fermion up to AT = 6. We illustrate these bounds in figure 8.4. Note
that it is not possible to place upper bounds on Cr when ARl < 6, because of the
existence of MFT, which has Acyen = 6 (associated with Oeven = T, T#”) and infinite
Cr. However, when AT > 6, upper bounds become possible, and indeed Cr and
6 become confined to a small island in the vicinity of the free fermion point. For
example, when Aggg‘n = 6.8, we find 6 € [1.54,1.57] and C;/Cp € [1.2,2.6]. Itis
interesting to ask whether any CFT realizes these values. For even larger values of

A "the allowed region disappears.

Cr bounds, A¢yen = 4.0,...,7.0

0 1 1 1
1.40 1.45 1.50 1.55 1.60
0

Figure 8.4: Bounds on (6, Cr) with varying gaps in the parity-even scalar sector.
When Ag;{;; =4.0,...,6.0, we have a series of lower bounds on Cr as a function of
6. When AM2 > 6.0, we have closed islands which eventually shrink to zero size.

8.4.3.2 Parity-odd scalar gaps

Next we study the effect of a gap in the parity-odd scalar operators. In figure 8.5,
we show a series of bounds on Cr as a function of 6, for various gaps in the parity-
odd scalar sector, Agqgq > Aggg. The bounds are roughly a mirror image of those
in the previous subsection. For Aggg = 2,...,7, we find a series of increasingly
strong bounds pushing the allowed region towards smaller 6. When Aggg > 7, our
assumption excludes MFT (which has Ogqq = €,,,T#7 0"T*, of dimension 7), and
it becomes possible to find both upper and lower bounds on Cr. Indeed, we find

a series of islands (figure 8.6), which finally exclude the free-boson theory when
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CT bounds, Aodd = 2.0,...,8.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

Figure 8.5: Bounds on (6, Cr) with varying gaps in the parity-odd scalar sector.
When the value of the gap Aggg > 7, it becomes possible to find both upper and
lower bounds on Cr as.

Aodd = 11.22 A common corner point of these islands is very close to the Cr value
of the 3d Ising CFT. We return to this point in section 8.4.6, where we will see
that further imposing known gaps in the 3d Ising CFT slightly reduces this apparent

upper bound on Gy

Finally, note that these bounds imply that any CFT with a large parity-odd gap must

have a stress-tensor 3-point function close to the bosonic one, with 6 < .023.

8.4.3.3 Scalar gaps in both sectors

In figure 8.7, we show a bound constraining the space of “dead-end" CFTs, i.e.
theories with no parity-preserving or parity-breaking relevant deformations. Strictly
speaking, our bound only assumes the absence of relevant scalar deformations that
are singlet under other global symmetries (so they are allowed to appear inthe T X T
OPE). We see from this plot that such theories must have Cr > 2. In addition, for a

given Cr, 6 is constrained to lie towards the middle of the range [0, 7/2].

For each of the parity-even and parity-odd sectors, we have seen that there exists a
maximal gap beyond which no CFT can exist (figures 8.4 and 8.6). In figure 8.8,

22The lightest parity-odd Z,-even scalar in the theory of a single free boson is the dimension-11
scalar X" (9o dp, 0p, 0, $) (07, ) (8P18P20,¢) + desc.
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C'r bounds, Ayqq = 8.0,...,11.5

3.0

2.5F 8.0
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Cr/Cp
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Figure 8.6: Closed regions for (6, Cr), given various large gaps in the parity-odd
scalar sector. The lower horizontal line shows the value of Cr in the 3d Ising CFT.

Aeven = 3; Aodd >3

Figure 8.7: Lower bound on Cr as a function of 6 assuming no relevant scalar
operators.

we show the full space of allowed gaps in the both sectors. Along the axes, this plot
reproduces the gaps at which the islands disappear in figures 8.4 and 8.6. The full
bound shows several interesting features that approximately coincide with known
theories. Notable points include MFT at (Aeyen, Aodd) = (6,7), the free Majorana
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fermion at (6,2), the free real scalar at (1,11),?® and the N = oo limit of the
O(N) models at (2,7). We also see the maximal possible gaps Aeyen < 7.0 and
Aogq < 11.78.

The known scaling dimension A, = 1.412625(10) [8] of the energy operator € in
the 3d Ising CFT is shown in figure 8.8 by a vertical line. We see that while most
features seem to be related to free theories, there appears to be a sharp transition in
the upper part of the allowed region, very close to the Ising line. We return to this

point in section 8.4.6.

There is also a feature near (Aeyen, Aodd) = (7, 1), which does not seem to correspond
to a known theory. Such a theory, if exists, is constrained by the bound in figure 8.4
to have Cr/Cp ~ 2 and a value of 8 very close to but lower than the free fermion
value, 1.55 < 6 < 1.563. Since this putative theory requires a very light parity-odd
operator O,qq, such a large parity-even gap should be excluded by the bootstrap
constraints for 4-point functions of Qygq unless the Oyqq X Ooqq OPE contains an
additional parity-even scalar not present in the 7 x 7 OPE. We leave it as an open

question whether this can occur and if this region has any physical significance.

Note that every point which is allowed in this plot must be allowed together with
a rectangular region to its lower left. Because of this, a large part of the allowed
region is due to existence of MFT. It is therefore interesting to study analogous
bounds under assumptions which would exclude the MFT. We leave this question

for future work.

8.4.4 Spin-2 gaps

Next we turn to imposing gaps in the spin-2 spectrum. First we ask how the gap until
the second parity-even spin-2 operator 7’ of dimension A, affects the lower bounds
on Cr. This is shown for gaps A, > 3,...,6 in figure 8.9. We can see that such
gaps have a minimal effect on the lower bound. The gap A, = 6 is special because
this dimension occurs for the operator 7, = T),, T}/ in a number of different CFTs,
including free theories, O(/N) models at large N, and MFT. Thus it is not surprising
that the full range of 6 is still allowed at this gap and that the bound is not very

strong.

However, we expect that if the A‘z‘““ is raised above 6, then we may be able to
start excluding MFT and large N theories by obtaining an upper bound on Cr.

23 Note that the fundamental field in a free scalar theory is charged under a Z, symmetry and thus
does not appear in the T X T OPE.
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Scalar Gaps
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Figure 8.8: Bound on the allowed gaps in parity-even and parity-odd scalar sec-
tors (imposed simultaneously). The blue shaded region is allowed by the (TTTT)
bootstrap. The vertical grey line indicates the scaling dimension of € in the Ising
model. The red region is excluded from the scalar bootstrap for 4-point functions
(O0ddO0ddOoddOodd) assuming Oeyen appears in both the Ogqq X Oogq and T X T
OPE:s.

This is because the “double-trace" operator T,,T, in large Cr theories will have
a dimension Ay = 6 + O(1/Cr), so imposing a gap above 6 will exclude some set
of these theories. This is realized in figures 8.10 and 8.11, where for gaps slightly
above 6 the upper bound is fairly weak, but as it is raised further it becomes very
strong and for gaps near 8.5 the closed region shrinks to a small island around
Cr/Cp ~1and .4 < 6 < .9. Itis interesting to ask if there is a unitary CFT with

such a large spin-2 gap and 8 ~ x/4 which lives inside of this allowed region.

8.4.5 Spin-4 gaps

In this section we move on to considering the constraints resulting from imposing a
bound on the dimension of lightest spin-four operator A4. Consistency of crossing
with the OPE in Minkowski space when two operators are light-like separated
imposes a number of non-trivial constraints on the spectrum of “intermediate”
operators. In particular the “Nachtmann theorem” stipulates that the leading twist,

defined as the twist of the lightest primary of spin ¢ appearing in the OPE O X O,

Ty = Ag - . (886)
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Figure 8.9: Lower bounds on Cr as a function of 6 in 3d CFTs for different gaps

between the stress tensor and the second parity-even spin-2 operator.

Cr upper bounds, Ay = 6.1,...,6.5
140F

120¢

100

Figure 8.10: Upper bounds on Cr as a function of 6 in 3d CFTs for different gaps

between the stress tensor and the second parity-even spin-2 operator.

is a monotonically non-decreasing convex function of £ which asymptotes to 279
[68, 69, 162, 249, 250]. So far this has been rigorously established for scalar O and

even ¢, although the result is expected to hold more generally, for primary O of any

spin. Applying this to the stress tensor one finds that the dimension of the lightest
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Cr upper and lower bounds, Ay = 6.5,...,8.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 8.11: Upper and lower bounds on Cr as a function of 6 in 3d CFTs for
different gaps between the stress tensor and the second parity-even spin-2 operator.

operator of spin ¢ should not exceed ¢ + 2. For the leading spin-4 operator this
implies inconsistency of unitary theories with A4 > 6. Moreover, when A4 = 6, the
lightest operators of spin £ > 4 must have dimensions exactly equal to £ + 2. The
corresponding theory is a MFT dual to pure gravity in AdS4 with Newton’s constant
taken to zero. The operators in question are double-trace operators, schematically

TO'=*T, where we omit indices for simplicity.

When A4 approaches 6 from below, by convexity all higher spin operators must
approach ¢ + 2. This is exactly the behavior expected for a theory dual to weakly
coupled gravity in AdS4. The double-trace anomalous dimensions Ay — ¢ — 2 are
due to graviton exchange in the bulk, which is proportional to Newton’s constant
Gy ~ 1/Cr. This picture suggests that imposing a gap A4 > 6 — € should result
in a numerical bound on the central charge Cr > C;, with C;. going to infinity as
C; ~1/e

Such behavior was observed previously in the context of the N' = 8 numerical
supersymmetric bootstrap in 3d [133]. There the lower bound on Cr was studied
as a function of the dimensions of spin-0 and spin-2 long multiplets, Aj and A}
respectively. When the dimensions approached the values associated with N — oo
ABJM theory, the exclusion region for C7 grew accordingly, with the lower bound

on Cr scalingas 1/(2 - A;). Another related result is in the context of the numerical
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bootstrap of four conserved currents [41]. In this case imposing A4 = 6 resulted in
the lower bound on Cr growing indefinitely as the numerical precision (the derivative

order A) increased.

The numerical results of imposing a gap on A4 are shown in figure 8.12, with some
projections at smaller values of A4 shown in figure 8.13. For each value of A4 and
0 < 0 < m/2 we find a minimal allowed value of Cr. This value is quite sensitive to
0, generally reaching maximal values for § — 0, 7/2 and remaining relatively small
around 6 ~ /4. Atthe same time when A4 approaches 6 the bound rapidly grows for
all value of 6, and seems to diverge (numerically we see bounds of O (600 —700)) as
A4 — 6, consistent with the Nachtmann theorem. Our bounds do not seem to show
sufficient convergence to read off the expected 1/€ scaling, but it will be interesting

to study this divergent behavior more closely in future work.

Cr lower bound vs. 6, A4

Figure 8.12: Lower bounds on Cr as a function of 6 and the spin-4 gap Ay.

8.4.6 Ising-like spectrum

Next we focus our attention on what can be learned about the 3d Ising model from the
(TTTT) bootstrap. In earlier numerical bootstrap work [34], a precise determination
of the central charge C;Sing /Cp = 0.946534(11) was found. As far as we are aware,
no determinations of the (777) 3-point function in the 3d Ising model have been

made previously.

The Ising model has a Z, global symmetry, but only Z,-even operators appear in the

T x T OPE. Such operators can be either even or odd under spacetime parity. The
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Cr lower bounds, Ag = 5.01,5.1,5.2,5.4
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Figure 8.13: Lower bounds on Cr as a function of 6 for spin-4 gaps Ay >
5.01,5.1,5.2,5.4.

scaling dimensions of the leading parity-even operators in the 3d Ising spectrum
have been computed to high precision using numerical bootstrap methods (see table
2 of [31] for a summary). However, as far as we are aware very little is known about

the parity-odd spectrum.

In figure 8.14 we show the result of inputting the approximate known scaling di-
mensions for the leading parity-even scalars {¢, €'}, the second spin-2 operator 77,
and the leading spin-4 operator. The horizontal lines show the 3d Ising value of
Cr as well as the free scalar value. Regions very close to § = 0 and § = 7/2 are
excluded (primarily due to the spin-4 gap) but otherwise this data does not place a

very strong constraint.

On the other hand, we find that imposing a parity-odd gap places a very strong
constraint on the allowed region. In figure 8.15 we show the effect of inputting
the expectation (e.g., from the e-expansion) that the leading parity-odd scalar is
irrelevant,?4 in addition to inputting the leading parity-even scalar dimensions.
Only a tiny window at small 8 is compatible with the 3d Ising value of Cr. We show
a zoom of this region in figure 8.16, where it can be seen that these assumptions
imply .01 < 6 < .05.

241t would be nice to directly confirm this by identifying a system in the Ising universality class
with parity (or time-reversal) symmetry breaking at the microscopic level. We thank Slava Rychkov
for discussions on this issue.
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Figure 8.14: Lower bound on Cr as a function of € assuming known low-lying gaps
in the parity-even spectrum in the 3d Ising CFT.

In fact, it is likely that the parity-odd scalar gap in the 3d Ising model is significantly
larger than 3. E.g., it may be close to the free scalar value Ayqq = 11. This large gap
is also plausible given figure 8.8, where it can be seen that a sharp transition in the
allowed region occurs near the Ising value of Aeyen. In light of this plot, if the gap
is maximal we see that it may be as large as Apgg < 11.2.

Previously in figure 8.6 we saw that a parity-odd gap close to this value on its own
imposes a robust restriction 6 < .023, with an allowed region compatible with C;S g,
In figure 8.17 we show the result on the allowed region of additionally imposing the
known values of A, and A/, combined with the sequence of assumptions Aggq >
9,10,11,11.1, 11.2. These assumptions lead to closed islands and if the gap is close
to being saturated allow us to make the tighter determination .01 < 6 < .018 —.019,

with the precise upper bound depending on the gap.

8.5 Discussion

In this work we used the numerical conformal bootstrap to study the space of unitary
parity-preserving CFTs in three dimensions. Assuming the existence of a unique
stress tensor (conserved spin-2 current) and imposing crossing symmetry of its four-
point correlation function, we found a number of universal bounds on CFT data.

One striking discovery is the necessity of both light parity-even (Aeven < 7) and



381

Ae = 1.412625, Ag = 3.82968, Agqq = 3.0

Figure 8.15: Lower bound on Cr as a function of 6 assuming known low-lying
gaps in the parity-even scalar spectrum in the 3d Ising CFT, combined with the
assumption that the leading parity-odd scalar is irrelevant.

Ac = 1.412625, Ac = 3.82968, Aoqq = 3.0
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Figure 8.16: Lower bound on Cr as a function of 6 assuming known low-lying
gaps in the parity-even scalar spectrum in the 3d Ising CFT, combined with the
assumption that the leading parity-odd scalar is irrelevant.
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Figure 8.17: Lower and upper bounds on (6, Cr) assuming known low-lying gaps in
the parity-even scalar spectrum in the 3d Ising CFT, combined with various larger
gaps in the parity-odd spectrum. A gap Aggq = 11.1 is compatible with C;Slng (shown
as the lower horizontal line) but a gap Aggq = 11.2 is not.

parity-odd (Aoqq < 11.78) scalars in the spectrum of any consistent local unitary
CFT, see figure 8.8. Among other universal results are those limiting the value of
the central charge Cr modulo additional assumptions. For example, in hypothetical
“dead-end” CFTs without any relevant scalars Cr is constrained to be larger than
roughly twice the central charge of a free 3d scalar or Majorana fermion. These,
and other similar findings presented in this paper are of a new kind, in the sense that
they cannot be derived (as far as we know) using any theoretical tools other than the

numerical bootstrap.

There is another class of discoveries presented in this paper which further support and
extend previously established theoretical results. Our numerical results reproduce
the “conformal collider" bounds, see figure 8.2. Imposing scalar or spin-2 gaps
above the values they take in holographic theories further allows us to place upper
bounds on Cr. Similarly, imposing a gap on the dimension of the lightest spin-
4 operator discussed in section 8.4.5, Ay > 6 — €, ¢ — 0, forces the CFT in
question to have an apparently diverging central charge and a spectrum likely dual
to weakly coupled gravity in AdSy, in full consistency with the Nachtmann theorem
[68, 69, 162, 249, 250]. Reproducing these results is a strong consistency check on

our numerical setup.
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Many exclusion plots in this work exhibit characteristic features potentially signaling
the existence of an underlying theory saturating the corresponding bounds. The
scalar exclusion plot in figure 8.8 has a kink that tentatively corresponds to the 3d
Ising model, in addition to reassuring corners that coincide with other known free
or mean-field solutions. This gives hope to extend our results to further elucidate
precise properties of particular theories. The first few steps in this direction for the
3d Ising model were already undertaken in section 8.4.6, where known dimensions
of light scalar operators2> were used to obtain a strong bound 0.01 < 8 < 0.05 on the
OPE coefficient controlling the 3pt function of stress tensors (8.80). By assuming
larger gaps in the parity-odd scalar sector this window can be reduced down to
0.010 < 8 < 0.019. We also find closed islands in Figs. 8.4 and 8.11 which may
indicate new nontrivial solutions to the bootstrap equations and could be interesting

to study further.

Our work paves the way for many future investigations. Below we briefly describe
only some of the possible directions, which we find particularly interesting and
important. A substantial extension of this work would be to combine stress tensors
with other operators, such as scalars, fermions, or global symmetry currents, using a
larger mixed correlator bootstrap. In this way one should be able to isolate e.g. the-
ories with global O(/N) symmetry and obtain a host of new constraints pertaining
to such theories. One can also extend our work to CFTs with varying amounts
of supersymmetry, requiring additional computation of the necessary superconfor-
mal blocks. From the technical point of view these generalizations are relatively

straightforward and only require combining previously developed ingredients.

Yet another natural generalization is to extend the analysis of this paper to parity-
breaking theories. This direction is interesting in part because it would help us gain
a better understanding of the large family of Chern-Simons-matter theories in three
dimensions, recently understood to be interconnected by a large web of RG flows
and dualities (e.g. [289-291]). From the technical point of view such an extension
would require the straightforward task of generalizing the analysis of sections 8.2

and 8.3 to additional parity-breaking structures.

Finally, the numerical analysis performed in this paper, and the theoretical develop-
ments which it required, constitute significant progress in the development of the
conformal bootstrap in d = 3 dimensions. It would be very interesting to generalize

the current analysis to higher dimensions, first to d = 4. The needed conformal

25 Assuming that the lightest parity-odd scalar is irrelevant.
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blocks in four dimensions were recently calculated implicitly in a number of works
[2, 3, 55, 58, 62, 82]. Accordingly, the bootstrap for the stress tensor and other
operators with spin in four dimensions is now accessible in principle, although it
still represents a substantial technical challenge. We hope to address this problem
in the future. This research program can also be potentially extended to arbitrary d
yielding universal constraints on CFTs in d = 5, 6 and beyond. We hope this study
will eventually yield new non-trivial results contributing to our understanding of

interacting CFTs, or their absence, in d > 6.
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Appendix A
APPENDICES TO CHAPTER 2

A.1 Smoothness conditions on correlators

The analysis of section 2.2 did not take into account smoothness of g. In order for g
to be continuous, it is sufficient for gy to be continuous and to satisfy the stabilizer
invariance condition (2.13). Note that with the choice of conformal frame discussed
in section 2.2.3 the stabilizer subgroup is the same SO(d — m + 2) for generic y,
but it enhances an the boundaries of conformal frame, essentially giving a boundary
condition for the otherwise SO(d + m — 2)-invariant go. We will now see that this

boundary condition needs to be refined further if we want g to be smooth.

For simplicity, let us consider only the most important case of 4-point functions.
It is easy to convince oneself that g as given by (2.14) will be smooth for y in the
interior of conformal frame as soon as g¢ is smooth there. What is non-trivial is the
smoothness on the boundary of conformal frame. Let us start with a smooth g and

see what kind of g it leads to.

We split the reduction to conformal frame into two steps. First, we fix the coordinates
X1, X3, X4 as in section 2.2.2. This leads to a function g (x;) which is to be invariant
under SO(d — 1). Note that its smoothness is equivalent to smoothness of g. We

can expand g in Taylor series along the directions orthogonal to e,

N
gi(si,xa) = D gl (si e x2) 2y - 2, + 0(2V), (A1)
n=0

where z is the (d — 1)-dimensional projection of x, onto the subspace orthogonal
to e. From the invariance equation (2.10) we read off the condition that for every

ekn

e - xy the value g/ ,e - x») is a singlet in

4

A~ owd

i @Resg | (X) pi (A.2)
i=1

where 1 is the reducible symmetric tensor representation of O(d — 1).! The sym-

metric tensor decomposes into symmetric traceless tensors as

n=n+m-2)+...+ (n mod 2). (A.3)

"'We also easily take into account the kinematic permutation symmetries by using in (A.1) the
trivialized polarizations §; constructed in appendix A.2.2.2.
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Now when we finally restrict to the conformal frame by taking z inside the half-plane
a, which we will assume to be along 1st and 2nd coordinate axes, with e being along

the 1st axis, we find

N
g0(si, x5, 33) = >~ 72 (s5, X)) (x3)" + 0 (D)) . (A4)
n=0

Note that theorem 1 tells us to look for O(d — 1) symmetric traceless tensors? in

0@
“o-1) ® pi- (A-5)

Equation (A.2) therefore tells us at which orders in Taylor series (A.4) which traceless
symmetric tensors of (A.5) can contribute. For example, the spin-3 symmetric
traceless tensor representation 3, if appears in (A.5), defines a tensor structure
whose coefficient function can contribute to (A.4) at orders (x%)3, (x%)s, (x%)7, o
but not (x%)1 or (x%)z”.

In other words, (A.2) restricts the expansion of the coefficient functions of our
structures by specifying their parity under x% - —x% and the rate at which they go
to zero on the boundary of conformal frame. Note that the x% parity of the coefficient
function can also be extracted from how the corresponding structure behaves under

a  rotation in the plane, say, 2-3, which is more convenient in practice than (A.2).

As the most basic example, consider the scalar four-point function. In this case, the

1---Hn

Taylor coefficients g{’ are singlets in

fAi®e=Hh, (A.6)

and thus only exist for even n, according to (A.3). This tells us that scalar correlation
functions restrict to go with even expansion in x% and this is why we can parametrize

them by u and v (which are also even).

A.1.1 Example: 4 Majorana fermions
Consider now the example of section 2.4.4. There are two aspects of the smoothness
analysis which are important for actual numerical analysis. For convenience, we use

the ¢ and x coordinates of section 2.4.3 below.

The first is that some of the coefficient functions are restricted to be even or odd in

t ~ z — z. This is easy to handle by hand, since as noted above, this is determined

2This is equivalent to taking singlets in further restriction to O(d — 2).
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by the behavior of the structure under m rotation in the plane 0-2. Via analytic
continuation this rotation is equivalent to exchange of T and |. Therefore, we can

consider structures

TID* = (1) £ (LY,
U™ = (1LY + (T,
(U™ = (UL + (UL,
ATTLT = (LT + (UT1TL), (A.7)

each of which have definite parity under t+ — —¢. Note that we didn’t form the
difference in the last three structures since the terms on the right side in each line

lie in the same orbit of Z%.
The second is that some of the coefficient functions should vanish faster than is
required by their 7-parity. We compute?, using (2.39)

84\
Resod) (1) " =2@103 o (A8)

According to (A.2), this means that from 5 coefficient functions of parity-even
structures, 4 are even in ¢, of which 3 start with /2 and 1 starts with 72, and one
is odd in ¢ and starts with #!. We see that there is one 7-even coefficient function
which should vanish as ¢2, which is faster than required by its ¢-parity. This means

that there is a linear relation between ¢° coefficients of the coefficient functions

SO 8L 8ALTLY* > UML) > 1-€-
18+ (0, x) + @2grp1y+ (0, %) + @3geriny+ (0, x) + asagrry+(0,x) =0, (A.9)

where the first argument is # = 0. One can check that a1 # 0, and we can then use

this equation to find g¢ )+ (0, x).

More generally, to find such relations, it is convenient to consider the quadratic
Casimir operator for the SO(d — 1) subgroup. Since SO(d —2) c SO(d - 1),
it commutes with SO(d — 2) generators and thus maps SO(d — 2)-invariants to
SO(d — 2)-invariants. This means that it is a linear operator on the space of
four-point tensor structures, and it detects the SO(d — 1) representations to which
these structures belong. Since only traceless-symmetric representations can appear,

the quadratic Casimir eigenvalues completely characterize them. The recipe is

3In general one may need to be a little more careful with the permutation phases than we have
been in this simple example.
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then to organize the four-point tensor structures according to eigenvalues of this
Casimir, demand the coefficients of the structures with SO (d—1) Casimir eigenvalue

k(k + d — 3) vanish as ¢* (and are even or odd in ¢, depending on the parity of k).
Summarizing the discussion in section 2.4.4 and in this appendix, one can use the
following independent system of crossing equations,

79" gy =0, n=1Lm=0,

"o gy =0, nz0m 20,

2521 (gmu>+ n gmw+) =0, n>0,m=>0,

077" (gamu — gumwr) =0, n=0,m >0,
" agann- =0, nz0m 20, (4.10)

where everything is evaluated atr = 0, x = 1/2.

A.2 More on permutations

A.2.1 Kinematic permutations

In this section we prove that {Sl,jin},‘;":1 = {0, Sy, 53, Zg, 0,0, ...}, where O stands for
the trivial group. The first three cases are, as noted in the main text, trivial, since

the conformal moduli space Mn of n = 1,2, 3 points consists of one point, and thus

Sy = .

Now suppose n > 4. Consider the set U of all conformal cross-ratios of the form
Xij Xkt

Uijki = — 5> X
x% x2
ik™jl

2

5= (i —x))% (A.11)

with i, j, k, [ all different. Permutations of points x; act on this set by permutations,
and permutations from S’ should leave these cross-ratios invariant. Since for a
generic configuration there are no two exactly equal cross-ratios (even though there
are relations between them), this means that the permutations induced on U should

be trivial.

Suppose a permutation maps i — j, i # j. Then by looking at u;; x; (with i, j, k, [
all different) we see that necessarily j — i, otherwise this cross-ratio will change.
But then also k < [. Since we were free to choose k, [, this leads to a contradiction
unless n = 4 and only one choice of k, [ is possible. This establishes that SKi* = 0
for n > 4. For n = 4 it means that the allowed permutations are products of 2-cycles

and an explicit check shows that all possible products are allowed, giving

Sy = e, (12)(34), (13)(24), (14)(23)} = Z3. (A-12)
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A.2.2 Conformal transformations for permutations
We now analyze explicitly the conformal transformations r, induced by permuta-
tions. We only do so for three and four-point functions, since these are the only

cases when there are interesting kinematic permutations.

For both three- and four-point functions we choose the r, to preserve the plane «
in which all the operators lie (for three points we choose some such plane). Such
conformal transformations restrict on « to the fractional linear transformations, and

we can describe them by a mapping

ax+b
cx+d

x x' =

(A.13)

where we identified @ with C. Note that we can choose these transformation to give
trivial rotations in the planes orthogonal to @. We therefore only need to compute
Spin(2) elements induced by r, inside the plane, and the problem is entirely two-

dimensional.

The group of fractional linear transformations is double covered by SL(2, C). Thus

rr € SL(2,C). The correspondence is

a b ax+b
g = . 4 eSL(Z,C):rﬂx_Cerd,

ad —bc = 1. (A.14)

This is 2 to 1 because r, and —r, give the same transformation. Recall that the basic
condition for r, is that
TrXj = Xn(iys (A.15)

for x’ in the conformal frame. In the case of kinematic permutations we have x; = x;.

Thus we have the following equation for r,

ax;+b
cx;+d

= Xn@i)- (A16)
This has two solutions differing by a sign. Since the correlator is bosonic in total,
we are free to choose either of them.

The SO(2) element R, (x;) is given by (upon identification of SO(2) with the unit

circle in complex plane)

) (A.17)

Y=Yl

x/
dx

Rr,,(xi) =n (d
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where n(x) = x/|x|. The implementation of the lifting from SO(2) to Spin(2)
discussed in section 2.2.1 is straightforward in two dimensions. Note that for
ad —bc =1,

d fax+b 1

— = . A.18
dz (cx+d) (cz+d)? ( )
This is invariant under r, — —r, and the phase gives an element of SO(2) as above.
Lifting to an element of Spin(2) is essentially equivalent to choosing a square root

of this expression, with the most natural choice being

d [ax+Db 1
= . Al
dx (cx+d) cx+d (A.19)

This is not invariant over r, — —r,, which means that this is only a map from
the double cover SL(2,C) of the conformal group to Spin(2), but not from the
conformal group PSL(2,C) = SO(3, 1) itself. This is in accord with the discussion

in section 2.2.1. Therefore, we find that

Ry (xi) = n(cx + d)_llxzxn_l([)- (A.20)

In the following table we summarize the locations of the operators in the conformal

frame we choose, by specifying the complex coordinates

X1 X2 | X3 | X4

3-point || O | 1 | oo | -

4-point || O | z | 1 | o0

As discussed before, the operator at infinity is inserted by putting it at L and then
taking the limit L — oo along the real axis. This is done in order to avoid using
inversion when defining the operator at infinity. A safe way of determining the

phases is working with finite L and then taking the limit.

In the following we compute the transformations r, and
R (x0)" = n(hi(n)). (A21)

Note that the SO(2) rotation angle is given by the phase of n(h;(r))?. We write

the permutations in cycle notation. For example, 7 = (134)(25) is the permutation
7(1)=3,73)=4,n14)=17n2)=5nr(5) =2.
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For three-point functions we have the following parameters a, b, ¢, d for the trans-

formations and the induced #4;:

hy | ha | hs a | b| c d
id| 1 [ 1 1 1 0] 0|1
ay | i | i | =i||-1/1]0]1
A3 || @i | i | i O|1 ] 1|0
@3) || =i | i | i 1 0|1 ]-1
a23) -1 1|1 0]1]|-1]1
132y 1 (1 |=1] 1 |[-1] 1|0
A.2.2.2 4-point functions
For four-point functions we have
hy hy h3 ha
id 1 1 1 1
(12)(34) | iVi-z ivi—z | -ivi—-z | -ivI—-z
(13)24) || -z =2) | —Z(1 =-2) | Vz(1-2) | Vz(T-2)
(14)(23) ivz ivz iz iz

Note that these transformations have to be accompanied by a — sign for an odd

permutation of fermions. If we assume that we use the permutations to exchange

identical operators then we can instead use the following table, but without the extra

minus sign for the odd fermion permutation,

hy hy hs hs
id 1 1 1 1
(12)(34) | iVi—z | -iVI—-2 | iVI-2 | -ivi—z
(13)(24) || Vz(1-2) | VZ(1-2) | Yz(1-2) | Vz(T-2)
(14)(23) ivz -iVzZ iVz —iZ

The trick now is that these /;(rr) satisfy the group property

n(hi(no)) = n(hi(m)n(hye (o),

(A.22)

which is an identity in Spin(2), while it is only trivial that it holds in SO(2).
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This fact together with the fact that the action of Z% is free actually implies that these
phases can be trivialized in the following way. Suppose for concreteness that the
full symmetry is the Z%, the argument for subgroups is similar. Thus, assume that
all polarizations s; transform in the same representation p and denote by p(h) the

action of n(h) € Spin(2). First, define the new polarizations

51 =s1,
Sy = p(—im)sz,
53 = p(vz(1 = 2))s3,

§4 = p(=iV2)sa. (A.23)

Then recall that the action of the permutation, say, (14)(23) is

51— p(=ivD)ss 54— pivD)si,
52— p(ivD)ss, 53— p(=ivZD)sa. (A.24)

This induces the following action on the redefined polarizations,

51— p(=iVz)ss = 54,

52 = p(=iN1-2)p(iV2)s3 = 5,

53 = p(Vz(1 = D) p(-iND)s2 = 5o,

54 = p(=iNDp(VD)s1 = 5. (A.25)

It is easy to check that the same holds for all other permutations. Since the re-
definition commutes with the action of the stabilizing O(d — 2), we conclude that
for the purposes of counting the structures we simply look at the tensor product
®?:1 pi symmetrized by the kinematic symmetry group of the correlator without

the fermionic — sign, and then extract the O(d — 2) singlets.

For completeness we also consider the non-kinematic permutations. It is sufficient
to consider (12) and (13) since these together with the kinematic permutations

generate the full S;. For these permutations x # x;, but rather

’
2

z/(z=1)

1-z2

n—lk\

X

W~
=
TN

(12)
(13)

| O
—_ =

818

We find the following permutation phases
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h hy h3 hy
(12) | VI-Z [ VI-Z | VI-Z | VI-2
(13) i i i —i
Again, we can define / to automatically account for fermionic “~” sign,
ill ZLZ il3 /7l4
(12) | VI-Z | -V1-Z | V1-Z | V1-z:
(13) i i —i —i
A.3 Character formula for symmetrized tensor products
Consider a tensor product
W =Vve", (A.26)

and the subspace of it invariant under a subgroup I1 C §, of permutations of tensor
factors,
1
z=|ver|". (A.27)

More generally, we can allow II to act by multiplication by permutations followed
by a multiplication by a one-dimensional character y of I1. As an example, we can
have Il = S, and y(r) = 1, in which case Z is the n-th symmetric tensor power,
or yn(m) = signn, in which case Z is the n-th antisymmetric power of V. For
simplicity, we will consider only these two choices of yri, but leave I completely
general.

Assume that V is a representation of some group G, given by p : G — GL(V).
Then W and Z are also representations of G, and out goal is to compute the character

ofGon Z, yz.

Define the operator
po Z e GL(W) (A.28)
=— > , .
|H| nell

where 7 acts as described above. Let p,, = p®". Note that

1

P=—
1|2

1 1
o = W Z an o’ = P, (A.29)

m,o€ell m,o’ell

where ¢’ = no. Since P> = P, P is a projection and W decomposes into a
sum of eigenspaces of P, W = Wy @ Wi, with the explicit decomposition being

w = (1 — P)w + Pw. Itis easy to see that Pw is II-invariant and if w is II-invariant,
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then Pw = w. This shows W| = Z. Since p, commutes with P, this decomposition

is also a decomposition of W into representations of G. It then follows that

xz(g) =tr Pp,(g), (A.30)

as can be shown by choosing a basis diagonal for P. It is a simple exercise to show

in some choice of basis that

1
X2(8) = T D

ceC

elxn(e) | | Xp(gcf)], (A31)

where C is the set of cycle types of permutations in II, |c| is the number of elements
of cycle type c in II, and ¢; are the cycle lengths in the cycle type c. For example,
the cycle type of the trivial permutation is ¢ = 1”, i.e. it is a product of n cycles of
length 1, and |c| = 1. Therefore the contribution of the identity to the sum is always
Xp(8). Since we restricted yy1 to come from a one-dimensional character of S,,,
it takes the same value on all elements with the same cycle type, so that notation

x1(c) is well-defined.

The examples relevant in this paper are I[1 = Z; C §,, 1 = S3 and I1 = Z% C S4. In
the first case we have two cycle types, 12 and 2!, each occuring once, and therefore

we obtain for the trivial ypp

1
X3 (8) = S2x(9) = 5 [x*(9) + x (8] (A32)

the well-known formula for the symmetric square. For the exterior square one has,
using y = sign,
1
Ax() =5 [¥@) - x ()] (A.33)

In the second case we have the symmetric and exterior cube relevant for proposition 2.
In this case we have IT = S5 and cycle types 13,221, 3! with multiplicities 1,3, 2.
We find from (A.31),

S x(2) = = [x(@) +3x(@)x (&) +2x ()], (A34)

A x(@) = - [x(@® - 3x () x() +2x (&) (A.35)

AN = N =

In the third case we have cycle types 14 and 22 with the latter occuring thrice, so
that we find

1
xz(8) = 7 [x'(@) +3x7D)] (A.36)
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In practice this can be computed as
p'e3(r*pesip), (A.37)

which easily can be checked using the above formulas. The case yy = sign is

equivalent to y = 1.
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Appendix B

APPENDICES TO CHAPTER 3

B.1 Details of the 4D formalism
We work in the signature — + ++ and denote the diagonal 4D Minkowski metric by
hyy. We mostly follow the conventions of Wess and Bagger [292].

The representations of the connected Lorentz group in 4D are labeled by a pair
of non-negative integers (£,£). These representations can be constructed as the
highest-weight irreducible components in a tensor product of the two basic spinor

representations (1,0) and (0, 1).

We denote the objects in the left-handed spinor representation (1,0) as ¢¥,, @ =
1,2, and the objects in its dual representation as “. The original and the dual

representations are equivalent via the identification

Vo = €apP, w* = Py, (B.1)

where

612 = —621 = 621 = —612 = —|—1 (B2)

Because of the equivalence between (1,0) and its dual representation, we will not
be careful to distinguish them in the text, the distinction in formulas will be clear

from the location of indices.

The right-handed spinor representation (0, 1) is the complex conjugate of the left-
handed spinor representation, and the objects transforming in (0, 1) representation
will be denoted as y4. Here the dot should not be considered as part of the index,
but rather as an indication that this index transforms in (0,1) and not in (1,0)

representation. For example, the definition of (0, 1) representation is essentially

U= W' (B.3)

The dual of (0, 1) is equivalent to (0, 1) via the conjugation of (B.1)

Xa = €apx’s X" =Py (B.4)

where €, 4 = €ap; €*P = €¥B. We use the contraction conventions

Yo =¥ Tne X1X2 = X1aX5- (B.5)
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The tensor product (1,0) ® (0, 1) = (1, 1) is equivalent to the vector representation,

and the equivalence is established by the 4D sigma matrices 0'5 5 and o#*# | which

we define as
-1 0 0 1 0 —i 1 O
oV = , ol = , o? = , o3 = , (B.6)
0 -1 1 0 i 0 0 -1
and 7° = o, T = —ol, o = -0, o> = —o3. For a convenient summary of

relations involving sigma-matrices see for example [293].!
For primary operators we adopt the convention to write them out with dotted indices
upstairs and the undotted indices downstairs

ay...ap
Oﬂl.-.ﬁz' (B.7)

In this notation the index-full version of (3.6) is

—B1...Be _ -, N Bef, TO/I'”&%

O”"“QZ = (_1) falai Ea/[fo/zf IPL...ePtPeQ ﬁiﬂ} (B8)
Action of conformal generators We denote the conformal generators by P, K, D, M.
We choose to work with anti-Hermitian generators (related to the Hermitian ones

by a factor of i)
D'=-D, P'=-p, Ki=-K, M =-M, (B.9)

which allow us to avoid many factors of i in the formulas below (note that even though
D is anti-Hermitian, its adjoint action has real eigenvalues). These generators satisfy

the following algebra

[D,D] =0, [D,P,]=P, [D.K,=-K, (B.10)
[PuP]=0, [K,K,J]=0, [K,P,]=2huD—2M,, (B.11)
[Myuy, D1 =0, [Myy, Pl = hypPu— hupPy (M, Kl = hypKy — oKy,
(B.12)
[Myy, Mool = hypMyugy — hyoMys — hyg Moy + hyo My . (B.13)

!One should download and compile the version with mostly plus metric. Notice also a factor of
J— —_uv
i difference between their o*” and 7 and ours S*” and S’ .
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The action of the conformal generators on primary fields is given by

[D,O(x,s,5)] = (x*9, + A) O(x, 5, 5), (B.14)
[Py, O(x,s,5)] = 0,0(x,s,5), (B.15)
(K, O(x,5,5)] = 22,07 = x267)8,0(x, 5,5) + 2(A %, = x” My )O(x, 5, 5),

(B.16)
(M, O(x, 5.5)] = (3,8, — x,0,)0(x, 5, 5) + My O(x, 5. 5), (B.17)

where the spin generators are
— o g 0 _ < & O —
MuO(x, 5,5) = =5"(Sp)a 958 Sa(Su) B@ 0O(x,s,5). (B.18)

We have defined here the generators of the left- and right-handed spinor representa-
tions .
(Su)a” = =7 (0,47 = T (B.19)

(S = —}l(am - 70,0 (B.20)
which satisfy the same commutation relations as M,,. Notice that as usual the
differential operators in the right hand side of (B.14)-(B.17) have the commutation
relations opposite to those of the Hilbert space operators in the left hand side. This is

because if the Hilbert space operators A and B act on fields by differential operators
A and B, then their product AB acts by BU.

Action of space parity If a theory preserves parity, there exists a unitary operator
P with the following commutation rule with Lorentz generators
PMyP ™' = My, PM;P"' =M, (B.21)
where 7, j = 1,2, 3. Applying this to (B.17) at x = 0, we see that
[My1y, PO (0)P '] = (Sp)? 3P O(0)P. (B.22)
This implies that we can define an operator O as
0% (x) = ~iPO(Px)P! (B.23)

which transform as a primary operator in the representation (0, 1). We also have
Px0 = x0 Pxk = —xk k =1,2,3. More generally, it is easy to check that we can

consistently define

Op il (x) = (=)ol PP, (B.24)
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The factor of i was introduced to reproduce the standard parity action on traceless

symmetric operators in the O = O case.
The above definition provides the most generic action of parity on the operators O

which can be slightly rewritten as

POL PP = i"*z(?g;;;;g;(m), (B.25)

or equivalently in index-free notation
PO(x, 5, 5P = O(Px,Ps,P3), (PSa =is®, (Ps5)* =isq. (B.26)

Notice that if O transforms in the (£, €) representation then the operator O transforms
in (Z, ¢) and may or may not be related to the operator O defined in (3.6) or to O
itself if £ = £. This depends on a specific theory. What is important for us is that in

a theory which preserves P there is a relation between correlators involving O; and

O;

<0|01 (xl’ Sl’El) te On(xn, Sns En)|0> =
=(0|PO; (x1,51,5)P " -+ PO, (xp, 51,51)P0)
=(0101 (Px1, P51, P51) - - Opn(P X P P5,)|0).  (B.27)

Written in terms of tensor structures this equality reads as
> iThel = > (PThEL, (B.28)
1 1

where PT! is given by T/ with x — Px, s — Ps, 5 — P5 and T/, are the tensor
structures appropriate to the correlators with the operators 5,-.2 We provide the
rules for the action of # on various tensor structures in equations (B.114), (B.115),
and (3.120) [applyPParity].

Action of time reversal If a theory has time reversal symmetry, there exists an anti-

unitary operator 7 with the following commutation rule with Lorentz generators

T Mo T = -My, TM;T"' =M, (B.29)

where 7, j = 1,2, 3. Applying it to (B.17) at x = 0, we see that

(M, T 0o (0)T '] = [(Ew)d B]* TOp(0)T " (B.30)

2If there are any parity-odd cross-ratios (i.e. n > 6) then g should have these with reversed signs.
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This implies that 7 Og(0)7 ~! transforms as ¥# and we can define the operator 9]
as

Ou(x) = —i€qpT Op(T )T, (B.31)
where 7 x° = —=x0, 7 xK = x*, k = 1,2,3. One can similarly define

0% (x) = ie"PTOP (T x)T ™! (B.32)
and extend the above definitions to arbitrary representations in an obvious way. For

traceless symmetric operators in the O = O case, this reproduces the standard time

reversal action. In index-free notation we can write3
T O(x, s,E)”/"_1 = 5(Tx,Ts, T5), (T)=is,, (TS = —-i(s9H*. (B.33)

Again, 19) may or may not be related to O depending on a theory. The only important
point is that there is a relation between correlators with O; and O; in a theory

preserving the time reversal symmetry

(0101 (x1,51,51) = - - On(Xp, Spy 5,)10) =
= [(OI17 01 (x1, 51, 5T ™ - T Oy (s 51,507 (0]

. [<0|51 (T 20, T 51, T51) - - On(T s T 5 frfn)|0>] :
(B.34)

where the conjugation happens because of the anti-unitarity of 7.4 Written in terms
of tensor structures this equality reads as
> Thel = Y (T @D (B.35)
1 1
where 7T/ is given by (T.)* with the replacements x — 7 x, s = 75,5 = 75

made before the conjugation and Tfl are the structures appropriate for the operators

—_

O;.

Computing T%ﬁ is easy, since we can construct 7 conjugation from ¥ and the

inM®B M2

rotation e . The latter rotation sends s — s, s — —s, which takes 7 s and

7 s to Ps and Ps. The end result is
7T, = (PT) . (B.36)
We list the rules for the action of 7~ on tensor structures in equations (B.116), (B.117),

and (3.122) [applyTParity].

3Note that 7"s and 75 are not complex conjugates of each other even if s and 5 are, so to avoid
confusion here we do not assume that s and s are complex-conjugate. There is always a second
complex conjugation (see below), so this is only intermediate.

4As an extreme example 7 i7 ~' = —i, so we have i = (0]i|0) = [(0|7i7 ~'|0)]* # (0|7 i7 ~'|0).
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B.2 Details of the 6D formalism

In this appendix we describe our conventions for the 6D embedding space. We
mostly follow [54, 55].

We work in the signature {— + + + +—}, and we denote the 6D metric by hy;y. We

often use the lightcone coordinates
X*=Xx'+ X7, (B.37)
and write the components of 6D vectors as
XM = (X" X*, X7}, (B.38)

The metric in lightcone coordinates has the components

1
hio=h_; = > K~ =h*=2 (B.39)
The 6D Lorentz group Spin(2,4) is isomorphic to the SU(2,2) group. The latter
can be defined as the group of 4 by 4 matrices U which act on 4-component complex

vectors V,, and preserve the sesquilinear form
(V, W) = g (V))* W,  (UV,UW) =V, W). (B.40)

Here the metric tensor gab is a Hermitian matrix with eigenvalues {+1, +1, -1, -1},

which we choose to be

0O 0 i O
- 0O 0 0 i
ab ba
= = B.41
T8 Tl 000 (B4D
0O -1 00
ab

The bar over the index a indicates that this index transforms in a complex conjugate
representation. In other words, we say that V, transforms in the fundamental
representation while

Ve = (V) (B.42)

transforms in the complex conjugate of the fundamental representation (that is, by
matrices U*). The metric g?° establishes an isomorphism between the complex

conjugate representation and the dual representation

V= gV (B.43)
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We say that V* transforms in the anti-fundamental representation (that is, the anti-
fundamental representation is the dual of the fundamental representation). The

inverse isomorphism is established by the tensor

gap = 8pa = —8°0. (B.44)

‘We have the relations
gz8" =g%g =065 (g0 =g (B.45)

The isomorphism between Spin(2,4) and SU (2, 2) can be established by identifying
the vector representation of Spin(2,4) with the exterior square of the fundamental
or anti-fundamental representations of SU(2,2).> This equivalence is provided by

=M ab
the invariant tensors 23/[1) and T defined by

. 0 —(cte), . [0 o - [=2€% 0
Zab =\ =u_va o Lgp = ap | Zab= ’
(c"e) 5 0 0 2¢ 0 0

(B.46)
and
— mna _ _n af .
i,uab: 0 (60-)ﬁ’ z:+ab: 2€ O’ Zab: 0 0 .
(e7,” 0 0 0 0 2€*

(B.47)
These tensors have the following simple conjugation properties,
* —Ma’'b’ —M ab\ * — 1 T

(=) = gawgs T (Z77) =g™g"sl,. (B.48)

The above sigma-matrices satisfy many useful relations, for an incomplete list of

them see appendix A in [55]. Using the sigma matrices we define the coordinate

matrices
Xop = XpZM = X, XU = X2 = X" (B.49)
which satisfy the algebra
X X))+ XX =2(X; - X;)6b. (B.50)

We can now identify the SU(2,2) generators corresponding to the standard 6D

Lorentz generators

MN

1 v - | _
MV = 2 s ety MV S 7 SN _TVeMy, (B.51)

>The fundamental and anti-fundamental representations themselves are the two spinor represen-
tations of Spin(2,4).
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satisfying the commutation relations
[EMN $PO] = pNPEMO _ MPENQ _ yNOyMP | MOy NP (B.52)

=N P9 = pNPEMO L pmPgNe _pNosMP |y mosN (B.53)

thus establishing the isomorphism Spin(2,4) ~ SU(2,?2) at Lie algebra level.

By comparing the expressions for X, and =" with S#” and EW, we find that under
the Lorentz Spin(1, 3) subgroup of Spin(2, 4) the fundamental and anti-fundamental

representations of SU(2,2) decompose as

va:(v‘?), W”:(Y ) (B.54)
v W,

In other words, we write V,, or V¢ to refer to first two or second two components of

V., and analogously for w.

Conformal algebra in 6D notation We can identify explicitly the conformal

generators with the 6D Lorentz algebra
M, =L,, D=Ly, P,=Ls,—Ls, K,=-L4,—Ls,. (B.55)
With these conventions, the generators Ly y satisfy the algebra
[Lymn, Lpol = hnpLyo — hupLno — hngoLmp + hyoLnp. (B.56)
These generators act on the 6D primary operators as
[Lun,. O(X, S, $)] = LunO(X, S, S), (B.57)
where the differential 6D generator is defined as
Lun = — (Xm0 — XnOu) — SEyunds — SEun . (B.58)

It is sometimes convenient to work with the conformal generators in SU(2,2)

notation |
L) = [EMN]ab Lyn, Liun = _ELab[ZMN]ba~ (B.59)

In this notation the conformal generators obey the commutation relations

|Lo" L] =260 L, - 260 Lc". (B.60)
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We also have the following action on the primary operators
[L", 0(X, 5, 9)] = £, O(X, 5, 5), (B.61)

where £,¢ is the differential operator associated to the 6D generator L, in Hilbert

space

= —% [(XEM):’ o - (V%) " aM]% 5 (05 -5 05)-2 (5,08 - 30 )

Sal "

(B.62)

Embedding formalism In the embedding formalism the flat 4D space is identified
with a particular section of the 6D light cone X2 = 0. Namely, we take the Poincare

section X* = 1, which then implies
X =-X'X,. (B.63)
The 4D coordinates x,, are identified on this section as
xt = XH. (B.64)

In particular, on the Poincare section we have

xM = {xH, 1, —x?). (B.65)
Poincare
Consider an operator OZI'"'I‘X (X), defined on the light cone X2 = 0, symmetric in
by
its two sets of indices. Following [54], it can be projected down to a 4D operator
Ol il (x) as
Bi...B7 <Bib Pb7 far...
Ol (%) = Xayay - - - Xaya, X .. X 0 (X) . (B.66)
’ Poincare
If the 6D operator satisfies the homogeneity property
04y (1 X) = 700,73 (X, (B.67)

where ko is defined in (3.13), then the resulting 4D operator will transform as a
primary operator of dimension Ay under conformal transformations. We call O a
6D uplift of O.

Notice that the 6D uplift O is not uniquely defined. Indeed as a consequence of the

light cone condition in terms of the matrices in (B.50),

X?’=0 = ,XX)’=0 and “XX),=0, (B.68)
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the 6D operator is defined up to terms which vanish in (B.66), leading to the
following equivalence relation

a..ag _ ar-ae | YHE paz...ar caj...ap a| ~ay...ap
Oy, ~ O, X A A Xpie By, 70+ 6, Gy (B.69)

Furthermore, in order to simplify the treatment of derivatives in the embedding
space, it is convenient to arbitrarily extend O(X) away from the light cone X? = 0
and treat all the extensions as equivalent. This means that we can also add to
O(X) terms proportional to X2. Following the terminology of [61], we refer to this
possibility as a gauge freedom and the terms proportional to X, ,Xab, o, or X 2

will be called pure gauge terms.

It is convenient to use the index-free notation (3.58). Contracting the 4D auxiliary
spinors with (B.66), we find that

O(x,55) = 0(X,S,5)| (B.70)
proj
where we introduced the formal operation |,.,; defined as
— —Bb
XM oo=xM s =5%e| . 5] =X
proj Poincare proj Poincare proj Poincare
B.71)

As a consequence of the gauge freedom, the index-free 6D uplift O(X, S, S) is
defined up to pure gauge terms proportional to SX, SX, SS or X2. Note that they
all vanish under the operation of projection (B.70) due to (B.68)

—ab — —
X"s| =0, $'X,| =0 3| =0 x) =0 (872

proj proj proj proj
We will always work modulo the gauge terms (B.72). In practice this is taken into
account by treating (B.72) as explicit relations in the embedding formalism even
before the projection. Note then that as a consequence of the relations (B.68),

(B.72), the anti-symmetric properties (B.49) and the relations (A.7) in appendix A
of [55], the following identities hold® which we call the 6D Jacobi identities

—la=bc] _ —lab—=c]d _

SXp =0, §X =0, XupXqe=0 XX =0. (B.73)

Differential operators In section 3.2 we commented upon the importance of

some differential operators, such as the conservation operator (B.142), spinning

®We thank Emtinan Elkhidir for showing this simple derivation.
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differential operators (3.91), (3.92) and the Casimir operators entering (3.45). To
consistently define these operators in embedding space, we require their action to
be insensitive to different extensions of fields outside the light cone and the other
gauge terms in (B.72). This results in the requirement’

0 o 0

D ,— — X, S5, S|-0(X% SX,5X,SS) = O(X? SX,SX,SS). (B.74
X 35, 7 ( ) = 0( ). (B.74)

To go from 6D differential operators to 4D differential operators, we need to find an
explicit uplift of the 4D operators O(x, s, 5) to the 6D operators O (X, S, S). Asnoted
above, there are infinitely many such uplifts differing by gauge terms, but all lead to
the same result for 4D differential operators if the 6D operator satisfies (B.74). For

example, we can choose the uplift
O(X,5,8) = (X")T0OX"/X*, Sa, Sa). (B.75)

In particular, X, SA, Eﬁ derivatives of this uplift of O vanish. By applying 6D
derivatives to this expression we automatically obtain the required 4D derivatives
on the right hand side. For instance, we find for the first order derivatives after the
4D projection

a/ox™

={0/0x*,—ko — x"0/dx",0}, (B.76)

proj

={8/054,0},  8/9S°| =1{0,8/05,). (B.77)

proj proj

/08,

Reality properties of the basic invariants Using the reality properties (B.48)
of the sigma matrices, the projection rules (B.71) for S and S, and the reality
convention for 4D auxiliary polarizations s, = (54)", we can find the following

reality properties for the basic objects hold

— —ab\* — —a —
Xa)' =Xz (X7) =X 0" =85 () =is". B
Due to the relations such as Y*W,, = ;W, we have an extremely simple conjugation
rule for the expressions such as (EinikSl): replace X < X, S & S and add a
factor of i for each S and S.

Action of space parity To analyze space parity, let us denote by Pﬁ? the 6x6
matrix which relfects the spacial components of X#. We also denote by d indices

transforming in the representation reflected relative to the one of a.® Note that the

7In this equation O stands for the usual big-O notation and not the 6D operator.

8The reflected representation is the representation with the Lorentz generators M}”SIHN given by

Mf,’[ﬂN =Py /Pg "M n, where M are the original generators.
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reflection of the fundamental representation is equivalent to anti-fundamental and
vice versa and this equivalence should be implemented by some matrices p?” and

pab- In terms of these matrices we then have

_N _M a/bl
PYEN =35 = paappy (B.79)
PYS Y = gN b 2 e s (B.80)

It is easy to check that these identities (as well as the equivalence between the

representations) are achieved by choosing

0O 0 0 —i
R R 0O 071 O
P = pPh = —pap = —pra = 0o io ol (B.81)
- 0 0 0
ab

From the above we deduce the action of parity on on X and X

Xop o X5 X XD, (B.82)

We can also check, based on 4D projections of S and S, that
S, —=8s S - 8% (B.83)

Due to the identities such as YW, = ¥;W¢, we have the following parity conjugation
rule for the products like (E,X jikSl): replace X < X, S & S and a factor of —1

for each S in the original expression.

Action of time reversal As discussed in appendix B.1, see equation (B.36), the
time reversal transformation can be implemented by combining the space parity
with complex conjugation. Using the above rule, 7 acts simply as a multiplication

by i2i i~ti on each structure.

B.3 Normalization of two-point functions and seed CPWs

In this appendix our goal is to fix the normalization constants of 2-point func-
tions (3.16) and the seed CPWs (3.44).

The phase of 2-point functions is constrained by unitarity. A simple manifestation
of the unitarity is the requirement that all the states in a theory have non-negative
norms

(YY) > 0. (B.84)
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Our strategy is to define a state whose norm is related to 2-point functions (3.15)

and use this relation to fix the phase (3.16). In particular, we set
10(s,5)) = O(x0,5,5)0), x = {i€,0,0,0}, (B.85)

where € > 0. Here we are working in the standard Lorentzian quantization where
the states are defined on spacelike hyperplanes. The state |O(s,s)) can then be

interpreted as a NS-quantization state in a Euclidean CFT [18]. Note that we have
10(s,5)) = e 7 0(0, 5,5)|0). (B.86)

Here H = —i Py is the Hamiltonian® of the theory, and thus its spectrum is bounded
from below. Therefore, we need € > 0 in order for |O(s, 5)) to have a finite norm.

To compute this norm, we first consider the conjugate state
(0(s5,5)] = (01(O(x0,5.5)" = (0[0(-x0, 5, 5), (B.87)

where we used x;; = —x¢. Then the norm is given by

(0(5,$)10(5,5)) = (0]O(=xq, 5, 5)O(x0, 5, 5)|0). (B.88)
By using (3.15) to further rewrite (B.88), with the invariants x7,, I*! and I'? taking
the form
x%z = 462, 1?! = 2ie s?s, ' = —2je sTs, (B.89)
we find
(010 (=0, 5. 5)0(x0, 5.5)10) = ¢ 5, 2€) (57 5) il > 0, (B.90)

where s7s = [s1]? + |s2]> > 0. This equation fixes the phase of 00y and we can
consistently set

_ -t

Cooy =1 - (B.91)
Normalization of seed CPWs One can find the leading OPE behavior of the seed
and the dual seed conformal blocks by taking the limit z,7 — 0, z ~ Z, of the

solutions obtained in [58]. In particular, for the seed blocks we find

: » _ p E2)Pplp—e+l),  _ avepir oy 2472
lim H,” = > C s c
A A =y v, t-pre\ 3 (77) 172

9Recall that in our conventions P is anti-Hermitian.

), (B.92)
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and for the dual seed blocks

=) (=2)¢Ppl(p—e+1), ( —)% C(p+1)( Z+2 )

lim H, = (-2)’c" —t
Ay He = (2¢, S+ 1), = e \2 @)
(B.93)
where C](.V) (x) are the Gegenbauer polynomials, which in the limit 0 < z <7 < 1
read as _ ( .
+7Z p+1)y _s_s
e 2 ~ 272. B.94
2@ st o F (559

In the equations above ¢ and ¢  are some overall normalization coefficients
0,-p

p
0.-p
defined in [58]. The purpose of this paragraph is to find the values of these

coeflicients appropriate for our conventions for 2- and 3-point functions.

In order to fix these coeflicients, it suffices to consider the leading term in the s-
channel OPE in the seed 4-point functions. We have checked that the OPE exactly
reproduces the form of (B.92) and (B.93) if one sets

cop=2"C_, = (-Df P (B.95)

Let us stress that this normalization factor is fixed by the convention (3.15) and (3.16)
for the 2-point functions, and the definitions of the seed 3-point functions. The seed

3-point tensor structures are defined as

A0 ) H PV (02) O P (po)) = 27 11,5, (BI6)

©@n " (02) FO0 () 707 (pa) ) = 121 (12,1, (B.97)
and the dual seed 3-point functions are defined as

FO )7 ) 0y " () = EPY 3% (B.98)

O P (p) HO0 ) FO (b)) = Ky P IB1K, (B9)

where in each equation %3 has to be replaced with the appropriate 3-point kinematic
factor as defined in (3.18).

Equation (B.95) can be derived from these three-point functions and the correspond-

ing leading OPE terms

70O F, " (x2, 52)
o (=D)P
L+ p)!
7900 F, " (x2, 5)
l’l’
0t p)!

—(C+p,l _
o A2 (5,0 )P (x4 0,0, 0) O " (0, 5,5) + ..., (B.100)

—Aj=As—f— 12 —
o [ A 217827 EP (K ) 00, 30)P (5 050,39 L O TP (0, 5,5) + .

(B.101)
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where we have defined
(65)Y = — (B.102)

The normalization coefficients in these OPEs can be computed by substituting
the OPEs into (B.96) and (B.98) and using the two-point function (3.16). The
normalization coefficients for the CPWs are then obtained by using these OPEs in

the seed four-point function
</(‘_'1(0’0) 7_‘2(]7’0) 7:3(0,0) ﬁ(osp)> (B103)

and utilizing the 3-point function definitions (B.97) and (B.99). In practice, when
comparing the normalization coefficients, we found it convenient to use the confor-
mal frame (3.95) - (3.98) in the limit 0 < z < 7 < 1 and further set 7, = 0 and
e = p for the seed CPWs or & = 0 and e = 0 for the dual seed CPWs.

B.4 4D form of basic tensor invariants
Here we provide the form of basic tensor invariants in 4D for n < 4 point functions.
They are obtained by applying the projection operation (B.71) to the basic 6D tensor

invariants constructed in section 3.3.1

ce s S 2l Co s P . —
Al Al] Ak Al] i _ /\l Al] k l] [j i 1
@, L I K Ky Ly L) = UYL, T K Ky, LYy, ijz)p ;

ki iy ke ip By roj
(B.104)
where
I = xf Giys)), (B.105)
Sij 2 M 2 M 2 M2 puN o 2.op 2 p
I = 2 2 X((xikle xz'zxjk)+(xjkxﬂ X5X0) = XXy XXy
ki
= 20" xik v xij pxum) X (51045, (B.106)
2 2 M yei
XX Xt x'.
~k ik”™jk k jk o
= (;2 - T) X (kT pSk); (B.107)
Yij ik Xk
Kij 1%)( (2+2_2)(,.)_4ﬂv(' ) (B.108)
k2 il 1 jd Yite T Xjre ™ Xij) NS08 T WXy X jie WSiT v Sj) ) :
11Xl 2,2 2
= =3 —AvH v (e T
pi = 2 KoY 2 M v 2 M v . .
Jjkl — m X (xijxklxil + xikxljxij + xilxjkxl.k) X (SIO'W,SI) , (B.110)
J J
A
I 2 My 2 My 2.4 v —— =
ijl - m X (xijxklxﬂ + xikxljxij + xilxjkxik) X (SZO'#VSI) . (B.111)
J J
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We recall that X = xlf‘ - xﬁ.‘ and €pi23 = —1 in our conventions. From these

expressions it is possible to derive the conjugation properties of the invariants. They

read as follows:

Oy = (@)= @) en s

/\ij * Lt_] . %
(Kk) =K. (L) =L (B.113)

Their parity transformation can be deduced from (B.26)

P i = _fii, pﬁgl = _ﬁ{]i, gojfj = jfj, (B.114)
s ~lij N i
?Klk] :Kk’ P‘£}kl :ijl' (BllS)

Finally, according to (B.36) one gets transformations under time reversal

g i = i Tﬁ’}f, :ﬁjgl, (rjlkj :jfj, (B.116)
TKZkJ = _sz]’ ‘Tﬁ;kl =~ Aj‘kl' (B.117)

The same properties follow from the discussion of -, 7 -symmetries, and conju-

gation in appendix B.2.

B.5 Covariant bases of three-point tensor structures
Let us review the construction [n3ListStructures] of 3-point function tensor

structures [55]. According to the discussion below (3.88) one has
= {1 [T B [ R s
i#] i, j<k

where the exponents satisfy the following system

t = Zm,,-+2k1 + (B.119)

1#i [#i
7 :Zmi,+2%,+n,-. (B.120)
[#i 1#i
Let us also define the quantity
Al = Z(f,- — 7). (B.121)

Due to relations among products of invariants, not all the structures obtained this way

are independent and constraints on possible values of the exponents in (B.118) must
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be imposed. Theses relations come from the Jacobi identities (B.73) by contracting

them with 6D polarizations and 6D coordinate matrices in all possible ways.

The first set of relations reads

N ]k A Aia
KA = - -0, (B.122)

ST siinii  ajkaik

KK = VP = Jj . (B.123)
If A¢ # 0 we use these relations to set E = 0 or k; = 0 for Vi in the expres-
sion (B.118); if Af = 0 we set instead k; = E,- =0 Vi.

The second set of relations reads

3 Rk _ ik _ ikl
J Rk = PIRIC - R (B.124)

5 ~ld Al.ijj AkjLij
VK, =K, +IVEK, . (B.125)

This allows to set either n; = 0 or k; = 0 if A¢ > 0 and either n; = 0 or E = 0if
Al < 0in (B.118).

If A¢ = 0 it might seem that the relations (B.124) and (B.125) do not play any role,
since all K and K are removed by mean of (B.122) and (B.123). However it is not
the case, by combining (B.124) and (B.125) with (B.122) and (B.123) one gets a
third order relation

LI, = (P22, - IOPI52, + I22153)) - (RIP2 - 12P112) . (B.126)
This allows to set in (B.118) either n; = 0 or np = 0 or n3 = 0 when A = 010, It
can be verified that no other independent relations exist.

In the case when all operators are trace-less symmetric, i.e. ¢; = ¢; for each field,
it is convenient to work in terms of structures manifestly even or odd under parity.
Following [62], the most general parity definite tensor structure reads as
By = (P2 ) [ (007) x [ ][]} ®a20)
ij i, j<k
where the structure is even if p = 0 and the structure is odd if p = 1. The form of
this basis is structurally identical to the one found in [53]. This basis has extremely

simple properties under complex conjugation, parity and time reversal
(TZ)* =DPTg, PTE =P T TT=14 (B.128)

This basis can be constructed using [n3ListStructuresAlternativeTS].

10Notice that for A¢ # 0 atleast one n; is always 0 and hence (B.126) does not give new constraints.
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B.6 Casimir differential operators
The Lie algebra of the 4D conformal group is a real form of the simple rank-3
algebra so(6). Therefore, it has three independent Casimir operators, which can be

defined using the 6D Lorentz generators (B.57) as follows:

C, = %LMN LM, (B.129)

C; = ﬁ eMNPORS v Lpg Lgs, (B.130)

Cy= %LMN LN Lpo LY, (B.131)
where €912% = ¢41o345 = +1.

To write out the Casimir eigenvalues for primary operators, it is convenient to
introduce also the SO (1, 3) Casimir operators using the 4D Lorentz generator (B.17).
There are two such Casimirs

1

1
¢ = —ELWL‘”, c; = —€"P" Ly Ly, (B.132)
with the eigenvalues

1 1- - 1 1- -
e; = §€(€+ 2) + §€(€+2), e, = E{’(f +2) - §€(€+ 2). (B.133)

The conformal Casimir eigenvalues are then given by

Ey=AA-4)+ ¢, (B.134)
Es=(A-2)e, (B.135)
Ey= N (A-4)2 +6AA-4) + (e;)z—%(e;)z. (B.136)

Note that ¢; is parity-odd and therefore e, changes the sign under £ & ¢. The same

comment applies to C3 and E3.

It is convenient to write the Casimir Operators in the SU (2, 2) language by plug-
ging (B.59) into the expression (B.129), (B.130), and (B.131)

1

G, =1 tr L2, (B.137)
1 3

C3 == (trL — 16C2), (B.138)

1
Ci=—g (rL* -8 uL’-12C+16C). (B.139)
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Let us emphasize that the Casimir operators C, are the Hilbert space operators.
Their differential form €,, can be obtained by replacing the Hilbert space operators
Lyy and L,¢ with their differential representations £y,n and £,¢ given in (B.58)
and (B.62) together with reverting!! the order of operators Ly and L, in equa-
tions (B.129) - (B.131) and (B.137) - (B.139).

B.7 Conserved operators

By conserved operators we mean primary operators in short representations of
the conformal group, i.e. those possessing null descendants and thus satisfying
differential equations. In a unitary 4D CFT all local primary operators satisfy the
unitarity bounds [24, 42]12

A21+¥,£:00r2:0, (B.140)
t+¢ -
A22+%,€¢Oand€¢0, (B.141)

and unitary null states can only appear when these bounds are saturated.

The operators of the type £ = 0 or € =0 with A = 1 + (£ + €)/2 satisfy the free
wave equation!3 0202”) = 0 [294], which immediately implies that such operators
can only come from a free subsector of the CFT. The operators of the second type,
00+0,A=2+ €+ ?) /2, are the conserved currents which satisfy the following

operator equation !4

62

_— . B.142
0s® 65’3 ( )

(%3 - -
0 - Oé )(x,5,35)=0, 4= (60'#); Oy
Of particular importance are the spin-1 currents J# in representation (1, 1), the stress
tensor T*” in representation (2, 2) and the supercurrents J, and J 5 in representations
(2,1) and (1, 2). Note that an appearance of traceless symmetric higher-spin currents

is known to imply an existence of a free subsector [295, 296].

The conservation condition results in the following Ward identity for n-point func-
tions B
0-<... Og’f) (x,5,5)...) =0+ contact terms, (B.143)

See the discussion below (B.20).

12 An operator with £ = £ = 0 has an extra option A = 0. This is the identity operator.

I3This is not the conformally-invariant differential equation satisfied by these operators, but rather
its consequence.

14The operator d can be applied in the conformal frame [opConservation4D] or in the embed-
ding formalism [opConservationEF].
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where the contact terms encode charges of operators under the symmetry generated
by the conserved current Of’z). Note that since 0 -Of’z) isitself a primary operator in
representation (£ —1, - 1), A=3+( +Z) /2, the left hand side of the above equation
has the transformation properties of a correlation function of primary operators and

thus can be expanded in a basis of appropriate tensor structures.

For 3-point functions, the Ward identities imply two kind of constraints. First,
the validity of (B.143) at generic configurations of points x; implies homogeneous
linear relations between the OPE coefficients entering 3-point functions. Second,
the validity of (B.143) at coincident points relates some of the OPE coefficients to
the charges of the other two operators in a given 3-point function (this happens only
if special relations between scaling dimensions of these operators are satisfied). The
solution of these constraints is of the form (3.22), where some of A can be related

to the charges.

For 4-point functions the situation is more complicated, since (B.143) at non-
coincident points leads to a system of first order differential equations for the func-

tions gf1 (u, v) of the form
BY (u,v,0,,0,) g] (u,v) =0, (B.144)

where A runs through the number of tensor structures for the correlator in the left
hand side of (B.143). The constraints implied by these equations were analysed
in [75]. It turns out that one can solve these equations by aribtrarily specifying a
smaller number N, of the functions gi(u, v) and a number of boundary conditions
for the remaining gi(u, v).15 It is generally important to take this into account when
formulating an independent set of crossing symmetry equations. We refer the reader
to [75] for details. In [75] the value N i was found for 4 identical conserved spin 1
and spin 2 operators. The same values N, were found later by other means in [62]

and a general counting rule was proposed in [1].

Conservation operator in the embedding formalism The conservation condi-
tion (B.142) can be consistently reformulated in the embedding space [opConservationEF ]

as follows: _
(4,6) <5\ _ _ t+ ¢
D oy (X.5.5) =0, Ao =2+ —— (B.145)
ISDK thanks Anatoly Dymarsky, Jodo Penedones, and Alessandro Vichi for discussions on this
issue.
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and the differential operator originally found in [55] is given by !¢

2
D= ——— (Xuz"Voy)’ o, (B.146)
M(Z+€+£) a
where we have defined
a 1 a
9= ———0%, =
1+€6+¢
— 2, 2
(4+s-i+s-i_) 9 ab_ A o 9 — - ab 9 —. (B.147)
N dS) 0Sa 5§ 984 3S - 08 95 08 -9S

In this identity we dropped the terms which project to zero upon contraction with
b
(XuzMNoy) .

B.8 Permutations symmetries

When the points in (3.8) are space-like separated, the ordering of operators is not
important up to signs coming from permutations of fermions. In particular, if some
operator enters the expectation value more than once, say at points p; and p;, the

function f,, enjoys the permutation symmetry

PP ) = LED G PP ) S Py Pl ).
(B.148)
Here we used the cycle notation for permutations, for instance (123) denotes 1 — 2,
2 — 3,3 — 1. In general, there may be more identical operators in the right hand
side of (3.8) in which case f,, is invariant under some subgroup of permutations
IT C S,.

The degrees of freedom in f;, are described by the functions g! defined via (3.11)

Ny
(i 550 = ) ) Th(xi, 55, 50). (B.149)

I=1
One can then find the implications of the permutation symmetries directly for g!.
Note that since the exchanged operators are identical, a permutation v € I1 acting on
a tensor structure gives a tensor structure of the same kind, and thus we can expand

it in the same basis
Tl = ) x (WT;. (B.150)
J

16We note that there is a mistake in the original paper [55] due to a wrong choice of the analogue
of (3.62).
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This means that in general the consequence of a permutation symmetry is

gh(w) = > ) (w)gs (ru). (B.151)
J

At this point we should divide all the permutations into two classes. We call the
permutations which preserve the cross-rations (ru = u) the kinematic permutations
and all the other permutations will be referred to as non-kinematic. The group of
kinematic permutations ITX" is S, for n < 3 since there are no non-trivial cross-ratios
in these cases. We also have Hf“ = Zy X Zy = {id, (12)(34), (13)(24), (14)(23)}

and TIX" is trivial for n > 5.

This distinction is important because for kinematic permutations the constraint (B.151)

becomes a simple local linear constraint,
gn(w) = > 7 (wg; (w), (B.152)
J
which we can be solved as

gh(w) = > Phw)gi(w). (B.153)
A

In the case of 3-point functions the solution (B.153) has a particularly simple
form (3.22).

Applying permutation [permutePoints] and computing 715 (u) is straightforward
in the EF — we simply need to permute the coordinates X; and the polarizations S;, S;.
It is somewhat trickier to figure out the permutations in the CF [1], and we describe
the case n = 4 in the remainder of this section. We also comment on how to permute
non-identical operators, which is required, for example, in order to exchange s- and

t-channels.

Semi-covariant CF Structues First, we describe a slight generalization of the
conformal frame, which is convenient for computing the action of permutations
on the CF structures. Note that the 4-point tensor structures constructed in sec-
tion 3.4.1.2 are covariant under the conformal transformations acting in z plane.
Indeed, it is easy to see that the structures (3.116) transform with 2d spin ¢; + ¢; at
each point. Taking into account the scaling dimensions of the operators, we see that

we can assign the left- and right-moving weights

A + i+_i - A - '__i
_ T4 g 2”494 (B.154)

hl 2 ’ 1 2
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to each tensor structure. We can then easily write the value of the 4-point function

represented on the conformal frame by

_ 1 2 3 4 —
f(0, 5 Loo s, 5y = |10 BB e (27 (B.155)

91 92 93 44

in a generic configuration of the four points z; in z-plane as [cfEvaluateInPlane]

q 92 g3 44
Sa(21, 22,23, 24,86, 51) = |41 92 43 94| 814131 (2 2)s (B.156)
lZl 72 123 Z4
where o
_ (1 —-2)(z3 - Z4)’ = (fl - EZ)(E3 - f“), (B.157)
(z1 — 23)(22 — 24) (z1 —73)(22 — z4)
and, defining z;; = z; — z;,
9 492 43 44
al 62 63 64 — 21 22 23 24 X(Z;lhl_hz_h3+h4z4_lhl+h2+h3_h4z;§h2ng+h2_h3_h4)
491 492 43 44
[Z1 2 23 Z4J

——E| —Ez —E3 +E4——E1 +E2 +Z3 —E4——2E2—Z| +E2 —E3 —E4
X(z5, Z41 24 243 ).
(B.158)

Note that the definition is chosen in such a way that the semi-covariant structure

transforms with the required left and right weights and!”

q 492 g3 44 o o e q
- _ _ _ 1 92 493 44
91 492 493 44| = . (B.159)

J 91 92 93 4
O

[0z1

In general we might need to specify the branches of the fractional powers in (B.158).

The kinematic factor in this equation can be split into products of

Fla+ay)
) (B.160)

_ Zij
(ZijZij)f(Ak) and =
Zij

In the region of the configuration space where all pairs of points are spacelike

separated '8, we have z;;z;; > 0, so there is no branching for the factors of the first

17Recall that the limit z4 = oo is defined with an extra factor |x4|%2+ in order to obtain a non-zero
result.
181n particular, in the whole Euclidean region.
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kind. The exponent of the factors of the second kind is always half-integral, thus we

only need to specify the branch of ;ﬂ which can be chosen
1

— [
B | o (B.161)
<ij ZijZij  4/ZijZij
This is valid because it gives a smooth choice for the whole spacelike region and

reduces the kinematic factor to 1 in the standard configuration {zy, z2, 23, 74} =
{0, 1, z, oo}.

The above discussion gives a version of the CF 4-point tensors structures which
is defined for any configuration of the four points in the z-plane. This is suf-
ficient for computing the action of arbitrary permutations on the tensor struc-
tures (3.116). Explicit formulas for permutations between identical operators can
be found in [1]. General permutations are implemented in CFTs4D package in the

function [permutePoints].
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Appendix C

APPENDICES TO CHAPTER 4

C.1 Conformal algebra

We use the following conventions for the conformal algebra,

[D,K,1=-K,, [D,P, =P, (C.1)
(K Pyl =26,,D —2M,,, (C.2)
(Myy, Pol = 6ypPy — 64pPy, (C.3)
My, Kpl = 6ypK, — 04pK,, (C4)
My, Mporl = 6y oMo — 6 yoMyo + 6yoMpy — 6 o My, (C.5)

and all other commutators vanish. In Lorentzian signature, all generators are anti-
Hermitian. In Euclidean signature D = D, K = P and M is anti-Hermitian. Notice
how (C.2) expresses the conformal Killing equation for the adjoint representation
by saying that the rank-2 symmetric traceless tensor does not appear among level-1

descendants of the primary K.

C.2 Verma modules and differential operators

In the main text we have seen that for every irreducible component Vy/ , in the
tensor product W ® Vj , there is a conformally-covariant differential operator Dy :
[A, p] — [A, A] with a W*-index A. Here we would like to state this relation more

carefully and show that there is in fact a one-to-one correspondence.

Theorem 3. For generic A the decomposition (4.13) holds. The irreducible compo-
nents in the tensor product decomposition (4.13) are in one-to-one correspondence
with the conformally-covariant differential operators Dy : [A, p] — [A’, A] with an

index A transforming in a finite-dimensional representation W of SO(d + 1, 1).

Proof. First we show that the tensor product decomposition (4.13) holds. The
discussion in section 4.2.2 essentially shows that the characters on the both sides
agree. This statement holds for all A. This however does not necessarily imply (4.13)
as an isomorphism between the representations. So our first step is to construct the

isomorphism (4.13).
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We can define on W ® V, ,, a conformally-invariant inner product, induced from the
inner products on W and Vj ,. Suppose that there is a submodule Y C W ® Vj ,,. If
the conformally-invariant inner product is non-degenerate! on Y, it follows that Y is

in fact a direct summand,
M=WeV,,=YeY". (C.6)

Starting from this observation, it is a standard argument to show that (4.13) holds.
We reproduce it here for completeness. The states (4.10) are always primary because
they have the smallest possible scaling dimension A — j. We can decompose them
into mutually orthogonal irreducibles of SO(d). Considering all the descendants of
these states we form the submodule

Yi= 6 Vaja (C.7)

AeW_;j®p

For generic A the generalized Verma modules in this sum are irreducible, and thus

the inner product is non-degenerate (otherwise the null states form a submodule).
By (C.6) we then have

M=Y oM, M=Y: (C.8)

We can now look at the states of the smallest scaling dimension inside of M. These
all are again primary, and we can consider the submodule Y_;, | which they generate.

Since we already know (4.13) as a character identity, we know that

Yy = @ Va-j+1.2- (C.9)
AeEW_j11®p
Again, from (C.6) we find
My =Y ji1 & M. (C.10)

We then continue recursively until we exhaust all states as controlled by (4.13) as
a character identity. Collecting everything together, we arrive at (4.13) as a direct

sum decomposition.

From the discussion in the main text it follows that the primaries which we iden-
tify in the tensor product W ® Vj , give rise to conformally-covariant differential
operators. At the same time, as observed in section 4.2.4, they give rise to ho-
momorphisms (4.29). In fact, there is a one-to-one correspondence between these

objects.

'Note that if the inner-product is non-degenerate but not positive-definite, there still can exist
subspaces on which it is degenerate. Finite-dimensional representations of non-compact groups such
as SO(d + 1, 1) or SO(d, 2) necessarily have indefinite inner products.
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Lemma 3. For any fixed A, N, p, A the conformally-covariant differential operators
Da i [A, p] = [N, A] are in a one-to-one correspondence with the homomorphisms
of the form (4.29).

The map implied by this lemma is essentially constructed in section 4.2.3. Looking
at it one can easily convince oneself that the lemma is almost a tautology. We give

a formal proof later in this appendix.

Given lemma 3, to finish the proof of the theorem it only remains to show that
generically the only homomorphisms of the form (4.29) are those which come from
the embeddings of the direct summands in (4.13). This follows immediately from
Schur’s lemma and the fact that Verma modules are irreducible for generic scaling

dimensions. O

Proof of lemma 3. For W = e, lemma 3 is standard material in representation
theory of generalized Verma modules [297], and we need to only slightly modify
it by introducing the non-trivial W. Let us give an elementary review of the proof

with the appropriate modifications.

First, we need to give the precise meaning to [A, p], which is in fact a vector bundle.
The sections of [A, p] are the functions £¢(x) on the conformal sphere S¢ with index

a in p which transform as?

(8£)*(x) = Q) p"s(R(x)) f(g7'x), geSOW+1,1). (C.11)

We also associate a vector bundle ‘W to W. The sections of ‘W are the functions

f4 which transform as

(gf)a(x) = DAB(9) f3(g7 ). (C.12)

The conformally-covariant differential operator D, is then a differential operator

between the vector bundles
D:[p,A] > WA, 1], (C.13)

which commutes with the action of the conformal group. We will refer to this
property as equivariance. The idea now is to note that if we know that D is

equivariant, then it is completely specified by its action at zero, i.e. by the expression

(D f)4(0) = derivatives of f at 0. (C.19)

’The difference with (4.8) comes from the fact that here we are defining the action on functions
rather than operators, and the appearance of g~! in the argument of f on the right hand side is
dictated by compatibility with the group multiplication (gh) f = g(h(f)).
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Indeed, let 7, be the translation which takes O to x. Then we can compute D f at

any x by writing

(D) = (Di_ f)§(x) = Da® (1) (D1_ f)F(0), (C.15)
and using (C.14) for r_,f. As usual, the only condition the expression (C.14)

has to satisfy in order for this construction to be self-consistent is that it has to be
equivariant with respect to the transformations which fix the origin — in our case with
respect to dilatations, rotations and special conformal transformations, the algebra

of which we will denote by p.3

Instead of studying this condition in detail, we can just map it to the similar problem
for Verma modules. If D is of order k, the equation (C.14) can be understood as

the map
D : JEA, pl » W e LA, AL, (C.16)

where Jé‘ [A, p] is the space of k-jets of sections of [A, p] at 0, i.e. the space of formal
power series of sections of [A, p] around the origin, truncated to k-th order. One can
extend the action of conformal algebra to these jets, and the problem of finding a
p-equivariant map (C.14) is equivalent to finding p-equivariant maps (C.16). Using

(C.15) we can extend such maps to so(d + 1, 1)-equivariant maps
D :JSIA pl > W I[N, 4], (C.17)

between the formal power series. These are the same as Verma module homomor-
phisms because Vj , consists of the states like d,,, - - - d,,0“(0), which are naturally
linear functionals on the formal power series J;°[A, p]. In fact, one can show that

as so(d + 1, 1)-representations,

Vap = (1A 1) (C.18)
Thus by taking the dual of (C.17) we obtain a homomorhism
D W'® VA’,A - VA’p. (C.19)

As usual, we can replace W* on the left with a W on the right: we can define
D'(v) =et @ D* (e}, ® V), so that

D VA’,/l > W VA,p (C.20)
is a homomorphism of the form (4.29). All the steps that we took to get from the

differential operator D4 to D’ were invertible, so we get a one-to-one correspon-

dence. O

3This is not to be confused with the subalgebra generated by translations. We use this notation
to be consistent with the mathematics literature, where p stands for “parabolic”.
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C.3 Weight-shifting operators for the vector representation

Let us give more detail about the computation of the weight-shifting operators for
the vector representation (4.45). Recall that traceless symmetric tensor operators
are homogeneous elements of R/(R N I), where R is the ring of functions of
X, Z € R¥*L1 that are invariant under Z — Z + AX (equivalently they are killed by
X - %), and 7 is the ideal generated by {X 2, X - Z,Z?}. For a differential operator
D to be well-defined on R/(R N I), it must satisfy

DR C R, (C.21)
DRNI)CSRNI. (C.22)

Because we are searching for homogeneous differential operators, it suffices to con-
sider their action on homogeneous elements of R. It is not hard to convince oneself
that a general homogeneous element of R can be written as a linear combination of

functions of the form
faeX,Z)= (X V)2 (Z-PY(X Q) - (Z-0)(X - P))S, (C.23)

for various Y, P, Q.

To find the weight-shifting operators D,Sf’), we start by enumerating conformally-

covariant terms with the correct homogeneity in X and Z, modulo X - aix’ Z - aiz’

and X - a% (which act as —A, ¢, and 0, respectively). There are a finite number of
such terms, and this leads to the ansatz (4.45) with undetermined coefficients that

are functions of A, €.

To fix the coefficients, it suffices to check (C.21) and (C.22) for a sufficient number

of functions. In particular, we impose (C.21) in the form

(9 (a)
X — X,Z) = 24
( aZ)Dm fA,{’( > ) O» (C )

and (C.22) in the form

DS -2 (X - X) =2(S-X)(S - Z)(X - Z) + (S X)X(Z - 2)) fasre2(X, Z) e RN I,
DY((X - X)Z-Z)— (X - 2)®) farze2(X,Z) € RN,
DY (X - X)NZ-S) = (X - )X - 2)) fasze-1(X, Z) € RN,
DY (X - X) farre(X,Z) € RN,
(C.25)
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where S, Y, P, Q € R are arbitrary vectors. (Because of (C.21), to check whether
the left hand sides of (C.25) are in R N [, it suffices to check whether they are in /.
That is, we set X2 X - Z, Z? to zero and check whether the result is zero.) These
conditions are sufficient to fix the unknown coefficients. In particular, for the most

complicated weight-shiting operator D;*°, we find
d
c = (E—A—l)(A+€—l)(d—A+€—2)
1
cz:—E(A+€—1)(d—A+€—2)
d
c3 :—(E—A—l)(A+f—2)

C4:—(E—A—1)(d—A+€—2)

2
d
C5=g+f—2
c6—51—A—1
C7:—§. (C.26)

C.4 6;j symbols and the algebra of operators
In this appendix we consider the crossing equation which is obtained by replacing

O in (4.102) by a finite-dimensional representation,*

ab
Uu o, wW
0, ——(@) (b—05 = Z{Ogvog} w
mn 02 03
(C.27

Here, the sum is over W € U ® V. Since restricting O to a finite-dimensional
representation changes the counting of structures on both sides, we should check
that the numbers still agree. Let us assume that A3 = A, —[. According to theorem 2,

the number of structures on the left is

Z dim(p} ® U; ® Vi ® p3)50@, (C.28)
i+k=I

“We then find a third finite-dimensional representation arising from the tensor product of the
first two.
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while the number of structures on the right is
D dim(p; ® W, @ p3)S0Y x dim(U @ V @ WSO, (C.29)
WeU®V
These numbers are the same due to

@ dim(U ® V @ W*)SOW+LD sy, ~ @ U ® V.. (C.30)
wWeUgV i+k=I

The crossing transformation (C.27) defines the algebra of weight-shifting operators
for general p, and generic A,. In section 4.2.4 we described the same algebra in the
situation when both p; and A, are generic. As in section 4.2.4, (C.27) essentially

expresses the associativity of the tensor product.

As a simple application, suppose that U = V* and let us contract U and V indices
in (C.27) to form the bubble diagram,

U
U
ab
o; Uu 0, w
02 a \b/ 03 = V[%:n 03 U* O:/; w
o mn 02 03

(C.31)

The tadpole on the right can be non-zero only if W = e is the representation of the
identity operator 1. But then m exists only if A, = Az and p; = p3. In this case
there exists a unique structure for both n and m. We can erase the line for the trivial
W, and the U-loop gives a factor of dim U. We thus find

u o, 1
0O; U~ Oé

ab
02 a @ 03 :(dlmU){ } 02_)_03.

(C.32)

‘We thus conclude

ba ab
Os , U 03 1
= (dimU) : (C.33)
o, U 0y U* 0
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The algebra (C.27) also shows tells us how to compose the two-point operators
of [61]. Indeed, suppose we have a composition of two two-point operators, ignoring

the operator labels,

0 0,
U v . (C.34)
o) 0,

We can apply (C.27) at the top and at the bottom to find, schematically,

0> 0, 0 o &
U y o= > P u{ Ry . (C35)

WW,.. W
O 0 O, 0

where {- - - }? is a product of two 6 symbols. By Schur’s lemma, the bubble diagram
in the middle can be non-zero only if W = W’, in which case it is a scalar. This

scalar can be determined from finite-dimensional 6 symbols. We thus arrive at

0 0, 0, 0,
U v o= P W . (C36)
w....
0, o o 0,
where {- - - }? are some coefficients involving three 6 symbols, and the sum is over

WelUgYV.

C.5 Seed blocks in 3d

Basis of four-point tensor structures. For the four-point tensor structures we use

the conformal frame structures

[91929394] (C.37)

that we introduced in section 4.3.4.2. It is analogous to the basis used in [1], but we

make a different choice of the conformal frame,

x1 =(0,0,0),
-2 . 2+2
= —307—3
x2 = ( > > )
x3 = (0,0, 1),

x4 = (0,0, +00). (C.38)
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The configuration used in section 4.3.4.2 corresponds then to z = Z.
In terms of these structures, for parity-even four-point functions (G}, and G__,)
[3.0,0, 3]+ [-4,

_[-1,0,0,-41+ 10,0, 1] _
G=gi(z7)— 22 2 2 4 92(2,7) = >

we use the basis

toeq @and G_* ) we use the basis

and for parity-odd four-point functions (G___,
_[3,0,0,-31-[-1.0,0, ]

_[-3,0,0,-41-[L,0,0, 1]
G=g(z7)— 22 2 2+ 92(2,7) 7

(C.40)

We will now provide explicit expressions for g**(z, 7).

Explicit expressions for g:**(z,z). First we strip off some normalization factors,

1 1
- -5 = 1,1
o = i(=1)"2 ——A'+A22+2 P Oy
9 = D G i 2
S D= o naon O B
1 1
_ i(-1)72 Ay Ll
g, (z,2) = ll( ) ()T G ‘fﬂ Hz2),
C+Ha+o;-1) A+§.+5
1 1
; -5 > 1,1
— i(—1)2 TR S VTS S
9 = D G ) s
s @D =R na-n @Y O 1D
i(-1)3 A+ a-1.p+d
() 77 G 1T Nz (C4D
A+§,€+§

=
(z,2) =

S C+Ha+om-1

Here, @ = —(A; — Ay)/2 and 8 = (A3 — A4)/2, where A; are the dimensions of the

external operators in (4.172). To write down the expressions for D;**, we introduce

the following operators,
D, =7*(1-2)02- (@' + B + )%, - ' B’z

dz = Zaz»
1 _
V,=——=d,(z-2) =20, + L_
7-732 -7
:=(1-2)d,-a'z
(C.42)

d

V.= (1-2)V.~ ('~ 1z
as well as their conjugates which are obtained by exchanging z and z. The variables
a’ and B’ in the above formulas are equal to the parameters of the scalar conformal

blocks GZ:’f,/(z, 7) on which the differential operators act in (C.41).
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The differential operators ©:** are given by>

. 7z -
fDl__ :dEDZ - dZDE - (dz - df)m((l - Z)az - (1= Z)af)
+a**(d; — d7) + b (D, - D3),
. 2z -
_ GV, 4+ Va) + (C43)

where coefficients a**, b** and ¢** are given below and, additionally, in %~ and

D~ the operators d and V need to be replaced by d and V respectively. We have
- A-O(A-¢-3)

++ _
a  =a 1 ,
A-t-3
++ _ o +— _
bt =b =—
20+ 1) (A=C-3)(A-2
c++=c+—:( ! ! 2), (C.44)

4
and the coeflicients for parity-odd left structure are obtained by replacing £ — —{—1,

4 A+l+DH(A+L-2)

a =da

4 2
A+l-2
- _ _+_
b =b s ——,
204+ (A +£—-2)(A-3
== 2 a3 (C.45)

4

Normalization conventions Our normalization conventions are fixed by our choice
of two-point functions (4.178), the scalar-fermion three-point functions (4.173) and
the scalar three-point functions (4.175). These conventions agree with [81]. In

particular, if the scalar blocks are normalized as

wp, - DI, Z+z _
GA,f(z, 7) ~ OTMK(ZZ)AMP[ (2—\/5) 7,71, (C.46)

where Py are Legendre polynomials, then the resulting seed blocks G, are nor-
malized as in [81] with their cp = 1. To obtain the blocks at other values of cp, one

should divide our formulas by cp.

Note again that in order to simplify these expressions we made use of the quadratic Casimir
equation satisfied by the scalar conformal blocks.
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The coefficients v; For G** we have
i(=1)72 (2A = 2A3 — 2A4 + 26 + 9) (2A + 2A3 — 2A4 + 20 — 1)
64(A—1) (23 —3) (2A4 = 3) L(=A + £ + 1)
X (=2A = 2A3 +2A4 + 20+ 1),
i(=1)(72 (=2A — 2A5 — 2A4 + 20 +9) (=2A + 2A3 — 24 + 20 + 3)
128(A—1) (As—1) 203 =3) (A + L + 1)
X (=2A =2A5 +2A4 +2€ + 3),
i(=1)077 (=2A + 2A5 — 2A4 + 20 + 3)
64(A-1) (A3 -2) 2 (2A3 —=3) A4 =3) (A + € + 1)’
B i(—l)f_% (—2A = 2A3 = 2A4 + 20+ 9) (—2A + 2A3 — 2A4 + 2€ + 3)
- 128(A—1) (A3 -2) A3 -3) ((-A+ £+ 1)
X (=2A +2A3 +2A4 + 20 - 3) . (C47)

V1 =

Vo =

V3 =

V4

For G=~ we have
i(=1)072 (2A +2A3 — 2A4 + 20 + 1) (=2A — 2A3 + 2A4 + 2 + 3)
32(A-1) (2A3-3) QA4 =3) 2+ 1)(A+¢)
X (2A+2A35 +2A4+26-17),
(=D QA +2A5 = 204 + 20— 1) (2A = 2A5 + 2A4 + 20— 1)
B 64A-1)(A3—=1) 2A3-3) 2+ 1)(A+¢)
X (2A +2A3 +2A4 +26-17),
i(=1)f2 (2A = 2A3 +2A4 + 20— 1)
32(A-1)(A3-2)2(2A3-3) 2A4=3) 2L+ (A + )
Ci(=1)177 (2A = 2A3 — 2A4 + 26 +5) (2A - 2A3 + 2A4 +2¢ — 1)
B 64(A—1) (A3 —2) (203 - 3) 20+ 1)(A + {)
X (2A +2A5 + 204 + 26 = 17) . (C.48)

V1 =

V3 =

For G*~ we have
(=117 (<28 =23 = 204 + 20+ 9) (<24 = 2A5 + 2A4 +2€ + 3)
64(A—1) (A3 —1) 203 -3) 2A4—3) E(-A+C + 1) :
i(=1)072 (=2A — 2A3 — 2A4 + 20 +7) (2A — 2A5 — 2A4 + 2 + 3) y
128(A—1) (203 = 3) €(-A + £ + 1)

X (=2A = 2A3 +2A4 + 20+ 3) (A + 2A3 + 2A4 + 26 = 17),
(=1 (22A + 25 — 2A4 + 26 + 3) (<24 — 273 + 2A4 + 2€ + 3)
BT 64(A—1) (A3 —2) (203 -3) (2A4 - 3) L(-A+ £+ 1) ’

(=12 (20 +2A3 = 2A4 + 26+ 1) (2A = 2A3 + 2A4 + 20 — 1)
e 128(A—1) (A3 -2)2 (203 -3) E(-A+ £+ 1)

V1

. (C49)
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For G~ we have

i(=1)2 (2A +2A3 = 2A4 + 20— 1) (2A + 2A3 + 2A4 + 20— 7)

TETTTRA-D (A1) 20 -3) A -3) 20+ D(A+ )
(=107 (<24 = 2A3 — 2A4 + 2€ +9) (2A+285 =284 420 1)
2= 64(A—1) (2A5—3) 26 + D)(A + 0)
X (—=2A +2A3 + 204 + 20 — 1) (2A + 2A5 + 2A4 + 20 = 5),
. (=102 (20 +2A3 = 2A4 + 20— 1) (2A — 2A5 + 2A4 + 20 — 1)

32— 1) (A3 —2) 2A5-3) (2A4-3) 20 + (A + 0)

i(=1)072 (=2A + 2A3 — 2A4 + 20 + 3) (2A — 2A3 + 2A4 + 20 + 1) ©50)
by = . (C.
! 64(A—1) (A3 -2)2 (203 -3) 2L+ 1)(A+0)

C.6 Dual seed blocks in 4d
In this appendix we provide the final expression for the dual seed conformal blocks
recursion relation omitting all the derivations. All the quantities below carry a bar

to distinguish them from their analogous in the seed case.

By performing the calculation completely analogous to the one in section 4.4.4.2,

we find that the dual seed conformal blocks obey the following recursion relation

= (P)
WA t: AL A A A, =
(r— 1)
1 1
2 l; A1+1 A2 2 A3 A4+§
(p- 1)
2 ; A, A2+2 Ag A4+2
(p 1)
1 1
2€A1 1,Ar— 2A3A4+§

-1/ ——-0 N
A (Vl (Dl : Z)4,—0+) (1)1 Z)2++0) W
_ —0 —
2 (D - Da0+) (D1 440 Dz ) W
_ —0-
3 (D - Da_o0+) (1)1 Do) W

—(p- 1)
2 ZUNE A2+% Az, Ayt ’

(C.51)

_ =0~ —
7 (D) Di00) (Dios Dy VW,

where the coefficients are®

— il+p)A+A3—AM+C+p-2)
— _ 52
A 2A+20+p-2 (€.52)

Here A is not the 6j symbol analogous to A, but simply an overall coefficient.
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and

A-A—-M+l+p+2)(-A-A+ M+l +p+2)

V= 2001 —2)RA+p-HRA+p—4) ’

- (A=A M+ l+p+2)(A-A+ A+l +2p-2)

V2= 40 -2) (A - DA+ p-4) ’

_ 1

= 2(A1 =3)(A1 =2)2QA+p-4H QA +p-4)

_ A-A—-M+C+p+2)(A+A1+Ary+L+2p—6)

V4 = — . (C.53)

4(A1=-3)(A1=2)2A+p—-4)

Analogously to the primal seed case, we replace one of the conformal blocks on the
right hand side of (C.51) by using the dimension-shifting operator

—(p-1)

+0, —(p-1)
A= b AL A= A A+ d )
2t 1 s A2 2 3, 24 2

Wil i an ek ag el
2>t 1, A2 2 3, 24 2
(C.54)

—1 — 0 —
=& (D14+-0D5 ) Di14+0° Dy

where

&= (P+D(A1-2)(A1—D)(A+A 1= A+1+p-2) (A=A +Ax+1+p+2). (C.55)

Decomposition into components Plugging the relation (C.54) in (C.51), strip-
ping off the kinematic factor and decomposing this relation into four-point tensor
structures according to (4.213) one obtains a recursion relation for the components
of seed blocks of the form analogous to (4.230)

—r—1

— _ A —(p-1), _ —@p-1, _ 1 — =1, _
Hip)(z, 7) = v (Do Hip '(z7) - 2D, Hilil '(27) +4cP ") 2ZDs Hi’iz )(z,z)),

(C.56)
where the blocks in the Lh.s depend on [A, €; Aj, A, A3, A4] and the blocks in the
r.h.s. depend on [A — % ; Ay, Ao+ % Az, Mg + %]_

The overall coeflicient is
ﬁ’E—(A+§—2)(A+A1—A2+z+p—2)ﬁ (C.57)

The differential operators D; are given by the expression (4.231)-(4.233) with the

parameter k replaced by k

A
L, (C.58)

k
2 4
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C.7 Operators H;

First, let us define normalized versions of operators (4.249),

) DI_O . D;—O
OB = -2y
R z)+0 . D—O
Doy = 2 4 ,
(A= 1)(d—-Ar=-2)
R D+O . D+0
Doy = 2 3 (C.59)

(A3 =1(d-A3=2)(A - 1)(d - A2 -2)

In terms of these, the operators H; have the following expressions,’

Dis-Dy 1 _1
Hy = —/——— + —(A], + A}, — 2&)(xX) "2,
Afz - A§4 4
Diz+ Doy A, +AY, AL (AT, —28) + A (A, —28) _ 1
- - 2
H, 3 + 5 H, g (xx)"2,
Hy = 2Dn; LA 4 AT = 2(e = 1) + (2er + ASATYH, + ko (1) 2
3 AIL2+A;4—4£—2 12 34 2 2 12534/ 0 ’
(C.60)
where we defined?
d-2
Aj=Ai+A, &=—, (C.61)
and the Casimir eigenvalues and the coefficient «( are given by
C) = /11(/11 - 1) + /12(/12 —2€ — 1),
Cq4 = (/11 - /12)(/11 - Ay + 28)(/11 + Ay — 1)(/11 + Ay — 1- 28),
(AT, = 28)(A], — 2&) (A, A3, + 4c2) — 4(cq — ca(ca + 2¢8))
Ko = . (C.62)

A(AT, + AL, —4e - 2)

Note that the identity for the operator /3 is valid up to quadratic and quartic Casimir

equations (i.e. only when acting on scalar conformal blocks F;, 4, (a, b)).

"Here and below in this section we sometimes abuse the notation by using the same symbols for
the embedding-space differential operators and their action on F}, 4,.

8Notice that in [64] € is defined as here, whereas in the earlier work [57] the definition & = d —2
was used.
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Appendix D

APPENDICES TO CHAPTER 5

D.1 Conformal algebra and its representation on local operators
Here we describe our conventions for the conformal algebra. The commutation

relations are as follows,

[D,P,) =P, [D Ky =-K, (D.1)
(K, Py] = 26,,D +2M,,,, (D.2)
[Myys Pyl = 6,0Py = 6vpPrs [Myys Kyl = 6,0Ky = 6,pK (D.3)
[Myys Mpo] = 6,pMye = SypMyug + 8,10 Mpy = S5 M. (D.4)

The generators obey the following conjugation properties,
D'=D, P =K, M =-M,. (D.5)

The generators act on primary operators as follows,

[D,0(x)] = x - 00(x) + AO(x), (D.6)
[Py, O(x)] = 0,0(x), (D.7)
(M, O(x)] = (x40, — x,0,)0(x) + S,,0(x), (D.8)

(K, O(x)] = 2xux7 — xzéz)ag()(x) +2x7(AS o + Spuo)O(x). (D.9)

Here S, are the generators which act on the spin indices of O(x) and satisfy the
commutation relations opposite to M,,,. Our convention for M, differs by a minus
sign from that of [19]. M, in our case has the interpretation of rotating e, towards

ey.

D.2 Reduced matrix elements and vector isoscalar factors

In order to write down the formulas for isoscalar factors and reduced matrix elements,
we need to take some preliminary steps. First, let us consider the decomposition of
the tensor product my ® []. Generically, we have in even dimensions, according to

Brauer’s formula,

m; Q[ |~ my(+i) & my(—i), d =2n, (D.10)

1

n

1=
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where my(+i) is the same as my but with the component m,; shifted by +1.

Similarly, in odd dimensions we have, generically,

n
my® [ =my® (Pmy(+i) @my(-i),  d=2n+1. (D.11)

i=1
These formulas are valid for generic my, i.e. those with all components non-zero
and sufficiently large. For concrete representations, some of the direct summands
may disappear if there are non-dominant weights in the right hand side. By applying
Brauer’s formula, we see that to find the final tensor product rule we just need to

remove all non-dominant weights and, if d = 2n+1 and mg4, = 0, also remove m,.!

We now define the following new parameters,

Xopilj = Mops1,j + 00— J, (D.12)

Xon,j :mzn,j+n—j. (D13)

Note that regardless of the dimension, m,; is a non-increasing function of j. Since
we add to it a strictly decreasing function of j, we find that x ; is a strictly decreasing
function of j. In particular x4; # x4; for i # j. Furthermore, x;; > 0 except
possibly for j = n when it can be zero (for d = 2n + 1) or negative (for d = 2n). We
can also easily check that | x4 ;| is strictly decreasing and thus in fact x4 ; # x4, for
i#].

In terms of these parameters the dimensions of the representations m; have the

following expressions

, (X2n,i + Xon,j) (X2ni — X2nj)
dimmy,, = ]_[ e L (D.14)
I<i<j<n (y2n,i + y2n,j)(y2n,i - y2n,j)
i
, " X2nili t 5 (X2n+1,i + X241, + D (X2041i = X2041,7)
dimma = [T 02 7]

1 . . . )
i=1 Yon+1,i + 3 I<i<j<n (y2n+l,l + Y2n+1,j + 1)(y2n+1,1 y2n+1,])

(D.15)

where y x = n — k is x4 for the trivial representation (so that dime = 1).

I'This can be seen by analyzing the situations in which m(+i) may fail to be dominant. It turns
out that in most cases there is an affine Weyl reflection which stabilizes the non-dominant m; (i)
and thus such weights simply have to be removed. The exception is the case may+1,, = 0: Moy41(—n)
can be turned into my, 1 with one affine Weyl reflection, and thus cancels it.
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D.2.1 Reduced matrix elements
We are now ready to write the formulas for the reduced matrix elements (5.98). We

will give formulas for

N 7 I Y D B
my_| m/,_, my_|

which is more natural from the point of view of (5.99). We have in odd dimensions

moy+1 M
myy,

According to (D.10) this gives all possible reduced matrix elements in even dimen-

M, MU

m,

Md ) (D.16)

. (D.17)

115 ) _ [Tic; (2ns1.k F X20,) (X204 1,k £ X255 + 1)

P .
my, (£)) 2 [T (k20 = X20,) (X2 k + X25)
k)

sions. Note that according to the discussion above, the factors in the denominator

are never zero (assuming that all weights are dominant).

In even dimensions we have

m m =i [Thcy X2nk
my,_i my,_i _1
" " \/HZ:I Xon-1k(X2n-1k + 1)
m m
2n M 5 2n . _
my,_ my,;,_1(%i)

[T2; (x2nk = Xon-1i = Ox.4) (X2mk + X2p-1; + Ox.4)

_1 2
(X2n-1i + 044)2x2p—1; + 1) [T (X2n-1.k — X20—1,0) (X2n-1k + X20-1,; + 1)
k#i

(D.19)

where 6., is equal to 1 for + sign and to O for — sign. According to (D.11), this
account for all reduced matrix elements in even dimensions. The only potential zero
in the denominator of (D.18) is from x2,-1,-1. However, if x2,-1,-1 = mop—1n-1 =
0, then my,_1 does not appear in my,—; ® [ |, and this reduced matrix element has to
be set to 0. Similarly, the only potential zero in the denominator of (D.19) appears
for (-) sign and i = n — 1, when we have a factor of x3,_1,-1. Again, it is only a
problem if x2,_1 ,—1 = m2,-1,-1 = 0, in which case my,_1(-n + 1) does not appear

inmy,_1 ® [ ] so we need to set this matrix element to 0.
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D.2.2 Isoscalar factors

The isoscalar factors are given by formulas of a very similar form. In odd dimensions

we have
my,.; [ ]|m [To X2nk
( 2n+1 2n+1): k=1 n , (D20)
my,, e | m
an an \/H'Zzl Xone 1k (Xonerk + 1)
myyq [ (M, (i) |
mp, e myp,

[To; (X210 = Xonk + O+.4) (X2n41,i + Xonk + Ox4)
(X2n41i + 0+.4) 2xopsri + 1) [Th (20410 — X204 1,6) (X241 + X2ns1k + 1)

k+i
(D.21)

and the same comments as for the reduced matrix elements apply about the possible

zeros in denominators. In even dimensions the isoscalar factors are given by

(D.22)

. -1 _
mzn(iz)) _ o1 (X2 F X201 (X2n = X2p-1% = 1)

2 H'Ll (x2n,i - x2n,k)(x2n,i + x2n,k)
ki

mp,—1 ® | My,

(mZn ]

To derive the isoscalar factor for ([ ], [ ]) pattern in vector representation, we con-

sider the following expression,
Mg [, o, ... [Mi2| D). (D.23)
Acting with Mj; on the left, we find

(Mg; [, [, @, )+ > Mg Mia| g (Mgs [, 0, ) =
My

4 4
mg [ m), \[my_; []|m/_, s o
- m ] m’ m o lm’ ‘.U?d_z,ﬂﬁd_z
d-1 d-1 d=2 d-2

7
m,

M N =
12 m;l » 6ﬂ)ed_2,9sz_2591e Mgy

* —~
my my_ [ ||mg_\[ mg []
mg_i myg, e My /\IMNy_| @
’ I
m, mg_p [
m;_, J\mq—2 ¢

d-1
; )59Jtd_2,9n&_2—
d-2
* ’
M my my_ []|m,_, my [ |
2
mg_q mg;, e m:i_ m;’—l °

m

m

m,
L4 0wy, -

m

2 d-1

(D.24)
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Action on the right gives, on the other hand,

D Wig; T, o, 1M Xy My |0 =

My
—~ ’ ’ * -~ I
_ mg [J|mg \(m, g,y ) g [ e o
= m P ’ 12| — ~ ’ My, Mg M, Myn
— d—1 mgy_q md_1 mg;_i mgn, e md_2 d-2
Dy
*
my [ || m m, m’ my_; []|m)_,
= - d M| , . |Pm - (D.25)
mg_; e my_; /\m_, Mmg-1/\m, , ¢ |m,_,

. . . ,
By comparing these expressions and choosing m/,_, such that

(md—l []

’
Ind_2 °

Ma-1 ) (D.26)
m,_,

is non-vanishing, we conclude

’ ’ 4 ’ *
my [ m, __ | ma ]| my m, My m,
mg_; [Jjm/_, mg_; o my_; [\m/_, mgy-|
*
my; [ | m’ my my
( A )( L0 [ M : (D.27)
m,_, ®[m,_, \m,_, mg-|

D.2.3 Commentsond =3

A few modifications to the above formulas are required in the case d = 3. This is

because the d — 1 = 2 and vector representation in d = 2 is not irreducible.

The formulas for the reduced matrix elements of remain valid if they are used

together with (D.22). Indeed, we can compute

. . \(mx1|[m 1 — .
<J,millM12|J,m>=( Mo J)( )=¢—\/(1¢m)(Jim+l),
m=1 m ° o o 2

(D.28)
which coincides with the standard expression for M, which follows from
. J J_
My = —iJs = —i + (D.29)

as discussed in section 5.2.2.3. Alternatively, the formula for the reduced matrix

J>:( Iy
m m=1

can be interpreted as

J
m=1

J ), (D.30)
m
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where M1+ = —% are defined according to (5.58) and (5.59) (treating the second

index of M as a vector index). The matrix elements in the right hand side should be
used with the CG coefficients of Spin(2), (im+ 1|+ 1,m) = 1.

The isoscalar factors can interpreted as

iol\_(io|i\ _(io
m[]|m m+1|\m’ m—1

The isoscalar factors in the right hand side are to be combined with the CG coef-

J ) (D.31)
m

ficients of Spin(2), (m + 1| + 1,m) = 1. This can be checked against the known
formulas for Spin(3) CG coeflicients.?

D.2.4 A sum rule for reduced matrix elements and isoscalar factors

As discussed in the main text, the following identity holds,
Z my my my []
my_; my_; [\mg_; []

mg-j
We are not aware of a simple derivation of this fact or of the coefficients (my []|my).

MU T ) = (-D%(my D|fﬁd>(~md -
my_| my_; e

my
my_;

(D.32)

We note, however, that this identity is required for existence of certain weight-shifting
operators in vector representation. The coefficients (my [ ]|my) are given by the

following formulas

(my, [1jmy,(+i)) = n F x2,; — 1, (D.33)
(M1 []|mo,q1 (%) =n F X2, — Oy, (D.34)
(my,41 []|my,41) = n. (D.35)

We found these formulas by considering a few low-dimensional cases and guessing
the general result, which was then verified on a large set of representations in various

dimensions. In terms of m, these coefficients can be rewritten as

(md ] |md(+i)) =-mgy; + I— 1, (D36)
(my [Jmg(=i)) =mg; +d —i -1, (D.37)
(Mg []|mg,41) = n. (D.38)

ZRecall that the m-independent phase of CG coefficients is convention-dependent. The formulas
given here agree with the conventions of [214] (the conventions used in Mathematica as of version
11.0) for j' = j, j + 1 and differ by a sign for j* = j — 1.
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D.3 Scalar-fermion blocks in various dimensions
D.3.1 Comparison in 2 dimensions
Interestingly, the formulas for scalar-fermion seed blocks in section 5.4.4 also work

in the case n = 1, i.e. d = 2. We have the following identity,

sPeMiz = (5¢0) T2 (50710) T2, (D.39)
and so if we define
o = D +2iM12, I, - P -;iPz’ I, - K, —2iK2’ (D.41)
we find that the conformal block in the form (5.108) is given by
010401011070 0" 0). (D.42)
The algebras (D.40) and (D.41) satisfy the usual commutation relations
[Ly, L] = (m—n)L,4p, (D.43)
[Li Lyl = (m = 1)Ly (D.44)

The configuration considered in section 5.4.4 is my = —my = % and m; = msz = 0.

This corresponds to holomorphic and anti-holomorphic dimensions

Bdte Bmdmed Relaw R-lacl d)

while the intermediate representation j* corresponds to hp = %AO F % j and ZO =

%AO + % J. The conformal block for exchange of j* is equal to the usual expression

"5 Fi(ho = hio, ho + h3a; 2ho; 2) X 202 Fi (ho — hia, ho + has; 2ho3 2).
(D.47)

It is straightforward to expand this expression in power series in s and check that it

is consistent with the recursion relation (5.328).

D.3.2 Comparison in 3 dimensions

To perform the comparison with the known 3d results, we first need to relate the GT
basis to the standard basis for 3d fermions. There is a unique fermionic representation
in 3d, m3 = (%), with the allowed GT patterns

Ms. = (3), (£D), (D.48)
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consistently with the representation being two-dimensional. For 3d spinors we use
the conventions as in [1, 3, 81], and we will be comparing with the scalar-fermion
blocks in the form of [3]. These papers use Lorentz signature and thus we need to

perform Wick rotation by defining
MH* = —0motono i, (D.49)

where M f " are the Lorentz generators from [3]. We also added a (—) due to the
difference in conventions for conformal algebra. Furthermore, we need to relabel

the indices by defining

1here = 2therea 2here = Othere’ 3here = 1there- (D-SO)

This is required because of the way the conformal frame is defined in [3]. Using
the explicit expression for the Lorentz generators and the correspondence above, we

can identify
o' =0"-, 0?=i0"+, (D.51)

Contracting the structures (5.142) with polarization vectors s, as in [3], we find

:;’,24 +0% +0% %0’17(1)1 — = &&= —[-3,0,0,-3], (D.52)
_ ;’,34 +0% _0% %(’)’nél_ —i€é1 = i[3.0,0.-3], (D.53)
_%(,)’n(; —0% +o% %6,"81_ ig16=i1-3,0.0.7) (D.54)
[ [ P

where the right hand side is in the notation of [3]. The results (for parity-even

components) of [3] are given in the form

(Olgra(c0, 54)$3(1)[01¢2(z, )1 (0, 51)10)
= 381z D-%,0,0,—31 + 382(2, D5 0,0, 5]+

+12:(22)[-1,0,0,31+ 1g1(2,2)[L,0,0,11. (D.56)
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This implies that

sTATR201p 4 $3101sP M2 1 |0)

= % (cos 581(2,7) +isin3 9 g:(z, z)) [-3 —%]+

+ 4 (cos § g2(z.7) +isin§ g1 (z. ))[ ,—51+

+ 4 (cos § g2(2,7) +isin§ 1(2.7)) [-3.0,0, 31+

+ 4 (cos § g1(2.7) +isin§ g2(2.2)) [4.0.0, 31. (D.57)

Using this result, we can compute the expansion (5.302) in terms of functions g;
and g>. These functions are conveniently computed by acting with the differential
operators of [3] on the scalar conformal block obtained from the recursion rela-
tion (5.220).> We have checked that the resulting expansion is consistent with
the recursion relation which follows from (5.304)-(5.309) at the first few levels for

various choices of jo.

D.3.3 Comparison in 4 dimensions
To perform the comparison with the known 4d results, we first need to relate the GT
basis to the standard basis for Weyl fermions. We are considering the two fermionic

representations mj = (2, _2) The allowed GT patterns are

,(3), (+3), (D.58)

M = (e, (3. (D), (D.59)

consistently with the representations being two-dimensional. For 4d Weyl spinors,
we will use the conventions of [2]. We need to make a few adaptations from
conventions there to the present conventions. First, we need to perform Wick

rotation by defining
— _:60+0y0 p 1Y
MH? = im0t (D.60)

where Mj are the Lorentz generators of [2]. We also added a (—) due to the
difference in conventions for conformal algebra. Furthermore, we need to relabel

the indices by defining

1here = 3there, 2here = Othere, 3here = 1therea 4'here = 2there~ (D-61)

This is required because of the way the conformal frame is defined in [2].

3 Alternatively, one can use Zamolodchikov-type recursion relations of [81].
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Comparing the transformation properties of [t} , ) and the operators 0% and O,,
we find that we can set

01 =0"%-, 0, =-i0"-, (D.62)

ol =0"-, 0% =+i0". (D.63)

According to (5.153) we find the following non-zero components of tensor struc-
tures (5.161)

N |1 Blabld ] - (D.64)
oy () Rl | V2 '
LD o |25 (D.65)
RwRIC I M A €31 50 Y/ '
Contracting with polarization vectors as in [2], we find
& 1o =L o of
P - T S . NE (D.66)
V2 V2[00 0 -3
/ 1n21> _ _L 0 +% 0 0 (D.67)
12 1 .
\2 \2 0 0 0 +3]

Using this correspondence, we can find that the primal conformal block has the form

(04631015221 [0) = = V2 (2«/EH?<Z, 7+ %FH}(Z, z))r+
Z

- - 1 -
- ‘/5(2\/21{?(2, 7) + @Hll (z, z))t—- (D.68)
In our terminology it corresponds to exchange of a primary in representation (£+ %, %)
with ¢ as in [2]. Using explicit expressions for functions H [58] in normaliza-
tion of [2], we can check that the leading term in s = |z| coincides with (5.332)

and (5.196) with

i (L+2) (-1
Ao, = 0\5 : (D.69)

We can then use the recursion relation (5.328) to compute higher order coefficients
and plug them into the expansion (5.332). We can compute the same expansion by
plugging the explicit expressions for functions H into (D.68) using CFTs4D package

from [2]. We checked that both expansions coincide at the first few levels.
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el el

€l

€1

Figure D.1: The relationship between Young diagrams of my; and m,_;. The boxes
which belong to m;_; are shaded.

D.4 Gelfand-Tsetlin bases for tensor representations

To gain some familiarity with GT bases in general dimensions, let us consider how
it is related to the usual Cartesian bases for tensor representations. For simplicity
of discussion, we avoid dealing with self-duality constraints. This restricts us to
the representations my with mg; = 0 for k > d/2, i.e. to Young diagrams with
less than d/2 rows. In particular, we will only consider the GT patters in which all

representations are of this kind.4

Our goal is for a given GT pattern i, to find the explicit tensor Zf;&“”‘md " which
gives the corresponding basis element [)i;), up to a multiplicative factor. We do

this recursively, by explicitly constructing the dimensional induction map
Ime, Vg, = Vi, Mgo1 € My, (D.70)

which is defined, up to normalization, by the requirement that it is Spin(d — 1)-
equivariant and non-trivial. By irreducibility of m,_ it follows that / establishes an
isomorphism between Vi, , and the subspace in Vi, which transforms according
to my_1 under Spin(d — 1). Since dimensional reduction is multiplicity-free, this

subspace is uniquely determined.

It then immediately follows from the definition of GT basis that the following

relationship between GT basis vectors holds,
Img, mg_;,my_,...) o< Ip? |mg_j,my_,...). (D.71)
In particular, if my_; = e is the trivial representation, we find

mg yMmg-| ymg-2 mg—i+1
|md, mg_;,mgo,.. > o Imd—llmd—z Imd_3 e Imd_k+ 1. (D.72)

To construct I,'::j_l explicitly, start with a general U#!#ma-1l € Vg, . For con-

venience we assume that the indices of U run from 2 to d.> We first extend the

“The same general approach works even without these assumptions, and the details are not hard
to recover.
SRecall that by our choice of Spin(d — 1) c Spin(d), Spin(d — 1) stabilizes e;.
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definition of U to allow its indices to assume the value 1 by setting UH!#ma-11 = ()

whenever at least one of y; = 1. We then define

Himg_y 141 7
T/H - Himgl = U’“‘l"""md—llel'm" 1k ---el'md' — traces. (D.73)

A generic relationship between the Young diagrams my; and mg_; is shown in
figure D.1. We can associate the indices of e in (D.73) to the unshaded boxes in

figure D.1 and apply to 7" the Young symmetrizer Y, corresponding to my to define
Im? U =Y, T (D.74)

Note that it is guaranteed by the dimensional reduction rules from section 5.2.1 that

no two indices of e land in the same column of m,.

As explained above, this map allows us to reconstruct Gelfand-Tsetlin basis vectors

up to a phase. Let us look at some examples. First, consider the GT basis vector
[T, o). (D.75)
From (D.72) we find
LT3[ oe,.. ) o I = b o races. (D.76)

This reproduces the result of section 5.3.7.5.

As a more complicated example, consider

|- e, e). D.77)

From (D.72) we find

|Dj...D,D,.,...)xlgj"'mm,.,...)

o Igj”meg' = eé‘“ei‘z e elllj) — traces. (D.78)
Similarly, we can find that
LT[, L, [, e, ) e(“le’f2 . --e’llj) — traces, (D.79)

3

and so on. In the case j = 1 this reproduces the results of section 5.2.2.2 for vector

representation.

Consider now the simplest non-STT example,

(0 e, ). (D.80)
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Note that [ ] is the simplest representation to which Bj [ can reduce. This

differs from (D.78) only in the Young symmetrizer,

| e R N D ¢ D(e" “1---efj—traces):
Zegeimefz --e/f’) Ze‘l’eéﬂ'e‘l‘2 -~efj) — traces. (D.81)
Similarly,
D, r,e,. . ) e‘éeﬁ”‘ei‘z ~-e’11") le‘l’egﬂlefz --elll*’) — traces,
(D.82)
and so on.

It is important that we perform trace subtraction and Young symmetrization in all

steps of dimensional induction. Consider for example the state

(LT, 1, e, (D.83)

We have first in d — 1 dimensions

5#1#2’
d-1

IDj,O,...)oceé”egz— (D.84)

and when we lift it to d dimensions, we have agreed to set the new entries of this

tensor to 0, which in this case amounts to replacing

SHIM2 _y SHIVI = sHIH2 _ i‘l é‘{ (D.85)

so that indeed ¢ '#2 = (0. We thus have®

1 P N A )“YD:D(M n —(5”‘“2—6“16“2))6“3. (D.86)

d—1 1 71 1

Clearly, if we didn’t take care with S, or had postponed trace subtraction to d

M1 ,Uz #3
1 1

be wrong since for u; = up = u3 = 1 they would reduce to a non-zero constant and

dimensions, we would have never obtained a term e . These choices would
thus their dimensional reduction has a component along the trivial representation of
Spin(d — 1). On the other hand, (D.86) is non-zero iff only one of y; is set to 1, in

which case it reduces to [ | ], as required.

SThis object is automatically traceless in d dimensions so we don’t have to subtract d-dimensional
traces.
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Similarly, care should be taken with compositions of Young symmetrizers between

dimensions. Consider the state

|7 " l:\:l’ l:" .7 .. ‘>' (D-87)

We have successively
|l:|’ ."‘ '> & eg[l7 (D-88)
CT0, e, ) o el el (D.89)

1
| \’ (11,0 0,e..)x 161/6;”161312) _ Z (61 e;v étz) n e,uz ;Vegll)) ) (D.90)

Here we have applied Young symmetrizer both in (D.89) and (D.90). Had we only

applied the d-dimensional symmetrizer, we would find

1
[ L Doy o gejey e — 2 (e egef? +ofPesel) . (D)
It is easy to see that (D.91) is wrong: setting u, = 1 we obtain — ;e‘z’ ’3“’ ', which is

a tensor with no definite symmetry. On contrary, setting p, = 1 in (D.90), we find

I(VIJI)
223

different dimensions interact non-trivially to ensure that the dimensional reductions

which belongs to [ T | asrequired. We thus see that the symmetrizers from

are irreducible.

We have so far avoided the question of normalization of the tensors Tyy,. Up to a
phase it is determined by the requirement that GT vectors have unit length. This
is straightforward to implement on the tensor side. Sometimes we would like to
know the normalization factor as a function of the length of the first row j — this
is perhaps most easily implemented using the irreducible projectors as we explain
below. The phases can be chosen based on convenience,” unless one wants to make
contact with the GT formulas in appendix D.2. We have not attempted to find the

general prescription which would match the phase conventions of these formulas.

D.4.1 P-functions

In this section we relate Pm"’

m Iln" > (0) in tensor representations to the irreducible
L

projectors studied in [82].

70f course, for every GT pattern this choice should be made once and for all in order to have
consistent expressions.
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We start by utilizing the tensor representation of GT basis vectors in the definition
of P,

my _ oM
PO () = (Mg, my_1,my_y, ... |e""Img,m/, |, my_s,...)

Mg-1,m;_;
_ /~ll~-~/~l\md| 9M12 V1~~~V\md\
- Tgmd (€ )Nl"'ﬂ|md|’vl"'v|md|7—:~m;
ML Him g | M- M m g |
= Ty, " Ty " (6), (D.92)

where Ts))g&(g) is equal to Tﬂm;i in which all occurrences of ¢; and e, have been

replaced with

e1(0) = e?™M12¢; = cos fe; + sin Hes, (D.93)

er(0) = e"™M2e, = _sinfe; + cos Pes. (D.94)

Note that in the first line of (D.92) ... represent the same sequence in both vectors,
which can be chosen arbitrarily. For example, if m;_; is STT, we can choose all
representations in . .. to be trivial. We have also assumed that we had chosen the

tensors Ty, to be real for all relevant i .8

We can further trivially rewrite the last line of (D.92) as

M1 Hm g | M1 Him gy | _ M Himy | Vi--Vimy| _
T*Jﬁd Tgm:l (9) = Tgmd “1"'#|md\ﬂv1“'v|md\T5m:j (9) = T*Jﬁd ST T‘)J?L’I»
(D.95)

where ;. 4 iy TV is the projector onto the irreducible representation my;. From

"'V‘md‘
our construction of tensors Tyy;, we know that we can write Ty, in terms of the basis

vectors e; and Kronecker deltas 6,,,,;. We can thus write

Tan, = Ti](fj + terms containing §*i*, (D.96)
Tay, = Tﬂg?e) + terms containing 61/, (D.97)
d
We then conclude
m;,mg_ _ () (e)
sl (0) = T5) - 7 - Ty (). (D.98)

Note that it is easy to compute ZJ(JZ for generic my 1, because we do not need to

explicitly remove traces in the last step of dimensional induction, while the number

of indices in the preceding steps is independent from m ;.

8This might not be possible it the GT patterns do not satisfy the assumptions discussed in the
beginning of this appendix. In that case one needs to add some complex conjugations in the formulas.
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Furthermore, the right hand side of (D.98) contains the irreducible projector n
contracted with a bunch of vectors (basis vectors e; or e¢;(6), e2(6)) on both sides.
These are precisely the contractions studied recently in [82]. Given their results, we
then obtain a simple algorithm for computation of P-functions. It is best illustrated

in examples.

Matrix element P, (6)

We start with the simplest example,
Pl (). (D.99)

Since in this case m;_; = e, we necessarily have my; = j is a traceless-symmetric
tensor representation. Recall from (D.76) that

THIH Nj (6#1 o

e | et — traces) , (D.100)

1

where we also introduced the normalization factor N;. We thus conclude

(e)pr...pj u Ui
L. " =Njei'...e, (D.101)
T M (0) = Njel' () ... e} (8). (D.102)

The results of [82] are formulated in the following way. They define the function
mi(z,70) =2 T T2 (D.103)

where 7 is the projector on traceless-symmetric spin-j representation. This function
completely encodes the projector since the components can be recovered by taking

repeated derivatives in z; and z;.° It is then can be shown that

_ ! f— 21 21
mi(21,21) = = al 1z ct” (—_ ) D.104
i(z1,21) 2](V)j| 1M1zl C; B ( )
where v = %. We then immediately find that
PO =Ty) T (0
:szﬂ(Z1,E1)
z1=e1,21=¢1(6)
! , o [ e1-el(0)
= N2 |e1|f|e1(9>|16}>(;)
2/(v); leille1(6)]
23
i~
= ——C."(cosb). (D.105)
2i(v);

9Note that we do not require z; - 71 = 0.
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Note that the normalization condition for |}, e, . . .) is equivalent to PJ;’,'.(O) =1, and

thus using
2v);
c (1) = g (D.106)
j j!
we find
N 2] 2v);
ias (v) N2V
= (1) = (D.107)
2/ (v); Nj 2/ (v);
from where we conclude that!©
2/ (v);
.= , D.108
/ (2v); ( )
while
P¥(0) = C(”) (cos ). (D.109)
(2 ) j
Matrix element PJ’D’D (6)
We now consider the matrix elements
mg,e
PDvD(H)' (D.110)

Note that now both m;_; and m’, . are equal to [ ] and thus m, can be either a

d-1
traceless-symmetric tensor j or a hook diagram (j, []).

We start from the traceless-symmetric case and will return to the hook exchange
later. From (D.78) we find

TJ%”.I,...M" Nyediel el (D.111)
Tj%/f-l,’ff’”’ (6) = N;[ed" (0)e)2(8) - 17 (). (D.112)

We then find

o (e) (e)
P O0®0 =5, L5, ©)

1
oy jD(ez - 0:)(e2(0) - 9z )7 (21, 21)

z1=e1,z1=€1(0)

2
= - /L] (COS 09C"™ (cos §) — sin® 99*C" (cos 0))

= - N 82C(V)(cos 0). (D.113)
J*21(v);

0Here we essentially make a choice of phase for |j, e, . . .).
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Again, we have the normalization condition PE»D (1) = 1. To solve for N ] we

need to know (9C](.V) (1), which can be computed using the identity
axcj.” (x) = 2v c;j”(x). (D.114)

‘We thus find

NZ it 2v@2y +2); _
P20y G-Dt

(D.115)

and therefore (adding a phase for future convenience)

N
Nj’l:‘__ m, (D116)

i ___G-=-D 2 ~(v)
PJD,D(G) = —ZV(ZV n 2)]‘—169 Cj (cos 8). (D.117)

Matrix elements Pnﬁ’: (6) and P:"“D° (6)
Having determined the normalization factors N; and N ;.[]> We can now address the

matrix elements
pRee pres D.11
(@ P (0, (D.118)

which are not subject to a simple normalization condition at & = 0. In particular,

their phases are convention-dependent. We have

mae o) _ @) (@)
PRe®O =T, 7T, 0

= Nij,Dj_l(€2 <07 (21,21)

z1=e1,21=¢1(0)

2V]‘ 2v + 1 (V+1)
- - C (cos 6). (D.119)
(2v); V JQ2v+ J)

An analogous calculation shows that

m.e 2V_]‘ 2v+ 1 (v+1) m,.e *
ds _ R
P (0) = (2v)j‘/j(2v+1)sngc (cos0) = (P42 -0)) . (.120)

consistently with (5.173). One can check in explicit examples that these results

coincide with the direct exponentiation of M, providing a non-trivial check of the

formalism and normalization factors.
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Matrix element P%DD)’.(H)

Consider now the casle of the hook exchange m; = (j, []) in (D.110). We are now
dealing with a new type of representations. Correspondingly, in [82] the following

function is defined
= =\ _ M1 Hj —V=f —H;
T (21,22, 20 22) = 2521 0 2y vy T B 222 (D.121)

The expression for the full projector is somewhat complicated, so we do not re-
produce it here. In practice, we used the Mathematica code supplied with [82] to

perform the calculations with these projectors.
From equation (D.81) we find

(€),V,l1see i [ ) )
Toin e = Ngr |ered el e)” = egel el - e, (D.122)

(e)’vnuls"'?ﬂj
T(j,D),D,o,... (@)

= N | @ @@ @) - @ @ @) ¢ )]
(D.123)

This implies
Ne TG e ™ Ta e @
= j%(e2 - 02)(e2(8) - 8z)m(j1) (e1, e1, €1(6), e1(6))
= j ez - 01y (e, e1, €1(0), €2(8))
—j N (e2(8) - 3z) 71y (e1, €2, €1(8), e1(0))
+ 7 (er, e e1(0), e2(6)), (D.124)

where the values of the arguments of 7(;,1)(z1, 22, 71, 22) should be substituted after
taking the derivatives. Using the explicit form of the projector [82], and using the

normalization condition P(j’D)"(O) =1, we find

L]

[+ i-3w)
No[n0 = \/2v2(j 122y +2), (D.125)

GLDe, . G=D! u
PD,D 0) = (2v+2)]~_lcj‘1 (cosB). (D.126)
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Appendix E

APPENDICES TO CHAPTER 6

E.1 Correlators and tensor structures with continuous spin

In this appendix we assume that there exists a continuous-spin operator O(x, z)
and study its Wightman functions. Note that here we are concerned with physical
correlators. In other parts of chapter 6 we discuss the existence of continuous-
spin conformal invariants for fixed causal relations between the operator insertions,
which is a very different problem — Wightman functions must be well defined for

arbitrary causal relationships between points.

E.1.1 Analyticity properties of Wightman functions
Recall that Wightman functions of local operators are analytic in their arguments
when the appropriate ie prescription is introduced. More precisely, consider a

Wightman function of local operators (suppressing polarization vectors for simplic-
ity)
(Q[On(xp) - - O1(x1) 1), (E.1)

and let us split each x into its real and imaginary parts,

Xk = Yk + 1Lk, i {k € RITHL (E.2)

The Wightman function (E.1) is analytic in the following region [16, 298] (see [160]

for a nice review):!

>80 > > (E.3)

Here, the notation p > g means that p — ¢ is timelike and future-pointing. We will

refer to this analyticity property as positive-energy analyticity.

Positive-energy analyticity can be derived in the following way. We first represent

the Wightman function (E.1) as a Fourier transform

ddpl ddpn
2m)d  (2n)d

QIO (xp) - - O1(x1)IQ) = f T IP1E TP (Q1 O, (py) - - O1 (p1)19).

(E4)

'In fact, these functions are analytic in an even larger region [16, 298], but we do not study
consequences of this extended analyticity in this work.
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The existence of the Fourier transform follows from the Wightman temperedness

axiom. The Heisenberg equation implies

0
[H,Ol-(x,-)]:—i@a(xi) = [H,0i(p)] =p)Oi(pi)),  (ES)

1

and thus

HOi(p)) - O1(p)IQ)y = (P + ... + p)O:i(pi) - O1(p) Q). (E.6)

In physical theories, all states have positive energies. Furthermore, positivity should
hold in any Lorentz frame. Thus, we conclude that whenever (Q|O,,(p,) - - - O1(p1)|Q)

is nonvanishing,
pr+...+pi =0 (i=1,...,n). (E.7)

Here, the notation p > 0 means that p is timelike or null and future-pointing. Note

that the real part of the exponential factor in (E.4) is given by

exp(&1-pr+...8n-pn) =expl(pn+...+p1)- &
+ (Pn-1+ ...+ p1) - ({n-1—En)
+ (Pn2+...+p1) (L2 = Ln-1)

+ ...

+p1- (G =0l (E.8)

where {; = Im(x;). By translation-invariance, the first term in the exponential
(pn+...+p1) - ¢y can be replaced with zero. Suppose that the ¢ satisfy (E.3). Due
to (E.7), all other terms in the exponential are non-positive and serve to damp the
integral (E.4). Thus, we can make sense of the Wightman function as an analytic

function in this region.

The above discussion in no way depends on locality properties of O;. The only
information about O; that we needed was the Heisenberg equation (E.5). This is
of course also satisfied by continuous-spin primary operators O(x, z), because it
is simply part of the definition of being primary. This means that positive-energy
analyticity also holds for Wightman functions involving continuous-spin operators.
In the main text we construct examples of continuous-spin operators for which

positive-energy analyticity can be checked explicitly.

This clarifies the properties of O(x, z) with respect to x. However, O(x, z) is also

a non-trivial function of z, and it is interesting to study analyticity in z. For this,
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assume that we have already adopted the appropriate ie-prescription. By using
Lorentz and translation symmetries we can assume that we have inserted O(x, z) at

x =1ieéy = (i,0,...,0) with € > 0. Then we have fori,j =1...d -1
[M;}, O(i€éo, 2)] = (2/ 8,1 — 2'0,1)O(i€éy, 2), (E.9)

and so we have an Spin(d — 1) C §(3(d, 2) subgroup which stabilizes position
of O and allows us to change z. In particular, together with the homogeneity
property (6.44) it allows us to relate all future-directed null z to z = éy + €1 =
(1, 1,0,...,0). Let U, € Spin(d — 1) that takes a,(éy + é1) with a@; > 0 to z. Then

for a Wightman function with a single continuous-spin operator we can write

(QO,(xp) - - - O (x1)O(i€éy, 2)Ok—1(xk=1) - - - O1(x1)|Q) =
= a(Q|0,(xy) - - - O (xx) U, O(i€ép, ép + é1)U, Og—1(x4-1) - - - O1(x1)|Q),
(E.10)

and compute the right hand side by acting with U, and UZT on the left and on the
right. This action will act on the spin indices of local operators and also shift
their positions. Change in the positions will, however, preserve the ordering of
imaginary parts {x (E.2), and thus the Wightman function will remain in the region
of analyticity.? Since we can take U, to depend on z analytically in a neighborhood
of any given z, this implies that in the absence of other continuous-spin operators
the left hand side of (E.10) should be analytic in z.

It would be interesting to understand the analyticity conditions in z in presence of
other continuous spin operators. This might depend on some extra assumptions
about the nature of such operators, but it is natural to expect them to still be analytic.
At least this is the case for the integral transforms defined in section 6.2.3, since at

fixed ie-prescription these involve integrals of analytic functions.

E.1.2 Two- and three-point functions

Let us now study examples of Wightman functions of continuous-spin operators
from the point of view of positive-energy analyticity. This is especially interesting
in CFTs because the analytic structure of two- and three-point functions is fixed by
conformal symmetry, and this turns out to be in strong tension with positive-energy

analyticity. For simplicity, we focus on correlation functions involving the minimal

ZNote that in principle the stabilizer of ieéy includes a full Spin(d) € SB(d, 2). However, some
of the transformations in Spin(d)\Spin(d — 1) will change ordering of i and thus move Wightman
function out of the region of analyticity.
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number of continuous-spin operators. We also restrict to traceless-symmetric tensor
operators. However, the same statements hold for general representations because
the part of the tensor structure responsible for the discrete spin labels A is always

positive-energy analytic.

A conformally-invariant two-point function of traceless-symmetric operators has

the form

(2()612 21 (xX12 - 22) — x5, (21 - Zz))J

2(A+7)
X12

It is easy to check that the denominator is positive-energy analytic for any choice of

(O(x1, 21)O(x2, 22)) o (E.11)

Wightman ordering, and we only need to study the numerator. For generic z; and

Zp We can write
X2 = az1 + B2 + x4, (E.12)

where x, - z; = 0. Note that x is spacelike, because it is orthogonal to the timelike
vector 71 + z3. (Recall that all polarization vectors are null and future-directed.)

The numerator then takes the form
J
(2012~ 212 - 22) = 2,21 - ) = (-2 - 22) %2 > 0, (E.13)

On the one hand, we see that this is positive and well-defined for all real x; and z;.
On the other hand, we can show that it is only positive-energy analytic for integer
J > 0. Indeed, selecting a Wightman ordering and adding appropriate imaginary
parts as in (E.2), in any case we find that £, is a spacelike vector (we can make
it non-zero), because it is orthogonal to z; + z;. This means that by choosing an

appropriate yj> we can achieve

x2 =32 =242y, -£1) =0, (E.14)

and in particular wind xi around zero without leaving the region of positive-energy
analyticity.>#4 Thus (E.13) can not be analytic there unless J is a non-negative

integer.

3To be specific, we can wind xi around 0O once with yj, returning to the original position, and
thus for (E.13) to be single-valued, we need J € Z.

“This argument doesn’t work in d = 3 because then y, and £, are forced to lie in the same 1-
dimensional subspace. In that case we are still free to change both y, and £, and thus x, =y, +i{,,
in a neighborhood of 0. This leads to a weaker requirement that J € %Zzo- This has to do with the
fact that for d = 3 the null-cone is not simply-connected and it makes sense to consider multi-valued
functions of z. In fact, fermionic operators can be described by double-valued functions of z. (If we
write z; = Yo Xﬁoﬁﬁ for a real spinor y, then we get polynomial functions of y.) Our argument
thus shows that only single- and double-valued functions of z are consistent with positive-energy
analyticity. In higher dimensions we cannot describe fermionic representations by using a single null
polarization and thus we do not get this subtlety.
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This implies that the only way the Wightman two-point function of a generic con-

tinuous spin operator O can be positive-energy analytic is by being zero,>
(QO(x1, 21)0(x2, 22)[€2) = 0. (E.15)
In unitary theories vanishing of this two-point function implies
O(x, 2)|122) = 0. (E.16)

This gives another derivation of the fact stated in the introduction: continuous-spin

operators must annihilate the vacuum.

Let us now consider a three-point function with a single continuous-spin operator
0O,

J3—n3
X13°23  X23°23
(O1(x1, 21)02(x2, 22)O(x3, 23)) o [ (xi, Zi)( E— ) . (E17)
X3 *23
where f(x;, z;) is the part of the tensor structure which is manifestly positive-energy
analytic, and is a homogeneous polynomial in z3 with degree n3 > 0. The non-trivial

part of the correlator can be written as

J3—n3
X13°23 X23°23 Jae
( T ) = (V123 - 23)" 7", (E.18)
X X
13 23
where
2 X2
X1 X2
FC R ke ) (E.19)
12,3 2 2 2 x2
13 23 13423

We see that v 3 can be both spacelike and timelike, depending on the causal rela-
tionship between the three points x;. This immediately implies that, for example,
when all x;; are spacelike, the inner product vi3 - z3 is not sign-definite and we
need to invoke ie-prescriptions to define (vi23 - z3)”3™", even for purely Euclidean
configurations. For the ie-prescriptions to make sense, the tensor structure must be
positive-energy analytic. This means that in this situation, positive-energy analyt-
icity is not only required for correlators to make physical sense, but also simply for
the tensor structures to be single-valued.® To proceed, note that in the region of
positive-energy analyticity xizj # 0 and furthermore the map

x5 (E.20)

>We derived this for generic z; and z, but as discussed in the previous section, we expect the
Wightman functions to be continuous in polarizations.

®This is in contrast to the two-point Wightman function case considered above, where (E.13) is
single-valued without the ie-prescription.
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preserves the set of x = y+i{ with future-directed (past-directed) timelike £.7 Since
it is also its own inverse, this implies that by varying x13 and x,3 within the region

of positive-energy analyticity, we can reproduce any pair of values for ¢; = % and

13
qQ = % with imaginary parts satisfying the same constraints as those of x;3 and
23
x3 respectively. This means that in the region of positive-energy analyticity for the

orderings
(0]0,00110y and <(0]0;00,|0), (E.21)

the vector vi23 = g1 —¢» has a timelike imaginary part restricted to be future-directed

or past-directed respectively, while for the orderings
(010,0;010) and (0|00;0;10) (E.22)

this imaginary part is not restricted at all. In the former case vi23 - z3 has either
negative or positive imaginary part, and thus the inner product cannot vanish or wind
around zero, while in the latter case this inner product can vanish or wind around
zero. We thus conclude that the Wightman functions (E.21) are positive-energy
analytic for any value of J3, while the Wightman functions (E.22) are positive-

energy analytic only for integer J3 > n3.8

Again, recalling that the physical Wightman functions of continuous-spin opera-
tors must be positive-energy analytic, we are forced to conclude that Wightman

functions (E.22) vanish,
(Q|0,0,0[Q) =(Q|00,0,|Q) = 0, (E.23)

which of course consistent with the fact that O annihilates the vacuum. An inter-
esting observation is that the distinction we made above between the Wightman
orderings (E.21) and (E.22) conflicts with microcausality, because for spacelike-

separated points all these Wightman functions would be equal.® This means that

It x* = (y +i0)* = y? = % + 2iy - = 0 with timelike £, then y - £ = 0, which implies that y
is spacelike and thus y*> — 2 > 0, leading to contradiction. Imaginary part of =5 is, up to a positive
factor, £ (y? = ¢%) = 2y(y - £). For y = 0 this is timelike and has the same direction as £. For any y,
this squares to Z2((y> = £?)? + 4(y - 2)?) < 0, and thus by continuity Im% remains timelike in the
direction of £.

8Recall that n3 < Jj is the standard condition that we encounter when dealing with integer-spin
tensor structures, it just means that f'(x;, z;) must be a polynomial in z3 of degree at most J3. The 3d
subtlety we discussed in footnote 4 would be visible here as well, if we allowed f to be double-valued
in z (and polynomial in y), which would correspond to making the product O; O, fermionic, thus
forcing J to be half-integer.

Recall that as noted above, the region of spacelike separation is the problematic one, because
there vy, 3 is spacelike and vy, 3 - z3 is not sign-definite.
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non-trivial continuous-spin operators must be non-local, as stated in the introduction,

in the sense that they cannot satisfy microcausality.

A consequence of non-locality is that a physical correlator involving a continuous-
spin operator is not well-defined without specifying an operator ordering even if all
the distances are spacelike. This in particular means that time-ordered correlators
are not quite well-defined in the presence of continuous-spin operators (i.e. how do
we order O when it is spacelike from something?). This also makes it unclear how
one would define Euclidean correlators for continuous spin (the usual Wick-rotation
to Euclidean signature requires micro-causality). Another problem with attempting
to describe continuous-spin operators in Euclidean signature is that under Euclidean
rotation group SO(d) the orbit of a single null direction in R?~"! consists of all null
directions in C?. Thus we would need to define O(x, z) for all complex null z, but
above it was very important to have future-directed real 7 to establish positive-energy

analyticity of at least some Wightman functions.

E.1.3 Conventions for two- and three-point tensor structures

When working with integer spin the simplest way to specify standard tensor struc-
tures is to give their expressions in Euclidean signature or, equivalently, in Lorentzian
signature with all points are spacelike separated. With continuous spin, Euclidean
signature is not an option, and as we saw above even for spacelike separations in
Lorentzian signature care must be taken to define phases of three-point functions.

In this section we briefly record our conventions for symmetric tensor operators.

We will choose the following convention for a two-point function in Lorentzian

signature:

(—2z1 - (x12)22)’
2A
12

xHx,
xZ

(O(x1,21)0(x2,22)) =

I",(x) = 6%, -2 (E.24)

The nonstandard numerator is so that the two-point function is positive when 1 and 2
are spacelike separated and z;» are future-pointing null vectors. For local operators
this completely defines standard Wightman two-point functions via i€ prescriptions.
For continuous-spin operators physical Wightman functions vanish, but we still
need two-point conformal invariants in some calculations (like the definition of the
S-transform), and for these purposes it suffices to specify the two-point invariant for

spacelike x1,.
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Now consider a three-point function (¢ (x1)¢2(x2)O(x3, 7)), where ¢; and ¢, are
scalars and O has dimension A and spin J. We demand that the correlator (either
Wightman or time-ordered) should be positive when 1, 2, 3 are mutually spacelike

and 7 - x»3 x% —-Z-X13 x%3 > 0. Our precise convention is

J
(2Z - X23 x% —2z-Xx13 x§3)
(¢1(x1)$2(x2)0(x3, 7)) = A +D—At+] MAA—Dot] M+A—A+T (E.25)
12 13 X3

This is unambiguous for local operators since at spacelike separations there is
no difference between various Wightman orderings and time-ordering.!® If J is
continuous, we are necessarily talking about a Wightman function and we need to

specify the ordering. Our choice is

J
(2Z * X23 x%3 - 2Z *X13 X%S)
(0|¢1(x1)©(X3, Z)¢2(X2)|0) = A+Ar—A+T  A+A—Ao+J A+ A-A+J° (E'26)
12 X3 X3

defined to be positive under the same conditions as (E.25).

The nontraditional factors of 2 in (E.24) and (E.25) are so that the associated
conformal blocks have simple behavior in the limit of small cross-ratios

(91620)034) s
e R | WA P

They also simplify several formulae in the main text.

A+J
2

y<xy<xl. (E.27)

E.2 Relations between integral transforms

E.2.1 Square of light transform

In this appendix we explicitly compute the square of the light transform. In order
to do this, we need to assume that the operator that the light transform acts upon

belongs to the Lorentzian principal series

d
A=Zis, J=-"5"+ig, (E.28)

sothat A+J = 1+i(s+q) = l+iwand AL+ JL =2—-A-J =1-i(s+q) = 1 —iw

and thus both the first and the second light transforms make sense if w # 0.

It will also be convenient to use the expression for the light transform in the coordi-

nates (7, €) on Md. In these coordinates the polarization vector z can be described

19Note however that this notation for the standard structure is somewhat abusive. For physical
correlators we of course have (¢19,0)q = (P2¢10)q, but the standard structure (E.25) gains a
(=1)” under this permutation. This leads to several appearances of (—1)” in our formulas which are
awkward to explain.
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-

as (¥, 7) where Zis tangent to S?~! at &, i.e. 7- & = 0, and we have (z°)? = |Z]>. We

then have
L[O](, &2 2)
Ve
= f dk (sin )220 (1 + k, cos k € + sin k Z%; 1, cos k % — sin k €).
0
(E.29)

Note that this form also makes it manifest that there is no singularity associated to
a = 01in (6.60).

The square of light transform becomes
T T
L*[0](r, ;2% %) = f f dkdk’ (z°) (sin &)™ (sin k) A+ 2
0o Jo

X O(1 + k + k', cos(k + k")é + sin(k + KI)ZiO; 1, cos(k + /<')Zi0 —sin(k + £)€)

2
= f dkK (k) (%)’ O(1 + K, cos k €+ sin k Z%; 1, cos k ﬁ —sink €), (E.30)
0
where
min(k/2,m1—k/2) K ] K ]
K(x) = f dn(sin = — )7 (sin = + )1+, (E.31)
max(—k/2,k/2-1) 2 2

To compute K («), for « # 0, r, 2 we can use the substitution

sin(% +n
ef = L (E32)
sin (% - n)
which turns the integral into
1 +0o0 B
K(k) = — dpe™” =0, (w#0). (E.33)
sink J_q

This means that K (k) is supported at k = 0,m, 2. Let us thus consider first the

contribution near k = 0. Near k = 0 we can expand both sines and find, introducing

K/2 K —l-iw+e /g —l+iw+e
K(K)=f dn(——n) (—+77)
) 2 2

1/2 1 —1l—iw+e 1 —1+iw+e
—1+2¢
e ol (e
£1/2 2 2

ey 1+2e @ :;;?E;‘)" O k<D (E.34)

a regulator e,
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For € — 0, using
Q2e)k12€ 5 §5(k), (k> 0) (E.35)

we find
: : 3 n
K(k) =T (-iw)T'(iw)d(k) = BA17 - Dsnrazs J)(S(K), (k < 1). (E.36)

The calculation near « = 27 is the same and thus we have

T o
K(x) = B+J-Dsnrcsd) (0(k) + 0(k — 2m)) + (contribution from 7)

(E.37)

To find the contribution from « = m, write k = mr —r for small 0 < r < 1.11 We

have now

K(x) =f

:f dn (sinr + n)_l_i‘” (sin n)_l”‘”
0

vl

[ S]]

T r —1-iw T 7 —1+iw
dn (51“5‘5"7) (sz‘i*")

+

P NIE
(S0

~

Nr ) ) Nr ) )
zﬁ dn (r+n)—l—tw+e n—1+1w+e +\f; d77 (r+n)—l+zw+e n—1—1w+e

:r—1+2€ [L d77 (1 + n)—l+iw+e n—l—iw+e +‘f(; d’] (1 + n)—l—iw+e n—1+iw+e

_—1+2¢ ﬂ'r(l _26) _ B
TR T-A-orUra_g U rAe) eI+ At e)).

(E.38)

Here 0 < r << Nr < 1 and the two terms come from the two sides of the integral.

We can now compute for small A > 0

e

A
lim K(k)dk = - 7TCOS7T(' *+J) .
€0 Jr A A+J-=1Dsina(A+J)

Recalling also that there is also a contribution from the negative values of r, we find

(E.39)

the final result

/s
Kl = S(k) =2 A+ D)6(k — 1) + 8(k — 27)) .
() (A+J—1)sin7r(A+J)( (k) =2cos (A + J)o(k — m) + 6(k — 27))
(E.40)
In terms of action on O this immediately implies
2 n ,
- 1-2cosm(A+ NT +T
(A+J—1)sin7r(A+J)( cosm(A+ )T + )
n ) _
= T — AN (g _ pmin(A+D)) E41
(A+J—1)sin7r(A+J)( € )( ¢ ) ( )

'There is going a similar contribution from r < 0.
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E.2.2 Relation between shadow transform and light transform
In this appendix we prove the relation (6.110). As in the preceding part of this
appendix, we must assume that (6.110) acts on an operator in the Lorentzian principal

series so that this action is well-defined. We have
LS,L[O](x, z)

= f D2 dayday(—ay) 2 (—ap) T A (=27 - HTHAO(x - g - z)an, 7))

(E.42)
Let us write x" = x — 7’/a — z/a>. Then we have
’ + ’ + .
(Z'/ay + z/a2) @i

Considering the integral in the region of large negative @ and @, we find

@

J
f D22 dadan(-a1) ™ () (anan (- )?) (a—) O, ~I(x = x')2)
2

_ f D22 daydas(-a) (a2 (~(x = x)2) T O, —1(x = ¥)2)
(E.44)

We would now like to replace the integral f D427 daday by f d“x’. For this we

write
1= f A% x — X' — 7' Jay - z/az) (E.45)
and then compute

f D27 dardas(—a) ™ (—az) 6% (x — ¥ — 2 Jary — 2] a)

d?Zdayd
) f Zvoa'l . 220()6(?) (~a1) (~a2) 16 (~an (x = x') + 7+ a1z/a)

dad
_ f R 5((x — x) = 2/ (~a) (~an) ™!
volR

=-(x-x)"% (E.46)

We thus conclude that (E.44) is equal to
f dx' (=(x = X)) O, -1(x — x)2). (E.47)

More precisely, it is the contribution to (E.42) from the region of large negative
a;. We recognize that it has precisely the form of 7 -shifted Lorentzian shadow
integral (6.54), i.e.

Sx =i7 'LS,L. (E.48)
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E.3 Harmonic analysis for the Euclidean conformal group

E.3.1 Pairings between three-point structures

The conformal representation of an operator O is labeled by a scaling dimension
A and an SO(d) representation p. The representation O' has dimension d — A
and SO(d) representation p* (the dual of p). Thus, there is a natural conformally-
invariant pairing between n-point functions of O;’s and n-point functions of 5;’s,

given by multiplying and integrating over all points modulo the conformal group,

—~ —~ A9 - dx —~ —~
f...0f — 1 n ...0f
(01000} +-p) bfwmde+Lnﬁa 0. ---B)).

(E.49)

Here, we are implicitly contracting Lorentz indices between each pair O; and 5;.

The “E” subscript stands for “Euclidean.”

This pairing is particularly simple for three-point structures. In that case, we can
use conformal transformations to set x; = 0, xo = e, x3 = oo (with ¢ a unit vector),

and no integrations are necessary. The pairing becomes simply

((010:05).0]010))

= 01(0)02(e)0 01(0)0] ()0 (c0)). E.50
0vol(SO(d 1))< 1(0)02(e)03(0) X0, (0)0, (€)O; (0)) (E.50)
The factor 27¢ comes from the Fadeev-Popov determinant for the above gauge-
fixing.'? The factor vol(SO(d — 1)) is the volume of the stabilizer group of three

points.

As an example, a scalar-scalar-spin-J correlator has a single tensor structure (¢ $203, ;)

given in (E.25). The pairing in that case is

(<¢1¢203,J>, (1 5253,J>)E
22]

~ 24v0l(SO(d - 1))

~ 227C(1)

~ 2dvol(SO(d - 1))

(el --- et —traces)(ey, - - ey, — traces)

(E.51)

where C;(x) is defined in (E.152).

1ZNote that [67] used a convention where vol(SO(d + 1, 1)) was defined to include an extra factor
of 274 to cancel the Fadeev-Popov determinant. Here, we prefer not to cancel this factor because it
simplifies other formulae in this work.
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E.3.2 Euclidean conformal integrals
Suppose O, O’ are principal series representations, with dimensions A = %l +is, A" =
% + is” with 5, 5" > 0 and SO(d) representations p, p’. A “bubble” integral of two

three-point functions is proportional to their three-point pairing,
(¢010,0).(0{0;0")

H(A, p)
800" = 218(s = 5')S ppr. (E.52)

f dx1d"x2(010,0°(x)X0[0]0, (")) = E625(x = x')d00r,

The right-hand side contains a term §po- restricting the representations O, O’ to
be the same, since this is the only possibility allowed by conformal invariance.!3
Here, a, b are indices for the representations p, p* of SO(d), respectively. We have
suppressed the SO(d) indices of the other operators, for brevity.

The factor u(A, p) in the denominator is called the Plancherel measure. It is known
in great generality [65] (see [195] for an elementary derivation). In this work, we

will only need u(A, J) for symmetric traceless tensors:

_ dimp; TA-DIA-A-DA+J-1)d-A+J-1)
"~ 2dvol(SO(d)) 7dT(A — DT (4 - A) ’
TJ+d-2)2J+d-2)

dim p) = = TR (E.53)

(A )

Here dim p; is the dimension of the spin-J representation of SO(d).

Another conformal integral we will need is the Euclidean shadow transform of a

three-point function of two scalars and a symmetric traceless tensor

(616:SE[O1(3)) = f 500" ())(16:20())
= Sp(¢162[01)($16:20(»)), (E.54)

where

ﬂ.d/2l"(A _ %)F(A + J _ 1) F(d—A+A21—A2+J)1—~(d—A+A22—A1+J)

F(A — l)r‘(d — A+ J) F(A+A1£A2+J)F(A+A2£A1+J)
(E.55)

SE(¢12[0]) = (=2)7

The factor of (—2)” relative to [67] is because we are using a different normalization

convention for the two-point function (E.24).

13Eq. (E.52) is sometimes written including two terms — one with 6(s — s”) and another with
6(s + s’). Here we have only one term because we have restricted s, s” > 0. The other term can be
obtained by performing the shadow transform on either O or O'F.
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The square of the shadow transform is related to the Plancherel measure by [65] (see

[195] for an elementary derivation)

2 _ 1 (000" (00) (O () O (0))
£ ua, p) 24v0l(SO(d))

= N(A, p), (E.56)

where the indices in two-point functions are implicitly contracted. In the case of a

spin-J representation, we have

_ 2%/ dim p;
N@J) = 24 (A, J)vol(SO(d))’ E57)
Indeed, we can easily verify
SE($192001)SE(¢162[01) = N (A, J). (E.58)

E.3.3 Residues of Euclidean partial waves

In this section, we prove 6.124. The proof for primary four-point functions is
standard (see e.g. [65, 67]). We now give a slightly more complicated argument
that works for n-point functions. However, the key ingredients are identical to the

standard argument.

Consider the integral in the completeness relation (6.119),

I= f dxPy j(x)(O(x)¢162). (E.59)

The partial wave P, ; also depends on the coordinates x3, ..., xx, but they don’t
play a role in the current discussion so we have suppressed them. We have also
suppressed Lorentz indices. When we have a product of an operator and its shadow

at coincident points, we will assume their Lorentz indices are contracted.

Note that / is an eigenvector of the Casimirs of the conformal group acting simul-
taneously on points 1 and 2. Thus, it is completely determined by its behavior in
the OPE limit x; — x». There are two contributions in this limit. The first comes
from the regime where x is sufficiently far from x1, x, that we can use the 1 x2 OPE

inside the integrand:
($1920(x)) = Cp,5(x1, 22, X', 3 )(O(X)O(x)). (E.60)

Here, C 120 is a differential operator that encodes the sum over descendants in the

¢1 X ¢ OPE. The point x” can be chosen arbitrarily inside a sphere separating

x1, x2 from all other points. We will abbreviate the right-hand side of (E.60) as
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C 125(x’)(5(x’)5(x)). Inserting (E.60) and applying the shadow transform to the
definition of Pa y (6.121), we find

I'5 €50 f dx(0(x")O(x))Pps(x) = SE($1$2[0NC ,5(x) Px ().
(E.61)

The second contribution to / comes from the regime where x is near both x1, x, but
far away from all other points. In this case, we can insert a shadow transform and
then perform the OPE:

I=Sg(¢1¢2[O])! f d?xd?x' Pp 1 (x)(0(x)O (X )O (X" b1 h2)

> Se(g142(0D) ™! f d¥xd?x' Pp j(x){0(x)O(x"))C1a0(x" KO (x")O(x"))

= SE(192[0D ' N (A, J)Cr20(x) Pa s (x)
= Sg(¢162[01)Cr20(x) P (x). (E.62)

Where we have used (E.58).

The two contributions (E.61) and (E.62) are already eigenvectors of the conformal
Casimirs, so together they give the full answer for /. The two terms differ simply
by the replacement A < d — A. Thus, we can plug them into the completeness
relation (6.119) and use A & d — A symmetry to extend the A integral along the

entire imaginary axis,

—+lOO d
V53---Vi0102)q = Zf —#(A NSE($1$2[01)CraoPas(x).  (E.63)

——loo

Because C,¢ dies exponentially at large positive A, we can now close the A contour
to the right and pick up poles along the positive real axis. Comparing to the physical

operator product expansion gives (6.124).

E.4 Computation of R(Ay, Ay, J)
In this appendix we compute the coefficient R appearing in the first line of (6.147)

R(A1, A2, J)

1=A1=As—
27 (a(l-a) + (1- )W +awd)

(1 + W%Z)d—Al—Aza—Awl—J(l _ a)—A2+1—J

(E.64)

= —2J2 f dad?*wid* w,
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As the first step, we do the w; integrals. We define w_ = wy, and w, = w| + w.

The integral over dw; becomes (without the =272 and w-independent factors)

_ ) ) ~ . 1-A1—Ay—T
D2A1+AY+)d f 472w 442w (4a(1 @) + Wi+ w2 +2(1 -2a)w, W—)
+ [
(1 + w%)d—A1—A2
(E.65)
Now we shift w, —» w, — (1 — 2a)w_ to find
1-A1—Ay—J
4a(l - a)(1+w?) +w?)
2(A+Ay+T)—d d-2 d-2 ( +
S2A Ay f 442w, d4 2 TR (E.66)
Rescaling w,. we find
1-Aj—Ay—J+952 2\ 1-AI-Ax=J
fdd—2w+dd—2w_ (@(1 =)' 877 (14 w2) _
(1+w2)/*2
d
~ (a(l - a))l—Al—Az—H% o ﬂd_zl“(] +DI(=5+J+A1 + Az). (E.67)
T+ DT +A +A = 1)
The remaining a-integral becomes
: o T(E-ADT(E - Ay)
daa 2T (1 = @) 21+ = 2 2 E.68
J w0 T(d—Ar-A) (568

Combining everything together we find

TJ+ DL+ T+ A1 +A)T(E - ADT(E - Ay)
FTU+HTT+A1+A-1) Td-A-A)
(E.69)

R(A, Ay, J) = =27 27472

E.5 Parings of continuous-spin structures
In this section we describe the natural conformally-invariant pairing between con-
tinuous spin structures. Recall that the Euclidean pairings are constructed from the

basic invariant integral

f d?x0(x)0" (x), (E.70)

where contraction of SO(d) indices is implicit. This integral is conformally-
invariant because if O transforms in (A, p) then O" transforms in (d - A p"),
where p* is the SO(d) irrep dual to p. We can therefore contract SO(d) indices and

the dimensions in the integrand add up to 0 (taking into account the measure d?x).
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To pair continuous-spin structures in Lorentzian, we need to make use of the integral
f d‘xD?z20(x,2)0% (x, 2) (E.71)

If O transforms in (A, J, 1), then OST transforms in (d — A,2 —d — J, 1*). The

integrand has 0 homogeneity in x and z, and A-indices can be contracted. !4

E.5.1 Two-point functions

Let us start with two-point functions. As discussed in section E.1, two-point func-
tions of continuous-spin operators do not make sense as Wightman functions, so
in order to discuss them, we have to think about them simply as some conformal

invariants defined at least for spacelike separated points.

That said, given a two-point structure for O in representation (A, J, 1) and a two-
point function for O3 in representation S[(A, J, )] = (d - A,2—-d - J, 1), we can
define the two-point pairing by

((00™),(0%05),

vol(SO(1, 1))2

f ddxldd)cde_ZZlDd_ZZQ
i1~ vol(SO(d, 2))

(0%(x1,21)0% (x2, 22)XO3 (x2, 22) 05 (x1, 21)),

(E.72)

where factor vol(SO(1, 1))? is for future convenience !5 and the subscript “L” stands
for “Lorentzian.” On the right hand side, we divide by the volume of the conformal
group since the integral is invariant under it. Formally, this means that we should
compute the integral by gauge-fixing the action of conformal group and introducing
an appropriate Faddeev-Popov determinant. To perform gauge-fixing, we can first

put x; and x, into some standard configuration. A natural choice is to set x; = 0 and

14Given that O transforms in (d — A,2 — d — J, A), it is a bit non-trivial to understand why OS5
has 1*. In odd dimensions A and A is the same irrep, so there is no question here. In even dimension
T changes the sign of the last row of Young diagram of (d — A,2 — d — J, A1) in the same way as it
does for all so(d)-weights. In other words, it flips the sign if d = 4k and does nothing for d = 4k + 2.
However, this last row is also the last row of A and A is an SO(d — 2)-irrep. It then turns out that
from the SO(d — 2) point of view, this action is equivalent to taking the dual. Another way to see
this is that § is complex conjugation for SO(d — 1, 1), and thus for SO(d — 2), which can be thought
of as a subgroup of SO(d — 1, 1). But since SO(d — 2) is compact, for it complex conjugation is the
same as taking the dual.

3Similarly to the Euclidean case [195], the right hand side can be alternatively computed in
terms of Plancherel measure divided by vol(SO(1, 1))?. In Euclidean we get only one power of
vol(SO(1, 1)), which corresponds to the fact that there we have only one continuous parameter A,
while in Lorentzian we have both A and J.
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X = oo (spacelike infinity).'¢ This configuration is still invariant under dilatation
and Lorentz transformations. Thus we have
((00"),(0°0%),.

vol(SO(1, 1))?

:f Dd—zled_ZZZ <Oa(0 Z])ObT(OO 22)><OS(OO ZZ)OST(O Z])>
24vol(SO(1,1) x SO(d - 1, 1)) ’ ’ b (0 a (0,21)),

(E.73)
where 2¢ comes from the Faddeev-Popov determinant.!” If we define z§ =
(zg, —z%, z%, - zg_l), so that Lorentz group transforms z; and z§ in the same

way, the integral

l)d—ZZl Dd—ZZ§
f (E.74)

vol(SO(d - 1, 1))
essentially becomes the (d—2)-dimensional Euclidean conformal two-point integral.
It can also be computed by gauge-fixing, i.e. by setting zﬁ’ = zg = (%, %, 0,...,0),
which is the embedding-space representation of the origin of R?~2, z§ =z =
(%, —%,O, ...,0), which is the embedding-space representation of the infinity of
R?-2, The stabilizer group of this configuration is SO(1, 1) X SO(d — 2), which

consists of (d — 2)-dimensional dilatations and rotations. We thus conclude

((00"),(0°0%),,
1
" 242d-2y01(SO(d - 2))

where we included another Faddeev-Popov determinant. Note that the right hand

(0°(0, 20) 0" (00, ZX)NOP (0, 28)037(0, 20)),  (E.75)

side is proportional to dim A.
We can summarize this result as follows. Note that the product
(0 (x1, 21)0" (x2, 22)O0} (%2, 22) 05" (x1, 21)) (E.76)

transforms in representation (A, J, 1) = (d,2 — d, e) at both x; and x,. Thus we

must have

(=221 - 1(x12)22)>™¢

(0°(x1,21)0"" (x2, 22) X0} (x2, 22) O3 (x1,21)) = A = . (B77)
12
For some constant A. Using (E.75), we find
A
(00", (0°0%T),, = (E.78)

22d=2yol(SO(d - 2))
16We define O(c0) = lim; _,., L**O(Le), where e is a conventional spacelike unit vector. We
choose e = (0,1,0,...,0).
17A fixed power of 2 also goes into what we mean by vol(SO(1, 1)).
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E.5.2 Three-point pairings
We can analogously define a three-point pairing for continuous-spin structures,
((010:05.0}0}0%))
d4x1d?x,dxD? 27
fx’ii}z vol(SO(d, 2))

(01(x1)02(x2)0 (x, )XO] (x1) 0] (x2)0%" (x, 2)).

(E.79)

Here, finite-dimensional Lorentz indices are implicitly contracted. Note that due to
the fixed causal relationships between the points the continuous-spin structures are
single-valued without ie prescriptions (see appendix E.1). As in the Euclidean case,
Lorentzian three-point pairings are simple to compute because they don’t involve
any actual integrals over positions. We can use the conformal group to fix all three
points to a standard configuration consistent with the given causal relationships, for

example

x4=0 x3= &, x=oo, (E.80)

0

where e” is a unit vector in the ¢ direction. The Fadeev-Popov determinant associated

with this choice is 27¢. All that remains is an integral over the polarization vector z,

1
~ 2dvol(SO(d

5 f D%27(01(e*)02(0)0(e0, 2)X(O] ()0} (0003 (o0, 2)),
(E.81)

where vol(SO(d — 1)) is the volume of the stabilizer group of the three points.'8 In
practice, we can avoid doing the integral over z as well. This is because the product
in the integrand must be proportional to a three-point function of two scalars with
dimension d and a spinning operator with dimension d and spin 2 — d. The integral

of the z-dependent part of this product is always

1
d-2(_~, . 0\2-d _
(2 e = piasowa—2y) %Y

1 f D
24vol(SO(d - 1))
Thus, we can write
((010:0).(0]0;0%)
L

) 1 (01(")0,(0)0(00, 2))(O; ()03 (0)0% (o0, 2))
 22d-2y0[(SO(d — 2)) (=27 - e0)2d '

(E.83)

!8Note that the stabilizer group depends on the causal relationships of the points. For example,
three spacelike points have stabilizer group SO(d — 2, 1).
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E.6 Integral transforms, weight-shifting operators and integration by parts

In this appendix we elaborate on the interplay between integral transforms, weight-
shifting operators, and conformally-invariant pairings, following [195] and general-
izing the discussion to Lorentzian signature. For simplicity of discussion, we ignore

possible signs coming from odd permutations of fermions.

E.6.1 Euclidean signature
In Euclidean signature we have one integral transform, Sg, and a conformally-

invariant pairing
(0,0") = f d?x0(x)0" (x), (E.84)

where the spin indices are implicitly contracted. With respect to this paring we can

define a conjugation on weight-shifting operators and on the integral transform,

(D0,0%) = (0, D0,
(S0,0") = (0,850"). (E.85)

We have % = 1 and S, =Sk.

Furthermore, we can define Weyl reflection on weight-shifting operators according

to
SED = (SE[DSE. (E.86)
We then have
S2D = Sp(Se[DSE = (SE[D)SE, (E.87)

and since S% = N (A, p), we have when acting on operators transforming in (A, p)

_ N(A+6ap+6p)

S2[D : E.88
R YI7N) (5:89)

where (04, 6,) is the weight by which O shifts. Conjugating (E.86) we find
Se(SEIDD” = DS, (E.89)

and thus

Se[D]* = S [D7]. (E.90)
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We also note that the crossing equation for weight-shifting operators acting on a
two-point function [3] can be written in terms of shadow transform and conjugation.

Namely, we can interpret Sg D™ as convolution with the kernel
(0(DOY), (E.91)

while, on the other hand, it is equal to Sg[9*]S which is convolution with (assume
that DO transforms as 5’7)

((S£[D"10)0"). (E.92)
We thus find the crossing equation

(0(DOM)) = ((Se[D*10)0"). (E.93)

E.6.2 Lorentzian signature
The above discussion has an analogue in Lorentzian signature. Now we have more
integral transforms, so let us denote a generic one by W. We also have a new pairing,

given by
(0,05, = f d‘xD4?z0(x, )05 (x, 2), (E.94)

where the SO(d — 2) indices are implicit and contracted. This pairing leads to a

new conjugation operation on weight-shifting operators and on integral transforms,

(D0,0"), = (0,D0"),,
(WO,0"), = (O,WO");. (E.95)

Note that in general the Lorentzian and Euclidean conjugations do not commute

(see below). Analogously to the Euclidean case, we find

W[D] =W '[D]. (E.96)
As in Euclidean signature, we can define the action of integral transforms on weight-
shifting operators by

WD = (W[D])W. (E97)

In principle W[D] can be a differential operator with coefficients which depend
on 7. However, when acting on a function, the left hand side of this expression

depends only on the values of this function in a set which fits in one Poincare patch.
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If W[D] had non-trivial # dependence, the same would not hold for the right hand
side. Therefore W[D] has to be a local weight-shifting differential operator.

It is easy to check that if two integral transforms commute, then their actions on
weight-shifting operators also commute. Similarly to Euclidean case, relations such
as L? = f1(A, J,7") generalize to action on weight-shifting operators. Let us write

down the square of an order two transform (any transform except R and R)
W2[D] = fw(A p, T)Dfy' (A, p, T, (E.98)

where A and p are understood as operators which read off the scaling dimension
and representation of whatever they act on. Let us comment on this formula in the
case of Sx. Modulo Wick rotation, we have the relation S = (—2)7S, for traceless-
symmetric operators. It follows that (E.88) and (E.98) should be compatible. That
is, we should have

NA+6p,J+6y) 47H05 fA (A + Sp, J + 87, ¢T)

, E.99
N(A,J) 4 fa(A T, T) (599
where 04, 07 are the weights by which D shifts, and c is defined by

TDT ! =D, (E.100)

i.e., ¢ is the eigenvalue of 7 in the finite-dimensional irrep of conformal group to
which D is associated. For example, for vector representation ¢ = —1. To check this
relation, we can use the results of section 6.2.7 and in particular the relation (6.110)

which implies (we consider traceless-symmetric case for simplicity)
fA(Aa J’ 7—) = _T_sz(A9 Ps T)f./(l - A)fL(l - J’ 1—-d+ Aa T) (El()l)

It is then an easy exercise to verify that (E.99) holds for vector weight-shifting

operators [3].

Another useful result is obtained by substituting D — W~![D] into (E.98) to find
WD = 3! (A o, THWID] fw (A, p, T). (E.102)

For example,

fL(A’ Ps T)

L' [D]=L[D ,
PI=11 ]fL(A+L[5A],p+L[6p],c‘T)

(E.103)

where we kept explicit dependence of f7 onz, (L[da], L[6,]) is the weight by which
L[D] shifts. It is easy to check that 7 -dependence indeed cancels out for D in

vector representation.
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We can derive two-point crossing in terms of Lorentzian conjugation and S trans-

form,
(0%(DO%)) = ((S[D10)0"). (E.104)
Comparing to the Euclidean form of two-point crossing leads to a useful relation
Se[D*] = S[D]. (E.105)

We will need a version of this relation with order of integral transforms and conju-

gations interchanged. First, (E.105) implies
(S;'[D)* =S71[D]. (E.106)

Then we use that Sg and S are proportional to their inverses. In particular, we find
from (E.102)

(f5' (A p, THSEIDIfE(A, 0, TN = (fs1 (A p. THSIDIfs(A, p,T)),
FED, 0, TYSELDD f£H (A, 0, T) = fs(A p, THSIDIf5 (A o, T), (E.107)

where we temporarily interpret Sg as a Lorentzian transform defined by (—2)’Sx.

‘We can now use
fs(A p,T) =8 = 8387 = 4778387 =47 fu(A, p, T) f1(p) (E.108)

to conclude

SID1 =47 71 (p)SAlDD*4™ f1(p). (E.109)

E.7 Proof of (6.214) for seed blocks

In this appendix we prove (6.214) for seed blocks by starting from the scalar case.
For simplicity we consider only bosonic representations. We assume that O; are in
SO(d) representations appropriate for the seed block for intermediate p which we
are interested in. As discussed in section 4.4 of [3], we can assume that O, and Oy
are scalars in all seed blocks, so we don’t have to change their representations. We

start with the identity

(070, (00N E((010:SE[0T )5 = (0770"), (0T 0))eD1.aDA (0105810 1));,
(E.110)

where D and D are some weight-shifting operators,'® while O] and O’ come from a

seed block for which we already know that (6.214) holds. A possible proportionality

19Here tilde isn’t related to shadow transform and D acts on the third position. The representation
of index A can be assumed to be vector.
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coeflicient can be absorbed into the definition of either the weight-shifting operators

or the tensor structures. Consider pairing both sides with (O10,Sg[O7]) to obtain

(010),(00))
(010", (0" 0"

= ((010,S£[0"]), D1 AD* (010380 1) e (E.111)

Integrating by parts and using definitions of appendix E.6 we find

(010), (00N
(0"10"), (00"

= (D} ,010:8E(SE' [D 17 0™1), (0105810 M.
(E.112)

which allows us to conclude

(010), (0" Oy
(010, (0" 0"

(D} ,010,SE[SE D 1°0]) = (0\04SL[0),  (E.113)

or, canceling Sg on both sides,

(010),(010))
(010", (0" 0"

(D} 4010:(SE' D14 0)) = 010,0y.  (E.114)

We will use this characterization of D and D later in the proof.

For now, let us apply (E.110) to (6.213) and find that H is given by

Hp p(x;)
= —u(A, p)(0105SE[0" ) (010,07, (0] 05 0") ' x
X f d*xD722(01D1 40T LIDA01(x, 2)05 10) ({0104~ LIO1(x, 2) O3|0); "
2<x<1 E115)

We now use
L[D40] = L[D]*L[O], (E.116)
and integrate L[D] by parts. This gives

HA,p(xi)
= —p(A, P (01058210 ) ({01050, (0] 05 0)) ;' %

— - —A
X f d*xD*722(0| D1, A0 L[O](x, 2)0}  )L[D] ({0|04L[O](x, 2)03|00); ",
2<x<1

(E.117)
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where L[D] acts on the middle position in the right three-point structure. We can
further apply a crossing transformation on the right three-point structure as in [3]
to make all differential operators act on the external operators only. We will not do
this in detail, because we will anyway reverse this step in a moment. Let us denote

the resulting differential operator acting on external operators by D.
The conclusion of the above calculation is schematically that
H,="H,, (E.118)

where H, is some conformal for which we know (6.214) to hold. We can thus
apply D to (6.214) written for H,/. Since the right three-point structure in (6.214)
and (6.213) is the same, we can unwind the steps in the derivation of © which were

performed solely on the right three-point structure to conclude

1—=A
| Dia (O10JLIO"D) ' LD (T4O0:05LIOD) !

Honi) = ~om (LIO'ILIO'])]! S
We can use (E.167) to write this as
Hp p(x;)
1 (LIOILO);! SILIDID 4 (THOIOLIO)), | (THO05LIOD)]
27 (LIOYILIOY);! (LIOIL[O]);! '
(E.120)
We now want to express
SILIDI* D1 4((0105LIO" )} ! (E.121)
in terms of
(010,LIO" 1N . (E.122)
To do this, let us consider the Lorentzian pairing
(¢010,LIO™]), SILIDII* D1 s(O1O4LIO" ;)
= (mA@;A@OZL[OT 1, (<010;L[0’T]>)51)L : (E.123)
We can use the results of appendix E.6 and 6.2.7 to write
SILID]] = LIS[D]] = L![S[D]] = fL@IALLIp)7) LIS[D]]

SL(LIA] + L[6A], L[p"T + L[6,], ¢T)
(E.124)
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where (04, 6,) is the weight by which S[ﬁ] shifts and c is defined by (E.100) for
D. Since we consider only bosonic representations, ¢ = +1 (¢ = —1 for vector
weight-shifting operators). We have (A + 94, pT +6,) = (4, p’T). We furthermore

have

ot ot 47 (")

L[S[D]IL[O] = L[S[D]O'] = WL[(SA[@)*OT] (E.125)

and thus

——A
S[LID]] Dj ,(010,L[0"])

_ 470D fLLIALL[pTLT)
47 £,(p'") fLLINL L[], ¢T)

Now use (Sg [5])* = S;:l [5*], apply L to both sides of (E.114) and conclude

(01D; ;O LISE[DN O], (E.126)

—A
SILID]] Dj ,(010,LI0™])

477 f00N  fLLIALLIPTLT)  ((0T0),(0T0)k

= = % (0,0,LI0")).
4= f1(p') fLLINL L), ¢T) (<0f+0f>,<mo'>>E< 10O

(E.127)

This implies that the pairing (E.123) is equal to

47 f1(ph  fLLIALLIP'LT)  ((OT0), (070

; —— (E.128)
A~ f1(p ") fLLINL LI ¢T) (010", (07T 0"))i
and thus
SILIDN* D1.4(0105LIO"])™!
_ 470N fuMIALLPLT)  (070),(0T0) (OOLIO)-!
4= 100 FLLINL LI ™) eT) (07107, (070" o
(E.129)

Collecting all the pieces, we find that (E.120) implies (6.214) for the seed H if

_ (LIOILION;" 477 f,(0") fL(LIALLIPL,T) ((010),(0'0)

= — =1.
(LIO'ILIO) 477 f1(0") fLLINLLIp ), ¢T) (071 0%, (071 O'Y) e
(E.130)
Proof that C =1 First, we note that
¥ 0tO 7 dim o
(0'0),{0'0))p _ 4" dimp (E.131)

(070,400 47 dimpT
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Furthermore, f; is square of shadow transform in d — 2 dimensions. Thus if we
write p’ = (J, 1) then (similarly to appendix E.3)
dim A

fr(p") e ——, (E.132)
u(p")

where u is the Plancherel measure for SO(d — 1, 1). Furthermore, the ratio

u(p")
E.133
dim pf ( )
is independent of p [65, 195]. This implies that
~J £ (of Oy (OTO i
£Iieh (010),©0'0) _ dimA E.134
7110 ortory,0tory)  dimAa
Furthermore, we can write
. O/O/T -1
d-1m/l _ (< >)L ’ (E135)
dim " (00",
which is due to
(007, (0505 o dim A, (E.136)

and similarly for primed quantities (see appendix E.5).

Now we need to recall the calculation of (L[OJL[O']). We have for the kernel

which is represented by the time-ordered two-point function (QO"),

(00T =81+ Y y™(T"+T ™), (E.137)
n=1
where 7 is the eigenvalue of 7~ corresponding to O, see (6.38). The calculation in

section 6.4.1.4 then yields, in the same sense as above,

(LIOILIO™) = S(1 + 3 y™"(T" + T-"NT ' fL(FIALFIpL 7). (E.138)
n=1
Since L. commutes with S, we find that we can replace f;(F[A],F[p],7) by
JL(L[A],L[p], 7). This implies

(LIOILION)' A+ X2y ™"(T"+ T ") fLLINLLILT) (00!
(LIO'ILIOY);Y A+ o y ™ (T "+ T ) fL(LIALLIpL T) ((0'0");"
(E.139)
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Recall that ﬁ takes O to O’ and ¢D = T DT !, which implies v’ = ¢y = +g.

(Recall we consider only bosonic representations.) Thus we have
1+ % /" (Fn4q-n
((1 ém 11 Z((T " T)))) fLLINL LI, T)
_ AHER YT AT
T I T+ (T ™)
(T =T =y
T =T =y
= fL(LIA},L[p'], ¢T), (E.140)

JLLIA'LL[P')T)

JLLIALLIPLT)

where we used the fact that (6.103) is 7 -independent. We thus conclude that

(L[OIL[O"]));! _ [u(LINLLIp')LeT) (00!

. (E.141)
(LIoILo ;" fLMIALLIpLT) (00!
By combining this equation with (E.134) and (E.135) we see that indeed?®
C=1. (E.142)

E.8 Conformal blocks with continuous spin

E.8.1 Gluing three-point structures

Consider two three-point structures (Q;0,0) and (O030,). We can glue them into
a conformal block as follows. We find a linear operator Bj;p(x2) such that in the

OPE limit 1 — 2, the first three-point structure becomes

(010,07 (x)) ~ Boo(x12){0(x2)0T (%)), (Ix12] < |x1 = x|, |x2 = x|).

(E.143)
For example, when Oy, O;, O are all scalars, we have
Bioo(x12) = x19 7474, (E.144)

(B120 can be extended to a differential operator such that (E.143) becomes an equality
away from the 1 — 2 limit, but this is not necessary for the current discussion.)

Note that to define Bjpp we must choose a normalization of the two-point structure

(00).

20Since we for simplicity restricted to bosonic representations, we haven’t been very careful with
distinguishing p and pf. (There is no difference except possibly for self-dual tensors.) It would be
interesting to repeat our argument in a more careful manner, accounting for fermionic representations
as well.
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We define a conformal block Ggf (x;) as the conformally-invariant solution to the
conformal Casimir equation [57] whose OPE limit is

GO (x1) ~ B12o(x12){0(x2)030%), (Ix12] << |xi50). (E.145)

It is very useful to introduce the following notation for a conformal block, which

makes manifest the choices of two- and three-point structures needed to define it

(010,07(00;04)
(007) '

In our convention O appears in the OPE O; x O, and O in the OPE O3 x Oj.

G (x)) =

(E.146)

E.8.1.1 Example: integer spin in Euclidean signature

As an example, let us review the case of external scalars ¢, . . ., ¢4 and an exchanged

operator O with integer spin J,

($1920)¢3940)
(00) ’

where (¢1¢,0) and {(¢p3¢40) are the standard three-point structures (E.25) and

(OQ0) is the standard two-point structure (E.24). We will assume that all points are

Gy (x) = (E.147)

in Euclidean signature.

In the OPE limit 1 — 2, we have
1 (=2z - I(x20) - x12)’

<¢1¢20(X0, Z)> ~ Al+Ay—A+T 2A
Y12 20
1
O (0G0 ). (149
X12

To compute the leading behavior of the block, it suffices to take the limit 3 — 4 in

(¢3040),

1 (=21(x42) * x34)p, - - (=21(x42) - X34)y, — traces

<¢3¢40#1#J (‘x2)> = A3+A4—A+J = 2A H .
X34 W

(E.149)

(This limit is identical to the first line of (E.148) after replacing 1,2,0 — 3,4, 2 and
stripping off the polarization vector z.) Thus the OPE limit of the resulting block is

GM (x) ~ Xy e xy (—21(x42) - X34), -+ (=21 (x42) - X34),, — traces
AT xA1+A2—A+JxA3+A4—A+J 2A
12 34 42
2 2 AJ2
_ 1 X12X34 26, (—Xlz “I(x42) - X34 (E.150)
DA Sy A WO |x12][x34]
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Here, we’ve used the identity

(M- (ny -+ ny,, — traces) = [ml |n) € | —— |, (E.151)
|m|[n]
where
) TG +d-2) d-11-n
Cr(n) = F (—J,J+d—2,—,—) (E.152)
I+ Sr -2 2 "2

is proportional to a Gegenbauer polynomial (note in particular that for = 1 the
hypergeometric function reduces to 1). Factoring out some standard kinematical

factors, we find

Ay—Aq A3—Ay

A 1 x%4 ’ x%4 LA
GA:J(xi) = 5 Ay o My (T) (T) GAfJ(X’ X), (E.153)
('XIZ) 2 (X34) 2 X24 xl3

where Gﬁi ; (x> x) is a solution to the conformal Casimir equations normalized so
that

-JJ2
G&u&%«ﬁW%% . r<x <D, (E.154)
Here, y, x are conformal cross-ratios defined by u = yx, v = (1 — x)(1 ='x). This

is the standard conformal block in the normalization convention of [66, 67].

E.8.1.2 Example: continuous spin in Lorentzian signature

Our definition of a conformal block also works when O has continuous spin. How-
ever, now we must allow Bjyp to be an integral operator in the polarization vector
of O. Let us again consider external scalars ¢y, ..., ¢4. For later applications, we
work in a Lorentzian configuration where all four points 1,2, 3,4 are in the same
Minkowski patch, with the causal relationships 1 > 2, 3 > 4, and all other pairs

spacelike-separated, see figure E.1.

We also modify the three-point structures by taking x3, — —x3, and x7, — —x7, s0

that they are positive when x is spacelike from 1,2 and 3, 4, since precisely these

positive structures will appear later. Specifically, let

. 2 _ . 2 \J
(ZZ X20X70 2z xl()xzo)

Ty (e, x2, %0.2) = (E.155)

A +Ar—A+J A+A-Ay+J
2 1722 2 1 2 2
(=xp) ™ ()T (xg

Ay+A-Ay+J °
2
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Figure E.1: A configuration of points where 1 > 2 and 3 > 4, with all other pairs
of points spacelike-separated. The three-point structure (E.155) is positive in this
configuration.

We will study the block

AL A2 A3, Ay
TA,J TA,J

W, (E.156)

where (OQO) is the two-point structure (E.24). To define a block, our structures only
need to be defined when x is spacelike from the other points, so we do not need to

give an i€ prescription here.
In the OPE limit 1 — 2, we have

1 (=27 - I(x20) - x12)”

AL+Ay—A+J 2 \A
(_X%Z) 2 (-xz())

Tob™ (x1, X2, X0, 2) ~ (1 2). (E.157)
The quantity on the right differs from the two-point structure (O (x», z’)O(xo, z)) by
the replacement z” — x2. We can no longer strip off z’ and contract indices with

x12. However, the replacement can be achieved via an integral transform:

TQ;AZ (x1, X2, X0, 2) ~ B120{O(x2, 2')O(x0, 2))

Biof(x', 7)) =

1 T(J+d-2) o, o
= A+Ay—A—J—d+2  d=2 Dd 2Z (_2x12 "L )2 ¢ Jf(x/’ Z/)'
(—x2) T T+ 452
12 2

(E.158)

Now let us apply Bjyp to the three-point structure TAAfJ’A“(x& X4, X2, 7), working in
the limit 3 — 4 (since this is sufficient to determine the small cross-ratio dependence
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of the resulting block). In doing so, we need the identity

fDd‘zz’ (=2x12 - 2)7 (=27 - I(x42) - x34)’

2-d-J

- (-22) / 22_dV01(Sd_2)CA ( —x12 - I(x42) - X34

—x2 )2
T A = A TN

), (E.159)

where C y(n) is given in (E.152). (Here, it is important that we use the correct
definition of C; for non-integer J.) Using (E.159), we find that in the OPE limit

ALA> A3, Ay 2 2 \A/2
Tag Tas 1 <x12x34) 2 ¢ <—X12'1(X42)'x34)

~ A1 +A A3+A 4 2 \1/2 2 \1/2
©0) " Ly )\ o AR

X

(E.160)

so that

Ay—A Az-A
TAI’AZTAa’A4 227421 23724
AJ

AJ _ 1 <x14) ’ x14) i Gy (6 X)
- Aq+A Az+A R R AJ A2 '
(00) (—x1,) . 2(—x§4)% X4 13

(E.161)

This is the same result we would have gotten by pretending J was an integer and
performing the computation in the previous subsection. However, here we see that
a conformal block with non-integer J is well-defined and completely specified by

continuous-spin two- and three-point structures.

E.8.1.3 Rules for weight-shifting operators

Let us consider how the gluing rule described in E.8.1 interacts with weight-shifting

operators changing the internal representation. Suppose we can write
(010,07 (%)) = (01 (DA0)(DO)) (E.162)

for a pair of weight-shifting operators O and D. By acting with the same weight-
shifting operators on (E.143) for primed operators we find

(010,07 (x)) ~ (D2,4B120) (x12){O(x2) (DAO') (x)). (E.163)

Recall the crossing equation (E.104), which holds when the two-point structures are
related to the kernel of S-transform. Let us assume for now that this is the case.
Then we find

(010,07 (x)) ~ (D2.4B120) (x12){(S[DIA0) (x2) 0" (x)). (E.164)
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Substituting this into (E.145), we find

G (x) ~ (D2,4B120) (x12){(S[D]*0) (x2)0304). (E.165)
Using notation (E.146) we can summarize this as?!

(01(D402)(DAOH)N00303)  (O1(Da0)O™N(SIDIA0)0304)
(00) - (00 '

(E.166)

This holds if the two-point functions for O and O’ are standard in the sense of being
related to S-kernel. Generalization of this to arbitrary two-point functions is given
by

(01(D402)(DAOHNO00s0s)  (0'0") (O, (D100 N(SIDI*0)0304)

(00) {00y (0’0" ’
(E.167)
where the ratio of two-point functions is a scalar defined as
(00 _ (00" (00X E.168

(00) ~ (0’0" (00)’

where the structures with subscript O are standard and related to S-kernel. Note that

we can reverse (E.167) by replacing D — S~'[D]. However, due to (E.96) we have
S~1[D] = S[D] and so we get the same rule for moving the operator from right to
left.

E.8.2 A Lorentzian integral for a conformal block

Conformal blocks in Euclidean signature can be computed via a “shadow repre-
sentation,” where one integrates a product of three-point functions over Euclidean
space [54, 118, 233]. However, this integral produces a linear combination of a
standard block Gi" ; and the so-called “shadow block™ Gﬁ"_ AJ The shadow block
comes from regions of the integral where the OPE is not valid inside the integrand.
By contrast, there is a simple integral representation for a block alone (without its
shadow) in Lorentzian signature [203]. The reason is that in Lorentzian signature,
we can integrate over a conformally-invariant region that stays away from two of the
points, say x34. Thus, the x3 — x4 OPE limit can be taken inside the integrand and

dictates the behavior of the result.

2IThe results of [3] concerning weight-shifting of the internal representation are recovered by
further using crossing for the weight-shifting operator acting on the right three-point structure.
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Figure E.2: In the Lorentzian integral for a conformal block, the point x is integrated
over the diamond 2 < 0 < 1 (yellow). Because the integration region is far away
from points 3, 4, the 3 X 4 OPE is valid inside the integral.

The Lorentzian integral for a conformal block plays an important role in sec-
tion 6.4.1.2, so let us compute it. Consider the same configuration as in the previous
subsection where 1,2, 3,4 are in the same Poincare patch, with 1 > 2 and 3 > 4,
and other pairs of points spacelike separated from each other (figure E.2). We can
produce a conformal block in the 1,2 — 3,4 channel by performing a shadow-like

integral over the causal diamond 2 < 0 < 1,

_ d.. pyd=2 pALA AsA
Gy =f d“xoD "z T 55 g (x1, x2, X0, DT, (X3, X4, %0, 7). (E.169)
2<0<1 ’ ’

ALA
Td—A,Z—d—J

absolute values |x;;|, so that the integrand is positive in the configuration we are

The notation | | means that spacetime intervals x;; should appear with
considering. (This notation is somewhat imprecise, since when A, Ay, A, J are
complex, we do not mean one should take the absolute value of the whole expres-
sion.) When J is an integer, there is a similar integral expression for a Lorentzian
block with f D927 replaced by index contractions. However (E.169) also works

for continuous spin.

The expression (E.169) is proportional to G, ; because it is a conformally-invariant
solution to the Casimir equation whose OPE limit agrees with the OPE limit of TAAjA“
(because the integration point stays away from x34). The behavior of the integral
in the limit 1 — 2 is not immediately obvious. However, conformal invariance

requires that this limit must be the same as 3 — 4.
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More precisely, in the OPE limit 3 — 4, we have
T3 (X3, X4, X0, 2) ~ Baao(O(x4,7)0(x0,2)) (3 >4, 0~3,4), (E.170)

where Bj3yo is the linear operator defined in (E.158). Plugging this in, we find
3—-4)
Gas ~ B3io f dxoD"2Z T3, (x1. %2, X0, 2O (x4, 2)O (30, 2)).
2<0<1

(E.171)

The integral in the OPE limit now takes the form of an S-transform.

E.8.2.1 Shadow transform in the diamond

Let us evaluate the integral (E.171) by splitting it into two steps: first we apply Sa
and then subsequently S;. For notational convenience, define

A()Ed—A
Jo=2—-d—-1J. (E.172)

Ay
b

. . . . A
The S, transform is fixed by conformal invariance up to a coefficient a A(l)’ T

SaollT3 s (X1, X2, %0, 2)|0(2 < 0 < 1]

1
d ALA
=f d“x0 =5y Tataz—a—y (X1, X2, X0, 1 (x04) 2]
2<0<1 Xog 0 ’

2 2 1J
ALA, 122 - x14x5, = 22 - X247,
=a.”’ .
Ao, Jo |xl2|A1+A2—(d—A0)+Jo |X14|A1+(d—Ao)—A2+J0 |X24|A2+(d_AO)_A1+JO

(E.173)

Here, we are writing expressions valid in the kinematical configuration we are
considering, namely 2 < 0 < 1 and 4 = 1,0,2. To find the coefficient, we choose

the following configuration in lightcone coordinates

xo = (4, v, x1),
x1 = (1,0,0),
x2 =(0,1,0),
x4 = (00, 00,0),

w = I(x04)z = (2,0,0), (E.174)
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2

where the metric is x> = uv + x2. Note that since 4 is sent to infinity, w is actually

independent of x(. Our integral becomes

2 2 Jo
1 2w - x10X5, — 2W + X20X54]
ALAy dudv dx, 20 10

Ao, Jo - 2]()+1 |x]2|A1+A2—A()+J()|x]O|A1+A()—A2+J()|_X-20|A2+A()—A1+J()
vol(54-3) " (u(l —u) —r?)P
=—F dudvdrr YT DT .
(u(l—v)—rz) Gl —u)y—r)~ 2
(E.175)

T ”‘u—’z], followed by
the r integral over r € [0, Vu(1 — u)], and finally the u integral over u € [0, 1]. The

result is

2
It is now straightforward to perform the v integral over v € [

JAYWAY)
Ao,Jo
2T - AO)F(Z—JO—A%+A1—A2)F(d+Jo—A%+A1—A2)F(Z—JO—A%—A1+A2)F(d+JO—A%—A1+A2)
- 2I°(1 + —A)l'(2—Jo—Ag)I'(d + Jog — Ap)
(E.176)
Note that aﬁéﬁoz = aﬁéﬁf 4—j,» Which is consistent with the requirement that Sa

commute with S;. We can additionally perform S; using

fDd—ZZ/(_zz . Z/)Z—d—fo(_zz/ . V)JO

r T T(=Jy - 42)
- I'(=Jo)
Combining everything together, we find

(—v2) T+ (07 . )=, (E.177)

SolIT 5y (x1, %2, %0, D12 < 0 < 1)] = b2 T0L2 (x1, x2, x4, 2)

-2 d=2
Ady - T2 +5F5) 4
M = Ry a =2 aer (EAT8)

Plugging this into (E.171) and using (E.161), we conclude

Ay=A A3-A,

bAl’AZ x2 2 x2 2 A
Gas(xi) = A1+A2 (%) (%) Gy (. 0). (E.179)

3+44
(—x3)"7 (-x3 ) T\ 13

E.8.3 Conformal blocks at large J
In this appendix, we compute the large-J behavior of a conformal block. Recall that

we have the decomposition

pure

o _ TU+d-T(-J-%2)
Gy 0600 = 8y (6 + ghe  ,(6x).  (E.180)

r'(J+ %)F(—J) Sa2-d-s
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pure

Thus it suffices to compute the large-J behavior of g,

The Casimir equation was solved in the large-A limit in [36, 37]. We can use this

PWE at large J. The

result together with an affine Weyl reflection to determine g,

solution from [36] is given by

A
6
432 }; L0085 7 (1Al > 1),
(1 =r2)7 (1472 +2rcos@)2U+2127834) (] 4 2 — 2 cos §) 21 +A34=A12)
(E.181)
where r and 6 are defined by
p=re’, p=re,  x P Y= —E_ (E.182)

Taspr YT apr
From studying the regime r < 1, we find that f;(cos ) must obey the Gegenbauer

differential equation.

Note that the conformal Casimir equation has the following symmetries:

AT o (1-J,1-A),
rew=e’. (E.183)

The first is an affine Weyl reflection that preserves the Casimir eigenvalue. The
second transformation is equivalent to p < 1/p, which leaves y invariant, and
therefore also leaves the Casimir equation invariant. Applying these transformations
to (E.181), we find (|J| > 1)

w7 fioa (300 + D)
(1= w2 F (1 + w2+ w(r + 1/r)20H2=80 (] 4 w2 —yp(r + 1/r))2(1HAu-212)
(E.184)

Note in particular that we have replaced large-A with large-J. Demanding pure power
behavior as r — 0 requires us to choose the following solution to the Gegenbauer
equation:

-J 1-J d 1

f1(x) = Q) F | —, ——2-1J

— 5 (E.185)

Finally, fixing the constant out front and rearranging terms, we find (6.241).
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Appendix F

APPENDICES TO CHAPTER 7

F.1 Asymptotic form of conformal blocks on the diagonal x = x
In [80] a fourth-order differential equation was derived for the conformal blocks in
d dimensions on the diagonal x = X. The derivation is based on combining the

quadratic and quartic Casimir equations.
The equation has the following form
Dsf(x) =0, (F.1)
where the differential operator Dy is defined below and f(x) = Fa¢(x = x). This
equation is equipped with the boundary condition
f(x) ~ x5 x =0, (F.2)
which also fixes our normalization.

Another way to phrase our normalization is to say that the conformal block for

complex x is given by
A Céf) (cos 6)

(e)
co)

where r = [x| - 0,0 =argx,e =d/2—-1and Cée) is the Gegenbauer polynomial.

Fae(x,x) ~r (F.3)

The operator Dy is given by

3.4 d* : 1 d’
Dy =(x = 1yx* +;(x— D pr(a)a o+
1 g
()X, F.4
+;p ()2 —— (F.4)

where ps3, pa, p1, po are known [80] polynomials in x of degrees 1, 2, 3, 3 re-
spectively, whose coeflicients depend on the differences between external operator
scaling dimensions, which we set to O (then pg is degree 2), as well as on the spin
and scaling dimension of the intermediate operator. The dependence of p, on A and

¢ is through the quadratic and quartic Casimir invariants ¢, and c4,

e =L [€(L+2€) + A(A -2 -26)], (E.5)
cs =C(L+26)(A—1)(A—1-26). (F.6)
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Figure F.1: Plots of f(x)/f(x) for different orders of approximation and values of

angular momenta in four dimensions.

We will be considering the double-scaling limit with 4 = ¢/A fixed and A large. We
will do so in order to allow for large angular momenta. Our results will turn out to

be applicable to small angular momenta as well by setting the ratio A to be 0.

With this scaling assumed, ¢, o< A? and ¢4 o< A*. The polynomials have the leading

behavior
po =c4(x — 1), (E.7)
p1 =ca(1 - 26)x2 + (1 +6€)x —2c2(1 + 2¢), (E.8)
p2 =2c2(x — 1), (F.9)
p3 =0(1). (F.10)

We would like to see whether there is a WKB-like solution of the form f(x) ~ 8,
where g(x) = O(1). Itis easy to see that the leading power of A produced by action
of (F.4) on such a solution will be A* since each derivative produces a power of A,
and the polynomials p, have scaling AF with k < 4 — r. We see that in the leading
A* order only pg and p appear. This results in the equation for g (for x < 1)
4 s 2 g
[mxg'(x)] - 2p [mxg’(x)] + S 0. (F.11)
Here we are only allowed to keep the leading terms in the Casimir invariants. We
then find the following solutions,
2 2 p2
[ﬂxg’(x)] =1 [mxg’(x)] =% (F.12)

With our boundary condition we are interested in V1 — xxg’(x) = 1 which produces

g(x) =logp, (F.13)
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where
4x

p="———FT
(1+V1-x)?
We thus find that log f(x) = log p® + O(1) is a solution. We can perform the

(F.14)

analysis more systematically by substituting f(x) = €% in (F.1) and looking for g

in the form

1 1
G(x) = Ag_1(x) + go(x) + A8l (x) + ngm +... (F.15)

Then we will be able to solve the resulting equation order by order in A. We already

found g_;(x) = log p. The next order gives

—e—1
f(x) = (1 - p—2) pte® @) (F.16)
16 ’ '

this not depending on whether we scale £ with A or not.

Order by order we have

g-1=logp, (F.17)
0
gO:—(1+6)10g<1—E), (F.18)
21 (I+e—e)A? -2
g1=p— (1+e—€e)A“+e(e—1) ’ (E.19)
161_¢ A2 -2
16
(F.20)

The higher order terms get more messy, but are not hard to compute in principle.
We can see that g, contains a negative power of A> — £2, which scales as A and is
supposed to be canceling A? scaling in numerator. This means that applicability of
our expansion is limited to the region where A% — £? is not too small. Higher order
terms have higher powers of A?> — £? in denominators. We also observe that that
the subleading terms become singular in the limit p — 4 corresponding to x — 1.
Therefore, the above approximation works as an asymptotic expansion when

1. a4

A is greater than some fixed positive number

2. x < xp, where xg < 1 and is fixed.

We compare the proposed expansion with the exact conformal block in four di-

mensions in Fig. F.1. There f is the approximate conformal block given by our
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expansion. We include various numbers of terms in the expansion, up to A=2g,.
We see that the approximation works almost equally well for scalar (Fig. F.1a) and
large-spin (Fig. F.1b) operators. We also observe the promised singularity at x = 1.

See Fig. F.2 for comparison at the unitarity bound.

We can get an understanding of how the conformal block behaves when £ — A
independently of the above thanks to the decoupling of large numbers of descendants
for leading twist operators [59]. The unitarity limits the maximal spin of an operator
tobe{ =A—-d+2=A-2e. Itis shown in [59] that for the maximal allowed spin

the conformal block on the diagonal x = X can be expressed as

A (€ + (L +26)n prn

fo) = 2l +20),

X% F1 (A = € A; 2A — 2¢€; x). (E21)

We can then use the standard representation
1
B(b,c — d)2F(a, b;c; x) = f xPTH =077 - ) dx (F.22)
0

to compute the asymptotic expansion of the hypergeometric function by saddle-point

method. This leads to
1
1+0|—

5\ —€-1/2
F(x) = (1 - p—) P , (F23)
We see that for most values of ¢, the conformal block can be well approximated

16

valid at the unitarity bound ¢ = A — 2e.

by (F.16). This approximation breaks down as we approach the unitarity bound
{ = A — 2e due to higher-order terms becoming large. However, at the exact
unitarity bound the formula (F.23) is valid. The two formulas are compared in
Fig. F.2.

The most important part of the conformal block for us is the factor p®, which
encapsulates the leading behavior in the limit of large A. We see that in all regimes

this factor is present and is not modified.

F.2 Asymptotic form of conformal blocks on the diagonal x = X in the large-
dimension limit
The previous derivation holds for fixed number of spacetime dimensions and large

conformal dimensions of the intermediate state; it therefore captures the behavior
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Figure F.2: Plot of f(x)/f(x) for different orders of approximation and the value
of angular momenta at the unitarity bound in four dimensions.

of states very far from the unitarity bound. If we additionally adjust the number
of spacetime dimensions d, however, we can take analytic approximations that
capture the behavior of states close to the unitarity bound. Such a limit was already
described in [299], where the authors derive an expression for the conformal block

in the scaling limit

d — oo, A — oo, (F.24)
a=2-d/A fixed. (F.25)
If one takes d — oo, then the unitarity bound means that A and ¢ must scale as well.

To express the conformal block in this limit, define

2

xx X

y+ = d+]1=x]2 = 27 (F.26)
XX

y-= —(1 "1 —a))2 =1, F.27)

where the second equality in each line holds on the real line x = X. The conformal
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block then becomes, in normalization of [299]

A+€
Fae(x) 8 ——=ArA(y)A1-¢(y-) = (F.28)

Y- =Y+

d-2 1
:Ngzﬁ/y_y_‘ S At ™) (y_z), (F.29)

where
-1p d-2

Ag(x) = B2y (P2 B g ; F.30
g(x) =x 21(2,2,,3 7 (F.30)

L+ DI (452)
N = N (F.31)

and C,(,A) (x) are the Gegenbauer polynomials.
Notice that the spin dependence factorizes. In particular, when y_ = 1, spin-

dependent factors carry no dependence on y.. This immediately implies that in the
normalization of this paper the block has no ¢-dependence on real line x = x. In

fact, we have in our normalization

(dy, )22 A-1 A d-2
Faelx) ¥ 2P == 5.0 = =i ). (F32)
1=y,
The saddle-point approximation for the hypergeometric function gives
log»Fi(c,c;ac; t 1—10)\*!
i 0g2F1(e ¢ ac;y) ~ log 210 (a( o)) ’ (F33)
c—00 C 1- yt() a—1
where
@ —+a?+4(1 - a)
(@) = =Y . (F34)
2(a = 1)y
Therefore, up to O(1) factors we have
dayity (a(l -\ "\
Fag(x) ~ [ 22200 (2770 : (F.35)
A simple computation then gives
OlogFrr dR2-x) 16(1 — x)
= = l+4[1l+——d8606-1)], F.36
Ox 4x(1 - x) (2 -x)? ( ) (F.36)

where 6 = A/d. This is obviously a non-decreasing function of A, which for 6 > 1
asymptotes to

~
~

d_lalogFA,g 0—-1/2 N 2—-x
0x V1 —x 4x(1-x)

(F.37)
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Note that for Ag > d we expect A > d to be important and thus 6 > 1, so we

regain from this expression the previously discussed case of large Ay.

Note that the image of 8 € [%, co) under 4710 log Far/0x is
[3.00) > [2x(1 = x))7", ), (F.38)

as used in the main text.



516

Appendix G
APPENDICES TO CHAPTER 8

G.1 Tensor structures
In this section we give the explicit expressions for the three-point tensor structures
in the differential basis as required for the computation of conformal blocks in

section 8.3.

G.1.1 Parity-even structures in differential basis

For a given spin ¢, we define the basis of parity-even differential operators for
(TTOy) as

— M2 i3 pye3 pymi pyma s +Hn3tmp itz +my
Dy nizmz = Hiy Dy Doy Dy Doy 2y Z, ; (G.1)

where mp = 2— nip —ni3 and nmy = 2 - nip — np3.

Structures for (TTO,) There exists a single parity-even tensor structure for
(TTOy), given by the differential operator

1
DY = ~Doygo + (A= 5)(A+2)Dog,) - g(A=35)(A=3)AMA+2)Dop>. (G2)

Structures for (T70,;) There exists a single parity-even tensor structure for
(TTO,), with A > 3, given by the differential operator

DY = -8 (7A* = 13A + 30) Dogo + 16(A +2)(5A - 11)Di 00
—16(A +2)(A + 4) Dy g0 + 16(A +2)(5A — 11) Dy, 10
— 32A(2A - 5)D110 — 16(A +2)(A + 4) D20 + 8A (A% +29A - 78) Dy,

—8(A-3)(A+2) (A% =2A-2) Dyg; - 8(A—2)(A+2) (A>=3A+8) Doy,

+8(A=2) (A= DADy 1y + (A -2)(A= 1A (A® - 6A> = 25A + 78) Dy .
(G.3)

(TTT) structures There exist two parity-even tensor structures for (T777T), one

realized in the theory of a single free scalar field, and the other in the theory of
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single free Majorana fermion. They are given by the following differential operators

9 35 245 35 33
DPF =~ Dooo + D Do + D D
T 128723 2% T 25673 00 T 102473 200 T 25673 00T 512037 M0
245 L 153 35 159 63
10247320 " 1024730 T 25673 T 102473 T M T 10240370
(G.4)
9 5 35 5 9 35
DI = —~—Dygo+ ——=D ——Dygo+ ——=D ——D D,
T o103 2000+ 73 D100 = 23 D00 + 75 Doto = s Do = -3 Do20
45 5 39 9
+ Do11— =D (G.5)
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Structures for (TTO;) There exists two parity-even tensor structure for (77Oy)

for even £ > 4, given by the differential operators

DY =(A* - 6A% + 4347 — 1024 + 30* + 66° — 4A* (2
+ 12A0% — 3507 — 4A%€ + 12AL — 380 + 184) Dy 0

—2(-A+ €+ D)(A+0) (—A2 +3A+ 0+ - 14) D100

+(=A+ =1 (=A+ L+ DA+ OA+ £ +2)Dygp

—2(-A+ L+ D(A+0) (-A* +3A+ % + - 14) Dy 0

—4 (—A4 +6A3 — 13A% + 12A + €4 +20° - 762 - 8¢ + 44) Di1o

+2(-A+ L+ D(A+0) (A2 —3A+ 02+ (- 10) Ds10

+(=A+ =1 (=A+ L+ DA+ OA+E+2)Doag

+2(=A+ L+ D(A+0) (A =3A+ €2+ £~ 10) Dy

+ (A* = 6A3 = 5A% + 42A + €4 + 203 — (2 — 20 + 40) D1y

—2(C=1)(€+2) (1207 = 36A + £* + 207 = A?(* + 3AL* - 130
—A’C + 3AL - 14¢€ +72) Do,y

—12(+L—4) (-A+ L+ 1)(A+DDiq;

— 8L+ (A + L+ 1)(A+ D11 — 86— DL+ 1) (£ +2)Dy 14

+ }L(f = DO+ 1)(€ +2) (—A" + 647 + SA> — 42A + ¢4 + 203 - 1707
—18¢ + 104) D2, (G.6)

D =(=A* +3A = 67 = € +36)Dog0 + 2(=A + € + (A + O)Di g

+2(-A+ L+ DA+ 0Do10+4 (A =3A+ L2 +L-6) Dy 1o

+ (A* = 6A3 = 5A% + 42A + €%+ 20° — 170 — 18€ + 72) Do,

+2(-A+ L+ 1D)(A+ 0Dy,

+ é (—AS +9A% — 13A% = STA® + 86A% + 120A — £° = 3¢° — A*¢* + 3AL*
+1564 — 2020 + 6AL® +350° — A*? + 6A3 7 + 6A% 0% — A5A07 — 542
—A*C + 6APC + TAPC — 48AL - T2¢) Do. (G.7)
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G.1.2 Parity-odd structures in differential basis
To construct the differential operators for parity-odd tensor structures, we use the

differential operators derived in [61],

0
=€l\Zy, 2>, X1, X2, — G.8
01 = €|Zy, 2, Xy, 2’(9X1)’ (G.3)
0> = € (21 20, X1, X0, ~2 (G.9)
2 = 1, £2, 1s Z,OXZ ’ .
~ 0 0
D =€l|Z, Xy, —, X5, — |, G.10
1=€(Z; b gx, X2 (9X2) ( )
~ 0 0
D, = 2y, Xo, —, X1, —| . G.11
2= €22, X2 ax, 0X1) ( )

Note that the operators D; satisfy all consistency conditions of [61] only when

operators 1 and 2 have spin 0.!

Using these, we can define the operators

Ei; = Dy, (G.12)
Ex; = Dy, (G.13)
1
Ep = 5 (QIEI1 + QzZé) . (G.14)
We define the basis of parity-odd differential operators for (TTO;) as
D snisnind = Droymizma E235 (G.15)
D, sz = Dryniznn E13s (G.16)
D, snznns = Dnsmznin E12- (G.17)

Here D050, are the parity-even differential operators with my, my defined de-

pending on which E;; it multiplies so that the total spins at points 1 and 2 agree.

Structures for (T70,) There exists a unique parity-odd tensor structure for
(TTOy), given by the differential operator

DY = 4Dy 05 + (A-H(A+ DDy 5. (G.18)

There is a slight complication in this case, since the transition matrix between the

differential and algebraic bases vanishes at A = 1. Thus any differential basis

'In [61] these operators are defined with extra terms containing derivatives in polarizations.
However, even with that definition D does not commute with X - aizl and one needs to add extra
terms to ensure full consistency for action on generic operators.
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structure with polynomial coefficients vanishes for A = 1, which is undesirable
since we would like to have a non-zero conformal block for every A > 1/2. We

therefore in this case consider the non-polynomial solution given by

1
Dy = D" (G.19)

In practice, we work with f)é}) and only in the end divide the numerator of the
resulting rational approximation to the parity-odd scalar block by (A — 1)2.2 The

construction guarantees that this division is possible.

Structures for (T77T0O;) There exists a unique parity-odd tensor structure for

(TTO,), given by the differential operator

DY =~ 4D 01 — 2(A =2)(A+3)Dy o5 + (A* = 6A% — 13A% + 66A + 144)Dy |
+2(A=6)(A+2)Dg 11 — D) Dig0r — 2(A =2)(A+3)D 05 + 8(A+6)Dy o5
+2(A = 6)(A+2)Diy . (G.20)

Structures for (TTO;) for even { There exists a unique parity-odd tensor structure

for (TTOy) for even ¢ > 4, given by the differential operator

DY =8 (=3A7 + 9A + £ + £ +24) Dy — 16(A = H)(A + 1) Dy
~ 16 (A4 — 6A% — A? +30A + A*0? — 3AL? — 467 + A0 - 3AC - 45) Dy003
+16 (62 +£+6) Dy o) + 8= A)A+L+ 1Dy,
+8 (A - 6A% - 9A? + 54A + 44) Dy | 5
+4 (A - 643 — TA? 4 48A + A2(2 - 3AC + A2~ 3AL +72) Dy,
+4 (A6 — 9A® + 13A* + 57A% — 86A% — 120A + A%¢*
“3ALY + 200 — 6AL + 20 — 12A3 07 — 11A%62
+87AL? + 4007 + 200 — 12A°C — 12A%€ + 90AL + 405) Do
—4(A=3)A (AT =3A+ 7+ £~ 16) Dy 5 +8(£ = A)(A+L+1)Dgy 5
+16 (A% =3A+ (2 +€-10) Dy +8 (A7 =3A+ L7+ - 16) Dy -
(G.21)

2We need the square since there are left and right three-point structures.
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Structures for (TTO;) for odd £ There exists a unique parity-odd tensor structure
for (TTOy) for odd ¢ > 5, given by the differential operator
DY =—4(A-2)(A-1) (A7 = 3A =367 =30+ 32) Dy,
+8(€=3)(¢ = D(C+2)(C + DDy
+8L(L+1) (—6A7 + 18A + £* +20% + A*(* = 3AL” - 1147
+A%C = 3AL = 120+ 12) D45
-8 (—A4 + 6A% — 25A% + 48A + £* + 207 + A?¢% — 3AL?
—116% + A0 = 3AC - 126 - 4) Dy |
+4A-2)A-DE-MDA+{+ DDy, o,
—4A=2)(A= 1) (042602167 =220+ 84) Df
=2 (60430 + AP0 = 3AL - 150" + 20703 - 6AL* - 350° — 1TA*(?
+51AC% + 5407 — 18AC + S4AL + 726 — 144) Diso
= 20(C + 1) (=2A% + 12A% + 82A% = 300A + £6 + 3¢° + 2A%¢* - 6AL*
—130% + 4A%0 — 12A0% = 316° + A** — 6A3 67 — 23A% 6% + 96AL*
+206% + A*C — 6A3C — 25A°C + 102AL + 36( + 64) Do
F2(L=3)(E-2)(L+3)(C+4) (A2 =30+ +€) Dy
—4A-2)A-Dl-D)A++1D)Dy 5
—8(A-2)(A-1) (A*=3A+ % +£-10) Dy,
+4A-2)(A=1) (A7 =3A+ 7+~ 16) Diyy . (G.22)

G.2 Conformal generators

The conformal generators act on a local operator O(w, z) (with spin degrees of

freedom encoded by the polarization vector w) of scaling dimension A as

D-Ow,x)=(x-9+A)O(w,x), (G.23)
P,-O(w,x) =0,0(w,x), (G.29)
Ky - O(w, x) = (2x,x7 = x*69)0,0(w, x) + 2Ax,0(w, x)

- 2x7 (W, 9 YO(w, x) (G.25)

AwH Wi owe
0 0

My, - Ow, x) = |x,0, — x,0, + Wy —

Frwrie W#W O(w, x). (G.26)

Here D, P, K, and M are the dilatation, translation, special conformal, and rotation
generators respectively.
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G.3 Details on the numerics
In this appendix we give specific details on how the bounds in this paper are
obtained from the crossing equations (8.47)-(8.49) and the conformal block decom-

position (8.82).

First, we organize the crossing equations (8.47)-(8.49) in a single vector equation
Frrrr = 0. (G.27)

The conformal block decomposition (8.82) then induces a decomposition of the

vector Frrrr,

— - 1 - —
Frorr = Fu+ —O@%Frap+ > M Fypap =0, (G.28)
r apes

Here we have explicitly specified that the summation is over some assumed set of
dimensions and spins S. This equation has to be satisfied in any theory whose
spectrum of operators is a subset of S. For example, when we say that we impose a

gap ALy, in the parity-even scalar sector, we choose

S={(AEHA>E+1,0=2k>2}U
{(AE)A>E+1,6>4}U
{(A,27)|A > 3}V
{(A,0M)]A > AMIN Yy

{

even

(A07)|A > ). (G.29)

Given a choice of S, we then study two questions:

1. Feasibility: Does the system (G.28) have a solution for some 67
2. Optimization: What is the minimal (maximal) value of Cr for a given

0?

Feasibility: To answer the feasibility question, we look for a vector @ such that

a-F=1, (G.30)
(G.31)
@-Fap=0, Y(Ap)€S. (G.32)

QL
e
\'
=
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Clearly, if such @ is found, then there cannot be a solution to (G.28), since positive-
semidefiniteness of M ,, ® and Cr > 0 imply

a- ﬁTTTT > 1. (G.33)

We then conclude that CFTs with the spectral assumption S do not exist. As usual,
this conclusion is rigorous for any A, given that the equations (G.30)-(G.32) are
satisfied to a sufficient precision. If such an @ cannot be found, we cannot conclude

anything and the spectral assumption S is formally “allowed” by our bounds.

Optimization: Let us start with the case that we want to find a lower bound on Cr

for a given 6. Suppose that we have found a vector @ such that

a-Fp=-1, (G.34)
@-Frp,=0, V(A Dp)e€S. (G.35)

It then follows from ﬁTTTT = 0 that

1 L
1+ —a- (0@Fr4) <0, (G.36)
Cr
and thus
Cr>a- (0Fr ). (G.37)

We then search for an @ which maximizes
a - (O Frap) (G.38)

subject to (G.34) and (G.35) in order to find the optimal bound. Again, the bounds

are rigorous for every A.

If our goal is to find an upper bound on C7, we replace (G.34) with
@-F =+l (G.39)
which then analogously implies
Cr < —ad- (OFr ). (G.40)

We again look for such @ which maximizes (G.38) in order to find the optimal
bound.
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Numerical implementation: To search for the vectors @ we use the semidefinite
solver SDPB [35]. In section 8.3 we explained how to obtain rational approximations
of the (TTTT) conformal blocks required by SDPB starting from rational approxi-

mations of scalar conformal blocks arising from their pole expansions [36, 49].

These approximations are controlled by the integral parameter « defined in [35].
The blocks become exact in the limit k — oo; the convergence is exponential. In
practice we use a finite value of « and check that our results don’t change if « is
increased. Another approximation that we have to make is the truncation to a finite
range of spins in constraints (G.32) and (G.35). Again, we choose a sufficiently

large cutoff and check that the results are independent of it.

Below we list «, the spin cutoff, and the relevant SDPB parameters that we used
in calculations for various values of A (all figures except figure 8.2 correspond to
A =19):

A <11 13 15 17 19

K 20 24 24 24 24

spins <25 | £30 | £36 | £42 | <42
precision 832 832 832 832 1024
findPrimalFeasible False | False | False | False | False
findDualFeasible False | False | False | False | False
detectPrimalFeasibleJump False | False | False | False | False
detectDualFeasibleJump False | False | False | False | False
dualityGapThreshold 1071 | 10719 | 1071° | 10710 | 10710
primalErrorThreshold 10730 | 1073 | 1073° | 10730 | 10730
dualErrorThreshold 1073 | 1073 | 1073 | 1073 | 10730
initialMatrixScalePrimal 102 | 102 | 10® | 102 | 10%
initialMatrixScaleDual 102 | 102 | 10® | 102 | 10%
feasibleCenteringParameter 0.1 0.1 0.1 0.1 0.1

infeasibleCenteringParameter 0.3 0.3 0.3 0.3 0.3

stepLengthReduction 0.7 0.7 0.7 0.7 0.7

choleskyStabilizeThreshold | 107120 | 107120 | 107120 | 107120 | 107180
maxComplementarity 10100 | 10100 | 10100 | 10100 | 10100

The exclusion plot in figure 8.8 requires testing only feasibility so we set findPrimalFeasible

and findDualFeasible to True. For the scalar bound in figure 8.8 we used the
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parameters of [35] with A = 35. The stress-tensor conformal blocks as well as the

code used for their generation and setting up SDPB are available upon request.
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