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ABSTRACT
A detailed experimental study of equilibrium criticai
phenomena in krypton was made. Using the method of angle
of minimum deviation the refractive index was measured
along the coexistence curve, along 16 isotherms above and
along 11 isotherms below the critical temperature. The
range of the temperature measurements in terms of t the

reduced temperature difference from T, was —G.SXIO_Z;t;

2 5;t;4.8 1072, The measurements were

-5.7x10 ° and 3.8x10"
planned so that the region very near the critical point
was covered in most detail. The refractive index was
related to the density through the Lorentz-Lorenz relation.

After proper weight assignment, the data were ana-
lyzed in terms of the asymptotic power laws. The following
values of the critical parameters, exponents and coeffi-
cients were determined: Tc=209.286t0.010°K, Pc=54.21310.003
atm., LLc=0.070588t0.000006, B=0.3571+0.0008, B=1.840+0.001
vy=1.182+0.008, I'=0.0835+0.0011; Yé=l.15i0.01, Fé=0.0211
0.001, Y£=l.l3to.01, F£=0.02510.001; §=4.25+0.25. The law
of the rectilinear diameter was obeyed with its slope=
0.0918+0.0004.

The reduced chemical potential differences and the
reduced density differences were calculated. The chemical
potential was observed to show antisymmetry for

3 2

-2x10 “<t<4.8x10 © and -0.3<ALL<0.3. The data in this
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range were analyzed using Widom's equation of state and

the closed-form(zg)

of h(x). The proposed equation was
found to fit the experimental data very well.

The predictions of the linear model(32) were also
checked and were observed to be consistent with the

experimental results.
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I. INTRODUCTION

During the last decade, the discrepancies between the
predictions of the classical equations of state and the
experimental data, together with the recognition that
widely different systems behaved similarly near their
critical points, have led to many theoretical and experi-
mental investigations of the critical phenomena. A serious
limitation in both testing the predictions of the new
theories and comparing the behaviour of different systems
has been the accuracy of the available thermodynamic
data. In a fluid system, the conventional method(3) of
obtaining PVT data yields results that are not accurate
enough for critical state analysis. An alternate method
of determining the volume or the density is to measure
the refractive index which can be related to the density
through the Lorentz-Lorenz relation, the validity of
which is discussed in section I-1. This method is
extremely valuable in the study of the critical phenomena
because the refractive index can be measured much more
precisely than the density near the critical state.

In this study, very careful and accurate measurements
of refractive index, temperature and pressure of krypton
were made along the two-phase boundary and along constant

temperature curves both above and below the critical
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temperature. Then the data were analyzed in terms of the
asymptotic power laws describing the approach to the criti-
cal point. The critical phenomena in general and particu-
larly the power laws and the related critical exponents
and coefficients are reviewed in section I-2.

A recent formulation of the static scaling hypothesis
in the critical region, based on the assumption of homo-
geneous functions, has led to the propositions of two equa-
tions of state, (see section I-3). The data were also ana-
lyzed in view of the scaling hypothesis to test its vali-
dity and to determine the parameters appearing in the pro-

posed equations of state.
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1. The Lorentz-Lorenz Relation and its Validity

The instantaneous electric field acting of a molecule
of a dielectric is affected by the fields of the surround-
ing molecules if the distances between neighboring mole-
cules are comparable with molecular dimensions. This is
true for dense gases and liquids. The simplest theory that
takes electrostatic interactions into account is that of

Lorentz in which the local field E* is given by,

E* = E + (4n/3) P (1)
where E is the external field and P is the polarization.
The derivation of Eq. (1) and the underlying assumptions
are summarized in Appendix A. When P is related to the
dielectric constant €, the resulting relationship is known
as the Claussius-Mossotti equation.

el 4nam

€+2 3M

CM relation:

p = constantxp (2)

where %n is the molecular polarizability, M is the molecu-

lar weight and p is the density .

If € in Eq. (2) is replaced with n2, the Lorentz-Lorenz

relation, which is used to relate the refractive index n
to the density, is obtained.

n2_l 4nam
LL relation: = p = constantxp (3)

n’+2 3M

The Lorentz local field formula has been derived for

a lattice of dipoles with cubic symmetry and each having
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the same moment vector. Therefore the relationship in Eq.
(3) is an approximation because the real materials do not
necessarily comply with these assumptions. In fact, density
and temperature dependent corrections to the right hand
sides of Egs. (2) and (3) are expected theoretically(4).
Also, it is possible that the refractive index is not ana-
lytic at the critical point. However, Larsen, Mountain and

Zwanzig(S)

have shown that at least the real part of the
refractive index behaves analytically through the critical
point. Moreover, the experimental results suggest that

for non-polar gases CM and LL relations are very good
approximations and are valid over wide ranges of tempera-
ture and density within experimental error. For example,
the maximum deviation in LL value of argon is quoted(G)

to be 1.5% throughout the three states of matter. Amey and
Cole(7) report that the changes in CM values between 1li-
quid and gaseous phases of the simple molecules Ar, Kr and

CH, are less than 0.7%. Further, in Ref. (8) LL values

4
for different states of matter of CF4, N2, o2 and H2 are

calculated and shown not to deviate more than a few percent.
Unfortunately, data for Kr are scarce. Recent PVT mea-

(44)

surements by Theeuwes and Bearman were used to test
the linearity between (nz-l)/(n2+2) and p in Appendix D.
This comparison indicates that LL relation is valid over

the whole range of the data taken in this study within .6%.
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2. Critical Phenomena‘?~11)

The equation of state of a fluid is a functional re-
lationship of the form f£(P,p,T)=0, which relates pressure
density and temperature. In a three-dimensional space, this
function defines a surface whose coordinates are P, p and
T and each point on this surface is an equilibrium state
of the system. The critical state is represented by a
point on this surface where the densities of the gas and
the liquid phases become identical. The coordinates of this
point are (Pc,pc,Tc) where Pc, Pe and Tc are the critical
pressure, the critical density and the critical temperature
respectively. An order parameter is associated with each
critical point. This is a quantity which is non-zero below
Tc and vanishes above Tc. The order parameter for a gas-
liquid critical point is the density difference between the
coexisting phases, (pL-pG).

One of the characteristics of a system approaching
its critical point is the increase of microscopic fluc-
tuations. For example, in a system of pure fluid at a tem-
perature slightly below Tc' the energy and density differ-
ences between the coexisting phases are very small, and it
is possible to find regions at densities slightly different
from the equilibrium density in each homogeneous phase.
These regions exist for measurable periods of time since

the driving force to restore these fluctuations back to
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their equilibrium values are small. Another way to express
this phenomenon is to assign a correlation length £ that
is characteristic of the range of these fluctuations and
consider & becoming very large in the vicinity of the
critical point. The existence of these fluctuations is best
illustrated by the phenomenon called the "critical opales-
cence" which occurs when the correlation length is on the
same order of magnitude of the wavelength of the incident
light.

In thermodynamical terms, the critical phenomena are
second-order phase transitions in which the first deriva-
tives of the energy or the thermodynamic potentials remain
continuous or piecewise-continuous while higher-order deri-

vatives vanish or become very large. In fluids, the iso-

=

thermal compressibility T

-1
2
F
{~—=) (4)

(=5

KT=

<|+
Q

where V is volume and F is the Helmholtz free energy,

and the specific heat at constant volume Cyr

(5)
oT

are two such quantities which exhibit anamolous behaviour.
Consequently, a problem of great interest and importance

in the study of the critical phenomena is the determination

of the asymptotic laws describing the behaviour of quan-
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tities like Kn and C, as the critical point is approached.
These asymptotic laws are basically simple power laws
involving exponents and coefficients. To define a critical-

point exponent describing the behaviour of general func-

tion £(t),
T-Tc
where t = 5 (6)
c

is the reduced temperature difference from the critical
temperature, it is assumed that this function f(t) is pos-
itive and continuous for small positive values of t, and

that the limit,
Cqs In £ (t)
A= lim (7)
£+0 in t

exists. Then this limit A is called the critical-point
exponent associated with £(t). Alternately, it can also be

expressed as,

£(t) = t) (8)

It must be pointed out that the definition in Egq. (7) does

not distinguish between

X

f(t) At (x=X) (9)

]

and £(t) = AtX(1+Bt¥+....) ,  (y>0) (10)

with A and B constant coefficients. Thus, it takes into
account that a typical thermodynamic function is not as
simple as in Eq. (9) and that correction terms as in Eq.
(10) can be expected. But sufficiently near the critical

point the leading term dominates and the asymptotic laws
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are in the form of Egq. (9).

Some of these asymptotic laws that are of interest in

this study in Fisher's notation(12) are:

Coexistence curve: Ap = B(—t)s (11)
Critical Isotherm: lP(Tc,p)—P(Tc,pc)I = A{AplAplG-l} (12)
Isothermal compressibility:

on the critical isochore, K. = 't ' , T>T (13)

T
o |
along the coexistence curve, szT ~ T'(-t) Y . T<Tc (14)
Specific heat at constant volume:
on the critical isochore, C_ = at/0) ™%, T>T (15)
~(n" ' topy~@"
Cv —(AII/a ) (=t) . T<Tc (16)

al
,T<Tc(l7)

along the coexistence curve, C_ = (A;/a')(—t)-
All properties above are reduced by the critical parameters,
thus the temperature is measured in units Tc’ the density in
units Por the pressure in units Pc and Ap=(p—pc)/pc.

The critical-point exponents are not completely inde-
pendent of each other. The requirements of thermodynamic
stability lead to some inequalities among these exponents.
One such relation, which is known as the Rushbrooke inequa-

lity 13) i

a' + 28 + y' > 2 (19)
Another inequality, which is due to Griffiths(l4), is
o' + B(6+1) > 2 (20)

These inequalities are useful for checking experimental
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results. They also suggest the functional form of the free
energy and other thermodynamic potentials in the vicinity
of the critical point.

A survey of the theoretical attempts explaining the
critical phenomena show that they can be classified into
two groups, namely the classical theories and model sys-
tems. The basic assumption in all the classical theories

(15)

(van der Waal's theory , Weiss' molecular-field theo-

ry (16) (17)

, Landau's thory , €tc.) is that the free energy
is analytic at the critical point and hence it can be ex-
panded in Taylor series in density and temperature. Another
approximation that is obvious in Weiss' molecular-field
theory and inherent in all the other classical theories is
the neglect of local fluctuations in replacing them by
effectively constant "mean-field" values. Under these as-
sumptions the classical values of the critical-point expo-
nents are B=1/2, y=1, 6=3 and a=0. These values contradict
with experimental results. The discrepancy is most pro-
nounced in the value of B because for a variety of systems
B=1/3 is a well known fact.

The wrong predictions of the classical theories have
led to studies of quantum-mechanical model systems incor-
porating more realistic interparticle interactions. These

techniques can be illustrated by applying them to a model

Hamiltonian for a spin system in the form,



= =J I sgD) . sSD)

(21)
<ij> - J

(D)

where s; are D-dimensional unit vectors and -J is the
energy of neighboring pair <ij> of parallel spins situated
on sites i and j of the lattice.

This model Hamiltonian reduces to the Ising model if
the spins are one-dimensional 'sticks' that can have two

discrete orientations of +1 (up) and -1 (down). The Ising

model has been solved for a one-dimensional lattice by

(18) (19)

Ising and for a two-dimensional lattice by Onsager .
When the spins in Eq. (21) are two-dimensional unit vec-
tors, the resulting model is called the planar Heisenberg
model, and for the case of three-dimensional spins, the
model Hamiltonian describes the classical Heisenberg model.
Although the Ising model started as a crude model of
ferromagnetism, it has been extended into other systems
such as the lattice-gas model for a one-component fluid.
The lattice-gas model treats identical point particles
occupying discrete sites of a lattice and interacting
with pair potentials. The solutions of this model for two-
dimensional and three-dimensional lattices are obtained
through approximation techniques involving series expan-
sions and the results depend on the dimensionality of the
system. The values of the critical-point exponents ob-
tained from the lattice-gas model for two-dimensional

lattices (29723) ,re.
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g=1/8, Y=y'=l%, and a=q0'=0.

{9,21-25)

The predictions of three-dimensional lattices are:

8=5/16, y=y'=1y, a=1/8 and a'=1/16.
The experimental data strongly indicate that B=1/3 and
v=1l.2. Therefore the three-dimensional models predict the

most realistic values of the critical-point exponents.
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3. Scaled Equations of State

The values of the critical exponents obtained from
both experimental and theoretical work satisfy the inequal-

ities in Egs. (19) and (20) and moreover in some cases,

these inequalities are satisfied as equalities. So far
there has been no proof of the inequalities to be equali-
ties but a recent development called the static scaling
law leads to such a result.

The first formulation of the scaling hypothesis for
a fluid system is due to Widom(ze). In all the classical
theories, the chemical potential p in the immediate neigh-
borhood of the critical point is given as a function of

density and temperature by,

w(p,T)-ulp_ ,T) = (p-pc)[T-r(p)]¢ (22)

where ¢ is a constant and T=1(p) is the equation of the
coexistence curve. Further, the coexistence curve is para-
bolic, that is,

T -T(p) = alo-ocld (23)
where a is a constant and d=2.
Eg. (22) assures that u(p,T) reduces to u(pc,T) both when
p=pc on the critical isochore and T=71(p) on the coexis-
tence curve. These are necessary aspects of any correct
equation of state but the constancy of ¢ is a feature of
the classical theories only and it is possible to show(zs)

that this constancy of ¢ leads to the incorrect classical
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results for the critical exponents. Thus, in formulating a
more general equation of state, Widom proposes that the
same form as in Eq. (22) can be retained but that ¢ must
not be assumed constant.

In the study of critical phenomena, it is convenient
to measure the temperature by,

X = T—Tc (24)

and the density by,

_ _,d
T.~t(p) = alp-p.| (25)

y

Under the transformations in Egs. (24) and (25) and if ¢
is let to be a function of x and y, the equation of state
in Eq. (22) can be written as,

wip,T)-ulp,,T) = (p-p,) (X+y) @ (X,¥) (26)
where y is an even function of P=Pe and u(p,T)—u(pc,T) is
an odd function of P=Pg
In this yx,y plane, the critical point is at the origin. The
two-phase region is defined by x+y<0 and the coexistence
curve becomes a straight line x+y=0. The critical isochore
coincides with the yx-axis and the critical isotherm lies
on the positive y-axis.

The main assumption behind the scaling hypothesis is
that ¢ is a homogeneous function of its variables, such
that if the degree of homogeneity is y-1, then
yY"te (x/y,1)

= " re(1,y/x) if x>0 (27)

¢ (x,y)
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= (Y tew,y/-x)  if x<o
This assumption leads to several relations among the cri-
tical exponents (see Appendix B). These relations are not
independent of one another and in fact the knowledge of
any two exponents is enough to determine the remaining

ones. Some of these relations are:

a'+ 28 + y'= 2 (28)
a +8(8+1l) = 2 (29)
y(§+1) = (2-a) (8-1) (30)

Y = B(6-1) (31)

Y =% (32)

a=a' (33)

Griffiths(27) has shown that Widom's proposed equation
of state incorporating the homogeneous function assumption
can be expressed as,

pu = dp|ap| 8 h(x) (34)
where Au=u(p,T)-u(p,,T), Ap=(p-p )/p , t=(T-T ) /T, and
x = —= (35)
180|178
The properties imposed on h(x) by its formulation and ther-
modynamics are that it is a real positive function of x in
the range “X <X<w and it vanishes at the phase boundary

~L/P yhere B is the

x=--x0 with a finite slope, with xo=B
coefficient appearing in Eq. (l11). Further, the condition

that BSh(x) > xh'(x) (36)
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must be satisfied for the isothermal compressibility to

be positive.

The application of experimental data to the proposed

equation of state in Eq. (34) was first accomplished by

M. Vicentini-Missoni, J. M. H. Levelt Sengers and M. S.

Green(zg)

of h(x). To find a simple functional expression for
is very hard. Making use of the asymptotic laws, it
possible to expand h(x) in series form for limiting

of x. For example, about x=0, h(x) can be expressed

x+h x2+...

- j=
h (x) ¥ h.x h +h,x+h,

J=073

so that, on the critical isotherm, h(x)=ho and

_ 8
|du| = h_[dp]
Therefore A in Eq. (12) is given by,

A = ho

For large x, h(x) can be written as,

ki) = nzl nnxB(5+l-2n)

Hence, assuring that on the critical isochore,

(B(S-1) Ly

(a_‘i) =.L.=

K L | "

]
=3

with l/n1

In Ref. (29), the suggested form of h(x) is,

X+X
h(x) = ¢ (x)
o

. In this process, the main problem is the

form
h(x)
is
values

as,

(37)

(38)

(39)

(40)

(41)

(42)

(43)
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where $(x) = E1 1 + E2

X+X
o
x )
o
with E; and E2 constants.
This form of h(x) has six adjustable parameters to be de-
termined from the available chemical potential and density
data. However, three of these, namely Tc' 8 and X can be
fixed independently from the coexistence curve analysis
leaving §, El and E2 to be determined. Also, combining the
relations in Egs. (38-42) with the proposed form of h(x)
in Eq. (43), expressions for the critical coefficients can

be obtained and they are:

_ (vy-1)/28
A = El(l+E2) (44)
-1 _ .-'Y (Y-l)/zs
r = X El(Ez) (45)
T T N,
(r') =37 xo E1 (46)

The parametric representation of the scaled equation
of state has been formulated by P. Schofield(30). In this
formulation, if r is a measure of the distance of a point
from the critical point and 6 measures the distance along

a contour of constant r, the proposed transformations are:

8% (1-02) (47)

u(r,0)
and t(r,8) = r (1-b%02) (48)

a

where a and b are disposable parameters with a>0, b>1l.

Also, the choice of

rB(6+l)

P(r,6) = p(6) (49)
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which leads to "scaling law" behaviour implies that

dp(r,0) = r® m(e) (50)
Thus, 0=0 represents the critical isochore, 6=%*1 the two
branches of the coexistence curve and e=ib—l coincides with
the critical isotherm.
Ho and Litster(3l) have found that m(6) is very nearly
linear in 6 for CrBr3 under the transformation of the para-
metric representation. This result has led to the develop-

(32)

ment of a model equation of state called the "linear

model"”. In this model, u(6) and t(6) are given by

u(8) = a 8(1-82) (51)
t(6) = (1-b2%6%) (52)
and m(8) = g 6 (53)

with g a constant.
The parameter a is determined by requiring that the tangent

to m(6) at 6=0 to pass through m(l) at 6=1. This results in

a = B(b2-1)8/r (54)
where B and I are the critical coefficients.
Another condition implied by the linearity of m(6) is that
m(b—l) must lie on the straight line between m(0) and m(l).
This requirement leads to
-1 b(6-3)

I B
= (55)
p® (b2-1) Y"1

where D is related to the coefficient A such that

D=(1/4) /8,
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Also, requiring the isothermal compressibilities on the
critical isochore and along the coexistence curve to be

consistent with linear m(6) results in

' 2 2 1
r/r' = — [ 1-b“(1-28) ] (56)
(b2-1) Y1
In the linear model, b2 is chosen such that
b% = (6-3)/1(8-1) (1-28)] (57)

which is obtained from considering the right-hand sides

of Egs. (55) and (56) as functions of b2 and determining

the value of b2 at which these functions have their minima.
Thus, with this choice of bz, the entire equation of

state is defined by two of the critical exponents and the

critical coefficients can be related to the exponents.
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II. APPARATUS
1. The Cell, Cryostat and Spectrometer Assembly

The cell, cryostat and spectrometer assembly is shown
in Fig. 1. Basically, it was the same apparatus as the one
described in Refs. (33-35) with the modifications mentioned
in Ref. (36). The sample was contained in a prism-shaped
stainless steel cell, shown in Fig. 2. The cell was equip-
ped with sapphire windows and surrounded by a radiation
shield and was located at the center of rotation of a spec-
trometer. The apex angle of the cell had been measured(36)
and was 44° 16.14:0.31'. A sodium light of 5893 & wave-
length illuminated the sample through an adjustable slit
on a collimating telescope arrangement.

The angle of minimum deviation was directly measured
on the spectrometer, as described in Appendix B of Ref.
(36) . The reproducibility of these measurements was *0.10'.
The refractive index n was calculated from the angle of

minimum deviation by employing the formula,

B = gin %(A + D)/sin % A (58)

where A is the apex angle of the cell and D is the angle
of minimum deviation. Since the space around the cell was
evacuated to a vacuum lower than 10—4 mm. Hg, the calcula-
ted refractive index was the true refractive index. Any

errors due to the windows of the cell and cryostat not
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being parallel were minimized by taking the zero reading
of the spectrometer for the evacuated cell. A small front-
aluminized flat mirror mounted on the cell was used to
check the positioning of the cell. The details of the
mounting and use of this mirror are described in Appendix
A of Ref., (36). Corrections in alignment could be made
by adjusting the leveling screws shown in Fig. 1.

An addition to the cell, cryostat and spectrometer
assembly was the installing of a shut-off valve and a
plunger of adjustable volume close to the cell on the inlet
sample line. The shut-off valve was extremely useful du-
ring the measurements of the coexisting phases because it
improved the stability of the system by eliminating most
of the volume at room temperature. The plunger was very
convenient for the fine adjustments in the loading of the
cell. Also, all the sample lines at room temperature were
insulated with fiber-glass wool, thus minimizing the small
changes in the volume due to changes in the room tempera-

ture.
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2. Temperature Measurement and Control

The measurements made in this study covered a tempera-
ture range from 194°K to 220°K. The temperature measuring
and controlling circuits shown in Fig. 3 were essentially

el and Wu(36) B

the same as those described by Teague

Liquid nitrogen was used for cooling. It was injected
into the annular space in between the two vacuum jackets
of the cryostat. A copper-constantan thermocouple mounted
on the inner shield was used to measure the shield tempera-
ture which was set approximately one degree colder than the
aimed operating temperature in the cell. The shield temper-

ature was regulated by means of the shield heater and con-

trol unit. The temperature sensing element for the cell
was a miniature platinum resistance thermometer, number 4
of the set mentioned in Refs. (37) and (38). It has an ice
point resistance of 100.04718Q and has been calibrated(38)
against an NBS certified strain-free platinum resistance
thermometer. It was surrounded by an aliminum radiation
shield and was embedded in the block of the cell as shown
in Fig. 2. The regulation of the cell temperature was at-
tained by means of the cell heater and control unit.

One of the improvements made involved the cooling
system. Previously, thefrequency of the cycling of liquid

nitrogen was adjusted by guessing at the setting of a

plastic-glass rod. This rod was essentially a crude tempe-
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rature sensing circuit breaker, which turned the heater in
the liquid nitrogen cylinder on and off, thus causing the
coolant to be injected into the jacket. The improvement
was to replace the plastic-glass rod by a timer and circuit
breaker unit. This unit gave a better control in setting
the rate of cooling because both the duration of cycles
and the time interval between cycles could be adjusted sep-

arately. Hence, a wider range with better control was
achieved for the rate of cooling. Another addition which
was not an improvement but a great convenience for saving
time was the use of a commercial timer which would turn on
the cooling system several hours before the control cir-
cuits had to be connected.

The temperature measuring and controlling circuit,
shown in Fig. 3, utilized the potential drop across the
standard resistor of the thermometer circuit as an emf
input to the potentiometer's standard resistor. This idea

(39). The

was originally suggested by Daneman and Mergner
superiority of this method was that the ratio of the cur-
rents in the thermometer and potentiometer circuits, not

each current separately, had to be stable during the mea-
surements. This was accomplished by introducing a current
of one milliampere in the thermometer circuit and then by

balancing the potential drop across the standard resistor

STD Q. against the standard resistor STD Q

1 through a 300

2
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mfd capacitor. The idea of using capacitors to compare vol-
tages and to isolate electrical circuits was due to

Dauphinee(40)

. A Leeds and Northrup 2284C high sensitivity
galvanometer served as the null meter in the balancing
procedure. During the experiment, any changes or drifts
in both circuits could be compensated for by adjusting the
resistance of the Mueller G-2 bridge, so that Rt/STD Ql

was kept equal to Rw/STD Q The replacement of a set of

9e
adjustable resistors with sliding contacts by the variable
branch of a Leeds and Northrup Mueller G-2 bridge refined
the balancing process. The Mueller bridge was highly accu-
rate with very clean contacts and resistance increments

as small as 0.0001Q could be dialed on it directly.

The components of both the shield and the cell tempe-
rature controlling circuits were the identical type of
commercial equipment from Leeds and Northrup, namely,
$#9835B DC amplifiers, Speedomax G recorders and series 60
C.2.T. control units,

Previously, the changes in the room temperature were
completely neglected. During this study, it was noticed
that these changes caused slight variations in the resis-
tance of the standard resistor STD Ql in Fig. 3. This af-
fected the temperature setting for the cell and it was ob-

served that if no corrections were made, there could be as

much as 0.002°K temperature difference for the same Wenner



=D f -
setting with 1.0°K change in the room temperature. STD 91
was a Leeds and Northrup manganin standard resistor of

1000.04Q. From its certificate, within the interval 15°C

to 35°C, the change of its resistance with temperature was

given by the equation,

2
R, = R25[ l+a(t-25)+b(t-25)“ ] (59)

where R, is the resistance at t°C, R25 is the resistance

t
at 25°C, a and b are constants with a=0.000007 and
=-0,0000005. The room temperature correction of the tempe-
rature setting was made as follows: The room temperature

around STD Q, was measured and corresponding R, was calcu-

1 t
lated. Then the dial setting on the Wenner potentiometer
for this Rt was determined. A change of one degree in the
room temperature corresponded roughly to a correction of
one digit in the Wenner setting. Since the drift in the
room temperature was usually less than a degree, the cor-
rection could not be directly dialled. But it was observed
that the control point of the Speedomax G recorder did not
change when its zero setting was adjusted. This observa-
tion was extremely useful because the zero setting of the
recorder was used as a vernier-type fine adjustment for the
Wenner setting.

Consequently, after all the refinements made in both

the cell and cryostat assembly and the temperature measu-

ring and controlling circuits, the temperature of the cell
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could be controlled within $0.0002°K. The comparison of
the temperature control records in Figs. 4 and 5 illus-
trates the magnitude of the improvement achieved after the
above mentioned refinements. The reproducibility of the
temperature was better than *0.001°K and the absolute accu-
racy was *0.010°K. This latter figure included all errors
due to the thermometer calibration and measuring method.
The Wenner potentiometer dial setting E, with the room
temperature correction was used to calculate the tempera-
ture of the sample. The resistance of the thermometer Rth
could be computed by,

6

R (1000.04/1.01926x10 ) E, (60)

th = (Re/Rys)
where 1000.04 is the resistance of STD Q, in ohms and
1.01926x107° is the potential drop across STD R, in
volts. The temperature corresponding to Rth was then de-

termined from the calibration table of the thermometer.
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3. Pressure Measurement and Control

The pressure measurements made in this study covered
a range from 27 to 76 atmospheres. The pressure measuring
system, shown in Fig. 6, with the exception of the automa-
tic pressure control unit was essentially the same as that
described by Wu(36).

The pressures were measured with a Hart pressure bal-

ance manufactured by High Pressure Equipment Company,
Erie, Pennsylvania. The operation of the Hart balance was
based on the use of a piston placed in a very closely
fitting cylinder, pressuring a hydraulic oil system. The
upward force exerted by the 0il was counterbalanced by
known weights. The piston had to be rotated in the cylin-
der in order to reduce the frictional forces. The accuracy
of the pressure measurements on the Hart balance was
claimed to be 1:10000 and the reproducibility to be 1:
20000 by the manufacturing company.

A pressure transducer, model P3D supplied by Pace
Engineering Company, North Hollywood, was used to separate
the sample from the hydraulic oil. The operation and the
design of similar pressure transducers have been described

(4d) (42). The

by Reamer and Sage and Honeywell and Pings
basic principle was the existence of an inductance diffe-
rence due to a difference in pressure across a metal diaph-

ragm, The diaphragm was made of stainless steel and was
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welded to the surface of a backing plate which was slight-
ly concave to permit movement of the diaphragm. The change
in the ratio of the inductances of the two coils placed
on both sides of the diaphragm was converted into a DC
signal by a model CD10 miniature carrier-demodulator sup-
plied by Pace Engineering Company. This DC output was then
displayed on a microammeter. The sensitivity of the micro-
ammeter was adjusted to 0.01 psi per division.

A Texas Instruments model 141 precision pressure gage
connected directly to the sample line was used to obtain
the aimed pressure while loading the cell and to set the
pressure of the Hart balance close to the sample pressure
so that the pressure difference across the diaphragm was
in the range of the microammeter. Fine adjustment of the
pressure could be made through a plunger installed on the
sample line.

Previously, the pressure was controlled manually by
a valve with adjustable volume. During this investigation
an automatic pressure control unit was installed. The com-
ponents and the operation of this unit are described in
detail in Appendix C. Basically, its operation depended on
the variable supply of radiant heat to a portion of the
sample line. This was accomplished by converting the sig-
nal from the Pace carrier-demodulator into a light signal

by the use of a galvanometer. The deflection of the galva-
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nometer was sensed by a resistance type CdS light cell,
which was connected to a commercial light dimmer. The
light dimmer regulated the intensity of the light from a
pair of heat lamps shining on a portion of the sample line.
The light dimmer could be set such that the heat lamps ope-
rated at a medium intensity when the pressure was control-
ling, thus allowing some range on both sides to restore
controlling in case of a small drop or small increase in
pressure. This unit could control the pressure within
$0.001 atm, Consequently, the accuracy and the reproducibi-
lity of the pressure measurements in this study were equal
to those of the Hart balance.

The following formula was used to calculate the pres-
sure:

P(psia)=P_+(.998885) [ W+gramsx7.0897x10™>

+0.095+0.3513~
0.01079%xG-0.0276xh ] (61)
where Py is the atmospheric pressure, W is the value ob-
tained from the calibration table of the Hart balance equal
to the pressure produced by the weights hanging on it,
0.998885 is the local gravity correction factor, 0.095 is
the correction for the elevation difference between the
balance and the diaphragm, h is the piston height in cm.,

G is the o0il gauge reading when h=1.0 cm. with the correc-

tion for the oil head equal to -(h-30) (0.0108).
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4, Sample

The krypton sample used in this investigation was the
"Research Grade Krypton" supplied by the Matheson Gas Com-
pany. Each sample cylinder came with a batch analysis
showing the amount of each impurity. The impurities were:
xenon less than 25 ppm, nitrogen less than 25 ppm, oxygen
less than 4 ppm, argon less than 4 ppm, hydrogen less than
5 ppm, and hydrocarbons as methane less than 10 ppm. The
dew point of the sample was -110°F. A check of the purities
of two different sample cylinders was made by repeating the
same measurements with a sample from a nearly empty cylin-
der and another sample from a full cylinder. The measure-
ments were reproducible within the experimental uncertain-
ties.

Before the introduction of the sample into the cell,
all the sample lines and the cell were evacuated and then
they were purged with sample to a pressure slightly above
the atmospheric pressure and reevacuated. This procedure
was repeated two times before the actual loading of the
cell. when the equipment was not being used, the pressure
inside the cell was kept above the atmospheric pressure

in order to avoid any leaks into the system.
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III. EXPERIMENT

1. Experimental Procedure

The experimental procedure during a run consisted of
several steps as follows: The inner and the outer jackets
of the cryostat were evacuated continuously and kept at a
vacuum below 10> mm Hg all the time. On the day of a run,
the positioning of the cell was checked and any required
adjustments were made. The shield was cooled with liquid
nitrogen and the shield temperature was controlled at ap-
proximately one degree below the cell temperature. The cell
temperature was set and controlled at an aimed value. In
the meantime , the cell and the sample lines were evacuated
and the vacuum reading of the cell was checked. Then the
cell was loaded to the operating pressure and the cell tem-
perature control, disturbed during the loading, was re -
stored.The Hart balance was attached and any necessary
fine pressure corrections were made either by adjusting
the small weights of the balance or by changing the loading
of the system slightly. To guarantee that the sample was
in equilibrium the following criteria were satisfied be-
fore making any measurements. First, the temperature and
the pressure were kept on perfect control for about an
hour and secondly, the image had to be sharp and distinct.
In the case of two phase data, a third condition was that
the relative amounts of the phases in the cell did not

change.
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2. Data

The data consisted of three sets of measurements
namely, the coexisting gas and liquid states along the
phase boundary and the single phase states along isotherms
above and below the critical temperature.

Coexisting gas and liquid data: This set of measure-
ments consisted of 35 states spread over a temperature
range of 195.002°K to 209.274°K and a pressure range of
35.905 to 54.198 atm. In Table I, temperatures, pressures
and angles of minimum deviation are listed for these 35
states. 15 of these 35 states were within 0.283°K of the
critical temperature with the last state being 12 milli-
degrees K below Tc‘

Single phase isotherms above T.: This set of data was
taken along 16 isotherms. It covered a temperature range
of 219.301°K to 209.294°K and a pressure range of 75.745
to 53.672 atm. The pressure and the angle of minimum devia-
tion of each state along every isotherm are reported in
Table II. The temperature of the isotherm closest to the
phase boundary was 8 millidegrees K above T.- The measure-
ments along each isotherm were made on at least two, some-
times three or four, days as indicated by the number of the
runs in Table II. The data taken on different days were
compared by repeating the two end states for each day and

obtaining reproducible measurements. Such repeated states
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on each isotherm are indexed with the same number of stars
in Table 1II.

Single phase isotherms below Tc: This set of data,
taken along 1l isotherms below the critical temperature,
covered a temperature range of 199.302°K to 209.274°K and
a pressure range of 27.797 to 70.987 atm. The pressures
and the angles of minimum deviation along these isotherms
are tabulated in Table III. The temperature of the isotherm
closest to the critical point was 12 millidegrees K below
Tc‘ Each isotherm was scanned on two, sometimes three,
days and measurements on different days along the same
isotherm were checked by repeating some of the states as

indicated with stars in Table III.
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IV. RESULTS AND ANALYSES
1. Refractive Index and Isothermal Compressibility
The refractive index was calculated from the measured
angle of minimum deviation D using the formula,
sing (A+D)

n = — (62)

sin%A

where A is the apex angle of the cell and A=44° 16.14'+.31°
The experimental uncertainties in measuring D and A, 95
and Gpr Were +0.10' and *0.31' respectively. The error in
the refractive index o, was computed from these experimen-

tal uncertainties by propagation of error. The formula used

in this computation was

sin % D cos %(A+D)
g = —-— g + o (63)
= .21 A 1 B

2sin 5 A 2 sin iA

The refractive indices and their errors for the co-
existing gas and liquid data are reported in Table IV. The
experimental uncertainties in D for states within one deg-
ree of the critical temperature were doubled because very
small density and temperature gradients caused broadening
of the image. The refractive indices along the phase boun-
dary are plotted versus temperature in Figs. 7 and 8. Fig.
8 has an expanded temperature scale showing the states
close to the critical point.

The refractive indices along the 16 isotherms above



-34-
Tc are plotted versus pressure in Figs. 9 and 10 in the
order of decreasing temperature difference from the criti-
cal temperature. Similar plots for the 1l isotherms below
T, are shown in Figs. 10 and 11 in the order of increasing
temperature difference from T,-

The refractive index can be related to the density
through the Lorentz-Lorenz law. The validity of the LL-
relationship within the temperature and pressure range of
this study is illustrated in Appendix D. The LL-function

which is directly proportional to density p is given by,

LL = = (64)

where A is a constant.

From the definition of the isothermal compressibility Lo

KT =

© |-

(3p/3P) 4 (65)

and from the simple relationship in Eq. (64),

Ky

1
= (BLL/BP)T (66)

But, (8LL/3P)T dLL/dn x 3n/3D x (BD/BP)T

6n n 1
B o X ot=(A+D) x (9D/93P) (67)
(n2+2)2 ooty T
Therefore,
K, = 3n° cot L(A+D) (3D/3P) (68)
iy (nz—l)(n2+2) 2 L\

Consequently, it was necessary to determine the first de-
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rivative (ao/ap)T in order to be able to compute the iso-

thermal compressibility. These first derivatives were deter-

mined by the numerical spline fit(45)

. This technique des-
cribed in Appendix E is very similar to the "draftsman's"
spline and essentially assigns sections of cubics to every
interval between adjacent data points requiring continuity
at the junctions.

The first derivatives calculated with this method and
the isothermal compressibilities computed from Eq. (68)
together with the refractive indices and the pressures a-
long the isotherms above Tc are tabulated in Table V and
in Figs. 12,13 and 14, the isothermal compressibilities on
these isotherms are plotted versus pressure.

The spline fit was highly accurate in all intervals
with the exception of the two end sections which were af-
fected by the choice of the two end conditions (See Appen-
dix E). This inaccuracy was not important in the case of
the isotherms above T because the range of interest was
confined to the vicinity of the critical density. However,
the situation reversed for the isotherms below T, because
the range of importance was along the phase boundary or
at the end points of the isotherms. Therefore the numeri-
cal method of determining the first derivative had to be
modified. Also, an additional graphical technique was used

to check the predictions of the numerical technique. The
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graphical method of estimating the first derivatives was to
draw large graphs of D versus P with both scales being sen-
sitive to experimental uncertainties, then to determine the
normal at each data point using a front-aluminized flat
mirror and to calculate the slope of the tangent from the
slope of the normal. The modified numerical technique as
described in Appendix E involved the use of the same graphs
to create more intervals within the last interval on each
isotherm and extrapolating for the value of the slope at
the phase boundary.

The isothermal compressibilities from the values of
the first derivative determined by the modified numerical
spline fit, together with the graphical and the numerical
values of the first derivative, the refractive indices and
the pressures along the 11 isotherms below T, are reported
in Table VI. In Figs. 15,16 and 17 plots of K, versus P

T

are shown on these isotherms.
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2. The Coexistence Curve and the Rectilinear Diameter
The density along the coexistence curve in its most
general form can be written as,
BT 8>
pt = po 1+Bi|t| l+B§|t| S ans ) (69)
where p is the density and t=(T—Tc)/Tc with

+_ .+ - -
By<By<ennn P By<Bo<a...

and the plus sign refers to the liquid and the minus to the
gas densities.

The theoretical models such as the lattice gas theo-
ries do not distinguish between the two branches of the
coexistence curve because they assume a built-in symmetry,
p++p-=2pc. But this symmetry is absent in real gases.
Therefore it is worthwhile to consider the most general
form in the analysis of the experimental data. However,
the results of the existing experimental studies suggest
very strongly that BI=B;, BI=-BI and most probably BZ=85=1
and B;:B;. Recently, these relationships were demonstrated
for COZ' NZO and CClF3 by J. M. H. Levelt Sengers, J.

. (46)

Straub and M. Vicentini-Missoni . If these symmetry

features were present in real fluids, then from Eq. (69),

By
Bl]t| s S (70)

]

(pp,—pg) /20

and (pr+pg)/2p, = B2|t|+... (71)

with Eq. (70) describing the top of the coexistence curve
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and Eg. (71) expressing the law of the rectilinear diame-
ter. If the density is replaced by LL and only the leading
terms are considered, the above relationships become

B8
1
(LL, -LLg) /LL_ = 2B, |t| (72)

and LL, +LL 2LL_+2B, | t] (73)

G
Before attempting to fit the coexistence data to Egs.

(72) and (73), careful weight assignments were necessary.

The two independent sources of error were in the refrac-

Since the errors

tive index L) and in the temperature Orpe

in n reported in Table IV did not vary too much, on=l><10—4

and 0T=0.001°K were used. The standard error in LL was

calculated using propagation of error to be,

Oo o= = o (74)
LL (n2+2)2 n
Therefore,
Varn[LLL-LLG] = Varn[LLL+LLG]

2 2

n n
= 62[ 5o+ g 4]°§ (5]

(nL+2) (nG+2)

where the subscript n indicates the contribution to the var-
iance of the quantity in brackets due to error in n. Since

LLL and LLG changed with temperature approximately as
B
1

Blltl ’

oplLL ] = oy [LLg] = %(LLL-LLG)(Blct/Itl) (76)
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Thus, from Egs. (75) and (76),

2 2
n n
Var [LL +LL,] = 62 2L T+ 2G . a2
(nL+2) (nG+2) B
ik 2,,2 2, 2
+ T(LLL LLG) (Bl°t/t ) (77)

The contribution of the error in temperature to the varian-

ces of LLL and LL., was partially cancelled when the sum

G
was formed but not when the difference was formed. Hence,

Vart[LLL+LLG] was set equal to one-half of Vart[LLL—LLG].
Therefore,
n2 n2
var[(LL. -LL.)/LL ] = (1/LL )2 62| —2—r + —C& |52
L G c c 2 4 2 4|"n
(nL+2) (nG+2)
1 2,,2 . 2,,2
+ f(LLL LLG) (Blot/t )} (78)

The weights used in the fitting procedure were equal to
the inverses of the variances.

Two slightly different least squares fitting routines
were used interchangeably. When the parameters in the fitted
equation were roughly known, method of Ref. (47) was used.
In this case, all the error was attributed to the depen-
dent variable and the weights were directly calculated.
When no knowledge of the parameters existed, the routine
of Ref. (48) was employed. Since the parameter correspon-
ding to the slope of the fit appears in the calculation
of the weights, an initial guess at the value of this pa-

rameter was made and then an iteration involving the
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recalculation of weights was performed. The standard devia-
tion of the fit was equal to the square root of the vari-
ance of the fit sz. For the case of a straight line fit to

N data points,

1 2
= L[w, (y -y ) <]
s2 _ N-2 i expt. “‘calc. (79)
= Iw,
N 1

where w, is the weighting factor for each data point.

The fit to Eqg. (73) was performed for several criti-
cal temperatures ranging from 209.280°K to 209.288°K. The
results of the fit are presented in Table VII and the dif-
ference between the experimental and the calculated values
of LL_+LL

L G
ues of Tc and the corresponding values of 2LLc computed

is shown in Fig. 18 for Tc=209.286°K. The val-

from both least squares fitting routines are tabulated in
Table VIII. The best value of the intercept 2LLc was Ob-
served to be independent of the choice of Tc within this
range. The optimum values of 2LLc and the slope with their
respective standard deviations are also given in Table VII.

Recently a curved diameter of the form |t|1-a

(49)

was

and was suggested in the
(50)

found in model calculations
generalized parametric representation of the scaling
hypothesis. The results of the fit to the curved diameter
are shown in Fig. 19. The present data did not favor a

curved diameter.

The best value of LLc determined from the fit of the
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rectilinear diameter was used to reduce the difference
LLL—LLG. The reduced difference was then fitted to the
following equation,

In [(LL -LL;)/LL_] = ln 2B 1n|t| (80)

1+ By
obtained taking the logarithm of both sides of Eq. (72).
The fit was performed for several values of Tc and the
value of Tc corresponding to the minimum standard deviation
of the fit was chosen as the best value of T, namely,
209.286°K. The values of (LLL-LLG)/LLC, the estimated er-
rors and the residuals of the fits are listed in Table IX
and also the optimum values of T Bl and 61 are given with
their respective standard deviations. In Fig. 20, 1ln [(LLL
-LLG)/LLC] is plotted versus 1ln|t| with the slope of the
fitted straight line equal to Bl. The residuals are shown
in Fig. 21.

To make sure that the optimum values thus determined
were independent of the range, both fits were repeated for

decreasing values of |t]| The results are summarized

max’
in Tables X and XI for the rectilinear diameter and the
coexistence curve fits respectively. There was no variation

in LLc exceeding its error and no appreciable change was

observed in Bl outside its error for Itlmax from 6.8 to
B

0.4 3. Consequently, the expression (LLL-LLG)/LLC=2B1|t| 1

was valid within error over -0.068<t<0.
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The simple exponent relationship in Eq. (72) and its
linear form in 1ln|t| in Eq. (80) contain only the leading
term of the general expression. To find out if the higher-
order terms in (TC-T) were significant, the results of the
fits to the following equations

ln[LLL-LLG] = Ao+81n(Tc-T) (81)

2
and ln[LLL LLG] Ao+61n(Tc—T)+Al(Tc-T)+A2(TC—T) (82)

were compared. An unweighted linear least squares fitting
of Eq. (81) predicted Ao=-3.24710.003 and B=0.352+0.001
with the minimum in the standard deviation of the fit

=0.0165 occuring at Tc=209.282°K. An unweighted non-
(51)

Ifit
linear least squares fitting routine was used to deter-
mine the five parameters, namely Tc, B, Ao’ Al and A2’ in
Egq. (82). The results were Tc=209.28210.001°K, B=0.3524+

0.0026, Ao=-3.239t0.004, A.,=-0.0067+0.0006 and A2=0.00057i

1

0.00008 with o =0.0184. The standard deviations of both

fit
fits were comparable. For (TC—T)<1, the contributions of
the linear and quadratic terms were insignificant and for
(TC-T)>1, due to the difference in their signs, their con-
tributions mostly cancelled each other.

To test the symmetry features of the coexistence

curve, the leading term,

= BY|t| L 83
LL-LL_ = Bllt (83)

in Eq. (69) was studied on both branches of the phase
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boundary. In Tables XII and XIII values of lnlBIl, BI,

In|B]|and B], their standard deviations and the standard

deviations of the fits are tabulated as functions of ’tlmax

for the optimum value of LLc. There were systematic differ-
ences in the values of the exponent and the coefficient

on the gas and the liquid sides. For |t| <0.3%, the coef-

max

ficients IBI], |BI| and the exponents BI, BI became equal
within error. The approach of the exponent to equal values

with decreasing |t| is illustrated in Fig. 22.

max
In summary of the analysis of the coexistence data,

following values of the critical parameters were obtained:
Tc=209.28610.010°K, 2LLC=O.14117510.000012, slope of the

rectilinear diameter, a=0.0918+0.0004, B,=1.840+0.001 and

1
Bl=0.3571i0.0008.
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3, Determination of the Critical Pressure
The vapor pressure data, listed in Table I, were ana-
lyzed using the following classical equation.
InP=A/T+B1lInT+CTS+D (84)
where A, B, C and D are adjustable parameters.
The results of a non-linear least squares analysis(sl) for
the values of the four parameters were: A=-197.82:0.64,
B=0.002623+0.000014, C=0.023816+0.000015 and D=-0.05979%

0.00029 with o, =9.2x10"%. From this fit, P_ corresponding

fit
to Tc=209.286°K was 54.237x0.049 atm.

Experimentally, Pc was known to be between 54.198 atm.
and 54.2285 atm. If a linear relationship between AP and
AT was assumed on the critical isochore, Pc=54.3l3 atm.
was obtained. This assumption was tested by computing
(AP/AT) along the critical isochore in the range of the
measurements of this study. As shown in Table XXI, (AP/AT)
was very nearly constant. An arithmetic mean of (AP/AT)
obtained from the first twelve intervals was 1.550. The
values of Pc computed using this ratio and the value of
P(LLC) on the isotherm for which (T-TC)= 0.008°K and P(LLC)
on the isotherm for which (T-Tc)= 0.052°K were 54.216 atm.
and 54.213 atm. respectively.

Therefore the best value of Pc was chosen to be

54.213+0.03 atm.
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4, Determination of y on the Critical Isochore

The critical isochore is defined by LLc, the value of
the LL-function at the critical point. In the present anal-
ysis, LLc was determined from the rectilinear diameter
fit . For the best value of Tc' 209.286°K, LLc was 0.070588
which corresponded to the critical refractive index n, =
1.10808 and the critical angle of minimum deviation D, =
305.10 minutes of arc.

The behaviour of the isothermal compressibility K,, on

T
the critical isochore is described by Egq. (13) or its loga-
rithmic form,
1n Ky = InT -y 1ln t (85)

The values of the first derivative (Z)D/BP)T were cal-
culated from the spline fit and interpolated for (aD/aP)T
at D, on each isotherm. Then the corresponding KT's were
computed using Eq. (68) and fitted to Eq. (85).

In assigning errors to K the main source of error

T
was in the determination of (BD/BP)T whose accuracy dimin-
ished as the critical point was approached. In this analy-
sis, to obtain an estimate of this accuracy, the data
points around Dc on each isotherm were moved within the
experimental uncertainties of D and P and the numerical
spline fit was repeated to obtain (aD/aP)T at Dc for these

distorted data. The errors were then based on the frac-

tional difference x between the two values of (aD/BP)T at
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D+ Hence, the error assigned to 1ln K, was
2
l.44 o
2
T (T-Tc)

The fit to Eq. (85) was performed for various values
of Tc. The results for Tc=209.286°K, which corresponded to
the minimum of the standard deviation of the fit, are pre-
sented in Table XIV and shown in Fig. 23. The values of the
critical parameters determined from this fit were:
y=1.182+0.008 and I'=0.00154%0.00002 atm * or I'=0.0835 with
minimum ofit=0.0647 occuring at Tc=209.286°K.

To ensure that these values did not depend on the
range of the data, the fit was repeated for decreasing
values of tmax' The results , which are summarized in

Table XV, indicated no variations in the values of y and

' within their respective errors.
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5. Locus of Maximum Isothermal Compressibility
It can be shown that the locus of the inflection

points (azp/apz)T=o coincides with the locus of
2 2
p(371/3p") p + (QU/3p)p = O (87)

However, (au/ap)T is always positive, so that this locus
lies in a region where (Bzu/apz)T is negative.

Using the scaling hypothesis, Widom(26) has shown that
this locus is restricted to P<P, and near the critical

point is defined by,
-0 = =b(T-T )28
PP, = b(T Tc) (88)

where b is a constant. He has also pointed out that the
compressibility along (BZP/apz) = 0 is asymptotically the
same as the compressibility along the critical isochore.
In a more recent paper, J. M. H. Levelt Sengers(sz) has in-
dicated that the locus of maximum isothermal compressibili-
ty is similar to the one described by Eg. (88). Hence, the
compressibilities along the three loci, (BZP/apZ)T= 0,
[3(1/KT)/ap]T= 0 and P=P s have the same exponent Y.

The maximum isothermal compressibility on each iso-
therm was determined by an inverse interpolation method(53)

which used interpolated values of K, at equal intervals

T
obtained from the spline fit of pressure versus angle. The
values of (KT)max from the 7-point formula of Ref. (53)

and the values of pressure, angle, refractive index and
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LL-function at which the maximum occured on each isotherm
are listed in Table XVI. The locus of (KT)max is shown

in Fig. 24 with the dashed curve obtained from the fit to
Eq. (88) and the solid line representing the rectilinear
diameter. The substantial scatter of the points was due to
the steepness of the isotherms which made it extremely
hard to determine the angle at which (KT)max occurred.

The fit to

1n [(LL/LLC)Z(K ] =1nT -vy1n t (89)

T)max
was performed for various values of Tc. The minimum in the
standard deviation of the fit corresponded to Tc=209.286°K

with y=1.23%0.01, I'=0.00117 atm * and o,,,=0.0597. The fit

fit
is shown in Fig. 25. This value of y was considerably

higher than the value on the critical isochore.
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6. Determination of Yé and yi Along the Coexistence Curve
The behaviour of the isothermal compressibility along

the phase boundary is governed by the power law in Eqg. (14).

Ssubstituting LL/LLc instead of the reduced density and

considering the two branches separately, one obtains

ey
Iy (-t (90)

2
(LLL/LLC) KT

R
I (=t) (91)

2
and (LLg/LL,) “Kyq
To determine the above critical exponents and coeffi-

cients, the data were fitted to the following logarithmic

forms,

2 = -
In[(LL /LL ) Kyl = In T/ Y 1n| t] (92)

2 _ -
and In[(LLy/LL,) “Ky] = 1n T - yiln|t| (93)

The isothermal compressibilities on the phase boundary
were determined by a modified spline fit described in
Appendix E. The standard error assigned to ln[(LL/LLC)ZKT]

was

| 2. 2] en |22 \2|1/2
g 2 =| X + O'n -—2——— E (94)
In[(LL/LL ) “K,] n“+2
C T
where x was the fractional error in KT.

The results of fitting the data to Egs. (92) and (94)
are presented in Table XVII. ln[(LL/LLc)ZKT] on the gaseous
and liquid branches of the coexistence curve are plotted
versus 1ln|t| in Figs. 26 and 27. The values of the critical

parameters obtained from this analysis were:



-50-

For Tc=209.286°K

1.15+0.01, Fé

0.021+0.001 with o

fit=0.074

' = 1.12+0.01, Pi

0.0260+0.0005 with © =0.019

fit
The phase boundary is symmetric around the rectilinear

diameter p = (pL+pG)/2. Since p # por if the variable )

rather than Pe is chosen as the reducing parameter, equa-

tions (92) and (93) become

2 — —
In[(LL;/ LL)"Kp) = 1n T/ - v/ 1n|t] (95)

, — _ _
and In[(LLy/ LL)“Kpl = 1n TL - v, l1n|t] (96)

The results of fitting the data to Egs. (95) and (96)
are shown in Figs. 28 and 29 for the gaseous and liquid
branches respectively and are tabulated in Table XVIII.
The values of the exponents and the coefficients thus de-
termined were:

For Tc=209.286°K

= 1.16:0.01, T/ 0.0195+0.0011 with ¢

G

fit=0.074

0.0238+0.0005 with o t=0'020

L ]

1.14+0.01, FL £i
The variations in the values of Yé and Yﬂ obtained

from the two methods of analysis were within their respec-

tive errors. In fact, the results indicated that Yé and yi

were indistinguishable.
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7. Shape of the Critical Isotherm

The shape of the critical isotherm is defined by the
power law in Eq. (12). This relationship is valid strictly
at T=T,. However, it is very hard to obtain precise data
at the critical temperature and the value of § cannot be
easily determined. In fact, most § values quoted in litera-
ture are calculated from treating Griffith's inequality as
an equality or from scaling laws.

In this study, it was possible to approach the criti-
cal point 0.008°K from above and 0.012°K from below Tc
along constant temperature curves. In this section, an
attempt will be made to determine at least a limiting
value of § from the data on the seven isotherms close to
Tc. Four of these were above and three were below Tc'

Along the isotherms above Tc’ the pressures at the critical
density interpolated from the spline fit and along those
below Tc’ the vapor pressures were used as Pc' Then each
isotherm was treated as though it was the critical isotherm
and the values of § on high-density and low-density sides
were determined from a weighted linear least squares fit to

the following logarithmic form.
ln|P—Pc| = 1ln A + § 1n| (LL—LLC)/LLCI (97)

Both the dependent and the independent variables were

assigned errors with



_52..

and =(o_/|LL-LL_|) (6n/ (n®+2)?) (99)

o
1n| (LL-LL,) /LL|
The weight at each point was calculated from the formula,

2 2.2 }-l

w., = {o + 8“0 N
In| (LL-LL_)/LL_|

i 1n|P-P_| (100)

Values of [P—Pc| and |LL—LLc| on each isotherm are
listed in Table XIX and the fits to Eq. (97) along two
isotherms, for which (T-Tc)=0.008°K and (T-Tc)=—0.012°K
respectively, are shown in Figs. 30 and 31. The values of
§ obtained as described above are presented in Table XX
and in Fig. 32, § is plotted versus (T-Tc). This analysis
suggested §=4.25%0.25. This value compared very favorably
with §24.22+0.02 calculated from Egs. (19) and (20)
(Rushbrooke and Griffiths inequalities) using Y'=1.15%0.01

and B=0.3571%0.0008.
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8. Evaluation of Au

The difference in chemical potential can be evaluated

by graphical integration from the following thermodynamic

relationship,
P(p,t)
u(p,t) - u(pc.t) = 2 dp (101)
P
P(oc.t)

If p is replaced by LL and the p is reduced by Pc/LLc,

the reduced difference in chemical potential is given by,

P(LL,t)
LL
—-1 1
b= 5 = ap (102)
P(LL_,t)

LLC=0.070588 was obtained from the rectilinear diame-
ter analysis. Pc was determined to be 54.213 atm. P(LLC)
on each isotherm was computed by interpolation from the
spline fit of LL versus P. The integral in Eq. (102) was
performed integrating the spline fit of 1/LL versus P be -
tween adjacent data points on each isotherm. Each inte -
gral was checked by reversing the independent and the de-
pendent variables in the spline fit and evaluating,

LL

P (LL) P(LLC)

_ _ - 1_
" R 7 LL Pd( ) (103)

LLc

For the isotherms above Tc, the absolute values of

Ay calculated in this manner, when plotted versus absolute
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values of ALL, were anisymmetric around LLc as illustrated
in Figs. 33, 34, 35 and 36. Also P, LL, ALL and Au at
single phase states above T, are listed in Table XXII.

For T<Tc' Au=uy (LL,t)-p (LL ,t) and since the coexis-

coex
tence curve is antisymmetric around fﬁﬁ(LLL+LLG)/2, the
variable LL rather than LL, was used in calculation of ALL.
In Figs. 37, 38, and 39, |Au| and |ALL| along isotherms
below Tc are shown. These plots indicated that the range
of antisymmetry for T<T_, was much smaller than the range
for T>T,. In fact the former was confined to -0.2%<t<

-5.7x10"°2

and -30%<ALL<30%. The values of Ay, ALL, LL and
P for the antisymmetric range of the isotherms below T
are tabulated in Table XXIII.

As a result of this investigation the antisymmetric

range of Apy for krypton was found to extend over

-0.2%<t<4.8% and -30%<ALL<30%.
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9. The Analysis of the Au, ALL, t Data
If Ap is replaced by ALL and the scaling relationship
among the critical exponents in Eq. (31) is used, the

scaled equation of state in Eqg. (34) can be expressed as

ap = aLL [ALL|Y/B n(x) (104)

with x=t/|ALL|1/B

Hence, h(x) can be calculated using the Au, ALL data from
Eq. (104) and these values can be fitted to the proposed
form of h(x) in Eq. (43) which contains six parameters
Ey, E5, Y, B, T, and x.

In this study, the values of Tc' B and X were known
from the analysis of the coexistence curve. Therefore,
T_=209.286°K, 8=0.357 and x_=1/B/F=0.18122 were fixed.
Then, an unweighted non-linear least squares fit(Sl) was
performed to determine Y, El and EZ‘ The results were:
vy=1.167+0.005, El=2.1310.02 and E2=0.25910.005.

Fixing Tc’ B and X, made a weighted linear least

(48) possible in which y could be varied para-

squares fit
metrically to determine the corresponding E; and E,- When
Egs. (43) and (104) were combined, the following convenient

form for the linear fit was obtained.

X u _ X+Xx
o ALL|ALL|Y o
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Setting

!x+xo 28
X =
xO
[ & 28/ (y-1)
and Y = s L1 5
| x+Xo  aLL|aLL|Y/

X and Y were calculated from the Au,ALL data for a given

value of y. The errors Oy and Oy assigned to Y and X were

respectively,
2 2 2 2
(oAu)+(SE) x " OALL 1+ X - X
2 Ay t x+xo ALL B B x+xo)
oy = 5 (106)
-1
(ZBYIXS
("_t_ )2 L1 (%aLn)?| L2
2 £ 87 ALL
9% = x+xo 2 (107)
2Bx
_ _ _ . -4
where ot—o.OOl/Tc,oALL—oLL/LLc and oAu—ZUP/Pc-l.OXIO .

A weighted linear least squares fit to Eq. (105) was per-
formed for various values of y. The minimum in the standard
deviation of the fit occured for y=1.18 with El=2.21t0.01

and E,=0.264+0.004. To illustrate the quality of this fit,

2
In h(x) and ln[(x+xo)/xo] calculated from the Au, ALL data

are plotted in Figs. 40 and 41 with the solid line obtained

1 and E2. The relative devia-

using the above values of y, E

tions [h(x) shown in Fig. 42,

exp't exp't’

were scattered randomly.

To ensure that the determined parameters were indepen-
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dent of the range of the data, the fit to Eg. (105) was
repeated by successively decreasing the range of t and ob-
serving the variations in the values of vy, El and EZ‘ The
results are summarized in Table XXIV and no appreciable
changes were noted.

Also, using the values of v, E, and E2 obtained from
the weighted fit, values of A, and T' were calculated from
Egs. (44), (45) and (46). These were: A=2.34, I'=0.084 and
['=0.021.

A further test of the fit was made by comparing the
isothermal compressibilities calculated from the differen-

tiation of the data and listed in Tables V and VI with

those calculated from

LL
1 _ C
Ky = P pliyn 251, (108)
ap’'T C OLL'T
dAu _ 1 SAu _ x 1 1+yG
where (5rp)q = LLg ':ALJL. x+x_ BTALL] A“(“ 1+G
x+xo 28
and G = Ez( %
o

These comparisons are shown in Figs. 43, 44 and 45 along
three isotherms for which T—Tc=-0.160°K, T-Tc=0.164°K and
T-Tc=l.024°K respectively. The agreement between the expe-

rimental and the calculated KT was very good.
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10. Predictions of the Linear Mode1(32)

An interesting feature of the linear model is that
the critical coefficients are determined by the critical
exponents. If the disposable parameter b2 in Egqg. (48) is

chosen according to Egqg. (57), then

- y-1
/Tt o= % [2‘1733)} (109)
(y=2B8)/28 -1
§-1 -8 _ [ y-28 1-28
. [ 1-28] [

¥
T :Y-IT':I (110)
1/6

where D=(1/4)
In this study, from direct application of the data
to the power laws in Egs. (11), (12), (13) and (14) the
following values of exponents and coefficients were found.
B=0.357, B=1.84, y=1.18, I'=0.0835, I''=0.0217 and 6=4.25,
From the analysis of the Ay, ALL data and Eq. (44), A4=2.34
and 6=1+v/B=4.30 were obtained. Thus, the predictions of
the linear model in Egs. (109) and (110) could be tested
using these values. The comparison of the experimental
coefficients with the predictions of the linear model are

summarized below:

2 §-3 _
il 55 575 = 1 Pkt
a = Bb2-1)F/r = 15.6

model 3.93
r/r

expt. 3.8%0.5
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rBG—l model 1.78
—55' expt. 1.4%0.2
The above comparison showed that the predictions of
the linear model were in good agreement with the experimen-

tal results within the experimental uncertainties.
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V. CONCLUSIONS

Making use of the method of angle of minimum devia-
tion, refractive indices, pressures and temperatures
of krypton at states near its critical point were measured.
The data included 35 states along the two-phase boundary
and measurements along 16 isotherms above and along 11
isotherms below the critical temperature.

The refractive index was related to the density
through the Lorentz-Lorenz formula whose validity for the
range of the data was substantiated in Appendix D.

The P,T,p data thus obtained were applied to the
asymptotic power laws to determine the critical exponents
and coefficients which govern the approach to the critical
point. From the coexistence curve and the rectilinear diam-

eter analyses, the following values of the critical para-
meters were obtained: Tc=209.28610.010°K, LLc=0.0705881
0.000006 or nc=l.1080810.00010, B=0.3571+0.0008 and
B=1.840+0.001 with a straight rectilinear diameter whose
slope was 0.0918+0.0004. The critical pressure was deter-
mined from the vapor pressures and the pressures along the
critical isochore and was 54.213+0.003 atm. Values of
¥=1.182+0.008 and I'=0.0835+0.0011 were obtained from the
isothermal compressibilities on the critical isochore.

The locus of maximum isothermal compressibility (K

T)max

was established and the behaviour of Ko along this locus
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predicted Y=1.23%0.01 which did not agree with Y on the
critical isochore. The discrepancy was most likely due to
the inaccuracy in locating the maxima. From analyzing Lo
along the two branches of the coexistence curve separately
and taking the averages of the results predicted by re-
ducing with LL_ and LL, the following values of the criti-
cal exponents and coefficients were found: Yé=l.15t0.01,
Pé=0.02lt0.001 and y£=1.13:o.01, F£=0.02510.01.
These values indicated that yé and yi were not distinguish-
able and suggested Y'<y rather than y'=y. A limiting value
for § was obtained from treating seven isotherms close to
the critical temperature as though each one was the criti-
cal isotherm and then interpolating for the best value of
§ which was 6=4.25%0.25. This value was in good agreement
with the limit §>4.22%+0.02 set by the Rushbrooke and
Griffiths inequalities for y'=1.15%0.01 and B=0.3571%+0.0008.
The reduced chemical potential differences and the
reduced density differences were calculated from the p,P
data along single phase isotherms. Au was observed to be
antisymmetric with respect to LL, for -0.2%<t<4.8% and
-30%<Ap<30%. The data in the antisymmetric range were fit

(26,27)

to the proposed equation of state using the form of

h(x) suggested in Ref. (29). After fixing T.» B and X
the results of a three-parameter non-linear fit were:

Y=1.167+0.005, E,=2.13%0.02, E,=0.259%£0.005; the results

& 2
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of a weighted linear fit were: y=1.18+0.01, E,=2.21%0.01,

1

Ez=0.264t0.004. Using the latter values of y, E, and E

1 27
the critical coefficients A, T and T'' were determined to
be A4=2.34, '=0.084 and I''=0.021. The values of y, I', T'
obtained from the scaled equation of state were in very
good agreement with those determined from the isothermal
compressibilities. Moreover, the values of coefficients
compared very favorably with those quoted for other fluids
and obtained from similar analyses as illustrated in Table
XXIV.

The predictions of the linear mode1(32) derived from
the parametric representation of the scaling hypothesis
were also tested. The linear model predicted I'/T''=3.93
and rB%"1/p%=1.78 but r/r'=3.8£0.5 ana ra® 1 p%=1.4:0.2
were determined using the results from the direct appli-
cation of the data to the power laws. Hence, the predic-
tions of the linear model were consistentwith the experi-
mental results within error limits.

The values of the critical exponents obtained in this
study support the recognition that widely different systems
behave similarly near their critical points. In Table XXV
B, y, and § values for several substances obtained by
different techniques are tabulated. In spite of the
diversity in the natures of these systems and in the meth-

ods of analysis, there seems to be evidence for universal

behaviour.
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TABLE I

EXPERIMENTAL VALUES OF ANGLE OF MINIMUM DEVIATION OF
KRYPTON FOR THE COEXISTING GAS-LIQUID STATES

Angle of Minimum Deviation

Temperature Pressure (minutes of arc)

(°K) (atm) Gas Liquid
195,002 35,905 101.03 548.92
197.400 38.566 112.54 531.32
199,302 40,792 122,60 516,29
199.800 41.405 125.56 all.81
201,300 43,209 135.34 498.45
203.099 45,538 148.93 479.82
203,300 45.796 150.65 477.79
204.001 46.715 156.71 469.57
205,299 48,477 170.08 452.49
206.120 49,600 180.07 440.21
206.201 49,715 181.19 438.75
206.800 50.572 190.19 428.33
207.401 51.407 200,26 416.79
207.620 51.734 204.64 411.23
207.800 52,008 208.71 406.82
208.154 82,513 217.12 397.24
208.400 52.875 223.77 389.58
208,502 53,031 227.46 385.97
208.799 53.462 239.19 373.32
208.886 53.601 242,82 368.42
209.003 53.779 250.57 360.82
209.050 - 254 .32 357.29
209,103 53.936 258.33 352,77
209.126 53.972 259.46 350.26
209.146 - 26255 348.91
209.200 54.094 269.19 341.50
209.207 - 270.78 340.72
209.221 54.114 271.90 337.75
209,224 54.128 273.18 337.56
209.231 - 274 .99 336.10
209.249 - 279.07 331.85
209.256 - 281.16 329.54
209,259 54,174 281.99 327.96
209,271 - 285.87 323.84

209.274 54,198 290.04 319,87



=1L 3=
TABLE II

EXPERIMENTAL VALUES OF ANGLE OF MINIMUM DEVIATION OF
KRYPTON ALONG ISOTHERMS ABOVE THE
CRITICAL TEMPERATURE

Angle D Pressure
(minutes of arc) (atm)
219.301°K : Run I
*242.21 66.220
293.68 69.165
331.40 71.386
36l1.12 73.613
379.89 75.453
Run II
*242 .35 66.218
271.16 67.931
302,36 69.634
313.73 70.288
343.50 72.199
**365.83 74.010
Run III
219.28 64.599
*242.16 66.221
286.89 68.799
320,37 70.694
**365,58 74.012
382.49 75.745
217.301°K : Run I
*244.14 63.091
284.35 65.778
320.69 67.365
357.00 69.372
**392,54 72.428
Run II
237.65 63.592
*244,02 63.931
266.54 65.009
307.46 66.769
342,50 68.478
*%392 .50 72.428

*¥Same number of stars indicate repeated states on each
isotherm.



217.301°K : Run

Run

215.301°K : Run

Run

Run

TABLE II (continued)

III

Iv

II

III

-114-

Angle D
(minutes of arc)

217.27
*244.00
275.97
317.25
340.27
*%392.,45

*244.11
254,53
297.44
331.63
373.78

®%392.53

*229.03
262.21
290.67
310.01
321.58
350.90

*%378.61

*228.90
249.94
304.34
330.09
340.42
369.99

**378.41

*228.96
238.90
277.47
316.56
360.64

**378.54

Pressure
(atm)

62.361
63.933
65.422
67.207
68.357
72.430

63.933
64.452
66.335
67.896
70.624
72.430

60.866
62.196
63.099
63.690
64.067
65.219
66.820

60.864
61.759
63.514
64.369
64.768
66.257
66.817

60.862
61.311
62.691
63.898
65.714
66.816



213.300°K : Run

»Run

Run

212.200°K : Run

Run

Run

TABLE II (continued)

II

III

II

III

-115=

Angle D
(minutes of arc)

*223.09
232.28
256.77
286.17
318.40
354.79
364.64

**384.87

*222.93
264.81
308,27
343.57

**384,86

*223.00
244 .49
299,20
330.69
375,55

**%384.81

*224.59
272,29
314.90
354.62
375.71

**385.02

210.26
*224,57
265.15
304.17
345.11
**385.00

*224.56
246.02
285.98
324.78
364.86

*%384.97

Pressure
(atm)

58.375
58.721
59.432
60.056
60.681
61.624
61.990
62.990

58.366
59.616
60.478
61,277
62.980

58.371
59.103
60.304
60.949
62.482
62.985

57.206
58.262
58.841
59.565
60.243
60.653

56.657
57.202
58.146
58.695
59.347
60.654

57 .205
57.786
58.455
58.985
59.856
60.654
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TABLE II (continued)

Angle D Pressure
(minutes of arc) (atm)
212.200°K : Run IV
*224.65 57,203
236.13 57.542
255.67 57.977
295.05 58.574
334,32 59.138
*%385,.03 60.652
211.300°K : Run I
*223.79 56.156
256.35 56.822
284.90 57.136
331.10 57.558
353,46 57.873
**385.96 58.794
Run II
*223.41 56.157
235,31 56.456
273:35 57.026
314.12 57.390
361.79 58.043
*%385,.,90 58,795
Run III
*223.57 56.164
244 .48 56.637
292,31 57.202
341.29 57.687
369.71 58.244
**386.00 58.804
Run 1V
*223.58 56.164
263.14 56.913
300.70 57.274
376.72 58.454
*%386.03 58.802
210.310°K : Run I
214,33 54.820
*224.92 55.087
256.54 55037
286.01 55.714
314.50 55.824

344.05 55.986



210.310°K :

210,200°K

Run

Run

Run

: Run

Run

Run

TABLE II (continued)

II

III

II

III

-117-

Angle D
(minutes of arc)

*%374.82
385.58

%225.02
244.92
271.95
302.67
331,76
366.45

**375,00

*225.25
235.05
263.22
356.51

**375.10

*220.56
257.00
283.53
328.25
355.11

**387.59

*220.49
229.79
265,97
313.57
366.06

*%387.57

*220.71
249.49
300.68
345.40
378.93

**387.72

Pressure
(atm)

56.421
56.710

55.090
55.420
55.645
55.780
55.901
56.254
56.423

55.091
55.274
55.589
56.111
56.424

54.860
55,392
55.539
55.708
55.894
56.546

54.860
55.055
55.453
55.647
56.040
56.548

54.866
55.326
55.602
55.810
56.300
56.552



209.800°K :

209.570°K :

Run

Run

Run

Run

Run

Run

11

III

IV

II

-118-
TABLE II (continued)

Angle D
(minutes of arc)

*222.95
253.80
287.00
320.10
349.97

**386.86

*223,:16
233.94
264.88
311.20
358.25

*%#386.99

*223.05
239.87
274,33
329.61
369.15

**386.94

*222.94
246.89
338.10
379.48

**386.87

213.70
®225.71
253 .99
**375,03

#3226 ,.27
236.08
262.65
279 .38
316.82
344.05
363.39

*%375.00

Pressure
(atm)

54.461
54,846
54.970
55,033
55.144
55,701

54.471
54.653
54.908
55.015
55,210
55.709

54.469
54.724
54.941
55.056
95.336
55.704

54.467
54.793
55.084
55,520
55.703

54,008
54,258
54.541
54.978

54.268
54.403
54.582
54.625
54.663
54.716
54.836
54.982
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TABLE II (continued)

386.23

Angle D Pressure
(minutes of arc) (atm)
209.570°K : Run III
*226.24 54,269
243,62 54.478
303.58 54,652
325.28 54.673
354,01 54.764
*%374,96 54.983
384.66 55.177
209.450°K : Run
*225,.35 54,112
236.03 54,255
265.41 54.426
289.90 54 .461
326.31 54.480
352.54 54,540
*%374,59 54.736
Run
214.50 54,115
*225,50 54,110
257.26 54.400
277.40 54.4487
346.11 54.516
**374,54 54,737
387.08 54.980
Run
*225.65 54.115
244,79 54,332
309.40 54.4697
336.75 54,494
364.93 54,625
**%375,06 54.744
209.380°K Run
214,53 53.826
*223.54 54.0056
244,58 54,2464
261.04 54,3232
288.80 54.3568
323.76 54.3661
344,20 54,3894
363.09 54.4775
*%374 .40 54,5973

54.8146
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TABLE II (continued)

Angle D Pressure
(minutes of arc) (atm)
209.380°K : Run II
*223.91 54.0074
235.81 54,1669
255.68 54,3018
271.89 54,3411
303.93 54.3583
316.68 54,3624
338.54 54,3780
356.43 54,4328
*%374,66 54,6016
209.338°K : Run I
*214,56 53.7721
225,08 53.9761
245,38 54.1929
267.86 54.2750
275.88 54.2845
295.55 54.2927
316.58 54,2957
333.97 54,3020
359.47 54.3741
376.49 54,5443
**387,30 54.7465
Run II
*214.61 53.7744
232.76 54.0790
254 .48 54.2381
290.77 54,2907
302.87 54.2935
320.94 54.2961
348.51 54,3269
368.84 54,4486
**387,26 54,7474
209.315°K : Run I
*215.46 53.7715
223.91 53.9316
242,53 54.1432
261,22 54,2288
269.08 54,2442
279.42 54.2528
299.13 54.2565
331.95 54,2622
355,07 54,3097
376.17 54,4942

**385.61 54.6628



-121-
TABLE II (continued)

Angle D Pressure
(minutes of arc) (atm)
209.315°K : Run II
*215.49 53.7710
235 .77 54,0854
250.63 54,1912
285.19 54,2546
312.58 54,2573
319.97 54,2581
339.39 54,2688
368.18 54,3981
*%385,51 54,6631
209.302°K : Run I
*211.86 53.6718
235.07 54,0633
247.41 54,1597
265,30 54,2217
275.78 54,2345
287.20 54,2397
302.67 54.2422
361.33 54,3250
377.80 54,4958
**388,78 54,7128
Run II
*211.64 53.6694
220,86 53.8674
234.60 54,0608
251 .52 54.1815
273.88 54.2330
285.75 54,2392
295,63 54,2414
326.64 54,2439
359.43 54,3141
374.21 54,4466
383.11 54.5905
*%*388.57 54,7113
209,294°K : Run I
*215,.33 53.7446
235.44 54.0587
252.52 54,1746
287.11 54,2279
327.72 54,2308
351.52 54,2629
372.84 54.4129

**382.90 54,5675
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TABLE II (continued)

Angle D Pressure
(minutes of arc) (atm)
209.294°K : Run II
*215.35 53.7447
224,43 53.9179
242,59 54.1207
263.67 54,2079
278.53 54,2257
287.06 54,2279
319,65 54,2293
327.12 54,2308
339 .81 54,2388
363.78 54,3253

*%382.91 54.5681



=123=
TABLE III

EXPERIMENTAL VALUES OF ANGLE OF MINIMUM DEVIATION OF
KRYPTON ALONG ISOTHERMS BELOW THE
CRITICAL TEMPERATUREL

Angle D Pressure
(minutes of arc) (atm)
199.302°K : Run I
*60.60 27.798
78.97 33.048
100.97 37.708
;ig:zg [coexisting states] 40.793
538.45 49.845
551.72 57.342
**565.34 66.958
Run II
*60.48 27.796
69.26 30.469
88.79 35.361
105.79 38.522
113.56 39.671
éig:ig [coexisting states] 40.790
522,33 42.976
530.39 46.159
545.56 53.678
557.70 61l.361
**565,20 66.956
201.300°K : Run I
60.05 28.086
68.74 30.812
79.82 33.893
90.66 36.472
99.67 38.315
110.17 40.128
115,08 40.872
120.15 41.573

* Same number of stars indicate repeated states on each
isotherm.
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TABLE III (continued)

Angle D Pressure
(minutes of arc) (atm)
201.300°K : Run I
125.46 42.219
131.58 42.878
igg'ig [coexisting states] 43.237
Run II
igg’zg [coexisting states] 43.241
507.08 45,603
513.39 47.602
521.12 50.413
528.19 53.412
534.61 56.501
541,29 60.135
547.46 63.846
554.93 68.890
203.300°K : Run I
68.70 31.296
79.62 34.451
90.45 37.146
100.28 39.240
110.83 41.175
120.18 42,619
130.47 43.939
138.71 44,801
144.93 45,352
i;g'gg [coexisting states] 45.795
Run II
i?g'gi [coexisting states] 45.796
483.65 46,895
491.00 48 .457
497,31 50.063
504.28 52.093
511,31 54.475
518.67 57.368
525.49 60.398

531.75 63.531
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TABLE III (continued)

Angle D Pressure
(minutes of arc) (atm)
206.120°K : Run I
70.80 32.768
83.71 36.499
100.52 40.519
116.33 43.507
130.20 45.581
146.58 47.435
160.65 48.582
175.48 49.409
igg:i% [coexisting states] 49.600
Run II
igg:gg [coexisting states] 49.600
451,26 50.628
463.23 52.179
476.82 54.633
487 .54 57.206
495,55 59.544
503.71 62.337
510.61 65.037
516.61 67.755
207.620°K : Run I
82.61 36.700
98.50 40.694
114.07 43.857
129.61 46.365
145.45 48.336
159.57 49.638
177.35 50.798
189.78 51.330
204.71 . .
411.25 [coexisting states] 51.736
Run II
204.57 . .
411.21 [coexisting states] 51.733
416 .82 51.949
432.52 52.888

447.99 54.421
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TABLE III (continued)

Angle D Pressure
(minutes of arc) (atm)
207.620°K : Run II
465.85 27,157
481,28 60.624
494,05 64.396
502.61 67.489
510.87 70.987
208.,400°K : Run I
78.41 35.749
98.57 41.027
113,71 44,179
128,55 46.661
144,77 48.771
160.29 50.288
175.46 51.357
189.61 52.058
ggg:zg [coexisting states] 52.871
Run II
203 .21 52.508
§§g:%g [coexisting states] 52.879
403,74 53.218
421.81 54.076
434,13 55.034
448,36 56.629
463,69 59.112
476.77 62.000
487.77 65.083
498,37 68.719
208.886°K : Run I
88.79 38.808
108.34 43.363
124,30 46.267
139.46 48,448
155,26 50.189
170.26 51.435
185.49 52.319
200.27 52.914

*214.20 53,273



-127-
TABLE III (continued)

Angle D Pressure
(minutes of arc) (atm)
208.886°K : Run II
*214.43 53.282
232,08 53.529
242,60

368.49 [coexisting states] 53.600

ggg:gg [coexisting states] 53.602
373.58 53.650
387.62 53.843
**%398,52 54.118
Run III
*%398,47 54,115
412.10 54.676
425,01 55.490
441.22 57.070
454,94 59.012
471.03 62.181
484.61 65.798
496.11 69.653
209,.126°K : Run I
99.14 41,475
118,31 45,387
140.16 48.689
154.58 50.303
169.21 51.546
184.62 52.498
198.94 53.112
216.31 53.590
*232,37 53.830
Run II
*233.23 53.839
249.11 53.945
ggg:gg [coexisting states] 53.972
361.20 54.010
376.78 54.144

*%389.717 54.379
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TABLE III (continued)

Angle D Pressure
(minutes of arc) (atm)
209.126°K : Run III

**390,06 54,381
407.72 54,997
422.42 55.881
434,58 56.951
450.81 59.021
468,32 62,292
483.16 66.136
493,46 69.509

209.221°K : Run I
118.11 45.379
134,31 47.960
150,03 49,890
165.14 51.298
180.70 52.359
195.91 53.087
210.01 53.544
224,27 53.833
238.46 53.998

Run II
242,28 54,026
259.17 54.098

g;%:gg [coexisting states] 54.114
352.17 54,137
*365.30 54.200
Run III

*365,80 54,205
380.08 54.369
398.97 54.842
419.97 55.923
441.52 57.982
462,09 61.248
477.26 64.754
489.93 68.575

209.259°K : Run I
121.09 45.940
136.40 48.280
155.40 50.474

174.29 52.003



209,259°K

209.274°K

-129-
TABLE III (continued)

Angle D
(minutes of arc)

: Run I

190.07
206.21
220,33
*235.56

Run II
*235.74
252,91
263.83

281.99

Pressure
(atm)

52.877
53.482
53,811
54.019

54.019
54,1308
54.1600

327.96 [coexisting states] 54.1736

336.33
**348,.31

Run III
**350,70
362.92
383.17
396.41
412,47
432.59
454 .53
467.49

: Run I

131.76
145,23
158.43
174.71
189.44
205.84
220.13
*235,93

Run II
*236.43
252.84
269.53

290.04
319,87

348.07

54,1768
54.1916

54,1984
54.2563
54.508
54.850
55.562
57,118
60.046
62.571

47.642
49,385
50.789
52.041
52.862
53.486
53.823
54.0411

54.0440
54,1507
54,1887

[coexisting states] 54.1985

54.2208
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TABLE III (continued)

Angle D Pressure
(minutes of arc) (atm)
209.274°K : Run III
358.39 54.2593
375.26 54.4102
391.03 54.722
408.32 55.374
426.36 56.574
445.81 58.743
465.11 62.095

481.04 66.075



Temperature

(°K)

195.002
197.400
199.302
199.800
201.300
203.099
203.300
204.001
205.299
206.120
206.201
206.800
207.401
207.620
207.800
208.154
208.400
208.502
208.799
208.886
209.003
209.050
209.103
209.126
209.146
209.200
209.207

Pressure

(atm)

35.905
38.566
40,792
41.405
43.239
45.538
45.796
46.715
48 .477
49.600
49,715
50.572
51.407
51.734
52.008
52,513
52.875
53.031
53.462
53.601
53,779
53.936
83.912

54.094

TABLE IV

GAS STATE
Refractive
Index Error
1.03602 <+ 0.00004
1.04010 0.00004
1.04368 0.00004
1.04473 0.00004
1.04820 0.00004
1.05301 0.00004
1.05362 0.00004
1.05577 0.00004
1.06050 0.00004
1.06404 0.00004
1.06443 0.00004
1.06761 0.00004
1.07117 0.00004
1.07272 0.00004
1.07416 0.00004
1.07712 0.00004
1.07947 0.00007
1.08077 0.00007
1.08490 0.00007
1.08618 0.00007
1.08891 0.00007
1.09023 0.00007
1.09164 0.00007
1.09204 0.00007
1.09313 0.00007
1.09546 0.00007
1.09602 + 0,00007

REFRACTIVE INDEX OF KRYPTON FOR COEXISTING GAS-LIQUID STATES

LIQUID STATE

Refractive
Index Errcr
1.19288 + 0.00004
1.18681 0.00004
1.18162 0.00004
1.18007 0.00004
1.17545 0.00004
1.16899 0.00004
1.16829 0.00004
1.16544 0.00004
1.15951 0.00004
1.15525 0.00004
1.15474 0.00004
1.15112 0.00004
1.14710 0.00004
1.14517 0.00004
1.14363 0.00004
1.14029 0.00004
1.13762 0.00007
1.13636 0.00007
1.13195 0.00007
1.13024 0.00007
1.12758 0.00007
1.12635 0.00007
1.12477 0.00007
1.12389 0.00007
1.12342 0.00007
1.12083 0.00007
1.12055 + 0.00007

ol Y



Temperature

(°K)

209,221
209.224
209.231
209.249
209.256
209.259
209.271
209.274

Pressure

(atm)

54,114
54.128

54.174

54.198

TABLE IV (continued)

GAS STATE
Refractive

Index Exrror

1.09642 + 0.00007
1.09687 0.00007
1.09750 0.00007
1.09894 0.00007
1.09967 0.00007
1.09996 0.00007
1.10132 0.00018
1.10279 + 0.00018

LIQUID STATE
Refractive
Index Error
1.11951 + 0.00007
1.11945 0.00007
1.11894 0.00007
1.11745 0.00007
1.11664 0.00007
1.11609 0.00007
1.11464 0.00018
1.11325 + 0.00018

g% T=
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TABLE V
REFRACTIVE INDEX AND ISOTHERMAL COMPRESSIBILITY

OF KRYPTON ALONG ISOTHERMS ABOVE THE
CRITICAL TEMPERATURE

Angle D Derivative Isothermal
Pressure (minute Refractive (dD/dP)p Compressibility
(atm) of arc) Index (min. /atm) (atm—1)

219.301°K Isotherm:

64.599 219,28 1.07789 12.66 0.05643
66,221 242.16 1.08595 15.62 0.06287
67.931 271.16 1.09616 17.88 0.06408
68.799 286.89 1.10168 18.42 0.06227
69.165 293.68 1.10407 18.65 0.06153
69.634 302.36 1.10711 18.14 0.05808
70.288 313.73 1.11110 16.66 0.,05132
70.694 320,37 1.11343 16.16 0.04872
71.386 331.40  1.11729 15.64 0.04550
72.199 343.50 1.12153 13.89 0.03894
73,613 36l.12 1.127639 11.42 0.03039
74.012 365.58 1.12924 10.90 0.02863
75.453 379.89 1.13424 9.058 0.02285
75.745 382.49 1.13515 8.753 0.02192

217.301°K Isotherm:

62.361 217,27 1.07718 15.06 0.06779
63.592 237 .65 1.08436 18.25 0.07490
63.931 244.02 1.08661 19.35 0.07732
64.452 254.53 1.09031 20.89 0.07989
65.009 266.54 1.09453 22,29 0.08131
65.422 275.97 1.09785 23.31 0.08203
65.778 284,35 1.10079 23,63 0.08060
66,335 297.44 1,10539 23.:33 0.07597
66.769 307.46 1.10890 22,76 0.07160
67 .207 317 .23 111233 21.94 0.06681
67.365 320.69 1.11354 21.58 0.06499
67.896 331.63 1.11737 19.40 0.05641
68.357 340,27 1.12040 18.53 0.05245
68.478 342,50 1.12118 18.19 0,05113
69,372 357.00 1,12625 14.83 0.03991
70.624 373.78 1,13211 12.01 0.03082

72.428 392.50 1.13864 8.983 0.02189



-134-
TABLE V (continued)

Angle D Derivative Isothermal
Pressure (minute Refractive (dD/dP)p Compressibility
(atm). of arc) Index (min./atm) (atm=1)

215.301°K Isotherm:

60.862 228.96 1.08130 21.18 0.09034
61.311 238.90 1.08480 23 .22 0.09480
61.759 249 .94 1.08869 26.31 0.1025
62.196 262,21 1.09301 29.63 0.1099
62.691 277.47 1.09837 31.80 0.1112
63.099 290.67 1.10301 32.90 0.1097
63.514 304.34 1.10781 32,50 0.1033
63.690 310.01 1.10980 32.04 0.09993
63.898 316.56 1.11209 30.53 0.09318
©4.067 321.58 1.11385 29.08 0.08732
64.369 330.09 1.11683 27 .16 0.07936
64.768 340.42 1.12045 24.78 0.07012
65.219 350.90 1.12411 2.4 . 39 0.05865
65.714 360.64 1,12752 18,32 0.04880
66.257 369.99 1.13078 16.20 0.04201
66.816 378.54 1.13377 14.46 0.03660

213.300°K Isotherm:

58.371 223.00 1.07920 24.13 Q.1057
58.721 232,28 1.08247 29.07 0.1222
59.103 244.49 1.08677 34.62 0.1380
59.432 256,77 1.09109 41.13 0.1559
59.616 264.81 1.09392 45.65 0.1676
60.056 286,17 1.10143 51.53 0.1746
60.304 299.20 1.10600 52.76 0.1707
60.478 308.27 1,10919 51,27 0.1609
60.681 318.40 1.11274 48.40 0.1468
60.949 330.69 1.11704 43,01 0.1254
61.277 343.57 '1.12155 35.61 0.09978
61.624 354.79 1.12547 29.42 0.07973
61.990 364.64 1.12892 24.61 0.06481
62.482 375,55 1.13273 20.06 0.05122
62.985 384.81 1.13596 16.95 0.04218

212.200°K Isotherm:

56.657 210.26 1.07470 22.47 0.1046
57.202 224.57 1.07975 30.71 0.1336
57.542 236.13 1.08383 37.24 0.1539
57.786 246.02 1.,08731 45.45 0.1800
57.977 255,67 1.09071 54.19 0.2063
58.146 265.15 1.09404 58.71 0,2153

58,262 272.29 1.09655 64.94 0.2317
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TABLE V (continued)

Angle D Derivative Isothermal
Pressure (minute Refractive (dD/dP)p Compressibility
(atm) of arc) Index (min./atm) (atm~—1)

212.200°K Isotherm continued:

58.455 285,98 1.10136 75.50 0.2560
58.574 295.05 1.10455 76.11 0.2499
58.695 304.17 1,10775 74.85 00,2381
58.841 314.90 1.11151 71.25 0.2186
58.985 324.78 1.11497 66.26 0,1969
59.138 334,32 1.11831 37 .31 0.1652
59.347 345,11 1.12209 47.42 0.1323
59.565 354.62 1.12541 39.60 0.1074
59.856 364.86 1.12899 31.54 0.08300
60.243 375.71 1.13278 25,01 0.06382
60.654 385.00 1.,13602 20.51 0.05101

211.300°K Isotherm:

56.157 223.41 1.07934 35.13 0.1537
56.456 233,31 1.08354 45.55 0.1889
56.637 244 .48 1.08677 56.75 0.2263
56.822 256.35 1.09095 70.77 0.2687
56.913 263.14 1.09333 80.33 0.2969
57.026 273,35 1,09692 99.24 0.3526
57.136 284.90 1.10098 109.9 0.3742
57.202 292,31 1,10359 114.7 0.3803
57.274 300.70 1.10653 117.4 0.3778
57.390 314.12 1.11124 112.8 0.3469
57.558 331.10 1.11719 86.71 0.2525
57.687 341.29 1.12075 13.73 0.2081
27.873 353.46 1.12501 55.83 0.1519
58.043 361,79 1.12792 43.52 0.1155
58.244 369,71 1.13069 36.14 0.09379
58.454 376.72 L1331 3 30.67 0.07805
58.795 385.90 1.13634 23.64 0.05865

210.310°K Isotherm:

54,820 214.33 1.07614 32.90 0.150)
55.090 225,02 1.07991 47.78 0.2074
55.274 235.05 1.08345 60.69 0.2520
55.420 244,92 1.08692 79.61 0.3168
55,537 256.54 1.09101 119.7 0.4541
55.589 263,22 1.09336 139.3 0.5146
55.645 271.95 1.09643 174.9 0.6250
55.714 286.01 1.10137 232.1 0.7871
55.780 302.67 1,10722 268.0 0.8570

55.824 314.50 1.01137 264.7 0.8135
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TABLE V (continued)

Angle D Derivative Isothermal
Pressure (minute Refractive (dD/dP)T Compressibility
(atm) of arc) Index (min./atm) (atm“l)

210.310°K Isotherm continued:

55.901 331.76 1.11742 177 .2 0.5150
55,986 344,05 1,12172 123 .0 0.3385
56.111 356,51 1.12607 82.50 0.2224
56.254 366.45 1.12955 58.84 0.1541
56.423 375.00 113253 43.92 0.1123
56.710 385.58 1.13623 31.41 0.07799

210.200°K Isotherm:

54.866 220.71 1.07839 42.56 0.1885
55,055 229.79 1.08159 54.71 06.2325
55,326 249,49 1.08853 100.9 0.3942
55,392 257.00 1.09117 128.8 0.4876
55.453 265,97 1.09433 167 .3 0.6116
55,539 283.53 1.10050 245.6 0.8403
55.602 300.68 1.10652 291.2 0.9374
55.647 313.57 1.11104 272.9 0.8412
55.708 328,25 1.11619 208.0 0.6112
55.810 345,40 i 12219 137,.5 0.3831
55.894 355, 11 1.12559 94.81 0.2567
56.040 366.06 1.12941 61.80 0.1621
36,300 378.93 1.13391 40.28 0.1019
a6 .592 387.72 1.13697 30.49 0.07528

209.800°K Isotherm:

54.471 223.16 1.07925 47.04 0.2060
54.653 233.94 1.08305 75.26 0.3140
54.724 239,87 1.08514 91.79 0.3732
54.793 246.89 1.08762 115.0 0.4537
54.846 253.80 1.09005 147.2 0.5649
54,908 264.88 1,09395 228,.7 0.8394
54.941 274.33 1.09727 357.8 1.267
54.970 287.00 1.10172 508.9 1.719
35,015 311.20 1.11021 521.2 1.619
25,033 320.10 1.11333 465.5 1.404
55.056 329.61 l1.11666 356.9 1.044
55.084 338.10 1.11964 259.9 0.7407
55.144 349.97 1,12379 150.9 0.4148
95,210 358.25 1.12668 107.4 0.2881
55.336 369.15 1.13049 69.90 0.1817
55.520 379.48 1.13410 45.97 0.1161

55.709 386.99 1.13672 34.71 0.08587
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TABLE V (continued)

Angle D Derivative Isothermal
pPressure (minute Refractive (db/dP) Compressibility
(atm) of arc) Index (min. /atm) (atm—1)

209.570°K Isotherm:

54.008 213.70 1.07592 39.05 0.1787
54.268 226,27 1.08035 61.20 0.2642
54.403 236.08 1.08381 86.67 0.3582
54.478 243.62 1.08646 121.9 0.4879
54,541 253.55 1.08996 194.9 0.7484
54,582 262.65 1: 09316 264.8 0.9805
54.625 279.38 1.09904 592.3 2.058

54.652 303,58 1.10754 1288. 4.105

54.663 316.82 1,11218 1003. 3.058

54.673 325.28 1.11515 727.8 2,159

54.716 344.05 1.12172 271.5 0.7598
54.764 354.01 1.12520 163 .9 0.4451
54.836 363.39 1.12848 105.5 0.2788
54,982 375.00 1: 13253 61.5 0.1574
55,1717 384.66 1.13591 40.8 0.1015

209 .450°K Isotherm:

53,893 214.50 1.07620 41.31 0.1884
54.112 225.35 1.08003 60.74 0.2633
54,255 236.03 1.08379 94.26 0.3896
54,332 244 .79 1.08688 139.0 0.5536
54.400 257.26 1.09127 254.2 0.9617
54,426 265.41 1.09413 391.7 1.435
54,4487 277 .40 1.09835 737.4 2.581
54,4610 289.90 1.10274 1487. 4,972
54,4697 309.40 1.10958 2596, 8.114
54,480 326.31 1.11551 1035, 3.060
54,494 336.75 1.11916 559.6 1.601
54.516 346.11 1.12244 331.9 0.9229
54,540 352.54 1.12469 215.2 0.5869
54,625 364,93 1.12902 109.3 0.2877
54,736 374.59 1.13239 69.72 0.1785
54.980 387.08 1.13675 39.10 0.09670
209,380°K Isotherm:

Run I:

53.8260 214,53 1.07621 43.3 0.1974
54,0056 223.54 1.07939 59.0 0.2578
54,2464 244 .58 1.08680 144.0 0.5737
54,3232 261.04 1.09260 353.0 1.316
54,3568 288.80 1.10235 3301. 11.08

54,3661 323.76 1.11461 2300. 6.858
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TABLE V (continued)

Angle D Derivative Isothermal

Pressure (minute Refractive (dD/dP)p Compressibility
(atm) of arc) Index (min./atm) (atm~—1)

209.380°K Isotherm:

Run I (continued)
54,3894 344,20 1.12177 428.9 1.200
54.4775 363.09 X.12837 128.6 0.3401
54,5973 374.40 1.13232 72.0 0.1844
54.8146 386.23 1.13645 42.8 0.1060

Run II:
54.0074 223,91 1.07952 60.2 0.2629
54.1669 235.81 1.08371 95.4 0.3949
54.3018 255,68 1.09071 259.8 0.9893
54,3411 271.89 1.09641 732.6 2,618
54,3583 303.93 1.10766 3940. 12.54
54.3624 316.68 1,11213 2834, 8.647
54.3780 338.54 1.11979 692.4 1.970
54.4328 356.43 1,12605 185.2 0.4994
54.6016 374.66 1.13242 12.1 0.1846

209.338°K Isotherm:

Run I:
53.77121 214.56 1.07622 43.19 0.1969
53.9761 225,08 1,07983 62.90 0.2730
54.1929 245,38 1.08708 154.7 0.6144
54,2750 267.86 1.09499 631.0 2.290
54.2845 275.88 1.09781 1168. 4,113
54,2927 295,55 1.10472 5896. 19,32
54,2957 316.58 1:.11210 6750. 20.60
54.3020 333,97 1.11819 1317, 3.802
54,3741 359.47 1.12711 163.6 0.4372
54,5443 376.49 1,13305 67.73 0.1724
54,7465 387.30 1.13683 43,48 0.1075

Run II:
53.7744 214.61 1.07624 44,22 0.2015
54,0790 232.76 1.08264 85.88 0.3601
54,2381 254 .48 1.09029 249.9 0.9559
54,2907 290,77 1.10304 4319. 14.40
54.2935 302,87 1.10729 5203. 16.63
54.2961 320.94 1.11363 6088. 18,32
54.3269 348,51 1.12328 346.4 0.9562
54,4486 368.84 1.13038 57.31 0.2532
54.7474 387.26 1.13681 43.21 0.1068
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TABLE V (continued)

Angle D Derivative Isothermal
Pressure (minute Refractive (dD/dP)p Compressibility
(atm) of arc) Index (min./atm) (atm—1)
209.315°K Isotherm:
Run I:
53.7715 215.46 1.07654 48.82 0.2080
53.9316 223.91 1.07952 61.61 0.2689
54,1432 242,53 1.08608 137.6 0.5530
54,2288 261,22 1.09266 394.1 1.468
54,2442 269,08 1.09542 719.4 2,598
54.2528 279.42 1.09906 2211. 7.682
54,2565 299.13 1.10598 24102, 78.02
54.2581 319.97 1.11329 5651. 17.05
54.2622 331.95 1.11748 1730. 5.027
54,3097 355.07 1.12557 226.4 0.6129
54.4942 376.17 1.13294 69.29 0.1766
54.6628 385.61 1.13624 46.38 0.1152
Run II:
53.7710 215.49 1.07655 45,50 0.2065
54,0854 235.77 1.08370 100.3 0.4150
54,1912 250.63 1.08893 209.4 0.8138
54.2546 285.19 1.10108 4481. 15.24
54.2573 312.58 1.11070 13776. 42.60
54.2581 319.97 1.11329 6250, 18.86
54.2688 339.39 1.12009 866.0 2.458
54,3981 368.18 1.13015 100.5 0.2619
54.6631 385.51 1.13620 46.73 0.1161
209,.302°K Isotherm:
Run I:
53.6718 211.86 1.07527 40,65 0.1878
54.0633 235.07 1.08345 96.85 0.4021
54,1597 247.41 1.08780 177.5 0.6990
54,2217 265,30 1.09409 556.1 2.038
54.2345 275.78 1.09778 1333, 4,693
54,2397 287.20 1.10179 3798. 12,82
54.2422 302.67 1.10722 12643. 40.43
54.2439 326.64 1.11562 6547. 19.34
54.3250 361.33 1.12776 154.8 0.4116
54.4958 377.80 1.13351 65.29 0.1656
54,7128 388.78 1.13734 40.53 0.0998
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TABLE V (continued)

Angle D Derivative Isothermal
Pressure (minute Refractive (dD/dP)p Compressibility
(atm) of arc) Index (min./atm) (atm‘l)
209.302°K Isotherm:
Run II:
53.6694 211.64 1.07519 40.04 0.1851
53.8674 220.86 1.07844 54,98 0.2433
54.0608 234.60 1,08329 95,82 0.3986
54,1815 251,82 1.08925 225.9 0.8746
54.2330 273.88 1.09711 1187. 4.209
54,2392 285.75 1.10128 32717, 1l.12
54.2414 295.63 1.10475 6554, 21.47
54,2422 302,67 1.10722 13014. 41.61
54.2439 326.64 1,11562 5648, 16.68
54.3141 359.43 1.12710 173.3 0.4633
54.4466 374.21 1.13226 TT:41 0.1976
54,5905 383,11 1,13536 50.83 0.1271
54,7113 388,57 1. 13727 40.50 0.0998
209,294°K Isotherm:
Run I:
53.7447 213 .33 1.07650 44,82 0.2035
53.9179 224 .43 1.07970 62,35 0.2714
54,1207 242,59 1.08610 140.9 0.5661
54,2079 263.67 1.09352 498.8 1.840
54,2257 278.53 1.0987S 1996. 6.956
54,2279 287.06 1.10174 5223. 3L.15
54.2293 319 .65 1.11317% 7967. 24.07
54,2308 327,12 1.11579 3350, 9.880
54,2388 339.81 1.12023 917.3 2,600
54,3253 363.78 1.12862 132.7 0.3503
54,5681 382.91 1.13529 9335 0.1334
Run II:
53.7446 215.33 1.07649 45,20 0.2053
54,0587 235.44 1.08358 99,52 0.4124
54,1746 222,52 1.08960 238.2 0.9187
54,2279 287.11 1.10176 9687. 32.72
54,2308 327.72 1.11600 3780. 11.13
54,2629 351,82 1.12433 305.6 0.8362
54.4129 372.84 1.13178 82.72 0,2128
54,5675 382.90 113529 52 .81 0.1321
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TABLE VI

REFRACTIVE INDEX AND ISOTHERMAL COMPRESSIBILITY
OF KRYPTON ALONG ISOTHERMS BELOW THE
CRITICAL TEMPERATURE

Derivative Isothermal
Angle D (dD/dP)p Compressi-
Pressure (minute Refractive (min./atm) bility**
(atm) of arc) Index Graphical Numerical* (atm~—1)
199.302°K Isotherm:
Gas side:
27.797 60.54 1.02161 3,20 3.01 0.0495
30.464 69.26 1.02471 3.86 3452 0.0505
33.048 18.97 1.,02817 4,16 3.99 0.0501
35.361 88.79 1.03166 4,88 4.63 0.0517
37.708 100.97 1.03599 5.86 571 0.0560
38.522 105,79 1.03771 6.17 6.21 0.0581
39.671 113.56 1.04047 71.39 732 0.0638
40,792 122.60 1.04368 8.75 9.21 0.0742
Liquid side:
40,792 516,29 1.18162 2.85 2.98 0.00543
42,976 522,33 1.18370 2.77 2.65 0.00476
46.159 530,39 1.18649 2.45 2535 0.00422
49,845 538.45 1+48827 2,02 1.99 0.00347
53.678 545,56 1.18172 1.87 1.76 0.00302
57.342 551,72 1.19385 1.86 1.58 0.00268
6l1.361 557.70 1.49591 1.24 1.41 0.00237
66.957 565.27 1.19852 - 1.31 0.00216
201.300°K Isotherm:
Gas side:
28.086 60.05 1.02143 - 3.04 0.0504
30.812 68.74 1.02453 3.41 3,35 0.0484
33,893 19,82 1.02847 3.91 3.88 0.0483
36.472 90.66 1.03233 4,60 4,56 0.0498
38.315 99,617 1.03553 5.24 5,28 0.0525
40,128 110.17 1.03926 6.39 6.34 0.0570
40.872 115.08 1.04101 6.93 6.87 0.0591
41.573 120,15 1.04281 170 7.69 0,0633
42,219 125.46 1.04469 8.65 8.70 0.0685
42.878 131.58 1.04686 10.12 10.09 0.0757
43,239 135.34 1.04820 10.94 11.78 0.0859

* Calculated by the numerical cubic spline fit.
**Calculated from the numerical values of the derivative.
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TABLE VI (continued)

Derivative Isothermal
Angle D (dD/AP) q Compressi-

Pressure (minute Refractive (min./atm) bility
(atm) of arc) Index Graphical Numerical (atm—1)

201.300°K Isotherm:

Liquid side:

43.239 498.45 1.17545 4,02 3.95 0.00747
45,603 507.08 1.17843 3.42 3.33 0.00618
47.602 513.39 1.18061 2.91 2.98 0.00546
50.413 521.12 1.18329 2.61 2.53 0.00457
53.412 528.19 1.18573 2,26 2.21 0.00392
56.501 534.61 1.18794 2.07 1.95 0.00343
60,135 541.29 1,19025 1.82 1.74 0.00302
63.846 547.46 1.19238 1.36 1.58 0.00271
68.890 554,93 1.19495 - 1.38 0.00233

203.300°K Isotherm:

Gas side:

31.296 68.70 1.02451 - 3.23 0.0467
34.451 79.62 1.02840 3.61 3.72 0.0464
37.146 90.45 1.03225 4.42 4,36 0.0478
39.240 100.28 1.03575 5.02 5.04 0.0498
41.175 110.83 1.03950 5.97 5.95 0.0531
42,619 120.18 1.04282 7.02 7.06 0.0581
43,939 130.47 1.04647 8.70 8.70 0.0658
44,801 138.71 1.04939 10,5 10.6 0.0752
45,352 144.93 1.05160 12.4 11.9 0.0809
45,796 150.65 1.05362 14,0 14,2 0.0929

Liquid side:

45,796 477.79 1.16829 5.19 5.63 0.01114
46.895 483.65 1.17032 5.14 5,12 0.01001
48,457 491,00 1.17287 4,27 4,27 0.00820
50.063 497.31 1.17505 3.70 3.68 0.00697
52.093 504.28 1.17746 3.22 3.19 0.00596
54,475 511.31 1,17990 2.80 2.74 0.00503
57.368 518.67 1.18244 2.54 2.39 0.00432
60.398 525,49 1.18480 1.96 2,12 0.00379
63.531 531.75 1.18696 - 1.88 0.00332

206.120°K Isotherm:

Gas side:
32,768 70.80 1.02526 - 3.21 0.0450
36.499 83.71 1.02986 3.81 3.75 0.0444

40,519 100.52 1,03583 4.72 4,71 0.04¢64
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TABLE VI (continued)

Derivative Isothermal
Angle D (dD/dP) p Compressi-
Pressure (minute Refractive (min./atm) bility
(atm) of arc) Index Graphical Numierical (atm-1)
206.120°K Isotherm:
Gas side (continued) :
43.507 116.33 1.04145 6.14 5.98 0.0508
45.581 130.20 1.04637 7.46 7.56 0.0574
47.435 146.58 1.05218 10,7 10 .5 0.0705
48.582 160.65 1.05716 14.4 14,7 0.0898
49,409 175.48 1.06241 22.7 22.5 0.1261
49,600 180.07 1.06404 2548 25.7 0.1401
Liquid side:
49,600 440.21 1.15525 12.3 12.4 0.02677
50.628 451.26 1.15909 9.50 9.34 0.01963
52.179 463.23 1.16324 6.72 6.58 0.01345
54.633 476.82 1.16795 4,87 4,71 0.00935
57.206 487.54 1.17167 3.64 3.72 0.00721
59.544 495.55 1.17444 3.21 3.16 0.00602
62.337 503.71 1.17727 2.77 2:72 0.00508
65.037 510.61 1.17965 2.47 2.40 0.00442
67.755 516.76 1.18178 - 2.13 0.00388
207.620°K Isotherm:
Gas side:
36.700 82.61 1.02947 - 3.60 0.0432
40,694 98.50 1.03512 4,70 4,42 0.0445
43.857 114.07 1.04065 5.39 5.52 0.0478
46.365 129.61 1.04616 7.29 7.02 0.0535
48.336 145.45 1.05178 9,21 9.38 0.0636
.49.638 159.57 1.05678 13.0 12.6 0.0778
50,798 177.35 1.06307 18.6 18,3 0.1070
51.330 189.78 1.06747 30.4 29.5 0.1525
51,734 204.64 1.07272 43.1 44,5 0.2129
Liquid side:
51.734 411.23 1.14517 31.2 27 .2 0.06311
51.949 416.82 1.14711 23.1 24,0 0.05490
52.888 432,52 1.15257 13.0 12,7 0.02803
54.421 447.99 1.15795 8.31 8.24 0.01746
57.157 465.85 1.16415 5.27 5.29 0.01075
60.624 481,28 1.16950 3.96 3.83 0.00752

64.396 494,05 1.17392 2,95 3.01 0.00574
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TABLE VI (continued)

Derivative Isothermal
Angle D (dD/dP) Compressi-

Pressure (minute Refractive (min./atm) bility
(atm) of arc) Index Graphical Numerical (atm~1)

207.620°K Isotherm:

Liquid side (continued):
67.489 502.61 1.17689 - 2.55 0.00479
70.987 510.87 1.17974 - 2.19 0.00403

208.400°K Isotherm:

Gas side:
35.749 78.41 1.02797 - 3.39 0.0430
41,027 98.57 1.03514 4.45 4.34 0.0436
44,179 11371 1.04052 5.21 L L 0.0466
46,661 128.55 1.04579 7.00 6.73 0.0517
48.771 144.77 1.05154 9.10 8.87 0.0604
50.288 160,29 1.05704 12.0 12.0 0.0738
51.357 175.46 1.06241 17.1 17.0 0.0951
52.058 189.61 1.06741 25.4 24.7 0.1276
52.508 203.21 1.07221 39.3 37.7 0.1818
52.875 223.77 1.07947 77. 93. 0.4061

Liquid side:

52 .875 389.58 1.13762 49.9 54.7 0.13437
53.218 403.74 1.14256 321 31.6 0.07471
54.076 421.81 1.14885 15.4 15.5 0.03507
55.034 434,13 1.15313 11.1 10.8 0.02377
56.629 448,36 1.15808 T:37 7.46 0.01579
59,112 463.69 1.16340 5.22 5.21 0.01065
62.000 476.77 1.16794 3.97 3.98 0.00789
65.083 487.77 1.17175 3.29 3.22 0.00623
68.719 498,37 1.17542 - 2.65 0.00502

208.886°K Isotherm:

Gas side:
38.808 88.79 1.03166 - 3,78 0.0423
43,363 108.34 1.03861 5.40 4.91 0.0449
46,267 124.30 1.04428 5.80 6.19 0.0492
48.448 139.46 1.04966 8.40 7.90 0.0559
50.189 155.26 1.05526 10.2 15 0.0668
51.435 170.46 1.06064 15.4 14.4 0.0828
52.319 185.49 1.06595 19.6 20.5 0.1085
52.914 200.27 1.07117 33.6 30.9 0.1514

23:278 214.32 1.07614 52.0 49.8 0.2274



-145-
TABLE VI (continued)

Derivative Isothermal
Angle D (aD/dP) Compressi-
pressure (minute Refractive (min./atm) bility
(atm) of arc) Index Graphical Numerical (atm=1)
208.886°K Isotherm:
Gas side (continued):
53,529 232.08 1.08240 111. 112. 0.4731
53.601 242,82 1.08618 199, 202, 0.8110
Liquid side:
53.601 368.42 1.13024 118. 134, 0.34905
53.650 373.58 1.13204 98.2 103. 0.26504
53.843 387.62 1.13694 53.7 52.4 0.12946
54.117 398.50 1.14073 31.8 31.5 0.07561
54,676 412.10 1.14547 19.6 19.5 0.04526
55.490 425,01 1.14996 13.2 13.0 0.02923
57.070 441,22 1.15560 8.32 8.35 0.01798
59.012 454,94 1.16036 6.22 6.07 0.01265
62,181 471.03 1.16595 4,57 4,31 0.00865
65.798 484 .61 1.17065 - 3.31 0.00645
69.653 496.11 1.17464 - 2.71 0.00514
209.126°K Isotherm:
Gas side:
41.475 99.14 1.03534 ~ 4,31 0.043
45,387 118.31 1.04215 - 5.63 0.047
48.689 140.16 1.04991 7.6 7.91 0.056
50.303 154.58 1.05502 10.6 10.2 0.065
51.546 169.21 1.06019 13.2 13.7 0.080
52.498 184.62 1.06565 20.1 19.5 0.104
53.112 198.94 1.07071 27 .4 28.4 0.140
53.590 216.31 1.07684 51.1 49,2 0.222
53.835 232.80 1.08265 100. 98.2 0.412
53.945 249.11 1.08840 247. 270. 1.057
53.972 259.46 1.09204 609. 558. 2.092
Liquid side:
53.972 350.26 1.12389 546. 440, 1.2084
54.010 361.20 1,12771 181. 195, 0.5190
54,144 376.78 1.13316 85.2 77.7 0.1956
54,380 389.92 1.13774 40.4 41.9 0.1029
54.997 407.72 1.14394 21.5 21.2 0.0496
55.881 422 .42 1.14906 13.3 13.5 0.0304
56.951 434.58 1.15329 9.70 9.68 0.0212

59.021 450.81 1.15893 6.56 6.51 0.0137



-1l46-
TABLE VI (continued)

Derivative Isothermal
Angle D (dD/dP) p Compressi-

Pressure (minute Refractive (min./atm) bili&y
(atm) of arc) Index Graphical Numerical (atm™+)

209.126°K Isotherm:

Liquid side (continued):

62.292 468,32 1.16501 4.42 4.48 0.0091
66.136 483.16 1.17015 - 3.36 0.0066
69.509 493,46 1.17372 - 2.79 0.0053

209.221°K Isotherm:

Gas side:

45.379 118.11 1.04208 - 5.55 0.046
47.960 134,31 1.04783 - 7.16 0.053
49.890 150.03 1.05340 9.1 9.36 0.061
51.298 165.14 1.05875 1Z2.5 12.5 0.074
52.359 180.70 1.06426 16.8 i85 0.095
53.087 195.91 1.06964 24.9 25.4 0:127
53.544 210.01 1.07461 37.6 38.7 0.180
53.833 224,27 1.07965 62.8 64.8 0.282
53.998 238.46 1.08465 121. 123, 0.504
54.026 242 .28 1.08599 147. 151. 0.606
54,098 259,17 1.09194 407. 457, 1.715
54,114 271.90 1.09642 2015 1630. 5.824

Liquid side:

54,114 337,75 1.11951 1164. 1370. 3.9083
54,137 352.17 1.12456 333. 361. 0.9873
54.203 365.66 1.12927 129. 133. 0.3503
54,369 380.08 1.13431 63.0 61.5 0.1551
54.842 398.97 1.14090 27.6 28,2 0.0676
55.923 419,97 1.14821 14.0 14,2 0.0323
57.982 441,52 1.15570 7.90 8.05 0.0173
61.248 462,09 1.16285 5415 5.07 0.0104
64.754 477.26 1.16811 - 3.74 0.0074
68.575 489,93 1.17250 - 2.96 0.0057

209,259°K Isotherm:

Gas side:

45,940 121.09 1.04314 - 5.84 0.048
48,280 136.40 1.04857 - 7.40 0.053
50.474 155.40 1.05531 10.4 10.3 0.065
52.003 174.29 1.06199 14.7 15.1 0.085
52.877 190.07 1.06757 21.9 21.8 0.112

53.482 206.21 1.07327 33.2 34.0 0.162
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TABLE VI (continued)

Derivative Isothermal
Angle D (dD/dP) Compressi-
Pressure (minute Refractive (min./at%) bilify
(atm) of arc) Index Graphical Numerical (atm™+)
209.259°K Isotherm:
Gas side (continued):
53.811 220,33 1.07826 54.4 55.6 0.247
54,019 235,65 1.08366 92.4 103. 0.428
54,1308 252.91 1.08974 256, 259, 0.996
54,1600 263.83 1.09358 561. 640, 2,358
54,1736 281,99 1.09996 2348, 3260. 11.217
Liquid side:
54,1736 327.96 1.11609 3510. 3750. 11.341
54,1768 336.33 1.11902 1489. 1512. 4.3321
54,1950 349.50 1.12362 394, 406, 1.1186
54.2563 362.92 1.12832 133. 144, 0.3812
54,508 383.17 1.13539 47.8 51.5 0.1287
54.850 396.41 1.14000 30.7 30.2 0.0728
55.562 412.47 1.14560 16.5 17.6 0.0406
57.118 432.59 1.15260 10.2 9.92 0.0218
60.046 454,53 1.16022 - 5.89 0.0123
62.571 467.49 1.16472 - 4,52 0.0092
209,274°K Isotherm:
Gas side:
47.642 131.76 1.04693 - 6.95 0.052
49,395 145,23 1.05170 - 8.57 0.058
50.769 158.43 1.05638 - 10.9 0.068
52.041 174,71 1.06214 15.5 15.3 0.086
52,862 189.44 1.06735 20.7 21.4 0.111
53.486 205.84 1.07314 33.3 33.7 0.160
53.823 220.13 1.07818 51.5 54.8 0.243
54,0425 236.18 1.08384 100. 104. 0.429
54,1507 252.84 1.08971 253. 255, 0.981
54,1887 269.53 1.09558 877. 998, 3.600
54,1985 290.04 1.10279 5650, 5375. 17.964
Liquid side:
54,1985 319.87 1.11325 5283. 7400. 22.341
54,2208 348,07 1.12312 396. 431, 1.1928
54,2593 358.39 1.12673 186. 189. 0.5082
54,4102 375.26 1.13262 68.6 73.8 0.1887

54,722 391.03 1.,13813 36.9 36.9 0.0904
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TABLE VI (continued)

Derivative Isothermal
Angle D (dD/AP) Compressi-
Pressure (minute Refractive (min./atm) bility
(atm) of arc) Index Graphical Numerical (atm~1)
209.274°K Isotherm:
Liquid side (continued):
55.374 408.32 1.14415 18.8 20.1 0.0469
56.574 426,36 1.15043 12.6 1155 U9 0.0260
58.743 445,81 1.15719 - 117 0.0153
62.095 465.11 1.16389 - 4,72 0.0096

66.075 481.04 1.16942 - 3.44 0.0068
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TABLE VII

RECTILINEAR DIAMETER ANALYSIS

LL; + LL; = 2LL. + 2B, | t]
(LLL+LLG)
Temperature Error Residual

(°K) IL, LE, Value x10°  x10°
195.002 0.,12357 0.02386 0.14743 3.5 1.5
197.400 0.11985 0.02655 0.14640 3.6 1.0
199,302 0.11666 0.02889 0.14556 3.6 0.3
199.800 0.11571 0.02958 0.14530 346 4.2
201.300 0.11287 0.03186 0.14472 3,6 4.4
203.099 0.10888 0.03501 0.14389 3,6 0.1
203.300 0.10844 0.03541 0.14385 3.6 5.0
204.001 0.10668 0.03681 0.14349 3.6 0.6
205,299 0.10300 0.03990 0.14290 3.6 2.9
206.120 0.10034 0.04220 0.14254 3.6 2.4
206.201 0.10003 0.04246 0.14248 3.6 4.7
206.800 0.09776 0.04453 0.14229 3.6 2.4
207.401 0.09525 | 0.04684 0.14209 3.6 8.6
207.620 0.09404 0.04784 0.14188 3.6 2.7
207.800 0.09308 0.04877 0.14185 3.6 2.1
208.154 0.09098 0.05069 0.14167 i Ty 0.3
208.400 0.08930 0.05221 0.14151 6.4 S:3
208.502 0.08851 0.05305 0.14156 6.4 4.2
208.799 0.08573 0.05572 0.14145 6.4 5.9
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TABLE VII (continued)

(LLL+LLG)
Temperature Error Residual

(°K) LLL LLG Value XlO5 ><105
208.886 0.08465 0.05654 0.14119 6.4 -15.8
209.003 0.08297 0.05830 0.14127 6.5 - 2,6
209.050 0.08219 0.05915 0.14134 6.5 6.4
209.103 0.08119 0.06006 0.14125 6.6 - 0.5
209.126 0.08064 0.06031 0.14095 6.7 ~29.5
209.146 0.08034 0.06101 0.14135 6.8 11.3
209.200 0.07869 0.06251 0.14121 7.1 - 0.6
209.207 0.07852 0.06287 0.14139 1.2 18.2
209.221 0.07786 0.06312 0.14099 7.4 -21.8
209.224 0.07782 0.06341 0.14123 745 2.9
209.231 0.07750 0.06382 0.14132 7.7 11.6
209.249 0.07655 0.06474 0.14129 8.4 9.8
209.256 0.07604 0.06521 0.14125 8.9 5.8
209,259 0.07569 0.06540 0.14108 5,2 -10.6
209.271 0.07477 0.06627 0.14104 19.0 -14.5
209,274 0.07388 0 0.06721 0.14109 18.9 - 9.2

For TC=209.286°K 2LLC = 0.141175+20.000012

Slope a = 0.0918+0.0004

ax*= a/2LLC= 0.65

Standard deviation of the fit=6.75><10'_5
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TABLE VIII

DEPENDENCE OF LLC ON TC
TC (°K) 2LLC* t Error 2LLC** + Error
209.280 0.141178 + 0.000017 0.141178 + 0.000012
209.281 0.141178 + 0.000017 0.141177 + 0.000012
209.282 0.141177 * 0.000017 0.141177 + 0.000012
209.283 0.141177 * 0.000017 0.141176 + 0.000012
209.284 0.141176 * 0.000017 0.141176 * 0.000012
209.285 0.141176 * 0.000017 0.141175 + 0.000012
209,286 0.141175 + 0.000017 0.141175 + 0.000012
209,287 0.141175 + 0.000017 0.141174 + 0.000012
209.288 0.141175 + 0.000017 0.141174 + 0.000012

s. d. of fit = s. d. of fit =

7.15x107° 6.75x107°

* From the least-squares fitting routine of Ref. 48

** From the least-squares fitting routine of Ref. 47
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TABLE IX

SHAPE OF THE COEXISTENCE CURVE

In [ (LL -LL;)/LL. ] = 1ln 2B) + B; 1n|t|

(LLL-LLG) /LLC

Temperature (°K) Value Errorxlo4 ResidualXIO4
195.002 1.4125 Sl 8.9
197.400 1.3218 . - 2.1
199,302 1.2434 5.1 12.4
199.800 1.2202 5.1 4.4
201.300 1.1476 5ed 5.5
203.099 1.0465 5.1 - 6.3
203.300 1.0347 e A - 1.7
204.001 0.9898 5.1 - 0.5
205.299 0.8939 Bl -11.9
206.120 0.8237 5ed - 6.9
206.201 0.8156 5i -12.3
206.800 0.7542 5ad -19.9
207.401 0.6859 B2 8.6
207.620 0.6545 5.2 - 9.8
207.800 0.6277 5.2 -16.0
208.154 0.5708 5.3 - 2.5
208.400 0.5255 5,1 23.0
208.502 0.5024 - % 15.2
208.799 0.4252 . 26.0

208.886 0.3982 9.3 43.0
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TABLE IX (continued)

(LLL—LLG)/LLC

Temperature (°K) Value ErroerO4 Residualx10’
209.003 0.3495 9.5 14.0
209.050 0.3264 9,6 1.7
209.103 0.2994 9.8 14.7
209.126 0.2879 10.0 39.3
209.146 ‘ 0.2738 10.2 30.1
209.200 0.2293 11.1 17.3
209.207 0.2217 11.3 9.9
209.221 0.2088 12.0 29.1
209.224 0.2041 121 16.7
209.231 0.1938 12.5 -~ 2.3
209.249 0.1673 14.3 -10.4
209.256 0.1534 15.5 -28.4
209.259 0.1458 16.1 -47.0
209.271 0.1204 30.4 ~15.8
209.274 0.0946 30.2 -180.5

For Tc=209.286°K : LLC=0.070588

ln 2B, = 1.3031 £ 0.0006

1
Bl = 1.840
Bl = 0.3571 £ 0.0008

Standard deviakion of the Fit = 1.76%10"2



RESULTS OF VARYING RANGE OF |t]|
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TABLE X

max

FOR THE FIT TO THE RECTILINEAR DIAMETER

5

lt] pax () s.d.x10 2LL Slope
6.82 7.15 0.141175 0.0918
+17 +6

5.68 7.32 0.141174 0.0919
+18 +7

4,77 7 .51 0.141174 0.0919
+19 +9

4,53 7.72 0.141174 0.0919
+20 +10

3.82 7.83 0.141169 0.0926
+21 +12

2.96 8.04 0.141172 0.0922
+22 +15

2.86 8.30 0.141171 0.0923
+23 +18

2.53 8.47 0.141177 0.0913
+24 +21

1.91 8.79 0.141178 0.0910
+26 +28

1.51 9.12 0.141176 0.0916
+27 +34

1.47 9.49 0.141173 0.0924
+29 +40

1.19 9.69 0.141164 0.0956
’ +30 +50

0.901 10.2 0.141162 0.0964
+32 +64

0.796 105 0.141169 0.0917
+32 +75

0.710 131.1 0.141166 0.0943
+34 +96

0.541 11.9 0.141169 0.0916
+36 +140

0.423 12.9 0.141173 0.0864
+40 +245
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TABLE XI
RESULTS OF VARYING RANGE OF Itlmax
FOR THE FIT TO THE COEXISTENCE CURVE
3

—_ (%) ilfl:ig_ 1ln 231 Bl
6.82 1.63 1.3033 0.3571
+12 +3
5.68 1.73 1.3027 0.3569
+14 +4
4,77 1.85 1.3027 0.3569
+16 +4
4.53 1.91 1.3016 0.3567
+18 +4
3.82 2.02 1.3004 0.3564
+20 +5
2.96 2.08 1.2986 0.3560
+22 +5
2.86 2.23 1.2979 0.3559
+25 +6
2.53 2.36 1.2960 0.3555
+28 +6
1.91 2.40 1.2925 0.3548
+31 +7
1.51 2.61 1.2912 0.3546
+36 7
1.47 2.83 1.2896 0.3543
+40 +8
1.19 3.15 1.2880 0.3540
/ +47 +9
0.901 3.55 1.2898 0.3543
+55 +11
0.796 3.80 1.2855 0.3536
+59 +11
0.710 4.47 1.2859 0.3537
+69 +12
0.541 5.21 1.2935 0.3548
+84 +14
0.423 6.11 1.3091 0.3571

+108 +17
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TABLE XII

ASYMPTOTIC RANGE OF (LLC-LLG)

|ty (#)  s.d.x10>  1nB]  s.d. 8] s.d.
6.82 4.43 0.5183 * 0.0038 0.3418 * 0.0008
5.68 4.10 0.5207 *+ 0.0036 0.3423 * 0.0008
4.77 3.80 0.5232 * 0.0035 0.3428 * 0.0008
4.53 3.66 0.5252 + 0.0036 0.3432 * 0.0008
3.82 3.50 0.5274 + 0.0036 0.3436 * 0.0008
2.96 3.38 0.5298 * 0.0037 0.3441 * 0.0008
2.86 3.37 0.5316 * 0.0040 0.3444 * 0.0008
2.52 3.32 0.5341 + 0.0042 0.3449 + 0.0009
1.91 3.37 0.5360 + 0.0046 0.3453 * 0.0010
1.51 3.49 0.5374 *+ 0.0051 0.3455 + 0.0010
1.47 3.71 0.5374 + 0.0058 0.3455 * 0.0011
1.19 3.96 0.5376 * 0.0067 0.3456 * 0.0013
0.901 4.19 0.5419 * 0.0076 0.3464 * 0.0015
0.796 4.66 0.5416 + 0.0087 0.3463 * 0.0016
0.710 5.34 0.5422 + 0.0103 0.3464 * 0.0019
0.541 5.93 0.5555 + 0.0123 0.3485 * 0.0021
0.423 6.78 0.5750 + 0.0152 0.3515 * 0.0025
0.375 7.98 0.5728 + 0.0188 0.3512 * 0.0030
0.233 9.14 0.6094 + 0.0272 0.3567 * 0.0042
0.191 9.88 0.6508 + 0.0320 0.3623 * 0.0047
0.135 11.52 0.6076 * 0.0439 0.3564 * 0.0062



ot

TABLE XIII
ASYMPTOTIC RANGE OF (LLL-LLC)
|tlgax () s.d.x10>  1n B}  s.a. M s.d.
6.82 5.85 0.6850 + 0.0053 0.3687 * 0.0012
5.68 5.58 0.6828 * 0.0053 0.3683 * 0.0012
4.77 5.32 0.6802 *+ 0.0052 0.3678 + 0.0011
4.53 5.01 0.6771 + 0.0052 0.3671 + 0.0011
3.82 4.69 0.6736 + 0.0051 0.3664 * 0.0011
2.96 4.28 0.6694 * 0.0049 0.3656 *+ 0.0010
2.86 4.10 0.6660 * 0.0050 0.3649 * 0.0011
2.52 3,65 0.6607 + 0.0047 0.3639 + 0.0010
1.91 3.11 0.6545 + 0.0044 0.3627 * 0.0009
1.51 2.97 0.6505 * 0.0045 0.3620 * 0.0009
1.47 2.94 0.6470 + 0.0047 0.3613 * 0.0009
1.19 2.98 0.6431 * 0.0051 0.3606 * 0.0010
0.901 3.19 0.6406 * 0.0059 0.3612 + 0.0011
0.796 2.32  0.6303 * 0.0044 0.3584 * 0.0008
0.710 2.67 0.6295 * 0.0052 0.3583 * 0.0009
0.541 3.16 0.6324 * 0.0067 0.3588  0.0012
0.423 3,565 0.6424 + 0,0082 0.3603 * 0.0014
0.375 4.25 0.6465 + 0.0101 0.3609 * 0.0016
0.233 5.26 0.6556 *+ 0.0157 0.3623 * 0.0024
0.191 6.20 0.6425 + 0.0201 0.3604 * 0.0030
0.135 7.80 0.6370 * 0.0297 0.3597 * 0.0042



TABLE XIV
WEIGHTED LEAST SQUARES FITTING OF ISOTHERMAL COMPRESSIBILITIES ON THE

CRITICAL ISOCHORE

In KT
Temperature KT Fractional Error Residual
(°K) (atm 1) Error in Kp In[(T-T )/T_] Value x103 x103
219.301 0.05637 0.01 -3.0396 -2.875 10.0 3.8
217.301 0.07274 0.01 -3.2624 -2.621 10.0 - 4.6
215.301 0.1027 0.01 -3.5494 -2.276 10.0 0.9
213,300 0.1647 0.02 -3.9539 -1.804 20.0 - 4.8
212,200 0.2371 0.02 -4,2742 -1.439 20.0 - 19.1
211.300 0.3701 0.02 -4.6436 -0.9940 20.0 - 10.4
210,310 0.8555 0.02 -5.3200 -0.1561 20.0 27.9
210,200 0.9232 0.03 -5.4336 -0.0799 30.0 - 30.2
209.800 1.726 0.03 -6.0092 0.5458 30.1 - 85.0
209.570 4,131 0.03 -6.6025 1.418 N3 86.4
209.450 8.729 0.03 -7.1516 2,167 30.9 185.
209.380 13.34 0.05 -7.7082 2,591 51.6 - 48.4
209.338 2}.22 0.05 -8.3002 3.055 55.1 -284.
209,315 67.93 0.05 -8.8842 4,218 64.9 189.
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TABLE XIV (continued)

In KT
Temperature KT Fractional Error Residual
(°K) (atm—l) Error in K, 1n[(T-T_)/T_] Value x103 x103
209,302 53.83 0.05 -9.4789 3.986 90.1 -746.
209.294 387.1 0.10 -10.172 5.959 180. 407

For Tc=209.286°K

1,182 z 0,008

Y

1

r 0.00154 * 0.00002 atm™

Minimum ofit = 0.00647

-6ST-
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TABLE XV
RESULTS OF VARYING THE RANGE OF (T—Tc)
IN THE FIT TO

In K, =1InT -y 1ln t

T
(T-Tc)max 1
(-]
(°K) Y ['(atm ™) Oeit
10.015 1.182 + 0.004 0.00154 0.0647
8.015 1.183 + 0.004 0.00154 0.0736
6.015 1.182 + 0.005 0.00155 0.0873
4.014 1.182 + 0.006 0.00154 0.113
2.914 1.182 + 0.007 0.00155 0.124
2.014 1.176 + 0.008 0.00161 0.139

1.024 1.166

I+

0.010 0.00173 0.159



TABLE XVI

LOCUS OF MAXIMUM ISOTHERMAL COMPRESSIBILITY

Tenperature Pressure Angle D Refractive Max. KT
(°K) (atm) (min. of arc) Index LL (atm™1)

219.301 67.315 260.28 1.992233 0.06050 0.06496
217.301 65.411 275.71 1.09775 0.06398 0.08203
215.301 62.564 273.46 1.09696 0.06347 0.1115
213.300 60.118 289.39 1.10256 0.06706 0.1751
212,200 58.470 287.08 1.10175 0.06654 0.2562
211.300 57.229 295.48 1.10470 0.06843 0.3816
210.310 55.781 302.99 1.10733 0.07011 0.8570
210.200 55.599 299.88 1.10624 0.06941 0.9377
209.800 54,988 296.45 1.10504 0.06864 1.786
209.570 54.653 305.18 1.10810 0.07060 4,131
209.450 54.468 304.82 1.10798 0.07052 8.732
209.380 54.3596 300.20 1.10635 0.06948 15.37
209.338 54.2940 310.08 1.10982 0.07170 24,06
209,315 54.2568 303.89 1.10765 0.07031 72.18
209.302 54,2424 311.10 1.11018 0.07192 79.63
209.294 54,2285 302.62 1.10720 0.07003 565.8

=191~



TABLE XVII
RESULTS OF WEIGHTED LEAST SQUARES FITTING OF
COMPRESSIBILITIES ALONG THE PHASE BOUNDARY

In ((LL/LL)?Ky] = T'- y'In|t]

Temperature (LL/LLC)ZKT 1n[(LL/LLC)2KT]
(°K) KT(atm—l) (atm™1) in|t| Experimental Calculated
Gas side: 199.302 . 0.0742 0.0124 -3.043 -4.39 -4,34
201.300 0.0859 0.0175 -3.266 -4,05 -4.08
203.300 0.0929 0.0234 -3.554 -3.76 -3.75
206.120 0.140 0.0501 -4,191 -2.99 -3.02
207.620 0.213 0.0978 -4.833 -2.32 -2.28
208.400 0.406 0.222 -5.465 -1.50 -1.55
208.886 0.811 0.520 -6.260 -0.653 -0.636
209.126 2.09 1.53 -7.176 0.424 0.419
209.221 5.82 4,66 -8.077 1.54 1.46
- 209,259 11.2 9.63 -8.956 2.26 2.47
209.274 18.0 16.3 -9.767 2.79 3.40

For Tc=209.286°K

Yé=l.1510.01 Pé=0.0003910.00002 with o
(1/atm)

fit=0'074
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Liquid side:

Temperature

TABLE XVII (continued)

2
(LL/LLC) K

1n[(LL/LLg) 2KT

(°K) KT(atm_l) (atm_l) ! i1n|t]| Experimental Calculated
199.302 0.00543 0.0148 -3.043 -4.21 -4.21
201.300 0.00747 0.0191 -3.266 -3.96 -3.96
203.300 0.0111 0.0263 -3.554 -3.64 -3.64
206.120 0.0268 0.0541 -4,191 -2.92 -2.92
207.620 0.0631 0.112 -4,833 -2.19 -2.,20
208.400 0.134 01,215 -5.465 -1.54 -1.49
208.886 0.349 0.502 -6.260 -0.689 -0.597
209.126 1.21 1.58 -7.176 0.455 0.433
209.221 3.91 4.75 -8.077 1.56 1.45
209.259 11.0 1o 7 -8.956 2.54 2.43
209.274 22.3 24.5 -9.766 3.20 3.34

For Tc=209.286°K

=
YL, 1.12+0.01

P£=0.00048t0.00001 with o

(1/atm)

fit=0'019

-£€91T~
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TABLE XVIII

RESULTS OF THE FIT TO

In[(LL/TE) %K) = 1nT' - y'ln|t|
In[ (LL/ED) %K)
in|t] Experimental Calculated
Gas side: -3.043 -4.45 -4.39
-3.266 -4.09 -4.13
-3.554 -3.79 -3.79
-4.191 -3.01 -3.05
-4,833 ~2 .33 -2.30
-5.465 -1.51 -1.57
-6.260 _ -0.653 -0.646
-7.176 0.424 0.419
-8.077 1.54 1.47
-8.956 2.26 2.49
-9.767 2.79 3.43
Liquid side: -3.043 -4.27 -4.26
-3.266 -4.01 -4.01
-3.554 -3.68 -3.68
-4.191 -2.94 =-2.96
-4.833 ~2.20 -2.22
-5.465 -1.54 -1.50
-6.260 -0.689 -0.599
-7.176 0.455 0.446
-8.077 1:56 1.47
-8.956 2.54 2.47
-9.767 3.20 3.40

For Tc=209.286°K

Y&=1.16£0.01 T%=0.00036+0.00002 atm ! with o .

) _

=0.074

Y£=l.l410.01 F£=0.00044t0.00001 atm
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TABLE XIX

|LL-LL,| AND |P-P_| DATA
USED IN DETERMINATION OF §

ILL-LLcl | P Pcl (atm)

T-T_= -0.065°K

Pooex= 54-114 atm.

LL<LL, 0.042740 8.735
0.038970 6.154
0.035324 4.224
0.031830 2.816
0.028244 1.755
0.024750 1.027
0.021521 0.570
0.018265 0.281
0.015036 0.116
0.014168 0.088
0.010340 0.016

LL>LL, 0.010472 0.023
0.013453 0.089
0.016629 0.255
0.020773 0.728
0.025358 1.809
0.030037 3.868
0.034480 7.134
0.037742 10.640
0.040457 14.461

T-T_ = -0.027°K

P_oex=54-1736 atm.

LL<LL 0.042046 8.2336
0.038485 5.8936
0.034081 3.6996
0.029720 2.1706
0.026090 1.2966
0.022390 0.6916
0.019164 0.3626
0.015674 0.1546
0.011757 0.0428
0.009287 0.0136

LL>LL 0.006959 0.0032

¢ 0.009617 0.0180

0.010146 0.0244

0.012849 0.0824
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TABLE XIX (continued)

| LL-LL_| |P-P_| (atm)
0.017309 0.3344
0.020213 0.6764
0.023723 1.3884
0.028101 2.9444
0.032850 5.8724
0.035643 8.3974

T-T_= -0.012°K

PLoex= 54-1985 atm.

LL<LL 0.039563 6.5565
0.036436 4.8035
0.033380 3.4295
0.029623 2.1575
0.026235 1.3365
0.022475 0.7125
0.019209 0.3755
0.015554 0.1560
0.011773 0.0478
0.008000 0.0098

LL>LL_ 0.009564 0.0223
0.011848 0.0608
0.015569 0.2117
0.019034 0.5235
0.022817 1.1755
0.026748 2.3755
0.030966 4.5445
0.035131 7.8965
0.038553 11.8765

T-T_= 0.008°K

P(LL )= 54.2285 atm.

LL<LL_ 0.020305 0.4839
0.018229 0.3106
0.015722 0.1698
0.014098 0.1078
0.011846 0.0539
0.009323 0.0206
0.005971 0.0028
0.004052 0.0006

LL>LL 0.003245 0.0008

= 0.004910 0.0023

0.005044 0.0023
0.007732 0.0103
0.010328 0.0344

0.013038 0.0968



TABLE XIX (continued)

T-Tc= 0.016°K
P(LLc)= 54.2424 atm.
LL<LLc

LL>LLc

T-Tc= 0.029°K
P(LLc)= 54.2568 atm.
LL<LLc

LL>LLc
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ILL-LLCI

0.015036
0.017251

0.021148
0.019043
0.015806
0.013004
0.012072
0.008955
0.007019
0.006591
0.004346
0.004020
0.002128
0.000550

0.004803
0.012078
0.012497
0.015338
0.016128
0.017295
0.018540

0.020275
0.018347
0.015647
0.014111
0.012274
0.009877
0.008101
0.005771
0.004472
0.001343

0.001667
0.003317
0.005985
0.007639
0.011114
0.014009
0.015769

[P-PC| (atm)

0.1844
0.3396

0.5730
0.3750
0.1791
0.0827
0.0609
0.0207
0.0094
0.0079
0.0032
0.0027
0.0010
0.0002

0.0015
0.0717
0.0826
0.2042
0.2534
0.3481
0.4704

0.4853
0.3252
0.1714
0.1136
0.0656
0.0280
0.0126
0.0040
0.0022
0.0003

0.0005
0.0013
0.0054
0.0120
0.0529
0.1413
0.2374



T-T =
C

P(LLc)= 54.2940 atm.

LL<LLc

LL>LLc

0.052°K

-1l68-

TABLE XIX (continued)

|LL-LL_|

0.017845

0.020481
0.018081
0.016332
0.013464
0.011402
0.008377
0.006568
0.003218
0.002146
0.000505

0.002560
0.003533
0.006434
0.009661
0.012086
0.014155
0.015840
0.018216

|P~pc| (atm)

0.4060

0.5219
0.3179
0.2150
0.1011
0.0559
0.0190
0.0095
0.0033
0.0013
0.0005

0.0017
0.0021
0.0080
0.0329
0.0801
0.1546
0.2503
0.4525



=169~

TABLE XX

VALUES OF ¢
ON ISOTHERMS CLOSE TO Tc

T-T, (°K) 6 (LL<LL_) § (LL>LL )
0.052 3.86 + 0.04 4.19 + 0.03
0.029 3.99 + 0.01 4.32 + 0.02
0.016 3.99 + 0.01 4.40 + 0.01
0.008 4.08 + 0.01 4.45 + 0.02

-0.012 3.99 + 0.03 4.44 + 0.01
-0.027 3.97 + 0.03 4.48 + 0.02
-0.065 3.99 + 0.04 4.50 + 0.02

Best value of § = 4.25+0.25
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TABLE XXI

PRESSURES TEMPERATURES AND (AP/AT)
ON THE CRITICAL ISOCHORE

209.294

54.2285

Temperature (°K) Pressure (atm) AP/AT (atm/°K)

219.301 69.788

1.5605
217.301 66.667

1.5645
215,301 63.538

1.5597
213.300 60,417

1.5536
212.200 58.708

15511
211.300 57.312

1.5384
210.310 55.789

1.5636
210.200 55.617

1.5325
209.800 55.004

1.5261
209.570 54.653

1.5417
209.450 54.468

1.5486
209.380 54.3596

1.5619
209.338 54.2940

1.6174
209,315 54.2568

1.1077
209.302 54.2424

1.7375



-171~

TABLE XXII

ANTISYMMETRIC RANGE ABOVE T
THE Au, ALL DATA

FOR LLc=0.070588 Pc=54.213 atm

(o]

Pressure (atm) LL ALL AuXI03
T=219.301°K
64.599 0.051185 -0.27488 -113.02
66.221 0.056393 -0.20110 - 73.64
67.931 0.062956 -0.10812 - 36.26
68.799 0.066498 -0.05794 - 18.79
69.165 0.068023 -0.03634 - 11.70
69.634 0.069969 -0.00877 - 2.85
70.288 0.072512 0.02726 9.10
70.694 0.073994 0.04825 16.31
71.386 0.076451 0.08306 28.29
72.199 0.079139 0.12114 41.90
73.613 0.083039 0.17639 64.59
74.012 0.084024 0.19034 70.81
75.453 0.087176 0.23499 92.71
75.745 0.087747 0.24309 97.06
T=217.301°K
62.361 0.050726 -0.28138 - 94.46
63.592 0.055368 -0.28138 - 64.18
63.931 0.056815 -0.19512 - 56.31
64.452 0.059197 -0.16137 - 44.61
65.009 0.061913 -0.12289 - 32.63
65.422 0.064040 -0.09276 - 24.09
65.778 0.065927 -0.06603 - 16.96
66.335 0.068866 -0.02439 - 6.20
66.769 0.071110 0.00740 1.88
67.207 0.073298 0.03839 9.78
67.365 0.074065 0.04926 12557
67.896 0.076502 0.08378 21.75
68.357 0.078422 0.11098 29.50
68.478 0.078917 0.11799 31.50
69.372 0.082128 0.16349 45.95
70.624 0.085831 0.21595 65.35
72.428 0.089944 0.27421 92.05
T=215.301°K
60.862 0.053391 -0.24362 - 57.20
61.311 0.055652 -0.21159 - 46.47
61.759 0.058158 -0.17610 - 36.21



Pressure (atm)

62.196
62.691
63.099
63.514
63.690
63.898
64.067
64.369
64.769
65.219
65.714
66.257
66.816

300°K

58.371
58.721
28.103
59.432
59.616
60.056
60.304
60.478
60.681
60.949
61.277
61.624
61.990
62.482
62.985

200°K

56.657
57.202
57.542
57.786
57.9717
58.146
58.262
58.455
58.574
58.695
58.841
58.985

] T 2=

LL

0.060935
0.064378
0.067347
0.070412
0.071681
0.073144
0.074264
0.076159
0.078455
0.080779
0.082933
0.084996
0.086879

0.052033
0.054147
0.056922
0.059704
0.061522
0.066336
0.069261
0.071291
0.073555
0.076293
0.079154
0.081640
0.083816
0.086221
0.088257

0.049124
0.052391
0.055023
0.057269
0.059455
0.061599
0.063211
0.066293
0.068330
0.070374
0.072773
0.074977

TABLE XXII (continued)

ALL

-0.13675
-0.08797
-0.04591
~0.00249
0.01548
0.03621
0.05207
0.07893
0.11145
0.14437
0.17489
0.20412
0.23079

-0.26286
~0.23291
~0.19361
-0.15418
-0.12843
-0.06024
-0.01880
0.00997
0.04203
0.08082
0.12136
0.15657
0.18740
0.22147
0.25031

-0.30407
-0.25779
-0.22051
~-0.18869
-0 .15771
-0.12734
-0.10451
-0.06084
-0.03199
-0.00303

0.03096
0.06218

Aux10

26.65
16.36
8.29
0.447
2.78
6.52
9.50
14.73
21.45
28.82
36.69
45.11
53.58

44.70
36.11
27.15
19.80
15.84
6.87
2,11
1.12
4.77
9.42
14.92
20.53
26.29
33.82
41.33

46.94
32.93
24.68
19.01
14.75
11.11
8.69
4.81
2.51
0.236
2.42
4.96



Pressure (atm)

T=211.

99,138
59.347
59.565
59.856
60.243
60.654

300°K

T=210.

56.157
56.456
56.637
56.822
56.913
57.026
57.136
57.202
57.274
57.390
57.558
57.687
57.873
58.043
58.244
58.454
58.795

310°K

54.820
55.090
55.274
55.420
55.537
55.589
55.645
55.714
55.780
55.824
55.901
55.986
56.111
56.254
56.423
56.710
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LL

0.077100
0.079496
0.08l1602
0.083865
0.086256
0.088299

0.052127
0.054836
0.056919
0.059609
0.061145
0.063450
0.066050
0.067715
0.069597
0.072599
0.076384
0.078648
0.081345
0.083187
0.084934
0.086478
0.088496

0.050054
0.052494
0.054777
0.057019
0.059652
0.061163
0.063134
0.066300
0.070038
0.072684
0.076531
0.079261
0.082020
0.084216
0.086100
0.088426

TABLE XXII (continued)

ALL Aux103
0.09226 7.58
0.12619 11.05
0.15603 14.57
0.18809 19.15
0.22197 25.07
0.25090 31.20

~0.26154 - 25.54
-0.22315 - 18.25
-0.19364 14.03
-0.15553 - 9.89
~0.13378 - 7.93
-0.10113 - 5.57
-0.06428 - 3,35
-0.04070 - 2.07
-0.01404 - 0.703
0.02849 1.42
0.08211 4.35
0.11419 6.52
0.15240 9.55
0.17849 12.24
0.20324 15,35
0.22511 18.54
0.25370 23.61
-0.29089 - 22.48
-0.25634 - 18,61
-0.22399 - 11.14
-0.19223 - 7.14
-0.15492 - 5.12
-0.13352 - 3.99
-0.10560 - 2.82
-0.06075 - 1.43
-0.00779 - 0.169
0.02969 0.633
0.08419 1.97
0.12286 3.39
0.16196 5.41
0.19306 7.65
0.21975 10.23
0.25271 14.51



Pressure (atm)

T=210.

200°K

T=209.

54.866
55.055
55.326
55.392
55.453
55.539
55.602
55.647
55.708
55.810
55.894
56.040
56.300
56.552

800°K

T=209.

54.471
54.653
54.724
54.793
54.846
54.908,
54.941
54.970
55.015
55.033
55.056
55.084
55.144
55.210
55.336
55.520
55.709

570°K

54.008
54.268
54.403
54.478
54.541
54.582

-174-

LL

0.051511
0.053580
0.058056
0.059756
0.061784
0.065742
0.069592
0.072476
0.075750
0.079560
0.081711
0.084130
0.086965
0.088896

0.052070
0.054525
0.055873
0.057466
0.059032
0.061538
0.063671
0.066522
0.071947
0.073934
0.076053
0.077940
0.080573
0.082405
0.084811
0.087086
0.088736

0.049910
0.052778
0.055011
0.056724
0.058975
0.061034

TABLE XXII (continued)

ALL Aux103
-0.27026 -17.06
-0.24094 -12.37
-0.17754 - 6.02
-0.15345 - 4.56
-0.12472 - 3.26
-0.06865 - 1.50
-0.01410 - 0.283

0.02675 0.542
0.07313 1.61
0.12711 3.32
0.15757 .67
0.19184 6.97
0.23200 10.92
0.25936 14.65
-0.26234 «12,15
-0.22756 - 7.69
-0.20847 - 6.02
-0.18589 - 4.43
=0,16371 - 3,25
-0.12821 - 1.91
-0.09800 - 1.22
-0.05759 - 0.638
0.01925 0.209
0.04740 0.530
0.07742 0.929
0.10416 1.40
0.14145 2.39
0.16741 3.45
0.20149 5.40
0.23372 8.19
0.25709 10.98
-0.29293 -15.37
-0.25230 - 8.76
-0.22067 - 5.50
-0.19641 - 3.75
-0.16451 - 2.33
-0.13534 - 1.44
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Pressure (atm) LL
54.625 0.064808
54.652 0.070242
54.663 0.073202
54.673 0.075088
54.716 0.079261
54.764 0.081467
54.836 0.083540
54.982 0.086100
55,177 0.088224

T=209.450°K
53.893 0.050093
54.112 0.052569
54.255 0.055000
54.332 0.056990
54.400 0.059815
54.426 0.061658
54.449 0.064362
54.461 0.067174
54.470 0.071544
54.480 0.075318
54.494 0.077640
54.516 0.079718
54.540 0.081142
54.625 0.083880
54.736 0.086010
54.980 0.088755
T=209.380°K
53.826 0.050100
54.006 0.052156
54.007 0.052241
54.167 0.054950
54.246 0.056942
54.302 0.059458
54.323 0.060670
54.341 0.063120
54.357 0.066927
54.358 0.070320
54.362 0.073171
54.366 0.074750
54.378 0.078038
54.389 0.079294

TABLE XXII (continued)

ALL Aux103
~0.08188 - 0.546
-0.00490 - 0.022

0.03703 0.178
0.06376 0.353
0.12286 1.07
0.15412 1.85
0.18349 2.99
0.21975 5.23
0.24984 8.14
-0.29034 «1%,75
-0.25527 - 8.19
-0.22083 - 4.72
-0.19264 - 2.93
-0.15261 - 1.41
-0.12651 - 0.849
-0.08820 - 0.379
-0.04836 - 0,134
0.01355 0.029
0.06701 0.211
0.09991 0.449
0.12934 0.813
0.14951 1.20
0.18831 2.54
0.21847 4.24
0.25737 7.87
-0.29025 -12.85
~0.26112 -8.27
-0.25992 - 8.16
-0.22154 - 4.28
-0.19332 - 2.48
-0.15768 - 1.19
-0.14050 - 0.772
-0.10579 - 0.348
-0.05186 - 0.075
-0.00379 0.0064
0.03659 0.068
0.05896 0.096
0.10554 0.335
0.12334 0.486



Pressure (atm)

T=209.

54.494
54.663

302°K

T=209.

53.669
53.867
54.061
54.063
54.160
54.182
54.222
54.233
54.235
54.239
54.240
54.241
54.242
54.244
54.314
54.325
54.447
54.496
54.591
54.711

294°K

53.745
53.918
54.059
54.121
54.175
54.208
54.226
54.228
54.229
54.231
54.239
54.263
54.325
54.413
54.568

-176-

LL

0.086357
0.088411

0.049440
0.051545
0.054675
0.054782
0.057584
0.058516
0.061633
0.063569
0.063997
0.066241
0.066567
0.068460
0.070038
0.075391
0.082666
0.083085
0.085926
0.086716
0.087883
0.089082

0.050287
0.052359
0.054866
0.056490
0.058742
0.061265
0.064617
0.066547
0.073833
0.075498
0.078320
0.080916
0.083626
0.085624
0.087839

TABLE XXII (continued)

ALL

0.22340
0.25249

-0.29960
-0.26977
-0.22544
-0.22392
-0.18422
-0.17103
-0.12686
-0.09943
-0.09337
-0.06157
-0.05696
-0.03014
-0.00779
0.06805
0.17110
0.17705
0.21729
0.22848
0.24502
0.26200

=0.28759
-0.25824
~0.+42273
-0.19972
-0.16782
-0.13208
-0.08459
-0.05724
0.04598
0.06956
0.10954
0.14631
0.18471
0.21301
0.24440

=13 .96
8.84
4.09
4.03
1.79
1.30
0.423
0.187
0.157
0.062
0.053
0.019
- 0.0043
0.026
l1.16
1.33
3.20
3.94
5.35
7.13

-11.65
- 71.25
- 3.83
= 2.31
- 1.16
- 0.426
- 0.055
- 0.018
0.014
0.041
0.176
0.562
1.55
2.89
5.23
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Pressure (atm) LL
54.433 0.082002
54.478 0.083474
54.597 0.085968
54.602 0.086025
54.815 0.088569

T=209.338°K
53.774 0.050118
53.976 0.052507
54.079 0.054256
54.193 0.057123
54.238 0.059186
54.275 0.062211
54.285 0.064020
54.291 0.067369
54.293 0.068442
54.294 0.070083
54.296 0.073148
54.296 0.074121
54.302 0.077022
54.327 0.080249
54.374 0.082674
54.449 0.084743
54.544 0.086428
54.747 0.088795
T=209.315°K
53.771 0.050319
53.932 0.052241
54.085 0.054941
54.143 0.056477
54.191 0.058314
54.229 0.060711
54.244 0.062486
54.253 0.064817
54.255 0.066116
54.257 0.069245
54.257 0.072255
54.258 0.073905
54.262 0.076573
54.269 0.078227
54.310 0.081702
54.398 0.084597

TABLE XXII (continued)

ALL Aux103
0.16171 1.22
0.18255 1.89
0.21788 3.73
0.21869 3.83
0.25473 6.97

-0.28999 12.49
-0.25614 - 7.38
-0.23137 - 4.85
-0.19075 - 2.19
-0.16153 -1.17
-0.11867 - 0.385
-0.09305 - 0.189
-0.04559 - 0.070
-0.03040 - 0.026
-0.00715 - 0.0070
0.03627 0.029
0.05005 0.040
0.09115 0.137
0.13687 0.552
0.17123 1.30
0.20053 2.46
0.22440 3.91
0.25793 6.93
-0.28714 -11.68
-0.25992 - 7.59
-0.22167 - 3.85
-0.19991 - 2.49
-0.17388 - 1.41
-0.13992 - 0.579
~0.11477 - 0.253
~0.08175 - 0.076
-0.06336 - 0.047
-0.01902 - 0.0037
0.02362 0.0049
0.04699 0.025
0.08479 0.096
0.10821 0.201
0.15744 0.870
0.19846 2.24
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TABLE XXIII

THE Au,

ALL DATA

IN THE ANTISYMMETRIC RANGE FOR T<Tc

Pressure (atm) LL
T=208.886°K
53.278 0.050052
53.529 0.054101
53.650 0.085787
53.843 0.088874
54.117 0.091259
T=209.126°K
53.590 0.050507
53.835 0.054265
53.945 0.057969
54.010 0.083057
54.144 0.086492
54.380 0.089378
T=209.221°K
53.544 0.049067
53.833 0.052323
53.998 0.055552
54.026 0.056420
54.098 0.060247
54.137 0.081060
54.203 0.084041
54,369 0.087217
54.842 0.091361
T=209.259°K
53.482 0.048198
53.811 0.051424
54.019 0.054913
54.131 0.058830
54.160 0.061301
54.177 0.077547
54.195 0.080469
54.256 0.083437
54.508 0.087897
54.850 0.090801

ALL pux103
-0.29100 - 8.01
-0.23364 - 1.70

0.21520 0.749
0.25893 3.62
0.29271 7.58
-0.28449 - 9.28
-0.23124 - 3.16
-0.17876 - 0.596
0.17664 0.603
0.22530 2.65
0.26620 6.14
-0.30488 -14.05
-0.25876 - 6.60
-0.21301 - 2.61
-0.20071 - 1.96
-0.14649 - 0.339
0.14835 0.375
0.19059 1.41
0.23558 3.93
0.29429 10.81
~0.31719 -17.23
-0.27149 - 8.60
-0.22206 - 3.49
-0.16656 - 0.917
-0.13157 - 0.282
0.09859 0.054
0.13998 0.353
0.18202 1.32
0.24521 5.13
0.28635 10.11
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TABLE XXIII (continued)

Pressure (atm) LL ALL AquO3

T=209.274°K

53.486 0.048113 -1.31839 -17.75
53.823 0.051379 =0.27213 - 8.90
54.043 0.055034 -0.22035 - 3,51
54.151 0.058815 -0.16679 - 1.02
54.189 0.062588 -0.11333 - 0.198
54.221 0.080152 0.13549 0.371
54.259 0.082436 0.16784 0.987
54.410 0.086157 0.22056 dx31
54.722 0.089622 0.26965 7.92
55.374 0.093405 0.32325 17.18
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TABLE XXIV
COMPARISON OF CRITICAL
COEFFICIENTST
Substance r r' A
Ar [Ref. (36)] 0.072 0.019 2.48
Kr [this study] 0.084 0.021 2.34

*
[this study]

Xe [Ref. (29)]

He® [Ref. (29)]
Co, [Ref. (29)]
O2 [Ref. (55)]

0.083:0.001 0.021%0.001(gas)
0.025+0.001 (1lig.)

0.059 0.0143 33
0.0130 0.0359 3.2
0.0526 0.0119 2.6
0.053 0.0109 4.0

+ Determined from the Au, Ap data analysis.

* Determined from the isothermal compressibilities.



TABLE XXV
COMPARISON OF THE CRITICAL EXPONENTS

Substance B Y § Reference
Ar 0.36430.0066 Teague and Pings (®)
0.3574%0.0027  1.17$0.013 4.35%0.10 wu(3®)
0.362 £0.001 Sengers (32
Kr 0.3571£0.0008  1.18+0.01 4.25:0.25 This study
4.3 0.1 " "
Xe 0.350 $0.015 Weinberger & Schneider (37
4.6 *0.1 Vicentini-Missoni et a1(29)
1.21%0.03 zollweg et al 1)
He4 0.352 0,003 Roach and Douglas(sa)
4.45%0.10 Vicentini-Missoni et al‘%?)
0.3554+0.0028 1.1743%0.0005 Kierstead (3%
1.22230.0017 Kierstead (3%
co, 0.347 +0.003 4.60%0.10 Vicentini-Missoni et al(2?)
0.3450%0.0006 Ssengers et al(4®)
0.3475%0.0006 Sengers et al %)
1.219%0.010 Lunacek & Conell (60)
H 0.375 £0.015 Roder et al(>?)

-T8T~-



TABLE XXV (continued)

Substance B Y Reference
N,0 0.3482:0.0007 sengers et a1 (46
CCLF,  0.3540:0.0018 sengers et al4®)

o, 0.353 1.25:0.02 4.59:0.010 Weber ()

H,0 0.347 £0.005 1.20%0.05 Sengers & Greer (°9)
CrBry 0.368 $0.005  1.215%0.015 Ho & Litster (31)

SF 1.225%0.02 Puglielli & Ford(62)

=£8T1-



=183~

APPENDIX A
A REVIEW OF THE DERIVATION(I) OF LL-FORMULA AND
THE UNDERLYING ASSUMPTIONS(z)
The simplest theory that takes electrostatic inter-

(1) and the method

actions into account is that of Lorentz
of derivation is as follows:

A particular molecule on which the local electric
field intensity E* is to be calculated is selected. A
sphere of radius R that is large compared to the distance
between molecules but small compared to macroscopic dis-
tances is drawn about this molecule. Then the field inten-
sities in the dielectric E{ outside the sphere and E§
inside the sphere are computed.

To compute E*, the following procedure can be used:
The effect of the relative displacement of positive and
negative charges in the molecules of a dielectric can be
described by assigning a dipole moment Pdv to each volume

element dv, where P is the polarization. The potential at

a point outside the dielectric is given by,
=. =0
Vo= (1/4m) (25— dv (A-1)
r

and rr°= r is the vector from the volume element to the

point where the potential is calculated.
VP

- 5. (Fo/8) = pov(d) = v - P -
Since P.(r°/r) = P V(r) v = = (A-2)

Then, through the use of the divergence theorem, Eq. (A-1)



-184-
can be expressed as,
vV = (1/4m) ( f(op/r)ds+f(pp/r)dv) (A-3)

where the surface charge density op=ﬁ°§, with n being the
outward unit normal to the surface element dS and the vo-
lume charge density pp=-V-5.
The field intensity E can then be obtained from Eg. (A-3)
by differentiation.

E = (1/4n){f(cpf°/r2)ds+f(ppE°/r2)dv (A-4)
The extension of these formulas to points inside the die-
lectric can be done by excluding from the region of inte -
gration v a small volume v' with surface S' about the point
where V and E are calculated. Then Egs. (A-3) and (A-4)
are valid if the surface integral is taken over S as well
as S' and the volume integral over v-v' and v' is shrunk
to vanishing volume. From the original integral, the result
of this process must be independent of the shape of v' but
this condition is not satisfied in Eq. (A-4) and the inte -
gral over S'depends on,v'. It is (47/3)P when v' is a

sphere. Hence Eiis given by

E{ =E + (4n/3)P (A-5)

where E is the external field.
To compute Eg is more involved and assumptions about
the distribution of molecules have to be made in order to

obtain a simple result. Lorentz has treated the case of a
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cubic lattice of molecules, each having the same dipole

moment m, and has shown E3=0.

In general, therefore

E* = E{ + Eg =E + (4n/3)P + Eg (A-6)

Setting f§=0, the Lorentz local field formula is obtained.

E* = E + (41/3)P (a=7)

If the dielectric displacement vector D is defined by

D = + 4P (A-8)

t

= XE (2-9)

ol

and
with the susceptibility x being independent of E but a

function of density and temperature, it then follows that

D = eE (A-10)
with the dielectric constant e=1+4my (A-11)
on the molecular scale, P = N<ﬁ>av (A-12)

where N is the number of molecules per unit volume and
<fﬁ>av is the mean moment of a representative molecule com-
puted by methods of statistical mechanics.

On the macroscopic scale, for non-polar isotropic molecules
with only induced moments,

= E* —
m= ok (A-13)
where o0 is the molecular polarizability and is a scalar.
Therefore from Eg. (A-11) and (A-13), P = NamE (A-14)

and combining Egs. (A-7), (A-9), (A-11l) and (A-14),

B/E* = Nay = 3ifar = (/4m HEL (a-15)
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If N is replaced by p/M, where p is the density and M is
the molecular mass, Eq. (A-15) becomes

e-1 _ _ o
s e (4n/3M)amp = constantXxp (A-16)

Eq. (A-16) is known as the Claussius-Mossotti formula.
The optical analog of the CM-formula is the Lorentz-

Lorenz formula which can be obtained by replacing e with

nz, n being the refractive index.
2
nz'l = (41/3M)o,_p (A-17)
n“+2

This transformation is valid at optical frequencies for the
case of non-polar molecules with negligible atomic polari-
zabilities. It is even justified for polar molecules be-
cause at optical frequencies the oscillations of the field
are so fast that there is no appreciable orientation

effect and the material behaves as though it is non-polar.
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APPENDIX B
RELATIONS AMONG THE CRITICAL-POINT EXPONENTS AS
PREDICTED BY THE SCALING LAW

(10) has shown the

Using magnetic variables Stanley
relations among the critical-point exponents as predicted
by the scaling hypothesis. Here, these relations will be
translated into the fluid systems by appropriate choice of
thermodynamic potentials and variables.

Griffiths and Wheeler(zs) have shown that it is advan-
tageous to discuss critical phenomena in terms of inten-
sive variables. A choice of the chemical potential Ap and
the reduced temperature difference from the critical tem-
perature t as independent variables leads to a thermodyna-
mic potential P*(Au,t) such that,

dP* = Ap d(Au) + As dt (B-1)
where Ap is the density and As is the entropy with A indi-
cating a linear transformation of the form Ap=p-pc.

The homogeneous function assumption of the scaling

hypothesis applied to P* implies that for the two parame-

ters a, and au,

a, a
P*(A © t,A Y Ap)=AP*(t,Ap) (B-2)
for any value of A. If both sides of Eg. (B-2) are diffe-

rentiated with respect to Au, the resulting equation is

a at a a
» M afer(x Te,x Yau)dsa(a Yaw) = Adp*(t,0u)/98u (B-3)
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From the choice of P*, the first Ap derivative of P* is

proportional to Ap. Therefore Eq. (B-3) is equivalent to,

a

a a
A M oap(x Fe,n Map) = A Ap(t,bn)  (B-4)

Near the critical point when Au=0 and t+0, B is associated
with the behaviour of Ap. Hence,

a -1 a

Ao(t,0) = A M ap(r ©

t,0) (B-5)
Since Eqg. (B-5) is valid for all values of X, it must hold
for A=(-1/t)1/3t, thus

Ap(t,0) = (-t) Ap(-1,0) (B-6)

But from Eq. (11), Asz(—t)B, so that

B = (1-a,)/a, (B-7)

When t=0 and Au+0, the exponent 1/§ is associated with the
behaviour of Ap. Hence,
au—l au
Ap(0,Ap) = A Ap (0,2 "Au) (B-8)

1l/a

If A=Au /%M,

(1-a ) /a
Ap(0,Au) = Au M Hap(o,1) (B-9)

But from Eq. (12), Ap=]Au|1/6, so that

§ = au/(l—au) (B-10)

Egs. (B-7) and (B-10) can be solved simultaneously for at
and au in terms of the exponents, yielding

a, = 1/8(6+1) (B-11)

a, = §/(8+1) (B-12)

Additional exponent relations can be obtained by
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taking higher order partial derivatives of the potential
P*, For example, when P* is differentiated twice with re -
spect to Ay, a quantity proportional to the product of the
isothermal compressibility and the density squared szT is
obtained.

2au a, a
A F %KL (0 Te,a Maw) = x p2K (t, 80) (B-13)

Along the coexistence curve where Au=0 and t+0, y' refers

to the behaviour of the isothermal compressibility. For

-(2au-l)/at

p?Kn (t,0) = (-t) p?Ky (-1,0) (B-14)

But from Eg. (14), szTzr'(-t)'Y'. lience,

Y' = (2a,-1)/a, L=La)

If a, and a from Egs. (B-11l) and (B-12) are substituted
into Eq. (B-15), the relation

y' = B(6-1) (B-16)
which is called the Widom equality is obtained.

The scaling hypothesis also predicts that the primed
and the unprimed critical-point exponents are equal. This
can be illustrated by letting A=t"1/3t jin Eq. (B-13) and
obtaining,

y = (2a -l)/at (B-17)
Combining Egs. (B-15) and (B-17),
y =y' (B-18)

P* can also be differentiated with respect to tempe-
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rature for further exponent relations. In particular the

second temperature derivative of P* can be related to the
specific heat at constant volume.

2at at a
A Tec, (A T, Hau) = a oC,, (£, 81) (B-19)

On setting Au=0, A=(-t)_l/at and using oCV=(—t)_a , one
obtains
a' = 2-l/at (B-20)

When a, from Eq. (B-1l) is substituted into Eqg. (B-20), the
result is the Griffith's inequality satisfied as an equa-
1lity.

a'+B(8+1) = 2 (B-21)
If Egs. (B-16) and (B-21) are combined the Rushbrooke

inequality in the form of an equality is obtained.

a'4+2B+Y' = 2 (B-22)
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APPENDIX C

AUTOMATIC PRESSURE CONTROL UNIT

The components and the electrical circuit for the au-
tomatic pressure control unit are shown in Fig., C. The
principle of the operation of this device was the variable
supply of radiant heat to a portion of the sample line so
that very small pressure corrections could be made by
heating and coolihg of the gas in this segment by radia-
tion. The pressure of the hydraulic oil and the pressure
of the sample inside the cryostat were very stable but the
pressure in the sample lines at room temperature varied.
Thus, the main function of the pressure control unit was
to compensate for such pressure changes.

The operation of this unit was as follows: The signal
from the Pace network which was proportional to the pres-
sure difference across the diaphragm was converted into a
light signal by the use of a Leeds and Northrup 2435D gal-
vanometer. The sensitivity of the galvanometer was 0.01
pa/mm and it was further adjusted by a 150 KQ resistor. An
0il-filled 10 mfd condensor connected across this resistor
produced rate control. The signal from the Pace network
for a steady position of the indicator of the microammeter
was proportional to the magnitude of the deflection from
the null point and produced a proportional current. The in-
sertion of the condensor produced an additional current

proportional to the rate of this deflection. Thus, the
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current to correct an abrupt pressure decrease was greater
than the current to correct a gradual pressure decrease of
the same magnitude. The torsional pendulum motion of the
galvanometer was dampened by a shunt resistor of 10 K@
connected in parallel with the galvanometer coil. The de -
flection of the galvanometer was sensed by a photo-conduc-
tive type, Clairex-603AL photocell. The photocell was con-
nected directly to a model D600P Lutron light dimmer for
resistive loads. The load in this case was a pair of 30
Watts, reflector type heat lamps in parallel with each
other. The components inside the light dimmer are shown in
Fig. C and their explanation can be found in any commercial
manual such as Ref. 40. The purpose of using the light dim-
mer was to regulate the intensity of the heat lamps by set-
ting the variable resistance of the dimmer at its maximum
so that the varying resistance of the photocell determined
the current for the charging of the capacitors inside the
light dimmer. When the pressure was controlling, the light
dimmer could be set such that the heat lamps operated at a
medium intensity. This’permitted some range for increasing
or decreasing the intensity of the lamps to correct the
pressure variations. The portion of the sample line on
which the heat lamps were shining was painted black to en-
sure efficient heating by radiation.

The pressure could be controlled automatically within

+0.001 atm, with this unit.
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Figure C. Automatic Pressure Control Unit
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APPENDIX D

AN ATTEMPT TO CHECK THE DENSITY DEPENDENCE OF
LL-FUNCTION FOR KRYPTON

F. Theeuwes and R. J. Bearman(44) have studied the
P,V,T behaviour of liquid and dense gaseous krypton. An
attempt to compare the present data with those of Ref. 44
showed that there were overlapping ranges of temperature
and pressure but no two states matched exactly. Therefore
an interpolation technique had to be employed.

After careful scanning of the data reported in Ref. 44
four states were chosen such that their temperatures were
wihtin the range of this study and their pressures were in-
cluded in the pressure range of the present investigation
at least along three isotherms. Then fitting a cubic
spline (See Appendix E) and interpolating for the Lorentz-
Lorenz function, LL-function, corresponding to each pres-
sure along several isotherms, temperature versus LL-func-
tion values at a known constant pressure were generated
as tabulated in Table D. These values were then plotted as
shown in Figures Dl—Dd, and the LL-function values corres-
ponding to the temperatures of each of the chosen states
form Ref. 44, were read from these plbts.

The conventional treatment of the density dependence
of the LL-function is simple and only a constant of pro-
portionality is involved such that

P =A x LL (D-1)
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where p is the density, LL is the LL-function and A is

the constant of proportionality.

The purpose here was to investigate the changes in
the value of A for differing densities, pressures and tem-
peratures, The values of A obtained from the comparison of

the two sets of data are summarized below:

Temperature Pressure Density A
(°K) (atm) (g/cm®) LL-function (g/cm?)
State 1 217.001 66.766 0.9586 0.0733 13.078

State 2 209.004 54,391 1.1890 0.09142 13.006
State 3 205.000 53.766 1.4454 0.11085 13.039
State 4 201.000 54,832 1.5727 0.12035 13.068
States 1,2 and 4 were in the dense gas region with their
temperatures being 7.71°K above, 0.28°K below and 8.29°K
below the critical temperature respectively. State 3 was
in the liquid region at 4.27°K below the critical tempera-
ture.

The value of A did not show a striking dependence on
density. Its maximum variation for these four states co-
vering two different states of matter was +0.28%. This
value incorporated errors introduced by the interpolation
technique and the experimental uncertainties associated
with both sets of data.

Consequently, for the purposes of this study, LL-
function will be treated as density within a constant of

proportionality.
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Figure D-2. LL(209.004°K) = 0.09142
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Figure D-4. LL(201.000°K) = 0.12035
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TABLE D
GENERATED TEMPERATURE VERSUS LL-FUNCTION VALUES

AT CONSTANT PRESSURL

Temperature Refractive LL-Function
(°K) Index

State 1:

At P=66.766 atm.
219.301 1.08906 0.05840
217,301 1.10888 0.07109
215,301 1,13352 0.08672

State 2:

At P=54.391 atm.
208.400 1.15039 0.09731
208,886 1.14333 0.09289
209.126 1.13791 0.08948
209.221 1.13481 0.08753
209,259 1.13239 0.08601
209.274 1.13209 0.08582

State 3:

At P=53.766 atm,
201.300 1.18600 0.11935
203.300 1.17921 0.11518
206.120 1.16646 0.10731
207.620 1.15590 0.10075

State 4:

At P=54.832 atm.
199,302 1.19241 0.12328
201.300 1.18678 0.11983
203.300 1.18023 0.11581
206.120 1.16828 0.10844
207.620 1.15910 0.10274
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APPENDIX E
CUBIC SPLINE FIT(45)

The task of the numerical spline fit is to determine
a smooth approximating function through a set of data
points (xl,yl), (x2,y2),....(xn,yn). In the cubic spline
fit, this approximating function consists of cubics as-
signed to each interval requiring the slopes to be contin-
uous at the junction points.

The procedure to determine these cubics is as follows:
If the values of the second derivative of the approximating
function F(x) at each point are Ml'MZ""'Mn’ and if a lin-
ear relationship of the second derivative between the
points (%, _,,y,_;) and (x,,y,) is assumed, then
Xy =X X=Xy _q

kK —— xk;x;xk_l (E-1)

k dy

F''= M

k-1 d

After integrating F'' twice, the resulting function is a
third degree polynomial in x,
M M

Kol (x -x) 2+

3
(2-%, ,)74C
6d k-1

151, (E-2)

6d

k k

1 and C2 can be evalu-

ated by passing the cubic through the end ponts (xk,yk)

The two constants of integration C

and (xk-l'yk—l)' Hence the equation of the cubic rearran-

ges into,

_ o S _ 3 _ _
F = Cl,k(xk X) +C2'k(x xk—l) +C3,k(xk x)+C4’k(x xk—l)



M _ M Yy _ M _.d
where Cl k= —E—l, C2 ™ ——E—, C3 " e Rt 0.
14 14 ~ ’
6dk 6dk dk 6
Yy M, d (E-3)
and C4 k= ...1_<. = ._k_i
' dk 6

Eq. (E-3) contains two unknowns namely Mkand M For n

k-1°
points there are n-1 intervals each being assigned a cubic
of the form of Eq. (E-3). Further there are n unknowns and
n conditions are needed. All points except the first and

the last points are junctions and the requirement of the

first derivative to be continuous at the junction points,

i.e. F'(x;) = F'(x;), creates (n-2) conditions of the form,
dy detdy iy o S C Yge1TYx YY)
— M L F—M + M 1= = (E-4)
6 k-1 3 k 6 +1 a 4
k+1 k

To determine all M, , two more arbitrary end conditions are
needed. One choice which leads to a simple relation is to
match the third derivatives at (x,,y,) and (x _;,¥,_ 1)

Thus, at (xz,yz) and at (xn-l'yn-l) respectively,

M M
- _l.+ Mz(_l_ + _l_) - 3= 0 (E-5)
4y %, f3 9
M M
- B2y (22— + ) - B = (E-6)
d 7t g a a
n-2 n-2 n-1 n-1
All M, can then be determined explicitly by solving n

equations for n unknowns simultaneously. These n equations

in matrix form are

aM-=Db>L (E-7)
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where
-1 1 -1 =
-.—_l——-’.-]'.—'l - ’ 0 ’ ® e o o ’ 0 ’ 0
dp 91 9z 9
d d.+ d d
1 1 2 2
Y ' - ’ 0 ’ e o o o ’ 0 ’ 0
6 3 6
d d,+d d
2 2
0 ’ - ’ 3 "-_3" ’ e o 0 0 ’ 0 I3 O
e 6 3 6
d d +d
0 ’ 0 ’ e e o0 ’ e o0 ’ n2 ’ n2 l ’ nl
6 3 6
-1 1 1 -
0 I} 0 ’ e 0o e 0 ’ e o o [ ’ + ’ l
- dn—2 dn-z dn—l dn-—l
and _ —_
0
Y37¥y ¥oYy
d2 dl
b= .

Yn"¥n-1 _ ¥n-1"¥n-2

A series of cubics of the form of Eq. (E-3), whose four
constants are calculated as above, provides the smooth ap-
proximating function which can be used for the interpola-
tion, differentiation or integration of the data.

The specific choice of the two arbitrary end conditions
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affects the fits of the end intervals. In the present study

one of the uses of the cubic spline fit was for differen-
tiation of the data in calculating the isothermal compressi-
bilities. In order to calculate the isothermal compressibil-
ities along the phase boundary, the values of the first
derivative at the ends of the isotherms were needed. It was
observed that the spline fit stayed smooth if the data was
smooth irrespective of the size of the intervals. Hence,
one logical improvement in determining the derivatives at
the end points was to create smaller intervals and then ex-
trapolate graphically. Large graphs of angle of minimum de-
viation D versus pressure P were plotted and a smooth curve
was drawn through all the points. Then D and P values cor-
responding to several points in the last interval were
read from such a graph and inserted into the cubic spline
fit. The values of the first derivative computed at these
points were plotted versus D as shown in Figs. E-1 and E-2
for the isotherm closest to the critical point. Assuming
that the derivative changed smoothly, the value of the deriV-
ative corresponding to ﬁhe value of D on the coexistence
curve was read. This procedure was repeated for every iso-

therm below the critical temperature.
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PROPOSITION I
A binary system with molecules of one of the compo-
nents having an easily excitable rotational or vibrational
mode is considered. An equation of motion for this internal
degree of freedom together with linearized hydrodynamic
equations are solved for the frequency spectrum of scat-

tered light.

Introduction:

Unexpected contributions, that are not due to micros-
copic density or temperature fluctuations, have been ob-

served in the frequency spectra of scattered light from

(l). These contributions have been explained

(2)

pure fluids
theoretically by Mountain considering the relaxation of
an internal degree of freedom.

In this proposition, it is proposed and shown that
Mountain's treatment of a single component system can be
extended into a binary system with molecules of one of the
components having an easily excitable internal degree of

freedom.

Calculation:

If a binary system of energy E, entropy S, volume V,
mole numbers Nl and Ny, is considered, and if one of the
components has an internal degree of freedom §, a change

in the internal energy of the system is given by,
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dE = TdS - P4V + ulle + uszz + Ang (1)

where T is temperature, P is pressure, My and M, are
chemical potentials, and AE is the partial derivative of

the Helmoltz free energy with respect to §£.

Ap = (BA/BE)V,T’Ni (2)
If one gram of solution is considered with my and m, mass
fractions,
mlNl + m2N2 =1 (3)
le = -(mz/ml) dN2 (4)
Letting u = (ul—uzml/mz) and le = dN (5)
and changing from volume to density p, Eg. (1) becomes
dE = Tds + (P/pl)dp + uaN + AgdE (6)
where subscript zero refers to equilibrium quantities.
It will be required that
Ag(p,T,N,-E_) =0 (7)

where £ = &£(p,T,N) is the local equilibrium value of £.
Eqg. (7) describes the condition when £ is in local equilib-
rium with density, temperature and concentration whether
or not the density, temperature and concentration have
their equilibrium yalues.

It will be assumed that £ relaxes with time according
to (0g/3t) = —LAg (8)
with L>0.

Since only small deviations from equilibrium are considered
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AE can be expanded so that,
(3&/31‘-) = -L{AET (T_TO)+AEQ (D‘Do) +Ag¢ (¢-¢0)+AEE (E-EO) } (9)

T, p, and ¢ are the set of statistically independent
variables determined in Appendix A for a binary system
with ¢=N+bp where b is a constant given by Eg. (15) of
Appendix A.
Also expanding Ag(p,T,¢,€) =0 one obtains

Bpg(Eg=8) = Apq(T-T )+A. (0=p ) +Ag, (6=¢,)  (10)
Combining Egs. (9) and (10)

(9g/at) = -LAEE(E-E) (11)

The fluctuations in the pressure, entropy and che-
mical potential can be written in terms of the statisti-

cally independent variables.

P 9P ap P
dP = (x=) dp + (5m) dT + (=) d¢ + (=%) dg (12)
L - Wbl 91,0,€ %r,0,0
28 3s 3s 28
ds = (z— dp + (zm) dT + (=) d¢ + (%) dag (13)
apTr¢r€ anI¢I€ 3¢Tlpr€ 3ET'p,¢
ou oM, ou U
du = (24 dp + (24 ar + (28 as + () dt (14)
9Pr,4,t I b g B 91,0, 30,0

The internal degree of freedom £ can be eliminated from
Eqs. (12), (13) and (14) by taking the total derivative
of Eq. (9),

9(dg)/at = -L[AETdT+A pdp+A d¢+A£€d£] (15)

& £
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solving Egs. (12), (13) and (14) for df¢ and substituting
these values into Eg. (15). The results of these manipu-

lations are:

9(dp)_ 9P 9 (dp) oP 3 (dT)
dP+1 = (x=) [do+T 1+ (=) [dT+t —"]
R - - o
3P 3 (d¢)
+(§—¢;%‘ . E[d¢+T T ]
A A A
+(39)  [-lar-52Pap-z=tag) (16)
0,T,0 Pgr  Prg  Bgg
3(ds)_ ,3S 3(dp),, 35 3 (dT)
dS+T —b_t_- = (ap':)["¢’£[dp+'l' T ]+(-§-,f;:)'¢'€[dT+T T ]
9S 9 (d¢)
+ (=) [do+T ]
WTIQI& =
FES) (- ETapE0q,-Elqq) Hn
%5,m,0 Pee  Per Pge
9 (duy)_ 0 3 (dp) ou 9 (dT)
du+t ST - (§E% A E[dp+‘l’ T ]+(§Tz A E[dT+‘t Tt ]
i 5 (d¢)
+(a¢%,p.€[d¢+r —EEQ ]
A A A
+&Y -2Tar-2Pap-5%a4) (18)

Wo,1,0 Per Peg Pee
Linearized equations of change(3) for a dilute binary
system are:

(dp/ot) + PV = 0 (19)
b, (39/3t) = -v%p &+ (4ns/3+nv)v2w (20)

~ o yg2
poTo(aS/at) = AV°T (21)
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3 (6-bp) /0t = D'V% (¢-bp) (22)
where ¢y = div Vv, ng is shear viscosity, n, is volume
viscosity, A is thermal conductivity and D' is the diffu-
sion coefficient.

The next step is to take Fourier-Laplace (space-time)
transforms of the equations of change, i.e. p(r,t)+pk(z).

The results are:

zpk(z) - pk + powk(z) =0 (23)
o lzb, (2)-p, ] = k%P, (2) - k*(4n_/3+n )9, (2) (24)
0 T, (25, (2)-8,] = -AkT, (2) (25)
2, (z) = é,-blzp, (2)=p,] = -k?D' (¢, (z)-bp, (2)] (26)

In these transformed equations Pk(z) and Sk(z) appear.
These quantities can be eliminated by taking the space-
time transforms of Egs. (16) and (17) and solving these
transformed equations for Pk(z) and Sk(z) with the proper
values of the coefficients inserted from Appendix B.

Then Egs. (24) and (25) become

2.2
(z+b k%) ¥y (2) - I Ezt + tzA(lljz)— ki:(gglel o (2)
2. 2
- C°kYBT + P Bk’ ()] Ty (2)
- 1 §3<§§o + oA E Bk (T ] 0y (2) =
2 ° Prt C2
i I%%;{gf —[ggo- 3;‘352,T* %Slpk_(é: >+ poReglobr) T
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P
[(1/05) (g) * PPty ord (27)
and 2
T bz z°1T A, . §..&
~EUL) o o 88y 4 0 LE7TR) . (2)
P B C, N, . C,(1z+1) k
2 2
, T2 Cl/cv Toz 3s z TTOAEEETEN
tlat ak®s —gpme—) Ty la) 4 [‘E;(Eﬁ; . Ty ) k()
T T S T A, E_E T b
_ o TZ ok v-1 0 EET"p 0" ,9S
= =— S, - { +[ + + (s=) 1lp.-
C, k Is¥tz"C PP Cy C, §ﬁ5'T k
i\ T A& E c
39S 0 'EEST>N 1
(22 - 22226 - (1- =T, } (28)
C, N o o k c, 'k
where bo= (4l'ls/3+nv)/po
2 2
b= pohgely

C = speed of sound

ratio of specific heats

Y
B.= coefficient of thermal expansion
C

2
1= ToPeebo

a = k/pva
Egs. (23), (26), (27) and (28) constitute a set of four
independent equations in the four unknowns pk(z), Tk(z),
¢y (z) and y, (2).
The purpose is to obtain the correlation function
<pk°-k(z)> in terms of the equilibrium correlation function
<|pk|2>.This necessitates the simultaneous solution of

these equations in terms of the initial values of Py Tk'

¢k and wk.
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The right hand sides of Egs. (27) and (28) can be simpli-

fied by considering that in equilibrium,

c? 8. 2
1 (o) b ,9P T o 1l ,oP
Py Pt o aNp’T Y Po 5Np'T
T T-b T
o -(y-1) o ,9S 0,98
- dS = [ (=) 1dp + AT + =—(==) dé (30)
Cv poBT Cv 5Np,T Cv aNp' T

Consequently the final forms of the transformed hydrodyna-
mic equations are:

Continuity equation:

zpy (2) + p ¥y (2) = pp (31)
Momentum equation:
2
2 2,2 k“Atz 2 aP
[z+bok ]wk(z)'[(cok )/(DOY)+ E;TI;?E)-(k b/Oo)(gﬁL T]Dk(z)

2,2 2 1z

2 P 2 12 _
-[{k /po) (W‘))’T*' DOAEEEDENk m]¢k(z) =
+ k2 (L0 -p A EET -pA EE0] (32)
Yk Ttz oo PrPoPeet ot kT Potee o N0
Heat equation: 2
_z(y-1) as. . 2 "ToPegebrdy
Confy *ToP2/C) GY) * —o(raiy 1ok ()
2
2 T 2 z°1TT A E E
2_ 1z o~ 38 o E5°T°N
Hlarakt= (GG gl Ty () *+ o Gn) e e ()

To 1

Tz C
= 5; Sy~ I;;E[(TOAEEETEO/CV)pk+ g Tk+(TOA£€€TEN/CV)¢k] (33)

v

Diffusion equation:

(bz+bk2D')pk(z) - (z+k2D')¢k(z) = bp, - ¢, (34)
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These four equations can be solved simultaneously to obtain
pk(z), Tk(z), ¢k(z) and wk(z) in terms of the initial
values pk, Tk’ ¢k and wk. These solutions are then inverse
Laplace transformed to determine the time dependence of
the fluctuations which in turn are related to the fluctua-
tions in the local dielectric constant through a Taylor
series expansion in the statistically independent thermo-
dynamic variables of the system.

Then the frequency spectrum defined by the generalized

(3)

structure factor S(k,w) is given by,

S(k,w) = 2 Redfdtjfdrdr'x <fe(r+r',t)be(r',0)> x
o expli(k-r-wt)] (35)
where §e(r,t) is the fluctuation in the local dielectric

constant at the point r at time t.
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Appendix A: Determination of Statistically Independent

Variables.
Consider a binary system of energy E', entropy S',

volume V' and mole numbers N; and N!. Let this system be

1 2

composed of a subsystem with properties E, S, V, Nl and N2

and a complementary subsystem with properties Eo’ So’ VO,

Nl , and N2 . Assume that the subsystem is very small
o o

compared tc the total system, hence also compared to the

complimentary system.

dE' = dE + dEo (1)
dEo = Todso— Podvo+ uloleo+ u2odN20 (2)
But dV=-dV0, dN 4= =-dN. 0, and dS=—dSo. (3)
Let mlNl+m2N2= i1 =[ul-u2(ml/m2)], le=dN (4)
Then from Egs. (2), (3) and (4)
dE_ = -T dS + P_dV - u_dN (5)
o o o o
If dE is expanded in Taylor series,
dE = (s‘g)v’N ds + (W)S,N dv + (W)S,V dN +
2 2 2 2
%[ 3—§(d5)2+ 3L (av) %+ d °Z (an) +Zaaav asav +
39S oV aN
2 2
a E a e @ o 0 0 00
ZBSBN dsdn + 23 a dvdnN ] + (6)

From dT=(9T/3S) dS and similar relations for dP and du,
and combining Egs. (1), (5) and (6),
dE' = %(des - dPAV + dudN)

- %[des + (1/p%)dPdp + dudN] (7)
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Let T, p, and ¢=N+bp be a set of statistically independent

variables with b a constant. Using these variables,

_3s 35 25

as = (§3), 8T+ (3D o+ (3D, ¢ (8)
_ (9P

dP = (37 ,, ¢dT+(ap)T 3P +(3¢>)T d¢ (9)

du = (G, Larr (g, der (3 d¢ (10)

Substituting Egs. (8), (9) and (10) into Eg. (7),

ae' = 3033, o@D+ 11/0%) Gy b, 1 (de) s
(), @0 24152, deat+(1/07) () | dTdo-
5—)0 ¢dep]+[(§—)T pd¢dT+(§——)p’¢d¢dT]+

[(1/p%) (350, dodp+(3R),  dedo-b(3h) . dedpl} (11)

a¢ T,p T,
For T, p, and ¢ to be independent the terms containing
cross derivatives must be zero.

From the definition of ¢,

Maxwell relation: (aN)T p (BT)N o
Therefore, terms containing d¢dT vanish. For terms con-
taining d¢dp to vanish,
2, ,0P
) +(1/07) (5%)
b = -3— L8 9 T (13)

LAY
53,0
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gll_ = d(u,9) = d(u,9)/3(p,N)
But (ap)cb a(p,9) a(p,9)/2(p,N)

) (14)

I
ol
4

and from definition of ¢,

oP - (9P oy ou
560,1° W p,r 3¢ (Ggp,rt GWp,T
Therefore
- lo_@N 2y (3B

T, p, and ¢ are a set of statistically independent

variables with ¢= N+bp and b given by Eq. (15).
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Appendix B: Determination of the Coefficients in the

Pressure and Entropy Expressions.

- (3P/3§) 3

(ORAORNg e g IR T, 0,470

T,¢

(BP/BT)QI¢IE= (3P/3T)p'¢‘ (ap/ag)Trpl¢£T

(38/30) .+ 4= (38/3p)y 4= (35/38)p o ,E )

(aS/aT)p,¢’£= (38/3T)pl¢

(as/a¢)p,E,T= (35/3¢)p'T- (BS/QE)T'Q'¢E¢

where g (35/3D)T’¢ i &p= (3E/3T)

P
= (38/30), o = (3E/N) | o =

T
& Ex

Maxwell relations:

(ap/ag)p'T’¢ -

|
)
o

(aS/Bg)plTld> - -AET

with Agp = (3AE/Bp)T'¢'£ : AET = (aAg/aT)p'¢,g
Also, dAE = Agpdp + AETdT + A£¢d¢ + Aggdﬁ =0
Bep = Ageby
Aer = Peglr
Reo = Peety

Therefore,

2

2
(3P/30)T'£,¢ = (BP/BO)T,¢ * PoRees,
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(3P/3T)pl¢,€ = (3P/8T)p,¢ + EEE &
(32/30) ) ¢ o= (3B/38) | 1+ p2AL E £l
(35/3O)T,g’¢ = (35/3P)T’¢ - Aggngp
(38/3m) | o . = (38/3T) - Aggﬁg

(as/8¢)p,£,T = (as/a¢)p,T - AggngN

We also note that,

(aP/3p) = (BP/Bp)T’N - b(9P/3N)

T,¢ T,p
S = -
(9 /Bp)T’¢ (as/ap)T'N b(aS/E)N)T’p
_ A2
and (3P/30)T,N = CJ/Y
(38/0p) g ¢ = =[C,(Y=1)/ (0 T By) ]
also
= - 2
(ap/am) | = (3R/3T) |\ = [p BpCo/Y]
(QS/BT)p,¢ = (E)S/BT)p'N = Cv/To
(ap/a¢)p T = (aP/aN)p T
(aS/3¢)p T = (BS/BN)p T
where Co = speed of sound
Y = ratio of specific heats
BT = coefficient of thermal expansion
c = specific heat at constant volume
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PROPOSITION II
It is proposed that accurate viscosity measurements
free of gravity effects can be made using a vibrating

multiple-wire viscometer.

Introduction:

There are basically three methods of measuring visco-
sity. One involves measuring the flow rate through a
capillary tube and another measuring the torque transmitted
by the fluid. A third method requires measurement of
viscous damping due to the fluid.

Viscosity measurements are hardest to make near the
critical point. Due to the highly compressible nature of
such a system, small pressure differences lead to large
density gradients and hence all viscometers that require
or result in pressure changes are undesirable. A success-
fully(l) applied method of measuring the viscosity near
the critical point is the torsional crystal technique(z).
The possible limitation of this method is the finite
height of the crystal which leads to density gradients in
the gravitational field. Moreover, in this method the
density-viscosity product is measured and therefore a
knowledge of the fluid density is necessary.

w(3)

Using a modified "vibrating wire viscometer

described below, the kinematic viscosity and the density
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can be measured simultaneously. Also, accurate viscosity
measurements of coexisting phases or determining the
height dependence of viscosity are possible with this
arrangement.

Theory of Vibrating Wire Viscometer:

This viscometer is based on the damping of the trans-
verse oscillations of a taut wire in a fluid. The kinema-
tic viscosity is obtained from measurements of the fre-
quency and the decay time of these oscillations.

The equation of motion of a taut wire of length L,
weight uL, under a tension T, immersed in a fluid of

density p and viscosity n , is

u oY _ T Y . F (1)

where y(x,t) is the displacement of the wire from its
equilibrium position and F is the force exerted by the
fluid. If D is the drag effective mass and u' is the
hydrodynamic effective mass of the fluid with w the fre-

quence of wvibration of the wire, F can be written as

2
= -(p X ¥y 4 g v 4y il
F (D ot + u atz) (D + iwu') 5—% (2)

For the case in which only the first mode is excited and
the decay time 1 is much greater than the period of the
oscillations, Eg. (1) with F given by Eq. (2) has the

solution



' o

t/t _iwt

y = A sin(mx/L) e e (3)
1/t = 3 (u+n') (4)
w? = T(W/L)z/(uﬂx') (5)

For [y(x,t)]__ << L, the solution obtained by stokes (4)

for an infinite cylinder oscillating perpendicular to its
axis can be used.

&y

- 2 Vs
F = -mpa“w(k'+ik) 3t

(6)

where k and k' are functions of m and

m=a/(2\) A = (n/wp)}/? (7)
with a the radius and A the penetration depth of the
vibrations. This solution is obtained keeping only terms
linear in velocity in the Navier-Stokes equation and is
therefore limited to

m2 0.5 (8)

From Egs. (7) and (2) D and u' can be expressed in terms
of k and k' as

D npazwk'(m) ' (9)

¥ mpaZk (m) (10)

Finally, the viscosity can be evaluated combining Egs.

(7), (9) and (10)
2

n = __E_EE__E (11)
4[m(k")]
with k' = —24 + 2k(m) (12)

Tpa“wTt wT
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If 1, w and p are measured, k' and correspoding m can be
calculated by iteration using Stokes' tables(4). The
viscosity can then be computed from Eg. (1ll).

The Proposed Viscometer:

The viscometer consists of the sample cell assembly,
the temperature measuring and controlling accessories,
the spectrometer for measuring the refractive index and
the electronics for signal detection.

The cell assembly is shown schematically in Fig. 1.
The proposed design improvements compared to those des-
cribed in Refs. (3) and (5) are the inclusion of four
vibrating wires to study the viscosity as a function of
height and a triangular end section with two flat windows
to measure the refractive index also as a function of
height simultaneously. The cell is used in a magnetic
field and must be built out of 300 series stainless steel.
The vibrating wires made from tungsten for its high den-
sity and tensile strength can be 2 cm. long, 0.02 mm. in
diameter and separated from each other by about 3 mm.

The temperature can be controlled by immersing the

h(l) and the temperature can

cell assembly in a water bat
be measured by a platinum resistance thermometer. With
this arrangement, the temperature can be controlled better
than 0.001°C.

The spectrometer can be an adaptation of the one
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described in Ref. (6). A small laser mounted on a verti-
cally adjustable platform can be used as the light source.

The components of the signal detection system are
shown in the block diagram of Fig. 2. A lead acid battery
supplies the dc current to displace the wires from their
equilibrium positions. The electronic chopper turns the
dc current on and off for set periods of time and sends a
trigger pulse to the signal averager each time the dc
current is cut off. The signal from each wire is amplified
before it is fed into the signal averager. The output of
the signal averager can be obtained in digital form on
paper tape or in analog form on an X-Y-recorder. A scope
can also be used to get a visual display of the output.
This detection system is expected to produce a more
accurate data accumulation than those of Refs. (3) and (5)
due to the fact that each output will be an average of
many determinations.

The Proposed Procedure of Operation:

The operation will consist of the following steps:
1) Evacuate the cell assembly.
2) Load the cell and the weighing bomb at a supercritical
temperature.
3) Determine the average density by disconnecting and
weighing the weighing bomb.

4) Set the first operating temperature and measure it
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after allowing sufficient time to reach equilibrium.

5) Start measurements using one wire at a time and con-
tinue signal averaging until a well-defined decay curve
is developed.

6) Measure the refractive index at the height of the wire
used in step 5.

7) Repeat steps 5 and 6 for the remaining wires.

8) Change to a new temperature and repeat steps 4 to 7.

Data Analysis:

The output of the signal averager contains informa-
tion about the damped oscillations in the form of ampli-
tude versus time. The frequency w can be deduced imme-
diately from this information and the decay time 1 can be
obtained from the slope of a semilogarithmic plot of
peak amplitude versus time.

If the refractive index n does not change as a func-
tion of height, the average density determined from the
weighing bomb can be used. If the refractive index

changes with height, using

_Ef:l_ = constant X p (13)
n"+2

and the average density, density can be corrected for
gravity effects.
After w, T and p are determined, a guess at m can be

made and using Stokes' tables for k(m) and k'(m), k' can
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be calculated from Eq. (12). If the assumed m does not
check with m corresponding to the calculated k', an
iteration can be performed until agreement between the
assumed and the calculated values of m is reached. Once
m is determined, the viscosity n can be computed from
Eq. (11).

Discussion:

Due to the thinness of the wire this method provides
the means of making viscosity measurements that are free
of gravitational error. It also does not introduce any
macroscopic disturbances because the penetration depth of
the vibrations is much smaller than the diameter of the
wire. Another advantage is the availability of highly
accurate density data through the refractive index mea-
surements for converting the kinematic viscosity to shear
viscosity. This method also provides height dependent
viscosity and density data which can be analyzed to
determine the gravity effects. Finally, this technique
promises to be extremely versatile in that it can be used
for a variety of systems such as simple fluids and binary
mixtures near their critical points or systems containing

coexisting phases.
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PROPOSITION III
A sudden increase in the diffusion coefficient in the
binary systems composed of primary alcohols (ethanol,
propanol and butanol) in carbon disulfide has been observed

(1,2)

experimentally . A mechanism is proposed to explain

this phenomenon.

Recent measurements of the diffusion coefficient as

a function of concentration in the binary systems of

(2) (2)

ethanol-carbon disulfide , n-propanol-carbon disulfide

(2} are illustrated in Fig 1.

and n-butanol-carbon disulfide
It is observed that the diffusion coefficient in all of

the three systems varies very little with concentration

up to 50% volume of alcohol. Then at a concentration of
alcohol slightly above 50% by volume, the diffusion coeffi-
cient starts to increase. The magnitude of this change is
especially pronounced for the ethanol-carbon disulfide
system.

It is proposed that this phenomenon can be explained
by assuming that the alcohol molecules form aggregates
uniform in size in the solvent carbon disulfide. As the
concentration of the alcohol increases, the number of
these aggregates rather than their size increases. As

more and more aggregates form, the mean distance between

them becomes smaller and smaller until at a certain
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concentration they no longer exist as aggregates but form
a matrix of alcohol solvent. At this point the diffusion
coefficient starts to increase because from there on the
diffusion depends mainly on the motion of smaller C82
molecules within the alcohol matrix.

A crude test of this proposed mechanism can be made.
If it is assumed that the alcohol aggregates are spherical
and they form the solvent matrix when they start touching
each other, then the volume percent at which the diffusion

coefficient will start to increase can be predicted.

(4/3) x>
(2r)3
where r is the radius of the spherical aggregate.

Volume fraction occupied by alcohol = = 0.52

This value of 52% by volume obtained by a simple approxi-
mation agrees quite well with the experimental observa-
tions presented in Fig. 1.

Assuming the existence of many alcohol molecules as
an aggregate is reasonable because the formation of
multimers due to hydrogen bonding of normal alcohols has
been observed and their structures have been studied by
many investigators(3_9). It has been found that the struc-
ture of normal alcohols in pure state is dominated by

(4) with a high dipole moment while they

(5-9)

large multimers
exist in smaller multimers (ranging from dimers to
hendecamers and even to cyclic multimers) when dissolved

in a solvent.
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From the knowledge of the diffusion coefficient, an
approximate value for the number of alcohol molecules
composing an aggregate can be calculated. The mean dia-
meter of an aggregate can be estimated using the Stokes-
Einstein relationship for the diffusion coefficient of a
spherical molecule of radius r diffusing in a solvent of
viscosity n.

D = (1)

where D is the diffusion coefficient, kB is Boltzmann's

constant and T is the temperature in °K.

5 8

cm?/sec for ethanol, D=0.6x10" cm? /sec

5

Using D=0.5x10"

for propancl and D=1.0x10" cmz/sec for butanol in CS

27
the diameters of the aggregates calculated from Eq. (1)
are 23.6 K, 19.6 A and 11.2 & for ethanol, propanol and
butanol respectively. From the density and the molecular
weight of each alcohol, these diameters correspond to

70 molecules in an ethanol aggregate, 32 molecules in a
propanol aggregate and 6 molecules in a butanol aggregate.
It is hard to attach aﬁy meaning to these estimates of the
number of molecules because the structures of alcohols in

CS. have not been studied. But, by all means, multimers

(4)

Z
composed of many hydrogen bonded monomers are expected

according to studies on the structures of alcohols.
Consequently, to study the structure of alcohols in

CS., together with accurate measurements of the diffusion

2
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coefficient as a function of concentration in such systems
promises to furnish information to explain the behaviour

of the diffusion coefficient.
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Figure 1.

A - Ethanol=-carbon disulfide(z)
O - n-Propanol-carbon disulfide(l)

0O - n-Butanol-carbon disulfide(z)



