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ABSTRACT 

 Rhodium metalloinsertors are a unique family of potential anticancer agents that 

have been show to bind selectively to thermodynamically destabilized DNA base pair 

mismatches, abasic sites, and insertions/deletions (indels) in vitro. These metalloinsertors 

are also able to target mismatches in cells: metalloinsertors preferentially kill mismatch 

repair (MMR)-deficient cancer cells, which have a relative abundance of uncorrected DNA 

mismatches and indels, over MMR-proficient cells, which can repair these lesions. As 

such, these complexes have shown great promise as a potential treatment strategy for 

MMR-deficient cancers, which are often resistant to classic chemotherapies. 

 Recently, a new class of metalloinsertors that bear a rhodium-oxygen bond was 

synthesized and shown to have remarkable potency and selectivity towards MMR-deficient 

cells. We have discovered many key differences between first generation metalloinsertors 

and these new Rh-O metalloinsertors: (1) the MMR-selectivity of first generation 

metalloinsertors is heavily influenced by ancillary ligand bulk and lipophilicity, whereas 

the MMR-selectivity of Rh-O metalloinsertors is strong regardless of ancillary ligand 

properties, (2) first generation metalloinsertors have toxicities in the micromolar range 

while Rh-O metalloinsertors have toxicities in the nanomolar range, and (3) first generation 

metalloinsertors can only bind DNA via the Δ-enantiomer while Rh-O metalloinsertors can 

bind DNA via both the Δ- and Λ-enantiomers. Excitingly, the improved potency and 

selectivity of these “Rh-O” metalloinsertors brings them into a realm of clinical relevance. 

 Here we examine the basis for the improved potency and selectivity of these new 

Rh-O metalloinsertors. A family of six Rh-O metalloinsertors that vary in the steric bulk 

and lipophilicity of an ancillary ligand was synthesized and characterized. Regardless of 
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ancillary ligand identity, these Rh-O metalloinsertors exhibit nanomolar or low-micromolar 

toxicities and all preferentially target MMR-deficient cancer cells over MMR-proficient 

cells. Notably, the off-target accumulation of these metalloinsertors in mitochondria is very 

low. This cellular distribution is in stark contrast with first generation metalloinsertors in 

which increased ligand lipophilicity led to increased mitochondrial uptake and ultimately 

non-selective mitochondrial-mediated cell death. We believe robust selectivity of these 

complexes is retained in part due to their low off-target accumulation in the mitochondria, 

which is further complemented by the low dosing requirements of these potent therapeutic 

agents.  

 Our studies also suggest the high potency of these complexes may be due to a 

difference in DNA-binding abilities, which is supported by observed differences in which 

enantiomers can bind to DNA mismatches, differences in ligand buckling at physiological 

pH, and lipophilicity of the therapeutics, with Rh-O metalloinsertors being dramatically 

more lipophilic than their first generation counterparts. To better understand the structural 

basis for this increased potency, crystallographic experiments are underway. A first 

generation metalloinsertor was previously crystallized with mismatched DNA, and the 

structure was pivotal in identifying the DNA binding mode of metalloinsertion. Using 

similar methods, we are working to produce a high-resolution crystal structure of an Rh-O 

metalloinsertor with mismatched DNA in order to gain structural insights into the increased 

potency of these new complexes. A significant difference in DNA binding could result in 

different biological activation of proteins and overall higher potency of these Rh-O 

metalloinsertors. 
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 Finally, as metalloinsertors are moved towards pre-clinical study, understanding 

their biological activity in diverse cell culture experiments is essential. We examined a 

metalloinsertor and the FDA approved chemotherapeutic agent cisplatin in 27 diverse 

colorectal cancer cell lines. The comparison of these drugs revealed the metalloinsertor to 

be on average five times more potent than cisplatin in this panel. The potency of the 

metalloinsertor in different cell lines spanned nearly three orders of magnitude and 

correlated with whole-cell uptake of rhodium. Additionally, a fluorescent metalloinsertor 

conjugate was used to quantify the number of lesions in DNA that could be targeted by 

metalloinsertion, a result that correlated well with the potency of a metalloinsertor across 

several cell lines, consistent with DNA mismatches as the effective biological target of the 

metalloinsertor.  

 The experiments described within this thesis have allowed us to gain a better 

understanding of the biological activity of rhodium metalloinsertors. We have established 

that Rh-O metalloinsertors are distinct from first generation metalloinsertors, and that these 

new metalloinsertors can serve as highly tunable, potent, and mismatch-selective anticancer 

agents. Furthermore, this potency is observed across diverse cell lines and has been shown 

to correlate with the number of genomic DNA lesions that can be bound by 

metalloinsertion. The unique biological activity of these complexes makes them ideal 

candidates for the treatment of MMR-deficient cancers, and the potency and tunability of 

Rh-O metalloinsertors will allow for the development of previously unattainable diagnostic 

and therapeutic tools for MMR-deficiencies.   
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C h a p t e r  1  

INTRODUCTION∗† 

1.1 Overview of DNA as a Therapeutic Target 

1.1.1 DNA-targeted Small Molecules  

 DNA has proven to be a rich target for a large range of small-molecule 

therapeutic drugs. The first DNA-targeting compounds with therapeutic properties were 

discovered in the 1940s.1,2 Nitrogen mustards and antifolate drugs were found to cause 

tumor regression in patients with non-Hodgkin’s lymphoma and remission in children 

with lymphoblastic leukemia, respectively.2,3 It was found that the anticancer properties 

of these drugs arise from their interactions with DNA; nitrogen mustards irreversibly 

alkylate DNA through an aziridinium intermediate to form inter-strand crosslinks and 

antifolates block DNA synthesis by inhibiting dihydrofolate reductase (DHFR), an 

enzyme necessary for the synthesis of purine bases.1,4 Since the discoveries of these 

therapeutics, the versatility of DNA as a target has been significantly expanded. 

Therapeutics have been seen to bind covalently to DNA (alkylating agents, platinum 

drugs), non-covalently interact with DNA (actinomycin D, mitomycins, polyamides), to 

interfere with protein-DNA complexes (doxorubicin, etoposide), and even target DNA 

secondary structures such as G-quadruplexes (itarnafloxin, in phase II clinical trials).5–8 

																																																								
∗ Adapted from Boyle, K. M.; Barton, J. K. Targeting DNA mismatches with rhodium 
metalloinsertors. Inorganica Chimica Acta. 2016, 452, 3-11. DOI: 
10.1016/j.ica.2016.01.021 and  
† Adapted from Barton, J. K.; Boynton, A. N.; Boyle, †K. M. Targeting DNA Mismatches 
with Coordination Complexes in DNA-targeting Molecules as Therapeutic Agents; 
Waring, M. J., Ed.; Royal Society of Chemistry, 2018, p 367-390.  DOI: 
10.1039/9781788012928 
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These complexes and more DNA-targeting chemotherapeutics have been reviewed 

recently.5,9  

 In the development of novel metallodrugs, DNA is consistently one of the most 

exploited targets. As seen in Figure 1.1, metal complexes can bind DNA through several 

different routes, involving both covalent and non-covalent interactions.10,11 In the 

covalent binding mode, a small molecule binds directly to DNA to form a covalent lesion 

to one or more bases, thus impeding DNA replication. In contrast, non-covalent 

interactions rely on thermodynamic stabilization through electrostatics, hydrogen 

bonding, hydrophobic interactions, and π-stacking interactions.12 The majority of 

complexes that bind DNA non-covalently are either intercalators or groove binders. In 

intercalation, an aromatic, heterocyclic ligand slips indiscriminately between two 

adjacent base pairs. This process leads to a partial unwinding of the DNA, increasing the 

rise of the helix. Groove binding is another common non-covalent binding motif of small 

molecule therapeutics. In this binding mode, a small molecule that is generally crescent-

shaped will tightly bind the minor groove of DNA. Unlike intercalators, which generally 

lack sequence specificity, groove binders often target AT-rich regions. Moreover, 

sequence-specific intercalators and groove binders have been prepared.7,13 Once bound to 

DNA, these non-covalent complexes primarily cause inhibition of proteins involved in 

DNA transcription and synthesis, which can lead to cytotoxicity.14–16 Somewhat recently, 

a new non-covalent DNA binding mode, termed metalloinsertion, has been observed. In 

this mode, a large aromatic, heterocyclic ligand inserts into DNA at a destabilized site 

and ejects the destabilized bases from the helix, without causing an increase in base rise 

as is seen with intercalators.17 In contrast  
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to intercalators, metalloinsertors are highly specific for destabilized DNA mismatches, 

abasic sites, and single base bulges. 

1.1.2 Metal-based Anticancer Agents: Successes and Drawbacks 

Though DNA-targeting metallodrugs are a significant field of study for many 

researchers, few have had clinical success due to the general toxicity of heavy metals in 

the body.18–20 The most noteworthy and well characterized metallodrug found to bind 

DNA is cis-diamminedichloroplatinum(II) (cisplatin). Cisplatin, the first inorganic 

chemotherapeutic, was discovered serendipitously by Barnett Rosenberg in 1965 while 

studying the effects of electric fields on E. coli using a platinum electrode.21 Today, 

cisplatin and its derivatives, carboplatin and oxaliplatin, remain some of the most 

frequently used chemotherapeutics with over 50% of all cancer regimens containing one 

of these platinum drugs.22 Once within a cell, the chloride ligands of cisplatin are 

displaced by water.23 This reactive intermediate binds the N7 position of purine bases to 

form inter- and intra-strand DNA crosslinks, with the biologically significant adduct 

believed to be 1,2-intrastrand crosslinks between two adjacent guanine bases.24 This 

adduct was structurally characterized using X-ray crystallography in 1995.25 The 2.6 Å 

resolution structure shows the bending of the DNA duplex by 40˚ towards the major 

groove, accompanied by the widening of the minor groove. This lesion is recognized 

intracellularly by DNA-binding proteins, eventually leading to the apoptotic death of 

affected cells.23  

Despite its success in the clinic, cisplatin is not without its drawbacks. Patients 

treated with cisplatin often experience severe, dose-limiting side-effects such as nausea, 

vomiting, nephrotoxicity, and ototoxicity.26 These side-effects occur because cisplatin, 
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like many chemotherapeutics, is not selective towards cancer cells—it binds DNA inside 

healthy and cancerous tissues alike. Instead, cisplatin appears primarily to rely on 

increased uptake by rapidly dividing cancer cells for selectivitiy.5 Targeted therapy, in 

which a specific biological signature of cancer drives preferential drug action on 

cancerous cells over healthy cells, is a clear alternative to these non-specific 

chemotherapeutics. For example, proteins that are upregulated or expressed exclusively 

in cancer cells may be exploited as cancer-selective targets.27 For such protein targets, 

kinase inhibitors and monoclonal antibodies have found clinical use in the treatment of a 

variety of cancers.28,29 For example, cetuximab, a monoclonal antibody, targets and 

inhibits the epidermal growth factor receptor (EGFR), which is upregulated in several 

cancers in order to maintain rapid proliferation.30 In addition to targeting specific 

proteins, it is also possible to target specific DNA lesions associated with cancer, such as 

single base-pair mismatches, as described in the next section 

1.2 Mismatch Repair Machinery  

1.2.1  DNA Damage and Errors in Replication 

 The DNA within cells is constantly subject to damage by exogenous agents, such 

as UV light and ionizing radiation, and endogenous modifications, such as depurination, 

methylation, and errors in replication.31 Some estimates suggest cells experience up to 

105 such lesions each day.32 This damage can lead to interruptions in cellular processes, 

cell death, and mutations if uncorrected. High fidelity of DNA is essential, and therefore 

cells have evolved complicated systems to repair many types of DNA damage, known 

collectively as the DNA damage response. The DNA damage response consists of several 

processes that identify or correct a broad range of damage, including base excision repair, 
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nucleotide excision repair, mismatch repair (MMR), and double strand break repair. 

These processes have all been reviewed recently.33–36  

 MMR machinery is primarily responsible for identifying and correcting 

replication errors in the form of DNA base-pair mismatches and small insertions and 

deletions (indels). These lesions result from failed proofreading of replication 

polymerases and polymerase slippage during replication, respectively. The high fidelity 

of polymerases and their proofreading exonuclease activities result in a low error rate of 

~10-7 mismatches per base pair per replication, and this is improved upon by the MMR 

machinery, which increases fidelity an additional 50-1000-fold.37 Indels are generated 

more frequently, especially in repetitive sequences, and are also corrected by the MMR 

machinery with high fidelity.33,38  

1.2.2 Mechanisms of the MMR Machinery 

 The MMR machinery is responsible for identifying and correcting mismatches 

and indels in newly synthesized DNA, as depicted in Figure 1.2. This process involves 

several major steps. In the first step MutSα (heterodimer of MSH2 and MSH6) or MutSβ 

(heterodimer of MSH2 and MSH3) recognize and bind the mismatched region. MutSα, 

which contains 85% of cellular MSH2, is responsible for recognizing and binding all base 

pair mismatches and small (1-2 base pair) indels while Mutsβ can only efficiently repair 

indels.33,39 Next, though the mechanism is not well understood, MutSα undergoes a 

mismatch and ATP-dependent conformational change that allows for the binding of 

MutLα, a heterodimer containing MLH1 and PMS2. It is believed that MutLα, which has 

endonuclease activity when activated by proliferating cell nuclear antigen (PCNA), 

identifies and nicks the nascent strand of DNA, initiating excision of the DNA strand  
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Figure 1.2 Eukaryotic mismatch repair corrects DNA mismatches. Propagation of an AA 

mismatch through replication, resulting in a TA mutation. The first iteration of replication 

results in an AA mismatch, shown in red. The mismatch can be processed and repaired 

by the MMR machinery shown at the bottom. If unprocessed, upon a second iteration of 

replication the mismatch will result in a mutation, shown in red. Newly synthesized DNA 

from the first iteration and second iteration is shown in blue and green, respectively. 
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containing the replication error.40 Several models exist that explain the removal of the 

mismatch in both the 5’-to-3’ and 3’-to-5’ directions. Excision is followed by resynthesis 

of DNA and ligation. A detailed review on current models in MMR has recently been 

published.33  

 Deficiencies in either MutSα or MutLα have been associated with a loss of MMR 

proficiency. MMR deficiencies result in a 50-1000 fold increase in mismatches within the 

cell. When these mismatches are left unrepaired, they can propagate to form potentially 

catastrophic mutations in future generations of cells. As such, deficiencies in MMR 

machinery are associated with many forms of cancer, including nearly 80% of hereditary 

non-polyposis colon cancers and 15-20% of all solid tumors.41,42 Additionally, these 

cancers often show resistance to traditional chemotherapeutics, such as cisplatin and 

alkylating agents, making them excellent candidates for targeted therapy.43 

 1.2.3 FDA Approved Therapeutics for MMR-deficient Cancers 

 There are two potential strategies in targeting cancers with deficiencies in MMR: 

targeting the high mutational load of these cells or targeting the uncorrected DNA lesions 

themselves. The former is accomplished by the FDA approved therapeutic 

pembrolizumab. Pembrolizumab is a monoclonal antibody that targets the program cell 

death 1 (PD-1) receptor on T-cells.44 In all cells, the major histocompatibility complex 

(MHC) binds to antigens (foreign or mutated biomolecules) and presents them on the cell 

surface. T-cells recognize the loaded MHC and attack these compromised cells unless an 

inhibitory ligand, such as PD-L1 or PD-L2, binds to the PD-1 receptor on T-cells. 

Mutated proteins, which are particularly abundant in MMR-deficient cancers due to their 

high mutational frequency, serve as excellent antigens and should signal T-cells to kill 
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these MMR-deficient cells; however, these cancers adapt to produce large amounts of the 

inhibitor ligands PD-L1 and PD-L2 in order to shield themselves from T-cells. As such, 

T-cell essentially deactivate and become suppressed, and therefore they are no longer 

able to kill the cancerous tissue. Excitingly, pembrolizumab can bind to PD-1 and block 

the inhibitory interaction between PD-1 and PD-L1, allowing T-cells to stay active in the 

presence of antigen producing MMR-deficient cells.  

Pembrolizumab was first FDA approved in 2014 for the treatment of unresectable 

or metastatic melanoma, and in 2017 it made history when it was approved for the 

treatment of solid tumors containing high mutational loads and MMR deficiencies, 

making it the first anticancer agent to be approved for a specific cancer-associated 

biomarker.45,46 Pembrolizumab has allowed doctors to make great strides in the treatment 

of MMR-deficient cancers, though this treatment strategy is still far from perfect—

treatable tumors must express high levels of PD-L1, patients are susceptible to 

immunogenic side effects, and the treatments themselves are expensive.47–49 As such, the 

need for additional therapeutic strategies for MMR-deficient cancers remains crucial. 

While targeting the high mutational load of MMR-deficient tumors has led to the success 

of pembrolizumab, there are currently no FDA approved chemotherapeutics that target 

uncorrected DNA mismatches and idels directly. Such a drug would certainly have a 

different therapeutic profile than pembrolizumab, which may offer better or synergistic 

benefits to patients with MMR-deficient tumors.  
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1.3 Rhodium Metalloinsertors: Probes for DNA Mismatches 

1.3.1 Designing a Mismatch-targeting Molecule 

The Barton group has historically explored complexes that can non-covalently 

target specific DNA sequences (such as 5’-TGCA-3’ and 5’-py-py-pu-3’ sites) as well as 

the non-conventional A- and Z- forms of DNA, but these targets are not implicated in 

disease and thus lack therapeutic potential.13,50–52 DNA mismatches, however, are generic 

DNA targets that are involved in many types of cancer, as described above. Due to 

imperfect hydrogen bonding and π-stacking, DNA base pair mismatches are 

thermodynamically destabilized compared to well-matched DNA.53 This slight 

destabilization has been successfully targeted through the use of rhodium 

metalloinsertors, which contain the sterically expansive 5,6-chrysenequinone diimine 

(chrysi) ligand.  

The chrysi ligand was designed to be larger than traditional intercalating ligands 

and more akin in size to a well-matched base pair, making it too bulky to simply 

intercalate into DNA (Figure 1.3, left).16 Instead, chrysi interacts with through insertion 

at a destabilized site.  Insertion, which was originally proposed by L. S. Lerman in 1961, 

is a DNA binding mode in which a DNA base pair is separated and ejected from the π-

stack by the inserting molecule.54 Rhodium(III) was chosen to be a substitutionally inert 

metal anchor for the chrysi ligand due to its photophysical properties; rhodium complexes 

promote DNA strand scission in structurally similar metallointercalators upon 

photoexcitation.55 The rhodium center also anchors two ancillary ligands, which add bulk 

to the complexes and limit how the chrysi ligand can interact with DNA, largely  
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preventing indiscriminant intercalation.56 These ancillary ligands can also be selected to 

tune DNA binding and cellular uptake properties, as discussed below.  

1.3.2 Targeting DNA Mismatches with Rhodium Metalloinsertors 

The first generation metalloinsertor, [Rh(bpy)2(chrysi)]3+ (bpy = 2,2’-bipyridine), 

is easily synthesized via a base-catalyzed condensation reaction between 

[Rh(bpy)2(NH3)2]3+ and 5,6-chrysene quinone.57 As predicted, [Rh(bpy)2(chrysi)]3+ can 

selectively bind DNA base pair mismatches with nanomolar affinities and photocleave 

the DNA backbone adjacent to the mismatch when irradiated with UV-light.17 This 

process is enantioselective, meaning only the right-handed Δ-enantiomer can bind right-

handed, B-form DNA.  A series of binding affinity assays were employed to determine 

the specificity of [Rh(bpy)2(chrysi)]3+. For instance, when incubated with a 2725 base 

pair linearized plasmid containing a single CC mismatch, [Rh(bpy)2(chrysi)]3+ selectively 

binds and photocleaves the DNA solely at the mismatched site (Figure 1.3, middle).58 No 

photocleavage is observed with the analogous well-matched plasmid. 

[Rh(bpy)2(chrysi)]3+ was also incubated with DNA segments containing all possible 

DNA mismatches and multiple different sequence contexts in which the base pairs 

flanking the mismatch were varied.59 Through these experiments, it was determined that 

[Rh(bpy)2(chrysi)]3+ has >1000-fold preference for targeting mismatched sites over well-

matched sites. Additionally, the complex binds and cleaves 80% of all DNA mismatches 

upon irradiation, irrespective of sequence context. Not surprisingly, the binding affinity 

of [Rh(bpy)2(chrysi)]3+ towards a mismatch correlates strongly with the thermodynamic 

destabilization of the mismatch; highly destabilized mismatches (such as CC, CA, and 

CT mismatches) are easily recognized by [Rh(bpy)2(chrysi)]3+, whereas more stabilized 
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mismatches, specifically mismatches containing guanine, are not preferentially cleaved 

by the complex.  These complexes have also been seen to bind abasic sites and single-

base bulges in DNA.60,61 

A crystal structure at 1.1 Å resolution of [Rh(bpy)2(chrysi)]3+ with a 12-mer 

oligonucleotide containing two AC mismatches further elucidated the binding mode of 

the complex to be metalloinsertion.62 Unlike classical metallointercalators, the 

metalloinsertor binds DNA via the minor groove and results in little distortion to the 

DNA backbone. Instead, the DNA accommodates the inserting ligand through the 

ejection of the mismatched bases out of the π-stack and into the major and minor grooves. 

This binding mode was verified with an additional crystal structure of the complex bound 

to an AA mismatch (Figure 1.3, right), as well as a solution NMR structure of the 

complex with DNA containing a CC mismatch.63,64 This structure provides additional 

insight into why G-containing mismatches are not detected by metalloinsertors; these 

highly stable mismatches are not easily ejected from the base-stack, so chrysi cannot 

displace mismatches at these sites.  

1.4 Rhodium Metalloinsertors Inside the Cell 

1.4.1 Targeting MMR-deficiencies with Rhodium Metalloinsertors   

 The therapeutic potential of rhodium metalloinsertors was explored after 

experiments showed their ability to bind DNA base pair mismatches selectively. It was 

hypothesized that metalloinsertors would have increased toxicity towards cells that 

contain an increased number of DNA mismatches, as is present in MMR-deficient cells. 

To test this hypothesis, an enzyme-linked immunosorbent assay (ELISA) for cellular 

proliferation was performed with two colorectal cancer cell lines, the HCT116O cell line, 
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which is MMR-deficient, and the MMR-proficient HCT116N cell line. These cell lines, 

which originate from the MLH1 deficient HCT116 parent cell line, are isogenically 

matched; the HCT116N cell line is transfected with human chromosome 3, which 

encodes for a functioning MLH1 gene, and the HCT116O cell line is transfected with 

human chromosome 2, leaving it MMR-deficient.65 [Rh(bpy)2(chrysi)]3+ was found to 

have increased potency in the MMR-deficient cell line.66  

As with the DNA binding studies, only the Δ enantiomer was biologically active, 

suggesting the compounds do not decompose or racemize within the cell.66 This unique 

activity, the ability to selectively kill MMR-deficient cells over their MMR-proficient 

counterparts, has been found to be common to many rhodium metalloinsertor.67–69 

Importantly, while general to metalloinsertors, these are the only complexes known to 

exhibit this type of selectivity, with common chemotherapeutics such as cisplatin and the 

DNA-alkylating agent N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) showing the 

opposite trend (Figure 1.4).43 These results have been additionally verified in MSH2-

deficient mouse embryonic fibroblasts and an inducible MSH1-deficient cell line, 

showing that the characteristic activity of these complexes towards MMR-deficient cell 

lines is dependent on the MMR-deficient phenotype rather than a unique feature of the 

HCT116 cell lines.66,70  

The cell-selective inhibitory activity of metalloinsertors is somewhat surprising 

considering that these complexes interact only non-covalently with DNA and even 

MMR-deficient cells contain relatively few mismatches. Like other non-covalent DNA 

intercalators and groove binders, it is possible that rhodium metalloinsertors bind DNA 

mismatches and disrupt transcription or replication processes, leading to selective 
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cytotoxicity in MMR-deficient cells. Ongoing research in our lab aims to better 

understand the activity of rhodium metalloinsertors and the mechanisms that lead to this 

selective cell death. 

1.4.2 DNA-binding affinity and subcellular localization of metalloinsertors 

 As discussed previously, the design of the inserting chrysi ligand was central to 

obtaining mismatch specificity. It is important to note, however, that the design of the 

ancillary ligands has also proven to be important. The metalloinsertion binding mode 

places the ancillary ligands of the rhodium complexes in close proximity to the DNA 

bases and backbone. For this reason, several structure-function studies have been 

performed to determine the effect of the ancillary ligands on biological activity. In one 

study, the ancillary ligands were varied in size from small ammine groups to bulky 4,7-

diphenyl-phenanthroline (DIP) groups.71 The binding affinities to mismatched DNA 

spanned over 3 orders of magnitude and correlated well to biological activity, with higher 

affinity mismatch-binding complexes being more selective than their low-affinity 

counterparts. Again, none of the complexes showed selective inhibition of the MMR-

proficient cells. 

Differences in binding affinity, however, are not the sole predictor of biological 

activity. The activities of two structurally similar metalloinsertors, 

[Rh(DPAE)2(chrysi)]3+ and [Rh(PrDPA)2(chrysi)]3+ (DPAE = 2-(di(pyridin-2-

yl)amino)ethanol, PrDPA =N-propyl-N-(pyridin-2-yl)pyridin-2-amine), were examined 

to explore in more detail the importance of uptake and subcellular localization (Figure 

1.5).72 These two complexes have similar mismatch binding affinities and differ only in 

the presence of either ethanol or propyl modified HDPA (2,2’-dipyridylamine) ligands.  
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The addition of these ligands does, however, lead to a difference in lipophilicity as 

measured by the partition constant. As expected, the more lipophilic 

complex,[Rh(PrDPA)2(chrysi)]3+, showed significantly higher cellular uptake than 

[Rh(DPAE)2(chrysi)]3+, making its non-selective biological activity initially surprising. 

However, upon subcellular fractioning and analysis using inductively coupled plasma 

spectrometry (ICP-MS), it became clear that the subcellular localization of these two 

complexes provided an explanation for their activities. [Rh(PrDPA)2(chrysi)]3+ showed a 

10-fold increase in mitochondrial uptake over [Rh(DPAE)2(chrysi)]3+. Although more 

[Rh(PrDPA)2(chrysi)]3+ was also found in the nucleus of the cells, the percentage of total 

Rh found within the nucleus is higher for [Rh(DPAE)2(chrysi)]3+. These results suggest 

that localization of complexes to the mitochondria eradicates their biological selectivity 

for MMR-deficient cells and leads to MMR-independent death of both cell lines. 

Importantly, these findings support the hypothesis that metalloinsertors achieve their cell 

selectivity through binding nuclear DNA mismatches, not mitochondrial DNA.  

The effects of subcellular localization were further examined with a larger family 

of complexes that differed primarily in lipophilicity.68 With the exception of 

[Rh(DIP)2(chrysi)]3+, all complexes display similar binding affinities to mismatched 

DNA in the 106 to 107 M-1 range. Once again, it was found that biological selectivity 

correlated not with overall cellular uptake or nuclear localization, but instead with 

mitochondrial localization. As expected, the more lipophilic, greasy cations showed the 

highest mitochondrial localization, which correlated with elimination of biological 

selectivity.73 The more hydrophilic complexes had significantly lower localization to the 

mitochondria, which correlated with higher cell selectivity. These studies highlighted the 
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importance not only of cellular uptake but also considerations of subcellular localization. 

These studies furthermore suggested that off-target effects, such as mitochondrial 

targeting, are detrimental to the biological function of metalloinsertors.  

1.4.3 Current Design of Rhodium Metalloinsertors 

 Recently, a new family of potent rhodium metalloinsertors based on 

[Rh(DPE)(chrysi)(phen)]2+ (DPE=1,1- di(pyridine-2-yl)ethan-1-ol, phen=1,10-

phenanthroline) has been examined (Figure 1.6).69 Unlike previous generations of 

metalloinsertors, these complexes contain an unusual Rh-O bond through the 

coordination of their pyridyl-ethanol ligands. These Rh-O containing metalloinsertors are 

more potent than cisplatin and display optimal differential cellular activity in the 

nanomolar range, as much as two orders of magnitude more potent than earlier 

generations of complexes. Surprisingly, this scaffold is robust to many substitutions of 

the oxygen-containing ligand: replacing the dangling pyridyl group of DPE with a small 

methyl group, a phenyl group, or a greasy hexyl group all lead to improved, nanomolar 

cytotoxicity in MTT assays. Furthermore, and surprisingly, both the Δ and Λ enantiomers 

of these new complexes bind DNA with similar affinity in vitro and both show 

differential cell-selective activity in MTT assays.  

 Remarkably, the increased potency and selectivity of [Rh(DPE)(chrysi)(phen)]2+ 

and its derivatives is not a result of increased DNA binding or localization. For example, 

in comparison to the complex [Rh(phzi)(NH3)4]3+, a selective metalloinsertor that utilizes 

the expansive benzo[a]phenazine quinone diimine (phzi) ligand,  

[Rh(DPE)(chrysi)(phen)]2+ possesses an order of magnitude lower mismatch binding 

affinity, similar cellular uptake and mitochondrial concentrations, and slightly lower  
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Figure 1.6 A new family of rhodium metalloinsertors with unique activity. (Top left) The 
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nuclear concentration. Despite these differences, [Rh(DPE)(chrysi)(phen)]2+ shows 

comparable selectivity towards MMR-deficient cells as the tetrammine complex but is 

nearly 4-fold more potent than [Rh(phzi)(NH3)4]3+. Initially, it seemed possible that the 

increased potency and racemic binding could be due to a labile Rh-O bond, leading to 

covalent DNA binding and racemization within the cell. However, these possibilities 

were eliminated using several in vitro tests of stability. It appears that the enantiomeric 

activity of these complexes is authentic, with both Δ and Λ enantiomers being able to kill 

MMR-deficient cells selectively without racemization.  

One apparent difference between the Rh-O containing metalloinsertors and 

previous generations are dramatic changes in the pKa of the chrysi imine protons. The 

pKa of the first generation complex, [Rh(bpy)2(chrysi)]3+, is 5.6 ± 0.2; thus the complex 

is deprotonated at cellular pH. The deprotonation of the chrysi ligand relieves steric 

clashes between its imine proton and aromatic ring system protons, allowing the chrysi 

ligand to lay planar (Figure 1.6, right). This planarity can be seen in the crystal structure 

of [Rh(bpy)2(chrysi)]3+ bound to a DNA mismatch. The Rh-O containing metalloinsertors 

have significantly higher pKa values of 8.3-8.9, meaning the chrysi ligand cannot 

deprotonate at cellular pH. To relieve steric clashing, the chrysi ligand must instead 

buckle relative to [Rh(bpy)2(chrysi)]3+. This buckling can be seen in the crystal structure 

of [Rh(DPE)(chrysi)(phen)]2+. While we still believe the binding mode of these 

complexes to be metalloinsertion, it appears that this significant structural change in the 

inserting ligand of these complexes must create a slightly different DNA lesion than 

[Rh(bpy)2(chrysi)]3+. The new lesion or lesions must accommodate both the Δ and Λ 

enantiomers. Within the cell, this lesion may be more easily recognized by proteins 
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activating necrotic cell death than lesions caused by previous metalloinsertors, leading to 

the increased potency and selectivity of these complexes. Clearly much needs to be done 

to elucidate the basis of the high potency and cell selectivity of these new complexes, 

both from a structural standpoint and with regard to understanding the biological fate of 

the complexes. 

1.5 Conclusion 

Rhodium metalloinsertors constitute a unique family of transition metal 

complexes that selectively bind DNA base pair mismatches and preferentially inhibit 

proliferation and survival of MMR-deficient cells. Over the years, the design of these 

complexes has improved significantly, traversing from micromolar toxicities now into the 

nanomolar range. Thus a unique family of rhodium metalloinsertors with nanomolar 

potencies and high selectivity for MMR-deficient cell lines has now been characterized, 

bringing these complexes into the realm of therapeutic interest.69  

Based on the metalloinsertive binding mode of [Rh(bpy)2(chrysi)]3+, elucidated 

through solid and solution state structures, as well as in vitro and in cellulo work 

performed on the extensive family of metalloinsertors, we hypothesize that these 

complexes bind DNA mismatches within MMR-deficient cells, and that this Rh-DNA 

lesion is recognized by proteins and cellular machinery that eventually lead the cell to 

necrosis. Unlike cisplatin, these complexes do not appear to form covalent adducts with 

DNA. Instead, it is possible that the non-covalent binding of metalloinsertors inhibits 

proteins involved in DNA processes such as transcription or replication, similar to other 

non-covalent DNA groove binders and intercalators. In such a case, their activity may 

only be evident in MMR-deficient cells containing increased concentrations of 
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mismatches, leading to their observed selectivity. It is possible that the lesion formed by 

the more potent and selective complexes of the current generation, that can accommodate 

the Δ and Λ enantiomer, may also be more recognizable in the cell, or processed more 

efficiently to produce necrosis. Recent work on metalloinsertors has emphasized 

examining the versatility of Rh-O metalloinsertors, characterizing the structures of 

metalloinsertors bound to their target mismatches, and understanding the biological 

activity of these metalloinsertors in diverse cellular environments. Future work will use 

what is established in this thesis to explore new challenges, such as identifying proteins 

and pathways involved in metalloinsertor processing and developing future generations 

of metalloinsertors with improved potency or selectivity for use as a foundation for a new 

family of chemotherapeutics.  

Indeed what has been clear from these studies at the outset is that transition metal 

chemistry offers a rich variety of means to target DNA sites along with novel methods to 

characterize their fates inside cells. Cisplatin, despite its simplicity in structure and 

relative lack of specificity in cellular targeting, has proven to be a powerfully important 

therapeutic. We expect that greater specificity in cellular targeting along with greater 

specificity in DNA targeting can only aid us in the development of new strategies upon 

which to build and potentially new potent and selective metal compounds as cancer 

therapeutics. 

 

 

 

 



24 

1.6 References	

(1)  Gilman, A.; Philips, F. S. Science (80-. ). 1946, 103, 409–436. 

(2)  Farber, S.; Diamond, L. K.; Mercer, R. D.; Sylvester Jr, R. F.; Wolff, J. A. N. Engl. 

J. Med. 1948, 238, 787–793. 

(3)  Goodman, L. S.; Wintrobe, M. M.; Dameshek, W.; Goodman, M. J.; Gilman, A.; 

McLennan, M. T. J. Am. Med. Assoc. 1946, 132, 126–132. 

(4)  Li, M. C.; Hertz, R.; Bergenstal, D. M. N. Engl. J. Med. 1958, 259, 66–74. 

(5)  Hurley, L. H. Nat. Rev. Cancer 2002, 2, 188–200. 

(6)  Palchaudhuri, R.; Hergenrother, P. J. Curr. Opin. Biotechnol. 2007, 18, 497–503. 

(7)  White, S.; Szewczyk, J. W.; Turner, J. M.; Baird, E. E.; Dervan, P. B. Nature 

1998, 391, 468–471. 

(8)  Shalaby, T.; Fiaschetti, G.; Nagasawa, K.; Shin-ya, K.; Baumgartner, M.; Grotzer, 

M. Molecules 2013, 18, 12500–12537. 

(9)  Cheung-Ong, K.; Giaever, G.; Nislow, C. Chem. Biol. 2013, 20, 648–659. 

(10)  Komor, A. C.; Barton, J. K. Chem. Commun. 2013, 49, 3617–3630. 

(11)  Zeglis, B. M.; Pierre, V. C.; Barton, J. K. Chem Commun 2007, 44, 4565–4579. 

(12)  Paul, A.; Bhattacharya, S. Curr. Sci. 2012, 102, 212–231. 

(13)  Krotz, A. H.; Hudson, B. P.; Barton, J. K. J. Am. Chem. Soc. 1993, 115, 12577–

12578. 

(14)  Baraldi, P. G.; Bovero, A.; Fruttarolo, F.; Preti, D.; Tabrizi, M. A.; Pavani, M. G.; 

Romagnoli, R. Med. Res. Rev. 2004, 24, 475–528. 



25 

(15)  Wheate, N. J.; Brodie, C. R.; Collins, J. G.; Kemp, S.; Aldrich-Wright, J. R. Mini 

Rev. Med. Chem. 2007, 7, 627–648. 

(16)  Zeglis, B. M.; Pierre, V. C.; Barton, J. K. Chem. Commun. 2007, 44, 4565–4579. 

(17)  Jackson, B. A.; Barton, J. K. J. Am. Chem. Soc. 1997, 119, 12986–12987. 

(18)  Barbier, O.; Jacquillet, G.; Tauc, M.; Cougnon, M.; Poujeol, P. Nephron - Physiol. 

2005, 99, 105–110. 

(19)  Shi, H.; Hudson, L. G.; Liu, K. J. Free Radic. Biol. Med. 2004, 37, 582–593. 

(20)  Domingo, J. L. J. Toxicol. Environ. Health 1994, 42, 123–141. 

(21)  Rosenberg, B.; Van Camp, L.; Krigas, T. Nature 1965, 205, 698–699. 

(22)  Wheate, N. J.; Walker, S.; Craig, G. E.; Oun, R. Dalt. Trans. 2010, 39, 8113–8127. 

(23)  Jamieson, E. R.; Lippard, S. J. Chem. Rev. 1999, 99, 2467–2498. 

(24)  Eastman, A. Biochemistry 1986, 25, 3912–3915. 

(25)  Takahara, P. M.; Rosenzweig, A. C.; Frederick, C. A.; Lippard, S. J. 1995, 377, 

649–652. 

(26)  Kelland, L. Nat. Rev. Cancer 2007, 7, 573–584. 

(27)  Weidmann, A. G.; Komor, A. C.; Barton, J. K. Comments Inorg. Chem. 2014, 34, 

1–10. 

(28)  Scaltriti, M.; Baselga, J. Clin. Cancer Res. 2006, 12, 5268–5272. 

(29)  Zhang, J.; Yang, P. L.; Gray, N. S. Nat. Rev. Cancer 2009, 9, 28–39. 

 

 



26 

(30)  Van Cutsem, E.; Köhne, C.-H.; Hitre, E.; Zaluski, J.; Chang Chien, C.-R.; 

Makhson, A.; D’Haens, G.; Pintér, T.; Lim, R.; Bodoky, G.; others. N. Engl. J. 

Med. 2009, 360, 1408–1417. 

(31)  Dexheimer, T. S. In DNA Repair of Cancer Stem Cells; Springer: Dordrecht, 2013; 

pp 19–32. 

(32)  Hoeijmakers, J. H. J. N. Engl. J. Med. 2009, 361, 1475–1485. 

(33)  Kunkel, T. A.; Erie, D. A. Annu. Rev. Genet. 2015, 49, 291–313. 

(34)  Schärer, O. D. Cold Spring Harb. Perspect. Biol. 2013, 5, a012609. 

(35)  Dianov, G. L.; Hübscher, U. Nucleic Acids Res. 2013, 41, 3483–3490. 

(36)  Panier, S.; Boulton, S. J. Nat. Rev. Mol. Cell Biol. 2014, 15, 7–18. 

(37)  Kunkel, T. A. J. Biol. Chem. 2004, 279, 16895–16898. 

(38)  Tran, H. T.; Keen, J. D.; Kricker, M.; Resnick, M. A.; Gordenin, D. A. Mol. Cell. 

Biol. 1997, 17, 2859–2865. 

(39)  Modrich, P. J. Biol. Chem. 2006, 281, 30305–30309. 

(40)  Kadyrov, F. A.; Dzantiev, L.; Constantin, N.; Modrich, P. Cell 2006, 126, 297–

308. 

(41)  Kolodner, R. D. Trends Biochem. Sci. 1995, 20, 397–401. 

(42)  Arzimanoglou, I. I.; Gilbert, F.; Barber, H. R. K. Cancer 1998, 82, 1808–1820. 

(43)  Fink, D.; Aebi, S.; Howell, S. B. Clin. Cancer Res. 1998, 4, 1–6. 

(44)  Peters, S.; Kerr, K. M.; Stahel, R. Cancer Treat. Rev. 2018, 62, 39–49. 

 



27 

(45)  Sul, J.; Blumenthal, G. M.; Jiang, X.; He, K.; Keegan, P.; Pazdur, R. Oncologist 

2016, 21, 643–650. 

(46)  FDA. FDA approves first cancer treatment for any solid tumor with a specific 

genetic feature. 

(47)  Pollack, M. H.; Betof, A.; Dearden, H.; Rapazzo, K.; Valentine, I.; Brohl, A. S.; 

Ancell, K. K.; Long, G. V.; Menzies, A. M.; Eroglu, Z.; Johnson, D. B.; 

Shoushtari, A. N. Ann. Oncol. 2018, 29, 250–255. 

(48)  Cagle, P. T.; Bernicker, E. H. Arch. Pathol. Lab Method 2015, 139, 1477. 

(49)  Tartari, F.; Santoni, M.; Burattini, L.; Mazzanti, P.; Onofri, A.; Berardi, R. Cancer 

Treat. Rev. 2016, 48, 20–24. 

(50)  Sitlani, A.; Long, E. C.; Pyle, A. M.; Barton, J. K. J. Am. Chem. Soc. 1992, 114, 

2303–2312. 

(51)  Mei, H.-Y.; Barton, J. K. Proc. Natl. Acad. Sci. 1988, 85, 1339–1343. 

(52)  Barton, J. K.; Raphael, A. L. Proc. Natl. Acad. Sci. 1985, 82, 6460–6464. 

(53)  Pan, S.; Sun, X.; Lee, J. K. Int. J. Mass Spectrom. 2006, 253, 238–248. 

(54)  Lerman, L. S. J. Mol. Biol. 1961, 3, 18--IN14. 

(55)  Uchida, K.; Pyle, A. M.; Morii, T.; Barton, J. K. Nucleic Acids Res. 1989, 17, 

10259–10279. 

(56)  Suri, Asif, K.; Mao, B.; Amin, S.; Geacintov, N. E.; Patel, D. J. J. Mol. Biol. 1999, 

292, 289–307. 

(57)  Zeglis, B. M.; Barton, J. K. Nat. Protoc. 2007, 2, 357–371. 



28 

(58)  Jackson, B. A.; Alekseyev, V. Y.; Barton, J. K. Biochemistry 1999, 38, 4655–

4662. 

(59)  Jackson, B. A.; Barton, J. K. Biochemistry 2000, 39, 6176–6182. 

(60)  Ernst, R. J.; Komor, A. C.; Barton, J. K. Biochemistry 2011, 50, 10919–10928. 

(61)  Zeglis, B. M.; Boland, J. A.; Barton, J. K. J. Am. Chem. Soc. 2008, 130, 7530–

7531. 

(62)  Pierre, V. C.; Kaiser, J. T.; Barton, J. K. Proc. Natl. Acad. Sci. 2007, 104, 429–

434. 

(63)  Zeglis, B. M.; Pierre, V. C.; Kaiser, J. T.; Barton, J. K. Biochemistry 2009, 48, 

4247–4253. 

(64)  Cordier, C.; Pierre, V. C.; Barton, J. K. J. Am. Chem. Soc. 2007, 129, 12287–

12295. 

(65)  Maida, M.; Aebi, S.; Fink, D.; Howell, S. B.; Los, G. J. Natl. Cancer Inst. 1997, 

89, 1537–1541. 

(66)  Hart, J. R.; Glebov, O.; Ernst, R. J.; Kirsch, I. R.; Barton, J. K. Proc. Natl. Acad. 

Sci. 2006, 103, 15359–15363. 

(67)  Ernst, R. J.; Song, H.; Barton, J. K. J. Am. Chem. Soc. 2009, 131, 2359–2366. 

(68)  Komor, A. C.; Schneider, C. J.; Weidmann, A. G.; Barton, J. K. J. Am. Chem. Soc. 

2012, 134, 19223–19233. 

(69)  Komor, A. C.; Barton, J. K. J. Am. Chem. Soc. 2014, 136, 14160–14172. 

 



29 

(70)  Bailis, J. M.; Gordon, M. L.; Gurgel, J. L.; Komor, A. C.; Barton, J. K.; Kirsch, I. 

R. PLoS One 2013, 8, e78726. 

(71)  Ernst, R. J.; Song, H.; Barton, J. K. J. Am. Chem. Soc. 2009, 131, 2359–2366. 

(72)  Weidmann, A. G.; Komor, A. C.; Barton, J. K. Philisophocal Trans. R. Soc. 2013, 

371, 20120117. 

(73)  Modica-Napolitano, J. S.; Aprille, J. R. Adv. Drug Deliv. Rev. 2001, 49, 63–70. 

 



30 

	

C h a p t e r  2  

A FAMILY OF RHODIUM COMPLEXES WITH SELECTIVE 
TOXICITY TOWARD MISMATCH REPAIR-DEFICIENT CANCERS∗ 

2.1 Introduction 

 Over the past 70 years, DNA and its associated metabolic processes have proven 

to be fruitful targets for the design of new therapeutic agents.1 Many of the most common 

FDA-approved chemotherapeutics work by binding DNA, such as the DNA-crosslinking 

agent cisplatin and the DNA-intercalating agent doxorubicin.2–5 Despite the prevalence of 

these drugs in the clinic, there are many drawbacks to their design and mechanisms of 

action. In many cases, the drugs target a generic DNA structure that is common to both 

healthy and cancerous cells. The incidental targeting of healthy tissue can result in 

dramatic and often dose-limiting side effects, such as emesis and nephrotoxicity.6 To 

circumvent these off-target effects, it is essential to identify new therapeutic targets that 

are almost exclusively found within cancerous tissues and cells. 

In our research, we focus on one such target: DNA base pair mismatches. 

Mismatches occur regularly in cells due to polymerase errors or interaction with 

exogenous compounds.7 In healthy cells, these errors are corrected by the mismatch 

repair (MMR) machinery of the cell. However, in many solid tumors or tumors of Lynch 

syndrome patients, mutations in MMR proteins severely down-regulate or completely 

inactivate repair.8,9 As a result, these cancers contain a relative abundance of DNA base 

																																																								
∗ Adapted from Boyle, K. M.; Barton, J. K. A Family of Rhodium Complexes with 
Selective Toxicity towards Mismatch Repair-Deficient Cancers. J. Am. Chem. Soc. 2018, 
140, 5612-5624. DOI: 10.1021/jacs.8b02271 
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pair mismatches compared to healthy cells, making mismatches a potential biomarker for 

selective cancer therapy.  

Mismatched base pairs have been targeted through the design of metal complexes, 

called rhodium metalloinsertors, which selectively and non-covalently bind these 

lesions.10 Rhodium metalloinsertors contain a sterically expansive aromatic chrysi (5,6-

chrysenequinone diimine) ligand that is capable of π-stacking with DNA bases. Due to 

steric bulk, however, the chrysi ligand is unable to easily intercalate into well-matched 

DNA, and instead primarily interacts with DNA at thermodynamically destabilized sites, 

such as mismatches or abasic sites.11 The ability of a prototypical metalloinsertor, 

[Rh(bpy)2(chrysi)]3+ (bpy = 2,2’-bipyridine), to selectively bind DNA mismatches has 

been verified using both in vitro binding assays and crystallographic studies.12–15 

Crystallographic and NMR studies show that this complex binds DNA mismatches via 

metalloinsertion, a non-covalent binding mode in which the complex inserts into DNA at 

the mismatched site from the minor groove, ejects the mismatched DNA bases, and π-

stacks with the flanking well-matched base pairs.14 This mismatch-targeting ability has 

also been suggested by human cell culture experiments, with metalloinsertors exhibiting 

enhanced cytotoxicity in MMR-deficient cell lines relative to their MMR-proficient 

counterparts.15,16 This result is in stark contrast to most DNA-targeting therapeutics, such 

as the aforementioned cisplatin and doxorubicin, which are selective towards MMR-

proficient cell lines over MMR-deficient cell lines, leading to the development of 

resistance in MMR-deficient tumors following treatment.17,18  

Several generations of metalloinsertors have been synthesized since 

[Rh(bpy)2(chrysi)]3+, which has led to the recent discovery of a potent and selective 
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family of rhodium metalloinsertors containing a pyridyl-alcohol ligand and unique Rh−O 

ligand coordination (Figure 2.1).19 This Rh−O ligand coordination is structurally distinct 

from earlier generations of parent metalloinsertors, which contained solely Rh−N 

coordination.20 Furthermore, these Rh−O metalloinsertors were found to have improved 

potency and selectivity towards MMR-deficient cancer cells over MMR-proficient cancer 

cells. Surprisingly, this high potency and cell selectivity was  seen across a variety of 

metalloinsertors containing O-coordinated ligands that differed significantly in size and 

structure (spanning methyl, pyridyl, phenyl, and hexyl functionalization), suggesting the 

biological activities of Rh−O metalloinsertors are not perturbed by ligand substitution off 

of the O-containing site.  

Here, a family of rhodium metalloinsertors was designed and synthesized as 

variations of the Rh−O metalloinsertor [Rh(phen)(chrysi)(PPO)]2+ (phen = 1,10-

phenanthroline). These complexes, of the form [Rh(L)(chrysi)(PPO)]2+, all include the O-

containing PPO ligand but differ in the identity of their ancillary ligand, L, where L= 

bpy,  HDPA (2,2’-dipyridylamine),  4,7-DMP (4,7-dimethyl-1,10-phenanthroline), 5,6-

DMP (5,6-dimethyl-1,10-phenanthroline),  and DIP (4,7-diphenyl-1,10-phenanthroline) 

(Figure 2.2). The ancillary ligand substitution alters the steric bulk and lipophilicity of 

these complexes, which can ultimately affect DNA-binding properties and biological 

activity.20,21 Each complex described, even the most lipophilic and sterically bulky, 

shows biological selectivity towards MMR-deficient cell lines, further demonstrating that 

the Rh−O ligand framework is amenable to a wide array of functionalization. To better 

understand the trends in biological activity of these complexes, each metalloinsertor was 

examined for binding affinity to mismatched DNA, pKa, lipophilicity, whole cell uptake,  
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Figure 2.1 General structure of metalloinsertors. (Left) Rh−O metalloinsertors show 

improved potency and selectivity over parent metalloinsertors that have exclusively Rh-N 

coordination (right). R has been varied between methyl, phenyl, pyridyl, and hexyl 

groups and N—N has been varied between several bpy, phen, and HDPA derivatives.  
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and subcellular localization into the nucleus and mitochondria. The results indicate that 

minimizing uptake of the complexes into the mitochondria may be a key factor in 

ensuring high biological selectivity and support that these Rh−O complexes exhibit 

distinct differences in metalloinsertor-DNA binding and cell activation compared to 

parent metalloinsertors.   

2.2 Experimental Methods  

 2.2.1 Materials 

Commercially available chemicals were used as received. All reagents and 

Sephadex ion-exchange resin were obtained from Sigma-Aldrich with the following 

exceptions. RhCl3 was purchased from Pressure Chemical, Inc. Dowex ion-exchange 

beads were purchased from Acros Organics. Analytical standards for Rb and transition 

metals were purchased from Analytical West and Ultra Scientific, respectively. MTT and 

ELISA assay kits were obtained from Roche. Pierce BCA assay kit and NP40 were 

purchased from Thermo Scientific. Sep-pak C18 solid-phase extraction (SPE) cartridges 

were purchased from Waters Chemical Co. Cell culture media and supplements were 

purchased from Invitrogen. Tissue culture flasks and plates were obtained from Corning. 

32P labeled ATP was purchased from Perkin Elmer. UreaGel supplies were purchased 

from National Diagnostics. Microbiospin columns were purchased from BioRad.  

2.2.2 Synthesis and Characterization of Metal Complexes 

 [Rh(phen)(chrysi)(PPO)]Cl2 and [Rh(bpy)2(chrysi)]Cl3 were synthesized 

following the published protocols.19,22 New metal complexes were synthesized in a 

similar manner to published procedures.19,20,23 Complete synthetic details for each 

complex, including specific amounts (masses, volumes, and ratios), are given below.   
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 2.2.2.1 Synthesis and Characterization of [Rh(bpy)(chrysi)(PPO)]2+ 

RhCl3•3H2O (270 mg, 1.0 mmol, 1 equiv.) and KCl (78 mg, 1.0 mmol, 1 equiv.) 

were refluxed in methanol (8 mL) for 2 hours at 98 °C. 2,2’-bipyridine (bpy, 160 mg, 1.0 

mmol, 1 equiv) was added in a minimum volume of methanol and refluxed for 4 h, 

during which the deep red solution turned to golden precipitate. The solution was filtered 

over a medium fritted filter and rinsed with methanol and dried under vacuum (380 mg, 

84% crude yield). 

[Rh(bpy)Cl4]K (380 mg, 0.86 mmol, 1 equiv.) was added to an oven-dried 25 mL 

Schlenk flask with stir bar and degassed by cycling argon and vacuum into the flask. Neat 

triflic acid (10 g, excess) was added to the flask under positive Ar pressure and 

immediately capped with a rubber septum and vent needle. The solution turned deep red 

upon triflic acid addition. After two hours, the argon flow was turned off, the vent needle 

was removed, and the flask was stirred for 12 h. The solution was then added dropwise to 

300 mL cold, stirring ether at -78 °C to produce a yellow-brown precipitate. The 

precipitate was filtered over a medium frit. To prevent the fine precipitate from flowing 

through the frit, vacuum was applied slowly during the filtration. One all filtrate was 

collected, it was washed with cold ether, and dried under vacuum. [Rh(bpy)(OTf)4]K was 

combined with NH4OH (28% w/v, 40 mL, excess) and stirred at 40 °C for 1 h, during 

which the solution became a foggy light yellow. The solvent was removed under vacuum 

(280 mg, 42% crude yield).  

[Rh(bpy)(NH3)4](OTf)3 (280 mg, 0.36 mmol, 1 equiv.) was combined with 5,6-

chrysene-quinone (100 mg, 0.39 mmol, 1 equiv.) and 9:1 MeCN:H2O (40 mL) and NaOH 

(1 M, 2 mL) and stirred for 1 h. The solution changed from the bright orange of the free 
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ligand to a red-brown solution with no precipitate. The reaction was quenched with HCl 

(1 M, 2 mL), producing an even deeper red solution, and the solvent was removed under 

vacuum. The red product was purified over a C18 SepPak that had been pre-equilibrated 

with 0.1%TFA (aq) and eluted with 25% MeCN, 75% of 0.1% TFA (aq). (100 mg, 33% 

yield). 

[Rh(bpy)(chrysi)(NH3)2](TFA)3 (100 mg, 0.12 mmol, 1 equiv.) was combined 

with PPO (23 mg, 0.17 mmol, 1.4 equiv.) in 1:1 EtOH:H2O (10 mL) and refluxed 12 h. 

The reaction was monitored by LC-MS (liquid chromatography – mass spectrometry) to 

determine when the reaction was near-complete to improve yield and prevent over-

reacting and producing the bis-chrysi complex. The solvent was removed under vacuum 

and the product was purified by HPLC (85:15 MeCN:0.1% TFA (aq) to 95:5 

MeCN:0.1% TFA (aq) over 30 min). The purified product was converted to the chloride 

salt using Sephadex QAE resin charged with MgCl2. (24 mg, 30% purified yield). 

The mass spectrometry, UV-Visible, and NMR characterization of 

[Rh(bpy)(chrysi)(PPO)]2+ is as follows. The TFA salt of [Rh(bpy)(chrysi)(PPO)]2+ is 

soluble in acetonitrile and minimally soluble in water, whereas the chloride salt of 

[Rh(bpy)(chrysi)(PPO)]2+ is soluble in water and minimally soluble in acetonitrile. As 

such, MS and NMR experiments were performed using the TFA counteranion and UV-

Vis experiments were performed using the chloride counteranion. LCQ-MS (cation): m/z 

calc. 650.1 (M-1H+), 325.6 (M2+); obs. 650.0, 325.8. UV-Vis (H2O): 259nm (59,800 M-1 

cm-1), 287nm (43,100 M-1 cm-1), 298nm (37,100 M-1 cm-1), 312nm (32,000 M-1 cm-1), 

435nm (10,000 M-1 cm-1). 1H NMR (500 MHz, Acetonitrile-d3) δ 13.44 (br s, 1.2H), 

11.89 (br s, 2H), 9.45 (d, J = 5.6 Hz, 1H), 9.36 (d, J = 5.7 Hz, 0.6H), 8.80 (d, J = 8.0, 1.4 
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Hz, 1H), 8.71 (d, J = 5.3 Hz, 0.6H), 8.62 (d, J = 8.2 Hz, 0.6H), 8.60-8.54 (m, 2.6H), 8.43-

8.26 (m, 8H), 8.26-8.21 (m, 1H), 8.14 (d, J = 8.2, 1.5 Hz, 0.6H), 8.06-7.89 (m, 4.8H), 

7.85-7.78 (m, 1,6H), 7.77-7.68 (m, 3.2H), 7.68-7.61 (m, 2.2H), 7.60-7.52 (m, 2.6H), 7.31 

(d, 0.6H), 7.29-7.21 (m, 2.6H), 1.91 (s, 3H), 1.87 (s, 1.8H), 1.58 (s, 4.8H), purified as a 

1:0.6 mixture of diastereomers.  

 2.2.2.2 Synthesis and Characterization of [Rh(HDPA)(chrysi)(PPO)]2+ 

RhCl3•3H2O (1.0 g, 3.8 mmol, 1 equiv.) was refluxed in concentrated HCl (38% 

w/v, 30 mL) for 3 h at 98 °C. 2,2’-dipyridylamine (HDPA, 1.3 g, 7.6 mmol, 2 equiv) was 

added in a minimum volume of HCl, followed immediately by boiling water (200 mL). 

The solution was refluxed for 12 h, then cooled to 4 °C. The golden precipitate was 

filtered over a Buchner funnel and dried under vacuum. (2.2 g, >100% crude yield). 

[Rh(HDPA)Cl4][H3O] (2.2 g, 1 equiv.) was added to an oven-dried 25 mL 

Schlenk flask with stir bar and degassed by cycling argon and vacuum into the flask. Neat 

triflic acid (10 g, excess) was added to the flask under positive Ar pressure and 

immediately capped with a rubber septum and vent needle. The solution turned deep red 

upon triflic acid addition. After two hours, the argon flow was turned off, the vent needle 

was removed, and the flask was stirred for 12 h. The solution was then added dropwise to 

200 mL cold, stirring ether at -78 °C to produce a yellow-brown precipitate. The 

precipitate was filtered over a medium fritted filter. To prevent the fine precipitate from 

flowing through the frit, vacuum was applied slowly during the filtration. Filtrate was 

collected, washed with cold ether, and dried under vacuum. 

[Rh(HDPA)(OTf)4][H3O] was combined with NH4OH (28% w/v, 100 mL, 

excess) and stirred at 40 °C for 45 min, during which the solution became a foggy light 
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yellow. The solvent was removed under vacuum and the product was dissolved in a 

minimal amount of water and precipitated with 10:1 ether:EtOH, filtered over a medium 

fritted filter, and dried further under vacuum. (400 mg, 10% crude yield).  

[Rh(HDPA)(NH3)4](OTf)3 (400 mg, 0.51 mmol, 1 equiv.) was combined with 

5,6-chrysene-quinone (140mg, 0.55 mmol, 1 equiv.) and MeCN (65 mL) and NaOH (1 

M, 8 mL) and stirred for 12 h. The solution changed from the bright orange of the free 

ligand to a red-brown solution with no precipitate. The reaction was quenched with HCl 

(1 M, 8 mL), producing an even deeper red solution, and the solvent was removed under 

vacuum. The red product was purified over a C18 SepPak, pre-equilibrated with 

0.1%TFA (aq) and eluted with 25% MeCN, 75% of 0.1% TFA (aq). (220 mg, 51% 

yield). 

[Rh(HDPA)(chrysi)(NH3)2](TFA)3 (70 mg, 0.08 mmol, 1 equiv.) was combined 

with PPO (24 mg, 0.17 mmol, 2.1 equiv.) in 1:1 EtOH:H2O (20 mL) and refluxed 7 d. 

The reaction was monitored by LC-MS to determine when the reaction was near-

complete to improve yield and prevent over-reacting and producing the bis-chrysi 

complex. The solvent was removed under vacuum and the product was purified by HPLC 

(85:15 MeCN:0.1% TFA (aq) to 95:5 MeCN:0.1% TFA (aq) over 30 min). The purified 

product was converted to the chloride salt using Sephadex QAE resin charged with 

MgCl2. (6 mg, 10% purified yield). 

The MS, UV-Visible, and NMR characterization of [Rh(HDPA)(chrysi)(PPO)]2+ 

is as follows. As described above, MS and NMR experiments were performed using the 

TFA counteranion and UV-Vis experiments were performed using the chloride 

counteranion for solubility reasons. LCQ-MS (cation): m/z calc. 665.2 (M-1H+), 333.1 
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(M2+); obs. 665.3, 333.3. UV-Vis (H2O): 259nm (60,400 M-1 cm-1), 283nm (45,900 M-1 

cm-1), 326nm (18,600 M-1 cm-1), 440nm (8,500 M-1 cm-1). 1H NMR (500 MHz, 

Acetonitrile-d3) δ 12.49 (br s, 1H), 12.04 (br s, 1H), 8.72 (dd, J = 8.0, 1.3 Hz, 1H), 8.50 

(d, J = 6.0 Hz, 1H), 8.38-8.31 (m, 3H), 8.31-8.23 (m, 2H), 8.20-8.13 (m, 2H), 8.08-8.00 

(m, 2H), 7.98 (td, J = 8.6, 1.6 Hz, 1H), 7.94-7.81 (m, 4H), 7.69 (m, 3H), 7.51 (ddd, J = 

7.6, 6.0, 1.4 Hz, 1H), 7.23 (ddd, J = 7.4, 6.1, 1.3 Hz, 1H), 7.17 (ddd, J = 7.4, 6.2, 1.4 Hz, 

1H), 1.78 (s, 3H), 1.56 (s, 3H), purified as a single diastereomer. 

 2.2.2.3 Synthesis and Characterization of  

[Rh(4,7-DMP)(chrysi)(PPO)]2+ 

RhCl3•3H2O (500 mg, 1.9 mmol, 1 equiv.) and KCl (150 mg, 2.0 mmol, 1 equiv.) 

were refluxed in methanol (10 mL) for 2 h at 98 °C. 4,7-dimethyl-1,10-phenanthroline 

(4,7-DMP, 400 mg, 1.9 mmol, 1 equiv) was added in a minimum volume of methanol 

and refluxed for 4 h, during which the deep red solution turned to golden precipitate. The 

solution was filtered over a medium fritted filter and rinsed with methanol and dried 

under vacuum (800 mg, 86% crude yield). 

[Rh(4,7-DMP)Cl4]K (800 mg, 1.6 mmol, 1 equiv.) was added to an oven-dried 25 

mL Schlenk flask with stir bar and degassed by cycling argon and vacuum into the flask. 

Neat triflic acid (10 g, excess) was added to the flask under positive Ar pressure and 

immediately capped with a rubber septum and vent needle. The solution turned deep red 

upon triflic acid addition. After two hours, the argon flow was turned off, the vent needle 

was removed, and the flask was stirred for 12 h. The solution was then added dropwise to 

250 mL cold, stirring ether at -78 °C to produce a yellow-brown precipitate. The 

precipitate was filtered over a medium frit. To prevent the fine precipitate from flowing 
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through the frit, vacuum was applied slowly during the filtration. One all filtrate was 

collected, it was washed with cold ether, and dried under vacuum. The product, [Rh(4,7-

DMP)(OTf)4]K was combined with NH4OH (28% w/v, 50 mL, excess) and stirred at 40 

°C for 1 h, during which the solution became a foggy brown. The solvent was removed 

under vacuum and the product was suspended in EtOH (5 mL), filtered over a medium 

fritted filter and rinsed with cold ethanol, and dried further under vacuum. (200 mg, 15% 

crude yield).  

[Rh(4,7-DMP)(NH3)4](OTf)3 (200 mg, 0.24 mmol, 1 equiv.) was combined with 

5,6-chrysene-quinone (70mg, 0.39 mmol, 1.6 equiv.) and 6:1 MeCN:H2O (35 mL) and 

NaOH (1 M, 5 mL) and stirred for 1 h. The solution changed from the bright orange of 

the free ligand to a green-brown solution with no precipitate. The reaction was quenched 

with HCl (1 M, 5 mL), producing a deep red solution, and the solvent was removed under 

vacuum. The red product was HPLC purified (85:15 MeCN:0.1% TFA (aq) to 95:5 

MeCN:0.1% TFA (aq) over 30 min). (100 mg, 46% purified yield). 

[Rh(4,7-DMP)(chrysi)(NH3)2](TFA)3 (50 mg, 0.03 mmol, 1 equiv.) was 

combined with PPO (9 mg, 0.07 mmol, 2 equiv.) in 1:1 EtOH:H2O (10 mL) and refluxed 

12 h. The reaction was monitored by LC-MS to determine when the reaction was near-

complete to improve yield and prevent over-reacting and producing the bis-chrysi 

complex. The solvent was removed under vacuum and the product was purified by HPLC 

(85:15 MeCN:0.1% TFA (aq) to 95:5 MeCN:0.1% TFA (aq) over 30 min). The purified 

product was converted to the chloride salt using Sephadex QAE resin charged with 

MgCl2. (4 mg, 10% purified yield). 
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The MS, UV-Visible, and NMR characterization of [Rh(4,7-

DMP)(chrysi)(PPO)]2+ is as follows. As described above, MS and NMR experiments 

were performed using the TFA counteranion and UV-Vis experiments were performed 

using the chloride counteranion for solubility reasons. LCQ-MS (cation): m/z calc. 702.2 

(M-1H+), 351.6 (M2+); obs. 702,3, 351.8. UV-Vis (H2O): 269nm (106,800 M-1 cm-1), 

440nm (11,400 M-1 cm-1). 1H NMR (500 MHz, Acetonitrile-d3) δ 13.31 (br s, 0.8H), 

11.75 (br s, 2H), 9.50 (d, J = 5.4 Hz, 1H), 9.42 (d, J = 5.4 Hz, 0.4H), 8.86 (dd, J = 5.5, 

0.9 Hz, 1H), 8.83 (dd, J = 8.0, 1.3 Hz, 1H), 8.73 (d, J = 5.4 Hz, 0.4H), 8.47 (d, J = 2.5 

Hz, 0.4H), 8.46-8.35 (m, 4.2H), 8.34 (d, J = 8.2 Hz, 0.4H), 8.27 (d, J = 8.8 Hz, 1H), 8.21-

8.17 (m, 1.4H), 8.16 (d, J = 8.1 Hz, 0.4H), 8.08 (dd, J = 5.4, 1.0 Hz, 1H), 8.04 (d, J = 5.4 

Hz, 0.4H), 8.00 (dd, J = 7.5, 1.7 Hz, 1H), 7.97-7.92 (m, 2.4H), 7.84 (m, 1.8H), 7.77 (m, 

1.4H), 7.61-7.51 (m, 5.2H), 7.19-7.15 (m, 0.4H), 7.10-7.03 (m, 2.8H), 3.05 (s, 3H), 3.04 

(s, 1.2H), 3.02 (s, 1.2H), 2.99 (s, 3H), 1.95 (s, 3H), 1.92 (s, 1.2H), 1.62 (s, 3H), 1.61 (s, 

1.2H), purified as a 1:0.4 mixture of diastereomers.  

 2.2.2.4 Synthesis and Characterization of  

  [Rh(5,6-DMP)(chrysi)(PPO)]2+ 

RhCl3•3H2O (1.0 g, 3.8 mmol, 1 equiv.) and KCl (290 mg, 3.9 mmol, 1 equiv.) 

were refluxed in methanol (15 mL) for 2 h at 98 °C. 5,6-dimethyl-1,10-phenanthroline 

(5,6-DMP, 790 mg, 3.8 mmol, 1 equiv) was added in a minimum volume of methanol 

and refluxed for 4 h, during which the deep red solution turned to beige precipitate. The 

solution was filtered over a medium frit and rinsed with methanol and dried under 

vacuum (1.7 g, 91% crude yield). 
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[Rh(5,6-DMP)Cl4]K (1.7 g, 3.4 mmol, 1 equiv.) was added to an oven-dried 25 

mL Schlenk flask with stir bar and degassed by cycling argon and vacuum into the flask. 

Neat triflic acid (10 g, excess) was added to the flask under positive Ar pressure and 

immediately capped with a rubber septum and vent needle. The solution turned deep red 

upon triflic acid addition. After two hours, the argon flow was turned off, the vent needle 

was removed, and the flask was stirred for 12 h. The solution was then added dropwise to 

200 mL cold, stirring ether at -78 °C to produce a yellow-brown precipitate. The 

precipitate was filtered over a medium frit. To prevent the fine precipitate from flowing 

through the frit, vacuum was applied slowly during the filtration. One all filtrate was 

collected, it was washed with cold ether, and dried under vacuum. The product, [Rh(5,6-

DMP)(OTf)4]K was combined with NH4OH (28% w/v, 100 mL, excess) and stirred at 40 

°C for 40 min. The solvent was removed under vacuum and the product was dissolved in 

minimal EtOH and precipitated in ether, filtered over a medium fritted filter, and dried 

further under vacuum. (2.2 g, 77% crude yield).  

[Rh(5,6-DMP)(NH3)4](OTf)3 (830 mg, 1.0 mmol, 1 equiv.) was combined with 

5,6-chrysene-quinone (250 mg, 1.0 mmol, 1 equiv.) and 11:1 MeCN:H2O (250 mL) and 

NaOH (1M, 4 mL) and stirred for 1 h. The solution changed from the bright orange of the 

free ligand to a green-brown solution with no precipitate. The reaction was quenched 

with HCl (1 M, 4 mL), producing a deep red solution, and the solvent was removed under 

vacuum. The red product was HPLC purified (85:15 MeCN:0.1% TFA (aq) to 95:5 

MeCN:0.1% TFA (aq) over 30 min). (540 mg, 62% purified yield). 

[Rh(5,6-DMP)(chrysi)(NH3)2](TFA)3 (40mg,  0.04 mmol, 1 equiv.) was 

combined with PPO (11 mg, 0.08 mmol, 2 equiv.) in 1:1 EtOH:H2O (10 mL) and 
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refluxed 12 h. The reaction was monitored by LC-MS to determine when the reaction 

was near-complete to improve yield and prevent over-reacting and producing the bis-

chrysi complex. The solvent was removed under vacuum and the product was purified by 

HPLC (85:15 MeCN:0.1% TFA (aq) to 95:5 MeCN:0.1% TFA (aq) over 30 min). The 

use of Sephadex QAE in the ion exchange of [Rh(5,6-DPE)(chrysi)(PPO)]2+ was 

insufficient; therefore the purified product was converted to the chloride salt using 

Dowex 1x2 500-100 mesh ion exchange resin. (8 mg, 23% purified yield). 

The MS, UV-Visible, and NMR characterization of [Rh(5,6-

DMP)(chrysi)(PPO)]2+ is as follows. As described above, MS and NMR experiments 

were performed using the TFA counteranion and UV-Vis experiments were performed 

using the chloride counteranion for solubility reasons. LCQ-MS (cation): m/z calc. 702.2 

(M-1H+), 351.6 (M2+); obs. 702.3, 351.8. UV-Vis (H2O): 267nm (80,600 M-1 cm-1), 

280nm (81,700 M-1 cm-1), 438nm (10,500 M-1 cm-1). 1H NMR (500 MHz, Acetonitrile-d3)  

δ 13.40 (br s, 0.3H), 11.77 (br s, 1H), 9.68 (d, J = 5.2 Hz, 1H), 9.59 (d, J = 5.1 Hz, 0.3H), 

9.06-8.97 (m, 3.9H), 8.84-8.89 (m, 1.3H), 8.43-8.37 (m, 2.6H), 8.34 (d, J = 8.2 Hz, 

0.3H), 8.29-8.14 (m, 5.2H), 8.02-7.97 (m, 2.3H), 7.96-7.89 (m, 2.6H), 7.83-7.73 (m, 

1.6H), 7.57 (td, J = 7.4, 1.4 Hz, 2H), 7.55-7.50 (m, 1H), 7.17 (d, J = 5.7 Hz, 0.3H), 7.10-

7.02 (m, 2.3H), 2.91 (s, 0.9H), 2.90 (s, 0.9H), 2.89 (s, 3H), 2.87 (s, 3H), 1.93 (s, 3H), 

1.90 (s, 0.9H), 1.58 (s, 3.9H), purified as a 1:0.3 mixture of diastereomers.  

 2.2.2.5 Synthesis and Characterization of [Rh(DIP)(chrysi)(PPO)]2+ 

RhCl3•3H2O (770 mg, 2.9 mmol, 1 equiv.) and KCl (230 mg, 3.1 mmol, 1 equiv.) 

were refluxed in methanol (15 mL) for 2 hours at 98 °C. 4,7-diphenyl-1,10-

phenanthroline (DIP, 970 mg, 2.9 mmol, 1 equiv) was added in a minimum volume of 
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methanol and refluxed for 4 h, during which the deep red solution turned to beige-yellow 

precipitate. The solution was filtered over a medium frit and rinsed with methanol and 

dried under vacuum (1.7 g, 95% crude yield). 

[Rh(DIP)Cl4]K (1.7 g, 2.8 mmol, 1 equiv.) was added to an oven-dried 25 mL 

Schlenk flask with stir bar and degassed by cycling argon and vacuum into the flask. Neat 

triflic acid (10 g, excess) was added to the flask under positive Ar pressure and 

immediately capped with a rubber septum and vent needle. The solution turned deep red 

upon triflic acid addition. After two hours, the argon flow was turned off, the vent needle 

was removed, and the flask was stirred for 12 h. The solution was then added dropwise to 

200 mL cold, stirring ether at -78 °C to produce a yellow-brown precipitate. The 

precipitate was filtered over a medium frit. To prevent the fine precipitate from flowing 

through the frit, vacuum was applied slowly during the filtration. One all filtrate was 

collected, it was washed with cold ether, and dried under vacuum. The product, 

[Rh(DIP)(OTf)4]K was combined with NH4OH (28% w/v, 100 mL, excess) and stirred at 

40 °C for 40 min. The solvent was removed under vacuum and the product was dissolved 

in minimal EtOH and precipitated in ether, filtered over a medium fritted filter, and dried 

further under vacuum. (1.9 g, 72% crude yield).  

[Rh(DIP)(NH3)4](OTf)3 (510 mg, 0.54 mmol, 1 equiv.) was combined with 5,6-

chrysene-quinone (140 mg, 0.55 mmol, 1 equiv.) and 11:1 MeCN:H2O (250 mL) and 

NaOH (1 M, 4 mL) and stirred for 1 h. The solution changed from the bright orange of 

the free ligand to a green-brown solution with no precipitate. The reaction was quenched 

with HCl (1 M, 4 mL), producing a deep red solution, and the solvent was removed under 

vacuum. The red product was purified over a C18 SepPak, pre-equilibrated with 
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0.1%TFA (aq), and eluted with 25% MeCN, 75% of 0.1% TFA (aq). (620 mg, >100% 

crude yield). 

[Rh(DIP)(chrysi)(NH3)2](TFA)3 (52 mg, 0.05 mmol, 1 equiv.) was combined with 

PPO (15 mg, 0.11 mmol, 2 equiv.) in 9:1 EtOH:H2O (10 mL) and refluxed 12 h. The 

solvent was removed under vacuum and the product was purified by HPLC (85:15 

MeCN:0.1% TFA (aq) to 95:5 MeCN:0.1% TFA (aq) over 30 min). The use of Sephadex 

QAE in the ion exchange of [Rh(DIP)(chrysi)(PPO)]2+ was insufficient, and therefore the 

purified product was converted to the chloride salt using Dowex 1x2 500-100 mesh ion 

exchange resin. (15 mg, 33% yield). 

The MS, UV-Visible, and NMR characterization of [Rh(DIP)(chrysi)(PPO)]2+ is 

as follows. As described above, MS and NMR experiments were performed using the 

TFA counteranion and UV-Vis experiments were performed using the chloride 

counteranion for solubility reasons. LCQ-MS (cation): m/z calc. 826.2 (M-1H+); obs. 

826.3. UV-Vis (H2O): 267nm (103,000 M-1 cm-1).  1H NMR (500 MHz, Methanol-d4)  δ 

9.74 (dd, J = 5.5, 0.9 Hz, 1H), 9.70 (dd, J = 5.5, 0.8 Hz, 0.5H), 8.89 (m, 1.5H), 8.76 (m, 

1.5H), 8.58-8.46 (m, 4.5H), 8.40-8.28 (m, 6H), 8.14-7.98 (m, 4.5H), 7.81-7.59 (m, 15H), 

7.56-7.49 (m, 1.5H), 7.41-7.33 (m, 6H), 7.34-7.23 (m, 3H), 2.07 (s, 3H), 2.02 (s, 1.5H), 

1.70 (s, 1.5H), 1.69 (s, 3H), purified as a 1:0.5 mixture of diastereomers. 

2.2.3 Enantiomeric Separation of [Rh(phen)(chrysi)(PPO)]Cl2 

Purified [Rh(phen)(chrysi)(PPO)][TFA]2 was dissolved in 1:1 ethanol:water and 

HPLC purified on an Astec CYCLOBOND chiral column using an isocratic elution 

method of 40:60 ACN:0.1 M KPF6 (aq) over 37 min and monitoring the 440 nm 

absorbance. The column was periodically rinsed with 40:60 MeCN:H2O to remove KPF6 



47 

	

buildup. The number of peaks observed during this separation varied by batch, with up to 

eight peaks being observed. During the preliminary runs, each peak was collected and 

examined by MS (or LC-MS) to determine if it was a desired product or a side product. 

Peaks identified as the desired product were collected and the remaining peaks discarded. 

Injection volume for each run was determined such that a significant dip in absorbance 

(>50% of the max peak intensity) was observed between the desired peaks. Separated 

enantiomers were collected and exchanged to the chloride salt using Sephadex QAE resin 

pre-equilibrated with MgCl2. The enantiomeric nature of the collected fractions was 

verified using circular dichroism (CD) as follows: 200 µM solutions of Δ- and Λ-

[Rh(phen)(chrysi)(PPO)]Cl2 were made in aqueous solution and their CD spectra 

recorded in 1 nm increments on an Aviv 62DS spectropolarimeter under a N2 atmosphere 

at ambient temperature. The spectra were recorded a second time 30 d later to assess 

decomposition or racemization of the sample, and none was observed.  

2.2.4 Determination of Extinction Coefficients 

 Aqueous solutions of each [Rh(L)(chrysi)(PPO)]Cl2 complex were made and a 

UV-Visible spectrum was recorded for each. The solutions were diluted 50x, 100x, 500x, 

and 1000x in 2% HNO3. These dilutions were made based on mass and the precise 

dilution of each complex was determined using these masses. The dilutions were 

analyzed for Rh content via ICP-MS (inductively coupled plasma mass spectrometry) and 

the concentration was determined by comparison to a standard curve ranging from 1-100 

ppb. Extinction coefficients were determined from the UV-Visible absorbance 

measurement of the initial solution and the Rh concentration of the dilutions following 

Beer’s law (A=εlc). L = DIP was observed to significantly adsorb onto plastics; therefore 
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PTFE (polytetrafluoroethylene) and PFA (perfluoroalkoxy alkane) coated materials 

(falcon tubes that held the samples, pipette tips used in the dilution step, and the tubing 

used on the ICP-MS instrument) were used in the workup and analysis of its extinction 

coefficient.  

2.2.5 Partition Coefficient Determination 

One-octanol and 10 mM Tris-HCl, pH 7.4 were pre-equilibrated with each other 

by vigorously shaking the phases together. A solution of each metalloinsertor was made 

in octanol and the UV-Visible spectrum of the solution recorded. Each solution was 

combined with an equal volume of aqueous buffer and shaken using a foam insert on a 

Vortex-Genie 2 running at maximum speed for 16 h. The samples were centrifuged to 

separate the aqueous and octanol phases and a UV-Visible spectrum of each octanol 

fraction was recorded. The baseline value obtained at 800 nm was used to normalize the 

spectra to a common zero point. Provided equal volumes of octanol and water are mixed 

upon equilibration, absorbance of the ~260 nm peak in the final spectrum can be 

compared to the initial spectrum to determine the partition coefficient following the 

literature.24  

!"# ! =  !"# !"#!"#$%
!"#!"!#!$% − !"#!"#$%

 

The partition coefficients from three experiments were measured for each 

[Rh(L)(chrysi)(PPO)]Cl2 complex and averaged to determine the partition coefficient.  

2.2.6 pKa Determination of Metalloinsertors 

 A ~25 µM solution of each metalloinsertor was made in 100 mM NaCl. The pH 

of the sample was adjusted to 4.5 using HCl (10 mM). NaOH (10 mM) was titrated into 

the solution, with stirring. The pH and UV-Visible spectrum were recorded after each 
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addition, up to a pH of 10.5. A back titration to pH 6 was performed to check for 

decomposition, and none was observed. Since the moles of metalloinsertor do not change 

throughout this experiment, spectra were corrected for baseline and volume changes 

using the dilution equation (M1V1 = M2V2). The absorbance of the ~430 nm peak was 

plotted against pH and fit to a sigmoidal curve in OriginPro v8.5, and the pKa was 

determined as the inflection point of the curve. Three pKa titrations were performed for 

each [Rh(L)(chrysi)(PPO)]Cl2 complex and averaged to give an average pKa value. 

2.2.7 Binding Constant Experiments 

 2.2.7.1 Purifying and Radiolabeling DNA  

A DNA hairpin (5'-GGCAGGXATGGCTTTTTGCCATYCCTGCC-3', where 

XY=CG or CC for a well-matched or mismatched hairpin, respectively) was radiolabeled 

with γ-32P ATP and prepared following the literature.10,19,22 DNA was purchased from 

IDT DNA and purified by HPLC on a C18 reverse-phase column. The DNA was 

quantified using extinction coefficients provided by IDT DNA. The hairpin was 

incubated with γ-32P ATP and polynucleotide kinase at 37  ̊C for 2.5 h, and then purified 

using two BioRad Micro Bio-Spin 6 columns following the manufacturer’s instructions. 

Solvent was removed from the DNA, and the DNA was dissolved in 10 mM NaPi, pH 

7.1. A 2 µM solution of DNA was made in 100 mM NaCl and 20 mM NaPi buffer 

containing approximately 1% 32P-labeled DNA and 99% unlabeled DNA. To anneal, the 

DNA was heated on a 90 ̊C heat block for 10 min, cooled to room temperature over the 

course of 2.5 h, and then stored at 4 °C prior to use. The hairpin structure does not anneal 

as readily as the sequence used in reference 22, therefore storage at 4 °C for several hours 

is essential for properly annealed DNA; cooling to room temperature alone will result in 
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minimal photocleavage by the photocleaving metalloinsertor. The same purification 

strategy was employed for the complementary DNA sequences 5’-GACTTATCTAG-

GATGATAAGCTCGTC-3’ and 5’-GACCAGCTTATCATACCTAGATAAGTC-3’ 

which pair to give a 27-mer DNA duplex with a central single base bulge (relavant bases 

bolded). The later sequence (containing the bulge) was radiolabeled and annealed 

following the above method. 

  2.2.7.2 Metalloinsertors Titrations to Determine Binding Affinity   

 Full details of DNA preparation and purification can be found in the SI. A 4 µM 

solution of the photocleaving metalloinsertor [Rh(bpy)2(chrysi)]Cl3 and solutions 

containing 0-400 µM of a competing metalloinsertor, [Rh(L)(chrysi)(PPO)]Cl2 (which 

does not photocleave DNA), were made in MilliQ water. Five µL of the 

[Rh(bpy)2(chrysi)]Cl3 solution, 5 µL of the competing metalloinsertor, and 10 µL of the 

hairpin DNA were combined to create a solution containing 1 µM [Rh(bpy)2(chrysi)]Cl3, 

0-100 µM competing metalloinsertor, and 1 µM DNA. Similarly, an experiment was 

carried out using the single base bulge DNA sequence, [Rh(bpy)2(chrysi)]Cl3, and the 

competing metalloinsertor [Rh(phen)(chrysi)(PPO)]Cl2 in the same concentrations 

described above. The samples were irradiated with an Oriel 1000 W Hg/Xe solar 

simulator (340-440 nm) for 20 min. After irradiation, solvent was removed from the 

samples and the samples were counted on a scintillation counter to determine the 

necessary exposure time (with 300,000 cpm needing a 1 h exposure, 100,000 cpm 

needing a 3 h exposure, and other exposure times determined from these two points) and 

they were suspended in a denaturing formamide loading dye. Samples were 
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electrophoresed on a 20% denaturing polyacrylamide urea gel that was pre-warmed and 

wells pre-checked for integrity using empty loading dye.  

A phosphor screen was exposed to the polyacrylamide gel and imaged using a 

Typhoon FLA 9000 biomolecular imager.  The ratio of photocleaved to uncleaved DNA 

was quantified using ImageQuant TL software. The ratio was plotted against the 

concentration of [Rh(L)(chrysi)(PPO)]Cl2 and fit to a sigmoidal curve in OriginPro v8.5 

to determine the inflection point of the fit. The binding affinity of the competing 

metalloinsertor was calculated in Mathematica 9.0 by solving simultaneous equilibria 

involving DNA, [Rh(bpy)2(chrysi)]Cl3, and [Rh(L)(chrysi)(PPO)]Cl2. Three 

photocleavage titrations were performed for each [Rh(L)(chrysi)(PPO)]Cl2 complex and 

averaged to give the binding affinity.  

2.2.8 Melting Temperature Analysis 

 Melting temperature analysis was performed on a Beckman DU 7400 

spectrophotometer equipped with a Tm Analysis Accessory. The short oligomer, 5’-

CGGACTCCG-3’ (underline denotes mismatch), was purchased from IDT DNA and 

purified by HPLC. The use of a short oligo was essential in this experiment as the 

inclusion of a mismatch dramatically reduces the melting temperature of the oligo. The 

use of longer oligos is possible, however changes in melting temperature will be less 

dramatic and observable. Samples containing 11 µM ssDNA (ultimately 5.5 µM dsDNA 

and mismatches) and 6 µM of [Rh(phen)(chrysi)(PPO)]Cl2, [Rh(bpy)2(chrysi)]Cl3 or no 

metal complex were prepared in phosphate buffer (5 mM phosphate, 50 mM NaCl, pH 

7.0). Samples were heated at a rate of 0.5 °C/min and absorbance was measured at 260 

nm every 0.5 °C between 10 °C and 50 °C. Temperatures higher than 50 °C were not 
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examined due to challenges with sample evaporation leading to interpretable results. Data 

from three experiments was combined and fit to a sigmoidal curve in OriginPro v8.5 and 

the melting temperature was taken as the inflection point of the curve.  

 2.2.9  Cell Culture 

HCT116N and HCT116O cells were grown in RPMI (Roswell Park Memorial 

Institute) 1640 media supplemented with 10% FBS (fetal bovine serum), 2 mM L-

glutamine, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate, 100 units/mL 

penicillin and streptomycin, and 100 µg/mL Geneticin (G418). The cells were incubated 

in tissue culture flasks or plates at 37 °C in a 5% CO2 atmosphere. All cell studies were 

performed with the chloride salt of each metalloinsertor. 

 2.2.9.1 Cell Proliferation ELISA 

Cell proliferation ELISA (enzyme-linked immunosorbent assay) was performed 

following the manufacturers instructions. Briefly, 2×103 HCT116N or HCT116O cells in 

100 µL media were plated into each well of a 96-well plate. The cells were allowed to 

adhere for 24 h before the addition of 100 µL of media containing various concentrations 

of rhodium metalloinsertor. The plates were incubated for an additional 48 h before the 

rhodium-containing media was replaced with fresh media, with which the cells were 

allowed to grow for the remainder of a 72 h period. Cells were then treated with an 

excess of the unnatural nucleic acid, BrdU (bromodeoxyuridine), for 24 h during which 

time it could be incorporated into newly synthesized DNA. Cells were then fixed, labeled 

with a BrdU antibody, and quantified using a colorimetric substrate solution and stop 

solution. Absorbance was measured at 450 nm (background subtracted at 690 nm). 

Decrease in cellular proliferation was determined for each metalloinsertor concentration 
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through comparison to untreated cells. Outliers were removed using a modified 

Thompson Tau test. An additional variation of this assay was performed in which the 

cells were treated with rhodium metalloinsertor for 24 h, then directly treated with BrdU 

in fresh media.  

2.2.9.2 MTT Cytotoxicity Assay 

Cell proliferation MTT (MTT = 2-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltatrazolium bromide) assays were performed following the manufacturers 

instructions. Briefly, 5×104 HCT116N or HCT116O cells in 100 µL media were plated 

into each well of a 96-well plate. Various concentrations of a rhodium metalloinsertor 

were added to each well. The cells were allowed to incubate for 72 h before treatment 

with MTT for 4 h, during which time MTT could be converted into formazan by 

metabolically active cells. The formazan crystals were solubilized and quantified by 

absorbance at 570 nm (background subtracted at 690 nm). Viability was determined for 

each metalloinsertor concentration through comparison to untreated cells. Outliers were 

removed using a modified Thompson Tau test. An additional variation of this assay was 

performed in which the cells were allowed to adhere to the 96-well plate overnight before 

treated with rhodium metalloinsertor for 24 h, immediately followed by MTT treatment 

and workup. 

2.2.9.3 Metalloinsertor Stability with BSA 

Serum proteins represent potential targets or sequestration agents in 

metalloinsertor treatment. As such, experiments were performed to determine the extent 

to which bovine serum albumin (BSA) binding influences metalloinsertor activity in the 

MTT assay. 10,000 cells plated into each well of a 96-well plate. Cells were immediately 
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incubated with either 0, 0.25 or 0.60 µM [Rh(phen)(chrysi)(PPO)]2+ and either a 10, or 

100-fold higher concentration of BSA. Controls of metalloinsertor alone (no BSA) and 

BSA alone (no metalloinsertor were included for comparison and normalization 

purposes. After a 72 hour incubation, which is representative of the majority of our 

cytotoxicity experiments, the cells were treated with MTT reagent and analyzed 

following section 2.2.9.2. Three replicates of each metalloinsertor/BSA concentration 

were performed. 

2.2.9.4 Uptake and Localization Experiments 

 Whole-cell uptake, mitochondrial localization, and nuclear localization of 

metalloinsertors were determined following published methods.25 Prior to whole-cell, 

mitochondrial, and nuclear rhodium determination, 24-hour ELISA and MTT assays were 

performed to determine a metalloinsertor concentration that would not result in 

significant cell death by MTT but showed some anti-proliferative effect by ELISA. The 

concentrations used in the uptake and localization studies of the [Rh(L)(chrysi)(PPO)]Cl2 

family were 0.2 µM for L=DIP, 0.5 µM for L=phen, bpy, HDPA, 4,7-DMP, and 5,6-

DMP, and 10 µM for [Rh(bpy)2(chrysi)]Cl3, which was included as a control.  

  2.2.9.5 Assay for Whole-Cell Rhodium Concentration 

 Whole-cell uptake experiments were performed following published protocols.20 

Briefly, 1×106 HCT116N or HCT116O cells were plated into 6-well tissue culture treated 

plates and allowed to adhere for 24 h. Media was aspirated from the cells and fresh media 

containing a metalloinsertor was added to each well. Cells were allowed to incubate for 

an additional 0.5-24 h with the Rh-containing media. After incubation, media was 

aspirated and the cells were rinsed three times with PBS (phosphate buffered saline, pH 
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7.4) to remove surface rhodium. Cells were lysed directly in the well using 1 mL of 1% 

SDS solution. These samples were transferred to microcentrifuge tubes and sonicated for 

10 s at 20% amplitude on a Qsonica Ultrasonic sonicator. Cell lysate was combined with 

an equal volume 2% HNO3. This solution was analyzed for Rh content on an Agilent 

8800 Triple Quadrupole ICP-MS and the concentration of Rh in each sample was 

determined by comparison to a standard curve (ranging from 1-100 ppb Rh) and 

normalized using the protein content of each sample. The protein content of each sample 

was determined using a Pierce BCA assay, following the manufacturer’s instructions.  

2.2.9.6 Assay for Mitochondrial Rhodium Concentration 

 Mitochondrial uptake experiments were performed following published 

protocols.20,26 Briefly, 1.5×107 HCT116N and HCT116O cells were plated in T75 tissue 

culture treated flasks. The cells were allowed to adhere for 24 h, after which media was 

aspirated from each flask and restored with 20 mL media containing a rhodium 

metalloinsertor. The cells were allowed to grow in the presence of Rh-containing media 

for 24 h, then harvested using 0.05% trypsin over 5 minutes. Cells were pelleted by 

centrifugation at 1200 rpm for 5 min. The pellet was rinsed and suspended in PBS, then 

pelleted again and the PBS removed. The cell pellet was suspended in 500 µL 

mitochondrial extraction buffer (200 mM mannitol, 68 mM sucrose, 50 mM PIPES, 50 

mM KCl, 5 mM EGTA, 2 mM MgCl2, 1 mM DTT added just before use, and protease 

inhibitors added just before use) and incubated on ice for 20 min. Each sample was 

homogenized by 35 passes thorough a 21-gauge needle and syringe. The resultant 

solution was centrifuged for 5 min at 750 rpm. The supernatant of each sample was 

transferred to a 1.5 mL microcentrifuge tube and centrifuged for 10 min at 14,000 g. The 
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supernatant was decanted and the resulting pellet was the mitochondrial fraction. SDS 

(800 µL of a 1% solution) was added to the pellet and sonicated for 10 s at 40% 

amplitude on a Qsonica Ultrasonic sonicator. Mitochondrial lysate was combined with an 

equal volume of 2% nitric acid. This solution was analyzed for Rh content on an Agilent 

8800 Triple Quadrupole ICP-MS and the concentration of Rh in each sample was 

determined by comparison to a standard curve (ranging from 1-100 ppb Rh) and 

normalized using the protein content of each sample. The protein content of each sample 

was determined using a Pierce BCA assay, following the manufacturer’s instructions.  

2.2.9.7 Assay for Nuclear Rhodium Concentration 

Nuclear uptake experiments were performed following published protocols.20 

Briefly, 1×107 HCT116N and HCT116O cells were plated in T75 tissue culture treated 

flasks. The cells were allowed to adhere for 24 h before the media was aspirated and 

restored with 20 mL media containing a rhodium metalloinsertor. The cells were allowed 

to grow in the presence of Rh-containing media for 24 h, then harvested using 0.05% 

trypsin over 5 minutes. Cells were pelleted by centrifugation at 1200 rpm for 5 min. The 

pellet was rinsed and suspended in PBS, then pelleted and the PBS removed. Each cell 

pellet was suspended in 1 mL hypotonic buffer (20 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 

mM MgCl2), transferred to a microcentrifuge tube, and incubated on ice for 15 min. NP-

40 (50 µL of  a 10% solution) was added to each sample, vortexed for 10 s at the highest 

setting, and centrifuged at 3000 g for 10 min. The supernatant was decanted and the 

resulting pellet was the nuclear fraction. SDS (800 µL of a 1% solution) was added to the 

pellet and then sonicated for 10 s at 40% amplitude on a Qsonica Ultrasonic sonicator. 

Nuclear lysate was combined with an equal volume of 2% HNO3. This solution was 
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analyzed for Rh content on an Agilent 8800 Triple Quadrupole ICP-MS and the 

concentration of Rh in each sample was determined by comparison to a standard curve 

(ranging from 1-100 ppb Rh) and normalized using the protein content of each sample. 

The protein content of each sample was determined using a Pierce BCA assay, following 

the manufacturer’s instructions.  

2.2.9.8 Assay for Uptake Mechanism of Metalloinsertors 

Mechanism of uptake experiments were adapted from published protocols.27 RbCl 

and [Ru(DIP)(dppz)]Cl2 were used as positive and negative controls, respectively. 

Briefly, 1×106 HCT116N or HCT116O cells were plated into 6-well tissue culture treated 

plates and allowed to adhere for 24 h. Metabolic inhibitors (5 µM oligomycin in ethanol 

and 50 mM 2-deoxy-D-glucose) or control solutions (5 mM glucose and ethanol) were 

added to the cell culture media and samples were incubated for 1 h. Media was removed 

by aspiration and each well was washed with PBS. Media (3 mL) containing the Rh−O 

metalloinsertor [Rh(phen)(chrysi)(PPO)]Cl2 (0.5 µM), the parent metalloinsertor 

[Rh(bpy)2(chrysi)]Cl3 (10 µM), [Ru(DIP)(dppz)]Cl2 (2 µM), or RbCl (25 µM) was then 

added to each well and incubated for 1 h. Media was aspirated and cells were rinsed with 

PBS to remove surface rhodium, ruthenium, or rubidium. Cells were lysed directly in the 

well using 1 mL of 1% SDS solution. Samples were transferred to microcentrifuge tubes 

and sonicated for 10 s at 20% amplitude on a Qsonica Ultrasonic sonicator. Cell lysate 

was combined with an equal volume of 2% HNO3 and analyzed for Rh, Ru, and Rb 

content on an Agilent 8800 Triple Quadrupole ICP-MS, and the concentration of Rh, Ru, 

or Rb in each sample was determined by comparison to a standard curve (ranging from 1-

100 ppb) and normalized using the protein content of each sample. The protein content of 
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each sample was determined using a Pierce BCA assay, following the manufacturer’s 

instructions. It is of note that temperature-dependence uptake experiments were 

attempted for these complexes as well, however challenges with solubility of 

metalloinsertors at low concentrations made results challenging to interpret.  

2.3 Results 

2.3.1 Establishing the Enantiomeric Activity of [Rh(phen)(chrysi)(PPO)]2+ 

Enantiomeric separation was performed for the complex 

[Rh(phen)(chrysi)(PPO)]2+ to establish the interaction of its Δ- and Λ-enantiomers with 

DNA in vitro and in MMR-deficient or -proficient cells in culture. The Δ- and Λ- 

enantiomers of [Rh(phen)(chrysi)(PPO)]2+ were isolated with >90% and >95% 

enantiomeric excess, respectively (Figure 2.3). Circular dichroism experiments 

confirmed the enantiomeric nature of the isolated complexes, and no racemization was 

observed at ambient temperature over 1 month. Competition titrations between 

[Rh(phen)(chrysi)(PPO)]2+ and the photocleaving metalloinsertor [Rh(bpy)2(chrysi)]3+ in 

the presence of 32P-radiolabeled DNA containing a CC mismatch revealed both 

enantiomers are capable of binding mismatched DNA base pairs with similar affinity (106 

M-1, Table 1).10 Furthermore, both enantiomers were found to have selective cytotoxic 

effects towards MMR-deficient cells over MMR-proficient cells in MTT experiments 

(Figure 2.3). These studies confirm that both enantiomers of the PPO-containing 

metalloinsertor, [Rh(phen)(chrysi)(PPO)]2+, exhibit binding properties towards 

mismatched DNA that are consistent with a previous generation of Rh−O 

metalloinsertors. These Rh-O complexes show no enantiomeric preference in binding 
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DNA, unlike parent metalloinsertors, which show a high enantiomeric preference for the 

D-isomer in binding DNA.15,19 

2.3.2 Binding of Metalloinsertors to a Single Base Pair Mismatch 

The binding affinities of [Rh(L)(chrysi)(PPO)]2+ metalloinsertors to DNA 

containing a single CC mismatch were determined. The [Rh(L)(chrysi)(PPO)]2+ 

complexes do not photocleave DNA upon irradiation, so their binding affinities were 

assayed via a competition titration with [Rh(bpy)2(chrysi)]3+, a complex known to 

photocleave DNA selectively upon mismatch binding and irradiation.22 A CC mismatch 

was used as it is highly destabilized relative to other mismatches and therefore undergoes 

significant photocleavage in the presence of [Rh(bpy)2(chrysi)]3+. A constant 

concentration of [Rh(bpy)2(chrysi)]3+ and varying concentrations of the competing 

[Rh(L)(chrysi)(PPO)]2+ metalloinsertor were incubated with a DNA hairpin containing a 

single CC mismatch, irradiated, and the DNA photocleavage products were separated on 

a denaturing gel. The ratio of photocleaved DNA to intact DNA was plotted against the 

log of the rhodium concentration and fit to a sigmoidal curve (Figure 2.4). The inflection 

point of the sigmoidal fit was used to determine the binding affinity of the competing 

[Rh(L)(chrysi)(PPO)]2+ metalloinsertor by solving simultaneous equilibria equations 

using the known binding affinity of [Rh(bpy)2(chrysi)]3+. The binding affinities of these 

complexes are shown in Table 1. All complexes were tested as racemic mixtures and 

exhibit binding affinities in the range of 2.4 to 7.2 × 106 M-1 (Table 2.1). Despite 

differences in ligand steric bulk, all Rh−O metalloinsertors tested have binding affinities 

within one order of magnitude of each other, and thus bind DNA with comparable 

affinity. It is also of note that [Rh(phen)(chrysi)(PPO)]Cl2 was also observed to be able to  
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Figure 2.3 Purification and activity of the Δ and Λ enantiomers of  

[Rh(phen)(chrysi)(PPO)]2+. (Top left) HPLC trace of the purified Δ- and Λ-enantiomers, 

(top right) a CD spectrum showing the enantiomeric nature of the two samples, and MTT 

assays of the Δ (bottom left) and Λ (bottom right) of [Rh(phen)(chrysi)(PPO)]Cl2 with 

HCT116N (MMR proficient, blue) and HCT116O (MMR deficient, red) cell lines. Both 

enantiomers show selective cytotoxicity towards the MMR deficient cell line at similar 

concentration ranges.  
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bind to a single base bulge, which is representative of insertions/deletions (indels), 

another potentially biologically relevant target. 

Binding was assessed further via melting temperature analysis. A short, 

palindromic DNA sequence containing a central CC mismatch was incubated in the 

presence of the parent metalloinsertor, [Rh(bpy)2(chrysi)]Cl3, or the Rh−O 

metalloinsertor, [Rh(phen)(chrysi)(PPO)]Cl2. The chosen DNA sequence has a low Tm 

and therefore exists as ssDNA at room temperature.13 In the presence of metalloinsertor, 

however, the DNA anneals and the melting temperature increases dramatically to 44.9 ± 

0.6 and 41.3 ± 0.5 °C for [Rh(bpy)2(chrysi)]Cl3 and [Rh(phen)(chrysi)(PPO)]Cl2, 

respectively (Figure 2.4). These results are in good agreement with the results of the 

DNA binding assay describe above and corroborate the result that parent and Rh−O 

metalloinsertors have comparable binding affinities to mismatches in DNA, with 

[Rh(phen)(chrysi)(PPO)]Cl2 stabilizing DNA to a slightly lesser extent than 

[Rh(bpy)2(chrysi)]Cl3. 

2.3.3 pKa Determination of Metalloinsertors 

The pKa values of [Rh(L)(chrysi)(PPO)]2+ metalloinsertors were assessed via 

spectroscopic pH titrations (Table 2.1, Figure 2.5). The absorbance of a 435-440 nm 

peak, which corresponds to a charge transfer located on the chrysi ligand, was plotted 

against the pH of the solution for each complex.28 Data were fit to a sigmoidal curve and 

the inflection point was taken as the pKa of the complex, specifically of the imine proton 

on the chrysi ligand. All Rh−O metalloinsertors exhibited pKa values in the range of 8.1 

to 9.1, which are above physiological pH (Table 2.1), indicating that the chrysi ligands of 

these complexes remain protonated in cell culture media or within cells. It has been  
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Table 2.1 Binding affinity, pKa, and Log P values for each metalloinsertor 

Metalloinsertor  Binding Constant  
(× 106 M-1)a 

pKa
  

(2+ to 1+) Log P 

Δ-[Rh(phen)(chrysi)(PPO)]2+  6.6 – – 

Λ-[Rh(phen)(chrysi)(PPO)]2+ 9.2 – – 

rac-[Rh(phen)(chrysi)(PPO)]2+ 5.5b 8.3 ± 0.3a 1.4 ± 0.1 

rac-[Rh(bpy)(chrysi)(PPO)]2+ 7.2 8.9 ± 0.1 0.68 ± 0.07 
rac-[Rh(HDPA)(chrysi)(PPO)]2+ 3.0 9.1 ± 0.1 0.69 ± 0.08 

rac-[Rh(4,7-DMP)(chrysi)(PPO)]2+  1.5 9.1 ± 0.1 1.1 ± 0.1 

rac-Rh[(5,6-DMP)(chrysi)(PPO)]2+  2.3 9.0 ± 0.3 0.71 ± 0.01 

rac-[Rh(DIP)(chrysi)(PPO)]2+ 1.6 8.1 ± 0.1 > 2.0c 
a  binding affinities measured using the DNA hairpin 5'-GGCAGGCATGGCTTTTTGCCATCCCTGCC-3’ 
(underline denotes mismatch) in 100 mM NaCl, 20 mM NaPi, pH 7.1 buffer. Competition titrations were 
performed against the photocleaving metalloinsertor [Rh(bpy)2(chrysi)]Cl3.  
b Values from reference 19  
c The change in absorbance in the [Rh(DIP)(chrysi)(PPO)]2+-containing 1-octanol phase before and after 
equilibration with the aqueous phase was too small to accurately and consistently measure.  
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Figure 2.5 Metalloinsertor pH titration to determine pKa. A representative pH titration of 

[Rh(bpy)(chrysi)(PPO)]2+  from a pH of 6.52 to 9.98. The inset shows the absorbance at 

435 nm (a chrysi localized charge transfer) plotted against pH and fit to a sigmoidal 

curve.  
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shown previously that fully protonated chrysi ligands, which are seen with Rh−O 

metalloinsertors, buckle in contrast to the deprotonated chrysi ligands of the parent 

metalloinsertors, which are completely flat and thus easy to stack with the DNA base 

pairs once inserted.19  

2.3.4 Partition Coefficient and Lipophilicity of Metalloinsertors 

The [Rh(L)(chrysi)(PPO)]Cl2 family of metalloinsertors was designed to vary in 

lipophilicity, and the partition coefficients of each [Rh(L)(chrysi)(PPO)]2+ metalloinsertor 

were determined between aqueous buffer (10 mM Tris-HCl, pH 7.4) and 1-octanol 

according to literature methods.24 Absorbance measurements at the ~260 nm peak were 

made in the 1-octanol phase before and after equilibration with the aqueous phase. These 

absorbance values were compared to determine the partition coefficient, log P (Table 2.1, 

Figure 2.6). The log P values followed the expected trend with the least bulky complexes 

([Rh(bpy)(chrysi)(PPO)]2+ and [Rh(HDPA)(chrysi)(PPO)]2+) having the lowest log P 

values and the bulkiest complex ([Rh(DIP)(chrysi)(PPO)]2+) having the greatest log P 

value. Surprisingly, despite their cationic nature, under these conditions the 

[Rh(L)(chrysi)(PPO)]2+ metalloinsertors are all lipophilic and have partition coefficients 

favoring octanol over water, ranging from 0.68 to >2.0.  

2.3.5 Cytotoxic and Anti-Proliferative Effects in Cells 

The ability of metalloinsertors to selectively kill or impair growth of MMR-

deficient cells is a critical factor in their potential value as chemotherapeutic agents.19,29 

In this structure-activity relationship study, we used ELISA and MTT assays to determine 

the effect of ligand substitution on biological activity in MMR-deficient and -proficient 

cells. The ELISA was used to determine the inhibitory effects on DNA synthesis and the  
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Figure 2.6 Metalloinsertor lipophilicity experiments to determine Log P. A 

representative absorption spectrum of of [Rh(bpy)(chrysi)(PPO)]2 in 1-octanol before 

(solid lines) and after (dashed lines) equilibration with an aqueous solution at pH 7.4. 

Each replicate set (before and after trace) is shown as a different color (black, blue, and 

orange) with the before trace shown as a solid line and the after trace shown as a dashed 

line.  
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MTT assay was performed to establish levels of cytotoxicity. For the ELISA, each 

metalloinsertor was incubated with HCT116N (MMR-proficient) or HCT116O (MMR-

deficient) cells at various concentrations before treatment with the unnatural nucleic acid 

BrdU. Colorimetric antibody treatment allowed the relative BrdU incorporation into 

DNA to be quantified, and cellular proliferation was then determined as the ratio of BrdU 

incorporation between metalloinsertor-treated cells and untreated control cells. The 

results of the 48-hour metalloinsertor treatment are shown in Figure 2.7, and the results 

of a 24-hour treatment are shown in Figure 2.8. All [Rh(L)(chrysi)(PPO)]2+ 

metalloinsertors exhibit anti-proliferative activity with selectivity towards the MMR-

deficient cell line. The maximum proliferation difference (referred to as selectivity) 

between the cell lines and the concentration at which this selectivity occurs (referred to as 

potency) are as follows: 77 ± 10% at 400 nM for [Rh(phen)(chrysi)(PPO)]2+, 78 ± 18% at 

2 µM for [Rh(bpy)(chrysi)(PPO)]2+, 47 ± 10% at 25 µM for [Rh(HDPA)(chrysi)(PPO)]2+, 

66 ± 6% at 400 nM for [Rh(4,7-DMP)(chrysi)(PPO)]2+, 67 ± 5% at 400 nM for [Rh(5,6-

DMP)(chrysi)(PPO)]2+, and 70 ± 23% at 160 nM for [Rh(DIP)(chrysi)(PPO)]2+. 

For the MTT assay, each metalloinsertor was incubated with HCT116N (MMR-

proficient) or HCT116O (MMR-deficient) cells at various concentrations before the 

addition of MTT, which can be converted into formazan by mitochondrial reductase 

activity in a functioning cell. Colorimetric measurements of formazan allow the relative 

viability to be quantified, and cellular viability is then determined as the ratio of 

formazan produced between metalloinsertor-treated cells and untreated control cells. The 

results of the 72-hour treatment are shown in Figure 2.9 and the results of the 24-hour 

treatment are shown in Figure 2.10. All [Rh(L)(chrysi)(PPO)]2+ metalloinsertors exhibit  
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Figure 2.7 48-hour ELISA assay on metalloinsertors. Cellular proliferation ELISA for 

the [Rh(L)(chrysi)(PPO)]2+ metalloinsertors in MMR-deficient (HCT116O, red circles) 

and MMR-proficient (HCT116N, blue squares) cells. Cells were incubated with various 

concentrations of metalloinsertor for 48 h before treatment with BrdU. Cell proliferation 

is shown as %BrdU incorporated into DNA compared to untreated control cells. Error is 

shown as the standard deviation of 5 replicates. 
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Figure 2.8 24-hour ELISA assay on metalloinsertors. Cellular proliferation ELISA for 

the [Rh(L)(chrysi)(PPO)]2+ metalloinsertors in MMR-deficient (HCT116O, red circles) 

and MMR-proficient (HCT116N, blue squares) cells. Cells were incubated with various 

concentrations of metalloinsertor for 24 h before treatment with BrdU. Cell proliferation 

is shown as %BrdU incorporated into DNA compared to untreated control cells. Error is 

shown as the standard deviation of 5 replicates. 
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Figure 2.9 72-hour MTT assay on metalloinsertors. Cellular viability MTT assay for the 

[Rh(L)(chrysi)(PPO)]2+ metalloinsertors in MMR-deficient (HCT116O, red circles) and 

MMR-proficient (HCT116N, blue squares) cells. Cells were incubated with various 

concentrations of metalloinsertor for 72 h before treatment with MTT. Cell proliferation 

is shown as % viability from MTT metabolism, compared to untreated control cells. Error 

is shown as the standard deviation of 5 replicates. 
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Figure 2.10 24-hour MTT assay on metalloinsertors. Cellular viability MTT assay for the 

[Rh(L)(chrysi)(PPO)]2+ metalloinsertors in MMR-deficient (HCT116O, red circles) and 

MMR-proficient (HCT116N, blue squares) cells. Cells were incubated with various 

concentrations of metalloinsertor for 24 h before treatment with MTT. Cell proliferation 

is shown as % viability from MTT metabolism, compared to untreated control cells. Error 

is shown as the standard deviation of 5 replicates. 
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cytotoxic activity with selectivity towards the MMR-deficient cell line. The maximum 

proliferation difference between the cell lines and the concentration at which this 

difference occurs are as follows: 52 ± 5% at 300 nM for [Rh(phen)(chrysi)(PPO)]2+, 30 ± 

7% at 2 µM for [Rh(bpy)(chrysi)(PPO)]2+, 13 ± 11% at 32 µM for 

[Rh(HDPA)(chrysi)(PPO)]2+, 46 ± 8% at 600 nM for [Rh(4,7-DMP)(chrysi)(PPO)]2+, 49 

± 3% at 600 nM for [Rh(5,6-DMP)(chrysi)(PPO)]2+, and 39 ± 6% at 640 nM for 

[Rh(DIP)(chrysi)(PPO)]2+. It is of note that these low concentrations are observed even 

when fetal bovine serum (FBS), which contains proteins that often bind and sequester 

small molecules, such as BSA, is used. The results of the BSA binding assay showed that 

pre-incubation of the metalloinsertor with BSA had little effect on metalloinsertor 

activity in cells (Figure 2.11), suggesting that these proteins do no sequester the 

metalloinsertor or metalloinsertor sequestration is not detrimental to activity.  

2.3.6 Whole-Cell Uptake, Uptake Mechanism, and Organelle Localization.  

To better understand the range of biological activities of these complexes, cellular 

uptake and mechanism of uptake were examined via ICP-MS based assays. 24-hour 

ELISA and MTT assays were performed to determine a suitable concentration for uptake 

and localization studies (which were performed over a 24-hour timescale). To minimize 

cell death in this assay, a factor which can complicate data interpretation, suitable dosing 

was determined to be at a concentration at which there was noticeable anti-proliferative 

effects in the HCT116O cells via ELISA but no significant cytotoxicity via MTT assay. 

Whole cell uptake studies were performed with each [Rh(L)(chrysi)(PPO)]2+ complex at 

0.5 µM with the exception of [Rh(DIP)(chrysi)(PPO)]2+, which was performed at 0.2 µM 

due to its high cytotoxicity at 0.5 µM. For whole cell uptake studies, cells were incubated  
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Figure 2.11 Metalloinsertor activity after pre-incubation with BSA. Two concentrations 

of [Rh(phen)(chrysi)(PPO)]2+were pre-incubated with various concentrations of BSA 

before addition to HCT116N and HCT116O cells. Pre-incubation with BSA appeared to 

have minimal effect on the toxicity of the metalloinsertor, though some BSA  

concentration dependence may be visible for the 0.25 µM treatment in HCT116N  cells; 

however, no dependence is seen with 0.25 µM treatment in HCT116N cells or in the 0.60 

µM treatment in either cell line.  
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with metalloinsertors for 24 h before they were lysed and analyzed for rhodium content 

via ICP-MS, with rhodium concentrations normalized to the protein content of each 

sample. The whole cell uptakes of each metalloinsertor in HCT116O cells are shown in 

Figure 2.12. Similar results were seen in HCT116N cells (Figure 2.12). Overall, all 

[Rh(L)(chrysi)(PPO)]2+ complexes exhibit uptake into cells at concentrations within one 

order of magnitude of each other. The uptake of these complexes correlates generally 

with their lipophilicity values, with the least lipophilic complexes 

([Rh(HDPA)(chrysi)(PPO)]2+ and [Rh(bpy)(chrysi)(PPO)]2+) having the poorest uptake 

and the most lipophilic complex ([Rh(DIP)(chrysi)(PPO)]2+) having the highest uptake. 

Lipophilicity has long been correlated with an increase in cellular uptake and a resultant 

increase in drug potency.30,31 

In addition to examining whole cell uptake of the [Rh(L)(chrysi)(PPO)]2+ 

metalloinsertors, the uptake over time and the mechanism of uptake were also examined. 

In the former experiment, cells were incubated with a metalloinsertor for 0.5, 1, 3, 6, 9, or 

24 h before being lysed and analyzed for rhodium content by ICP-MS. The whole-cell 

uptake over time of these metalloinsertors in HCT116O cells is shown in Figure 2.12. 

Similar results were seen in HCT116N cells (Figure 2.12). The complexes appear to 

show significant increases in uptake over the first 3-6 h of incubation with cells, followed 

by plateau with no evidence of significant efflux during a 24-hour period. These results 

are consistent with previous studies on metalloinsertors.20  

A metabolic inhibition assay was performed to better understand the mechanism 

of cellular uptake of [Rh(L)(chrysi)(PPO)]2+ metalloinsertors. HCT116N and HCT116O 

cells were pre-treated with the metabolic inhibitors oligomycin A, an inhibitor of  
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Figure 2.12 Whole-cell rhodium uptake assays in HCT116O (top) and HCT116N 

(bottom) cells. (Left) Rhodium accumulation was measured by ICP-MS analysis after a 

24 hour incubation with [Rh(L)(chrysi)(PPO)]2+ metalloinsertors (where L = phen, bpy, 

HDPA, 4,7-DMP, 5,6-DMP, or DIP). (Middle) Rhodium accumulation over time was 

measured by ICP-MS for three metalloinsertors, [Rh(phen)(chrysi)(PPO)]2+ (phen), 

[Rh(DIP)(chrysi)(PPO)]2+ (DIP), and the parent metalloinsertor [Rh(bpy)2(chrysi)]3+ 

(Rh-BC). (Right) [Rh(phen)(chrysi)(PPO)]2+ (phen), [Rh(bpy)2(chrysi)]3+ (Rh-BC), 

[Ru(DIP)2(chrysi)]2+ (Ru-DIP), and RbCl accumulation was measured by ICP-MS 

analysis after treatment with or without metabolic inhibitors (oligomycin and 2-deoxy-D-

glucose). RbCl* indicates that Rb concentrations for RbCl have been lowered by a factor 

of 500 in this graphic. Rhodium, ruthenium, and rubidium contents were normalized to 

protein content determined by BCA assay. Each experiment was performed in triplicate 

and averaged, with error shown as the standard deviation.  
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oxidative phosphorylation, and 2-deoxy-D-glucose, an inhibitor of glycolysis.27 

Metabolic inhibition depletes cellular ATP (adenosine triphosphate), so any compound 

that is taken into the cell via an active, ATP-dependent mechanism should have reduced 

uptake in metabolically depleted cells. Conversely, complexes taken into the cell via a 

passive mechanism, such as passive diffusion, are not affected by metabolic inhibition 

and therefore the drug should accumulate in inhibited and uninhibited cells at similar 

concentrations. [Rh(phen)(chrysi)(PPO)]2+ and the parent metalloinsertor, 

[Rh(bpy)2(chrysi)]3+, were studied to determine if the mechanism of metalloinsertor 

uptake was ATP-dependent. The compounds RbCl and [Ru(dppz)(DIP)2]2+ were included 

as positive and negative controls, respectively. The rubidium ion of RbCl is transported 

into the cell by Na,K-ATPase, an ATP-dependent ion pump, while [Ru(dppz)(DIP)2]2+ 

has previously been shown to enter the cell via passive diffusion.27, 32 Cells were treated 

with each compound for 1 h before they were lysed and analyzed by ICP-MS for metal 

content. As rubidium, ruthenium, and rhodium are not naturally present in cells or cell 

culture reagents, all three elements can be analyzed as low-background analytes by ICP-

MS. The results of each compound in HCT116O cells are shown in Figure 2.12. Similar 

results were seen in HCT116N cells (Figure 2.12). As expected, RbCl showed a 

significant decrease in uptake when pre-treated with metabolic inhibitors and 

[Ru(dppz)(DIP)2]2+ was unaffected by inhibitor pre-treatment. Similar to 

[Ru(dppz)(DIP)2]2+, [Rh(phen)(chrysi)(PPO)]2+ and [Rh(bpy)2(chrysi)]2+ were also 

unaffected by inhibitor pre-treatment, suggesting these complexes are also taken into the 

cell via an ATP-independent mechanism, such as passive diffusion. Since these 

complexes are all lipophilic and cationic, passive diffusion is a reasonable uptake 
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mechanism, with the negative membrane potential driving diffusion and relatively high 

lipophilicity facilitating the process as the molecules can more readily partition into the 

cellular membranes.33   

Subcellular localization into the nucleus (the on-target organelle) and 

mitochondria (a major off-target organelle) were also examined by an ICP-MS assay. 

Localization studies were performed with each [Rh(L)(chrysi)(PPO)]2+ metalloinsertor at 

0.5 µM with the exception of [Rh(DIP)(chrysi)(PPO)]2+, which was performed at 0.2 µM. 

For localization studies, cells were incubated with metalloinsertors for 24 h before they 

were lysed and analyzed for rhodium content via ICP-MS, with rhodium concentrations 

normalized to the protein content of each sample. The whole cell uptakes of each 

metalloinsertor in HCT116O cells are shown in Figure 2.13. Similar results were seen in 

HCT116N cells (Figure 2.13). Overall, all [Rh(L)(chrysi)(PPO)]2+ complexes have 

comparable nuclear uptakes and mitochondrial uptakes to one another with the exception 

of [Rh(DIP)(chrysi)(PPO)]2+, which has nuclear and mitochondrial uptakes that are 2-3 

times higher than other complexes despite being dosed at a lower concentration. All 

complexes appear to enter the nucleus at high enough concentrations to bind DNA 

mismatches, with a significant enrichment in nuclear concentration over the extracellular 

concentration of rhodium (Table 2.2). 

2.4 Discussion 

Early generations of rhodium metalloinsertors, which exclusively contain Rh−N 

ligand coordination, are a richly studied family of metal complexes that can selectively 

bind to DNA base pair mismatches and lead to selective cell death in MMR-deficient 

cells. Across multiple studies, these metalloinsertors were determined to have several  
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Table 2.2 Converted nuclear rhodium content values 

 

Compound 
ng [Rh] / mg 

[nuclear 
protein] 

ng [Rh] / 
nuclei × 10-8  

a 

[Rh] µM 
b 

Increase over 
extracellular 

[Rh]c 

N
 C

el
ls

 

PHEN 3.0 10.0 3.6 7.2 
BPY 1.8 5.8 2.1 4.2 

HDPA 6.5 21.3 7.7 15.5 
4,7DMP 4.1 13.3 4.8 9.6 
5,6DMP 4.1 13.5 4.9 9.8 

DIP 8.0 26.2 9.5 47.5 
RhBC 26.6 87.2 31.6 3.2 

      

O
 C

el
ls

 

PHEN 2.6 8.6 3.1 6.3 
BPY 3.5 11.6 4.2 8.4 

HDPA 7.3 23.8 8.6 17.2 
4,7DMP 5.0 16.4 5.9 11.9 
5,6DMP 6.8 22.4 8.1 16.2 

DIP 11.6 38.0 13.7 68.7 
RhBC 37.3 122.2 44.3 4.4 

a  a conversion factor of 3.28 × 10-8 mg nuclear protein / nuclei was determined in reference 20 
b the nucleus was approximated as a sphere of radius 4µm as described in reference 20 
c Increase taken as ratio between the nuclear rhodium concentration and the dosing concentration of each 
metalloinsertor. 
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characteristic and consistent behaviors. Through in vitro experiments, we have observed 

that only the Δ- enantiomer of these Rh−N coordinated complexes is capable of binding 

mismatches in B-form DNA.34 In cellular studies, these metalloinsertors have been 

observed to selectively kill cells in concentration ranges of 5-40 µM.20,21 In one structure-

activity relationship study, the steric bulk of the ancillary ligands on a metalloinsertor 

was seen to influence DNA binding properties and, ultimately, alter cellular selectivity.21 

In another structure-activity relationship study, the lipophilicity of the ancillary ligands 

on a metalloinsertor was seen to dramatically influence its subcellular localization within 

a cell and, again, alter cellular selectivity.20  

While the above trends seem to ring true across parent metalloinsertors containing 

exclusively Rh−N ligand coordination, the recent emergence of a new family of 

metalloinsertors that contain Rh−O ligand coordination has challenged many of these 

characteristics and behaviors.19 For instance, both enantiomers of Rh−O metalloinsertors 

are capable of binding DNA mismatches in vitro, and are furthermore capable of 

inducing selective cellular toxicity at nanomolar concentrations. Additionally, changes in 

lipophilicity and steric bulk of the O-containing ligand seemed to have little, if any, effect 

on DNA binding affinity and cellular selectivity. This remarkable shift in metalloinsertor 

activity revealed that these Rh−O complexes have distinct in vitro characteristics and 

biological properties from their parent metalloinsertor complexes. As such, a new family 

of Rh−O metalloinsertors has been synthesized, characterized, and investigated for 

biological activity. In contrast to the first generation of Rh−O metalloinsertors in which 

the O-containing ligand was varied, in this new family an ancillary ligand was varied and 

the O-containing ligand was kept constant. This family is of the form 
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[Rh(L)(chrysi)(PPO)]2+, where L = bpy, phen, HDPA, 4,7-DMP, 5,6-DMP, and DIP. 

This ligand variation influences many features of the metalloinsertor, including steric 

bulk and lipophilicity, both of which have previously been seen to affect DNA binding 

and cellular activity of the parent metalloinsertors.20,21 In studying this family of 

complexes, we aimed to test the unique biological activity of metalloinsertors containing 

the Rh−O ligand framework and begin to understand the high potency and improved 

selectivity exhibited by these metalloinsertors over parent metalloinsertors and other 

DNA-binding complexes.  

2.4.1 Robustness of Biological Activity of the Rh−O Ligand Framework 

A primary aim of this structure-activity relationship study was to determine if 

altering the ancillary ligand of Rh−O metalloinsertors would significantly affect the 

biological activity of these complexes. Biological activity was assessed through both 

ELISA and MTT assays in two cell lines, HCT116N and HCT116O. These cells are 

derived from the same colorectal carcinoma cell line but differ primarily in that 

HCT116N cells are MMR-proficient whereas HCT116O cells are MMR-deficient.35 For 

this reason, HCT116O cells have a higher relative abundance of DNA mismatches over 

HCT116N cells and therefore should be more sensitive to mismatch-targeting 

metalloinsertors.36 

Indeed, all complexes prepared showed highly selective anti-proliferative or 

cytotoxic effects toward the MMR-deficient cells over the MMR-proficient cells in both 

ELISA (Figure 2.7) and MTT assays (Figure 2.9), with the exception of 

[Rh(HDPA)(chrysi)(PPO)]2+, which only shows activity in the ELISA. While selectivity 

was seen for all complexes, the effective concentrations varied by two orders of 
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magnitude across the family. For instance, [Rh(HDPA)(chrysi)(PPO)]2+ has very low 

potency and little selectivity compared to other Rh-O metalloinsertors. Although it does 

appear to interfere selectively with DNA synthesis via ELISA, this biological interaction 

does not appear significant enough to produce cytotoxic effects in the MTT assay, even at 

high drug concentrations (Figure 2.9). HDPA is the only ligand containing a labile 

proton and the only ligand that forms a 6-ring chelate with the metal, and it seems 

possible that these structural features ultimately influence the biological activity of the 

[Rh(HDPA)(chrysi)(PPO)]2+. It is possible that the 6-member chelate could cause 

structural aberrations and the proton on HDPA could cause hydrogen-bonding 

interactions that ultimately alter DNA-binding or DNA-processing by proteins, which 

could cause a decrease in toxicity. [Rh(bpy)(chrysi)(PPO)]2+ has the second lowest 

potency of this new family, though remarkably this complex still shows higher potency 

than the parent metalloinsertors containing only Rh−N coordination.20 The 

phenanthroline-derived metalloinsertors, [Rh(phen)(chrysi)(PPO)]2+,  [Rh(4,7-

DMP)(chrysi)(PPO)]2+, and  [Rh(5,6-DMP)(chrysi)(PPO)]2+, all show comparable 

nanomolar potencies and selectivities in the ELISA and MTT assays.   

Perhaps the most surprising biological activity is seen with 

[Rh(DIP)(chrysi)(PPO)]2+. Historically, metalloinsertors containing the bulky DIP ligand 

have shown no selectivity for the MMR-deficient cell line.21 This lack of selectivity was 

attributed to substantially lower mismatch binding affinities (104 M-1 for 

[Rh(DIP)2(chrysi)]3+) owing to ancillary bulk, as well as off-target localization into the 

mitochondria, a property that is common with lipophilic cations.20,37  

[Rh(DIP)(chrysi)(PPO)]2+, however, does exhibit selective cytotoxicity towards MMR-
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deficient cells over proficient cells in both the ELISA and MTT assays. In fact, 

[Rh(DIP)(chrysi)(PPO)]2+
 displays a similar selectivity and ~2-fold higher potency than 

[Rh(phen)(chrysi)(PPO)]2+ when measured by ELISA (Figure 2.7).  

Overall, these results confirm that Rh−O metalloinsertor biological selectivity is 

minimally influenced by substitution at the ancillary ligand.19 Thus far, all of the Rh−O 

metalloinsertors, derivatized at the O-containing ligand or ancillary ligand, have 

exhibited selectivity in ELISA and/or MTT assays, regardless of steric bulk or 

lipophilicity, factors that had heavily influenced (and sometimes abolished) the 

selectivity of parent metalloinsertors. It is noteworthy that this selectivity profile, wherein 

the Rh−O metalloinsertors selectively kill MMR-deficient cells, is shared with the parent 

complexes and is in stark contrast to what is seen with all other DNA-targeting 

therapeutics, which preferentially kill MMR-proficient cells.17,18 Although parent and 

Rh−O metalloinsertors share this unique selectivity profile and have similar in vitro 

binding properties, suggesting they should interact with DNA in a similar way, the Rh−O 

metalloinsertors are dramatically more potent than the parent metalloinsertors, with 

nearly all Rh−O complexes (with the sole exception being [Rh(HDPA)(chrysi)(PPO)]2+) 

having greater cytotoxicity in MMR-deficient cells than any of the parent 

metalloinsertors. It stands to reason, then, that the high potency and selectivity of these 

Rh−O complexes does not reflect a difference in DNA binding affinity from the parent 

complexes, but rather it must instead reflect a difference in structure associated with the 

DNA-metalloinsertor lesion. That is, if the frequency of DNA binding is comparable 

between the Rh−O and parent metalloinsertors, the lesion formed by Rh−O 

metalloinsertors must activate a cellular response at lower concentrations.  
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2.4.2 Uptake Characteristics 

Although the [Rh(L)(chrysi)(PPO)]2+ family shows consistent activity towards 

MMR-deficient cells, the selectivities and potencies of these complexes vary significantly 

across the family from 160 nM to 25 µM.  It was initially hypothesized that these 

differences in biological activity could be due to differences in cellular uptake. In 

particular, it seemed possible that the least potent complexes, 

[Rh(HDPA)(chrysi)(PPO)]2+ (which has almost no cytotoxic properties at 40 µM) and 

[Rh(bpy)(chrysi)(PPO)]2+ (which has nearly 10-fold lower potency than 

[Rh(phen)(chrysi)(PPO)]2+), could be less effective due to low uptake. Similarly, it was 

proposed that increased uptake could be responsible for the high potency of 

[Rh(DIP)(chrysi)(PPO)]2+.  Indeed, it does seem possible that uptake may explain some 

of the observed potency trends: despite being dosed at 0.2 µM, [Rh(DIP)(chrysi)(PPO)]2+
 

exhibits similar uptake to [Rh(phen)(chrysi)(PPO)]2+, which was dosed at 0.5 µM. The 

finding suggests that [Rh(DIP)(chrysi)(PPO)]2+
 may induce biological effects at roughly 

half the concentration of [Rh(phen)(chrysi)(PPO)]2+ as a result of complexes exhibiting 

similar uptakes at these concentrations. However, uptake alone appears insufficient to 

explain the potencies of other complexes. For instance, [Rh(HDPA)(chrysi)(PPO)]2+
 and 

[Rh(bpy)(chrysi)(PPO)]2+ have comparably low uptake into the cell despite a >10-fold 

difference in activity.  

Organelle-specific uptake is also worthy of consideration when examining the 

activity of these complexes. Studies on previous generations of parent metalloinsertors 

bearing solely Rh-N ligand coordination showed that off-target mitochondrial uptake is 

strongly influenced by ligand lipophilicity, with the most lipophilic parent 
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metalloinsertors having high mitochondrial uptake and low selectivity for MMR-deficient 

cells.20,38 Surprisingly, all Rh-O metalloinsertors studied here are more lipophilic than 

any of the parent metalloinsertors described above, yet all Rh-O complexes exhibit 

selective cytotoxicity towards MMR-deficient cells, making their selectivity patterns 

distinct from trends followed by the parent metalloinsertors. To better understand this 

marked change in trends, on-target nuclear localization and off-target mitochondrial 

localization experiments were performed to assess the biological activity of 

[Rh(L)(chrysi)(PPO)]+2 complexes, particularly DIP, which shows selectivity despite its 

very high lipophilicity.  

As indicated, all [Rh(L)(chrysi)(PPO)]2+ metalloinsertors enter the nuclei to a 

similar extent and at high enough concentrations to bind DNA mismatches (Figure 2.13, 

Table 2.2). Similarly, all [Rh(L)(chrysi)(PPO)]2+ metalloinsertors enter the mitochondria 

to a comparable extent. Although nuclear and mitochondrial uptake cannot be compared 

directly (since each is normalized to the total protein in the organelle), the localization 

patterns of Rh−O versus parent metalloinsertors can be compared (Figure 2.13). This 

comparison shows that, unlike their Rh-N coordinated predecessors, Rh−O 

metalloinsertor localization into the mitochondria is not significantly influenced by 

lipophilicity. In fact, despite being lipophilic, Rh−O complexes exhibit uptake profiles 

that are comparable to hydrophilic parent metalloinsertors (which have low mitochondrial 

uptake) and are distinct from lipophilic parent metalloinsertors (which have high 

mitochondrial uptake). This trend in localization is consistent with the biological activity 

we observed; similar to the hydrophilic parent metalloinsertors, Rh−O complexes are 

highly selective and show little off-target cytotoxicity.  Overall, these data indicate that 
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Rh−O metalloinsertors are able to maintain their high selectivity and potency because the 

ligand substitutions do not strongly influence their subcellular localization. Since these 

complexes exhibit low mitochondrial uptake, off-target mitochondria-induced toxicity 

does not overwhelm the biological response, and the selective nuclear- and mismatch-

mediated response can prevail. 

It is also interesting to note that both MMR-proficient HCT116N cells and MMR-

deficient HCT116O cells had comparable levels of uptake and similar localization 

profiles, showing that metalloinsertors enter HCT116N and HCT116O cells at the same 

rate, through the same passive mechanism, and to the same extent (Figure 2.12 and 

Figure 2.13). These details support the idea that the biological selectivity seen in these 

cells is not a feature of different cellular uptake or elimination properties. Furthermore, 

the nuclear uptake into the MMR-deficient and proficient cells are comparable. 

Therefore, with similar concentrations of metalloinsertors entering the nuclei and similar 

mismatch binding affinities, any DNA-mediated cytotoxicity must result from a 

difference in how the drugs interact with the DNA. Rationally, this difference must 

depend upon an increased mismatch targeting in MMR-deficient cells, where DNA base 

pair mismatches are more abundant.36 

2.4.3 Source of Potency for the Rh−O Metalloinsertors 

Although MMR-deficient cells have a relative abundance of mismatches 

compared to MMR-proficient cells, the total number of mismatches formed during each 

cellular replication is ultimately small due to the high fidelity and proofreading abilities 

of polymerases. It is clear, therefore, that the lesion formed by parent metalloinsertors 

must be significantly potent such that even a small number of metalloinsertor-DNA 
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lesions can result in selective cell death. Moreover, despite their similar mismatch 

binding affinities, the Rh−O metalloinsertors are even more potent than parent 

metalloinsertors, and therefore these Rh−O metalloinsertors must produce a unique 

lesion structure at the mismatched site that can activate a response at even lower 

concentrations (and therefore fewer metalloinsertor-DNA lesions) than parent 

metalloinsertors.  

Could the increase in potency be attributed to a difference in how these Rh−O 

metalloinsertors bind to DNA within the cell?19 As discussed above, both the Δ- and Λ-

enantiomers of [Rh(phen)(chrysi)(PPO)]2+ can bind to DNA mismatches in vitro and 

selectively kill MMR-deficient cells in culture. This behavior is distinct from parent 

metalloinsertors, for which only the Δ-enantiomer can bind mismatches and produce 

biological effects.15 The ability of both enantiomers of Rh−O metalloinsertors to bind 

mismatched DNA suggests the binding interaction must be fundamentally distinct from 

that of the parent metalloinsertors; these new Rh−O metalloinsertors must bind DNA in a 

way that can accommodate the Λ-enantiomer.  

Furthermore, some evidence suggests that even the DNA-binding ability of the Δ-

enantiomer may be altered in these Rh−O metalloinsertors. Previously, it was observed 

that bulky parent metalloinsertors, such as [Rh(DIP)2(chrysi)]3+, exhibited poor binding 

affinities (104 M-1) and could not easily be modeled to fit into a mismatched DNA lesion 

due to significant steric clashing between the DIP ligands and the DNA backbone.21 In 

contrast, significant differences in ancillary ligand steric bulk have minimal effect on the 

binding affinities of Rh−O metalloinsertors, which all bind to DNA with micromolar 

affinity. Even the most sterically bulky complex, [Rh(DIP)(chrysi)(PPO)]2+, has a 
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relatively high affinity for mismatched DNA (106 M-1) despite containing the bulky DIP 

ligand. It therefore seems that the inclusion of the DIP ligand is not sufficient to preclude 

DNA binding, and perhaps this dramatic increase in binding affinity of a DIP-containing 

metalloinsertor may indicate that a new binding interaction exists that can accommodate 

the steric bulk of these Rh−O metalloinsertors. 

Another consideration is the conformation of the chrysi ligand of these new 

Rh−O metalloinsertors. All Rh−O complexes have chrysi imine pKa values above 

physiological pH, indicating that they remain protonated in the intracellular environment. 

This protonation results in steric clashing between the imine proton and an aromatic 

proton in the chrysi system and, as a result, the chrysi ligand becomes buckled relative to 

the rhodium center to relieve the steric strain.19 This is in stark contrast to parent 

metalloinsertors which deprotonate at cellular pH and therefore do not exhibit steric 

clashing between the imine and aromatic protons. As a result, the chrysi ligand lays 

planar in these parent metalloinsertors. Distortion of the chrysi ligand, the ligand that 

interacts most intimately with the DNA, likely disrupts the overall metalloinsertor-DNA 

binding interaction, further suggesting there is likely a difference in how Rh−O and 

parent metalloinsertors bind to DNA.19  

Lastly, the Rh−O complexes reported here are lipophilic (log P > 0), whereas 

comparable parent metalloinsertors are hydrophilic (log P < 0).38 This change in 

lipophilicity could alter the way Rh−O complexes interact with the hydrophobic bases of 

DNA or even DNA-processing proteins that may be responsible for recognizing the 

DNA-metalloinsertor lesion. Overall, these results suggest that the Rh−O 

metalloinsertors interact with DNA differently than parent metalloinsertors. While these 
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complexes still appear to undergo metalloinsertion, as evidenced by their ability to bind 

mismatched DNA in vitro with high affinity, it is unclear how their binding might be 

distinct from parent metalloinsertors. It seems possible that a subtle difference in the 

extent or orientation of mismatched base ejection or in the unwinding of the DNA helix 

by the metalloinsertor could ultimately result in a difference in how that lesion is 

recognized or processed within the cell, which could lead to overall cellular response and 

increased potency. Crystallographic studies of Rh−O metalloinsertors with DNA are 

currently underway to investigate the potential difference between parent and Rh−O 

metalloinsertor binding. Attempts towards these crystallographic are detailed in Chapter 

4 of this thesis.  

2.5 Conclusions and Implications for Future Metalloinsertor Design 

The [Rh(L)(chrysi)(PPO)]2+ family of metalloinsertors described herein display 

biological selectivity and potency that are maintained across various ligand frameworks 

varying in size and lipophilicity. When compared with other Rh−O metalloinsertors in 

which the PPO-type ligand is varied, metalloinsertors containing the Rh−O motif are 

consistent in their biological selectivity (and, to a large extent, potency) for MMR-

deficient cells regardless of significant alterations to their ancillary ligands. It has 

previously been shown that the metalloinsertors with DIP ligands and PPO-type ligands 

cannot be easily modeled into a mismatched DNA lesion due to steric clashes with the 

DNA structure.19,21 Despite steric bulk, Rh−O metalloinsertors have comparable binding 

affinities to parent metalloinsertors and significantly improved biological activity. 

Furthermore, these complexes show little enantioselectivity; both isomers bind DNA and 

show high potency, further supporting that their metalloinsertion binding interaction 
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markedly differs from parent metalloinsertors. Taken together, these observations show 

that the Rh−O metalloinsertor framework has great potential for the design of new 

therapeutics and for the attachment of new payloads, while maintaining biological 

selectivity.39–43 The consistently high potency and cell selectivity of these complexes is 

unique and provides the basis for new generations of metalloinsertors and metalloinsertor 

conjugates. 
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C h a p t e r  3  

TARGETING DNA: MISMATCH-MEDIATED CELL DEATH RENDERS 
A RHODIUM METALLOINSERTOR MORE POTENT THAN 

CISPLATIN∗ 

3.1 Introduction 

 Colorectal cancer (CRC) is a diverse set of diseases that affects millions of men 

and women during their lifetimes.1 Recently, many researchers have attempted to identify 

different subtypes of colorectal cancer that are defined by common mutations or 

aberrations in gene, mRNA, and protein expression levels.2 One such subtype of 

colorectal cancer is defined by microsatellite instabilities (MSI), a defect caused by 

malfunctioning or absent mismatch repair (MMR) machinery. MMR-deficient tumors 

represent over 14% of all colorectal cancer cases, as well as up to 20% of all solid 

tumors.2,3 MMR machinery comprises a tetramer of proteins that are responsible for 

identifying and correcting mismatches and indels (insertions and deletions) that occur 

during replication.4 In healthy tissues, MMR machinery corrects these lesions with high 

efficiency, but in cancer cells that are MMR deficient, these lesions remain uncorrected 

and ultimately propagate into mutations. The high mutational load of these cancers has 

been targeted by the immunotherapeutic pembrolizumab, a programmed death 1 (PD-1) 

inhibitor that was recently FDA approved for MSI-high tumors.5 However, the 

abundance of transient DNA base pair mismatches and indels serves as another possible 
																																																								
∗ Adapted from Boyle, K. M.; Nano, A.; Day, C.; Barton, J. K. Cellular Target of a 
Rhodium Metalloinsertor is the DNA Mismatch, 2018, Submitted. K.M.B designed 
experiments and performed cytotoxicity and whole cell uptake experiments and wrote the 
majority of the text. A.N. designed and performed fluorescence titration experiments and 
wrote the experimental methods for fluorescence experiments. C.D. assisted in 
troubleshooting and performing cytotoxicity experiments. 
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target for MSI tumors that has yet to be utilized in a clinical setting. Furthermore, these 

lesions could serve as a target for direct detection and diagnosis of MMR deficiencies in 

tumors, something that is commonly measured indirectly through tests of mutational 

frequency instead of number of mismatches.6 Such a diagnostic would further support the 

promise of a mismatch- and indel-targeted therapeutic agent.  

To address these needs, our group has developed a unique family of metal 

complexes called rhodium metalloinsertors. Rhodium metalloinsertors selectively target 

thermodynamically destabilized regions of DNA, such as base pair mismatches, abasic 

sites, and single base bulges (a type of indel), making these complexes ideal candidates 

for targeting and detecting the DNA lesions found in MMR-deficient tumors (Figure 

3.1).7–9 Rhodium metalloinsertors achieve this selective binding through a sterically 

expansive aromatic 5,6-chrysenequinone diimine (chrysi) ligand. In this DNA-binding 

mode, termed metalloinsertion, the rhodium complex binds the mismatched DNA from 

the minor groove, inserts the chrysi ligand into the DNA base-stack, ejects the 

mismatched bases, and π-stacks with the flanking well-matched base pairs. This binding 

mode has been confirmed through crystallographic and NMR solution studies, and the 

properties of these DNA-binding complexes have been rigorously studied in vitro: we 

have observed that this binding interaction correlates with the thermodynamic 

destabilization of a DNA lesion, making it a general binding mode capable of targeting 

over 80% of all DNA base pair mismatches regardless of sequence context, as well as 

abasic sites and single base bulges.7,8,10 Furthermore, this targeting occurs with over 

1000:1 selectivity for mismatches over well-matched base pairs and micromolar binding  
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Figure 3.1 The binding and structure of a metalloinsertor and cisplatin. As observed 

crystallographically in previous studies, a classic metalloinsertor binds selectively to a 

mismatch in DNA (top left, PDB 3GSK), while cisplatin binds to a d(GpG) site in DNA 

(top right, PDB 1AIO). The structures of [Rh(phen)(chrysi)(PPO)]2+ (middle left), 

cisplatin (middle right), and RhCy3 (bottom). 
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affinities, further supporting its potential as a selective therapeutic agent capable of 

targeting of mismatches and other lesions inside of MMR-deficient cancer cells.  

Rhodium metalloinsertors have been rigorously studied in several pairs of 

matched cancer cell lines which differ primarily in the presence or absence of functioning 

MMR machinery: a pair of MLH1+ and MLH1− colorectal cancer cell lines derived from 

a common parent cell line, mouse fibroblast cells derived from MSH2+ and MSH2− litter 

mates, and an inducible lung cancer cell line that is MLH1+ or MLH1− in the absence or 

presence (respectively) of a doxycycline inducer.11,12 In every matched pairing, 

metalloinsertors are significantly more cytotoxic towards the MMR-deficient cell line 

compared to their MMR-proficient counterpart (a feature we refer to as selectivity). 

These results demonstrate that rhodium metalloinsertors can target MMR deficiencies in 

a complex cellular context, however they do not prove the specific cellular target of 

metalloinsertors to be DNA mismatches. Furthermore, these cell pairings are not 

reflective of the diversity of clinical colorectal cancer (CRC) cases; in reality, the 

differences between tumors in two different patients or healthy and cancerous tissues in a 

single patient will be far greater than just the presence or absence of a single MMR 

protein.13,14 While many colorectal cancer patients do exhibit tumors with MSI, there can 

be countless differences in mutations and expression profiles of other genes, proteins, and 

mRNAs that make each individual tumor a unique therapeutic challenge, and it is 

possible that these additional variables may complicate the selective mismatch targeting 

of metalloinsertors in cells. As such, to better anticipate and understand the potential 

clinical challenges of rhodium metalloinsertors, it is imperative to study molecularly 

distinct colorectal cancer cell lines that are derived from different patients.  
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To understand more fully the potential clinical applicability of rhodium 

metalloinsertors, we examined our most potent and selective metalloinsertor, 

[Rh(phen)(chrysi)(PPO)]2+ (Figure 3.1), across 27 CRC cell lines (Table 3.1).15 These 

cell lines are derived from 24 unique patients and represent a diverse set of tumors, 

spanning the four subtypes of CRC and both MMR-deficient and MMR-proficient 

phenotypes.16,17 Here, the toxicities of [Rh(phen)(chrysi)(PPO)]2+ were compared to 

cisplatin, an FDA approved chemotherapeutic agent, in this cell line panel using a 

luciferase-based luminescence assay which measures ATP from living cells. We further 

examined the influence that cellular uptake and number of genomic DNA lesions (as 

measured by the rhodium metalloinsertor-cyanine dye conjugate RhCy3) could have on 

the cytotoxicity of [Rh(phen)(chrysi)(PPO)]2+ across different cell lines.  

3.2 Experimental Procedures 

 3.2.1 Materials 

All commercially available reagents were used as received. The metalloinsertors 

[Rh(phen)(chrysi)(PPO)]2+ and RhCy3 were synthesized and purified following 

published protocols.18,19 All experiments were performed with the chloride salt of these 

metalloinsertors. Cell culture media, supplements, and PureLink™ Genomic DNA Mini 

Kits were purchased from Life Technologies (Carlsbad, CA). CellTiter-Glo® 

Luminescent Cell Viability Assay kits were purchased from Promega (Madison, WI). 

BCA Protein Assay Kits were purchased from Pierce (Waltham, MA). Cell lines used in 

the experiment were purchased from ATCC (Manassas,VA) or provided by collaborators 

at AMGEN (Thousand Oaks, CA).  
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Table 3.1 List of cell lines used in this experiment with origin and growth conditions.  

 
a Cell lines used in cytotoxicity assay  
b Cell lines used in whole cell uptake assay 
c Cell lines used in RhCy3 fluorescence assay 
d

 DLD-1/HCT15, HT29/WiDr, SW480/SW620 pairings are derived from a common 
patient. 
 

Cell Line Obtained 
from 

Type of 
Media 

% 
FBS  Media Supplements  

CaCo2 [a,b] AMGEN DMEM 20 100 U/mL PenStrep 
Colo205 [a,b] AMGEN RPMI 1640 10 100 U/mL PenStrep 

Colo320DM [a] AMGEN RPMI 1640 10 100 U/mL PenStrep 
Colo678 [a,b] AMGEN DMEM 10 100 U/mL PenStrep 

CW2 [a,b] AMGEN DMEM 10 100 U/mL PenStrep 
DLD-1 [a,b,c,d] AMGEN RPMI 1640 10 100 U/mL PenStrep 
HCC2998 [a,b] AMGEN RPMI 1640 10 100 U/mL PenStrep 
HCT116 [a,b,c] AMGEN McCoy's 5A 10 100 U/mL PenStrep 
HCT15 [a,b,d] AMGEN RPMI 1640 10 100 U/mL PenStrep 
HT29 [a,b,d] AMGEN McCoy's 5A 10 100 U/mL PenStrep 
KM12 [a] AMGEN RPMI 1640 10 100 U/mL PenStrep 
LoVo [a] AMGEN Ham's F-12K 10 100 U/mL PenStrep 

Ls1034 [a,b] AMGEN RPMI 1640 10 100 U/mL PenStrep 
Ls123 [a,b] AMGEN DMEM 10 100 U/mL PenStrep 

Ls174T [a,b] AMGEN DMEM 10 100 U/mL PenStrep 
NCI-H716 [a,b] AMGEN RPMI 1640 10 100 U/mL PenStrep 
NCI-H508 [a] AMGEN RPMI 1640 10 100 U/mL PenStrep, 2 mM GlutaMAX 

RKO [a,b] AMGEN DMEM 10 100 U/mL PenStrep 
SW1116 [a,b] AMGEN RPMI 1640 10 100 U/mL PenStrep 
SW1463 [a] AMGEN RPMI 1640 10 100 U/mL PenStrep 
SW403 [a,b] AMGEN RPMI 1640 10 100 U/mL PenStrep, 2 mM GlutaMAX 
SW48 [a,b] AMGEN RPMI 1640 10 100 U/mL PenStrep 

SW480 [a,d] AMGEN RPMI 1640 10 100 U/mL PenStrep 
SW620 [a,b,d] AMGEN RPMI 1640 10 100 U/mL PenStrep 
SW837 [a] AMGEN RPMI 1640 10 100 U/mL PenStrep 
SW948 [a,b] ATCC RPMI 1640 10 100 U/mL PenStrep, 2 mM GlutaMAX 
WiDr [a,b,d] AMGEN DMEM 10 100 U/mL PenStrep 
AN3-CA [c] AMGEN DMEM 10 100 U/mL PenStrep 
DU-145 [c] ATCC DMEM 10 100 U/mL PenStrep 

HCT-116N [c] -- RPMI 1640 10 
100 U/mL PenStrep, 2 mM L-glutamine, 0.1 mM 

non-essential amino acids, 1 mM sodium 
pyruvate, 400 ug/mL Geneticin (G418) 

HCT-116O [c] -- RPMI 1640 10 
100 U/mL PenStrep, 2 mM L-glutamine, 0.1 mM 

non-essential amino acids, 1 mM sodium 
pyruvate, 400 ug/mL Geneticin (G418) 

HEC-1-A [c] ATCC McCoy's 5A 10 100 U/mL PenStrep 
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 3.2.2 Cell Culture 

The specific growth conditions of each cell line, including the type of medium 

and added supplements, can be found in Table 3.1. In general, cell lines were grown in 

RPMI 1640, DMEM, McCoy’s 5A, or Ham’s F-12K media supplemented with 10% FBS 

(20% FBS for the cell line CaCo2), 100 units/mL penicillin, 100 units/mL streptomycin. 

Cells were grown in tissue culture treated flasks at 37 °C under a humidified 5% CO2 

atmosphere.  

3.2.3 CellTiter-Glo Viability Assay of Metalloinsertors and Cisplatin 

CellTiter-Glo Luminescent Cell Viability Assays were performed following the 

protocols provided in the kit. Briefly, cell lines were plated at a density of 10,000 cells in 

100 µL media per well in an opaque, tissue culture treated 96-well plate and allowed to 

adhere for 24 h. One of two compounds, [Rh(phen)(chrysi)(PPO)]2+ or cisplatin, was 

added to each well at a final concentration of 0-150 µM, and the cells were allowed to 

incubate with the therapeutic for 72 h. After incubation with a therapeutic agent, the cell 

solutions were treated with an equal volume of the CellTiter Glo reagent, which contains 

beetle luciferin and a recombinant luciferase. The luciferase can catalyze a reaction 

between the luciferin and ATP provided by viable cells to produce a luminescence that is 

proportional to the number of viable cells. Luminescence was recorded on a FlexStation 3 

Multi-Mode Plate Reader with integration time of 0.500 seconds. Percent viability was 

determined by the ratio of the luminescence of therapeutic-treated cells compared to 

untreated cells. IC50 values were determined by fitting the cell viability curve to a 

sigmoidal curve in OriginPro v 8.5 and using the resultant parameters to calculate the 

concentration at which 50% of cells were viable. Each therapeutic dose was performed in 
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triplicate and each experiment was repeated 2-3 times to confirm reproducible viability 

curves. For statistical analyses, cell lines from a common patient (DLD-1/HCT15, 

HT29/WiDr, SW480/SW620) were averaged and counted as a single cell line to avoid 

double-counting cancer from a single patient, as the IC50 values of these pairs were 

unsurprisingly similar.  

3.2.4 Exploration of Other Viability Assays  

Several different viability assays were attempted to determine the best viability 

assay for the experiment described in this chapter.  Ultimately, the CellTiter-Glo assay 

was selected as the most fit assays for our purposes, but the other attempted assays are 

described below. Additionally, preliminary experiments using etoposide (a DNA 

intercalator) and MNNG (a DNA alkylating agent) were performed using the resazurin 

reductase assay, but ultimately cisplatin was selected as the most interesting control 

compound for these experiments due to its high clinical use, its resistance profile towards 

MMR-deficient cancers, and its inorganic nature. 

 3.2.4.1 MTT Cytotoxicity Assay 

MTT Cytotoxicity Assays were performed following the protocols provided in the 

kit. Briefly, cell lines were plated at a density of 10,000 cells in 100 µL media per well in 

clear plastic tissue culture treated 96-well plate. Immediately following plating, 

[Rh(phen)(chrysi)(PPO)]2+ was added to each well at a final concentration of 0-40 µM, 

and the cells were allowed to incubate with the metalloinsertor for 72 h. After incubation, 

10 µL of MTT reagent (2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltatrazolium bromide) 

was added to each well and incubated at 37 °C for four h. MTT can be converted to a 

purple complex, formazan, in metabolically activity. The formazan crystals were 
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solubilized and quantified by absorbance at 570 nm (background subtracted at 690 nm). 

Viability was determined for each metalloinsertor concentration through comparison to 

untreated cells. A derivative of the MTT assay was also attempted in which after 

incubation with the MTT reagent the media was removed and replaced with DMSO, 

which more sufficiently dissolves the formazan crystals.  

 3.2.4.2 Nuclear Count Assay 

The nuclear count assay was performed following procedures provided by a 

collaborator. 1000 to 5000 cells of HCT116N, HCT116O, or DLD-1 were plated in 100 

µL into each well of a black-walled, clear bottom, tissue culture treated 96-well plate. 

The plate was incubated overnight to allow the cells to adhere to the plate. The following 

day, the HCT116N and HCT116O cells were treated to a final concentration of 0-1 µM 

Rh(phen)(chrysi)(PPO)]2+ and the DLD-1 cells were treated to a final concentration of 0-

10 µM [Rh(phen)(chrysi)(PPO)]2+. The cells were allowed to incubate with the 

metalloinsertor for up to 72 h. After incubation, the cells were treated with either a 

Hoechst-based protocol or a DAPI-based nuclear staining protocol, described below. 

Hoechst and DAPI are fluorescent molecules that bind non-covalently to DNA. Each well 

of a 96-well plate can be imaged and the fluorescent nuclear spots can be counted to 

determine the viability of cells treated with the metalloinsertor relative to an untreated 

control. 

Hoechst Protocol: After metalloinsertor incubation, media was removed from 

each plate by gently dumping the solution over paper towels (plates were not tapped or 

vigorously shaken). 50 µL of a solution containing 0.25% formaldehyde, 0.1% saponin, 

and 2 µg/mL Hoechst dye was added to each well. Plates were then incubated at 37 °C 
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for 30 min. After incubation, plates were gently washed with 100 µL PBS (phosphate 

buffered saline) 3 times. PBS was removed by gentle dumping over paper towels. Finally 

100 µL of PBS was added to each plate. The plate was sealed with clear packing tape and 

the lids were made opaque using duct tape. The samples were kept in the dark in the 

fridge (4 °C) overnight before being delivered to collaborators at City of Hope, where 

they were kept at 4 °C until being examined on a Molecular Devices ImageXpress high-

content screening system. It is of note that many cells were lost in the rinsing procedures 

using this staining method, likely due to the low concentration of paraformaldehyde used. 

As such, the DAPI staining protocol was used for the majority of the NC experiments 

performed.  

DAPI Protocol: After metalloinsertor incubation, media was removed from each 

plate by gently dumping the solution over paper towels (plates were not tapped or 

vigorously shaken). 50 µL of 4% formaldehyde in water was added to each well and the 

plates were allowed to incubate at room temperature for 20 min. The formaldehyde was 

removed and replaced with 50 µL of 0.5% triton-X. The plates again sat at room 

temperature for 15-20 min. Finally, triton-X was removed and the cells were incubated in 

the dark with 50 µL per well of a 2 µg/mL DAPI solution for 30 min. After incubation, 

excess stain was removed by gently washing the cells with 100 µL PBS 3 times. PBS was 

removed by gentle dumping over paper towels. Finally 100 µL of PBS was added to each 

plate. The plate was sealed with clear packing tape and the lids were made opaque using 

duct tape. The samples were kept in the dark in the fridge (4 °C) overnight before being 

delivered to collaborators at City of Hope, where they were kept at 4 °C until being 

examined on a Molecular Devices ImageXpress high-content screening system.  
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 3.2.4.3 Resazurin Reduction Assay 

The resazurin reduction assay was performed following the literature.20 Briefly, 

cells were plated in an opaque-walled, clear bottomed, tissue culture treated 96-well plate 

at 10,000 cells/well. HCT116N, HCT116O, and DLD-1 cells were incubated with various 

concentrations of [Rh(phen)(chrysi)(PPO)]2+. HCT116N and HCT116O cells were 

treated to a final concentration of 0-1 µM metalloinsertor. DLD-1 cells were treated to a 

final concentration of 0-15 µM metalloinsertor. The cells were allowed to incubate with 

the metalloinsertor for 72 h. After incubation, the plate was centrifuged for 10 min at 230 

g (~1100 rpm) to concentrate the cells to the bottom of the plate. Cell media was then 

removed be either multichannel pipette or gentle tapping onto paper towels. The 

resazurin reagent was prepared from solid powder to create a 0.025 mg/mL solution in 

PBS and 100 µL was added to each well. The cells were then re-incubated for 4 h at 37 

°C. During this time, resazurin (blue) can be metabolized by viable cells to produce 

resorufin (pink). Absorbance and emission can both be used as readouts of this assay. As 

such, absorbance was measured at 570 nm (with reference wavelength of 630 nm). For 

emissions, the samples were excited at 560 nm and emission at 590 nm was recorded. 

Viability was determined for each metalloinsertor concentration through comparison to 

untreated cells 

This method is comparable to the MTT assay (both use metabolic activity to 

produce a signal change) and is significantly cheaper to use, therefore this assay was used 

in preliminary experiments with cisplatin (a covalent DNA binder), etoposide (a DNA 

intercalator), and MNNG (a DNA alkylating agent) to assess a reasonable concentration 

range for each drug before assessing them using the more expensive CellTiter-Glo assay.  
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 3.2.4.4 Sulforhodamine B Assay 

The Sulforhodamine B assay was performed following the literature.20,21 Briefly, 

cells were plated in an opaque-walled, clear bottom tissue culture treated 96-well plate at 

10,000 cells/well. HCT116N, HCT116O, and DLD-1 cells were incubated with various 

concentrations of [Rh(phen)(chrysi)(PPO)]Cl2. HCT116N and HCT116O cells were 

treated to a final concentration of 0-1 µM metalloinsertor. DLD-1 cells were treated to a 

final concentration of 0-15 µM. The cells were allowed to incubate with the 

metalloinsertor for 72 h. At this point, a 20% w/v solution of trichloroacetic acid was 

chilled on ice and 50 µL was added to each well to fix the cells. The plate was then stored 

in the refrigerator for 1 hour to allow the cells to be fixed. Following this, the TCA/media 

was removed with gentle tapping, and then washed with running tap water 4 times, patted 

dry on paper towels, and allowed to air dry for 1 h. Once dry, a 0.057% w/v solution of 

sulforhodamine B in 1% acetic acid was prepared from solid and 100 µL was added to 

each well. The cells were incubated at room temperature for 30 min to allow the dye to 

bind to proteins that have been fixed to the tissue culture flask, and excess 

sulforhodamine B was then rinsed away with 4 aliquots of acetic acid. The plates were 

again allowed to dry for 30 min before 200 µL of TRIS buffer (10 mM, pH 10.5) was 

added to each well to redissolve the sulforhodamine dye. The plates were then shaken for 

30 min to dissolve the stain and absorbance was measured at 540 nm with a reference of 

630 nm. Viability was determined for each metalloinsertor concentration through 

comparison to untreated cells. 
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 3.2.4.5 Neutral Red Viability Assays 

The Sulforhodamine B assay was performed following the literature.20,22 Briefly, 

cells were plated in an opaque-walled, clear bottom tissue culture treated 96-well plate at 

10,000 cells/well. HCT116N, HCT116O, and DLD-1 cells were incubated with various 

concentrations of [Rh(phen)(chrysi)(PPO)]2+. HCT116N and HCT116O cells were 

treated to a final concentration of 0-1 µM metalloinsertor. DLD-1 cells were treated to a 

final concentration of 0-15 µM. The cells were allowed to incubate with the 

metalloinsertor for 72 h. Prior to dye incubation, a 0.04 mg/mL solution of neutral red 

was made in cell media and pre-heated in the 37 °C incubator for 2 h. The neutral red 

solution was centrifuged at 1800 rpm to pellet any undissolved dye crystals. Media was 

removed from the 96-well plate by gentle tapping, then 100 µL of neutral red was added 

to each well. The cells were incubated for 3 h at 37 °C to allow for uptake of the dye into 

the lysosomes of viable cells. There did not appear to be any dye crystallization over this 

time period. Excess neutral red media was removed by tapping and the cells were washed 

with 150 µL of PBS three times before 100 µL of destain solution (50:49:1 

ethanol:water:acetic acid) was added to each well. The plate was shaken for 10 min to 

extract the neutral red. The absorbance of the plate was measured at 540 nm. An 

additional fluorescence measurement was taken with excitation of 530 nm and emission 

of 645 nm. Viability was determined for each metalloinsertor concentration through 

comparison to untreated cells. 

3.2.5 ICP-MS Assay for Whole Cell Uptake of [Rh(phen)(chrysi)(PPO)]2+ 

Whole cell uptake experiments were performed following previously published 

protocols with slight modifications.23 Briefly, cells were plated at a density of 1,000,000 
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cells in 3 mL media per well in a 6-well plate and allowed to adhere for 24 h. Cells were 

then treated with [Rh(phen)(chrysi)(PPO)]2+ to a final concentration of 0.5 µM. For 

adherent cell lines, the rhodium-containing medium was aspirated from each well after 24 

h and each well was washed 2x with 1 mL of PBS then harvested by trypsinization and 

transferred to centrifuge tubes. For mixed or suspended cell lines, the rhodium-containing 

medium was transferred to a centrifuge tube before the PBS rinses and trypsinization. 

Harvested cells were centrifuged at 1500 rpm for 5 minutes. The supernatant was 

decanted and the cell pellet was suspended in 1 mL PBS. Centrifugation and PBS 

washing was repeated three times total. For suspension cell lines (mixed or complete), the 

suspended and trypsinized aliquots were combined during the second wash. An aliquot 

from the final suspension was reserved and analyzed for protein content using a Pierce 

BCA Protein Assay Kit following the manufacturers instructions. To lyse the cells and 

destroy membrane integrity, each cell suspension was sonicated for 20 s at 40% 

amplitude with a Qsonica Ultrasonic sonicator, then frozen and lyophilized for 72 h. The 

resulting cell particulate was suspending in 1 mL of 6% nitric acid and heated at 110 °C 

for 8 h to facilitate total digestion prior to ICP-MS analysis. Each sample was then 

diluted to 2% nitric acid and centrifuged to separate any undigested cell components. The 

solutions were analyzed for Rh content on an Agilent 8800 Triple Quadrupole ICP-MS. 

The concentration of Rh in each sample was determined by comparison to a standard 

curve ranging from 0.01 to 100 ppb. Rh concentrations were normalized to the protein 

content of each sample determined by BCA assay. The measurements were repeated two 

times using two biological replicates for each cancer cell line. 
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3.2.6 Genomic DNA Extraction and Purification 

The genomic DNA was extracted and purified using PureLink® Genomic DNA 

Kits following the manufacturer’s protocol. Prior to DNA extraction, the cells subjected 

to genomic DNA (gDNA) extraction were seeded and grown in their respective cellular 

medium (Table 3.1) to near confluence. Lysates were prepared by removing the growth 

medium from cells, then cells were harvested by trypsinization then re-suspended in 200 

µL PBS. ProteinaseK (20 µL) and RNase (20 µL) were added to the sample, mixed by 

vortexing and incubated at room temperature for 2 min. 200 µL of PureLink® Genomic 

Lysis/Binding Buffer were added, mixed and vortexed to obtain a homogenous solution. 

The samples were incubated at 55 °C for 10 min to promote digestion then 200 µL of 96-

100% ethanol was added to the lysate which was further mixed by vortexing for 5 s. The 

DNA was washed by adding 500 µL of Wash Buffer 1 then Wash Buffer 2 provided by 

the kit, followed by DNA eluting process using the spin columns. The spin columns were 

eluted with sterile MilliQ water (200 µl) two times to recover the gDNA. The samples 

were lyophilized and the dry DNA was solubilized in Tris buffer solution (5 mM Tris, 50 

mM NaCl, pH = 8.0) in order to obtain a highly concentrated solution. The purity and 

concentration of the gDNA solutions were determined using a NanoDrop 2000 

Spectrophotometer. The concentrations of the stock solutions of gDNA used during the 

fluorescence titrations were adjusted at 3140 ng/µl (4.7 mM base pairs DNA) in Tris 

buffer (200 mM NaCl, 5 mM Tris, pH 8.1). 

3.2.7 Fluorescence Titrations with Genomic DNA 

Fluorescence titrations were performed following the literature.19 Luminescence 

spectra were recorded using a QE Pro High Performance Spectrometer with a back-
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thinned, TE-cooled CCD detector controlled by the OceanView data acquisition and 

Ocean Optics analysis software package. Sample excitation was provided by a 455 nm 

LED. The fluorescence titrations in this study were performed with genomic DNA 

extracted from eight cancer cell lines characterized by different phenotypes (HCT116N, 

HCT116O, HCT116, DLD-1, HEC-1A, SW480, AN3-CA, DU-145). The emission 

spectra were recorded in Tris buffer solution (5 mM Tris, 200 mM NaCl, pH = 7.4) at 25 

°C using a water circulation system. Excitation wavelength was λEx = 455 nm and 

emission integral was reported after each addition of genomic DNA, as a scalar function 

from 548 to 675 nm. The measurements were repeated three times using three biological 

replicates for each cancer cell line. 

3.2.8 Literature Analysis of Colorectal Cancer Cell Lines  

Recently, many researchers, including Berg et al. and Linnekamp et al., have 

explored the genetic and epigenetic features of colorectal cancer cell lines and provided 

rich repositories of information for other researchers to utilize.16,17 As such, we attempted 

to identify correlations between the IC50 of [Rh(phen)(chrysi)(PPO)]Cl2 and common 

genetic and epigenetic aberrations observed in colorectal cancer cell lines, including 

consensus molecular subtype (CMS), CpG island methylator phenotype (CIMP), and 

mutations in TP53, KRAS, BRAF, PIK3CA, and PTEN.  

3.3 Results 

 3.3.1 Determining an Appropriate Viability Assay 

 The Barton group has traditionally only utilized the HCT116N and HCT116O cell 

lines in the majority of their experiments on new metalloinsertor complexes. MTT 

viability assays have worked consistently well in these experiments; therefore we initially 
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examined the cytotoxicity of [Rh(phen)(chrysi)(PPO)]2+ in our diverse cell lines using the 

MTT assay. It was observed that several of these cell lines did not reach near-0% 

viability, instead they leveled off at 20-40% viability even at high metalloinsertor 

concentrations (> 40 µM, Figure 3.2). Indeed, it has been reported that the MTT assay, 

though widely used to measure cytotoxicity, is not always the most reliable or 

straightforward assay.20 Additionally, since the MTT assay measures mitochondrial 

activity, it is possible that senescent cells that are no longer viable would still register as 

viable. As such, a variety of viability assays were performed to identify a suitable 

viability measure for the experiments described herein. These assays include the 

resazurin reduction assay (RES), the sulforhodamine B assay (SRB), the neutral red 

uptake assay (NRU), and the nuclear count assay (NC). Each assay was performed on 

HCT116N and HCT116O cells as well-studied controls and on the cell line DLD-1, 

which only reached 40% viability in MTT assays, even at high concentrations. RES, 

SRB, and NRU assays produced similar outcomes to the MTT assay, with DLD-1 never 

reaching near-0% viability (Figure 3.3). It is of note that the RES assay is significantly 

cheaper and simpler than the MTT assay, therefore it was used to pre-screen drug 

concentration ranges of cisplatin, etoposide, MNNG, and [Rh(phen)(chrysi)(PPO)]2+. 

These results are summarized in Figure 3.4, however only cisplatin was studied in full as 

a control due to its high clinical use, its resistance profile towards MMR-deficient 

cancers, and its inorganic nature. 

 The NC assay provided very promising results in published metalloinsertor 

experiments, and was therefore initially used in these experiments.24 Indeed, cell lines 

that were not able to reach near-0% viability in the MTT assay were able to reach ~10%  
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Figure 3.3 Comparison of different viability assays in the DLD-1 cell lines. The 

resazurin reduction, sulforhodamine B, MTT (with DMSO workup), neutral red, and 

CellTiter-Glo assays were performed on DLD-1 cells that had been incubated with 

varying concentrations of [Rh(phen)(chrysi)(PPO)]2+ to establish the best viability 

method.  
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Figure 3.4 Comparison of a rhodium metalloinsertor to other chemotherapeutics across a 

panel of cell lines. The IC50 values of [Rh(phen)(chrysi)(PPO)]2+ (Rh), cisplatin, 

MNNG, and etoposide in 16 cell lines, with a gradient color scheme applied to show the 

variation in IC50 from low (pink) to high (blue) concentrations. Overall the 

metalloinsertor is generally more potent than the other therapeutics (ex. in HCT116, 

RKO, SW480, etc.), though there are some cell lines where it has similar activity 

(HCT15) or is less potent (Colo320DM) than the other therapeutics.   

 

Rh	 Cisplatin MNNG Etoposide
~IC50	(uM) ~IC50	(uM ~IC50	(uM ~IC50	(uM

HCT116 − 1 23 25+ 25+
DLD-1 − 6 14 20+ 20
HCT15 − 16 13 18 20
LoVo − 4 10 25+ 2
Sw48 − 0.2 2 10 <	0.2
Ls174T − 10 20+ 20+ 3
CW2 − 6 7 25 25+
RKO − 0.15 11 20+ 15
HT29 + 0.2 25+ 25+ 25
WiDr + 0.2 25+ 25 25+

Colo320DM + 20+ 4 6 8
NCI-H716 + 9 7 5 20+
SW620 + 1 8 10 4
Sw480 + 0.5 8 20+ 13
Ls1034 + 1 15 20+ 20+
Ls123 + 0.5 25 25+ 7

Cell	Line MMR	+/-

= highest IC50

= lowest IC50
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viability in the NC assay under certain conditions (Figure 3.5). Despite this, challenges 

with this assay prevented its practical use. Specifically, several of the cell lines examine 

grow in islands—that is, cells will grow on top of each other instead of spreading out 

across the tissue culture dish, even at low cell densities (Figure 3.5). Cells that grow 

vertically will have overlapping nuclei when imaging from above, and these overlapping 

spots are either not fully counted (i.e., two spots directly overlapped will look like one 

spot) or are automatically not counted by the instrument (i.e., if the spot is too large it 

will not be considered a nucleus by the instrument). While this problem can be reduced 

by ensuring islands are broken apart before plating in the 96-well plate, the long dosing 

periods (72 h) necessary for metalloinsertor-induced cell death results in the untreated 

cells growing new islands during the duration of the experiment, complicating the 

analysis of these samples. Lastly, the required plate readers for these experiments are not 

readily available, therefore plates were brought to collaborators at City of Hope. As such, 

data could only be examined on City of Hope computers and it was unclear if the 

instrumentation was being set up to count nuclei in a fashion similar to the literature. 

While nuclear count experiments were ongoing, initial experiments using the CellTiter-

Glo assay were performed and showed equally promising results to the NC assay but with 

none of the aforementioned complications. As such, the CellTiter-Glo assay was used for 

the remainder of the experiments.  

 3.3.2 Toxicity of [Rh(phen)(chrysi)(PPO)]2+ and Cisplatin 

We examined the potency of [Rh(phen)(chrysi)(PPO)]2+ and the FDA-approved 

cisplatin, in 27 colorectal cancer cell lines to better understand the generality of the 

metalloinsertor’s cytotoxic effects in diverse cell lines. We used a luciferase-based  
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luminescence assay, which measures ATP of living cells, to develop a dose-response 

curve and determine the IC50 (50% inhibitory concentration) values for both drugs in all 

cell lines. As can be seen in Figure 3.6, the dose-response curves of 

[Rh(phen)(chrysi)(PPO)]2+
 vary dramatically across the 27 cell lines, with IC50 values 

spanning nearly three orders of magnitude and ranging from 63 ± 3 nM for Colo205 cells 

to 18 ± 3 µM for Colo320DM cells. Similarly, a range of IC50 values is observed for 

cisplatin (IC50 values from 2.2 ± 0.3 µM in SW48 cells to 36 ± 3 µM in Colo205 cells), 

however these IC50 values span only a single order of magnitude. The IC50 values for 

[Rh(phen)(chrysi)(PPO)]2+ and cisplatin in each cell line can be found in Table 3.2. As 

can be seen in Figure 3.6, nearly every cell line is more sensitive to 

[Rh(phen)(chrysi)(PPO)]2+ than it is to cisplatin, with the IC50 values of 

[Rh(phen)(chrysi)(PPO)]2+ being on average 5 times lower than those of cisplatin 

([Rh(phen)(chrysi)(PPO)]2+ average IC50 = 2.9 µM; cisplatin average IC50 = 13.2 µM).  

 As can be seen in Figure 3.7, a wide range of sensitivities is seen for both MMR-

deficient and MMR-proficient cell lines with no clear selectivity towards the MMR 

deficient cell lines. [Rh(phen)(chrysi)(PPO)]Cl2 shows some selectivity towards the 

MMR-deficient cells (average IC50 of 2.5 µM; range 0.25-9.2 µM) compared to MMR-

proficient cells (average IC50 of 3.0 µM; range 0.063-18.0 µM).25 The selectivity 

increases further when looking only at cell lines with deficiencies in MLH1 or MSH2, the 

two most essential MMR proteins (average IC50 of 2.1 µM; range 0.25-9.2 µM). While 

these results are promising and follow the expected trend, due to the large ranges they 

cannot be considered statistically different, and in fact the same trend is observed for 

cisplatin, which is not MMR-selective in matched cell lines (Figure 3.7). 
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Figure 3.6 Cytotoxicity of [Rh(phen)(chrysi)(PPO)]2+ (RhPPO) and cisplatin in 27 

colorectal cancer cell lines. Dose response curves of [Rh(phen)(chrysi)(PPO)]2+ and 

cisplatin in CRC cell lines (top). Direct IC50 comparison of [Rh(phen)(chrysi)(PPO)]2+ 

and cisplatin in 27 CRC cell lines (middle) and boxplot representation, with an average 

IC50 for [Rh(phen)(chrysi)(PPO)]2+ of 3.02 μM and a median of 1.34 μM, and an average 

IC50 for cisplatin of 13.89 μM and a median of 11.62 μM (bottom). 
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Figure 3.7 Cytotoxicity of a therapeutic in 27 colorectal cancer cell lines. (Top) Dose 

response curves of [Rh(phen)(chrysi)(PPO)]2+ (RhPPO) in MMR-proficient (MMR+) 

and -deficient (MMR−) cell lines, with a comparison of the IC50 values shown in box 

plot form. The average IC50 of [Rh(phen)(chrysi)(PPO)]2+ in MMR+ cells is 3.22 µM 

and the median is 1.37 µM. The average IC50 of [Rh(phen)(chrysi)(PPO)]2+ in MMR− 

cells is 2.62 µM and the median is 1.28 µM. (Bottom) Dose response curves of cisplatin 

in MMR+ and MMR− cell lines, with a comparison of the IC50 values shown in box plot 

form. The average IC50 of cisplatin in MMR+ cells is 15.65 µM and the median is 12.09 

µM. The average IC50 of cisplatin in MMR− cells is 10.38 µM and the median is 10.30 

µM. 
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Table 3.2 IC50 values of [Rh(phen)(chrysi)(PPO)]2+ and cisplatin in a panel of cell lines. 

 
a HCC2998 is mutated in the POLE gene, leading to an increase in polymerase errors such 
as mismatches and indels. While it is not technically MMR-deficient, it will have higher 
mismatch and indel occurrences than other MMR-proficient cell lines. 
b IC50 values from reference 24 

c Cell lines used as the test set for the RhCy3 assay. Note that since the colorectal cancer 
cell lines examined in the cytotoxicity studies were primaily deficient in the MLH1 gene, 
this test set includes several cell lines of non-colorectal origin that span deficiencies in 
different MMR genes as well.   

Cell Line 
IC50 

RhPPO 
(μM) 

IC50 Cisplatin 
(μM) 

IC50 RhPPO 
/IC50 Cisplatin 

Cancer 
Type 

MMR Status, 
(Mutated Protein) 

CaCo-2 1.5 ± 0.8 9.5 ± 3.7 6.2 Colorectal MMR+ 
Colo 205 0.063 ± 0.03 36.4 ± 2.8 580 Colorectal MMR+ 

Colo 320DM 18.0 ± 2.9 9.5 ± 2.0 0.5 Colorectal MMR+ 
Colo 678 0.81 ± 0.15 18.2 ± 0.7 22.4 Colorectal MMR+ 

CW-2 9.2 ± 1.3 9.0 ± 2.1 1.0 Colorectal MMR−, (−MLH1) 
DLD-1 [c] 3.6 ± 0.3 10.7 ± 2.2 3.0 Colorectal MMR−, (−MSH6) 

HCC2998 [a] 1.6 ± 0.6 20.4 ± 1.4 12.6 Colorectal MMR+, (−POLE)  
HCT-116 [c] 0.25 ± 0.01 18.5 ± 0.9 73.3 Colorectal MMR−, (−MLH1) 

HCT-15 9.5 ± 2.5 16.1 ± 0.3 1.7 Colorectal MMR−, (−MSH6) 
HT-29 0.21 ± 0.01 22.1 ± 1.1 106 Colorectal MMR+ 
KM-12 0.83 ± 0.07 13.9 ± 0.9 16.7 Colorectal MMR−, (−MLH1) 
LoVo 1.7 ± 0.2 7.0 ± 1.2 4.0 Colorectal MMR−, (−MSH2) 

Ls1034 5.6 ± 0.3 14.4 ± 1.9 2.6 Colorectal MMR+ 
Ls123 0.23 ± 0.03 9.0 ± 7.0 39.7 Colorectal MMR+ 

Ls174T 2.0 ± 0.2 5.4 ± 0.6 2.8 Colorectal MMR−, (−MLH1) 
NCI-H716 1.8 ± 0.6 13.9 ± 2.9 7.7 Colorectal MMR+ 
NCI-H508 1.5 ± 0.4 8.8 ± 1.4 5.9 Colorectal MMR+ 

RKO 0.12 ± 0.01 11.6 ± 0.7 97.5 Colorectal MMR−, (−MLH1) 
SW-1116 4.4 ± 1.2 9.1 ± 1.4 2.1 Colorectal MMR+ 
SW-1463 1.6 ± 0.2 9.5 ± 1.1 6.0 Colorectal MMR+ 
SW-403 0.34 ± 0.04  9.1 ± 1.5 27.1 Colorectal MMR+ 
SW-48 0.34 ± 0.02 2.2 ± 0.2 6.4 Colorectal MMR−, (−MLH1) 

SW-480 [c] 0.44 ± 0.13 8.3 ± 0.6 12.0 Colorectal MMR+ 
SW-620 0.33 ± 0.04 4.8 ± 0.8 14.7 Colorectal MMR+ 
SW-837 1.8 ± 0.7 11.4 ± 1.3 6.2 Colorectal MMR+ 
SW-948 9.7 ± 1.9 22.1 ± 1.7 2.3 Colorectal MMR+ 
WiDr 0.13 ± 0.01  25.5 ± 14.1 198.7 Colorectal MMR+ 

AN3-CA [c] 0.086 ± 0.003 -- -- Endometrial MMR−, (−MLH1) 

DU-145 [c] 0.67 ± 0.04 -- -- Prostate MMR−, (−MLH1, 
PMS2) 

HEC-1-A [c]  0.39 ± 0.02 -- -- Endometrial MMR−, (−PMS2) 
HCT-116N [b, c] 1.12 ± 0.27 -- -- Colorectal MMR+ 
HCT-116O [b, c] 0.15 ± 0.06 -- -- Colorectal MMR−, (−MLH1) 
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3.3.3 Whole Cell Uptake of [Rh(phen)(chrysi)(PPO)]2+ Across Different 

Cell Lines  

We examined the whole cell uptake of [Rh(phen)(chrysi)(PPO)]2+ in twenty 

colorectal cancer cell lines by ICP-MS to determine if whole cell uptake of the 

metalloinsertor influenced its cytotoxicity in a given cell line. Cells were allowed to 

incubate for 24 h with the metalloinsertor, as we had previously observed that 

metalloinsertor uptake plateaus in both HCT116N and HCT116O cells by 24 h.26 A 

concentration of 0.5 µM was selected to be great enough to ensure Rh detection by ICP-

MS, but low enough to avoid significant cell death in sensitive cell lines (which could 

lead to challenges in data analysis). A correlation (Pearson’s r = -0.63, p < 0.01) was 

observed between metalloinsertor uptake and log(IC50) of [Rh(phen)(chrysi)(PPO)]2+ in 

different cell lines, as can be seen in Figure 3.8. This data confirms that uptake may play 

a role in overall cytotoxicity, as [Rh(phen)(chrysi)(PPO)]2+ is more potent in cell lines 

exhibiting high uptake and the metalloinsertor is less potent in cell lines exhibiting low 

uptake.  

 3.3.4 Genomic DNA Binding of RhCy3 Across Different Cell Lines  

To determine if the number of genomic DNA binding sites (mismatches, indels, 

and abasic sites) in different cell lines could explain the wide range of IC50 values 

observed for the [Rh(phen)(chrysi)(PPO)]2+, we performed fluorescence titrations with 

the mismatch-specific fluorescent metalloinsertor, RhCy3 (Figure 3.1). Since the MMR-

deficient colorectal cancer cell lines examined in the cytotoxicity assays are primarily 

deficient in the MLH1 gene, the test set used in this experiment included cell lines of 

non-colorectal origin that span deficiencies in different MMR genes (Table 3.2).27 In  
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Figure 3.8 A correlation between whole cell uptake and IC50 for 

[Rh(phen)(chrysi)(PPO)]2+. A correlation of -0.63 was observed. MMR-deficient cells are 

shown in pink and red, MMR-proficient cells are shown in light blue and blue. All cell 

lines are labeled and select cell lines discussed in the text are bolded and highlighted in 

red and blue.  
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these experiments, genomic DNA was extracted from the different cell lines and titrated 

into a solution of RhCy3 (Figure 3.9). As can be seen in Figure 3.10, a correlation 

(Pearson’s r = -0.52, p < 0.2) was observed between the log(IC50) of 

[Rh(phen)(chrysi)(PPO)]2+ and the fluorescence intensity of RhCy3 with genomic DNA 

of a given cell line. This correlation is increased upon the exclusion of a potential outlier, 

DU145 (Pearson’s r = -0.81, p < 0.05). Overall, [Rh(phen)(chrysi)(PPO)]2+ is more 

potent in cell lines exhibiting more lesions in their genomic DNA and less potent in cell 

lines exhibiting fewer lesions.  

3.3.5 Genomic Features of Colorectal Cancer Cell Lines  

While uptake and number of genomic lesions clearly correlate with cytotoxicity 

and can explain some unexpected trends and observations, there is also the possibility 

that additional factors may influence the MMR selectivity of [Rh(phen)(chrysi)(PPO)]2+, 

such as the presence or absence of specific cancer-associated mutations or proteins. We 

examined the relationship between IC50 and the presence or absence of various proteins 

or phenotypes (CMS, CIMP, TP53, KRAS, BRAF, PIK3CA, and PTEN) according to the 

literature (Figure 3.11).16,17 Overall, we observed no statistically significant (p < 0.05) 

correlations between IC50 and these genetic or epigenetic features, however some non-

significant trends were visible in the data. For instance, cell lines with wild type p53 were 

more sensitive to [Rh(phen)(chrysi)(PPO)]2+
 (average IC50: 0.87 µM, range: 0.12-1.96 

µM) than cell lines containing mutated p53 (average IC50: 3.74 µM, range: 0.06-18.0 

µM). p53 is considered the guardian of the genome and plays a role in growth arrest, 

DNA repair, and apoptosis within the cell.28 It is possible that wild-type p53 is involved 

in processing metalloinsertor-DNA lesions towards cell death, and therefore mutated  
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Figure 3.9 RhCy3 fluorescence titrations with genomic DNA. Full fluorescence titrations 

of gDNA extracted from eight different cancer cell lines. gDNA concentration is given as 

per base pair, I is the emission intergral from 548-675 nm as a scalar function measured 

after each addition of gDNA, and I0 is the emission integral of RhCy3 solutions without 

gDNA.  
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p53 could lead to less effective processing of this lesion and therefore decreased 

cytotoxicity. There may also be a trend between IC50 and CIMP status with CIMP+ cell 

lines being more sensitive (average IC50: 3.24 µM, range 0.06-9.2 µM) than CIMP− cell 

lines(average IC50: 4.33 µM, range 0.23-18.0 µM). CIMP+ cells exhibit high 

methylation of CpG-rich DNA segments, including many promoter regions in DNA.29 As 

such, inappropriate gene silencing is common CIMP+ cancers can cause deregulation of 

many essential genes, including genes involved in DNA repair and apoptosis. It is 

possible, therefore, that some of these deregulated genes could be involved in correcting 

or otherwise processing metalloinsertor-DNA lesions, leading to sensitivity in these cell 

lines. Non-significant trends are also observed with KRAS and BRAF genes, with cells 

containing wild-type KRAS and mutated BRAF being more sensitive than their 

counterparts. As mentioned before, there are no statistical differences between these 

groups; therefore this is all highly speculative.  

3.4 Discussion 

 Rhodium metalloinsertors have shown great promise as potential 

chemotherapeutic agents for MMR-deficient cancers. As discussed above, 

metalloinsertors exhibit excellent cytotoxic selectivity towards MMR-deficient cancer 

cells over their MMR-proficient counterparts in matched pairings of cell lines. While 

these studies clearly demonstrate that rhodium metalloinsertors can target DNA 

mismatches when all other variables are kept constant, they are not necessarily predictive 

of clinical outcomes due to their lack of genetic and molecular diversity. 

Here, we aimed to address this gap in our understanding by examining rhodium 

metalloinsertors in diverse colorectal cancers. We expanded our colorectal cancer cell 
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library to include 27 colorectal cancer cell lines that are largely unmatched and 

commercially available. These cell lines were selected to represent a diverse set of well-

studied colorectal cancer cell lines: 9 have MMR deficiencies and 18 are MMR-

proficient, the cell lines span the four distinct consensus molecular subtypes (CMS) of 

colorectal cancer, and a wealth of information has been gathered on the genetic, 

epigenetic, proteomic and transcriptomic differences between these cell lines by 

researchers in recent years.16,30 We examined our most potent metalloinsertor, 

[Rh(phen)(chrysi)(PPO)]2+
 in these diverse cell lines to better understand its potential 

successes and limitations in a clinical setting.  

3.4.1 Cytotoxicity Across 27 Colorectal Cancer Cell Lines 

The in vitro potency of a drug has long been considered a key predictor of its 

clinical success.31,32 Drugs with potencies in the nanomolar range are highly sought after, 

as they require lower dosing conditions for patients, they have the potential for lower off-

target effects, and they circumvent solubility issues that commonly limit drug dosage.31,33 

Furthermore, potency is often the primary consideration for determining new drug leads 

and optimizing drug candidates in high throughput screening assays.31  

To understand more fully the potential clinical applicability of rhodium 

metalloinsertors, we examined our most potent and selective metalloinsertor, 

[Rh(phen)(chrysi)(PPO)]Cl2 (Figure 3.1), and compared it to the potency of the FDA 

approved chemotherapeutic agent cisplatin. Both metallodrugs target features of DNA for 

therapeutic activity, however they do so in dramatically different ways. 

[Rh(phen)(chrysi)(PPO)]2+ binds preferentially to DNA base pair mismatches, which are 

non-abundant, through a non-covalent interaction. In contrast, cisplatin covalently binds 
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the abundant d(GpG) motifs present in DNA (Figure 3.1). Despite both having DNA as a 

target, [Rh(phen)(chrysi)(PPO)]2+ is more potent than cisplatin in nearly every cell line, 

with the IC50 values of [Rh(phen)(chrysi)(PPO)]2+ being on average 5 times lower than 

those of cisplatin (2.9 µM vs. 13.2 µM, respectively, Figure 3.6). This result is 

remarkable considering that DNA mismatches are significantly less abundant than 

d(GpG) sites and metalloinsertors interact only through non-covalent stacking with these 

mismatches. This high potency of [Rh(phen)(chrysi)(PPO)]2+ relative to cisplatin 

highlights its great therapeutic potential. Furthermore, in the cell lines least sensitive to 

cisplatin (Colo205, HT29, and WiDr), [Rh(phen)(chrysi)(PPO)]2+ is over 100 times more 

potent than cisplatin, with [Rh(phen)(chrysi)(PPO)]2+ being 580 times more potent than 

cisplatin in the cell line Colo205 (Table 3.2), suggesting this metalloinsertor could be a 

particularly useful therapeutic for treatment of clinically challenging cisplatin-resistant 

tumors. 

3.4.2 Selectivity Towards Cell Lines with MMR-deficiencies 

A major clinical challenge of many small molecule chemotherapeutic agents, 

including cisplatin, is the development of off-target effects in patients. These off-target 

effects can often be detrimental to quality of life and even dose-limiting.34 As such, the 

selectivity of a drug for cancer tissues over healthy tissues has been recognized as an 

increasingly important feature of new therapeutics, perhaps even more so than potency. 

As stated previously, rhodium metalloinsertors do exhibit high selectivity for deficiencies 

in MMR (which never occur in healthy tissues) when comparing matched cell lines. This 

study aimed to determine if MMR selectivity is conserved in unmatched, genetically 

diverse colorectal cancer cell lines. 
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When considering MMR status, a wide range of sensitivities is observed for both 

MMR-deficient and MMR-proficient cell lines (Figure 3.7). The sensitivities of some 

cell lines are contrary to what we expected based solely on MMR status; some MMR-

deficient cell lines (DLD-1, HCT15, and CW2) show minimal sensitivity to 

[Rh(phen)(chrysi)(PPO)]2+, whereas some MMR-proficient cell lines (HT29, WiDr, 

Ls123, and Colo205) show high sensitivity to [Rh(phen)(chrysi)(PPO)]2+. Overall 

[Rh(phen)(chrysi)(PPO)]2+ shows moderate selectivity towards the MMR-deficient cell 

lines (average IC50 of 2.5 µM) compared to MMR-proficient cell lines (average IC50 of 

3.0 µM), and the selectivity increases further when looking only at cell lines with 

deficiencies in MLH1 or MSH2, the two most essential MMR proteins (average IC50 of 

2.1 µM, Figure 3.7). These results are promising and follow the expected trend, however 

they are not as significant as anticipated.  

The range observed for both MMR-deficient and MMR-proficient cell lines can 

be rationalized; unlike in matched cell lines, cell lines in this panel differ in mutations 

and regulation of many proteins.16,17 It is generally accepted that the development of 

colorectal cancer requires multiple key driver mutations, with recent publications 

suggesting 3-10 driver mutations may be necessary.13,14 While some of these mutations 

are more common than others (for instance, mutations in the BRAF and KRAS proteins 

are common in certain CMS groups of colorectal cancer), overall the mutations in 

different tumors can vary greatly, and epigenetic, transcriptomic, and proteomic 

aberrations can lead to even greater diversity.2,16 Accordingly, there are several factors 

that could obscure the strong MMR-deficient selectivity we expected based on our 

hypothesis. We investigated two such factors that seemed likely to influence 
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metalloinsertor toxicity: cellular uptake and the number of lesions in genomic DNA that 

can be targeted by metalloinsertors. We also looked to available databases describing the 

molecular landscape of our colorectal cancer cells lines to attempt to identify other 

factors. While some correlations were observed, none were significant and therefore will 

not be discussed further. 

3.4.3 The Influence of Cellular Uptake on Cytotoxicity 

The biological target of the rhodium metalloinsertor is nuclear mismatched DNA, 

therefore uptake of the drug into the cell is crucial for metalloinsertor-induced 

cytotoxicity. Cell lines can exhibit different uptake and efflux properties towards small 

molecule therapeutic, therefore differences in uptake between cell lines may explain the 

wide cytotoxicity range of [Rh(phen)(chrysi)(PPO)]2+.35–38 We measured the whole cell 

uptake of [Rh(phen)(chrysi)(PPO)]2+ after 24 hours in various cell lines by ICP-MS to 

determine if the whole cell uptake of [Rh(phen)(chrysi)(PPO)]2+ correlated with 

cytotoxicity (Figure 3.8). A significant correlation was observed between increasing 

[Rh(phen)(chrysi)(PPO)]2+ uptake and decreasing IC50. Furthermore, several of the 

results contrary to our hypothesis (i.e., high IC50 in MMR-deficient cells, low IC50 in 

MMR-proficient cells) are clarified by this assay; the three MMR-deficient cell lines least 

sensitive to [Rh(phen)(chrysi)(PPO)]2+ (DLD-1, HT29, CW2) show the lowest cellular 

uptake and two of the most sensitive MMR-proficient cell lines (Ls123 and Colo205) 

exhibit the highest cellular uptakes. For these cell lines, high or low cellular uptake of 

[Rh(phen)(chrysi)(PPO)]2+ likely obscures the selectivity that would normally be 

observed on the basis of MMR status alone. While this correlation between uptake and 

cytotoxicity is intuitive, it is of note that there are few reported studies correlating cellular 
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uptake and cytotoxicity of a small molecule therapeutic across different cell lines.39 More 

commonly, reports examine the correlation of cellular uptake and cytotoxicity of different 

therapeutics in a single cell line or look only at a relatively small number of cell lines.40 

Therefore, our results comparing cytotoxicity and cellular uptake suggest that uptake may 

often play a non-negligible role in the cytotoxicity differences of a small molecule 

therapeutic between cell lines.  

3.4.4 The Influence of Genomic DNA Binding Sites on Cytotoxicity 

While a correlation between cytotoxicity and uptake is expected for any small 

molecule therapeutic, a correlation between cytotoxicity and DNA binding would only be 

expected if DNA were the relevant biological target of the therapeutic being studied. As 

discussed previously, inactivation of MMR proteins confers the cells with an increased 

level of uncorrected mismatches and indels that propagate into mutations upon 

replication.4 The number of these lesions in the genome can fluctuate between cell lines, 

for instance mutations (an indirect measure of mismatches and indels) occur at different 

rates in cell lines deficient in different MMR proteins.27 The number of these lesions 

present in the genomic DNA (gDNA) of a cell could influence differences in potency of 

[Rh(phen)(chrysi)(PPO)]2+, which targets these mismatches and indels, in different cell 

lines.8,10 Currently, there are limited direct protocols to determine the number of 

destabilized lesions in gDNA. Fluorescence-based probes have been widely used to 

visualize and quantify dynamic processes in live cells via interaction with various 

biological targets.41 As such, our group recently reported a bifunctional fluorescent probe, 

RhCy3, which exhibits a fluorescent light-up effect upon interaction with 

thermodynamically destabilized mismatches in gDNA (Figure 3.1).19 The fluorescence 
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of RhCy3 is an exceptional readout on the relative number of destabilized lesions in 

gDNA and an excellent predictor of the relative number of targetable DNA lesion for 

[Rh(phen)(chrysi)(PPO)]2+, which is structurally similar.  

Here we use this probe to better understand the cytotoxic effect of 

[Rh(phen)(chrysi)(PPO)]2+ on a panel of cancer cell lines, but these studies also 

demonstrate the powerful detection and diagnostics properties of RhCy3 in MMR-

deficient cancers. We performed fluorescence titrations with RhCy3 and increasing 

amounts of gDNA extracted from a test set of eight cell lines that span deficiencies in 

different MMR genes (Table 3.2).27 As can be seen in Figure 3.10, a correlation was 

observed between increasing RhCy3 fluorescence and decreasing IC50 of 

[Rh(phen)(chrysi)(PPO)]2+. By removing the potential outlier, DU145 (the only cell line 

tested mutated in two MMR proteins), the correlation improves dramatically and 

becomes significant, suggesting other factors may influence the cytotoxicity of 

[Rh(phen)(chrysi)(PPO)]2+ or fluorescence of RhCy3 in DU145. This strong correlation 

between the IC50 of [Rh(phen)(chrysi)(PPO)]2+ and the fluorescence of the reporter 

RhCy3 confirms that the effective biological target of rhodium metalloinsertors is, in fact, 

DNA lesions such as mismatches and indels, and that differences in the number of these 

lesions between different cell lines controls cytotoxicity of metalloinsertor therapeutics.  

Remarkably, there is a clear relationship between the identity of the 

malfunctioning MMR protein and RhCy3 fluorescence. The genomic DNA extracted 

from cell lines with a deficiency in the MLH1 protein (HCT116O, AN3-CA, DU-145, 

and HCT116) reach the highest fluorescence intensities, indicating there are an 

abundance of targetable DNA lesions present in these cell lines (Figure 3.9). Conversely, 
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the MMR-deficient cell lines DLD-1 and HEC-1-A have low fluorescence intensity that 

is comparable to that of the MMR-proficient cell lines, HCT116N and SW480. It may be 

possible to explain the low intensity observed with DLD-1 and HEC-1-A by considering 

their specific MMR-deficiencies: MSH6 and PMS2, respectively. Functioning MMR 

generally involves two heterodimers, MutSα (MSH2 + MSH6) and MutLα (MLH1 + 

PMS2), to work together to identify and correct mismatches and indels. However, other 

homologues to these heterodimers also exist: MutSβ (MSH2 + MSH3), MutLβ (MLH1 + 

MLH2), and MutLγ (MLH1 + MLH3).4 These different MutS and MutL homologues 

have different roles in the cell, with MutSα and MutLα correcting mismatches and some 

indels, and MutSβ, MutLβ, and MutLγ contributing to the correction of long and short 

indels, but not mismatches. A cell line deficient in MSH2 or MLH1 (which are part of all 

MutS and MutL homologues, respectively) cannot correct mismatches or indels, however 

a cell line deficient in MSH6 or PMS2 will only lack one homologue (MutSα or MutLα, 

respectively) and therefore may still be able to correct indels via functioning MutSβ, 

MutLβ, and MutLγ homologues. Considering this, it seems possible that the fluorescence 

of DLD-1 and HEC-1-A are relatively low because these cell lines have MMR machinery 

that can correct indels, meaning they will have fewer targetable lesions than MLH1-

deficient cells, which can correct neither mismatches nor indels. It is also of note that the 

MMR-proficient cell lines have significant fluorescence despite their minimal 

mismatches and indels. We attribute this baseline fluorescence (as well as deviations 

between MMR-deficient cell lines) to RhCy3 binding abasic sites or other 

thermodynamically destabilized lesions that are not associated with MMR pathways. 

Once again, these results show how RhCy3 can serve as a direct detection method of 
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destabilized lesions in MSI tumors and a potential diagnostic for MMR deficiencies in 

cancer.  

3.4.5 General Implications and Warning Signs for in vitro Studies 

The results presented here highlight some interesting considerations for in vitro 

studies performed in any laboratory. We observed a large range of IC50 values spanning 

nearly three orders of magnitude for a single small molecule therapeutic across 27 cell 

lines. This result alone has significant implications for in vitro experiments. Many studies 

examine a therapeutic of interest in a single cell line or one cell line from several types of 

cancer (colorectal, ovarian, etc.), but clearly a single cell line cannot represent cancer or 

any subtype of cancer as a whole.  

It is also common to compare cytotoxicity in unmatched cell lines that differ in 

the expression level of a protein of interest (regular expression, overexpression, and 

underexpression). Our results here suggest that using only a small number of unmatched 

cell lines may produce misleading results. For example, in this study we could consider 

MMR-proficient cells to have regular MMR expression and MMR-deficient to 

underexpress MMR proteins. If we randomly chose only two cell lines from our panel, 

one MMR-proficient and one MMR-deficient, we could observe every possible trend. 

Comparing RKO (MMR-deficient, IC50: 120 nM) and Colo320DM (MMR-proficient, 

IC50: 18.0 µM) would suggest [Rh(phen)(chrysi)(PPO)]2+ is dramatically more toxic in 

MMR-deficient cells, however comparing CW2 (MMR-deficient, IC50: 9.2 µM) and 

Colo205 (MMR-proficient, IC50: 63 nM) would suggest the opposite trend, with 

[Rh(phen)(chrysi)(PPO)]2+ being dramatically less toxic in MMR-deficient cells.  
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Overall, we believe the large range of IC50 values observed here serves as a point 

of caution for researchers performing in vitro studies in a limited number of cell lines; 

cell line selection can unintentionally but dramatically influence the trends a researcher 

observes in their studies, and therefore we encourage researchers to perform these studies 

with larger panels of cell lines and to supplement them using matched cell lines, which 

reduce the inter-cell line variation and allow one to observe the effect of a therapeutic on 

a specific target. 

3.5 Conclusion  

In summary, the experiments described here underscore the therapeutic and 

diagnostic potentials of mismatch-targeted small molecules. The potency of 

[Rh(phen)(chrysi)(PPO)]2+ across diverse cell lines spans nearly three orders of 

magnitude and shows selectivity towards MMR-deficient cancer cells. 

[Rh(phen)(chrysi)(PPO)]2+ is on average 5 times more potent than cisplatin, despite 

having a less abundant target to which it binds non-covalently. Overall, these results 

show [Rh(phen)(chrysi)(PPO)]2+ is a potent and promising therapeutic agent for 

colorectal cancers, and in vivo experiments are in progress. Significantly, using the 

fluorescent probe RhCy3, we find that the DNA mismatch represents an effective 

biological target for the metalloinsertors, and that targeting these lesions leads to cell 

death. As such, RhCy3 can serve as a direct detection method for destabilized lesions in 

genomic DNA (the DNA mismatches and indels) and for diagnosing MMR deficiencies 

in MSI tumors.  
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C h a p t e r  4  

EFFORTS TOWARDS THE STRUCTURAL DETERMINATION OF A 
RHODIUM METALLOINSERTOR BOUND TO A DNA MISMATCH∗ 

4.1 Introduction 

 Biochemical assays can provide excellent insight on the cellular target of a 

therapeutic agent, and cell culture experiments can predict potential clinical applicability. 

Despite the wealth of information that can be gained in these experiments, a structural 

understanding of a how a drug interacts with its cellular target is often key to fully 

understanding and developing new therapeutic agents.1 One of the most common targets 

for the development of new chemotherapeutic agents is DNA.2 Traditionally, FDA-

approved chemotherapeutic agents target DNA through three main binding modes: 

intercalation, groove binding, and covalent binding.3 While these binding modes certainly 

give rise to the cytotoxic properties that allow these drugs to kill cancer cells, they 

generally lack selectivity for cancer-specific targeting. As such, the development of new 

complexes that bind to disease-associated DNA structures is a current topic of interest for 

many chemical and biochemical research groups.  In the development of these unique, 

first-in-class therapeutic agents, structural determination through NMR or X-ray 

crystallography is essential in confirming the novel interactions these complexes have 

with their cellular targets. Furthermore, this structural determination can inform the 

development of these complexes towards more potent, more selective anticancer agents.  

																																																								
∗ Crystal data was collected using the SLAC beamline with the guidance of Dr. Jens 
Kaiser, and Dr. Kaiser solved and preliminarily refined the crystal structure of TC 
mismatched DNA presented herein.   
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 There are many examples in the literature of novel DNA binding modes being 

discovered through X-ray crystallography. For instance, the multi-nuclear platinum 

complex TriplatinNC shows micromolar activity against human ovarian cancer cell 

lines.4 Unlike its parent complex, cisplatin, TriplatinNC has no labile chloride ligands 

and therefore can only interact with DNA in a non-covalent manner.5 This non-covalent 

interaction was identified to be a novel binding mode, termed a “phosphate clamp,” in 

which the amines of TriplatinNC non-covalently interact with the oxygen atoms along the 

phosphate backbone of DNA.  

 Similarly, biochemical assays have been used by the Barton group to establish 

that a class of rhodium complexes (termed rhodium metalloinsertors) could selectively 

bind to DNA mismatches, an abundance of which are associated with several types of 

cancer.6,7 In 2007, this selectivity was confirmed to be through a novel DNA binding 

mode, metalloinsertion, which had been proposed by L.S. Lerman in 1961 but never 

confirmed.8,9 In this crystal structure, the rhodium metalloinsertor, [Rh(bpy)2(chrysi)]3+, 

binds to DNA from the minor groove at a mismatched site and ejects the mismatched 

from the DNA π-stack (Figure 4.1). In addition to highlighting the structural mode of 

mismatch selectivity, this crystal structure allowed the Barton group to rationalize the 

biological activity of some of the metalloinsertors they had synthesized. For instance, the 

bulky metalloinsertor, [Rh(DIP)2(chrysi)]3+, has extremely low binding affinity to 

mismatched DNA (104 M-1) compared to the less bulky [Rh(bpy)2(chrysi)]3+ (107 M-1).10 

This dramatic drop in binding ability can be clearly rationalized when modeling 

[Rh(DIP)2(chrysi)]3+ into the DNA lesion that was crystallographically observed with 

[Rh(bpy)2(chrysi)]3+ (Figure 4.1). In this model, steric clashing is seen between the DIP  
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ligand and the DNA backbone, hindering DNA binding and leading to weak binding 

interactions.  

Recently, a new generation of rhodium metalloinsertors bearing a rhodium-

oxygen bond has been synthesized.11,12 These complexes have comparable mismatch 

binding affinity to classic metalloinsertors, such as [Rh(bpy)2(chrysi)]3+, however they 

are up to 100-fold more toxic to cancer cells than these classic metalloinsertors. We 

hypothesize that this dramatic difference in potency is a result of a distinct DNA-binding 

interaction. While this binding interaction is likely still under the umbrella of 

metalloinsertion, we believe a significant distortion of the DNA helix at the 

metalloinsertor-bound mismatched site renders these new “Rh-O” metalloinsertors more 

detectable by intracellular proteins, resulting in cell death at lower concentrations of the 

therapeutic. This hypothesis is supported by several observations about the Rh-O 

metalloinsertors. First, unlike classic metalloinsertors (which only bind B-form DNA 

through their Δ enantiomer), both the Δ and Λ enantiomers of Rh-O metalloinsertors can 

bind to mismatched DNA. Additionally, altering the ancillary ligands to be sterically 

bulky does not dramatically influence mismatch binding affinity of Rh-O 

metalloinsertors. Indeed, when the Rh-O metalloinsertor [Rh(phen)(chrysi)(DPE)]2+ is 

modeled into the DNA lesion that was crystallographically observed with 

[Rh(bpy)2(chrysi)]3+
 we observe significant steric clashing with the DNA backbone, 

confirming there must be some difference in mismatch binding between these two 

complexes (Figure 4.1).11 

Our group is currently attempting to crystallize an Rh-O metalloinsertor, 

[Rh(phen)(chrysi)(PPO)]2+ (RhPPO) or [Rh(phen)(chrysi)(DPE)]2+ (RhDPE), in the 
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presence of a mismatched DNA (Figure 4.2). Such a structure would likely provide 

invaluable insight on the improved potency of the rhodium metalloinsertor. While such a 

structure has not yet been obtained, this chapter details the past and present efforts 

towards crystallizing an Rh-O metalloinsertor with mismatched DNA.  

4.2 Experimental Methods 

 4.2.1 Materials 

 The metalloinsertors [Rh(phen)(chrysi)(DPE)]2+ and [Rh(phen)(chrysi)(PPO)]2+ 

were synthesized following the literature.11,13 Oligonucleotides were purchased from IDT 

DNA with standard desalting. Crystallography kits and reagents were purchased from 

Hampton Research. Pellet Pestles (part #749520-0000) were purchased from DWK Life 

Sciences.  SepPak C18 columns were purchased from Waters Co.  

 4.2.2 Purification of DNA Sequences 

 DNA oligonucleotides were purchased in 1-10 µmol quantities and dissolved in 

up to 800 µL of MilliQ water. Samples were then purified by HPLC on a C18 reverse-

phase column using a gradient elution method starting at 2:98 acetonitrile:buffer and 

ramping up to 17:83 acetonitrile:buffer over 30 min, where the buffer is 50mM 

ammonium acetate in water. Analytical runs were performed before each purification 

using a small aliquot of the sample (< 0.1 µmol) to identify the elution time of the 

oligonucleotides. Following the analytical run, preparatory runs were performed such that 

~1 µmol of oligonucleotides was injected into the HPLC and the center of the eluted peak 

was collected in a 15mL falcon tube. Samples were placed on the lyophilizer to remove 

the eluent, then desalted using either a C18 SepPak or ethanol precipitation, as described 

below. 
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Figure 4.2 Structures of two Rh-O metalloinsertors. [Rh(phen)(chrysi)(DPE)]2+ 

(RhDPE, left) and [Rh(phen)(chrysi)(PPO)]2+ (RhPPO, right) are Rh-O metalloinsertors 

that appear to bind DNA mismatches through a binding mode that is distinct from classic 

metalloinsertors.  
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 SepPak Desalting: A 5g SepPak was used to desalt up to 10 µmol of purified 

DNA. The column was pre-washed with three 20 mL aliquots of HPLC grade acetonitrile 

followed by three 20 mL aliquots of MilliQ water. The lyophilized DNA sample was 

dissolved in 5 mL of 2 M NaCl (or KCl) and loaded onto the column. The sample was 

then rinsed qith 5 mL of 2M NaCl, followed by 200-300 mL MilliQ water. Finally, the 

DNA sample was eluted with three 15 mL aliquots of 1:1 acetonitrile:water. DNA 

samples were again lyophilized. Once dry, samples were dissolved in a minimal amount 

of MilliQ water (adjusted to pH 8) and a UV-Visible spectrum taken to quantify the DNA 

following Beer’s Law (A = εlc), where ε is the extinction coefficient provided by IDT. 

Once quantified, samples were diluted (with MilliQ) or concentrated (by drying a known 

volume of sample and redissolving in the appropriate volume of MilliQ) to the 

appropriate concentration for crystallographic purposes. 

 Ethanol Precipitation: Pure ethanol and a 70:30 ethanol:water mixture were pre-

cooled on dry ice in a 4 °C cold room. Lyophilized DNA samples (up to 2 µmol) were 

suspended in 100 µL MilliQ water, vortexed, and then centrifuge to ensure all DNA was 

dissolved and pooled at the bottom of the falcon tube. The DNA solution was then moved 

to a 1.5 mL eppendorf tube and 1 mL of cold ethanol was added to the sample and 

vortexed, the 50 µL of 3 M NaCl was added and samples were vortexed again. These 

additions resulted in some visible cloudiness of the sample. Samples were then cooled for 

at least 30 min at -20  °C. Samples were then centrifuged at 16,000 rcf for 30 min at 4 °C. 

The supernatant was removed from the DNA pellet, and the DNA pellet was 

rinsed/resuspended in 1mL of the 70% ethanol solution, then centrifuged again at 16,000 
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rcf for 5 min at 4 °C. The supernatant was again removed and the rinsing process 

repeated one more time. Once all liquid was decanted, the samples were completely dried 

on a speedvac for at least 20 min. Once dry, samples were dissolved in a minimal amount 

of MilliQ water (adjusted to pH 8) and a UV-Visible spectrum taken to quantify the DNA 

following Beer’s Law (A = εlc), where ε is the extinction coefficient provided by IDT. 

Once quantified, samples were diluted (with MilliQ) or concentrated (by drying a known 

volume of sample and redissolving in the appropriate volume of MilliQ) to the 

appropriate concentration for crystallographic purposes. 

4.2.3 Diastereomeric and Enantiomeric Separation of Metalloinsertors 

RhDPE and RhPPO were synthesized following the literature, however up to 50 

equivalents of DIEA (N,N-diisopropylethylamine) was added to the final reaction step 

(addition of DPE or PPO to [Rh(phen)(chrysi)(NH3)2]3+), allowing it to proceed more 

quickly and purely to the desired products.11,13 Each complex was initially purified over a 

10 g SepPak. The SepPak was first rinsed with 1L of methanol, followed by 500 mL of 

0.1% TFA (trifluoroacetic acid, aq). The metalloinsertor was dissolved in 0.1% TFA (aq) 

and loaded onto the SepPak and eluted with various mixtures of acetonitrile and 0.1% 

TFA (aq), starting with a 5% solution of acetonitrile. The acetonitrile concentration was 

increased in 2.5% or 5% increments (in 100 mL intervals) until red metalloinsertor bands 

began to elute. Once the majority of red metalloinsertor product was eluted and collected, 

the remaining yellow/brown complex was eluted with 50% acetonitrile. Starting materials 

eluted around 15% acetonitrile, followed by product at 15% (for RhDPE) or 15-20% (for 

RhPPO) acetonitrile, and lastly side products began to elute at 20% (for RhDPE) or 30% 

(for RhPPO) acetonitrile. 
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4.2.3.1 Specific Methods for RhPPO 

Following SepPak purification, RhPPO was purified on a C18 reverse-phase 

column using mixtures of acetonitrile and buffer (0.1% TFA, aqueous). RhPPO was 

purified using an isocratic method of 25:75 acetonitrile:buffer. This method allowed for 

the removal of undesired impurities, but did not allow for the separation of the two 

RhPPO diastereomers. 

A summary of the diastereomeric and enantiomeric separation of RhPPO can be 

seen in Figure 4.3. An Astec Cyclobond column, which utilizes chiral cyclodextrin 

molecules to separate racemic mixtures into their enantiomers, was previously used to 

separate one set of enantiomers of RhPPO (see chapter 2 and reference 12). However, 

due to poor resolution of the enantiomers and natural degradation of the column, this 

method is not practical for the purification of a large amount of metalloinsertor. Instead, 

the Astec Cyclobond column was used only to separate the diastereomers of RhPPO. An 

isocratic method of 50:50 acetonitrile: 0.1 M KPF6 (aq) was used to separate the two 

diastereomers (referred to as RhPPO-1 and RhPPO-2, based on elution order). 

 A ChiralPak IC column, which is a cellulose-based column, was used to purify 

each diastereomer of RhPPO into its two enantiomers. For the diastereomer that eluted 

first (RhPPO-1), an isocratic method utilizing 45% acetonitrile and 55% 0.1 M KPF6 (aq) 

was used as it provided good separation of the two enantiomers (RhPPO-1-1 and RhPPO-

1-2, based on elution order). For the diastereomer that eluted second (RhPPO-2), a 

method using 50% acetonitrile and 50% 0.1 M KPF6 (aq) was used for purification into 

two enantiomers (RhPPO-2-1 and RhPPO-2-2, based on elution order). Purity of each 

enantiomer was confirmed using the ChiralPak IC column. A 50 µM sample of each  
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Figure 4.3 Purification scheme of RhPPO. (Top) Diastereomers are separated on a Astec 

Cyclobon (CB) column and (middle top) enatiomers can be separated on a ChiralPak IC 

(IC) column. (middle bottom) Separated enantiomers have minimal impurities and show 

enantiomeric behaviors by circular dichroism experiments. Enantiomers were assigned 

based on comparison to reference 11. 
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enantiomer was made in MilliQ water and examined on a Model 430 circular dichroism 

spectrometer (AVIV). 

4.2.3.2 Specific Methods for RhDPE 

A summary of the diastereomeric and enantiomeric separation of RhPPO can be 

seen in Figure 4.4. RhDPE was further purified by HPLC using a gradient method. 

Several different isocratic and gradient methods were attempted to find a suitable method 

that could separate the diastereomers of RhDPE. The method used was 15:85 

acetonitrile:buffer to 25:75 over 5 min, holding at 25:75 for 5 min then ramp up to 50:50 

over the next 40 min. This method allowed for the removal of undesired impurities as 

well as the separation of the two diastereomers (RhDPE-1 and RhDPE-2, based on 

elution order). 

The Astec Cyclobond column was used to purify the RhDPE diastereomer that 

eluted second (RhDPE-2). A method utilizing 42.5% acetonitrile and 57.5% 0.1 M KPF6 

(aq) was used to separate the enantiomers (RhDPE-2-1 and RhDPE-2-2, based on elution 

order). The Astec Cyclobond column could not resolve the enantiomers of the first eluted 

diastereomer (RhDPE-1), therefore the ChiralPak IC column was used to separate these 

enantiomers using a method of 50% acetonitrile and 50% 0.1M KPF6 into enantiomers 

(RhDPE-1-1 and RhDPE-1-2, based on elution order). Purity of each enantiomer was 

confirmed using the ChiralPak IC column. A 50 µM sample of each enantiomer was 

made in MilliQ water and examined on a Model 430 circular dichroism spectrometer 

(AVIV). 
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Figure 4.4 Purification scheme of RhDPE. (Top) Diastereomers are separated on a C18 

column and (middle top) enatiomers can be separated on either an ChiralPak IC (IC) 

column or an Astec Cyclobond (CB) column. (middle bottom) Separated enantiomers 

have minimal impurities and show enantiomeric behaviors by circular dichroism 

experiments. Enantiomers were assigned based on comparison to reference 11. 
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4.2.4 Crystallographic Methods  

  4.2.4.1 General Crystal Tray Setup  

Crystal trays were set up using either a 24-well or 96-well plate format. For the 

24-well plate format, the Hampton Research Mini Nucleic Acid Screen, which includes 

24 unique buffers, was used (Table 4.1). In these experiments, the well of the 24-well 

plate was filled with 1 mL of a 35% MPD solution, which serves as the precipitant. Next, 

2 µL of a kit buffer and 2 µL of a metalloinsertor-DNA mixture were combined on the 

platforms of a 24-well sitting drop plate. The metalloinsertor-DNA mixture could be pre-

mixed and filtered or mixed in the well by combining 1 µL of a metalloinsertor mixture 

with 1 µL of a DNA mixture (with or without pipette mixing). Specific details will be 

given in the results and discussion section for each experiment. Plates were sealed with 

packaging tape and stored at room temperature in the dark. Wells were checked for 

crystal growth every week for one month, then once a month.  

For the 96-well plate format, the Hampton Research Natrix HT screen, which 

contains 96 buffer conditions, was used. The well of the 96-well plate was filled with 50 

µL of a kit buffer using an Art Robbins Gryphon Nano. The plate was then equilibrated 

to 4 °C and a TTP Mosquito was used to combine 200 nL of kit buffer (from the well) 

with 200 nL of a pre-mixed metalloinsertor-DNA solution on the platform of the 96-well 

sitting drop plate. Plates were sealed with packaging tape and stored at 4 °C in the dark. 

Well were checked for crystal growth every week for one month, then once a month.  

  4.2.4.2 Crystal Tray Setup Using Seeding Crystals  

 Crystal seeding experiments were employed once in attempts to grow single 

crystals from poorly-ordered parent crystals. Fresh seeding buffers were made to match  
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the well solution of the parent crystal; the same salts, buffers, and pH as the original kit 

buffers were used but the concentration of precipitant was increased to match the well 

concentration (35% MPD), as the drop should have equilibrated to 35% over time. Buffer 

matching should prevent the crystal from dissolving in the new buffer solution. The 

parent crystals were extracted from their wells using a cryoloop tool and placed into 10 

µL of the fresh seeding buffer on a microscope slide. If undesired material was 

transferred with the parent crystal, the parent crystal was separated from the undesired 

material and moved again to fresh seeding buffer. The crystal was then manually crushed 

with a high-gauge needle and transferred to a pellet pestle (microcentrifuge tube + 

grinder) using a pipette. The microcentrifuge tube was filled to a volume of 40-50 µL of 

seeding buffer, then the crystal was further crushed using by inserting the pestle into the 

tube and moving the pestle up and down and periodically vortexing. In a new plate, 1.5 

µL of a metalloinsertor-DNA stock was combined with 1 µL kit buffer. After a 3 day 

equilibration, 0.5 µL of the seed stock. Plates were sealed and stored as described above.  

  4.2.4.3 Crystal Harvesting 

 When viable crystals were identified, there were collected using the following 

general procedures. To collect a crystal from a well, a razor blade was used to remove the 

packaging tape covering the well of interest and a flap of fresh, easily replaceable 

packaging place was placed over the well. Crystals were scooped out of the well using a 

crystal loop affixed to a magnetic crystal wand. Loops of different sizes were selected to 

be slightly larger than the crystal being collected, but generally size 2 or 3 loops (0.05-0.2 

mm) were used to collect the crystals. Sometimes an acupuncture needle was used to 

clear unwanted crystals or substances away from the crystal of interest. Once collected, 
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crystals were immediately plunged into liquid nitrogen and stored in cryo-vials. In 

addition to being a crystallographic precipitant, MPD is also a cryo-protectant, therefore 

no additional cryoprotection was necessary. Cryo-vials were affixed to a rack and stored 

in liquid nitrogen until beamtime was available. When beamtime was available the cryo-

loops were transferred to a large cassette that can be screened using automated software 

at the SLAC beamline.  

4.3 Results and Discussion 

 4.3.1 Efforts Towards Crystallization of a Rh-O Metalloinsertor with 

Mismatched DNA 

As the crystallographic experiments described herein are ongoing, the attempts at 

crystallography and lessons learned from those attempts are detailed below in 

chronological order. Details on why certain methods were attempted, why certain 

procedure modifications were made, and the successes/failures that resulted will be 

described for each experimental setup.  

  4.3.1.1 Preliminary Crystallography Experiments 

 Initial crystallography experiments were performed solely with RhPPO-2-1 and 

RhPPO-2-2, as those enantiomers were the first RhPPO enantiomers to be purified (see 

chapter 2). Two self-complementary sequences containing two internal mismatches were 

used in these initial experiments, 5’-CGGAAATTACCG-3’ (AA, mismatch bolded and 

underlined) and 5’-CGGAAATTCCCG-3’ (AC, mismatch bolded and underlined). These 

oligonucleotides were selected as the Barton group has previously had success 

crystallizing the metalloinsertor [Rh(bpy)2(chrysi)]3+ and [Ru(bpy)2(dppz)]2+ with these 

sequences.8,14,15 It is of note that [Rh(bpy)2(chrysi)]3+ was crystallized with the AA 
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sequence in two buffer conditions that differ solely in the included monovalent cation 

salt, NaCl or KCl. The crystal obtained from the sodium-containing buffer contained two 

metalloinsertors bound through metalloinsertion at the mismatched sites. The crystal 

obtained from the potassium-containing buffer had these same two metalloinsertors 

bound; however an additional metalloinsertor bound through intercalation was observed 

at the centroid of the DNA duplex. Due to this stark difference in crystal form, both the 

sodium and potassium salts of DNA were used in these preliminary experiments.  

 Drops with final concentrations of 2 mM ssDNA (AA-K+, AA-Na+, AC-K+, and 

AC-Na+) and 2 mM of RhPPO-2-1 or RhPPO-2-2 were made. Higher concentrations of 

RhPPO stock solutions were attempted but were not possible due to solubility limitations. 

ssDNA and RhPPO stock solutions (8 mM) were pre-mixed in a 1:1 ratio. Variable 

amounts of precipitate formed upon mixing, and precipitate was removed through a 0.45 

µm spin filter. These mixtures were combined with each of the 24 Hampton Research 

Nucleic Acid Mini Screen buffers either with or without pipette mixing of the resultant 

drop. Most plates were kept at room temperature, however some plates were held at 4° C. 

After several months, a variety of morphologies became visible, including precipitate, 

microcrystals, phase separations, quasi-crystals, and films (Figure 4.5). Sometimes 

crystals were also present; however most frequently these crystals were colorless, 

indicating no metalloinsertor was present in the crystal. Several disordered, low-resoltion 

crystalline samples were collected and used for additional seeding experiments. No 

colored (indicating metalloinsertor presence) single crystals were obtained from these 

experiments. 

 In order to screen a wider range of buffer conditions, additional preliminary  
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Figure 4.5 Morphologies commonly observed in crystallography experiments. A variety 

of different crystalline substances formed in preliminary experiments. None of the 

crystals that formed were both colored (indicating presence of metalloinsertor) and well-

ordered. 

 

Precipitate Phase separationMicrocrystals

Quasi-crystals Film Crystals (orange or colorless)
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experiments were performed using the Natrix HT screen, which contains 96 distinct 

buffers. This kit has the additional benefit of requiring a smaller sample volume, 

therefore testing these additional conditions does not require additional material. Drops 

with a final concentration of 2 mM ssDNA (AA-K+, AA-Na+, AC-K+, or AC-Na+) and 2 

mM RhPPO-2-1 or RhPPO-2-2 were set up. These trays were set up and kept in a 4° C 

cold room. No crystals were observed in these experiments. Although the buffers were 

similar to those used in the Nucleic Acid Mini Screen, they differed in that the Nucleic 

Acid Mini Screen includes the polyamine spermine, which can help facilitate the 

crystallization of DNA sequences. Therefore additional experiments were carried out 

using the Natrix HT 96-well format, but with the addition of spermine (to a final 

concentration of 1 mM). Again, no single crystals were observed from these plates, 

though some crystalline material was produced. Buffer screens in which the pH and 

precipitant concentration were varied were performed around the buffer conditions that 

produced promising crystalline material under multiple different DNA-metalloinsertor 

conditions (see Table 4.2 for an example of these screens). Theses screenings were 

performed using a 24-well plate format instead of a 96-well format as the larger amount 

of material can allow for larger crystal growth.  

 Overall, these preliminary experiments did not produce any promising results or 

difractable crystals. There are several reasons this likely occurred. These experiments 

were carried out using the same methods that had previously been successful in 

crystallizing metalloinsertors, however RhPPO and [Rh(bpy)2(chrysi)]3+ are different 

compounds with different properties. Specifically, at concentrations of 2 mM (the final 

concentration of each crystallography experiment), RhPPO and mismatch DNA 
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Table 4.2 Example of a pH and precipitant screen around a 

promising buffer condition.* 

pH 5  
41 % MPD 

pH 5.5  
41 % MPD 

pH 6  
41 % MPD 

pH 6.5  
41 % MPD 

pH 7  
41 % MPD 

pH 5  
43 % MPD 

pH 5.5 
 43 % MPD 

pH 6  
43 % MPD 

pH 6.5  
43 % MPD 

pH 7  
43 % MPD 

pH 5  
45 % MPD 

pH 5.5  
45 % MPD 

pH 6  
45 % MPD 

pH 6.5 
 45 % MPD 

pH 7  
45 % MPD 

pH 5  
47 % MPD 

pH 5.5  
47 % MPD 

pH 6  
47 % MPD 

pH 6.5 
47 % MPD 

pH 7  
47 % MPD 

pH 5  
50 % MPD 

pH 5.5  
50 % MPD 

pH 6  
50 % MPD 

pH 6.5  
50 % MPD 

pH 7  
50 % MPD 

* Original buffer condition was F8 from the Natrix HT screen: 80 mM NaCl, 20 
mM BaCl2, 40 mM sodium cacodulate tryhydrate, pH 6.0, 45% MPD, 12 mM 
spermine tetrahydrochloride.  

 



160 

	

precipitate with each other to a sometimes significant extent. In the above-described 

experiments, precipitate was removed using a spin filter, as solid precipitate in each well 

would likely interfere with single crystal growth. This precipitate removal, however, 

significantly reduces RhPPO and DNA concentration and further makes those 

concentrations unknown and non-reproducible. As such, future methods were aimed at 

minimizing precipitation by using lower concentrations and altering the DNA sequences 

to see if precipitation has a length or sequence dependence. 

   4.3.1.2 Screening DNA Sequences 

 It was hypothesized that the preliminary crystallography attempts described in 

section 4.3.1.1 were futile due to significant precipitation of the DNA and metalloinsertor 

solutions upon mixing. As these new Rh-O metalloinsertors are significantly more potent, 

it seems possible that this precipitation may be reflective of the difference in how they 

bind to mismatched DNA—that is, perhaps a great enough distortion or significant 

helical unwinding occurs that results in aggregation and precipitation of the DNA helix. It 

was therefore hypothesized that this precipitation may be prevented by using (1) different 

DNA mismatches that interact with metalloinsertors to different extents based on their 

thermodynamic destabilization, (2) larger spaces between the two mismatched sites to 

allow more room for the metalloinsertor to unwind, bend, or otherwise interact with the 

DNA, and (3) to incorporate only a single DNA mismatch in the sequence to reduce the 

overall concentration of mismatches. Furthermore, exploring different DNA sequences is 

desirable, as DNA crystallography generally focuses on altering DNA sequences instead 

of altering buffer conditions when screening experimental setups.  

The Nucleic Acid Data Bank (NDB) was used to identify DNA sequences and 
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buffer conditions that seemed most likely to be successful in crystallography. The NDB 

was searched for structures that contained drug interactions and that were solved by x-ray 

crystallography (as opposed to NMR solution structures). This pool was further narrowed 

down to include only drug molecules that interacted non-covalently and through 

intercalation, which is a well-studied binging mode that is similar to metalloinsertion. 

The buffer conditions and concentrations were extracted from the source literature of 

each structure and compiled to identify common successful motifs in drug-DNA 

crystallography (see Table 4.3). From this list, the DNA sequences or motifs that 

occurred most frequently were identified and modified to contain one or two mismatched 

sites (Table 4.4). Precipitation experiments (combining DNA with RhPPO and no buffer) 

were performed stock solutions of 2-8 mM RhPPO and 4 mM ssDNA. No consistent 

precipitation was observed at 4 mM or lower concentrations of RhPPO, suggesting 

precipitation observed in the preliminary experiments was likely due to the high stock 

concentrations (8 mM) of RhPPO and ssDNA.  

With this knowledge, new 24-well crystal trays were set up using the RhDPE-2 

enantiomers (RhDPE-2-1, RhDPE-2-2) and the sequences listed in Table 4.4. Instead of 

using the 24 buffers included in the Nucleic Acid Mini Screen, only two buffer 

conditions were used as attempting all 30 DNA sequences with 24 different buffers 

would require an excessive amount of metalloinsertor. The buffer conditions used are 

shown are #15 and #17 in Table 4.1, which were previously crystallized with 

[Rh(bpy)2(chrysi)]3+. Concentrations of DNA and metalloinsertor were dramatically 

reduced in these experiments. For RhDPE experiments, final concentrations of 1 mM 

ssDNA and a 1:1 (for buffer #15) or 2:3 (for buffer #17) mismatch:RhDPE molar ratio  
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Table 4.3 DNA sequences that have been crystallized with intercalating drug 

molecules and their PDB/NDB identification code   

PDB/NDB ID Drug Molecule DNA Sequence
5JEU Delta-[Ru(phen)2(dppz)]Cl2 TCGGCGCCGA

4YMC [Ru(phen)2(dppz)]Cl2 CCGGTACCGG
NA2705 Variolin B CGTACG

NA0614, NA0626 Sanguinarine CGTACG
DD0103 proflavine CGATCG

DD0108, DD0109 Rh(bpy)2(chrysi)Cl3 CGGAAATTACCG
DD0088 Rh(bpy)2(chrysi)Cl3 CGGAAATTCCCG
DD0073 enchinomycin ACGTACGT

DD0064, DD0065 anthriquinone derivative CGTACG
DD0070 ellipticine CGATCG
DD0061 disaccharide anthracycline MAR20 CGATCG
DD0062 topoisomerase inhibitor CGTACG
DD0051 5Br-9amino-DACA CGTACG
DD0041 daunomycin CGATCG
DDF074 DACA CG(5-BrU)ACG
DD0054 disaccharide anthracycline MEN10755 CGATCG
DD0053 Actinomycin D ATGCTGCAT
DD0037 acridine-peptide CGCGAATTCGCG
DD0048 DACA CGTACG
DD0047 cryptoiepine CCTAGG
DD0039 Actinomycin D CGATCGATCG
DD0032 acridine-4-carboxamide CGTACG
DD0033 acridine-4-carboxamide CG(BrU)ACG

DD0028, DD0029 misacridine CGTA(BrC)G
DDF064 nogalamycin TGTAACA
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were used in each experiment. Similar setups were attempted with RhPPO, but significant 

precipitation was an issue even at reduced concentrations. Experiments with RhDPE 

produced a variety of promising crystal morphologies, including orange hexagons 

(Figure 4.6). These crystals were screened on the SLAC synchrotron beamline. Some 

diffraction was observed, although resolution was low. Diffraction patterns were 

observed out to 8Å, and fiber diffraction of the DNA helix was sometimes observed from 

3.3-3.5Å, reflecting the spacing between base pairs in the DNA helix (Figure 4.6).  

Under all conditions tested, the sequence 5’-CGGTAATTCCCG-3’ produced 

some form of crystalline solid, including in one case an orange hexagonal crystal. As 

such, additional variations of this sequence (different mismatches, different lengths, a 

hairpin, and sequences with sticky ends) were designed and used in additional 

experiments (Table 4.5). New 24-well crystal trays were set up using all eight 

enantiomers (RhDPE-1-1, RhDPE-1-2, RhDPE-2-1, RhDPE-2-2, RhPPO-1-1, RhPPO-1-

2, RhPPO-2-1, RhPPO-2-2) and the sequences listed in Table 4.5. Again, only two buffer 

conditions were used. Some crystalline products were produced from these screens but 

none resulted in single crystals. 

From these experiments, it seems clear that the use of a 12-base pair palindromic 

sequence containing two mismatches is preferable for crystallographic experiments. 

Almost none of the sequences containing a single mismatch produced crystalline 

products, and shorter and longer sequences were also minimally successful. Future efforts 

were therefore focused on only these 12-mer sequences, but with variations primarily in 

the mismatch identity.  
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 Figure 4.6 Example crystal morphologies and diffraction patterns from sequence 

variation experiments. (Left) Orange hexagonal crystals, cubic crystals, and amorphous 

crystalline solids were observed under various buffer conditions. (Middle) An example of 

a diffraction pattern from a hexagonal crystal at 0° and 90° rotations. Fiber diffraction 

from the DNA is observed as large black lines around 3.4 Å. (Right) Another example of 

a diffraction pattern from a hexagonal crystal at 0° and 90° rotations. Significant ice 

buildup is seen as concentric rings.  
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4.3.1.3 Screening Buffer Conditions 

 Due to the original success of 5’-CGGTAATTCCCG-3’ in kit buffers #15 and 

#17, a full buffer screen was performed using 5’-CGGTAATTCCCG-3’ and all eight 

metalloinsertor enantiomers (RhDPE-1-1, RhDPE-1-2, RhDPE-2-1, RhDPE-2-2, RhPPO-

1-1, RhPPO-1-2, RhPPO-2-1, RhPPO-2-2). Plates containing RhDPE were set up at a 

final concentration of 1 mM ssDNA and 1 mM RhDPE, and plates containing RhPPO 

were set up at final concentrations of 0.5 mM ssDNA and 0.5 mM RhPPO (due to 

RhPPO precipitating with DNA at lower concentrations than RhDPE). Orange rods, 

plates, and hexagonal crystals were grown from a variety of different metalloinsertor and 

buffer conditions, including many orange hexagons. These crystals were screened on the 

SLAC synchrotron beamline. In many cases diffraction was observed, however resolution 

was generally low, with diffraction out to 8Å and some fiber diffraction of the DNA helix 

(Figure 4.7). For the orange hexagonal crystals, however, excellent diffraction was 

observed and full data sets were collected on these crystals. Unfortunately, despite the 

orange hue of these crystals, the crystal structure contained only mismatched DNA and 

no metalloinsertor. The structure is described in more detail below in section 4.3.2. The 

orange hue, therefore, was hypothesized to either be metalloinsertor in solvent channels 

of the crystal or the inclusion of very few metalloinsertor-bound DNA molecules within 

the crystal. These results suggest that use of buffer conditions containing a large divalent 

ion such as barium should be used with caution. 

  4.3.1.4 Screening Different DNA:Metalloinsertor Ratios 

 It was hypothesized that the lack of DNA in the crystal described in section 

4.3.1.3 was due to low metalloinsertor loading into the DNA. As such, in future  
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Figure 4.7 Example crystal morphologies and diffraction patterns from a buffer 

screening experiment. (Left) Orange hexagonal crystals and rod-shaped crystals. 

(Middle) An example of a diffraction pattern from a hexagonal crystal at 0° and 90° 

rotations. Diffraction was high enough resolution to determine a structure, but the 

structure contained only DNA. (Right) Another example of a diffraction pattern from a 

rod-shaped crystal at 0° and 90° rotations. 
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experiments, higher concentrations of metalloinsertor were used. Again, a full buffer 

screen of 5’-CGGTAATTCCCG-3’ was performed using all eight metalloinsertor 

enantiomers (RhDPE-1-1, RhDPE-1-2, RhDPE-2-1, RhDPE-2-2, RhPPO-1-1, RhPPO-1-

2, RhPPO-2-1, RhPPO-2-2). All plates were set up to a final concentration of 0.25 mM 

ssDNA and 1 mM RhDPE or RhPPO. After several weeks, many rich orange hexagons 

and red rod-shaped crystals were observed. These crystals were screened on the SLAC 

synchrotron beamline. In many cases diffraction was observed. Resolution remained low, 

but the diffraction spots that did exist were markedly more abundant and less smeared 

than previous crystallography attempts, suggesting using higher levels of rhodium is an 

extremely promising strategy (Figure 4.8). 

  4.3.1.5 Recommendations for Future Crystallographic Experiments 

 There are several directions that new crystallographic experiments may explore. 

First, the simplest next step will be to return to the well-studied sequences we have 

previously crystallized (5’-CGGAAATTACCG-3’ and 5’-CGGAAATTCCCG-3’).8,14 

These sequences were used in early crystallography experiments, but experiments were 

hindered due to significant precipitation upon DNA-metalloinsertor mixing. For this 

reason, these sequences were abandoned and new sequences were explored, and during 

experiments with new sequences it was realized that precipitation could be avoided at 

low concentrations. Therefore, returning to the above sequences but setting up trays with 

lower DNA concentrations (and relatively high metalloinsertor concentrations, as 

described in section 4.3.1.4) may produce single crystals. Indeed, these trays have already 

been set up with all eight metalloinsertor enantiomers and using all buffers in the Nucleic 

Acid Mini Screen. Additionally, crystal seeding experiments and streak seeding  



170 

	

 

 

 

 

 

 

 
Figure 4.8 Example crystal morphologies and diffraction patterns from a rhodium 

enrichment experiment. (Left) Orange hexagonal crystals and rod-shaped crystals. 

(Middle) An example of a diffraction pattern from a hexagonal crystal at 0° and 90° 

rotations. (Right) Another example of a diffraction pattern from a rod-shaped crystal at 0° 

and 90° rotations.  
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experiments are currently underway. 

 Another potential approach could be to attempt crystallography with a racemic 

mixture of a metalloinsertor diastereomer. While this approach is not common in the 

literature, there is a recent example of a octahedral ruthenium complex being crystallized 

with DNA from a racemic mixture.16 If the enantiomers bind DNA differently from each 

other, having two different enantiomers bound to the DNA sequence (which contains two 

mismatches that are relative close together) may be more complementary and stable than 

having two of the same enantiomer bound to the DNA sequence, especially if one of the 

enantiomers significantly distorts the DNA.  

 A third approach would be to explore additional structural methods. One option 

would be to instead determine the structure of the metalloinsertor in solution, as the 

Barton group has done previously with the metalloinsertor [Rh(bpy)2(chrysi)]3+.17 This 

approach may be challenging, however, due to the tendency of Rh-O metalloinsertors to 

precipitate with DNA at high concentrations. Alternatively, a different structural method 

could be employed. Microcrystal electron diffraction (MicroED) is an emerging 

technique that could allow for the structural determination of a metalloinsertor bound to 

mismatched DNA. MicroED was developed by the Gonen lab at UCLA and has been 

used to determine high-resolution protein structures with only a small number of nano- or 

micro-crystals (i.e. nm to µm sized crystals).18 Recently, the group used MicroED to 

solve the structure of α-synuclein, a Parkinson’s disease related protein, at a staggering 

1.4Å resolution using crystals that were a mere 200 nm thick.19 Exploring these types of 

structural techniques may prove fruitful if traditional x-ray crystallography techniques do 

no begin to produce the desired results.  
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 4.3.2 Crystal Structure of a DNA Mismatch Stabilized by Ba2+ 

 A crystal structure of the palindromic sequence 5’-CGGTAATTCCCG-3’ was 

solved during the course of these experiments (Figure 4.9 and Table 4.6). The diffracted 

crystal was a well-formed hexagon that was light orange in color, likely due to inclusion 

of red metalloinsertor molecules in solvent channels of the crystal. The crystal has been 

preliminarily solved to 1.6 Å and, to our knowledge, is the first crystal structure of a free 

DNA-duplex containing a TC mismatch. Overall, the structure of the DNA is minimally 

perturbed by the inclusion of these mismatches, as can be seen by comparisons to similar 

DNA sequences that contain well-matched AT and GC base pairs at the corresponding 

sites of the helix (Figure 4.10).20,21 Overlaying the three DNA structures reveals good 

alignment on one end of the DNA duplex but deviations on the opposing end of the helix. 

At the base-pair level, there is a noticeable distortion of the DNA backbone at the TC 

mismatched site, wherein the backbones are pulled in towards the center of the helix to 

facilitate the TC base pairing interaction. This is primarily the result of a significant 

negative DNA stretch, determined using 3DNA software (Figure 4.10).22 Of note is that 

the mismatch is further mediated by a barium cation, which forms stabilizing bonds with 

the electronegative carbonyl groups of both the cytosine and thymine bases (Figure 4.9). 

A similar stabilizing interaction was observed in 2.0 Å crystal structure of a polymerase 

bound to a DNA sequence containing a terminal TC mismatch, in which the TC 

mismatch is stabilized by a water molecule.23 The crystal structure described herein 

suggests that this stabilizing effect observed in the polymerase structure is likely also 

present in naked DNA, either through the mismatch binding to water or to a biologically  
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Structure 1 
Space group P3121 

Cell dimensions 
a, b, c (Å) 66.5 66.5 38.2 
α, β, γ (deg) 90 90 120 
Resolution 33.27  - 1.61 (1.668  - 1.61) 

Rmerge 0.06649 (1.219) 
Rpim 0.01598 (0.2869) 
I/σI 19.62 (2.04) 

Completeness (%) 89.51 (60.86) 
Total reflections  240048 (24075) 

Unique reflections  12862 (786) 
Refinement 

Reflections used in refinement 11543 (779) 
Rwork 0.2660 (0.3927) 
Rfree 0.2909 (0.3492) 

No. of DNA atoms  488 
No. of Ba atoms  2 

No. of water atoms  35 
B-factor for DNA 43.26 
B-factor for Ba 39.44 

B-factor for water 44.49 
Rmsd for bond lengths (Å) 0.013 
Rmsd for bond angles (deg) 1.21 

Table 4.6  Data collection and refinement statistics for TC 

mismatched DNA. 
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present cation. It is also of note that the C-dT mismatch is generated at one of the highest 

rates, alongside T-dG and G-dT mismatches.24 Despite this, pyrimidine-pyrimidine 

mismatches are the most poorly identified and corrected by mismatches in bacterial 

systems.25,26 If the same is true for eukaryotic systems, the stabilization of these 

mismatches by cellular cations or water molecules could contribute to this poor 

recognition or correction.   

4.5 Conclusions 

 Over the course of this research, great strides have been made toward obtaining a 

single crystal of an Rh-O metalloinsertor with mismatched DNA. Originally, only poorly 

crystalline materials were observed due to high amounts of precipitation. Reducing 

concentration of these samples has allowed us to produce a variety of crystals with poor 

resolution. Altering the sequence of the crystallized DNA and increasing the ratio of 

metalloinsertor to mismatches in DNA have allowed us to move closer and closer to a 

crystal diffracting to high resolution. While there is still much to be done, it seems that a 

crystal structure of these new metalloinsertors with DNA is within reach! Such a crystal 

structure would undoubtedly aid our current understanding of the increased potency of 

these new Rh-O metalloinsertors and would allow us to rationally design new, better 

metalloinsertor complexes.  
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C h a p t e r  5  

CONCLUSIONS AND FUTURE OUTLOOKS 

 Mismatch repair is an essential DNA-processing pathway in healthy cells and 

tissues. Deficiencies in MMR proteins can lead to an abundance of DNA base pair 

mismatches and indels, which, if left uncorrected, will propagate into potentially disease-

causing mutations upon cellular proliferation. These MMR-deficiencies can be seen with 

many types of cancer, including colorectal cancer and other solid tumors. Unfortunately, 

these MMR-deficient tumors have been historically challenging to treat, as they are often 

resistant to traditional chemotherapeutic agents. Clearly, the development of new 

therapeutic strategies that can effectively target MMR-deficient cancers is needed; 

therefore our group has spent the last 20 years developing a family of MMR-selected 

chemotherapeutic agents called rhodium metalloinsertors.  

 Rhodium metalloinsertors can selectively bind to DNA base pair mismatches in 

vitro and selectively kill MMR-deficient cancer cells over their MMR-proficient 

counterparts. Recently, our group discovered that the inclusion of an oxygen-containing 

ligand that forms an Rh-O bond leads to a significant increase in potency and MMR-

selectivity of these “Rh-O” metalloinsertors. The work presented in this thesis has 

focused on further exploring the versatility of the Rh-O metalloinsertor framework, 

investigating the basis for increased potency and MMR-selectivity observed with these 

metalloinsertors, and assessing the biological activity of these complexes in diverse 

systems.  
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A family of Rh-O metalloinsertors differing in ligand bulk and lipophilicity was 

synthesized, characterized, and examined in human cancer cells. Nearly every Rh-O 

metalloinsertor proved to have robust potency and MMR-selectivity, regardless of its 

steric bulk or lipophilicity. We determined that MMR-selective behavior was retained in 

these complexes (and not in previous generations) due to low off-target accumulation in 

the mitochondria, which allows the mismatch-selective, on-target activity of these 

complexes to dominate the biological response. The answer to why these complexes are 

so potent remains unclear, though the results from studies on Rh-O metalloinsertors 

suggest a difference in DNA-binding could be the source. Crystallographic experiments 

have been employed and are still underway, and these studies will certainly give 

invaluable insight into the potency of these new complexes.  

Our most promising Rh-O metalloinsertor was further studied in a diverse panel 

of 27 colorectal cancer cell lines to determine its general ability to kill cancer cells and 

target MMR-deficiencies. Overall, the metalloinsertor was significantly more potent that 

the FDA-approved chemotherapeutic agent cisplatin across this panel of cell lines. 

Additionally, correlation was observed between the potency of the metalloinsertor and 

the number of genomic DNA lesions that can be targeted by metalloinsertors, a result 

which helps to confirm that DNA mismatches are the cellular target of the rhodium 

metalloinsertor.  

 The lessons learned from the experiments described in this thesis will hopefully 

pave the way for the future development of rhodium metalloinsertors. The Rh-O 

metalloinsertor framework has proven to be an extremely tunable scaffold for the 

development of metalloinsertors that retain both potency and selectivity in the face of 
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great structural variation. This versatility opens many doors for the development of 

MMR-based therapeutics and diagnostics, and already our group has used this knowledge 

to develop potent and selective metalloinsertor conjugates, something that was not 

possible with previous generations of metalloinsertors. Understanding the effect of 

biological variation on metalloinsertor activity allows us to anticipate potential challenges 

and successes of our metalloinsertor as we move it towards pre-clinical and clinical. 

Indeed, our group has recently begun moving metalloinsertors into in vivo models, and 

we eagerly await the undoubtedly exciting results that are to come.  

 

 

 

 


