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ABSTRACT

Well-developed varnish and pavement are usually characteristic of relatively older
geomorphic surfaces: the environment must be broad, flat, and stable for extended periods
of time for these features to reach advanced stages of development. However, varnish and
pavement formation rates are not understood well enough for those features alone to be used
as a reliable chronometer. In this research, we combine the known ages for a set of terraced
geomorphic surfaces along the Mission Creek strand of the southern San Andreas fault in the
Coachella Valley, southern California, to explore the use of thermal hyperspectral airborne

remote sensing imagery for identifying age-dependent characteristics of spectral emissivity
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features. In spectra from an airborne sensor, the band depth of an emissivity minimum at
9.16 um generally increases with age of geomorphic surface. The spectral position of this
feature is within the wavelength range for clay minerals (9.1-9.6 um), which suggests
increasing abundance of clay minerals on older surfaces. Desert varnish is known to contain
clay minerals, so it is possible that the increased clay band depth with age manifests from
increasing desert varnish development on older surfaces. We collected field data to test for
other effects that might contribute to the increased band depth with age. Our field results
show that desert varnish and desert pavement scores (higher numerical score assigned to a
greater degree of development), and vegetation spacing estimates all display some positive
correlation with surface age. Ground-based spectra from hand samples that we collected
display a spectral feature at 9.30 um, which also indicates clay content, but does not occur at
the exact same wavelength position as that in the airborne spectra. Most of the airborne and
ground-based spectra indicate the presence of clay mineral(s), along with quartz and
feldspars. Ground-based vegetation spectra are generally flat and featureless over the
wavelengths covered in remote sensing imagery. In summary, it appears that while a clay
mineral signal in the airborne spectra is plausible, the overall spectral contrast increases with
surface age due to the combination of varnish development, topographic smoothing
associated with pavement formation, and increase in vegetation spacing (net decrease in
vegetation). This suggests that the positive correlation between spectral contrast in airborne
remote sensing spectra and surface age can potentially be used to determine relative ages of

Quaternary geomorphic surfaces.

INTRODUCTION
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The southern San Andreas fault is a major tectonic plate boundary that is especially
hazardous due to its location near many major population centers in southern California.
Tectonism in this desert region influences the health and safety of millions of people, so the
numerous specific sections and strands of the southern San Andreas fault have been
rigorously studied to assess prehistoric and current seismic activity. To assess the risk, we
need to know about the slip rates of the faults. To estimate fault slip rates on the basis of
tectonic geomorphology, the ages of geomorphic surfaces must be known. Relative ages of
surfaces can be assigned using the degree of development of surficial coatings on gravel
clasts (desert varnish) and/or surficial smoothing (desert pavement), to characterize and
differentiate faulted geomorphic surfaces (alluvial fans or terraces). The degree with which
desert varnish and desert pavement has developed over time can indicate the relative or
absolute ages of distinct geomorphic units; this type of analysis has been applied to features
that have been cut and offset by California’s southern San Andreas fault (e.g., Keller et al.,
1982; Shifflett et al., 2002; van der Woerd et al., 2006; Behr et al., 2010). In this study, we
incorporate both developmental criteria to evaluate relative ages from the perspective of
remote sensing imaging spectroscopy.

Desert varnish is a potential chronometer for estimating the ages of geomorphic
surfaces, but to accurately employ the chronometer, we need to know how the lithologic
coating forms and develops. The formation and development of desert varnish (from herein,
sometimes referred to as just “varnish” for brevity) has long attracted interest from
geologists, biologists, and others. Varnish can also form in non-arid environments, and is

therefore sometimes more generically referred to as “rock varnish.” Ideas for the primary
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formation mechanism are usually either 1) inorganic chemical alteration of, and addition to,
lithologic surfaces, or 2) microbiologic activity (note that (1) and (2) are not mutually
exclusive). For both cases, primary formation will also depend on whether the constituent
material of the varnish was derived in situ or had been transported to the present site. A
combination of these factors likely vary in relative contribution based on the specific regional
and local environment. Regardless of the source of origin materials, petrographic
observations of varnish usually reveal a microstratigraphy (Perry and Adams, 1978; Reneau
et al., 1992), indicating it is an accretionary process, and encouraging attempts to calculate
some type of accretion/sedimentation/growth rate (Liu and Broecker, 2000).

In order to use varnish as a chronometer, empirical knowledge about its growth rates
is needed. Rates of growth, based on varnish thickness and the age of surfaces determined
radiometrically, have been calculated with very broad results. Calculated rates range from
<1 to 40 pm/ky (ky = one thousand years), with the caveat that those rates are certainly
minima due to an unknown time lag between deposition and inception of growth, and the
observation that older samples tend to exhibit slower growth rates (Liu and Broecker, 2000;
Spilde et al., 2013). The time lag required for initiating varnish growth has been observed in
a number of cases, with estimates of as little as 25 years (Engel and Sharp, 1954), up to about
100 years (Whitley and Dorn, 1987). In specific cases, faster growth rates can be attributed
to an environment conducive to accelerated growth (Krinsley et al., 2012), such as more
frequent and consistent moisture (Hunt, 1954; Thiagarajan and Lee, 2004). The high
variability in growth rates, and the fact that a maximum varnish thickness of ¢. 200 um is
usually observed (Liu and Broecker, 2000; Spilde et al., 2013), precludes the use of thickness

alone as a chronometer.
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The idea of using varnish as a chronometer has stimulated various ideas and methods
aimed at measuring the formation process. In a given region, a calibrated relationship to
geologic time can be established, and then potentially used for future work (e.g., Helms et
al., 2003). A rigorous and widely tested application of this method involves establishing a
calibrated, standard regional time scale for the Late Pleistocene to which varnish
microstratigraphy can be correlated (Liu and Broecker, 2013). This calibrated method has
yielded ages that agree with those from independent surface exposure dating methods used
on the same lithologic units (Marston, 2003; Phillips, 2003; Liu, 2003). Some other
methodologies for using varnish as a chronometer, namely cation ratios, and direct dating
using accelerator mass spectrometry, are not yet reliably developed (e.g., see reviews by
Beck et al., 1998; Watchman, 2000).

Desert varnish often includes a high relative abundance of clay minerals (Potter and
Rossman, 1977), so perhaps geomorphic surfaces with varnished clasts can be
spectroscopically distinguished by measuring relative clay content. Due to their
predominantly submicroscopic size, clay mineral grains are commonly detected and
identified via laboratory methods, including x-ray diffraction (XRD) and spectroscopy.
Remote sensing data and methods (i.e., imaging spectroscopy) are an extension of laboratory
spectroscopy, and with recent technological development, the limitations of low spectral and
spatial resolution have been overcome on many modern platforms.

For this study, we are focusing on distinguishing varnish that has accumulated on a
chemically dissimilar (mineralogic/petrologic) substrate material. We can take advantage of
previous work that used spectroscopy and remote sensing to determine the mineralogy and

petrology of substrate material that lies beneath coatings of desert varnish. Formative
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research in lithologic remote sensing has typically involved examining the way varnish
represents  “noise” that complicates and/or conceals the signal from its
mineralogic/petrologic substrate in laboratory and imaging spectroscopy (Kahle and Goetz,
1983; Gillespie et al., 1984; Kahle, 1987; Bartholomew et al., 1989; Rivard et al., 1993;
Christensen and Harrison, 1993). In this research, we are focusing on varnish as “signal,”
exploiting the fact that it is both opaque from manganese and iron oxide content, and contains
clay minerals not always present in a substrate material, and so can be detected and identified
via remote sensing methods.

Ultimately, we want to relate remote sensing of lithology and active tectonics in a
way that benefit society: the age-dependent development of geomorphic surfaces, and the
overprinting of continuous tectonic displacement present an opportunity to capture
measurements of both time and distance. Desert varnish and related desert pavement surfaces
can provide an idea of geologic age (or at least the passage of time into a current state), and
tectonics can provide an idea of physical displacement, which together provide the quantities
needed for a geologic fault slip rate. Varnish and pavement are often associated with
Quaternary unconsolidated lithologic units, and geologic fault slip rates from these relatively
young displaced features can have greater relevance for guiding risk and hazard assessment

on the current state of a tectonic system.

GEOLOGIC/TECTONIC SETTING

The southern San Andreas fault in the northern Coachella Valley offsets a number of

geomorphic surfaces with well-determined exposure ages (Blisniuk and Sharp, 2014). There
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is also an abundance of observations of both modern and ancient seismic activity. The
prehistoric, historic, and modern seismic activity have been analyzed in three main ways: 1)
paleoseismic trenching to establish earthquake recurrence intervals (and in rare cases,
calculate fault slip rates); 2) methods in tectonic geomorphology to establish geologic fault
slip rates; and 3) Global Positioning System (GPS) and interferometric synthetic aperture
radar (INSAR) data and modeling to establish present-day geodetic fault slip rates. All of
these types of data can be incorporated into modeling and analyses of seismic hazards along
the San Andreas fault (e.g., Jones et al., 2008; Porter et al., 2011; Davis and O’Rourke, 2011).
Of these types of seismic hazards analysis mentioned above, our research is most closely
related to the tectonic geomorphology approach. An overview of the other two approaches

may be found in the Appendix.

Tectonic Geomorphology

The Coachella Valley region contains numerous Late Pleistocene to Holocene
recognizable geomorphic features indicating a tectonically active landscape. The Indio Hills
(Keller et al., 1982), Mecca Hills, Edom Hill, and Durmid Hill (Burgmann, 1991) are all
archetypal examples of how the Earth’s surface responds to active strike-slip fault motion,
transpression, and various modes of tectonic buckling. Fluvial channels and alluvial fans are
cut and displaced, revealing both historic and prehistoric strike-slip fault motion. Those
geomorphic features have been used to estimate geologic slip rates for the southern San

Andreas fault, which vary widely, depending on the specific location and/or fault strand(s)
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considered. For this research, we chose to analyze the Mission Creek strand of the southern

San Andreas fault at Pushawalla Canyon (Figure 1).

Thousand Palms Oasis and Pushawalla Canyon areas in the Indio Hills

The remote sensing data used here includes thermal hyperspectral airborne imagery
that covers a set of alluvial/fluvial deposits near the Thousand Palms Oasis and Pushawalla
Canyon (Figure 1). These deposits are offset by the Mission Creek strand of the San Andreas
fault, and have been dated recently using the 1°Be cosmogenic exposure and uranium-series
methods (Blisniuk and Sharp, 2014). That study yielded a slip rate of 22-25 mmlyr,
somewhat faster than rates from the same fault in nearby areas (e.g., see Behr et al., 2010;
Fletcher et al., 2010). By combining our remote sensing data and techniques with their
geochronology, we have a prime opportunity to perform mineral spectroscopy on varnished
gravels in an area of known geomorphic surface exposure ages. This area is located within
the Coachella Valley Preserve in southern California. The Coachella Valley Preserve is a
protected, environmentally sensitive area. Thus, an important advantage of using

hyperspectral airborne imagery for this type of research is its minimal environmental impact.

CHARACTERIZING ALLUVIAL/FLUVIAL DEPOSITS WITH REMOTE

SENSING DATA AND METHODS

The Quaternary alluvial fans and fluvial terraces in this region formed in response to

a combination of climatic and tectonic processes. Deposition of the detrital material can
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occur under varying climatic influences, including glacial (Owen et al., 2014; Cyr et al.,
2016), interglacial (Bull, 1991; Reheis et al., 1996), or transitional glacial-interglacial
conditions (e.g., Bull, 1991; Friedrich et al., 2003; Pazzaglia, 2013). When deposition occurs
along active faults, the tectonic influence is coupled with the climatic, affecting depositional
patterns and the overall structure of the formation. Along the southern San Andreas fault,
tectonic activity has contributed to uplifting broad, detrital surface deposits into uplands,
forming a series of terraces. After deposition ceased and the geomorphic surfaces stabilized,
the influence of the arid desert conditions set in, and the surfaces evolved with age.

The prevailing methods that are currently used for dating Quaternary deposits include
analyses of cosmogenic radionuclides, luminescence, and Uranium-Thorium decay series (or
“U-series,” in this context, usually performed on carbonate formed in soil). All of those
methods are rigorous and costly, which has encouraged other researchers to seek new dating
methods that consider other physical and chemical aspects of geomorphic surface
development. Here, we explore the applicability of using remote sensing data and methods,
which have an economic advantage, and also, potential to characterize whole regions,
particularly if they are poorly accessible. Remote sensing data and methods can be more
accessible because they only require a computer and some software (albeit after significant
costs and efforts to launch a platform), instead of a full laboratory setup.

Features of geomorphic surfaces relevant to age that are best characterized via remote
sensing include mineralogy/petrology, and topographic surface roughness. Because older
fans include a higher fraction of relatively erosion-resistant clasts (Gillespie et al., 1984),
multispectral thermal infrared (8-12 um wavelengths) airborne images produce spectra that

are sensitive to compositional changes. Furthermore, as discussed below, the spectral
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emissivity minimum moves to a longer wavelength as desert varnish develops on the clasts
(Gillespie et al., 1984).

To quantify topographic surface roughness, digital elevation models (DEMs)
produced from radar or lidar data are typically employed. With these data, Frankel and Dolan
(2007; also see Frankel et al., 2007) found that topographic smoothing at the scale of 5-10 m
wavelengths, the typical wavelength of bar and swale structures on alluvial surfaces, appears
to occur over a time period of about <70 ky, after which roughness can increase if new
channels begin to incise the surface as the base level of streams becomes lower. They also
noted that a decrease in clast size due to weathering over time might also contribute to the
overall smoothing at shorter wavelengths. Data from ground-based lidar, which is sensitive
to variation in smaller clast sizes, has also been used to show that Quaternary geomorphic
surfaces become topographically smoother over time (Mushkin et al., 2014).

Mushkin et al. (2014) attributed clast size reduction on geomorphic surfaces
predominantly to salt weathering and shattering (e.g., Hunt and Mabey, 1966), in addition to
the effects of clast exfoliation, and dissolution of carbonate rocks. Their study area was in
the Jordan Rift Valley, which also includes the hypersaline Dead Sea. Salt weathering is also
a dominant component in alluvial fan surface development at a site in China, where it may
have hindered the advanced desert varnish and pavement development that can be
comparatively observed in southern California (Farr and Chadwick, 1996). Our study area in
the Coachella Valley does not consist primarily of carbonate rocks, and although there is
currently a hypersaline water body in the region (the Salton Sea, and also possibly the

prehistoric Lake Cahuilla; see the interpretations of Van de Kamp, 1973), salt weathering
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does not appear to have played a large role in clast size reduction in the Pushawalla Canyon
area.

Many previous studies have combined multiple remote sensing data types to look at
the combined effects of compositional varnish and topographic smoothing. Combined
approaches can take many forms, one of which used visible wavelength imagery for
lithologic character, and a backscatter metric from satellite-borne radar for surface roughness
(Farr and Chadwick, 1996). Jayko et al. (2005) used the panchromatic band (0.5-0.9 um
wavelengths) of the Landsat 7 satellite, and surface slope and curvature quantities derived
from DEMs. The combined methods of Jayko et al. (2005) worked well in arid regions with
minimal vegetation, but faltered in the following areas: 1) where the substrate lithology either
quickly develops varnish, or might already resemble the ubiquitous dark color of a substantial
varnish (for both cases, mafic volcanic rocks); 2) where varnish-resistant carbonate rocks
abound; and 3) where rapidly-eroding fissile shales abound, presumably because higher
erosion rates inhibit the stabilization necessary for a substantial coating. It is encouraging for
future work that the mapping of geomorphic surfaces, at least to first order, can be fully
automated using algorithms for classifying surfaces based on varying roughness and

lithologic content (Jayko et al., 2005).

DESERT VARNISH

The primary chemical constituents of desert varnish are typically manganese and iron

oxides (Hunt, 1954; Engel and Sharp, 1958; Perry and Adams, 1978), clay minerals (Hunt,

1954; Potter and Rossman, 1977; 1979), and silica (Perry et al., 2006; Aulinas et al., 2015).



267
Its characteristic black- and red-hued colors result from manganese and iron content (Perry
and Adams, 1978). The specific metal oxide minerals can include hematite and birnessite,
respectively (Potter and Rossman, 1979). Birnessite ((Na,Ca,K)Mn7014-3H20) is a
manganese oxide mineral that has a layered crystal structure, and is therefore similar to the
phyllosilicate clay minerals that can also be present in significant abundance. Clays can
compose up to 70% of the varnish (Potter and Rossman, 1977), but samples from some
regions do not include a significant clay fraction. Clay-poor samples have been found instead
to have main phases that include quartz polymorphs and amorphous silica (Aulinas et al.,
2015). Some studies interpreted the silica to have played an important role in overall varnish
formation (Perry et al., 2006). Varnishes that are predominantly silica (i.e., resemble more
of a silica glaze) have been termed “Si-rich rock varnish” (Aulinas et al., 2015).

The amount of moisture present in the atmosphere, and/or within the microscopic
aqueous realm on the lithologic surface, greatly affects the potential development of desert
varnish (Hunt, 1954; Thiagarajan and Lee, 2004). Wet zones along river banks are also
known to support significant varnish development (Krinsley et al., 2012; references therein).
Despite the dependence on regional environmental conditions and ecology, the specifics on
the chemical makeup of a given varnish strongly suggest that the varnish material itself does
not appear to be derived from its lithologic substrate (Engel and Sharp, 1958; Potter and
Rossman, 1977; 1979; Thiagarajan and Lee, 2004; Macholdt et al., 2015). Formation and
development thus appears to be independent of the substrate lithology. The metal oxides are
likely transported by water (Potter and Rossman, 1979), whereas the provenance of the clay
minerals is more likely based on aeolian transport and deposition (Potter and Rossman, 1977;

1979; Perry and Adams, 1978). Some workers support the idea that for long-term stability
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and ongoing accretion, the clays and metal oxides must both be present (Potter and Rossman,
1977), while others suggest that the manganese-rich component predates clay deposition
(Krinsely et al., 2012).

A microstratigraphy is commonly present in varnish (Perry and Adams, 1978;
Reneau et al., 1992; Liu and Broecker, 2000; Liu, 2003; Liu and Broecker, 2013), indicating
that formation is primarily depositional or accretionary (however, for a case where
microlaminations are absent, see Aulinas et al., 2015). The layered structure can also contain
botryoidal or stromatolitic structures (Perry and Adams, 1978), organic compounds (Perry et
al., 2006), and/or microbial-sized forms (Krinsely et al., 2012); all of those features suggest
that microbiologic activity may be integral to the formation process.

The continuous accretion of varnish into a microstratigraphic structure suggests that
increasing thickness might have a systematic dependence on time, but, as in the case of
stratigraphy, a number of studies indicate that this is not the case. Difficulties include: 1)
some substantial varnish coatings have apparently grown within a few decades to a century
(Engel and Sharp, 1958; Krinsley et al., 2012); 2) younger varnishes often appear to have
faster accretion rates (Liu and Broecker, 2000; Spilde et al., 2013); 3) those faster accretion
rates do not appear to be sustainable for a long time, since varnish thickness >200 pum is
rarely observed (Spilde et al., 2013); 4) varnished surfaces at higher elevations might not
have survived the effects of glacial erosion during the Late Pleistocene, which means that a
maximum age has been imposed for many locations (Quade, 2001); and 5) it might be nearly
impossible to account for all of the variation in regional and local environmental factors that

control the balance of accretion, erosion, and preservation at any given location.



269

Microtopography of the lithologic substrate has significant control over varnish
accretion rates (Reneau et al., 1992) and resulting thickness (Liu and Broecker, 2000). Both
accumulation rates and thickness increase in local topographic troughs and decrease on local
peaks (Reneau et al., 1992), analogous to macro- and regional-scale accumulation of
sediment in basins. The rapid early accretion model of Reneau et al. (1992), where
differential varnish accumulation causes an overall smoothing of the lithologic micro-
surface, could explain some instances where higher varnish accumulation rates are found on
younger geomorphic surfaces (Liu and Broecker, 2000; Krinsley et al., 2012; Spilde et al.,

2013).

THE RELATIONSHIP BETWEEN DESERT VARNISH AND DESERT

PAVEMENT

Based on reconnaissance images (field photographs, and visible wavelength satellite
imagery), the older geomorphic surfaces in our study area generally have a darker overall
color index, which is likely due to a greater degree of desert varnish and desert pavement
development. A relatively smooth and well compacted macroscopic desert/stone pavement
surface is often associated with moderate to heavy varnish development on coarse gravels.
The way that a desert pavement forms has implications for the validity of using varnish as a
chronometer. A classical hypothesis regarding desert pavement formation invokes the idea
that a geomorphic surface can experience overall deflation, where the coarser interlocking
clasts in a pavement have progressively become exposed, agglomerated, and compacted at

the surface of the Earth over a long period of time, all while finer sediment is winnowed via
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aeolian processes. In this case, a lithologic surface coating of varnish would not be a valid
chronometer, since not all of the clasts were exposed at the surface when it first formed. An
alternative hypothesis is the “born at the surface” model (Wells et al., 1985; 1995; McFadden
et al., 1987), where the coarse, interlocking surficial clasts have been exposed continuously
since formation of the geomorphic surface commenced. The “born at the surface” model
explains data for pavements with exposure ages similar to those of proximal bedrock source
material (Wells et al., 1995). Under this model, any lithologic surface coatings have
potentially accumulated continuously over the entire age span of the surface. In that case, the
overall varnish development could be a chronometer that records the entire life span of the
surface.

Regardless of the pavement formation model, other processes must also be
considered. Bioturbation by plants and animals can disrupt the protracted development of
substantial desert varnish coatings and associated pavement surfaces. It is also possible that
the varnish can undergo diagenesis, including dissolution, and this might always be a state
of disequilibrium (Garvie et al., 2008), analogous to erosive forces acting during aggradation
in sedimentary basins. While these complications might hinder attempts to see varnish
accretion as a chronometer on the microscopic scale, the remote sensing data and methods
that we employ here take into account a much broader sample of the overall geomorphic
surface. Desert varnish accretion, coupled with desert pavement development, might result
in specific characteristics of the geomorphic surface that can be observed and quantified via

the synoptic view that airborne hyperspectral imagery provides.

SPECTROSCOPY OF CLAYS AND OTHER RELEVANT MINERALS
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The ability to identify submicroscopic clay minerals via spectroscopy is intrinsic to
this research. Electromagnetic energy from the Sun interacts with the crystal structure of
minerals to produce diagnostic spectral features seen in infrared reflectance and emission
spectroscopy. Furthermore, clays are often present in significant abundance on planetary
surfaces, yielding strong signals that can be rigorously quantified and interpreted (e.g.,
Michalski et al., 2006; Ehlmann et al., 2009).

The clay minerals montmorillonite and illite were identified in significant abundance
within desert varnish from southern California, using laboratory infrared absorbance spectra
(Potter and Rossman, 1977). Montmorillonite is part of the di-octahedral smectite group,
which has the general chemical formula: (*2Ca,Na)o.7(Al,Mg,Fe)4[(Si,Al)sO20](OH)s-nH20
(Deer et al., 1992). The montmorillonite in desert varnish from southern California was c.
50% of a mixed-layer clay component that also included illite (Potter and Rossman, 1979a).
Ilite has spectral features nearly identical to those of montmorillonite in thermal infrared
emissivity spectra (Figure 1a in Michalski et al., 2006), so in this research we are focusing
primarily on montmorillonite’s spectral features to guide our interpretations of clay mineral
content in desert varnish.

Clays and all other silicate minerals display the most prominent spectral feature, the
Reststrahlen band, which appears in the thermal wavelength regime (A = 8-15 pum). The
Reststrahlen band occurs as a minimum in emissivity spectra, and is due to Si-O asymmetric
stretching vibrations in the crystal lattice (Thomson and Salisbury, 1993). The exact spectral
position of the Reststrahlen band is dependent on the degree of silica tetrahedra

polymerization in a crystal lattice (Launer, 1952). For the nesosilicate minerals (and the rocks
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they form) that have a lower degree of Si-O polymerization (e.g., olivine, garnet, dunite,
basalt), the Reststrahlen band generally occurs at longer wavelengths. In contrast, silicates
(and rocks) with higher polymerization (e.g., quartz, feldspars, granite, rhyolite) have a
Reststrahlen band at shorter wavelengths (see Figure 2 in Hook et al., 2005). The
phyllosilicate clay minerals in the smectite group (and kaolinite) have intermediate silica
polymerization. These clays have a major spectral feature at a position somewhere in the
range 9.1-9.6 um (Keller and Pickett, 1950; Hunt et al., 1950; Launer, 1952; Farmer, 1974;
Bishop et al., 2002a; Frost et al., 2002; Michalski et a., 2006; Bishop et al., 2008). The 9.1-
9.6 um feature is due to Si-O stretching (Bishop et al., 2002a; Frost et al., 2002; Michalski
et a., 2006), and therefore represents the Reststrahlen band position for these minerals.

Highly polymerized tectosilicate spectral features are likely to be observed in remote
sensing spectra, and they may overlap with features from clay minerals. In general, spectral
data must be evaluated on the basis of considering mixtures of minerals that might possibly
have spectral features at similar, overlapping, or identical wavelengths. Some of the common
tectosilicate minerals were significantly represented in the desert varnish substrate lithology
(detrital clasts) from our study area. Figure 2 illustrates that both quartz and montmorillonite
clay have a spectral feature near 8.8 um (also see Figure 5 in Michalski et al., 2006; Bishop
et al., 2008). For quartz, this is the primary feature, but for clays, this is a minor, secondary
feature. Quartz also has a diagnostic spectral feature, a very distinct doublet (or two
Reststrahlen bands, as described by Thomson and Salisbury, 1993) with emissivity minima
at 8.4-8.6 um and 8.8-9.0 um (Figure 2 in this study; Figure 1 in Conel, 1969; Figure 4 in

Christensen et al., 2000; Figure 5 in Michalski et al., 2006). Potassium feldspar has prominent
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spectral features at c. 8.7, 9.2, 9.5, and 9.9 um (Figure 2 in this study; Figure 1b in Thomson
and Salisbury, 1993; Figure 5 in Michalski et al., 2006).

The minor spectral features at longer wavelengths are less important to this research.
Smectite clays have minor features from 10-13 pum (Keller and Pickett, 1950; Hunt et al.,
1950; Launer, 1952), due to aluminum/magnesium/iron hydroxide bending vibrations
(Farmer, 1974; Sposito et al., 1983; Bishop et al., 1994; Bishop et al., 2002a; 2002b; Frost et
al., 2002; Michalski et al., 2006; Bishop et al., 2008). Other clays (kaolinite and illite) have
minor spectral features from 12-13 um (Keller and Pickett, 1950), as does quartz (Figure 2
in this study; Keller and Pickett, 1949; Hunt et al., 1950; Launer, 1952; Lippincott et al.,
1958; Lyon, 1965; Michalski et al., 2006), and feldspars (Thomson and Salisbury, 1993).
Tectosilicate spectral features from 12-13.5 um are due to a symmetric stretching mode in
the Si-O molecules, and various Si-O-Al combinations for feldspars (Thomson and
Salisbury, 1993). We did not consider minor features from clays at longer wavelengths,
partly because some of the other studies were based on transmission spectra, which can
sometimes be more revealing than emission spectra (e.g., Michalski et al., 2006).

Furthermore, even though the manganese and iron oxides (birnessite and hematite,
respectively) are significant components in desert varnish, we also gave these metal oxides
little consideration, because in the wavelengths that our data covered (A = 7.6-13.2 um) their
infrared absorbance spectra are relatively flat (Figures 3 and 6 in Potter and Rossman, 1979a;
Figure 14 in Potter and Rossman, 1979b), and lack any fundamentally diagnostic spectral

features.

SPECTRAL MIXTURE MODELS
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The combination and mixing of spectral features shows how progressively heavier
coats of desert varnish will alter the spectrum of a substrate lithology, including changes in
band depth and positions of minima. When a lithologic mixture includes a greater fraction of
a certain mineral, the wavelength positions where distinct features occur for that mineral will
usually display a greater depth in spectra. When a quartz-rich substrate has a coating of
varnish, the minimum in emissivity spectra shifts to a longer wavelength (Gillespie et al.,
1984), due to the clay mineral’s lower degree of silica polymerization and resultant influence
on the Reststrahlen band position. In laboratory and field spectra, spectral features for quartz
are progressively modified and obscured by an increasing varnish coating. If the varnish is
present in sufficient quantity, its own spectral features, which bear a striking resemblance to
those of clay minerals, will completely mask those of the substrate (Figure 13 in Kahle, 1987;
Figure 9 in Bartholomew et al., 1989; Rivard et al., 1993).

The results mentioned above from previous research on spectroscopy of desert
varnish coatings can be recreated by modeling the spectral effect of mixing clay with
tectosilicate minerals. We created linear spectral mixture models using laboratory thermal
emission spectra (Christensen et al., 2000), to exemplify the results from previous research
(Figure 2). These models also helped guide our own hypotheses on how desert varnish might
alter remote sensing spectra from our study area. Linear mixture models of laboratory spectra
are accurate in the wavelength range that includes Reststrahlen band positions if surface
scattering is prevalent, a condition that is met if the particle sizes of the single mineral
components are much larger than the wavelengths in measured spectra (Thomson and

Salisbury, 1993). To represent a typical varnish substrate lithology (detrital clasts) from our
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study area, we mixed spectra from three common tectosilicates in roughly equal relative
abundances: 33% quartz (125-2000 um), 34% andesine plagioclase feldspar (710-1000 pum),
and 33% microcline potassium feldspar (710-1000 um). Spectral features from each of the
three tectosilicates, the deepest of which are in the range 8.5-9.2 um, are represented in this
synthetic “granite” spectrum (Figure 2A). To represent the clay minerals found in desert
varnish, we used a spectrum from montmorillonite, which was taken from a pressed pellet
(Cooper and Mustard, 1999, noted that clay crystal aggregates behave spectrally like larger
particles). As more clay is added to the “granite” substrate, the spectral features of the clay
alter and ultimately conceal the granite’s spectral features. The clay’s major spectral feature
at 9.36 um begins to dominate the spectrum at adding as little as 33% to the mixture, and
deepens substantially as more is added, representing a heavy coating of desert varnish (Figure
2B).

Based on the results from previous research and from our own spectral mixture
modeling, we expect to see in our data a spectral feature in the range 9.1-9.6 pum, due to clay
minerals in desert varnish. Different minerals and materials can have spectral features at
similar spectral positions (Figure 13 in Launer, 1952), creating some ambiguity when
attempting to interpret remote sensing observations. We need to take into account the
chemical aspects of other minerals that are known to be present, as well as variation in the
physical aspects of lithology (e.g., clast size and topographic surface roughness), and other
natural features (e.g., vegetation), that can also contribute to the spectral emission signal.
Even if the signal is present and real, we consider various ways for why it changes on the

geomorphic surfaces of varying ages and characteristics.
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METHODS

Some of the text in the following subsections is copied verbatim from Chapter 2 of
this thesis (on remote sensing of the Lavic Lake fault). The wording is identical, or almost
identical, because the sensor calibration procedure and the image data processing sequence

were the same for the two study areas.

Thermal Hyperspectral Airborne Imagery Acquisition

We collected thermal hyperspectral airborne imagery on 24 September 2015 (at c.
10:45 am to 10:55 am, Pacific daylight savings time) using Mako, a “whiskbroom”-type
sensor developed and operated by The Aerospace Corporation. The Mako sensor measures
surface radiance in the thermal regime at 128 bands (Hall et al., 2011). For the data used in
this study, the wavelength range was 7.6-13.2 um, with one-meter ground sampling distance
(or image pixel resolution), from a flight at 6000 feet above ground level (c. 6800 feet
altitude). For the terminology used herein regarding the hyperspectral image data from the
Mako whiskbroom sensor, each single “whisk” (or linear track) is a single data cube, so the
words “whisk” and “data cube” are used interchangeably. When multiple data cubes (or
whisks) are concatenated into a larger image, the set of combined data cubes can be called a
“super cube.” The full hyperspectral imagery data set presented here consisted of two super
cubes (or image swaths) with parallel, adjacent flight lines that were flown in opposing
azimuthal directions. The two neighboring super cubes were combined for greater spatial

coverage in a single scene. Although a set of combined super cubes can still be called a super
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cube, when the two super cubes used here are combined into a single image, we call this the
“complete image scene.”

The complete image scene covered portions of both the Mission Creek and Banning
strands of the southern San Andreas fault. The complete image scene covers a rectangular
area, ¢. 6.1 km along the flight path (roughly parallel to and centered on the Mission Creek
strand), and c. 4.7 km wide. The complete image scene consists of 114 whisks total, with 57
whisks in each of the two parallel, adjacent flight swaths. The spatial extent of a single whisk
relative to the complete image scene can be seen in Figure 3: in the saw tooth pattern along
the sides of the image swath (sides that are parallel to the fault traces), the tip of each tooth
is the boundary between two whisks. Two adjacent whisks generally have a small amount of
overlap, and for this data, the two parallel, adjacent swaths also have a small amount of

overlap.

Mako Sensor Calibration

The Mako airborne hyperspectral infrared sensor underwent radiometric and
wavelength calibration. For radiometric calibration, two onboard blackbody sources were
observed immediately before and after the scene was acquired. These were stabilized at
different temperatures that spanned the expected radiance values of the scene. A linear
relation between the known blackbody radiance input and the digital counts output was
assumed so that the sensor response could be modeled with multiplicative gain and additive
offset terms. The gain and offset terms for the pre- and post-collection calibrations were then

time-interpolated to match the actual collection time of the data.
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The wavelength calibration was done by observing blackbody sources covered by
National Institute of Standards and Technology (NIST) traceable transparent polymer films
(with calibrated absorption features), and performing a least-squares fit across the full extent
of the focal plane array. For more detailed descriptions of the calibration processes, see Hall

et al. (2011) and Buckland et al. (2017).

Hyperspectral Airborne Imagery Data Processing

All of the steps in the following image processing sequence, unless otherwise
specified, were completed using the Environment for Visualizing Images Software, version
4.8 (ENVI, Exelis Visual Information Solutions, Boulder, Colorado). We began with data
cubes of airborne thermal hyperspectral imagery that had undergone radiometric and
wavelength calibration, bad pixel replacement, and spectral smile removal. We first
concatenated the 114 data cubes (whisks) that made up the complete image scene into a
single “supercube.” After that, we could carry out the subsequent processing steps in bulk.

For the hyperspectral image data presented here, we had to remove the first ten bands
that covered wavelengths from 7.56-7.96 um because they were dominated by noise. We
proceeded to use bands 11-128 (118 total), with wavelengths from 8.01-13.15 um. We
performed an in-scene atmospheric compensation (ISAC algorithm from Young et al., 2002),
setting the regression pixels to maximum hit, the fitting technique to normalized regression,
and using for the noise equivalent spectral radiance (NESR), the median value of the super
cube. Then, we used a minimum noise fraction (MNF) transformation (Green et al., 1988;

note that it is called a “maximum noise fraction” in that paper; also, see Lee et al., 1990) to
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identify noise or data artifacts in the imagery. A gradation perpendicular to the flight
direction (across track) was present near the edges of each individual data cube, so we
discarded this spurious spectral signal in an MNF inverse transformation.

Next, we converted the data from at-sensor radiance to emissivity with the emissivity
normalization method (Kealy and Hook, 1993). With the emissivity image, we could extract
spectra of the geomorphic surfaces for analyses, since we were characterizing spectra in
relation to known surface ages (Table 1).

Before extracting the emissivity spectra, we needed to mask younger, ephemerally
active channels that cut into the older surfaces. To achieve this, we used a digital elevation
model (DEM) with 1.5 m spatial resolution (created by Ryan Gold) to first calculate from
the DEM a slope map, and then use the slope map to mask areas with high slopes (which
represent relatively steep walls of the younger channels). The parameters for creating the
slope mask were topographic kernel size of 5 to create the slope map (with slope in degrees),
and we then masked pixels with a slope value greater than 3 degrees. The slope mask was
then intersected with the digitized polygons that represented the mapped geomorphic
surfaces with known ages (Figure 4).

To produce a single representative spectrum for each distinct geomorphic surface,
we averaged (arithmetic mean) a random sampling for 1% of the total number of pixels
within each surface’s digitized boundaries. We performed the 1% random spectral sampling
a total of five times to capture statistical variability in the spectral data. We also removed the
continuum from all of the representative emissivity spectra, so that they could be compared
against one another with a normsalized baseline (i.e., with respect to the band depth/strength

at wavelength positions for spectral features of interest, see Clark and Roush, 1984). From



280
herein, we will refer to any hyperspectral airborne imagery emissivity spectra as “airborne
remote sensing spectra.” The airborne remote sensing spectra were plotted after being
smoothed with a moving average over a three band interval (Figure 5).

We hypothesized that the older surfaces contain a greater fraction of clay minerals
(in varnish), and will therefore display a greater band depth somewhere in the wavelength
range where the Reststrahlen bands are predicted to occur for clay minerals, which is 9.1-9.6
um (Bishop et al., 2002a; Frost et al., 2002; Michalski et a., 2006). We chose to focus on the
wavelength position at 9.16 um, because in our airborne remote sensing data, the greatest
number of spectra had an emissivity minimum at 9.16 um. Figure 6 is a plot of airborne
spectra band depth at 9.16 um versus surface age. Whether or not this spectral feature at 9.16
um corresponds to the fraction of clay minerals present or not will be discussed later, but we
analyzed the order of increasing/decreasing relative band depth based on this wavelength
position.

If we assume the above hypothesis, then older surfaces will have increased band
depth at 9.16 pum. In the following Results section, we will use the phrases “in position” and
“out of position” to describe whether the band depth at 9.16 um for each spectrum is in
sequence with the others with respect to the sequence of known surface ages (e.g., a spectrum
for the oldest geomorphic surface would be “in position” if it displayed the greatest band
depth at 9.16 um, a spectrum for the second oldest surface would be “in position” if it
displayed the second greatest band depth at 9.16 um, etc.). Interpretations of those results

will be discussed in a later section.

Ground Truth Field Work
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We also needed field measurements to compare with our airborne remote sensing
spectra interpretations. We did field work in the study area from March 2017 through May
2017 to collect ground truth information. We arbitrarily chose from two to four sites located
on each geomorphic surface with known age to collect field data. At each site, a square plastic
frame, one meter on edge, was placed on the ground to collect data within a confined area
that represented the hyperspectral airborne imagery pixel size. First, we took two types of
field photographs at each sample site: 1) an overhead (bird’s eye) view of the sample square
meter (or sample area field photograph); and 2) an overview perspective of the geomorphic
surface (or site overview field photograph). To describe the lithologic characteristics of each
sample square meter, we collected petrologic data, including primary mineralogy and
textures of detrital surface clasts that make up the alluvial fan deposits. We used a
combination of field observations and the sample square meter photographs to estimate the
dominant (>50% relative abundance) clast size ranges, for sizes down to 1 mm mean
diameter (when possible), using percentage diagrams for estimating composition by volume
(see Appendix 3 in Compton, 1985). We also collected up to ten lithologic sample chips from
most of the field sites.

To assess the degree of desert varnish, and desert pavement development, we
established a numerical scale to give each a score, from 1-4, for each sample site (the scores
are not single values, but ranges). In the numerical scale, a higher number is a greater degree
of development, as follows: 1 = absent/rare, 2 = light/weak, 3 = moderate, and 4 =
heavy/strong. Varnish scoring was based mainly on darkening color, and pavement scoring

was based mainly on smoothness and compaction (compaction assessed by placing the ball
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of a booted foot on the surface and twisting to see how easily clasts broke free from their
interlocking arrangement). We acknowledge that these numerical scores are subjective, but
our experience in the field allowed us to develop a sense of varnish and pavement
development in a relative sense to other sites visited and analyzed.

To quantify the variable presence of vegetation between the surfaces, we estimated
the average spacing between desert scrub bushes or other plants, as a proxy for vegetation
abundance/density. We also collected several vegetation leaves and branches from a few of

the sites.

Rock Area Fraction: Analysis Using Ground-based Field Photographs

We also assessed whether clast size variation existed between surfaces with another
independent method. Larger clasts are less susceptible to induced motion, and therefore are
more stable and conducive to extended periods of varnish development. Along these lines,
we were interested in deriving a quantitative measurement for the fraction of clasts that were
above some size threshold. We defined this quantity as the “rock area fraction.” Since the
terms “rock, sediment, and grains” are undefined with respect to size, we established a
definition to quantify our data. To decide which clasts qualify as “rocks,” we chose a
threshold size of 2.5 cm mean diameter. The edge of the plastic frame that was used to define
each sampling area had a thickness of 2.5 cm, so this served as a consistent reference scale
in all of the field photographs. With a value defined for size cutoff, we could determine the
areal percentage of each sample square meter that was occupied by the larger clasts that were

more likely to have a greater degree of varnish development. The remaining lithologic
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detrital material, with sizes below 2.5 cm, represented clasts that were generally not large
enough (i.e., not kinematically stable) for protracted varnish development.

To complete this analysis, we used the ground-based field photographs of the sample
square meter sites. On a printout of each photograph, clasts that were within the sample
square meter, and above the size threshold of 2.5 cm, were outlined by hand with vellum
tracing paper on a light table (these larger outlined clasts would be included in the “rock”
fraction). The tracing paper sheets were scanned to digital image files, and the digital image
files were then processed with ImageJ software (Schneider et al., 2012). With ImageJ, we
established the scale size in each image, automatically filled all of the clast outlines that were
traced, then calculated the fraction of the sample square meter area occupied by the filled
clast outlines (i.e., the integrated area occupied by all of the clasts with mean diameter greater
than c. 2.5 cm). The remaining fraction of unfilled area was then smaller clast sizes that
would not be large and stable enough for protracted varnish development. This analysis
allowed us to quantify the fractional area (in percent) of a single airborne remote sensing
pixel that was available for varnish development. Note that the total rock area fractions that
we calculated are minimum values, because our analysis was inherently subjective, and it is

possible that we did not capture every single clast that exceeded the size threshold.

Ground-based Spectra

To observe spectral variation among the geomorphic surfaces on a smaller scale, we

used a hand held field spectrometer to directly measure lithologic spectra from the exposed,

top (and sometimes varnished) sides of single clast surfaces. In addition to measuring the
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single clast lithologic spectra, we also measured spectra from samples of finer,
unconsolidated lithologic detrital material (from herein, we will refer to these as “sand”
spectra, where “sand” does not imply a technical definition of clast size), and vegetation
samples, since these materials were included in noteworthy abundance in our study area. The
apparatus we used was an Agilent 4100 ExoScan™ portable Fourier Transform Infrared
spectrometer (spot size: 3-5 mm), which measures diffuse reflectance by active source. From
herein, we will refer to any spectral measurements that we made with this apparatus as
“ground-based spectra.” Some of the ground-based spectra were collected in situ, but due to
difficulties in the field (e.g., inability to transport all of the equipment to distal field sites,
and/or equipment failure), most were collected later, on samples that we brought back. We
collected up to ten ground-based spectra from a variety of materials at each site (Table 2).

To compare the general shape and wavelength positions of prominent spectral
features between airborne remote sensing and ground-based spectra, the ground-based
reflectance spectra were converted to emissivity using Kirchhoff’s law. In a general form,
Kirchhoff’s law states that reflectance and emissivity sum to unity (Robitaille, 2009). The
ground-based spectra were diffuse reflectance measurements, which is similar to a conical-
hemispherical measurement (see Case 6 from Table 2 in Schaepman-Strub et al., 2006). If
seeking quantitative spectral measurements, directional-hemispherical reflectance spectra
are usually considered acceptable (assuming isothermal conditions) for converting to
emissivity via Kirchhoff’s law (Salisbury and Walter, 1989; Salisbury et al., 1994). However,
the simple conversion offered by Kirchhoff’s law is not generally considered appropriate for
converting some other types of reflectance spectra to emissivity (Christensen and Harrison,

1993). Still, other types of spectral reflectance measurements converted to emissivity via
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Kirchhoff’s law do generally maintain the same general spectral shape as direct spectral
emissivity measurements (Figure 3b in Christensen and Harrison, 1993; Figure 4 in
Christensen et al., 2000). We did not assume that the ground-based spectra were quantitative
to begin with, and since we were mainly concerned with the qualitative aspect of this
analysis, we accepted the error involved in converting ground-based diffuse reflectance
spectra to emissivity via Kirchhoff’s law.

Finally, all of the ground-based spectra were plotted for each site, along with the site
average (arithmetic mean), to show how spectra from a mixture of materials within the
hyperspectral airborne imagery’s pixel size might manifest as a single remote sensing
spectrum. From herein, when we refer to any ground-based spectra, we are referring to the

single representative site average, unless otherwise specified.

RESULTS

Airborne Remote Sensing Spectra

The results here will be presented according to their respective geomorphic surface
names (Table 1). We separated the airborne remote sensing spectra into two groups: from
surfaces that are located upstream, and downstream, of the southern San Andreas fault,
Mission Creek strand. The spectra were then further subdivided by surface age. The R?
correlation coefficient between all airborne spectra band depth at 9.16 um and surface age is

0.59 (Table 3).
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For the upstream sets of spectra (Figure 5), the oldest surface, Qt0 (>95 ka), is in
position (greatest band depth at 9.16 um) for four of the five subsets. The two youngest
surfaces, Qt3 (13 ka) and Qt4 (<11 ka), are together in position for all five subsets, with the
caveat that Qt3, not Qt4, has the least depth for four of the five subsets. In all five of the
sampling sets, Qt2 (74 ka) is always out of position, with a greater 9.16 um band depth than
Qt1 (87 ka).

For the downstream sets of spectra (Figure 5), the oldest surface, CO (>95 ka), is in
position (greatest band depth at 9.16 um) for three of the five subsets, and we note that for
the remaining two sets, C2f (26 ka) has the greatest band depth. The youngest surface in the
downstream group, C3 (13 ka), is in position (least band depth at 9.16 um) for all five of the
subsets. The downstream group of surfaces are in complete ideal sequence (according to our

increasing-band-depth-with-age hypothesis) for two of the five subsets.

Ground Truth Field Work

Primary Mineralogy and Lithologic Textures of Detrital Surface Clasts

Surficial clasts at all of the sample sites had generally similar primary mineralogy
and lithologic textures. Quartz/alkali feldspar/plagioclase (QAP) clast compositions of
phaneritic (individual crystals generally 1-5 mm) igneous rocks included granite,
granodiorite, quartz monzodiorite, and quartz monzonite. Some other types of clasts and/or
textures included conglomerate/breccia, gneiss, schist (rich in amphibole and/or biotite

mica), pegmatite, porphyry with feldspar megacrysts, and fine-grained mafic (pyroxene-rich)
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rocks. At a site on the oldest downstream surface, COp2 (>95 ka), we noted that the lithologic

substrate for some of the most heavily varnished clasts was a mafic schist.

Clast Size Measurements

The results for the dominant (>50% relative abundance, down to 1 mm) clast size
ranges are shown in Figure 7. We do not observe any trends, such as a general monotonic
increase or decrease, between the dominant clast size ranges and surface age. The R2
correlation coefficient between mean of dominant (>50%) clast size ranges and surface age
is 0.10 (Table 3). The largest range was recorded at a site on the youngest downstream
surface, C3p2 (13 ka). In the field, we also observed fewer larger clasts (>30 cm long axis)
at a site on one of the older upstream surfaces (Qt1, 87 ka, see site overview field photograph

for Qt1lp2, Figure S8 in the Supplemental Items).

Desert Varnish and Desert Pavement Development Scores

The scores for degree of desert varnish and desert pavement development are plotted
in Figures 8 and 9, respectively. For both sets of scores, we observe a general monotonically
increasing trend between score and surface age, with the lowest scores for the youngest
surfaces, and the highest for the oldest. The Spearman’s rank correlation coefficients (used
for categorical variables, see Simspon, 2015) between varnish and pavement scores, and
surface age are 0.90 and 0.90, respectively (Table 3). For the downstream surfaces, the

general monotonic increase in desert varnish and desert pavement scores is interrupted by a
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decline in score for the site C2fp4 on the C2f (26 ka) surface. From our field inspections, we
observed that varnish was absent/rare even on larger, more stable boulders, on the younger

surfaces on either side of the fault.

Vegetation Abundance

The estimates for average vegetation spacing are shown in Figure 10. There is a
generally monotonic increasing trend between average vegetation spacing and surface age.

The R? correlation coefficient between vegetation spacing and surface age is 0.34 (Table 3).

Additional Field Observations

On the younger upstream surfaces (Qt4, <11 ka, and Qt3, 13 ka), we also observed
meter scale bar and swale (hummocky) topography, which was composed of larger clasts
(10-20 cm long axes) concentrated on channel bars (see field photographs for Qt4p2 (which
was a site directly located on one of the channel bars with larger clasts), Qt3p1, and Qt3p2,
Figures S2, S3, and S4 in the Supplemental Items).

At the upstream site Qtlp2 (87 ka), we observed a conspicuous higher relative
abundance of red-orange micro- or cryptocrystalline iron-oxide minerals (likely included
hematite and goethite; see field photographs for Qtlp2, Figure S8 in the Supplemental
Items). It is possible that many of the clasts at the Qt1p2 site were flipped over, because an
orange coat on the buried bottom of varnished clasts is often present due to iron oxide

formation at soil or sub-soil level (Figures 2 and 3 in Engel and Sharp, 1958; Potter and
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Rossman, 1977; 1979a). On the oldest upstream surface Qt0 (>95 ka), we observed the best
examples of extremely well-developed, smooth, resistant, heavily varnished desert pavement
(see field photographs for QtOp2, Figure S10 in the Supplemental Items).

At the downstream site C2fp1l (26 ka), we noted a distinct, light pink oxidation on
clasts (see sample square meter field photograph for C2fp1, Figure S15 in the Supplemental
Items). At the site COpl (>95 ka) on the oldest downstream surface, we noted that the
dimensions for broader areas with the greatest degree of varnish and pavement development,
had their longest dimension parallel to the direction of channel drainage (see site overview
field photograph for COpl, which was taken facing southwest, parallel to the channel
drainage direction, Figure S25 in the Supplemental Items). In a view perpendicular to the
drainage direction, more vegetated areas were observed in channel rills. The implication of
these observations is that channel bars of larger clasts (e.g., gravel/cobbles/boulders) could

have ended up being the most heavily varnished and strongly developed pavement surfaces.

Rock Area Fraction

The results for the rock area fraction (minimum, %), calculated for each of the 1-m?
field sampling sites using image processing software, are shown in Figure 11. There is no
general monotonic increase or decrease between the rock area fraction and surface age, and
the R? correlation coefficient is 0.00 (Table 3). This implies that, for our airborne remote
sensing data, the fraction of area for a single pixel that was at least fundamentally available

for varnish development did not increase for older surfaces.
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However, we noted that for the upstream surfaces (upper panel in Figure 11), the
youngest and oldest surfaces had sites with the highest and lowest rock area fractions,
respectively: Qt4p2 (<11 ka, a site directly located on one of the channel bars with larger
clasts, Figure S2), and QtOp2 (>95 ka, Figure S10). For the downstream surfaces (lower panel
in Figure 11), the sites C2p3 (74 ka, Figure S21) and C2fp4 (26 ka, Figure S18) have the
highest and lowest rock area fractions, respectively. Additionally, for the downstream
surfaces, the two sites (for which rock area fraction was measured) on the youngest surface
(C3, 13 ka, Figures S11 and S12), both have rock area fractions that are greater than any of
those from the three sites on the oldest surface (CO0, >95 ka, Figures S25-S27). Furthermore,
the upstream and downstream surfaces that have the greatest difference for rock area fraction
between sites are Qt4 (<11 ka, Figures S1 and S2) and C2 (74 ka, Figures S19-S22),
respectively. The upstream and downstream surfaces that have the least difference for rock
area fraction between sites are Qt3 (13 ka, Figures S3 and S4) and C3 (13 ka, Figures S11
and S12), respectively. See field photographs for all of the sites referenced above in the

Supplemental Items.

Ground-based Spectra

Ground-based spectra for all 27 field sites, along with accompanying sample square
meter, and site overview field photographs, are in the Supplemental Items, and a summary
of which materials were measured at each site is in Table 2. Figures 12 and 13 are two
examples of the ground-based spectra for the sites Qt4pl (<11 ka) and COpl (>95 ka),

respectively. Some additional ground-based spectra that are relevant to the discussion of clast
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size effects are from the following sites (see Table 2, and the Supplemental Items): Qt4pl
(<11 ka; Figure 12), spectra 1-5; C3pl (13 ka, Figure S11), spectra 1,8,9; C3sand (13 Ka,
Figure S13), spectra 1-10; and C2fp4 (26 ka, Figure S18), spectra 4-9. Ground-based spectra
of relevance to the consideration of vegetation effects include: Qt4pl (<11 ka; Figure 12)
spectra 6-10; Qt2p2 (74 ka, Figure S6), spectrum 1; and C3veg (13 ka, Figure S14), spectra
1-4. Note that both of these material variation considerations were covered at the upstream
site Qt4pl (<11 ka, Figure 12).

For the ground-based averaged spectra, a first order observation is that measurements
from the youngest surfaces (see sites from Qt4 (<11ka) and C3 (13 ka), Figures S1, S2, and
S11-S14 in the Supplemental Items) can be relatively flat in the range 9-10 um, or they can
contain a prominent, deeper feature at 9.30 um. Compare this to ground-based spectra for
the oldest surfaces (see site COpl (>95 ka) in Figure 13, sites from Qt0 and CO (both >95
ka), Figures S9, S10, and S25-S27 in the Supplemental Items), which all contain a prominent,
deeper feature at 9.30 um. As stated previously, the ground-based spectral measurements are
not quantitative, so we did not expect to see any correlation with surface age for the band
depth of any specific features. For completeness, though, the R? correlation coefficient
between ground-based spectra band depth at 9.30 um and surface age is 0.04 (Table 3).

The feature at 9.30 um in ground-based spectra is at odds with the 9.16 um feature
in airborne spectra. Spectra from the oldest surfaces are generally the most representative for
maximum band depth at either of the respective wavelength positions, so we plotted a few
of the oldest typical airborne and ground-based spectra together on the same axes to illustrate

the systematic difference in shape and position of minimum (Figure 14).
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DISCUSSION

In our airborne remote sensing spectra, we observed a general increase in band depth
(also known as band strength or spectral contrast) of the 9.16 um feature with age. As
reported above in the Results section, some of the remote sensing spectra for geomorphic
surfaces display a band depth at 9.16 um that is in position with respect to the relative band
depth for older/younger surfaces. For example, the upstream oldest surface Qt0 (>95 ka) has
the greatest band depth at 9.16 um for four of the five subsets, and the downstream oldest
surface CO (>95 ka) has the greatest band depth for three of the five subsets (Figure 5). The
two youngest upstream surfaces, Qt3 (13 ka) and Qt4 (<11 ka), together have the least band
depths for all five subsets, and the youngest downstream surface C3 (13 ka) has the least
band depth for all five subsets (Figure 5). Furthermore, the downstream surfaces are in
complete ideal sequence (band depth at 9.16 um strictly increases with age) for two of the
five subsets (Figure 5). However, there are a number of remote sensing spectra for surfaces
that are out of position. Along with airborne spectra band depth at 9.16 pum, the other
parameters with correlation coefficients >0.30 include desert varnish and desert pavement

scores, and vegetation spacing (Table 3 and Figure 15).

The Effect of Petrology

The likely bedrock sources for alluvial/fluvial deposition in the Indio Hills are in the

Little San Bernardino Mountains located immediately to the north east, which generally

consist of intrusive crystalline rocks (hornblende diorite-gabbro, and various granitoids), and
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metamorphic rocks, various politic and mafic schists (Dibblee, 2008; Lancaster et al., 2012).
We expected similarity of clast compositions between surfaces, because they are all
alluvial/fluvial deposits (now sets of terraces) along the same source drainage through
Pushawalla Canyon. There has only been about 2 km of displacement of the Pushawalla
Canyon drainage in the past c. 100 kyr (Blisniuk and Sharp, 2014), so it is unlikely that the
eroding bedrock source for the system has shifted to a drastically distant and different source
during that time. Therefore, we rule out fundamental petrologic differences in clasts as a

reason to explain the spectral variation between surfaces.

The Effect of Other Minerals

We examined the effect of other minerals by comparing the airborne remote sensing
(Figure 5), ground-based averaged (Figures 12, 13, 14, Table 2, and Supplemental Items),
and the library laboratory spectra (from Christensen et al., 2000; Figure 2 in this study). As
discussed previously, the spectral emissivity spectral features that we expected to see were
at the following wavelength ranges (in um, with the attributable mineral(s) in parantheses):
8.2-8.6 (quartz+microcline+andesine), 8.6-9.0 (quartz+microcline+andesine), 9.0-9.4
(microcline); 9.2-9.4 (montmorillonite clay); two separate and distinct features from 9.4-10.0
(microcline+andesine), and two separate and distinct features from 12.4-13.0 (quartz).

Nearly all of the airborne remote sensing and ground-based averages have prominent
spectral features at the following wavelengths (um): 8.2-8.6, 8.6-9.0, two separate and
distinct features from 9.4-10.0, and two separate and distinct features from 12.4-13.0

(Figures 5, 12, 13, 14, and Supplemental Items). We correlate these features to the following
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corresponding features observed at wavelengths (um) for specific minerals in the library
laboratory spectra, and their synthetic “granite” mixture spectrum (Figure 2): 8.2-8.6
(quartz+microcline+andesine), 8.6-9.0 (quartz+microcline+andesine), two separate and
distinct features from 9.4-10.0 (microcline+andesine), and 12.4-13.0 (quartz).

For the Reststrahlen band of clay minerals, the wavelength range of interest is 9.1-
9.6 um (Keller and Pickett, 1950; Hunt et al., 1950; Launer, 1952; Farmer, 1974; Bishop et
al., 2002a; Frost et al., 2002; Michalski et a., 2006; Bishop et al., 2008). But we see a
particular difference between airborne remote sensing and ground-based average
measurements in the range 9.1-9.6 um. In the majority of the airborne remote sensing spectra
(mainly from older surfaces), a distinct spectral feature is present with a minimum at 9.16
um, and the band depth of that feature generally increases with surface age (Figures 5, 6, 15,
and Table 3).

In the majority of the ground-based averaged spectra (Figures 12, 13, 14, and
Supplemental Items), a distinct spectral feature is present with a minimum at 9.30 um. As
expected, this 9.30 um ground-based feature does not generally increase in absolute band
depth with surface age in site-averaged spectra, because the ground-based spectrometer is
not quantitative (as discussed previously), and furthermore, broad variations exist for the
microscopic surface roughness of lithologic sample chips measured, as well as their
temperatures at the time of measurement. Yet, it appears that some of the older surfaces
might generally exhibit a greater band depth at 9.30, if measured relative to the band depth
of the quartz feature from 8.2-8.6 pum.

The library laboratory spectrum for montmorillonite clay (Figure 2B) has its

Reststrahlen band at 9.36 pum, and there is another laboratory spectrum from montmorillonite
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(Figure 5 in Michalksi et al., 2006) with a Reststrahlen band at 9.33 um. Considering these
observations, the ground-based 9.30 um feature correlates more closely than the airborne
9.16 um airborne feature to the 9.36 um library laboratory montmorillonite Reststrahlen
band. The difference in the emissivity minimum at 9.16 pum for airborne spectra and 9.30 um
for ground-based spectra is real and unexplained (Figure 14), so we do not assert that this
aspect is unimportant. However, the difference does not completely rule out that the 9.16 um
remote sensing feature could be from clay minerals, so we considered some reasons why the
two data sets do not agree.

Our analysis is complicated by the following spectral features from other minerals
that overlap with the clay features: the laboratory synthetic “granite” spectrum has a spectral
feature centered at about 9.2 um from microcline and quartz (Figure 2). The synthetic
“granite” spectrum has a distinct feature at 8.8 um that directly overlaps with a feature at the
same position from the library laboratory montmorillonite clay spectrum (Figure 2B).
Additionally, there is another quartz feature that has been observed at 9.2 um (Launer et al.,
1952). The 9.2 um feature observed by Launer et al. (1952) was not discussed in detail in
that study, so it is possible that they observed a shoulder of one the quartz features, from 9.0-
9.4 um (Figure 2A). It is also possible that smaller particles might shift the minimum of the
quartz feature at 8.86, to 9.09 um (e.g., see models in Figure 6D and 6E in Moersch and
Christensen, 1995). The quartz feature from 8.6-9.0 um (Figure 2A) is clearly present in the
majority of our spectra, but it appears to be overprinted by the addition of another spectral
feature that extends this limb over into higher wavelengths, up to about 9.30 um. The addition
of this extension into higher wavelengths is probably due to the combined addition of a clay

feature from 9.1-9.6 um, and the microcline feature at 9.2 um.
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If the increased 9.16 um band depth in airborne remote sensing spectra is only a result

of other lithologic factors, such as clast/particle size, surface roughness, degree of
clast/particle size sorting, and rock area fraction, then it remains compelling that the spectral
signal occurs at the Reststrahlen band for clay minerals. All of our spectra show that minerals
with similar and/or overlapping spectral features are present in the overall lithologic
mixtures. All in all, both the remote sensing and ground-based spectra represent a similar
mixture of minerals, with quartz, feldspars, and clay(s) present, but the problem remains
between the 9.16/9.30 um features, and this will require further investigation. Only the band
depth at 9.16 um in airborne spectra varies systematically with surface age, and the majority
of all of the spectra can be explained by similar mineral mixtures, where the mixture does
not vary with age. While the increasing band depth (or spectral contrast) with age in airborne
remote sensing spectra cannot be explained by varying mineral mixtures alone, the difference
between the 9.16/9.30 um features in airborne/ground-based data sets remains a problem that

needs to be addressed.

Definitions of Clast and Particle Size

For the purposes of this discussion and here after, we need to define how we are using
terms that refer to the size of lithologic material in loose surficial regolith. The best resolution
of our ability in the field to analyze sediment size is limited to ~>1 mm. We use the term
“clast(s)” to refer to macroscopic sediment sizes that are >1 mm, and “particle(s)” to refer to
microscopic sediment sizes that are <1 mm. Following the Wentworth scale for sediment

size (e.g., Boggs, 2012), terms for macroscopic clasts >1 mm are very coarse sand,
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granule(s), pebble(s), cobble(s), and boulder(s), whereas terms for microscopic particles <1
mm are coarse/medium/fine/very fine sand, coarse/medium/fine/very fine silt, and clay. Note
that since much of this manuscript involves a detection of clay mineralogy, the reader can
assume that when we refer to “clay(s)”, we are referencing mineralogy and not particle size.
We will avoid using the term “clay(s)” to refer to particle size, but it will be clearly indicated
if necessary. Although the majority of the sediment sizes that we were able to analyze were
macroscopic clasts >1 mm, we acknowledge that our hypothesis is based on a spectral
contribution from clay minerals, which are likely present in abundance in smaller size
fractions. Thus, there will also be some discussion regarding how microscopic particles <1

mm might also contribute to the remote sensing signals and trends that we observe.

The Effect of Clast and Particle Size

Infrared laboratory spectra show that as microscopic particle size increases, often so
does spectral contrast/band depth (Lyon, 1965; Hunt and Vincent, 1968; Conel, 1969; Figure
1 in Salisbury and Walter, 1989; Salisbury and Wald, 1992; Bishop et al., 1994; Cooper and
Mustard, 1999; but for examples where this is not always the case, see Hunt and Vincent,
1968; Salisbury et al., 1987). Horgan et al. (2009) acquired similar results in short-
wavelength infrared spectra (1.0-2.5 um), but they also included in their analysis sediment
sizes >1 mm to the same effect. The decrease in spectral contrast with decreasing particle
size can be partially attributed to volume scattering, where the size of smaller particles causes

them to become optically thin and have lower overall opacity (Salisbury and Wald, 1992).
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If the effect of spectral contrast and band depth increasing as particle size increases
continues to scale up to even larger macroscopic clast sizes, then it is possible that the
observed trend in our data is due to variation in dominant clast size on the different
geomorphic surfaces. Based on the general pattern of increasing band depth with age in our
remote sensing spectra, it follows that this might be due to increasing dominant clast size
with age on the Quaternary geomorphic surfaces. Figure 7 shows estimates for dominant
(>50%) clast size range for each of the sampling sites on the upstream and downstream sets
of surfaces. The correlation coefficient between dominant clast size (mean value of each
range) and age is very small, R? = 0.10 (Figure 15 and Table 3). The dominant clast size
varies over the different surfaces, but it fluctuates unpredictably.

Clay minerals could be more abundant in the smaller clast size fraction, below our
ability to resolve. Our clast size analysis is limited to fragments that are >1 mm, yet we are
concerned with looking for evidence that the remote sensing signal is influenced primarily
by clay mineralogy. Even though our field data for dominant size of macroscopic individual
surficial clasts do not show an increase in size with age, microscopic clay particles can
increase in size in a few different ways. Individual clay crystals could grow and increase in
size with age as part of their initial formation mechanism via weathering and alteration of
existing minerals. Alternatively, individual clay crystals can agglomerate and increase in
aggregate size, which is, however, likely for clays that accrete on surfaces to form desert
varnish. In addition to increasing band strength with increasing particle size, Cooper and
Mustard (1999) also observed that, in coarser samples, the larger clay particles were not
individual crystals, but rather amalgamations of smaller particles. As surficial coatings of

desert varnish grow, constituent clay particles amalgamating into larger single masses might
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result in spectra that are consistent with larger single particles, which is the obvious source
of the increasing band depth at 9.16 pum in the airborne spectra.

Most of the ground-based spectra that we collected were from single lithologic
sample chips, where clay minerals might be underrepresented. Therefore, spectra of specific
relevance to the consideration of clast size effects include “sand” spectra, from finer,
unconsolidated lithologic detrital material (see Table 2). In many of the ground-based spectra
for single clasts, there is an apparent signal, and remarkable band depth for a feature at 9.30
um (Figures 13, 14, and Supplemental Items). However, in “sand” spectra, there is also
always an apparent signal, but not always remarkable band depth at 9.30 um (Figures 12,
and S11, S13, and S18 in the Supplemental Items).

We wanted to assess whether the smaller clast size fraction had higher clay mineral
content. To check this, we observed the spectral behavior at a field site located within an
ephemerally active channel (C3sand, 13 ka, Figure S13 in the Supplemental Items). The
dominant (>50%) clast size range for C3sand is <1 mm (Figure 7, labeled “(sand sample)”).
Interestingly though, for C3sand the ground-based spectra do not have a pronounced band
depth at the expected position for clays, from 9.1-9.6 um (see Figure 1 in Michalski et al.,
2006). This supports ruling out a higher relative abundance of any clay minerals in the
smaller clast size fractions. Although a noticeable emissivity trough is present in ground-
based spectra for C3sand at about 9.30 pm, the feature does not have a significant band depth,
especially relative the main quartz doublet located from 8-9 um. For reference, see a
remarkable band depth at about 9.30 um, relative to the quartz doublet from 8-9 pum, in
ground-based spectra for the increasingly older upstream (Qt2, Qtl1, Qt0) and downstream

(C2, C1, CO0) surfaces. Any clay minerals at the site C3sand may have been removed by
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fluvial and/or aeolian processes. Or, it is possible that the effects of particle size reduction
(reduction in spectral contrast) compete with increasing clay abundance (increasing band
depth of features attributable to clay minerals). In any case, a significant band depth is also
absent in airborne remote sensing spectra for the C3 surface, which could be why C3 is “in
position” for all five sets of spectra (see Results: Airborne Remote Sensing Spectra).

Our data do not show strong correlation between macroscopic clast size and surface
age (Figure 15 and Table 3), so we exclude this as a factor that is primarily causing the
increasing-band-depth-with-age trend in our remote sensing spectra. However, even though
the macroscopic dominant clast size does not generally increase with age, it is likely that the
individual microscopic clay crystals are agglomerating with age to manifest as larger
particles. These larger particles or coatings could cause the increased band depth for the older
surfaces if the agglomeration process occurs via protracted and continuous desert varnish
growth. By proxy, this means that the trend in our data could be at least partially dependent

on time.

The Effect of Macroscopic Topographic Surface Roughness and Degree of Clast Size

Sorting

We did not expect individual clasts to increase in size with age, since rocks at the
Earth’s surface undergo physical and chemical weathering processes that almost always
result in size reduction. Instead, we could hypothesize that clast size would decrease over

time, but this by itself would likely decrease spectral contrast and band depth, opposite to the
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general trend in airborne remote sensing spectra. Therefore, we must instead consider how
clast size and surface morphology are related in a way that could increase band depth.

Figures 8, 9, 15, and Table 3 show that desert varnish and desert pavement scores
generally increase with surface age. For surface morphology in general, the term ‘desert
pavement’ is used to describe the primary topographic characteristic of surfaces in warm,
arid regions when they become relatively smooth and compacted, which occurs over
thousands to tens of thousands of years. McFadden et al. (1987) propose an evolutionary path
in which bombardment of larger clasts by eolian dust assists in physical weathering, while
the dust also accumulates with other smaller clasts in topographic depressions to form soil
that eventually underlies a surficial veneer of stone pavement. The overall effect is a
smoothing of the surficial topography, which can increase spectral contrast and band depth.
Relatively smooth pahoehoe-style lava flows have been shown to exhibit increased spectral
contrast in relation to their rougher, aa-style counterparts of the same composition (Kahle et
al., 1988). Similarly, an increase in spectral contrast was also observed for smooth obsidian
glass relative to more uneven surfaces on vesiculated pumice (Ramsey and Fink, 1999).

Spectral variation due to surface roughness is known as the cavity effect. With this
effect, spectral emissivity increases at all wavelengths, due to energy being reflected multiple
times when it encounters internal surfaces of a hollow cavity (Kirkland et al., 2001). The
cavity effect on lithology is in play at all scales of physical size, from macroscopic (=1 mm)
hollows due to the random orientations of surficial regolith, down to microscopic (<1 mm)
roughness that might be present even on deceptively smooth-appearing lithic fragments
(Kirkland et al., 2001). For our purposes, it is possible that for the older surfaces that have

smoothed topography coincident with a significant desert pavement formation, the relative
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smoothness could be contributing to the increasing 9.16 pm band depth (in airborne spectra)
with age.

The evolution towards a smoother surface also involves, to some degree, the effect
of clast size sorting. The sorting process likely involves some transport and/or removal of
smaller, more labile particles, while larger particles are broken down into smaller fragments
by weathering processes. This convergence in clast size for the ultimate surficial material
will cause the dominant clast size range to decrease, resulting in a higher degree of sorting.
Given the overall character of older, stable terrace surfaces where a moderately- to well-
developed desert pavement surface has developed (usually along with substantial coatings of
desert varnish on clast surfaces), we could hypothesize a relationship between age and degree
of clast size sorting.

The dominant (>50%) clast size range graphs (Figure 7) might show a weak
correlation between age and degree of sorting, in the sense that the ranges are generally
smaller for sites on older surfaces. If only taking the largest range for each surface, the
correlation becomes slightly more compelling. In a youngest/oldest age binary sense for both
the upstream and downstream sets of surfaces, the smallest range for the oldest surface is
exceeded by the largest range for the youngest surface. Furthermore, the youngest upstream
and downstream surfaces (Qt4 and C3 respectively) exhibit both the largest and smallest
dominant clast size ranges, which shows a lower overall degree of sorting for the entire
surface. This age and sorting relationship is also somewhat qualitatively evident by viewing
all of the field site images and noting the relatively chaotic surface morphology of the
younger surfaces that results from mixtures of larger clasts, finer particles, and also a greater

amount of vegetation (which will be discussed below). On the younger surfaces, our data



303
show that there can be a greater degree of sorting (smaller range) for individual 1-m? pixels
(e.g., see C3sand in Figure 7), but the higher variability between sites on single surfaces
exhibits greater overall variation (overall lesser degree of sorting).

The youngest upstream and downstream surfaces exhibit the largest difference
among dominant (>50%) clast size ranges for multiple sample sites (Figure 7). This implies
a lower degree of sorting for younger surfaces, which increases macroscopic roughness and
the cavity effect, and ultimately reduces spectral contrast. Although this conclusion implies
that the increasing 9.16 um band depth with age is not necessarily (or entirely) dependent on
clay minerals accumulating in desert varnish, the spectral effect is still related to age. It is
plausible that a relationship between topographic smoothing and age exists (e.g., see
Mushkin et al., 2014), and it is also likely that the relationship is concomitant with desert
varnish and pavement development. The topographic smoothing with age can be one of the
reasons that there is increased spectral contrast and 9.16 um band depth with surface age in
airborne remote sensing spectra. Topographic smoothing with age is also apparent for the
surfaces that we are studying at the meter-scale level: bar and swale hummocky topography
was only observed at sites on the younger upstream surfaces (see field photographs for sites

Qt4p2 (<11 ka), Qt3pl and Qt3p2 (13 ka), Figures S2-S4 in the Supplemental Items).

The Effect of Vegetation

It is outside of the scope of this study to consider the identifications, nuances, and

associated thermal infrared spectroscopy of specific vegetation types that can be found in the

study area. Also, much of the area is usually sparsely vegetated to begin with, given the
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regional desert environment. Therefore, we speak with broad generality regarding vegetation
species that are present and contributing to remote sensing spectra, and we usually only refer
to vegetation in this arid region in the most general sense as “desert scrub.” However, we do
provide a limited assessment when such data were collected in the field for our purposes.
The desert scrub mainly includes an abundance of common, non-deciduous chaparral plants,
such as creosote and sage, and other species that are also likely present.

The period that we performed field work in the area (March 2017 through May 2017)
followed a very wet winter season; precipitation was the heaviest seen in probably at least a
decade in southern California. Thus, many of the field images contain lots of 10 to 50 cm tall
plants, including flowers, shrubs, and grasses, in various states of desiccation: these were
only present in the spring for a few weeks, following a brief cycle of sprouting, blossoming,
and then dying off. This relatively small, flowering vegetation can dominate the scene during
spring blooms that follow rainy winter seasons. But due to their ephemeral nature, this
vegetation will not play a significant role in contributing to remote sensing spectra, unless
the acquisition occurs during a spring bloom. Our airborne remote sensing imagery was
collected during the height of summer heat and aridity extremes (the norm for Coachella
Valley summers), at 10:45-11:00 am (Pacific daylight savings time), on 24 September 2015.

In the study area, vegetation is generally sparse or absent where desert pavement is
well-developed, which coincides with older surfaces (Figures 8, 9, and 10). If present on
older surfaces, vegetation is usually localized in/near channels, or flanking areas with
pavement (e.g., see field photographs from sites on Qt2 (74 ka) and Qt1 (87 ka), Figures S5-
S8 in the Supplemental Items). Vegetation is also absent in the youngest, most active

channels on younger surfaces (e.g., see field photographs from C3sand, Figure S13 in the
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Supplemental Items). Vegetation found on older surfaces are mostly 1-2 m scrub bushes, but
vegetation on younger surfaces is much more abundant and diverse, also including 10-30 cm
shrubs, 10-50 cm cacti, and some dead wood.

In our analyses, we included some ground-based spectra of the larger (1-2 m scale),
woody, desert scrub bushes that are more drought tolerant and likely to persist year round.
At the upstream site Qt4pl (<11 ka, Figure 12), five ground-based spectra from vegetation
were combined with five lithologic spectra into the “Average” mixture spectrum for the 1-
m? sample area. For Qt4pl, ground-based vegetation spectra samples included: 1) two
spectra from some very light green to whitish broad leaves (see sample square meter field
photograph in Figure 12A: the small, 10-30 cm light green/white broad-leaved plant included
in the upper right corner of the sampling area, possibly Encelia farinosa, or white
brittlebush?); 2) two spectra of white, leafless (at time of collection), dry, woody, branches
from the 30-50 cm white branchy plant (located in the lower right corner of the site overview
field photograph in Figure 12B); and 3) one spectrum from a branch of dead wood (located
just to the left of the sample square meter in Figure 12B). Also present on the Qt4 surface
were 1-2 m green woody scrub, and 10-50 cm cacti. Ground-based spectra for the upstream
site Qt2p2 (74 ka) included one vegetation measurement that is averaged with eight other
lithologic spectra from within the sample square meter (see Table 2, and Figure S6 in the
Supplemental Items). The ground-based vegetation spectrum at Qt2p2 is from a c. 10 cm
desiccated ephemeral flowering plant. The downstream site C3veg (13 ka) consists of a
single 1-2 m desert scrub bush (see Table 2 and Figure S14 in the Supplemental Items). The
bush was light green to yellow, partially desiccated, with woody branches, 1-2 cm thorns,

and very narrow (almost needle-like) leaves; this type of plant was commonly encountered,
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and it is possibly Psorothamnus arborescens (Mojave indigo bush), or Psorothamnus schottii
(Schott’s dalea, personal communication with botanist Jean Pawek).

The ground-based averaged spectra are simplified models that show qualitative
effects for how mixtures might manifest in airborne remote sensing spectra that include
multiple heterogeneous materials within the 1-m? pixel size. We acknowledge that the
simplified models presented here are at odds with actual remote sensing spectra (which
intrinsically capture greater heterogeneity over a larger sample area), because the latter likely
include effects from non-linear mixing of vegetation with a lithologic background (Ray and
Murray, 1996). However, these results still give us a broad sense of how the inclusion of
vegetation might affect any lithologic signal that is present.

There is a common misconception that vegetation spectra in the thermal infrared
wavelength regime (8-14 um) tend to be flat and featureless (Elvidge, 1988; Ullah et al.,
2012). Kahle et al. (1987) did find that desert vegetation had completely flat spectra, but this
and other similar observations could be due to the fact that fresh green plant material can
contain a significant amount of water weight (40-80%, Elvidge, 1988), and water is flat and
featureless in the thermal infrared. We did not make any assumptions about what spectra
from vegetation in our study area would look like, but our ground-based measurements for
sites Qtdpl (Figure 12), Qt2p2 and C3veg (Figures S6 and S14 in the Supplemental Items),
all show that vegetation spectra are relatively flat and featureless in comparison with the
lithologic spectra. Despite the fact that the spectra were collected from distinctly different
plants, the five vegetation spectra taken from site Qt4pl and the single vegetation spectrum
taken from site Qt2p2, all are very similar and have very broad emissivity peaks from 8-10

um wavelengths, which is the specific range where we are looking for distinct emissivity
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troughs/minima, and variation in Reststrahlen feature positions (from varying silica-based
mineralogy). In our ground-based average spectra that include vegetation, the broad
vegetation emissivity peaks from 8-10 um flatten lithologic Reststrahlen features in the same
range, effectively reducing spectral contrast. The similarly flat spectra from C3veg would
also produce similar results if incorporated into our models.

The relatively flat ground-based spectra from C3veg (13 ka, Figure S14 in the
Supplemental Items), with its needle-like leaves, can be attributed to the cavity effect. In
thermal infrared spectroscopy of vegetation, small and/or needle(-like) leaves increase the
cavity effect, which, as discussed previously, reduces spectral contrast, especially relative to
species with larger and flatter leaves (Ribeiro da Luz and Crowley, 2010; Ullah et al., 2012).
Due to higher variability in individual leaf orientations, needle-shaped or needle-like leaves
are thought to increase the cavity effect and minimize spectral contrast (Salisbury, 1986;
Ribeiro da Luz and Crowley, 2007). Furthermore, there could also be a reduction in spectral
contrast due to the cavity effect from microscopic surface roughness on plant surfaces
(Ribeiro da Luz and Crowley, 2007).

In considering the effect of vegetation, there also exists the complication that some
plant material can be silicified (Ribeiro da Luz and Crowley, 2007; 2010), which could
produce the same Reststrahlen features that we are interested in (but from silica-based
lithology). Silica present in plants could complicate our spectral analysis, because several
specific species (although unlikely to be present in our study area) are known to become
silicified and exhibit spectral features in the same 9-10 um range (Ribeiro da Luz and

Crowley, 2010), where we are looking for clay mineral Reststrahlen features.
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Because the ground-based vegetation spectra are relatively flat and featureless, we
conclude that the effect of vegetation is to reduce the spectral contrast in airborne remote
sensing imagery pixels. In the study area, vegetation is more abundant, prominent, and
diverse on younger surfaces. Estimates for average spacing of 1-2 m desert scrub bushes
generally increase with surface age (Figures 10, 15, and Table 3), so if a silica is present in
vegetation and contributing to spectra, we expect a greater contribution to the 9-10 um
feature in younger surfaces. However, we observe that the 9-10 um spectral feature becomes
more prominent in older surfaces with less vegetation. Thus, increased vegetation on younger
surfaces is likely responsible for reducing their spectral contrast. It is also plausible that the
correlation between increasing band depth at 9.16 um and surface age can be a manifestation
of increased spectral contrast on older surfaces that are more sparsely vegetated. Although
this does not directly relate to our hypothesis that clay minerals in desert varnish are mainly
responsible for the increase spectral contrast on older surfaces, it still strengthens the positive
correlation between increasing spectral contrast and surface age. Therefore, independent of
the cause, it is nonetheless still valid that spectral contrast correlates positively with age for

geomorphic surfaces in this study area.

The Effect of Rock Area Fraction

Solid and particulate forms of materials exhibit transmission spectra that can vary
considerably (Keller and Pickett, 1949), and similarly, when considering the effect of particle
size on spectral contrast, the bulk density of the particulate matter must also be taken into

account. For example, quartz exhibits greater spectral contrast in Reststrahlen bands not only
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when particle size is increased, but also when the particulate is packed as opposed to being
left in its loose, unconsolidated form (Salisbury and Eastes, 1985; Salisbury and Wald, 1992).
Decrease in either particle size, or in the density of a particulate mass, will result in increased
porosity, which can increase the cavity effect (Salisbury and Eastes, 1985) and volume
scattering (Salisbury and Wald, 1992), both of which reduce spectral contrast. Therefore, we
must also consider the coupled effects that particle size and packing (or density of material)
have on our data.

To consider the packing/density effect, we looked at the rock area fraction (minimum,
%) at each of our 1-m? field sampling sites (Figure 11) (i.e., “solid rock” being larger lithic
fragments that represent the material with highest density/lowest porosity, versus smaller,
loose sediment grains). On the basis of the arguments stated above and empirical data from
previous work, we could hypothesize that the general positive correlation between increasing
spectral contrast with surface age in airborne remote sensing spectra might be due to the solid
rock (i.e., highest density/lowest porosity) area fraction increasing with surface age.
However, we observe no general monotonically increasing trend, or mathematical
correlation (Figure 15 and Table 3) for rock area fraction with surface age. Conversely, for
the upstream surfaces (upper panel in Figure 11), the highest rock area fraction occurred at a
site on the youngest surface (Qt4p2, <11 ka), and the lowest rock area fraction occurred at a
site on the oldest surface (QtOp2, >95 ka). Similarly, for the downstream surfaces, the two
sites on the youngest surface (C3, 13 ka) both have rock area fractions that are greater than
any of those from the three sites on the oldest surface (CO, >95 ka).

The increased rock area fraction on younger surfaces might be due concentration of

larger cobbles and boulders (which quickly add up to a larger fraction), that have not yet been
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weathered into smaller clasts. The inherent increase in surface roughness, and subsequent
cavity effect, from a greater number of larger clasts, could outweigh the increase in rock area
fraction, and ultimately reduce spectral contrast for younger surfaces. In a different way, the
older surfaces that have well-developed desert pavement can also have a greater degree of
compaction, which also results in higher density/lower porosity. Because increasing spectral
contrast can be the effect of increasing density (not necessarily to the point of complete
lithification to a solid), it is possible that the increased spectral contrast on older surfaces
might be due to the greater degree of compaction found on older surfaces with well-
developed desert pavement. Our rock area fraction analysis does not test for this variability,
so it is still possible that the greater spectral contrast on older surfaces is caused by decreasing

porosity (cavity effect), but not because of a greater rock area fraction.

Other Effects

When analyzed in detail, airborne remote sensing spectra from the downstream C2f
(26 ka) surface, were problematic. The C2f surface is located on a steep ridge, directly on the
surface trace of the Mission Creek strand (Figures 3 and 4). Not only did we observe the
greatest standard deviation in airborne spectra band depth at 9.16 um (see data point for 26
ka surface age in Figure 6), we also observed great variation when we sampled spectra from
the C2f surface by different slope values. With its relatively drastic changes in slope, the C2f
surface is dissimilar to any of the other surfaces, with their relatively broad, flat, and stable
topography, which is conducive to protracted varnish and pavement development. Recall that

in the downstream airborne remote sensing spectra, the oldest CO (>95 ka) surface is in
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position with the greatest band depth at 9.16 um for three of the five subsets, and for the
remaining two sets, C2f (26 ka) has the greatest band depth. This anomaly could be attributed
to the spectral variation in C2f caused by increased and variable topographic slope. Thus, we
note that the methods used in this research should not be applied to surfaces that lack a
relatively broad, flat, and stable topography.

Above, in the Results section (see Ground Truth Field Work: Additional Field
Observations), we also noted a distinct, light pink oxidation on clasts at the downstream site
C2fpl (26 ka) site, and a conspicuous higher relative abundance of red-orange oxidation at
the upstream site Qtlp2 (87 ka). Oxidization is likely to occur on the buried bottoms of
varnished clasts, due to iron oxide formation at soil or sub-soil level (Figures 2 and 3 in Engel
and Sharp, 1958; Potter and Rossman, 1977; 1979a). Therefore, it is possible that the greater
degree of oxidation observed at these sites represents many of the clasts being flipped over,
especially on the steep and topographically unstable downstream C2f (26 ka) surface (see
above). Oxides related to desert varnish development likely reduce spectral contrast due to
their lack of spectral features in the wavelengths that our data covered (A = 7.6-13.2 um, see
Figures 3 and 6 in Potter and Rossman, 1979a; Figure 14 in Potter and Rossman, 1979b).
This effect could have caused the great spectral variation for the Qt1 and C2f surfaces. In
airborne remote sensing spectra, the unexplained variation in the C2f (26 ka) surface was
discussed above, and Qt1 (87 ka) was never in position, twice with very shallow band depth
at 9.16 pum relative to the other older surfaces. Thus, we note that surfaces with a great degree
of iron oxides also might not be suitable for the methods used in this research.

Bishop et al. (1994) observed another factor that could affect spectral contrast for

montmorillonite clay: laboratory spectra from montmorillonite clay increased in band depth
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with increasing grain size when lab samples were left unpacked, but when packed, the largest
size fraction did not display the greatest band depth for a spectral feature at 1.9 pm. Although
that wavelength position is outside of the range covered in this research (A = 7.6-13.2 um),
they mentioned that their packing process resulted in lab samples with a variable degree of
alignment and orientation among the particles. Thus, we note that when comparing any
spectra to library standards, care should be taken to identify and consider the particle size
and degree of packing used for measurements. Namely, when using linear mixture models,
particle size should be much larger than the wavelengths in measured spectra (a condition

that was met for our models in Figure 2, see caption).

CONCLUSIONS

In airborne remote sensing spectra of geomorphic surfaces along the southern San
Andreas fault, we observed positive correlation (R?> = 0.59) between increasing spectral
contrast and band depth at 9.16 um with surface age (Figures 5, 6, 15, and Table 3). We
hypothesized that the increase in band depth at 9.16 um was related to an increasing relative
abundance of clay minerals (clay crystal aggregates) in progressively thicker coatings of
desert varnish on older surfaces. To test our hypothesis, we conducted fieldwork to evaluate
variation among surfaces in: clast size range, desert varnish and pavement development,
vegetation spacing (proxy for abundance or sparsity), and rock area fraction. Of the quantities
that we measured, there are no systematic trends related to increasing age for either mean of
dominant (>50% relative abundance) clast size range (R? = 0.10) or rock area fraction (R? =

0.00). The quantities that had a stronger positive correlation with increasing surface age
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(Figure 15 and Table 3) were: desert varnish scores (Spearman’s rank = 0.90), desert
pavement scores (Spearman’s rank = 0.90), and vegetation spacing (R? = 0.34).
Ground-based field spectra from single lithologic clasts displayed a spectral feature
at 9.30 um that did not generally increase with surface age. While this 9.30 um ground-based
feature is still within the 9.1-9.6 um range that typifies clay minerals, further analyses will
be required to investigate why the main ground-based feature is not at the exact same position
as the airborne remote sensing spectral feature at 9.16 um. Furthermore, ground-based
spectra from finer-grained, unconsolidated detrital material did not display increased band
depth for the 9.30 um feature, indicating that clay minerals are not necessarily more prevalent
in the smaller clast/particle size fraction. While most of our spectra indicate the presence of
some clay mineral(s), the spectra are overprinted with spectral features from common
tectosilicate minerals (quartz and feldspars) characteristic of the varnish substrate. Also,
ground-based vegetation spectra are very flat and featureless in the thermal wavelengths that
correspond to those covered in the airborne remote sensing spectra. Therefore, we conclude
that the increasing development of desert varnish and desert pavement, combined with
decreasing vegetation, increase spectral contrast in airborne remote sensing spectra. The
development of varnish and pavement usually takes a significant amount of time, and often
generally decreases vegetation abundance, so an increase in spectral contrast based on these
variables is generally related to the passage of time.
While this research does not outline a methodology to derive absolute ages for
Quaternary geomorphic surfaces, the ideas presented here might make it possible in the
future to determine relative ages, based on relative spectral contrast of geomorphic surfaces.

Stricter age constraints could perhaps follow, if an age is known for at least one set of
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geomorphic surfaces in a terraced (or otherwise related) series, as a calibration for a larger
area or region. The methodology can be expanded to include varying spectral contrast/band
depth in spectral features from other minerals (e.g., quartz features at 12.4-13.0 um), and
applied to other known geomorphic surface ages (e.g., see Gray et al., 2014). With the spatial
component of tectonic displacement from an overhead perspective (i.e., offset feature
identified, then separation distance measured), information derived regarding the time
component from relative ages of geomorphic surfaces could potentially be used to estimate

a fault slip rate from a single airborne remote sensing image.
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APPENDIX

Literature Review on Seismic Activity along the Southern San Andreas Fault

Paleoseismic Trenching

Paleoseismic trenching along the southern San Andreas fault at sites in the Coachella
Valley has yielded recurrence intervals of c. 200 years (Fumal et al., 2002; Philibosian et al.,
2011), while a recurrence interval calculated at the Wrightwood site (>100 km to the
northwest) is roughly half of that value (Scharer et al., 2007). While it might appear that
large, surface-rupturing earthquakes in the Coachella Valley occur less often than on other
segments, the paleoseismic data consistently drive the message that the southern San Andreas
might be due for a major seismic event soon, since it has been more than 300 years since the
most recent large earthquake in the region (Sieh et al., 1989; Sieh and Williams, 1990; Fumal

et al., 2002; Philibosian et al., 2011).

Tectonic Geomorphology

Methods in tectonic geomorphology have been used extensively to estimate geologic
slip rates for the Coachella Valley segment of the southern San Andreas fault. However,
these geologic slip rates can vary widely due to the complexity of the fault zone at some
localities. A well-known offset alluvial fan used for fault slip rate analyses is located in the

Indio Hills, near Biskra Palms (unfortunately, anthropogenic excavation has now almost
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completely obliterated this natural asset). The Biskra Palms site yielded a geologic slip rate
of 15.9 = 3.4 mm/yr (van der Woerd et al., 2006) for the Mission Creek strand of the San
Andreas fault. This rate was later updated to about the same central value in a range but with
larger uncertainty (12-22 mml/yr), on the basis of greater net slip and more robust age
constraints that broadly agreed across multiple independent dating methods (Behr et al.,
2010; Fletcher et al., 2010; Benedetti and van der Woerd, 2014). Southeast of Biskra Palms
at the Mecca Hills, Shifflett et al. (2002) calculated a significantly slower slip rate of 5-8
mm/yr. To the immediate northwest of Biskra Palms, the overall San Andreas fault structure
becomes complex as the parallel Banning strand (located southwest of the Mission Creek
strand) comes into play. The slip rate for the Mission Creek strand increases to 22-25 mm/yr
at Pushawalla Canyon (Blisniuk and Sharp, 2014), then remarkably decreases to 4 + 2 mm/yr
at Thousand Palms Oasis (Fumal et al., 2002); all of this variation occurs within a distance
of <10 km from the Biskra Palms site (Figure 1). Farther to the northwest, the Banning strand
has a Holocene slip rate of 4-5 mm/yr (Gold et al., 2015), and the fault structure becomes
more complex with the parallel Garnet Hill strand somewhat enigmatically coming into play
to the southwest of the Banning strand (e.g., Cardona et al., 2015; Cardona, 2016). At the
northwest terminus of the Coachella Valley, the San Andreas fault zone’s structure becomes
very complex, as multiple strands with opposing left lateral (Kendrick et al., 2015) and
oblique right lateral with reverse/thrust (Huerta, 2015; 2017) relative fault motion interact

through the San Gorgonio Pass (Yule, 2009).

Tectonic Geodesy
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While geologic fault slip rates are averaged over centuries to millennia (or even
greater time periods), geodetic fault slip rates are averaged over years to decades. Also,
geologic fault slip rates are usually strict minima when based on reconstructing piercing
points, such as an offset lithologic contact or stream channel. These fundamental data type
differences could perhaps explain why geodetic slip rates for the southern San Andreas fault
are generally faster than the geologic rates. A current geodetic slip rate for the southern San
Andreas fault from combined INSAR and GPS was 25 + 3 mm/yr (Fialko, 2006). With that
rate significantly higher than those found from the geology, a revised fault geometry in the
structural model used slowed the geodetic rate to 18 + 1 mm/yr (Lindsey and Fialko, 2013),
putting it closer to the geologic rates mentioned above (usually <20 mm/yr). Slip rates for
the southern San Andreas fault from GPS data agree to some extent with geologic rates
because they generally decrease to the northwest from a maximum of c. 23 mm/yr in the
southeast (Spinler et al., 2010). Note that this observation only holds if the aforementioned

result of Shifflett et al. (2002) is ignored.
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FIGURE CAPTIONS

Figure 1 (p. 349): Overview map of the study area, which is located in the Coachella Valley

of southern California. Base map is Google Earth satellite imagery in true color (imagery

date: 14 July 2016). Image was annotated to show the main strands of the southern San
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Andreas fault (arrows represent relative fault motion), which is the main boundary between
the Pacific and North American tectonic plates at this location. The rectangle is the footprint
of the thermal hyperspectral airborne imagery used for this research. Interstate 10, and the
Palm Springs International Airport are shown for geographic markers. BP: Biskra Palms; IH:
Indio Hills; PC: Pushawalla Canyon; SAF-B: San Andreas fault, Banning strand; SAF-MC:
San Andreas fault, Mission Creek strand; THAIF: thermal hyperspectral airborne imagery

footprint; TPO: Thousand Palms Oasis.

Figure 2 (p. 350): Examples of laboratory thermal infrared emission spectra, and linear
spectral mixture models for minerals relevant to this research. Spectra used here are from the
library of Christensen et al. (2000), and mineral names are accompanied by the sample
numbers (in parentheses) from that library. We used the linear “checkerboard” model
(Christensen and Harrison, 1993) to calculate spectra for the mixtures shown. (A) Single
tectosilicate mineral components combined to make a synthetic “granite,” which represents
a typical desert varnish coating substrate lithology found in the study area. Ratio of
quartz/andesine/microcline is 33/34/33, and particle size ranges are: quartz = 125-2000 pm,;
andesine = 710-1000 pm; microcline = 710-1000 pm. (B) Montmorillonite clay (proxy for
desert varnish coating) combined with the “granite” substrate to model the anticipated effect
of a progressively heavier desert varnish coating (“granite/mont” is the mixing ratio for the
two endmember components). The clay’s major absorption feature at 9.36 um begins to
dominate the spectrum as more is added to the mixture. The montmorillonite sample was a
pressed pellet (Cooper and Mustard, 1999, noted that clay crystal aggregates behave

spectrally like larger particles). (C) Field photograph (for scale, hammer is 33 cm long) that
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exemplifies the variable degree of varnish development observed on clasts. Some of the
clasts are circled and labeled to relate physical specimens to the spectral models shown in

(133

(A) and (B): the synthetic “granite” spectrum could represent the clast labeled “‘granite’
endmember” (which is not varnished); the granite/mont = 67/33 (or 33/67) spectra could
represent the clasts labeled “intermediate mixtures” (which have light/moderate varnish);
and the montmorillonite spectrum could represent the clast labeled “montmorillonite
endmember” (i.e., with its heavy varnish coating, a spectrum of this clast might resemble the
spectrum for montmorillonite clay, which can be a significant component in a typical varnish,
see text for further explanation and references). As heavier varnish coatings tend to have
greater physical thickness, a roughly linear relationship between increasing spectral band
depth and varnish thickness has been observed in laboratory spectra of varnish-coated

samples (Christensen and Harrison, 1993), which supports the linear spectral mixture models

in (A) and (B).

Figure 3 (p. 351): Thermal hyperspectral airborne imagery of the Thousand Palms Oasis
area, Coachella Valley, southern California (for larger spatial context, imagery footprint can
be seen in Figure 1). The complete image scene is shown here, and displayed in false colors
assigned to band ratios, which remove the effects of varying illumination due to topography
(Kahle et al., 1980; Gillespie et al., 1987). Band ratio assignments are: red, 11.1/9.5; green,
11.5/9.1; blue, 12.4/8.6 (all values are wavelengths in microns). The false color assignments
highlight geological features (such as the varnish we are studying), and other forms of land
surface cover. General false color interpretation is as follows: red represents younger

sediments, green represents older varnished surfaces, and blue represents vegetation. Thick
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black lines are faults: only the main splays are shown here, so the imagery is not overly
obscured. Arrows indicate relative fault motion. PC: Pushawalla Canyon; SAFMCS: San
Andreas fault, Mission Creek strand; SAFBS: San Andreas fault, Banning strand; TPO:
Thousand Palms Oasis. Lower left photograph is of Mako, the Aerospace Corporation’s
thermal hyperspectral sensor, mounted in the belly of an airplane and ready to fly (photo
taken by David Tratt). Mako is essentially a large camera that takes aerial images of thermal
radiation emitted by land surfaces. Lower left illustration shows the Mako sensor’s viewing
geometry. Base map is an SRTM 1 arc-second DEM hillshade (from the USGS Earth
Resources Observation and Science website, https://eros.usgs.gov/, accessed on 09/02/2017).

Map was produced using QGIS software (QGIS, 2018).

Figure 4 (p. 352): Same as Figure 3, but with color-coded digitized polygons for the mapped
and dated geomorphic surfaces (Kate Scharer, personal communication; Blisniuk and Sharp,
2014) that we used for this research. The surface ages were derived with a combination of
methods: cosmogenic exposure (beryllium-10) dating, and also uranium-series dating (ages
shown in lower left key; ka: kiloannum). To the north east, upstream from where the San
Andreas fault, Mission Creek strand, intersects Pushawalla Canyon, we grouped the cluster
of surfaces for analyses, and we referred to this group as the “upstream” set of surfaces (or
surface deposits). Similarly, to the south west, downstream from the San Andreas fault,
Mission Creek strand, we grouped all of these other surfaces, and referred to this group as

the “downstream” set of surfaces (or surface deposits).



343
Figure 5 (p. 353): Airborne remote sensing emissivity spectra of the geomorphic surfaces
(for surface names and ages, see Table 1, for locations, see Figure 4). To display spectral
variability, there are five subsets of randomly generated spectra for each of the upstream and
downstream sets of surfaces (single spectra shown here are the average of multiples, see
text). The continuum has been removed from all spectra, and they were also smoothed over

a three band interval.

Figure 6 (p. 354): Airborne spectra band depth at 9.16 um versus surface age. Error bars in
surface age are from values in Table 1. Error bars in band depth are from the standard

deviation of values calculated from all of the spectra in Figure 5.

Figure 7 (p. 355): Dominant (>50% relative abundance) clast size range plots for field sites
on the upstream (upper panel) and downstream (lower panel) sets of surfaces. Clast sizes

were not measured at the downstream sites C3sand and C3veg.

Figure 8 (p. 356): Desert varnish scores for field sites on the upstream (upper panel) and
downstream (lower panel) sets of surfaces. A higher number is a greater degree of

development, as follows: 1 =absent/rare, 2 = light/weak, 3 = moderate, and 4 = heavy/strong.

Figure 9 (p. 357): Desert pavement scores for field sites on the upstream (upper panel) and
downstream (lower panel) sets of surfaces. A higher number is a greater degree of

development, as follows: 1 =absent/rare, 2 = light/weak, 3 = moderate, and 4 = heavy/strong.
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Figure 10 (p. 358): Vegetation spacing estimates for field sites on the upstream (upper panel)
and downstream (lower panel) sets of surfaces. The values for upstream sites QtOpl and
QtOp2 are off the chart, and noted numerically (30 and 50 m, respectively). The higher

spacing means that older surfaces are less vegetated.

Figure 11 (p. 359): “Rock” area fraction values for field sites on the upstream (upper panel)

and downstream (lower panel) sets of surfaces. Values are minimums, in percent.

Figure 12 (p. 360): Upstream field site Qt4pl (<11.3 ka). (A) sample square meter field
photograph (frame is 1 meter on edge, with a thickness of 2.5 cm). Site name/age seen on
clipboard (lower right) is obsolete. Gray card (upper right) is present for a potential color
analysis that was not completed for this study. Clasts on clipboard and gray card are not
representative, but were placed to secure items from heavy wind. (B) Site overview field
photograph (sample frame is 1 meter on edge). (C) Ground-based spectra are from sand and
vegetation samples. Site name and age are in the upper right corner. The final, thicker

spectrum is the site average (arithmetic mean) for all spectra.

Figure 13 (p. 361): Downstream field site COpl (>94.5 ka). (A) sample square meter field
photograph (frame is 1 meter on edge, with a thickness of 2.5 cm). Site name/age seen on
clipboard (lower right) is obsolete. Gray card (upper right) is present for a potential color
analysis that was not completed for this study. Clasts on clipboard and gray card are not
representative, but were placed to secure items from heavy wind. (B) Site overview field

photograph (sample frame is 1 meter on edge). (C) Ground-based spectra are from arbitrarily
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chosen lithologic clast samples that were distributed across the sampling area. Site name and
age are in the upper right corner. The final, thicker spectrum is the site average (arithmetic

mean) for all spectra.

Figure 14 (p. 362): Airborne (blue) and ground-based (red) spectra plotted on the same axes
to show the systematic difference in shape and position of the emissivity minimum for each
of the data sets. The emissivity minimum is at 9.16 um in airborne spectra, and 9.30 um in
ground-based spectra. Airborne spectra are from Figure 5: “Airborne 17 is Qt0 (>95 ka),
from the second of the five (counting down from the top) upstream sets, and “Airborne 2” is
CO0 (>95 ka), from the first of the five downstream sets. “Ground 1” is the field site QtOp2
(>95 ka, Figure S10) average spectrum, and “Ground 2” is the field site COp1 (>95 ka, Figure
13) average. For the most direct comparison, we performed the exact same processing steps
on the ground-based spectra as we did on the airborne spectra (ground-based spectra
resampled to the airborne wavelengths, continuum removal performed, then smoothed). We
also vertically scaled (stretched) all of the spectra shown here to the one that had the greatest

emissivity range (which was Qt0p2).

Figure 15 (p. 363): Summary of correlation coefficients between each parameter and surface
age. All values are R?, except for those for desert varnish and desert pavement scores, which
are Spearman’s rank correlation coefficient (used for categorical variables, see Simpson,

2015). Exact numerical values are in Table 3.
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TABLES
Table 1: Geomorphic surface names and ages*
Surface names

Upstream? Downstream? Age (ka) Age (ka) used in
text®

Qt4 - <11.3 <11

Qt3 C3 12.7+1.4 13

- C2f 26.00 £ 7.55 |26

Qt2 C2 74.40+5.15 |74

Qtl C1l 87.3+7.2 87

Qt0 Co >94.5 >95

!Names and ages are from Blisniuk and Sharp (2014), and Kate Scharer,
personal communication. See Table 4 in Owen et al. (2014) for a detailed
comparison of the nomenclature of geomorphic surfaces and their ages, and how
they compare from area to area in the desert southwest.
2Upstream and downstream are relative to the Mission Creek strand of the
southern San Andreas fault, see Figures 3 and 4.

3In most cases where the name of a surface is cited in the text, the age is also

included for reference, with the age rounded to the nearest whole number, in ka
units, and the uncertainty discarded, for brevity.



347

Table 2: Summary of ground-based spectra

Field Age GPS GPS Single “Sand”® | Vegetation | Total
site (ka) easting® | northing? | clast spectra | spectra #s | usable

used spectra | #s spectra

in #'s (not

text! including

site
average)
Qt4pl* <11 | 0566905 | 3743636 - 1-5 6-10 10
Qt4p2 <11 | 0566647 | 3743466 | 1-10 - - 10
Qt3pl 13 0566949 | 3743509 | 1-10 - - 10
Qt3p2 13 0566794 | 3743443 1-9 - - 9
Qt2pl 74 0567024 | 3743301 | 1-10 - - 10
Qt2p2 74 0567019 | 3743375 2-9 - 1 9
Qtlpl 87 0567179 | 3743334 | 1-10 - - 10
Qtlp2 87 0567122 | 3743351 1-9 - - 9
QtOpl >95 | 0567424 | 3743166 | 1-10 - - 10
QtOp2 >05 | 0567455 | 3742949 | 1-10 - - 10
C3pl 13 0564570 | 3741612 2-7 1,8,9 - 9
C3p2 13 0565467 | 3742974 1-9 - - 9
C3sand 13 0564681 | 3741973 - 1-10 - 10
C3veg 13 0565037 | 3742861 - - 1-4 4
C2fpl 26 0565089 | 3743300 | 1-10 - - 10
C2fp2 26 0564947 | 3743239 1-8 - - 8
C2fp3 26 0564803 | 3743250 | 1-10 - - 10
C2fp4 26 0564885 | 3743129 1-3 4-9 - 9
C2pl 74 0564630 | 3742626 | 1-10 - - 10
C2p2 74 0564533 | 3742720 1-9 - - 9
C2p3 74 0564731 | 3743148 1-9 - - 9
C2p4 74 0564482 | 3743238 | 1-10 - - 10
Clpl 87 0564226 | 3743652 1-9 - - 9
Cilp2 87 0564299 | 3743682 | 1-10 - - 10
Cop15 >95 | 0564320 | 3743216 | 1-10 - - 10
COp2 >95 | 0564223 | 3743046 | 1-10 - - 10
COp3 >95 | 0564039 | 3743231 | 1-10 - - 10
1See Table 1.

2All GPS locations are given in UTM coordinates, zone 11S.

3"Sand” refers to spectra measured from samples of finer, unconsolidated lithologic
detrital material, and does not imply a technical definition of grain size.

“Figure 12.

SFigure 13.
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Table 3: Summary of correlation coefficients! between each parameter and surface

age
Parameter (units) Correlation
coefficient
Mean of dominant (>50%) clast size ranges (cm) 0.10
Varnish score (dimensionless)? 0.90
Pavement score (dimensionless)? 0.90
Vegetation spacing (m) 0.34
“Rock” area fraction (percent) 0.00
Airborne spectra band depth at 9.16 um (emissivity, dimensionless) 0.59
Ground-based spectra band depth at 9.30 ym (emissivity, 0.04

dimensionless)

All values are R?, unless otherwise specified.
2Spearman’s rank correlation coefficient.



349

FIGURES

116°27'W 116° 20'W

33°54'N

33°47'N

Figure 1



350

—quartz (1969)

—andesine (561)

Emissivity (dimensionless)
o
o)
(8]

—microcline (481)

—"granite" (synthetic)

8 9 10 11 12 13
Wavelength (um)

B

m

[%2]

o

(=

o

2]

| ==

o

£

RSl

.%‘ ——"granite" (synthetic)
6 ——granite/mont = 67/33
£

w —granite/mont = 33/67

—montmorillonite (2153)

8 9 10 11 12 13
Wavelength (um)

9

intermediate mixtures £+

Figure 2



351

116°16' W

116°20° W

Z ~wv°

€€

Figure 3



352

116°20° W 116°16' W

S

Geomorphic uraces:
Ages (up/downstream names)

] <11.3ka(Qt4)
12.7 + 14 ka (Qt3/C3)

(I

[0 26.00 +7.55 ka (C2f)
I 7440 +5.15 ka (Qt2/C2)
1
-

33°48'N

87.3+7.2ka (Qt1/C1)
>94.5 ka (Qt0/C0)

Figure 4



353

Upstream Downstream

1.000

1.000

Emissivity (dimensionless)
o o
© ©
8 &

I
bhede
Emissivity (dimensionless)
o o o (=]
© © © ©
8 & 8 &
1L

>0.985
! 0.980
0.975 0.975
9 10 1" 12 13 8 9 10 1 12 13
Wavelength (um) Wavelength (um)

1.000

0.990

Emissivity (dimensionless)

o (4 o

g8 8 g

o o o
thece

Emissivity (dimensionless)

o o =) o -

© © © © (=]

8 & 8 & 8
I

0.975 0.975
8 9 10 1" 12 13 10 1 12 13
Wavelength (um) Wavelength (pm)

-3
©

1.000

Emissivity (dimensionless)
e o ==
© © o
g€ & 8
LL)
Bk é z
Emissivity (dimensionless)
(=] o o o
© © © ©
g8 & 8 &
Y

0.985
0.980
0.975 0.975
8 9 10 11 12 13 8 9 10 11 12 13
Wavelength (um) Wavelength (um)

2
©
@
=}
o
©
@©
=]

Emissivity (dimensionless)
e 8 2 3
& 8 & 8
thege
Emissivity (dimensionless)
o o o -
© © © o
& 8 & 8
ITITL
NEEtEY

2
o
o

0975

9 10 1 12 13 10 11 12 13
Wavelength (um) Wavelength (um)

©
©

Emissivity (dimensionless)

o o o o -

2 8 2 g8 8

8 & 8 & 8
bhede

Emissivity (dimensionless)

o o o o =

© © © © o

8 & 8 & 8
ILIE

0.975 0.975
10 g i 12 13 10 1 12 13
Wavelength (um) Wavelength (pm)

®
©
®
©

Figure 5



0.025

0.020

0.015

0.010

0.005

Airborne spectra band depth at 9.16 um

0.000

Figure 6

354

0 10 20 30 40 50 60 70 80 90 100

Surface age (ka)



355

Upstream surfaces

5.0
5
<40
Q
2
8
% 3.0
K
o
S 20
wn
& I
E l
g
‘€1.0
: I I
o

0.0

Qtap1 Qtdp2 Qt3pt Qtsp2 Qt2p1 Qt2p2 Qtip1 Qt1p2 Qtop1 Qtop2
Surface/field site
Downstream surfaces
5.0

£
o

C3p1  C3p2 C3sand C3veg C2fp1 C2fp2 C2fp3 C2fp4 C2p1  C2p2 C2p3 C2p4 Cipl Cip2  COp1  COp2  COp3
Surface/field site

°

2

[

% 3.0

8 s

5 )

< [=%

=) 2.0 £

& ) b

£ S c

g E 2

E 1.0 3 %

a 2 =)
3z

0.0 —

Figure 7



356

Upstream surfaces

| I l I
| I

Desert varnish score (see text/caption)

Qtdp1 Qt4p2 Qt3p1 Qt3p2 Qt2p1 Qt2p2 Qt1p1 Qt1p2 Qtop1 Qtop2
Surface/field site

Downstream surfaces

3

C3p1  C3p1 C3sand C3veg C2fp1 C2fp2 C2fp3 C2fp4 C2p1 C2p2 C2p3 C2p4 Clpl  Clp2 COp1  COp2  COp3
Surface/field site

Desert varnish score (see text/caption)

Figure 8



357

Upstream surfaces
£
3
8
8
e
o
g 2
b=
g
8
e 1
3
i3
[=]
Qtdp1 Qtap2 Qt3pt Qt3p2 Qtzp1 Qwp2 Qtip1 Qtip2 Qtop1 Qtop2

Surface/field site

Downstream surfaces

score (see

Desert p

L1 1 NN

C3p1 C3p1 C3sand C3veg C2fp1 C2fp2 C2fp3 C2fpd C2p1 C2p2 C2p3 C2p4 Ci1p1 C1p2 COp1 COp2 COop3
Surface/field site

Figure 9



358

Upstream surfaces

Vegetation spacing (m)
&
o

30
20
15
0 I l

Qtdp1 Qup2 Qt3p1 Qt3p2 Qpt Qtp2 Qt1p1 Qt1p2 Qtop1 Qtop2
Surface/field site

Downstream surfaces
20

Vegetation spacing (m)
5

C3p1  C3p2 C3sand C3veg C2fp1 C2fp2 C2p3 C2fp4 C2p1  C2p2 C2p3 C2p4 Clpl  Clp2 COpl  COp2  COp3
Surfaceffield site

Figure 10



359

Upstream surfaces

40

35

£ 30
£
g

€25
E

§20
g

515
o
©

§ 10
4

5 L
0
Qtdp1 Qt3p1 Qt3p2 Qt2p1 Qt2p2 Qt1p1 Qt1p2 Qtop1 Qtop2
Surface/field site
Downstream surfaces

40

35
8

=30
E
g

£25
£,

8§20
B©
g

‘w15
o
©
x

g 10
4

5

0

C3p1 C2p1 C2fp3  C2fp4 c2pt c2p2 c2p3 Cip1 c1p2 cop1

Surface/field site

Figure 11



360

=
©

0.85

=
= oy 2
N o ®

Emissivity (dimensionless)

/ T~ R A
M“‘q

PO
P

8 9

10 1 12 13
Wavelength (microns)

Upstream
Qt4p1
<11.3 ka

e Sand 1
w—Sand?2
= Sand3
~-Sand4
—Sand5
——\feg1
—\/eg2
—\/eg3
—\eg4

—\eg5

a»/\verage

Figure 12



361

Downstream

09 COop1
= ' >94.5 ka
20.8
g ) = Series1
o ===Series2
2 0.7 —Series3
g Series4
o] 0.6 = Series5
o —Series6
g 0.5 —Series7
8 = Series8
= 04 ——Series9
L ——Series10

0.3 @amm/\verage

0.2

8 9 10 11 12 13

Wavelength (microns)

Figure 13



362

-
o

o
©

Emissivity (dimensionless, scaled)
o
Qo

—Airborne 1
—Airborne 2
0.7
—Ground 1
—Ground 2
0.6
8 9 10 11 12 13

Wavelength (microns)

Figure 14



363

0.90 . .
0.80
0.70
0.60 -
0.50

0.40

Correlation coefficient

0.30

0.20

0.10 L 4
*

0.00 A g
Clast size Desert varnish Desert pavement  Vegetation "Rock" area  Airborne spectra Gound-based
score score spacing fraction band depth at  spectra band
9.16 um depth at 9.30 um

Figure 15



364

SUPPLEMENTAL ITEMS

Figure Captions

Figures S1-S27 (pp. 365-391): Field photographs and ground-based spectra for all 27 field
sites (see Tables 1 and 2 in main text, site locations included in Table 2). (S1)-(S10),
upstream field sites, in chronological order from youngest to oldest. (S11)-(S27),
downstream field sites ordered from youngest to oldest. For each supplementary figure: (A)
sample square meter field photograph (frame is 1 meter on edge, with a thickness of 2.5 cm).
Site name/age seen on clipboard (lower right) is obsolete. Gray card (upper right) is present
for a potential color analysis that was not completed for this study. Clasts on clipboard and
gray card are not representative, but were placed to secure items from heavy wind. (B) Site
overview field photograph (sample frame is 1 meter on edge). (C) Ground-based spectra.
The accurate site name and age are in the upper right corner. The final, thicker spectrum is

the site average (arithmetic mean) for all spectra.
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