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ABSTRACT

Accurate cellular communication is of paramount importance for the development,
growth, and maintenance of multi-cellular organisms. Communication between
cells is carried out by a highly conserved set of signaling pathways, whose dysregu-
lation can lead to many diseases. The molecular details of these signaling pathways
are now well-characterized, allowing researchers to investigate the emergent prop-
erties that arise from the complex signaling networks. These properties often arise
from counter-intuitive or paradoxical mechanisms, meaning that systems-level anal-
ysis is necessary. Importantly, mathematical models have been constructed for many
pathways that capture measured reaction rates and protein levels. These mathemat-
ical models successfully recapitulate dynamic responses of each pathway. Here, I
investigated the input-output response of the Wnt, MAPK/ERK, and Tgfβ pathways
using analytical and numerical treatment of mathematical models. Using this ap-
proach, I found that the distinct architectures of the three signaling pathways lead
to a convergent behavior, linear input-output response. Specifically, mathematical
analysis reveals that a futile cycle in the Wnt pathway, a kinase cascade coupled to
feedback in the ERK pathway, and nucleocytoplasmic shuttling in the Tgfβ path-
ways all yield linear signal transmission. I then verified this finding experimentally
in the Wnt and ERK pathways. For the Wnt pathway, direct measurements of
the input-output response reveal that β-catenin is linear with respect to Wnt co-
receptor LRP5/6 activity up until receptor saturation. For the ERK pathway, direct
measurements indicate a linear relationship between phosphorylated ERK1/2 and
the concentration of EGF ligand, up until saturation of ERK1/2. Finally, mathe-
matical modeling reveals that linear response in the Wnt pathway, in conjunction
with a recently identified cis-regulatory motif, is sufficient to explain gene expres-
sion buffering to perturbations. Therefore, this thesis demonstrates how linearity
emerges across three dissimilar architectures, and introduces a novel benefit for
linear signal transmission in biology.
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C h a p t e r 1

INTRODUCTION

Signaling pathways are critical to metazoan development and maintenance
Development and maintenance of multi-cellular organisms depend on the coordi-
nated growth, movement, and death of large numbers of cells. After fertilization, a
single egg rapidly divides and differentiates into an increasingly complex embryo;
in humans, normal development produces hundreds of cell types and trillions of
cells, each guided to the correct location at the correct time [8, 9]. To achieve this
outcome, cells must communicate with nearby cells (juxtacrine signaling) and over
longer distances (paracrine signaling). This coordination enables the emergence of
many layers of tissue patterning, from precise mosaic patterning between cells to
patterning across an entire embryonic axis [19, 34]. In this way, cellular commu-
nication drives the complex body plans of all multi-cellular organisms [39]. After
development, cellular communication is important for organ homeostasis, in regu-
lating cell turnover by controlling growth and death responses, and preventing the
occurrence of cancers and other harmful activities [14]. The remarkably complex
processes of cellular regulation require effective systems for cell-cell communica-
tion.

The intricate process of communication is orchestrated by signaling pathways: net-
works of multiple proteins within the cell that sense, interpret, and transmit signals
from outside. Signaling pathways govern an array of cellular responses including
gene transcription and regulation of metabolism and cell-cycle. Signaling pathways
also initiate cell differentiation, pluripotency, proliferation, apoptosis, migration,
adhesion, cytoskeletal reorganization, and polarity[39]. With the wide range of
functions that must be achieved in many dissimilar multi-cellular organisms, it
would not be surprising if hundreds of individualized signaling pathways developed
independently to satisfy a diversity of needs. Yet fewer than 20 classes of meta-
zoan signaling pathways have been identified [19], all of which evolved prior to
the diversification of modern body plans. Of these 20, seven signal pathways are
responsible for most developmental processes – the Hedgehog, Wnt, Tgfβ, ERK,
Notch, JAK/STAT, and nuclear hormone pathways [40]. As a result, these signaling
pathways must be highly versatile and perform a wide range of functions across
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many developmental contexts.

Signaling pathways transmit ligand-receptor action to cellular response
The structure of the seven developmental signaling pathways can be broadly gen-
eralized to a few key steps and components. These signaling pathways function
by transmitting some extracellular signal such as an extracellular protein ligand or
chemical into a response within the cell.

This process begins with ligand-specific receptors, which undergo conformational
changes and oligomerization following ligand-recognition [31]. There are often
multiple receptor-ligand pairs that activate each pathway. In general, receptors span
the cell membrane, though some receptors, as in the nuclear hormone receptor
pathways, reside within the cell and respond to membrane-permeable factors. Once
bound to ligand, receptors begin a series of biochemical reactions within the cell
[19].

With the exception of the nuclear hormone pathway, ligand-receptor binding is
followed by recruitment of protein factors to the plasmamembrane. This recruitment
instigates changes to the state and location of various proteins through sequestration,
nuclear transport, cleavage, chemical modification, and protein binding. Finally, a
transcriptional regulator accumulates in the nucleus. The transcriptional regulator
then binds directly to DNA as a transcription factor, or synergizes with another
transcription factor to regulate gene expression [19]. In this thesis, I refer to the
network of protein interactions that transmits signal from ligand-receptor dynamics
into gene transcription as the “core pathway” (Figure 1.1). As the number of ligands
and receptors vary significantly across organisms, this thesis focuses on analysis of
the core pathway.

The complexity of the core pathway varies significantly between pathways. In the
Notch pathway, Notch acts as both the transmembrane receptor and, after being
cleaved and imported to the nucleus, as the transcriptional regulator [3]. Similarly,
in the Tgfβ and JAK/STAT pathways, the transcriptional regulator (Smad and STAT,
respectively), are activated directly at the receptor and then imported [41, 50]. In
contrast, the ERK pathway transduces signal through a kinase cascade, with several
levels of protein activation separating the receptor from the transcriptional regulator
[32].

While the molecular details of each signaling pathway are well understood, it is still
unclear what information about ligand-receptor dynamics is carried into the cell.
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In order to understand how cells coordinate developmental events, we must first
understand how signals are sensed, interpreted, and transmitted through the core
signaling pathway.

Figure 1.1: (A) Signaling pathways transmit inputs from ligand-receptor interaction
to a change in output, the level of transcriptional regulator (white circle).

Input-output response is key to understanding signaling pathway function
Signaling pathways have been well-characterized over the last few decades, and the
molecular interactions that govern each pathway are largely identified. In addition,
quantitative assays of reaction rates and protein levels have enabled the construction
of detailed models that capture pathway dynamics [49]. Consequently, the time is
ripe to study the input-output response of these signaling pathways. The analyses
performed in this thesis will focus on the core pathway as defined in Figure 1.1, with
the input as ligand-receptor activation, and the output as the level of transcriptional
regulator. Input-output behavior captures how the output of the core pathway
responds to various inputs, e.g. sinusoidal inputs (for frequency response) or steady-
state inputs (for static response). This allows us to abstract the behavior of a signaling
pathway away from the underlying molecular details [15].

Studying input-output response serves several purposes. First, input-output response
provides insight into signal processing performed by pathways. Rather than produce
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output in faithful representation of the input, signal processing involves the manip-
ulation of the input signal. For instance, signal processing includes amplification,
filtering, and applying threshholds to the input signal [44]. Each of these signal
processing capabilities may confer benefits to cell signaling. In the next section, I
examine specific examples of input-output response, the mechanism by which they
arise, and the benefits they may confer.

Second, studying input-output response enables a modular approach to tackling
large networks. Modularity underlies many biological processes, and in particular
enables the study of signaling pathways in isolation from other cellular processes.
Once we characterize the input-output response of a pathway, however, we can
examine its behavior within larger inter-connected systems [15]. In Chapter 4, I
utilize this modular approach to examine a transcriptional network downstream of
the Wnt pathway. In this case, the output of the core Wnt pathway connects to the
input of the transcriptional network.

In the past several decades, researchers have studied input-output behavior within
many signaling pathways, uncovering a variety of responses to signal. These include
responses within the receptor module, through the core pathway, and at the gene
transcriptional level. Below, I discuss several examples of input-output response
in cell signaling, as well as the mechanisms by which the input-output responses
are generated and the benefits they may confer. These responses include logarith-
mic computation, ultrasensitivity, hysteresis, and non-monotonic response to input.
Notably, all of these responses involve nonlinear processing of input and indicate
that a broad array of signaling strategies are employed in biology. By contrast, in
Chapters 2-3, I demonstrate linear input-output response in three distinct signaling
pathways, suggesting that linearity is a pervasive behavior of cell signaling.

Many nonlinear input-output responses are found in in cell signaling
Logarithmic computations can arise from protein allostery. For an allosteric pro-
tein, the protein’s active site is regulated by a distal effector [36]. Allostery is
widespread, appearing in signaling, metabolism, and cell-cycle regulation[10]. The
thermodynamic basis for conformational selection in allosteric proteins can be cap-
tured by the Moneaud-Wyman-Changeaux (MWC) model [36]. In this model, a
protein can switch between two or more states through conformational change. For
protein kinases, this conformation change often occurs at the substrate binding site.
Conformational selection is achieved through binding of one or more effectors,
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which reinforce the protein’s existing conformation. For instance, in the E. coli
chemotaxis network, the aspartate receptor Tar can switch the sensor protein CheA
from an active kinase to inactive. In particular, the inactive and active states are in
thermodynamic equilibrium, while chemoattractant binding reinforces the inactive
state. Thus, aspartate can provide conformational selection of CheA, with bound
receptor complex less likely to transition to the active state than unbound receptor
complex [30].

How does the architecture of MWC proteins affect input-output response? The
conformational selection provided by one or more effectors responds nonlinearly,
since each effector further decreases the probability of conformational switching.
As shown by Olsman and Goentoro, this architecture is capable of producing log-
arithmic sensitivity to ligand [37]. As a result, the MWC model produces linear
changes in receptor activity in response to logarithmic changes in effector concen-
tration. Interestingly, this relates to Weber’s law of sensory detection that describes
systems that are sensitive to relative changes in signal [37]. Indeed, logarithmic sens-
ing by the allosteric Tar receptor produces Weber’s law detection in the bacterial
chemotaxis network [46].

Cascades of protein kinases, in which each kinase activates a subsequent kinase,
can produce highly ultrasensitive response to input. Ultrasensitivity is defined
by Goldbeter and Koshland as an input-output response that requires less than
an 81-fold increase in input to drive the output from 10% to 90% of maximum
[21]. Generally, an ultrasensitive response is one that is sigmoidal, having an
S-shaped response profile. Sigmoidal response arises through cooperativity in
allosteric proteins, enzyme saturation for two-state kinase/phosphatase substrates,
and multi-site distributive phosphorylation (one site phosphorylated per enzyme-
substrate collision). Protein cascades amplify the sigmoidal response of each layer,
producing extremely sharp response to stimulus [26].

Ultrasensitivity was demonstrated for the ERK pathway response to progesterone
in Xenopus oocytes [16]. The ERK pathway is activated through a kinase cascade
consistingMAPKKK (e.g. Raf-1, B-Raf, Mos), MAPKK (e.g. MEK1, MEK2), and
MAPK (e.g. ERK1, ERK2). Huang and Ferrell demonstrated through modeling
and experiments that that saturation ofMEK and ERK phosphatases, combined with
distributive multi-site phosphorylation, produces ultrasensitive response to stimulus
[26]. Indeed, in single Xenopus oocytes, the hill coefficient of ERK pathway
response was experimentally determined at nh > 42 [16]. The highly ultrasensitive
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response of the ERK pathway serves two purposes. First, within the responsive
(steep) region of the input-output curve, small changes in signal are amplified to
large changes in output. This effect is enhanced by the concentration of each kinase
within the ERK cascade: the first kinase is expressed at nanomolar concentration,
while the latter kinases are expressed at micromolar concentrations, causing a 1000-
fold increase in signal amplification [43]. Second, for inputs outside the responsive
region of the input-output curve, ultrasensitivity produces all-or-none response.
Small inputs produce no output, while large inputs producemaximal output, yielding
a sharp, threshhold response to input [16].

Positive feedback, in which system’s output feeds back and reinforces the state of
system, can generate hysteretic response to input [33]. Positive feedback can be
achieved either through a cycle of activation, or a cycle of inactivation (double-
negative feedback). This topology can create a bistable response to input, meaning
that an input can produce two distinct, stable outputs. The output not only depends
on the current input, but the history of the system as well. As a result, if an increase
in input shifts the system from a low-output to high-output state, a similar decrease
in input may not be sufficient to bring the system back to the low-output state. A
much larger decrease in input may be needed to return the system to its original
low-output state. This input lag is referred to as hysteresis, and was first used to
describe the behavior of magnetic materials [12].

In the Sonic Hedgehog (Ssh) pathway, there is evidence of hysteretic response to
Ssh ligand. In developing mouse limbs, both current and previous exposure to Ssh
determined digit identity, indicating a history-dependence to Ssh signaling [23].
Similarly, Ssh target genes continue to be expressed even after decrease in ligand
level [6, 27]. Bistability and hysteresis were initially characterized as arising from
a positive feedback from Gli transcription factors activating their own expression.
This was thought to reinforce the activity of Gli transcription factors even after
Ssh signaling had been removed. However, further evidence supports a model in
which hysteresis in Ssh signaling arises from the gene regulatory network governing
Ssh target genes, downstream of the Ssh pathway [6, 11]. In this model, there
is mutual repression between genes expressed under high Ssh signaling, such as
Nkx2.2, and genes expressed in the absence of Ssh, such as Pax6. This double-
negative produces an effective positive feedback in Ssh target gene expression, and
a hysteretic transcriptional response to Ssh. In this context, bistability can generate
sharp response to Ssh input, and hysteresis provides a memory of past signaling
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events [11].

Lastly, the incoherent feed-forward loop (IFFL), a paradoxical system that both ac-
tivates and inhibits its output, can produce non-monotonic response to input [28].
The IFFL is a recurrent motif in cell biology, appearing in signaling pathways,
transcriptional networks, and immune regulation [1]. For instance, in the galactose
system in E. coli, cAMP-responsive CRP has two roles in regulating the transcrip-
tion of the galE gene. First, it directly binds to the promoter region and recruits
RNA polymerase. Second, it upregulates a repressor galS, which represses the
transcription of the galE gene. Thus, CRP has both a positive and negative effect
on galE transcription. This IFFL architecture can produce numerous input-output
responses, depending on parameters and timescales [24].

In the case of the galE transcriptional circuit, Kaplan et al. demonstrated that the
IFFL increases galE expression over a range of low cAMP levels, while decreasing
galE expression for higher cAMP levels. This is a type of non-monotonic response,
inwhich the output increases over one interval of input while decreasing over another
interval. In the gal IFFL circuit, non-monotonic response to input is generated by
differential binding to the galE and galS promoters. When cAMP-activated CRP
is at low levels, CRP binds strongly to the galE promoter and only weakly to the
galS promoter, leading to galE expression. However, higher levels of activated
CRP drive binding onto the galS promoter, upregulating the repressor of galE and
decreasing galE expression. Thus, the IFFL motif can act as a bi-phasic amplitude
filter, filtering out low and high inputs and only responding to intermediate cAMP
inputs [28].

Do signaling pathways exhibit linear input-output response?
While nonlinear input-output response is utilized in many signaling contexts, there
is evidence that linear signal transmission may be a widespread behavior of cell
signaling. Linear input-output response entails that each frequency component of
the input signal be faithfully transmitted into output, such that only the amplitude
and phase are affected. For static inputs, this means that the output is equal to the
input scaled by some multiple, or gain G. There are several reasons to expect linear
response in cell signaling.

One benefit of linearity is superposition, a technique employed in engineered linear
systems. By definition, a linear system satisfies the properties of homogeneity and
additivity. Homogeneity is satisfied if scaling an input results in a correspondingly
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scaled output. Additivity is satisfied if the output for two combined inputs is the
summed output for the two inputs alone. Therefore, a linear system can transmit
multiple signals simultaneously without distortion, a property referred to as super-
position [44]. Superposition is what enables a car radio to tune to a single radio
station, and for many houses to share the same telephone line. By the same merits
we find for linearity in engineered systems, we might expect to find linearity in
biological systems as well. I propose that linearity could increase the number of
signaling events transmitted through the limited set of pathways in cells. Multiple
ligand-receptor complexes often feed into one pathway (e.g. all growth factors into
the ERK pathway [29]), and so superposition could allow several ligands to activate
the pathway at once, with gene regulatory networks then deconvolving the pathway
output into the response from each ligand alone.

Second, input-output linearity increases the information capacity of a signaling path-
way as compared to nonlinear input-output responses [51]. Noise is an inescapable
aspect of signal transmission and limits the number of inputs that can be distin-
guished by measuring output. For nonlinear input-output responses, the pathway
compresses inputs where the response slope is shallow and amplifies noise when the
response slope is steep, further reducing the number of distinguishable inputs. In
contrast, information loss due to noise is minimized for linear input-output response,
maximizing the number of distinguishable inputs. In this context, linearity is also
referred to as “dose response alignment,” meaning that the dose response curves of
bound receptor and downstream output are aligned [51].

Dose response alignment was observed in several hormone signaling pathways
[2, 13], though the mechanisms for dose-alignment are unknown. Dose response
alignment was observed for theMAPKFus3 in the yeast pheromone response system
aswell, using a feedbackmechanism not conserved inmetazoanMAPK/ERK signal-
ing [4, 51]. There is also evidence of linearity between ligand and the time-integrated
activity of the epidermal growth factor and erythropoietin receptor modules [7, 38].

Motivated by this, I studied multiple metazoan signaling pathways to determine
whether linearity is a more widespread strategy of cell signaling. Specifically, I
chose the Wnt, ERK and Tgfβ pathways for two reasons: one, these signaling
pathways represent three of the seven classes of early developmental signaling
pathways, and two, their core pathways are characterized by detailed mathematical
models. Importantly, thesemodels have predicted awide range of pathway behaviors
over the years (e.g. Wnt refs. [20, 25, 35]; ERK refs. [16, 18, 26, 43, 45]; Tgfβ refs.
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[5, 17, 22, 42, 47, 48]). I used thesemodels to analytically derive the pathways’ input-
output responses. I then validated key findings experimentally using quantitative
Western blots.

In Chapter 2, I demonstrate that despite the distinct architectures of the Wnt, ERK,
and Tgfβ pathways, these three highly-conserved developmental signaling pathways
operate using linear signal transmission. I show that linearity arises in the Wnt
pathway due to a futile cycle of β-catenin synthesis and degradation, a kinase cascade
coupled to negative feedback in the ERK pathway, and rapid nucleocytoplasmic
shutting of Smad complex in the Tgfβ pathway. In Chapter 3, I validate these
findings with direct measurements of input-output response in the Wnt and ERK
pathway using quantitative Western blot. In the Wnt pathway, experiments indicate
that β-catenin accumulates linearly with active Wnt co-receptor LRP and that this
linearity persists throughout the dynamic range of LRP activation. In the ERK
pathway, experiments indicate that doubly-phosphorylated ERK increases linearly
with EGF dose, until saturation of doubly-phosphorylated ERK. I also demonstrate
that specific perturbations can reduce the range of linear response of each pathway.
Finally, in Chapter 4, I explore an additional benefit of linearity in the context of
the Wnt pathway. Modeling the Wnt pathway, I find that linearity produces robust
fold-changes in β-catenin with respect to parameter variations. Therefore, this thesis
demonstrates that linearity is a widespread property of cell signaling, and introduces
a novel benefit for linear signal transmission in biology.
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C h a p t e r 2

LINEARITY IN CELL SIGNALING PATHWAYS: ANALYTICS

2.1 Introduction
Insights into the versatility of signaling pathways may be gleaned from pathway
architectures. As discussed in Chapter 1, studies over the past several decades have
revealed many signaling capabilities that arise from distinct pathway architectures,
e.g., logarithmic response [35], all-or-none response [13, 21], hysteresis [5, 7, 36],
and non-monotonic response [23]. Alternatively, analysis of pathway architectures
may also reveal shared signaling capabilities that emerge from distinct architectures,
pointing to a fundamental property that pathways have converged upon despite
their separate evolutionary trajectories. In this study, we sought to identify shared
properties between conserved signaling pathways.

To approach this question, we use established math models of signaling pathways.
As the number of known signaling pathway components and interactions continues
to grow, our intuition becomes less capable of understanding the myriad interactions
that occur with each signaling event. Conceptual models of linear signaling cascades
become quickly muddied by feedbacks, cross-talk, retroactivity, and other nonlinear
effects [9, 14, 46]. To this end, mathematical models are a necessary tool in
making progress in the study of signaling pathways [2]. Mathematical models can
incorporate large sets of known interactions and provide testable predictions for the
unknown. In our case, we can use analytical tools to approach these pathways to
uncover dominant architectures within the pathway and how this influences pathway
behavior.

We examined three signaling pathways, the canonical Wnt, ERK, and Tgfβ path-
ways, since the architectures of the three pathways are captured by mathematical
models that have been refined by years of experiments [28, 40, 44]. These models
capture the salient features of each pathway and include biochemical details such as
synthesis, degradation, binding, dissociation, and post-translational modifications.
In all the models, biochemical parameters have been directly measured or fitted
to kinetic measurements from cell, embryo, or extract systems. Although by no
means complete, the mathematical models have track records of success in predict-
ing systems-level behaviors across multiple biological systems. For instance, the
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Wnt model [28] predicted robustness in fold-change response [17] and the differen-
tial roles of the two scaffolds in the pathway [28]; the ERK model [12, 21, 41, 44]
captures the ultrasensitivity in the phosphorylation cascade [21]; and the Tgfβmodel
[40] reveals the roles of nucleocytoplasmic shuttling in transducing the duration and
intensity of ligand stimulation [40].

The Wnt, ERK, and Tgfβ pathways transmit input using different core transmission
architecture (Figure 2.1A-C). In the Wnt pathway, signal transmission is character-
ized by a futile cycle of synthesis and rapid degradation [20, 24, 37]. Ligand-receptor
input diminishes the degradation arm of this cycle, leading to accumulation of β-
catenin output [24, 34, 43]. In the ERKpathway, signal transmission is characterized
by a cascade of phosphorylation events coupled to feedbacks, leading to an increase
in phosphorylated ERK output [4, 25, 27, 50]. Finally, signal transmission in the
Tgfβ pathway is characterized by continual nucleocytoplasmic protein shuttling
[22, 32, 33, 39, 48]. Ligand-receptor input effectively increases the rate of nuclear
import, leading to an increase in output, known as the nuclear Smad complex [40].

Figure 2.1: The core pathway for each metazoan signaling pathway is defined by
distinct architectural features. In the Wnt pathway (A), the output is regulated by
a futile cycle of continual synthesis and rapid degradation. In the ERK pathway
(B), the output is regulated by a kinase cascade coupled to negative feedback. In
the Tgfβ pathway (C), the output is regulated through continual nucleocytoplasmic
shuttling.

We studied these mathematical models to identify what, if any, behaviors converge
across pathways. TheWnt [28], ERK [44], andTgfβ [40]models consist of 7, 26, and
10 coupled, nonlinear ODEs, respectively, with 22, 46, and 13 parameters. Because
of their large sizes, they are typically solved numerically to simulate experimental
observations and generate new predictions. However, for the questions posed here,
we found that numerical simulations are not sufficient. Rather, we needed analytics
to uncover exactly how the pathway behaviors depend on the underlying biochemical
processes.
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Analytic treatment has often offered deeper insight than simulations alone - for in-
stance, this approach was used to identify integral feedback in the bacterial chemo-
taxis network [49], and robustness in the bacterial osmolarity network [42] and in
the Wnt pathway [17]. While an analytical solution was previously derived for
the Wnt pathway [17], analytical treatment of the Tgfβ and ERK pathways has not
been attempted due to the complex, nonlinear equations involved. To address this
problem, we employed various analytical techniques, including graph theory-based
variable elimination and dimensional analysis, to derive analytical or semi-analytical
solutions to the steady-state output of each pathway. Our analysis, along with sub-
sequent experimental verification, reveals a striking convergence across the Wnt,
Tgfβ, and ERK pathways: cells operate in the parameter regime where the complex,
nonlinear interactions in each pathway give rise to linear signal transmission. Below,
we describe our analysis of each pathway and the unifying behavior that emerges
from all three pathways.

2.2 Results
Mathematical analysis reveals linear signal transmission in the canonical Wnt
pathway
In theWnt pathway, cells sense ligand-receptor input bymonitoringβ-catenin protein
[6, 24, 30, 34, 43]. β-catenin is continually synthesized and rapidly degraded by
a large destruction complex, comprised of multiple proteins including APC, Axin,
and GSK3β. The destruction complex binds and phosphorylates β-catenin, tagging
it for degradation by the ubiquitin/proteosome machinery [24, 43]. Wnt ligands,
through binding to Frizzled and LRP receptors, inhibit the destruction complex,
leading to accumulation of β-catenin. β-catenin then regulates the expression of
broad target genes [34, 43].

The model of the Wnt pathway (Figure 2.2A) was published in 2003 by a collab-
oration between the Kirschner and Heinrich labs [28]. The Wnt model consists
of 7 nonlinear differential equations and 22 parameters. Applying dimensional
analysis, we previously derived the analytical solution to β-catenin concentration at
steady-state [17]:

[βcat]ss = K17 ·
1 − γ + α/u

2

(√
(1 +

4γ
(1 − γ + α/u)2

− 1

)
(2.1)

α =
k4k6k9v14 · GSK3tot · APCtot

k5k−6K7K8k13k15
(2.2)
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γ =
v12

k13K17
(2.3)

where the input function u = u(Wnt) is the rate of inhibition of the destruction
complex via Dishevelled, a function of ligand-receptor activation. As illustrated
in Figure 2.2A, Kis are equilibrium dissociation constants, kis are rate constants,
and vis are synthesis rates. α and γ in Equation 2.1 are dimensionless parameter
groups defined in Eqs. 2.2 and 2.3: α characterizes β-catenin degradation by the
destruction complex, and γ characterizes the extent to which β-catenin binds to APC
independently of the destruction complex.
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Figure 2.2: Mathematical analysis reveals linear signal transmission in the Wnt
pathway. (A) Network diagram of the Wnt pathway. (B) The parameter groups and
input-output relationship that were derived in this study. Parameter groups and input
function are color-coded to the corresponding reactions in the network diagram.
Parameters that do not appear in the parameter groups drop out due to irreversible
reaction steps (such as k10 and k11). (C) The input-output relationship of the Wnt
pathway. The output is β-catenin, and the input function u(Wnt) is the rate by which
Dishevelled inhibits the destruction complex upon Wnt ligand activation, where k3
and k−6 are defined in the figure, and [Dvl]a is the concentration Wnt-activated
Dishevelled.

Equation 2.1 demonstrates that, in general, β-catenin concentration is a nonlinear
function of the input u. Many parameters of the model were directly measured in
Xenopus extracts, and the remaining calculated from measurements in the same
system. In this study, we examined how the analytical solution (Equation 2.1)
behaves with these measured parameters. The measured parameters indicate that
α ∼ 66, γ ∼ 1.4, and for maximal stimulation, u ∼ 6.0. The large α reflects how
β-catenin stability is primarily dictated by the destruction complex, i.e., α/u � 1
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means that non-Axin dependent degradation is minimal, and α/u � γ means that
the positive feedback from sequestration by APC is minimal. Indeed, the rapid
action of the destruction complex in the Wnt pathway is a recurring observation
across biological systems [20, 24, 37]. With α/u � 1 + γ, Equation 2.1 simplifies
to

[βcat]ss ≈ K17
γ

α
u (2.4)

with detailed derivations presented in the SI. Therefore, within physiologically
relevant parameter values, the steady-state β-catenin concentration becomes a linear
function of the input u (red line, Figure 2.2C). The linear input-output relationship
holds for the entire dynamic range of themodel, until the system saturates at maximal
stimulation (u ∼ 6.0). We confirmed that the numerical solution of the full model
matches the analytical solution in Equation 2.4 (blue line, Figure 2.2C), and that
the response becomes nonlinear when α is decreased, breaking the requirement
α/u � 1 + γ (grey line, Figure 2.2C).

Mathematical analysis reveals linear signal transmission in the MAPK/ERK
pathway
The unexpected linearity that emerges from the model of theWnt pathway prompted
us to wonder if such simplicity may be found in other pathways. Strikingly, we ob-
served the same linearity in the ERK and Tgfβ pathways. In the ERK pathway
(Figure 2.3A), ligand-receptor input is transmitted via a cascade of protein phos-
phorylation [25, 50]. In particular, ligand-receptor interactions activate Ras, which
leads to membrane recruitment and phosphorylation of Raf. Phosphorylated Raf
subsequently doubly-phosphorylates MEK, which in turn doubly-phosphorylates
ERK [25].
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Figure 2.3: Mathematical analysis reveals linear signal transmission in the ERK
pathway. (A) Network diagram of the ERK pathway. (B) The parameter groups
and input-output relationship that were derived in this study. Parameter groups
and input function are color-coded to the corresponding reactions in the network
diagram. Parameters that do not appear in the parameter groups are negligible (as
indicated by ellipses). (C) The input-output relationship of the ERK pathway. The
output is dpERK, and the input function u is the concentration of EGF-activated
Ras (Ras-GTP).

Doubly-phosphorylated ERK (dpERK) is a transcriptional regulator that affects a
broad array of genes [50]. The multi-step topology of the kinase cascade, combined
with distributive phosphorylation of each kinase, gives rise to ultrasensitivity – first
demonstrated in the seminal work by the Ferrell lab [13, 21]. In other contexts, the
pathway also exhibits a graded response [1, 8, 31, 47] that is thought to arise from
the incorporation of negative feedbacks [27, 38], one of which is the inhibition of
Raf by dpERK through hyper-phosphorylation of serine residues [10, 18, 44].

The ERK model [44] is the product of more than two decades of refinement
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[13, 15, 21, 41, 44]. The model, which captures ultrasensitivity and Raf feedback,
consists of 26 differential equations and 46 parameters. To derive an analytical ex-
pression for the ERK pathway, we used a variable elimination technique developed
for networks of mass action kinetics [11]. The technique utilizes an algebraic frame-
work, linear elimination of variables, and mass conservation laws to parameterize
steady-state in terms of core variables (described in SI). We derived an analytical
relationship between the steady-state output of the pathway (dpERK) and the input
to the phosphorylation cascade u:

[dpE RK]ss =
α

β
·

(
Ra ftot

[pRa f ]ss
− 1 −

γ

α

)
· u −

δ

β
(2.5)

α =
k3 · (k8 + kb7)
k7 · [P1]ss · k8

+ . . . (2.6)

β =
k25 · (k30 + kb29 + k29 · [P4]ss)

k29 · [P4]ss · k30
+ . . . (2.7)

γ =
k3 · (k8 + kb7) · k9 · [MEK]ss

k7 · [P1]ss · k8 · k10
+ . . . (2.8)

δ =
k26 + kb25

k26
+ . . . (2.9)

Detailed derivations of Equation 2.5 are presented in the SI. The input u = u(EGF)

in Equation 2.5 is the concentration of active Ras, which is activated via GTP loading
at the ligand-receptor complex [25]. The parameter groups α, β, γ, and δ in Equation
2.5 are defined in Eqs. 2.6-2.9, where the ellipses indicate additional small terms
(expanded in SI). The relative magnitudes of α, β, γ, and δ indicate how the Raf
pool partitions during signaling (Eqs. S3.3, 11-13). The dimensionless group α · u
relates to the amount of free, phosphorylated Raf (α, blue-shaded in Figure 2.3A),
β · [dpE RK]ss describes the amount of Raf inhibited through negative feedback by
dpERK (β, red-shaded in Figure 2.3A), δ relates to the amount of unphosphorylated
(δ, blue-shaded in Figure 2.3A), and γ · u relates to the amount of phosphorylated
Raf bound to other proteins (e.g., to MEK, brown-shaded in Figure 2.3A). Equation
2.5 is not a closed solution, as it includes the term [pRa f ]ss, and there are variables
included in parameter groups α, β, γ. We confirmed that the parameter groups
remain constant over the course of signaling (within 10%, Figure S2.1), justifying
treating the latter variables as parameters.

Next, we considered how the analytical expression (Equation 2.5) behaves within
a specific parameter regime observed in experiments. First, experiments in several
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mammalian cell systems have shown that feedback is strong, such that a significant
fraction of the Raf pool is inhibited [10, 15]. This means that β · [dpE RK]ss ∼

(α+γ)·u+δ. Second, as has been observed inmultiple contexts [13, 21, 41, 44], ERK
phosphorylation is ultrasensitive to the amount of pRaf (the ultrasensitive cascade is
shaded green in Figure 2.3A). Denoting K as the relative change of [dpE RK]ss with
respect to [pRa f ]ss, ultrasensitivity entails that K � 1. In this range, small changes
in pRaf level have very large effects on dpERK level (e.g., in model simulations, a
30% change in pRaf level results in a 900% change in dpERK level, Figure S2.1).
We find analytically that in the parameter regimewhere β·[dpE RK]ss ∼ (α+γ)·u+δ

and K � 1, the negative feedback holds the level of pRaf constant ([pRa f ]ss ≈ Rs,
details in SI). With these two features, strong negative feedback and ultrasensitivity,
dpERK becomes a linear function of the input u:

[dpE RK]ss ≈
α

β
·

Ra ftot

Rs
· u −

δ

β
(2.10)

The full derivation is given in the SI, and includes a toy model to illustrate the intu-
ition for how ultrasensitivity combines with negative feedback to produce linearity.
Equation 2.10 is plotted in Figure 2.3C (red line). We confirmed that the numerical
solution of the full model matches the analytics in Equation 2.10 and becomes non-
linear when the negative feedback is weakened (grey line, Figure 2.3C). Although
the analytical expression describes up until 50% of ERK activation, we verified
numerically that the predicted linearity extends to 93% of ERK activation (Figure
S2.2).

The linearity derived here applies across different dynamic ERK responses. The
model we analyzed gives a sustained dpERK response. In some contexts, however,
the ERK pathway shows a pulsatile response, which has been attributed to receptor
desensitization [41]. Using a larger model that includes details of receptor desensi-
tization [41], we numerically verified that the linearity holds for pulsatile responses,
i.e. the peak level of dpERK increases linearly with the peak level of u (Figure
S2.1).

Mathematical analysis reveals linear signal transmission in the Tgf-β pathway
Finally, we examined signal transduction within the Tgfβ pathway (Figure 2.4A).
In the Tgfβ pathway, input from ligand-receptor interactions is transmitted by the
Smad proteins. There are several classes of Smad proteins, including the receptor-
regulated Smads (R-Smads) and the common Smad (co-Smad or Smad4) [32].
Ligand-activated receptors phosphorylate R-Smads. Phosphorylated R-Smads bind
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to the co-Smad and shuttle into the nucleus and regulate broad target genes. In
the nucleus, the Smad complex dissociates and R-Smads are constitutively de-
phosphorylated and shuttled out to the cytoplasm, where the cycle of phosphoryla-
tion and complex formation begins again [40]. This dynamic translocation in and
out of the nucleus forms a continual nucleocytoplasmic shuttling of Smads, a known
integral feature of the Tgfβ pathway [22, 33, 39, 48].

Figure 2.4: Mathematical analysis reveals linear signal transmission in the Tgf-β
pathway. (A) Network diagram of the Tgfβ signaling pathway, modified from ref.
[40]. (B) The parameter groups and input-output relationship that were analytically
derived in this study. Parameter groups and input function are color-coded to the
corresponding reactions in the network diagram. Parameters that do not appear in
the parameter groups are negligible (as indicated by ellipses). (C) The input-output
relationship of the Tgfβ pathway. The output is nuclear Smad complex, and the
input function u is the fraction of Tgfβ -activated receptors.

The Tgfβ model [40] was published in 2008 by the Hill lab, and consists of 10
differential equations and 13 parameters. Even though the model was fitted to R-
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Smad2 data, the general architecture of signal transmission is conserved across all
five R-Smads [32, 40]. Using the variable elimination technique described before
[11], we derived an analytical expression of the steady-state concentration of Smad
complex in the nucleus:

[S24n]ss = a ·
α · u

(α + γ) · u + β
· S2tot (2.11)

α =
a · (kon[S4n]ss + a · kex2)

ko f f
+ . . . (2.12)

β =
PPase · kdephos

kphos · Rtot ·
kex2

a·kex2+kin2

+ . . . (2.13)

γ = a ·
(
a · kex2 + PPase · kdephos

) (
1

a · kex2
+

1
CIF · kin2

)
+ . . . (2.14)

In Equation 2.11, the input function u = u(Tg f β) is the active fraction of Tgfβ re-
ceptors. The parameter a is the nucleocytoplasmic volume ratio. The dimensionless
parameter groups α, β, and γ in Equation 2.11 are defined in Equation 2.12-2.14,
where the ellipses indicate additional small terms (expanded in SI). α, β, and γ
describe how the Smad2 pool partitions during signaling (Eqs. S4.2, 8, 9): α · u
relates to the amount of nuclear Smad complex (α, blue-shaded in Figure 2.4A, cap-
tures the parameters related to complex formation and translocation to the nucleus),
β relates to the amount of free, unphosphorylated Smad2 (β, red-shaded in Figure
2.4A, captures the parameters related to complex dissociation and translocation to
the cytoplasm), and γ · u loosely relates to the remaining Smad2 pool (γ is brown-
shaded in Figure 2.4A). Phosphorylated Smad2 quickly forms complex [26], so β
essentially corresponds to total monomeric Smad2. Finally, Equation 2.11 is not a
closed solution, since variable [S4n]ss appears in α. We numerically tested that it is
constant within 2% for non-saturating inputs (Figure S2.3), justifying treating it as
a parameter.

As in the Wnt and ERK pathways, the analytical expression for nuclear Smad
complex (Equation 2.11) allows us to see that the behavior dramatically simplifies
with parameters observed in experiment. We consider the case for non-saturating
inputs (u ∼ .1). Protein concentrations in the Tgfβ model were measured in human
keratinocyte cells and the rate constants fitted to kinetic data measured in the cells
[40]. With the measured parameters, we find that β ∼ 46, α · u ∼ 1.5, and
γ · u ∼ 0.7. In this parameter regime, once Smad2 is imported to the nucleus, it is
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rapidly dephosphorylated and exported. Dynamic Smad2 translocation maintains
monomeric Smad2 in excess to Smad complex (β � (α + γ) · u). and forms the
continual nucleocytoplasmic shuttling that is characteristic of the Tgfβ pathway.
Even under maximal Tgfβ stimulation, it has been estimated that phosphorylated
Smad2 comprises only 36% of the Smad2 pool [16, 39]. With β � (α + γ) · u, the
first term in the denominator of Equation 2.11 is small, and concentration of nuclear
Smad complex becomes a linear function of input:

[S24n]ss ≈ a ·
α · S2tot

β
· u (2.15)

Equation 2.15 is plotted in Figure 2.4C (red line), and we confirmed that numerical
simulations recapitulate Equation 2.15 (blue line, Figure 2.4C). Although the ana-
lytical solution is valid only for small values of u, we numerically verified that the
predicted linearity holds for the entire range of input u (from 0 to 1, Figure S2.2).
We confirmed that the pathway becomes nonlinear when the R-Smad phosphatase
is inhibited such that β ∼ (α + γ) · u (grey line, Figure 2.4C). While the model
analyzed here gives a sustained Smad response, we verified numerically that the
linearity holds for a larger model that includes receptor desensitization and gives a
pulsatile Smad response (Figure S2.3) [45].

Linearity in the Wnt, MAPK/ERK, and Tgfβ pathways occurs across wide
parameter range
Our study suggests that the canonical Wnt pathway, the ERK pathway, and the Tgfβ
pathway have converged upon a shared strategy of linear signal transmission. We
would then like to explore how wide a range of parameters this linearity occurs
across. To explore this, we varied several parameter groups for each signaling
pathway: α and γ for the Wnt pathway, α, β, and K for the ERK pathway, and α and
β for the Tgfβ pathway. In the ERK and Tgfβ pathways, the remaining parameter
groups are not able to be varied independently, since they share many parameters
with other groups. After varying the parameter groups, we numerically calculated
the input-output response and assessed its linearity using the L1-norm. We find that
linearity occurs through a considerable range of parameters (Figure 2.5).
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Figure 2.5: Linear signal transmission occurs over a range of parameters in the
model. In this analysis, the parameter groups in each model were varied as in-
dicated e.g., 3x is 3-fold increase, 0.3x is 3-fold decrease. 1x corresponds to the
measured parameters. Plotted in each box is the input-output relationship, numer-
ically simulated over the full dynamic range of the models, i.e., 1-6 for u(Wnt),
0-105 for u(EGF), and 0-1 for u(Tg f β). For simplicity, all outputs are normalized
from 0 to 1. Grey shade: the unperturbed state. Purple shade: linear input-output
response, as defined by L-1 norm < 0.1.
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Next, we validated the relationship between linearity and the requirements for lin-
earity derived in the previous sections. We restated each requirement in terms of
a scaling term S, such that linearity occurs when S >> 1 for the Wnt and Tgfβ
pathways, and S > 1 for the ERK pathway. For the Wnt pathway, linearity occurs
where α/u � 1γ, giving us the scaling term

S =
α

(1 + γ) · u
(2.16)

For the ERK pathway, the feedback must be strong enough to maintain the response
in the linear regime. We can express this in terms of the scaling term:

S =
β[dpE RK]ss + δ

α · u
·

Rs

Ra ftot
(2.17)

We also tested the requirement of ultrasensitivity (K >> 1) for linearity, by varying
parameters in the kinase cascade to increase or decrease the sensitivity of the ERK
cascade. For the Tgfβ pathway, linearity requires that β � (α + γ) · u. We rewrite
this in terms of the scaling term:

S =
β

(α + γ) · u
(2.18)

We then varied each scaling term by altering the value of the underlying parameter
groups. As in the previous section, we assessed the linearity of the input-output
response using the L1-norm. We find that linearity occurs over a large range of S

(Figure 2.6). Interestingly, the ERK and Tgfβ pathway operate close to the edge of
this linear regime. This could indicate that these pathways are capable of switching
to nonlinear response in different cellular contexts.
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Figure 2.6: The requirements for linear signal transmission in the Wnt, Tgfβ, and
ERK pathways. In each plot, we varied S, defined in the equation shown on the
x-axis, and simulated the input-output curve over the dynamic range of the model.
The parameters in the equations are as defined in the main text. For the ERK and
Tgfβ pathways, α and γ are linked in such a way that they could not easily be varied
independently. Linearity was assessed using the L-1 norm, which ranges from 0 to
0.5, with L-1 norm < 0.1 indicating linearity. L1-norm analysis was performed over
the full dynamic range of the system, i.e., u(Wnt) = 1- 6, u(E RK) = 0 to 110, 000
molecules of Ras-GTP, which gave 90% activation of [dpE RK]ss in unperturbed
cells, and u(Tg f β) = 0 to 1.

2.3 Discussion
In this chapter, we examined models of three signaling pathways to determine
their input-output response. Surprisingly, we found that despite their dissimilar
architectures, all three pathways converge upon a shared signaling strategy: linear
signal transmission. We also showed that linearity holds for steady-state response
as well as transient response in the ERK and Tgfβ pathways, and that the linearity
holds for a wide range of parameters.

How general is linear signal transmission? We have identified linearity in three
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pathways – we would like to know whether linearity arises in other signaling path-
ways as well. Specifically, we analyze the NF-κB since there is an established math
model that captures the biochemical reactions of the pathway [3, 19, 29]. However,
we cannot perform similar steady-state analysis as for the other pathways, due to
the dynamic nature of the pathway: notably, the NF-κB pathway exhibits strong os-
cillatory response to stimulus due to a slow transcriptional feedback [19]. Instead,
we employ numerical simulations of a well-established NF-κB model [3] over the
range of nuclear NF-κB translocation observed in human epithelial cells [29]. From
this, we indeed find that the peak of the nuclear NF-κB pulse correlates linearly with
ligand concentration (Figure 2.7).

Figure 2.7: Numerical simulation of the input-output relationship of the NF-κB
pathway. We used the model first built by Hoffman et al. in 2002 [19] and later
revised by Ashall et al. in 2009 [3]. The parameters in the model have been
measured or fitted to single-cell dynamics in multiple cell types. We simulated the
model here over a physiologically-observed dynamic range, i.e., Lee et al., 2014
[29] observed in HeLa cells that at saturating ligand dose (10 ng/mL TNFα, set to
1 in the model), 25% of NF-κB pool is nuclear. Linearity is assessed using the
L1-norm, where L1-norm <1 indicates linear relationship (see Method).

While mathematical analysis provides strong insight into mechanisms of cell signal-
ing, further experimental evidence can improve our understanding of linear signal
transmission. Models are useful in providing qualitative predictions, but it is also
important to perform quantitative measurements of cell signaling behavior. There-
fore, in the next chapter, we validate linearity findings experimentally.
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2.4 Supplementary Figures

Figure S2.1: Model simulations for the ERK pathway. (A) Parameter groups
in the ERK model are constant to within 10%, over the physiologically relevant
range of u considered here, justifying the inclusion of variables into the parameter
groups. (B-C) The dpERK output is an ultrasensitive function of both free and total
phosphorylated Raf. The values Es and Rs are illustrated in (B) and are defined in SI
Section 3. (D-F) Numerical simulation of pulsatile response in the ERK pathway.
(D) A pulse of input, RasGTP, is generated by EGF addition in an ERK model that
includes details of receptor desensitization [41]. Basal activity of Ras is included
to ensure constitutive negative feedback [15]. (E) dpERK output also exhibits a
pulsatile response, peaking within 10 minutes. (F)We plot the peak dpERK output
against peak input for a range of physiologically relevant u(EGF) doses, and find
that it matches our steady-state predictions for linear input-output response. (G)
Five-fold Raf overexpression does not break the linear input-output response.
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Figure S2.2: The predicted linearity extends throughout the dynamic range of the
ERK and Tgfβ pathways. (A-B)Numerical simulation of the ERK and Tgfβmodels.
(A) The ERK model shows linear input-output relationship up to 93% of dpERK
activation. (B) The Tgfβ pathway shows linear input-output relationship throughout
the entire input range (from 0 to 1). Linearity was analyzed using the L1-norm or
least absolute deviation (see Method). The blue range indicates where L1-norm was
computed.
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Figure S2.3: Model simulations for the Tgfβ pathway. (A) Nuclear Smad4 concen-
tration is constant to within 2%, over a physiologically relevant range of u(Tg f β)

considered here, justifying its inclusion into parameter group alpha. (B-D) Nu-
merical simulation of pulsatile response in the Tgfβ pathway. (B) A pulse of input,
active Tgfβ receptor, is generated by Tgfβ addition in a model that includes details
of receptor desensitization [45]. (C) S24n output also exhibits a pulsatile response.
(D) We plot the peak S24n output against peak input and find that it matches our
steady-state predictions for linear input-output response.
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2.5 Supporting Information
Variable Elimination
We use a variable elimination technique from Feliu et al. [11] to derive analytic
expressions for the steady-states of the Tgfβ and ERK pathways. This technique
was developed to handle the complexity of large chemical reaction networks. By
eliminating variables from the steady-state solution, we can express the steady-state
of the system in terms of a smaller subset of variables. This is a useful tool for
analyzing the Tgfβ and ERK models, as the steady-state solution consists of a large
set of variables, each with a polynomial equation describing its steady-state.

The technique works as follows: if we can identify a cut set within the reaction
network, we can reduce the system to a set of first-order homogeneous equations
with respect to that cut. This set of equations can then be solved using linear algebra.

A cut is a set of species such that for every reaction involving those species, there is
exactly one reactant and one product that falls within that cut. For example, let us
consider a network of 4 interacting species, A, B, C, and D.

In this network, there is a cut {A, B,C} that contains exactly one product and one
reactant for each reaction. We have highlighted this cut in the reaction set:



35

The species D cannot belong in the cut, since it appears twice as a reactant in the first
reaction. The behavior of this network is described by four differential equations,

[A] = −k1[A] · [D]2 + k3[C] = 0 (2.19)

[B] = k1[A] · [D]2 − k2[B] = 0 (2.20)

[C] = k2[B] − k3[C] = 0 (2.21)

[D] = −2k1[A] · [D]2 + k2[B] + k3[C] = 0 (2.22)

which are set to zero at steady-state, and two additional conservation equations:

T1 = [A] + [B] + [C] (2.23)

T2 = 2[B] + [C] + [D] (2.24)

The variable elimination technique allows us to reduce the steady-state system of
equations by four (three equations for the cut set, and one conservation equation).
We do this by expressing each member of the cut set as a dependent variable of
D, shown below. We utilize the fact that the differential equations for A, B, and C
are first-order and homogeneous with respect to our cut, and rewrite them in matrix
form. We use the subscript “ss” to denote steady-state:

©­­«
−k1[D]2ss 0 k3

k1[D]2ss −k2 0
0 k2 −k3

ª®®®¬
©­­«
[A]ss

[B]ss

[C]ss

ª®®®¬ = 0 (2.25)

Feliu and Wiuf [11] provide a proof of why a cut set guarantees that we can rewrite
the corresponding equations inmatrix form. It can be understood intuitively from the
fact that a cut contains exactly one reactant of each reaction, and therefore each rate
is first-order with respect to the cut. Homogeneity also follows from this, since there
are no rate terms that do not include members of the cut. For a complex model, there
is no guarantee that we can derive closed-form analytical solutions for steady-state.
The matrix formulation and variable elimination technique immediately provides us
with a set of solvable variables. The solution to the matrix equation above is:

[A]ss = c · k2k3 (2.26)

[B]ss = c · k1k3D2
ss (2.27)
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[C]ss = c · k1k2D2
ss (2.28)

c is a scaling factor not constrained by the matrix equation. With the use of the
conservation equation S1.5, we can calculate c and express the steady state of all
three species solely in terms of the parameters of the network, and [D]ss. For
instance, the solution for [C]ss is below.

[C]ss =
k1k2[D]2ss

k2k3 + k1[D]2ss · (k2 + k3)
T1 (2.29)

The solutions for [A]ss, [B]ss, and [C]ss derived from the variable elimination tech-
nique still depend on [D]ss. If we plug in the solutions for the cut species, we
can obtain polynomial equations for the remaining species (in this case [D]ss), but
closed form expressions are not necessarily obtainable. In all the cases analyzed in
this paper, variables that appear in the analytical solutions for the cut set happen to
be approximately constant across a wide range of input values, as they are present in
excess relative to other species. Finally, each parameter group is physically mean-
ingful. For instance, k2k3, k1k3[D]2ss, and k1k2[D]2ss represent the un-normalized
fraction of T1 that exists as A, B, and C, respectively. The normalization factor
for these fractions is c/T1, or in this case, simply the sum of all parameter groups.
This provides an intuitive way of analyzing how parameter groups affect the overall
distribution of T1. For instance, increasing the value of k1 will increase the amount
ofT1 that exists as B and C, while necessarily decreasing the amount of A (assuming
[D]ss does not change significantly)

Wnt Model
We analyzed a mathematical model of the canonical Wnt pathway built by Lee et
al. [28]. The model is illustrated in Figure 2.2A, and consists of 7 ODEs and 22
parameters.

Solving the Wnt model at steady-state

We previously derived an expression for β-catenin in steady-state [17]:

[βcat]ss = K17
1 − γ + α/u(Wnt)

2

(√
1 +

4γ
(1 − γ + α/u(Wnt))2

− 1

)
(2.30)

where the parameters are dimensionless groups of the binding rate constants and
protein concentrations:

α =
k4 · k6 · k9 · v14 · GSK3tot · APCtot

k5 · k−6cdotK7 · K8 · k13 · k15
(2.31)
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γ =
v12

k13 · K17
(2.32)

u(Wnt) = 1 +
k3 · Dvltot

k−6
·

k1 ·Wnt
k2 + k1 ·Wnt

(2.33)

The input function u = u(Wnt) corresponds to the rate at which Wnt stimulation
inhibits the destruction complex, normalized by k−6. The value of Wnt ranges from
0 to 1 in the model. Please refer to Goentoro et al. [17] for the physical intuition of
each parameter group.

Derivation of Linear Behavior

We calculate the value of the parameter groups, as well as the value of the input
function at saturating Wnt stimulation:

α = 66 (2.34)

γ = 1.4 (2.35)

u(Wnt = 1) = 6.0 (2.36)

Within the parameter regime measured in cells, the analytical expression for β-
catenin dramatically simplifies. We can perform the following first-order Taylor
expansion:

√
1 + ε ≈ 1 +

1
2
ε, ε � 1 (2.37)

ε =
4γ

(1 − γ + α/u)2
(2.38)

This holds true for α/u � γ. Furthermore, we can make the approximation
1 − γ + α/u ≈ α/u as long as α/u � 1 also holds. We can encompass these two
inequalities within α/u � 1 + γ. The equation simplifies to:

[βcat]ss ≈ K17
γ

α
u (2.39)

ERKModel
We analyzed a mathematical model built by Huang et al. [21] and revised by Sturm
et al. [44]. The model is illustrated in Figure 2.3A and contains 26 ODEs and 46
parameters. We changed two parameters from the original model. k25 characterizes
the negative feedback from dpERK to unphosphorylated Raf, and k27 characterizes
the negative feedback from dpERK to phosphorylated Raf. In Sturm et al. [44],
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the values of these parameters were estimated, rather than measured. Experimental
measurements indicate that dpERKmostly interacts with Raf, and that this feedback
causes strong repression of Raf [10]. We therefore increased the value of k25 and
set k27 to zero.

Solving the ERK model at steady-state

In theERKpathway, doubly-phosphorylatedERK is produced by theRaf/MEK/ERK
cascade of phosphorylation,

[dpE RK]ss = g([pRa f ]ss) (2.40)

There is a negative feedback within the pathway, such that,

[pRa f ]ss = f (u, [dpE RK]ss) (2.41)

where u is the input function, the concentration of RasGTP (a function of ligand
dose). We first focus on deriving the negative feedback function in Equation S3.2.
Using the variable elimination techniques in section “Variable Elimination”, we
identify the following cut set:

{Ra f , Ra f : RasGTP, pRa f , pRa f : P1, MEK : pRa f , pMEK : pRa f , Ra f :
ppE RK, Ra f i, Ra f i : P4}

This allows us to express the steady-state concentration of pRaf as a function of
parameters, and the remaining species in the ERK pathway. Specifically, members
of this cut interact directly with, and have dependencies on, the following set:

{P1, MEK, pMEK, dpE RK, P4}

With this, we derive the expression for [pRa f ]ss,

[pRa f ]ss =
α · u

β · [dpE RK]ss + (α + γ) · u + δ)
· Ra ftot (2.42)

where the parameter groups are:

α =
k3 · (k8 + kb7)
k7 · [P1]ss · k8

+ . . . (2.43)

β =
k25 · (k30 + kb29 + k29 · [P4]ss)

k29 · [P4]ss · k30
+ . . . (2.44)

γ =
k3 · (k8 + kb7) · (k9 · [MEK]ss)

k7 · [P1]ss · k8 · k10)
+ . . . (2.45)
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δ =
k26 + kb25

k26
+ . . . (2.46)

The ellipses indicate additional small terms (i.e., <10%of the previous terms, numer-
ically calculated using the model parameters and u = 4.5e4). All the calculations
for this paper use these truncated parameter groups. The complete parameter groups
are written below:

α =(k3 · (k8 + kb7) · (k10 + kb9) · (k12 + kb11) · (k26 + kb25))/([P1]ss · k7 · k8

· k10 · k12 · k26)

β =(k25 · (k4 + kb3) · (k10 + kb9) · (k12 + kb11) · (k26 · k30 + k26 · kb29 + [P4]ss

· k26 · k29 + [P4]ss · k29 · k30))/([P4]ss · k4 · k10 · k12 · k26 · k29 · k30)

γ =(k3 · (k26 + kb25) · (k4 · k8 · k10 · k12 + k4 · k8 · k10 · kb11 + k4 · k8 · k12 · kb9

+ k4 · k10 · k12 · kb7 + k4 · k8 · kb9 · kb11 + k4 · k10 · kb7 · kb11 + k4 · k12 · kb7

· kb9 + k4 · kb7 · kb9 · kb11 + [MEK]ss · k4 · k8 · k9 · cot k12 + [MEK]ss · k4

· k8 · k9 · kb11 + [MEK]ss · k4 · k9 · k12 · kb7 + [MEK]ss · k4 · k9 · kb7 · kb11

+ [P1]ss · k4 · k7 · k10 · k12 + [P1]ss · k7 · k8 · k10 · k12 + [P1]ss · k4 · k7 · k10

· kb11 + [P1]ss · k4 · k7 · k12 · kb9 + [P1]ss · k7 · k8 · k10 · kb11 + [P1]ss · k7

· k8 · k12 · kb9 + [P1]ss · k4 · k7 · kb9 · kb11 + [P1]ss · k7 · k8 · kb9 · kb11 + k4

· k8 · k10 · k11 · [pMEK]ss + k4 · k8 · k11 · kb9 · [pMEK]ss + k4 · k10 · k11

· kb7 · [pMEK]ss + k4 · k11 · kb7 · kb9 · [pMEK]ss))/([P1]ss · k4 · k7 · k8

· k10 · k12 · k26)

δ =((k4 + kb3) · (k10 + kb9) · (k12 + kb11) · (k26 + kb25))/(k4 · k10 · k12 · k26)

Physical significance of parameter groups

Next, we would like to develop an intuition for the physical significance of these
parameter groups. As discussed above, α · u relates to the amount of free, phospho-
rylated Raf since α · u/((α + γ) · u + β[dpE RK]ss + δ) is the fraction of Raf present
as pRaf. Thus, as α · u increases relative to γ · u + β[dpE RK]ss + δ, the amount of
pRaf also increases.

We can define three subpopulations of Raf: Raf inhibited by dpERK, [Ri]; Raf
activated by RasGTP (input), [Ra]; and unphosphorylated Raf [Rn]. Specifically:

[Ri] = [Ra f : dpE RK] + [Ra f i] + [Ra f : P4] (2.47)
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[Ra] = [pRa f ] + [pRa f : P1] + [MEK : pRa f ] + [pMEK : pRa f ] (2.48)

+ [Ra f : RasGTP] (2.49)

[Rn] = [Ra f ] (2.50)

We can calculate the steady-state of each subpopulation as:

[Ri]ss =
β · [dpE RK]ss

(α + γ) · u + β[dpE RK]ss + δ
Ra ftot (2.51)

[Ra]ss =
γ · u

(α + γ) · u + β[dpE RK]ss + δ
Ra ftot + [pRa f ]ss (2.52)

[Rn]ss =
δ

(α + γ) · u + β[dpE RK]ss + δ
· Ra ftot (2.53)

Thus, in the same sense that α · u relates to the amount of free phosphorylated Raf,
β · [dpE RK]ss relates to the amount of inhibited Raf, γ · u relates to the amount of
phosphorylated Raf bound to other proteins (not free), and δ relates to the amount
of unphosphorylated Raf.

Derivation of linear behavior

Now that we have derived the negative feedback function from Equation S3.2, we
examine Equation S3.1. The relationship [dpE RK]ss = g([pRa f ]ss) is analytically
intractable, because of the complexity of the phosphorylation cascade. But we
know from simulations and experimental observations that it is an ultrasensitive
function. From simulations, we find that a 1.3 fold change in pRaf leads to a 9-
fold change in dpERK (from 10% to 90% of max, Figure S1B-C). We therefore
approximate [pRa f ]ss by a value Rs within this range, as indicated by the dashed
line in Figure S2.1B. Substituting this into the equation above and rearranging, we
find that [dpE RK]ss becomes a linear function of input:

[dpE RK]ss ≈
α

β
·

(
Ra ftot

Rs
− 1 −

γ

α

)
· u −

δ

β
(2.54)

Lastly, we write the value of two terms in Equation S3.14 below, numerically
calculated using the parameter values of the model:

α

β
·

Ra ftot

Rs
= 140

α

β
· (1 +

γ

α
) = 13



41

We can neglect the second term, yielding:

[dpE RK]ss ≈
α

β
·

Ra ftot

Rs
· u −

δ

β
(2.55)

Derivation for treating pRaf as a constant

Next, we analyze exactly how the level of pRaf changes with the input u. From
earlier, we have that

[dpE RK]ss = g([pRa f ]ss)

[pRa ftot]ss = f (u, [dpE RK]ss)

We can now derive a general expression for the relative change of [pRa f ]ss with
respect to a relative change in u. We use the notation dx̂ = dlnx = dx/x

d f̂
dû
=
∂ f
∂u
·

u
f
·

(
1 −

∂ f
∂[dpE RK]ss

·
dg

d[pRa f ]ss

)−1
(2.56)

Next, we define the response coefficient K between [dpE RK]ss and [pRa f ]ss:

K ,
dg

d[pRa f ]ss
·
[pRa f ]ss

[dpE RK]ss
(2.57)

From Equation S3.3, we get the partial derivatives:

∂ f
∂u
=

f
u
·

β[dpE RK]ss + δ

β[dpE RK]ss + (α + γ)u + δ
(2.58)

∂ f
∂[dpE RK]ss

= − f ·
β

β[dpE RK]ss + (α + γ) · u + δ
(2.59)

Using these two equations, we find that:

d f̂
dû
=

β[dpE RK]ss + δ

(1 + k) · β[dpE RK]ss + αu + δ
(2.60)

When K � 1 and β · [dpE RK]ss ≈ (α + γ) · u + δ, we see that

d f̂
dû
≈ K−1 (2.61)

Therefore, [pRa f ]ss is held constant in the region where the kinase cascade is
ultrasensitive and feedback is strong. In this region, it is easy to show that [dpE RK]ss

becomes a linear function of input.

d ˆg − g0
dû

≈ 1; g0 = −
δ

β
(2.62)
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It is not guaranteed that the system is stable as K increases, but we see from
simulations that our parameter regime provides a stable output.

Toy Model of the ERK pathway

Here we utilize a toy model to illustrate how ultrasensitivity and strong negative
feedback combine to generate input-output linearity. In this model, induction of the
output species E is a two-step process: An input u increases the amount of species
R, which in turn influences E as E = g(R). There is negative feedback from E to R,
which in the limit of strong negative feedback is inversely proportional to E .

We specify the function g(R) such that K = K0, where K is the relative change of
E with respect to R. As K0 increases, therefore, the function g(R) becomes more
ultrasensitive. Solving for E , we see that in the limit of K = K0 � 1, E becomes a
linear function of u, and R is held constant at Rs.

While we do not have an explicit function for g(R) for the full ERK model, we
include derivations in section “Derivation for treating pRaf as a constant” that show
that these results hold for any function g(R) in the region where K � 1. We also
show that these results hold outside the limit of strong negative feedback, as long as
the feedback-inhibited pool of R is comparable to the remaining pool.



43

TgfβModel
We analyzed a mathematical model built by Schmierer et al. [40]. The model is
illustrated in Figure 2.4A and consists of 10 ODEs and 14 parameters.

Solving the Tgfβ model at steady-state

We use the variable elimination technique described in section “Variable Elimina-
tion” to derive an analytical expression for the steady-state concentration of nuclear
Smad complex. First, based on the measured parameter values, and as confirmed by
simulations, the extent of Smad2-Smad2 binding is limited. We therefore neglect
this reaction in subsequent analysis. We identify the following cut of the Tgfβ
model:

{S2c, pS2c, S24c, S2n, pS2n, S24n}

which is subject to the conservation equation:

([S2c] + [pS2c] + [S24c]) +
1
a
· ([S2n] + [pS2n] + [S24n]) = S2tot (2.63)

Thus, we can eliminate these variables from the steady-state polynomial solution,
with dependence only on variables outside this cut:

{S4c, S4n}

Using this relationship, we derive an expression for the nuclear Smad complex
(S24n) at steady-state,

[S24n]ss =
a · α · u

(α + γ) · u + β
S2tot (2.64)

where the parameter groups are:

α =
a · (kon[S4n]ss + a · kex2)

ko f f
+ . . . (2.65)

β = PPase ·
kdephos

kphos · Rtot · kex2/(a · kex2 + kin2)
+ . . . (2.66)

γ = a · (a · kex2 + PPase · kdephos)

(
1

a · kex2
+

1
CIF · kin2

)
+ . . . (2.67)

Here the input function u = u(Tg f β) is the fraction of receptors activated by Tgfβ
ligands. The ellipses indicate additional small terms (i.e., <10% of the previous
terms, as calculated using the model parameters, with the variables [S4c]ss and
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[S4n]ss calculated for u = 0). All calculations for the paper use these truncated
parameter groups. The complete parameter groups are written below:

α =(a · ([S4n]ss · ko f f + CIF · [S4n]ss · kin2 + CIF · PPase · [S4c]ss · kdephos

+ CIF · [S4c]ss · [S4n]ss · kon + CIF · [S4c]ss · a · kex2))/(CIF · [S4c]ss

· ko f f )

β =(PPase · kdephos · (kin2 + a · kex2) · (ko f f + CIF · kin2 + CIF · [S4c]ss

· kon))/(CIF · Rtot · [S4c]ss · kex2 · kon · kphos)

γ =((PPase · kdephos + a · kex2) · (kin2 · ko f f + CIF · k2
in2 + a · kex2 · ko f f

+ CIF · [S4c]ss · kin2 · kon + CIF · a · kex2 · kin2 + [S4c]ss · a · kex2 · kon))

/(CIF · [S4c]ss · kex2 · kin2 · kon)

Physical significance of parameter groups

Next, we would like to develop an intuition for the physical significance of these
parameter groups. As discussed above, α · u relates to the amount of nuclear Smad
complex, since α ·u/((α+γ)·u+β) is the fraction of Smad2 present as S24n. Thus, as
α ·u increases relative to γ ·u+ β , the amount of S24n also increases. By definition,
the parameter groups β and γ ·u capture the remaining input-independent and input-
dependent polynomials, respectively. Nevertheless, we would like to understand
the physical significance of the parameter groups. We can calculate the amount of
unphosphorylated Smad2 as:

[S2c]ss +
1
a
[S2n]ss =

β + δ · u
β + (α + γ) · u

S2tot (2.68)

δ = PPase · kdephos ·
ko f f + CIF · kin2 + CIF · [S4c]ss · kon

CIF · [S4c]ss · kex2 · kon
(2.69)

δ captures the dependence of nuclear, unphosphorylated Smad on the input. With
the measured parameters, β � δ · u, so we have

[S2c]ss +
1
a
[S2n]ss ≈

β

β + (α + γ) · u
S2tot (2.70)

This means that β relates to the amount of unphosphorylated Smad2 in the same
sense that α · u relates to nuclear Smad complex. We can also express the remaining
Smad2 species as:

[pS2c]ss + [S24c]ss +
1
a
[pS2n]ss =

(γ − δ) · u
((α + γ) · u + β)

· S2tot (2.71)
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However, as δ is of the same order of magnitude as γ, the parameter group γ only
loosely relates to these remaining species of Smad2.

Derivation of linear behavior

Within the parameter values measured in cells, the behavior of Smad complex
dramatically simplifies. Using the measured values, the parameter groups are

α · u = 3.1

γ · u = 1.3

β = 46

where we have used a non-saturating input (u = 0.2). Therefore, within the phys-
iological regime of parameters, β � (α + γ) · u. With this, the denominator in
the [S4n]ss equation simplifies, and the concentration of Smad complex becomes a
linear function of the input:

[S24n]ss ≈
α · S2tot

β
· u (2.72)
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C h a p t e r 3

LINEARITY IN CELL SIGNALING PATHWAYS:
EXPERIMENTS

3.1 Introduction
In the previous chapter, we analyzed models of three signaling pathways and iden-
tified a convergent strategy of linear signal transmission. This work is built on the
long track record of success in using math modeling and analysis to uncover behav-
iors of biological networks. In particular, our modeling provided qualitative insights
into the input-output response of signaling pathways. In the Wnt, ERK, and Tgfβ
pathways, our analysis indicates that the steady-state output is linear with respect
to input. Furthermore, modeling also indicates for the ERK and Tgfβ pathways
that peak output is linear with respect to transient inputs, e.g. receptor activation
followed by attenuation.

In this chapter, we performed quantitative measurements of input-output responses
in cell signaling. In addition to validating our model findings, experiments provide
further insight to input-output response. For instance, while modeling revealed
linearity across the entire dynamic range of three signaling pathways, it did not
provide quantitative predictions of how large the dynamic range is, or the precise
manner in which saturation occurs for high ligand dose. Experiments also provide
insight into dynamic input-output responses, which may be more complex than our
steady-state modeling. Lastly, perturbations can be employed to experimentally
modulate input-output response, providing insights to each pathway.

To this end, we treated cultured human cells with varying concentrations of ligand
and measured pathway response using quantitative Western blot. We used two
human cell lines, RKO colon cells and H1299 lung cells, for studying the Wnt
pathway and ERK pathway, respectively. Both cell lines have been used as model
systems for the respective signaling pathways [1, 3]. We focused our efforts on the
Wnt and ERK pathways, since we are limited by available antibodies in the Tgfβ
pathway.

Western blots have many benefits as a quantitative tool. In particular, fluorescence-
based protein measurements provide sensitive, highly linear measurements of pro-
tein level. Standard curves of protein load versus band intensity are used to validate
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each antibody, confirming that fluorescence increases linearly with protein level and
that the signal is not saturated from excess protein. In addition, loading controls
are employed to correct for differences in protein loading between lanes. Loading
controls are typically constitutively expressed proteins that can be used as a proxy
for total protein. The loading control corrects for variations in plating, cell growth
due to treatments, and variations in loading volume. Lastly, many different gels,
membranes, and lysis protocols can be used to optimize Western blots for size and
solubility of protein, making the technique highly versatile. As a result, quantitative
measurements can be conducted even on large, membrane associated proteins, such
as signaling pathway receptors [6].

We confirmed that Western blotting is a quantitative tool to measure input-output
response in the Wnt and ERK pathways. First, we performed standard curves to
verify the linearity of each antibody used (Figure S3.1). Next, we verified that our
Western blot measurements were reproducible across lanes within each gel, and
across gels (Figure S3.2). Lastly, we confirmed that input-output response was not
distorted by normalizing to loading controls (un-normalizedmeasurements shown in
Figure S3.3) or by averaging input-output responses across experiments (individual
experiments shown in Figure S3.4).

In this chapter, we demonstrate linearity in theWnt and ERK pathway. Interestingly,
linearity in the ERK pathway extends to ligand dose, while in the Wnt pathway a
nonlinear activation of Wnt co-receptor LRP is followed by linear accumulation of
β-catenin. We then used chemical and genetic perturbations to modulate the linear
input-output relationship of each pathway.

3.2 Results
Linear signal transmission in the Wnt pathway
To analyze the canonical Wnt pathway, we performed quantitative Western blot
measurements in RKO cells, a model system for Wnt signaling. To track the input,
we measured the level of phosphorylated Wnt co-receptor LRP5/6 (on Ser1490),
which increases within minutes of ligand-receptor complex formation [13]. To
track the output, we measured the level of β-catenin. We confirmed that the levels
of phosphorylated LRP5/6 and β-catenin increase upon Wnt simulation and reach
steady-statewithin 6 hours (Figure S3.5). Accordingly, all subsequentmeasurements
were done at 6 hours after Wnt stimulation.

To measure the input-output relationship in the Wnt pathway, we treated RKO
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cells with varying doses of purified Wnt3A and measured how β-catenin (output)
correlates with phosphorylated LRP (input). As shown in Figure 3.1A, the level
of β-catenin increases linearly with the level of phosphorylated LRP. The linearity
persists until saturation of the input, defined as 90% of maximal phosphorylated
LRP response (blue circles, Figure 3.1A; Figure S3.6). Notably, at high doses of
Wnt3A, β-catenin continues to show incremental activation, despite saturation in
phosphorylation of LRP (grey circles, Figure 3.1A). This can be explained within
some findings that, while Frizzled/LRP complex is the primary receptor input in
β-catenin activation, β-catenin can be activated independently of LRP (e.g., ref.
[11]).

Consistent with the mathematical analysis, we observed in RKO cells that the Wnt
pathway behaves as a linear transmitter throughout the dynamic range of the input.
As a control that is expected from theMichaelis-Menten kinetics that describe ligand
binding in themodel, we confirmed that the linearity does not extend upstream toWnt
dose: both phospho-LRP5/6 and β-catenin show nonlinear response to Wnt dose
(Figure S3.6). Therefore, in theWnt pathway, a nonlinear ligand-receptor processing
step is followed by linear signal transmission through the core intracellular pathway.
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Figure 3.1: (A)Measurements of the input-output relationship in the Wnt pathway.
In these experiments, RKOcellswere stimulatedwith 0-1280 ng/mLpurifiedWnt3A
ligand, harvested at 6 hours after ligand stimulation, and lysed for Western blot
analyses. Shown on top is a representative Western blot. The data plotted come
from 7 independent experiments (total N = 66). Each circle indicates the mean
intensities of the phospho-LRP5/6 (x-axis) and β-catenin (y-axis) bands for all
Western blot biological replicates, and error bars indicate the standard error of
the mean. For each gel, we normalize the unstimulated sample (i.e., 0 ng/mL of
Wnt3A) to one, and scale the magnitude of the dose response to the average of all
gels (described in Methods). The grey line is a least squares regression line, and ρ is
the Pearson’s coefficient, where ρ = 1 is a perfect positive linear correlation. (B)As
in (A), except that cells were treated with 1µM CHIR99021 (detailed in Methods).
The data plotted here come from 5 independent experiments (total N=59). The grey
line is a least squares regression , and ρ is the Pearson’s coefficient, where ρ = 1 is a
perfect positive linear correlation. Shown in the subplot are the same least squares
regression line (solid line), overlaid with the model prediction (dashed line).

Finally, the analytical expressions we derived in this study not only reveal linear
signal transmission, but also the mechanisms by which it arises. In the model of the
Wnt pathway, linear transmission occurs due to the futile cycle of β-catenin, in the
parameter regime where β-catenin is continually synthesized and rapidly degraded
(i.e. α/u � 1 + γ). This regime is not infinite: for instance, a ten-fold decrease in
α (e.g. by inhibiting the destruction complex) will break the futile cycle (grey line,
Figure 2.2C).
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To test if the futile cycle is indeed required for linear signal transmission, we inhibited
the destruction complex using CHIR99021, an inhibitor of GSK3β kinase. As
before, we measured the input-output relationship, β-catenin vs. phospho-LRP5/6
level, up to 90% of maximal phospho-LRP5/6 input (blue circles, Figure 3.1B).
As expected, we found that inhibiting the destruction complex (decreasing α in the
model) reduced the range of linearity. The non-treated cells (blue circles, Figure
3.1A) exhibit a linear input-output relationship over a 4.4-fold range of LRP input,
whereas the CHIR-treated cells show a linear input-output relationship over only a
2.8-fold range of LRP input (blue circles, Figure 3.1B).

Further, our measurements also reveal an unexpected feature of the Wnt pathway.
In the model, inhibiting GSK3β causes β-catenin response to become nonlinear for
larger inputs (dashed line, Figure 3.1B subplot). In CHIR-treated RKO cells, how-
ever, this nonlinearity cannot be reached, as the maximal amount of phosphorylated
LRP (input) is reduced by 50% (grey circles, Figure 3.1B; Figure S3.6), consistent
with the dual-function of GSK3β identified by Zeng et al. [15, 16] in phospho-
rylating β-catenin for degradation as well as phosphorylation LRP for activation.
Incorporating this dual-role of GSK3β into the model, we found that this expanded
model can indeed recapitulate the data (Figure S3.8) . Therefore, our data indicate
two findings: first, that inhibiting GSK3β reduces the range of linear input-output
response in the Wnt pathway, as predicted by our analytics, and second, that GSK3β
co-regulation of β-catenin and LRP unexpectedly constrains the system within the
linear regime.

Linearity in the MAPK/ERK pathway
Next, to measure the input-output relationship in the ERK pathway, we performed
quantitativeWestern blots in H1299 cells, one of the model systems used in the field.
Detecting the input level, EGF-activated Ras-GTP, requires a pull-down step that
makes it less quantifiable. We therefore tested the dose of EGF ligand itself, since a
previous study indicates there could be linearity in ligand-receptor processing [10].
To track the output, we measured the level of doubly-phosphorylated ERK1/2 (on
Thr202/Tyr204), dpERK. We first characterized the kinetics of response: dpERK
peaks 5 minutes after EGF stimulation (Figure S3.7) and saturates at 4ng/ml EGF
(grey circles, Figure 3.2A). Accordingly, all subsequent measurements were per-
formed at 5 minutes after EGF stimulation, and linearity was assessed over the input
range of 0-4 ng/mL EGF (blue circles, Figure 3.2A).
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We observed linearity in the input-output relationship of the ERK pathway, with
the level of dpERK increasing linearly with EGF dose (Figure 3.2A). The linearity
holds throughout the dynamic range of the system, over at least 12-fold activation of
dpERK. As the ERK pathway is sometimes observed to show bimodal response that
would be masked by bulk measurements, we confirmed that the H1299 cells indeed
show to graded dpERK response in single-cell level (Figure S3.9), in agreement with
a previous single-cell, live imaging study [1]. Therefore, as in the Wnt pathway,
signals are transmitted linearly in the ERK pathway throughout the dynamic range
of the cell. Moreover, the linearity in the ERK pathway is more extensive than in
the Wnt pathway, as linearity extends all the way upstream, such that the level of
dpERK directly reflects the dose of extracellular EGF ligand.
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Figure 3.2: (A)Measurements of the input-output relationship in the ERK pathway.
In these experiments, H1299 cells were stimulated with 0-50 ng/mL purified EGF
ligand, harvested at 5 minutes after ligand stimulation, and lysed for Western blot
analyses. Shown on top is a representative Western blot. The data plotted here
come from 5 independent experiments (total N = 30). Each circle indicates the
mean intensities of dpERK1/2 bands across Western blot biological replicates, and
the error bars indicate standard error of the mean. Single replicates are plotted
without error bars. All data is plotted relative to unstimulated sample. The grey line
is a least squares regression line, and r2 is the coefficient of correlation where r2 =
1 is a perfect linear correlation. (B) As in (A), but measurements were performed
in H1299 cells expressing mutant Raf S289/296/301A. The data plotted here come
from 3 independent experiments (total N = 15). The grey line is a fit using the
ERK model. We first fitted the gain of the model to the data (i.e., the y-range), and
afterward, varied the strength of dpERK feedback (k25) to find the best fit. We used
the weighted Akaike Information Criterion, w(AICc), to verify that the nonlinear
fit from the ERK model outperforms a linear least squares fit (see Methods). 0<
w(AICc)<1, with higher w(AICc) indicates better performance by the non-linear fit.

Next, we examine the requirements for linearity in the ERK pathway. Equation
2.10 reveals that linearity in the ERK pathway depends upon the coupling of strong
nonlinearities – ultrasensitivity and negative feedback. As in the Wnt pathway, this
regime is not infinite, e.g., decreasing the strength of feedback β enables the system
to exit the ultrasensitive regime, and therefore reduces linearity (grey line, Figure
2.3C).

To test this requirement, we examined the effects ofweakening the negative feedback.
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We created a stable H1299 cell line expressing Raf S289/296/301A, a Raf-1 mutant
in which three serine residues that are phosphorylated by dpERK are mutated to
alanine [2, 4]. Assessing the dynamic range of the input as before (0-4 ng/mL EGF),
we now found that dpERK responds nonlinearly to EGF dose (blue circles, Figure
3.2B), consistent with model predictions (grey line, Figure 3.2B). As a control, we
found that overexpressing WT Raf-1 to a similar level does not perturb linearity
(experiments, Figure S3.10; modeling, Figure S2.1). Lastly, mutating all 5 direct
ERK feedback sites on Raf-1 to alanine had a similar effect to Raf S289/296/301A
(Figure S3.11). Our results support the model requirement that strong negative
feedback is critical to linear signal transmission in the ERK pathway.

3.3 Discussion
In this chapter, we demonstrated experimental input-output linearity for theWnt and
ERKpathways. We showed how linearity can arise on two vastly different timescales
and dynamics. In the ERK pathway, the peak response of dpERK occurs after only
five minutes and quickly decays. In the Wnt pathway, β-catenin accumulates to
steady state after an hour and remains for high for up to 24 hours [3]. In both cases,
however, we demonstrated that the output is linear with respect to input.

We also demonstrate how signal processing may be accomplished at the receptor
level. In the ERK pathway, ligand level is transmitted linearly through the receptor
such that dpERK is linear with respect to ligand concentration. In the Wnt pathway,
however, the ligand-receptor step is nonlinear: β-catenin is linear with active LRP
receptor, but nonlinear with respect to Wnt ligand concentration. It is unclear why
the receptor exhibits saturating response to ligand, though it could be to prevent
hyper-activity of the Wnt pathway.

Interestingly, unlike synthetic circuits whose linearity is often designed to extend
across multiple orders of magnitude [8, 9], the linearity we observed in these two
natural pathways extends only one order of magnitude, which is also the dynamic
range of the pathways. However, we know that natural pathways can convey inputs
varying across multiple orders of magnitude, e.g., vision. Thus, an advantage of
linearity in natural pathways may be that, in conjunction with fold-change detection
at the receptor-level (60), the system as a whole can continually adapt to a given
input, hence maintaining sensitivity to future signals.

Why evolve complexity in signaling pathways only to produce seemingly simple
behavior? We offer two thoughts. First, complexity of each pathway might afford
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tunability, in the sense that parameters can be tuned to produce different behaviors
in different contexts. For instance, the ERK pathway produces digital, all-or-none
response in some contexts [5], and analog response in others [7, 14]. Second – to
take an example from engineering – in order to utilize physical processes that are not
naturally linear, engineers must implement complex design features to approximate
linearity. Similarly, many biochemical processes are inherently nonlinear, meaning
that linearity does not arise from a reduction in complexity. Indeed, in each pathway
we analyzed here, linearity emerges from complex interactions: a futile cycle in
the Wnt pathway, ultrasensitivity coupled to feedback in the ERK pathway, and
continual nucleocytoplasmic shuttling in the Tgfβ pathway. Therefore, analogous
to engineered systems, complexity in the biochemical pathways we analyzed here
might have evolved in part to produce linearity.

3.4 Materials and Methods
Expression Constructs. pBABEpuro-CRAF that contains the wt human Raf-1
clone was a gift from Matthew Meyerson (Addgene plasmid # 51124). Mutant
Raf (S289/296/301A) and (S29/289/296/301/642A) were generated using the Q5
site-directed mutagenesis kit (New England Biolabs, E0554S). The mutant and wt
Raf-1 were then placed downstream of a CMV promoter.

Cell Lines and Cell Culture. RKO cells (ATCC, CRL-2577) and H1299 cells
(ATCC, CRL-5803) were authenticated by STR profiling and supplied by ATCC.
RKO cells were cultured at 37°C and 5% (vol/vol) CO2 in DMEM (ThermoFisher
Scientific; 11995) supplemented with 10% (vol/vol) FBS (Invitrogen; A13622DJ),
100 U/mL penicillin, 100µg/mL streptomycin, 0.25µg/mL amphotericin, and 2
mML-glutamine (Invitrogen). H1299 cells were cultured at 37C and 5% (vol/vol)
CO2 in RPMI (ThermoFisher Scientific; 11875) supplemented with 10% (vol/vol)
FBS (Invitrogen; A13622DJ), 100U/mLpenicillin, 100µg/mL streptomycin, 0.25µg/mL
amphotericin, and 2 mML-glutamine (Invitrogen). Both cell lines tested negative
for mycoplasma contamination.

Transfection ofRaf-1 constructs. H1299 cellswere transfectedwith themutant and
wt Raf-1 constructs using Lipofectamine 3000 (ThermoFisher Scientific, L3000).
Stable expression was selected using puromycin at a concentration of 1.5 µg/mL for
two weeks.

Reagents and Antibodies. The following antibodies were purchased from Cell
Signaling Technologies: anti-Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204)
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(E10) Mouse mAb #9106, anti-histone H3 (D1H2) XP® Rabbit mAb #4499, anti-c-
Raf Antibody #9422, anti-phospho-LRP6 (Ser1490) Antibody #2568, anti-GAPDH
(D4C6R) Mouse mAb #97166. Anti-β-catenin mouse mAb was purchased from
BD Transduction Laboratories (#610153) and anti-GAPDH rabbit antibody was
purchased from Abcam (ab9485). The following fluorescent secondary antibod-
ies were purchased from Fisher Scientific: IRDye 800CW Goat anti-Mouse IgG
(926-32210) and IRDye 680LT Goat anti-Rabbit IgG (926-68021). Recombinant
human Wnt3A was purchased from Fisher Scientific (5036WN), and recombinant
human EGF was purchased from Sigma (E9644). CHIR99021 was purchased from
Sigma (SML1046). Halt™ Protease and Phosphatase Inhibitor Cocktail (100X)
was purchased from Fisher Scientific (78440).

CHIR99021 Treatment. RKO cells were pre-treated with 1µMCHIR99021 for 24
hours before adding replacement media containing 1µM CHIR99021 and Wnt3A
for six hours.

Cell Lysis. RKO cells at 70% confluency were scraped in PBS, pelleted, snap-
frozen, and then thawed in NP-40 lysis buffer containing Halt inhibitor cocktail.
Samples were spun down, and the supernatants were transferred to Laemmli sample
buffer and boiled. The samples were then run onto a Bolt™ 4-12% Bis-Tris Plus
Gel (Thermofisher, NW04120BOX). H1299 cells at 70% confluence were scraped
in NP-40 lysis buffer containing Halt inhibitor cocktail and further lysed in Laemmli
sample buffer. Samples were spun down, and the supernatants were boiled. The
samples were then run onto aNovex™4-20%Tris-GlycineMini Gel (ThermoFisher,
XP04200BOX).

Quantitative Western blots. Proteins were transferred onto nitrocellulose mem-
branes, blocked for one hour at RT with blocking buffer (Odyssey® Blocking Buffer
(TBS) (927-50000) or 5% milk powder in TBS) and stained overnight at 4°C with
primary antibody diluted in blocking buffer. The membranes were then stained with
fluorescent IR secondary antibodies diluted in blocking buffer for one hour at RT.
The fluorescent signal was then imaged using the LiCOROdyssey Imager and quan-
tified using Odyssey Application software version 3.0. The background-subtracted
intensity of the protein bands were normalized to the loading control, GAPDH
and/or Histone H3 (for RKO) or Histone H3 (for H1299). These values were then
normalized to the reference lanes within each gel, to allow comparison across gels.
For β-catenin and phospho-LRP, variation in the fold-activation from experiment to
experiment could artificially stretch the data along the x- and y-axis and introduce
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artifacts into the relationship between phospho-LRP5/6 and β-catenin. Therefore,
for Wnt3A dose responses, the data from each gel was scaled such that the mean of
80ng/mL and 160ng/mL samples was equal to the mean across all gels. Finally, for
each antibody used in the study, we did careful characterization of the linear range
and verified that our measurement conditions were within the linear range of the
antibody (Figure S3.1).

Technical variability of Western blot quantitation. To confirm the effects re-
ported, we verified that quantitation of the same sample loaded in multiple lanes
in a gel gives CV < 10%, and quantitation of the same sample across multiple
independent gels gives CV < 10% (Figure S3.2). As further control, we verified
that normalization with loading control did not produce artificial distortion of the
input-output relationship: linearity was observed without normalization in cases
where loading was already uniform (Figure S3.3).

L-1 and L2-norm analysis. L1-norm analysis was performed as described in ref.
[9]. Briefly, the data is fitted with a cubic Hermite polynomial and rescaled along the
x and y axis to [0, 1]. The L1-norm is computed as the area between the polynomial
fit and the diagonal. Linearity is defined in this context as L1-norm<0.1. L2-norm
analysis for Wnt pathway data was performed using a Pearson’s coefficient, and
L2-norm analysis for ERK pathway data was performed using the coefficient of
correlation, r2.

Akaike Information Criterion. To score the validity of nonlinear model fits for
Figure 3.2D, we used the bias-corrected Akaike Information Criterion as described
in ref. [12], which assesses goodness-of-fit and model parsimony. The weighted
Akaikew(AIC) provides a comparison of all consideredmodels, which in our case is
the nonlinear ERK pathwaymodel fit and a linear fit, with the higher score indicating
a more valid model.
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3.5 Supporting Figures

Figure S3.1: Standard curves are linear for all Western blot antibodies. Band
intensity was measured against protein load for each antibody, and linearity was
assessed by the correlation coefficient r2 and the L1-norm. All measurements used
for this study were within the linear range of antibody.
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Figure S3.2: (A) The level of β-catenin and phosphorylated LRP, measured across
different lanes. (B) Ligand-stimulated change in β-catenin and phophorylated LRP
level, measured in 6 independent Western blots. CV is coefficient of variation,
defined as standard deviation/mean.
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Figure S3.3: In these two independent experiments, RKO cells were stimulated with
a range of Wnt3A dose (0-160 ng/mL), the cells lysed after 6 hours and analyzed for
Western blot against β-catenin and phosphorylated LRP5/6 (pLRP5/6). Top row: In
each experiment, GAPDH intensity varies with <10% CV across samples. Bottom
row: Raw β-catenin and LRP intensity data without normalization with GAPDH
loading control. The measurements are plotted relative to unstimulated cells. Grey
lines are least squares regression lines, and ρ is the Pearson correlation coefficient.
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Figure S3.4: Linearity was observed across independent experiments. (A) In these 2
independent experiments, RKO cells were stimulated with a range of Wnt3A doses,
lysed after 6 hours, and analyzed for Western blot against β-catenin and phospho-
LRP5/6. (B) In these 4 independent experiments, H1299 cells were stimulated with
a range of EGF doses, lysed after 5 minutes, and analyzed for Western blot against
doubly-phosphorylated ERK. All measurements are plotted relative to unstimulated
cells. Grey lines are least squares regression, ρ is Pearson correlation coefficient,
and r2 is correlation coefficient.
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Figure S3.5: LRP5/6 phosphorylation and β-catenin accumulation are already at
steady state at 6 hours after Wnt stimulation. RKO cells were treated with 160
ng/mL Wnt3A for the specified times, and then assayed for phospho-LRP5/6 and
β-catenin level by Western blot. Error bars are standard error of the mean from
2-4 biological replicates. Data are plotted relative to the sample at time zero, and
normalized to the average maximal activation across experiments. The grey lines
connect the mean of each time point.
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Figure S3.6: The dynamic range of Wnt signaling in RKO cells. RKO cells
were treated with the specified dose of Wnt3A for six hours, and then assayed
for phospho-LRP5/6 and β-catenin by quantitative Western blot. Data are plotted
relative to unstimulated samples. (A-B) In wt cells, phospho-LRP5/6 (A) shows
>90% of maximal response at 200 ng/mL Wnt3A, while β-catenin (B) shows 70%
of maximal response at 200 ng/mL and subsequently incremental response until 640
ng/mL Wnt3A. (C-D) In cells pre-treated with 1µM CHIR99021, phospho-LRP5/6
(C) shows >90% of maximal response at 80ng/mL Wnt3A, while β-catenin (D)
shows 70% of maximal response at 80 ng/mL and continues incremental activation
at higher doses. (E). Cells were treated with 160 ng/mL Wnt3A and assayed for
phospho-LRP5/6. Cells pre-treated with 1µM CHIR99021 (N = 3) exhibited 50%
the level of phospho-LRP5/6 as untreated cells (N = 3). The grey lines simply
connect the means of data.
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Figure S3.7: ERK activation peaks at 5 minutes after EGF stimulation. H1299
cells were treated with 1 ng/mL EGF for the specified times, and then assayed for
dpERK1/2 byWestern blot. Data is plotted relative to the samples at time zero, with
at least three biological replicates per time point.
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Figure S3.8: Incorporating into the Wnt model the dual function of GSK3β in
phosphorylating β-catenin and LRP5/6. We include the role of GSK3β in phospho-
rylating LRP5/6 into the input function u(Wnt), such that u(Wnt) is a function of
GSK3β and the phosphorylation rate k¬9 (for simplicity, the same rate as GSK3β
phosphorylation of β-catenin), and the reverse rate k¬r. In both models, β-catenin
increases in response to GSK3β inhibition (e.g., by CHIR99021). However, only
the model with the dual function of GSK3β shows a decrease in input range that we
observed experimentally.
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Figure S3.9: In these experiments, H1299 cells were treated with varying doses
of EGF for 5 minutes and then fixed and analyzed for immunofluorescence against
doubly phosphorylated ERK (dpERK). (A) Representative images of cells treated
with the indicated doses of EGF. (B)The intensity of nuclear level of dpERK staining
across individual cells. Cell nuclei were delineated using DAPI staining (for EGF
doses 0, 0.3, 1.3, and 2.0 ng/mL, N = 453, 381, 373, and 413 cells, respectively).
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Figure S3.10: WTRaf-1 overexpression does not affect linear dose-response. H1299
cells over-expressing Raf-1 were treated with the indicated dose of EGF for 5
minutes, and then assayed for dpERK1/2 byWestern blot. The grey line is a fit from
a linear model with r2 = 0.99. Data is plotted relative to unstimulated samples, with
total N = 9.
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Figure S3.11: Expression of Raf S29/289/296/301/642A induces non-linear dose-
response. H1299 cells expressing the Raf mutant Raf S29/289/296/301/642 were
treated with the indicated dose of EGF for five minutes, and then assayed for
dpERK1/2 by Western blot. Data is plotted relative to unstimulated samples, with
total N = 5.
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C h a p t e r 4

LINEARITY UNDERLIES FOLD-CHANGE RESPONSE IN THE
WNT PATHWAY

4.1 Introduction
What are potential advantages to linear signal transmission? Linearity is a feature of
many engineering systems, where it serves several practical purposes. In particular,
linear signal transmission enables the superposition of multiple signals, where the
output of two simultaneous inputs is equal to the sum of the outputs for each
input separately. Superposition enables multiple, dynamic signals to be faithfully
transmitted and processed independently [21]. Thus, for instance, linearity enables
people to listen to a phone call and interpret speech amongst background noise
and allows a car radio to tune into one station out of multiple broadcasting on
separate carrier frequencies. Notably, linearity is also a desired goal in synthetic
biology, where it is often implemented using negative feedback [7, 18]. Analogous
to engineered circuits, linearity in biological signaling pathways may facilitate
multiplexing inputs into a single pathway (Figure 4.1A).
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Figure 4.1: Benefits of linearity. (A) Linearity enables multiplexing of inputs to
a signaling pathway. Multiplexed signals can be independently decoded down-
stream, and therefore regulate distinct transcriptional events. (B) Illustration for
how linearity between the receptor occupancy and downstream outputs gives rise to
dose-response alignment [2].

A second benefit is that a linear transmitter naturally gives rise to dose-response
alignment [2], where one ormore downstream responses of a pathway closely follows
the fraction of occupied receptor (Figure 4.1B). Dose response alignment appears
in many biological systems and is thought to improve the fidelity of information
transfer through signaling pathways [2, 3, 19, 24].

Here, we investigate a third potential advantage of linearity that may be useful in
biological contexts. We find that linearity facilitates fold change detection, where
cells sense fold changes in signal, rather than absolute level, to buffer cellular noise
[6, 8, 10, 17, 22]. Indeed, for the signaling pathways studied here, it has been shown
experimentally that the robust outcome of ligand stimulation is the fold-change
in the level of transcriptional regulator [6, 8, 10, 17]. We then demonstrate how
fold-change detectionmay be implemented through a novel gene regulatory element.
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4.2 Results
Linearity underlies fold-change response in the Wnt pathway
Increasingly, studies now indicate that many signaling pathways transmit signals
relative to their basal state [6, 8, 10, 17]. A common outcome of the transduction
process is an increase in the concentration of a transcriptional regulator that then
activates or represses target genes. Interestingly, rather than regulate the absolute
concentration (Figure 4.2A), many signaling pathways regulate fold-changes in
concentration of the transcriptional regulator (Figure 4.2B) . Such a fold-change
response, where the fold-change in transcriptional regulator is robust to variations
in biochemical parameters, has been observed in the canonical Wnt [10], ERK [6],
NF-κB [17], calcium [22], and Tgfβ pathways [8], as well as predicted in cytokine
signaling in T-cells [23]. However, it is not understood how the signaling pathways
produce fold-change response in first place. As illustrated in Figure 4.2B, producing
fold-change response is not trivial, as the signaling pathways must produce response
that is directly proportional to basal state, and do so in a robust way.

Figure 4.2: (B-C) In these illustrations, each line is a response from a single cell or
average bulk response given biochemical perturbations. (B)With absolute response,
concentration of the transcriptional regulator is the outcome of signal transmission
that is robust to biochemical variations. (C)With fold-change response, fold-change
in concentration of the transcriptional regulator is robust to biochemical variations.

Fold-change response in the Wnt pathway was characterized in the seminal work
of Goentoro and Kirschner [10]. In this study, simulations of the Wnt pathway
predicted that the fold-change in β-catenin is robust to most perturbations to the
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pathways. In contrast, the absolute level of β-catenin was predicted to be sensitive
to variations in many pathway parameters. These predictions were then verified ex-
perimentally in Xenopus embryos and human RKO cells by perturbing components
of the β-catenin destruction complex. Inhibition of GSK3 through lithium addi-
tion or overexpression of GSK3 binding protein (GBP) increased β-catenin levels,
while Axin1 overexpression lowered β-catenin levels. In contrast, the fold-change
in β-catenin was demonstrated to be insensitive to each perturbation [10].

To understand how fold-change response arises in the Wnt pathway, we examined
the analytical solution to β-catenin concentration at steady-state, derived in ref. [10]
and reproduced in Equation 2.1:

[βcat]ss = K17 ·
1 − γ + α/u

2

(√
1 +

4γ
(1 − γ + α/u)2

− 1

)
(2.1)

Here the input function u(Wnt) describes the effect of Wnt stimulation on inhibiting
the destruction complex and is nonzero in the absence of Wnt (refs. [10, 13, 16]).
Basal input can arise from consitutive ligand expression, leaky kinase activity, or in
the case of theWntmodel, basal dissociation ofGSK3 from the β-catenin destruction
complex (parameter k−6), as observed in Xenopus egg extracts [16].

Equation 2.1 demonstrates that, in general, fold-change inβ-catenin, FC = [βcat]ss(u1)

/[βcat]ss(u0), is sensitive to changes in all parameters in the system. Next, we exam-
ine fold-change behavior within the parameter regime measured in cells. As shown
in Equation 2.4, with measured parameters β-catenin becomes a linear function of
input:

[βcat]ss ≈ K17
γ

α
u (2.4)

As a consequence of this linearity, the fold-change in β-catenin,

FC =
[βcat]ss(u1)

[βcat]ss(u0)
≈

K17
γ
αu1

K17
γ
αu0
=

u1
u0

(4.3)

becomes insensitive to variations in parameters – consistent with experimental
observations and simulations of the model [10].

Thus, we find that linear signal transduction that we identified through modeling
and experiments in Chapters 2-3 is sufficient to explain the complex relationship
between the Wnt pathway and perturbation (Figure 4.3A-B). In particular, Equation
2.4 (reproduced above) demonstrates how the level of β-catenin is directly sensitive
to parameter values, and Equation 4.3 demonstrates how fold-change in β-catenin
is robust to perturbations to the Wnt pathway.
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Figure 4.3: (A) Linearity produces fold-change response that is robust to parameter
variations. To illustrate this, we added lognormal noise (0.1 CV) to all parameters of
theWnt model, and simulated the level of β-catenin before and afterWnt stimulation
(blue circles). (B) In contrast to β-catenin fold-change, the concentration of β-
catenin after Wnt signaling is directly sensitive to parameter variations. Sensitivity
coefficients for β-catenin fold-change are plotted in blue, and sensitivity coefficients
for β-catenin concentration are plotted in black. The sensitivity coefficient for output
y and parameter k is defined as syk =

∆y/y
∆p/p

Fold-changes in β-catenin can be detected by novel gene regulatory element
In the previous section, we found that an additional benefit of linear signal trans-
mission is to produce fold-change response. By computing fold-change response,
gene regulatory networks can faithfully respond to ligand-receptor activation de-
spite perturbations to the signaling pathway. Therefore, fold-change response as a
mechanism for robust gene expression may act as a selective pressure for linearity in
cell signaling pathways. In this section, we explore whether fold-change response
is in fact utilized by gene regulatory networks downstream of the Wnt pathway.

Signal in the Wnt pathway is transduced by β-catenin, which in complex with
Tcf/Lef regulates transcription primarily through a single cis element in the DNA,
the Wnt responsive element (WRE), at times potentiated by a nearby Helper site
[5]. Recently, an additional regulatory element was identified that regulates Wnt
target genes such as siamois and Xnr3 [15]. The 11-bp cis element is hundreds of
basepairs upstream of the WRE and is acted upon by β-catenin and Tcf. Unlike the
WRE, the 11-bp exerts a repressive effect on expression. This suggests a new model
of gene regulation in the Wnt pathway, where β-catenin not only activates target
genes through the WRE but also, in some contexts, negatively regulates expression
through a distinct 11-bp element. The 11-bp elements co-localized with the WRE
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in 45%–71% of peaks from β-catenin ChIP sequencing in human cells, suggesting
a widespread role for the mechanism [15].

A network in which input exerts both an activating and repressive action on a
downstream output is known as an incoherent feed-forward loop (IFFL) [1]. The
discovery of the novel 11-bp element suggests that β-catenin acts both as an activator
and repressor of gene expression, forming an IFFL. Here, we incorporate the IFFL
motif into an established model of Wnt signaling [16] in order to examine gene
expression downstream of Wnt signaling.

The Wnt model was built on parameters measured in Xenopus extract, and repro-
duces experimental data from Xenopus and mammalian systems [16]. Here, we
examine how β-catenin signal is transmitted through the combined Wnt pathway
and β-catenin IFFL circuit (Figure 4.4A).

Figure 4.4: Wnt pathway with IFFL circuit (A) Diagram of the Wnt pathway,
modified to include the gene regulatory IFFL circuit. (B) Diagram of the IFFL
circuit. X is β-catenin, and forms protein complexes XY1 and XY2. XY1 activates
gene output Z by binding to the WRE, while XY2 represses output by binding to the
11-bp element.

We modeled the IFFL circuit using a simple, phenomenological description previ-



81

ously derived in refs. [4, 11] (Figure 4.4B). To start, we modeled the dynamics of
the β-catenin/Tcf-1 complex. This complex binds to the Wnt-responsive element
(WRE):

dXY1
dt
= β1 · X − α1 · XY1 (4.4)

XY1 is the β-catenin/Tcf-1 complex, X is β-catenin, and Y1 is Tcf-1. α1 is the
dissociation rate constant (ko f f ) of XY1, and β1 is the product of the binding rate
constant (kon) of X to Y1 and concentration of Y1. In the original Wnt model [16],
Tcf-1 is present at much lower concentration than β-catenin, with Tcf-1/β-catenin
complex increasing by only 1.8-fold upon Wnt signaling. Here, we model Tcf-1 in
excess to capture the large dynamic range of Wnt-responsive gene expression [10].

Next, we implemented cis-regulation from the 11-bp element through a second
complex, XY2. While it is known that β-catenin binds to the 11-bp element, it is
not currently known whether it is in complex with Tcf-1 or another protein, such as
the repressive Tcf-3. We model XY2 as a function of β-catenin, X , and an unknown
binding partner Y2:

dXY2
dt
= β2 · X − α2 · XY2 (4.5)

α2 and β2 are defined in the same way as α1 and β2, respectively, applied to the
binding partner Y2.

XY1 binds to the WRE and activates gene Z , whereas XY2 binds to 11-bp element
and represses gene Z . The dynamics of gene transcription are

dZ
dt
= β3 · Pa − α3 · Z (4.6)

where β3 is the rate of transcript production per unit time, α3 is the degradation rate
constant of the transcript Z , and Pa is the probability that transcription is active.
In many promoters the WRE and 11-bp element are >500 base-pairs apart, so we
modeled WRE occupancy by XY1 and 11-bp occupancy by XY2 as independent
events. With independent binding of the activator and repressor, the probability
function Pa is, as derived in refs. [S2-3],

Pa = (P1) · (PN2) (4.7)

P1 =
XY1/K1

1 + XY1/K1
(4.8)

PN2 =
1

1 + XY2/K2
(4.9)
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where P1 is the probability that XY1 is bound to WRE and PN2 is the probability
that XY2 is not bound to 11-bp element. K1 is the dissociation constant of XY1 to
WRE and K2 is the dissociation constant of XY2 to 11-bp element. The full dynamic
equation for Z is:

dZ
dt
= β3 ·

XY1/K1
1 + XY1/K1 + XY2/K2 + (XY1 · XY2) /(K1 · K2)

− a3 · Z (4.10)

This trancriptional IFFL belongs to a class of recurring strategy in biological sys-
tems, where a biological molecule is used in a paradoxical manner [12]. Paradoxical
circuits, and the incoherent feed-forward circuit specifically, moreover, are versatile
circuits. By tuning the relative strengths and timescales of the activation and repres-
sion arm, an incoherent feed-forward circuit can generate a sustained net activation,
a net repression, a temporal pulse, response acceleration, band-pass filtering, and
fold change detection [12].

When repression through the 11-bp is strong and activation through the WRE is
weak, the transcriptional IFFL can perform fold-change detection of β-catenin.
Weak activation entails loose binding of XY1 to the WRE, or K1 � XY1. Weak
activation can also be understood as a non-saturating WRE response, such that
an increase in XY1 can stimulate further gene expression through WRE. Strong
repression entails tight binding of XY2 to the 11-bp, or K2 � XY2. This has been
observed for many promoter binding sites [9], though more details are needed to
determine this for the XY2 complex.

With strong repression and weak activation, Equation 4.6 becomes:

dZ
dt
= β3 ·

XY1
K1
·

K2
XY2
− α3 · Z (4.11)

Next, we employ dimensional analysis to demonstrate the fold-change detection
capabilities of this IFFL, based on analysis by Goentoro et al. [11]:

FC = X/X0 (4.12)

xy1 =
α1 · XY1
β1 · X0

(4.13)

xy2 =
α2 · XY2
β2 · X0

(4.14)

τ = α2 · t (4.15)
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We apply these dimensionless variables to Eqs 4.4, 4.6 & 4.11:
dxy1
dτ
=
α1
α2
· (FC − xy1) (4.16)

dxy2
dτ
= FC − xy2 (4.17)

dz
dτ
=
α3
α2
·

(
xy1
K1
·

K2
xy2
− z

)
(4.18)

From these equations, we see that the IFFL responds only to the fold-change FC =

X/X0 [11]. When X is a dynamic function X = X(t), the IFFL can measure various
fold-change features, including the rate and integrated area of FC. When the IFFL
exhibits slow dynamics relative to β-catenin accumulation, however, FC can be
approximated as a step function from steady-state X0 to a new steady-state X . This
slow dynamic can come from Y2; for instance, if it is a transcriptional target of
β-catenin, the timescale is set by the transcription and translation time of Y2.

In the case of slow IFFL dynamics, gene expression is robust to variations in
parameters of the Wnt pathway. As we demonstrated in the previous section, the
fold-change in β-catenin does not depend on pathway parameters:

FC =
u
u0

(4.19)

Therefore, linear signal transmission combined with fold-change detection yields
robust gene expression. Interestingly, existing data confirms that Wnt-responsive
gene expression is robust to perturbations, suggesting a role for linearity and fold-
change detection in the Wnt pathway.

Existing data supports either fold-change detection or amplitude filtering in
the Wnt pathway
Wnt signaling in early Xenopus blastulas activates dorsal regulators, including
siamois and Xnr3 [15]. Treating embryos for 5–10 min with 300 mM lithium
stabilizes β-catenin [7] and dorsalizes the embryos (Figures 4.5A-C). Embryos
treated with moderate doses of lithium (150 and 200 mM) also showed increased
β-catenin level (Figure 4.5D, see red arrows). However, the embryos largely retained
a wild-type level of siamois and Xnr3 expression (Figure 4.5B, see red arrows) and
developed into wild-type tailbuds (Figure 4.5A), suggesting that gene expression is
robust to perturbations to the Wnt pathway. A similar lack of embryo phenotypes
despite increased β-catenin level was observed with other perturbations to the Wnt
pathway, including injection of axin1 and GBP mRNA [10].
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The TopFlash reporter, by contrast, does not exhibit buffering to moderate lithium
perturbation. The TopFlash reporter is a luciferase-based reporter plasmid that is
driven by multiple Wnt-responsive elements (WREs) and lacks the 11-bp element.
The TopFlash reporter showed increased activity at moderate doses of lithium (Fig-
ure 4.5C, red arrows). Moreover, deletion of the 11-bp element from the siamois
promoter caused a similar loss of buffering [15]. This suggests a critical role for the
11-bp element in imparting robustness to endogenous gene expression.

Figure 4.5: Endogenous Genes Show Regulation Not Captured by the WRE (A)
Xenopus embryos were treated with LiCl for 5 min at the 32-cell stage, harvested at
stage 10 for qRT-PCR assay, and scored 3–4 days later (shown here). (B) Expression
of target genes, siamois (black circle) and Xnr3 (white circle). Control embryos
are untreated sibling embryos. Red arrows highlight how gene expression remains
wild-type despite perturbations. (C) Black circle, luciferase/renilla signal from the
TopFlash reporter injected at the four-cell stage; white circle, β-catenin level in the
embryo measured using western blot. Red arrows highlight how β-catenin level and
TopFlash expression change with moderate perturbations. (A)–(C) are reproduced
from [10] with permission. Data are represented as mean ± SEM from three to five
biological replicates. Error bars not visible have negligible SEM.

As we derived in the previous section, linearity and fold-change detection can give
rise to robust gene expression. Here, we test where the observed gene expression
robustness can indeed be explained by linear transmission in the Wnt pathway
coupled by fold-change detection through β-catenin IFFL. To do this, we use the
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lithium perturbation data from Figure 4.5B-C. Specifically, we would like to capture
β-catenin response to lithium perturbation and the resulting gene expression with or
without 11-bp cis-regulation.

Lithium perturbs the Wnt pathway through inhbition of GSK3 kinase activity (the
rate constant k9 in the model, Figure 4.4A). Indeed, we find that the Wnt model
recapitulates experimental findings, with a decreased k9 leading to increased β-
catenin level.

Next, we identify β-catenin IFFL parameters that are consistent with gene expression
data (referred to as “consistent circuits”). TopFlash expression tracks lithium pertur-
bation, with luciferase expression increasing concomitantly with β-catenin. Despite
the increase to β-catenin level, however, endogenous siamois and Xnr3 expression
is buffered against moderate lithium pertubation. Therefore, consistent β-catenin
IFFL circuits must show buffering against changes to k9 and show sensitivity to
changes in k9 when the repressive 11-bp is removed (to simulate TopFlash) (Figure
4.6A).

Figure 4.6: (A) We simulated lithium perturbation in the modified Wnt model
by modifying the GSK3 phosphorylation rate k9. An example of a consistent
IFFL circuit that recapitulates lithium perturbation data is plotted. Consistent IFFL
circuits show buffering against changes to k9 and show increasing expression to
decreases in k9 when the repressive 11-bp is removed (to simulate TopFlash) (B)
The IFFL was simulated for many values of parameters K1, K2, α1, α2, α3. For
each parameter set, the IFFL circuit was scored by its ability to recapitulate lithium
perturbation data (see Methods). The intensity of each square in the K1-K2 plot
indicates the percent of tested parameters {α1, α2, α3} that were consistent with the
data.
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We tested a large range of IFFL circuits by systematically varying the IFFL param-
eters in Equations 4.4-4.6. The scaled Equations 4.16-4.18 indicate five relevant
parameters to vary: α1, α2, α3, K1, and K2. This parameter space was explored
through millions of simulations, and the circuits consistent with experimental data
are plotted in Figure 4.6B. The intensity of each square in K1-K2 space indicates the
percent of combinations tested on parameter set {α1,α2,α3} that yielded consistent
circuits (Figure 4.6B).

From Figure 4.6B, we see that there are two regions of parameter-space that produce
consistent circuits. As discussed in the previous section, fold-change detection
occurs where activation is weak (XY1/K1 � 1) and repression is strong (XY2/K2 �
1) - the lower right corner of Figure 4.6B. In this parameter regime, the β-catenin
IFFL is invariant to scaling of β-catenin level, a sufficient condition for fold-change
detection [20]. We identify the values of K1 and K2 for which the gene output Z is
approximately scale-invariant: Z(p · X) ≈ Z(X), for some scalar p > 0. Indeed, we
find that this parameter regime (Figure 4.7) overlaps with the blue-outlined region
in Figure 4.6B. We also find that the smaller, orange-outlined region in Figure 4.6B
does not satisfy the requirements for fold-change detection.

Figure 4.7: The β-catenin IFFL behaves either as a fold-change detector or amplitude
filter. We identify the behavior within the two regions of consistent circuits from
Figure X. First, we show the larger region (in blue) exhibits approximate scale
invariance, with Z(p · X) ≈ Z(X) for p > 0. Therefore, this region of circuits
satisfies the conditions for fold-change detection from ref. [20]. The smaller
region (in orange) does not meet these criteria. Instead, we find that in this region
X ≈
√

K1 · K2, indicating that the circuits in this region perform amplitude filtering
as in ref. [14].

We find that the circuits in the smaller, orange-outlined region of Figure 4.6B
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behave as amplitude filters. An amplitude filter responds maximally to inputs
within a particular range and produces no response for inputs outside this range.
Specifically, the β-catenin IFFL performs amplitude filtering when XY1 ≈ XY2 ≈ X ,
with maximal response occuring when X ≈

√
K1 · K2. Indeed, we find that all

circuits in the smaller region of Figure 4.6B satisfy the requirements for amplitude
filtering (Figure 4.7).

Discussion
Here, we show how linearity can facilitate reliable fold-change output in the face of
parameter variations. For a linear input-output response, parameter variation affects
only the gain of the response. In turn, fold-change output is computed as the ratio
of two points on this linear input-output response and is invariant to changes in the
gain. Importantly, there is evidence that all four pathways we examined in Chapter
2 produce reliable fold-change output. Therefore, fold-change response is a benefit
of linearity and may act as a selective pressure on the evolution of input-output
response of signaling pathways. The IFFL motif may be a pervasive mechanism for
fold-change detection, as it has also been proposed in the NF-κB pathway [17].

In this chapter, we also find that the incoherent feed-forward loop formed by WREs
and the 11-bp element can behave either as fold-change detector or as an amplitude
filter. There are significantly more parameter combinations that support fold-change
detection than amplitude filtering, suggesting that it may be a more plausible mech-
anism in the Wnt pathway. However, further experiments are needed to distinguish
between the two. We propose two approaches to distinguishing between these be-
haviors (Figure S4.2): first, the fold-change detector leads to perfect adaptation of
gene expression, while the amplitude filter does not. This can be tested by examin-
ing the basal siamois/Xnr3 gene expression in Xenopus embryos (before β-catenin
accumulation) in the presence or absence of perturbation. Second, fold-change
detectors compute signal relative to basal, which means that the maximal gene
output is inversely proportional to basal Wnt pathway activity. Counter-intuitively,
an increase to the basal pathway activation decreases the maximal gene expression
for fold-change detection (Figure X). In contrast, basal pathway activation would
not affect the maximal response of the amplitude filter. An increase in basal Wnt
pathway activity can be implemented, for instance, through embryo injection of low
levels of Wnt mRNA.

What are the advantages of fold-change detection relative to the amplitude filtering,
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in the context of the Wnt pathway? Both behaviors can produce the observed gene
expression buffering to GSK3 and Axin perturbation. That is, both fold-change
detection and amplitude filtering can reject moderate disturbances to Wnt signal
transmission. However, amplitude filtering accomplishes this in exchange for a
loss of sensitivity to the Wnt signal: while β-catenin varies continuously with
Wnt signal, the downstream gene output is binary (either on or off). Fold-change
detection, on the other hand, can track changes in β-catenin while simultaneously
rejecting prolonged disturbances (through adaptation). Thus, fold-change detection
at the transcriptional level can overcome disturbances to Wnt signal transmission
(e.g. chemical perturbation, variations inmaternalmRNA inheritence, temperature),
while responding sensitively to changes in external Wnt ligand.

4.3 Materials and Methods
To determine whether an IFFL circuit was consistent, we tested it against the fol-
lowing criteria:

1. Gene output is responsive to Wnt stimulation: IFFL gene output increased at
least two-fold over basal.

2. For 1.5 and two-fold perturbations to GSK3 kinase activity, IFFL gene output
changes by less than 5%.

3. For 1.5 and two-fold perturbations to GSK3 kinase activity, WRE-only gene
output tracks β-catenin to within 50%. That is, if β-catenin increases by two-fold
due to perturbation, gene output increases by at least 1.5-fold.

Simulations were performed in Matlab.
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4.4 Supporting Figures

Figure S4.1: (A) Timescales α1 and α2 for activator XY1 and repressor XY2, re-
spectively, that produce consistent, fold-change detection circuits. The timescales
are normalized to destruction complex independent degradation, k13. A value of
one provides an upper bound for protein stability, while lower values indicate faster
kinetics, such as protein-protein binding. The plot intensity indicates the percentage
of tested parameters {K1, K2} that produced consistent circuits. (B) Timescales α1
and α2 for activator XY1 and repressor XY2, respectively, that produce consistent,
amplitude filtering circuits. The data is plotted as in (A).

Figure S4.2: (A) Fold-change detection entails exact adaptation andWeber’s Law. A
consequence of both of these conditions is that an increase in X0 (all else equal) yields
a decrease in maximal gene output zm. (B) The adaptation of all consistent circuits
was calculated, with y0/y f = 1 indicating perfect adaptation. (C) The relationship
between maximal gene output zm and basal β-catenin X0 was calculated, with a
negative relationship (slope ρ < 0) required for fold-change detection.
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C h a p t e r 5

CONCLUSIONS

This work identifies linear signal transmission as an overarching principle of the
Wnt, ERK, and Tgfβ signaling pathways. Throughmathematical analysis and exper-
iments, I demonstrated that these three pathways converge upon linear input-output
response despite significant structural differences between the pathways. Linearity
is a desired property in engineering where it facilitates fidelity and superposition in
signal transmission. This suggests that linear signal transmission may have a similar
utility in cell signaling, creating a selective pressure for linearity to arise within
many distinct signaling pathways.

First, in Chapter 2, I used mathematical analysis of pathway models to demonstrate
linear input-output response, as well as the mechanisms by which linearity arises. I
found that linearity is produced by distinct mechanisms in each pathway. Linearity
in the Wnt pathway requires a futile cycle of β-catenin, which is maintained by
rapid activity of the β-catenin destruction complex. In the ERK pathway, linearity
is generated by an ultrasensitive kinase cascade coupled to negative feedback. In
the Tgfβ pathway, linearity arises from continual nucleocytoplasmic shuttling of
Smad, which maintains a Tgfβ-responsive pool of Smad in the cytoplasm. This
mathematical analysis provides insight into how linear response is achieved in
different signaling pathways.

In Chapter 3, I experimentally validated these findings in theWnt and ERK pathways
using quantitative Western blots and modulated the input-output response for both
pathways. I found that in the Wnt pathway, β-catenin is linear with respect to
Wnt co-receptor LRP activity up until receptor saturation. Further, by inhibiting
β-catenin kinase GSK3 using CHIR99021, I demonstrated that the range of linearity
can be reduced experimentally. Next, I showed a linear relationship between doubly-
phosphorylated ERK and the concentration of EGF ligand, up until saturation of
ERK. Expression of a feedback-resistant Raf-1 protein, however, weakened feedback
in the pathway and yielded a nonlinear input-output response over the same range
of EGF dose. These findings provide quantitative validation of the mathematical
analysis from Chapter 2.

Finally, in Chapter 4, I usedmodeling to demonstrate how linearity can produce fold-
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change response in the Wnt pathway, and how a novel cis-regulatory element could
detect fold-changes in β-catenin. First, I showed that linear input-output response is
sufficient to produce fold-change response in theWnt pathway, such that fold-change
in β-catenin is robust to variations in pathway parameters. Next, I demonstrated how
a novel cis-regulatory element in the promoter of manyWnt-responsive genes forms
an incoherent feed-forward loop (IFFL) regulating gene expression. This β-catenin
IFFL can detect fold-changes in β-catenin, and, when combined with linear signal
transmission, yields robust gene expression.

Our work suggests two benefits for linearity in cell signaling. First, linearity enables
the superposition of multiple signals within a single pathway. Superposition is a
useful feature of engineered communications systems, where it enables the shared
use of common communication channels. Similarly, linearity may mitigate the
communication bottleneck created by the limited number of developmental signaling
pathways through signal multiplexing. Indeed, work on dynamic signal encoding
in the ERK, Notch, and p53 pathways provides evidence for this strategy in cell
signaling [1, 6, 7]. Thus, superposition may not only have a role in engineered
systems, but also in biological signaling systems.

Our work also suggests that linearity in cell signaling pathways imparts robustness to
signaling. I demonstrated in Chapter 4 that linearity underlies fold-change response,
an emerging property of signaling pathways in which signal is transmitted relative
to basal pathway activity [2–5, 8, 9]. Specifically, the fold-change computed from
a linear input-output system is insensitive to parameters. Interestingly, this strategy
suggests that the amplification gain does not need to be tightly regulated. Instead,
signaling fidelity is guaranteed as long as transmission is linear. Thus, this thesis
demonstrates that linearity is a widespread property of cell signaling, and may
increase the fidelity and rate of information transfer through signaling pathways.
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