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ABSTRACT

An accurate estimation of the large-scale forces in the mantle has been difficult to
obtain as numerical models either do not use an accurate rheology nor reproduce
surface observations. While much work has been done in developing high-fidelity
forward models that capture the salient physics of shear-thinning and dynamic
weakening, they fail to reproduce observations such as platemotions and topography.
In this thesis, we develop an optimization methodology that minimizes the misfit
in surface observations such as plate motions and average effective viscosity for
certain regions of the mantle. We utilize adjoints to calculate the gradient, while
using second-order adjoints to construct the Hessian so as to infer the rheological
parameters of the mantle’s rheology. Furthermore, we build on this optimization
scheme by constructing the Gaussian approximation of the posterior distribution for
the inferred rheological parameters using the Hessian and establish the trade-offs
between each parameter through their conditional distributions. We further extend
this Gaussian approximation to infer extrinsic quantities such as the stresses in the
fault zones and the average effective viscosity in the hinge zones to not only quantify
the uncertainty, but also to see partitioning of the coupling of each subduction zone.
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C h a p t e r 1

INTRODUCTION

Plates moving on the earth’s surface are a manifestation of circulation of the mantle
which behaves as a viscous fluid on geological time scales (that is, greater than
several thousand years). Plate tectonics is the kinematic description in which the
earth’s surface is divided into about a dozen plates; the plates have negligible strain
internally and strain is concentrated at plate boundaries. Mantle convection is
the dominant driving force of plate tectonics and is associated with the creation
and destruction of plates including mountain building and volcanism at subduction
zones. The viscous properties are attributed to creep of mantle minerals at high
temperatures. Moreover, subduction of oceanic lithospherewhere plates are returned
to the mantle is associated with large magnitude earthquakes along some plate
margins.

Developing an understanding of plate motion from a convection point of view
involves formulating models of the mantle that capture surface observations along
with an accurate description of viscous flow. The standard approach uses the
steady-state Stokes (or momentum) equation which follows from assumptions made
upon the Navier Stokes equations. The continuity equation is a statement of mass
conservation, while the momentum equation is a reflection of a balance of forces.
The mantle has a Prandtl number (ratio between kinematic viscosity to thermal
diffusion) that is very large, O(1022), with the inertial and nonlinear advective terms
of the Navier Stokes equations being negligible.

In convection models meant to describe the system over time-scales longer than
thousands of years, the mantle and plates are commonly assumed to be viscous.
However, plates and mantle are visco-elastic and commonly described as a Maxwell
body, the decay time of elastic stresses is the Maxwell time, µη , where η the effective
viscosity and µ the shear modulus. The Maxwell time likely varies substantially
within plates and the mantle. For example, studies have suggest that the highest
effective viscosities within plates is about 1023Pa · s and this leads to relaxation
times of 105 years, while the viscosity of the upper mantle is about 1019−1021Pa · s
with relaxation times from 10−103 years. This suggests that on themillion year time
scales we are interested in, the elastic stress for the plates could be important, but



2

they are not so within the bulk of themantle. While theMaxwell decay time suggests
that on geological time-scales, the oceanic plates behave like a viscous fluid, it is
important to ascertain what role does elasticity play in the stresses within plates.
Recent studies by Farrington et al. (2014) and Mao et al. (2017) have explored the
role of visco-elasticity in the hinge-zone, where plates bend as they first subduct
into the mantle. Although, the use of a visco-elastic model can give rise to a more
accurate estimation of the stresses on the surface, leading to moderately different
surface topographies Mao et al. (2017), argued that to a first-order, the viscous flow
approximation is suitable for studying the large-scale tectonic forces within plates.

Numerical models aimed at describing mantle convection can either be instanta-
neous or time-dependent. For instantaneous models, the subject of this thesis, only
the momentum equation resulting from assuming an infinite Prandtl number, the
Boussinesq approximation, and incompressibility is used. Solving instantaneous
models by assuming known buoyancy, one can predict surface velocity, topogra-
phy and a host of other outcomes. If the objective is to investigate the evolution
of plates, plate boundaries and the mantle, then the momentum and continuity
equations need to be coupled to the advection-diffusion equation. Coupling to the
advection-diffusion equation is beyond the scope of this thesis.

The primary forces in a subduction zone are slab pull, ridge push, the bending
force in the hinge zone, the anchor force from the pressure and the lower mantle
resisting force (Fig.1.1). Slab pull is likely the primary force driving plate motions
(Forsyth and Uyeda, 1975; Chapple and Tullis, 1977) and is estimated to account
for approximately 70% of the driving forces in the mantle (Conrad and Lithgow-
Bertelloni, 2002). An important constraint in models is reproducing the asymmetric
motion at subduction zones. Without the direct coupling of slabs to the down-
going plate, there would be symmetric convergence at subduction zones (Conrad
and Lithgow-Bertelloni, 2002). Ridge push and slabs in the lower mantle may
also be important as they act as a ’push force’ and a resisting force respectively.
Some key resisting forces include a bending force, when slabs first bend during
subduction, and the frictional resistance between plates and faults. The bending of
plates at a subduction zone (Fig. 1.1) can lead to significant dissipation (Conrad
and Hager, 1999); however, the stresses in the bending zone may not be accurately
approximated by viscous flow models, leading to varying estimates of viscous
dissipation (Buffett and Rowley, 2006; Buffett and Becker, 2012). Slabs may act as
stress-guides (Elsasser, 1969), allowing stresses to propagate from the lower mantle
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Figure 1.1: Summary of forces in a suduction zone.

to the oceanic lithosphere (Stadler et al., 2010). The propagation of stresses through
the high viscosity slabs act to resist plate motion due to the increase in viscosity
from the upper to lower mantle.

Mapping out the forces at subduction zones is important as it can aid in understanding
the forces that contribute to great earthquakes. There are two prevailing ideas for
the occurrence of great earthquakes. One idea holds that broad scale forces lead to
variations in normal stress and changes in seismic coupling through the frictional
resistance at the subducting plate (Scholz and Campos, 1995). Alternatively, the
varying properties within the fault zone may give rise to variations in coupling. It
is thought that both likely give rise to variations in seismic coupling as opposed
to one solely explaining the occurence of great earthquakes. Whatever the origin
of earthquakes, any model needs to explain the end-member cases of the Marianas
and Chile subduction zones. The Marianas-style subduction zones are the least
seismically coupled, while the Chile subduction zone is more coupled (Uyeda and
Kanamori, 1979). The degree to which subduction zones are mechanically coupled
remains uncertain.

Broad-scale forces of plate tectonics (e.g. normal force at plate boundaries, along
with the bending force in the hinge zone)may control the variations in the occurrence
of great earthquakes. Earlier, Ruff and Kanamori, 1983a suggested that there was a
relationship between the occurrence of great earthquakes and the broad scale forces
in an subduction zone. This relationship suggests that great earthquakes are more
likely to occur at subduction zones that have large stresses caused by young plates
converging at a high rate. However, the relationship between plate motions, plate
age and large earthquakes of Ruff and Kanamori, 1983b has been undermined with
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recent seismic activity such as the 2004 Sumatra earthquake (Stein and Okal, 2007).
Still, the idea that such broader forces play an important role has considerable
merit as subduction zones show substantially different dynamics that are potentially
governed by plate age, dip, depth, and stress distribution.

As we develop an understanding of the relationship between large magnitude earth-
quakes and where they occur, the tectonic stress distribution along plate boundaries
needs to be considered. Existing studies use simple fluid dynamics in 2-D to estimate
the normal forces acting on the slab (Scholz and Campos, 1995; Conrad, Bilek, et al.,
2004; Scholz and Campos, 2012). Such studies approximate the Stokes flow in the
mantle in a subduction-by-subduction zone basis, that is computing the broad-scale
forces (similar to Fig.1.1) such as the drag-force which is approximated as the force
under an ellipsoid in a viscous fluid. Under this balance of broad-scale forces, the
change in normal stress at plate boundaries is computed and a relationship between
the reduction of normal force and seismic coupling is advanced. In a similar vein,
broad-scale forces were estimated along with the state of stress for major subduction
zones in a simple Stokes flow model Conrad, Bilek, et al., 2004, they found that
slabs that are nearly detached from plates tend to produce great earthquakes (Con-
rad, Bilek, et al., 2004). While the conclusions between great earthquakes, seismic
coupling and broad-scale forces are noteworthy those studies fall short because the
dynamics, (dislocation creep, yielding and large variations in effective viscosity),
that occur on a broad-scale are more complex than represented in those elementary
calculations (Conrad, Bilek, et al., 2004; Scholz and Campos, 2012). For example,
although there is broad-scale flow in the global models of Conrad, Bilek, et al., 2004,
in reality there is no curving bending plates in subduction zones. In the Scholz and
Campos, 2012 models, although there are falling Stokes spheres, there again are no
slabs that act as stress guides from the interior of the surface.

While, the broad-scale forces are important on a geological timescale, what happens
on the shorter timescale in the fault zone is traditionally described by rate and state
frictional laws (Ruina, 1983). Typically, the fault zone is undergoing creep and
the more coupled part of the fault zone displays stick-slip motion behavior (Scholz
and Campos, 2012). When there is unstable sliding, the motion of the fault-zone
becomes pure stick-slip resulting in a large seismic coupling (Ruina, 1983; Scholz
and Campos, 1995) and thus great earthquakes. In contrast to broad scale forces,
seismic coupling may be attributed to subduction zone properties in the fault zone.
There are potential underlying causes that suggest different properties give rise to
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strongly coupled subduction zones. A few possibilities as to why certain subduction
zones are more seismically coupled than others include the accretion of sediments
and the subduction of seamounts. The amount of sediments at each subduction zone
could give rise to a larger shear force; however, sediments may primarily control
the stick-slip nature of the plate interface and may not be responsible for increased
mechanical coupling over long time scales. Furthermore, it has been argued that
subducted seamounts would increase the friction in the faults (Geersen et al., 2015).
Consequently, the exact influence each of these subduction zone properties has on
seismic coupling.

Ultimately, the occurrence of great earthquakes and the state of stress between plates
and indeed plate motions are governed by the mechanical properties of the mantle
and plates. Correctly describing the constitutive relationship of mantle viscosity is
essential in producing accurate models consistent with plate motions. The strength
of slabs plays a key role in how fast plates move. Creep of mantle minerals is
thermally activated and governed by an Arrhenius relation and in the upper mantle,
dislocation creep is the dominant mechanism that gives rise to a power law rheology,
i.e. non-Newtonian viscosity. In the lower mantle, diffusion creep (movement of
defects in a crystalline lattice), may be the predominant mechanism giving rise to
a Newtonian viscosity. Therefore, an appropriate viscosity must take into account
the dominance of dislocation and diffusion creep occurring in the upper and lower
mantle, respectively (Karato and Wu, 1993).

There have been numerous studies (Zhong, 2001) that have used a temperature
dependent Newtonian viscosity but they generally do not predict plate motions well.
However, the use of a non-Newtonian viscosity is more appropriate in the upper
mantle since there there is substantial strain-rate weakening in mantle rocks due to
dislocation creep (Karato and Wu, 1993). Furthermore, a more realistic rheology
needs to account for the dynamic weakening that occurs as plates bend, in which
dynamic weakening is controlled by an effective yield stress (Billen and Hirth, 2005;
Billen and Hirth, 2007; Stadler et al., 2010; Buffett and Becker, 2012). The yield
stress reduces the viscosity in the hinge zone which allows the slab to overcome
the bending force and subduct into the mantle. Similar to the activation energy and
strain rate exponent, a small yield stress weakens the slab

The desired resolution needed in a flowmodel influenceswhether a 2D or 3D domain
is used. While a 3-D spherical flow model has the benefit of capturing poloidal
(convergence or divergence) and toroidal motion (strike-slip), those models can be
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expensive and therefore may not properly resolve the thermal boundary layers, slabs
and plate margins and were avoided for many years. Consequently, much of the
dynamics has been studied in 2-D which was computationally tractable. Using a
2D domain can significantly reduce the computational cost while also allowing for
a significant increase in resolution compared to models computed in a 3D domain.
Furthermore, the reduced computational cost of 2D problems enables one to use
non-Newtonian rheologies (Billen and Hirth, 2005; Billen and Hirth, 2007) where
the complex dynamics can be fully explored. However, these 2D approximations
do not include both toroidal and poloidal flow which can be key depending on
what region of the earth is modeled. Therefore, a 3D domain should be used when
one needs to capture the complex flow in the mantle. Previous spherical models
can be classified into two approaches: a torque-balance approach or a solving the
Stokes flow problem where the forces are a natural dynamic outcome. Models of the
torque-balance approach (Forte and Peltier, 1991) are able to constrain the surface
observables such as plate motion and dynamic topography; however, they fall short
of incorporating the salient aspects of the rheology and lateral variations in viscosity.

The second approach is where the forces are solved through the full solution of
the Stokes flow with lateral variations in viscosity; however, there was always a
misfit between model results and observations (Ghosh et al., 2010). However, with
the use of adaptive mesh refinement (AMR), there have been spherical models that
incorporate non-Newtonian rheology along with fine-scale resolution of fault zones
and slabs (Stadler et al., 2010) which can produce the complex motions of both
large-scale and micro plates. While those spherical models were the first accu-
rately modeled models for plate motion and mantle flow, they were computationally
expensive.

Unfortunately, the strain rate exponent, yield stress and activation energy governing
plate motions and mantle flow are poorly constrained. To remedy this situation, an
optimization problem could be used to minimizing a misfit in surface data that is
constrained by Stokes flow. Unfortunately, optimization problems that minimize the
misfit in surface data only specify a single set of optimal parameters consistent with
observed data but does not provide estimates of the uncertainty. A better approach
for inferring parameters is through a Bayesian framework as it incorporates data
uncertainty and a prior distribution for each inferred rheological parameter, while
providing the covariance matrix for the inferred parameters (Tarantola, 2002). A
common method for solving Bayesian inverse problems is to use sampling methods
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such asMarkov ChainMonte Carlo (MCMC), where the parameter space is explored
using an acceptance-rejection proposal (Tarantola, 2002). However, MCMC can be
expensive if the parameter space is large or the forwardmodel is expensive (Baumann
et al., 2014).

An important aspect in these uncertainty quantification problems is the data. We
will mostly use plate motion data (Argus and Gordon, 1991; Argus, Gordon, and
DeMets, 2011), which assumes that plates are rigid, that is they have negligible
strain. In our studies, we will make use of the MORVEL56-NNR plate motion data
(Argus, Gordon, and DeMets, 2011), which contains plate motion data for all 56
(major and minor) plates. However, an assumption of this plate motion model is
that it assumes a no-net rotation reference frame.

Another option for parameter inference is to assume a form of the posterior density
of the inferred parameters. Typically, the posterior density is assumed to be a normal
distribution, however to find themean and the covariance of a parameter distribution,
an optimization problem needs to be solved through minimizing a misfit between
a model outcome and observed data. The normal distribution approximation is
a good approximation to first order to the true posterior distribution around the
maximum a posteriori (MAP) point (Petra and Stadler, 2011). However, the normal
approximation is less accurate away from the MAP point as the true posterior
distribution is more non-Gaussian.

Since mantle viscosity is nonlinear, the true posterior distribution of the rheological
properties of the mantle would be expected to have some degree of nonlinearity (not
normal). However, constructing the accurate posterior distribution is difficult in a
spherical model with appropriate resolution because it requires repeat forward solu-
tions, which is expensive. We will show, however, that the Gaussian approximation
is reasonable in Chapter 2, as it is a first-order approximation for the conditional
distributions for each inferred parameter and therefore is a viable means to provide
a high-probability estimate of the inferred parameters.

Building a posterior distribution for the rheological parameters provides the range
of possible values each rheological value can take in addition to the correlations
among parameters. The highest probability of a posterior distribution can accurately
quantify forces that occur at plate boundaries. Therefore, capturing the true posterior
distribution is not necessary because the high probability regions exist near theMAP
point which can be cheaply approximated by a Gaussian distribution. Using this
Gaussian approximation of the inferred parameters, the Gaussian approximation
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of the posterior shear and normal stresses between plates can be computed. The
posterior distributions for the shear and normal stresses would provide a physical
interpretation of the degree of coupling between subduction zones and where great
earthquakes occur.

In this thesis, we will develop a Bayesian Uncertainty Quantification approach
to infer the rheological parameters in models using a rheology that captures the
nonlinear flow of the mantle, with realistic thermal distribution of plates and slabs
along with an accurate representation of the fault zone, which has not been done
before. This method will combine the use of both accurate models (non-Newtonian
rheology and realistic thermal distribution and fault zones), while constraining plate
motions to infer the rheological parameters using adjoints–a first in the field of
geodynamics. Furthermore, we quantify the uncertainty in the poorly constrained
constitutive parameters as well as forces at plate boundaries while honoring the
complexities of the geometry of slabs and fault zones. In Chapter 2, we will derive
the adjoint equations and demonstrate how to appropriately sample surface data to
avoid spurious results for 2D models. We will show the sensitivity of plate coupling
to surface velocity. In Chapter 3, we will look at surface normal stress as data
and likewise derive the gradients and the forcing terms for the adjoint system. We
will then present some examples to show proof of concept and discuss limitations
of this method. In Chapter 4, we introduce average effective viscosity data for
certain regions in the upper mantle. Furthermore, we will derive the adjoint system
for both plate velocity and effective viscosity and present examples using realistic
temperature and velocity data. Additionally, we will derive expressions for the
covariance of plate boundary stresses in addition to comparing the stress (normal
and tangential) conditional distributions between plate margins, which has not been
explored in geodynamics. In Chapter 5, we will discuss ideas that builds upon the
work completed in this thesis.
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C h a p t e r 2

ADJOINT-BASED ESTIMATION OF PLATE COUPLING IN A
NON-LINEAR MANTLE FLOWMODEL: THEORY AND

EXAMPLES
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ABSTRACT

We develop and validate a systematic approach to infer plate boundary strength and
rheological parameters in models of mantle flow from surface velocity observa-
tions. Based on a realistic rheological model that includes yielding and strain rate
weakening from dislocation creep, we formulate the inverse problem in a Bayesian
inference framework. To study the distribution of parameters that are consistent with
the observations, we compute the maximum a posteriori (MAP) point, Gaussian ap-
proximations of the parameter distribution around that MAP point, and employ
Markov Chain Monte Carlo (MCMC) sampling methods. The computation of the
MAP point and the Gaussian approximation require first and second derivatives of
an objective function subject to nonlinear Stokes equations; these derivatives are
computed efficiently using adjoint Stokes equations. We set up two-dimensional
numerical experiments with many of the elements expected in a global geophysical
inversion. This setup incorporates three subduction zones with slab and weak zone
(interplate fault) geometry consistent with average seismic characteristics. With
these experiments, we demonstrate that when the temperature field is known, we
can recover the strength of plate boundaries, the yield stress and strain rate exponent
in the upper mantle. When the number of uncertain parameters increases, there are
tradeoffs between the inferred parameters. These tradeoffs depend on how well the
observational data represents the surface velocities, and on the weakness of plate
boundaries. As the plate boundary coupling drops below a threshold, the uncertainty
of the inferred parameters increases due to insensitivity of plate motion to plate cou-
pling. Comparing the tradeoffs between inferred rheological parameters found from
the Gaussian approximation of the parameter distribution and from MCMC sam-
pling, we conclude that the Gaussian approximation—which is significantly cheaper
to compute—is often a good approximation, in particular locally around the MAP
point. Thus, the method can be applied to the global problem of inferring nonlinear
constitutive parameters and plate coupling factors for each subduction zone in a
global geophysical inversion with known slab structure.
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2.1 Introduction
Plate motion is likely primarily driven by slab pull, the concentration of negative
buoyancy from subducted oceanic plates at convergent margins (Forsyth and Uyeda,
1975; Chapple and Tullis, 1977), while other driving forces, including ridge push
and traction at the base of plates, also contribute. Although estimates of slab pull
suggest that it may be responsible for more than about 70% of the total driving force
(Conrad and Lithgow-Bertelloni, 2002), the relative strength of forces controlling
plate motion has been difficult to firmly establish because of the diverse origin of
driving mechanisms and the close association between slab pull and resisting forces.
The slab pull force arises from concentration of negative buoyancy and through
thermally activated mantle rheology leads to a larger effective strength of slabs.
Slabs both concentrate the driving force (because they act as stress guides (Elsasser,
1969)) and concentrate resistance (because the relatively strong slabs bend in the
hinge zone (Conrad and Hager, 1999)). There is a significant effect from dynamic
weakening at plate boundaries manifested as the development of normal faulting
and diffuse seismicity in the outer rise associated with plate bending (Kikuchi and
Kanamori, 1995). Presumably, as plates are underthrusted at plate boundaries, there
is a large stress concentration within the hinge zone leading to the growth of faults
which dissipates energy and weakens the plate. Slabs are a fundamental, highly
nonlinear component of the system of plate forces, but deconvolving these forces
and quantifying uncertainty has been difficult, especially in global models meant to
predict and explain actual plate motions.

At convergent plate boundaries, in addition to plate bending, the resistance to plate
motion is also likely strongly influenced by sliding of subducting with respect to
over-riding plates. Such motion gives rise to great earthquakes that occur along
many, but not all, subduction zones. Seismic coupling (ratio of seismic moment
release to the rate implied by plate motion) varies substantially between subduction
zones. Variation in seismic coupling is likely strongly influenced tectonically, that
is by local convergence, plate age, and the geometry of both the shallow and deep
structure of slabs (Ruff and Kanamori, 1983b). Seismic coupling could also be
influenced by the nature of the material (such as the thickness of the sediment on the
incoming plate (Ruff, 1989)) within the zone between the plates. Such quantities
vary substantially not only between subduction zones but also along strike of a
plate boundary. A simple heuristic model suggests that highly coupled subduction
zones (such as Peru or Chile) may have large normal forces, while weakly coupled
subduction zones (such as the Marianas or the Izu-Bonin) have small normal forces
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(Scholz and Campos, 1995; Scholz and Campos, 2012).

The importance of driving and resisting forces has been evaluated with forward
and inverse models (Hager and O’Connell, 1981; Forte and Peltier, 1987; Conrad
and Lithgow-Bertelloni, 2002). Some spherical models essentially invert observed
plate motions for the radial viscosity of the mantle while being driven by the long-
wavelength distribution of mantle buoyancy (Forte and Peltier, 1987). The models
balance stresses from piecewise rigid plates (spherical caps) against the resistance
from viscous linear mantle flow with small lateral variations in viscosity.

Such spherical inversions do not include the essential character of slabs which act as
stress guides while resisting plate motions through plate bending. By incorporating
constitutive relationships with thermally activated diffusion and dislocation creep
(Karato and Wu, 1993) with yielding, regional 2-D (Billen and Hirth, 2005; Billen
and Hirth, 2007) and 3-D Cartesian models (Zhong, Gurnis, and Moresi, 1998)
capture the potentially relevant processes within the bending plate while producing
plate-like surface motion. Such models require high resolution locally (∼ 1 km),
especially within the hinge zone of the subducting plates, and robust Stokes solvers
that can handle the many orders of magnitude variations in effective viscosity
implied by laboratory-based constitutive relationships (variations can be six to eight
orders of magnitude). The ability to incorporate these resolutions and solvers in
sphericalmodels capable of achieving global platemotions has been a computational
challenge, and only recently overcome (Stadler et al., 2010). Through adaptive mesh
refinement, the sharp gradients in viscosity within and near slabs have been achieved
in instantaneous models that forward predict global plate motions (Alisic, Gurnis,
Stadler, Burstedde, and Ghattas, 2012; Alisic, Gurnis, Stadler, Burstedde, Wilcox,
et al., 2010). Such models are also able to show finer scale tectonic motions, such
as rapid trench rollback, while not requiring plates to be rigid. As such forward
models only approximately matched observed plate motions, their full potential has
yet to be achieved.

There has been important progress developing inverse models of mantle flow that
bring different sets of data together toward the inference of geophysical properties.
For example, adjoints have been implemented with different combinations of the
convection equations to infer the initial temperature distribution in the mantle in
both regional (Ismail-Zadeh et al., 2004; Spasojevic et al., 2009) and global (Bunge
et al., 2003; Horbach et al., 2014) contexts. Nevertheless, all of these models use
simplified rheologies that do not incorporate the essential physics of strain rate
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weakening and yielding that are arguably essential for computing the driving and
resisting forces of plate motions.

Here we explore how the high resolution flow models can be recast as an inverse
problem capable of resolving the complex role of slabs and plate margins. We de-
velop a method to infer plate boundary strength, yield stress and strain rate exponent
by fitting plate motions in high-resolution models in which slabs and hinge zones are
well resolved. We expand on the work of Worthen et al. (2014) in three ways. First,
the test problems employed here are functionally equivalent to the expected geo-
physical inverse problem. Second, we formulate the problem as a Bayesian inverse
problem, which allows a more complete characterization of the physical tradeoffs
and the uncertainties in the inferred parameters. Third, we provide expressions for
the second derivatives (the Hessian matrix) of the mismatch functional between the
geophysical observations and model predictions. For that purpose, we derive the
first-order adjoint equations along with the expression of the gradient of this misfit
functional with respect to the parameters. A Bayesian formulation of the inverse
problem allows us to quantify uncertainties in the inferred parameters in addition to
computing the best-fit, i.e., maximum a posteriori (MAP), parameters. The com-
putation of the MAP estimate amounts to solving a PDE-constrained optimization
problem, for which we employ an inexact Newton conjugate gradient method. To
estimate the uncertainty in these parameters we explore their posterior distribution,
that is, the solution of the Bayesian inverse problem. We compare results obtained
from sampling the posterior distribution with its Gaussian approximation centered
at the MAP parameters. With a series of computations of a 2-D model problem,
we demonstrate the tradeoffs between the mechanical properties that occur in the
system. We demonstrate that the Gaussian approximation of the a posteriori dis-
tribution is a reasonable approximation of the posterior distribution near the MAP
point. We then discuss issues associated with applying the methods to the spherical
global mantle flow problem to infer of the parameters in the nonlinear constitutive
relationship and the spatial distribution of plate coupling from present day plate
motions.
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2.2 Nonlinear Stokes Forward Problem
We model mantle flow with the infinite Prandtl-number Boussinesq approximation,
which leads to the following non-dimensional Stokes equations:

∇ · σ = −RaTer on Ω, (2.1a)

∇ · u = 0 on Ω, (2.1b)

where Ω is the mantle domain (assumed to be two-dimensional in this paper),
σ = σ(u, p) = 2η Ûε(u)− pI is the stress tensor with the viscosity η = η( ÛεII, Γ,T, σy),
which depends on the velocity u (through the second invariant of the strain tensor
ÛεII defined below), on multiplicative factor Γ modelling plate boundaries, on the
temperature T and on the yield stress σy > 0. Moreover, Ûε(u) := 1

2 (∇u + ∇uT ) is
the strain rate tensor, p is the pressure and I the identity tensor. The Stokes equations
(2.1) are driven by thermal buoyancy. Here, Ra = ρgα∆T D3

κηref
is the thermal Rayleigh

number, where ρ is the density of the mantle, g is the gravitational acceleration, α is
the thermal diffusivity, ∆T is the temperature difference, D is the length scale, ηref is
the reference viscosity, and κ is the thermal diffusivity. The second invariant of the
strain rate tensor is ÛεII =

1
2 [tr( Ûε2(u)) − tr( Ûε(u))]. In the limit of incompressibility

considered here, ÛεII reduces to

ÛεII =
1
2
tr( Ûε2(u)). (2.2)

Note that, in the geophysics literature sometimes the square root of ÛεII is referred
to as the second invariant of the strain rate tensor. No normal flow and free-slip
tangential conditions on the boundary ∂Ω of Ω are used, i.e.,

u · n = 0, T(σn) = 0. on ∂Ω (2.3)

Here, we use the tangential operator for the Neumann condition defined as T =
I − nnT is the projection onto the tangential direction. In particular, plate velocities
on the top are not imposed but are an outcome of model calculations.

In the following, we prefer to work with the weak (variational) form of the Stokes
equations (2.1). This weak form is derived by multiplying (2.1a) and (2.1b) by
arbitrary functions v and q, respectively, which are assumed to be sufficiently
smooth, and satisfy the equivalent Dirichlet boundary condition, v · n = 0. Using
integration by parts and the boundary conditions (2.3), this results in∫
Ω

2η( ÛεII, Γ, n, σy) Ûε(u) : Ûε(v)dΩ −
∫
Ω

p∇ · vdΩ

−
∫
Ω

q∇ · udΩ =
∫
Ω

RaTer · vdΩ. (2.4)
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On geological time scales, the mantle behaves like a viscous fluid from thermally
activated creep. The viscosity strongly depends on temperature, and this dependence
can be represented by an Arrhenius-type law. In the upper mantle, dislocation creep
likely dominates over diffusion creep (Stocker and Ashby, 1973). Although one can
prescribe the rheology as composite (Billen and Hirth, 2007; Stadler et al., 2010)
such that both, diffusion and dislocation creep can play a role depending on the
state of stress and the strain rate, we have found that dislocation creep dominates
within the plates and slabs and hence is the deformation mechanism which likely
controls plate motions. Thus, underlying our models is a temperature-dependent
shear-thinning rheology,

η̃( ÛεII,T) = Γa(T) Ûε
1−n
2n

II , with Γ(x) = 1 −
∑

i

(1 − Γi)χi(x),

where a(T) := Arad exp(β(0.5 − T)), and χi(·) are characteristic functions for
individual plate boundaries, i.e., a function with value 1 at the (volumetrically
modeled) plate boundary, and a value of 0 away from the plate boundary. The
strength/weakness of the coupling along plate boundaries is controlled by the weak-
ening factors Γi > 0. Plate decoupling occurs over long time scales within seis-
mogenic zones, where great earthquakes typically occur. The degree of frictional
resistance that occurs along the seismogenic zone is controlled by the factors Γi:
small values of Γi give rise to weakly coupled plate boundaries, while larger val-
ues enforce stronger coupling. Plate boundaries require high spatial resolution in
computational models, and the coupling factors Γi will act as parameters in the
inversion.

An important aspect of the mantle rheology is dynamic weakening through shear
thinning, in particular near hinge zones. Thus, we use a rheology that involves plastic
yielding additionally to polynomial shear thinning. For computational reasons we
also incorporate lower and upper viscosity bounds 0 < ηmin < ηmax in the rheology,
such that the (effective) viscosity is

η( ÛεII, Γ, n, σy) = ηmin + min(Γmin(ηmax, a(T)( ÛεII − d) 1
2n Ûε−

1
2

II ),
1
2
σy Ûε

− 1
2

II ). (2.5)

Here, roots of negative quantities are considered to be zero; they do not play a role due
to the viscosity bounds. The choice (2.5) for the effective viscosity corresponds to
first applying the upper viscosity bound to the temperature and strain rate dependent
viscosity. This is followed by the multiplication with Γ(x), a function describing
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plate boundaries through low viscosity zones. Finally, the plastic yielding condition
is imposed. Adding ηmin enforces a lower bound on the viscosity, as well as a one-
to-one correspondence between strain rate and stress in the case of plastic yielding.
In (2.5), we use a shift d ≥ 0—which is derived in Appendix .1—to ensure that
ηmax is incorporated in a way that the viscosity is continuously differentiable with
respect to ÛεII, and thus also with respect to the velocity. This differentiability is
important as we target Newton-type methods for the solution of the nonlinear Stokes
equations and also require derivatives in the inversion. Note however, that the
continuous differentiability of the viscosity with respect to ÛεII does not hold when
plastic yielding occurs.

There exists several areas in the mantle where dynamic weakening or the viscosity
bounds are important. For instance, the condition ηmax < η( ÛεII, Γ,T, σy) primarily
holds in the oceanic lithosphere where strain rate weakening plays a secondary
role and the viscosity structure is dominated by the temperature. There are two
possible cases: (i) the effective viscosity is ηmax + ηmin, if ηmax is smaller than
the yielding viscosity or, (ii) ηeff = 1

2σy Ûε−1/2
II + ηmin, i.e., yielding occurs. While

ηmax is dominant in the lithosphere, in the asthenosphere the viscosity is primarily
dominated by dislocation creep, i.e., η( ÛεII, Γ,T, σy) < ηmax.

An important characterization of the system state, both within subduction zones
and the whole model domain, is the viscous dissipation in a subdomain Ω̃ ⊂ Ω of
interest given by

Φ(Ω̃) =
∫
Ω̃

2η( ÛεII, Γ, n, σy) Ûε(u) : Ûε(u)dΩ̃. (2.6)

Viscous dissipation has been analyzed in models of subduction zones and related
to the bending of plates (Conrad and Hager, 1999): as plates bend at subduction
zones, a large amount of energy associated with dynamic weakening is released.

2.3 Bayesian inversion
A Bayesian approach to inverse problems allows one to infer the most likely param-
eters together with their uncertainties from a computational model, observational
data, and prior knowledge on the parameters. In our problem, the parameters to be
inferred are the plate coupling strength coefficients Γi and rheological parameters;
the observational data are the observed plate velocities, and prior knowledge on the
parameters can come, e.g., from laboratory experiments or inferences from other
geophysical observations. The computational model describes our theory of how
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parameters and observations are related. In our case, this relation is given through
the solution of the nonlinear Stokes equations discussed in Section 2.2. We collect
all parameters in a vector m ∈ Rp, collect the plate velocity observations in a vector
uobs, and denote the mathematical model that maps parameters to plate velocities
by f (m). Note that for given parameters m, the computation of f (m) is computa-
tionally costly, as it requires the solution of nonlinear Stokes equations, followed by
extracting the corresponding plate velocities from the velocity field data. Addition-
ally, even if the involved Stokes operator were linear, the parameter-to-observable
map f (·) is nonlinear as the Stokes flow depends nonlinearly on rheological param-
eters.

In our Bayesian inversion approach, we assume that observation and model errors
follow a Gaussian distribution with zero mean and covariance matrix Cnoise, i.e.,

f (m) − uobs = N(0, Cnoise).

Thus, the likelihood probability density function (pdf), which describes the likeli-
hood of observations uobs for given model parameters m is given by

πlike(uobs |m) ∝ exp
(
−1

2
( f (m) − uobs)TC−1

noise( f (m) − uobs)
)
,

where “∝” denotes proportionality up to a (normalization) constant that makes
πlike a proper density. Additionally, we assume a given prior pdf πprior(m), which
incorporates our prior knowledge on the parameters. Bayes’ theorem states that the
posterior probability distribution πpost(m), which is the solution of the Bayesian
inverse problem, is given by (Tarantola, 2005; Kaipio and Somersalo, 2005)

πpost(m) ∝ πlike(uobs |m)πprior(m). (2.7)

Even if the prior is Gaussian, say with mean m0 and covariance matrix Cprior, i.e.,

πprior(m) ∝ exp
(
−1

2
(m − m0)TC−1

prior(m − m0)
)
, (2.8)

the posterior pdf given by (2.7) is, in general, non-Gaussian due to the nonlinearity of
the parameter-to-observable map. Statistical estimators to explore and characterize
the posterior pdf πpost—and thus the solution of the Bayesian inverse problem—are
discussed next.
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Exploring the posterior distribution
Important statistical estimators for a distribution are the maximum a posteriori
(MAP) point, the mean and the covariance matrix. We next briefly discuss these
estimators and their approximations. For simplicity of the presentation, we assume
a Gaussian prior given by (2.8), such that the posterior pdf has the form

πpost(m) ∝ exp(−1
2
( f (m)−uobs)TC−1

noise( f (m)−uobs)−
1
2
(m−m0)TC−1

prior(m−m0)).

(2.9)

The parameter vector m, where πpost takes its maximum is called the maximum a
posteriori (MAP) point, mMAP. It can be found bymaximizing πpost, or equivalently,
by minimizing the negative log of the posterior pdf, i.e.,

min
m∈Rp

J(m), (2.10)

where

J(m) :=
1
2
( f (m) − uobs)TC−1

noise( f (m) − uobs) +
1
2
(m − m0)TC−1

prior(m − m0).

(2.11)

This problem has the form of the regularized least squares optimization problem
occurring in deterministic inverse problems, with the term coming from the prior
corresponding to the regularization used to cope with the ill-posedness common to
inverse problems (Vogel, 2002; Tarantola, 2005). Effective minimization of (2.11)
requires computation of derivatives of J with respect to the parameters m. The
computation of these derivatives is complicated by the fact that the parameter-to-
observable map involves the solution of a partial differential equation. We use
adjoint equations to make this computation efficient (see Section 2.3). Building on
these derivatives, we use a Newton method for the solution of (2.10): Starting from
an initial guess m0 for the parameters, for k = 1, . . . one computes a Newton update
direction m̄ by solving

H(mk)m̄ = −G(mk) (2.12a)

and updates
mk+1 = mk + αm̄, (2.12b)

where G andH denote the gradient and the Hessian with respect to m, respectively.
In (2.12a), α > 0 is a step length, which is, starting from an initial step length of
α = 1 reduced using backtracking to ensure descent of the negative log likelihood
J(·) from the kth to the (k + 1)st iteration; see Nocedal and Wright (2006).
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To explore the posterior pdf beyond the MAP estimate—and thus quantify the
uncertainty in the parameter estimates—one can either characterize the posterior
through sample statistics or construct an approximation to πpost. We use both of
these approaches and compare the results and their computational efficiency.

Sampling methods (Hastings, 1970; Gilks, 2005) allow the complete characteriza-
tion of πpost, but they often require a large number of evaluations of f (m), i.e., many
nonlinear Stokes solves for different parameters. Sampling is particularly challeng-
ing for high-dimensional parameter vectors m, as the posterior pdf is defined over a
space of the dimension of the parameter vector; this difficulty for high-dimensional
distributions is often referred to as curse of dimensionality (Tarantola, 2002; Taran-
tola, 2005).

An alternative to sampling is to construct aGaussian approximation of πpost, centered
at theMAPpoint. For that purpose, we consider the linearizationF of the parameter-
to-observable map f (·) at the MAP estimate mMAP:

f (m) ≈ f (mMAP) + F(m − mMAP). (2.13)

Using this approximation for the parameter-to-observablemap in (2.9) results—after
rearranging terms—in a Gaussian approximation πG

post of the posterior given by

πG
post(m) ∝ exp

(
−1

2
(m − mMAP)T

(
FTC−1

noiseF + C−1
prior

)
(m − mMAP)

)
.

Note that themean of this Gaussian approximation πG
post ismMAP, and the covariance

matrix is the inverse of (FTC−1
noiseF + C−1

prior), which is the Hessian of J after
linearization of the parameter-to-observable map.

The computation of the MAP point and of the Gaussian approximation of the
posterior about the MAP point require derivatives of the negative log posterior J(·)
with respect to the parameter vector m. As J(·) depends on the solution of the
nonlinear Stokes equations, we use adjoint methods to compute these derivatives
efficiently, which is the topic of the next section.

Adjoint-based computation of derivatives
Adjoint equations allow one to efficiently compute derivatives of scalar-valued
functions (such as J(·)) with respect to a large number of parameters by solving a
single (linear) adjoint equation. Using finite differences (or forward sensitivities) is
an alternative to the use of adjoint methods, but has the disadvantage that it requires
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the solution of an equation for each parameter, i.e., each component of m. Hence,
for a large number of parameters and expensive-to-solve forward models (as the
nonlinear Stokes equations (2.1)), the use of adjoint methods to compute derivatives
is crucial.

We choose a parameterization for the coupling factors Γi, the yield stress σy, and the
strain rate exponent n that ensures their positivity by considering their logarithms
as the inference parameter vector, i.e.,

m = (log(Γ1), log(Γ2), . . . , log(σy), log(n))T . (2.14)

The parameter-to-observable map f (·)maps the parameters m to the Stokes velocity
u (or some linear function Ou of the Stokes velocity) on the top boundary ∂Ωt of
Ω. The flow velocity observations can either be pointwise field observations, or
observations of the average velocity of plate-like structures. Furthermore, the
operator O extracts the velocities at points on the surface corresponding to the
physical points of the observations. The latter models the type of geophysical
observations that are mostly available, in which plates are considered rigid.

Using the form of the parameter-to-observable map to specify the negative log
likelihood function (2.11) in the context of our target problem results in

J(m) = 1
2
(Ou(m) − uobs)TC−1

noise(Ou(m) − uobs), (2.15)

where u(m) denotes the solution of the nonlinear Stokes equations for the parameters
m. The function (2.15) represents the misfit of the observed surface velocities uobs

with surface velocities from simulations. For simplicity of the notation, in (2.15)
we neglect the quadratic contribution coming from the prior, which is simple to
differentiate.

We use a Lagrangian method (Tröltzsch, 2010) to compute derivatives of J with
respect to the parameters m. For that purpose, we define a Lagrangian functional
as the sum of the objective (2.15), and the weak form of the Stokes equation (2.4).
In the objective, we consider m and the Stokes velocity u as independent variables
and thus write J(m, u) rather than J(m). In the weak form of the Stokes equation
(2.4), the test functions v and q take the role of Lagrange multiplier functions, which
satisfy adjoint equations, which will be derived below. We thus refer to the Lagrange
multipliers v and q as adjoint velocity and pressure, respectively. The Lagrangian
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functional is defined as follows:

L(u, p, v, q,m) = J(m, u) +
∫
Ω

2η( ÛεII, Γ, n, σy) Ûε(u) : Ûε(v)dΩ

−
∫
Ω

p∇ · vdΩ −
∫
Ω

q∇ · udΩ −
∫
Ω

RaTer · vdΩ.
(2.16)

Then, the gradient G(m) is given by the gradient ofL with respect to m, provided all
variations of the Lagrangian with respect to (u, p) and (v, q) vanish, see (Tröltzsch,
2010). Thus, we next derive expressions for L with respect to m and derive the
equations that must be satisfied if all other variations of the Lagrangian vanish.

Taking variations of the Lagrangian with respect to m results in the following
expressions for the ith component of the gradient

G(m)i =
∫
Ω

2η,i( ÛεII, Γ, n, σy) Ûε(u) : Ûε(v)dΩ, (2.17)

where we have used that η,i( ÛεII, Γ, n, σy) denotes the derivative of the viscosity η
with respect to the parameter mi. To compute derivatives of η with respect to mi,
we distinguish how the different parameters enter in the rheology. If mi = log(Γi) is
the log of the ith weak factor, this derivative is given by

η,i( ÛεII, Γ, n, σy)

=


0 in Ωy,

Γi χi min(ηmax, a(T)( ÛεII − d) 1
2n Ûε−

1
2

II ) in Ω \Ωy .

where Γi = exp(mi). Here, we denote by Ωy ⊂ Ω the points where yielding occurs,
i.e., where η( ÛεII, Γ, n, σy) = ηmin + 1/2σy Ûε−1/2

II . At these points, the Stokes solution
is not sensitive to mi. Next, we consider the case that mi = log(σy) and we obtain
the derivative

η,i( ÛεII, Γ, n, σy) =


1
2σy Ûε

− 1
2

II in Ωy,

0 in Ω \Ωy .

Finally, if mi = log(n), we obtain

η,i( ÛεII, Γ, n, σy) =

Γa(T)ω( ÛεII − d) 1

2n Ûε−
1
2

II in Ωw,

0 in Ω \Ωw,

where ω = log(( ÛεII − d)− 1
2n ) and Ωw ⊂ Ω are the points where η( ÛεII, Γ, n, σy) =

ηmin + a(T)( ÛεII − d)1/(2n) Ûε−1/2
II , and thus the viscosity depends on the strain rate
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exponent n. If we did not use the parameterization of log(m), but rather inverted for
m, then ω = log(( ÛεII − d)−

1
2n2 ) which is similar to the procedure in Petra, Zhu, et al.

(2012) and Worthen et al. (2014).

Requiring that variations of the Lagrangian with respect to the adjoint velocity and
pressure (v, q) vanish is equivalent with the (weak form of) the forward Stokes
equations. Setting all variations of the Lagrangian with respect to the forward
velocity and pressure (u, p) to zero, and subsequent integration by parts leads to the
adjoint equations, which characterize the adjoint velocity v in (2.17). These adjoint
equations are given by

∇ · v = 0 on Ω,

∇ · σ̂u = 0 on Ω,
(2.18)

with boundary conditions

v · n = 0 on ∂Ω,

T(σ̂un) =


0 on ∂Ω \ ∂Ωt,

−OTC−1
noise(Ou − uobs) on ∂Ωt,

where σ̂u = σ̂u(v, q) is the adjoint stress tensor defined by

σ̂u = 2
(
η( ÛεII, Γ, n, σy)I +

1
2
η, ÛεII[ Ûε(u) ⊗ Ûε(u)]

)
Ûε(v) − qI (2.19)

with I being the fourth-order identity tensor, and η, ÛεII given by

η, ÛεII=


min

(
0, Γa(T)( ÛεII − d) 1

2n Ûε−
1
2

II
ÛεII−( ÛεII−d)n
ÛεII( ÛεII−d)n

)
in Ω \Ωy

−1
2σy Ûε

− 3
2

II in Ωy .
(2.20)

Distinguishing between these two cases is necessary since the viscosity does not
necessarily depend continuously on ÛεII at pointswhere the yielding criterion is active.
The anisotropic fourth-order tensor in (2.18) originates from the differentiation of
the second invariant with respect to the velocity u. In particular,

[ ÛεII],u(ũ) Ûε(u) = [ Ûε(u) : Ûε(ũ)] Ûε(u)
= [ Ûε(u) ⊗ Ûε(u)] Ûε(ũ),

where in the last equality we have used the identity (a : b)c = (c ⊗ b)a for second-
order tensors a, b, c, where ⊗ is the outer product between tensors. Note that the
adjoint equation (2.18) is linear in its unknowns (v, q), and it is forced by the misfit
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in plate velocity data on the top surface ∂Ωt . The momentum equation involves an
anisotropic stress tensor (2.19), which depends on the forward velocity u.

Second derivatives (i.e., Hessians) are needed to compute the Newton update step for
finding the MAP point, and for computing Gaussian approximations of the posterior
distribution. This second derivative information can either be calculated through
finite differences of gradients, or by taking second derivatives of the Lagrangian
function (2.16) with respect to all variables (Tröltzsch, 2010; Petra, Zhu, et al.,
2012). Both approaches only provide the application of the Hessian to vectors,
and each of these Hessian-vector multiplications comes at the cost of two Stokes-
like solves: Taking finite differences between gradients requires the computation
of gradients for perturbed parameters, amounting to two (one nonlinear forward
and one linear adjoint) PDE solves. Taking second variations of the Lagrangian
results in two linear PDEs (sometimes called incremental equations or second-order
adjoint) that must be solved to compute the application of the Hessian matrix to a
vector. Such a Hessian-vector application is sufficient if the Newton system (2.12a)
is solved using the conjugate gradient method. Moreover, it also allows the assembly
of the Hessian column-by-column (through application on unit vectors) or, if the
number of parameters is too large for this approach, the construction of a low-rank
approximation of the Hessian (Bui-Thanh et al., 2013). The inverse of the resulting
(approximation of the) Hessian matrix is then the covariance matrix of a Gaussian
approximation of the posterior, as described in Section 2.3.

2.4 Model Setup and Numerical Solution
We setup a 2-D Cartesian problem with many of the principal tectonic elements
that are thought to be relevant in driving and resisting plate motions. The model
has three subducting plates with different amounts of slab penetration into the lower
mantle. This variation is intended to span the range of slab penetration and expected
coupling that may exist in the global distribution of plates with some slabs only
partially penetrating the upper mantle and others fully embedded into the high
viscosity lower mantle. Different sensitivities could exist depending on how much
of the lower mantle is coupled into plate motions. One of the subduction zones has
an overriding oceanic back-arc basin (with a small spreading center) which can result
in trench-rollback. In a subduction zone with a back arc basin and rollback, our
ability to infer mantle properties might differ from a margin without trench-rollback
since the proportion of buoyancy force pulling the plate can differ significantly
between these systems. Moreover, the seismic coupling between subduction zones
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that have trench rollback, versus those that do not, is central to the discussion on the
occurrence of great earthquakes between subduction zones.

The thermal structure of the lithosphere is characterized by a half-space cooling
model for the thermal boundary layer. The thermal structure for each slab is
computed as follows. First, the top of the slab is identical with the weak zone
interface (see below) projected to depth. We then define an initial thermal structure
based on the half-space model with depth measured normal to the curving top of
the slab. Finally, we diffuse this initial thermal structure for a time proportional to
the transit time to arrive at that depth with the velocity of the subducting plate. This
method results in thermal structures close to those obtained from the solution of the
coupled flow and advection-diffusion problem with nonlinear viscosity (e.g., Billen
and Hirth (2007)). The slabs conserve their buoyancy compared to the incoming
plate, but have realistic thermal gradients, for example between the slab interior and
the mantle wedge (Fig. 2.1c). The domain has a width of 12,000 km and depth of
1,500 km. The properties that we ascribe to the model are summarized in Table
2.1.

We assume that the effective viscosity has six orders of magnitude variation, 1018–
1024Pa·s, across themodel domain. Theminimumeffective viscosity (η = 1018Pa·s)
corresponds to ηmin, while the maximum effective viscosity (ηmax) is 1024Pa · s. The
smallest viscosities occur within subducting plate boundaries and mid-ocean ridges,
while the largest occur within the interior of oceanic plates. We tie the effective
viscosity ηeff within the upper mantle below stationary plates to the inferred value of
the mantle viscosity from post-glacial rebound studies by adjusting the pre-exponent
Arad in the forward model. A discontinuity at 670 km depth is included, where a
nonlinear viscosity (2.5) transitions to constant viscosity, i.e., a Newtonian rheology.

The characteristic functions χi(·) for the weak zones modeling individual plate
boundaries are parameterized with a Gaussian distribution about a centerline. The
centerline of the weak zone (and hence the top surface of the initial thermal slab, as
described above) is constructed such that it falls within the middle of slab profiles
from the Slab 1.0 model (Hayes et al., 2012) of nearly all ocean-ocean and ocean-
continent subduction zones (Fig. 2.1d). Theweak zones consequently have a shallow
dip (approximately 5 degrees) at the surface and represent a significant improvement
over the parameterization we have used in the past (Stadler et al., 2010).

Our standard case has the following set of parameters: a stress-strain rate exponent,
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Table 2.1: Physical quantities used in our tests.

Parameter Value
Density (ρ) 3300 kg/m3

Gravity (g) 9.81 m/s2

Coefficient of Thermal expansion (α) 2 × 10−5

Temperature Difference ∆T 1400 K
Depth of layer (D) 1500 km

Thermal Diffusivity (κ) 10−6 m2/s
Reference Viscosity (ηref) 1020 Pa · s
Rayleigh Number (Ra) 3.06 × 107

Strain rate exponent in upper mantle (n) 3.0

n, of 3, a yield stress, σy, of 128.9 MPa and coupling factors, Γi, from left to right
of 2 · 10−5, 10−5 and 3 · 10−5 so that the plate coupling varies with the middle plate
boundary being the most decoupled and the right most plate boundary the most
coupled. This model has a realistic strain rate exponent in the upper mantle, with a
yield stress that allows plates to be strong while still being able to weaken as they
subduct. The different degree of plate coupling at each subduction zone were set to
mimic situations expected in a global model.

We discretize the Stokes equations and their adjoints using finite elements on a lo-
cally refined mesh of unstructured quadrilaterals. In particular, the mesh is refined
around plate boundaries and hinge zones (to∼5 km resolution) and around the edges
of slabs. It consists of 47,360 elements overall. We use Taylor-Hood finite elements
(Elman et al., 2005), i.e., continuous second-order elements for the velocity compo-
nents, and continuous first-order elements for the pressure. Our implementation is
in MATLAB1, and we use COMSOL v3.52 for meshing and for the assembly of finite
element matrices, similar to the model problems in Petra and Stadler (2011).

Newton’s method is used to solve the nonlinear state equation (2.1). We use the
fact that the solution of (2.1) minimizes a viscous energy functional to ensure
convergence of the Newton iteration by reducing the size of the update when the
a Newton update step fails to reduce the viscous energy (Petra, Zhu, et al., 2012;
Worthen et al., 2014). A commonly used alternative to Newton’s method for the
solution of nonlinear equations is the Picard fixed point method, which, however,
often converges much slower than Newton’s method. Additionally, because the
linearization of the forward problem is self-adjoint, the operator in the adjoint

1http://www.mathworks.com
2http://www.comsol.com
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equations is the same operator that arises in the Newton linearization for the forward
Stokes problem. This means that any forward nonlinear Stokes solver based on a
Newton method is already equipped with the operator needed to solve the adjoint
Stokes problem. Our implementation uses a direct, factorization-based solver for the
linear(ized) Stokes problems. In a large-scale framework, this direct solver must be
replaced by an iterative Stokes solver, for instance a preconditioned Krylov method
(Elman et al., 2005). We terminate the Newton iterations for the solution of the
nonlinear Stokes equations when the nonlinear residual is reduced by four orders of
magnitude.

Computing the MAP point amounts to solving the optimization problem (2.10),
which can be written as an optimization problem with PDE constraints given by
the nonlinear Stokes equations (2.1). Using derivatives computed through adjoint
equations (see Section 2.3), we employ the (inexact) Newton method outlined in
Section 2.3 for the solution of this PDE-constrained optimization problem. Here,
inexactness refers to the fact that the Hessian system (2.12a) is not solved exactly,
but iteratively through a conjugate gradient method (Nocedal and Wright, 2006).
This approach only requires Hessian-vector applications rather than the assembled
Hessian operator. Each Hessian-vector application requires two linear Stokes solves
and assembling the Hessian matrix would require two linear Stokes solves for each
parameter, which is infeasible for problems with a large number of parameters. In
particular for these problems, solving (2.12a) using the conjugate gradient method
can be a significant advantage compared to constructing the Hessian matrix. We use
line search to ensure sufficient decent of the optimization functional and terminate
the Newton iterations for the MAP point after the gradient has been reduced by four
orders of magnitude.

2.5 Forward Model
With the distribution of temperature and weak zones as described for the standard
case, we find that the resulting effective viscosity is characterized by strong plates
and a weak asthenosphere (Fig. 2.1). Each of the three subducting oceanic plates
move with velocities of 3-10 cm/yr and with the right most over-riding plate being
nearly stationary while the other two over-riding plates roll-back with velocities of
1-2 cm/yr. The plates are strong away from plate boundaries and have piecewise
constant surface velocities. Below the intersection of the faults (shear zones) with
the surface, where the plate starts to bend within the hinge zone, the effective
viscosity is reduced as these areas exceed the yield stress. The yield stress and
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Figure 2.1: (a) Surface velocity from a forward calculation (thin blue line) and
sub-sampling used to create the data for the inverse models (red lines). (b) log10 of
the effective viscosity in Pa·s. (c) Detail of the effective viscosity for the left-most
subduction zone overlaid by contours of temperature (in black). (d) Profile of the
weak zone used in our dynamicmodel (black line) compared against a representative
sample of global seismic coupling zones taken from the Slab 1.0 model (Hayes et al.,
2012) (in grey).

prefactor to the viscosity law (for the given temperature field) were chosen to give
these velocity and effective viscosity outcomes, which are similar to those found
previously (Zhong, Gurnis, and Moresi, 1998; Billen and Hirth, 2005; Billen and
Hirth, 2007)

Plate motions are sensitive to the strength of the plate margins; by plate margin
strength we refer to the combination of the strength of the oceanic lithosphere
and slab and the strength of the coupling (shear zone) between over-riding and
subducting plates. As plate margins become progressively weaker, plate motion
eventually becomes insensitive to resistive forces at plate boundaries (e.g. King and
Hager (1990)). This can be seen in the limit when an individual coupling factor, Γi,
or their average, 〈Γ〉, becomes small (Fig. 2.2a). Here and in the following, 〈Γ〉 is the
arithmetic mean of the individual weak zone prefactors Γi. As the fault (shear zone)
weakens (Γi → 0) plates are free to slide by each other with the resistance coming
from the effective viscosity of the slab and bending plate. As the coupling factor of
a plate boundary approaches 10−10, plate boundaries become very weak (Fig. 2.2);
when the value approaches unity, plates become locked and the RMS of the surface
velocity asymptotes to approximately 2.5 cm/yr. We will not further investigate the
limit of fully locked plates. For our subsequent considerations, we refer to the region
10−8 < 〈Γ〉 < 10−4 to be in the sensitive regime because variation in 〈Γ〉 leads to
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Figure 2.2: (a) Change in plate velocity (as RMS across the top surface) as a
function of plate coupling 〈Γ〉 for a set of models in which all three plate margins
have the same coupling factor. Filled symbols denote the cases shown in panels b-d.
Viscosity structure in the vicinity of right most subduction zone for three values of
coupling: (b) 〈Γ〉 = 10−8, (c) 〈Γ〉 = 10−5, and (d) 〈Γ〉 = 1 (e) Surface velocity
profile of right most subduction zone at 〈Γ〉 = 1.

a substantial change in plate velocity, while the region 〈Γ〉 < 10−8 will be referred
to as the insensitive regime. We choose 〈Γ〉 < 10−8 to be the insensitive region
because the effective viscosity, ηeff, approaches the minimum effective viscosity
limit. Note that the minimum viscosity ηmin, however, is only attained exactly for
Γi = 0 due to the form of the viscosity given in (2.5). In Fig. 2.2a, as 〈Γ〉 < 10−6, the
RMS plate velocity approaches an asymptotic value slightly larger than 7 cm/year.
Note that the effective viscosity is bounded from below by ηmin = 10−2; since the
characteristic weak zone functions χi are Gaussians, they attain their minimum only
at the center and choosing Γi < 10−6 further weakens the plate coupling and thus
effects the plate velocity.

As 〈Γ〉 increases, deformation within the over-riding plate increases as seen from
the effective viscosity in the vicinity of the subduction zones (Fig. 2.2b-d). When
the shear zone becomes locked, the deformation shifts from a combination of the
bending plate and shear zone to spatially distributed deformation in the over-riding
plate. The distributed deformation within the over-riding plate now occurs over a
larger length scale. For a given average viscosity of the plates, we expect that there
should be a tradeoff when inferring n, Γ, and σy from plate motions, as each of these
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parameters influence plate motions.

2.6 Inverse Model
In this and the next section, we study the extent to which we can reconstruct the
parameters, and find their trade-offs and uncertainties from plate motion data. We
use the surface velocities from forward models as synthetic data. To generate
this synthetic data, we solve forward problems with known rheological parameters
and plate coupling factors, and compute the resulting plate motions. To obtain plate
velocity data similar to what is available from a global kinematic model, we generate
synthetic data from the computed surface velocities by taking a single scalar average
of the velocities away from plate margins. To be precise, we use overall 78% of
the top surface to compute RMS values for six plates defined in red, amounting to
a five-dimensional data vector (see the thick red lines in Fig. 2.1a). We do not add
noise to these synthetic averaged measurements. The retained data is similar to what
is available from a global kinematic model of plate motions, namely Euler poles
and associated uncertainties (determined from fracture zone, magnetic lineation,
seismic focal mechanism, and GPS data) for each plate. The single scalar value
for each plate is the 1-D equivalent (over a 2-D mantle cross section) to an Euler
pole. These data are indicative of plates that are rigid away from plate margins, but
the margins are free to deform if the inferred rheological parameters allow them to.
For subducting oceanic plates, we set the areas without surface velocity constraints
to be much larger than the expected zone of yielding and bending such that the
data do not impose this length scale. We assume uncorrelated observations with a
standard deviation of 0.21 cm/yr, i.e., Cnoise is the unit matrix scaled by 0.21−2. The
experiments in this section do not incorporate a prior, and thus the MAP point is the
maximum likelihood point; for convenience, we still refer to it as the MAP point.

We apply themethods developed above to infer theMAP estimates for the weakening
factors Γi, the yield stress σy and the strain rate exponent n. We also report the
standard deviation σ (corresponding to the log(m)) for the Gaussian approximation
of the posterior at theMAP point, i.e., the diagonal entries in the posterior covariance
matrix. In our experiments we vary not only the underlying properties of the mantle
flow system, but also which quantities are considered known and thus kept fixed,
and which are considered uncertain and inverted for (Table 2.2).

As initial guess for the computation of the MAP point we choose the weak factors
Γi equal to 10−3, which is, for most cases, larger than the actual values. This
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would be a reasonable starting condition for a geophysical inversion as it makes
no assumption about which margins are strong or weak, nor about the relative
strength of plate coupling. We initialize the strain rate exponent with n = 2.7 and
the yield stress with σy = 84.4MPa (σy = 190MPa in Case XIX). We observe in
our numerical experiments that these initializations do not influence the recovered
parameters, i.e., the optimization problem for the MAP point converges to the
same solution independent of the initialization. This suggests that the negative
log likelihood/posterior J(·) does not have multiple local minima. For problems
with two parameters, this is also suggested by the contour lines of the posterior
pdfs shown later, as local minima in J(·) would correspond to local maxima in the
corresponding pdfs. We terminate the optimization problem when the norm of the
gradient G has been decreased by a factor of 104.
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In the first experiment (Table 2.2, Case I), we assume that the two global quantities,
yield stress and strain rate exponent, are known, and we attempt to infer the plate
boundary coupling factors, Γi, i = 1, 2, 3, for each weak zone in the sensitive regime.
We recover the prefactors, and, as a consequence, the shear stresses within each
plate boundary within one percent error after seven iterations. We correctly infer
the different plate coupling strengths of each plate margin. This is important as
the coupling strength for each subduction zone in a global geophysical inversion is
expected to be different.

While the prefactors for Case I are in the sensitive regime, in Case II they are
substantially smaller and thus lie in the insensitive regime. Again, the inferred
MAP estimate coincides with the true prefactors. However, there is a substantial
increase in the uncertainty of the recovered coupling factors compared to Case I
(Table 2.2). In Fig. 2.3, we study the interplay between standard deviation and the
coupling factors systematically. We perform experiments that are identical to Cases
I and II, i.e., with fixed strain rate exponent and yield stress, but choose identical true
coupling factors Γ1 = Γ2 = Γ3 for each model calculation. We find that uncertainties
are largest when plate couplings are small or when the plate margin is fully coupled
(Fig. 2.3a), i.e., if the plate coupling factors are in the insensitive regime.

In the previous inversions, the yield stress and strain rate exponent were considered
known. As the yield stress and strain rate exponent are also uncertain, we attempt to
infer each one of them individually along with the prefactors in Cases III (inference
of Γi, σy) and V (inference of Γi, n). In Cases III and V, we correctly infer the
respective values. Although the uncertainty increases when the additional parameter
is inferred, the computational cost remains approximately the same as we are able
to determine the correct value within 1% after 7 iterations. Similarly, the correct
values are inferred when 〈Γ〉 is in the insensitive region for the otherwise identical
cases Cases IV and VI, although the uncertainty on the prefactors does increase
within the insensitive compared to the sensitive regime.

We next attempt to infer the global constitutive parameters—the yield stress and
strain rate exponent in the upper mantle—while assuming that the individual pref-
actors, Γi, are known for each plate boundary. Although inferring the global strain
rate exponent and yield stress is not a realistic geophysical inversion as it assumes
knowledge of the prefactors a priori, the case is illustrative of the tradeoffs likely to
be seen in the full inversion of Γ, σy and n. We are able to infer the correct strain
rate exponent and yield stress for each case after 8–9 iterations, both in the sensitive
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(Case VII) and insensitive (Case VIII) regimes. There is no significant difference
in the rate of convergence during the inversion of either n or σy when 〈Γ〉 is in the
sensitive or insensitive regime.

We now consider a realistic situation where the plate boundary strengths, the yield
stress and the strain rate exponent are all unknown, i.e., we infer five parameters.
Cases IX and X represent inversions where we do not assume any of the rheological
parameters in the constitutive relationship other than the activation energy. Despite
the potential for tradeoffs in the rheological parameters, we are able to recover the true
values even when all five parameters are uncertain. However, the uncertainty of the
recovered prefactors and rheological parameters increases substantially compared to
the earlier cases with fewer parameters left unconstrained. While the values of the
parameters are recovered within 1%, it does take more forward–adjoint iterations
to converge to the true value: Approximately 10 iterations in the five parameter
estimation cases (IX and X) versus 5-6 iterations in the comparable three parameter
cases (I,II). We attribute the larger computational cost to the larger number of
parameters, and the resulting interplay between the rheological parameters where
tradeoffs in plate coupling, strain rate weakening and yielding act to minimize the
plate velocity misfit. These tradeoffs will be explored in the Bayesian inference
context in the subsequent section.

With the cases above we showed that parameters (plate couplings, yield stress and
strain rate exponent) of an unconstrained system can be inferred when the surface
data is approximated with a single RMS value for each plate away from plate
boundaries. However, there is an important untested assumption of the role played
by approximating the surface velocities by a single RMS value for each plate. The
influence of how the piecewise RMS velocity data is applied is demonstrated with
additional calculations, in which we change the parts of the top surface that are
assumed to move rigidly, and increase a coupling factor such that the plate motion
causes deformation in the adjacent plate interior.

FromCase IXwith all of the standard parameters free and 78%of the surface covered
with piecewise constant RMS values, we compare this against a calculation using
all of the surface data without the piecewise constant assumption (XI). Here again,
all of the parameters are recoverable except that their variance has been reduced by
about a half (Table 2.2). As the influence and tradeoff that occurs in response to
surface constraints can be better seen with a larger spread of the coupling factors,
we consider Cases XII and XIII with the left most coupling factor reduced by 10.
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Figure 2.4: Convergence towards MAP points for Case XII (a–c) and for Case XIX
(d–f). The plots show the convergence of Γi, n, and σy as function of the iteration.
The open circles depict the iterates and the dashed horizontal lines show the values
used to generate the synthetic data.

Again, all of the parameters are recoverable either with all surface velocities used as
data or with 78% as RMS values within plate interiors (Fig. 2.4a-c). The variances
are again reduced when using the more complete data. Now we retain the greater
spread in coupling factors and strain rate exponent but decrease the yield stress
from 129 MPa to 53 MPa (Case XIX), such that a larger fraction of the lithosphere
yields. The plates become more deformable and the average strain rate within the
plate interiors increases from 2.22 · 10−16s−1 (Case I ) to 6.77 · 10−16 s−1 (Case
XIX). Using only the RMS values over 78% of each plate, there is a strong tradeoff
between parameters and only the global strain rate exponent is correctly recovered
(Fig. 2.4e). In this case, the inversion responds to the imposed rigid plate motion
data by recovering a larger yield stress (Fig. 2.4f). The larger yield stress allows
the plates to stiffen, but in order to fit the overall magnitude of plate velocities, the
MAP estimate has weaker plate margins (Fig. 2.4d).

The influence of the spatial extent of the imposed data is demonstrated with Cases
XIV to XVII which are otherwise identical to Case IX, except that the coupling
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Figure 2.5: (a) Plate velocities from a forward calculation (blue curve) with a large
coupling factor for right-most subduction zone. The distribution of velocities used
to compute RMS velocities over 87% (pink line) and 47% (green line) over the
right most plate. (b) Effective viscosity from the forward model. (c) Inverse with
plate velocities (blue) of right-most subduction zone with green line denoting data.
(d) Effective viscosity (Case XV). (e) Inverse with plate velocities (blue) and pink
line denoting data over 87% of right most plate (Case XVII). (f) Effective viscosity
(Case XVII).

factor for the right most subduction zone is increased from the standard value of
3 × 10−5 to 3 × 10−3 (Table 2.2). In this case, the margin broadens over a length-
scale defined by the vertical projection of the weak zone to the surface (Fig. 2.5a).
The RMS velocities are now determined over different fractions of the rightmost
plate in this series of calculations. When 60% of the surface of the over riding
plate is used (Fig. 2.5c), the MAP point “responds” by creating a more rigid plate
with less yielding immediately below the extend of the imposed data, but adjacent
to a zone of deformation (Fig. 2.5d). Since part of the motion of the subducting
oceanic plate is being accommodated by deformation of the over-riding plate, the
inversion estimates a coupling factor that is smaller than the factor used to generate
the synthetic data. If the fraction of the imposed data is enlarged to now encompass
nearly the entire surface area of the over riding plate, we infer an entirely rigid
overriding plate with a much weaker plate margin (Fig. 2.5e-f). The recovered
yield stress is substantially larger than the actual value so as to decrease the yield
stress within the over riding plate. That decreased yield stress nearly eliminates
the yielding with the hinge zone. The four cases show that the recovered values
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progressively deviate when an otherwise deformable plate is forced to be rigid in the
inversion (Table 2.2). In general, the coupling factors decrease and the strain-rate
exponent increases. However, when the area of the right most plate with the imposed
RMS values is reduced to 47% (Case XIV), such that there is little rigid plate data
applied within the deforming region, the prefactors for all three subduction zones
(as well as the strain rate exponent and yield stress) can be recovered within about
1%, effectively reducing the tradeoffs between the inferred parameters.

Finally, we turn to the recovery of dissipation, Φ, (2.6), a measure of energy dissi-
pated by deformation of a viscous material. As plates accumulate large stresses at
subduction zones, there is dynamic weakening near the hinge zones and a concen-
tration of dissipation as oceanic plates subduct into the mantle (Buffett and Becker,
2012; Stadler et al., 2010; Alisic, Gurnis, Stadler, Burstedde, and Ghattas, 2012;
Buffett and Rowley, 2006). To better understand our ability to invert for dissipation,
we compute the total dissipation in the whole domain and within the hinge and weak
zones (Table 2.3). Dissipation was determined in those parts of the domain where
yielding occurs (mostly in the hinge zones) in the left, middle and right subduction
zone and are denoted by Ωy

l ,Ω
y
m,Ω

y
r , respectively; for some extreme models given

below, the nodes that yield can differ between forward and recovered models, such
that these regions can likewise differ between forward and inverse. For comparison,
we also determined the dissipation within low viscosity weak zones Ωw

1 ,Ω
w
2 ,Ω

w
3 ,

respectively for the left, middle and right plate boundaries. We start with Case IX,
where all of the standard parameters were left unconstrained and all were recovered
on inversion. Since all of the velocities and viscosities were essentially identical
between forward and the MAP point from the inversion, so too is the dissipation,
both locally and through the whole domain (Table 2.3).

Recovery of parameters was degraded when deforming plates were approximated
on recovery with piecewise constant RMS velocity data; likewise, recovery of the
dissipation was degraded in these cases. When piecewise constant RMS velocity
data is used over nearly the entire deforming rightmost plate (in response to the
larger coupling factor in Case XVII, Fig. 2.5e-f), the dissipation is not well re-
covered locally. The recovery of the dissipation within the adjacent weak zone is
particularly poor and, counter intuitively, the dissipation is over-estimated by a factor
of two, despite the viscosity within the weak zone being much lower on recovery
(Table 2.2.) However, the over riding plate is more rigid and the deformation (and
hence dissipation) is shifted from within the plate to the weak zone between the
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Table 2.3: Dissipation occurring locally and throughout the whole domain for
selected cases. Values are shown as recovered/true. Symbols defined in text.

Dissipation Case IX Case XIV Case XVII Case XIX
Φ(Ωy

1) 9.30 · 107/9.30 · 107 1.03 · 108/1.03 · 108 7.71 · 107/1.03 · 108 9.16 · 108/3.16 · 109

Φ(Ωy
2) 5.32 · 108/5.32 · 108 5.86 · 108/5.86 · 108 7.72 · 108/5.86 · 108 4.17 · 108/1.67 · 108

Φ(Ωy
3) 1.46 · 108/1.46 · 108 1.12 · 108/1.12 · 108 9.18 · 107/1.12 · 108 6.77 · 108/1.02 · 109

Φ(Ωw
1 ) 4.85 · 107/4.85 · 107 5.48 · 107/5.50 · 107 8.59 · 107/5.50 · 107 4.53 · 107/2.81 · 107

Φ(Ωw
2 ) 9.20 · 107/9.20 · 107 7.63 · 107/7.65 · 107 2.84 · 108/7.65 · 107 4.57 · 106/3.35 · 106

Φ(Ωw
3 ) 4.57 · 107/4.57 · 107 5.99 · 107/4.47 · 107 1.26 · 108/4.47 · 107 3.14 · 107/1.12 · 107

Φ(Ω) 4.16 · 109/4.16 · 109 4.15 · 109/4.18 · 109 4.15 · 109/4.69 · 109 4.70 · 109/5.80 · 109

plates. Although, the dissipation is locally not well recovered in some plate bound-
aries, the total dissipation is only underestimated by 11%. We consider another
extreme model with a lower yield stress and hence more deformable plate interiors
(Case XIX). On inversion, with constant velocity data added to each plate interior,
we found tradeoffs between the strength of the coupling factors and the yield stress
(Fig. 2.5d-f). Here, we find that the dissipation of each plate boundary is recovered
only within a factor of two, while the total dissipation is underestimated by nearly
40%. These problems can be largely avoided if we do not approximate deforming
plates with constant velocity data. For example, partial recovery was achieved in
Case XIV (Table 2.3) in which the deforming right-most plate was left mostly un-
constrained, except in the far-field or several hundred km from the plate edge where
the plate acts rigidly (Fig. 2.5). In this case, there is a slight tradeoff in the inferred
values (smaller coupling on the right most plate boundary and an increase in yield
stress), leading to a larger viscous dissipation in the hinge zone. However, all other
measures of dissipation were reasonable well recovered.

2.7 Quantification of Uncertainty
Inferred parameters are uncertain due to noise in the surface velocity data, tradeoffs
between rheological parameters, and modeling errors caused by the fact that the
mathematical model is an idealized description of the real world. In this section, we
explore these uncertainties and tradeoffs systematically, and go beyond the Gaussian
approximation of the posterior distribution and use sampling to better characterize
the posterior distribution.

As inference in a global geophysical system will likely require a large number
of parameters while also involving expensive-to-evaluate parameter-to-observable
maps, such a full sample-based characterization of the posterior distribution might
not be feasible. A Gaussian approximation of the posterior, however, is often
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computationally tractable, as it usually only requires a number of PDE solves that is
comparable to that needed for the computation of the MAP estimate. Naturally, the
question arises how well the Gaussian distribution approximates the true posterior
distribution. We will study this issue in our two-dimensional nonlinear Stokes
flow problem with plates by comparing the Gaussian approximation—which is
based on linearization of the parameter-to-observable map about the MAP point—
to the true distribution, which is, in general, not Gaussian. To study this true
distribution, we either use a regular parameter space grid, or Markov Chain Monte
Carlo (MCMC) sampling (Gilks, 2005). For this comparison, we use a problem in
which we infer three model parameters and compare two-dimensional conditional
and marginal distributions. We interpret the distributions and study the tradeoffs
between parameters physically.

The three parameters considered in this study are the strain rate exponent n, the
yield stress σy and the strength of plate coupling Γ (we choose identical plate
coupling factors, i.e., Γ = Γ1 = Γ2 = Γ3). In some of our experiments we do not
use prior knowledge for these parameters, in others we use prior distributions to
incorporate likely ranges or ranges of interest for these parameters. For instance,
strain rate exponents n > 4 are unlikely (Karato and Wu, 1993), as are coupling
factors Γ > 10−1, which would prevent realistic plate motion. Priors can also be
used to express the fact that we are not particularly interested in certain parameter
regimes, for instance in coupling factors Γ < 10−8. Based on these considerations,
we choose independent Gaussian distributions for the parameters given by πprior

Γ
=

N(10−5.5, 3.43), πpriorσy
= N(150MPa, 0.21), πpriorn = N(2.98, 0.0247), where σ1,

σ2, and σ3 are the standard deviations for the priors.

First, we study the two-dimensional conditional distributions shown in Figures 2.6
(no prior for parameters) and 2.7 (with Gaussian prior). Here, we have used a
uniformly spaced grid to explore the true posterior distribution, which is clearly
not feasible in higher parameter dimensions. In 2.6a, we observe a strong tradeoff
between the magnitude of n and Γ. Models that fit the data with stronger plate
coupling require a larger amount of strain weakening, giving an overall positive
correlation between n and Γ. The distribution computed from the Hessian (red
contours) approximates the true distribution (blue contours) within about one half of
a standard deviation. However, as the plate margins become more strongly coupled,
an even larger amount of weakening (larger n) than predicted by the Hessian is
required, and causes the distribution to bend upward (Fig. 2.6a). In other words,
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Figure 2.6: Comparison of two-dimensional conditional distributions for the three
parameters n, Γ and σy. Contour lines (for 22%, 44%, 66%, 88%) corresponding
to the Gaussian approximation at the MAP point for a setting without a prior are
shown in red and for the true posterior distribution are shown in blue. For these
conditionals, the parameters kept fixed are in (a) σy = 128.9 MPa, in (b) Γ = 10−5,
and in (c) n = 3. Note that due to the parameterization in (2.14), the contour lines
of the Gaussian approximation do not appear as ellipses when plotted in the original
n, Γ and σy system.
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the model has a nonlinearity not accounted for by the linear assumption in (2.13).
The calculation near Γ = 10−4 and about n = 3.1 fits the surface velocity within
≈ 8% but there is now more distributed deformation within both the over-riding and
subducting plates. At the other end of the distribution, as the plate margins become
weaker, plate motions become less sensitive to plate coupling. As parameters move
from the sensitive to the insensitive regime as described previously (Fig. 2.2a), the
best fitting models show a decrease in the strain rate exponent. The conditional
distribution “flattens out” as the slope of the contours become horizontal—as Γ
becomes small there are only small changes in the effective viscosity within the
weak zone and hence similar data fits are achieved for different Γ (but the same
n). This result is partly anticipated with both the insensitivity to plate velocity
(Fig. 2.2a) and the increase in uncertainty (Fig. 2.3a) with small Γ.

Within the strain rate exponent-yield stress space, we find a conditional distribution
from the Hessian near the MAP point that is locally a good approximation to the
true conditional distribution (Fig. 2.6b). The yield stress trades-off with the strain
rate exponent with a positive correlation as an increase in yield stress requires an
increase in strain rate exponent so as to maintain plate velocities. However, the slope
on the contours of n with respect to σy eventually flatten as there is no yielding when
σy becomes too large. Within the space of yield stress and coupling factors, the
conditional shows that the actual distribution is well predicted from the Hessian
(Fig.2.6c). We find a negative correlation between the prefactor and the yield stress
because as the coupling factor between plates increase, the plates needmore yielding
so as to fit the surface velocity data. The slopes of the contours become constant for
small coupling factors when the yield stresses exceed the stresses in the system.

Finally, in Figure 2.8, we show two-dimensional marginals for the Gaussian ap-
proximation at the MAP point and compare with marginals of the true posterior
distribution. The true distribution is explored using MCMC sampling, and in par-
ticular the Delayed Rejection Adaptive Metropolis (DRAM) method (Haario et al.,
2006). We use 1177 samples computed through repeated forward solves. In Fig. 2.9,
we plot the sample history for the prefactor Γ, which suggests that there is sufficient
mixing. The integrated autocorrelation time for the chain τ given by

τ = 1 + 2
∞∑

i=1
ρk, (2.21)

where ρk =
Cov[Xt,Xt+k ]

Var[Xt ] is the autocorrelation at lag k, with Xt denoting the value of
an observed state at time t. The integrated autocorrelation times for each parameters
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Figure 2.7: Comparison of two-dimensional conditional distributions (with Gaus-
sian priors) for the uncertain parameters n, Γ and σy. Shown are contour lines
(22%, 44%, 66%, 88%) corresponding to the Gaussian approximation at the MAP
point (in red), contour lines for the actual posterior distribtion (in blue) and contour
lines for the prior distributions (grey). For these conditionals, the parameters kept
fixed are in (a) σy = 128.9, in (b) Γ = 10−5, and in (c) n = 3.
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Figure 2.8: Comparison of two-dimensional marginal distributions for the unknown
parameters n, Γ and σy. Contour lines (for 22%, 44%, 66%, 88%) for the marginals
from the Gaussian approximation of the posterior distribution are shown in red.
Contour lines for the marginals of the true postrior distribution, obtained from an
MCMC sampling approach are shown in blue. (a) Marginals distributions for Γ vs.
n (b) Marginal Distributions for σy vs. n (c) Marginal distributions for Γ vs. σy.
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Figure 2.9: Chain history for weak zone factor Γ.

are τΓ = 7.46, τσy = 4.68, τn = 8.18. The autocorrelation provides an estimate
of the statistical dependence of the samples in the chain. It indicates that about
every 5–8th sample in our chain is statistically independent (Robert and Casella,
2004). The autocorrelation times should be small (as they are here) so that there are
large mean squared jumps, indicating effective mixing and a well sampled posterior
distribution.

Next, we qualitatively compare the contours of the two-dimensional marginals of
the Gaussian approximation and the posterior distributions (Fig. 2.8). Note that the
approximation is reasonable, since the most important tradeoffs and correlations
found in the posterior and its Gaussian approximation coincide. Compared to the
conditionals, however, the difference between the Gaussian approximation of the
posterior distribution and the posterior distribution is more pronounced. As to be
expected, the marginal of the MAP point does not always coincide with the most
likely point of the two-dimensional marginal. Like the conditionals, the marginals
show a positive correlation between Γ and n (Fig. 2.8a). In all cases, the shifts in
the actual distributions away from the Gaussian distributions are caused by (the lack
of) yielding for large values of σy.

2.8 Discussion and Conclusions
In model problems, we have shown that nonlinear constitutive parameters and indi-
vidual coupling factors between subducting and over riding plates can be inferred
along with estimates of uncertainty and the tradeoffs between them. Although ide-
alized, the forward models are functionally equivalent to existing highly resolved
(1-km where needed) global models (Stadler et al., 2010; Alisic, Gurnis, Stadler,
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Burstedde, Wilcox, et al., 2010; Alisic, Gurnis, Stadler, Burstedde, and Ghattas,
2012), such that the methods developed here will be applicable to parameter in-
ference with quantified uncertainties for the global mantle flow and plate motion
problem. Our primary goal here is to discuss present results in terms of their
applicability to the geophysical problem.

We use adjoint variables to efficiently compute first and second derivatives of the
negative log likelihood function. This requires the solution of the adjoint Stokes
equations (2.18), which have an anisotropic viscosity but are linear in the adjoint
variables. Due to the self-adjointness of the Stokes equations, this adjoint operator
coincides with the linear operator required in the Newton method. Hence, a forward
nonlinear Stokes solver for (2.1) based on a Newtonmethod is already equipped with
the operator needed to solve the adjoint Stokes problem and only the computation
of the adjoint system right hand side must be implemented additionally. Note that
the computation of the gradient using adjoints requires a single linear (adjoint) solve
independently of the number of parameters.

As an alternative to computing derivatives through adjoints, finite differentiating
for the parameters can be used. In the present problem, this amounts to solving a
nonlinear Stokes equation for each parameter to compute the gradient. While for
the small number (at most five) of parameters considered in this paper this finite
difference approach is certainly practicable, it becomes infeasible for problems with
a larger number of parameters, or for problems where a (discretized) parameter field
is inferred. Here, we have employed finite differences to verify the implementation
of the adjoint-based derivatives.

We described two regimes of subduction-driven plate motion, a sensitive and an
insensitive regime, determined from the change in plate motion with respect to
coupling factors (e.g., Fig. 2.2), a relationship known for some time (King and
Hager, 1990). The distinction between these regimes became evident through
individual inversions where we found that the uncertainty was minimized in the
sensitive regime and increased with both larger and smaller coupling factors (in
the insensitive regime). This suggests that in a global inversion, like in the 2-D
test problem, recovery of coupling factors between plate pairs within the sensitive
regime should be better determined than factors at plate margins which are either
fully uncoupled or fully coupled. It must be emphasized that there will be global
interaction between the coupling factors.

The MAP point accurately recovers the coupling factors for each plate boundary in
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problems where we either assume that the parameters acting over the entire domain
(a strain rate exponent and yield stress) are known or when these parameters are
inferred simultaneously. The question arising for the global geophysical inversion
is whether coupling factors can be inferred in a relative sense (for example, Chile is
five times more coupled than the Marianas) or an absolute sense (for example, Chile
has a stress of 100 MPa while the value for the Marianas is less than 20 MPa). The
method looks promising in both regards. In cases when the plates are not yielding
away from plate boundaries, the relative order of plate coupling and their absolute
values are recoverable (e.g., Fig. 2.4a-c). We found that the inferred MAP values
were insensitive to how we choose the initial guess for the inversion, that is by using
larger or smaller constant guesses than the actual values lead to the correct inference
of the relative degree of coupling and absolute values of plate coupling. If prior
knowledge on either the strain rate exponent or yield stress are added—either by
eliminating the parameters from the inversion or by using a smaller variance on the
prior—the coupling factors are better constrained. In a global inversion, we could
find that the use of a single, constant yield stress might be limiting and disguises the
variability in the degree of yielding between subduction zones, perhaps reflected
in variable strengths inferred for the bending oceanic lithosphere (Arredondo and
Billen, 2012). In other words, variability that actually occurs from one bending
plate to another (due say to different plate strengths) could be mapped into coupling
coefficients. This should be a small effect in a global inversion that uses detailed
prior constraints on the thickness of plates, as incorprated into present forward
models (Stadler et al., 2010; Alisic, Gurnis, Stadler, Burstedde, Wilcox, et al., 2010;
Alisic, Gurnis, Stadler, Burstedde, and Ghattas, 2012).

Moreover, as only an instantaneous Stokes flow model is used, this approach could
hide the possibility that the development of weakening within a bending plate is a
cumulative and not an instantaneous phenomenon. There is nothing inherent in the
adjoint-based inference approach that enforces the recovery of only a single, global
strain rate exponent n, but our suspicion is that we do not yet have data constraints
to sufficiently constrain variations in n. The strain rate exponent, as well as other
constitutive parameters may also be variable due to putative variations in major
element composition or water content.

How the surface velocity data is used as constraints has an important influence on
howclose the invertedMAPestimate is to the true parameters, and also influences the
tradeoffs between parameters. If the horizontal velocity field along the entire surface
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is used, a complete recovery is possible for the globally acting parameters (yield
stress and strain rate exponent) and local parameters (coupling factors). This finding
is consistent with the results in Worthen et al. (2014) who attempted to recover
spatially variable parameters in a nonlinear constitutive relationship. Although
in this study and in Worthen et al. (2014) only the lateral component(s) of the
velocity vector along the top are used, this surface velocity field contains powerful
information on the absolute value of plate motions and how rapidly and over what
length scales plates are deforming. This is particularly useful to constrain the internal
deformation of the bending plate. Unfortunately, such pointwise velocity data does
not uniformly exist globally, andwhere is does, for example over continental margins
(from dense networks of continuous GPS-stations), the velocity vectors reflect a
combination of co- and post-seismic transients and long-term deformation over and
adjacent to plate boundaries (Wells and McCaffrey, 2013; McCaffrey et al., 2013).
Below, we discuss how such data could be used in a geophysical inversion. Our new
study here deviates from Worthen et al. (2014) in that we use limited and piecewise
constant plate velocity data, making this study closer to a global problem in which
mostly rigid plate motion data are available.

Available plate motion data has passed through a plate motion inversion (Argus and
Gordon, 1991) such that there is no strain within the plates. Our inversion needs to
be sufficiently flexible so as not to impose the length scale or degree of deformation
near plate margins, which we have attempted by limiting (in our standard case)
to constant velocities from data only over about 80% of the surface within plate
interiors. We find that by restricting an inversion to only this data, we are able to
recover all of the uncertain parameters to nearly the same degree as when we use
the full set of data (for example, compare Cases IX and XI in Table 2.2). This
high degree of recovery was achieved when the plates were essentially rigid within
their interiors, which is generally a good assumption for most plates. If the plates
are not rigid, then we find a strong tradeoff between the coupling factors and the
parameters governing the nonlinearity over the entire model domain. Determining
the correct stencil, e.g. the area over which plate motion data are prescribed, will
be important because some plates, especially the Indian Plate, have present-day
internal, but diffuse, deformation (Gordon and Stein, 1992; Gordon, DeMets, et al.,
1998). Based on the 2-D test problems, if we assume that the entire Indian plate
were rigid, then we suspect that we would infer incorrect coupling factors or yield
stress.
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More extreme levels of plate deformation occur closer to plate margins usually
within continental areas, such as the Himalayas, Andes, and western North Amer-
ica. In the latter region, plate deformation is particularly well constrained from
continuous GPS data, and shows a mixture of distributed deformation associated
with plate divergence, transcurrent motion and plate convergence (C. W. Kreemer
et al., 2012). In some 2-D test inverse models, we approximated a plate margin,
otherwise deforming over a length scale of several hundred kilometers, with a single
constant velocity (akin to a single Euler pole). In such cases, a strong tradeoff was
found between the inferred coupling factors, both for the adjacent margin and more
distant margins, and the degree of yielding through the entire domain. There are
likely to be at least two ways of addressing this tradeoff in a geophysical inference.
First, one could avoid constraining the deforming areas entirely by using a tailored
stencil that avoids the deforming areas. Here we should be able to recover the yield
stress and strain rate exponent as well as the coupling factors for most plate mar-
gins. Another direction would be to attempt an inverse model which combines the
recovery of the discrete parameters corresponding to the rigid motion of the plate
interiors, as we have done here, with a recovery of a continuous field, like effective
viscosity (Worthen et al., 2014). This latter method would benefit from the use of
distributed velocity constraints. It may now be possible to use such data for western
North America using the results of studies which have attempted to deconvolve the
short term cycling associated with co- and post-seismic phenomena from long term
deformation (Wells and McCaffrey, 2013; McCaffrey et al., 2013).

In global inversions, the ratio between the number of parameters and the number
of independent observations will influence the degree of ill-posedness of the inver-
sion, and it will influence the importance of incorporating prior knowledge for the
parameters. The observational data will consist of Euler poles for both major plates,
like the Pacific Plate, and minor plates, such as those that make up back-arc basins;
consequently we would expect about 12–20 mostly independent observations in a
global inversion that was like the test cases described here. Additionally, one could
incorporate topography of oceanic trenches, essentially regionally distributed data,
that would add to the amount of available observations. This, however, would require
some modification to (2.18) and (2.19). The uncertain parameters will primarily
be the coupling factors for each of the major subductions zones, as well as a small
number of globally defined constitutive parameters, which could add up to overall
about 20–30 inversion parameters. Note that the nonlinearity of the parameter-to-
observable map makes it difficult to use the number of parameters and observations
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directly to judge if the problem is over- or under-determined—this is the case even
if the prior and noise covariance operators are diagonal.

By comparing conditional and marginal distributions, we have observed that Gaus-
sian approximations of the posterior parameter distribution based on the Hessian of
the negative log posterior, are useful approximations of the true posteriors, which we
explored using MCMC sampling. For global geodynamics inversions, each model
evaluation requires significant computational resources and, thus, sampling-based
methods, which can require tens of thousands of forward solves even for a moderate
number of parameters (Baumann et al., 2014), are out of the question. For these
problems, a Hessian-based approximation that uses adjoints to compute derivatives
is an attractive option to study tradeoffs and the interplay between parameters. In
particular, Gaussian approximations to conditional and marginal distributions will
be important for inversions in global, highly resolved mantle flow models, for in-
stance in the inversion of plate coupling between different subduction zones, which
can provide an explanation of how one subduction zone influences another one.
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.1 Integration of viscosity bounds in rheology
The classical Newton method requires continuous differentiability of the nonlinear
equation it is applied to. Thus, we incorporate the viscosity bounds into the strain-
rate weakening viscosity such that the map from the second invariant of the strain
rate (and thus from the velocity) to the stress tensor is differentiable. We do so
by choosing the shift d in (2.5) appropriately. The strain rate Û̂εII, where the upper
viscosity bound ηmax becomes active is characterized by

ηmax Ûε(u) = a(T)( ÛεII − d) 1
2n Ûε−

1
2

II Ûε(u),

which implies that
ηmax Û̂εII

1
2 = a(T)( Û̂εII − d) 1

2n . (22)

Solving for the shift d, this results in

d = Û̂εII −
(ηmax

a(T)

)2n
Û̂εn
II. (23)
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To ensure differentiability of the stress tensor with respect to the second invariant of
the strain rate, we will choose the shift d such that the first derivatives of both sides
in (22) coincide at Û̂εII, i.e.,

1
2
ηmax Û̂ε

− 1
2

II = a(T) 1
2n
( Û̂εII − d) 1−2n

2n .

Using (22), this implies that

Û̂ε−1
II =

1
n
( Û̂εII − d)−1,

and thus necessarily that Û̂εII ≥ d. Hence,

d =
n − 1

n
Û̂εII. (24)

Substituting d from (23) into (24) yields(ηmax

a(T)

)2n
Û̂εn
II =

1
n
Û̂εII,

resulting in

Û̂εII = n
1

1−n
(ηmax

a(T)

) 2n
1−n (25)

Substituting Û̂εII into (23) gives the desired expression for d, which is independent of
the strain rate:

d = (n − 1)n n
1−n

(ηmax

a(T)

) 2n
1−n
.
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C h a p t e r 3

THE INVERSE OF MANTLE FLOWWITH VELOCITY AND
TOPOGRAPHY CONSTRAINTS
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ABSTRACT

Constraining rheological parameters of themantle is essential for not only estimating
the broad-scale forces driving mantle flow, but also for estimating shear and normal
stresses at plate boundaries. Inferring constitutive parameters requires minimizing
a misfit between model output and observations, such as plate motions. However,
as a constraint, plate velocities, sensitive to reference frames and an assumption
of plate rigidity, are limiting and some form of surface deformation data needs to
be incorporated into a misfit to better infer plate coupling. Dynamic topography,
vertical deformation at the surface, such as oceanic trench topography, aids in
partially overcoming this limitation. We formulate the cost function and derive the
adjoint system with surface velocity and dynamic topography as joint constraints.
We derive the adjoint forcing term with surface velocity and surface normal stress.
We analyze the simple case of a sinking mass while inferring rheological parameters
(layer prefactors, strain rate exponent and activation energy) and then discuss the
advantages and limitations of the method in reference to subduction zones.
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3.1 Introduction
Slab pull is likely the primary force driving plate motions (Forsyth and Uyeda, 1975;
Chapple and Tullis, 1977) and is estimated to account for approximately 70% of
this force (Conrad and Lithgow-Bertelloni, 2002). An important target for models
is reproducing the asymmetric motion at subduction zones, a phenomena which is
particularly sensitive to rheology and coupling of plates to the surface. Without
strong coupling of slabs to the subducting plate, convergence at subduction zones
would be symmetrical (Conrad and Lithgow-Bertelloni, 2002). While slab pull is
the dominant force, ridge push can be consequential as it acts as a ’push force’. Key
resisting forces include a bending subduction and plate motions include the bending
of slabs when they first subduct and the frictional resistance from faults. Slabs may
act as stress-guides (Stadler et al., 2010), allowing stresses to propagate from the
lower mantle to the oceanic lithosphere; as stress guides slabs can both couple in
additional resistance and driving to the plates. Nevertheless, the degree to which
slabs are stronger compared to ambient mantle remains open.

Accurately estimating broad-scale forces requires models that contain the salient
physics in addition to the necessary resolution to resolve the fine scale features of
mantle flow. The correct rheology would incorporate shear thinning due to dislo-
cation creep in the upper mantle (Karato and Wu, 1993) and dynamic weakening,
which is controlled by the yield stress (Stadler et al., 2010; Alisic, Gurnis, Stadler,
Burstedde, and Ghattas, 2012; Alisic, Gurnis, Stadler, Burstedde, Wilcox, et al.,
2010; Billen and Hirth, 2007; Billen and Hirth, 2005). Each of the rheological
parameters (strain rate exponent, yield stress and plate coupling), plays a key role in
the amount of viscous dissipation in the mantle. Viscous dissipation occurs as plates
overcome the bending force and is also tied to slab strength (weak slabs promote
less dissipation compared to strong slabs).

In addition to a non-Newtonian rheology, thermal boundary layers, slabs and fault
zones need to have the appropriate resolution. Properly resolving models needs
requires either refining with a uniform mesh, which can be very costly, or using
adaptive mesh refinement (AMR). Recently, with the use of adaptive mesh refine-
ment (AMR), there have been spherical models that incorporate non-Newtonian
rheology along with fine-scale resolution of fault zones and slabs (Stadler et al.,
2010; Alisic, Gurnis, Stadler, Burstedde, and Ghattas, 2012) which can produce the
complex motions of both large-scale and micro plates.

While high-resolution models with reasonable rheologies are important to con-
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straining broad-scale forces, they still fall short due to a mismatch in predicted plate
motion and observed motion. To minimize the misfit between models and observa-
tions requires solving an optimization problem with plate motion data (Ratnaswamy
et al., 2015) where the constitutive parameters are inferred. When using plate mo-
tion data, model parameters such as the plate couplings, strain rate exponent and
yield stress, can be constrained in an optimization. However, there is a limit to the
amount of information that can be gleaned from plate motions (Ratnaswamy et al.,
2015) due to sensitivity between rheological parameters and plate motion.

Using plate motion data can give limits on mantle rheology since there is a first
order relationship between plate motions and the rheology. However, plate motion
data is not unique with regard to reference frames (Gripp and Gordon, 1990; Argus,
Gordon, and DeMets, 2011) and can potentially change the inference of parameters.
A caveat of using plate motion data is the assumption of rigid plates, that is there
is no deformation (strain rate is negligible), which implies that plate motion data
cannot be used near trenches since there is significant deformation there (C. Kreemer
et al., 2003). Using plate motion data can potentially lead to poorly constrained
plate couplings (Ratnaswamy et al., 2015).

While platemotions fall short of fully constraining plate coupling, other observations
such as dynamic topography, free-air gravity anomalies, and plate strain, might be
useful. Dynamic topography, a key manifestation of convection, is correlated with
density anomalies such as plumes and slabs (Hager, Clayton, et al., 1984), and at
very long wavelengths, has an amplitude of about 1 km and positively correlates
with the geoid, but is very wavelength dependent (Flament et al., 2013). Using
dynamic topography as a constraint, studies have focus on minimizing the misfit
between dynamic topography predictions and it’s observational conterpart, residual
topography (Yang and Gurnis, 2016).

Both the correct density distribution (of slabs) and the effective viscosity structure are
both essential to constrain plate coupling factors. Consequently, the incorporation of
both radial and lateral variations in viscosity is necessary reproccurately predict the
dynamic topography (Moresi and Gurnis, 1996a; Kaufmann and Lambeck, 2000).
There have been studies to constrain the short-wavelength signal at subduction
zones and have done so by using a weak mantle wedge (Billen and Gurnis, 2001).
Another way to have a weak upper mantle is to have shear thinning, where the
the strain rate exponent controls how weak the (upper) mantle is (Karato and Wu,
1993); however, there have not been many studies using nonlinear, (well-resolved),
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models to constrain the dynamic topography. Recently, there have been advances in
numerical solutions that incorporate rheology with the salient physics and they are
able to produce they dynamic weakening at hinge zones and shear thinning in the
uppermantle. However, with the correct physics, themantle properties have not been
constrained (Stadler et al., 2010; Alisic, Gurnis, Stadler, Burstedde, and Ghattas,
2012) which leads to data misfit in both plate motions and dynamic topography.

Strides have been made to methods meant to constrain mantle rheology using data
in an optimization framework (Worthen et al., 2014; Ratnaswamy et al., 2015) to
recover the rheological parameters. Plate motion helps to strongly constrain the
rheology such as the strain rate exponent and yield stress; however, there is a limit
as to how well the coupling between plates can be constrained (Ratnaswamy et
al., 2015). Therefore, the incorporation of dynamic topography is an important
constraint as it better reflects the surface deformation at trenches than plate motion.
Constraining plate coupling with higher fidelity is important as these estimates can
contribute to a better understanding of coupling and where great earthquakes occur
(Scholz and Campos, 2012)

In this chapter, we will derive the adjoint system with plate velocities and surface
normal stress data. We will implement this new adjoint systems for a simple test
case of a sinking mass anomaly where there is a smooth surface normal stress signal.
We will present examples of the recovery of the strain rate exponent,pre-exponent
to the constitutive relation and activation energy. We will show that the gradients
for this new adjoint formulation are consistent and can thus be used for consistent
plate coupling inferences. Lastly, we will present the current limitation of applying
this method to realistic subduction zone models.

3.2 Forward Model
Earlier (Chapter 2), we inferred global parameters in the rheological relationship for
the mantle with an adjoint optimization in which the viscosity is defined as,

η( ÛεII, σy) = ηmin +min(Γi min(ηmax, a(T)( ÛεII − d) 1
2n Ûε−

1
2

II ),
1
2
σy Ûε

− 1
2

II ) (3.1)

where ηmin is the minimum effective viscosity, σy is the yield stress, a(T) is the
temperature dependent component of viscosity, n is the strain rate exponent and d

is a parameter included to regularize the solution. While some of the parameters,
weakfactor Γ, do not have physical units and arise in the geophysical problem, the
parameters n andσy can be partially inferred from laboratory experiments(Korenaga
and Karato, 2008). We assume that the flow is goverend by (3.2)
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∇ · u = 0

∇ · σ = −RaT
(3.2)

withσ = 2η( ÛεII, Γ, n, σy) Ûε)−pI, the stress tensor. Solving the equations of conserva-
tion of mass and momentum (3.2), yields the velocity and pressure distribution (u,
p). Solutions to (3.2) and allow us to compare model results to surface observables,
namely surface velocities and the total normal stress, σrr ,

h =
σrr

ρg
(3.3)

where h is the dynamic topography, g gravity, and ρ the density.

3.3 Bayesian Inverse Problem
With the addition of the cost function for surface normal stress, we can also formulate
the Bayesian Inverse problem as:

πpost ∝ πlikelihoodπprior (3.4)

with the likelihood distribution,

πlikelihood ∝exp(−J)

exp{−1
2

∫
Ω1

(Ou − uobs)TC−1
vel(Ou − uobs)dΩ1

+
1
2

∫
Ω2

(Oσn − σobs)TC−1
stress(Oσ − σobs)dΩ2}

(3.5)

while the prior distribution πprior is

πprior ∝ exp{−1
2
(m − m0)TC−1

prior(m − m0)}. (3.6)

Typically, m0 is the mean value, usually chosen as a reasonable parameter value,
whileC−1

prior is the covariance distribution of each parameter. Inmost cases (including
the inversions presented in this chapter), the prior term is a Gaussian distribution
due to the ease of drawing samples and the smoothness of the distribution. An
important aspect of the likelihood model is the incorporation of noise in the data or,

f = uobs +N(0, Cnoise) (3.7)

where we assume a normal distribution for the noise in the data (zero mean and
covariance Cnoise). Our data misfit function will now include both plate velocities
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and surface normal stresses, with a cost function

J(u,m, p) := Ju + Jσ

J(u,m, p) :=
1
2

∫
∂Ω1

(Ou − uobs)TC−1
vel(Ou − uobs)d∂Ω1

+
1
2

∫
∂Ω2

(Oσn − σobs)TC−1
stress(Oσ − σobs)d∂Ω2

(3.8)

where first term on the right hand side is the surface velocities misfit as previously
used in (Ratnaswamy et al., 2015). The cost function for the second term on the
right hand side is for surface normal stress withσn = n(σn) being the normal stress,
and O is the observation operator (O retrieves the model observations at physical
points in space). For our test problems, O is the same for uand σrr ; however, this is
not necessarily the case for geophysical problems, as they could be different.

We have shown that constraining plate motion can give a strong constraint on the
rheological properties of the mantles such as the strain rate exponent, yield stress
and plate couplings. However, the surface normal stress at trenches might provide
refined estimates as velocity data was not included in the deforming regions near
the trench. To constrain the rheological parameters, we first solve for the maximum
a posteriori point (MAP) by solving the PDE-constrained optimization problem,

min
m
J(u,m, p) (3.9)

subject to (3.2). We first construct the Lagrangian,

L(u, p, v, q,m) = J(u,m, p) +
∫
Ω

2η( ÛεII, Γ, n, σy) Ûε(u) : Ûε(v)dΩ

+

∫
Ω

p∇ · vdΩ −
∫
Ω

q∇ · udΩ −
∫
Ω

RaTer · vdΩ.
(3.10)

Taking variations of (3.10) with respect to the adjoint variables (v, q) recovers the
forward problem, while derivatives with respect to the forward variables (u,p) yields
the adjoint equations,

∇ · v = 0 on Ω,

∇ · σ̂u = 0 on Ω,
(3.11)

with boundary conditions

v · n = 0 on ∂Ω,

T(σ̂un) =


0 on ∂Ω \ ∂Ωt,

−OTC−1
noise(Ou − uobs) on ∂Ωt,
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where σ̂u = σ̂u(v, q) is the adjoint stress tensor defined by

σ̂u = 2
(
η( ÛεII, Γ, n, σy)I +

1
2
η, ÛεII[ Ûε(u) ⊗ Ûε(u)]

)
Ûε(v) − qI (3.12)

with I being the fourth-order identity tensor, and η, ÛεII given by

η, ÛεII=


min

(
0, 1

2Γa(T)( ÛεII − d) 1
2n Ûε−

1
2

II
ÛεII−( ÛεII−d)n
ÛεII( ÛεII−d)n

)
in Ω \Ωy

−1
2σy Ûε

− 3
2

II in Ωy .
(3.13)

Incorporating surface normal stress into the adjoint formulation requires taking
variations of (3.14) with respect to (u, p) would add an extra forcing term to
the adjoint system since there is a misfit in surface normal stress that needs to be
minimized.

Jσ :=
1
2
(Oσn − σobs)TC−1

topog(Oσn − σn). (3.14)

The derivative of (3.14) is

∂Jσ
∂(u, p) = O

T ∂σn

∂(u, p) (Oσn − σobs) (3.15)

The gradient of (3.14) w.r.t. uin a direction ũ is,

∂Jσ
∂u

ũ = 2[η Ûε(ũ) + ∂η

∂u
Ûε(u)ũ]

= 2
(
η( ÛεII, Γ, n, σy)I +

1
2
η, ÛεII[ Ûε(u) ⊗ Ûε(u)]

)
Ûε(ũ)

(3.16)

while the gradient of (3.14) w.r.t. the forward pressure (p) in the direction p̃ is,

∂Jσ
∂p
(p̃) = −p̃I (3.17)

and

∂Jσ
∂(u, p) (ũ, p̃) = 2

(
η( ÛεII, Γ, n, σy)I +

1
2
η, ÛεII[ Ûε(u) ⊗ Ûε(u)]

)
Ûε(ũ) − Ip̃ (3.18)

We will make use of the following identities:

I · n = n

n(I · n) = n · n
(A ⊗ B)n = A(Bn)

n(A ⊗ B)n = (nA) · (Bn)

(3.19)
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where I is the fourth order Identity tensor, A and B are second order tensors and n
is a vector. Thus, n ∂σ

∂u,pn is,

n
∂σ

∂u, p
n = n[2

(
η( ÛεII, Γ, n, σy)I +

1
2
η, ÛεII[ Ûε(u) ⊗ Ûε(u)]

)
− I]n

= 2
(
η( ÛεII, Γ, n, σy)n · n +

1
2
η, ÛεIIn[ Ûε(u) ⊗ Ûε(u)]n

)
− n · n

= 2
(
η( ÛεII, Γ, n, σy)n · n +

1
2
η, ÛεII(n Ûε(u)) · ( Ûε(u)n)

)
− n · n

= 2
(
[η( ÛεII, Γ, n, σy) −

1
2
]n · n + 1

2
η, ÛεII(n Ûε(u)) · ( Ûε(u)n)

)
(3.20)

Note, n ∂σ
∂u,pn is a 0th order tensor (scalar). Therefore the adjoint with the misfit in

surface normal stresses is,

v · n = 0 on ∂Ω,

T(σ̂un) =


0 on ∂Ω \ ∂Ωt,

−OTC−1
noise(Ou − uobs) on ∂Ωt,

n(σ̂un) =


0 on ∂Ω \ ∂Ωt,

−OTC−1
noisen

∂σ
∂(u,p)n(Oσn − σobs) on ∂Ωt,

With the addition of of the misfit in the surface normal stresses, we now have an
additional contribution to the gradient with the misfit in the surface velocities.

G(m)i =
∫
Ω

2η,i( ÛεII, Γ, n, σy) Ûε(u) : Ûε(v)dΩ +
∫
∂Ω
OTC−1

noisen
∂σ

∂mi
n(Oσn − σobs),

(3.21)
where m = log(Γ)

η,i( ÛεII, Γ, n, σy) = min(Γi χi min(ηmax, a(T)( ÛεII − d) 1
2n Ûε−

1
2

II ), 0) (3.22)

while m = log(n) is given by,

η,i( ÛεII, Γ, n, σy) =

Γa(T)ω( ÛεII − d) 1

2n Ûε−
1
2

II in Ωw,

0 in Ω \Ωw,

where ω = log(( ÛεII − d)−
1

2n2 ). The derivative corresponding to the yield stress is,

η,i( ÛεII, Γ, n, σy) = min(0, 1
2
σy Ûε

− 1
2

II ). (3.23)
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For the contribution from the dynamic topography (namely the total surface normal
stresses), we need the derivative, ∂σ∂m given below.

∂σ

∂m
= 2η,i( ÛεII, n, Γ, σy) Ûε(u) (3.24)

where η,i( ÛεII, n, Γ, σy) is given in (3.31) to (3.32). Furthermore,

n
∂σ

∂m
n = 2η,i( ÛεII, n, Γ, σy)n( Ûε(u)n) (3.25)

Previously, we computed the Gauss-Newton version of the Hessian of the misfit.
We will formally derive the Hessian system, which involves taking the second order
variations with respect to the Lagrangian, using the surface velocities (plate motion
data) and surface normal stresses. The Hessian system is given,

H =

Luu Lum Luv

Lmu Lmm Lmv

Lvu Lvm 0

 (3.26)

To solve the incremental forward equations, we look at the third (last row). The first
term is formally the adjoint operator. The strong form of the adjoint equatoin is

∇ · u = 0

∇ · σu = −∇ · τu
(3.27)

The incremental adjoint equations is given by solving the first row of the Hessian,

∇ · v = 0

∇ · σv = −∇ · Ψ
(3.28)

with BC’s,

ṽ = 0

Tσun = −OTC−1
noiseOũ − T(Ψn)

(3.29)

The action of the Hessian on a direction m̃ is

Hm̃ = 2η,ßß[ Ûε(u) Ûε(v) + Ûε(u) Ûε(ṽ) + Ûε(ũ) Ûε(v)]m̃ (3.30)
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where m = log(Γ)

η,i( ÛεII, Γ, n, σy) = min(Γi χi min(ηmax, a(T)( ÛεII − d) 1
2n Ûε−

1
2

II ), 0) (3.31)

while m = log(n) is given by,

η,i( ÛεII, Γ, n, σy) =

Γa(T)[ω2

1 + ω2]( ÛεII − d) 1
2n Ûε−

1
2

II in Ωw,

0 in Ω \Ωw,

whereω1 = log(( ÛεII−d)− 1
2n ) andω2 = log(( ÛεII−d) 1

2n ) . The derivative corresponding
to the yield stress is,

η,i( ÛεII, Γ, n, σy) = min(0, 1
2
σy Ûε

− 1
2

II ). (3.32)

3.4 Model Setup
We consider a simple system with a sinking thermal anomaly (Fig.3.1A); with a
forward solution of the equations, we find the surface velocity and normal stress
along the top boundary (Fig.3.1B). The predicted forward velocity and topography,
with the addition of noise (4%) is used as "data" in the inverse method. The
forward and inverse models both use temperature- and strain-dependent viscoity,
however, it lacks dynamic weakening because we do not include plates idealized as
thermal boundary layers. An advantage of not using a subduction zone model is the
smoothness of the surface normal stress that is normally not present at the trenches.

We will solve the forward problem using a finite element code that is highly scalable
thatmakes use of adaptivemesh refinement (AMR) (Rudi et al., 2015). Furthermore,
we use Q2 elements for velocity while using first order discontinuous elements for
pressure, to solve the Stokes flow problem.
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Figure 3.1: (a)Effective viscosity (b)Dynamic topography (km) with 4 % noise
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3.5 Results
For the inversions, we investigate how well we can recover the parameters with a
combination of surface normal stress data and surface velocity shown in Table 4.5.

To test how well the new adjoint formulation of surface normal stress data works
with respect to the recovery of the rheological parameters, we first focus on a single
parameter, (weak layer prefactor, strain rate exponent). In Case 1, we infer the
weakfactor of the top layer of the system, while keeping the other parameters fixed
(strain rate exponent, yield stress and activation energy). We find that we are able
to infer the correct weak layer prefactor within 2 iterations. Furthermore, we test
the independence of the initial guess to see if the inferred parameter is the same in
Case 2. We find, similar to Case 1, that the recovered weak factor is 10−1, while the
convergence to the true (synthetic value) is also 2 iterations (Fig.3.2a), suggesting
that the physics of the system prefers this weakfactor.

We repeat similar case studies for the strain rate exponent, and activation energy. In
Case 3, we keep the weak factor and activation energy fixed (effectively conditioning
on the weak factor and activation energy), and find that we infer the correct strain rate
exponent of 3.0 within 3 iterations, similar to the weafactor in Cases 1-2. Similarly,
we test the independence of the initial guess of the strain rate exponent. We test
two different guesses (n = 2.0, 3.5) that are smaller and larger than the initial guess
of Case 3, and find in both Cases 4 and 5 that we can recover the true strain rate
exponent within 3-4 iterations (Fig.3.2b), also suggesting that this particular model
has a preferential amount of shear thinning needed to constrain the surface normal
stress signal.

A parameter that we have not investigated in (Ratnaswamy et al., 2015) was the
activation energy, which controls the amount of temperature dependence in the
effective viscosity. We similarly follows the similar approach as we did for the weak
factor and strain rate exponent (Cases 1-5) and infer the activation energy (as well
as the independence) of that initial guess. We find in Case 6 (only inferring the
activation energy), that we are able to infer the activation energy, regardless of the
in initial guess (Case 7) within 4 iterations (Fig.3.2c).

While we were able to accurately infer the rheological parameters by themselves, it
is important that we see how well this new adjoint formulation does when it comes
to inferring multiple parameters using only surface normal stress data. We do so
in Case 9 where we infer the strain rate exponent, activation energy and weakfactor
and find that we can infer all three parameters within 7 iterations, which possibly
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shows that as more parameters are inferred, the rate of convergence increases using
only one piece of data.

The decrease in convergence when attempting to infer more parameters lends to to
the question of whether adding surface velocity would increase the convergence. To
this end, we explore inferring the rheological parameters using both surface normal
stress and surface velocity. We first infer individual parameters for both pieces of
data to make sure that the correct value is attained. In Cases 9-11, we find that
we correctly infer the strain rate exponent/weakfactor/activation energy within 3
iterations, suggesting that there may not be conflicts in using both data types. In
Case 12, as we infer the strain rate exponent and weak factor, we also find that we
infer the true value within 3 iterations. As a direct comparison to Case 8, we infer
the strain rate exponent, weakfactor and activation energy in Case 13 and find that
we not only are able to infer the correct values, but we do so in less iterations (4
iterations) as shown in Fig.3.2d,e,f.
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Figure 3.2: (a)Cases 1 and 2 (inference for weakfactor with only normal stress
data) (b)Cases 3-5 (inference for strain rate exponent with only normal stress data)
(c) Cases 6 and 7 (inference for activation energy with only normal stress data)
(d)Weakfactor comparison between cases 8 and 13 (e)Strain rate exponent compar-
ison between cases 8 and 13 (f)Activation energy comparison between cases 8 and
13
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3.6 Discussion
We were able to infer various rheological parameters for the sinking mass anomaly
using this new adjoint formulation. We show that in Cases 1-2, we can correctly
infer the weak layer prefactor, (independent of the initial guess), within 3 iterations.
We similarly find that we can infer the strain rate exponent (Cases 3-5) and acti-
vation energy (Cases 6-7) within 4-5 iterations, independent of the initial guess.
Furthermore, we demonstrate that using both surface velocity and surface normal
stress can potentially accelerate the convergence of inversions as shown between
Case 8 and 13.

While we were able to implement and prove the validity of using the surface normal
stress in the adjoint formulation, there still are issues in applying this method to
subduction zones. One of these issues lies in the large variations in viscosity and the
boundary conditions on the surface (Crameri et al., 2017). The problem is that there
are large dynamic topography near the trench that exceed 10km in forward models,
which is certainly not found in the observations. Therefore, the adjoint formulation
with surface normal stress will not work when no forward model is able to produce
reasonable short wavelength topographic signals.

The problematic issue of large topographicmagnitudes can be traced to the large vari-
ations in viscosity of the forward model between plate and the weakzone (O(106)).
We find that when the viscosity variations are reduced, the magnitude of the topog-
raphy was also reduced. However, this also caused an increase in the fore-bulge.
Additionally, when using a sticky-air surface (weak viscosity layer at the surface),
we find that the we could reduce the amplitude of the topography signal at the
trench. The sticky-air method brings an added complication of measuring the to-
pography due to the interface between the sticky-air layer and the oceanic plates. It
is certainly clear from those investigations that to remedy the large trench depths
requires a different formulation of the effective viscosity and/or surface boundary
conditions. However, after the issue of large topographic signals is resolved, the use
of the adjoint with surface normal stress can be readily used.

3.7 Supplementary Material: Gradient and Hessian Tests
3.8 Cases 1 and 2
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Table 3.2: Inversion statistics for γguess = 10−2

Iteration H |G|
1 2.02 · 109 3.675 · 1010

2 3.47 · 1010 2.948 · 109

3 4.95 · 1010 1.899 · 108

4 5.46 · 1010 9.91 · 106

5 5.72 · 1010 5.06 · 105

Table 3.3: Inversion statistics for γguess = 10−3

Iteration H |G|
1 1.248 · 108 8.452 · 1010

2 5.53 · 1010 3.7718 · 109

3 5.775 · 1010 1.531 · 108

4 5.917 · 1010 9.91 · 106

5 6.002 · 1010 7.97 · 105

6 6.05 · 1010 6.374 · 105

7 6.08 · 1010 5.06 · 104

3.9 Cases 3-5
Table 3.4: Inversion statistics for nguess = 2.85

Iteration H |G|
1 3.977 · 1012 1.717 · 1011

2 3.0604 · 1012 8.663 · 1010

3 2.104 · 1012 3.356 · 109

4 2.057 · 1012 4.461 · 108

5 2.0638 · 1012 6.985 · 107

6 2.06281 · 1012 1.044 · 107

7 2.06296 · 1012 1.567 · 106

8 2.06294 · 1012 2.342 · 105

9 N/A 3.5047 · 104
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Table 3.5: Inversion statistics for nguess = 2.0

Iteration H |G|
1 2.7665 · 1013 3.488 · 1012

2 3.944 · 1013 2.912 · 1012

3 3.092 · 1013 1.257 · 1012

4 8.617 · 1012 2.675 · 1011

5 1.797 · 1012 1.1778 · 1010

6 2.146 · 1012 3.647 · 109

7 2.0496 · 1012 5.832 · 108

8 2.0655 · 1012 1.137 · 108

9 2.06245 · 1012 2.159 · 107

Table 3.6: Inversion statistics for nguess = 3.5

Iteration H |G|
1 3.658 · 1011 3.1396 · 1011

2 1.2446 · 1012 1.76443 · 1011

3 2.64779 · 1012 1.351 · 1011

4 2.03321 · 1012 6.92 · 109

5 2.06992 · 1012 1.386 · 109

6 2.06271 · 1012 2.525 · 108

7 2.06406 · 1012 6.143 · 107

8 2.06372 · 1012 2.221 · 107

9 2.06381 · 1012 7.9271 · 106

Table 3.7: Gradient check for activation energy with E0
a = 4.0

iteration GAdjoint GFD

1 3.812 · 108 3.892 · 108

2 −4.622 · 107 −4.632 · 107

3 2.114 · 106 2.101 · 106

4 −5.44 · 105 −5.342 · 105

5 6.9301 · 104 6.922 · 104

6 −5.10 · 104 −5.102 · 104

7 2.110 · 104 2.115 · 104

8 −1.01 · 104 −1.02 · 104
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C h a p t e r 4

INFERENCE OF PLATE BOUNDARY PROPERTIES WITH AN
ADJOINT OPTIMIZATION WITH LARGE SCALE

TWO-DIMENSIONAL MODELS
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ABSTRACT

Platemotions are a primary surface constraint on forwardmodels of plate andmantle
dynamics and rheology, plate boundary stresses, and the occurrence of great earth-
quakes. Estimates of effective viscosity regionally provide additional constraints
on mantle dynamics. Here we incorporate plate motion and effective viscosity
data into an optimization and derive adjoint, gradients for inferred parameters, and
posterior distributions for rheological paramters, stresses within plate boundaries,
and the effective viscosity of subducted slabs. We apply these methods to 2-D
cross-sections of subduction zones, with temperature distributions and fault zone
geometries developed from seismic and other data. Analyzing the conditional and
marginal distributions, we find that the Tonga and the Marianas subduction zones
have the lowest values of mechanical coupling while Chile and Sumatra the highest,
among those studied. The subduction zones with the lowest coupling have back-arc
extension. Globally, we find that the non-linear stress-strain exponent, n, is 3.08 ±
0.25 (in the upper mantle and lithosphere) with a pressure-independent yield stress
of 130-146 MPa. The stress in shear zones is tens of MPa and the shear and the nor-
mal stresses are elevated in seismically coupled compared to uncoupled subduction
zones. Relative differences in inferred mechanical couplings are similar to observed
seismic coupling. We find that within the hinge zone for subduction zones is about
8 · 1021Pa · s. This partition of average effective viscosity suggests that there is
a link between plate coupling and the average dynamic weakening for seismically
coupled subduction zones.
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4.1 Introduction
While slab pull may be the dominant force driving plate motions and associated
mantle flow, there remains uncertainty on the relative coupling of stresses across
plate boundaries at subduction zones. This coupling can either be attributed to broad-
scale tectonic forces or the varying properties between plates at each subduction
zone. While it is not clear whether broad-scale forces or the varying properties
have the stronger contribution to the variations in seismic coupling, a valid model
should appropriately represent the broad-scale forces. Seismic coupling is defined
as the ratio between the observed seismic moment release to the rate of plate tectonic
velocities and generally varies between 0 and 1 (Davies and Brune, 1971). Seismic
coupling is sensitive to the short window of recorded earthquakes such that if many
largemagnitude earthquakes occur within that short window at a greater rate than the
long-term average, seismic coupling could be close to or even exceed unity, whereas
if the earthquakes occur at an unusually low rate, inferred seismic coupling will be
small. While seismic coupling is a reasonable way to build a relationship to forecast
which subduction zones have a propensity for future large events, additional data,
for example, the curvature of subduction zones (Bletery et al., 2016) or along-strike
gravity anomalies (Song and Simons, 2003), can better condition such forecasts.

Regardless of the controls on seismic coupling, geodynamic models should be able
to explain variations between the two end-members from the least coupledMarianas
to the coupled Chilean subduction zone. The Chilean subduction zone is among
the most seismically active with many earthquakes above 8, including the 1960
Valdivia earthquake with moment magnitude 9.5 (Kanamori and Cipar, 1974), the
largest ever recorded. On the other hand the Marianas subduction zone is among
the least seismically coupled with no historic earthquakes greater than magnitude
7.7 (McCaffrey, 2008). Chile, overall is in a state of compression on the South
American margin, while, the Marianas subduction zone is characterized by active
back arc opening indicative of regional tension.

A simple force balance of subduction that parameterizes the broad-scale forces sug-
gests a link between tectonic forces and the degree of seismic coupling (Scholz and
Campos, 1995; Scholz and Campos, 2012). These models estimate the force distri-
bution that arises from slab pull and a putative anchoring force, for each subduction
zone. Such models do not include realistic subduction geometry, variations in rhe-
ology, and how such variations would influence the distribution of normal forces.
While the analysis found a relationship between broad-scale forces and coupling,
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their approach may not capture the essence of the system as the actual geometry
of slabs is complex with substantial variations induced by global flow (Scholz and
Campos, 2012). Although simple, these force balance models haven’t found general
acceptance.

To accurately estimate the forces at plate boundaries, not only is the correct physics
of mantle flow and lithospheric deformation needed, but an optimization scheme
must be constrained by observed plate motions (Burstedde, Stadler, et al., 2013;
Stadler et al., 2010), the most robust constraint on mantle dynamics. We overcome
these limitations by employing an approach similar to that introduced earlier (Rat-
naswamy et al., 2015), with plate motion data used for areas away from deforming
plate boundaries, essentially allowing for self-consistent deformation within plate
boundaries. Furthermore, the shape of fault zones play a key role in governing plate
motions (Zhong and Gurnis, 1995), and these can be mapped at shallow depths
with seismic observations and are needed as constraints. Augmenting surface ve-
locities, we now incorporate constraints on the average viscosity within selected
regions. Estimates of the average effective viscosity arise from post-glacial rebound
and post-seismic relaxation. Using constraints on viscosity may allow for a better
estimation of the strain rate exponent, upper mantle prefactor and bulk effective
mantle properties compared to an optimization that solely uses plate motion data.
The viscosity reduction for a shear zone representing the megathrust between plates
has been inferred from the adjoint-based optimization, but not the state of stress.
We show that such stresses can be estimated from an additional adjoint solve. We
determine the trade-offs between the calculated stresses and inferred rheological
parameters.

In this chapter, we will explore the incorporation of average effective viscosities
and estimation of stress uncertainty in fault zones. While inferring plate boundary
strength factors (Ratnaswamy et al., 2015) can lead to a better understanding ofwhich
plate boundaries are more mechanically coupled, such variables are intrinsic (and
non-dimensional) and so here we estimate the extrinsic quantity (the magnitude
of stresses) and their uncertainties. We will derive expressions for the gradients
of inferred parameters using average effective viscosity and expressions for the
covariance matrices of the average normal and shear stresses. We then apply these
methods to 2D cross-sectional slices with observed plate motions and viscosity
constraints and thermal structures and fault zone geometries constrained by a variety
of other (but primarily seismic) data.
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Models with a simple parameterization of plate boundary strength, in which no
mechanical distinction is made between the bending plate and the zone of inter-plate
coupling are to be avoided. Plate bending and interplate coupling are observationally
resolved and distinct processes and if we hope to understand the plate tectonic
controls on interplate seismic coupling and how slab strength may influence plate
motions, while moving forward with a new framework to link geodynamics to
the occurrence of great earthquakes, then the more complete formulation we have
adopted is essential.

4.2 Forward Model
The underlying physics of mantle flow is governed by the creeping of mantle rocks
over geological time scales. Over time scales greater than about 1 year, deformation
of the mantle behaves as a viscous fluid governed by the Stokes equations

∇ · u = 0 on Ω,

∇ · σ = −RaTer on Ω,
(4.1)

with free slip boundary conditions

u · n = 0 on ∂Ω,

T(σn) = 0 on ∂Ω

with viscous stress tensor being σ := 2η(T, n,σy) − pI where p is the forward pres-
sure, and T is the tangential operator (T = I − n ⊗ n). Furthermore, the momentum
equation in (4.1) is driven by thermal buoyancy where T is the temperature field
and Ra is the thermal Rayleigh number. Solving the Stokes equations, we obtain
the solution of the forward velocities (u) and pressures (p). An important part of
the stress tensor σ is the rheological relationship. In our forward model we use
a nonlinear rheology where we take into account the shear-thinning nature of the
upper mantle through the use of a power law rheology with a strain rate exponent
and the diffusion creep in the lower mantle with a linear rheology, while using a
global yield stress to allow for dynamic weakening (which primarily occurs within
the hinge zones, that is where slabs bend). Our viscosity formulation is

η( ÛεII, σy) = ηmin +min(Γi min(ηmax, a(T)( ÛεII − d) 1
2n Ûε−

1
2

II ),
1
2
σy Ûε

− 1
2

II ) (4.2)

where ηmin is the minimum effective viscosity, Γi is the weak zone factor for plate
margin i, σy is the yield stress, a(T) is the temperature dependent component of
viscosity, n is the strain rate exponent and d is a parameter included to regularize
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the solution. In (4.2) we compute the power-law and temperature dependent part
of the rheology first and take the minimum between that viscosity and the maxi-
mum viscosity (ηmax), while applying the weakfactor Γ to that viscosity. Dynamic
weakening is taken into account by comparing the minimum between the viscosity
from yielding and the viscosity obtained from the minimum between the maximum
effective viscosity (ηmax) and the shear-thinning, temperature dependent viscosity.
We then regularize the viscosity by adding a minimum effective viscosity ηmin.

4.3 Bayesian Problem Formulation
We cast the inverse problem in a Bayesian sense, in which we find the posterior
distribution (πpost) for the inferred rheological parameters (for example the strain
rate exponent and weakfactors). We cast the inverse using Bayes theorem (4.3)
Tarantola (2002),

πpost ≈ π likeπprior (4.3)

where the π like is the likelihood distribution and πprior is the prior distribution, as
no single set of parameters represents a unique solution, so we seek the Bayesian
solution to the problem. The likelihood distribution is given as,

π like = exp
{
− 1

2
(u − uobs)ᵀC−1

data(u − uobs)
}

(4.4)

where udata is the observed velocity data, u is the results from a forward model
and Cdata is the covariance matrix for the observed data. The likelihood distribution
gives an estimate of how well the model parameters explain the data. However, if
there is knowledge of the distribution of the inferred parameters, then that knowledge
can be incorporated into the prior distribution (πprior).

We build upon our earlier work (Ratnaswamy et al., 2015) through the addition of
several enhancements. We quantify the uncertainty of plate boundary stresses since
the uncertainty and correlations of stress with rheological parameters gives a more
meaningful physical interpretation of the interactions occuring in the models. The
stresses in the fault zones are not initially inferred with the adjoint formulation, and
do not have a covariance distribution readily available. A Markov Chain Monte
Carlo (MCMC) approach would likely recover the covariance but would require
many samples (forward solutions) and make the optimization computationally in-
tractable. Alternatively, we will derive Gaussian approximations for the covariance
distributions for the stresses within fault zones. Furthermore, we incorporate the ef-
fective viscosity for selected regions of the mantle, so that the optimization problem
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provides a better estimate for the rheological parameters and in turn refined estimates
on the stresses within plate boundaries. Incorporating the average effective viscosity
requires the derivation of a new adjoint system that will be developed here. Finally,
the refinedmethod is applied to geophysical data in a series of cross-sectionalmodels
of different plates and subduction zones.

Covariance of Extrinsic Quantities
In the earlier models, we were able to estimate the parameters in the rheological
relationship for synthetic models (Ratnaswamy et al., 2015); however, there were no
bounds placed on the uncertainty of derived quantities, such as the shear stresses,
that are dependent on the rheological parameters.

Here, we must build an approximation of such derived quantities. This quantity
is embedded in the weak factors, but the weak factors are a parameterization, that
requires a mapping to stress, including the normal and tangential stresses and a
square-root of the second invariant of the stress tensor (σavg), i.e.

σavg =

∫
Ωw

(σ : σ) 1
2 dω (4.5)

where Ωw represents the volume of a partcular weak zone. Helpful quantities for
addressing the origin of seismic coupling through the geographic variability of
great earthquakes, include the average shear (σT

avg) and normal tractions (σN
avg) in

the weak zones,
σN

avg =

∫
Nσ · ndΩw (4.6)

σT
avg =

∫

Tσ · ndΩw . (4.7)

The normal and shear components of the stress are important as they effectively give
the resisting stresses along the plate boundaries. The larger the resisting stress, the
more mechanically coupled a plate boundary, and vice versa. Here, T and N are the
tangential and normal projection along the center line of the plate boundaries,

T = I − nw ⊗ nw
N = nw ⊗ nw

(4.8)

where nw is the normal vector along the fault zone. We estimate Gaussian distribu-
tions of the weak factors and stresses in each plate boundary,

πΓi = N(Γ
map
i , σΓi ) (4.9)
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πσn
i
= N(σmap

i , σσi ) (4.10)

The stresses provide a more physically intuitive description of plate coupling com-
pared to the weak-zone pre-factors (Γi).

N(µmap, s) =
∫

1
s
√

2π
exp(−

(x − µmap)2

2s2 )dx (4.11)

Unlike the rheological parameters, we do not infer the shear and normal stress in our
optimization framework. Instead, a Gaussian approximation to the normal stress
in Eq. (4.11) is constructed. A natural question would be how well the posterior
distributions for the stresses are approximated by a Gaussian distribution. Locally,
near the maximum a posteriori point (MAP),for this nonlinear problem, we have
found that the conditional distribution and to an extent the marginal distributions
are well approximated by a Gaussian approximation to the posterior distribution
(Ratnaswamy et al., 2015). We define a measure of the stress from the underlying
properties such as the strain rate exponent, yield stress and so forth, e.g. m, the
model parameters, as,

σ = f (m) (4.12)

expanding σ,

σ(m) = σ(mmap) +
∂σ

∂m
|mmap (m − mM AP) + h.o.t (4.13)

The mean of σis σ(mmap), while the covariance is defined as,

C = E[(σ − µσ)ᵀ(σ − µσ)] = E[(σ − σ(mmap))ᵀ(σ − σ(mmap))] (4.14)

where E denotes the expectation (i.e. the mean). For example, the expected value
of a continuous random variable x is defined,

E(x) :=
∫

xp(x)dx (4.15)

where p(x) is the probability distribution of x. Using a Taylor series expansion of
the stress, while only retaining the 1st order terms, we obtain

σ(m) − σ(mmap) ≈
∂σ

∂m
(m − mM AP) (4.16)

Therefore

C = E
[ ( ∂σ
∂m
|mmap (m − mM AP)

)ᵀ ( ∂σ
∂m
|mmap (m − mM AP)

) ]
(4.17)
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which leads to

C =
( ∂σ
∂m
|ᵀmmap

E[(m − mM AP)ᵀ(m − mM AP)](
∂σ

∂m
|mmap

)
(4.18)

where
E[(m − mM AP)ᵀ(m − mM AP)] = H−1(m) = C(m) (4.19)

leading to

C(σ) = ∂σ

∂m
|ᵀmmap

H−1(m) ∂σ
∂m
|mmap (4.20)

or
C(σ) = ∂σ

∂m
|ᵀmmap

C(m) ∂σ
∂m
|mmap (4.21)

with C(m) is the covariance matrix obtained from solving for the MAP point in
the original optimization problem and H is the Hessian. Therefore, the normal
distribution of the stresses is

πσ = N
(
σ(mmap),

∂σ

∂m
|ᵀmmap

C(m) ∂σ
∂m
|mmap

)
(4.22)

To form theGaussian approximation of the stress within eachweakzone, we compute
the gradient of the stress with respect to the inferred parameters. This amounts to
making an additional adjoint solve, and a gradient computation. Taking variations
of Eq. (4.7) with respect to the velocity

στavg = T
∂σ

∂u
· n (4.23)

with
∂σ

∂u
=
∂η

∂u
.
ε(u) + η .ε(δu) (4.24)

This is just an application of the linearized Newton operator to the velocity of the
forward model at theMAP point. For the second invariant of the stress tensor, addi-
tional terms compared to the average stress are required because of the dependence
of the stress on the effective viscosity,

σ I I =
1
2
Tra(σ : σ)

=
1
2
[η Ûε(u) : η Ûε(u)]

=
1
2
[ Ûε(u) : η2 Ûε(u)]

(4.25)
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then,
∂σ I I

∂u
= Ûε(δu) : η2 Ûε(u) + Ûε(u) : Ûε(u)η ∂η

∂ ÛεII
( Ûε(u) : Ûε(δu) (4.26)

After solving for the adjoint in (4.26), we then compute the gradient for (4.7),

G := T
∂σ

∂m
· n (4.27)

where,
∂σ

∂m
= η,i Ûε(u) (4.28)

For the second invariant of the stress tensor, we compute the gradient

G := Ûε(u) : 2η · η,m Ûε(u) (4.29)

where the derivatives of the effective viscosity with respect to the rheological pa-
rameters are

η,i( ÛεII, Γ, n, σy)

=


0 in Ωy,

Γi χi min(ηmax, a(T)( ÛεII − d) 1
2n Ûε−

1
2

II ) in Ω \Ωy .

where Γi = exp(mi).

η,i( ÛεII, Γ, n, σy) =


1
2σy Ûε

− 1
2

II in Ωy,

0 in Ω \Ωy .

Finally, if mi = log(n), we obtain

η,i( ÛεII, Γ, n, σy) =

Γa(T)ω( ÛεII − d) 1

2n Ûε−
1
2

II in Ωw,

0 in Ω \Ωw,

where ω = log(( ÛεII − d)− 1
2n ) and Ωw ⊂ Ω are the points where η( ÛεII, Γ, n, σy) =

ηmin+a(T)( ÛεII−d)1/(2n) Ûε−1/2
II , whereΩw is the uppermantlewhere there is dislocation

creep, and thus the rheology depends depends on the strain rate exponent n. It should
be noted that we use log parameterization of each of the inferred parameters so as
to enforce the non-negativity of their values (Tarantola, 2002).

Computing the covariance matrix of the stress effectively adds regularization to the
normal and shear stress covariance matrix because the stress values depend on the
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values of the inferred parameters at theMAP point. After computing the gradient of
the stress, we can now form the covariance of the stress by first forming the matrix,

∂σ

∂m
=



Gw1
,Γw1

Gw2
,Γ1

. . . Gwn

,Γ1

Gw1
,Γ2

Gw2
,Γ2

. . . Gwn

,Γ2
...

...
...

...

Gw1
,Γ3

Gw2
,Γ3

. . . Gwn

,Γ3

Gw1
,n Gw2

,n . . . Gwn
,n

Gw1
,σy

Gw2
,σy

. . . Gwn
,σy


(4.30)

The values in (4.30) with superscript wi represent the plate boundaries (plate
boundary 1, plate boundary 2 and so forth).

Cost Functional with average effective viscosity data
Previously, we (Ratnaswamy et al., 2015) only used surface velocity datawithin areas
of presumed rigid plate motion. However, there are some areas in the mantle where
there are independent estimates of the average effective viscosity including regions
sampled by post-glacial rebound and post-seismic relaxation such as that associated
with the 2012 Indian Ocean earthquake (Hu et al., 2016). These constraints from the
2012 Indian Ocean earthquake are potentially important as the loading was from a
large intraplate oceanic earthquakewithin the lithosphere but constrained by onshore
GPS displacement data. These provide bounds on the viscosity immediately below
an oceanic plate from a transient loading event. We can add these post-glacial and
post-seismic constraints into our model in a ’generic’ sense, that is areas under
normal continental cratons and those below oceanic lithosphere just before the
oceanic lithsphere starts to subduct. Estimates on the viscosity of the upper mantle
below northern Europe frompost glacial rebound are about 1021Pa·s (Cathles, 2015).
The constraints on the viscosity below North America are potentially more sensitive
to both the upper mantle and the top of the lower mantle (Mitrovica and Peltier,
1995; Simons and Hager, 1997). For global models, these constraints would be
added to the explicit region constrained by the transient observation.

These estimates of the average effective viscosity are only available in regions
where the mantle has undergone some response from deformation and are primarily
available in the upper mantle. There are a few ways to incorporate the effective
viscosity, where η j is the observational constraint for region j and η is the computed
effective viscosity.

Jpointwise =
1
2
(η j − η)2 (4.31)



78

Using this pointwise formulationwould effectively push the regionwith the viscosity
constraint toward a more homogeneous state, i.e. each point within the observa-
tion region is forced to have the observed effective viscosity. A more appropriate
formulation is

Javerage =
1
2
(η j − exp(

∫
Ωj

ln η dΩ j))2. (4.32)

where ηi is the constrained viscosity within domain Ωi.

Making use of this constraint, we then formulate the misfit as,

J(u,m, p) :=
1
2

∫
∂Ω1

(Ou−uobs)ᵀC−1
vel(Ou−uobs)d∂Ω1+

1
2
(η j−exp(

∫
Ωj

ln η dΩ j))2.

(4.33)
Taking derivatives of the cost function in (4.33) with respect to the forward variables
(u, p) and employing the divergence theorem as in (Ratnaswamy et al., 2015), we
arrive at the adjoint system

∇ · v = 0 on Ω,

∇ · σ̂u = −∇ · Ψ on Ω,
(4.34)

where Ψ = (1 − 1−n
n Ûε(u) : Ûε(u))I + 1−n

n
Ûε(u)⊗ Ûε(u)
Ûε(u): Ûε(u) , and boundary conditions

v · n = 0 on ∂Ω,

T(σ̂un) =


0 on ∂Ω \ ∂Ωt,

−OᵀC−1
noise(Ou − uobs) on ∂Ωt,

where T is the tangential operator in which our primary constraint is the observed
plate velocities, uobs, optimized against the forward prediction of the velocity, u. In
addition, σ̂u = σ̂u(v, q) is the adjoint stress, where v is adjoint velocity field and q

is the adjoint pressure,

σ̂u = 2
(
η( ÛεII, Γ, n, σy)I +

1
2
η, ÛεII[ Ûε(u) ⊗ Ûε(u)]

)
Ûε(v) − qI (4.35)

and

η, ÛεII=


min

(
0, 1

2Γa(T)( ÛεII − d) 1
2n Ûε−

1
2

II
ÛεII−( ÛεII−d)n
ÛεII( ÛεII−d)n

)
in Ω \Ωy

−1
2σy Ûε

− 3
2

II in Ωy .
(4.36)

and ⊗ is the outer vector product and I is the fourth-order identity tensor. The
gradient is then,

G :=
∫
Ω

2η,i( ÛεII, Γ, n, σy) Ûε(u) : Ûε(v)dΩ−(ηi−exp
∫

ln η)(exp{
∫

ln η})
∫

η,i

η
dΩi .

(4.37)
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The additional term on the right hand side of (4.37) arises from the viscosity misfit
which is a function of the inferred parameters such as the strain rate exponent and
yield stress.

Priors
We have pre-existing knowledge on the rheological parameters controlling the de-
formation of mantle materials at high temperatures from laboratory experiments
Ranalli, 1995, although those are generally performed at substantially larger strain
rates than the values of 10−15s−1, typical of mantle flow (Korenaga and Karato,
2008). Nevertheless, those estimates can be incorporated as prior knowledge into
the optimization using Bayes Theorem (Eq. (4.3)), recalling that πprior is the distri-
bution that represents prior knowledge of the parameters. However, the parameters
from laboratory experiments vary depending on what type of conditions are present
such as the strain rate exponent for either wet or dry olivine. Therefore, the variance
(uncertainty) in the prior distribution should reflect the lack of certainty of the range
of values a rheological parameters should be.

Choosing the prior distribution for various rheological parameters can be difficult
as there is often not enough information to constrain their mean and variance. The
prior distribution of the rheological parameters such as the strain rate exponent are
chosen such that they reflect the acceptable parameter range that can explain the
rate of deformation from laboratory experiments. However, the acceptable values
from laboratory experiments may not follow a Gaussian distribution (Korenaga and
Karato, 2008), and it is not apparent what distribution the prior should be. Typically,
the prior distribution is chosen to be a normal distribution (Fig.4.1a). The mean
(µprior) is usually chosen based on what a likely average value should be based
on experiments or from the literature (Korenaga and Karato, 2008). However, the
uncertainty in µprior is unknown and therefore the variance needs to be chosen with
care so that the prior does not have a strong influence on the posterior.

Another possibility is to use a non-informative prior (Tarantola, 2005) which gives
gives equal likelihood (equal probability) to each value such that no preference is
given to a single value. Using non-informative priors can be advantageous when it
is not apparent what an acceptable value is, such as the strength of a weak factor An
example of a non-informative prior is a uniform distribution for the plate couplings
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Figure 4.1: (A) Normal distributions for the strain rate exponent prior (B) Uniform
distributions for the strain rate exponent prior. In (A) we compare the possibility
of using two different normal distributions to demonstrate our knowledge or lack
thereof of what the values of the strain rate exponent should be.

Γi (Fig.4.1b). A uniform distribution has the following properties,

U(a, b) =


1
b−a b ≥ x ≥ a

0 otherwise
(4.38)

with a mean and variance of

µ(a, b) = 1
2
(a + b) s2

uni(a, b) =
1

12
(b − a)2. (4.39)

The uniform distributions (Fig. 4.1b) have the same mean, but different variance.
Compared to a normal distribution, the variance for the uniform distribution is
determined by the range of likely values, each of which has the same probability.

For a prior described by a normal distribution, a mean, µ, and covariance, C, are
needed

πprior = N(µ, C) (4.40)

The negative log of the prior distribution results in a weighted misfit, or

Jprior =
1
2
(m − mmean)ᵀC−1(m − mmean) (4.41)

With the prior, the cost function would be

J(u,m, p) :=
1
2

∫
∂Ω1

(Ou − uobs)ᵀC−1
vel(Ou − uobs)d∂Ω1

+ (η0 − exp(
∫
Ωi

ln η))2 + 1
2
(m − mmean)ᵀC−1(m − mmean).

(4.42)
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While the solution to the adjoint equation does not change, the gradient term for
each parameter becomes

G :=
∫
Ω

[2η,i( ÛεII, Γ, n, σy) Ûε(u) : Ûε(v)dΩ + C−1(m − mmean)midm]. (4.43)

These new gradients will be used to update the parameters as they measure the
sensitivity of a parameter to an observation.

4.4 Model Setup
We have constructed a set of model constraints based on global observations with
four components: A global temperature distribution, the geometry of faults, the
kinematics of plate motion, and the geometry and bounds on the effective viscosity
within selected regions of the mantle.

The temperature model has been constructed globally in a spherical shell from
which selected cross-sections are taken. The temperature of oceanic lithosphere
follows a half-space cooling model using updates to the digital grid of the age of
oceanic plates (Müller et al., 1997). A thermal age was used within continents
divided into the following three regions: Cratons (300 Ma), areas near subduction
zones (75 Ma), and other areas (200 Ma), as detailed in (Stadler et al., 2010). The
thermal structure of slabs were constructed as follows. Initially the top surface
of the slabs was derived from the Slabs 1.0 surface, based on detailed seismic
constraints, including seismicity and seismic reflection profiles (Hayes et al., 2012).
With normals pointing downward from this surface, an initial thermal structure of
slabs based on the half space model using the age of the plate at the position of the
trench was generated. This procedure ensured continuity with the thermal structure
of the oceanic lithosphere. Then, thermal conduction was solved for at each depth
over a duration equal to the travel time to reach the depth with the local convergence
velocity (using the relative velocity vector). Although solved only with conduction,
this procedure resulted in thermal structures close to those obtained in fully dynamic
models. The tops of thermal slabs were sharp in the corner of the mantle wedge
and then progressively became more diffusive with depth. Within the lower mantle
the thermal structure was based on scaled seismic tomographic models, including
a P-wave (Simmons et al., 2012) and a S-wave model (Ritsema et al., 1999). The
lithosphere and upper mantle models and the upper and lower mantle were blended
together at 75 km and 550 km depths, respectively, as shown in cross sections
(Fig.4.2). We have used the seismo-tectonic approach for the shallower mantle and
tomographic approach for the deeper mantle, as the seismic tomography models for
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slabs tend to be spatially blotchy. Such blotchy structure is generally not consistent
with Benioff zone seismicity and would map input variations in effective viscosity.

On the surface of the earth we generated a velocity field from MORVEL56 (Argus,
Gordon, and DeMets, 2011) in a no net rotation (NNR) reference frame. Each cross-
sectional model defines a great circle arc, with local unit vector d in the direction
of the circle, such that we extracted the velocity vxs = d · v. The NNR reference
frame was used as the side-walls on the two-dimensional cross sections preclude
any large-scale differential motion between the bulk of the mantle and the plates,
that is any net rotation.

Selecting a set of representative cross-sections in which all of the driving forces
may be represented two-dimensionally is difficult, as it is likely that no plate and
subduction zone is truly two-dimensional. Wide cross-sections with plate motion
parallel to a great circle orthogonal to a subduction zone are rare and so we focused
on smaller arc cross sections. Nevertheless, we have chosen a set of cross-sections in
which plate motion was generally orthogonally to the strike of the trench, represent-
ing some of the end-member cases from the least to the most seismically coupled
subduction zones (Fig.4.2A). To investigate the mechanical coupling for subduction
zones with various degrees of seismic coupling, we consider the cross-sections in
Fig. 4.2. Our primary cross-section has the largest dimension (about 240◦, WEP,
western to eastern Pacific) and contains three subduction zones that span the range
from the seismically coupled (Chile) to the least coupled (Marianas). This cross sec-
tion contains one subduction zone with back-arc extension near the Mariana trench.
Additional cross-sections in Fig.4.2 are smaller than WEP, and thus do not contain
the coupling variability of the larger cross-section; however those cross-sections
represent subduction zones that exhibit both substantial coupling (Sumatra) and
little coupling (Tonga).

The fault zone between converging plates at subduction zones, generally thought to
be the places on which great earthquakes occur, were represented as weak zones
with unknown viscosity. A weak zone factor, created by a stencil with a center line
defined by the Slabs 1.0 surface (Hayes et al., 2012), was defined as

Γstencil = 1.0 − (1 − Γi) exp{−(di − d0)2/(2 · w2)} (4.44)

and with a coefficient Γi that was recovered in (4.2), d0 is the center-line profile, w
is the length-scale of smoothing for the weak zone. For our models, we assume the
values of mantle parameters summarized in Table 4.1.
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Figure 4.2: A. Velocity vectors in the no net rotation reference frame from
MORVEL56(Argus, Gordon, and DeMets, 2011). Cross sections indicated with
black lines, including western to eastern Pacific (WEP), Sumatra (SU), Tonga to
Chile (TC) and Middle America (MA) B. Velocity in the direction of cross-section
WEP.(C)Temperature distribution for cross section WEP. Zoom in of the Marianas
(in D) and the Chilean (in E) slabs for the WEP cross section. In D and E, the solid
green lines show the position of the weak zones.

Table 4.1: Assumed parameters left as constants in the

Symbol Parameter Value
ρ Density (ρ) 3300 kg/m3

g Gravity (g) 9.81 m/s2

α Coefficient of Thermal expansion (α) 2 × 10−5

∆T Temperature Difference ∆T 1400 K
D Depth of layer (D) 1500 km
κ Thermal Diffusivity (κ) 10−6 m2/s
ηref Reference Viscosity (ηref) 1020 Pa · s
Ra Rayleigh Number (Ra) 2.92 × 109

n Strain rate exponent in lower mantle (n) 1.0

The average effective viscosity data is an additional constraint that we will explore
to determine the effect it has on the inference of the rheological parameters. Since
the effective viscosity is a constraint on the mantle from observations, then this data
should better constrain global parameters such as the strain rate exponent, activation
energy, and upper mantle prefactors. We will place the average effective viscosity
constraint of η j = 1021Pa · s under the South American continent (as it is the only
plate in our models in the WEP cross section with a substantial continental plate
overriding a subduction zone, Fig. 4.3B).

While we are able to solve this nonlinear Stokes flow, we need to resolve the thermal
boundary layers and fault zones which requires either using small elements with
uniform refinement, which would be computationally expensive, or adaptive mesh
refinement (AMR), which is algorithmically more complicated. Here, we use AMR
and refine the mesh in areas such as oceanic plates, slabs, the mantle wedge, and
fault zones (the latter with 5 km-sized elements). AMR is implemented with the
p4est library (Burstedde, Wilcox, et al., 2011), which ensures a 2 to 1 ordering
for adjacent elements. Furthermore, we use quadratic elements for velocity along
with first order discontinuous elements for pressure to ensure mass conservation.
Resolving the fine scale structures of the thermal boundary layers and fault zones is
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part of the process of solving the nonlinear Stokes equations; however, to accurately
solve the Stokes system, we need to either use Picard orNewton’smethod (both being
iterative) obtain accurate flow velocities and the effective viscosity structure. While
employing Picard is simpler to implement, it falls short in reduction of the residual
of the Stokes system compared to Newton’s method per iteration. Furthermore, the
convergence obtained by Newton’s method is significantly faster than Picard and
results in a larger reduction of the residual of the Stokes system (Rudi et al., 2015).
In addition to a significant reduction of the nonlinear residual of the Stokes system,
solving the Stokes flow problem by an inexact Newton-Krylov method requires
linearizing the nonlinear Stokes equation (providing the adjoint equation). Thus
to solve the linearized Stokes system, we employ iterative Krylov (GMRES) solver
while using multigrid methods (both algebraic and geometric), that are based on
MATVECmethods which computes the action of a matrix on a vector, thus reducing
the computational time of a forward solve. Furthermore, the solver employs a Schur-
complement approximation that is based on a hybrid-spectral-geometric-algebraic
multigrid approach detailed in (Rudi et al., 2015), which has a sequence of spectral
coarsening of polynomial order, followed by geometric and algebraic multigrid.
Code validation is provided in (Rudi et al., 2015).

Choosing a sufficient resolution for the forwardmodel is important as it can influence
what the inferred parameters are. We use a 5km element resolution within the fault
zone, while resolving thermal boundary layers and this has been demonstrated to
result in converged solutions. To determine if 5km element resolution is sufficient,
we looked at 2.5km and 10km resolution by taking a model case such as Middle
America that constrained plate motion data. We find that a 10km resolution is too
large and results in an L2 norm error of 8.44, while a resolution of 2.5km gives an L2

error of 7.76·10−4, approximately a 4-order magnitude difference. When comparing
the error to that of 5km resolution (7.76 · 10−4), we find that a 5km resolution is
appropriate as there is very little difference between both 2.5km vs 5km resolution.
We completed a similar analysis for the WEP cross-sectional models and found that
5km resolution with the weak zones lead to convergent solutions.

For each of cross-section, we solve the forward models in a cut out of a sphere;
that is, while the geometry is a two-dimensional domain and resembles a cylindrical
geometry, the flow is computed in a spherical coordinate system. It is possible
that the solution to the Stokes flow in a cut-out of a cylinder would change the
forward outputs (effective viscosity, plate motions); however, the salient geophysical
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behavior of the solution should be similar and all of the critical dynamics of slab
pull, bending in the hinge zone, and shear weakening occur at shallow depths where
the differences between the geometries is small.

An important part of our inversions is the plate motion data (MORVEL56-NNR),
which contains the plate motions along with their uncertainties. To account for
the uncertainty in plate motion data, we use a diagonal covariance matrix of 0.1
mm/year uncertainty for each plate, similar to what was done in (Ratnaswamy et al.,
2015). While (Argus, Gordon, and DeMets, 2011) provided a covariance matrix for
the correlations between each of the 56 plates, we find that there are inconsistencies
in their uncertainty when analyzing their covariance matrix–specifically the lack
of positive-definiteness of their covariance matrix. Therefore, using a realistic
variance for each plate is a reasonable compromise, though we do so at the expense
of a realistic representation of the data uncertainty.

4.5 Results
Overview and stability
We infer rheological parameters that best fit observed plate motions. Unlike ear-
lier use of a forward-adjoint Stokes optimization (Ratnaswamy et al., 2015) where
the rheological parameters were known, here they are not. While inferring pa-
rameters, we ensure that the misfit with plate motions is minimized by reducing
the norm of the gradient by three orders of magnitude, which lead to a goodness
of fit (χ2 < O(10−5)). In the context of earlier work (Ratnaswamy et al., 2015)
in which conditional and marginal distributions were computed through repeated
forward solves (without assumptions on their form using MCMC), we found that
the distributions were smooth, without local minima, and well approximated by
assuming that they are Gaussian near the best fitting values. We test the sensitivity
of inferences on the initial guess of strain rate exponent, n, to rule out the existence
of multiple or local minimas in the new inversions. For our standard case (Case 1),
using the wide western to eastern Pacific (WEP) cross section with n, σy and plate
couplings inferred, we find no sensitivity on the initial guess of n ranging from 2.0
to 3.5 (Table 4.2). This confirms that the posterior distribution for this particular
set of parameters constrained by the velocity data is sufficiently smooth with no
local minima and establishes that multiple inversions with different guesses are not
required to confidently infer these rheological parameters.

Looking at Case 1 (χ2 = 6.15 · 10−6) in detail, the inversion rapidly minimizes the
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Table 4.2: Sensitivity of initial guesses for Case 1

nguess nin f er σy Γ(SAM/RYU/IZU) ·10−5

2.0 3.079 137.01 62.39/0.7109/0.742
2.95 3.079 136.99 62.4/0.7109/0.7409
3.5 3.079 137.02 62.4/0.711/0.742

cost function during several iterations with the forward velocity converging toward
the plate motion data, including the major plates as well as small plates in the back-
arc (Fig. 4.3B). The effective viscosity varies between 1018 and 1024 Pa-s with major
strain thinning within the upper mantle below the plates and weakening in the hinge
zone of each subducting plate (Fig. 4.3A). Besides the larger cross-section (WEP)
we also use three other smaller cross sections with different regional structure (slab
dip and length, for example) and different expected degrees of coupling. We use the
coupled Middle America subduction zone and configuration to illustrate the non-
linear feedbacks which occur in this plate-mantle system. We start with a typical
inversion in which the non-linear exponent, yield stress, and coupling factors are all
left free, Case 32 (χ2 = 6.92 · 10−6); the inversion gives Γ = 7.75 × 10−5 during
convergence to the observed velocity of the subducting plate (6.83 cm/yr). We see
a moderate amount of shear thinning below the subducting plate (Fig. 4.4A) and
some around the slab as evident through the reduction of effective viscosity; there is
yielding within the hinge zone (Fig. 4.4B). In a forward model with all parameters
set to the values in Case 32 (χ2 = 6.05 · 10−7), except for an increase in the value
of the coupling factor (to Γ = 4 · 10−3) we see a distinct reduction in the amount of
shear thinning around the slab and a reduction in the amount of hinge zone yielding
(Fig. 4.4C) as the subducting plate velocity reduces to 3.79 cm/yr. However, when
the coupling factor is decreased by only a small amount (to Γ = 4 · 10−5), the plate
velocity increases modestly to 7.61 cm/yr but the amount of strain rate weakening
increases substantially as evident through a much expanded area of reduced effective
viscosity below the plate and around the slab; in addition the degree of yielding
within the hinge zone expands (Fig. 4.4D). This interplay between the rheological
parameters is important and demonstrates a strong interaction between the global
rheological parameters (yield stress and strain rate exponent) and local coupling
parameter. The forward models well illustrate the tradeoffs that will be expected
between the inferred rheological parameters in the inverse models.

Returning to inversion with Case 1, the five parameters, n, σy and the three coupling
factors all converge to stable values in about seven iterations (Fig. 4.3C-E). The
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nonlinear exponent is 3.08, the yield stress is 137 MPa and the coupling factors
show a clear difference between Ryukyu and Mariana (with about the same small
coupling values) andChilewith amuch larger coupling value (Table 4.5). The actual,
dimensional stress on these shear zones requires another adjoint solve, considered
below.

With the stability of inversion established, we now systematically infer rheological
parameters and the influence of the choice of which parameters are retained in
the inversion. In subsequent sections, we will isolate parameter trade-offs, and
determine the influence of adding additional viscosity data and prior knowledge.
Starting with the larger cross-section (WEP), we hold fixed different combinations
of strain rate exponent, yield stress, activation energy and upper mantle prefactor
in Cases 2-5, all variants of Case 1; in all inversions the plate couplings are left
free. The range of inferred strain rate exponent lies within 3.05 to 3.09, the yield
stress lies within 130 to 143 MPa, and the activation energy, Ea, lies within 199 to
233 kJ/mol. In the least restrictive inversion (Case 6) with all of the rheological
parameters left free, the non-linear exponent, yield stress and plate couplings all
converge with stable values in about seven iterations (Fig. 4.3D-E). The inferred
ordering of the coupling factors and their inferred values only varies by a small
amount compared to the ∼ 102× change between the low coupling values of Ryukyu
and Mariana compared to the large value for Chile. The rheological parameters and
coupling values appear to be robustly inferred with this set of input data.

The Sumatra and Tonga subduction zones are of particular interest as they are
thought to be among the most and the least seismically coupled subduction zones,
respectively. Therefore, we repeat similar sets of cases for these additional cross
sections, for Sumatra, Middle America, and Tonga. The global rheological param-
eters strain-rate exponent and yield stress generally recover values within the range
found from the WEP cross section. Only small differences are found: n can be as
high as 3.12 for Sumatra and Middle America and the smallest yield stresses (127
MPa) occur for Tonga.

Conditionals
The uncertainty of inferred rheological parameters is examined through posterior
distributions as conditionals. The conditional distributions convey not only uncer-
tainty in each parameter and trade-offs between them, but they show how these
parameters contribute to the underlying physics of plate mantle coupling. We find



89
Ta
bl
e
4.
3:

Su
m
m
ar
y
of

in
ve
rs
io
ns

(b
ol
d
va
lu
es

he
ld

fix
ed
)

C
as
e

Su
bd

uc
tio

n
Zo

ne
n

σ
y

Γ
(C

H
L/
RY

U
/M

A
R
)·

10
−5

U
M

Pr
ef
ac
to
r

E
a(

kJ
/m

ol
)

V
is
c.

da
ta

Pr
io
r

Av
er
ag
e
η U

M
(1

021
)

η
hi

ng
e(1

021
)

1
W
EP

3.
07

9
13

7
62
.4
/0
.7

11
/0
.7

42
20

00
20

3.
5

no
no

3.
96

7.
59
/8
.7

1/
8.

07
2

W
EP

3.
07

2
13

9
64
.7
/0
.7

02
/0
.7

81
20

00
19

8.
5

no
no

2.
98

7.
44
/8
.8

4/
8.

01
3

W
EP

3.
09

14
3

69
.7
/0
.7

73
/0
.7

98
20

98
.9

20
3.
5

no
no

4.
47

7.
40
/8
.3

1/
7.

97
4

W
EP

3.
0

12
9.
5

63
.3
/0
.7

03
/0
.7

25
20

00
20

3.
5

no
no

4.
57

7.
49
/8
.8

1/
8.

17
5

W
EP

3.
04

7
12

0
73
.9
/0
.6

81
/0
.7

33
20

00
20

3.
5

no
no

3.
11

7.
38
/8
.8

9/
8.

13
6

W
EP

3.
06

6
14

1
69
.8
/0
.6

56
/0
.7

45
30

19
.1

23
2.
7

no
no

2.
29

7.
42
/8
.8

0/
8.

11
7

W
EP

3.
05

1
14

6
72
.3
/0
.7

44
/0
.7

91
20

00
20

3.
5

no
ye
s

6.
65

7.
27
/8
.4

1/
8.

05
8

W
EP

3.
03

9
13

7
76
.1
/0
.6

92
/0
.7

1
20

00
21

7.
7

no
ye
s

4.
51

7.
25
/8
.9

2/
8.

23
9

W
EP

3.
0

13
9

60
.1
/0
.6

55
/0
.7

33
20

00
20

3.
5

no
ye
s

4.
43

7.
48
/8
.8

9/
8.

14
10

W
EP

3.
05

5
12

0
65
.1
/0
.7

11
/0
.7

61
20

00
20

3.
5

no
ye
s

4.
62

7.
43
/8
.7

3/
8.

12
12

W
EP

3.
05

2
14

3
70
.7
/0
.7

35
/0
.8

1
34

71
.4

23
0.
4

ye
s

no
4.
73

7.
40
/8
.7

4/
8.

11
13

W
EP

3.
04

2
13

7
72
.1
/0
.7

09
/0
.7

67
20

00
20

3.
5

ye
s

ye
s

3.
79

7.
37
/8
.7

9/
8.

14
14

W
EP

3.
04

7
13

5
69
.8
/0
.7

26
/0
.7

99
42

93
.8

24
7.
9

ye
s

ye
s

3.
01

7.
49
/8
.8

2/
8.

08
15

Su
m
at
ra

3.
08

7
14

3.
1

63
.9

20
00

20
3.
5

no
no

3.
61

7.
79

16
Su

m
at
ra

3.
11

14
1

44
.1

38
81

.4
23

9.
2

no
no

2.
81

7.
87

17
Su

m
at
ra

3.
07

7
13

7
38

.2
20

00
20

0.
1

no
no

2.
04

7.
89

18
Su

m
at
ra

3.
0

12
9

30
.7

23
99

.1
22

9.
4

no
no

3.
97

7.
78

19
Su

m
at
ra

3.
07

7
12

0
41

.7
26

04
.3

22
7.
6

no
no

1.
89

7.
88

20
Su

m
at
ra

3.
04

8
14

3.
1

63
.9

20
00

20
3.
5

no
ye
s

3.
61

7.
51

21
Su

m
at
ra

3.
1

13
8

40
.3

33
94

.1
23

1.
4

no
ye
s

1.
94

7.
85

22
Su

m
at
ra

3.
0

12
8.
1

38
.2

20
00

20
3.
5

no
ye
s

3.
07

7.
88

23
Su

m
at
ra

3.
06

3
12

0
34

.8
23

02
.6

22
7.
4

no
ye
s

3.
55

7.
90

24
To

ng
a

3.
06

21
13

9.
1

0.
63

20
00

20
3.
5

no
no

2.
89

8.
59

25
To

ng
a

3.
05

1
13

5.
2

0.
7

31
96

.1
22

5.
8

no
no

3.
07

8.
53

26
To

ng
a

3.
08

7
12

0
0.
83

20
00

21
9.
1

no
no

3.
55

8.
41

27
To

ng
a

3.
0

12
7.
7

0.
67

34
41

.7
23

2.
7

no
no

2.
89

8.
49

28
To

ng
a

3.
07

6
13

9.
1

0.
74

20
00

20
3.
5

no
ye
s

3.
97

8.
45

29
To

ng
a

3.
0

13
5.
2

0.
61

30
14

.9
21

7.
4

no
ye
s

3.
14

8.
49

30
To

ng
a

3.
09

7
12

0
0.
73

36
39

.7
22

8.
3

no
ye
s

3.
29

8.
40

31
To

ng
a

3.
08

3
14

2
0.

79
34

92
.3

22
5.
8

no
ye
s

1.
93

8.
39

32
M
id
dl
e
A
m
er
ic
a

3.
06

21
13

9.
1

7.
75

20
00

20
3.
5

no
no

3.
1

8.
95

33
M
id
dl
e
A
m
er
ic
a

3.
12

12
0

0.
83

20
00

17
8.
1

no
no

1.
89

8.
9

34
M
id
dl
e
A
m
er
ic
a

3.
0

13
2.
1

0.
92

20
00

20
7.
2

no
no

4.
29

8.
86

35
M
id
dl
e
A
m
er
ic
a

3.
0

13
2.
1

0.
92

20
00

20
7.
2

no
no

4.
29

8.
86

36
M
id
dl
e
A
m
er
ic
a

3.
08

4
14

0
2.
73

40
91

.4
24

1.
8

no
no

3.
11

8.
73

37
M
id
dl
e
A
m
er
ic
a

3.
08

9
14

1
1.
94

20
00

20
3.
5

no
ye
s

3.
15

8.
79

38
M
id
dl
e
A
m
er
ic
a

3.
09

2
14

3
1.
06

34
71

.3
23

3.
7

no
ye
s

2.
98

8.
87

39
M
id
dl
e
A
m
er
ic
a

3.
09

2
14

3
1.
06

34
71

.3
23

3.
7

no
ye
s

2.
98

8.
87



90

0 50 100 150 200
degrees

-10

-5

0

5

10

ve
lo

cit
y 

(c
m

/y
ea

r)

27 28 29 30
0

5

10

Data
iteration 1
iteration 5

1 2 3 4 5 6 7 8 9
iteration

10-6

10-5

10-4

10-3

CHL
RYU
MAR

1 2 3 4 5 6 7 8 9
iteration

3

3.02

3.04

3.06

3.08

st
ra

in
 ra

te
 e

xp
on

en
t CASE 1

CASE 6
CASE 14

1 2 3 4 5 6 7 8 9
iteration

120

125

130

135

140

145

yie
ld

 s
tre

ss
 (M

Pa
)

A

B

D E

0˚

60
˚

120˚

180˚

18 20 22 24

Log(Visc)

C

Figure 4.3: (A) Effective viscosity in the final converged state of Case 1 for theWEP
cross section. Distance in degrees east along the great circle. (B) Case 1 surface
velocity at two different iterations (dashed lines) compared with plate motion data
(solid blue line). The velocity near the Mariana plate margin is shown in detail. (C)
Convergence of coupling factors for Case 1 (solid circles) and Case 6 (open squares)
for the Chile (CHL in blue), Ryukyu (RYU in black), and Mariana (MAR in green)
plate margins. Convergence for the non-linear exponent (n, shown in D) and yield
stress (σy, shown in E) for three cases (Case 1 and 6 have the same symbol as in C
while Case 14 is shown with the open diamond symbols).
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Figure 4.4: Effective viscosity for Middle America: (A) the inversion Case 32
(Γ = 7.75 · 10−5, σy = 139.1 MPa, and n = 3.062); (B) zoom in of Middle America
slab from Case 32; (C) otherwise identical forward model except Γ = 4.0 · 10−3;
(D) otherwise identical forward model except (Γ = 4.0 · 10−5).

conditionals by using the covariance matrix of model parameters through an inverse
of the Hessian matrix, e.g. (4.19).

Using the conditionals for Case 1, we see a positive correlation between strain
rate exponent and yield stress (Fig. 4.5A), a weak negative correlation between the
plate couplings and yield stress (Fig. 4.5B) and a weak positive correlation between
plate couplings and strain rate exponent (Fig. 4.5C). Yield stress, σy, and strain-rate
exponent, n, both control the degree of nonlinearity of the system; nonlinearity
increases with larger n, so σy must increase in order to fit the kinematic constraints.
The positive correlation between the strain rate exponent and yield stress suggests
that as the strain rate exponent increases, upper mantle viscosity decreases and the
drag on the base of plates decrease, but resistance in the hinge zone must increase
to fit the kinematic constraint achieved with an increase in yield stress. Likewise,
an increase in plate coupling could be accomplished through either changes in n or
σy. One means would be a decrease in upper mantle viscosity realized by a larger
non-linear exponent, n; an alternative means is accomplished through a decrease in
hinge viscosity realized through a reduction in yield stress.

The differences in the coupling factors for different subduction zones are best shown
using the conditional distributions; for Case 1 (Fig. 4.5B,C), we find that there is
a clear demarcation between Ryukyu and Marianas the least mechanically coupled
subduction zones and Chile and this conclusion is independent of the non-linear
exponent and yield stress, in spite of the large variance of global rheological pa-
rameters. The variance on the nonlinear exponent n is quite large, 0.67, that is
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n = 3.08 ± 0.67. We have repeated the inversions for the smaller cross sections
(leaving only n, σy and coupling factors free) and we find that the MAP points of n

and σy are close to values inferred from either the larger WEP or any of the three
smaller cross sections. However, the variance on n is reduced somewhat in the small
cross sectional models compared to the wide cross sectionalWEPmodels. We again
find a clear demarcation between the coupling factors with a low coupling value for
Tonga and Middle America and a high value for Sumatra. Middle America has a
larger coupling factor compared with Tonga at greater than a 95% confidence level.

The coupling factors are intrinsic quantities, not depending on the forces in a
particular subduction zone or case. Using just the kinematic data, in conjunctionwith
the geometry and amplitude of the driving forces (e.g. temperature distribution), the
partitioning of the subduction zones into distinct groups suggest that the Chilean and
Sumatran plate boundaries are more mechanically coupled compared to Ryukyu,
Marianas, and Tonga regardless of the global parameter (yield stress and strain rate
exponent).
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Figure 4.5: Case 1: Strain rate exponent vs. yield stress (A), yield stress vs. plate
coupling (B), and strain rate exponent vs. plate coupline (C). Chile (red), Ryukyu
(black) and Marianas (green). Cases 15, 24 and 32 (Sumatra in black, Tonga in red
and Middle America in blue): Yield stress vs. strain rate exponent (D), yield stress
vs. plate coupling (E), and non-linear exponent vs. plate coupling (F). Contour
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Adding priors
Priors are introduced with Gaussian distributions for each of the inferred parameters
assuring that we do not restrict the likelihood to a particular parameter space.
Repeating a set of inversions in Cases 7-10 for the WEP cross section, we determine
that the form of the correlations remain invariant, including a positive correlation
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between the strain rate exponent and yield stress (Fig. 4.6A). Furthermore, we
confirm that the ordering of plate couplings, where Chile is more coupled than the
Marianas and Ryukyu is also unchanged. The convergence of the parameters during
the course of inversion remain close to 7 iterations such that adding priors does not
substantially impact the overall computational work (Fig. S1). For the conditional
distributions of Ea vs. n using generic, permissive priors, we find that the activation
energy remains around 200 kJ/mol and the non-linear exponent remains around 3.1
with the variance on both reduced somewhat for both the WEP and Sumatra cross
sections with priors (Fig. 4.6A,B).

Instead of generic priors, we now turn to the use of prior knowledge from rock
mechanics experiments. We use priors of Ea = 550 kJ/mol and n = 3.5 which are
typical values for olivine in a dislocation creep regime (Karato and Wu, 1993). We
use a large generic, permissive variance on these values and find a distinct shift
in both the recovered activation energy and non-linear exponents to higher values
(from Ea = 233 to 312 kJ/mol) and from n = 3.1 to about 3.35, but the strain rate
exponent does not overlap with n = 3.5 at the 95% confidence interval (Fig. 4.6C).
With the use of these priors, we see a distinct shift to parameter values that would
tend to change the viscosity of the slab; the activation energy shifts to larger values
(which by itself would increase the viscosity of slabs) coupled with a shift to larger
stress-strain rate exponents, which would tend to decrease the viscosity of slabs.
Only if we make priors restrictive, that is by reducing the variance on the priors by
an order of magnitude from 5 ·10−2 to 5 ·10−3 are we able to recover a value near the
550 kJ/mol from rock mechanics, but significantly the posterior distribution of n still
fails to overlap with n = 3.5 at greater than a 95% confidence level (Fig. 4.6D-red
contours). With these more restrictive variances on the priors for n, Ea, and σy,
the overall ordering of the coupling factors Γ remains the same, with Chile more
coupled than the Marianas or Ryukyu, however, the coupling factor for the later
two uncoupled subduction zones have jumped by an order of magnitude (Fig. 4.6E).
Interestingly, Ea and n have both jumped significantly (Fig. 4.6D), but the viscosity
for these hinge zones (Table 4.5) remains nearly the same, around 8 × 1021 Pa-s.
With a substantial jump in the non-linear exponent n, though, there is now much
more shear thinning in the upper mantle and so some of the coupling factors, in turn,
have increased.



94

Inclusion of viscosity data
We now include constraints on the average effective viscosity below continental
cratons as data in the inversions, for example as indicated in the WEP cross section
(Fig. 4.3C). In Fig.4.10A we see the conditional distributions without the viscosity
data (Case 6) and with the viscosity data (Case 12) forWEP. The additional effective
viscosity data acts as prior information and marginally reduces the uncertainty on
the inferred parameters. By including the viscosity constraint as a value within the
upper mantle below the continental lithosphere, the viscosity there has increased
somewhat in Case 12 compared to Case 6 without the constraint. However, more
importantly, at the scale of the entire conditional distributions the inference of either
upper mantle viscosity or the non-linear exponent has not changed substantially
(Fig.4.10A). Moreover, the yield stress, coupling factors, activation energy and
resulting hinge zone viscosities (considered below) have not changed appreciably
(Table 4.5).

Inference of fault zone stresses
The stress on faults is a fundamental quantity in arguments on the origin of variation
in megathrust behavior along strike and between subduction zones. Fault zone
stress is an extrinsic quantity and is not in our set of unknown model parameters, m.
Stress is a function of both model parameters and forces and an additional adjoint
solve allows the inference of the optimal shear and normal stress within the plate
boundaries and the covariance with m.

Using optimizations in which all of the rheological parameters are left free and with
no prior knowledge or inclusion of viscosity data (Case 6 for WEP and Cases 16, 25
and 35 for Sumatra, Tonga and Middle America, respectively) we see a consistent
pattern (Fig. 4.7). The shear and normal stresses are small and only vary between
about 7 and 16 MPa for all of the plate boundaries considered. For the more shallow
dipping and more mechanically coupled boundaries, Chile and Sumatra, the shear
stresses are about 25% larger than the normal stresses. In these boundaries with a
gradually curving subduction interface, the motion of the subducting plate imposes
a shear flow, a Couette flow, within the low viscosity channel (i.e. the weak zone)
and these shear stresses resist plate motion.

We further examine the stresses in the fault zone and plates by computing the
principal stress axes in Figs.(4.8,4.9) for Case 6 for WEP and Cases 16, 25 and
35 for Sumatra, Tonga and Middle America, respectively. We find that a state
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of compression dominates the fault-zone for the more coupled subduction zones
(Sumatra and Chile) in Fig.4.8b,d, compared to Middle America, Ryukyu and
Marianas in Fig.4.8a,c and e respectively. Furthermore, we find that fault zones
such as Sumatra and Chile that have a pattern of compressive stresses within the
fault zone tend to have slabs that are in a state of tension, while the overriding
plate is in a state of compression (Fig.4.9b,d), while the converse is true for Middle
America, Ryukyu and Marianas (Fig.4.8a,c and e).

Hinge zone viscosity
The yield stress governs weakening in the hinge zone and relieves otherwise large
stresses as plates bend. The inferred yield stress is in the range of 130-146 MPa
through all of the inversions considered (Table 4.5). Dynamic weakening does occur
within the hinge zone, evident by the reduction in the effective viscosity (Fig. 4.3A).
Furthermore, in Cases 1-6, the average effective viscosity in the hinge zone is
approximately 7-9 1021 Pa s, regardless of which combination of the parameters
are inferred, suggesting that there is a bounded effective viscosity in the hinge
zone that best minimizes the misfit in observed plate motions and model results.
Given the rather small range of all of the inverted hinge zone viscosities, we see
no appreciable change among the three subduction zones in the WEP cross section
(Fig. 4.10B). Despite the large variation in the recovered coupling values for these
three subduction zones, when yielding is made a single global parameter, there does
not seem to be any variation in hinge zone viscosities between subduction zones.
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Figure 4.6: The influence of priors on the conditional distribution of activation
energy vs. strain rate exponent. Generic priors on (A) WEP and (B) Sumatra. For
the WEP cross section, conditional distribution with permissive (C) and restrictive
prior knowledge (D). Throughout, thin black contours are the priors, thick blue
ones are conditionals without priors, and thick red ones are those with priors. (E)
WEP model comparison for no-priors (blue contours) and restrictive priors (Γi vs.
strain rate exponent) (F) WEP model comparison for no-priors (blue contours) and
restrictive priors (Γi vs yield stress). Contour levels correspond to 30%, 60% and
90% probabilities.
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Figure 4.7: Fault zone stresses (Tensile stresses are positive while compressive are
negative). Results for the WEP with Case 6 with Chile (red), Ryukyu (black) and
the Marianas (green) resolved for the (A) stress stress and the (B) normal stress.
Results for the Sumatra (black, Case 16), Tonga (red, Case 24) and Middle America
(blue for Case 35) resolved for the (C) shear stress and (D) normal stress. Contour
levels correspond to 30%, 60% and 90% probabilities.
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Figure 4.8: Principal stresses in the fault zones. Compression (-) and Tensional
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(d)Chile (WEP) (e)Ryukyu and Marianas (WEP) Case 6 within the plates.
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zones vs. strain rate exponent for Case 6. Note that all of the distributions are close
for the three subduction zones in WEP and so they appear to overlie one another.
Contour levels correspond to 30%, 60% and 90% probabilities.



100

4.6 Discussion
In our models here, we make several advances from our earlier work (Ratnaswamy
et al., 2015) through the addition of effective viscosity data, using realistic tem-
perature and fault zone structures from seismic models and plate motions, while
estimating quantities of interest including the extrinsic stresses and average effective
viscosities. Using these methods, we primarily focus on the inferred parameters
and the geophysical implications from previous estimates through experiments. We
considered four cross-sections: WEP, Sumatra, Tonga, and Middle America as they
represent varying degrees of seismic coupling and therefore inferring the rheologi-
cal parameters for each of these cross-sections can inform the degree to which the
inferred parameters vary for each subduction zone. The WEP contains three sub-
duction zones: Chile, Marianas, and Ryukyu, where the Chilean subduction zone
is thought to be the most seismically coupled and the Marianas and Ryukyu are
thought of among the least seismically coupled (Scholz and Campos, 2012).

We formally invert for the non-linear exponent n, a parameter that controls the
amount of shear-thinning in the upper mantle. In Table 4.5, we find across all
subduction zones that inferred strain rate exponent is < 3.5. The value we infer with
andwithout non-restrictive priors is closer towhat is assumed for wet olivine (Karato
and Wu, 1993), suggesting that our cross-sectional models are more associated with
wet olivine. However, when prior knowledge is used, we infer strain rate exponents
for all four cross-sectional models in the range of 3.35-3.4, values that are closer
to what is obtained for dry-olivine (Karato and Wu, 1993). The variance between
the strain rate exponent varies substantially between using non-permissive prior
knowledge and permissive knowledge due to the small variance used; however, this
restrictive prior knowledge led to a shift in theMAPpoint for the strain rate exponent,
while also influencing the activation energy and plate couplings. It should be noted,
that we considered positive values of the strain rate exponent when imposing priors
(n > 0); however, a velocity strengthening material may be possible for n < 0 that
can give rise stick-slip motion (Bercovici, 1993). However, while (Bercovici, 1993)
found that a value of n = −1 can produce plate-like behavior, the rheology that was
used was a power-law rheology and did not consider yielding and a temperature
dependent rheology.

The activation energy is a parameter that we explored in this study but not in our
earlier one (Ratnaswamy et al., 2015). In our studies, we used a linearized-Arrehnius
law, instead of the typical Arrehnius law (Billen and Hirth, 2007), which may have
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an effect on the inferred activation energy. In our inversions in Table 4.5, we find
the inferred activation energy is in the range of 199− 242 kJ/mol, which is less than
what was found for both dry and wet olivine of 540 and 430 kJ/mol respectively
(Karato and Wu, 1993) for dislocation creep. Comparatively, the inferred values
in Table 4.5 compare more to the activation energy for the diffusion creep regime
(Karato and Wu, 1993); however, when using prior knowledge (Fig.4.6), we find
we can recover values in the range of 520 − 589 kJ/mol, which is in the range for
both wet and dry olivine (Karato and Wu, 1993). A natural question arises as to
which values are closer to the actual mantle values since the inversions depend on
the type of priors used. The dynamics are similar in both cases, such that the average
effective viscosity is similar: A weak upper mantle (η ≈ 1020Pa · s), while the plates
are strong. Since the average effective viscosity is conserved, the answer to that
question depends on if experimental studies (Karato and Wu, 1993; Ranalli, 1995)
are to be given more weight compared to allowing more emphasis on geophysical
inversions alone (the likelihood).

While the activation energy and strain rate exponent are key in understanding the
dynamics of plate motion, the yield stress is also key as it influences the bending
resistance at the hinge zone. We find a yield stress in the range of 128 − 143 MPa.
This value of the yield stress is 4x smaller compared to what was found in rock
mechanics experiments (600MPa)(Mei et al., 2010). Potentially, a high yield stress
found experimentally can be attributed to the extrapolation from laboratory strain
rates to geological strain rates. In contrast to (Mei et al., 2010), estimates of 100-200
MPa have been made by comparing load induced deformation of the lithosphere.
The inferred yield stress from our inversions are within the range 100 − 200 MPa
(Zhong andWatts, 2013) compared to those from laboratory experiments (Mei et al.,
2010) of 600 MPa and promote dynamic weakening in the hinge zone. Furthermore,
for our models a value of 600 MPa, would be too large to promote dynamic weak-
ening to reduce the bending force. This conclusion based on comparing mechanical
models to generic plate motion values is in-line with previous studies using forward
geodynamic models (Zhong and Gurnis, 1996; Moresi and Gurnis, 1996b). Addi-
tionally, if a large yield stress is used such that the bending force is not reduced, the
amount of decoupling would increase to overcome the bending force.

The other important part of our studies is the inference of the plate couplings Γi. With
our models, we find a strong demarcation between the Chilean (largest coupling) vs.
the Ryukyu andMarianas subduction zone. To put this into context, we compare the
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variations in plate coupling to seismic coupling in Table 4.4, we find that the larger
coupling for the Chilean subduction zone is similar to the large seismic coupling
in Central Chile vs. Tonga. This result from our inversion, suggests that there
may be a correlation between the large-scale mechanical couplings with the seismic
couplings from (Scholz and Campos, 2012). Furthermore, we arrive at similar
results in coupling distributions when using priors (restrictive and prior knowledge).
In Fig.4.6, we find a similar partitioning of the mechanical coupling of Chile vs.
Marianas and Ryukyu, suggesting that even with priors, the dynamics and plate
boundaries from a viscous flow perspective suggests that the Chilean subduction
zone is more coupled. Finally, we find a similar partitioning for Sumatra, Middle
America and Tonga, where Sumatra is more coupled than Middle America and
Tonga–a similar trend to what is found in seismic coupling.

The correlation between the weakfactor and yield stress is an emergent trade-off we
see within all the cross-section models. We find that as the weakfactor increases, the
channel in the fault zone becomes more viscous and there is a mild negative correla-
tion with the yield stress. This negative correlation implies that when the weakfactor
increases, there is a reduction in the yield stress which promotes weakening in the
hinge zone to counter the increased resistance. In particular, we see that as yielding
occurs as plates bend in the Nazca plate, we find that the weakfactor is comparably
larger than Ryukyu and Marianas (where both of those subduction zones have less
yielding). Similarly, this trade-off occurs in the Sumatra model, where we see that
there is a significant amount of coupling while there is sufficient yielding within the
slab. This trade-off between the weakfactor and yield stress comes about because
the increased resistance from the plate coupling causes more weakening around the
slab as it falls into the upper mantle. The Middle America cross-section represents
the opposite case compared to Sumatra, that is, there is a decoupling between the
overriding plate and subduction zone. This decoupling represents an increase in
plate speed, therefore to compensate for the increase in plate velocity would require
an increase in the bending force in the hinge zone-that is there would be an increase
in the yield stress to increase the bending force.

While estimating the mechanical coupling between subduction zones, we looked
at the stresses within the subduction zones while comparing to those provided by
seismological constraints. We find that in all our cases (WEP, Sumatra, Middle
America and Tonga) that the estimates of shear and normal stresses are less than 20
MPa (Brune et al., 1969), which satisfies seismological constraints, suggesting that
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Table 4.4: Summary of seismic coupling coefficients (χs) is the seismic coupling
coefficient, while χg is the geodetic coupling coefficient (Scholz andCampos, 2012).

Subduction Zone χs χg σn(MPa) σt(MPa) Γ

Marianas 0.01 N/A 7.22 7.99 7.42 · 10−6

South Ryukyu 0.05 N/A 8.47 8.72 9.11 · 10−6

Central Chile 0.70 1.0 12.3 16.4 7.02 · 10−4

Sumatra 0.5-0.83 1.0 11.73 15.33 3.93 · 10−4

Middle America 0.10 0.20 9.22 10.23 5.51 · 10−5

North/South Tonga 0.66/0.14 N/A 7.32 8.74 8.32 · 10−5

the inferred rheological parameters give rise a reasonable state of stress. While the
stress values are in the correct range, we find that the conditional distributions have
bounds on how large the stresses are-which are under 20 MPa. Examining the stress
conditionals for WEP (Fig. 4.7), we find that the MAP point for the shear stresses
are consistently larger than those of the normal stresses. Manymodels of subduction
with a frictional material have a shear stress that is a fraction of the normal stress.

Here, we have purely viscous flow, Couette flow in a low viscosity channel, adjacent
to themoving slab. Looking at the normal stresseswithin the fault zones for Sumatra,
Tonga and Middle America, we find that Sumatra is under a state of compression
compared to Tonga and Middle America (Fig.4.7D). This state of compression can
be attributed to the increased mechanical coupling compared to Tonga and Middle
America. Comparing the state of compression of Sumatra to Tonga and Middle
America, we find that both fault zones are in a state of tension, suggesting that there
is a correlation between the mechanical coupling and the state of stress in the fault
zones.

We also find in the WEP models, that the more mechanically coupled Chilean
subduction zone is in compression (Fig.4.8D) compared to Marianas and Ryukyu
(Fig.4.8E), which are are in tension. Furthermore, the state of stress in the Chilean
subduction zone exhibits compression in the overriding plate, while tension in the
subducting plate, while the opposite is true for Ryukyu and Marianas, where the
subducting plate is in compression, while the overriding plate is in tension (Fig.4.9).
The stresses in the conditional distributions align with what is found in the state
of stress, suggesting that our estimation of the tangential stresses in a UQ sense
is validated by the stress axis within the fault zone. We also note that the stress
distribution within the plates favor a state of tension in the overriding plate while the
subducting plate is in a state of compression when the fault zone is in a state of of
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tension. Conversely, the Chilean subduction zone gives rise to a compressive state
of stress in the overriding plate while the subducting plate is in a state of tension
when the fault zone is in a state of compression. Similarly, we see the same trend
for the Sumatra, Middle America and Tonga (Fig. 4.8 and Fig. 4.9 A, B. and C).

The connection between the state of stress (Fig.4.8, 4.9) suggests that there may be
a feedback between the mechanical coupling (Γi) and the broad-scale forces within
plates and plate boundaries. We posit this relationship between both plate couplings
and broad-scale tectonic forces because in our inversions the stresses within plate
boundaries depends explicitly on the plate couplings (Γi) due to the rheology within
plate boundaries. While, there is a dependence between the plate boundary stress
and the plate couplings, it is certainly not clear from the outset whether it was
either plate couplings, or tectonic forces that would partition seismically coupled
subduction zones. Our exploration in both stresses and plate couplings is different
than studies that focused on partitioning based on forces (Scholz and Campos, 1995;
Scholz and Campos, 2012) or studies that focused on mechanical properties (Heuret
et al., 2012) and seismic coupling, in that we looked at both these aspects and find
that both mechanical properties and broad-scale forces may contribute to subduction
zones that are strongly seismically coupled vs. those that are not.

The partitioning of the subduction zones, (both mechanically and from dynamic
forces), and values of the inferred rheological parameters are specific to the plate
motion data that we used (MORVEL56-NNR) and there may be a possibility that
those parameters can increase and decrease. Using a different plate motion model
that has net-rotation such as HS3-NUVEL1A (Gripp and Gordon, 2002). A natural
question arises as to whether the mechanical and stress coupling remains the same
(Fig.4.5 and Fig.4.7) will be needed to be explored in future studies. While a change
in the magnitude of the rheological parameters would occur, the distribution of
mechanical and thus stress couplings should not because the overall variations in
plate motions are not substantial to warrant a much larger coupling in Ryukyu and
Marianas. Furthermore, the nature of the slabs (dip angle, age) play a more crucial
role in the determination of the forces, while the plate velocities are an outcome.

Ultimately, our inversions give rise to estimates of the strain rate exponent, yield
stress and activation energy that are within the bounds found in laboratory exper-
iments that are extrapolated to geological strain rates. Furthermore, we find that
it may be the combination of both mechanical properties and broad-scale forces
that give rise to great earthquakes based on our formulation of our models and the
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interplay between the large-scale forces and the rheology of the mantle. However,
to test the robustness of the inferred rheological parameters, the extension of this
work to global, spherical models will be needed as those models will contain both
toroidal and poloidal nature of the flow-field of the mantle. With the use of spherical
models, the conclusion that both mechanical properties and broad-scale forces can
give rise to great earthquakes can be robustly tested and therefore build a connection
between seismic coupling of subduction zones.

Supplementary Figures and Information
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Figure 4.11: (A) Convergence for the plate couplings in Case 7 for WEP (b)
convergence for the strain rate exponent (c) convergence for the yield stress (Case 7
for WEP, Case 20 for Sumatra, Case 37 for Middle America and Case 28 for Tonga).

Derived Covariance Estimates
We have previously set models in how to estimate quantities that are are inferred
such as the stresses. In this section, we will thoroughly discuss how to apply this
Gaussian approximation to various quantities of interest. Mapping of covariance
matrices from one space to another requires a transformation,i.e. using the Jacobian.
As an example, we will look at transforming a Gaussian distribution for the inferred
yield stress and strain rate exponent, that is π(m) := N([n,σy], C) → σ(γm), where
we look at the scaled space between the parameters. To determine the mapping of
the covariance we make use of, Case 1: 1D Normal

∂σ

∂m
= γ (4.45)

leading to
π2 = N(µ, γ2σ) (4.46)

Case 2: 2D Normal We consider the case when we apply a stretch factor in the form
of γ = [γ1, γ2], that is m = [m1,m2]. Therefore σ = [γ1m1, γ2m2]. The follwoing
now holds

∂σ

∂m
=

[
γ1 0
0 γ2

]
(4.47)
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C =
[
γ2

1a γ1γ2b

γ1γ2b γ2
2c

]
(4.48)

π2 = N(µ, γ2σ) (4.49)

An important point is to construct the covariance matrix for the relationship between
the stress and inferred parameters (strain rate exponent, yield stress). To do so, we
form the vector σa such that σa = (σ, n, σy ..)ᵀ. Doing so, we find the Jacobian is

∂σa

∂m
=
∂[σ, n, σy ...]ᵀ

∂m
(4.50)

which results in

C =


∂σ
∂n

∂σa

∂σy

∂n
∂n

∂n
∂σy

∂σy

∂n
∂σy

∂σy

 (4.51)

which leads to

C =


∂σ
∂n

∂σa

∂σy

1 0
0 1

 (4.52)

Uncertainty estimates for Effective viscosity
While we have developed this machinery for normal and shear stresses, we can
extend it to the effective viscosity in a region. The average effective effective
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viscosity we are interested in is,

ηavg = exp(
∫
Ωi

log ηdΩi) (4.53)

The jacobian is then,
∂ηavg

∂m
= ηavg

∫
Ωi

η), i
η

(4.54)

The transformation then yields

C =



∂σ
∂n . . . ∂σa

∂σy

1 0 . . . 0
0 1 . . . 0
...

...
. . . 0

0 0 . . . 1


(4.55)
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C h a p t e r 5

FUTURE WORK

In this dissertation, we have developed the machinery to infer the rheological param-
eters using adjoints and in turn construct the Hessian to obtain robust estimates of the
plate couplings and global rheological parameters such as the strain rate exponent,
yield stress and activation energy. We first used a proof of concept model in Chapter
2 where we considered an idealized geophysical scenario where we had young and
old subduction zones with various forces acting on the plates. We were able to
illustrate how well our methods were able to infer the parameters and understand
where the adjoint falls short. Furthermore, we made use of the covariance matrix
(inverse of the Hessian) to obtain the trade-offs between the rheological parame-
ters and understand how those parameters affect surface observables such as plate
velocity.

Building on this work in Chapter 2, we extend these methods to include average
effective viscosity data where available. Furthermore, we extend our statistical
estimation to extrinsic quantities such as stresses in the the fault zones and local
viscosities. By doing so, we were able to infer not only the plate couplings but the
average shear and normal stresses within some of the major subduction zones.

We also extended our methods to using topography data and show a proof of concept
model for a simple sphere falling in the viscous mantle. While we determine the
adjoint for stress data, we encountered computational limitations with free-slip
boundary conditions. We found that the free-slip boundary condition does not allow
for realistic topography and instead we encountered larger stresses than are observed
at oceanic trenches.

Moving forward, there needs to be changes to the forward model, namely the
boundary condition such that there is amore robustmethod for the forward prediction
of topography at trenches such that those forward model results can be incorporated
into an inverse problem. While incorporating topography is an important aspect of
this inverse problem, the use of the gravity field can be of fundamental importance
for these types of inverse problems. Previous work have made use of the geoid
(a surface of the geoid potential) to test forward models results with less realistic
approaches. Incorporating the geoid can be formulated in such a way to allow for
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a self-gravitating model with present day observations which would be a large step
toward more accurate uncertainty quantification in geodynamics. Incorporating the
geoid in such a way, would require a similar formulation of the adjoing and Hessian
based on work presented in this thesis.

While topography as a measure of stress is important data, the observed stress
orientations within plates and slabs is another constraint that can be incorporated.
However, formulating the adjoint based on stress orientations is not clear as it re-
quires care on whether the misfit should focus on the direction of stress orientations
and then how tomap this post-processing of the data to an inverse problem. Incorpo-
rating different kinds of data is important; however, understanding which parameters
are sensitive to which data is important as it can help to reduce the variance of an
inferred parameter. To aid in this, one can use global sensitivity analysis to deter-
mine which parameters can best explain the data, which in turn will allow for more
high fidelity estimates of such parameters.

While we have outlined how to improve upon the parameter inference, there are
underlying issues pertaining to data uncertainty. In our forward models, we assume
that there is no error in the buoyancy distribution, which is not the case based on a
hierarchy of geophysical models. However, attempting to constrain the data uncer-
tainty of the buoyancy is not simple as the degree to which the thermal distribution
of slab can vary is not well constrained. Furthermore, the uncertainty of the fault
zone geometry must be taken into account, as this can influence the range of inferred
estimates of the rheology. Additionally, accounting for model discrepancy is a next
step in making uncertainty estimates. Therefore, while we have focused on the
traditional case of using surface observations to inform the rheological parameters
while adding a statistical estimation using the Hessian, there still is a limitation in
which our uncertainty quantification methodology does not take into account model
error. Building upon these ideas of reformulating the adjoint in the presence of
different data, forward propagation of uncertainty and stochastic models for model
error can advance the field of uncertainty quantification in geodynamics, which in
itself is still in its infancy.

Once inverting for the rheological parameters in a global model, a more rigorous
comparison can be made between the broad-scale forces such as the normal force
and shear force at plate boundaries to those obtained from inverse cross-sectional
models (WEP, Sumatra, Middle America and Tonga). A natural question would
be how much strike-slip motion would affect the state of stress of the overriding
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plates. If there is a change in the state of stress between global and 2D inverse
models, then there needs to be more data-constraints on those 2D cross-sections
(stress orientation, topography) that can provide more accurate estimations of the
state of stress within the plates.

The net-rotation of the lithosphere is a value that can be constrained in global
inversions that otherwise could not be investigated in 2D inversions. It is thought
that the lithosphere has a net-rotation due to the large variations in effective viscosity.
However, constraining themagnitude of the net-rotation depends on the plate motion
model used, such as comparing to a fixed hot-spot model or a model that assumes
no-net rotation. Furthermore, it would be important to ascertain to what degree-(if
any)-the frame of reference would influence the inferred rheological parameters
and the state of stress. If there is a pronounced difference between a rotating
reference frame compared to a no-net rotational reference frame, then the use of
no-net-rotational plate motions should be avoided.

The strength of slabs is important when it comes to building an understanding in
how stresses propagate to oceanic plates. Part of the investigation of how strong
slabs are can relate to the type of tomography models used in the lower mantle. The
structure of the slabs in the lower mantle and the degree to which slabs are connected
to oceanic plates can play a roll in the state of stress of the major subduction zones
and where great earthquakes occur. It is plausible that the variation in cold material
and how firmly slabs are embedded in the lower mantle can change the state of stress
and inferred rheology. Thus, investigating the amount of buoyancy in the lower
mantle can help in understanding to what degree the anomalies in the lower mantle
can impact the state of stress in the slabs compared to what is found in observations.
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ABSTRACT

The incorporation of plate motion data to infer the mantle’s rheology is important.
Doing so requires a variety of assumptions such as the rigidity of the plates in
addition to the pole of rotation, both of which are uncertain. Furthermore, there
is an issue of what the correct reference frame should be for an absolute plate
motion model. We will focus our attention on the no-net rotation reference frame
and analyze the data uncertainty between plate pairs. Unfortunately, this reference
frame assumes that there is zero lithosphere rotation, which is incorrect because
of lateral variations in viscosity. An important part of the optimization procedure
is the incorporation of data uncertainty. The plate motion model that contains the
covariance information is the NNR-MORVEL56 model that contains the correlation
between plates. We will perform an analysis on the covariances to determine how
certain plates (size and proximity) correlate with each other.
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A.1 Introduction
Slab pull is probably the dominant force driving plate motions and associated
mantle flow, there remains substantial uncertainty on the relative coupling of stresses
across plate boundaries at subduction zones. This coupling can either be attributed
to broad-scale tectonics forces or to the varying properties between the plates at
each subduction zone. While it is not clear whether broad-scale forces or the
varying tectonic properties have the stronger contribution to the variations in seismic
coupling, a valid model should appropriately represent the broad-scale forces.

To accurately constrain these broad-scale forces requires minimizing the misfit of
observed data such as plate motions. To first order, the rheological parameters can
be constrained by using plate motion data for rigid areas (Ratnaswamy et al., 2015).
While plate motion data is important in constraining the mantle’s rheology, there lies
a problem in which reference frame should be used. The multiple reference frames
are the no-net rotation reference frame where it is assumed that the net rotation of
the lithosphere is zero. However, from mantle flow models with lateral variations
in viscosity, this is not the case.

When using Bayesian inversions to infer parameter distributions, we make assump-
tions of the underlying parameter distributions (normal distribution). Furthermore,
we assume the form of the prior along with its mean and variance. The posterior
distribution takes the form of

The data covariance matrix C−1
data is typically treated as a diagonal matrix when there

is not a good estimate of data uncertainty. However, for plate motions, we do have
a more complete estimate of data uncertainties in terms of a full covariance matrix
for each plate relative to each other. The covariance matrix is given for the Euler
pole for each plate pair.

An important issue is how to transform this covariance matrix for Euler poles to that
of surface velocities.

A.2 Transformation of Covariance
When plate motion data re constructed, there typically involves using a chi-squares
test on the data. It appears that the covariance for the uncertainty of plate motion
uncertainties are done through a linear propagation. What this means is that the data
uncertainty that goes into all these plate motion models are pulled from different
methods.
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It appears that after the Euler poles for each plates are found, the authors use the
errors for each plate to build a 3x3 covariance matrix in x-y-z space. Therefore
each entry relates to xx,yy,zz,xy,xz.. For each plate pair there is a covariance matrix.
The linear propagation method that the authors use that the covariance for the
transformation is also Gaussian.

As an example we will consider the uncertainty for plate motion. We are interested
in the misfit in surface velocity data,

Cov(ω,ω) = E[(ω − ωmean)T (ω − ωmean)] (A.1)

A motion of a point on the sphere can be described by Euler’s fixed point theorem.
Euler’s fixed point theorem states that a point that a displacement of a point on a
rigid body can be described by a rotation about an axis through that point. When
looking at plate motion data, one usually has the latitude and longitude of the Euler
pole. To convert the Euler pole to plate velocity we need to use the cross product
formula,

u = ω x r (A.2)

To review, the spherical to Cartesian transformation is,

x = r cos θ cos φ

y = r cos θ sin φ

z = r sin θ.

(A.3)

To transform the angular rotation to Cartesian coordinates from spherical,

ωx = ω cos θ cos φ

ωy = ω cos θ sin φ

ωz = ω sin θ.

(A.4)

To transform rotation to angular velocity, the following holds, In the literature, one
is provided with the rotation rate ω and the latitude and longitude for a plate pair.
The covariance matrices are reported in terms of the rotation rate as function of
Cartesian coordinates.

A.3 Covariance Mapping
Tomap the covariance from angular velocity in spherical coordinates, to its Cartesian
components, one will need the Jacobian of the transformation,
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∂ω

∂xsphere
=

∂ω

∂(r, θ, φ) (A.5)

or

∂ω

∂xsphere
=


∂ωr

∂r
∂ωr

∂r
∂ωr

∂r
∂ωθ

∂r
∂ωθ

∂r
∂ωθ

∂r
∂ωφ

∂r
∂ωφ

∂r
∂ωφ

∂r

 (A.6)

Transforming the covariance matrix,

C(x, y, z) = [ ∂ω

∂xsphere
]TC(r, θ, φ)[ ∂ω

∂xsphere
] (A.7)

The terms in the Jacobian are,

∂ωx

∂r
= 0

∂ωx

∂θ
= −ω sin θ cos φ

∂ωx

∂φ
= −ω cos θ sin φ

∂ωy

∂r
= 0

∂ωy

∂θ
= −ω sin θ cos φ

∂ωy

∂φ
= ω cos θ cos φ

∂ωx

∂r
= 0

∂ωx

∂θ
= ω cos θ

∂ωx

∂φ
= 0

(A.8)

Note that the velocity is

vx = ωy · z − ωz · y
vy = −(ωx · z − ωz · x)
vz = ωx · y − ωy · x

(A.9)

Since we are dealing with the misfit in plate motions, we need the covariance matrix
for each plate pair as a function of velocity. We therefore need to map the covariance
from angular velocity to surface velocity. To do so we form the following Jacobian,

∂v
∂ω
=

∂v
∂(ωx, ωy, ωz)

(A.10)
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The Jacobian is then,

∂v
∂ω
=


∂vx
∂ωx

∂vx
∂ωx

∂vy
∂ωz

∂vy
∂ωx

∂vy
∂ωy

∂vy
∂ωz

∂vz
∂ωx

∂vz
∂ωy

∂vz
∂ωz

 (A.11)

The partial derivatives in the Jacobian are,

∂vx

∂ωx
= 0

∂vx

∂ωy
= z

∂vx

∂ωz
= y

∂vy

∂ωx
= −z

∂vy

∂ωy
= 0

∂vy

∂ωz
= x

∂vz

∂ωx
= y

∂vz

∂ωy
= −x

∂vz

∂ωz
= 0

(A.12)

The following holds,

∂v
∂ω
=


0 z y

−z 0 x

y −x 0

 (A.13)

A.4 Reference Frames
Since we may be interested in looking at euler poles relative a to certain reference
frame, we will need to look at relative motion. To do so we consider the following
where we consider the relative motion between plates A,B and C,

ωA\B = ωA\C + ωC\B

= ωA\C − ωB\C
(A.14)
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However, we may also consider adding a rotational component to the NNR covari-
ance matrix. We will define the rotation vector as,

ωi = ωNNR + ωROT (A.15)

We will define the following,

ωN = ωNNR

ωR = ωROT
(A.16)

Assuming we have the covariance matrix for ωROT then we can make use of,

C(ωi,ω j) = C([ωN + ωR]i, [ωN + ωR] j)
= C(ωN i + ωRi,ωNj + ωRj )

(A.17)

which yields,

C([ωN + ωR]i, [ωN + ωR] j) = C(ωNi,ωNj ) + C(ωNi,ωRj ) + C(ωRi,ωNj ) + C(ωRi,ωRj )
= C(ωNi,ωNj ) + 2C(ωNi,ωRj ) + C(ωRi,ωRj )

(A.18)

There would be a minor issue with is the covariance term C(ωN,ωR) since we do
not have this covariance matrix explicitly. However, we can assume that the random
variables ωNNR,ωROT are uncorrelated, which means

C(ωNi,ωRj ) = 0 (A.19)

In the case of the rotational and NNR component of the angular velocity being
uncorrelated, then

C([ωN + ωR]i, [ωN + ωR] j) = C(ωNi,ωNj ) + C(ωRi,ωRj ) (A.20)

A.5 No-Net Rotation Reference Frame
We have data uncertainty for the Euler Poles (Argus, Gordon, and DeMets, 2011),
however this data uncertainty is using the NNR reference frame. Furthermore, the
data uncertainty is on the angular velocity components (ωx, ωy, ωz). There are 56
plates, so there 168 (56 x 3) random variables, which results in a covariance matrix
of 168 x 168. However, we need to extract this information for each plate, which
ultimately requires either conditioning or marginalizing this data covariance matrix
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for each plate. What we have is a global data uncertainty matrix,

Cdata =


c1,1 x1,2 c1,3 . . . c1,168

c2,1 c2,2 c2,3 . . . c2,168
...

...
...

. . .
...

c168,1 c168,2 c168,3 . . . c168,168


(A.21)

The problem arises as our cost function,

J =
∫

1
2
(Ou − uobs)TC−1

data(Ou − uobs) (A.22)

where Cdata = Cdata(x), and u = u(x. To extract the appropriate information we
need to either marginalize or condition on Cdata. If one were interested in solely
the data covariance for a particular plate regardless of the other 55 plates, then the
marginal distribution would be appropriate. To marginalize the distribution would
be computing π(p1) =

∫
π(p1, p2, p3.., p56)dp2...dp56. To compute the marginal

covariance for plate1, we will define the global data covariance in block format,

Cdata =

[
C11 C12

C21 C22

]
(A.23)

The covariance matrix from marginalizaing the distribution (plate1)

C(x, y, z)[plate1] = C11 (A.24)

However, if one wants to include the correlations between the other plates, one
should consider the conditional data distribution, i.e. π(p1|p2...p56). To do this
we would compute the data covariance for each plate, conditioning on the other 55
plates.

Cp1 = C11 − C12C−1
22 C21 (A.25)

Effectively compute the appropriate Schur complement for each plate, then transform
from angular velocity data space to translational data space.

However, we can make a comparison by plotting the plate velocity vectors (N-S and
E-W components) with their error ellipses. This is done in Fig. A.2.

Example using Nazca Plate
We will consider the Nazca plate from (Argus, Gordon, and DeMets, 2011), where
we have the data covariance for the three angular velocity components. Note the
units of the covariance is given in rads2/Ma2. We will first look at the marginal
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Figure A.1: Plates on the surface of the earth and the vectors from (Argus, Gordon,
and DeMets, 2011)

FigureA.2: Plates on the surface of the earthwith velocity vectors and corresponding
error ellipses
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Figure A.3: Covariance data distributions for Nazca between each of its angular
velocity components (a)ω1 vs ω2 (b)ω1 vs ω3 (c)ω2 vs ω3

data covariance for Nazca, which can be found in the supplement or in Table 2 of
(Argus, Gordon, and DeMets, 2011). The marginal data covariance for Nazca is

CNazca =


75 147 −121

147 564 −199
−121 −199 332

 (A.26)

Note Eq (A.26) is in units of 10−10 rads2/Ma2. It is important to note that we
assume for the data distribution as π(Nazca) = N(0, CNazca), essentially a normal
distribution with mean of zero (µ = 0) and a covariance distribution of CNazca.
Below, we show the data covariance distribution for Nazca (marginal) between its
three components (ω1, ω2, ω3rads/Myr). Note, for plotting purposes, the units of
CNazca is 10−8rads2/Ma2. However, since mantle flow models produce a degree-1
rotation because of lateral variations in viscosity, we will add a rotational component
to each Euler pole for a new reference frame. To do so, we assume that this new
reference frame (e.g. moving hotspot reference frame) has a covariance distribution
(diagonal assumed) and is indpendent of the NNR reference frame. Then the new
covariance is transformed as,

C([ωNNR +ωHS]i, [ωNNR +ωHS] j) = C(ωNNRi,ωNNRj ) + C(ωHSi,ωHSj ) (A.27)

where CNNR is the covariance for the NNR reference frame and CHS is the covariance
for the rotational velocity in the hot-spot reference frame. As an example, we will
create CHS by choosing a diagonal covariance with entries that are the RMS of
the diagonal of CNNR. The blue contours in the figure below are the transformed
covariance in this reference frame.

Pacific Plate vs Amur Plate
We consider the effect that the Amur plate has on the Pacific plate. We form the
marginal covariance distribution from the 168x168 global data covariance between
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Figure A.4: Covariance data distributions for Pacific (conditioned on Amur) with a
rotational component between each of its angular velocity components (a)ω1 vs ω2
(b)ω1 vs ω3 (c)ω2 vs ω3

the Pacific and Amur rotation covariances in Eq. (A.28).

CPaci f ic−Amur =



43.2 31.3 −4.7 28.7 16.3 −9.5
31.3 244.8 7.6 157.8 110.7 79.4
−4.7 7.6 72.5 −24.4 −13.8 −10.1
28.7 157.8 −24.4 223 −67.2 −102.2
16.3 110.7 −13.8 −67.2 376.3 309.3
−9.5 79.4 −10.1 −102.2 309.3 535.3


(A.28)

From there, we then compute the effect that Amur has on the Pacific plate (angular
velocity) by forming the conditional distribution below Eq. (A.29)

CPaci f ic−Amur−cond =


36.828 1.5397 −0.35517
1.5397 59.916 34.757
−0.35517 34.757 68.491

 (A.29)

The comparison of the data covariance between the angular velocity components of
the Pacific plate by itself (red contours) and with the effect of Amur (blue contours)
is shown in the figure below.

Pacific Plate vs Juan DeFuca Plate
We consider the effect that the Amur plate has on the Pacific plate. We form the
marginal covariance distribution from the 168x168 global data covariance between
the Pacific and Amur rotation covariances in Eq. (A.30).
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Figure A.5: Covariance data distributions for Pacific (conditioned on JDF) with a
rotational component between each of its angular velocity components (a)ω1 vs ω2
(b)ω1 vs ω3 (c)ω2 vs ω3

CPaci f ic−JDF =



43.2 31.3 −4.7 70.2 47.6 8.7
31.3 244.8 7.6 289.9 400.4 134.2
−4.7 7.6 72.5 −15.3 1 67.7
70.2 289.9 −15.3 10237 13370 −15644
47.6 400.4 1 13370 17959 −20659
8.7 134.2 67.7 −15644 −20659 25637


(A.30)

From there, we then compute the effect that Amur has on the Pacific plate (angular
velocity) by forming the conditional distribution below Eq. (A.31)

CPaci f ic =


33.148 −3.3644 −5.9062
−3.3644 23.626 −12.348
−5.9062 −12.348 69.803

 (A.31)

The comparison of the data covariance between the angular velocity components of
the Pacific plate by itself (red contours) and with the effect of Juan DeFuca (blue
contours) is shown in the figure below.

Pacific Plate vs Nazca Plate
We consider the effect that the Amur plate has on the Pacific plate. We form the
marginal covariance distribution from the 168x168 global data covariance between
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Figure A.6: Covariance data distributions for Pacific (conditioned on Nazca) with a
rotational component between each of its angular velocity components (a)ω1 vs ω2
(b)ω1 vs ω3 (c)ω2 vs ω3

the Pacific and Amur rotation covariances in Eq. (A.32).

CPaci f ic−Nazca =



43.2 31.3 −4.7 3.3 −12.8 13.8
31.3 244.8 7.6 −98.1 −263.2 231.8
−4.7 7.6 72.5 −12 60.5 49.5
3.3 −98.1 −12 74.7 147.1 −120.7
−12.8 −263.2 60.5 147.1 563.6 −199.2
13.8 231.8 49.5 −120.7 −199.2 332.2


(A.32)

From there, we then compute the effect that Amur has on the Pacific plate (angular
velocity) by forming the conditional distribution below Eq. (A.33)

CPaci f ic =


38.074 16.921 −1.275
16.921 45.629 1.8067
−1.275 1.8067 42.195

 (A.33)

The comparison of the data covariance between the angular velocity components of
the Pacific plate by itself (red contours) and with the effect of Nazca (blue contours)
is shown in the figure below.

Pacific Plate vs Cocos Plate
We consider the effect that the Cocos plate has on the Pacific plate. We form the
marginal covariance distribution from the 168x168 global data covariance between
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Figure A.7: Covariance data distributions for Pacific (conditioned on Cocos) with a
rotational component between each of its angular velocity components (a)ω1 vs ω2
(b)ω1 vs ω3 (c)ω2 vs ω3

the Pacific and Cocos rotation covariances in Eq. (A.34).

CPaci f ic−Cocos =



43.2 31.3 −4.7 −27.4 −5.8 26.8
31.3 244.8 7.6 −393.3 −101.3 337.8
−4.7 7.6 72.5 0.2 49 49.5
−27.4 −393.3 0.2 774.4 273.3 −616.2
−5.8 −101.3 49 273.3 1035.6 −366.5
26.8 337.8 49.5 −616.2 −366.5 613.1


(A.34)

From there, we then compute the effect that Amur has on the Pacific plate (angular
velocity) by forming the conditional distribution below Eq. (A.35)

CPaci f ic =


41.897 15.486 −8.1451
15.486 33.987 −12.092
−8.1451 −12.092 36.687

 (A.35)

The comparison of the data covariance between the angular velocity components of
the Pacific plate by itself (red contours) and with the effect of Cocos (blue contours)
is shown in the figure below.

Pacific Plate vs Nubia Plate
We consider the effect that the Nubia plate has on the Pacific plate. We form the
marginal covariance distribution from the 168x168 global data covariance between
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Figure A.8: Covariance data distributions for Pacific (conditioned on Nubia) with a
rotational component between each of its angular velocity components (a)ω1 vs ω2
(b)ω1 vs ω3 (c)ω2 vs ω3

the Pacific and Nubia rotation covariances in Eq. (A.38).

CPaci f ic−Nubia =



43.2 31.3 −4.7 −16.8 −16.8 12.3
31.3 244.877.6 −1.4 −127.4 −29.6
−4.7 7.6 72.5 19.1 1.7 −48.0
−16.8 −1.4 19.1 30.6 −0.4 −27.1
−16.8 −127.4 1.7 −0.4 74.5 13.2
12.3 −29.6 −48.0 −27.1 13.2 54.1


(A.36)

From there, we then compute the effect that Amur has on the Pacific plate (angular
velocity) by forming the conditional distribution below Eq. (A.39)

CPaci f ic =


30.0835 1.5338 6.6333
1.5338 23.9752 1.8159
6.6333 1.8159 25.1215

 (A.37)

The comparison of the data covariance between the angular velocity components of
the Pacific plate by itself (red contours) and with the effect of Nubia (blue contours)
is shown in the figure below.

Pacific Plate vs Nubia Plate
We consider the effect that the Nubia plate has on the Pacific plate. We form the
marginal covariance distribution from the 168x168 global data covariance between
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Figure A.9: Covariance data distributions for Pacific (conditioned on Nubia) with a
rotational component between each of its angular velocity components (a)ω1 vs ω2
(b)ω1 vs ω3 (c)ω2 vs ω3

the Pacific and Nubia rotation covariances in Eq. (A.38).

CPaci f ic−Nubia =



43.2 31.3 −4.7 −16.8 −16.8 12.3
31.3 244.877.6 −1.4 −127.4 −29.6
−4.7 7.6 72.5 19.1 1.7 −48.0
−16.8 −1.4 19.1 30.6 −0.4 −27.1
−16.8 −127.4 1.7 −0.4 74.5 13.2
12.3 −29.6 −48.0 −27.1 13.2 54.1


(A.38)

From there, we then compute the effect that Amur has on the Pacific plate (angular
velocity) by forming the conditional distribution below Eq. (A.39)

CPaci f ic =


30.0835 1.5338 6.6333
1.5338 23.9752 1.8159
6.6333 1.8159 25.1215

 (A.39)

The comparison of the data covariance between the angular velocity components of
the Pacific plate by itself (red contours) and with the effect of Nubia (blue contours)
is shown in the figure below.

Comparison of the correlations between other plate’s angular rotation compo-
nents with Pacific
We compare the the conditional distributions between Nazca, Juan DeFuca, Cocos
againstNubia for the Pacific plate. InTableA.1 gives the summary of the correlations
the aforementioned plates have with the Pacific Plate.

In Fig.A.10, we compare the conditional distribution of the Pacific-Nubia plate pair
with the Pacific-Cocos plate pair.
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Table A.1: Comparison of correlations between Pacific and other plates, (ωi, ω j)
represent the correlation of the Pacific plate’s angular velocity with another plate of
interest.

Plate (ω1, ω2) (ω1, ω2) (ω2, ω3)
Amur 1.5397 -0.35517 34.757

Juan DeFuca -3.3644 -5.9062 -12.348
Nazca 16.921 -1.275 1.8067
Cocos 15.486 -8.1451 -12.092
Nubia 1.5338 6.6333 1.8159
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Figure A.10: Covariance data distributions for Pacific (conditioned on Nubia) with
a rotational component between each of its angular velocity components (a)ω1 vs
ω2 (b)ω1 vs ω3 (c)ω2 vs ω3
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Figure A.11: Covariance data distributions for Pacific (conditioned on Nubia) with
a rotational component between each of its angular velocity components (a)ω1 vs
ω2 (b)ω1 vs ω3 (c)ω2 vs ω3

In Fig.A.11, we compare the conditional distribution of the Pacific-Nubia plate pair
with the Pacific-Nazca plate pair.

In Fig.A.12, we compare the conditional distribution of the Pacific-Nubia plate pair
with the Pacific-Juan deFuca plate pair.
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Figure A.12: Covariance data distributions for Pacific (conditioned on Nubia) with
a rotational component between each of its angular velocity components (a)ω1 vs
ω2 (b)ω1 vs ω3 (c)ω2 vs ω3

Issue with Global covariance in NNR
While we can compute the effect of the other 55 plates on a specific plate of interest,
there seems to arise an issue where when we condition the covariance matrix on
those other 55 plates, the resulting covariance matrix is no longer positive definite.
In fact, onemay have negative variances as in the case of the Pacific plate conditioned
on the North American Plate. The Pacific-North America Plate covariance is given
in Eq. (A.40)

CPaci f ic−NorthAmerica =



43.2 31.3 −4.7 −31.4 −14.3 −3.3
31.3 244.8 7.6 18.7 −170.2 −95.1
−4.7 7.6 72.5 16.2 5.2 −47.2
−31.4 18.7 16.2 58.5 −30 −18.1
−14.3 −170.2 5.2 −30 119.2 53.7
−3.3 −95.1 −47.2 −18.1 53.7 108.1


(A.40)

After conditioning Eq. (A.40), we arrive at Eq. (A.41). However, Eq. (A.41) is no
longer postivie definite.

CPaci f ic =


17.443 −5.6996 7.9469
−5.6996 −14.734 11.487
7.9469 11.487 38.7

 (A.41)

Summary

• Plates that are in close proximity to the Pacific plate have stronger correlations
(see Cocos compared to Nubia).
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• There may be an issue when when conditions the global covariance as in some
cases it produces non-positive definite covariance matrices.

A.6 Analysis of Corner Flow and its Application to Normal and Shear stresses
in a Viscous Subduction Zone Model

Here, we investigate the normal and shear stress along a certain direction. To do this
we look at a corner flow. We will thus analyze a classic case of corner flow from
Batchelor. We look at Navier-Stokes system,

dρ
dt
+ u∇ρ = 0

D(ρu)
dt

= ∇ · σ + F
(A.42)

With the incompressibility constraint, and assuming the inertial force is negligible,
we arrive at,

∇ · u = 0

∇p = µ∇2u
(A.43)

We then simplify to
∇2(∇2ψ) = 0 (A.44)

with boundary conditions,

∂ψ

∂r
= 0

1
r
∂ψ

∂θ
= −U at θ = 0 (A.45)

∂ψ

∂r
= 0

1
r
∂ψ

∂θ
= 0atθ = θ0 (A.46)

Note,

ur =
1
r
∂ψ

∂θ

uθ = −
∂ψ

∂r

(A.47)

The solution for the stream-function is of the form,

ψ =
rU

θ2
0 − sin2 θ0

[−θ2
0 sin θ + (θ0 − sin θ0 cos θ0)θ sin θ + sin2 θ0θ cos θ] (A.48)

Therefore, the velocities are

uθ = −
U

θ2
0 − sin2 θ0

[−θ2
0 sin θ + (θ0 − sin θ0 cos θ0)θ sin θ + sin2 θ0θ cos θ] (A.49)
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and

ur =
U

θ2
0 − sin2 θ0

[−θ2
0 cos θ+(θ0−sin θ0 cos θ0)(sin θ+θ cos θ)+sin2 θ0(cos θ−θ sin θ)]

(A.50)
The streamlines with the computed velocities are,

We will assume a constant viscosity (µ = 1) and the deviatoric stress tensor is then

σ = Ûε(u) (A.51)

or

Ûε(u) =
[
σrr σrθ

σrθ σθθ

]
(A.52)

σrr =
∂ur

∂r

σθθ = (
1
r
∂uθ
∂θ
+

ur

r
)

σrθ = [r
∂

∂r
(uθ

r
) + 1

r
∂ur

∂θ
]

(A.53)
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The analytical expressions for the stress components are,

σrr = 0

σθθ = 0

σrθ =
U

r(θ2
0 − sin2 θ0)

[−θ2
0 cos θ + (θ0 − sin θ0 cos θ0)(sin θ + θ cos θ) + sin2 θ0(cos θ − θ sin θ)]

+
U

r(θ2
0 − sin2 θ0)

[θ2
0 sin θ + (θ0 − sin θ0 cos θ0)(2 cos θ − θ sin θ) − sin2 θ0(2 sin θ − θ cos θ)]

(A.54)

Note, the only non-zero stress component is σrθ , or

σrθ =
U

r(θ2
0 − sin2 θ0)

[θ2
0(sin θ − cos θ)+

(θ0 − sin θ0 cos θ0)(sin θ + θ cos θ + 2 cos θ − θ sin θ) + sin2 θ0(cos θ − θ sin θ + 2 sin θ − θ cos θ)]
(A.55)

The stress tensor is then,

Ûε(u) =
[

0 σrθ

σrθ 0

]
(A.56)

As noted by .. the stress varies according to r−1. We then transform the stress-tensor
to Cartesian coordinates, with the following rule,

σcart = QTσpolarQ (A.57)

where

Q =

[
cos θ − sin θ
sin θ cos θ

]
(A.58)

The Cartesian components as a function of (r, θ) are

σxx = 2 sin θ cos θσrθ

σxy = σrθ(cos2 θ − sin2 θ)
σyy = −2 sin θ cos θσrθ

(A.59)

The stress distributions are,
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