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Chapter 3 

An Introduction to the Enmein-type Ent-Kauranoids 

 

3.1 INTRODUCTION 

Extracts from plants of the Isodon species have been used for centuries in traditional 

Chinese medicine.1 In an effort to identify the bioactive chemical constituents, over 1,000 

novel diterpenoids have been isolated from these plants and characterized to date.11 

Compounds such as trichorabdal A (293),2 adenanthin (299),3 and isodocarpin (301)4 have 

demonstrated potent antibacterial, anti-inflammatory, and antitumor activities, and since 

their identification in the 1960s have become the focus of study for both chemists and 

biologists (Scheme 3.1). For example, 299 was shown to selectively inhibit two isoforms 

of peroxiredoxin enzymes and prolong survival in murine models of acute promyelocytic 

leukemia.3 Ent-kauranoids possessing the exocyclic enone moiety are thought to have 

enhanced biological activity through covalent modification of target proteins.5 It is 

hypothesized that molecules in this class arise biosynthetically from common progenitors 
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and all contain a caged polycyclic core bearing varying oxidation patterns (Figure 1).11 

However, the wide range of biological activity in this family of natural products suggests 

that the stereochemical and regiochemical oxidation patterns embedded within the core of 

these compounds impart significant changes to their bioactivity. Despite the intriguing 

biological properties of these highly oxygenated terpenes, there have been few successful 

total syntheses of this class of natural products. 

Scheme 3.1 Representative examples of bioactive ent-kauranoids.  

 

3.2 PREVIOUS SYNTHESES OF RELATED NATURAL PRODUCTS 

Several research groups have made contributions to the total synthesis of Isodon 

diterpenoids. In 1974, Fujita and coworkers disclosed a biomimetic synthesis of enmein 

(300) (Scheme 3.2).5–7 Diol 302 can be accessed in 24 steps from commercial material as 

a racemate. From diol 302, two additional steps provides 303. Diol 303 can be elaborated 

to lactone 304, which can be derivatized to access 305 in six additional steps. From 305, it 

takes the Fujita lab an additional eleven steps to finally access 300, in a largely linear 

synthesis.  
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Scheme 3.2 Fujita synthesis of enmein (300).  

 

Notably, their synthesis could only be rendered asymmetric through a semi-

synthetic route, in which they use plant materials to isolate a single enantiomer of 302. 

With enantioenriched 302, Fujita and coworkers could carry out their established route to 

access enmein (300) as a single enantiomer. 

Scheme 3.3 Mander’s synthesis of 15-desoxyeffusin (311).  
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could be advanced three steps to build a second all-carbon quaternary center present in 309. 

This vinylogous ester 309 could be elaborated to 15-desoxyeffusin (311) in an additional 

22 steps; however, any attempts to oxidize the C15 methylene proved unsuccessful.  

Scheme 3.4 Thomson’s synthesis of sculponeatin N (319). 

 

In 2014, the Thomson lab reported a total synthesis of sculponeatin N (319), starting 

from 312, which can be prepared in three steps from commercial material (Scheme 3.4).10 

Acrylate 312 can be advanced two additional steps to access diene 313, which undergoes 

a key Nazarov cyclization to form the cyclopentenone moiety in 314. Three additional steps 

enables the installation of three olefins present in 315, which can be subjected to a ring 
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provides 317, which is then poised to undergo elimination and a subsequent radical 
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cyclization to form the key [3.2.1]-bicycle of 318. Sculponeatin N (319) can be accessed 

in six additional steps, forming 319 in 19 steps from commercial material. 

Scheme 3.5 Yang’s synthesis of maoecrystal V (296). 

 

Several research groups have targeted maoecrystal V (296) since its structural 

elucidation in 2004.11 The first successful total synthesis of 296 was completed in 2010 by 
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steps to provide enone 325. A Wessely oxidative acetoxylation followed by an 

intramolecular thermal [4+2] cycloaddition provides 326. With the key carbon skeleton 

intact, Yang and co-workers are tasked with oxidative manipulation of the framework. Four 

steps are required to install the allylic alcohol and to remove the acetoxy group at C16 to 

provide 327. From 327, an oxidation mediated by DMP and a catalytic reduction of the 

bicycle produces epi-C16-maoecrystal V (328). A final epimerization delivers 296. 

Scheme 3.6 Danishefsky’s synthesis of maoecrystal V (296). 

 

The Danishefsky lab also completed a synthesis of 296 in 2012 (Scheme 3.6).13 

Key to their strategy was an intramolecular Diels-Alder between an unsaturated sulfone 
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oxidation at the bridgehead and then 14 steps to deliver the central tetrahydrofuran 334. 

From here, modification of A and E rings can be carried out in nine additional steps, 

delivering 296.   

Scheme 3.7 Zakarian’s synthesis of maoecrystal V (296). 

 

The first asymmetric synthesis of 296 was reported in 2014 by Zakarian and 
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337 and 338. They can then elaborate 339 in four additional steps, delivering key diazoester 

341. With 341 in hand, they are poised to examine their key C–H insertion reaction—they 

determined that using a chiral diazo mandelamide delivered their 2,3-dihydrobenzofuran 

in high yields with low levels of erosion of ee. Methanolysis with concomitant 

epimerization delivers 343. Zakarian and coworkers are then able to elaborate 343 to vinyl 

silyl ether 344, which can be subjected to a thermal, intramolecular [4+2] reaction to build 

the key [2.2.2]-bicycle. Cleavage of the C–Si bond along with reduction and installation of 

the acyl selenide delivers 346. The key acyl selenide 346 can be subjected to a radical 

cyclization reaction to install the central lactone ring of 347. Nine additional steps are 

required to forge the cyclohexenone A ring as well as the additional methyl group on the 

[2.2.2]-bicycle, furnishing 296 in 28 steps from commercial material.  

Scheme 3.8 Thomson’s synthesis of maoecrystal V (296). 
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Thomson and coworkers also recently reported an asymmetric synthesis of 296 

(Scheme 3.8).15 Their synthesis starts from 4,4-dimethylcyclohexenone (348). The first 

stereocenter is set through an asymmetric Sharpless epoxidation. The aryl bromide is 

subsequently installed through a TfOH promoted etherification reaction, providing 349. At 

this point, a key intramolecular Heck cyclization delivers the all-carbon quaternary center 

of 350. The resultant phenol is then subjected to an oxidative cyclodearomatization reaction 

to deliver 351. With 351 in hand, Thomson and coworkers advance this intermediate three 

additional steps, including an intermolecular Diels-Alder with nitroethylene to provide 

352, building the central [2.2.2]-bicycle. With the skeletal framework assembled, they turn 

their attention toward oxidative manipulation of 352. Four steps allows for reduction of the 

bicycle, oxidation of the nitro group and installation of the alpha-disposed methyl group to 

provide 353. Allylic oxidation of 353 delivers 354, at which point a low-yielding and 

poorly selective remote C–H oxidation  provides a mixture of 296 and 355.      

Scheme 3.9 Baran’s synthesis of maoecrystal V (296).  
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Baran’s lab recently disclosed a convergent total synthesis of 296 (Scheme 3.9).16 

Their route involves synthesis of a [3.2.1]-bicycle (357) through an intramolecular Sakurai 

allylation. Their key 1,2-addition is then carried out between a Grignard reagent prepared 

from 358 and 357. Subsequent treatment of the 1,2-adduct with acid promotes a pinacol 

rearrangement to convert the [3.2.1]-bicycle to the requisite [2.2.2]-bicycle present in 359. 

Two additional steps provides the key central lactone in 360, with three additional steps 

required to convert 360 to 296. Their strategy is highly convergent and vastly improved 

upon prior syntheses of 296. With a robust synthetic route to access ample quantities of 

296, Baran and coworkers disappointingly observed limited biological activity against a 

number of cancer cell lines, despite compelling preliminary biological data reported in the 

literature.11 This discovery highlights the value of total synthesis as a tool to access 

bioactive molecules for extensive biological study. 

Scheme 3.10 Dong’s synthesis of enmein (300). 
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cycloaddition between 361 and 362, delivering a single diastereomer of 363. The 

stereochemistry is notably controlled by the chiral auxiliary present in 361. Two additional 

steps including a Birch reduction delivers 364, which is advanced through four steps to 

deliver 365. The vinyl bromide 365 can be used as a radical precursor to close the final 

[3.2.1]-bicycle present in 366. Unfortunately, manipulation of the stereochemistry and 

oxidation of the carboskeleton requires an additional eight steps before they can access 

300. While the end of their synthesis requires substantial functional group interconversions, 

this synthesis represents a vast improvement over the synthesis of 300 presented by Fujita.  

3.3 THE REISMAN LAB’S APPROACH TO THE ENT-KAURANOIDS 

Our lab has also worked extensively in the field of ent-kauranoid total synthesis. 

We felt that both the structural complexity as well as the biological activity of these natural 

products make them formidable targets for a total synthesis endeavor. In 2011, our lab 

reported a total synthesis of maoecrystal Z (292) commencing from g-cyclogeraniol (367) 

(Scheme 3.11).18 A silylation followed by a selective epoxidation delivers 368, a 3:1 

mixture of diastereomers. Our lab determined that both diastereomers could be taken 

forward through an epoxide homolysis mediated by Cp2TiCl with a Giese-type addition to 

trifluoroethylacrylate delivers lactone 369. At this point, 369 could be alkylated with alkyl 

iodide 370. Lactone 371 was then advanced three steps to deliver aldehyde 372, which is 

poised to undergo a key reductive cyclization. Treatment with in situ generated SmBr2 

delivers a single diastereomer of tetracycle 373, in which two key bonds have been formed. 

With the key carbocyclic core assembled, attention turned toward the installation of the 
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requisite acetates and installation of the enal moiety. Bis acylation of 373 followed by three 

additional steps delivers maoecrystal Z (292) in only 12 steps from 367.  

Scheme 3.11 Reisman’s synthesis of maoecrystal Z (292). 
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treatment of 377 with stoichiometric Pd(OAc)2 with AcOH as an additive in DMSO in the 

presence of O2 provided good yields of 378, a key intermediate. We found that 378 could 

be diverted to two different natural products. Ketone 378 could be converted to 293 in four 

steps from commercial and could be converted to 294 in six steps from commercial, 

completing the synthesis.  

Scheme 3.12 Reisman’s syntheses of trichorabdal A (293) and longikaurin E (295). 
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demonstrate the difficulties and shortcomings inherent in natural product total synthesis, 

and as such, continued synthetic campaigns will continue to be instructive and informative.    
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