

REACTION DEVELOPMENT FOR THE TOTAL SYNTHESSES OF THE
TERPENOID NATURAL PRODUCTS (+)-PSIGUADIAL B, (+)-RUMPHELLAONE
A, AND (−)-ISODOCARPIN

Thesis by

Jordan Casey Beck

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2019

(Defended April 17, 2019)

© 2019

Jordan Casey Beck

ORCID: 0000-0003-0898-5644

All Rights Reserved

To my family and friends

ACKNOWLEDGEMENTS

I feel very privileged to have spent these last five formative years learning and growing at the California Institute of Technology. Caltech has been an incredible place to do research, with excellent resources and people who are eager to learn. Collaborations between labs and peoples' willingness to help each other make Caltech an awesome place to call home.

I would like to thank Professor Sarah E. Reisman for giving me the opportunity to join her research program and study under her. Sarah's group has and continues to do meaningful work that pushes the boundaries of how we think about organic synthesis and science more broadly. I appreciate how much she has encouraged me to ask difficult questions and think critically about the quality of the work we do. I've benefitted greatly from how hard she has pushed me to seek the answers to the most difficult of questions, and I am grateful for the faith she placed in me in finding the right path forward, even when I was unsure of that myself.

I have enjoyed working closely with Brian and his lab and have valued his input along with his students' suggestions. The third floor of Schlinger is like one big family, and I have benefitted greatly from the close relationship our labs have. I appreciate the thoughtful discussions we had regarding my chemistry and I consider Brian to be an excellent mentor.

Jackie and Max have been very supportive members of my committee. While I recognize the scope of our research doesn't always overlap, I have valued their input in our annual meetings as well as informal settings. They have both given me excellent advice about the next steps in my career, and I have really enjoyed getting to know them better.

I am deeply indebted to the army of Caltech staff who have worked tirelessly to ensure that my research and studies proceeded smoothly. In particular, thank you to Agnes Tong and Alison Ross for their logistical help and emotional support during stressful periods of this PhD. I am grateful for the work that Lynne Martinez and Veronica Triay have done to keep the third floor operating smoothly—it has been a pleasure working with each of them.

I have really enjoyed working with Scott Virgil, David Vander Velde, and Mona Shahgholi. Chatting with Scott while separating grams of the [3.2.1]-bicycle was a treat, and David Vander Velde's support late at night when an instrument was on the fritz was deeply appreciated. Their commitment to the Caltech students is outstanding, and I have really enjoyed learning under all three of them. I could not have done my PhD work without any of them, and I am grateful for the hard work they continuously do to ensure our research proceeds smoothly.

Working with the fiery students in Sarah's lab has been the highlight of my experience at Caltech. I have had the pleasure of learning more than I ever thought was possible from our lab, and I am so proud to be a part of the Reisman Lab legacy. Thank you to Dr. Maddi Kieffer and Dr. Kangway Chuang for helpful discussions about chemistry and for bringing Quinoline Kieffer-Chuang into our lives. I'll never forget their hospitality when the Cats were being fumigated and we had nowhere to go!

I have really enjoyed chatting with Dr. Victor Mak about chemistry, and I will never forget the contributions he has made to my research, and late nights in lab with Dr. Haoxuan Wang made the hours go by quickly. Who knew we both liked to blast Taylor Swift and One Direction in the lab? It was fun working next to Blake Daniels for my first two years—

I loved learning about the way he views the world and seeing his intense passion. Sharing a bay and rotovap with Dr. Naoyuki Suzuki and Dr. Luke Hanna was awesome—they are both passionate scientists, and I enjoyed talking with them about chemistry and life.

Working next to the unofficial (but kind of official) Lab Dad, Dr. Elliot Farney, was a distinct pleasure. Late nights next to Dr. Farney were some of the most memorable. I appreciated how much he tolerated my pop music and random questions. Some of the strangest were, “if you had to drink 25 mL of which solvent, which would you pick?” and “which functional group do you identify most with?” Those answers are strictly confidential and the author will be taking them to his grave.

I am so lucky to have met Dr. Nat Kadunce and to have had the privilege of working in lab with him. He is an incredible scientist, and I would be remiss if I did not thank him for introducing me to the Cadillac Margarita at Amigos and the entertainment at Jumbo’s Clown Room.

It was truly an honor to have met and grow close to Dr. Denise Grünenfelder. Denise has a huge heart, and I would have been lost many times had it not been for her kind words and grounding presence. She works so hard to help and to make sure everyone is taken care of, and without her, I don’t know how our lab would have survived. I also believe I owe her for introducing me to coffee—the coffee breaks we shared were the highlights of many long days in lab, and I am so lucky to call Denise a life-long friend and to call coffee a life-long addiction.

It took a little bit for Dr. Arthur Han to warm up to me, but I’m so glad he did! Arthur has been a wealth of information and support for me, and I am so lucky to have met and befriended him. His energy and work ethic are inspiring, and I’m continually impressed

and motivated by all he does. Dr. Chen Xu has also been incredibly inspiring. Her dedication and perseverance is unrivaled, and I found any conversation with her left me feeling uplifted. She is a force to be reckoned with and I can't wait to see all she accomplishes.

Julie Hofstra has been extremely helpful—I can't count the number of times we've enjoyed late night dining or commiserated over the onerous task of grant writing. Her ability to pick apart any problem and her commitment to seeing something through has been a source of strength for all of us in Sarah's lab. And I don't think there is a single person (besides maybe Scott Virgil) who knows more about how instruments tick.

Skyler Mendoza has been an incredible friend to all of us in Sarah's lab. Talking to Skyler always brightens up my day, and he has been an incredible confidante and friend to me over these past three years. While I miss being able to scare the daylight out of him by "startling" him in lab, I'm lucky that we've gotten closer and that I get to call Skyler a friend.

One of the most meaningful experiences I've had at Caltech has been mentoring Caitlin Lacker. I think we worked in a really productive way, and I am so proud of the work we did together. We've done a good job balancing each other out and helping each keep our heads above water. I'm so excited to continue watching her blossom into an even more extraordinary scientist and to see where the career takes her.

I remember being struck by Sean Feng's intensity from the moment I met her. There is not a single thing Sean does without the utmost fire, and I'm so lucky that friendship is one of them. From our lunch dates to eyebrow threading appointments to climbing at Stronghold, I have loved being her friend, and her presence has been incredibly uplifting

for me in so many ways. Her take on work-life balance is refreshing, and I am lucky to call her one of my best friends.

I would not have made it this far without the guidance and patience of some extraordinary mentors. I want to thank Professor Amit Basu for introducing me to lab research and the beauty of organic chemistry. Amit's love for chemistry was deeply inspiring, and I thoroughly loved the time I spent in his lab. I am also deeply thankful to have been taught by Professor Matthew Zimmt at Brown. I will never forget the way he taught us to dissect a problem by asking key questions and that by knowing which questions to ask, you'll get to the key problem at hand—this paradigm has really changed the way I think about science and has been a guiding light for me in all aspects of life.

My experience with Dr. Marius Dräger was incredible. He inspired me to pursue a PhD in chemistry, and he was there for me in every way possible. The two years we worked together at Brown were very formative due to experiences both in the lab and outside the lab, and I am so lucky to have had Marius there for me every step of the way. I'm a little disappointed he never came to visit me in lab—he'd be impressed at how clean I kept my fume hood despite his doubts! I also appreciate the guidance of Dr. Helene Kuhn—her love and support for me was unyielding, and I am so lucky to call her a life-long friend.

My bond with Dr. Lauren Chapman is akin to one between a big sister and an annoying little brother. I am grateful for her patience and willingness to educate me—which I know has not been an easy task. Her patience and kindness is second to none, and I am lucky to have gotten to work with her on the psiguadial project. I am extremely proud of the work we did together, and her perseverance and willingness to put in that extra elbow

grease reflects well. She is an impressive scientist and a loving mentor and friend, and I owe my success to her.

The friendships I've made outside of Caltech have been really grounding and have helped me gain significant perspective. I have really loved blowing off steam with Maddie Schlesinger and Ryan Graff at our Bachelor/Bachelorette/Bachelor in Paradise nights—these have also allowed me to hone my recipe for baked brie and buffalo chicken dip (which I must say are both quite good). My friendship with Matt Glatt has brought me so much joy, and I'm lucky to have him in my life. Who else would think to send a care package including a stuffed-animal human hepatoma cell the night before my candidacy exam? He's one of a kind, and I'm so thankful for his support throughout this PhD.

I have really appreciated all of the support and encouragement that Dr. Gillian Horwitz has provided me with during my time at Brown and my years at Caltech. My love for organic chemistry dates back to us studying for Chem 35 and Chem 36 exams in the SciLi at Brown, and I will always look back at those many hours we spent making colorful study guides and big posters with deep fondness. Aside from inspiring me with her raw intellectual prowess, Gillian has been there for me during very difficult times, and I am so lucky for her love and friendship.

I had no idea of the impact that meeting Dr. Spencer Scholz at the ACS conference in San Francisco would have on my life. When I'm having a rough day in lab, Spencer is the first person I text—he's good at helping me troubleshoot some chemistry if that's what I need or just letting me vent, if that's what I need. He has provided me with much-needed perspective at times when the path forward seems intractable, and I'm lucky to call him

one of my best friends and confidantes. It has been so great getting to know someone with such a kind soul, and he also makes awesome cookies.

My friendship with Robin Beaufomontizzi Rolader has been a much-needed source of stability and support throughout my education. While we don't talk nearly as much as I'd like (because we live three time zones apart and she has the sleeping habits of a retiree), I know my Robin will always be there for me to laugh, cry, celebrate, or scare me senseless at my surprise party in 2015, and that means more than she will ever know.

Of course, I must thank my parents and sister for their continual support of my education. Even though they stopped being able to help me with my homework when I was in third grade, they have always supported me in my endeavors. Their faith in me and unwavering encouragement has helped keep my internal pilot light on, even on the blustiest of days. I love them all so much, and I'm so lucky to have shared this experience just 30 minutes (without traffic) away from them.

I'm sure anyone who has gotten this far into my acknowledgements is eager to hear what I have to say about the soon-to-be Dr. Kelsey E. Poremba. While I don't think I can ever put into words what it has meant to learn and grow and build and cry and celebrate with her, I'm going to do my best. There is something so special about a friendship that has blossomed and strengthened during an entire PhD. Kelsey has been there with me through the thick of it. We lifted each other up when we took classes together, we celebrated each other when we had good results, and shared in each other's disappointment when the future looked bleak. I can honestly say that I would have never been able to complete this PhD without her support and love, and I am so lucky to have seen the transformation first hand: from a young woman ready to take on research at a top

university, to a confident scholar, ready to enter the workforce and change the face of science. Kelsey has and continues to be my inspiration for how to be an incredible scientist and how to be a compassionate and loving person, and I know everyone who has had the pleasure of meeting and getting to know her feels the same way. Thank you for everything.

I love you. And you better call me next year.

And finally, I need to thank my wonderful partner Jon. Thank you for your patience and support throughout this entire journey. From delicious packed lunches, to fun weekends away, you were there for me every step of the way. I could not have done any of this without your love and support. I feel so lucky to have you and Quinn in my life, and I'm so excited for what this next chapter holds for us. I love you so much. Thank you for everything, and I'm so happy I get to celebrate this accomplishment with you

ABSTRACT

The *de novo* synthesis of bioactive natural products provides an opportunity to learn more about the mechanism of bioactivity and to develop novel chemistry that is of interest to the synthetic community. Herein, we describe our strategy for the total synthesis of the trans-fused cyclobutane containing meroterpenoid (+)-psiguadial B. Key to this strategy was the development of a photochemical Wolff Rearrangement with asymmetric ketene aminolysis. A palladium-catalyzed C–H alkenylation is used to build structural complexity, and we use two different epimerization strategies to perform an enantiodivergent synthesis of (+)-psiguadial B.

This strategy was explored further and applied to the synthesis of chiral cyclobutanes through a 1,2-difunctionalization strategy, wherein a C–H arylation forges one carbon–carbon bond and a subsequent decarboxylative cross-coupling enables functionalization at the adjacent carbon. This strategy enabled the asymmetric total synthesis of (+)-rumphellaone A in 9 steps.

This report also highlights the work we have conducted in the development of a unified strategy for the enmein-type *ent*-kauranoid natural product, (–)-isodocarpin. We detail our investigation of a convergent cross-electrophile coupling as a means to build the core of (–)-isodocarpin. We also discuss our development of a 1,2-addition/semi-Pinacol rearrangement strategy for the preparation of all-carbon quaternary centers, which can be elaborated to enmein-type *ent*-kauranoid natural product scaffolds.

PUBLISHED CONTENT AND CONTRIBUTIONS

1. Chapman, L. M.; Beck, J. C.; Wu, L.; Reisman, S. E. "Enantioselective Total Synthesis of (+)-Psiguadial B". *J. Am. Chem. Soc.* **2016**, *138*, 9803. DOI: 10.1021/jacs.6b07229. This article is available online at: <http://pubs.acs.org/doi/abs/10.1021/jacs.6b07229>. Copyright © 2016 American Chemical Society.

J.C.B. contributed to conception of the synthetic strategy, conducted the experiments described herein, prepared the supporting data, and participated in writing the manuscript.

2. Chapman, L. M.; Beck, J. C.; Lacker, C. L.; Wu, L.; Reisman, S. E. "Evolution of a Strategy for the Enantioselective Total Synthesis of (+)-Psiguadial B". *J. Org. Chem.*, **2018**, *83*, (11) 6066. DOI: 10.1021/acs.joc.8b00728. This article is available online at: <http://pubs.acs.org/doi/abs/10.1021/acs.joc.8b00728>. Copyright © 2018 American Chemical Society.

J.C.B. contributed to conception of the synthetic strategy, conducted the experiments described herein, prepared the supporting data, and participated in writing the manuscript.

3. Beck, J. C.; Lacker, C. L.; Chapman, L. M.; Reisman, S. E. "A Modular Approach to Prepare Enantioenriched Cyclobutanes: Synthesis of (+)-Rumphellaone A". *Chem. Sci.*, **2019**, *10*, 2315. DOI: 10.1039/C8SC05444D. This article is available online at: <https://pubs.rsc.org/en/content/articlepdf/2019/sc/c8sc05444d>. Copyright © 2019 The Royal Society of Chemistry.

J.C.B. contributed to conception of the synthetic strategy, conducted the experiments described herein, prepared the supporting data, and participated in writing the manuscript.

TABLE OF CONTENTS

CHAPTER 1	1
<i>The Total Synthesis of (+)-Psiguadial B</i>	
1.1 INTRODUCTION	1
1.2 PROPOSED BIOSYNTHESIS OF THE PSIGUADIAL FAMILY	3
1.3 SYNTHESIS OF RELATED NATURAL PRODUCTS	5
1.3.1 Biomimetic Strategies for Semi-Synthesis	5
1.3.2 Total Synthesis Efforts Toward Psiguadial B	8
1.4 A DE NOVO SYNTHETIC STRATEGY FOR THE TOTAL SYNTHESIS OF (+)-PSIGUADIAL B	9
1.4.1 A [4+2] Cycloaddition Strategy	9
1.4.2 Development of an Asymmetric Wolff Rearrangement	11
1.4.3 A Convergent Catalytic Alkenylation	14
1.4.4 Investigation of the Key [4+2]	17
1.4.5 Exploring a Model Prins Cyclization [4+2]	19
1.4.6 Second Generation Norrish-Yang Cyclization Strategy	20
1.4.7 Development of a Catalytic Conjugate Addition	24
1.4.8 Elaboration to a Norrish-Yang Substrate	26
1.4.9 A Third Generation Strategy	28
1.4.8 Elaboration to a Norrish-Yang Substrate	26
1.5 CONCLUDING REMARKS	34
1.6 EXPERIMENTAL SECTION	35
1.6.1 Materials and Methods	35
1.6.2 Preparative Procedures and Spectroscopic Data	36

1.6.2.1 Preparation of Diazoketone Substrates	36
1.6.2.2 Small-Scale Screening Protocol.....	39
1.6.2.3 Large-scale Preparation of Enantioenriched Amides	40
1.6.2.4 Synthetic Procedures Toward (+)-Psiguadial B.....	54
1.7 NOTES AND REFERENCES.....	114
 CHAPTER 2 118	
<i>A Modular Approach to Synthesize Enantioenriched Cyclobutane Products</i>	
2.1 INTRODUCTION	118
2.2 REVIEW OF AMIDE DIRECTED C(SP³)–H ACTIVATION TO FORM C–C BONDS.....	120
2.3 THE DEVELOPMENT OF A NOVEL C(SP³)–H HETEROARYLATION REACTION.....	125
2.4 DECARBOXYLATIVE CROSS-COUPLEINGS FOR CYCLOBUTANE DIVERSIFICATION	135
2.5 APPLICATIONS OF CYCLOBUTANE VICINAL DIFUNCTIONALIZATION: TOTAL SYNTHESIS OF (+)-RUMPEHALLONE A	141
2.6 CONCLUDING REMARKS.....	146
2.7 EXPERIMENTAL SECTION	
2.7.1 Materials and Methods	147
2.7.2 Preparative Procedures and Spectroscopic Data.....	149
2.7.2.1 C _{sp} ³ –H Arylation	149
2.7.2.2 Cyclobutane Derivatization	165
2.7.2.3 Proof of Enantiopurity	178
2.7.2.4 Total Synthesis of (+)-rumphellaone A.....	179
2.8 NOTES AND REFERENCES.....	192

APPENDIX 1	195
<i>Spectra Relevant to Chapter 2</i>	
CHAPTER 3	273
<i>An Introduction to the Enmein-type Ent-Kauranoids</i>	
3.1 INTRODUCTION	273
3.2 PREVIOUS SYNTHESES OF RELATED NATURAL PRODUCTS	274
3.3 THE REISMAN LAB'S APPROACH TO THE ENT-KAURANOIDs	283
3.4 CONCLUDING REMARKS	285
3.5 NOTES AND REFERENCES	286
CHAPTER 4	287
<i>A Cross-Coupling Approach for the Synthesis of the Enmein-Type Ent-Kauranoids</i>	
4.1 INTRODUCTION	287
4.2 SYNTHETIC STRATEGY	288
4.2.1 Retrosynthetic Analysis	288
4.2.2 Reductive Cross-Coupling of Epoxides	290
4.2.3 Investigation of an Intramolecular Cross-Coupling	293
4.2.3.1 Epoxy Alcohol Synthesis	293
4.2.3.2 [3.2.1]-Bicyclooctanoic Acid Synthesis	293
4.2.3.3 Convergent Esterification	294
4.2.4 Investigation of an Intermolecular Cross-Coupling	298
4.2.4.1 A Second Generation Retrosynthetic Analysis	298
4.2.4.2 Screening an Intermolecular Cross-Coupling	300

4.3 CONCLUDING REMARKS.....	310
4.4 EXPERIMENTAL SECTION	310
4.4.1 Materials and Methods	310
4.4.2 Preparative Procedures and Spectroscopic Data	312
4.4.2.1 Substrate Synthesis.....	312
4.4.2.2 Cross-Coupling Procedure	320
4.5 NOTES AND REFERENCES.....	321
 APPENDIX 2	 322
<i>Spectra Relevant to Chapter 4</i>	
 CHAPTER 5	 334
<i>A Semi-Pinacol Approach for the Synthesis of the Enmein-Type Ent-Kauranoids</i>	
 5.1 INTRODUCTION	 334
5.2 FIRST GENERATION SEMI-PINACOL STRATEGY.....	339
5.2.1 Retrosynthetic Analysis.....	339
5.2.2 Epoxy alcohol synthesis.....	341
5.2.3 Model Semi-Pinacol Exploration.....	342
5.2.4 Semi-Pinacol Rearrangement of a [3.2.1]-bicycle	344
5.2.5 A Second Generation Epoxy Aldehyde	347
5.3 SECOND GENERATION SEMI-PINACOL STRATEGY	350
5.3.1 Retrosynthetic Analysis.....	350
5.3.2 Fragment Synthesis	351
5.3.3 Convergent Union of a Vinyl Iodide and Bicyclic Aldehyde.....	353
5.3.4 Synthesis of a Less Lewis Basic Substrate	355
5.4 CONCLUDING REMARKS.....	357

5.5 EXPERIMENTAL DATA	358
5.5.1 Materials and Methods	358
5.5.2 General Procedures	359
5.5.3 Preparative Procedures and Spectroscopic Data	361
5.6 NOTES AND REFERENCES.....	405
 APPENDIX 3	 407
<i>Spectra Relevant to Chapter 5</i>	
 ABOUT THE AUTHOR	 477

LIST OF ABBREVIATIONS

$[\alpha]_D$	angle of optical rotation of plane-polarized light
Å	angstrom(s)
<i>p</i> -ABSA	<i>para</i> -acetamidobenzenesulfonyl azide
Ac	acetyl
acac	acetylacetone
AIBN	azobisisobutyronitrile
alk	alkyl
aq	aqueous
AQN	anthraquinone-1,4-diyl diether
Ar	aryl group
atm	atmosphere(s)
BiOX	bi(oxazoline)
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
BINOL	1,1'-bi-2,2'-naphthol
bipy	2,2'-bipyridine
Bn	benzyl
Boc	<i>tert</i> -butoxycarbonyl
bp	boiling point
br	broad
Bu	butyl
<i>i</i> -Bu	<i>iso</i> -butyl
<i>n</i> -Bu	butyl or <i>norm</i> -butyl

<i>t</i> -Bu	<i>tert</i> -butyl
BQ	1,4-benzoquinone
Bz	benzoyl
<i>c</i>	concentration of sample for measurement of optical rotation
¹³ C	carbon-13 isotope
/C	supported on activated carbon charcoal
°C	degrees Celcius
calc'd	calculated
CAM	cerium ammonium molybdate
CAN	ceric ammonium nitrate
cat.	catalyst
Cbz	benzyloxycarbonyl
CD	Cinchonidine
cf.	consult or compare to (Latin: <i>confer</i>)
<i>cis</i>	on the same side
cm ⁻¹	wavenumber(s)
cod	1,5-cyclooctadiene
CN	Cinchonine
CoA	Coenzyme A
conc.	concentrated
conv.	conversion
Cp	cyclopentadienyl
CSA	camphor sulfonic acid

Cy	cyclohexyl
Δ	heat or difference
δ	chemical shift in ppm
d	doublet
<i>d</i>	deutero or dextrorotatory
D	deuterium
dba	dibenzylideneacetone
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCE	1,2-dichloroethane
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
<i>de novo</i>	starting from the beginning; anew
DIPEA	<i>N,N</i> -diisopropylethylamine
DHQ	dihydroquinine
DHQD	dihydroquinidine
DIBAL	diisobutylaluminum hydride
DMAP	4-(dimethylamino)pyridine
DME	1,2-dimethoxyethane
DMEDA	<i>N,N</i> '-dimethylethylenediamine
DMF	<i>N,N</i> -dimethylformamide
DMPU	1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone
DMSO	dimethylsulfoxide
dppe	1,2-bis(diphenylphosphino)ethane
dppf	1,1'-bis(diphenylphosphino)ferrocene

dr	diastereomeric ratio
dtbpy	4,4'-di- <i>tert</i> -butyl-2,2'-bipyridine
<i>ee</i>	enantiomeric excess
E	methyl carboxylate (CO_2CH_3)
E^+	electrophile
<i>E</i>	<i>trans</i> (entgegen) olefin geometry
EDCI	<i>N</i> -(3-dimethylaminopropyl)- <i>N</i> '-ethylcarbodiimide hydrochloride
e.g.	for example (Latin: <i>exempli gratia</i>)
EI	electron impact
<i>ent</i>	enantiomer of
<i>epi</i>	epimeric
equiv	equivalent(s)
ESI	electrospray ionization
Et	ethyl
<i>et al.</i>	and others (Latin: <i>et alii</i>)
FAB	fast atom bombardment
FTIR	fourier transform infrared spectroscopy
g	gram(s)
Grubbs-II	Grubbs' catalyst TM 2nd generation
h	hour(s)
¹ H	proton
[H]	reduction
HDA	hetero-Diels–Alder

HFIP	hexafluoroisopropanol
HG-II	Hoveyda–Grubbs’ catalyst TM 2nd generation
HIV	human immunodeficiency virus
HMBC	heteronuclear multiple-bond correlation spectroscopy
HMDS	hexamethyldisilazide
HMPA	hexamethylphosphoramide
<i>hv</i>	irradiation with light
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrometry
Hz	hertz
IC ₅₀	half maximal inhibitory concentration (50%)
i.e.	that is (Latin: <i>id est</i>)
<i>iso</i>	isomeric
<i>in situ</i>	in the reaction mixture
<i>J</i>	coupling constant in Hz
<i>k</i>	rate constant
kcal	kilocalorie(s)
kg	kilogram(s)
L	liter or neutral ligand
<i>l</i>	levorotatory
LA	Lewis acid
LC/MS	liquid chromatography–mass spectrometry
LDA	lithium diisopropylamide

LED	light-emitting diode
m	multiplet or meter(s)
M	molar or molecular ion
<i>m</i>	<i>meta</i>
μ	micro
<i>m</i> -CPBA	<i>meta</i> -chloroperbenzoic acid
Me	methyl
mg	milligram(s)
MHz	megahertz
MIC	minimum inhibitory concentration
min	minute(s)
mL	milliliter(s)
MM	mixed method
mol	mole(s)
MOM	methoxymethyl
Ms	methanesulfonyl (mesyl)
MS	molecular sieves
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
<i>m/z</i>	mass-to-charge ratio
NBS	<i>N</i> -bromosuccinimide
ND	not determined
NHC	<i>N</i> -heterocyclic carbene
nm	nanometer(s)

nM	nanomolar
NMO	<i>N</i> -methylmorpholine <i>N</i> -oxide
NMP	<i>N</i> -methyl-2-pyrrolidone
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
NOESY	nuclear Overhauser enhancement spectroscopy
NPh	naphthyl
Nu ⁻	nucleophile
<i>o</i>	<i>ortho</i>
<i>o</i> -QM	<i>ortho</i> -quinone methide
[O]	oxidation
P	peak
<i>p</i>	<i>para</i>
PCC	pyridinium chlorochromate
PDC	pyridinium dichromate
Ph	phenyl
PhMe	toluene
pH	hydrogen ion concentration in aqueous solution
PHAL	1,4-phthalazinediyl diether
PIFA	[bis(trifluoroacetoxy)iodo]benzene
PHOX	phosphinooxazoline
Pin	pinacol
Piv	pivaloyl

pK_a	acid dissociation constant
pm	picometer(s)
PMB	<i>para</i> -methoxybenzyl
ppm	parts per million
PPTS	pyridinium <i>para</i> -toluenesulfonate
Pr	propyl
<i>i</i> -Pr	isopropyl
<i>n</i> -Pr	propyl or <i>norm</i> -propyl
psi	pounds per square inch
py	pyridine
PyBOX	pyridine-bis(oxazoline)
PyOx	pyridine-oxazoline
PYR	2,5-diphenyl-4,6-pyrimidinediyl diether
q	quartet
QD	Quinidine
QN	Quinine
QuinOx	quinoline-oxazoline
quant.	quantitative
R	generic (alkyl) group
R _L	large group
<i>R</i>	rectus
RCM	ring-closing metathesis
recry.	recrystallization

ref	reference
R_f	retention factor
rgt.	reagent
rt	room temperature
s	singlet or seconds
S	sinister
sat.	saturated
SET	single-electron transfer
SFC	supercritical fluid chromatography
t	triplet
TBAF	tetra- <i>n</i> -butylammonium fluoride
TBAI	tetra- <i>n</i> -butylammonium iodide
TBME	<i>tert</i> -butyl methyl ether
TBS	<i>tert</i> -butyldimethylsilyl
TC	thiophene-2-carboxylate
temp	temperature
terpy	2,2':6',2''-terpyridine
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin layer chromatography
TMEDA	<i>N,N,N',N'</i> -tetramethylethylenediamine

TMS	trimethylsilyl
TOF	time-of-flight
tol	tolyl
TPAP	tetrapropylammonium perruthenate
<i>trans</i>	on the opposite side
Ts	<i>para</i> -toluenesulfonyl (tosyl)
UV	ultraviolet
<i>vide infra</i>	see below
w/v	weight per volume
X	anionic ligand or halide
xs	excess
Z	<i>cis</i> (zusammen) olefin geometry