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Chapter 1 

Emergence of C(sp3) Ni-Catalyzed Reductive Cross-Couplings: 

From Achiral Catalysis to Asymmetric Variants 

 

1.1 INTRODUCTION 

Metal-catalyzed cross-coupling reactions have become one of the most utilized 

transformations in medicinal chemistry and in the synthesis of active pharmaceuticals.1 In 

addition, these reactions have also found important use in the agrochemical industry and 

in the production of  materials.2–4 One can contend that the utility behind these methods is 

due to their simplicity; they allow one to reliably build complex molecules from simple 

building blocks through straightforward and strategic disconnections. The emergence of 

this field stemmed from seminal reports in the mid 19th century which describe the use of 

various metals to produce aryl homocoupling products. However, as reaction development 

continued and chemists sought ways to promote metal-catalyzed methods in the late 20th 

century, in particular to favor coupling of distinct partners to form cross-selective products, 
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Pd-catalyzed reactions were more widely developed in contrast to other metals.5 Research 

in this newly formed area sought the optimization of conditions to access a wide variety of 

cross-couplings between nucleophiles and electrophiles, research that continues to be 

developed even today. In honor of important accomplishments in this area, in 2010 the 

Nobel Prize was awarded to Heck, Negishi, and Suzuki for their contributions to the 

development of Pd-catalyzed cross-coupling. 

Although these reactions have shown utility in the generation of carbon–carbon and 

carbon–heteroatom bonds containing C(sp)- and C(sp2)-hybridized centers, it has been 

challenging to expand the scope to include C(sp3)-hybridized centers. Not only are C(sp3)-

hybridized products more difficult to synthesize due to facile β-hydride elimination during 

Pd-catalyzed cross-couplings, but the generation of C(sp3)-hybridized centers introduces 

the opportunity to incorporate chirality into a molecule, and finding appropriate chiral 

ligands to set stereochemistry with high levels of enantioselectivity is often not trivial.  

To address these challenges, the development of Ni-catalyzed cross-coupling 

reactions has garnered interest in the synthesis of molecules containing C(sp3)-hybridized 

centers.6–10 In contrast to Pd, Ni is less electronegative which promotes oxidative addition 

and mitigates β-hydride elimination; however, it is more challenging for Ni to undergo  

reductive elimination processes at comparable oxidation states (Figure 1.1). The intrinsic 

properties of Ni also allow for the access of putative 0, +1, +2, and +3 oxidation states of 

the metal center during the catalytic cycle, which can permit radical-type oxidative addition 

processes and enable access to new reaction mechanisms not traditionally seen in Pd 

catalysis. While these properties promote new modes of reactivity, it is often difficult to 
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harness and control reactive intermediates; therefore, the design of ligands to tune the 

reactivity of Ni is crucial to the success of reaction methods development. 

Figure 1.1 Properties of Ni and Pd. 

 

Towards this endeavor, a number of examples of stereoconvergent and 

stereospecific Ni-catalyzed cross-coupling reactions employing C(sp3)-hybridized 

electrophiles have been developed (Figure 1.2). Fu and coworkers have reported numerous 

examples of stereoconvergent cross-couplings to set C(sp3)-hybridized stereocenters 

through the coupling of racemic alkyl halide electrophiles and a variety of organometallic 

reagents (e.g., organozinc,11–22 organoboron,23–31 organosilicon,32 organomagnesium,33 

organozirconium34) in the presence of a chiral Ni catalyst (Figure 1.2a). Doyle and 

coworkers expanded these methods to include the cross-coupling of quinolinium and 

pyridinium ions with organoboron reagents.35 This stereoconvergent approach allows for 

the direct synthesis of complex chiral molecules from simple racemic coupling partners 

and eliminates the need for stoichiometric chiral auxiliaries. Furthermore, Jarvo and 

Watson have developed stereospecific examples using chiral electrophiles and achiral 

nickel catalysts, which have also enabled the synthesis of chiral products through 

stereoinvertive and stereoretentive approaches.36–46 Despite their utility in cross-couplings 

reactions, C(sp3)-hybridized organometallic reagents are difficult to prepare in high yield, 
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especially those that are chiral.47 Overall, these traditional redox-neutral cross-coupling 

methods require the use of a nucleophile, typically an organometallic reagent, which can 

suffer from poor stability, air sensitivity, and limited commercial availability. 

Figure 1.2 Ni-catalyzed cross-couplings to form C(sp3)-hybridized stereocenters. 

 

To complement these approaches, reactions that rely on synergistic Ni/photoredox 

(metallaphotoredox) catalysis48,49 and Ni-catalyzed reductive cross-electrophile 

coupling50–53 have recently been rendered enantioselective (Figure 1.2b–c).54–60 Most Ni 

metallaphotoredox methods result from cross-coupling of bench stable carboxylic acids 

and halide electrophiles;48,49,55,61–63 however, more recent approaches that generate reactive 

radical intermediates via C–H abstraction through hydrogen atom transfer (HAT) 

mechanisms have also been disclosed.64,65 Typically, these reactions produce either achiral 

or racemic products; however, a singular example of an asymmetric Ni metallaphotoredox 

transformation has been developed by MacMillan, Fu, and coworkers (Figure 1.2b).55 
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 A number of Ni-catalyzed asymmetric reductive cross-coupling reactions have 

also been pioneered, which has been the main focus in our laboratory’s research 

surrounding Ni catalysis.54,56–60 These methods allow inexpensive, bench stable 

electrophiles as both coupling partners and ultimately proceed with stereoconvergence 

when appropriate chiral ligands are used (Figure 1.2c). Mild reaction conditions are also 

employed, allowing methods to exhibit excellent functional group tolerance that would 

otherwise be incompatible with organometallic reagents. However, one of the major 

challenges of reductive cross-electrophile couplings, in contrast to conventional redox 

neutral methods, is the ability to achieve high levels of cross-selectivity. In order to 

differentiate between the two electrophiles, one can resort to extreme alterations to reagent 

stoichiometry; however, a more notable approach relies on distinguishing electrophiles via 

their hybridization which is typically employed by using one C(sp2)-hybridized 

electrophile and one C(sp3)-hybridized electrophile. If differently hybridized electrophiles 

can selectively react with distinct oxidation states of Ni in the catalytic cycle (e.g. radical 

type oxidative addition vs. polar mechanism), this could obviate the need for reagent excess 

and favor cross-selective products instead of homocoupling products. 

In considering the mechanism of these transformations, Weix and coworkers have 

studied the related achiral reductive cross-coupling reaction between aryl iodides and alkyl 

iodides.51,66 A few different mechanisms have been postulated and are discussed in greater 

detail in Chapter 4. A summary of their studies proposed the likelihood of a radical chain 

mechanism (Figure 1.3). The authors propose that C(sp3)-hybridized electrophile may 

result in the formation of an alkyl radical intermediate, which when combined with a Ni(II) 
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complex—resulting from oxidative addition of the C(sp2)-hybridized electrophile onto 

Ni(0)—forms a Ni(III) complex. Since reductive elimination from Ni(III) is much more 

favorable than from Ni(II), the desired cross-coupling product is obtained in good 

selectivity over the homocoupling products C(sp2)–C(sp2) and C(sp3)–C(sp3). The 

application of this reactivity towards method development focuses primarily on the ability 

to capitalize on the accessible odd oxidation states of Ni to generate and intercept secondary 

alkyl radicals.  

Figure 1.3 Proposed mechanism for reductive cross-couplings. 

 

Herein, we discuss the development of Ni-catalyzed reductive cross-coupling 

reactions using C(sp3)-hybridized electrophiles is discussed. Initial developments in achiral 

and racemic systems will be highlighted, and when appropriate, methods that detail 

developments of asymmetric variants will be discussed. We recognize that electrophiles 

are defined as electron pair acceptors; however, in the context of cross-coupling this is 

typically envisioned as an organic halide. As such, a majority of recent efforts in cross-

electrophile coupling have been focused in this area. Nevertheless, a number of additional 
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epoxides, N-hydroxyphthalimide esters), which will also be discussed briefly.  
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1.2 CROSS-COUPLINGS WITH HALIDE ELECTROPHILES 

1.2.1 Initial Developments in C(sp2) Couplings 

Although this review focuses on the use of C(sp3)-hybridized electrophiles in cross-

electrophile coupling, it would be remiss to exclude historical context highlighting initial 

discoveries regarding Ni-catalyzed reductive homocouplings with C(sp2)-hybridized 

electrophiles. These seminal investigations provided the necessary backround that led to 

the development of this area of research. 

In the early 1970s, Semmelhack and coworkers reported the first homocoupling 

reactions of aryl iodides (1, 3) in the presence of stoichiometric zerovalent Ni complexes 

(Figure 1.4).67,68 These reactions proceeded either intermolecularly with Ni(cod)2 or 

intramolecularly with Ni(PPh3)4 to afford biaryl products (2, 4) in good yields. Notably, 

functional groups such as ketones, aldehydes, esters, and nitriles, which would typically 

interfere with organometallic intermediates, were tolerated in the cross-coupling reaction. 

In order to highlight its applicability, this method was demonstrated in the total synthesis 

of a natural product, alnusone (5), by a late stage aryl-aryl coupling (Figure 1.4c).69,70 

Figure 1.4 Aryl iodide homocoupling with stoichiometric Ni(0). 
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 Following these initial reports, in 1974 Tolman and coworkers studied the kinetics 

of ligand dissociation from Ni(PPh3)4 and discovered that Ni(PPh3)3 was the active catalyst 

in the homocoupling transformation.71 Kende and coworkers then identified a new method 

for the preparation of in situ-generated Ni(PPh3)3 via a Zn-mediated reduction of 

NiCl2(PPh3)2 in the presence of PPh3 (Figure 1.4a).72 This approach alleviated the need for 

trialkyl- and dialkylalkoxyaluminum reducing agents which necessitate drybox conditions 

for the preparation of Ni(PPh3)4. The desired biaryl products (7) were then obtained 

following the treatment of the in situ generated, stoichiometric Ni(0) complex with a 

variety of aryl bromides (6). In 1977, Kumada and coworkers reported the first Ni-

catalyzed version of the homodimerizaion reaction using a one-pot protocol (Figure 

1.4b).73 Only 2.5 mol % loading of the Ni catalyst was required, as stoichiometric use of 

Zn was sufficient to reduce the Ni catalyst in situ and promote efficient catalytic turnover. 

Yamishita and coworkers disclosed a similar transformation in 1986, albeit with the use of 

aryl triflates (8), demonstrating that other electrophiles besides halides can undergo 

reductive homocoupling processes (Figure 1.4c).74 

Scheme 1.1 Aryl iodide homocoupling by reduction of Ni(II) with Zn. 

 

Following seminal studies on reductive homocouplings in the 1970s and 1980s, the 

1990s and early 21st century saw the development of Ni-catalyzed cross-coupling methods. 
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However, due to the necessity to obtain cross-selective products over homocoupling 

products, the use of redox-neutral transformations between nucleophiles and electrophiles 

was more widely studied than reductive approaches.  

1.2.2 Electrochemical Methods 

Initial developments in Ni-catalyzed reductive cross-coupling focused on the use 

of electrochemical approaches using sacrificial metal anodes as the terminal reductant. A 

number of cross-electrophile couplings between C(sp2)- and C(sp3)-hybridized 

electrophiles with the use of a single-cell electrochemical setup were developed, most 

notably by Durandetti and coworkers (Figure 1.5).75–81 The two electrophiles, an 

electrolyte, and the requisite Ni catalyst were dissolved in a solvent with high conductivity 

(e.g. MeCN, DMF), and upon passing current, the desired cross-coupling products were 

formed. In this setup, reduction processes occurred at the sacrificial metal anode, which 

dissolves over time as it becomes oxidized to metal cations. Reduction of Ni occurred at 

the inert cathode, which can then proceed to interact with electrophiles and promote the 

desired transformation in solution. Although electrochemical approaches were developed  
  

Figure 1.5 Ni-catalyzed electrochemical cross-electrophile couplings. 
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in the mid to late 1990s, the first Ni-catalyzed reductive cross-coupling reaction that used 

a chemical reductant (i.e. Zn dust) to turn over the catalyst was not reported until 2007.82 

1.2.3 Heterogeneous Metal Reductants 

1.2.3.1 Unactivated Alkyl Electrophiles 

An abundant field of research in the development of Ni-catalyzed C(sp3) cross-

coupling has focused on the development of methods that use heterogeneous metal 

reductants such as Zn and Mn. One particular area concentrated efforts on the use of 

unactivated alkyl halides (9) as one of the coupling partners (Figure 1.6). Weix and 

coworkers were the first to demonstrate Ni-catalyzed cross-electrophile couplings with 

unactivated electrophiles,50,53 and since then a plethora of coupling partners have been 

extensively investigated, predominantly by the Weix and Gong groups. These reactions 

form a variety of products (10–15) when used in cross-coupling reactions in conjunction   
  

Figure 1.6 Cross-electrophile couplings with unactivated alkyl halides.  
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with aryl halides,50,51,83–87 alkenyl halides,88 acyl halides,89,90 chloroformates,91 alkyl 

halides,92 and 3-bromo-azaborines.93 While most ligands used in these transformations are 

achiral ligands (e.g. diamine, dtbbpy, phen), Gong and coworkers have demonstrated that 

PyBOX ligands are effective for alkyl–alkyl couplings,92 albeit the products are reported 

as racemic mixtures. Future efforts in the development of asymmetric variants of these 

coupling reactions is necessary; however, given the unique sets of conditions that are 

already reported as the C(sp2)-hybridized electrophile is altered, simply replacing achiral 

ligands with chiral substitutes is not pragmatic; reactions likely need to be entirely 

reoptimized to access good yield of analogous chiral products. As asymmetric cross-

electrophile couplings all contain activated electrophiles, it is likely that matching the 

electronics of the catalyst to the lifetime of the alkyl radical is important, which is 

anticipated to be more challenging with shorter lived alkyl radical species. 

1.2.3.2 Activated Alkyl Electrophiles 

As alkyl radicals are generated on the C(sp3)-hybridized electrophile following 

halide abstraction, any substituents present at the α-position will affect the stability and 

longevity of the generated intermediate. Following investigations using electrochemical 

methods to conduct cross-electrophile couplings, Durandetti and coworkers were the first 

to report the use of a chemical reductant (i.e. Mn) to obtain α-arylated ketone products 

from stabilized alkyl halide electrophiles.82 Since then, a number of Ni-catalyzed reductive 

cross-couplings of alkyl halides containing radical stabilizing α-substituents have been 

developed (Scheme 1.2), including α-groups such as esters,82  fluorinated alkanes,94 ethers 

(glycosides),95 and pinacol boronates.96  
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Scheme 1.2 Cross-electrophile couplings with activated alkyl halides. 
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Scheme 1.3 Asymmetric cross-electrophile couplings with activated alkyl halides. 
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electron donors” 36 and 37, which have similar reduction potentials to that of Zn and Mn, 

respectively.99,100 These stronger organic reductants have yet to be used in cross-

electrophile coupling but may find their use in future developments. 

Figure 1.7 Reduction potentials of metallic and organic reductants. 
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Figure 1.8 TDAE as a soluble reductant for cross-electrophile couplings. 
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are replaced with alkyl amines104–106 or silanols,107–109 which become oxidized upon single 

electron transfer from the excited photoredox catalyst. Other metallaphotoredox examples 

that promote alkyl and aryl halide homocoupling105,110 as well as alkyl halide 

carboxylation111 with CO2 have also been developed.  

The first report of a Ni metallaphotoredox cross-electrophile coupling using an 

amine as the terminal reductant was reported by Li, Lei, and coworkers in 2016 (Scheme 

1.4a).104 Here, alkyl bromides and aryl bromides were cross-coupled in good yields; 

however, 5 equivalents of the alkyl bromide was required. This method uses 

trimethylamine (TEA) to oxidize the excited IrIII* photocatalyst, which in turn reduces Ni 

in the catalytic cycle. In 2017, Vannucci and coworkers disclosed a similar cross-coupling 

which proceeds with a terpyridine ligated Ni catalyst and triethanolamine (TEOA) as the 

terminal reductant (Scheme 1.4b).105 While an excess of one electrophile is still required, 

here the aryl halide, the authors found that when the aryl iodide was used, only 1.5    
  

Scheme 1.4 Metallaphotoredox methods using amine reductants. 
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equivalents were necessary to obtain good product yields. Neither of these methods utilized 

alkyl bromides containing pendant aryl groups. In 2018, Yin and coworkers demonstrated 

that arylated alkyl bromide electrophiles (43) could be employed in metalllaphotoredox 

cross-coupling when dtbppy was used as a ligand (Scheme 1.4c).106 When the 

bathocuproine was used, the 1,1-diarylalkane was instead isolated, indicating that a Ni-

catalyzed chain walking mechanism was occurring, likely through iterative β-hydride 

elimination and subsequent β-migratory insertion. The formation of the branched coupling 

product is favored over the terminal coupling product due to the stability of the benzylic–

Ni complex. 

MacMillan and coworkers have well-established that metallaphotoredox catalysis 

can be used for redox neutral transformations between alkyl, alkenyl, alkynyl, or aryl 

halides with a plethora of carboxylic acids (and their derivatives). However, they recently 

expanded their efforts to apply metallaphotoredox to reductive cross-coupling (Scheme   
 

Scheme 1.5 Metallaphotoredox methods using silane and silanol reductants. 
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1.5).107–109 Key to the reaction development was the identification of 

tris(trimethysilyl)silane (supersilane) and tris(trimethysilyl)silanol (supersilanol), which 

were found to be competent terminal reductants. While it is unsurprising that alkyl 

bromides and aryl iodides can be competent cross-coupling partners (Scheme 1.5a), the 

latter example depicts alkyl–alkyl couplings that produce high product yields when one 

electrophile is used in large excess (Scheme 1.5b). Both methods are compatible; an 

iterative cross-coupling approach demonstrated chemoselectivity for the aryl bromide over 

the alkyl bromide to form 47 (Scheme 1.5c). Subsequent alkylation afforded the 

bisfunctionalized product 48.  

While these transformations use achiral catalysts and provide racemic products, 

preliminary results using an achiral PyBOX ligand were reported. We envision that in time, 

asymmetric variants of metallophotoredox reductive cross-couplings will be developed and 

utilized in a variety of synthetic contexts.  

 

1.3 CROSS-COUPLINGS WITH PSEUDOHALIDE ELECTROPHILES 

1.3.1 Oxygen Electrophiles 

Although organohalides represent the most broadly used and widely developed 

class of electrophiles employed in Ni-catalyzed reductive cross-couplings, other 

pseudohalides have also been utilized. One particular type is the use of oxygen-based 

electrophiles derived from alcohols, such as alkyl mesylates60,112, alkyl tosylates113, allylic 

acetates86,114–117, and alkyl oxalates118,119 (Scheme 1.6). Although recent reports have 

investigated the use of Lewis acid catalysis to activate allylic alcohols towards oxidative 
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addition,120 typically activating groups are required for C–O bond insertion. As activated 

oxygen-based electrophiles are generally less reactive than their halide counterparts, the 

addition of co-catalysts to aid in radical generation processes has been used by Weix and 

coworkers (Scheme 1.6b). 

Scheme 1.6 Selected examples of reactions using oxygen-based electrophiles. 
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Figure 1.9 Synthesis of ketones from carboxylic acid derivatives. 
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Scheme 1.7 NHP esters derived from carboxylic acids as C(sp3) electrophiles. 
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NHP esters have been utilized in Ni-catalyzed cross-electrophile couplings as alkyl radical 

precursors for arylation,126,127 alkenylation,59 and alkynylation reactions.128 The first report 

of an enantioselective cross-coupling using NHP esters was demonstrated by Reisman and 

coworkers using a chiral BOX ligand.59 

1.3.3 Epoxides and Aziridines 

Ring opening reactions of epoxides and aziridines can provide an additional source 

of C(sp3) alkyl radicals. Weix and coworkers demonstrated that epoxides (65) can be used 

in regiodivergent reductive cross-couplings to form either the branched or the linear 

coupling products depending on the mode of epoxide activation (Figure 1.10). Addition of 

NaI can lead to the formation of the branched alkyl radical (67) via the iodohydrin (66); in 

contrast, activation and ring-opening of the epoxide by titanocene complexes can result in 

the linear alkyl radical (64). This strategy was demonstrated in the Ni-catalyzed arylation 

of 65, wherein iodide-mediated ring-opening afforded arylated product 69 and titanocene-

mediated ring-opening afforded 70 as a 3.3:1 regiomeric ratio of isomers.129 

Figure 1.10 Ni-catalyzed cross-electrophile arylation of epoxides. 
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Following this study, Weix and coworkers showed that chiral titanocene complexes 

could be used to form enantioenriched products from meso-epoxides via a 

desymmeterization strategy (Figure 1.11).130 The use of chiral titanocene catalyst 73 

derived from (–)-menthone in the was able to provide arylated products following 

interception of the alkyl radical with the Ni catalyst. This method was applied towards 5-, 

6-, and 7-membered cyclic epoxides to form the products (72a–e) in good yield with 

generally high levels of enantioselectivity. 

Figure 1.11 Enantioselective arylation of meso-epoxides. 
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investigated. The obtained model depicts strong correlations between the predicted and 

measured ΔΔG‡ when the ligand width, charge on the oxazoline N, and ligand polarizability 

are included. Interpretations suggest a long alkyl chain is best predicted. This study 

highlights the first approach at using ligand parameterization to provide rationale into 

observed enantioselectivity in asymmetric Ni-catalyzed reductive cross-couplings. We 

predict these types of studies can not only help explain the reaction mechanism, but also 

may be used to predict more selective ligands in the future. 

Figure 1.12 Enantioselective arylation of styrenyl aziridines. 
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1.4.1 Alkene Functionalization 

Recent developments have examined three-component couplings that incorporate 

an intermediate radical acceptor, thus joining together three fragments during the cross-

electrophile coupling. Nevado and coworkers found that the use of NiCl2(Py)4 and dtbppy 

could successfully catalyze the dicarbofunctionalization reaction between terminal alkenes 

(76), aryl iodides (16), and alkyl iodides (77) with the use of TDAE as the terminal 

reductant (Scheme 1.8).132 While the alkene scope is limited to Michael acceptors or 

activated allylic systems, this represents the first reductive variant of Ni-catalyzed 

dicarbofunctionalization. We envision that future advances in the field of Ni-catalyzed 

cross-electrophile couplings will continue efforts to intercept feedstock alkenes. Peng and 

coworkers have successfully demonstrated an intramolecular variant using an unactivated 

alkene system.133 Tuning the electronic parameters of the catalyst will likely play an 

important role in tuning the lifetime of the alkyl radical. 

Scheme 1.8 Reductive dicarbofunctionalization of alkenes. 
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disconnections. While asymmetric variants of cross-electrophile couplings have yet to be 

applied in natural product synthesis, we envision the continued development of new 

asymmetric methods will ultimately find its use in this synthetic context. 

Figure 1.13 Natural products synthesized via cross-electrophile couplings. 
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