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ABSTRACT

We study two conjectures introduced by Flach and Morin in [FM18] for schemes

over a perfect �eld of characteristic p > 0. The �rst conjecture relates a p-adic

extension of the étale motivic cohomology with compact support on general

schemes introduced by Geisser in [Gei06] to rigid cohomology with compact

support, and is proved here. The second, relates a p-adic Borel-Moore mo-

tivic homology with the dual of rigid cohomology with compact support, and

is proved in the smooth case. For this, we also prove a generalization of the

comparison theorem from rigid cohomology to overconvergent de Rham-Witt

cohomology in [DLZ11].
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C h a p t e r 1

INTRODUCTION

1.1 Notation

k will denote a perfect �eld of characteristic p > 0. W (k) will be its Witt ring,

and K := W (k) ⊗ Q will be the �eld of fractions. We will use W = W (k)

when talking of the formal scheme Spf W rather than the scheme Spec W (k).

Let Schd/k denote the category of separated and �nite type schemes over k of

dimension ≤ d. In the case where d =∞ we just use Sch/k. Let FSch/W be

separated and �nite type formal schemes over Spf W . In this thesis, we will

consider all schemes and formal schemes to be separated and �nite type.

In the derived category D(A) for some abelian category A, and a map f :

A→ B, let [
A

f→ B
]

:= Cone(A
f→ B)[−1].

For a complex C of abelian groups, let

CQ := C ⊗Z Q.

1.2 Motivation

For a variety X over a perfect �eld k of characteristic p > 0, there exist

various constructions of cohomology theories with coe�cients in Zp or Qp,

and with a suitable X satisfy the properties of Weil cohomologies (in the sense

of [Kle68, 1.2]). For X smooth and proper, crystalline cohomology is a good

cohomology theory (see [Ber74] and [BO78]), and can be computed as the

hypercohomology of the de Rham-Witt complex WΩ•X/k by [Ill79, Proposition

2.1]. This endows it with a Frobenius action

φ : σ∗RΓ(X/W (k))→ RΓ(X/W (k))

and a slope �ltration on (H∗(X/W (k))⊗K).

For a general variety X over k, Berthelot de�ned rigid cohomology with co-

e�cients in the fraction �eld K of W (k), by calculating a cohomology of a

suitable subcomplex of the de Rham complex in a rigid analytic space over K
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related to X. This also has a version with compact support, and has various

nice properties such as existence of a Frobenius ( [Ber96]), �nite dimension-

ality of cohomology groups ( [Ber97b]), and in the case of smooth schemes a

Poncairé duality and Künneth formula ( [Ber97a]).

On the other hand, we can consider construction on the motivic side: motivic

cohomology, motivic cohomology with compact support, Borel-Moore motivic

homology, and motivic homology. We can also consider the étale versions of

these theories. These are well behaved on smooth quasi-projective schemes.

In order to extend this to general varieties over k, [Gei06] used an analog

method to Voevodsky's use of cdh topology in order to add abstract blowups

to the Nisnevich topology, and considers an eh topology where he adds abstract

blowups to the étale topology. Under strong resolution of singularities, this

allows to extend the étale motivic cohomology theories to general schemes.

We may consider a p-adic completion of the above étale motivic cohomology

and Borel-Moore homology theories. One place where these theories arise is in

the study of vanishing order for zeta functions at integers n on proper regular

arithmetic schemes as explained in [FM18, Chapter 5].

Based on results on proper smooth schemes over k, we expect certain relations

between the p-adic completion of the étale motivic cohomology with compact

supports (resp. p-adic completion of the étale Borel-Moore homology) with

rigid cohomology with compact support (resp. dual of rigid cohomology with

compact support), as stated below in Conjecture 1.3.1 (resp. Conjecture 1.3.2).

These relations hold in the case of proper-smooth schemes as shown in [FM18,

Proposition 7.21].

1.3 Main Results

Let Z(n) be the complex of étale sheaves on Sch/k de�ned in [SV00], and let

Zc(n) := zn(−, 2n−∗) denote the complex of étale sheaves from Bloch's higher

Chow complex de�ned in [Blo86].

For a scheme X in Schd/k, under strong resolution of singularities R(d) (see

De�nition 3.1.4), let

RΓc(Xeh,Qp(n)) :=

(
R lim←−

r

RΓc(Xeh,Z(n)/pr)

)
Q
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as in De�nition 3.3.2. Then, we expect the following relation with rigid coho-

mology with compact support:

Conjecture 1.3.1 (Conjecture A). Under R(d), for a separated, �nite type

k-scheme X, and n ∈ Z, there exists an isomorphism

RΓc(Xeh,Qp(n))
∼→
[
RΓrig,c(X/K)

pn−φ→ RΓrig,c(X/K)
]

We also de�ne a p-adic Borel-Moore homology theory:

RΓ(X,Qc
p(n)) :=

(
R lim←−

r

RΓc(Xet,Zc(n)/pr)

)
Q

.

We expect the following relationship with the dual of rigid cohomology with

compact support:

Conjecture 1.3.2 (Conjecture B). For a separated, �nite type k-scheme X

of dimension d, and n ∈ Z, there exists an isomorphism

RΓ(Xet,Qc
p(n))

∼→
[
RΓrig,c(X/K)∗

pn−d−φ→ RΓrig,c(X/K)∗
]

We prove Conjecture A in Theorem 4.0.1, and we prove Conjecture B in the

case where X is smooth over k in Theorem 6.1.1.

The proof of Conjecture B in the smooth case uses a generalization of one of

the main results in [DLZ11]:

Theorem 1.3.3. [DLZ11, Theorem 4.40] Let X be a smooth quasi-projective

scheme over k. Then we have a natural quasi-isomorphism

RΓrig(X/K)
∼→ RΓ(X,W †Ω•X/k)⊗Q.

We generalize this result in order to drop the quasi-projectiveness condition

in Theorem 5.5.5 by use of simplicial and cohomological descent methods.

1.4 Outline

In Chapter 2, we introduce the necessary background. Mainly the cohomo-

logical descent and simplicial techniques from [Con03], and di�erent p-adic

cohomologies and their relations. In particular, we summarize some of the
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notation and main results from the rigid cohomology version of [CT03], which

will allow us to use simplicial methods on rigid cohomology.

In Chapter 3, we explain the construction of the eh-site and extension of étale

motivic cohomology to singular varieties done in [Gei06].

In Chapter 4, we prove Conjecture A. In order to do so, for a given scheme

X, we �rst form (under assumption of strong resolution of singularities) a

hypercovering in the eh site by smooth schemes, which is also a proper hyper-

covering. This will allow cohomological descent on the motivic side, and on

the rigid side. Doing this functorially, and showing independence of choices

will allow to prove Conjecture A.

In Chapter 5, we prove the generalization of [DLZ11, Theorem 4.40] to smooth

schemes. In order to transfer their machinery, we �nd a hypercovering of a

given smooth scheme by a�ne standard smooth schemes, and use some of their

results and a vanishing result to generalize the methods.

In Chapter 6, we use the result from Chapter 5 and Poincaré duality on rigid

cohomology to prove Conjecture B for smooth schemes.
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C h a p t e r 2

BACKGROUND

2.1 Cohomological Descent

Simplicial Objects

We summarize some of the results and notation from [Con03]. Let C be a

category admitting �nite inverse limits.

• We denote by ∆+ the category of objects [n] = {0, ..., n} for n ≥ −1,

with morphisms given by non-decreasing maps of ordered sets [n]→ [m].

• We denote by ∆ the full subcategory of objects [n] with n ≥ 0.

• We denote by ∆+
≤N the full subcategory of ∆+ of objects [n] with −1 ≤

n ≤ N .

• We denote by ∆≤N the full subcategory of ∆ of objects [n] with 0 ≤ n ≤
N .

Then, we consider the following:

• Simp(C) is the category of simplicial objects in C. That is, contravariant
functors X• : ∆→ C, where Xn = X•([n]).

• Simp+(C) is the category of augmented simplicial objects in C. That is,
contravariant functors X•/S : ∆ → C, where S denotes the image of

[−1].

• SimpN(C) is the category of N-truncated simplicial objects in C. That

is, contravariant functors X•≤N : ∆≤N → C.

• Simp+
N(C) is the category of N-truncated augmented simplicial objects in

C. That is, contravariant functors X•≤N/S : ∆+
≤N → C.

Let skN : Simp(C) → SimpN(C) and sk+
N : Simp+(C) → Simp+

N(C) denote the
N -skeleton functor

skN(X•) = X•≤N .
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Since C is taken to have �nite inverse limits, we have the following:

Theorem 2.1.1. [Con03, Theorem 3.9] For any N ≥ 0, skN admits a right

adjoint coskN : SimpN(C) → Simp(C). Similarly for augmented objects and

N ≥ −1.

All of the above may be generalized to multisimplicial objects (see [Con03,

De�nition 3.13]).

Hypercovers

De�nition 2.1.2. Let P be a class of morphisms in C which is stable under

base change, preserved under composition and containing all isomorphisms. A

simplicial object X• in C is said to be a P-hypercovering if, for all n ≥ 0, the

natural adjunction map

X• → coskn(skn(X•))

induces a map

Xn+1 → coskn(skn(X•))n+1

in degree n+ 1 which is in P.

Two common examples will be when C is some category of spaces (e.g. schemes),

when P is the class of proper surjective maps, in which case we will talk of

proper hypercoverings ; and when P is the class of étale surjective maps, in

which case we will call them étale hypercoverings.

In order to construct hypercoverings, we introduce the notion of split simplicial

objects:

De�nition 2.1.3. We say that a simplicial object X• is split if there exist

subobjects NXj in each Xj such that the natural map⊔
φ:[n]�[m]

NXφ → Xn

is an isomorphism for every n ≥ 0, where NXφ := NXm for a surjection

φ : [n] � [m], and the natural maps are given by the composition

NXφ ⊂ Xm
X•(φ)→ Xn.

We de�ne truncated and augmented cases similarly.
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We denote by NXm,φ the image of NXφ ⊂ Xm under this isomorphism. Note

that for any epimorphism φ : [n] � [m] we have a commutative map

NXm,id[m]
⊂

∼

��

Xm

X•(φ)

��

NXm

∼
99

∼

&&

NXn,φ ⊂ Xn

.

By [Con03, Theorem 4.12], given any split n-truncated augmented simplicial

scheme X•≤n/S with the splitting given by {NXk}0≤k≤n, in order to extend

it to a split (n + 1)-truncated scheme X•≤n+1/S it su�ces to give an object

NXn+1 and a morphism

β : NXn+1 → coskSn(X•≤n)n+1.

Following the notation from [CT03, Section 11.2], we denote the corresponding

n+ 1 augmented simplicial object above by

ΩS
n+1(X•≤n, NX0, ..., NXn+1) ∈ Simp+

≤n+1(C).

This construction can be done similarly for the non-augmented case.

Remark. Note that if we construct stepwise a split object X• using the above,

by choosing β to be in P for every n we can form a P-hypercovering.

Cohomological Descent

Consider C to be some category of spaces, and X• a simplicial object in C.

De�nition 2.1.4. A F• sheaf of sets (resp. groups, resp. rings) on X• consists

of a collection {Fn} where Fn is a sheaf of sets (resp. groups, resp. rings) on

Xn satisfying some compatibility conditions. More explicitly, given φ : [n] →
[m], we have a map of sheaves

[φ] : X(φ)∗(Fn)→ Fm

satisfying

[φ] ◦X(φ)∗[ψ] = [φ ◦ ψ]

for composable φ, ψ.
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Given an augmented simplicial object X•/S, let w• : X• → S denote the

augmented structure. Then, we have a map of topoi

w = (w∗•, w•∗) : X̃• → S̃

where for a sheaf G on S,

(w∗•(G ))n := w∗nG

and for a sheaf F• on X•,

(w•∗(F•)) = ker(w0∗F0 → w1∗F1).

Similarly we can do this for abelian sheaves, rings and modules over some

ring. We can demonstrate that there are enough injectives and thus we obtain

functors

w∗ : D+(S)→ D+(X•), Rw∗ : D+(X•)→ D+(S)

on the abelian level.

De�nition 2.1.5.

• We say that w : X• → S is a morphism of cohomological descent if the

natural transformation

id→ Rw∗ ◦ w∗

on D+(S) is an isomorphism.

• w : X• → S is said to be universally of cohomological descent if for

every base change S ′ → S, the augmentation w′ : X• ×S S ′ → S ′ is of

cohomological descent.

2.2 Rigid Cohomology

We use [CT03] de�nition of rigid cohomology in order to work without as-

sumptions of closed embeddings into a smooth formal scheme. We summarize

their main notation and results below.

De�nition 2.2.1.

• A pair of schemes (X,X) consists of an open immersion X ↪→ X over

k.
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• A triple of schemes X = (X,X,X ) consists of a pair (X,X), and a closed

immersion X ↪→ X ×W k for a formal W-scheme X of �nite type over

W . We will denote triples by their corresponding fraktur letter.

• Given a pair (X,X), a (X,X)-triple Y = (Y, Y ,Y) is given by a com-

mutative diagram

Y //

��

Y

��

// Y

��

X //

��

X

��

k k //W

Morphisms are just pairs (and triples) of morphisms w = (ẘ, w) : (X,X) →
(Y, Y ) (and w = (ẘ, w, ŵ) : X→ Y) over (k, k) (and (k, k,W)) �tting into the

commutative diagrams

X

ẘ
��

// X

w
��

X

ẘ
��

// X

w
��

// X
ŵ
��

Y // Y Y // Y // Y

De�nition 2.2.2.

• A morphism of pairs w : (Y, Y )→ (X,X) is strict if Y = w−1(X).

• A morphism of triples w = (ẘ, w, ŵ) : Y → X is strict if Y = ŵ−1(X)

and Y = w−1(X).

De�nition 2.2.3. Let ŵ : Y → X be a morphism of formal schemes, and let

Y be a subset of Y . Then, ŵ is smooth around Y if there exists an open formal

subscheme U of Y such that Y ⊂ U and ŵ|U : U → X is smooth.

De�nition 2.2.4. For a formal scheme P over W , we have an associated

rigid analytic space PK over SpmK in the sense of Raynaud [Ray74], and a

specialization morphism

sp : PK → P .

Given a k-subscheme X in the special �ber P0 := P ×W k, we let

]X[P := sp−1(X)

with the induced Grothendieck topology from PK , and call it the tube of X in

PK .
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Given a morphism of triples w : Y→ X, we naturally get a morphism of rigid

analytic spaces

w̃ :]Y [Y→]X[X .

Hypercoverings

De�nition 2.2.5.

(1) For a simplicial pair (Y•, Y •)→ (X,X):

� (Y•, Y •) → (X,X) is an étale-proper hypercovering if Y• → X

is an étale-hypercovering and Y • → X is proper (i.e. for all n,

Y n+1 → coskXn (Y •≤n)n+1 is proper, possibly non-surjective).

� (Y•, Y •) → (X,X) is an étale-étale hypercovering if both Y• → X

and Y • → X are étale hypercoverings, and (Yn, Y n) → (X,X) is

strict for all n.

� (Y•, Y •) → (X,X) is an proper-proper hypercovering if Y• → X is

a proper-hypercovering, Y • → X is proper, and (Yn, Y n)→ (X,X)

is strict for all n.

(2) A simplicial triple Y• → X is a étale-proper (resp. étale-étale, resp.

proper-proper) hypercovering if:

i) (Y•, Y •)→ (X,X) is an étale-proper (resp. étale-étale, resp. proper-

proper) hypercovering of pairs.

ii) coskXn (Y•≤n)l → coskXn−1(Y•≤n−1)l is smooth around coskXn (Y•≤n)l

for any n and l.

• A simplicial (X,X)-triple Y• is a étale-proper (resp. étale-étale, resp.

proper-proper) hypercovering if:

i) (Y•, Y •)→ (X,X) is an étale-proper (resp. étale-étale, resp. proper-

proper) hypercovering of pairs.

ii) coskWn (Y•≤n)l → coskWn−1(Y•≤n−1)l is smooth around coskXn (Y•≤n)l

for any n and l.

• We de�ne truncated versions similarly.
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Lemma 2.2.6. For an n-truncated étale-proper (resp. étale-étale, resp. proper-

proper) hypercovering Y•≤n → X, we have that

coskXn(Y•≤n) = (coskXn (Y•≤n), coskXn (Y •≤n), coskXn (Y•≤n))→ X

is an étale-proper (resp. étale-étale, resp. proper-proper) hypercovering.

Proof. This follows from the fact that for 0 ≤ n ≥ m, by [Con03, Corollary

3.11] we have a natural isomorphism

coskm(skm(−))
∼→ coskn(skn(coskm(skm(−))).

Overconvergence

We introduce strict neighborhoods, to deal with overconvergence in the case

of non-proper schemes:

De�nition 2.2.7. [Ber96, Def.1.2.1] Given a triple (X,X,X ), a subset V of

]X[X is called a strict neighborhood of ]X[X in ]X[X if {V, ]X \ X[X} is an

admissible covering of ]X[X . We will simply call V a strict neighborhood if

there is no possibility of confusion about ]X[X and ]X[X .

For admissible open subsets V ⊂ U of ]X[X , denote by jUV : V → U the

inclusion. In the case U =]X[X , simply set jV := j
]X[X
V .

By [Ber96, Prop. 1.2.10.(i)], intersections of strict neighborhoods are still

strict neighborhoods, so these form a �ltered category. Therefore, given a

sheaf of abelian groups F on a strict neighborhood U , we de�ne the sheaf of

overconvergent sections of F on ]X[X along ]X \X[X as

j†UF := lim−→
V⊂U

jV ∗(j
U
V )−1F

where V runs through strict neighborhoods contained in U . We denote

j† := j†
]X[X

for when U =]X[X .

If F is a sheaf of rings on U (resp. O-module for O a sheaf of rings on U),

then j†UF is a sheaf of rings on ]X[X (resp. a j†UO-module).

Given a morphism of triples w : Y→ X, consider the natural map

w̃−1(j†O]X[X
)→ j†O]Y [Y

.
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For a sheaf E of coherent j†O]X[X
-modules, we can de�ne

w†E := w̃−1E ⊗w̃−1(j†O]X[X
) j
†O]Y [Y

which by [CT03, Prop. 2.10.1] gives a functor

w† : Coh(j†O]X[X
)→ Coh(j†O]Y [Y

).

Given a simplicial triple X•, we get a simplicial objects of rigid spaces

]X•[X•

and we may consider sheaves of rings O]X•[X•
as in De�nition 2.1.4. We may

further apply the j† at every n to consider sheaves of rings j†O]X•[X•
and

sheaves of j†O]X•[X•
-modules. We may generalize as follows:

De�nition 2.2.8. We say a sheaf E• of j†O]X•[X•
-modules is coherent if

• En is a sheaf of coherent j†O]Xn[Xn
-modules for all n.

• For any φ : [n]→ [m], the map

j†O]Xm[Xm
⊗φ̃−1j†O]Xn[Xn

φ̃−1En → Em

is an isomorphism, where φ̃ :]Xm[Xm→]Xn[Xn is the map induced by φ.

Given an augmented simplicial triple

w• : Y• → X

and a complex of sheaves F •
• of w̃

−1
• (j†O]X[X

)−modules, let I•• be an injective

resolution of F •
• in w̃−1

• (j†O]X[X
)−mod. Then, de�ne Rw•∗F •

• (denoted by

RC†(X,Y•; F ) in [CT03]) to be the total complex associated to

... ... ... ...

0 // w̃0∗I1
0 //

//

OO

w̃1∗I1
1 //

//
//

OO

...

0 // w̃0∗I0
0 //

//

OO

w̃1∗I0
1 //

//
//

OO

...

0

OO

0

OO

...

(2.1)
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where the vertical maps come from maps in I•p , and the horizontal come from

the simplicial structure. Note that these are complexes of abelian sheaves on

]X[X .

The n-truncated version w•≤n : Y•≤n → X is de�ned similarly, taking the total

complexes of 2.1 and setting the columns larger than n to 0.

We will be particularly interested in the case when X = (Spec k, Spec k, Spf W),

in which case we will denote

RΓ(]Y •[Y• ,F
•
• ) = Rw•∗F

•
• .

De�nition 2.2.9. With the same w• : Y• → X, suppose that Y• is smooth

over X around Y•. We say that w• is de Rham descendable if, for any sheaf E

of coherent j†O]X[X
-modules, the canonical homomorphism

E → Rw•∗

(
w̃†•E ⊗j†O]Y •[Y•

j†Ω•
]Y •[Y•/]X[X

)
is an isomorphism in D+(Z]X[X

).

We say w• is universally de Rham descendable if, for every morhpism Z→ Y

of triples, the base change

Y• ×X Z→ Z

is de Rham descendable.

2.3 De�nition of rigid cohomology

De�nition 2.3.1. Let Y• be a simplicial (X,X) triple, such that Yn →W is

smooth around Yn for all n. We say Y• is a universally de Rham descendable

hypercovering of (X,X) if for any (X,X)-triple Z, the base change

Y• ×(X,X,W) Z→ Z

is de Rham descendable.

Proposition 2.3.2. Given (X,X), there always exists a universally de Rham

descendable hypercovering Y• of (X,X). Furthermore, if Y• a (X,X)-triple

is an étale-proper (resp. étale-étale, resp. proper-proper) hypercovering, then,

Y• is a universally de Rham descendable hypercovering of (X,X)

Proof. The �rst part is [CT03, Corollary 10.1.5]. For the second part, see

[CT03, Example 10.1.6.] for étale-étale and étale-proper cases, and [Tsu03,

Proposition 2.2.2.] for the proper-proper case.
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De�nition 2.3.3. Given a k-scheme X, consider an open immersion into a

proper k-scheme X; this gives a pair (X,X). Let Y• be any universally de

Rham descendable hypercovering of (X,X), then set

RΓrig(X/K) := RΓ(]Y •[Y• , j
†Ω•

]Y •[Y•
).

Such a X always exists by Nagata, and by [CT03], a universally de Rham

descendable hypercovering always exists (Corollary 10.1.5), this de�nition is

independent of the choice of universally de Rham descendable hypercovering

Y• (Proposition 10.4.3.), compacti�cation X (Corollary 10.5.4.) and agrees

with Berthelot's original de�nition of rigid cohomology (Theorem 10.6.1).

Note in the case that X is quasi-projective, we may �nd some triple X =

(X,X,X ) with X proper (in fact projective) and X a smooth formal W-

scheme. Then, we may take Y• to be the constant triple over X (that is,

Yn = X), and

RΓrig(X/K) ∼= RΓ(]X[X , j
†Ω•

]X[X
).

One important result that we will use later on, is the vanishing of rigid coho-

mology:

Theorem 2.3.4. [Tsu04, Theorem 6.4.1] Given a scheme X over k, there

exists an integer c such that for i > c, H i
rig(X/K) = 0.

2.4 The Tsuzuki Functor

When constructing some simplicial triple Y• to compute rigid cohomology, we

may keep control of (Y•, Y •) using a split construction (see De�nition 2.1.2).

However, it proves hard to embed into some simplicial formal scheme Y•,
smooth over W , or even to construct it one step at a time.

Noting that for an N -truncated étale-étale (resp. étale - proper, resp. proper-

proper) hypercovering Y•≤N of (X,X), that

cosk(X,X,W)
N (Y•≤N)

is also a étale-étale (resp. étale - proper, resp. proper-proper) hypercovering

of (X,X), then we see that we just need to do our construction at the N -

truncated level. In fact, the construction below shows that all we need, is a

closed immersion of Y N into some smooth formal W-scheme Y . Doing this,
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we will lose control above N , but for vanishing reasons, this will not a�ect

computations for large enough N .

We use the Tsuzuki functor introduced in [CT03, Section 11.2]. Given a cate-

gory C with �nite inverse limits, a non-negative integer N , and an object X,

we construct a N -truncated simplicial object ΓCN(X) in Simp≤N(C) as follows:

De�nition 2.4.1. Set

ΓCN(X)m :=
∏

φ:[N ]→[m]

Xφ

where Xφ = X. To de�ne the simplicial maps, given α : [m′]→ [m], we de�ne

Γα : ΓCN(X)m → ΓCN(X)m′ by

(cφ)φ:[N ]→[m] 7→ (dψ)ψ:[N ]→[m′]

where dψ := cα◦ψ, and the product is in C.

Note that this is just a product of copies of the given object X. In the case of

augmented simplicial objects over some S, we take the product over S.

Given any Y•≤N in Simp≤N(C), and a morphism f : YN → X in C, we construct
a morphism

Y•≤N → ΓCN(X)

by the commutative diagram

Ym //

Y (φ)

��

ΓCN(X)m =
∏

ψ:[N ]→[m] Xψ

pφ

��

YN
f

// X = Xφ

for any m and φ : [N ] → [m], where pφ is just the projection onto the φ :

[N ]→ [m] factor.

Letting C be the category of formal schemes over Spf(W) or of schemes over

Spec(W (k)), we have the following:

Lemma 2.4.2. Let C be as above. If f : YN → X is a (closed) immersion,

and Y•≤N and X are separated, then the induced morphism

Y•≤N → ΓCN(X)•≤N

is a (closed) immersion.
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Proof. We will do the case where C are schemes over W (k), but the case of

formal schemes follows identically.

For any 0 ≤ m ≤ N , consider any face morphism δ : YN → Ym (with δ = idYN
if m = N), and a corresponding degeneracy map σ : Ym → YN which is a

section to δ. Then, we have

YN
δ //

""

Ym

��

W (k)

where the vertical and diagonal maps are separated. This shows that δ is also

separated. Then, by the commutative diagram

Ym
σ // YN

δ
��

Ym

we see that σ is a closed immersion. Finally, by the de�nition of the map

gm : Ym → Γ
W (k)
N (X)m, we have a commutative diagram

Ym
gm

//

σ

��

Γ
W (k)
N (X)m

prσ

��

∏
φ:[N ]→[m]

X

YN
f

// X

which shows that f ◦ σ, and thus gm is a (closed) immersion.

This will be useful by the following result:

Proposition 2.4.3. Suppose (Y•≤N , Y •≤N)→ (X,X) is an N-truncated étale-

proper (resp. étale-étale, resp. proper-proper) hypercovering. Suppose further

that there exists a closed immersion Y N ↪→ Y ×k W for some smooth formal

W-scheme Y. Then,

cosk(X,X,W)
N (Y•≤N , Y •≤N ,Γ

W
N (Y)) = (coskXN(Y•≤N), coskXN(Y •≤N), coskWN (ΓWN (Y))

is an étale-proper (resp. étale-étale, resp. proper-proper) hypercovering of

(X,X). In particular, cosk(X,X,W)
N (Y•≤N , Y •≤N ,Γ

W
N (Y)) is a universally de

Rham descendable hypercovering of (X,X).

Proof. The �rst part follows from the proof of [CT03, Prop. 11.4.1.] (note that

using
∏

0≤m≤N
ΓW(Ym) there instead of just ΓW(Y) does not seem necessary).

The second part follows by Proposition 2.3.2.
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2.5 Crystalline Cohomology

The main reference is [BO78]. Given a scheme X over k, we may consider the

crystalline site Cris(X/Wn) with objects given by PD-thickenings (U ↪→ T, δ)

over Wn for Zariski opens U of X. Let (X/Wn)cris denote its topos. The

morphism and topology is explained in �5 loc. cit. One can also take the direct

limit of the sites (X/Wn)crys (see �7 loc. cit.), and obtain a site Cris(X/W),

with a corresponding topos (X/W)cris.

Let uX/Wn : (X/Wn)cris → XZar and uX/W : (X/W)cris → XZar denote the

morphism of topoi. Then:

Theorem 2.5.1. [BO78, Proposition 7.22]

RΓ(X/W ,OX/W) ∼= R lim←−
n

RΓ(X/Wn, OX/Wn)

RuX/W∗OX/W ∼= R lim←−
n

RuX/Wn∗OX/Wn .

2.6 Witt de-Rham Cohomology

The main reference is [Ill79]. For a given smooth scheme X, we may consider

the complex of étale sheaves WnΩ•X/k on X. We can consider the pro-complex

W•Ω
•
X/k as a DGA with additional maps

F : WnΩi
X/k → Wn−1Ωi

X/k,

V : WnΩi
X/k → Wn+1Ωi

X/k

satisfying certain compatibility conditions.

We may also consider the limit

WΩ•X/k := lim←−
n

WnΩ•X/k

and endow it with a Frobenius endomorphism φ de�ned by φ = piF onWΩi
X/k.

By the proof of [Ill79, Proposition 2.1], we have that the canonical map

WΩi
X/k → R lim←−

n

WnΩi
X/k

is a quasi-isomorphism (even though the actual statement of the proposition

also assumes properness, we do not need it for this result).

For X proper and smooth, we can then consider the hypercohomology

RΓ(X,WΩ•X/k)

which is a perfect complex of W (k)-modules by [Ill79, Theorem 2.7].
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2.7 Comparisons

Theorem 2.7.1. If X is smooth, and there exists a closed embedding into a

smooth formal scheme X overW, then there exists a natural quasi-isomorphism

Rsp∗Ω
•
]X[X
∼= RuX/W (k)OX/W (k),Q ∼= WΩ•X,Q

on XZar. Therefore, if X is smooth and projective, this induces natural quasi-

isomorphisms

RΓrig(X/K) ∼= RΓ(X/W (k))Q ∼= RΓ(X,WΩ•X)Q.

Proof. From the proof of [Ber97b, Proposition 1.9] we have that

Rsp∗Ω
•
]X[X

∼← sp∗Ω
•
]X[X
∼= (sp∗O]X[X )⊗ Ω•X .

For the �rst isomorphism, given any open a�ne formal scheme U = SpfA ⊂ X ,
we see that sp−1(U) ∼= Spm(A ⊗K) is a�noid and thus quasi-Stein, thus its

closed subspace sp−1(U)∩]X[X is also quasi-Stein, and thus satis�es Kiehl's

Theorem B. Therefore, H i(sp−1(U)∩]X[X ,Ω
k
]X[X

) = 0 for all k and i > 0.

Since Risp∗Ω
k
]X[X

is the sheaf associated to the presheaf

U ∩X 7→ H i(sp−1(U)∩]X[X ,Ω
k
]X[X

)

this proves the vanishing of the higher cohomologies.

Then, there exists a natural morphism

(sp∗O]X[X )⊗ Ω•X → P̂(I)⊗ Ω•X ,Q

where I is the ideal of X in X , P(I) is the PD-envelope of X in X , and
P̂(I) its p-adic completion. This is a quasi-isomorphism when X is smooth.

Note that even though properness is assumed in the statement of Berthelot's

proposition, we do not require it for this quasi-isomorphism.

Next, by [BO78], we have natural quasi-isomorphisms

R lim←−
n

RuX/Wn(k)OX/Wn(k)

[BO78, Th.7.22.2]∼= RuX/W∗OX/W
[BO78, Th.7.23]∼= P̂(I)⊗Ω•X .

Finally, by [Ill79], we have natural quasi-isomorphisms

R lim←−
n

RuX/Wn(k)OX/Wn(k)

[Ill79, II.Th.1.4.]∼= R lim←−
n

WnΩ•X
[Ill79, II.Pr.2.1]∼= WΩ•X
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where we again note that even though the Proposition for the last quasi-

isomorphism assumes properness, the quasi-isomorphism holds without proper-

ness.

Tensoring with Q these last quasi-isomorphisms we complete the proof.
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C h a p t e r 3

P-ADIC MOTIVIC COHOMOLOGY ON SINGULAR

VARIETIES

We recall notation and results from [Gei06].

3.1 The eh-topology

Fix a perfect �eld k. For d ∈ N ∪∞, let Schd/k be the category of separated

schemes of �nite type over k of dimension ≤ d (and drop the d in the case

d =∞), and Smd/k the full subcategory of smooth schemes over k.

De�nition 3.1.1. The étale h-topology (abbreviated eh-topology) on Sch/k,

is the Grothendieck topology generated by the following coverings:

1) Étale coverings.

2) Abstract blowups {Z → X,X ′ → X} coming from a cartesian square

Z ′
i′ //

f ′

��

X ′

f
��

Z
i // X

where f is a proper morphism, i a closed embedding, and f induces an

isomorphism X ′ − Z ′ ∼→ X − Z.

We state the following result (cf. [SV00, Lemma 5.8]:

Lemma 3.1.2. [Gei06, Lemma 2.2.a] Every proper morphism p : X ′ → X,

such that for every point x ∈ X there is a point x ∈ X with p(x′) = x which

induces an isomorphism on the residue �elds, is an eh-covering.

De�nition 3.1.3. We call a covering as in Lemma 3.1.2 a proper eh-covering.

Remark. These are called proper cdh-coverings in [SV00].

De�nition 3.1.4. For d ∈ N ∪ ∞, we say the strong form of resolution of

singularities holds for varieties up to dimension d if the following hold:
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• For every integral separated scheme X ∈ Schd/k, there is a proper,

birational map f : Y → X with Y ∈ Sm/k.

• For every smooth scheme X ∈ Smd/k and every proper birational map

f : Y → X, there is a sequence of blow-ups along smooth centers Xn →
Xn−1 → ...→ X1 → X such that Xn → X factors through f .

If this holds, we denote it by R(d).

Remark. Some known cases of resolution of singularities:

• R(∞) when char(k) = 0, by [Hir64].

• R(2) in general, and R(3) for k algebraically closed of char(k) = p > 5,

by [Abh56].

Note that R(d) makes all schemes in Schd/k locally smooth in the eh-topology

(see Lemma 4.1.3).

The inclusion of smooth schemes then induces a morphism of sites

ρd : (Schd/k)eh → (Smd/k)et.

This in turn induces a morphism of topoi under R(d):

Lemma 3.1.5. [Gei06, Lemma 2.5.a] Assume R(d) holds. Then the functor

ρd induces a morphism of topoi

ρd : (Schd/k)∼eh → (Smd/k)∼et.

3.2 Cohomology for the eh-topology

By usual arguments, (Schd/k)∼eh has enough injectives, which allows to de�ne

cohomology groups RΓ(Xeh,F ) as the right derived functor for the global

section functor Γ(Xeh,−). One of the advantages of eh-topology is that we

can de�ne the cohomology with compact support as follows:

De�nition 3.2.1. Let X ∈ Schd/k. Take an open embedding j : X → X

with dense image into a proper scheme, and let i : Z → X be the closed

complement with reduce subscheme structure. For F ∈ (Schd/k)∼eh, take an

injective resolution F → I • in (Schd/k)∼eh, and de�ne

RΓc(Xeh,F ) :=
[
I •(X)→ I •(Z)

]
.



22

This is independent of the choice of X by [Gei06, Lemma 3.4], and has the

expected properties, such as contravariance for proper maps, covariance for

open embeddings, and long exact sequences for open-closed decompositions.

3.3 Motivic cohomology for singular varieties

Using R(d), we de�ne motivic cohomology on any scheme X ∈ Schd/k by

considering RΓ(Xeh, ρ
∗
dZ(n)), where Z(n) is Suslin-Voevodsky's motivic com-

plex [SV00, De�nition 3.1] for smooth schemes. However, since we will be

interested in a p-adic completion of this cohomology, we will use the identi�-

cation

Z/pr(n) ∼= WrΩ
n
log[−n]

on Sm/k from [GL00], Theorem 8.5, where WrΩ
n
log (denoted ν

n
r there) is the

subsheaf ofWrΩ
n étale locally generated by sections of the forms dlogf1...dlogfn,

de�ned in [Ill79] II.5.7.

Under R(d), by the same proof as [Gei06] Theorem 4.3 mod pr we get that this

motivic cohomology on the eh-site coincides with the usual motivic cohomology

in Smd/k.

Theorem 3.3.1. Assuming R(d), for any n ∈ N and r ≥ 0 we have

Z/pr(n)
∼→ Rρd∗ρ

∗
dZ/pr(n) on Smd/k.

In particular, for any X ∈ Smd/k,

RΓ(Xet,Z/pr(n)) ∼= RΓ(Xeh, ρ
∗
dZ/pr(n)).

We then consider the p-adic completion of this cohomology:

De�nition 3.3.2. Assume R(d). For X ∈ Schd/k and n ∈ Z set

RΓ(Xeh,Zp(n)) := R lim←−
r

RΓ(Xeh, ρ
∗
dZ(n)/pr)

and

RΓ(Xeh,Qp(n)) := RΓ(Xeh,Zp(n))Q,

and the cohomology with compact support

RΓc(Xeh,Zp(n)) := R lim←−
r

RΓc(Xeh, ρ
∗
dZ(n)/pr)

and

RΓc(Xeh,Qp(n)) := RΓc(Xeh,Zp(n))Q,
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C h a p t e r 4

CONJECTURE A

In this chapter, we prove Conjecture A:

Theorem 4.0.1 (Conjecture A). Assume R(d). Let X be in Sch/k with

dimX ≤ d. Then, for any n ∈ N,

RΓc(Xeh,Qp(n))
∼→
[
RΓrig,c(X/K)

pn−φ→ RΓrig,c(X/K)
]

functorially in X.

In Section 4.1, we construct proper-eh hypercoverings with suitable properties

for the proof of Theorem 4.0.1 in Section 4.2.

4.1 Proper eh-hypercoverings

We generalize the notion of a proper hypercovering:

De�nition 4.1.1. For an augmented simplicial scheme a : X• → Y , we say

X• is a proper eh-hypercovering if the natural maps

fn+1 : Xn+1 → (cosknskn(X•))n+1

are proper-eh coverings for all n ≥ −1.

We prove some properties of proper eh-coverings which will be useful in the

construction of proper-eh hypercoverings:

Lemma 4.1.2. Proper eh-coverings are stable under base change, preserved

under composition and contain all isomorphisms.

Proof. The only thing that needs proving is the stability under base change.

Given a proper eh-cover p : X → Z, and a morphism f : Y → Z, consider

X×Z Y with morphism p′ and f ′ to X and Y respectively. Then, p′ is proper.

Also, given any point y ∈ Y , consider a point x ∈ X lift f(y) =: z ∈ Z with

the same residue �eld. Then, since k(x) ⊗k(z) k(y) ∼= k(x), the point k(x)

factors through X ×Z Y .
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Lemma 4.1.3. Assuming R(d), for every scheme Y in Sch/k of dimension

≤ d there exists a proper eh-covering X → Y with X ∈ Sm/k.

Proof. Firstly, we can assume that X is integral since the reduced subscheme

and disjoint union of irreducible components are both eh-coverings. We pro-

ceed by induction on d. The base case d = 0 is thus trivial. So we assume it

holds true for dimension < d. Then, by R(d) we can �nd a proper birational

map

Y ′ → X

with Y ′ smooth, which is an isomorphism away from some proper closed sub-

scheme Z of X, and thus Y ′ t Z → X is an eh-covering. But by inductive

hypothesis, there is a proper eh-covering Z ′ → Z with Z ′ in Sm/k, and thus

Y := Y ′ t Z ′ → X is a proper eh-covering.

De�nition 4.1.4. We say X• → X is a peh-resolution if it is a split proper-eh

hypercovering, and for all n, Xn is smooth over k. We de�ne the truncated

version similarly.

Proposition 4.1.5. Assuming R(d), then for every scheme X in Schd/k there

exists a split proper eh-hypercovering X• → X with

Xm ∈ Sm/k for all m.

Proof. Assuming R(d), the proof is identical to the construction of proper

hypercoverings (for example in [Con03, Theorem 4.13]), replacing proper sur-

jective maps with proper-eh coverings at every step

NXn+1 → coskXn (X•≤n)n+1

using Lemma 4.1.3.

Constructing peh-resolutions in this manner, we show we can always re�ne

two given ones, and that we can construct them functorially.

Proposition 4.1.6. Assume R(d). Then,

i) Given two split proper eh-hypercoverings U•, V•/X, there exists a peh-

resolution W•/X and morphisms f• : W• → U•, g• : W• → V• over

X.
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ii) Given a morphism f : X → Y , and a peh-resolution b• : V•/Y , then

there exists a peh-resolution a : U•/X with a morphism f• : U• → V•

making

U•
f•
//

a
��

V•

b
��

X
f
// Y

commute.

Proof. For i), we again proceed by proceed by constructing the n-truncation of

W• one step at a time. For n = 0, taking a proper eh-covering NW0 = W0 →
U0 ×X V0 with NW0 smooth, then this satis�es the lemma at 0-truncation.

Assume we have constructed W•≤n satisfying the hypothesis. Then, let (−)′

denote coskXn sk
X
n (−) (e.g. U ′• = coskXn sk

X
n (U•)), let NUk's give the splitting,

and denote the proper eh-coverings used to construct the n + 1 step by β−
(e.g. βU : NUn+1 → U ′n+1).

Take a proper eh-covering

βW : NWn+1 → (W ′
n+1 ×U ′n+1

NUn+1)×V ′n+1
NVn+1,

where the morphisms W ′
n+1 to U ′n+1, V

′
n+1 are de�ned by functoriality of the

coskn map and NWn+1 is some smooth scheme. Then, looking at the compo-

sition

NWn+1
pW→ (W ′

n+1 ×U ′n+1
NUn+1)×V ′n+1

NVn+1 → W ′
n+1 ×U ′n+1

NUn+1 → W ′
n+1

we see that the two last maps are base changes by proper eh-coverings. So by

Lemma 4.1.2 all three are proper eh-coverings, and thus so is the composition

β : NWn+1 → W ′
n+1 which we can use in the construction of Wn+1 by the

same method as above. This then comes with obvious maps

NWn+1 → NUn+1, NVn+1, compatible with the maps on components on lower

skeleta, inducing maps Wn+1 → Un+1, Vn+1.

Part ii) follows from the proof of i) by taking a re�nement of the peh-resolution

W•/X and (V• ×Y X)/X.

Finally, since working on a�ne schemes will be easier later on, we introduce

the following:



26

De�nition 4.1.7. Given an augmented simplicial scheme X•/X, we say an

augmented simplicial scheme X ′•/X is a simplicial a�ne covering of X•/X if

there is a morphism f• : X ′• → X• over X such that for all n, X ′n = tα∈InXn,α

for a �nite open covering by a�nes Xn
∼= ∪α∈InXn,α such that the image of

each Xn,α in X is contained in some a�ne open subscheme of X.

These will always exist under nice enough conditions, and by a proof similar

to 4.1.6 we have:

Lemma 4.1.8. Let X•/X be a split proper hypercovering. Then:

i) [Nak12, Lemma 9.6] There exists some simplicial a�ne covering X ′•/X

of X•/X.

ii) [Nak12, Proposition 6.3.1] Given another split proper hypercovering

Y•/Y , and a commutative diagram

X•
g•
//

a
��

Y•

b
��

X
f
// Y

and any simplicial a�ne covering Y ′•/Y of Y•/Y , then there exists a

simplicial a�ne covering X ′•/X of X•/X and a morphism g′• : X ′• → Y ′•

�tting into the commutative diagram

X ′•
g′• //

a′•
��

Y ′•

b′•
��

X•
g•
//

a
��

Y•

b
��

X
f
// Y.

iii) [Nak12, Proposition 6.3.2] Given a two simplicial a�ne covering X ′•, X
′′
•/X

of X•/X, there exists a third simplicial a�ne covering X ′′′•/X of X•/X

re�ning X ′•, X
′′
• .

4.2 Proof of Conjecture A

The main ingredient for the proof is the following result:
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Theorem 4.2.1. [Nak12, Theorem 11.6.3] Suppose X is a proper scheme

over k. Then there exists a quasi-isomorphism

RΓrig(X/K)
∼→ RΓ(X•,WΩ•X•)Q,

functorial in split smooth proper hypercoverings X• → X.

Proof. We �x some h and some N > (h + 1)(h + 2)/2. Take some simplicial

a�ne covering X ′• of X•, which is possible by Lemma 4.1.8. Let X•,• be the

�ech diagram of X•,0 over X•, with Xlm := coskXl0 (X ′l)m = X ′l ×Xl ...×Xl X ′l .

Take an a�ne open covering X = ∪Xα, with closed embeddings Xα ↪→ Xα
into smooth formal schemes, and let Z = tXα, Z = tXα. Let

(Z•,Z•) = (coskX0 (Z), coskV0 (Z)))

be its �ech hypercovering. Then, we set

Xlmn := coskXlm0 (Xlm ×X Z)n = (Xlm ×X Z)×Xlm ...×Xlm (Xlm ×X Z) ∼=

∼= Xlm ×X (Z ×X ...×X Z) = Xlm ×X Zn.

Since the Xl are smooth, so are the Xlm and Xlmn. We then construct a

closed immersion X•≤N,•,• ↪→ R•≤N,•,• where R•≤N,•,• is a smooth (N,∞,∞)-

truncated trisimplicial W-scheme. To do so, since XN0 = X ′N is a disjoint

union of a�ne open subschemes of the smooth scheme XN , we can pick a

smooth lift XN0 over Spf(W). Then, by Lemma 2.4.2 we have a closed immer-

sion

X•≤N0 ↪→ ΓWN (XN0)•≤N .

This in turn gives a closed immersion

X•≤N,• ↪→ R•≤N,• := coskW0 (ΓWN (XN0)•≤N)

and

X•≤N,•,• ↪→ R•≤N,•,• := coskW0 (R•≤N,•×̂WZ))

given respectively by

Xlm = X ′l ×Xl ...×Xl X ′l ↪→ Rlm = ΓWN (XN0)l×̂W ...×̂WΓWN (XN0)l
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and

Xlmn Rlmn

(Xlm ×X Z)×Xlm ...×Xlm (Xlm ×X Z) �
�

// (Rlm×̂WZ)×̂W ...×̂W(Rlm×̂WZ).

The following diagram summarizes the morphisms above:

X•≤N,•,• //

��

X•≤N,• // X•≤N

��

Z• // X

whereX•≤N,•,•, X•≤N,• and Z• have compatible closed immersions into formally

smooth simplicial schemes (note that we do not require any such embeddings

for X and X•≤N).

Then, (X•≤N,•,•,R•≤N,•,•)→ (Z•,Z•) induces a map

τ≤hRΓrig(X/K) τ≤hRΓ(]Z•[Z• ,Ω
•
]Z•[Z•

)

��

τ≤hRΓ(]X•≤N,•,•[R•≤N,•,• ,Ω
•
]X•≤N,•,•[R•≤N,•,•

)

(4.1)

where τ≤h is the canonical truncation, and we show in Lemma 4.2.3 that it is

a quasiisomorphism.

Now, by Theorem 2.7.1, we have a natural quasiisomorphism

Rsp∗Ω
•
]X•≤N,•,•[R•≤N,•,•

∼= WΩ•X•≤N,•,•,Q,

which we use to get

RΓ(]X•≤N,•,•[R•≤N,•,• ,Ω
•
]X•≤N,•,•[R•≤N,•,•

) ∼= (4.2)

RΓ(X•≤N,•,•,WΩ•X•≤N,•,•,Q) ∼= (4.3)

RΓ(X•≤N,•,WΩ•X•≤N ,•,Q) ∼= (4.4)

RΓ(X•≤N ,WΩ•X•≤N ,Q) ∼= RΓ(X•≤N,et,WΩ•X•≤N ,Q) (4.5)

where we have used that X•≤N,•,• → X•≤N,• and X•≤N,• → X•≤N are Zariski

hypercoverings (and thus satisfy cohomological descent), and that Zariski and

étale hypercohomology agrees since the the WΩi are quasi-coherent sheaves

(see [Mil80, Remark 3.8]).
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This gives

τ≤hRΓrig(X/K) ∼= τ≤hRΓ(X•≤N,et,WΩ•X•≤N,Q) ∼= τ≤hRΓ(X•,et,WΩ•X•,Q)

(4.6)

since by the spectral sequence

Ep,q
1 = Hq(Xp,WΩ•Xp)⇒ Hp+q(X•,WΩ•X•)

the Xn with n > N don't contribute to H i(X•,WΩ•X•) for i ≤ h.

Next, by Theorem 2.3.4 there exists an integer c such that Hq
rig(X/K) = 0 for

q > c. Thus, since (4.6) holds for any h, we see that

Hq(X•,et,WΩ••,Q) = 0 for q > c also. Taking h = c, we can drop the truncation

terms and get

RΓrig(X/K) ∼= RΓ(X•,et,WΩ•X•,Q) (4.7)

Finally, it remains to show independence of all the choices, and prove functo-

riality, which is Lemma 4.2.2 below.

Lemma 4.2.2. With the same assumptions as Theorem 4.2.1:

i) The isomorphism (4.7) in D+(K) is independent of choices.

ii) The isomorphism (4.7) in D+(K) is functorial in split smooth proper

hypercoverings X• → X.

Proof.

i) Independence of choices:

We need to show independence of the choices of closed embeddings into smooth

formal schemes XN0 ↪→ XN0 and Z ↪→ Z, independence of choice of a�ne

Zariski coverings Z → X and X•0 → X• and independence of choice of N

satisfying N > (c+ 1)(c+ 2)/2 with c as in the proof. Given two choices

T i := (X i
•0 → X•, X

i
N0 ↪→ X i

N0, Z
i → X,Zi ↪→ Z i) for i = 1, 2, we will set

RΓi•,• := RΓ(]X i
•≤N i,•[Ri•≤Ni,•

,Ω•]Xi
•≤Ni,•

[Ri
•≤Ni,•

),

RΓi•,•,• := RΓ(]X i
•≤N i,•,•[Ri•≤Ni,•,•

,Ω•]Xi
•≤Ni,•,•

[Ri
•≤Ni,•,•

)
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to be the complex formed as in the proof, where if not explicitly de�ned, we

will drop the superscript i (e.g. for independence of choice of Z,

T i = (X•0 → X•, XN0 ↪→ XN0, Z
i → X,Zi ↪→ Z i) with only Zi,Z i and

Zi ↪→ Z i varying).

By the description of D+(K) in terms of right roofs, to show that the two

maps

RΓi•,•,•

RΓrig(X/K)

88

RΓ(X•,WΩ•X•)Q

∼
gg

i = 1, 2

are equivalent, it su�ces to �nd some RΓ12
•,•,• �tting into the commutative

diagram

RΓ1
•,•,•

��

RΓrig(X/K)

88

&&

RΓ12
•,•,• RΓ(X•,WΩ•X•)Q

gg

ww

RΓ12
•,•,•

OO

(4.8)

where all maps are quasi-isomorphisms.

• Independence of choice of XN0:

Suppose we choose two di�erent closed embeddings into smooth formal

schemes XN0 ↪→ X 1
N0,X 2

N0. Take the closed embedding into a smooth

formal scheme

XN0 ↪→ X 1
N0×̂WX 2

N0 =: X 12
N0.

Letting Γi := ΓWN (X i
N0)•≤N for i = 1, 2, 12, we then have a commutative

diagram of N -truncated simplicial complexes

Γ1

X•≤N,0 //

,,

22

Γ12

>>

  

Γ2
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which in turns gives rise to two diagrams

R1
•≤N,•

X•≤N,• //

,,

22

R12
•≤N,•

p1

::

p2

$$

R2
•≤N,•

of (N,∞), and similarly for (N,∞,∞)-truncated simplicial complexes,

where we construct Ri
•≤N,• and Ri

•≤N,•,• as above for i = 1, 2, 12. Then,

by Berthelot's independence of the choice of a closed immersion into a

smooth formal scheme [Ber97b, Théorème 1.4] we have quasi-isomorphisms

Ω•]X•≤N,•,•[Ri•≤N,•,•

∼→ Rpi∗Ω
•
]X•≤N,•,•[R12

•≤N,•,•

for i = 1, 2. This in turn gives rise to a desired diagram such as (4.8).

• Independence of choice of a�ne covering X•0: Given two simplicial a�ne

coverings X1
•0, X

2
•0 → X•, by Lemma 4.1.8.iii) we can choose a common

simplicial a�ne covering X12
•0 �tting into

X1
•0

  

X12
•0

//

==

!!

X•

X2
•0

>>

,

where X12
n0 is the disjoint product of some a�ne coverings of Xn for every

n.

Then, we can choose closed embeddings X i
N0 ↪→ X i

N0 into smooth formal

schemes, compatible with the above maps. This will give maps

(X1
•≤N,• ↪→ R1

•≤N,•)

(X12
•≤N,• ↪→ R12

•≤N,•)

44

**

(X2
•≤N,• ↪→ R2

•≤N,•)
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and similar for its trisimplicial counterpart. We claim that all the vertical

arrows in the commutative diagram

RΓ1
•,•,•

��

RΓ1
•,•

��

∼oo

RΓ12
•,•,• RΓ12

•,•
∼oo

RΓ2
•,•,•

OO

RΓ2
•,•

OO

∼oo

(4.9)

are quasi-isomorphisms, from which independence will follow just as be-

fore. It will su�ce to show this for the right vertical arrows.

The fact that they are quasi-isomorphisms follows since for a �xed p ≤ N ,

and i = 1, 2, 12, as X i
p0 is a Zariski covering of Xp, (X i

p•,Ri
l•) is a univer-

sally de Rham descendable hypercovering of Xp by [CT03, Proposition

10.1.4]. Thus, by the independence of choice of universally de Rham

descendable hypercovering ( [CT03, Lemma 10.4.1]), we have quasi-

isomorphisms

RΓ(]X1
p,•[R1

p,• ,Ω
•
]X1
p,•[R1

p,•
)

∼

��

RΓ(]X12
p,•[R12

p,• ,Ω
•
]X12
p,•[R12

p,•
)

RΓ(]X2
p,•[R2

p,• ,Ω
•
]X2
p,•[R2

p,•
)

∼
OO

for all p ≤ N . Together with the spectral sequence

Ep,q
1 = Hq(RΓ(]X i

p,•[Rip,• ,Ω
•
]Xi
p,•[Rip,•

)⇒ Hp+q(]X i
•≤N,•[Ri•≤N,• ,Ω

•
]Xi
•≤N,•[Ri•≤N,•

)

we see that the right vertical arrows in (4.9) are quasi-isomorphisms.

• Independence of choice of a�ne covering Z of X and closed immersion

Z ↪→ Z: We already know that the de�nition of rigid cohomology does

not depend on choices of Z and Z by [CT03, Proposition 10.4.3], so we

show that the comparison morphism is also independent.

Given two a�ne coverings Zi → X (i = 1, 2), with closed immersions

Zi ↪→ Z i into smooth formal schemes. we can pick a simplicial a�ne

covering Z12 → X with a compatible closed immersion Z12 ↪→ Z12 for
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some smooth formal scheme. This will give compatible maps Z1
• ←

Z12
• → Z2

• and R1
•≤N,•,• ← R12

•≤N,•,• → R2
•≤N,•,• giving the commutative

diagram

RΓ(]Z1
• [Z1

• ,Ω
•
]Z1
• [Z1•

)

��

∼ // RΓ1
•,•,•

��

RΓ(]Z12
• [Z12

• ,Ω
•
]Z12
• [Z12•

) ∼ // RΓ12
•,•,•

RΓ(]Z2
• [Z2

• ,Ω
•
]Z2
• [Z2•

)

OO

∼ // RΓ2
•,•,•

OO

(4.10)

By [CT03, Lemma 10.4.1], the left vertical maps in (4.10) are quasi-

isomorphisms, making all the vertical maps quasi-isomorphisms.

• Independence of choice of N : Take N2 ≥ N1 satisfying N1 > (h+1)(h+

2)/2 for h = c as above, and choose embeddings XN i0 ↪→ X i
N i0 to con-

struct (X•≤N i,•,•,Ri
•≤N i,•,•) for i = 1, 2. Firstly, by the independence of

the embedding, we can replaceR1
•≤N1,•,• with the (N1,∞,∞)-truncation

R2
•≤N1,•,•. Then, consider the natural map

τ≤cRΓ(]X•≤N1,•,•[R2
•≤N1,•,•

,Ω•]X•≤N1,•,•[R2
•≤N1,•,•

)

��

τ≤cRΓ(]X•≤N2,•,•[R2
•≤N2,•,•

,Ω•]X•≤N2,•,•[R2
•≤N2,•,•

)

coming from truncation. By choice of N1 and N2, the Xlmn and R2
lmn

with l > N1 do not contribute to the cohomology of the bottom complex,

so the above is a natural quasi-isomorphism. Similarly, we have a natural

quasi-isomorphisms

τ≤cRΓ(X•≤N1 ,WΩ•X•≤N1
)Q

��

τ≤cRΓ(X•≤N2 ,WΩ•X•≤N2
)Q

��

τ≤cRΓ(X•,WΩ•X•)Q

compatible with the above. This shows independence of the choice of N .
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Functoriality:

Given a diagram of good split proper hypercoverings

X• //

��

Y•

��

X // Y

,

and having chosen a disjoint union W of an open a�ne covering of Y , and a

closed immersion W ↪→W into a smooth formal scheme, then we can pick Z

to be a disjoint union of an a�ne open covering of X re�ning W , and a closed

immersion Z ↪→ Z �tting into the commutative diagram

Z //

��

Z

��

W //W .

Similarly, having chosen a simplicial a�ne covering Y•0 → Y•, then by Lemma

4.1.8.ii) we can choose some simplicial a�ne covering X•0 → X• �tting into

the commutative diagram

X•0 //

��

X•

��

Y•0 // Y•.

Then, we can pick XN0 and YN0 �tting into the commutative diagram

XN0
//

��

XN0

��

YN0
// YN0

.

This in turn will give morphisms of pairs and triples

(X•≤N,•,R•≤N,•)→ (Y•≤N,•,S•≤N,•),

(X•≤N,•,•,R•≤N,•,•)→ (Y•≤N,•,•,S•≤N,•,•),

where S•≤N,• and S•≤N,•,• are constructed for Y the same as the R equivalents

are for X.

All these maps provide compatible maps at each step of the construction of

the comparison morphism.
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Lemma 4.2.3. The map (4.1) is a quasi-isomorphism.

Proof. We give an outline of the proof, by drawing directly from the proof

of [Nak12, Theorem 11.6], which provides a detailed explanation. We intro-

duce some intermediate multisimplicial pairs to prove the quasi-isomorphism.

Consider the proper hypercovering (X• ×X Z)/Z, and take a projective re-

�nement V•/Z using [Tsu03, Lemma 4.2.2.(1)]. That is, V•/Z is a proper

hypercovering, and we have a Z-morphism V• → X• ×X Z with the natural

morphisms

Vn → coskZn−1(skn−1(V•))n ×coskZn−1(skn−1(X•×XZ))n
(X• ×X Z)n

are proper surjective for any n, and each Vn is projective over Z. Note that

we do not require any smoothness conditions on V•, and that we get an X-

morphism V• → X•.

Thus, we can choose a closed embedding into a smooth formal scheme VN ↪→
PN , and setting Q• := ΓWN (PN) we get a closed embedding

V•≤N ↪→ Q•≤N .

We can then form a (N,∞)-truncated bisimplicial complex (V•≤N,�,•),Q•≤N,�,•),
where � stands for an empty spot, by setting

Vl�n = coskXl0 (Vl)n, Ql�n = coskW0 (Ql×̂WZ)n, 0 ≤ l ≤ N, n ∈ N.

This gives a diagram

V•≤N,�,• //

��

X•≤N

��

Z // X.

Also set Xl�n := coskXl0 (Xl ×X Z)n ∼= Xl ×X Zn to de�ne X•≤N,�,•.

Thus, for any n ∈ N,

(V•≤N,�,n,Q•≤N,�,n)→ (Zn,Zn)

is a N -truncated proper hypercovering.

We consider the induced morphism

RΓ(]Z•[Z• ,Ω
•
]Z•[Z•

)→ RΓ(]V•≤N,�,•[Q•≤N,�,• ,Ω
•
]V•≤N,�,•[Q•≤N,�,•

).
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We claim that applying τ≤h(−) to this morphism gives a quasi-isomorphism.

To see this, consider the spectral sequences

Epq
1 = Hq(]Zp[Zp ,Ω

•
]Zp[Zp

)⇒ Hp+q(]Z•[Z• ,Ω
•
]Z•[Z•

),

Epq
1 = Hq(]Vp,�,•[Qp,�,• ,Ω

•
]Vp,�,•[Qp,�,•

)⇒ Hp+q(]V•≤N,�,•[Q•≤N,�,• ,Ω
•
]V•≤N,�,•[Q•≤N,�,•

).

Since the maps for each p are proper hypercoverings, using [Tsu03, Theorem

2.1.3] we get that the maps on Epq
1 for 0 ≤ p ≤ N are isomorphisms, and by

our choice of N relative to h, we see that we get the desired isomorphism

H i(]Z•[Z• ,Ω
•
]Z•[Z•

)→ H i(]V•≤N,�,•[Q•≤N,�,• ,Ω
•
]V•≤N,�,•[Q•≤N,�,•

)

is an isomorphism for i ≤ h.

De�ne

V•≤N,•,• = coskV•≤N,�,•0 (V•≤N,�,• ×X•≤N X•≤N,0)

so

Vlmn ∼= Vl�n ×Xl Xlm
∼= Vl�n ×Xl×XZn (Xlm ×X Zn) ∼= Vl�n ×Xl�n Xlmn

giving a cartesian diagram

V•≤N,•,• //

��

V•≤N,�,•

��

X•≤N,•,• // X•≤N,�,•.

We can then form a closed embedding V•≤N,•,• ↪→ S•≤N,•,• into a smooth formal

scheme, with a pair of morphisms into X•≤N,•,• ↪→ R•≤N,•,•. We claim that

the induced morphism

τ≤hRΓ(]X•≤N,•,•[R•≤N,•,• ,Ω
•
]X•≤N,•,•[R•≤N,•,•

)

��

τ≤hRΓ(]V•≤N,•,•[S•≤N,•,• ,Ω
•
]V•≤N,•,•[S•≤N,•,•

)

is a quasi-isomorphism. Similar to above, it su�ces to check that the induced

morphism

Hq(]Xp,•,•[Rp,•,• ,Ω
•
]Xp,•,•[Rp,•,•

)→ Hq(]Vp,•,•[Sp,•,• ,Ω
•
]Vp,•,•[Sp,•,•

)



37

is an isomorphism for p ≤ N . This in turn follows from the commutative

diagram

RΓrig(Xp/K) RΓ(]Xp•[Rp• ,Ω
•
]Xp•[Rp•

) ∼ // RΓ(]Xp••[Rp•• ,Ω
•
]Xp••[Rp••

)

��

RΓrig(Xp/K) ∼ // RΓ(]Vp�•[Sp�• ,Ω
•
]Vp�•[Sp�•

) ∼ // RΓ(]Vp••[Sp•• ,Ω
•
]Vp••[Sp••

)

where the horizontal maps are quasi-isomorphisms since they come from Zariski

hypercoverings.

Then, with some additional checking and using the spectral sequences

Epq
1 = Hq(]Zp[Zp ,Ω

•
]Zp[Zp

)⇒ Hp+q(]Z•[Z• ,Ω
•
]Z•[Z•

) = Hp+q
rig (X/K),

Epq
1 = Hq(]Xp,•,•[Rp,•,• ,Ω

•
]Xp,•,•[Rp,•,•

)⇒ Hp+q(]X•≤N,•,•[R•≤N,•,• ,Ω
•
]X•≤N,•,•[R•≤N,•,•

)

the above isomorphism proves the lemma.

This allows us to prove conjecture A under R(d):

Proof of Theorem 4.0.1. For generalX, take a compacti�cationX ↪→ X where

X is proper over k and has X as a dense open subscheme. Let Z ⊂ X be the

complement of X with reduced closed subscheme structure. Since in D+(K),

RΓc(Xeh,Qp(n)) =
[
RΓ(Xeh,Qp(n))→ RΓ(Zeh,Qp(n))

]
and

RΓrig,c(X/K) =
[
RΓrig(X/K)→ RΓrig(Z/K)

]
it su�ces to prove the theorem for X proper, along with functoriality.

Take a peh-resolution X• → X using Proposition 4.1.6. Since this is a hy-

percovering in eh-topology (i.e. every map Xn+1 → (cosknskn(X•))n+1 is a

covering in the eh-topology as they are proper eh-coverings), we get by coho-

mological descent that

RΓc(Xeh,Qp(n)) = R lim←−
r

RΓ(Xeh, ρ
∗WrΩ

n
X,log)Q[−n]

∼= R lim←−
r

RΓ(X•,eh, ρ
∗WrΩ

n
X•,log)Q[−n]
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Now, by Theorem 3.3.1, we have that Z(n)/pr
∼→ Rρ∗ρ

∗Z(n)/pr on (Sm/k)et,

so (using the identi�cation Z(n)/pr ∼= WrΩ
n
log[−n] on Sm/k), we have that

RΓc(Xeh,Qp(n)) ∼= R lim←−
r

RΓ(X•,et,WrΩ
n
X•,log)Q[−n].

Then, by [Ill79],

RΓc(Xeh,Qp(n)) ∼= R lim←−
r

RΓ(X•,et,WrΩ
n
X•,log)Q[−n]

[Ill79, I.Th.5.7.2]∼=

[
R lim←−

r

RΓ(X•,et,WrΩ
n
X•)Q

1−F→ R lim←−
r

RΓ(X•,et,WrΩ
n
X•)Q

]
[−n]

[Ill79, II.Prop.2.1.(a)]∼=
[
RΓ(X•,et,WΩn

X•)Q
1−F→ RΓ(X•,et,WΩn

X•)Q

]
[−n]

[Ill79, II.Cor.3.5.]∼=
[
RΓ(X•,et,WΩ•X•)Q

pn−φ→ RΓ(X•,et,WΩ•X•)Q

]
Th.4.2.1∼=

[
RΓrig,c(X/K)

pn−φ→ RΓrig,c(X/K)
]

where we have used that RΓ(X•,WΩ•)[i,i+1) = RΓ(X•,WΩi)[−i] from the

slope decomposition for the second to last equality.

This quasiisomorphism is independent of the choice of peh-resolutions, as by

Proposition 4.1.6,i), for any two such peh-resolutions, we can �nd a peh-

resolution which is a common re�nement of the two.

As for functoriality, given f : X → Y of proper schemes over k, we may

pick any peh-resolution Y• → Y , and by Proposition 4.1.6.ii) we may choose

another peh-resolution X• → X such that we get a commutative diagram

X• //

��

Y•

��

X
f
// Y

so using the functoriality of Theorem 4.2.1 we see that every step is functorial.
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C h a p t e r 5

COMPARISON OF OVERCONVERGENT WITT DE-RHAM

COHOMOLOGY AND RIGID COHOMOLOGY

5.1 Introduction

Let X be a smooth scheme over a perfect �eld k of characteristic p > 0, and

consider its overconvergent de Rham-Witt complex of étale sheaves W †Ω•X/k,

which is de�ned in [DLZ11] (see De�nition 1.1 and Theorem 1.8). One of the

main results of loc. cit. is that if X is also quasi-projective, then there exists

a natural quasi-isomorphism

RΓrig(X/K) ∼= RΓ(X,W †Ω•X/k)Q,

where K = W (k)⊗Q.

The main result of this chapter is Theorem 5.5.5, where we drop the quasi-

projectivity condition in the comparison. We outline the approach in [DLZ11]

and the one used here.

If X = Spec A is an a�ne smooth k-scheme, [DLZ11] consider pairs (X,F )

given by closed immersions

X = Spec A ↪→ F = Spec Ã

intoW (k)-schemes, called special frames. To this, the authors associate dagger

spaces (in the sense of [Gro00]) ]X[†F functorially in (X,F ), which calculate

RΓrig(X/K):

RΓrig(X/K)
∼→ RΓ(]X[†F ,Ω

•
]X[†F

) (5.1)

(here F denotes the p-adic completion of F ).

So using the specialization maps

sp†∗ :]X[†F→ X

we have that RΓrig(X/K) ∼= RΓ(X,Rsp†∗Ω
•
]X[†F

).

They also form a quasi-isomorphism of Zariski sheaves on X,

sp∗Ω
•
]X[†

F̂

→ W †Ω•X/k ⊗Q, (5.2)
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functorial in (X,F ).

This all gives a map

RΓ(sp†∗Ω
•
]X[†F

)→ RΓ(X,W †Ω•X/k)Q (5.3)

so it su�ces to show that the natural map

sp†∗Ω
•
]X[†F

→ Rsp†∗Ω
•
]X[†F

(5.4)

is a quasi-isomorphism.

While vanishing of higher cohomologies in (5.4) is not known in general, we

can show it in some instances. In [DLZ11], to globalize the above construc-

tion for a smooth quasi-projective X (though possibly not a�ne), the au-

thors consider an open covering by a particular type of a�ne smooth schemes,

standard smooth schemes, which may be lifted nicely over W (k), which are

all coming from localizations in a common projective space provided by the

quasi-projectivity of X. This gives a nice description of the intersections of

such opens in coskX0 (X0)•, which allows them to prove the vanishing of higher

cohomologies in (5.4), and then complete the proof by means of cohomological

descent.

For our case, when X is not quasi-projective, we do not have a common pro-

jective space in which all our open a�nes are open. So instead of working

with the 0-coskeleton, we re�ne it at each level, getting an étale hypercovering

X•/X so that at each level, Xn is a disjoint union of a�ne standard smooth

schemes, which we call a special hypercovering. This is done in Section 5.3.

Considering any compacti�cation X ↪→ X to a proper k-scheme X, we use

the Tsuzuki functors Γ
W (k)
N (−) and ΓWN (−) introduced in De�nition 2.4.1 to

construct an N -truncated special frame (X•≤N , F•≤N) and a N -truncated sim-

plicial version of (5.3):

RΓ(X•≤N ,W
†Ω•X•≤N/k)Q → RΓ(sp†∗Ω

•
]X•≤N [†F•≤N

). (5.5)

Then, we show the following:

• Vanishing of Rspi∗Ω
•
]Xn[†Fn

for 0 ≤ n ≤ N and i > 0: we use techniques

from the proof of [DLZ11, Proposition 4.35], such as being able to replace

the Fn by some F ′n étale over Fn or equal to Fn ×W (k) Ar
W (k) for some r

�tting into a special frame (Xn, F
′
n).
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• Prove independence of choices and functoriality.

• For large enough N , (5.5) gives a map RΓ(X,W †Ω•X/k)Q → RΓrig(X/K).

This is motivated by [Nak12] and relies on the machinery of [CT03], such

as vanishing of higher enough rigid cohomology groups of X, indepen-

dence of the choices of rigid frames and cohomological descent methods.

5.2 Background

Special Frames and Dagger Spaces

The following is a summary of Section 4 of [DLZ11].

De�nition 5.2.1. A special frame is a pair (X,F ) with a closed embedding

X ↪→ F , where X and F are smooth a�ne schemes over k and W (k) respec-

tively.

Given a special frame (X,F ), we can choose an embedding F ↪→ An
W (k) for

some n, and in turn we have an open embedding E := An
W ↪→ PnW (k) =: P .

Let Q = F and X be the closures of F and X respectively in P , and let F

and Q be the p-adic completions of F and Q respectively. Then,

X ↪→ X ↪→ Q

is a frame for rigid cohomology in the sense of Berthelot (i.e. we have an

open immersion of X into a proper scheme X over k, and a closed immersion

X ↪→ Q whereQ is smooth aroundX). So we may de�ne the rigid cohomology

of X as

RΓrig(X/K) = RΓ(]X[Q, j
†Ω•

]X[Q
),

where j is the inclusion ]X[Q↪→]X[Q. Note also that ]X[Q=]X[F .

The authors then give an explicit description of a fundamental system of strict

neighborhoods of ]X[F in ]X[Q, which they use to give a dagger structure (in

the sense of [Gro00]) on ]X[F , denoted by ]X[†F , along with a morphism

sp†∗ :]X[†F→ X

which is independent of the choice of embedding of F into a�ne and projective

spaces. Thus, we have a functorial association

Special Frames // Dagger Spaces

(X,F ) � // ]X[†F .

(5.6)
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By [Gro00, Theorem 5.1], this gives quasi-isomorphisms

RΓrig(X/K) = RΓ(]X[Q, j
†Ω•

]X[Q
)
∼→ RΓ(]X[†F ,Ω

•
]X[†F

). (5.7)

To such a frame (X,F ), they also form in [DLZ11, (4.32)] a map

sp∗Ω
•
]X[†

F̂

→ W †Ω•X/k ⊗Q, (5.8)

which is a quasi-isomorphism of Zariski sheaves and functorial in (X,F ).

Standard Smooth Schemes

De�nition 5.2.2. We call a ring A a standard smooth algebra (over k) if A

can be represented in the form

A = k[X1, ..., Xn]/(f1, ..., fm),

where m ≤ n and the determinant

det
(
∂fi
∂Xj

)
, 1 ≤ i, j ≤ m

is a unit in A. The scheme Spec A is then called a standard smooth scheme.

Such schemes are convenient to work with, since for a standard smooth al-

gebra represented as k[T1, ..., Tn]/(f1, ..., fr), we may choose liftings f̃1, ..., f̃r

to W [T1, ..., Tn], and let Ã be the localization of W [T1, ..., Tn]/(f̃1, ..., f̃r) with

respect to det
(
∂f̃i
∂Tj

)
. Then, Ã is a standard smooth algebra which lifts A over

W , which gives a special frame (Spec A, Spec Ã). We note that this may be

done functorially in A; that is, given a homomorphism of standard smooth

algebras

ϕ : A→ B

with presentations

A ∼= k[T1, .., Tn]/(f1, .., fr), B ∼= k[S1, ..., Sm]/(g1, ..., gs),

after choosing liftings f̃i to de�ne Ã, we may chose the representation

B ∼= k[S1, ..., Sm, T1, ..., Tn]/(g1, ..., gs, f1, ..., fr, T1 − α(T1), ..., Tr − α(Tr))

and then take liftings g̃j, α̃i over gj and α(Ti) respectively to form B̃.

Note also that for any such standard smooth scheme F = Spec Ã, we have an

étale map

F → An
W (k)

for some n.
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5.3 The hypercovering

Proposition 5.3.1. Given any étale hypercovering Z• → X, with Zn being

smooth schemes over k, there exists an étale hypercovering Y• → X re�ning

Z• → X such that for any n, Yn is the disjoint union of a�ne standard smooth

schemes giving a �nite open covering of Zn.

Proof. The proof is nearly identical to [CT03, Proposition 11.3.2], with the

only di�erence being that when we form a �nite a�ne Zariski covering of the

smooth scheme

coskXn (Y•≤n)n+1 ×coskXn (Z•≤n)n+1
Zn+1,

we require the covering to be by a�ne standard smooth schemes also.

De�nition 5.3.2. We say Y• → X is a special hypercovering if Y• is a split

étale hypercovering of X, and each Yn is a disjoint union of a�ne standard

smooth schemes which give an open covering of X.

We prove the existence and some functorial property of such hypercoverings,

which will be useful to work on the comparison locally.

Proposition 5.3.3. Given a smooth scheme X:

i) There exists a special hypercovering Y• → X.

ii) Given two special hypercoverings Y•, Y ′•/X, there a third special hyper-

covering Y ′′• /X re�ning them.

iii) Given a morphism X → X ′ of smooth schemes, there exist special hy-

percoverings Y• → X and Y ′• → X ′ �tting in a commutative diagram

Y• //

��

Y ′•

��

X // X ′

.

Proof. Part i) follows immediately from Proposition 5.3.1 by taking the con-

stant simplicial scheme Z• = coskX−1(X) (so Zn = X for all n). For part ii),

we just apply Proposition 5.3.1 with

Z• := Y• ×X Y ′• ,
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and for part iii) we �nd some special hypercovering Y ′• → X ′, and then again

use Proposition 5.3.1 with

Z• := Y ′• ×X′ X.

We will use the following version of Chow's lemma:

Lemma 5.3.4. Consider a compacti�cation over a scheme S

X
j
//

f

  

X

g

��

S

where j is an open immersion and g is proper. Suppose that f is quasi-

projective. Then, there exists a blowup Y → X at some closed subscheme

Z ⊂ X disjoint from j(X) such that Y is projective over S.

Proof. This follows immediately from [Ray74, Corollaire 5.7.14] since it gives

us such a blowup Y → X with Y quasi-projective over S with the only re-

quirements that X be quasi-separated and �nite type over S. In this case,

Y → X → S is the composition of a blowup and a proper map, so it is proper.

Since Y is quasi-projective and proper over S, it is also projective.

De�nition 5.3.5. For a pair (X,X), we say a simplicial pair (X•, X•) →
(X,X) is a special hypercovering of pairs if:

(a) Both X• and X• are split.

(b) X• → X is a special hypercovering.

(c) X• → X is proper. In particular, (X•, X•)→ (X,X) is an étale-proper

hypercovering.

(d) For all n ≥ 0, Xn is projective over k.

Proposition 5.3.6. Given a smooth scheme X and a compacti�cation

X ↪→ X over k:

i) There exists a special hypercovering of pairs (X•, X•)→ (X,X).
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ii) Let (X,X)→ (Y, Y ) be a morphism of compacti�cations. Then, we may

construct special hypercoverings of pairs (X•, X•) and (Y•, Y •) �tting

into a commutative diagram

(X•, X•) //

��

(Y•, Y •)

��

(X,X) // (Y, Y )

iii) Let (X•, X•), (X
′
•, X

′
•) be two special hypercoverings of (X,X). Then,

there exists a third special hypercovering of pairs (X ′′• , X
′′
•) �tting into a

diagram

(X ′′• , X
′′
•)

%%yy

(X•, X•)

&&

(X ′•, X
′
•)

xx

(X,X)

Proof. For i), �rst �x a special hypercovering X• → X by Proposition 5.3.3.

Let {NXk}k≥0 denote the splitting of X•.

We construct Xn+1 at step n + 1 ≥ 0, assuming we have constructed Xn

with a splitting {NXk}0≤k≤n (the n = −1 case is vacuous). By Nagata's

compacti�cation theorem we may take a compacti�cation NXn+1 ↪→ NXn+1

�tting into a diagram

NXn+1
//

��

NXn+1

��

coskXn (X•≤n)n+1
// coskXn (X•≤n)n+1

(5.9)

where the vertical arrows are proper maps. For the n + 1 = 0, note that

coskX−1(−)i = X for all i (and similar forX), so the bottom row is justX ↪→ X.

Since NXn+1 is a disjoint union of a�ne standard smooth schemes by con-

struction, itself is also a�ne standard smooth. In particular, NXn+1 is quasi-

projective, and we may use Lemma 5.3.4 to make NXn+1 be projective over k

in (5.9). This allows us to construct X•≤n+1 = ΩX
n+1(X•≤n, NX0, ..., NXn+1).

In particular,

Xn+1
∼=

⊔
φ:[n+1]�[k]

NXφ
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where each NXφ is projective over k. Since the disjoint union of projective

schemes are still projective, it follows that Xn+1 is projective over k. This

completes i).

For ii), we �rst construct compatible X• → Y• over X → Y using Proposition

5.3.3, and we construct Y • as in i). Then, we build X• similarly, except that

at each n, we take a compacti�cation NXn+1 of NXn+1 over

coskXn (X•≤n)n+1×coskYn (Y•≤n)n+1
NYn+1 ↪→ coskXn (X•≤n)n+1×coskYn (Y •≤n)n+1

NY n+1,

and by the same argument as i), such that NXn+1 is projective over k.

This all �ts into a commutative diagram

NXn+1
//

��

NXn+1

��

coskXn (X•≤n)n+1 ×coskYn (Y•≤n)n+1
NYn+1

//

��

coskXn (X•≤n)n+1 ×coskYn (Y •≤n)n+1
NY n+1

��

coskXn (X•≤n))n+1
// coskXn (X•≤n)n+1

where all horizontal morphisms are open immersions, and the vertical mor-

phisms on the right are all proper. This gives us the desired functoriallity.

For iii), given (X•, X•) and (X ′•, X
′
•), we may construct a special hypercov-

ering X ′′• re�ning X• and X ′• using Proposition 5.3.3. Then, at each step, we

construct NX
′′
n+1 by taking a compacti�cation of NX ′′n+1 over(

coskXn (X ′′•≤n)×coskXn (X•≤n) NXn+1

)
×coskXn (X′•≤n) NX

′
n+1

��(
coskXn (X

′′
•≤n)×

coskXn (X•≤n)
NXn+1

)
×

coskXn (X
′
•≤n)

NX
′
n+1

and using the above argument so that NX
′′
n+1 is projective over k.

De�nition 5.3.7. We call a simplicial pair (X•, X•)→ (X,X) as in Proposi-

tion 5.3.6 a special hypercovering of pairs.

5.4 The simplicial special frame

Ideally, we would like to get a simplicial special frame (X•, F•), with an em-

bedding F• ↪→ P• for Pn being projective over W , and such that X• ↪→ P•
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is the closure of X•. Then, we could do a simplicial version of the compar-

ison in [DLZ11] directly. This problem seems di�cult to do simultaneously.

However, using the Tsuzuki functor below, it will su�ce to do this only for

one XN , rather than all. This will capture all the simplicial structure below

N , and for N large enough we will be able to ignore the terms above, as they

won't contribute to the cohomology.

For a smooth scheme X and a compacti�cation X ↪→ X, construct a special

hypercovering (X•, X•) → (X,X) as in Proposition 5.3.6. Fix some N ≥ 0.

Then, since XN is projective over k, we may �nd a closed immersion

XN ↪→ PrNk ↪→ PrNW (k) =: P

for some rN ≥ 0.

This gives us an immersion XN ↪→ P , and thus a presentation of XN (which is

a�ne). We may use this to lift XN to some standard smooth a�ne scheme F

over W (k). Using the Tsuzuki functor ΓN(−) introduced in De�nition 2.4.1,

we construct the following:

• F• := Γ
W (k)
N (F ).

• P• := Γ
W (k)
N (P ).

• Y• is the closure of X• in P•.

• Q• is the closure of F•.

• Q• is the p-adic completion of Q•.

By Lemma 2.4.2, since XN ↪→ P is a closed immersion, we have that X•≤N ↪→
P•≤N is a closed immersion. Therefore, X•≤N → P•≤N factors through both

X•≤N and Q•≤N , giving natural maps from Y•≤N to both by universal property

of the closure.

This all �ts into a diagram

X•≤N

##

X•≤N

;;

��

// Y•≤N //

OO

��

P•≤N

F•≤N // Q•≤N

::

(5.10)
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Putting all this together:

De�nition 5.4.1. Consider a special compacti�cation

X• //

��

X•

��

X // X

with X (resp. X) being smooth (resp. proper) over k. For a given N ≥ 0, the

information

{F•, Q•,Q•, Y•, P•}

and the diagram from (5.10) is a N-rigid special frame of (X•, X•)→ (X,X).

Lemma 5.4.2. Given a commutative diagram of special hypercoverings

(X•, X•) //

��

(X ′•, X
′
•)

��

(X,X) // (X ′, X)

and a given N ≥ 0, we may �nd N-rigid special frames of (X•, X•) and

(X ′•, X
′
•) with maps

{F•, Q•,Q•, Y•, P•} → {F ′•, Q′•,Q′•, Y ′• , P ′•}

compatible with the given diagram.

Proof. Consider a morphism (X•, X•) → (X ′•, X
′•) over (X,X) → (X ′, X

′
).

We may construct {F ′•, Q′•,Q′•, Y ′• , P ′•} as explained above. Then, sinceXN and

X
′
N are projective over k, the map between them is projective, and we may

�nd some closed immersion of XN into P = PrW �tting into the commutative

diagram

XN
//

��

P

��

X
′
N

// P ′.

This gives representations of XN and X
′
N in compatible a�ne spaces, and we

thus may lift them to standard smooth a�ne schemes over W (k) as explained
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in Section 5.2 in a compatible way, giving a commutative diagram

XN
//

��

F //

��

P

��

X ′N
// F ′ // P ′.

Since the functor ΓWN , p-adic completion and closure are functorial, all the

remaining functoriality will follow from that of P and F .

This gives an N -truncated special frame

(X•≤N , F•≤N), (5.11)

and an N -truncated étale-proper hypercovering of (X,X)

(X•≤N , Y•≤N ,Q•≤N). (5.12)

5.5 The comparison theorem

In the course of the proof, we will need some tools from [DLZ11] in order to

compare special frames. In loc. cit., Proposition 4.35 proves the �rst result,

and the second result is Proposition 4.37.

Proposition 5.5.1.

i) Given a map of special frames

X // F ′

��

X // F

with the right vertical map being étale, then we get a natural isomorphism

of dagger spaces

]X[†F ′
∼=]X[†F .

ii) For some n, let (X,F × An
W (k)) be a special frame such that the map

X → An
W (k) factors through the origin. Then, the induced map gives a

quasi-isomorphism

Rsp∗Ω
•
]X[†F

∼→ Rsp∗Ω
•
]X[†

F×AnW

.
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When proving the comparison, we will need to show vanishing of the higher

cohomologies of Rsp∗Ω
•
]Ym[†Fm

for 0 ≤ m ≤ N , where (Ym, Fm) are the special

frames constructed in sections 5.3 and 5.4. The above proposition will allow us

to reduce it to the following theorem, which follows from the proof of [Ber97b,

Theorem 1.10]:

Proposition 5.5.2. Let (X,F ) be a special frame, where F is a lifting of X

over W (k). Then,

Risp∗Ω
•
]X[†F

= 0 for i>0.

We now prove a key ingredient of the comparison theorem:

Proposition 5.5.3. Let (X•≤N , F•≤N) be an N-truncated simplicial frame as

in (5.11). Then, for 0 ≤ m ≤ N and i > 0,

Risp∗Ω
•
]Xm[†Fm

= 0.

Proof. Pick any 0 ≤ m ≤ N . By splitness of X•, we may write

Xm =
⊔

φ:[N ]�[m]

NXm,φ.

Fix some degeneracy map σ : [N ] � [m]. Then, by construction of Γ
W (k)
N (−),

we have a commutative diagram

Xm

X•(σ)

��

// Fm =
∏

α:[N ]→[m]

Fα

pσ
��

YN // F = Fσ

where Fφ = F for any φ : [N ] � [m] was de�ned in section 5.4 as just a lift

of XN in PN , and pσ is the projection, and both horizontal maps and the left

vertical map are closed immersions. This gives us a closed immersion

Xm ↪→ Fσ.

Let

F ′m :=
∏

α:[N ]→[m],α 6=σ

Fα,

so Fm = F ′m × Fσ. Then, since each of the Fα are standard smooth schemes

over W (k), so is their product, and we may get an étale morphism

F ′m → An
W (k)
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for some n. Thus, considering the commutative diagram

Xm
// F ′m × Fσ

��

Fm

Xm
// An

W (k) × Fσ

where the right vertical morphism is étale, using Proposition 5.5.1.i) we may

reduce to the case of the special frame (Xm,An
W (k) × Fσ). Furthermore, we

may assume that the map Xm → An
W (k) factors through the origin. To see this,

write Xm = Spec (A) and Fσ = Spec B, so An
W (k) × Fσ = Spec B[T1, ..., Tn].

Then, since B � A is surjective (as Xm → Fσ is a closed immersion), we may

pick b1, ..., bn ∈ B which map to the images of T1, ..., Tn respectively in A, and

replace Ti by T ′i := Ti − bi, giving a special frame

(Xm, Spec B[T ′1, ..., T
′
n]) = (Xm,An

W (k) × Fσ)

factoring through the origin. Thus, by Proposition 5.5.1.ii), we reduce the

proof to the special frame (Xm, Fσ).

Now, since

]Xm[†Fσ=]
⊔

φ:[m]�[k]

NXm,φ[†Fσ
∼=

⊔
φ:[m]�[k]

]NXm,φ[†Fσ

we may reduce to studying the special frames (NXm,φ, Fσ) for any φ : [m] � [k]

and 0 ≤ k ≤ m. But notice that by the construction of the frame, for any

φ : [m] � [k], we have a commutative diagram

NXm,φ

∼=

⊂ Xm� _

X•(σ)

��

NXN,φ◦σ ⊂ XN
� � // Fσ FN

⊔
ψ:[N ]�[k′]

NFN,ψ

where ψ vary over all morphisms ψ : [N ] � [k′] with 0 ≤ k′ ≤ N , and the

composite map NXm,φ → FN is the map giving the special frame. Thus,

NXm,φ is isomorphic to NFN,φ◦σ ⊂ FN , and therefore

sp−1(NXm,φ) =]NXm,φ[†Fσ=]NXm,φ[†NFN,φ◦σ ,

which reduces the proof to the case of the special frame (NXm,φ, NFN,φ◦σ).

But by construction, NFN,φ◦σ is a smooth lift ofNXN,φ◦σ ∼= NXm,φ overW (k),

and thus we can apply Proposition 5.5.2 to complete the proof.
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We will need the following to deal with N -truncations, which basically says

that for some large enough N , we only need the N -skeleton in the calculations

of cohomologies on simplicial objects (such as for rigid cohomology and over-

convergent Witt de-Rham). For a complex A• of K vector spaces, and any h,

consider the h-truncated complex

τ≤h(A
•)i =


Ai if i < h

ker(Ah → Ah+1) if i > h

0 else.

For a double complex A••, let τ (1)
≤h(A•q) := τ≤h(A

•q), and let s : C(K)→ K be

the total complex map.

Lemma 5.5.4. [Nak12, Lemma 2.2] Consider a double complex A•,• of K

vector spaces such that Ap,q = 0 for p < 0 or q < 0. Given any

N > max{i+ (h− i+ 1)(h− i+ 2)/2 | 0 ≤ i ≤ h} = (h+ 1)(h+ 2)/2,

(5.13)

the natural maps s(τ (1)
≤N(A••)→ s(A••) induce a quasi-isomorphism

τ≤h(s(τ
(1)
≤N(A••))

∼→ τ≤h(s(A
••)).

From this, and the formation of the spectral sequence for cohomology on

simplicial objects, it follows for example that for some simplicial rigid frame

(Z•, Z•,Z•), and h and N as in (5.13), we get natural quasi-isomorphisms

τ≤hRΓ(]Z•≤N [Z•≤N , j
†Ω•

]Z•≤N [Z•≤N
)
∼→ τ≤hRΓ(]Z•[Z• , j

†Ω•
]Z•[Z•

) (5.14)

and that for a smooth simplicial scheme X•,

τ≤hRΓ(X•,W
†Ω•X•/k)

∼→ τ≤hRΓ(X•≤N ,W
†Ω•X•≤N/k). (5.15)

This is useful because of the vanishing of rigid cohomology from Theorem

2.3.4, which tells us that there exists a c such that

τ•≤cRΓrig(X/K)
∼→ RΓrig(X/K)

so letting h ≥ c and N as in (5.13), we may compute rigid chomology with an

N -truncated de-Rham descendable hypercovering by (5.14).

We can now prove the main comparison theorem:
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Theorem 5.5.5. Given a smooth scheme X over k, there exists a functorial

quasi-isomorphism

RΓrig(X/K)
∼→ RΓ(X,W †Ω•X/k)⊗Q.

Proof. Choose a compacti�cationX ofX and construct {X•, X•, F•, Q•,Q•, Y•, P•}
as in the previous section.

Then, (X•≤N , F•≤N) is an N -truncated special frame, so by functoriality of the

construction in [DLZ11]

Special Frames→ Dagger Spaces

(X,F ) 7→]X[†F

we get an N -truncated special frame ]X•≤N [†F•≤N .

Furthermore, from (5.8), we get

sp∗Ω
•
]X•≤N [†F•≤N

→ W †Ω•X•≤N/k ⊗Q (5.16)

to give us a quasi-isomorphism

RΓ(X•≤N , sp∗Ω
•
]X•≤N [†F•≤N

)
∼→ RΓ(X•≤N ,W

†Ω•X•≤N/k)⊗Q. (5.17)

Next, by Proposition 5.5.3, we have that

sp∗Ω
•
]X•≤N [†F•≤N

∼→ Rsp∗Ω
•
]X•≤N [†F•≤N

(5.18)

so that

RΓ(]X•≤N [†F•≤N ,Ω
•
]X•≤N [†F•≤N

) ∼= RΓ(X•≤N ,W
†Ω•X•≤N ,k)⊗Q (5.19)

Next, note that

(X ′•, Y
′
• ,Q′•) := coskN(X•≤N , Y•≤N ,Q•≤N)

is an étale-proper hypercovering of (X,X) by Lemma 2.2.6, and thus a de

Rham desecendable hypercovering of (X,X) by Proposition 2.3.2, so

RΓrig(X/K) = RΓ(]Y ′• [Q′• , j
†Ω•]Y ′• [Q′•

) (5.20)

computes the rigid cohomology.
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Furthermore, since for any n ≤ N , Yn is the closure of Xn in Pn and Qn is the
p-adic completion of the closure of Fn in Pn, we get an N -truncated simplicial

version of (5.7):

RΓ(]X•≤N [†F•≤N ,Ω
•
]X•≤N [†F•≤N

) ∼= RΓ(]Y•≤N [Q•≤N , j
†Ω•]Y•≤N [Q•≤N

) (5.21)

Putting all this together, we will get

RΓ(]Y•≤N [Q•≤N , j
†Ω•]Y•≤N [Q•≤N

) ∼= RΓ(X•≤N ,W
†Ω•X•≤N/k)⊗Q (5.22)

for any N .

We now show that the left-hand side computes RΓrig(X/K) (compare with

(5.20)) and that the right hand side computes RΓ(X,W †Ω•X/k) ⊗ Q. Using

Proposition 2.3.4, pick some c such that for any h ≥ c,

τ≤hRΓrig(X/K)
∼→ RΓrig(X/K),

and pick N = N(h) large enough to satisfy (5.13). Then,

RΓrig(X/K) ∼=τ≤hRΓrig(X/K) ∼= τ≤hRΓ(]Y ′• [Q′• , j
†Ω•]Y ′• [Q′•

) (5.23)

∼= τ≤hRΓ(]Y•≤N [Q•≤N , j
†Ω•]Y•≤N [Q•≤N

)

so the left hand side of (5.22) will compute rigid cohomology.

On the other hand, since X• → X is an étale hypercovering, and W †Ω•X/k is

an étale sheaf, we have that

RΓ(X,W †Ω•X/k)
∼→ RΓ(X•,W

†Ω•X•/k)

To compare to the truncated version in (5.22), note that for any h and N

satisfying (5.13), we have by Lemma 5.5.3 and (5.22) that

τ≤hRΓrig(X/K) ∼= τ≤hRΓ(X•≤N ,W
†Ω•X•≤N/k)⊗Q (5.24)

∼= τ≤hRΓ(X•,W
†Ω•X•/k)⊗Q ∼= τ≤hRΓ(X,W †Ω•X/k)

Varying h (and N), we see that cohomology vanishes in RΓ(X,W †Ω•X/k) above

c, and thus letting h ≥ c we may drop it from (5.24) to obtain

RΓrig(X/K) ∼= RΓ(X,W †Ω•X/k)⊗Q (5.25)

It remains to show independence and functoriality.
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Independence:

We must show independence of the choices of X, X•, X•, F•, Q•, P•, and N .

The independence of X follows from independence of X in computation of

rigid cohomology ( [CT03, Corollary 10.5.4]).

To show independence of {X•, X•, F•, Q•,Q•, Y•, P•}, suppose for a given pair

(X,X), we have made two choices {X i
•, X

i

•, F
i
•, Q

i
•,Qi•, Y i

• , P
i
•} for i = 1, 2.

Then, by Proposition 5.3.6 it follows that we may �nd (X3
• , X

3

•) re�ning them.

Furthermore, since X
3

N is projective over X
1

N and X
2

N , we can �nd some P 3

�tting into the diagram

(X3
N , X

3

N , P
3)

vv ((

(X1
N , X

1

N , P
1)

((

(X2
N , X

2

N , P
2)

vv

(X,X,W (k))

Furthermore, we may take the standard smooth lift F 3 of X3
N over W (k) to

be compatible with the standard smooth lifts F i of X i
N over W (k) for i = 1, 2.

All this compatibility carries over when applying Γ
W (k)
N , taking closures and

completions, and applying coskXn , cosk
X
N , cosk

W
N , which gives a diagrams of N -

truncated simplicial special frames

(X3
•≤N , F

3
•≤N)

((vv

(X3
•≤N , F

3
•≤N) (X3

•≤N , F
3
•≤N)

and of universally de Rham descendable hypercoverings of (X,X)

(X ′3• , Y
′3
• ,Q′3• )

((vv

(X ′1• , Y
′1
• ,Q′1• ) (X ′2• , Y

′2
• ,Q′2• )

where we use the notation from above. This gives a factorization of all the

maps used that shows independence in D+(K).

For independence of N , we argue similarly to the proof of Lemma 4.2.2. Sup-

pose we �x (X•, X•). Given to choices N1 and N2 satisfying (5.13) for h = c,
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suppose N2 ≥ N1, and construct F i
•, Q

i
•,Qi•, Y i

• , P
i
•} for i = 1, 2. We then have

a natural map

(X ′2• , Y
′2
• ,Q′2• ) := cosk(X,X,W)

N2 (X•≤N2 , Y 2
•≤N2 ,Q2

•≤N2)

��

cosk(X,X,W)

N1 (X•≤N1 , Y 2
•≤N1 ,Q2

•≤N1)

induced by the maps coskN2 → coskN1 ◦skN1 ◦coskN2
∼= coskN1 ◦skN1 . This all

induces a commutative diagram in the diagrams (5.22) for N2 and N1. This

is compatible with the maps in (5.24). Thus, we may replace N2 with N1 (as

long as they are both large enough), and then independence above (for N1

�xed) shows the independence of choices.

Functoriality: Given a map X1 → X2, we may choose compatible X
1
and X

2
,

and then pick compatible (X i
•, X

i

•) by Proposition 5.3.6, and by Lemma 5.4.2

we may choose compatible N -rigid special frames.
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C h a p t e r 6

CONJECTURE B

6.1 Conjecture B

We study the following conjecture:

Conjecture 6.1.1 (Conjecture B). For a separated, �nite type k-scheme X

of dimension d, and n ∈ Z, there exists a quasi-isomorphism

RΓ(Xet,Qc
p(n))

∼→
[
RΓrig,c(X/K)∗

φ−pn−d→ RΓrig,c(X/K)∗
]

[−2d].

Here, RΓrig,c(X/K)∗ := RHom(RΓrig,c(X/K), K).

We prove this conjecture for X smooth:

Theorem 6.1.2. If X is smooth, then Conjecture 6.1.1 holds.

Proof. As before, since X is smooth and we have

Zc(n)/pr ∼= WrΩ
n
log[−n],

we can identify

RΓrig(X,Qc
p(n)) ∼= R lim←−

r

RΓ(Xet,WrΩ
n
X,log)Q[−n],

and as in the proof of Theorem 4.2.1 we have a short exact sequence

0→ WΩn
X,log → WΩn

X
1−F→ WΩn

X → 0

in Xet, and WΩn
X
∼= R lim←−rWrΩ

n
X , so we have

RΓrig(X,Qc
p(n)) ∼=

[
RΓ(Xet,WΩn

X)
1−F→ RΓ(Xet,WΩn

X)
]
Q

[−n].

Next, by [Ert14, Corollary 2.4.12], we have that all logarithmic Witt de-Rham

sections are overconvergent, and that 1 − F is still surjective when restricted

to the overconvergent part; so we have a commutative diagram in Xet:

0 //WΩn
X,log

//W †Ωn
X� _

��

1−F
//W †Ωn

X� _

��

// 0

0 //WΩn
X,log

//WΩn
X

1−F
//W †Ωn

X
// 0
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where the vertical arrows are given by inclusion, and both rows are short exact

sequences. Thus, we get a natural quasi-isomorphism[
RΓ(Xet,WΩn

X)
1−F→ RΓ(Xet,WΩn

X)
]
Q

[−n]

∼=[
RΓ(Xet,W

†Ωn
X)

1−F→ RΓ(Xet,W
†Ωn

X)
]
Q

[−n].

We consider the Frobenius onW †Ω•X by restricting that onWΩ•X . So as before,

the part with slope pn must be coming from W †Ωn, thus giving[
RΓ(Xet,W

†Ωn
X)

1−F→ RΓ(Xet,W
†Ωn

X)
]
Q

[−n] ∼=
[
RΓ(Xet,W

†Ω•X)
pn−φ→ RΓ(Xet,W

†Ω•X)
]
Q
.

Then, we use the comparison from overconvergent Witt de-Rham cohomology

to rigid cohomology for smooth schemes given by Theorem 5.5.5 to get that

RΓrig(X/K)
∼→ RΓ(X,W †Ω•X/k)Q

and thus

RΓrig(X,Qc
p(n)) ∼=

[
RΓrig(X/K)

pn−φ→ RΓrig(X/K)
]
.

Finally, from [Ber97a, Théorème 2.4] we can use Poincaré duality for rigid

cohomology to get non-degenerate pairings

H i
rig(X/K)×H2d−i

rig,c (X/K)→ H2d
rig,c(X/K)

∼→ K(−d)

compatible as F-crystals, where K(−d) is K with a Frobenius action given by

multiplication by pd. Thus, we have a natural quasi-isomorphism

RΓrig(X/K)
∼→ RHom(RΓrig,c(X/K)∗[−2d] := RHom(RΓrig,c(X/K), K)[−2d]

and therefore,

RΓrig(X,Qp(n)) ∼=
[
RΓrig(X/K0)

pn−φ→ RΓrig(X/K0)
]

∼=
[
RΓrig,c(X/K)∗

pd−n−φ→ RΓrig,c(X/K)∗
]

[−2d].
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Remark. In order to prove Conjecture B for the general case, one should try

and get a map

RΓ(X,Qc
p(n))→

[
RΓrig,c(X/K)∗

φ−pn−d→ RΓrig,c(X/K)∗
]

[−2d]

for the general case compatible with that used to prove the isomorphism in the

smooth case. Then, using localization triangles and an induction on dimension

one could prove that it is an isomorphism.
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