A Comparison of p-adic Motivic Cohomology and Rigid
Cohomology

Thesis by
Nathaniel Lawless Hughes

In Partial Fulfillment of the Requirements for the
Degree of
Doctor of Philosophy

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2019
Defended 05,/24/2019



© 2019

Nathaniel Lawless Hughes
ORCID: 0000-0003-2755-4065

All rights reserved.

i



iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Matthias Flach, for
suggesting the problem, and his kind, patient and wise guidance and support
over the years. He has helped me form as a mathematician, with helpful
conversations, literature suggestions, and has always been there to answer my

questions.

I am thankful to Andreas Langer for his help and suggestions regarding the
content of Chapter 5.

I would also like to thank the people who have helped me reach here. To
my mother, Victoria Hughes, for raising me and for her unconditional sup-
port throughout my life. To my undergraduate teachers and mentors, Cyril

Rakovski and Peter Jipsen for their guidance and help.

[ am very thankful to my partner, Kelly Mauser, for her friendship and support
during my PhD.

To all the wonderful people I have met in my time at Caltech. Special thanks
to my fellow student, soccer teammate and friend Andrei Frimu, and the help-
ful discussions and advice he has provided. To all the other great friends I
made in the Mathematics department: Angad Singh, Marius Lemm, Tamir
Hemo, Thomas Norton and Nathaniel Sagman. And to my fellow FC Mon-

rovia teammates.

Lastly, I would like to thank the California Institute of Technology Math-
ematics Department, for giving me this opportunity, and providing a great

environment in which to study Mathematics.



v

ABSTRACT

We study two conjectures introduced by Flach and Morin in [FM18] for schemes
over a perfect field of characteristic p > 0. The first conjecture relates a p-adic
extension of the étale motivic cohomology with compact support on general
schemes introduced by Geisser in [Gei06] to rigid cohomology with compact
support, and is proved here. The second, relates a p-adic Borel-Moore mo-
tivic homology with the dual of rigid cohomology with compact support, and
is proved in the smooth case. For this, we also prove a generalization of the
comparison theorem from rigid cohomology to overconvergent de Rham-Witt
cohomology in [DLZ11].
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Chapter 1
INTRODUCTION

1.1 Notation

k will denote a perfect field of characteristic p > 0. W (k) will be its Witt ring,
and K := W(k) ® Q will be the field of fractions. We will use W = W (k)
when talking of the formal scheme Spf W rather than the scheme Spec W (k).

Let Sch?/k denote the category of separated and finite type schemes over k of
dimension < d. In the case where d = oo we just use Sch/k. Let FSch/W be
separated and finite type formal schemes over Spf WW. In this thesis, we will

consider all schemes and formal schemes to be separated and finite type.

In the derived category D(A) for some abelian category A, and a map f :
A — B, let
[A ER B] .= Cone(A % B)[-1].

For a complex C' of abelian groups, let
CQ =C®z0Q.

1.2 Motivation

For a variety X over a perfect field k£ of characteristic p > 0, there exist
various constructions of cohomology theories with coefficients in Z, or Q,,
and with a suitable X satisfy the properties of Weil cohomologies (in the sense
of [Kle68, 1.2]). For X smooth and proper, crystalline cohomology is a good
cohomology theory (see |Ber74| and [BO78|), and can be computed as the
hypercohomology of the de Rham-Witt complex WS n by [I1179, Proposition

2.1]. This endows it with a Frobenius action
¢ o"RIN(X/W(k)) - RI'(X/W(k))

and a slope filtration on (H*(X/W(k)) ® K).

For a general variety X over k, Berthelot defined rigid cohomology with co-
efficients in the fraction field K of W(k), by calculating a cohomology of a

suitable subcomplex of the de Rham complex in a rigid analytic space over K
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related to X. This also has a version with compact support, and has various
nice properties such as existence of a Frobenius ( [Ber96|), finite dimension-
ality of cohomology groups ( [Ber97b]), and in the case of smooth schemes a

Poncairé duality and Kiinneth formula ( [Ber97al).

On the other hand, we can consider construction on the motivic side: motivic
cohomology, motivic cohomology with compact support, Borel-Moore motivic
homology, and motivic homology. We can also consider the étale versions of
these theories. These are well behaved on smooth quasi-projective schemes.
In order to extend this to general varieties over k, [Gei06| used an analog
method to Voevodsky’s use of cdh topology in order to add abstract blowups
to the Nisnevich topology, and considers an eh topology where he adds abstract
blowups to the étale topology. Under strong resolution of singularities, this

allows to extend the étale motivic cohomology theories to general schemes.

We may consider a p-adic completion of the above étale motivic cohomology
and Borel-Moore homology theories. One place where these theories arise is in
the study of vanishing order for zeta functions at integers n on proper regular

arithmetic schemes as explained in [FM18, Chapter 5].

Based on results on proper smooth schemes over k, we expect certain relations
between the p-adic completion of the étale motivic cohomology with compact
supports (resp. p-adic completion of the étale Borel-Moore homology) with
rigid cohomology with compact support (resp. dual of rigid cohomology with
compact support), as stated below in Conjecture 1.3.1 (resp. Conjecture 1.3.2).
These relations hold in the case of proper-smooth schemes as shown in [FM18;

Proposition 7.21].

1.3 Main Results
Let Z(n) be the complex of étale sheaves on Sch/k defined in [SV00], and let

Z¢(n) := 2"(—, 2n— %) denote the complex of étale sheaves from Bloch’s higher
Chow complex defined in [Blo86].

For a scheme X in Sch?/k, under strong resolution of singularities R(d) (see
Definition 3.1.4), let

RT.(Xen, Qp(n)) == <R1&n RT (Xen, Z(n)/pﬂ)
" Q
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as in Definition 3.3.2. Then, we expect the following relation with rigid coho-

mology with compact support:

Conjecture 1.3.1 (Conjecture A). Under R(d), for a separaled, finite type

k-scheme X, and n € 7, there exists an isomorphism

R (X Qp(n) 5 | RTyig o X/K) ™57 RTvig o X/K) |
We also define a p-adic Borel-Moore homology theory:

RE(X, Q5(n) = (R@Rmxet,mn)/pf))
r Q

We expect the following relationship with the dual of rigid cohomology with

compact support:

Conjecture 1.3.2 (Conjecture B). For a separated, finite type k-scheme X

of dimension d, and n € Z, there exists an isomorphism

~ n—d__
RT (X, Q5(n)) = | RTyig o(X/K)* 7 =7 RT iy (X/K)*

We prove Conjecture A in Theorem 4.0.1, and we prove Conjecture B in the

case where X is smooth over k£ in Theorem 6.1.1.

The proof of Conjecture B in the smooth case uses a generalization of one of
the main results in [DLZ11]:

Theorem 1.3.3. [DLZ11, Theorem 4.40] Let X be a smooth quasi-projective

scheme over k. Then we have a natural quasi-isomorphism

RIyg(X/K) 5 RD(X, W'Q% ) @ Q.

We generalize this result in order to drop the quasi-projectiveness condition

in Theorem 5.5.5 by use of simplicial and cohomological descent methods.

1.4 Outline
In Chapter 2, we introduce the necessary background. Mainly the cohomo-
logical descent and simplicial techniques from [Con03], and different p-adic

cohomologies and their relations. In particular, we summarize some of the
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notation and main results from the rigid cohomology version of [CT03|, which

will allow us to use simplicial methods on rigid cohomology.

In Chapter 3, we explain the construction of the eh-site and extension of étale

motivic cohomology to singular varieties done in [Gei06].

In Chapter 4, we prove Conjecture A. In order to do so, for a given scheme
X, we first form (under assumption of strong resolution of singularities) a
hypercovering in the eh site by smooth schemes, which is also a proper hyper-
covering. This will allow cohomological descent on the motivic side, and on
the rigid side. Doing this functorially, and showing independence of choices

will allow to prove Conjecture A.

In Chapter 5, we prove the generalization of [DLZ11, Theorem 4.40] to smooth
schemes. In order to transfer their machinery, we find a hypercovering of a
given smooth scheme by affine standard smooth schemes, and use some of their

results and a vanishing result to generalize the methods.

In Chapter 6, we use the result from Chapter 5 and Poincaré duality on rigid

cohomology to prove Conjecture B for smooth schemes.



Chapter 2

BACKGROUND

2.1 Cohomological Descent
Simplicial Objects
We summarize some of the results and notation from [Con03]. Let C be a

category admitting finite inverse limits.

e We denote by AT the category of objects [n] = {0,...,n} for n > —1,

with morphisms given by non-decreasing maps of ordered sets [n] — [m].
e We denote by A the full subcategory of objects [n] with n > 0.

e We denote by AZ the full subcategory of A% of objects [n] with —1 <
n <N.

e We denote by A<y the full subcategory of A of objects [n] with 0 < n <
N.

Then, we consider the following:

e Simp(C) is the category of simplicial objects in C. That is, contravariant
functors Xo : A — C, where X,, = X,([n]).

e Simp™(C) is the category of augmented simplicial objects in C. That is,

contravariant functors X,/S : A — C, where S denotes the image of
[—1].

e Simpy(C) is the category of N-truncated simplicial objects in C. That

is, contravariant functors Xe<y : A<y — C.

e Simp}(C) is the category of N-truncated augmented simplicial objects in
C. That is, contravariant functors Xe<n/S: ALy — C.

Let sky : Simp(C) — Simpy(C) and skj, : Simp™(C) — Simp} (C) denote the
N-skeleton functor
SkN(X.) = XOSN-



Since C is taken to have finite inverse limits, we have the following:

Theorem 2.1.1. [Con03, Theorem 3.9] For any N > 0, skn admits a right
adjoint cosky : Simpy(C) — Simp(C). Similarly for augmented objects and
N > —1.

All of the above may be generalized to multisimplicial objects (see [Con03,
Definition 3.13]).

Hypercovers

Definition 2.1.2. Let P be a class of morphisms in C which is stable under
base change, preserved under composition and containing all isomorphisms. A
simplicial object X, in C is said to be a P-hypercovering if, for all n > 0, the

natural adjunction map
Xo — cosk,(sk, (X))
induces a map
Xpt1 — cosk, (sk, (Xe))nt1

in degree n + 1 which is in P.

Two common examples will be when C is some category of spaces (e.g. schemes),
when P is the class of proper surjective maps, in which case we will talk of
proper hypercoverings; and when P is the class of étale surjective maps, in

which case we will call them étale hypercoverings.

In order to construct hypercoverings, we introduce the notion of split simplicial

objects:

Definition 2.1.3. We say that a simplicial object X, is split if there exist
subobjects N.X; in each X; such that the natural map

|| NXy— X,
¢:[n]—[m]
is an isomorphism for every n > 0, where NX, := NX,, for a surjection

¢ : [n] — [m], and the natural maps are given by the composition

NX,C X ¥ x,.

We define truncated and augmented cases similarly.
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We denote by NX,, , the image of NX4 C X, under this isomorphism. Note

that for any epimorphism ¢ : [n] — [m| we have a commutative map

NXde[m C X,

NXm ~ Xe(¢)

NXn,Qs c X,

]

By [Con03, Theorem 4.12|, given any split n-truncated augmented simplicial
scheme X,<,/S with the splitting given by {N Xy }o<k<n, in order to extend
it to a split (n + 1)-truncated scheme Xo<,11/S it suffices to give an object

NX,,11 and a morphism

B:NX,p1 — cosk (Xe<p)nit

Following the notation from [CT03, Section 11.2], we denote the corresponding

n + 1 augmented simplicial object above by

Q51 (Xe<n, NXo, ..., NXp41) € SimpZ, 1 (C).

This construction can be done similarly for the non-augmented case.

Remark. Note that if we construct stepwise a split object X, using the above,

by choosing 5 to be in P for every n we can form a P-hypercovering.

Cohomological Descent

Consider C to be some category of spaces, and X, a simplicial object in C.

Definition 2.1.4. A .%, sheaf of sets (resp. groups, resp. rings) on X, consists
of a collection {.%,} where .Z, is a sheaf of sets (resp. groups, resp. rings) on
X, satisfying some compatibility conditions. More explicitly, given ¢ : [n] —

[m], we have a map of sheaves
[¢] : X(0)"(Fn) = Fm

satisfying
[¢] 0 X(0)"[¢] = [0 ¢]
for composable ¢, .



8

Given an augmented simplicial object X,/9, let w, : Xo¢ — S denote the

augmented structure. Then, we have a map of topoi

w = (0}, we,) : Xo — S

where for a sheaf 4 on S,

and for a sheaf .%, on X,,

(Wes(F)) = ker(wo.Fg — wisF1).

Similarly we can do this for abelian sheaves, rings and modules over some
ring. We can demonstrate that there are enough injectives and thus we obtain

functors
w* . D+(S) — D+(X.>, Rw* . D+(X.) — D+(S)

on the abelian level.

Definition 2.1.5.

e We say that w : X, — S is a morphism of cohomological descent if the
natural transformation

id - Rw, o w*
on D, (S) is an isomorphism.
o w: X, — S is said to be universally of cohomological descent if for

every base change S’ — S, the augmentation w' : X, xg 5" — S’ is of

cohomological descent.

2.2 Rigid Cohomology
We use |CT03| definition of rigid cohomology in order to work without as-
sumptions of closed embeddings into a smooth formal scheme. We summarize

their main notation and results below.
Definition 2.2.1.

o A pair of schemes (X, X) consists of an open immersion X < X over
k.
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o A triple of schemes X = (X, X, X) consists of a pair (X, X), and a closed

immersion X < X xy k for a formal W-scheme X of finite type over

W. We will denote triples by their corresponding fraktur letter.

e Given a pair (X, X), a (X, X)-triple 9 = (Y,Y,)) is given by a com-
mutative diagram

—sY —)

i
L

Morphisms are just pairs (and triples) of morphisms w = (w,w) : (X, X) —
(V,Y) (and w = (0, w, ) : X — Q) over (k, k) (and (k, k,W)) fitting into the

commutative diagrams

Yy —Y Y —Y —— Y

Definition 2.2.2.
e A morphism of pairs w: (Y,Y) — (X, X) is strict if Y = w1(X).
e A morphism of triples w = (1, w,w) : Y — X is strict if ¥ = (X))
and Y = w 1(X).

Definition 2.2.3. Let w : ) — X be a morphism of formal schemes, and let
Y be a subset of ). Then, w is smooth around Y if there exists an open formal
subscheme U of Y such that Y C U and Wy, : U — X is smooth.

Definition 2.2.4. For a formal scheme P over VW, we have an associated
rigid analytic space Px over SpmK in the sense of Raynaud [Ray74|, and a
specialization morphism

sp: Pk — P.
Given a k-subscheme X in the special fiber Py := P Xy, k, we let
[ X [p:=sp™(X)

with the induced Grothendieck topology from Py, and call it the tube of X in
Pr.
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Given a morphism of triples w : ) — X, we naturally get a morphism of rigid

analytic spaces
W ]V{y—)]Y[X .

Hypercoverings
Definition 2.2.5.
(1) For a simplicial pair (Y,,Y,) — (X, X):

- (W,,Y,) — (X,X) is an étale-proper hypercovering if Y, — X
is an étale-hypercovering and Y, — X is proper (i.e. for all n,

Yo — COSknY(V.Sn)TH_l is proper, possibly non-surjective).

- (W.,Y,) — (X, X) is an étale-étale hypercovering if both Y, — X
and Y, — X are étale hypercoverings, and (Y,,,Y,) — (X, X) is
strict for all n.

- (Y.,Y.) — (X, X) is an proper-proper hypercovering if Y, — X is
a proper-hypercovering, Y, — X is proper, and (Y,,Y,,) — (X, X)

is strict for all n.

(2) A simplicial triple 9 — X is a étale-proper (resp. étale-étale, resp.

proper-proper) hypercovering if:
i) (Y,,Y.) — (X, X)is an étale-proper (resp. étale-étale, resp. proper-
proper) hypercovering of pairs.
i) cosk? (Ve<n)i — cosk? | (Vecp_1); is smooth around cosk: (Ye<y);

for any n and [.

e A simplicial (X, X)-triple ), is a étale-proper (resp. étale-étale, resp.

proper-proper) hypercovering if:

i) (Y,,Y,.) — (X, X)is an étale-proper (resp. étale-étale, resp. proper-
proper) hypercovering of pairs.
i) cosk!” (Ve<n)i — cosk)” |(Vecn_1); is smooth around cosk: (Ye<y);

for any n and [.

e We define truncated versions similarly.
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Lemma 2.2.6. For an n-truncated étale-proper (resp. étale-étale, resp. proper-

proper) hypercovering o<, — X, we have that
05 (D a) = (03K (Vazn), 05T (Vazn), cosl (Vazn)) — X

is an étale-proper (resp. étale-étale, resp. proper-proper) hypercovering.

Proof. This follows from the fact that for 0 < n > m, by [Con03, Corollary

3.11] we have a natural isomorphism

o8k, (Sky (—)) = cosk, (sky, (cosky, (sky (—))).

Overconvergence
We introduce strict neighborhoods, to deal with overconvergence in the case

of non-proper schemes:

Definition 2.2.7. [Ber96, Def.1.2.1] Given a triple (X, X, X), a subset V of
X [x is called a strict neighborhood of | X[x in | X[x if {V,]X \ X[x} is an
admissible covering of |X[y. We will simply call V' a strict neighborhood if

there is no possibility of confusion about | X[+ and | X|x.

For admissible open subsets V C U of |X[x, denote by jJ : V — U the

inclusion. In the case U =] X [y, simply set jy := jg[".

By [Ber96, Prop. 1.2.10.(i)|], intersections of strict neighborhoods are still
strict neighborhoods, so these form a filtered category. Therefore, given a
sheaf of abelian groups .# on a strict neighborhood U, we define the sheaf of
overconvergent sections of F on | X[x along | X \ X[x as

](T]y = hg]\/*(ﬁg)_lﬁ
VcU

where V' runs through strict neighborhoods contained in U. We denote

gh= j]%[x for when U =] X|x.

If Z is a sheaf of rings on U (resp. ¢-module for & a sheaf of rings on U),
then j.% is a sheaf of rings on | X[y (resp. a j),@-module).

Given a morphism of triples w : 2) — X, consider the natural map

o (' Ox,) = 'O,
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For a sheaf E of coherent jTﬁ]y[X—modules, we can define
WE :=0'E @g-10: 1O+
o (G O%,) Yy
which by [CT03, Prop. 2.10.1] gives a functor

wh Coh(jTﬁ]y[X) — COh(jTﬁ]?[y)-

Given a simplicial triple X,, we get a simplicial objects of rigid spaces
JXo[x,

and we may consider sheaves of rings @y.[x. as in Definition 2.1.4. We may
further apply the j at every n to consider sheaves of rings jT@y.[X. and

sheaves of jTﬁ]y.[X.—modules. We may generalize as follows:

Definition 2.2.8. We say a sheaf F, of jTﬁ}Y.[xc—modules is coherent if

e [, is a sheaf of coherent jTﬁ}Yn[X -modules for all n.
e For any ¢ : [n] — [m], the map
jTﬁ]ym[Xm ®€£7le(}]771[2{” ¢71En — Em
is an isomorphism, where ¢ :| X ,[x,, —] X[, is the map induced by ¢.
Given an augmented simplicial triple

We : Yo — X

and a complex of sheaves .7 of w:l(jTﬁ’W[){)—moduIes, let Z7 be an injective
resolution of .#? in w:l(ﬂﬁ}yh)—mod. Then, define Rw,..#¢ (denoted by
RCT(X,9.; ) in [CT03|) to be the total complex associated to

(2.1)

0 —— W L) —=3 I} = ...
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where the vertical maps come from maps in Z?, and the horizontal come from

the simplicial structure. Note that these are complexes of abelian sheaves on
X«

The n-truncated version we<,, : Yeo<n — X is defined similarly, taking the total

complexes of 2.1 and setting the columns larger than n to 0.

We will be particularly interested in the case when X = (Spec k, Spec k, Spf W),

in which case we will denote
RU(Y.[y,, #2) = Rwe. 7.

Definition 2.2.9. With the same w, : ) — X, suppose that ), is smooth
over X around Y,. We say that w, is de Rham descendable if, for any sheaf F

of coherent jTﬁ}y[x—modules, the canonical homomorphism

~ . TOe _
E = Ruw., (w-E Bjtopg, ., J Q]Y-[y./]X[x)

is an isomorphism in Dy (Z%,)-
We say w, is universally de Rham descendable if, for every morhpism 3 — %)

of triples, the base change
Q;jo Xx 3 — 3
is de Rham descendable.

2.3 Definition of rigid cohomology

Definition 2.3.1. Let 9), be a simplicial (X, X) triple, such that ), — W is
smooth around Y, for all n. We say ), is a universally de Rham descendable
hypercovering of (X, X) if for any (X, X)-triple 3, the base change

Do X(xxW) 3 =3
is de Rham descendable.
Proposition 2.3.2. Given (X, X), there always exists a universally de Rham
descendable hypercovering Vo of (X, X). Furthermore, if Do a (X, X)-triple

is an étale-proper (resp. étale-étale, resp. proper-proper) hypercovering, then,

9), is a universally de Rham descendable hypercovering of (X, X)

Proof. The first part is [CT03, Corollary 10.1.5]. For the second part, see
[CT03, Example 10.1.6.] for étale-étale and étale-proper cases, and [Tsu03,
Proposition 2.2.2.| for the proper-proper case. O
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Definition 2.3.3. Given a k-scheme X, consider an open immersion into a
proper k-scheme X; this gives a pair (X, X). Let 9, be any universally de
Rham descendable hypercovering of (X, X), then set

Ry (X/K) = RO(V.ly,, 5105 ).
Such a X always exists by Nagata, and by [CT03], a universally de Rham
descendable hypercovering always exists (Corollary 10.1.5), this definition is
independent of the choice of universally de Rham descendable hypercovering

92). (Proposition 10.4.3.), compactification X (Corollary 10.5.4.) and agrees
with Berthelot’s original definition of rigid cohomology (Theorem 10.6.1).

Note in the case that X is quasi-projective, we may find some triple X =
(X,X,X) with X proper (in fact projective) and X a smooth formal W-
scheme. Then, we may take %), to be the constant triple over X (that is,
2, = X), and

RTs(X/K) 2 RD( X, 9% )

1X

One important result that we will use later on, is the vanishing of rigid coho-

mology:

Theorem 2.3.4. [Tsul04, Theorem 6.4.1] Given a scheme X over k, there
exists an integer ¢ such that for i > ¢, H}; (X/K) = 0.

2.4 The Tsuzuki Functor

When constructing some simplicial triple ), to compute rigid cohomology, we
may keep control of (Y,,Y,) using a split construction (see Definition 2.1.2).
However, it proves hard to embed into some simplicial formal scheme ),

smooth over W, or even to construct it one step at a time.

Noting that for an N-truncated étale-étale (resp. étale - proper, resp. proper-

proper) hypercovering 2,<y of (X, X), that
coskfy " (Dacw)

is also a étale-étale (resp. étale - proper, resp. proper-proper) hypercovering
of (X,X), then we see that we just need to do our construction at the N-
truncated level. In fact, the construction below shows that all we need, is a

closed immersion of Yy into some smooth formal W-scheme . Doing this,
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we will lose control above N, but for vanishing reasons, this will not affect

computations for large enough N.

We use the Tsuzuki functor introduced in [CT03, Section 11.2]. Given a cate-
gory C with finite inverse limits, a non-negative integer N, and an object X,

we construct a N-truncated simplicial object I'{(X) in Simp_ y(C) as follows:

Definition 2.4.1. Set

FJCV(X)m = H Xy
¢:[N]—=[m]

where X, = X. To define the simplicial maps, given « : [m'] — [m], we define
Lo T%(X)m — TS (X)) by

(o) e:v1-s1m) = (e[ ] o)
where dy := caoyp, and the product is in C.
Note that this is just a product of copies of the given object X. In the case of
augmented simplicial objects over some S, we take the product over S.

Given any Ye<y in Simp. y(C), and a morphism f : Yy — X in C, we construct
a morphism
Yeen = I{(X)

by the commutative diagram

Y — cmv(X)m = H¢;[N]—>[m] Xy

Y(¢)l lm
f

Yy — X =X,

for any m and ¢ : [N] — [m], where p, is just the projection onto the ¢ :
[N] — [m] factor.

Letting C be the category of formal schemes over Spf(W) or of schemes over
Spec(W (k)), we have the following:

Lemma 2.4.2. Let C be as above. If f : Yy — X is a (closed) immersion,

and Yo<n and X are separated, then the induced morphism
Yoen = I (X)ecn

is a (closed) immersion.
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Proof. We will do the case where C are schemes over W (k), but the case of

formal schemes follows identically.

For any 0 < m < N, consider any face morphism § : Yy — Y, (with 6 = idy,
if m = N), and a corresponding degeneracy map o : Y,, — Yy which is a
section to 6. Then, we have

Yy —2 Y,

W (k)
where the vertical and diagonal maps are separated. This shows that ¢ is also

separated. Then, by the commutative diagram
Y,, —— Yy
AN
Y
we see that o is a closed immersion. Finally, by the definition of the map

Im Yy — F]V\[[/(k)(X)m, we have a commutative diagram

Y s T (X)), =— ] X

¢:[N]—[m]
o lﬁlﬂ'n‘
f

Yy —— X

which shows that f o o, and thus g,, is a (closed) immersion. O

This will be useful by the following result:

Proposition 2.4.3. Suppose (Yocn,Yecn) — (X, X) is an N-truncated étale-
proper (resp. étale-étale, resp. proper-proper) hypercovering. Suppose further
that there exists a closed immersion Y y — Y x W for some smooth formal

W-scheme ). Then,

coshly ™ (Yeew, Vaen TR (V) = (coshyy Yoz ), coshy (Vezw), cosky (TR (D))
is an étale-proper (resp. étale;étale, resp.  proper-proper) hypercovering of
(X,X). In particular, coskg(;(’X’W)(Y.gN,Y.SN,T}/\})()})) is a universally de

Rham descendable hypercovering of (X, X ).

Proof. The first part follows from the proof of [CT03, Prop. 11.4.1.] (note that

using  [] T™(V.) there instead of just I'"V()) does not seem necessary).
0<m<N

The second part follows by Proposition 2.3.2. ]
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2.5 Crystalline Cohomology

The main reference is [BO78|. Given a scheme X over k, we may consider the
crystalline site Cris(X/W,,) with objects given by PD-thickenings (U «— T, )
over W, for Zariski opens U of X. Let (X/W,)es denote its topos. The
morphism and topology is explained in §5 loc. cit. One can also take the direct
limit of the sites (X/W,,)erys (see §7 loc. cit.), and obtain a site Cris(X/W),
with a corresponding topos (X/W)sis.

Let ux/w, @ (X/Wp)ais = Xzar and uxw @ (X/W)ais = Xzar denote the

morphism of topoi. Then:
Theorem 2.5.1. [BO78, Proposition 7.22]
RU(X/W, Ox)w) = Rlim RU(X /W, Oxw,,)

Ruxw.«Oxw = R @1 Ruxw,«Oxw,

2.6 Witt de-Rham Cohomology

The main reference is [I179]. For a given smooth scheme X, we may consider
the complex of étale sheaves W, Q% /i 0L X. We can consider the pro-complex
W.Q;(/k as a DGA with additional maps

F o WoQ ), = Waa Q4
V. WnQiX/k — WnHQé(/k
satisfying certain compatibility conditions.
We may also consider the limit

and endow it with a Frobenius endomorphism ¢ defined by ¢ = p'F on WQfX/k.
By the proof of [I1I79, Proposition 2.1|, we have that the canonical map
WQé(/k — Rl'&anQQ/k
is a quasi-isomorphism (even though the actual statement of the proposition
also assumes properness, we do not need it for this result).
For X proper and smooth, we can then consider the hypercohomology
RU(X, WQ% k)

which is a perfect complex of W (k)-modules by [I1179, Theorem 2.7].
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2.7 Comparisons

Theorem 2.7.1. If X is smooth, and there exists a closed embedding into a

smooth formal scheme X over W, then there exists a natural quasi-isomorphism

Rsp Q' (, = Ruxyw Oxwi,o = Wk g

on Xza-. Therefore, if X is smooth and projective, this induces natural quasi-

1somorphisms

RT,:,(X/K) = RD(X/W(k))g = RD(X, WQ%)o.

Proof. From the proof of [Ber97b, Proposition 1.9] we have that

For the first isomorphism, given any open affine formal scheme U = SpfA C X,
we see that sp~!(U) = Spm(A ® K) is affinoid and thus quasi-Stein, thus its
closed subspace sp~'(U)N] X[y is also quasi-Stein, and thus satisfies Kiehl’s
Theorem B. Therefore, H'(sp~'(U)N]X[x,fy,) = 0 for all k and i > 0.
Since Risp*foX[X is the sheaf associated to the presheaf

UNX — Hi(sp’l(U)ﬂ]X[X,Qf“X[X)
this proves the vanishing of the higher cohomologies.

Then, there exists a natural morphism
(5D, O)x1) ® Uy = P(T) © Qg

where Z is the ideal of X in X, P(Z) is the PD-envelope of X in X, and
75(1) its p-adic completion. This is a quasi-isomorphism when X is smooth.
Note that even though properness is assumed in the statement of Berthelot’s

proposition, we do not require it for this quasi-isomorphism.

Next, by [BO78|, we have natural quasi-isomorphisms

[BO78, Th.7.22.2| [BO78, Th.7.23]
Iav)

~

Finally, by [I1179], we have natural quasi-isomorphisms

[[1179, I1.Th.1.4.] 1179, IL.Pr.2.1]
~Y ~Y
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where we again note that even though the Proposition for the last quasi-
isomorphism assumes properness, the quasi-isomorphism holds without proper-

ness.

Tensoring with Q these last quasi-isomorphisms we complete the proof. O
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Chapter 8

P-ADIC MOTIVIC COHOMOLOGY ON SINGULAR
VARIETIES

We recall notation and results from [Gei06].

3.1 The eh-topology
Fix a perfect field k. For d € NU oo, let Schd/k be the category of separated

schemes of finite type over k of dimension < d (and drop the d in the case

d = 00), and Sm?/k the full subcategory of smooth schemes over k.

Definition 3.1.1. The étale h-topology (abbreviated eh-topology) on Sch/k,
is the Grothendieck topology generated by the following coverings:

1) Etale coverings.

2) Abstract blowups {Z — X, X’ — X} coming from a cartesian square

7/ i b'd

iy

Z—X
where f is a proper morphism, ¢ a closed embedding, and f induces an
isomorphism X' — 72/ & X — Z.
We state the following result (cf. [SV00, Lemma 5.8]:

Lemma 3.1.2. [Gei06, Lemma 2.2.a] Every proper morphism p : X' — X,
such that for every point x € X there is a point v € X with p(x') = x which

induces an isomorphism on the residue fields, is an eh-covering.
Definition 3.1.3. We call a covering as in Lemma 3.1.2 a proper eh-covering.
Remark. These are called proper cdh-coverings in [SV00].

Definition 3.1.4. For d € N U oo, we say the strong form of resolution of

singularities holds for varieties up to dimension d if the following hold:
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e For every integral separated scheme X € Schd/k'7 there is a proper,
birational map f:Y — X with Y € Sm/k.

e For every smooth scheme X € Smd/k and every proper birational map
f:Y — X, there is a sequence of blow-ups along smooth centers X,, —
X, 1 — ...— X7 — X such that X,, — X factors through f.

If this holds, we denote it by R(d).

Remark. Some known cases of resolution of singularities:

e R(oc0) when char(k) = 0, by [Hir64].

e R(2) in general, and R(3) for k algebraically closed of char(k) = p > 5,
by [Abh56].

Note that R(d) makes all schemes in Sch?/k locally smooth in the eh-topology

(see Lemma 4.1.3).

The inclusion of smooth schemes then induces a morphism of sites
pa: (Sch?/k)en, — (Sm?/k)er.

This in turn induces a morphism of topoi under R(d):

Lemma 3.1.5. [Gei06, Lemma 2.5.a] Assume R(d) holds. Then the functor

pa nduces a morphism of topoi

pa : (Sch®/k)s, — (Sm®/k)7.

3.2 Cohomology for the eh-topology

By usual arguments, (Sch?/k)>, has enough injectives, which allows to define
cohomology groups RI'(X.,,-#) as the right derived functor for the global
section functor I'(X.,, —). One of the advantages of eh-topology is that we

can define the cohomology with compact support as follows:

Definition 3.2.1. Let X € Sch?/k. Take an open embedding j : X — X
with dense image into a proper scheme, and let ¢+ : Z — X be the closed
complement with reduce subscheme structure. For .Z € (Sch?/k)7,, take an
injective resolution .# — .#* in (Sch?/k)>,, and define

RU(Xen, F) = [F(X) = 7°(2)] .
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This is independent of the choice of X by [Gei06, Lemma 3.4], and has the

expected properties, such as contravariance for proper maps, covariance for

open embeddings, and long exact sequences for open-closed decompositions.

3.3 Motivic cohomology for singular varieties

Using R(d), we define motivic cohomology on any scheme X € Sch®/k by
considering RI'(X.n, p5Z(n)), where Z(n) is Suslin-Voevodsky’s motivic com-
plex [SV00, Definition 3.1] for smooth schemes. However, since we will be
interested in a p-adic completion of this cohomology, we will use the identifi-

cation

Z[p"(n) = WSl [—n]

log

on Sm/k from [GLOO], Theorem 8.5, where W, (2}, ~(denoted v, there) is the
subsheaf of W,.Q" étale locally generated by sections of the forms dlogf;...dlogf,
defined in [T179] 11.5.7.

Under R(d), by the same proof as [Gei06] Theorem 4.3 mod p" we get that this
motivic cohomology on the eh-site coincides with the usual motivic cohomology
in Sm/k.

Theorem 3.3.1. Assuming R(d), for any n € N and r > 0 we have
Z/p"(n) = Rpa.piZ/p"(n) on Sm®/k.
In particular, for any X € Sm?/k,

RI(Xer, Z/p"(n)) = RU(Xen, pgZ/p" ().

We then consider the p-adic completion of this cohomology:
Definition 3.3.2. Assume R(d). For X € Sch?/k and n € Z set
RF(Xe}m ZP(”)) = Rl&n RF(Xeha PZZ(”)/PT)

and
RTU(Xen, Qp(n)) := RT(Xen, Zy(n))q,

and the cohomology with compact support

RT(Xen, Z,(n)) := Rlim RTo(Xen, p3Z(n) /p")

and
RFC(Xeh7 Qp(n)) = RFC(X€h7 Zp(n))Q>
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Chapter /

CONJECTURE A

In this chapter, we prove Conjecture A:

Theorem 4.0.1 (Conjecture A). Assume R(d). Let X be in Sch/k with
dim X < d. Then, for anyn € N,

RTo(Xen, Qp(n)) 5 | RT iy o X/ K) P5° BT,y o( X/ K)

functorially in X.

In Section 4.1, we construct proper-eh hypercoverings with suitable properties
for the proof of Theorem 4.0.1 in Section 4.2.

4.1 Proper eh-hypercoverings

We generalize the notion of a proper hypercovering:

Definition 4.1.1. For an augmented simplicial scheme a : X, — Y, we say

X, is a proper eh-hypercovering if the natural maps
fn+1 . Xn+1 — (COSankn(X.))n+1

are proper-eh coverings for all n > —1.

We prove some properties of proper eh-coverings which will be useful in the

construction of proper-eh hypercoverings:

Lemma 4.1.2. Proper eh-coverings are stable under base change, preserved

under composition and contain all isomorphisms.

Proof. The only thing that needs proving is the stability under base change.
Given a proper eh-cover p : X — Z, and a morphism f : Y — Z, consider
X Xz Y with morphism p’ and f’ to X and Y respectively. Then, p’ is proper.
Also, given any point y € Y, consider a point = € X lift f(y) =: z € Z with
the same residue field. Then, since k(z) ®i) k(y) = k(x), the point k(x)
factors through X x, Y. O]
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Lemma 4.1.3. Assuming R(d), for every scheme Y in Sch/k of dimension
< d there exists a proper eh-covering X — Y with X € Sm/k.

Proof. Firstly, we can assume that X is integral since the reduced subscheme
and disjoint union of irreducible components are both eh-coverings. We pro-
ceed by induction on d. The base case d = 0 is thus trivial. So we assume it
holds true for dimension < d. Then, by R(d) we can find a proper birational
map
Y- X

with Y’ smooth, which is an isomorphism away from some proper closed sub-
scheme Z of X, and thus Y’ U Z — X is an eh-covering. But by inductive
hypothesis, there is a proper eh-covering 7/ — Z with Z’ in Sm/k, and thus
Y :=Y'UZ — X is a proper eh-covering. m

Definition 4.1.4. We say X, — X is a peh-resolution if it is a split proper-eh
hypercovering, and for all n, X,, is smooth over k. We define the truncated

version similarly.

Proposition 4.1.5. Assuming R(d), then for every scheme X in Sch® [k there
exists a split proper eh-hypercovering Xo — X with
Xm € Sm/k for all m.

Proof. Assuming R(d), the proof is identical to the construction of proper
hypercoverings (for example in [Con03, Theorem 4.13]), replacing proper sur-

jective maps with proper-eh coverings at every step
NXn—H — COSkf(X.Sn%H_l

using Lemma 4.1.3. O
Constructing peh-resolutions in this manner, we show we can always refine
two given ones, and that we can construct them functorially.
Proposition 4.1.6. Assume R(d). Then,

i) Given two split proper eh-hypercoverings U,,V,/X, there exists a peh-

resolution Wo/X and morphisms fo : We — Us, go : Wo — V4 over
X.
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ii) Given a morphism f : X — Y, and a peh-resolution bs : V,/Y, then
there exists a peh-resolution a : Uy /X with a morphism fo : Uy — V4

making
U,
b,
X1y
commute.

Proof. For i), we again proceed by proceed by constructing the n-truncation of
W, one step at a time. For n = 0, taking a proper eh-covering NWy, = Wy —

Uy x x Vo with NW, smooth, then this satisfies the lemma at O-truncation.

Assume we have constructed W,<,, satisfying the hypothesis. Then, let (—)’
denote coskXsk (=) (e.g. Ul = cosk: skX(U,)), let NU’s give the splitting,
and denote the proper eh-coverings used to construct the n 4+ 1 step by [_
(e.8. Bu : NUpy1 = Uppy).

Take a proper eh-covering

Bw : NWyp — (W),

n

+1 XU;LH NU”'H) XV!’L+1 NVt

where the morphisms W), to U}, ,,V, | are defined by functoriality of the
cosk, map and NW,, ., is some smooth scheme. Then, looking at the compo-

sition
p / / !
NWn+1 K (Wn+1 XU7/1+1 NUn+1) XvéJrl an+1 — Wn+1 XU7/1+1 NUn+1 — Wn+1

we see that the two last maps are base changes by proper eh-coverings. So by
Lemma 4.1.2 all three are proper eh-coverings, and thus so is the composition
B+ NWyp — W, which we can use in the construction of W, by the
same method as above. This then comes with obvious maps

NWyi1 — NU, 1, NV, 1, compatible with the maps on components on lower

skeleta, inducing maps W11 — Upi1, Virq.
Part ii) follows from the proof of i) by taking a refinement of the peh-resolution

W./X and (Vi xy X)/X. 0

Finally, since working on affine schemes will be easier later on, we introduce

the following:
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Definition 4.1.7. Given an augmented simplicial scheme X,/X, we say an
augmented simplicial scheme X/X is a simplicial affine covering of Xo/X if
there is a morphism f, : X, — X, over X such that for all n, X] = Uaer, Xna
for a finite open covering by affines X,, = U,er, X;,o such that the image of

each X, , in X is contained in some affine open subscheme of X.

These will always exist under nice enough conditions, and by a proof similar
to 4.1.6 we have:
Lemma 4.1.8. Let X,/ X be a split proper hypercovering. Then:

i) [Nak12, Lemma 9.6] There exists some simplicial affine covering X,/ X

of Xe/X.

ii) [Nak12, Proposition 6.5.1] Given another split proper hypercovering

Y./Y, and a commutative diagram

X.g—'>Y.

L, L

X —Y

and any simplicial affine covering Y]/Y of Yo/Y, then there exists a
simplicial affine covering X,/ X of Xo/X and a morphism ¢, : X, = Y]

fitting into the commutative diagram

1
i

iii) [Nak12, Proposition 6.3.2] Given a two simplicial affine covering X,, X"¢/X
of Xe/X, there exists a third simplicial affine covering X" ¢/ X of X/ X
refining X,, X/.

!
L[]

>~.<

LN

<—:<<—
o

L

>~.<

4.2 Proof of Conjecture A

The main ingredient for the proof is the following result:
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Theorem 4.2.1. [Nak12, Theorem 11.6.3] Suppose X is a proper scheme

over k. Then there exists a quasi-isomorphism
Rl..;(X/K) = RI'(X., W%, o
functorial in split smooth proper hypercoverings Xo — X.

Proof. We fix some h and some N > (h + 1)(h + 2)/2. Take some simplicial
affine covering X of X,, which is possible by Lemma 4.1.8. Let X,. be the
Cech diagram of X, over X,, with X, := cosky(X])m = X] Xx, ... Xx, X].

Take an affine open covering X = UX,, with closed embeddings X, — A,
into smooth formal schemes, and let Z7 = UX,, Z = UX,. Let

(Zs, Z4) = (cosky (Z),cosky (2)))
be its Cech hypercovering. Then, we set
Ximn = c05ky ™ (Xim X x Z)n = (Xim Xx Z) Xx, oo Xx,,, (Xim Xx Z) =
= X Xx (Z Xx oo Xx Z) = Ximn Xx Zn-

Since the X; are smooth, so are the X;,, and Xj,,,. We then construct a
closed immersion Xe<y oo <> Re<n.eo Where Re<neo is a smooth (N, 00, 00)-
truncated trisimplicial W-scheme. To do so, since Xyo = X} is a disjoint
union of affine open subschemes of the smooth scheme Xy, we can pick a
smooth lift X over Spf(W). Then, by Lemma 2.4.2 we have a closed immer-
sion

Xe<no = TN (Xno)e<n-
This in turn gives a closed immersion
XogN,o — R.SN,. = COSkgV(FK;V(XNo).SN)

and

X.SN,.,. — ROSN,Q,O = COSkz)/V(R.SN’.;(WZ))

given respectively by

Xim = X Xx, oo Xx, X] > R = TR (Xn0) i Xw--. Xy (Xnvo)i
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and

len len

(le Xx Z) Xle Xle (le X x Z)(—> (lein)%W%W(le%WZ)

The following diagram summarizes the morphisms above:

XOSN,O,Q ? XogN,o ? X.SN

| |

Ze X

where Xe<n oo, Xoe<n,e and Z, have compatible closed immersions into formally
smooth simplicial schemes (note that we do not require any such embeddings
for X and Xe<p).

Then, (Xe<nee; Re<nee) = (Ze, Zo) induces a map

T<nR3ig(X/K) T<hR(1Za[2.,2,,.,.) (4.1)

Ze
TShRP(]X.§N7.7. [R.SN,.,. Y Q].XOSN,.,C[R.<N .o

where 7« is the canonical truncation, and we show in Lemma 4.2.3 that it is

a quasiisomorphism.

Now, by Theorem 2.7.1, we have a natural quasiisomorphism

RSP*Q].XQSN,-,O[R = WQ—.X

e<N,e,0 oSN,o,u@’

which we use to get

RF(:IX.SNy.y. [RQSN,Q,.’ Q. 4 2

]XUSN,.,.[R.SN,.,.)

RF(X.SN,mM WQ;(.SN,.,.#@)

RF(XogN,Ov WQ;(.SN,%Q) =
)

RF(X.SN, WQA.XongQ g RF<X0§N7et7 WQB{.SN;Q)

R
Tt = W

(4.2)
(4.3)
(4.4)
(4.5)

where we have used that Xe<nee = Xe<ne and Xe<cnyo — Xe<n are Zariski
hypercoverings (and thus satisfy cohomological descent), and that Zariski and

étale hypercohomology agrees since the the W are quasi-coherent sheaves
(see [Mil80, Remark 3.8]).
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This gives

T<p R 1ig(X/K) = 7<p RT(Xe<n et WQB(.§N7Q) = 7, RT (X et WQS(Q)
(4.6)

since by the spectral sequence
EYY = HI(X,, WQB(p) = H' (X, WQY,)

the X,, with n > N don’t contribute to H'(X,, WQ¥,) for i < h.

Next, by Theorem 2.3.4 there exists an integer ¢ such that H}; (X/K) = 0 for
q > c¢. Thus, since (4.6) holds for any h, we see that
HY( X, o1, WQS o) = 0 for ¢ > c also. Taking h = ¢, we can drop the truncation

terms and get

RTig(X/K) & RT(Xo o, W, o) (4.7)

Finally, it remains to show independence of all the choices, and prove functo-

riality, which is Lemma 4.2.2 below. O

Lemma 4.2.2. With the same assumptions as Theorem 4.2.1:

i) The isomorphism (4.7) in DY (K) is independent of choices.

i) The isomorphism (4.7) in DY (K) is functorial in split smooth proper
hypercoverings Xo — X.

Proof.

i) Independence of choices:

We need to show independence of the choices of closed embeddings into smooth
formal schemes Xyo — Xno and Z — Z, independence of choice of affine
Zariski coverings Z — X and X, — X, and independence of choice of N
satisfying N > (¢ + 1)(c + 2)/2 with ¢ as in the proof. Given two choices

T = (Xl = Xey Xiog = Xio, 2" = X, 20 — Z7) for i = 1,2, we will set

RF;. = RF(]ngNi,.[Ri<N¢ . ].Xi<Ni [mi ),
- ’ = [ .gN’i,.
RF’i,o,o = RF(]XESNi,Q,o ['Ri<Ni’.7.7 Q}.X:‘<Ni R .[Ri )

oSNi,o,o
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to be the complex formed as in the proof, where if not explicitly defined, we
will drop the superscript 7 (e.g. for independence of choice of Z,

T' = (Xeog = Xo, Xno — Xno, 2" — X, Z" < Z%) with only Z', Z" and
Z' < Z' varying).

By the description of D" (K) in terms of right roofs, to show that the two

maps

RT

000

T

RT,i,(X/K) RT(X,, WQS.)g  i=1,2

are equivalent, it suffices to find some RI'!2, fitting into the commutative

.00

diagram
RT.,. (4.8)
RFmg(X/K> RFE?.,. RF(XM WQ;{.)Q
\RFL /

(XN

where all maps are quasi-isomorphisms.

e Independence of choice of Xno:
Suppose we choose two different closed embeddings into smooth formal
schemes Xyo < Xrq, X%, Take the closed embedding into a smooth
formal scheme

1 2 . 12

Letting T := T (X% )e<n for i = 1,2,12, we then have a commutative

diagram of N-truncated simplicial complexes

//Pl

XOgN,O E— F12

2,
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which in turns gives rise to two diagrams

12
Xe<Ne — Ry,

o<N,e

of (N, 00), and similarly for (IV, 00, co)-truncated simplicial complexes,
where we construct Ri.y, and Ri.y,, as above for i = 1,2,12. Then,
by Berthelot’s independence of the choice of a closed immersion into a

smooth formal scheme [Ber97b, Théoréme 1.4] we have quasi-isomorphisms

° ~ i ()®
}XOSN,Q,Q[R'L' - Rp*Q]XQSN,Q,.[RIQ
e<N,e,0 e<N,e,0

for i = 1,2. This in turn gives rise to a desired diagram such as (4.8).
o Independence of choice of affine covering Xq9: Given two simplicial affine

coverings X}, X2 — X,, by Lemma 4.1.8.iii) we can choose a common

simplicial affine covering X2 fitting into

where X !2 is the disjoint product of some affine coverings of X, for every

n.

Then, we can choose closed embeddings X4, < X%, into smooth formal

schemes, compatible with the above maps. This will give maps

(X.ISN,. — RESN,.)

(XOI%N,O — REQSN,Q)

(X.QSN,. — R%SN,o)



32

and similar for its trisimplicial counterpart. We claim that all the vertical

arrows in the commutative diagram

RT},,+~— RI}, (4.9)

[N}

L

Rr2 <~ RT2

(X X

]

RI2,,+«~— RI2,

000

are quasi-isomorphisms, from which independence will follow just as be-

fore. It will suffice to show this for the right vertical arrows.

The fact that they are quasi-isomorphisms follows since for a fixed p < NV,
and i =1,2,12, as X;O is a Zariski covering of X, (X;., Ri,) is a univer-
sally de Rham descendable hypercovering of X, by [CT03, Proposition
10.1.4]. Thus, by the independence of choice of universally de Rham
descendable hypercovering ( [CT03, Lemma 10.4.1]), we have quasi-
isomorphisms

RP(X )l

b,e® X;,Q[R%) o )

~

RT(1X) ARz,

pelriz U )

~

RPNz O, )

p,® ]XT%!'[R% .

for all p < N. Together with the spectral sequence

)= B Xicy e, )

1
o< N,e R’SNJ

BT = HI(RD(X] g . O

*'[R;’L.
we see that the right vertical arrows in (4.9) are quasi-isomorphisms.

e Independence of choice of affine covering Z of X and closed immersion
7 — Z: We already know that the definition of rigid cohomology does
not depend on choices of Z and Z by |[CT03, Proposition 10.4.3|, so we

show that the comparison morphism is also independent.

Given two affine coverings Z' — X (i = 1,2), with closed immersions
7' — Z¥ into smooth formal schemes. we can pick a simplicial affine

covering Z'? — X with a compatible closed immersion Z'? — Z!2 for
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some smooth formal scheme. This will give compatible maps Z! <+

ZP = Z2and Ricnes ¢ RiZnee = Ricye. giving the commutative

diagram

RT(1Z1 (21,0 —~ 4 RT

~

—— Rl

RP(]ZEQ [2.127 Q

].ZOIQ[222)

RT()Z2] 2,0 —~ L RT

1

(XX}

12

e, 0.0

2

(XN

(4.10)

By |CT03, Lemma 10.4.1], the left vertical maps in (4.10) are quasi-

isomorphisms, making all the vertical maps quasi-isomorphisms.

Independence of choice of N: Take N? > N! satisfying N' > (h+1)(h+

2)/2 for h = ¢ as above, and choose embeddings X iy —

struct (Xe<niees RecNiee

the embedding, we can replace R}

e<Nle.e
2 .
RecNiee Then, consider the natural map

TSCRF(:IX.SN17.,. ['R2 ) Q].X

ogNl,o,o

l

T<e RT (| X o< N0 0[R2 Oy

Y
QSNQ,',O

oSNl,o,o

.§N2,o,t

coming from truncation. By choice of N' and N2, the X}, and R

R2

oSNl,o,.

[722

.§N2,o,.

Xi

N0 to con-

) for i = 1,2. Firstly, by the independence of

with the (N, 0o, oo)-truncation

2
Imn

with [ > N'! do not contribute to the cohomology of the bottom complex,

so the above is a natural quasi-isomorphism. Similarly, we have a natural

quasi-isomorphisms
ree BT (Xoant, WO )o
TSCRF(XO§N27 WQ;(.<N2 )Q

l

T<.RI'(X,, WQ%, )o

compatible with the above. This shows independence of the choice of N.
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Functoriality:

Given a diagram of good split proper hypercoverings

X._>}/.7

.y

X ——Y

and having chosen a disjoint union W of an open affine covering of Y, and a
closed immersion W < WV into a smooth formal scheme, then we can pick Z
to be a disjoint union of an affine open covering of X refining W, and a closed

immersion Z — Z fitting into the commutative diagram
Z
w

Similarly, having chosen a simplicial affine covering Y,o — Y,, then by Lemma

_

SN

—

4.1.8.ii) we can choose some simplicial affine covering X, — X, fitting into
the commutative diagram

Xeg— X

| ]

Yoo — Y.

Then, we can pick Xyo and Yy fitting into the commutative diagram

XNO—>XNO-

|

Yno—— Vo

This in turn will give morphisms of pairs and triples
(XQSN,M Rong) — (Y.SN,., 3.§N,.),

(XQSN,o,oy R.SN,.7.) — (KSN,Q,.; S.SN,.7.>7

where Se<n o and Se<n oo are constructed for Y the same as the R equivalents

are for X.

All these maps provide compatible maps at each step of the construction of

the comparison morphism. O
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Lemma 4.2.3. The map (4.1) is a quasi-isomorphism.

Proof. We give an outline of the proof, by drawing directly from the proof
of [Nak12, Theorem 11.6], which provides a detailed explanation. We intro-
duce some intermediate multisimplicial pairs to prove the quasi-isomorphism.
Consider the proper hypercovering (X, Xx Z)/Z, and take a projective re-
finement V,/Z using [Tsu03, Lemma 4.2.2.(1)]. That is, V,/Z is a proper
hypercovering, and we have a Z-morphism V, — X, Xx Z with the natural

morphisms
Vn - COSkg—l(SkN—l(‘/'))n ><<:oskTZL71(skn_1(X.><XZ)),L (XO XX Z)TL

are proper surjective for any n, and each V,, is projective over Z. Note that
we do not require any smoothness conditions on V,, and that we get an X-

morphism V, — X,.

Thus, we can choose a closed embedding into a smooth formal scheme Vy —

Pn, and setting Q, := I'X(Py) we get a closed embedding

Ve<n = Qo<

We can then form a (N, oo)-truncated bisimplicial complex (Ve<ny o), Qe<nie),

where [J stands for an empty spot, by setting
Vien = cosky (Vi),  Quon = cosky (QuxwZ),, 0<I<N,neN,

This gives a diagram

‘/QSN,D,o — X.gN

|

4 ——-X.
Also set X0, := coskg(l (Xi Xx Z)n = X| Xx Z,, to define X<y .
Thus, for any n € N,
(Va<nom, Qe<nin) = (Zn, Z1n)
is a N-truncated proper hypercovering.

We consider the induced morphism

RT(1 2020, Yz 1z,) = RE(Vesntelouenor Wracnpalosns, )
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We claim that applying 7<,(—) to this morphism gives a quasi-isomorphism.

To see this, consider the spectral sequences

BVt = H'(1Zy]z,,0,.,) = H' (1242, 0,12,

Zp

EY = H'([Vypele,n. Dy,

) D,.[Qp,m) = Herq(]V-gN,D,o[

Q.
Q'SN»DJ7 ]VOSN,D,O[Q.<N7E|’. :

Since the maps for each p are proper hypercoverings, using [Tsu03, Theorem
2.1.3] we get that the maps on EY? for 0 < p < N are isomorphisms, and by

our choice of N relative to h, we see that we get the desired isomorphism

Hi (] Z. [207 Q].Z. [Z. ) - HZ (]-‘/.SN7D7. [Q-gN,D,o’ Q].V'SNlmv'[QogN,D,o )

is an isomorphism for ¢ < h.

Define

Ve<n,o,
Voo = cosky™=" " (Vecnme Xx,cn Xe<no)

SO
Vimn = Vion X x, Xim = Vion X x,xx 20 (Xim Xx Zn) = Vion X x5, Ximn
giving a cartesian diagram

‘/.SN7.,. — ‘/;SN,D,O

l l

XoSN,op — XQSN,D,o-

We can then form a closed embedding Ve<n e e <+ Se<n e into a smooth formal
scheme, with a pair of morphisms into Xe<nyee <> Re<nee. We claim that

the induced morphism

TShRF(]XogN,O,O [’R.gN,.,o ’ Q

l

TShRF<]‘/;SN7.7. [SQSN,Q,Q ) Q

[ )
]XQSN,U,.[R.SN’”.

.
]VogN,o,o[S,SN’”.

is a quasi-isomorphism. Similar to above, it suffices to check that the induced

morphism

HY([Xp e 0lRy00r ) = Hi(Vpeels

[ ]
[Xp e elryee pow SV aalsy0)
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is an isomorphism for p < N. This in turn follows from the commutative

diagram
Frig (X ) RE0X s O, ) — R Xl B i)
Lrig(Xp/K) —= RU(Vatuls,o0 Bvpts o) = B (Vowelspues

where the horizontal maps are quasi-isomorphisms since they come from Zariski

hypercoverings.

Then, with some additional checking and using the spectral sequences

Y = H'(Zylz, Vg, 1.,) = H 02l W) = HE (XK,

rig

EY' = HY(|Xpou[Ryer Uxyaalr, ) = (XN o0 [Recnions Uxenanlnn )

the above isomorphism proves the lemma. O
This allows us to prove conjecture A under R(d):

Proof of Theorem 4.0.1. For general X, take a compactification X < X where
X is proper over k and has X as a dense open subscheme. Let Z C X be the

complement of X with reduced closed subscheme structure. Since in D, (K),

RT(Xen, Qp(n)) = [RT(X e, Qu(n)) — RT(Ze, Qy(n))]

and
RTyigo(X/K) = [RT44(X/K) — RUyiy(Z/K)]

it suffices to prove the theorem for X proper, along with functoriality.

Take a peh-resolution X, — X using Proposition 4.1.6. Since this is a hy-
percovering in eh-topology (i.e. every map X, 11 — (cosk,sk,(Xe))nt1 is a
covering in the eh-topology as they are proper eh-coverings), we get by coho-

mological descent that
RL.(Xo, Qp(n)) = Rlim BT (Xon, oW, 2 g o[

& R 1&1’1 RF(Xo,efu p*WTQ}.,log)Q[_n]
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Now, by Theorem 3.3.1, we have that Z(n)/p" = Rp.p*Z(n)/p" on (Sm/k),
so (using the identification Z(n)/p" = W,Qp [—n]| on Sm/k), we have that

log

RI.(Xon, Qp(n)) = Rlim RT(Xa o, W, 2%, 1og )l 1]

Then, by [II79],

REo(Xen, Qp(n)) = Rlim RU(Xq e, WeS2%,100)0[ 7]

[1179, I.Th.5.7.2]

>~

R ]&1 RF(X.,Etu WTQ}.)Q 1;>F R ]gl RF(X.’QM WT’QSL{. )Q] [_n]
[1179, IL.Prop.2.1.(a)] 1—F
= [RF(X.’et, WQSL(.)Q — RF(Xo,etv WQHX.)Q} [_n]

[11179, I1.Cor.3.5.]
Y

= BT (Xa e, WS, )o " BT (Xo o, WS, o
s BT ig (X[ 1) "5 R i (X[ ) |
r1g,C r1g,c
where we have used that RI'(X,, WQ*);41) = RT(X., WQ)[—4] from the

slope decomposition for the second to last equality.

This quasiisomorphism is independent of the choice of peh-resolutions, as by
Proposition 4.1.6,i), for any two such peh-resolutions, we can find a peh-

resolution which is a common refinement of the two.

As for functoriality, given f : X — Y of proper schemes over k, we may
pick any peh-resolution Y, — Y, and by Proposition 4.1.6.ii) we may choose

another peh-resolution X, — X such that we get a commutative diagram

X,—Y,

|

X —Y

so using the functoriality of Theorem 4.2.1 we see that every step is functorial.
O
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Chapter &

COMPARISON OF OVERCONVERGENT WITT DE-RHAM
COHOMOLOGY AND RIGID COHOMOLOGY

5.1 Introduction

Let X be a smooth scheme over a perfect field k£ of characteristic p > 0, and
consider its overconvergent de Rham-Witt complex of étale sheaves WTQ;( I
which is defined in [DLZ11] (see Definition 1.1 and Theorem 1.8). One of the
main results of loc. cit. is that if X is also quasi-projective, then there exists

a natural quasi-isomorphism
RDyig (X/K) = RU(X, WQ% )q,
where K = W (k) ® Q.

The main result of this chapter is Theorem 5.5.5, where we drop the quasi-
projectivity condition in the comparison. We outline the approach in [DLZ11]

and the one used here.

If X = Spec A is an affine smooth k-scheme, [DLZ11] consider pairs (X, F)

given by closed immersions
X =Spec A< F = Spec A

into W (k)-schemes, called special frames. To this, the authors associate dagger
spaces (in the sense of [Gro00]) | X[\, functorially in (X, F'), which calculate
RI i (X/K):

R (X/K) S RU(X[5, Q0 ) (5.1)

72Xl

(here .# denotes the p-adic completion of F).

So using the specialization maps
spl ] X[L— X
we have that RI,,(X/K) = RI'(X, RspIQ]'X[LW).
They also form a quasi-isomorphism of Zariski sheaves on X,
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functorial in (X, F').
This all gives a map
RE(spl00 ) ) = RT(CX, W% )0 (5.3)
so it suffices to show that the natural map
TOe TOe
Sp*Q]X[Lz — Rsp*Q]X[} (5.4)

is a quasi-isomorphism.

While vanishing of higher cohomologies in (5.4) is not known in general, we
can show it in some instances. In [DLZ11], to globalize the above construc-
tion for a smooth quasi-projective X (though possibly not affine), the au-
thors consider an open covering by a particular type of affine smooth schemes,
standard smooth schemes, which may be lifted nicely over W (k), which are
all coming from localizations in a common projective space provided by the
quasi-projectivity of X. This gives a nice description of the intersections of
such opens in cosky (Xp)e, which allows them to prove the vanishing of higher
cohomologies in (5.4), and then complete the proof by means of cohomological

descent.

For our case, when X is not quasi-projective, we do not have a common pro-
jective space in which all our open affines are open. So instead of working
with the O-coskeleton, we refine it at each level, getting an étale hypercovering
X./X so that at each level, X,, is a disjoint union of affine standard smooth

schemes, which we call a special hypercovering. This is done in Section 5.3.

Considering any compactification X < X to a proper k-scheme X, we use
the Tsuzuki functors F]VVV(k)(—) and I'Y(—) introduced in Definition 2.4.1 to
construct an N-truncated special frame (Xe<n, Fo<ny) and a N-truncated sim-

plicial version of (5.3):

RI'(Xe<n, WTQX.SN/L:)Q — RF<SP19}.X ). (5.5)

’SN[9.<N

Then, we show the following:

1Xnllz,,
from the proof of [DLZ11, Proposition 4.35|, such as being able to replace

e Vanishing of RspiQ for 0 <n < N and 7 > 0: we use techniques

the F,, by some F) étale over F), or equal to F;, Xy (x) A’V’V(k) for some r

fitting into a special frame (X,,, F)).
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e Prove independence of choices and functoriality.

e For large enough N, (5.5) gives a map RI'(X, WTQ;(/k)Q — Ry (X/K).
This is motivated by [Nak12| and relies on the machinery of [CT03|, such
as vanishing of higher enough rigid cohomology groups of X, indepen-

dence of the choices of rigid frames and cohomological descent methods.

5.2 Background
Special Frames and Dagger Spaces
The following is a summary of Section 4 of [DLZ11].

Definition 5.2.1. A special frame is a pair (X, F)) with a closed embedding
X < F, where X and F are smooth affine schemes over k and W (k) respec-
tively.

Given a special frame (X, F'), we can choose an embedding F' — A”W(k) for
some n, and in turn we have an open embedding F := A}, — IP%,(,C) =: P.
Let @ = F and X be the closures of F' and X respectively in P, and let .%#
and Q be the p-adic completions of F' and @) respectively. Then,

X—>5X<—0

is a frame for rigid cohomology in the sense of Berthelot (i.e. we have an
open immersion of X into a proper scheme X over k, and a closed immersion
X < Q where Q is smooth around X). So we may define the rigid cohomology
of X as

R4 (X/K) = RU(X o0, 5 2%,):

where j is the inclusion | X[g—]X|[g. Note also that | X [o=]X|z.

The authors then give an explicit description of a fundamental system of strict

neighborhoods of | X[z in | X[g, which they use to give a dagger structure (in
the sense of [Gro00]) on | X[, denoted by ] X[';, along with a morphism

spi ]X[T¢—> X

which is independent of the choice of embedding of F' into affine and projective

spaces. Thus, we have a functorial association

Special Frames —— Dagger Spaces (5.6)

(X,F)»—>]X[1@.
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By [Gro00, Theorem 5.1], this gives quasi-isomorphisms
Rl (X/K) = RU(X [0, /1% ) = RU(X [, Q00 ). (5.7)

X[l
To such a frame (X, F'), they also form in [DLZ11, (4.32)] a map
Sp*Q. t — WTQB(/]C ® Q, (58)
F

JX[

which is a quasi-isomorphism of Zariski sheaves and functorial in (X, F').

Standard Smooth Schemes

Definition 5.2.2. We call a ring A a standard smooth algebra (over k) if A

can be represented in the form

A = K[X1, s Xl /(Frs o fo),

where m < n and the determinant

df; .
< <
det(@X])’ 1<5,7<m

is a unit in A. The scheme Spec A is then called a standard smooth scheme.

Such schemes are convenient to work with, since for a standard smooth al-
gebra represented as k[T, ...,T,|/(f1,..., fr), we may choose liftings fiye fo
to W[T1, ..., T,], and let A be the localization of W[Ty, ..., T,.]/(f1, ..., f») with

respect to det (g{w ) Then, A is a standard smooth algebra which lifts A over
J

W, which gives a special frame (Spec A,Spec A). We note that this may be
done functorially in A; that is, given a homomorphism of standard smooth
algebras

p:A— B

with presentations
A=Zk[T, . T/ (f1, - fr)y B=E[S1, ..., Sml/ (915 -y Gs)s
after choosing liftings f; to define A, we may chose the representation
B = E[St, ..oy S, Thy ooy Tol /(g1 ey Gsy Sy ooy oy T — (Th), .., Ty — (T3))
and then take liftings g;, @; over g; and «(7;) respectively to form B.

Note also that for any such standard smooth scheme F' = Spec A, we have an
étale map

F— A;‘V(k)

for some n.
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5.3 The hypercovering

Proposition 5.3.1. Giwen any étale hypercovering Z, — X, with Z, being
smooth schemes over k, there exists an étale hypercovering Yo — X refining
Zo — X such that for any n, Y, is the disjoint union of affine standard smooth

schemes giving a finite open covering of Z,.

Proof. The proof is nearly identical to [CT03, Proposition 11.3.2], with the
only difference being that when we form a finite affine Zariski covering of the
smooth scheme

X
COSkn (KSH)H—H Xcoskff(Z.Sn)n+1 ZTL+17

we require the covering to be by affine standard smooth schemes also. O]

Definition 5.3.2. We say Y, — X is a special hypercovering if Y, is a split
étale hypercovering of X, and each Y, is a disjoint union of affine standard

smooth schemes which give an open covering of X.
We prove the existence and some functorial property of such hypercoverings,
which will be useful to work on the comparison locally.

Proposition 5.3.3. Given a smooth scheme X:

i) There exists a special hypercovering Yy — X.

ii) Given two special hypercoverings Y, Y] /X, there a third special hyper-
covering Y]' /X refining them.

iii) Given a morphism X — X' of smooth schemes, there exist special hy-

percoverings Yy — X and Y] — X' fitting in a commutative diagram

Proof. Part i) follows immediately from Proposition 5.3.1 by taking the con-
stant simplicial scheme Z, = cosk™,(X) (so Z, = X for all n). For part ii),
we just apply Proposition 5.3.1 with

Z. I:KXXY;/,
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and for part iii) we find some special hypercovering Y] — X', and then again

use Proposition 5.3.1 with

Lo Z:Y./XX/X.

We will use the following version of Chow’s lemma:

Lemma 5.3.4. Consider a compactification over a scheme S

XLY
\

where j 1s an open immersion and g s proper. Suppose that f is quasi-

@

S

projective. Then, there exists a blowup Y — X at some closed subscheme

Z C X disjoint from j(X) such that Y is projective over S.

Proof. This follows immediately from [Ray74, Corollaire 5.7.14| since it gives
us such a blowup Y — X with Y quasi-projective over S with the only re-
quirements that X be quasi-separated and finite type over S. In this case,
Y — X — S is the composition of a blowup and a proper map, so it is proper.

Since Y is quasi-projective and proper over S, it is also projective. O
Definition 5.3.5. For a pair (X, X), we say a simplicial pair (X,, X,) —
(X, X) is a special hypercovering of pairs if:

(a) Both X, and X, are split.

(b) X, — X is a special hypercovering.

(¢) Xo — X is proper. In particular, (X,, X,) — (X, X) is an étale-proper

hypercovering.
(d) For all n > 0, X, is projective over k.

Proposition 5.3.6. Given a smooth scheme X and a compactification
X < X over k:

i) There exists a special hypercovering of pairs (X., Xa) — (X, X).



45

i) Let (X,X) — (Y,Y) be a morphism of compactifications. Then, we may
construct special hypercoverings of pairs (X., Xe) and (YY) fitting

into a commutative diagram

(Xh XO) — (}/07 Y')

l l

(X, X) —— (YY)
iii) Let (X, X.), (Xﬁ,yl.) be two special hypercoverings of (X, X). Then,
there exists a third special hypercovering of pairs (X:’,yl./) fitting into a

diagram

Proof. For i), first fix a special hypercovering X, — X by Proposition 5.3.3.
Let {NX}}r>o denote the splitting of X,.

We construct Ynﬂ at step n + 1 > 0, assuming we have constructed X,
with a splitting {NX,}o<k<n (the n = —1 case is vacuous). By Nagata’s
compactification theorem we may take a compactification NX,;; < NX, 41

fitting into a diagram

NXpy————— NXpiy (5.9)

| |

coskf(X.Sn)nH — Coskny(Y.Sn)nH

where the vertical arrows are proper maps. For the n + 1 = 0, note that
cosk™,(=); = X for all i (and similar for X), so the bottom row is just X < X.

Since N X, 1 is a disjoint union of affine standard smooth schemes by con-
struction, itself is also affine standard smooth. In particular, N X, is quasi-
projective, and we may use Lemma 5.3.4 to make N X, 1 be projective over k
in (5.9). This allows us to construct Xecp 11 = QX (Xecn, NXo, oo, NX,111).
In particular,
X1 = |_| NX,
¢:[n+1]—[k]
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where each Ny(b is projective over k. Since the disjoint union of projective
schemes are still projective, it follows that X, is projective over k. This

completes i).

For ii), we first construct compatible X, — Y, over X — Y using Proposition
5.3.3, and we construct Y, as in i). Then, we build X, similarly, except that

at each n, we take a compactification NX, 1, of NX, . over

X X a3
cosk;, (Xe<n)nt1 X coskY (Yazn)ngs 1Y Ynt1 > COSK, (Xe<n)nt1 Xcoskf(?.<n)n+1NYn+1v

and by the same argument as i), such that NX, . is projective over k.

This all fits into a commutative diagram

NX,n N7n+1

X X &va
COSkn (Xtﬁn)n-i-l Xcosk{(Y.Sn)nH NY,p — COSkn (Xtﬁn)n-&-l Xcoskf(? NY 1

oSn)n#—l

cosk (Xe<n))nt1 cosky (Xecn)nt1

where all horizontal morphisms are open immersions, and the vertical mor-

phisms on the right are all proper. This gives us the desired functoriallity.

For iii), given (X,, X,) and (XL,Y/.), we may construct a special hypercov-
ering X! refining X, and X/ using Proposition 5.3.3. Then, at each step, we

construct N7Z+1 by taking a compactification of NX]_ | over

(COSk§<X:/§n) Xcoskff(X.Sn) NXTH-l) Xcoskff(X’ ) NXT/“Hrl

|

Nyn—‘rl) X

—
X’S”) X coskX (X

y -/
(COSkn ( ogn) COSkg(yign) NXn+1

and using the above argument so that NYZLH is projective over k. O]
Definition 5.3.7. We call a simplicial pair (X,, X,) — (X, X) as in Proposi-

tion 5.3.6 a special hypercovering of pairs.

5.4 The simplicial special frame
Ideally, we would like to get a simplicial special frame (X,, F,), with an em-

bedding F, — P, for P, being projective over W, and such that X, — P,
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is the closure of X,. Then, we could do a simplicial version of the compar-
ison in [DLZ11] directly. This problem seems difficult to do simultaneously.
However, using the Tsuzuki functor below, it will suffice to do this only for
one Xy, rather than all. This will capture all the simplicial structure below
N, and for N large enough we will be able to ignore the terms above, as they

won’t contribute to the cohomology.

For a smooth scheme X and a compactification X < X, construct a special
hypercovering (X,, X,) — (X, X) as in Proposition 5.3.6. Fix some N > 0.

Then, since X y is projective over k, we may find a closed immersion

Xy = PN — Py = P

for some ry > 0.
This gives us an immersion Xy < P, and thus a presentation of Xy (which is
affine). We may use this to lift Xy to some standard smooth affine scheme F

over W (k). Using the Tsuzuki functor I'y(—) introduced in Definition 2.4.1,

we construct the following:

F, =TV ®(F).

P, =TV ®(p).

Y, is the closure of X, in P,.

Q. is the closure of F,.

Q, is the p-adic completion of (),.

By Lemma 2.4.2, since X y < P is a closed immersion, we have that X ,<y <
P.<n is a closed immersion. Therefore, Xe<ny — Po<n factors through both
X o<y and Qe<y, giving natural maps from Ye<y to both by universal property

of the closure.

This all fits into a diagram

X.SN (510)

SN

Xe<N — Yocny — Pocn

L 17

Focn —— Qe<n
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Putting all this together:

Definition 5.4.1. Consider a special compactification

with X (resp. X) being smooth (resp. proper) over k. For a given N > 0, the
information

{F07 Qo; Qoa K; Po}
and the diagram from (5.10) is a N-rigid special frame of (X,, X.) — (X, X).

Lemma 5.4.2. Given a commutative diagram of special hypercoverings

(Xuyo) - (X:a 7:)

l l

(X, X)—— (X', X)
and a given N > 0, we may find N-rigid special frames of (X., X,) and
(X!, X.) with maps

{Fe,Qu, Qu. Yo, P} = {F[, Q.. Q,, Y[, P}

compatible with the given diagram.

Proof. Consider a morphism (X,, X,) — (X, X",) over (X, X) — (X', X).
We may construct {F!, @Q., Q.,Y! P!} as explained above. Then, since X y and
YIN are projective over k, the map between them is projective, and we may
find some closed immersion of Xy into P = P}, fitting into the commutative
diagram

YN—>P

||

Y/N—>P’.

This gives representations of X and YIN in compatible affine spaces, and we

thus may lift them to standard smooth affine schemes over W (k) as explained
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in Section 5.2 in a compatible way, giving a commutative diagram

Xy——F—>P

||

Xy ——F' —— P

Since the functor T}, p-adic completion and closure are functorial, all the

remaining functoriality will follow from that of P and F.

O
This gives an N-truncated special frame
(Xexn, Focn), (5.11)
and an N-truncated étale-proper hypercovering of (X, X)
(Xe<n, Yean, Qecn). (5.12)

5.5 The comparison theorem
In the course of the proof, we will need some tools from [DLZ11] in order to
compare special frames. In loc. cit., Proposition 4.35 proves the first result,

and the second result is Proposition 4.37.
Proposition 5.5.1.
i) Given a map of special frames

X—F

|

X—F

with the right vertical map being étale, then we get a natural tsomorphism
of dagger spaces
X[ )X

ii) For some n, let (X, F X A’I}V(k)) be a special frame such that the map
X — A%(k) factors through the origin. Then, the induced map gives a
quasi-isomorphism

Rsp*Q}X[L’ — Rsp*Q]X[L}XMW
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When proving the comparison, we will need to show vanishing of the higher
cohomologies of RSP*Q].Ym o for 0 < m < N, where (Y,,, F},) are the special
frames constructed in sections 5.3 and 5.4. The above proposition will allow us
to reduce it to the following theorem, which follows from the proof of [Ber97b,

Theorem 1.10]:

Proposition 5.5.2. Let (X, F) be a special frame, where F is a lifting of X
over W (k). Then,

Risp*Q]'X[T =0 for i>0.

We now prove a key ingredient of the comparison theorem:

Proposition 5.5.3. Let (Xe<n, Fo<n) be an N-truncated simplicial frame as
in (5.11). Then, for 0 <m < N and i > 0,

Risp*Q' =0.

1Xm[lz,
Proof. Pick any 0 < m < N. By splitness of X,, we may write

Xon= || NXus
¢:[N]—[m]
Fix some degeneracy map o : [N] — [m]. Then, by construction of F]‘f,/(k)(—),

we have a commutative diagram
Xp—F,= ] F.
a:[N]—[m]
Xe(o) lpa
Yy ———— F=F,

where Fyy = F for any ¢ : [N] — [m] was defined in section 5.4 as just a lift
of Xy in Py, and p, is the projection, and both horizontal maps and the left

vertical map are closed immersions. This gives us a closed immersion

X, — F,.

Let

F,= [ F.

o:[N]—=[m],a#c
so F,, = F/ x F,. Then, since each of the F, are standard smooth schemes

over W (k), so is their product, and we may get an étale morphism

F — Aw(k
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for some n. Thus, considering the commutative diagram

Xp—— F! x F,——F,,

|

X —>A"W(k) x F,

where the right vertical morphism is étale, using Proposition 5.5.1.1) we may
reduce to the case of the special frame (Xm,A%(k) X F,). Furthermore, we
may assume that the map X,,, — A%(k) factors through the origin. To see this,
write X, = Spec (A) and F, = Spec B, so Ay x Iy = Spec B[Ty, ..., T,].
Then, since B — A is surjective (as X, — F, is a closed immersion), we may
pick by, ...,b, € B which map to the images of T}, ..., T, respectively in A, and
replace T; by T! := T, — b;, giving a special frame

(X, Spec BT}, ... T,]) = (X, Ay gy X Fy)
factoring through the origin. Thus, by Proposition 5.5.1.ii), we reduce the
proof to the special frame (X,,, F,).

Now, since

Xl =) | NXmoln= || INXmolk,

¢:[m]—[k] p:[m]—[k]
we may reduce to studying the special frames (N X, 4, F,,) for any ¢ : [m] — [k]
and 0 < k < m. But notice that by the construction of the frame, for any
¢ : [m] — [k], we have a commutative diagram
NXpns C X
112 Xe(o)

NXN,(j)oo C XN(_> Fo e FN _— |_| NFN,M}
¥:[N]—[K’]

where 1 vary over all morphisms ¢ : [N] — [£/] with 0 < & < N, and the
composite map NX,,, — Fy is the map giving the special frame. Thus,
NX,, ¢ is isomorphic to N Fy 40, C Fi, and therefore

Sp_l(NXm»¢) :] NXm7¢ [.J;:a :] NXm»¢ D—V}—N’qgog’
which reduces the proof to the case of the special frame (NX,, 4, NN po0)-

But by construction, N Fiy 40, is a smooth lift of N Xy 500 = NX,, » over W (k),
and thus we can apply Proposition 5.5.2 to complete the proof. O
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We will need the following to deal with N-truncations, which basically says
that for some large enough N, we only need the N-skeleton in the calculations
of cohomologies on simplicial objects (such as for rigid cohomology and over-
convergent Witt de-Rham). For a complex A® of K vector spaces, and any h,

consider the h-truncated complex
Atifi < h
T<n(A®) = ker(Ah — AMLYif i > b
0 else.

For a double complex A°®®, let TS}B(A.Q) = 7<p(A%), and let s : C(K) — K be

the total complex map.

Lemma 5.5.4. [Nak12, Lemma 2.2] Consider a double compler A** of K
vector spaces such that AP? =0 for p <0 or g <0. Given any

N>max{i+(h—i+1)(h—i+2)/2]0<i<h}=(h+1)(h+2)/2
(5.13)

the natural maps S(Tg]i,(A") — s(A**) induce a quasi-isomorphism

~

Ten(s(TER(A%) 5 T7en(s(A)).

From this, and the formation of the spectral sequence for cohomology on
simplicial objects, it follows for example that for some simplicial rigid frame

(Za, Z4,2Z,), and h and N as in (5.13), we get natural quasi-isomorphisms

TShRF(]E.SN[Z.SN ) jTQ.

]70§N[Z.SN

) = Ten R (1 Za 2., 5, ) (5.14)
and that for a smooth simplicial scheme X,,
T RD(X,, W1 0%, ) = T BT (Xecw, Wi Vo) (5.15)
This is useful because of the vanishing of rigid cohomology from Theorem
2.3.4, which tells us that there exists a ¢ such that
Te<c Rl vig(X/K) = RTyie(X/K)

so letting h > c and N as in (5.13), we may compute rigid chomology with an
N-truncated de-Rham descendable hypercovering by (5.14).

We can now prove the main comparison theorem:
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Theorem 5.5.5. Given a smooth scheme X over k, there exists a functorial

quasi-tsomorphism

RT,i4(X/K) = RO(X,WQ% 1) © Q.

Proof. Choose a compactification X of X and construct {X,, X, Fu, Qe, Qa, Yo, P}

as in the previous section.

Then, (Xe<n, Fe<n) is an N-truncated special frame, so by functoriality of the
construction in [DLZ11]

Special Frames — Dagger Spaces

(X, F) =]X[

we get an N-truncated special frame ]X.SN[LZ.<N.

Furthermore, from (5.8), we get

[ ] -i- °
Sp*Q]X%NU@KN = W%,k ®Q (5.16)

to give us a quasi-isomorphism

RU(X o<y, sp,Q2 ) = RT(Xean, WIQ% _ i) ® Q. (5.17)

[ ]
]X.SN[;.SN

Next, by Proposition 5.5.3, we have that

— RSP*Q]X-SN[}KN (5.18)

Sp*Q}X.gN[;-,SN

so that

RU(Xeenll, Q%+ )= RI(Xeey, W%, ) ®Q (5.19)

)
o<N ]XOSN[LO'}.SN

Next, note that
(X:7 YZa Q/o) = COSkN(XOSJ\U KSN’ QOSN)

is an étale-proper hypercovering of (X, X) by Lemma 2.2.6, and thus a de
Rham desecendable hypercovering of (X, X) by Proposition 2.3.2, so

Rrrig(X/K) = RP(]Yo,[Q'.’jTQ}.Y.’[Q,.) (5'20)

computes the rigid cohomology.



54

Furthermore, since for any n < N, Y,, is the closure of X, in P, and Q,, is the
p-adic completion of the closure of F), in P,, we get an N-truncated simplicial

version of (5.7):

RU(Xo<n[, Q0

Fo<N ]XogN[ng'<N

Putting all this together, we will get
RFGKgN[Q.SN,J'TQ].Y.SN[Q,SN) =~ RI'(Xe<n, WTQB(,SN/k) ®Q (5.22)

for any N.

We now show that the left-hand side computes RI'i;(X/K) (compare with
(5.20)) and that the right hand side computes RT'(X, WTQB(/k) ® Q. Using
Proposition 2.3.4, pick some ¢ such that for any h > c,

TenRlig(X/K) 5 RT 4, (X/K),
and pick N = N(h) large enough to satisfy (5.13). Then,
RTwg(X/K) 27 RU(X/K) = 7 ROV 00§y ) (5.23)
= T R (Yaenlowan 7' Uy vio, )

so the left hand side of (5.22) will compute rigid cohomology.

On the other hand, since X, — X is an étale hypercovering, and VVTQB(/,C is

an étale sheaf, we have that
RI(X,W'Q% ) = RU(X,, WTQ%, )

To compare to the truncated version in (5.22), note that for any h and N
satisfying (5.13), we have by Lemma 5.5.3 and (5.22) that

TenRU4ig (X/K) = 70 RT(Xoan, WIQ%__ 1) ® Q (5.24)
= 7o, RU(Xe, WO, 1) © Q =2 7, RT (X, W15 )

Varying h (and N), we see that cohomology vanishes in RT'(X WTQ;(/k) above
¢, and thus letting h > ¢ we may drop it from (5.24) to obtain

RIyig(X/K) = RD(X,WQ% 1) © Q (5.25)

It remains to show independence and functoriality.
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Independence:
We must show independence of the choices of X, X,, X,, Fy, Q., P,, and N.

The independence of X follows from independence of X in computation of
rigid cohomology ( [CT03, Corollary 10.5.4]).

To show independence of {X,, X,, Fy, Q, Qa, Yo, P, }, suppose for a given pair
(X, X), we have made two choices {Xf,Yi,Ff, QLY P} for i = 1,2,
Then, by Proposition 5.3.6 it follows that we may find (X3, 7‘3) refining them.
Furthermore, since 7?\, is projective over 7]1\, and 7?\,, we can find some P3
fitting into the diagram

X3 X0 PP
N N

— T

(XL, Xy, PY) (X2, X, P?)

\ /

(X, X, W(k))
Furthermore, we may take the standard smooth lift F® of X3, over W (k) to

be compatible with the standard smooth lifts F* of X% over W (k) for i = 1, 2.

W (k)

All this compatibility carries over when applying I'y, ", taking closures and

completions, and applying COSan , Coskﬁ7 cosk, which gives a diagrams of N-

truncated simplicial special frames

0<N7 0<N
3 3
(XogNa o<N o<N7 o<N)

and of universally de Rham descendable hypercoverings of (X, X)

X/3 Y/3 Ql3

/\

(X/l Y/l Qll X/2 Y/Q Q/Z)

where we use the notation from above. This gives a factorization of all the

maps used that shows independence in D (K).

For independence of N, we argue similarly to the proof of Lemma 4.2.2. Sup-
pose we fix (X,, X,). Given to choices N' and N? satisfying (5.13) for h = c,
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suppose N2 > N and construct F¢, Q%, QL Y7, P!} for i = 1,2. We then have
a natural map

(X?v }/;/27 Q?) = COSkS\)f(Z’Y7W) (X'§N27 Y?§N27 EgNQ)

(X, X, W)

9 2
cosk (Xe<nt, Yo ns .gNl)

induced by the maps cosky2 — cosk 1 osk 1 ocoskyz = cosk i oskyi. This all
induces a commutative diagram in the diagrams (5.22) for N? and N'. This
is compatible with the maps in (5.24). Thus, we may replace N? with N (as
long as they are both large enough), and then independence above (for N'

fixed) shows the independence of choices.

Functoriality: Given a map X' — X2, we may choose compatible X' and 72,
and then pick compatible (X7, X.) by Proposition 5.3.6, and by Lemma 5.4.2

we may choose compatible N-rigid special frames.
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Chapter 6

CONJECTURE B

6.1 Conjecture B
We study the following conjecture:

Conjecture 6.1.1 (Conjecture B). For a separated, finite type k-scheme X

of dimension d, and n € Z, there exists a quasi-isomorphism

RT (X, Q5(n)) S | RTyig o X/K)* “ 25" RT 4y o(X/K)*| [~2d).

Here, RI',;y.(X/K)* := RHom(RI,;, .(X/K), K).
We prove this conjecture for X smooth:

Theorem 6.1.2. If X is smooth, then Conjecture 6.1.1 holds.

Proof. As before, since X is smooth and we have

Z(n)/p" = W,.Q.

log[_n]v

we can identify

RTig(X, Qp(n)) = Rlim RU(Xep, WoS¥x 100 ) o[ =71,

and as in the proof of Theorem 4.2.1 we have a short exact sequence
0 — Wk oy — W = W% — 0
in X, and WQ = Rl'glr W%, so we have

RTig (X, Q5(n)) 2 | RT(Xop, W) ' BT (Xo, W) Sl

Next, by [Ert14, Corollary 2.4.12|, we have that all logarithmic Witt de-Rham
sections are overconvergent, and that 1 — F' is still surjective when restricted

to the overconvergent part; so we have a commutative diagram in X;:

0—— W o, —— W% =5 Wiy —— 0

!

00— W 1oy —— WO —— W% —— 0
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where the vertical arrows are given by inclusion, and both rows are short exact

sequences. Thus, we get a natural quasi-isomorphism

[Rr(Xet, W) 'S RTD(X., WQ})] . [—n]
1

BT (X, W) = RE (X, W0 NS
We consider the Frobenius on WTQ% by restricting that on WQ%. So as before,

the part with slope p™ must be coming from W1Q", thus giving

[RF(Xet, wion) =F RO(X,, WTQ;;)]Q [—n] = [Rr(xet, W) "5 RO(X., W) .

Then, we use the comparison from overconvergent Witt de-Rham cohomology

to rigid cohomology for smooth schemes given by Theorem 5.5.5 to get that
RT,iy(X/K) = RLO(X,W'Q% 1 )q
and thus
RTig (X, Q5(n) 2 | RDyig (X/K) "5 R ig(X/K)]
Finally, from [Ber97a, Théoréme 2.4| we can use Poincaré duality for rigid
cohomology to get non-degenerate pairings

) 2d—1 2d
H, (X/K) x HX¥(X/K) - H

rig,c r1g,C

(X/K) = K(=d)

compatible as F-crystals, where K (—d) is K with a Frobenius action given by

multiplication by p?. Thus, we have a natural quasi-isomorphism
RT,.;;(X/K) = RHom(RI ', .(X/K)*[—2d] := RHom(RT ;, .(X/K), K)[—2d]
and therefore,

REig(X, Q) 2 | Ry (X/ o) "5 BTig(X/ o)

= {RFMQ,C(X/K)* P R e (X/K )*} [—2d].
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Remark. In order to prove Conjecture B for the general case, one should try

and get a map
RT(X,Q(n) = | Ry o(X/K)* 57" Ry o (X/K)*| [~2d]

for the general case compatible with that used to prove the isomorphism in the
smooth case. Then, using localization triangles and an induction on dimension

one could prove that it is an isomorphism.
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