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ABSTRACT 
 

1,2-oxazine natural products are a small closely related family of highly oxidized 

compounds. Herein, the development of a synthetic strategy toward gliovirin and the 

trichodermamides is described which enabled the synthesis of the western fragments of gliovirin 

and trichodermamide B. To that end, we developed two novel copper-catalyzed transformations: 

the asymmetric propargylation of an oxime and the diasteroeselective oxidative cyclization of 

hydroxamic acid with a diene.  

The challenge of working with tetrahydro-1,2-oxazines is their sensitivity to a variety of 

reaction conditions and purification methods. Extensive optimization of each transformation was 

accomplished, bringing to bear the state-of-the-art in oxidative modifications, including a 

palladium-catalyzed direct desaturation of an epoxy ketone. As well as this work led to the rare 

observation of a vinylogous Payne rearrangement.  

The successful synthesis of the fully functionalized western and eastern fragments of 

gliovirin are described toward a late-stage diketopiperazine formation and thiolation. Interrogation 

of our late-stage strategy with these fragments demonstrates that the coupling of the fully 

functionalized western and eastern fragments is not an effective strategy toward gliovirin proof-

of-concept experiments suggest this chemistry could be used toward the synthesis of the 

trichodermamides. 
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Chapter 1 

 

An Introduction to Total Synthesis, Polythiodiketopiperazines, and Related Natural Products 

 

1.1 INTRODUCTION TO TOTAL SYNTHESIS 

Natural product synthesis is the use of chemical methods to generate complex molecules 

structurally identical to materials isolated from natural sources. The study of natural product 

synthesis has served, and continues to serve, the development of fundamental synthetic organic 

chemistry. Initially, it was used as a tool to provide the strongest form of evidence toward the 

elucidation of complex chemical structures. With the advent of advanced analytical techniques, 

the principle role of natural product total synthesis has shifted. In more recent years, it has 

demonstrated value as a platform to expose gaps in current chemical knowledge, motivating the 

development of new chemical transformations to form these challenging structures. 

 Natural product total synthesis as a discipline is characterized by two intellectual pursuits: 

strategy and tactics. Strategy focuses on retrosynthetic analysis, a conceptual framework 



developed in the mid 20th century with contributions from many prominent chemists but 

championed most notably by Prof. E.J. Corey.1 This method of analysis identifies bond 

disconnections which simplify complex structures by recognizing embedded structural motifs. By 

recognizing these underlying motifs, one can redefine the problem of natural product synthesis to 

simpler target molecules to inform a forward route. Through iterative application of this approach, 

one can methodically unravel a complex natural product to readily available feedstock materials.  

In contrast to the aim of pattern recognition and structural simplification in retrosynthetic 

analysis; synthetic tactics are defined as the methods one uses to realize the forward synthesis. 

While there are no fundamental constraints on the disconnections made in a retrosynthesis, tactics 

are limited to transformations either previously known or novel methods based on a fundamental 

understanding of chemical reactivity. The efficiency of these transformations is of the utmost 

importance; to that end chemoselective methods are engaged to minimize side products with an 

emphasis on functional group tolerance to minimize substrate decomposition. Despite the 

development of high-yielding chemical transformations, reactive conditions often generate by-

products or minor impurities. These impurities in the crude material can interfere with later 

chemical manipulations and, therefore, are typically purged from the crude reaction mixture. There 

are four main approaches to accomplish this goal, exploiting the physical properties of different 

components in the mixture: distillation (boiling point), crystallization (solubility and physical 

morphology), solvent partitioning (hydrophobicity), or elution through polar solid media 

(polarity).2 When considering the value of a method therefore, it is not only important to consider 

the ability of the method to generate the desired species but also the ease with which it can be 

isolated from the crude mixture effectively. 



Through the use of strategic thinking, a viable retrosynthesis selects bond disconnections 

that take advantage of efficient chemical transformations that will generate the target molecule in 

fewest number of steps. A common strategy to improve the efficiency of a synthesis is the 

incorporation of a convergent step. By independently functionalizing two fragments and 

combining them at a later stage one can maximize the number of independent chemical 

transformations while minimizing the number of steps in the longest linear sequence (LLS) from 

commercially available materials. Overman’s synthesis3 of (–)-actinophyllic acid (7, Scheme 1.1) 

is an excellent example of a convergent synthesis. However, the implementation of novel chemical 

methods can facilitate the rapid generation of intermediates of similar complexity. For example, 

the functionalized indole 5 is generated in 6 steps LLS while indole 10 generated in Kwon’s 

synthesis4 of 7 is accessed in 2 steps. However it is important, not to hold step count as the sole 

metric to measure a total synthesis. Chen’s synthesis5 of 7 has the lowest LLS of the syntheses  

Scheme 1.1. Syntheses of (–)-actinophyllic acid contrasting different bond disconnections 
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shown, yet it has the lowest overall yield. This is due to several low-yielding steps which resulted 

either from a lack of chemoselectivity or instability of the intermediates. Each of these syntheses 

stage the formation of key bond connections differently (Scheme 1.1 as highlighted), this defines 

the tactics and limits possible conditions based upon the stability of the intermediates and their 

functionality. Thus, the best retrosynthetic analysis identifies key intermediates that can be married 

with efficient tactics to form the desired functionality. 

 An optimal synthesis provides the product with the minimum number of chemical 

manipulations, high purity, and excellent yield. As scale requirements increase engineering 

problems such as safety, replicability, and cost are also taken into account. These ancillary 

practical principles are a key concern for larger scale syntheses undertaken in industrial process 

chemistry. At its heart, the total synthesis of natural products is the confluence of creative thinking, 

pattern recognition, and methodology development.  

 

1.2 POLYTHIODIKETOPIPERAZINES  

Polythiodiketopiperazines (PTPs) are a diverse class of natural products characterized by 

a cyclized dipeptide bearing a sulfur bridging moiety. This sulfur bridge usually spans a 

diketopiperazine (DKP) core as a disulfide; this class of PTPs are commonly referred to as 3,6-

epipolythiodiketopiperazines(3,6-ETPs). While these isolated compounds are initially generated 

from a limited number of canonical amino acids, their structural is the result of extensive enzyme-

mediated oxidative modifications of the amino acid side chains. The first 3,6-ETP isolated was 

gliotoxin (16, Figure 1.1) in 1936;6 however, extensive studies7–18 were required before the native 

structure was proposed in 195819 with final confirmation of the structure by X-ray crystallography 

studies in 1967.20 It gained interest not only for its compact and highly functionalized structure but 



also for it intriguing biological activity. Since 1936, a variety of compounds have been isolated 

with this 3,6-ETP core motif from fungi and plants, and have been the subject of several reviews 

of their structures and properties.21,22  

3,6-ETPs can be categorized by the mother amino acids, elucidated through feeding studies 

with isotopically labelled amino acids.21 While 3,6-ETPs can be either symmetrical or 

unsymmetrical all known 3,6-ETPs incorporate an amino acid with an aromatic moiety: either 

phenylalanine, tyrosine and tryptophan, and demonstrate high structural diversity.  

Figure 1.1. 3,6-ETP natural products derived from phenyalanine  
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motif featured in 16 can also be observed in other 3,6-ETPs such as emethallicin E&F (18 & 20) 

and apoaranotin (19).24,25 Further oxidized 5-6 systems can be differentiated by their oxidative 

patterns shown in the epoxy allylic alcohol motifs of the scabrosins26 (21, 24, 25) and 

ambewelamides27 (22, 23); are contrasted by the g- hydroxy enone motif of the epicorazines28–30 

(26-28). Other ETP natural products featuring the 5-6 ring system include: rostratins31 (29-30, 40-

41), phomazine C32 (31), and epicoccin U33 (32) which show a striking analogy to the epicorazine 

core. Exemplified by aranotin (33), the incorporation of a dihydrooxepine heterocycle as fused a 

5-7 bicycle is an anomalous motif, observed in many phenylalanine-derived ETPs is.34–39  

Figure 1.2. 3,6-ETP natural products derived from tyrosine 
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products distinguished exclusively by C3 substitution on the ETP core: symmetryical dimeric 

ETPs47–50 (49–53), unsymmetrical dimeric ETPs51–53 (48, 54–58) and indolinated substituted 

ETPs54–59 (46-47, 59–63). 

Figure 1.3. 3,6-ETP natural products derived from tryptophan 
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Figure 1.4: PTP natural products which feature unusual sulfur connectivity 

 

high degree of structural analogy with 26-28 (Figure 1.1) and also result from the functionalization 

of a Phe-Phe DKP; suggestively, however, the disulfide forms either at C7 or C8 where 

unsaturation observed in the epicorazines. Structural variation within the epicoccin family occurs 

in the variation of oxidation alpha to the side chain sulfur. Whether these products form through 

downstream enzymatic pathways from epicorazine biosynthesis or are generated through a 

disparate pathway that has not been identified through biochemical studies.  

 Finally, [2.2.3]-ETPs have been isolated exhibiting disulfide bridges with thiolation at an 

electron-rich benzylic position alpha to the DKP. Unique amongst PTPs, all known [2.2.3]-ETPs 
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have N-oxidation at an amide nitrogen, with many taking the form of an atypical heterocycle: a 

1,2-tetrahydrooxazine. Aspirochlorine (79, Figure 1.4) was the first of this class of natural 

product to be isolated, initially termed A30641, in 1976.75 As a result of its unusual connectivity 

the structure of 79 was not elucidated until semisynthetic studies were carried out by Sakata and 

Clardy in 1987.76  Gliovirin77 (80) and its N-methylated analog, FA-209778 (81), were isolated 

independently in 1982. While the structure of 80 was disclosed in the initial report, the structure 

of FA-2097 was not fully elucidated until 1984.79 For 24 years, these three natural products 

remained the sole known [2.2.3]-ETPs, until the pretichodermamides A-F(82-88) were isolated 

from related fungi.80–82 These newly isolated compounds had a high level of structural fidelity 

with 80 with only small variations occurring in the oxidation pattern of the western fragment and 

N-methylation of the amide nitrogen. 

 

1.2.2 KNOWN MODES OF 3,6-ETP BIOACTIVITY 

 Due to their low availability from natural sources, the study of ETPs in biological 

systems has been, by no means, exhaustive; however, initial studies have established that their 

diverse structures demonstrate wide–ranging activity as antifungal agents, cytotoxins, antibiotics, 

antimicrobials, and antitumor agents.83  

The bioactivity of ETPs is chiefly ascribed to the redox-active disulfide bond; the other 

functionality modifying the specificity of the protein–small molecule interactions. This disulfide 

moiety can interfere with biological processes through four distinct modes. ETPs can modulate 

the activity of proteins through interaction with cysteine residues by either directly forming 

protein-ETP conjugates84 (Figure 1.5A) or modifying the confirmation of the protein through 

formation of disulfide bonds not present within native protein85 (Figure 1.5B). ETPs can also  



Figure 1.5. Known modes of 3,6-ETP toxicity. 

 

chelate metal co-factors to deactivate proteins.86 Furthermore, these molecules can undergo a 

redox cycle to produce reactive oxygen species (ROS), such as superoxide radical anion or 

hydroxide radical, when in the presence of an appropriate reductant in the cellular environment 

(Figure 1.5C).87,88  An ETP natural product can have multiple modes of toxicity operative to 

provide a given phenotype; therfore considerable biological studies are required to fully 

characterize the origins of their bioactivity. 

 

1.2.3 BIOSYNTHESIS OF 3,6-ETPs 

3,6-ETP biosynthesis has been the subject of much study with the greater portion directed 

toward the enzyme-mediated formation of gliotoxin, 16. In the cell, gliotoxin synthesis begins with 

the cyclization of serine-phenylalanine dipeptide to form a diketopiperazine (DKP) carried out by 
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a non-ribosomal peptide synthetase (NRPS).89,90 Thiolation of the resulting DKP is proceeds in 

two steps beginning with concombinant bishydrodroxylation at C3 and C6 of the DKP by a p450 

monooxygenase (GliC). This hemiaminal 89 can then undergo subsequent thiolation with 

glutathione facilitated by a S-transferase (GliG).91 An enzymatic cascade generates the dithiol (98, 

Scheme 1.3) from 90 through iterative degradation of the glutathione sidechains.92 First, the naked 

cysteine residue is unveiled through action of a g-cyclotransferase (GliK) and a dipetidase93 (GliJ). 

Then a pyridoxal 5’-phosphate (PLP, 96) dependent lyase (GliI) reveals the dithiol through the 

transient generation of a Schiff base 95, before expelling pyruvate (97) and regenerating PLP.94 

Oxidation of 98 to the disulfide 99 is then facilitated by a dedicated dithiol oxidase (GliT). With 

the core ETP 99 formed in Scharf’s studies. It has not been clearly established whether the 

biosynthetic pathway of 16 proceeds through dithiol or disulfide intermediates. However, given 

that as the disulfide moeity undergoes reversible reduction, and both 98 and the reduced form of 

16 are substrates for GliT, the oxidase may act as oxidative regulator during the final oxidative 

manipulations en route to 16. For simplicity, the pathway will be shown proceeding through 99. 

Scheme 1.2. Enzymatic glutathione incorporation and degradation to a 3,6-dicysteinyl DKP 
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Scheme 1.3. Conversion of a 3,6-dicysteinyl DKP to 3,6-ETP core and oxidation to gliotoxin 

 

To complete the biosynthesis of 16, the phenylalanine sidechain is proposed to be 

oxidatively dearomatized to the epoxy diene through the action of a p450 monooxygenase (GliF 

or GliC), which undergoes spontaneous ring closure via nucleophilic attack of the amide nitrogen 

to yield 100. Finally, N-methylation of the amide proceeds through a methyl transferase (GliN) to 

yield 16. 

 The biosyntheses of the other members are proposed to proceed in an analogy to 16 through 

a three-phase sequence: NRPS-mediated formation of the DKP from canonical amino acids; 

formation of ETP core via an enzymatic cascade; and oxidative modifications the ETP sidechains. 

ETPs are diverse family of natural products; however, their structures result from a small subset 

of canonical amino acids: Phe, Ser, Tyr, Trp, Ala, Val, Gly, Thr. Therefore, most of the variation 

in the biosynthetic pathway should reside in the enzyme-mediated modifications to the sidechains, 

after forming the core ETP as a common intermediate.  
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Aside from 15, all phenylalanine derived ETPs feature cyclization of the amide. While 

rigorous biochemical studies have not been undertaken for the formation of the epicorazines or 

scabrosins, it is proposed that these derivatives are formed through further modification of a 

gliotoxin subunit (102) formed by analogous p450 monooxygenase-mediated cyclization of the 

amide.27 To access the epicorazine motif (105) it is thought that the enone is formed through initial 

epoxidation of the more substituted alkene followed by a Meinwald rearrangement.95 This 

electrophilic enone can then undergo a Michael addition or conjugate addition to generate a 

rostratin unit (106). Conversely, the scabrosin motif is thought to diverge from the gliotoxin 

pathway, instead proceeding through an SN2’-type pathway to form dienol 108 facililated by some 

GliC or GliF mutant. The resulting intermediate (108) can then undergo epoxidation under the 

influence of a monooxygenase. 

Originally, the dihydrooxepine moeity observed in both symmetrical and unsymmetrical 

ETPs, exemplified by 33 and 37 (Figure 1.1), were proposed to form through a sigmatropic ring 

expansion of 107 to form 110, before undergoing a further oxidation and subsequent amide 

Scheme 1.4. Sidechain modification in the biosynthesis of phenylalanine-derived 3,6-ETPs 
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cyclization (Scheme 1.5a).96 However, through genome-based deletion analysis, it has recently 

been shown that these 3,6-ETPs proceed through an analogous cyclization to other phenylalanine-

derived ETPs, proceeding through 114 as a key intermediate before undergoing a direct oxidative 

ring expansion to form 34 (Scheme 1.5b).97 

 Scheme 1.5. Sidechain modification in the biosynthesis of dihydrooxepine–containing 3,6-ETPs 

 

 The gene cluster responsible for the biosynthesis of tyrosine-derived ETPs has been the 

subject of biochemical study; however, unlike 34 and 16 the distinct roles and order of each coded 

gene have not been fully elucidated.98 A putative biosynthetic route has instead been proposed 

through labelling experiments and isolation of intermediates. In constrast to phenyalanine-derived 

ETPs, a prenyl transferase caps the phenolic oxygen prior to sulfenylation, either as the amino acid 

or after DKP formation.99 The prenylated DKP 116 undergoes sulfenylation in analogy to other 

3,6-ETPs to yield 117. Bis N-methylation of 117 would yield 36 (Figure 1.2); however, 117 can 

also undergo a Claisen rearrangement and subsequent cyclization to form 119.100  The 

dihydrobenzofuran 119 can then undergo a p450 monooxygenase-mediated amide cyclization to 

form 120, which can be further oxidation leading to the formation of phomalirazine (37). The 

sirodesmins can be generated from 37 through an oxidative rearrangement. Tetrasubstituted 

epoxide 121, is prone to oxygen-assisted fragmentation. The resulting oxonium 122 can then be 
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Scheme 1.6. Proposed biosynthesis of sirodesmin family of ETPs 

 

quenched through 1,2-carbonyl migration.101,102 Based on the diasteroselectivity of the ring 

contraction epimeric spirocycles 123a and 123b are generated. Elaboration of these siprocyclic 

substrates via 1,2-reduction of the carbonyl, O-acylation, and N-methylation delivers sirodesmins 

38 and 39.  

 The gene cluster responsible for 45 biosynthesis has been sequenced and compared with 

those of 16 and 38. As previously proposed, the sequences coding for 3,6-ETP core synthesis 

demonstrated homology with previously identified sequences in other biochemical studies.103 The 

DKP 124 is formed through the action of a NRPS. Conversion of 124 to the 3,6-ETP core 125 

occurs through bis-hydroxylation with p450 monooxygenase, chaC, followed by an analogous 

glutathione thiolation and degradation. Formation of the pyrroloindoline motif 126 is characteristic  

Scheme 1.7. Proposed biosynthesis of pyrolloindoline 3,6-ETPs via oxidative cyclization 
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of tryptophan–derived 3,6-ETPs and proceeds via oxidative cyclization of the amide which is  

initiated a cyctochrome p450, chaB. Dimerization of the 3,6-ETP to form desmethyl-chaetocin A 

127 is then facilitated by another cytochrome p450, claE. Finally, in analogy to 16 N-methylation 

of the remaining free amides would deliver the fully elaborated 45.   

 

1.2.3 BIOSYNTHESIS OF [2.2.3]-ETPs AND RELATED NATURAL PRODUCTS 

The gene clusters responsible biosynthesis of [2.2.3]-ETPs 79 and 80 have been sequenced 

and compared with known enzymes.104,105 Despite the structural dissimilarities of 79 and 80 both 

natural products are synthesized Phe-Phe DKPs. While the sequences responsible for [2.2.3]-ETP 

core synthesis were identified, their specific substrates and intermediates have not been fully 

elucidated. Hence, whether the origin of [2.2.3]-ETP specificity occurs due to rearrangement of 

3,6-ETP (130) or through direct benzylic functionalization (132) remains a mystery. Despite this,  

Scheme 1.8. Proposed biosynthetic pathways for the formation of [2.2.3]-ETPs 
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several key observations have been established. In the synthesis of 79, the first on-pathway 

intermediate in the biosynthesis of 79 is 133, with [2.2.3]-ETP core and extensive sidechain 

oxidation already incorporated. It is only after oxidative cleavage of the benzylic sidechain that N-

methoxylation occurs. This observation runs in contrasts to previous results in the gliotoxin 

biosynthetic pathway where N-oxidized DKPs were observed in glutathione transferase deletion 

mutants.106 Interestingly, to the characteristic aryl chloride of 79 is incorporated in the last step. In 

the biosynthesis of 80 Mukherjee proposes conversion from 129 to 131 prior to thiolation to install 

the [2.2.3]-ETP, however none of those intermediates were characterized in though their deletion 

studies. However, based upon Hertweck’s study of 79 it is likely that [2.2.3]-ETP core synthesis 

and oxidation to the triphenol precedes both N-oxidation and the oxidative dearomatization to form 

the 1,2-tetrahydroxazine.   

[2.2.3]-ETPs are densely functionalized natural products with reactive functionality, 

Figure 1.6. Natural products with structural homology to known [2.2.3]-ETPs 
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therefore, it is unsurprising that related natural products resulting from shunt pathways or through 

core rearrangement occurring in the cell media. Thiomethylated derivatives, 136 and 137 (Figure 

1.6), were recently isolated in analogy to sulfur isomers 66 and 67 (Figure 1.4).107 Furthermore, 

the trichodermamides (138–140) which were originally isolated independently from endophytic 

fungi108,109 but are now proposed to be generated through spontaeneous decomposition of 83–85 

as 138 was formed from 83 under mild protic conditions expelling the disulfide as elemental 

sulfur.80 Other natural products appears to precipitate from N-O bond scission, as observed in the 

aspergillazines B-E (142ab, 143ab).110,111 

 

1.3 SYNTHETIC EFFORTS TOWARD EPIPOLYTHIODIKETOPIPERAZINES 

 The total synthesis of 3,6-ETPs has a rich history in organic chemistry motivated by their 

powerful bioactivity, their low availability from biological sources, and their diverse and highly 

functionalized structures. One the key area of study to enable this work is the development of 

methods toward the synthesis of the 3,6-ETP core. 

 Most methods for 3,6-ETP core synthesis proceed through an a-functionalized DKP 

substrate, reminiscent of the biological sulfenylation pathway. The 3,6-ETP core was first accessed 

by Trown through nucleophilic displacement of dibromide 146 (Scheme 1.9) with thioacetate 

followed by saponification to generate a dithiol, which is subsequently oxidized to the requisite 

disulfide 147.103 Method development accelerated in the 1970s through the sulfenylation of DKP 

substrates with varying a-functionalization. Schmidt demonstrated that dibromide 147 could be 

sulfenylated with a polydithiolate, subsequent reduction of the polythio bridge and re-oxidation 

generates the desired core.113 Kishi showed that under Lewis–acidic conditions unsaturated DKP 

148 could be thiolated by an aryltrithiolane, to form a thioacetal which can be unmasked generate  



Scheme 1.9. Selected methods for 3,6-ETP core synthesis from the a-functionalized substrates 

 

147 in two steps.114 As a major advance direct formation of the dithiol was attained by Matsunari, 

using hydrogen sulfide as a nucleophile in conjugation with zinc chloride to activate 

bismethoxylated 149, through the generation of an iminium intermediate.115 These methods 

remained the state of the art for almost 30 years until a tandem cyclization–sulfenylation presented 

itself as an orthogonal approach. While this method was concise, it was not adopted widely toward 

the synthesis of 3,6-ETPs.116 Instead synthetic groups revisited Matsunari’s approach using 

hydrogen sulfide through the optimization of Lewis acids and the a-oxidized DKP substrates.117–

119 These modified conditions were efficacious in a variety of applications; however, some 

substrates were unreactive. To generate the desired motif in these less reactive substrates, the 

Movassaghi lab found that integration of a polysulfide chain at a singular position on a DKP 

substrate could undergo subsequent Lewis acid-mediated cyclization to generate the 3,6-ETP 

core,120 as well other sulfur nucleophiles could be used.118 

 While the lion’s share of 3,6-ETP core synthesis resulted from the thiolation of a-

functionalized DKPs, direct thiolation has been observed. Treatment of elemental sulfur with  
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Scheme 1.10. Selected methods for 3,6-ETP core synthesis through direct sulfenylation of DKPs 

 

sodium amide in ammonia, results in generation of a dithiol which could then be oxidized to form 

the disulfide (147, Scheme 1.10a).121 These conditions were not amenable to more sensitive 

substrates; yet the substitution of bulky strong bases, the hexamethyldisilazides, in place of sodium 

amide gave improved results for the direct thiolation of DKPs, both with elemental sulfur122 and a 

protected sulfur chloride.123 Unlike Schmidt’s original conditions, these novel conditions yield 

polythiolated intermediates which are reduced to the dithiol prior to the final oxidation to yield the 

disulfide bridge.  

  Methods for 3,6-ETP core synthesis have been optimized under both Lewis acidic and 

strongly basic conditions, ensuring that the synthetic chemist has flexibility in the substrates that 

can be targeted as intermediates in the total synthesis of 3,6-ETP natural products.  

 

1.3.2 TOTAL SYNTHESES OF EPIPOLYTHIODIKETOPIPERAZINES 

 The earliest syntheses of 3,6-ETPs were accomplished in studies by Kishi and coworkers. 

Their first synthetic efforts were toward to sporidesmin A&B (41-42, Figure 1.3).114,124 

Strategically, Kishi targeted a protected 3,6-ETP core as a key intermediate (157) before 

incorporating the sidechain functionality. An unsaturated monothiolated DKP (156, Scheme 1.11) 

was generated in two steps, which was subsequently converted to the thioacetal 157 after 

deprotection of the thioacetate. Stoichiometric deprotonation of 157 occurs selectively alpha to the 

MOM protecting group, which efficiently coupled with a functionalized acid chloride 158, an  
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Scheme 1.11. Kishi’s syntheses of sporidesmin A&B 

 

indole substrate accessed from commercially available starting materials in 4 steps and 51% 

cumulative yield. Coupled product 159 was converted to 160 in three steps, with installation of the 

hydroxyl group through diastereoselective reduction. Acetate 160 acts as a key intermediate for 

the divergent synthesis of 41 and 42. Direct oxidative cyclization 160 gave 161, which could be 

converted to 41 in three steps. To synthesize 42 the acetate was reduced to the methylene before 

being subjected modified oxidative cyclization conditions to generate 162 which could be 

advanced to 42 in two steps analogous to the final sequence of to access 41. Despite their reliance 

on some low yielding transformations, these syntheses were ground breaking. Furthermore, the 

use of an oxidative cyclization to install the key pyrroloindoline motif would be later revisited and 

extensively refined by other synthetic groups in the pursuit of other tryptophan-derived 3,6-ETP 

natural products. 

 With Kishi’s success in the synthesis of 41 and 42, it was consider whether this strategy of  
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Scheme 1.12. Kishi’s racemic synthesis of gliotoxin 

 

3,6-ETP core generation followed by elaboration of the side-chains could be generally applied to 

the synthesis of other 3,6-ETPs. With that in mind, they turned their efforts toward the synthesis 

of 16125 (Scheme 1.12) and its aromatized analog 17 (Scheme 1.13).126 The protected 3,6-ETP 164 

is synthesized in six steps, using the Trown conditions to generate the dithiol (Scheme 1.9a), with 

the 3,6-ETP core in hand, base–mediated attack of epoxy diene 163b, in equilibrium with oxepin 

163a,127 generates 165 as the major diastereomer. A four-step sequence converts the ester to benzyl 

chloride 166. Upon exposure to excess strong base not only promotes cyclization to generate the 

desired pyrollidine, additional deprotonation at the bridgehead site on the opposite side can be 

quenched with a chloromethyl ether to install the serine side chain to generate 167; a further two 

steps unveil 16. 

 As 17 had less sensitive functionality than 16, Kishi took an alternative approach 

integrating the aryl moiety prior to formation of the protected 3,6-ETP core.126 While Kishi showed 

that copper–catalyzed N-arylation of DKP 169 generates their sulfenylation substrate 171, later 

work by Wood128 showed that direct DKP formation from the aniline 168b was a more scalable 

alternative. The rest of the synthesis proceed in analogy to 16, through tandem cyclization of a 

benzyl chloride 173 with concomitant alkylation with a chloromethyl ether. This is followed by  
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Scheme 1.13. Kishi’s total synthesis and Wood’s formal synthesis of dehydrogliotoxin 

 

global deprotection and formation of the disulfide to yield the target 17. 

 The first synthesis of 15 by other chemists followed the an identical strategy to Kishi 

(Scheme 1.14a); through iterative alkylation of a symmetrical protected 3,6-ETP 175 to generate 

176, followed by similar deprotection and disulfide formation.129 The synthesis of  

16 was revisited by Williams, in 1980, with a novel strategy focused on side chain substitution 

prior to sulfenylation to form the 3,6-ETP core.130 The hydoxymethylene is incorporated through  

Scheme 1.14. Early syntheses of hyalodendrin 
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Scheme 1.15. Fukuyama’s novel synthesis to of hyalodendrin 

 

an aldol reaction, which subsequently protected as the silyl enol ether 178. Benzylation occurs 

through enolate alkylation, which is followed by monothiolation through a Schmidt reaction 

(Scheme 1.9b) to provide 179. The monothiol is capped as a disulfide before the thiolation of the 

enol proceeds with a sulfur chloride electrophile. The resulting bis-disulfide is then reduced to the 

dithiol before being re-oxidized to the disulfide 15. While, Williams synthesis has higher step 

count from DKP 177 when compared to the Strunz & Kakushima synthesis (14 steps versus nine 

steps) the overall yield is significantly improved.  

 Finally, Fukuyama demonstrated an orthogonal strategy to synthesizing 15 as a proof-of-

concept from a novel bicyclic intermediate 181, accessible in 6 steps from commercial materials.131 

The benzyl moiety is integrated through an aldol reaction. The benzylic alcohol activated with 

mesyl chloride prior to reduction. The reduced product is then exposed to strong base in the 

presence of a sulfur chloride which cleaves the bridging thioether to yield and unsaturated disulfide 

183. The synthesis is then completed through dihydroxylation of exocyclic olefin followed by 

activation of C6 under Lewis acidic conditions reminiscent of a Movassaghi sulfenylation 

strategies (Scheme 1.9h). While Fukuyama’s synthetic strategy has merit for its novel approach, it 

does not represent a significant increase in synthetic efficiency toward 15. 

 Synthetic studies towards oxidatively modified phenylalanine-derived 3,6-ETPs were 

initiated by the Diver group toward the scabrosins (21-25, Figure 1.1). In contrast to Kishi and 

Williams, their strategy proposed accessing the scabrosins through the synthesis of the constituent 
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non-canonical amino acids prior to DKP formation and sulfenylation. Tactically, synthesis of an 

enantioenriched propargyl glycine 185 proceeds smoothly through enantioselective alkylation 

followed by enyne metathesis to form a cyclohexadienyl amino acid. Unfortunately, the Backvall 

chloroacetoxylation was low yielding and featured no diastereoselectivity; however, the desired 

diastereomer could be isolated cleanly to provide 186. N-deprotection was followed by a base–

mediated cyclization to form the desired 6-5 bicyclic motif 187. This key intermediate 187 was 

advanced to the DKP 190 through the coupling N-boc amino acid 188 with amino ester 189 

followed by cyclization. While this strategy was able to form the pentacyclic core, 190 could not 

be further elabolated through further oxidation or sulfenylation toward the synthesis of 21.  

The synthesis of scabrosins was revisited by Carriera132, strategically in line with Williams 

Scheme 1.16. Unsuccessful synthetic approaches to the scabrosin pentacyclic framework  
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elaborating a DKP substrate before late-stage sulfenylation. Enabled by studies by Loughlin133 a 

bis-N-acylated DKP was directly converted to the unsaturated 193, formation of the requisite 6-5 

bicyclic sidechains proceeds efficiently through Lewis acidic activation of the bicylic ether. 

Directed epoxidation of bis-allylic alcohol led exclusively decomposition. To circumvent this  

deleterious reactivity, the allylic alcohol was oxidized to the enone which readily undergoes 

epoxidation under modified Weitz-Sheffer conditions. Unfortunately, 1,2-reduction generates the 

opposite diastereomer and further oxidative elaboration to the allylic epoxy alcohol was 

unsuccessful. 

 While efforts toward the scabrosins were unsuccessful, efforts toward tryptophan-derived 

3,6-ETPs were more fruitful. A concise synthesis of (+)-11,11'-dideoxyverticillin A (200, Scheme 

1.17) was accomplished by Movassaghi.118 Unlike the early syntheses of 3,6-ETPs their strategy 

focused upon late-stage dimerization and sulfenylation. Similar to Kishi’s oxidative cyclization in 

the syntheses of the sporidesmins, the DKP 197 can undergo a bromocyclization yielding an 

intermediate with a functional handle for a radical cobalt-mediated dimerization. Following 

dimerization, both DKPs were activated for sulfenylation through tetraoxidation prior to exposure 

to thiocarbonate as a nucleophilic sulfur source. The disulfide 200 was unveiled through two-step 

sequence. 

 This bromocyclization strategy was effectively used by Movassaghi in the synthesis of 

another dimeric 3,6-ETP chaetocin120 (45, Scheme 1.18) as well the indolinated 3,6-ETP  

Scheme 1.17. Movassaghi’s Synthesis of (+)-11,11'-dideoxyverticillin A 
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Scheme 1.18. Movassaghi’s syntheses of chaetocin and luteoalbusin 

 

luteoalbusin A134 (47). To synthesize 45, an analogous dimeric tetrahydroxylated DKP 203 was 

readily accessed; however, in contrast to their synthesis of 200 the intial sulfenylation of the 

activated 203 led only to monothiolation of each DKP subunit. However formation of an acyclic 

disulfide was successful, with the disulfide incorporated, further activation of the DKP under 

Lewis acidic conditions resulted in an intramolecular cyclization to yield the disulfide moiety of 

the natural product 45. This same sulfenylation tactic was successful in the later synthesis of 47 

which diverged from 45 only in the early incorporation of the indole through a silver-mediated 

coupling with key intermediate 202.  

 Movassagahi was also successful in the synthesis of bionectin A (59, Figure 1.3) an 

indolinated 3,6-ETP with an additional oxidation on the bicycle. Strategically, this synthesis 

focused on the initial synthesis of a DKP derived from non-canonical amino acids followed by 

incorporation of the indole and late stage sulfenylation.68 The additional oxidation was 

incorporated early through an aldol reaction with 208 and 209 with high diastereoselectivity 

informed by a chiral auxiliary (Scheme 1.19). Amide coupling with sarcosine followed by  
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Scheme 1.19. Movassaghi’s Synthesis of (+)–bionectin A 

 

intramolecular cyclization provided the DKP substrate 211 primed for bromocylization. To 

incorporate the indole moiety in this synthesis they chose to bring it in with a silyl tether prior to 

the C-C bonding step. Protecting group exchange was important prior to bis-hydroxylation of the 

DKP which again activated the substrate for sulfenylation with a nucleophilic sulfur source, which 

could be converted to the dusilfude 59 in a one-pot procedure. 

 Concurrent with Movassaghi’s program, Overman developed a unified strategy toward 

C10-indolinated 3,6-ETPs. Favoring synthesis of the indolated sidechain through asymmetric 

carboxylation of C2-indolinated oxindole 219 (Scheme 1.20) prior to incorporating into an 

unsaturated DKP 223 through condensation. In contrast to Movassaghi’s work resulting 

unsaturated 244 could cyclize under Lewis-acid activation of a hemiaminal to form 225 as a key 

intermediate. Exposure to Grignard or a strong reductant led to mono-hydroxylated DKPs 226-

228. The unsaturaturation was then used as a handle to incorporate necessary oxidation 

diastereoselectively but also to activate the DKP for Lewis acid-mediated sulfenylation which  
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Scheme 1.20. Overman’s Unified Strategy to Access C10-indole pyrroloindoline 3,6-ETPs 

 

could be expediently converted into three C10-indolinated 3,6-ETPs 59, 61, and 63. 

 Martin was later able to generate racemic formal syntheses of C10-indolinated 3,6-ETPs 

in a similar fashion to Overman’s approach while refining some of the tactics.135 Generating a bis–

enamide in situ prior to exposure to the highly electrophile isatin to generate 234. Unlike Overman, 

Martin then incorporates the requisite indole through Lewis acidic activation of the allylic alcohol. 

Cyclization was then accomplished under reducing Lewis acidic conditions to yield unsaturated 

DKP 236. This key intermediate could either be brought through Overman’s sequence to access 

62 in seven steps or radical hydroxylation and protecting group manipulations could generate 237 

which could be advanced 61 in a further 4 steps. 
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Scheme 1.21. Martin’s formal syntheses of (+/–)-gliocladine C and (+/–)-T988C 

 

The synthesis dimeric trypophan-derived 3,6-ETPs was also revisited by Sodeoka taking 

Movassaghi’s synthetic strategy and refining the tactics, resulting in a more efficient synthesis of 

45 (Scheme 1.22). Paramount to this effort was the recognition that an efficient bis-hydroxylation 

could be carried out prior to cobalt-mediated dimerization. Furthermore, engaging the resulting  

tetrahydroxylated dimer with the sulfenylation conditions that had been refined by Overman in his 

synthesis of C-10 indolinated 3,6-ETPs directly formed the tetrathiol which could be directly 

oxidized to 45.  

 Since, Kishi’s landmark synthesis of 16 the further synthetic studies were not undertaken 

until Nicolaou. In contrast to Kishi’s building-out strategy, Nicolaou took a similar approach as 

other modern 3,6-ETP synthetic strategies, through the synthesis of fully functionalized non-

canonical amino acids and late stage sulfenylation.65 240, derived from tyrosine, could be  

Scheme 1.22. Sodeoka’s Concise Synthesis of (+)–chaetocin A 
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converted to dienyl 241 in three steps through palladium mediated elimination of an allylic 

acetate. A successful [4+2] with singlet oxygen formed an endo peroxide which could reduced to 

the triol 242. The gliotoxin amino acid was finally generated through Corey-Winter olefination, 

forming 243.  

 This unnatural N-boc amino ester 243 was a versatile intermediate, coupling with a 

protected serine derivative to generate 16 or could be further elaborated to the symmetrical 3,6-

ETP 18. Direct sulfenylation was a novel procedure as a refinement of Schmidt’s early work.    

Furthermore, Nicolaou through the synthesis of an epimeric rostratin derivative (255) that early 

formation of the 6-5-6-5-6 pentacylic framework could set up the substrate for expedient oxidation  

Scheme 1.23. Nicolaou’s synthesis of 3,6-ETPs containing the gliovirin subunit 
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of the side chains after disulfide formation. Unsaturated 3,6-ETP 254 was rapidly functionalized 

through a singlet oxygen [4+2] in analogy to 242; however, a Kornblum–DeLaMare rearrangement 

generated the keto-alcohol instead of the diol. Subsequent conjugate addition followed by 

oxidative work-up provides the highly functionalized 3,6-ETP 255.  

The first successful synthesis of dihydrooxipene ETP was accomplished by Reisman in 

2012, through the synthesis of a non-canonical amino acids and late-stage sulfenylation .136 In 

contrast to other 3,6-ETP syntheses the stereochemistry of the pyrollidine was set first through a 

dipolar cycloaddition of an azomethine ylide. Pyrollidine 257 could be elaborated to propargylated 

alcohol 260 in a further eight steps which underwent rhodium-mediated cyclization to generation  

Scheme 1.24. Reisman’s Syntheses of oxepine-containing 3,6-ETPs 
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the desired seven-membered ring. Orthogonal protecting groups are removed to form 262 and 263 

which can undergo amide coupling and cyclization to generate a fully functionalized DKP 264. 

The natural product could be formed through the Nicolaou’s direct sulfenylation protocol. 

The pyrollindine-first strategy was further applied to the synthesis of the gliotoxin 

monomer 269 en route to the unsymmetrical aceylapoaranotin (271). Chiral pyrollidine could be 

allylated prior to undergoing ring closing metathesis. Elimination of a epoxide provides 

unsaturated 268. Which can then be converted the desired dienyl alcohol 269 through the reduction 

of a vinyl triflate. While plagued with competitive aromatization pathways the DKP formation and 

direct sulfenylation were accomplished to form 271 in analogy to 34.  

 Tokuyama was also successful in the synthesis of 34137 engaging a similar synthetic 

strategy, targeting fully functionalized non-canonical amino acid monomers prior to DKP 

formation and direct sulfenylation. Their approach toward the synthesis of the dihydrooxepine 

subunit was more in line with Nicolaou’s strategy in the synthesis of the gliotoxin intermediate 

243. As opposed to a cyclization strategy, the seven-membered ring was formed through a Baeyer-

Villiger oxidation of the enone 274 followed by reduction of the corresponding vinyl triflate. 

Following a similar two step amide coupling-cyclization to form the DKP the alcohols were easily 

inverted in a two-step sequence to form 264. A similar direct sulfenylation as seen in the Reisman 

synthesis provided their target natural product 34.  

Taking lessons from their synthesis of 34 they were also able to accomplish the synthesis 

of the macrocyclic 3,6-ETP 38. Coupling of the dihydroxepine 277 with sarcosine formed the DKP 

core of the natural product 279. The macrocycle was formed through esterification of the diaryl 

ether 281 followed by an aldol reaction under highly optimized conditions follow by oxidation to 

generate the macrocyclic ketone 282. A novel direct sulfenylation was then accomplished through 



Scheme 1.25. Tokuyama’s Syntheses of oxepine-containing 3,6-ETPs 

 

the iterative incorporation of trisulfides from protected sulfur chlorides. This bis-trisulfide was 

then reduced to the dithiol followed by oxidation to the disulfide to deliver 34.  

A wide variety of strategies have been used to access 3,6-ETP natural products. While early 

work pioneered by Kishi focused on the early formation of a masked 3,6-ETP core followed by 

decoration of the side chains, later work on more structurally complex 3,6-ETPs has taken a 

radically different approach through synthesis of fully functionalized monomers which can 

undergo later stage DKP formation and sulfenylation.  
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1.3.2 APPROACHES TO ASPIROCHLORINE 

In constrast to the substantial amount of work found the synthesis of 3,6-ETPs, natural 

products incorporating the [2.2.3]-ETP core have arguably not been explored synthetically to any 

great extent. The only successful total synthesis of a [2.2.3]-ETP was William’s synthesis of 79. 

Strategically, this work focused upon a bromocyclization to generate the spirocyclic motif and 

provide benzylic functionalization which could be leveraged for later sulfenylation.138  

 The benzofuran 285 could be synthesized in three steps from bisphenol 284. Conversion 

the acid chloride facilitates coupling with a glycine equivalent, followed by incorporation 

methoxylamine to generate 286. Exposure to NBS leads to bromocyclization in good yield. In an 

additional 4 steps the bis-methoxylated 289 is primed for thiolation with thioacetate similar to 

Trown’s approach but with a substrate in analogy that pioneered by Matsuri (Scheme1.9ad) to 

yield 79.   

 While Williams’ work remains the exclusive total synthesis of [2.2.3]-ETP, Danishefsky 

proposed an alternative three step protocol to simultaneously generate a benzofuran-derived 

spirocyle and unusual disulfide linkage.139  This approach uses the Kishi strategy, stoichiometric  

Scheme 1.26. Williams’ Synthesis of (+)–aspirochlorine 
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Scheme 1.27. Danishefsky’s Approach to the spirocyclic aspirochlorine core 

 

 

deprotonation of the masked ETP 175 is able to undergo 1,2-addition with an electron-rich 

benzaldehyde to generate 291. Exposure of this intermediate to strongly acidic conditions 

presumably leads to ionization of the benzylic alcohol to form ortho-quinone methide 293, a strong 

electrophile. This species can undergo subsequent 1,2-sulfur migration with concurrent cyclization 

to quench the developing positive charge on the DKP. While remarkable, whether this 

rearrangement is biologically relevant is remains unknown.       

 

1.4 SYNTHESES OF THE TRICHODERMAMIDES 

In contrast to their disulfide-containing cousins, the presumed decomposition products of 

[2.2.3]-ETPs, the trichodermamides, have been the subject of several synthetic efforts. The first 

successful synthesis was disclosed by Zakarian140 utilizing an 1,2-oxo-aza Cope rearrangement 

which they pioneered to generated the key bicyclic oxazine fragment.141 Unfortunately, the 

substrate for this rearrangement required extensive synthetic efforts. The bicyclic framework was 

initially generated through a Diels-Alder reaction followed by an retro aldol-aldol sequence to set  
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Scheme 1.28. Zakarian’s synthesis of trichodermamides B 

 

the requisite bridgehead trans-diol along with some redox manipulations to generate 298 in 9 

steps from 296. The rearrangement proceeded smoothly and protecting group manipulations 

generated 299, the appropriate oxidation pattern was generated through Grieco transposition and 

subsequent saponification provided 300 which could be coupled with aminocoumarin 301 to 

generate 302. Chlorination occur through invertive displacement of an allylic mesylate to 

generate the target 139.   

Joullie successfully completed the enantiospecific syntheses of 138 and 139.142 Epoxy 

ketone 303 could be synthesized in 18 steps from the chiral pool. One-pot oxime formation and 

acid mediated cyclization generated the bicyclic oxazine fragment. Oxidative elaboration of 304 

was challenging for the authors, especially the low-yielding allylic oxidation to generate enone 

306. Furthermore 1,2-reduction of that moiety, while high yielding, was completely unselective 

provide inseparable products; however, conversion to 307a and 307b provided to a separable 

mixture. Taking advantage of both diastereomers, 307b could be advanced to 138 in three steps  
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Scheme 1.29. Jouillie’s syntheses of trichodermamides A&B 

	

while 307a could converted to 139 in four steps, with a chlorination analogous to that used by 

Zakarian.  

Recently, Larionov disclosed concise racemic syntheses of the trichodermamides A-C 

through the rapid synthesis of the bicylic oxazine core.143 This was accomplished in a one-pot 

procedure. Stoichiometric deprotonation of 308 formed a hard nucleophile which performed a 1,2-

addition on 1,4-benzoquinone (BQ) following unveiling of the oxime oxygen under acidic 

conditions an oxy-Michael generates 309. A three-step sequence featuring a palladium catalyzed 

elimination of a carbonate analogous to that observed in Nicolaou’s route to the gliotoxin 

subunit(241, Scheme 1.23) generates their key intermediate 310.  

A manganese-catalyzed epoxidation of the dienyl alcohol is selective for the distal olefin. 

To provide the desired trans diol, epoxide opening proceeds with phenylselenol to provide 312. 

This allylic selenide is then saponified under mild conditions prior to amide coupling with 301. 

The resulting allylic selenide 313 readily undergoes a [2,3]-rearrangement under mildly oxidizing 

conditions to yield 138. The direct formation of the core, lack of protecting groups manipulations,  
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Scheme 1.30. Larionov’s synthesis of trichodermamide A 

 

and rapid incorporation of the oxidation results in a swift, scalable synthesis. 

 Larionov was able to further leverage 310 in the synthesis of 139 and 140 (Scheme 1.31). 

Direct coupling of the dienyl substrate with 301 yields 314. This is followed by a highly efficient 

allylic epoxidation to yield 315. A double displacement at the allylic position provides an 

appropriately disposed allylic selenide for the [2,3]-rearrangement so effectively utilized toward 

138. Tosylation of the newly formed secondary alcohol prior to [2,3]-rearrangement prevents 

undesired decomposition pathways. Under mildly oxidizing conditions 316 undergoes allylic 

transposition followed by chlorination of the newly activated allylic tosylate to generate 139.  

 Finally, to synthesize 140, methylation of 314 provided a substrate for analogous 

epoxidation as that seen in 138, while expedient from a step-count standpoint the efficiency of the 

epoxidation was reduced. However, with the coupled allylic epoxide 317 in hand the two step 

selenation-transposition sequence proceeded in high yield to generate the natural product 140.    

Synthetic efforts towards the trichodermamides have demonstrated that rapid formation of the key 

bicyclic oxazine is critical for an expedient synthesis. Furthermore, the oxidative manipulation and  
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Scheme 1.31. The Completion of Larinov’s syntheses of trichodermamides B&C 

 

diastereoselectivity of chemical transformations with these substrates can be non-trivial. While 

concise syntheses have now been realized an enantioselective synthesis of the trichodermamides 

has yet to been accomplished. 
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Chapter 2 

 

A Synthetic Strategy Toward the Oxazinyl Natural Products Gliovirin, the Pretrichodermamides 

and the Trichodermamides    

 

2.1 INTRODUCTION  

Tetrahydro-1,2-oxazines and Dihydro-1,2-oxazines are a motif rarely found in natural 

products. Yet, oxazine-containing natural products display a highly-conserved oxidation pattern 

and structure, suggestive of a common intermediate.1 These can be categorized into three main 

classes: non-classical ETPs such as gliovirin (80),2,3 rearrangement products including the 

peniciadametizines,4 and elimination products exemplified by the trichodermamides (Figure 

2.1).5,6  

We were drawn to 80 as a synthetic target as it was isolated in an undisclosed yield, 

suggesting low availability from biological sources, and its unusual structure imparts intriguing 

bioactivity. Along with the tetrahydro-1,2-oxazine contained within its densely-functionalize



  

Figure 2.1. Examples of oxazine–containing natural products  

 

structure it also features an anomalous [2.2.3]-ETP core, seven stereocenters and is replete with 

oxidation. Due to its restricted availability and structural complexity a full understanding of its 

biological activity has been limited. Despite these challenges, gliovirin has shown antimicrobial 

activity against prominent phytopathogens including Phytopthora sp. and Pythium ultimum.7 

More recently, 80 has also demonstrated activity as an inhibitor of inducible TNF-a expression 

in human T-cells and macrophages.8  

The proposed synthetic strategy to access 80 is to generate the DKP at a late stage and 

install the disulfide linker as the final step. This approach, therefore, relies upon the synthesis of 

two fully functionalized non-canonical amino acids: the eastern fragment, an oxidized 

phenylalanine derivative (315, Scheme 2.1), and the western fragment, a highly oxidized bicyclic 

tetrahydroxazine (314, Scheme 2.1).  

Based upon Williams’ and Danishefsky’s work (see Section 1.3.2, Chapter 1) on the 

aspirochlorine core there was good precedent for benzylic sulfenylation either through direct 

benzylic functionalization or a 1,2-sulfur migration.9,10 Furthermore, the opposing strategy, pre-

integration of the benzylic sulfur, provided additional challenges beyond the scope of the desired 

area of research. Synthetic tactics to install the benzylic sulfur earlier in the route, including sulfa–

Michael additions or an aziridine ring–openings, often present poor selectivities and depressed  
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Scheme 2.1. Retrosynthetic analysis of gliovirin 

 

yields for the necessary electron-rich substrates. As shown in Scheme 2.1 synthesis of the eastern 

fragment would be enabled through the palladium-catalyzed Negishi cross-coupling of a 

iodoserine derivative 318 with an aryl iodide.11   

The western fragment, a highly oxidized bicyclic tetrahydroxazine, provides an enormous 

synthetic challenge. In our strategy, this highly functionalized intermediate 315 could be generated 

through oxidative manipulations of an enantioenriched biyclic oxazine 317. This critical 

intermediate 317 would be generated either through radical cyclization of a hydroxamate or 

through a hetero Diels–Alder reaction. 

In approaching the synthesis of 315 there are several considerations that place limitations 

on the synthetic tactics one is able to engage. An important consideration is the oxazine N-O bond 

which is prone to reduction under a variety of conditions to form 1,4-aminoalcohols (Scheme 

2.2a).12–18 This reactivity has exploited in a variety of syntheses (Scheme 2.2b).19–30 Furthermore, 

the acidic a-proton of the tetrahydro-1,2-oxazine can enolize readily which facilitates subsequent 

N-O bond cleavage and tetrahydrofuran formation (Scheme 2.2a). The reactivity could be 

implicated in formation of 2-aminotetrahydrofuran natural products, such as 143ab (Scheme  
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2.2c).31 The oxidized ring of the western fragment 315 is likely unstable to oxidation as it could 

readily form an aromatic system or undergo an electrocyclic rearrangement (Scheme 2.2d).32  

Scheme 2.2. Transformations associated with tetrahydro-1,2-oxazines and the western fragment 

 

 

2.2 HETERO DIELS-ALDER DERIVATIVES 

The use of a hetero Diels–Alder cyclization to form the bicylic oxazine was attractive to 

us as a direct way to form the desired bicyclic motif. A reactive nitroso-alkene is known to be 

generated in situ from oxime 326, which can react with electron-rich olefins including silyl enol 

ethers and dienes.33 To further evaluate the strategy, the reaction was carried out with 1,3-

cyclohexadiene to generate the bicyclic dihydro-1,2-oxazine 327 in excellent diastereoselectivity 

and tractable yield on scale (Scheme 2.3). It would be advantageous if one could directly integrate 

oxidation at C4 using the appropriate silyl enol ether; however, previous studies show a high 

selectivity for integration at C9. Therefore, elaboration 327 was attempted to access the desired 

western fragment through redox manipulations. 1,2-Reduction of cyclic oxime proceeded with 
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modest diastereoselectivity for the desired syn–syn product 328. Optimization of the 1,2–reduction 

to improve the diastereoselectivity was untenable due to cross reactivity with the reduction-prone 

N-O bond. Further oxidative elaboration of the all-carbon ring was also met with challenges. While 

the C7-C8 olefin of 327 could be epoxidized diasteroselectively to form 329, the desired base–

mediated elimination to yield the allylic alcohol motif present in 80 did not proceed.34 Instead, 

only minor epimerization of the starting material was observed at the ring fusion.  

Therefore, while the [4+2] approach generated the bicyclic framework rapidly, it did not 

lend itself easily to oxidative elaboration. Furthermore, the preparation of enantioenriched 

cycloadducts would require substantial method development.35 The racemic intermediate 321 

generated by this study was later used to evaluate amide coupling of the eastern and western 

fragments in model studies.  

Scheme 2.3. Elaboration of hetero Diels–Alder product 

 

 

2.3 SYNTHESIS OF OXIDATIVE CYCLIZATION SUBSTRATES 

 The biosynthetically inspired cyclization of a modified N-oxy-phenylalanine derivative 

was identified as a valuable strategy. Using an N-oxy amino ester as a cyclization substrate one 

could integrate a stereocenter early in the synthesis to later leverage in diastereoselective reactions. 
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The cyclization intermediates targeted for evaluation were N-hydroxy-3,4-dihydrophenylalanines, 

such as 333, as the product would retain two conjugated synthetic handles on the all-carbon ring. 

To access the desired enantioenriched diene motif several approaches were attempted. N-oxidation 

of the known amino acids resulted in no desired product formation (Scheme 2.4a).36 A Second 

approach employs protected hydroxylamines to engage with activated enals electrophiles to 

undergo asymmetric conjugate addition to form bis-protected N-hydroxy amino ester 337  

(Scheme 2.4b).37,38 Yet, when 337 was subjected to modified Seyferth–Gilbert39 conditions using 

the Ohira–Bestmann reagent 33840 to homologate to the desired alkyne 339, unproductive 

decomposition was observed. Control experiments showed that the substrate was not stable to the 

mildly basic conditions used in the transformation. 

Scheme 2.4. Failed approaches to an oxidative cyclization substrate 

 

In subsequent series of attempts the desired 342, a known a-hydroxy ester was activated 

as the triflate, 340 (Scheme 2.4c).41 Displacement with a hydroxylamine nucleophile and 

subsequent N-acylation generates a stable protected hydroxylamino ester 341 in a low yield.42 
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Gratifyingly, the alkyne 341 could undergo an inefficient enyne metathesis reaction to generate 

the N-hydroxy-3,4-dihydrophenylalanine 342. Attempts to debenzylate 342 under Lewis acidic 

conditions led to unproductive decomposition of the starting material.43 Due to the presence of an 

electron-rich diene, debenzylation under reductive conditions could not be attempted without 

competitive alkene reduction. Substitution of an orthogonal protecting group, trimethylsilyl 

(TMS), in place of the benzyl group on the hydroxylamine nucleophile was unsuccessful. HPLC-

MS analysis of the reaction media suggested that displacement 330 with O-trimethylsilyl 

hydroxylamine had occurred; however, no desired product was ever recovered from the crude 

reaction. As a result of the low yielding transformations of the displacement strategy and a lack of 

flexibility in its protecting group strategy a more direct route was explored.   

Scheme 2.5. Racemic and asymmetric syntheses of  N-siloxy propargyl glycine 

 

 Finally, it was hypothesized that a direct homopropargylation of the oxime ester 332 could 

efficiently access N-siloxy propargyl glycine 333. While 332 was initially resistant to 

functionalization, two methods were discovered to provide the desired product. The addition of 

allenyl zinc bromide, generated in situ, provided the racemic alkyne as the major product with a 

minor allenyl impurity (Conditions A, Scheme 2.5).44 Furthermore, copper–catalyzed asymmetric 

alkylation developed in the Reisman group (See Chapter 3) was also implemented to provide the 

enantioenriched product, formed in good yield and high enantiomeric excess with no allenyl 
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impurity observed (Conditions B, Scheme 2.2d). To the best of our knowledge this is the first 

example of a catalytic asymmetric alkylation of an oxime. The N-siloxyamino ester 344, was 

benzoylated efficiently but 345 was unstable to standard silica purification; a plug of Florisilâ,45 

however, provided clean product in excellent yield.  

Our Early attempts to perform a methylene-free enyne metathesis based on the initial 

disclosure by Diver led to high conversions but low yields (entry 1, Table 2.1).46,47 Darkening of 

the solution was suggestive of catalyst decomposition.48 Regardless, the yields remained 

intractable whether using a higher catalyst loadings or portion-wise catalyst addition. Similarly, 

different catalysts and common additives had negligible effect on yield. 

Table 2.1. Enyne metathesis optimization studies  

 

The stability of a Hoveyda-Grubbs’ catalyst is dependent upon solvent. A screen of a series 

of solvents for this reaction demonstrated that the efficiency of the reaction improved in argon-

degassed benzene (entry 8, Table 2.1). Slow addition of a solution of 345 and careful control of 

the concentration of catalyst in the reaction mixture was essential for productive reactivity. To 

further improve the yield of the transformation kinetic studies of other intermolecular enyne 
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metathesis reactions were used as a guide. These studies demonstrate that the productive enyne 

pathway is first order in cyclooctadiene and catalyst, but zero order in the substrate.49 Therefore, 

decreasing the concentration of the substrate in the reaction medium, raising the catalyst 

concentration (19–5 mM), and extending the addition time of 345 results in an excellent yield of 

the desired diene 346 (entry 9, Table 2.1).   

 

2.4 OXIDATIVE CYCLIZATION OF AN N-HYDROXY AMINO ESTER 

To accomplish the proposed oxidative cyclization, we were motivated to build upon 

previous studies on radical cyclizations of hydroxamic acids with olefinic substrates. This class of 

reactivity was first observed by Perkins when aromatic 336 spontaneously cyclized in air to 

generate a hydroperoxide 337 (Scheme 2.3a). Alexanian later systematically explored this reaction 

on a variety of substrates converting the intermediate cyclized hydroperoxides to alcohols or 

ketones, we particularly by the encouraged by their ability to generate 6-6 bicyles (Scheme 2.3b) 

and highly diastereoenriched products (Scheme 2.3c) in good yields.50,51 Our investigations 

focused on analogous reactivity in novel substrates; unlike Alexanian’s work we identified a 

copper catalyst as an efficient catalyst to facilitate cyclization. Since our optimization studies, 

several disclosures of intermolecular radical additions in simplified systems were published 

utilizing copper sources as catalysts (Scheme 2.3d–f).52–54 

In contrast to previous work, where stereocenters were formed in close proximity to one 

another (Scheme 2.3ab), the goal of the present study was to form disparate stereocenters on 350 

at C7 and C10, with diastereocontrol relative to the C3 a-carbon. Prior to undertaking these 

studies, it was hoped that a reductive work-up of the intermediate allylic hydroperoxide would 



provide an a-disposed alcohol at the newly formed C7 allylic site which could be subsequently 

leveraged as a directing group to ensure facile installation of the desired tri-substituted epoxide 

Scheme 2.6. Oxidative radical additions of N-oxides to olefins 

 

present in the 80. Despite these aspirations, upon silyl deprotection and subsequent oxidative 

cyclization a complex mixture of allylic alcohols was observed in low yields with the major 

product being the syn-anti-b-OH 350 (Scheme 2.4). Along with the mixture of allylic alcohols, 

enone products were also formed despite the reductive work-up exhibiting with the desired C3-

C10 syn-diastereomer 351 as the major product.  

The selectivity at C7 for the undesired diastereomer can be rationalized through 

conformational analysis informed by previous computational studies by Houk in which it was 

shown that triplet oxygen and cyclic allylic combine through an antiperiplanar trajectory in the 

transition state.55 A qualitative comparision of the transition state conformers for axial (353axial, 

Scheme 2.5) and equatorial (353equatorial) oxygen capture, suggest that they are close in energy; 

however, it appears that axial capture would generate less torsional strain during the formation of 
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the intermediate hydroperoxide 354axial which upon reduction forms the observed major 

diastereomer (350).    

 

Scheme 2.7. Initial studies and conformational analysis of an oxidative cycylization   

 

Guided by this analysis, it suggested that this diastereoselectivity would not be easily 

improved and therefore optimization toward the selective generation of the syn-enone 351 was 

undertaken. To that end, a Kornblum-DeLaMare56 work-up was employed in a similar fashion to 

that used previously by Alexanian (Scheme 2.3c). A solvent screen identified acetonitrile as a 

superior solvent for the transformation and while a fluoride-mediated deprotection was efficacious, 

an acidic deprotection using methanesulfonic acid could be substituted and simplified the work-

up. The addition of a copper salt appeared to facilitate the reaction at a lower temperature. A screen 

of copper-diamine complexes inspired by the work of Stack in Cu-monooxygenase models57,58  
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identified tetramethylethylenediamine (TMEDA) as the optimal additive (entry 3, Table 2.2). Use 

of a non-coordinating counterion provides a small but consistent improvement to the yield (entry 

5, Table 2.2). The reaction required dilute conditions for good reactivity, as concentrations above 

0.1M provided only trace product (entry 6, Table 2.2). Finally, a base screen of the Kornblum-

DeLaMare work-up showed that the weak base pyridine out-performed other nitrogenous bases in 

a separate screen and had improved scalability.   

Table 2.2. Optimization of the oxidative cyclization of N-siloxy-dihydrophenyalanine 

 

Upon completion of this optimization we wished to vary the substrate 335 to improve the 

diastereoselectivity and yield of the reaction further. Interestingly, substitution of a bulkier ester 

had no effect on the diastereoselectivity of the cyclization (entry 2, Table 2.3). Acyl substitution 

at the acyl substituent was varied, however, a significant increase in the preference for the syn-

product was observed (entry 3, Table 2.3).. The overall yield of the transformation was not 

perturbed by this N–substitution, suggesting a negligible effect on the competitive decomposition 

pathways; yet, the shift in diastereoselectivity was a strongly indicative that the acyl substitutent 

had a key role in differentiation of the syn and anti reaction pathways.  
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Previous studies have shown that cyclic amides have a preference for an equatorial 

disposition and will develop A1,3–type strain with a-substituents.59 Integrating these observations 

into conformational analysis of the initial cyclization step, one can rationalize the inherent syn- 

preference of the cyclization. To generate the observed major diastereomer, the reaction would 

proceed through a low-energy chair-like conformation with the C3 ester in an axial disposition 

(356chair, Scheme 2.6) to alleviate developing A1,3–type strain in the transition state. This 

conformational preference would be substantiated by crystal structure (See Table 2.6). 

Alternatively, the reaction could proceed through a transition state with a higher energy boat-like 

conformation (356boat) with A1,3 minimization or through another chair-like conformation 

(356chair*) with strain developing between the hydroxamate and the a-substitutent. Both of these 

higher energy conformations would lead to the minor diastereomer, though to discern their relative 

contributions to the reaction will require a more thorough computational analysis.  

Table 2.3. Structural effects on the oxidative cyclization of N-siloxy-dihydrophenyalanine 
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temperature. With the bicylic framework of the western fragment established the oxidative 

elaboration of the enone to the desired epoxy allylic alcohol was undertaken. 

Scheme 2.8. Conformational analysis to rationalize syn–diastereoselectivity in C10–cyclization 

 

 

2.5 EPOXIDATION STUDIES 

The copper–catalyzed cyclization provides an enone product with unsaturation at C5-C6 

which corresponds to the epoxide in gliovirin. Therefore, direct installation of the requisite 

oxidation was pursued using either the allylic alcohol or enone precursor. 

Initial studies were focused on the directed epoxidation of an a-disposed allylic alcohol 

(a-350, Scheme 2.7) as diastereoselectivity was a concern. Attempts to achieve a directed 

epoxidation of a-350 were mired by messy reaction profiles and, most prominently, competitive 

oxidation of the allylic alcohol to form the enone. Competitive C–H oxidation is a known side 

reaction of directed epoxidations and appeared unavoidable on this substrate. While a high-

yielding epoxidation of the allylic alcohol was unable to be achieved, the ratio of desired 357 to 
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favored enone formation, while mCPBA favored epoxide formation. This reactivity is likely due 

to conformational effects. An equatorially–disposed alcohol accelerates the rate of epoxidation by 

mCPBA while vanadyl acetylacetonate prefers an axially-disposed alcohol in the transition state.60 

While the application of these reactions proved fruitless toward the synthesis of oxazine-

containing natural products it was appealing to see pronounced differential activity in these 

unusual substrates.   

Scheme 2.9. Directed epoxidation studies on the allylic alcohol 

 

Attention turned to epoxidation of 351. Standard Weitz-Scheffer conditions led to complete 

decomposition, with a small amount of desired product isolated only when a catalytic amount of 

base was used (entry 1, Table 2.4).61 To avoid strongly basic conditions, attempts to use enamine 

catalysis specifically designed for the epoxidation of cyclic enones gave no reaction.62 Similarly, 

other oxidants which epoxidize more electron-rich and less polarized olefins, such as DMDO, led 

to no reaction. 
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in variable yield (entry 2, Table 2.4). Encouraged by these promising results, however, reaction 

optimization studies began in earnest. 

Table 2.4. Selected entries from enone epoxidation optimization studies 

 

Epoxidations of isolated olefins mediated by H2O2/NaHCO3 were studied methodically by 

Burgess, noting that a low concentration of NaHCO3 was key to generating high yields of 

product.64,65 Lowering the concentration of NaHCO3 to 2.0M did not increase the yield of the 

reaction significantly (~50%) but the reaction time shortened and, importantly, scale-up of these 

conditions were replicable in contrast to Magnus’ conditions. Substitution of t-butanol for 

methanol led to an increase in yield (entry 3, Table 2.4). Finally, a screen of Lewis acid additives 

showed that catalytic CrCl3 consistently improved the yield of the epoxide to 70% isolated. Further 

experimentation showed that slow addition of a mixture of NaHCO3 and CrCl3 in t-BuOH and 

water to a cold solution of substrate and H2O2 in THF gave excellent yields on large scale. Despite 

this highly-involved optimization and mild conditions of the transformation when the epoxidation 

was attempted with a new bottle of H2O2 complete decomposition occurred. This was 

discouraging; however, it was found that sodium hypochlorite could be used in the place of H2O2 

with little decomposition observed and comparable yields on scale (entry 5, Table 2.4). 
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2.6 GENERATION OF EPOXY-ENE OXIDATION SUBSTRATE  

Several strategies for the oxidative elaboration of 363 to the desired epoxy allylic alcohol 

motif were explored. The first of which was a focus on the conversion of the carbonyl to the alkene 

followed by an allylic oxidation at C9. The dehydration substrate 371, while accessible through 

the inefficient epoxidation a-362 (Scheme 2.9) was more expeditiously generated through a 1,2-

reduction of 370 using Luche conditions (Scheme 2.10). Typical dehydration conditions  through 

activation of 371 as a sulfonate ester either returned the starting material or led to complete 

decomposition upon heating. Desired product 372 was formed when the Martin’s sulfurane was 

employed, yet again significant C-H oxidation was observed with competitive formation of 370.66 

Scheme 2.10. Inefficient elimination of epoxy alcohol through dehydration 

 

We wished to interrogate a palladium–mediated reduction of an epoxy vinyl triflate; 

however attempts to form the vinyl triflate did not produce an isolable intermediate. Further studies 

into this tactic were abandoned as a-epoxy vinyl triflates are prone to a myriad of decomposition 

and rearrangement pathways when subjected to palladium-catalyzed reductive conditions.67 

Finally, a three–step procedure was successful in generating the desired epoxy alkene 365. 

First, a modified Wharton protocol (for Method Development, see Section 2.10) generated a 

tertiary allylic alcohol 362 in high yield (Scheme 2.9).68 This intermediate could then be submitted 

to a light–mediated allylic bromination with N-bromosuccimide (NBS) to generate a 

diastereomeric and isomeric mixture of allylic bromides.69 The crude mixture of allylic bromides 
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was not fully characterized but carried on crude through a silver–mediated halide elimination to 

form the desired epoxy alkene in excellent yield, two steps from 373.70 

Scheme 2.9. Efficient synthesis of the epoxy alkene from the epoxy ketone  

 

 

2.7 STUDIES ON C9-ALLYLIC FUNCTIONALIZATION 

 With 372 in hand the efficient introduction of oxidation at the C9 allylic methylene would 

complete the synthesis of the fully elaborated western fragment 315 (Scheme 2.1). Allylic 

oxidation has been the subject of much study in organic chemistry and applied to a number of total 

syntheses.71 These methods were brought to bear in the attempted oxidation of 361. The use of 

selenium dioxide as an oxidizing reagent under a variety of solvent mixtures and additives 

provided no desired reactivity.72 Use of a phosphate buffer or pyridine co-solvent prevented 

epoxide opening; however, no oxidation was observed. Increasing the reaction temperature to 

40 °C unfortunately led to complete decomposition of the materials. 

Scheme 2.10. Desired oxidative functionalization of epoxy alkene 

 

 The oxidation substrate, 372, was also unreactive to Kharasch-Sosnovsky oxidations73 

while metal-free oxidations, including NHPI–mediated oxidations,74,75 led to complete 

decomposition. When manganese triacetate was used together with THBP, as a stoichiometric 
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oxidant, a mixture of an mixture of products was generated, yet evidence of desired product 

formation was observed by mass spectrometry. Unfortunately, repeated attempts to optimize, 

scale-up and isolated these potential oxidation products were unfruitful.76  

 With these negative results in mind, one’s attention inevitably returns to previously 

successful tactics: allylic bromination. Yet, the epoxy alkene 372 did not react when subjected to 

the previously optimized conditions for 373. Several trace bromide–containing products were 

detected, however no selectivity observed. Hoping to once again funnel the crude mixture to a 

single product, the crude was treated with silver(I) tetrafluoroborate and triethylsilanol resulting 

in the trace formation of an intractable mixture of silyl ether products.70 The low efficiency and 

selectivity this bromination–displacement approach led to its rejection. 

 While the outlook of the oxidation of the C9-deoxy substrate is poor, it would be of value 

to evaluate the ability of P450 mutants to facilitate this especially difficult C9 oxidation due to 

their ability to reverse the selectivity of known chemical methods and proceed at room 

temperature.77  

 

2.7 DESATURATION STUDIES 

 As the C9 allylic oxidation currently provides an inordinate challenge; therefore, 

alternative strategies were explored. A stereoretentive allylic transposition of a C7 oxidative 

handle to C9 was hoped to be thermodynamically favored. To interrogate this hypothesis, an allylic 

alcohol (377a, Table 2.6) must be accessed through the successful 1,2–reduction of a desaturated 

epoxy enone substrate (376, Table 2.5).  

Conversion of the 370 to 376 like many of these transformations in this series was 

challenging. Typically, a ketone is converted to the corresponding silyl enol ether which can then 



be subjected to a variety of conditions to form the desaturated product.78–80 There are two general 

approaches to silyl enol ether formation: kinetic deprotonation with a strong base and quenching 

with a silyl halide or milder thermodynamic conditions using an amine base in conjunction with 

sodium iodide and a silyl triflate. Unfortunately, under kinetic conditions the epoxy ketone 

decomposed while thermodynamic conditions returned starting material. Attempts to form the allyl 

enol carbonate also led to decomposition. 

Scheme 2.11. Revised retrosynthetic plan for a fully elaborated western fragment   

 

 Recently, several direct methods for ketone desaturation have been disclosed. Encouraged 

by these discoveries, a direct desaturation was explored. Use of hypervalent iodine reagent lead to 

either recovery of the starting material or decomposition (entry 1, Table 2.5).81 Alpha–selenation 

under thermal conditions gave a very messy reaction profile but appeared to have a small amount 

of a new enone–containing product (entry 3, Table 2.5). Isolation confirmed the formation of the 

desired 364 and while encouraged that the desired transformation could occur in one pot, the 

competitive decomposition observed suggested alternative approaches should be explored. 

Palladium catalysis has a rich history in ketone desaturation exemplified by the Saegusa–

Ito and Tsuji oxidations.78,82 New advances in the literature have avoided the stoichiometric  

generation of a functionalized enol, employing more Lewis acidic palladium sources, perhaps to 

encourage enolization and a-palladation.83 Submitting the epoxy ketone to these conditions (entry 

2, Table 2.5) provided trace amounts of the 364. Subjecting 360 to conditions derived from the 

White lab’s tandem Wacker-Desaturation cascade, in the absence of water, provided the highest 
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observed yield of 364 (entry 4, Table 2.5).84 Furthermore, the clean reaction profile and low 

reaction temperature made these conditions attractive for further optimization.   

Table 2.5. Selected entries in the optimization of the direct ketone desaturation 

 

A solvent screen indicated that DMSO was anomalous in its ability to foster productive 

reactivity, with acetonitrile being the only other solvent that provided a trace of product. By raising 

the temperature from 35 °C to 50 °C the yield increased from 30% yield (75% brsm) to 50% yield  

 (60% brsm) with a minimal decrease in the overall efficiency of the transformation. Improving 

conversion was critical as the product and starting material were difficult to separate 

chromatographically. This provided a challenge in reaction monitoring as 360 and 364 had 

identical retentions on reverse–phase HPLC and TLC. The reaction could, however, be monitored 

by NMR (Figure 2.2) suggesting that the majority of productive chemistry occurred in the first 50  

hours before non–productive decomposition became competitive. Raising the palladium catalyst 

loading, maintaining a slight excess of BQ provided improved and scalable yields of the epoxy 

enone 364 (entry 5, Table 2.5).  
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Figure 2.2 1H NMR Monitoring of the palladium-catalyzed desaturation in deuterated DMSO

 

 

2.9 ALLYLIC TRANSPOSITION  

To generate the desired allylic transposition substrate (365a, Table 2.6) the enone 364 was 

readily reduced under Luche conditions to give a separable mixture of allylic alcohols (entry 1, 

Table 2.6).85 Attempts to form the desired a-disposed 365a selectively were unsuccessful; as 

bulkier reductants provided lower yields and preferentially formed 365b (entries 2&3, Table 2.6).86 

Though NMR signals were inconclusive in the structural determination of these new products, an 

X-ray quality single crystal of 369b was recovered. Notable in the crystal structure of 369b is the 
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chair-like conformation of the tetrahydro-1,2-oxazine ring and the axial disposition of the ester 

consistent with our previous conformational hypotheses.     

Table 2.6. 1,2-reduction to generate substrates for allylic transposition studies 

 

With clean samples of both diastereomers of the allylic alcohol in hand, their reactivity 

could be evaluated in rhenium-mediated conditions for allylic transposition. Initial test reactions 

with common rhenium additives, including methyl trioxorhenium (VII) (MTO), showed that 

both 377a & 377b were quite unstable.87,88 It was only through the use of freshly prepared 

Osborn catalyst (Ph3SiOReO3), known for its high activity and attenuated Lewis acidity, that 

trace new products were observed as minor constituents of the reaction mixture. While the yields 

of isomerized material were similar for both diastereomers; discouragingly, 377a had a greater 

degree of decomposition. THF and CH2Cl2 modulated the poor reactivity of the transformation; 

yet further screens did not appear generate a more tractable yield. Although the greater stability 

of 377b to the reaction conditions were initially attractive inversion of the hindered C9 

secondary alcohol appeared challenging. Efficient rhenium-mediated allylic transpositions often 

have a strong thermodynamic bias for the desired isomer or some method of trapping the desired 

alcohol.89 While it was hypothesized that the epoxy-allylic alcohol motif found in 80 and 378a 
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would be lower in energy than 377a due to hyperconjugative effects this is not reflected in our 

experimental observations.  

Table  2.7. Allylic transposition studies on the both allylic alcohol diastereomers 

 

 

2.10 OXIDATIVE FUNCTIONALIZATION OF THE EPOXY ENONE 

 The intransigence of the C9 oxidation of 372 and the poor reactivity observed in the allylic 

transposition of 377a led to a re-evaulation of the approach toward oxidative manipulation of the 

bicyclic oxazine 364. To circumvent these challenges, the strategic installation of a functional 

handle at C9 prior to formation of the inert epoxy alkene motif would provide facile access to the 

desired fully functionalized western fragment.  

To that end, oxidation of the epoxy enone 376 was attempted. Gratifyingly, both 

dihydroxylation and epoxidation proceeded diaseteroselectively with high crude yields. 

Importantly, these compounds while isolated with minimal impurities through aqueous work-ups 

but were completely unstable to further purification via column chromatography regardless of the 

choice of chromatographic phase. 
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Scheme 2.12. Efficient oxidative modifications of the epoxy enone 

 

 

2.11 DEOXYGENATIVE	REARRANGEMENTS OF C9-OXIDIZED SUBSTRATES 

 A Wharton rearrangement of these C9–oxidized substrates would generate an olefin–

containing product at the desired oxidation level. The bis-epoxy ketone was the substrate upon 

which the lion’s share of optimization was undertaken as it provided direct access to the epoxy 

allylic alcohol motif.  

The Wharton rearrangement is an interesting reaction which is proposed to proceed through 

disparate mechanisms differentiated by either a basic or acidic additive employed to facilitate the 

reaction. The base–mediated reaction is proposed to proceed through a polar mechanism 

culminating in the protonation of a vinyl anion while acidic conditions are proposed to proceed 

through a radical mechanism with the expulsion of nitrogen and recombination of a hydrogen atom 

with a vinyl radical.90  

There are four variants of the Wharton rearrangement known in the literature. The original 

conditions used by Wharton and Bohlen were excess hydrazine hydrate and catalytic acetic acid 

in methanol.68 Later application of conditions analogous to the Wolff-Kishner reduction showed 

that heating the substrate with a hydroxide base instead of acetic acid gave higher yields when 

applied to steroidal substrates.91 For many years, little systematic development of the Wharton 

rearrangement was undertaken until Luche, of the eponymous reduction, turned his attention to the 

transformation.92 A combination of hydrazine hydrochloride and triethylamine in anhydrous 
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acetonitrile afforded significant improvements to the transposition of more sensitive substrates and 

was later applied to several effective syntheses. Finally, conditions were developed by Wiemer 

using a mixture of hydrazine hydrate and trimethyl silyl chloride in DMF. These conditions were 

found to also improve the reaction in comparison to Wharton’s original conditions in some 

substrates.93  

 There are three examples of a Wharton rearrangement on bis–epoxy ketone substrate. The 

first two examples are found in Ichihara’s synthetic studies of (±)–senepoxyde and (±)–

crotepoxide.94 In these studies, the authors used neutral hydrazine in a mixed solvent system. 

Discouragingly, they do not disclose a yield for either transformation despite reporting yields on 

the other reactions in the paper. The final example was demonstrated in the Hoye’s studies of (+)–

scyphostatin, using canonical Wharton conditions.95 The authors note that the reaction is highly 

dependent on the hydrazine stoichiometry and reaction time affording the desired products in 

variable yield (30–40%). 

 As a result of the base sensitivity of the 1,2–tetrohydroazines, conditions involving strong 

base were not pursued during reaction development on the bis-epoxy ketone 379. Instead, the 

initial focus was held on conditions that were proposed to proceed through the radical mechanism. 

Canonical Wharton conditions lead to decomposition, a trace amount of product–like substance 

was observed in the crude mixture but lacked an epoxide moiety (entry 1, Table, 2.8). Applying 

the conditions developed by Wiemer and Luche the desired product was observed, without epoxide 

opening or reduction, albeit in low yield as a mixture of constitutional isomers (entries 3&4, Table, 

2.8). Stoichiometry studies indicated that excess hydrazine had a deleterious effect on the yield of 

the desired product. 



Integrating some of the lessons from Luche’s studies with the original conditions 

developed by Wharton, we conducted a solvent and additive screen and identified benzoic acid as 

a superior catalyst to acetic acid and dried ethyl acetate as an optimal solvent. Unfortunately, these 

conditions gave the two isomeric products in a 2:1 ratio, favoring the tertiary alcohol, in a 

cumulative 34% yield. This yield, while low, is consistent with the other bis-epoxy ketone 

substrates known in the literature. Further attempts to optimize this yield were unsuccessful and 

complicated by difficulties in replicability.  

Table 2.8. Selected entries in the optimization of Wharton rearrangement of the bis-epoxy ketone 

 

The undesired tertiary allylic alcohol isomer 381, is favored in the reaction but upon 

purification on triethylamine–neutralized fluorosil the isomeric ratio shifted toward 1:1 with 

negligible deviations between NMR yield and isolated yield. This shift in the isomeric ratio was 

suggestive that a background vinylogous Payne rearrangement is operative, analogous to that 

studied by Hoye and exploited by Myers.95,96 

Possible complications of the reaction could be the competitive formation of inert azines 

via hydrazone exchange or pyrazole formation from cyclization of the intermediate hydrazone 
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followed by dehydrative aromatization.97–99 Azine formation can be accelerated by under acidic 

conditions; however, if the acid catalyst is removed from the reaction of 367 the yield is 

unperturbed while the reaction time for full conversion of the starting material is elongated. In an 

alternative approach to alleviate possible deleterious side reactivity, The use of protected 

hydrazones were evaluated. Clean conversion to the desired silylated and carbamate capped 

hydrazones was observed by TLC and LCMS; however, when the hydrazone was unmasked no 

productive reactivity was observed. These results were confusing but given the sensitivity of the 

initial reaction it is possible that the added deprotection reagents causes critical interference with 

the productive reaction pathway. 

Scheme 2.12. Wharton transposition on dihydroxylated substrate 

 

 In contrast to the bis–epoxy ketone applying partially optimized conditions to the epoxy 

ketone diol 380 provided the desired allylic triol 383 in ~85% by quantitative 1H NMR. This could 

be indicative that the product of the bis-epoxide Wharton rearrangement is decomposing during 

the reaction. The resultant allylic epoxide is an excellent soft electrophile and hydrazine and 

hydrazones have soft nucleophilic character as a result of the alpha effect, similar to 

hydroxylamines.100  

Several alternatives to the Wharton rearrangement were interrogated. Initial reduction of 

379 formed the bis-epoxy alcohol 384 which was then exposed to modified Mitsonobu conditions 

with a sulfonyl hydrazide developed by Myers and Movassaghi, however 384 was unreactive to 

these conditions.101 Radical deoxygenation of bis-epoxy alcohols has found effective application 
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in the synthesis of tripolide analogues and hindered polycylic substrates through the formation of 

an intermediate xanthate.102 While this strategy would increase the step count it could circumvent 

the sensitivity of the 382.103 In contrast to thioimidazolides and thiocarbonates in the literature, the 

intermediates generated from the 384 for radical decomposition were unstable to mild heating, 

work-up conditions, or direct column chromatography. However, if generated using DMAP to 

facilitate thioacylation the crude material could be cleanly converted to the desired activated 

substrates in situ (385 & 386, Scheme 2.13).  

Scheme 2.13. Studies on a photoredox catalyzed radical deoxygenation 

 

 In the literature, these activated thiocarbonyl compounds are typically reacted under 

heating in the presence of the AIBN and Bu3SnH; however, the thermal instability of the in situ 

generated substrate prohibited the effective use of these conditions. To circumvent this challenge, 
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classical O2/BEt3 radical initiation conditions were initially engaged instead. Disappointingly, no 

product was observed in the crude reaction.104 A photoredox–catalyzed reduction of thiocarbonyl 

derivatives had been disclosed, appreciating the ability of these conditions to facilitate reactivity 

in challenging substrates this tactic was applied to the reduction of 385 and 386.105 The 

thiocarbonate 385 merely decomposed unproductively (Scheme 2.12a) but the corresponding 

thioimidazolide 386 provided a low yield of the epoxy allylic alcohol exclusively as the desired 

isomer 382 (Scheme 2.12b). Despite this encouraging selectivity, variation in photocatalyst, 

hydrogen donor, and amine additive did not raise the yield of the reaction. To further probe the 

nature of the activating group on the reduction, a fluorinated electron-poor benzoate was generated 

however no desired product was observed.106 

 

2.12 REALIZATION OF THE SYNTHESIS OF THE WESTERN FRAGMENT 

 Inspired by apparent background vinylogous Payne rearrangements exchanging 381 and 

382 during purification of the bis-epoxy ketone Wharton transposition, the mixture of the isomeric 

epoxy allylic alcohols was exposed to TBSOTf/NEt3.96 To our delight, the secondary silyl ether 

387 as the exclusive product. Initially, the yield was quite low. Decreasing the temperature of the 

reaction and quenching excess silyl triflate with cold iso-propanol improved the reaction on a small 

scale. These results were challenging to maintain on scale, providing yields between 30–40%. 

When 381 is isolated and exposed to the reaction conditions, the yield does not improve suggesting 

an overall instability to the reaction conditions. Substitution of THF as a solvent generates 387 

while retaining 381 in the reaction mixture. Upon purification on neutralized fluorosil, recovered 

starting material is returned as a 1:1 mixture of 381 and 382 further substantiating the presence of 

the rarely observed vinylogous Payne rearrangement.  



Scheme 2.14. Final oxidative modifications to form the epoxy allylic alcohol  

 

As a result of the low yields observed in the conversion of 379 to 387  an alternative route 

proceeding through triol 383 was envisaged improve efficiency by functionalizing the C8 allylic 

alcohol as a leaving group and performing an SN2’ displacement to generate 382. Initial studies to 

selectively mesylate the C8 allylic alcohol were met with decomposition; however, dibutyl tin 

oxide was able to facilitate selective formation the allylic tosylate. Treating this intermediate with 

TBSOTf resulted in partial conversion to the silyl ether. Yet, despite the Lewis acidic conditions 

no epoxide formation was observed. Currently, the triol intermediate has not been successfully 

advanced to the desired motif. 

With 376 now successfully synthesized, a variety of deprotection conditions were 

attempted to cleave the N-benzoyl group. The transformation was intractable until use of 

Schwartz’s reagent was able to generate the free tetrahydro-1,2-oxazine 388 in a low yield (entry 
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1, Scheme 2.15).107 Careful control of the stoichiometry of the reagent and study of the work-up 

conditions substantially improved the yield (entry 2, Scheme 2.15). With 388 in hand, the peptide 

coupling was now ready to be studied. Thermal instability and base sensitivity of the substrate 

were retained in this new substrate; any attempt to saponify the ester was met with 

decomposition.108,109 As a result, we were limited to coupling an eastern fragment amino acid with 

the oxazine nitrogen followed by cyclization to form the DKP. 

Scheme 2.15. N-deprotection of the fully elaborated western fragment 

 

 

2.13 SYNTHESIS OF THE EASTERN FRAGMENT 

With the fully elaborated Western fragment in hand, the eastern fragment needed to be 

synthesized. To that end a palladium catalyzed Negishi coupling between a protected iodoserine 

derivative 380 and an electron rich aryl iodide 381 provided the non-canonical Boc-protected 

amino ester 382.11 It is notable that the use of a coordinating protecting group (MOM) in place of 

a methyl ortho to the iodide dramatically improved the yield of the coupling. Saponification of the 

methyl ester proceeds unremarkably and affords good yield to provide a substrate for amide 

coupling. Foreseeing that the orthogonal and facile cleavage of the phenol and amine protecting 

groups may be necessary, Boc-protected 394b was expediently converted to Fmoc–protected 

derivative 396 in a three–step sequence now with a silyl protecting that could be unveiled in a final 

deprotection step after thiolation.   
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Scheme 2.16. Synthesis of unnatural phenylalanine derivatives  

 

 

2.14 ATTEMPTED COUPLING OF EASTERN AND WESTERN FRAGMENTS 

While the peptide coupling substituted of isoxazolidine substrates is known using standard 

coupling reagents; the newly deprotected compound 389 was completely unreactive to any peptide 

coupling conditions. An exhaustive screen of reagents specifically designed for hindered or non-

nucleophilic amines (eg. BEP, HATU, TFFH) generated no desired product.110 To further evaluate 

the reactivity of tetrahydro-1,2-oxazines in coupling reaction model compounds 328 and 397 were 

also screened under a variety of peptide coupling conditions yet again a similar lack of reactivity 

was observed (Scheme 2.17). 

Exposing the deprotected material to pivaloyl chloride resulted in clean formation of an 

acylated acylated. Encouraged by this result, further study showed that Fmoc-Phe-Cl was also able 

to form a coupled product 399 (Scheme 2.18).111 Unfortunately, attempts couple the acid chloride 

Scheme 2.17. Unsuccessful bicylic tetrahydro-1,2-oxazine substrates in amide coupling  
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derived from the polyoxygenated eastern fragment 396 failed possibly due instability of the 

intermediate acid chloride under the conditions or a lowered reaction rate due to increased bulk. 

While further work may have resolved these incompatibilities, studies on the phenylalanine 

coupled 399 show that, despite facile Fmoc-deprotection, the resulting amine 400 would not 

undergo intramolecular cyclize to form the DKP 401. Attempts to drive the reaction thermally or 

the addition of stronger bases lead to decomposition.  

Scheme 2.18. Amide coupling of a model amino acid chloride with the Western fragment 

 

2.15 CONCLUSION OF STUDIES TOWARD GLIOVIRIN 

Cyclization to form DKPs can occur under mild conditions through ester saponification 

and the use of a peptide coupling reagent (See Chapter 1), direct DKP formation typically requires 

strong base or heating.112 As the saponification of the ethyl ester on the oxazine fragment is 
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untenable and the intermediate 400 demonstrates instability to base and mild heating it appears 

clear that this late stage DKP formation–sulfenylation strategy is not appropriate for the synthesis 

of gliovirin (80). To successfully generate this natural product, it behooves the synthetic chemist 

to reassess the synthetic route. Early stage amide coupling could generate a more robust substrate 

for DKP formation, however the transformations that have been successfully implemented in the 

N–benzoyl system in this work would require substantial re-optimization and the protecting group 

strategy would be non-trivial. Furthermore, early installation of the DKP would planarize the C3 

substituent upon cyclization which would destroy the key conformational element which imposes 

diastereocontrol during the oxidative modifications required to establish the epoxy allylic alcohol 

motif. Replacement of the ethyl group at the ester with an orthogonally cleavable subsitutent would 

be optimal however this would require further development as classic examples, including allyl 

and TMS-ethyl, would undergo undesirable cross reactivity in the current route. 

 

2.16 STUDIES TOWARD THE TRICHODERMAMIDES 

 With the deprotected oxazine 389 in hand, one could imagine a simple conversion to the 

trichodermamide family; indeed, upon exposure to lead tetraacetate the 1,2-dihydrooxazine 402 is 

formed cleanly (Scheme 2.18). With this compound in hand, epoxide opening provided the allylic 

chlorohydrin 403 to generate the western fragement of trichodermamide B. Attempts to generate 

trans-diol 394 only generated in trace yield.113 Disappointingly, attempts to saponify 392 were 

unsuccessful, prohibiting interrogation of the penultimate amide coupling to synthesize 

trichodermamide B. With these promising results in hand perhaps this synthetic route can lead to 

an enantioselective synthesis of the trichodermamides. However, the difficulty in handling these  



intermediates and the inefficient Wharton–silylation sequence provide challenges toward the 

successful realization of that end.   

 

Scheme 2.18. Synthetic studies toward the trichodermamides  

 

 

 

 

 

 

 

 

 

 

 

2.17 EXPERIMENTAL SECTION 

2.17.1 MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed under a nitrogen atmosphere using 
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freshly dried solvents. Tetrahydrofuran (THF), methylene chloride CH2Cl2), acetonitrile (MeCN), 

dimethylformamide (DMF), benzene (PhH), diethyl ether (Et2O) and toluene (PhMe) were dried 

by passing through activated alumina columns. Unless otherwise stated, chemicals and reagents 

were used as received. Triethylamine (Et3N) was distilled over calcium hydride prior to use. All 

reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-

coated plates (0.25 mm) and were visualized by UV, p-anisaldehyde, vanillian, CAM or KMnO4 

staining. Flash column chromatography was performed either as described by Still et al.31 using 

silica gel (partical size 0.032-0.063) purchased from Silicycle. Optical rotations were measured on 

a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm. 1H and 13C NMR spectra 

were recorded on a Varian 400 MR (at 400 MHz and 101 MHz, respectively), or a Varian Inova 

500 (at 500 MHz and 126 MHz, respectively), and are reported relative to internal CHCl3 (1H, d = 

7.26), or DMSO (1H, d	= 2.50), and CDCl3 (13C, d = 77.0), or DMSO (13C, d =40.0). Data for 1H 

NMR spectra are reported as follows: chemical shift (d	ppm) (multiplicity, coupling constant (Hz), 

integration). Multiplicity and qualifier abbreviations are as follows: s =singlet, d = doublet, t = 

triplet, q = quartet, m = multiplet, br = broad, app = apparent. IR spectra were recorded on a 

Thermo Fisher Nicolet iS5 FTIR spectrometer and are reported in frequency of absorption (cm.–

1). HRMS were acquired using an Agilent 6200 Series TOF with an Agilent G1978A Multimode 

source in electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), or 

mixed (MM) ionization mode. Analytical chiral HPLC was performed with an Agilent 1100 Series 

HPLC utilizing Chiralpak AD or Chiralcel OD-H columns (4.6 mm x 25 S7 cm) obtained from 

Daicel Chemical Industries, Ltd with visualization at 254 nm. Low-temperature X-ray diffraction 

data (φ-and ω-scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer 

coupled to a PHOTON 100 CMOS detector with Cu-Kα radiation (λ = 1.54178 Å) from an IµS 



micro-source. 

 

2.17.3 PREPERATIVE PROCEDURES AND SPECTROSCOPIC DATA  

 

Cycloaddition of in situ–generated nitroso alkene and 1,3–cyclohexadiene 

 

Stir 1,3-cyclohexadiene (4.2g, 5.0 mL, 52.5 mmol, 5 equiv) and anhydrous NaHCO3 (6.121g, 57.8 

mmol, 5.5 equiv) in CH2Cl2 (40 mL) at 45 °C. Add a solution of ethyl bromopyruvate 2-oxime 

(2.204 g, 10.5 mmol, 1 equiv) in CH2Cl2 (40 mL) at a rate of 2 mL•h-1; after addition is complete 

stir overnight at 45 °C. Upon completion of the reaction, filter off salts and wash salts with CH2Cl2. 

Dry over Na2SO4, filter and concentrate in vacuo to yield crude product. Purify the by flash 

chromatography (silica, 4% EtOAc/CHCl3) to give dihydro-1,2-oxazine XX as a yellow oil (1.10g, 

5.26 mmol, 50% yield) 

1H NMR (400 MHz, CDCl3) δ 6.02 (dt, J = 9.7, 3.7 Hz, 1H), 5.85 (ddt, J = 9.9, 4.5, 2.3 Hz, 1H), 

4.37 – 4.28 (m, 2H), 4.25 (d, J = 3.8 Hz, 1H), 2.61 (dd, J = 19.6, 7.8 Hz, 1H), 2.29 (dd, J = 19.6, 

3.2 Hz, 1H), 2.25 – 2.06 (m, 3H), 1.62 (td, J = 7.8, 7.4, 5.3 Hz, 2H), 1.38 – 1.31 (m, 3H).  
13C NMR (101 MHz, CDCl3) δ 163.79, 149.09, 134.16, 123.97, 71.02, 61.84, 26.97, 25.07, 24.53, 

23.57, 14.13.  

FTIR (AT-IR) 2924.94, 2359.12, 2340.2, 1713.03, 1597.78, 1422.35, 1373.19, 1345.19, 1292.61, 

1261.43, 1225.74, 1172.33, 1152.55, 1109.52, 1078.81, 1037.42, 1004.62, 950.38, 913.42, 885.09, 

853.47, 826.41, 748.95, 699.46, 667.98, 631.01 cm-1 
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HRMS (TOF, ES+) calc’d for C11H15NO3 [M+H]+ 210.1125, found 210.1123 (ppm=0.81) 

 

Diastereoselective 1,2-reduction of bicyclic dihydro-1,2-oxazine 

 

To a frozen solution of dihydro-1,2-oxazine (1.09 g, 5.21 mmol, 1.0 equiv) in AcOH (40 mL) in 

an ice bath add NaCNBH3 (687 mg, 10.94 mmol, 2.1 equiv) as a single portion. Stir to ambient 

temperature for 18h. Neutralize crude mixture 6M NaOH(aq) and adjust with pH=7 phosphate 

buffer. Extract reaction twice with EtOAc. Dry organic layer over Na2SO4, filter and concentrate 

in vacuo to yield crude product. Purification by flash chromatography (silica deactivated with 

NEt3, 5%EtOAc/50%CHCl3/Hexanes) provided a 2.3:1 diastereomeric mixture of tetrahydro-1,2-

oxazine (900 mg, 4.26 mmol, 82% yield) as a pale oil. A second separation of the mixture by flash 

chromatography (silica, 5%NEt3/5%EtOAc/50%CHCl3/Hexanes) provided a sample pure syn-

product (109 mg, 0.516 mmol) along with mixed fractions. 

1H NMR (500 MHz, CDCl3) δ 6.01 (dddt, J = 9.8, 4.8, 2.4, 0.9 Hz, 1H), 5.74 (dddd, J = 9.4, 4.4, 

2.5, 1.7 Hz, 1H), 5.65 (s, 1H), 4.19 (qd, J = 7.2, 1.3 Hz, 2H), 4.12 (s, 1H), 3.93 (dd, J = 10.9, 3.5 

Hz, 1H), 2.22 – 2.12 (m, 1H), 2.10 – 2.01 (m, 2H), 1.97 (dt, J = 13.5, 3.2 Hz, 1H), 1.90 (dt, J = 

10.1, 6.0 Hz, 2H), 1.53 – 1.44 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 171.29, 134.18, 124.55, 74.14, 61.26, 56.37, 31.70, 31.55, 25.44, 

22.62, 14.29. 
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FTIR (AT-IR)	 3295.02, 3028.05, 2923.56, 2358.40, 1732.28, 1431.63, 1368.92, 1306.19, 

1261.56, 1203.94, 1179.62, 1134.70, 1098.47, 1066.71, 1022.02, 1005.65, 920.47, 879.26, 846.60, 

731.82, 685.99, 667.68, 623.57 cm-1 

HRMS (TOF, ES+) calc’d for C11H17NO3 [M+H]+ 212.1281, found 212.1291 (ppm=–4.62). 

 

Epoxidation of bicyclic dihydro-1,2-oxazine 

 

To a solution of dihydro-1,2-oxazine (10.9 mg 0.0521 mmol) in CH2Cl2 (0.2 mL) add a solution 

of freshly prepared DMDO114 (10 mL) stir at ambient temperature in air for 2h. Concentrate 

reaction mixture in vacuo to yield crude product. Purify the by flash chromatography (silica, 15% 

EtOAc/CHCl3) to give dihydro-1,2-oxazine as a clear oil (7.0 mg, 0.0311 mmol, 60% yield)  

1H NMR (600 MHz, CDCl3) δ 4.33 (qd, J = 7.1, 3.1 Hz, 2H), 4.28 (s, 1H), 3.41 (t, J = 3.0 Hz, 

1H), 3.26 (t, J = 4.3 Hz, 0H), 2.52 (dd, J = 19.5, 7.6 Hz, 0H), 2.27 (dd, J = 19.7, 2.1 Hz, 1H), 2.17 

– 2.10 (m, 1H), 2.08 – 2.02 (m, 2H), 2.00 – 1.89 (m, 1H), 1.37 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 163.58, 149.69, 72.49, 62.21, 52.46, 52.00, 25.97, 23.66, 22.23, 

21.15, 14.27. 

FTIR (AT-IR)	 2984.93, 2935.69, 1714.23, 1599.17, 1442.07, 1425.20, 1375.31, 1345.17, 

1291.72, 1264.12, 1229.17, 1172.76, 1120.80, 1105.88, 1070.87, 1037.02, 1006.52, 965.14, 

930.32, 861.13, 832.18, 810.22, 780.45, 746.53, 632.12 cm-1 

HRMS (TOF, ES+) calc’d for C11H15NO4 [M+H]+ 226.1074, found 226.1074 (ppm=–0.07). 
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Formation of propargylic triflate 

 

Stir Cu(MeCN)4ClO4 (205 mg, 0.626 mmol, 4 mol %) and R-T-BINAP (513 mg, 0.756 mmol, 5 

mol %) at ambient temperature for 30 minutes in Et2O (62.5 mL) and then chill to –30 °C. Add 

allenyl stannane (4.00 mL, 5.00g, 15.19 mmol, 1.0 equiv) and freshly distilled ethyl glyoxylate in 

toluene (13.51 mL, 68.18 mmol, 4.5 equiv). Stir reaction for 48h, then add 10% KF(aq) (60 mL) 

separate organic phase. The aqueous phase was washed with diethyl ether. Dry the combined 

organics over Na2SO4 and concentrate partially before flushing through a silica plug (50% Et2O/ 

pentanes). Concentrate the resulting solution partially to yield a solution of the crude intermediate 

alcohol. Stir the solution at 0 °C, add 2,6-lutidine (2.64 mL, 22.73 mmol, 1.5 equiv) and triflic 

anhydride (3.57mL, 21.21 mmol, 1.4 equiv). Allow reaction to warm to ambient temperature and 

continue stirring for 10h. Filter the crude reaction mixture through celite and wash with DI H2O 

(100 mL). Dry the organic over Na2SO4, filter and concentrate to yield a red oil. Purify by flash 

chromatography (silica, 15%EtOAc/Hexanes) to provide 340 (1.684 g, 6.14 mmol, 41% yield) as 

a clear oil. 

1H NMR (400 MHz, CDCl3) δ 5.19 (dd, J = 6.8, 5.0 Hz, 1H), 4.43 – 4.24 (m, 2H), 3.03 – 2.84 (m, 

2H), 2.16 (t, J = 2.7 Hz, 1H), 1.33 (td, J = 7.2, 1.0 Hz, 3H). 

13C NMR (101 MHz, CDCl3) d 165.61, 118.55 (q, J = 319.5 Hz), 80.68, 75.66, 72.87, 63.36, 22.97, 

14.06.  
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FTIR (AT-IR)	 3302.74, 2988.13, 2359.29, 1751.07, 1417.39, 1375.39, 1349.38, 1282.85, 

1202.33, 1139.73, 1024.07, 998.37, 960.68, 920.94, 855.24, 793.29, 752.6, 735.62, 610.26 cm-1 

HRMS (TOF, ES+) calc’d for C8H9F3O5S [M+NH4]+ 292.0461, found 292.0459 (ppm=0.70) 

 

Nucleophilic displacement of triflate with O-benzyl hydroxylamine  

 

To a solution of triflate 331 (300 mg, 1.09mmol) in CH2Cl2 (24 mL) was added 2,6-lutidine 

(126.8 µL, 1.09 mmol). Cool solution was to 0 °C and add benzyloxylamine (256 µL,  2.18 mmol). 

Stir solution overnight to ambient temperature. Cool once again to 0 °C and add both Hunig’s base 

(572 µL, 3.27mmol) and acetyl chloride (234 µL, 3.27 mmol). Stir an additional 12h then quench 

with dilute citric acid and extract with CH2Cl2. Dry organic phase over Na2SO4, filter, and 

concentrate. Purify by flash chromatography (silica, 3%NEt3/15%EtOAc/Hexanes) to provide 341 

as a clear oil (89.0 mg, 0.308 mmol, 28% yield)  

1H NMR (400 MHz, CDCl3) δ 5.19 (dd, J = 6.8, 5.0 Hz, 1H), 4.43 – 4.24 (m, 2H), 3.03 – 2.84 

(m, 2H), 2.16 (t, J = 2.7 Hz, 1H), 1.33 (td, J = 7.2, 1.0 Hz, 3H).\ 

13C NMR (126 MHz, CDCl3) d ) δ 175.50, 168.70, 134.59, 129.28, 129.03, 128.79, 80.39, 78.45, 

71.08, 62.01, 60.67, 29.80, 20.89, 19.15, 14.21. 

FTIR (AT-IR) 3287.62, 2931.45, 2359.45, 2340.27, 1738.45, 1679.1, 1454.99, 1370.69, 1262.61, 

1228.39, 1190.09, 1081.39, 1019.76, 912.28, 845.00, 795.48, 755.58, 698.22, 667.93 cm–1 

HRMS (TOF, MM) calc’d for C16H19NO4 [M+H]+ 290.1387, found 290.1390 (ppm=0.69) 
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Formation of protected rac-N-hydroxydihydrophenylalanine 

 

To a solution of 1,5-cyclooctadiene (74 µL, 0.603 mmol) in CH2Cl2 (1.1 mL) was added 

Grubbs II (4.2mg, 0.005 mmol). Stir two minutes. Attach reflux condenser and bring solution to 

40 °C. Slow addition of alkyne (19.4 mg, 0.0671 mmol) over 1.5h. Stir addition 16h. Incomplete 

conversion observed. Added additional Grubbs II (4.2 mg, 0.005 mmol). Stir 14h. Added 

additional Grubbs II (12.6 mg, 0.015 mmol) and 1,5-cyclooctadiene (74 µL, 0.603 mmol). Stir 16h 

at 40 °C. Allow to cool to room temperature. Concentrate and titurate three times with ice-cold 

methanol. Filter methanol solution through celite. Purification by flash chromatography (silica, 

20%EtOAc/Hexanes) provided 342 as a clear oil (4.6 mg, 0.0134mmol, 20% yield)  

1H NMR (400 MHz, CDCl3) δ 7.37 (s, 5H), 5.91 – 5.79 (m, 2H), 5.68 – 5.55 (m, 1H), 4.97 (d, J 

= 10.4 Hz, 2H), 4.86 (d, J = 10.5 Hz, 1H), 4.20 (qd, J = 7.1, 2.1 Hz, 2H), 2.75 (dd, J = 7.6, 1.4 Hz, 

2H), 2.15 – 2.04 (m, 7H), 1.27 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 174.55, 170.27, 134.78, 131.52, 128.95, 128.76, 128.63, 127.43, 

126.51, 123.62, 77.89, 61.52, 60.70, 34.17, 22.40, 22.15, 20.80, 14.17. 

FTIR (AT-IR) 3031.57, 2929.89, 2871.95, 2822.06, 2361.24, 2340.37, 1738.15, 1677.73, 

1497.43, 1454.30, 1425.97, 1368.64, 1293.30, 1265.01, 1213.72, 1184.55, 1087.66, 1028.46, 

971.50, 911.10, 845.33, 807.08, 735.32, 697.43, 667.87 cm–1 

HRMS (TOF, MM) calc’d for C20H25NO4 [M+H]+ 344.1856, found 344.1866 (ppm=2.91) 

 

Formation of ethyl ester oxime 

CO2Et

NAc
BnO

341

CO2Et

AcN
OBn

1,5-cod (18 equiv)
Grubbs II (37.5 mol %)

CH2Cl2, 40°C

(20% yield) 342



 

Charge a round bottom flask with glyoxylic acid monohydrate (20.0 g, 217 mmol 1.00 equiv), 

hydroxylamine hydrochloride (15.3 g, 220 mmol, 1.01 equiv), pTSA•H2O (3.12 g, 16 mmol, 7.6 

mol%) and ethanol (260 mL). Fit with a Socklett extractor charged with activated 4Å molecular 

sieves and a reflux condenser. Heat the mixture at 120°C for 9 hours. Cool reaction to 

room temperature. Concentrate in vacuo then dilute oil in Et2O (400 mL) and NaHCO3(sat) (240 

mL). Separate organic layer and wash organics with NH4Cl(sat) (100mL) followed by pH=7 buffer 

(100 mL). Test aqueous layer for product and re-extract with Et2O(150 mL), if necessary. Wash 

combined organics with brine(100 mL). Dry over Na2SO4, filter, and concentrate in vacuo to give 

clean SI2-3 (20.9 g, 174 mmol, 82% yield) as a pale yellow oil. Physical and spectral properties 

were consistent with literature values.115  

 

Silylation of ethyl ester oxime 

 

Combine S2 (31.18g, 266 mmol), imidazole(55.76g, 819 mmol) and TBSCl (61.80g, 410 mmol) 

in DMF (). Stir at ambient temperature for 72h. Pour mixture into 6:1 DI:brine (2.1 L). Extract 

with Et2O (1.5L). Wash organic layer with brine(300 mL). Dry over Na2SO4 , filter and 

concentrate in vacuo to yield crude product. Purify by flash chromatography (silica, 3.5-4.5% 

Et2O/Hexanes) to provide 343 (47.8 g, 207 mmol, 78% yield) as a clear oil. 

CO2Et

N

H

HO

NH2OH•HCl (1.01 equiv)
     pTSA (7.6 mol %),

 EtOH, 120 °C

CO2EtHO

(82% yield)

OH

SI2-3SI2-2
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CO2Et

N

H

TBSO

TBSCl (1.5 equiv)
imidazole (3.1 equiv)

(78% yield)

CO2Et

N

H

HO
DMF

SI2-3



1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 1.5 Hz, 1H), 4.27 (qd, J = 7.1, 1.4 Hz, 2H), 1.31 (td, 

J = 7.1, 1.5 Hz, 3H), 0.92 (d, J = 1.9 Hz, 9H), 0.21 (d, J = 1.7 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 162.41, 146.20, 61.42, 25.91, 18.18, 14.22, -5.23. 

FTIR (AT-IR)	 2931.13, 2858.75, 1748.31, 1724.71, 1596.54, 1472.39, 1370.02, 1315.12, 

1258.21, 1189.18, 1034.56, 967.56, 835.8, 785.55, 690.19, 667.95 cm–1 

HRMS (TOF, ES+) calc’d for C20H21NO3Si [M+H]+ 232.1363, found 232.1365 (ppm=-0.66) 

 

Formation of iso–propyl ester siloxime 

 

Charge a round bottom flask with glyoxylic acid monohydrate (10.00 g, 109 mmol 1.00 equiv), 

hydroxylamine hydrochloride (7.65 g, 110 mmol, 1.01 equiv), pTSA•H2O (1.56 g, 8.2 mmol, 7.5 

mol %), iso-propanol (108 mL), and benzene (12 mL). Fit with a Dean-Stark trap. Stir the mixture 

at 80°C until mixture is homogeneous. Raise reaction temperature to 115 °C and stir at reflux 19h.  

Cool reaction to room temperature. Concentrate in vacuo then dilute oil in Et2O (200 mL) and 

NaHCO3(sat) (120 mL). Separate organic layer and wash organics with NH4Cl(sat) (50mL) followed 

by pH=7 buffer (50 mL) and brine (50 mL). Dry over Na2SO4, filter, and concentrate in vacuo to 

give clean oxime (12.1 g, 92.2 mmol) as a white solid. Dissolve oxime in DMF (140 mL), cool to 

0 °C. Add TBSCl (20.9g, 138.5 mmol, 1.5 equiv) and imidazole (19.5g, 286.1 mmol, 3.1 equiv). 

Allow reaction to stir at ambient temperature for 24h. Dilute with 6:1 DI H2O:brine (740 mL). 

Extract crude mixture with Et2O (525 mL) and wash organic layer with brine (100 mL). Dry over 

H CO2i-Pr

N
TBSO

HO CO2H

OH

1. NH2OH•HCl
    (1.01 equiv),
    pTSA (7.5 mol%),
    i-PrOH:PhH, Δ
2. TBSCl (1.5 equiv),
    imidazole
    (3.1 equiv),
    DMF
(75% yield, 2 steps)

SI2-2 SI2-4



Na2SO4, filter and concentrate to yield crude product. Purification by flash chromatography (silica, 

5→7%EtOAc/Hexanes) provided SI2-4 as a clear oil (20.1g, 81.9 mmol, 75% yield over 2 steps). 

1H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 1.4 Hz, 1H), 5.09 (pd, J = 6.3, 1.2 Hz, 1H), 1.24 (dd, 

J = 6.3, 1.4 Hz, 6H), 0.97 – 0.82 (m, 9H), 0.17 (t, J = 1.5 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 161.75, 146.38, 69.02, 25.85, 21.72, 18.07, -5.32. 

FTIR (AT-IR) 2931.17, 2858.84, 1744.61, 1719.90, 1596.43, 1472.16, 1362.77, 1311.40, 

1252.73, 1193.62, 1145.34, 1107.77, 1003.84, 967.44, 836.79, 785.92, 686.88 cm–1 

HRMS (TOF, ES+) calc’d for C21H23NO3Si [M+H]+ 246.1520, found 246.1523 (ppm=-1.23) 

 

Organozinc 1,2-addition into glyoxalate-derived oxime 

 

Suspend dry Zn0 (14.13 g, 224.74 mmol, 2.6 equiv) in THF (400 mL). Add 1,2-dibromoethane 

(0.37 mL, 812 mg, 4.32 mmol, 5 mol %) and TMSCl (0.55 mL, 469 mg, 4.32 mmol, 5 mol %), 

stir at room temperature for 45 min. Add a solution of propargyl bromide, 80%wt in PhMe, (0.20 

mL, 1.80 mmol, 2 mol %). Heat gently until initiation is observed. Add the remainder of propargyl 

bromide, 80 wt% in PhMe, (23.9 mL, 214.57 mmol, 2.58 equiv) dropwise. With addition complete, 

stir 30 min at ambient temperature vigorously, until zinc is no longer consumed. Cannulate fresh 

organozinc into a solution of ethyl 2-(((t-butyldimethylsilyl)oxy)imino)acetate (20.00 g, 86.44 

mmol, 1.0 equiv) in THF (400 mL) chilled to 0 °C, over a three hour period. Upon disappearance 

of starting material quench with NaHCO3(sat) (200 mL). Filter off salts through a sand pad. Wash 

CO2EtH

N
TBSO

CO2Et

NH
TBSO

343 344

(2.5 equiv)
Zn0 (2.6 equiv)

Br

C2H2Br2 (5 mol%)
TMSCl (5 mol%)

THF, rt
(64% yield)

+
CO2Et•

NH
TBSO

SI2-5 (trace)



salts Et2O(3×200 mL). Wash combined organics with 1:1 DI H2O:brine then brine. Dry over 

Na2SO4, filter and concentrate in vacuo to yield crude product. Purification by flash 

chromatography (silica 500g, 5% EtOAc/Hexanes) yields XX (15.1g, 55.6 mmol, 64% yield) as a 

pale yellow oil. Trace allene S1 was also isolated for characterization. 

1H NMR (400 MHz, CDCl3) δ 5.60 (d, J = 9.5 Hz, 1H), 4.24 (q, J = 7.1 Hz, 

2H), 3.79 – 3.46 (m, 1H), 2.57 (dt, J = 6.4, 2.8 Hz, 2H), 2.02 (t, J = 2.7 Hz, 

1H), 1.29 (t, J = 7.1 Hz, 3H), 0.89 (s, 9H), 0.11 (d, J = 1.2 Hz, 6H). 
13C NMR (101 MHz, CDCl3) δ 171.77, 79.37, 70.86, 63.89, 61.25, 26.21, 19.37, 18.01, 14.34, -

5.43, -5.49. 

FTIR (AT-IR)	 3313.49, 2929.08, 2856.83, 2361.12, 2340.34, 1738.61, 1472.12, 1370.05, 

1342.99, 1248.41, 1215.41, 1186.14, 1054.34, 904.00, 834.61, 780.54, 667.96 cm–1 

HRMS (TOF, ES+) calc’d for C13H26NO3 [M+H]+ 272.1676, found 272.1673(ppm=-1.28) 

[a]D
23 –18.0° (c = 1.0, CHCl3).  

1H NMR (400 MHz, CDCl3) δ 5.48 (d, J = 10.6 Hz, 1H), 5.12 (q, J = 6.8 Hz, 

1H), 4.80 (dd, J = 6.7, 2.5 Hz, 2H), 4.18 (qd, J = 7.1, 0.9 Hz, 2H), 3.98 (ddt, J 

= 9.8, 7.0, 2.3 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H), 0.84 (d, J = 1.1 Hz, 9H), 0.05 

(d, J = 1.0 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 209.30, 171.64, 85.51, 77.47, 64.67, 64.64, 61.08, 26.19, 26.15, 

26.13, 17.96, 14.34, 14.30, -5.49, -5.53, -5.57. 

 FTIR (AT-IR) 2929.12, 2856.96, 1957.66, 1741.62, 1472.28, 1390.00, 1368.67, 1301.88, 

1247.48, 1183.61, 1043.73, 832.33, 779.68, 666.29 cm-1 

HRMS (TOF, ES+) calc’d for C11H25NO3Si [M+H]+ 272.1676, found 272.1686 (ppm=3.67) 

Organozinc 1,2-addition into glyoxalate-derived oxime 

CO2Et•
NH

TBSO

SI2-5 (trace)

CO2Et

NH
TBSO

344



 

Suspend Zn0 (3.47 g, 52.99 mmol, 2.6 equiv) in THF (100 mL). Add TMSCl (0.13 mL, 111 mg, 

1.02 mmol, 5 mol %) followed by 1,2-dibromoethane (0.9 mL, 192 mg, 1.02 mmol, 5 mol %) and 

stir at ambient temperature for 10 minutes. Add propargyl bromide, 80 wt% in PhMe, (0.2 mL, 

1.80 mmol, 9 mol %) and heat mixture slightly to initiate organozinc formation. Add the remainder 

of propargyl bromide, 80 wt% in PhMe, (5.47 mL, 49.11 mmol, 2.41 equiv) dropwise. After 

addition is complete stir an additional 25 minutes. Chill a solution of siloxime (5.00g, 20.38 mmol, 

1.0 equiv) in THF (100 mL) to 0 °C. Cannulate the previously prepared organozinc solution 

dropwise over one hour. Quench reaction with NaHCO3(aq) (47 mL). Filter off precipitate through 

sand. Rinse retained salts with Et2O (3×50 mL). Wash combined organic layer with NaHCO3(aq) 

(3×150 mL) then brine (50 mL). Dry organic phase over Na2SO4, filter and concentrate. Purify by 

flash chromatography (silica, 5	→20% Et2O/Hexanes) to yield SI2-6 (4.49g, 15.7 mmol, 77% 

yield) as a clear oil. 

1H NMR (400 MHz, CDCl3) δ 5.60 (s, 1H), 5.12 (p, J = 6.3 Hz, 1H), 3.59 (d, J = 6.4 Hz, 1H), 

2.72 – 2.38 (m, 2H), 2.01 (t, J = 2.7 Hz, 1H), 1.27 (dd, J = 6.3, 2.7 Hz, 6H), 0.88 (s, 9H), 0.11 (d, 

J = 0.6 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 171.39, 79.44, 70.76, 68.86, 64.01, 26.20, 21.90, 19.32, 17.98,       

-5.42, -5.51. 

FTIR (AT-IR)	 3314.32, 2956.64, 2929.43, 2885.87, 2857.05, 1732.83, 1472.12, 1387.98, 

1374.66, 1361.80, 1325.04, 1248.31, 1221.75, 1190.63, 1145.40, 1106.94, 1054.85, 1006.08, 

968.73, 890.80, 833.48, 780.20, 665.95, 642.72 cm–1 

CO2i-Pr

NH
TBSO

H CO2i-Pr

N
TBSO

propargyl bromide
(2.5 equiv)

Zn0 (2.6 equiv)
C2H4Br2 (5 mol%)
TMSCl (5 mol%)
THF, 0→10 °C

(77% yield)
SI2-4 SI2-6



HRMS (TOF, ES+) calc’d for C14H27NO3Si [M+H]+ 286.1833, found 286.1830 (ppm=1.04) 

 

Benzoylation of N-siloxyamino ethyl ester 

 

To a solution of substrate (3.99 g, 14.70 mmol, 1.0 equiv) in MeCN (14.7 mL) add DIPEA (5.13 

mL, 3.80 g, 29.40 mmol, 2.0 equiv) and benzoyl chloride (2.99 mL, 3.62 g, 25.73 mmol, 1.75 

equiv) at ambient temperature and stir 30 minutes. Heat mixture to 40 °C stirring vigorously for 7 

hours. Dilute in Et2O (140 mL) and wash organics with with pH=7 phosphate buffer (30 mL), then 

brine (30 mL). Dry organic layer with Na2SO4, filter through celite, and concentrate. Purify by 

flash chromatography (florisil, 20% Et2O/Hexanes) to yield 345 (5.5g, 14.65 mmol, >95% yield) 

as pale white crystals. 

SFC analysis (IC, 5% i-PrOH in CO2) peak 1(major): 6.748 min; peak 2(minor): 8.324 min; 94% 

ee 

1H NMR (400 MHz, CDCl3) δ 7.76 – 7.65 (m, 2H), 7.53 – 7.35 (m, 3H), 4.65 (dd, J = 10.5, 4.5 

Hz, 1H), 4.21 (qdd, J = 10.7, 7.0, 3.6 Hz, 2H), 2.97 (ddd, J = 17.4, 10.6, 2.7 Hz, 1H), 2.89 – 2.70 

(m, 1H), 2.14 (t, J = 2.7 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H), 0.95 (s, 9H), 0.30 (s, 3H), 0.21 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 173.13, 168.28, 134.61, 131.05, 128.59, 128.48, 80.35, 71.70, 

63.97, 62.11, 26.18, 18.58, 14.31, -4.31, -4.51. 

FTIR (AT-IR)	 3310.03, 2929.56, 2857.22, 2359.18, 1744.02, 1694.62, 1472.02, 1446.93, 

1390.26, 1362.25, 1289.85, 1250.00, 1226.16, 1186.10, 1072.43, 1017.66, 964.62, 920.36, 831.69, 

809.32, 783.13, 748.13, 703.47, 674.24, 654.39 cm–1 

CO2Et

NH
TBSO

H

344

CO2Et

NBz
TBSO

H

345

BzCl (1.75 equiv)
DIPEA (4 equiv)

DMAP (10 mol %)
MeCN, 40 °C

(>95% yield)



HRMS (TOF, ES+) calc’d for C20H30NO4Si [M+H]+ 376.1939, found 376.1934 

[a]D
23 –89.9° (c=1.0, CHCl3) 

 

Benzoylation of N-siloxyamino iso-propyl ester 

 

Dissolve SI2-6 (4.49g, 15.71 mmol, 1.0 equiv) in THF (60 mL). Add pyridine (6.40 mL, 6.21 g, 

78.55 mmol, 5 equiv) followed by benzoyl chloride (4.60 mL, 5.52 g, 39.28 mmol, 2.5 equiv) and 

DMAP (1.92 g, 15.71 mmol, 1.0 equiv). Wash the sides of flask with THF (90 mL). Heat mixture 

to reflux and stir 27h. Cool reaction to ambient temperature and dilute in Et2O (200 mL). Wash 

crude mixture with dilute citric acid (150 mL), pH=7 phosphate buffer (150 mL), and brine (150 

mL). Dry organic layer with Na2SO4, filter, and concentrate to yield crude product. A two stage 

purification by flash chromatography (silica, 5→12% EtOAc/Hexanes; then, fluorosil, 5→100% 

Et2O/Hexanes) yields SI2-7 (3.55g, 9.11 mmol, 58% yield) as a white solid. 

1H NMR (500 MHz, CDCl3) δ 5.60 (d, J = 9.6 Hz, 1H), 5.12 (p, J = 6.2 Hz, 1H), 3.59 (dt, J = 

9.6, 6.4 Hz, 1H), 2.65 – 2.46 (m, 2H), 2.01 (t, J = 2.7 Hz, 1H), 1.27 (dd, J = 6.3, 3.5 Hz, 6H), 

0.88 (s, 9H), 0.10 (d, J = 0.9 Hz, 6H). 
13C NMR (101 MHz, CDCl3) δ 173.54, 167.71, 134.70, 130.99, 128.52, 128.43, 80.57, 71.61, 

70.05, 64.08, 26.15, 21.89, 21.83, 18.77, 18.53, -4.45, -4.46. 

FTIR (AT-IR)	2930.02, 2857.32, 1739.8, 1698.57, 1471.80, 1447.34, 1375.01, 1361.30, 1288.72, 

1250.34, 1226.66, 1188.79, 1144.53, 1105.46, 963.93, 920.96, 834.33, 782.72, 749.05, 703.61, 

674.83 cm–1 

BzCl (2.5 equiv)
pyridine (5.0 equiv)
DMAP (1.0 equiv)

THF, 70 °C

CO2i-Pr

NH
TBSO

CO2i-Pr

NBz
TBSO

(58% yield)SI2-6 SI2-7



HRMS (TOF, ES+) calc’d for C21H31NO4Si [M+H]+ 390.2095, found 390.2090 (ppm=1.31) 

 

Acylation of N-siloxyamino ethyl ester 

 

Add pyridine (1.48 mL, 1.46 g, 18.42 mmol, 5.0 equiv) and DMAP (450 mg, 3.83 mmol, 0.96 

equiv) to solution of 344 (1.04 g, 3.83 mmol, 1.0 equiv) in THF (60 mL). Add acetyl chloride (1.31 

mL, 1.45 g, 18.42 mmol, 5.0 equiv) and stir vigorously at ambient temperature for 18h. Dilute in 

Et2O (50 mL) and wash with pH=7 phosphate buffer (50mL) then brine (50 mL). Dry organic 

phase over Na2SO4, filter and concentrate gave SI2-8 (1.18 g, 3.76 mmol, 98% yield) as a pale-

yellow oil with no further purification necessary. 

1H NMR (400 MHz, CDCl3) δ 4.56 (t, J = 7.5 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.01 – 2.83 (m, 

2H), 2.16 (s, 3H), 2.02 (t, J = 2.7 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H), 0.96 (s, 9H), 0.29 (s, 3H), 

0.24 (s, 3H). 

13C NMR (126 MHz, CDCl3) δ 176.42, 168.14, 80.35, 70.42, 63.61, 61.72, 25.80, 21.52, 18.68, 

17.93, 14.08, -4.51, -4.76. 

FTIR (AT-IR)	 3282.17, 2930.95, 2858.52, 2361.30, 1742.64, 1674.63, 1472.78, 1463.68, 

1367.92, 1253.56, 1185.00, 1080.68, 1018.10, 983.77, 965.14, 938.25, 833.87, 784.10, 667.99 cm–

1 

HRMS (TOF, ES+)  calc’d for C15H27NO4Si [M+H]+ 314.1782, found 314.1780 (ppm=0.67) 

 

Chloroacylation of N-siloxyamino ethyl ester 

AcCl (5.0 equiv)
pyridine (5.0 equiv)
DMAP (1.0 equiv)CO2Et

NH
TBSO

CO2Et

NAc
TBSOTHF

(98% yield)344 SI2-8



 

Add pyridine (0.45mL, 439 mg, 5.55 mmol, 5.0 equiv) and DMAP (27.1mg, 0.22 mmol, 0.20 

equiv) to solution substrate (300mg, 1.11mmol, 1.0 equiv) in THF (15mL). Add chloroacetyl 

chloride (0.13 mL, 188.6 mg, 1.67 mmol, 1.5 equiv) and stir vigorously at ambient temperature 

for 5h. Dilute in Et2O (50 mL) and wash with pH=7 phosphate buffer (50mL) then brine (50 mL). 

Dry organic phase over Na2SO4, filter and concentrate. Purification by flash chromatography 

(florisil, 20% EtOAc/Hexanes) provided SI2-9 as a pale oil (347 mg, 0.0XXmmol, 90% yield). 

1H NMR (400 MHz, CDCl3) δ 4.56 – 4.42 (m, 1H), 4.36 – 4.24 (m, 2H), 4.21 (q, J = 7.1 Hz, 2H), 

3.13 – 2.79 (m, 2H), 2.03 (t, J = 2.6 Hz, 1H), 1.26 (td, J = 7.1, 0.9 Hz, 3H), 0.95 (s, 9H), 0.30 (s, 

3H), 0.26 (s, 3H).  

13C NMR (101 MHz, CDCl3) δ 170.71, 166.64, 79.03, 70.06, 63.97, 61.21, 41.63, 24.81, 18.02, 

17.08, 13.17, -5.42, -5.75. 

FTIR (AT-IR)	 3303.84, 2931.44, 2859.45, 2361.24, 1742.56, 1683.23, 1472.71, 1367.63, 

1318.42, 1254.23, 1187.67, 1016.74, 959.4, 938.47, 835.12, 784.06, 667.94 cm–1 

HRMS (TOF, ES+) calc’d for CXHxNOxSi [M+H]+ 348.1392, found 348.1396 (ppm=-1.04) 

 

 

 

Enyne metathesis of benzoylated siloxyamino ethyl ester 

ClCH2COCl (3 equiv)
pyridine (10 equiv)
DMAP (0.2 equiv)CO2Et

NH
TBSO

CO2Et

N
TBSO

CH2Cl

O
344 SI2-9(90% yield)

THF



 

Solvate Mes-HG-II (692 mg, 1.103 mmol, 7.5 mol%) stored in the glovebox in benzene (55 mL). 

Maintain an Ar atmosphere. Add distilled and degassed 1,5-cyclooctadiene (18.0 mL, 15.90 g, 

147.0 mmol, 10 equiv), stir five minutes. Concurrently, both a solution of 336 (5.50 g, 14.70 mmol, 

1.0 equiv) in benzene (360 mL) and a solution of Mes-HG-II (461 mg, 0.735 mmol, 5 mol%) in 

benzene (10.6 mL) were added by syringe pumps over 12h. Stir at room temperature for 2h. 

Concentrate the crude reaction onto celite (50 g) overnight. Purify by flash chromatography (silica 

150 g, 10→20% Et2O/Hexanes). Concentrate to an oil and dilute in cold MeCN (50 mL). Filter 

off precipitate with celite and wash the celite pad twice with cold MeCN (50 mL). Concentrate to 

yield 346a (6.09 g, 14.2 mmol, 96% yield) a beige oil. 

1H NMR (400 MHz, CDCl3) δ 7.56 (dt, J = 6.8, 1.5 Hz, 2H), 7.45 – 7.37 (m, 1H), 7.37 (s, 2H), 

5.79 (dd, J = 9.5, 4.3 Hz, 1H), 5.70 – 5.54 (m, 2H), 4.45 (dd, J = 10.1, 4.4 Hz, 1H), 4.32 – 4.13 

(m, 3H), 2.85 (dd, J = 14.2, 10.1 Hz, 1H), 2.60 (d, J = 14.1 Hz, 1H), 2.15 – 2.09 (m, 4H), 1.33 (t, 

J = 7.1 Hz, 4H), 0.92 (s, 10H), 0.29 (s, 3H), 0.13 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 170.80, 169.47, 134.72, 131.16, 130.60, 129.83, 128.26, 127.25, 

126.70, 124.77, 64.74, 61.74, 33.61, 26.19, 22.55, 22.19, 18.87, 14.29, -3.86, -4.52. 

FTIR (AT-IR) 2929.77, 2857.11, 2359.5, 2340.28, 1742.71, 1653.06, 1471.97, 1447.06, 1249.13, 

1183.09, 1019.33, 969.71, 919.13, 826.95, 783.52, 735.42, 700.25, 667.9 cm-1 

HRMS (TOF, ES+) calc’d for C24H35NO4Si [M+H]+ 430.2408, found 430.2395 (ppm=3.05) 

 

 

Enyne metathesis of benzoylated siloxyamino iso-propyl ester 

1,5-cod(10 equiv),
Mes-HG-II(12.5 mol%)

PhH, rt, Ar
slow addition

(96% yield)

NBz

CO2Et

TBSO
BzN

CO2Et

OTBS
336 346a



 

Solvate Mes-HG-II (60.2 mg, 0.096 mmol, 7.5 mol%) stored in the glovebox in benzene(5 mL). 

Maintain an Ar atmosphere. Add distilled and degassed 1,5-cyclooctadiene (1.57 mL, 1.38 g, 12.80 

mmol, 10 equiv). Concurrently, both a solution of SI2-7 (500 mg, 1.28 mmol, 1 equiv) in benzene 

(25 mL) and a solution of Mes-HG-II (45 mg, 0.072 mmol, 5 mol%) in benzene (2 mL) were added 

by syringe pumps over 7h50m. Stir at room temperature for 2h. Concentrate the crude reaction 

onto celite overnight. Purify by flash chromatography (silica, 5→27.5% Et2O/Hexanes) 

concentrate to product with trace impurities. Filter off precipitate with celite pad, wash with 

CH2Cl2 and concentrate to yield pure 346b (546.8 mg, 1.23 mmol, 96% yield) as a pale oil. 

1H NMR (500 MHz, CDCl3) δ 7.60 – 7.49 (m, 2H), 7.43 – 7.37 (m, 1H), 7.36 – 7.30 (m, 2H), 5.80 

(dd, J = 9.4, 4.4 Hz, 1H), 5.68 (s, 1H), 5.62 (h, J = 1.7 Hz, 1H), 5.05 (p, J = 6.3 Hz, 1H), 4.36 (dd, 

J = 9.9, 4.6 Hz, 1H), 2.81 (dd, J = 14.2, 9.9 Hz, 1H), 2.62 (dd, J = 14.4, 4.5 Hz, 1H), 2.12 (dtd, J = 

5.4, 3.8, 1.6 Hz, 4H), 1.29 (d, J = 6.2 Hz, 3H), 1.27 (d, J = 6.3 Hz, 3H), 0.97 – 0.86 (m, 9H), 0.21 

(d, J = 61.6 Hz, 6H). 

13C NMR (126 MHz, CDCl3) δ 171.19, 168.82, 134.81, 131.41, 130.56, 128.23, 127.24, 126.82, 

124.54, 69.52, 64.97, 33.70, 26.24, 22.54, 22.24, 21.96, 21.94, 18.89, -3.94, -4.24.  

FTIR (AT-IR) 2929.39, 2856.62, 2359.77, 2340.47, 1739.64, 1661.23, 1579.37, 1471.53, 

1447.32, 1386.82, 1374.19, 1360.95, 1248.97, 1179.95, 1144.34, 1106.04, 990.36, 960.89, 918.86, 

827.13, 783.07, 733.48, 700.54, 667.71 cm-1 

HRMS (TOF, ES+) calc’d for C25H37NO4Si [M+H]+ 444.2565, found 444.2565 (ppm=0.00) 

 

Enyne metathesis of acylated siloxyamino ethyl ester 

NBz

CO2i-Pr

TBSO
BzN

CO2i-Pr

OTBS

1,5-cod(10 equiv),
Mes-HG-II(12.5 mol%)

PhH, rt, Ar
slow addition

(96% yield) 346bSI2-7



 

Solvate Mes-HG-II (176.7 mg, 0.282 mmol, 7.5 mol%) stored in the glovebox in benzene(14 mL). 

Maintain an Ar atmosphere. Add distilled and degassed 1,5-cyclooctadiene (4.62 mL, 4.07g, 37.64 

mmol, 10 equiv), stirring vigorously (700 rpm). Concurrently, both a solution of SI2-8 (1.18g, 

3.76mmol, 1 equiv) in benzene (90 mL) and a solution of Mes-HG-II (117.8 mg, 0.188 mmol, 5 

mol%) in benzene (3.5 mL) were added by syringe pumps over 10h. Stir at room temperature for 

3h. Concentrate the crude reaction onto celite overnight. Purify by flash chromatography (silica, 

7.5→10% EtOAc/Hexanes). Add P(CH2CH2OH)3 (1.16g, 20 equiv) to product-contained fractions 

along with silica and was sonicate until the combined solution is clear. Filter the solution was then 

and concentrate to yield 346c (991mg, 2.70 mmol, 72% yield) a clear oil. 

1H NMR (500 MHz, CDCl3) δ 5.81 (d, J = 1.3 Hz, 2H), 5.58 (d, J = 4.5 Hz, 1H), 4.47 (s, 1H), 4.26 

– 4.08 (m, 2H), 2.78 (ddd, J = 14.2, 10.3, 0.9 Hz, 1H), 2.65 (dd, J = 14.4, 4.8 Hz, 1H), 2.10 – 2.04 

(m, 7H), 1.27 (t, J = 7.1 Hz, 3H), 0.94 (s, 9H), 0.26 (s, 3H), 0.18 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 175.10, 169.64, 131.84, 127.11, 126.84, 123.88, 64.01, 61.53, 

33.64, 25.97, 22.52, 22.24, 21.62, 18.07, 14.22, -4.53. 

FTIR (AT-IR) 2930.65, 2857.62, 2359.56, 2340.27, 1742.48, 1667.8, 1367.59, 1252.92, 1031.68, 

832.83, 783.93, 667.92 cm-1 

HRMS (TOF, ES+) calc’d for C19H33NO4Si [M+H]+ 368.2252, found 368.2253 (ppm=–0.38) 

 

 

Enyne metathesis of chloroacylated siloxyamino ethyl ester 

NAc

CO2Et

TBSO
AcN

CO2Et

OTBS

1,5-cod(10 equiv),
Mes-HG-II(12.5 mol%)

PhH, rt, Ar
slow addition

(72% yield)
SI2-8 346c



 

Solvate Mes-HG-II(47.0 mg, 0.075 mmol, 0.075 equiv) stored in the glovebox in argon–degassed 

benzene (3.5 mL). Maintain an Ar atmosphere. Add distilled and degassed 1,5-cyclooctadiene 

(1.22 mL, 1.08g, 9.98 mmol, 10 equiv), stirring vigorously (700 rpm). Concurrently, both a 

solution of alkyne (347.1 mg, 0.998mmol, 1 equiv) in benzene (24 mL) and a solution of Mes-

HG-II (31.3 mg, 0.050 mmol, 0.05 equiv) in benzene (1.0mL) were added by syringe pumps over 

10h. Stir at room temperature for 3h. Concentrate the crude reaction onto celite overnight. Purify 

by flash chromatography (silica, 7.5→10% EtOAc/Hexanes). Yields SI2-9 (296 mg, 74% yield) 

as a pale oil. 

1H NMR (500 MHz, CDCl3) δ 5.86 – 5.76 (m, 2H), 5.58 (d, J = 4.5 Hz, 1H), 4.39 (dd, J = 10.6, 

4.7 Hz, 1H), 4.30 – 4.11 (m, 4H), 2.85 (dd, J = 14.2, 10.6 Hz, 1H), 2.72 – 2.60 (m, 1H), 2.13 – 

2.01 (m, 4H), 1.26 (t, J = 7.1 Hz, 3H), 0.92 (s, 9H), 0.25 (s, 3H), 0.19 (s, 3H).  

13C NMR (126 MHz, CDCl3) δ 170.52, 169.01, 131.54, 127.46, 126.63, 124.35, 65.63, 61.83, 

42.77, 33.83, 25.82, 22.47, 22.21, 17.97, 14.20, -4.68. 

FTIR (AT-IR) 2931.1, 2859.38, 2361.15, 2340.18, 1742.03, 1673.54, 1472.41, 1463.48, 1391.13, 

1364.3, 1318.5, 1251.92, 1213.32, 1184.41, 1083.27, 1017.52, 912.03, 836.04, 783.58, 731.43, 

668.09, 646.92 cm-1 

HRMS (TOF, ES+) calc’d for C19H32ClNO4Si [M+H]+ 402.1862, found 402.1862 (ppm=-0.03) 

 

 

Copper–catalyzed oxidative cyclization of benzoylated diene ethyl ester 

N

CO2Et

TBSO
N

CO2Et

TBSO

1,5-cod(10 equiv),
Mes-HG-II(12.5 mol%)

PhH, rt, Ar
slow addition

(74% yield)

O

CH2Cl CH2Cl

O

SI2-9 346d



 

Add MeSO3H (0.23mL, 325mg, 3.49 mmol, 0.5 equiv) to substrate () under argon in wet MeCN 

(350 mL) and begin cool to –35 °C. Sparge reaction with O2 and add Cu(TMEDA)2(BF4)2 (0.0349 

mmol, 0.05 equiv) as a solution in MeCN (1 mL).  Note: Cu(TMEDA)2(BF4)2 made by dissolving 

Cu(BF4)2•xH2O (20 wt% Cu) (111 mg, 0.349 mmol, 0.05 equiv) and TMEDA (0.10 mL, 81 mg, 

0.10 equiv) in MeCN(1 mL). Continue cooling to –45 °C. Stop O2 sparge after 10 minutes at –45 

°C. Slowly allow reaction return to room temperature. Add acetic anhydride (3.84 mL, 4.16 g, 

40.48 mmol, 6.0 equiv), stir 1 minute then add pyridine (0.54 mL, 534 mg, 6.75 mmol, 1 equiv) 

allow to stir under air overnight. Dilute with EtOAc (350 mL) wash with an aqueous solution (357 

mL) composed of EDTA pH=9 buffer (7 mL), DI H2O (175mL) and brine (175mL). Wash organic 

with additional brine (50 mL). Extract combined aqueous layer with EtOAc (2x100mL). Dry 

combined organic layers over Na2SO4, filter and concentrate. Separate crude material on silica 

(215 g) with 40% EtOAc in Hexanes. 1.512g total product isolated (4.59 mmol, 69% yield)  

351a-syn: 1H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 7.6 Hz, 2H), 7.57 – 

7.49 (m, 1H), 7.45 (ddt, J = 8.3, 6.6, 1.3 Hz, 2H), 6.02 (d, J = 2.3 Hz, 1H), 

5.54 (s, 1H), 4.62 (s, 1H), 4.26 (q, J = 7.2 Hz, 2H), 3.16 (d, J = 15.7 Hz, 

1H), 2.96 (dd, J = 15.8, 7.0 Hz, 1H), 2.51 (d, J = 16.7 Hz, 1H), 2.30 (td, J = 16.5, 15.9, 5.0 Hz, 

1H), 2.13 (d, J = 23.1 Hz, 1H), 1.97 – 1.80 (m, 1H), 1.29 (t, J = 7.2 Hz, 4H). 

13C NMR (101 MHz, CDCl3) δ 196.87, 170.20, 168.39, 153.52, 132.54, 131.83, 128.94, 128.27, 

127.95, 78.86, 77.52, 62.33, 35.05, 31.33, 29.87, 26.33, 14.33. 

BzN
OTBS

CO2Et

1. MeSO3H; 
2. Cu(TMEDA)2(BF4)2 (5 mol%), O2
3. Ac2O(3 equiv), pyridine (2 equiv)

MeCN, rt; then –45°C to rt NBz
O

O

H

CO2Et
H

337a 351a

O
NBz

O CO2Et
H

H



FTIR (AT-IR)	 2979.74, 2359.59, 1738.00, 1667.46, 1600.60, 1578.10, 1447.41, 1387.71, 

1364.39, 1316.29, 1254.3, 1197.39, 1139.88, 1077.16, 1027.25, 975.89, 899.81, 871.89, 789.33, 

758.51, 706.03, 617.25 cm-1 

HRMS (TOF, ES+) calc’d for C18H19NO5 [M+H]+ 330.1336, found 330.1337 (ppm=-0.31) 

351a-anti: 

1H NMR (400 MHz, CDCl3) δ 7.80 (dt, J = 8.5, 1.6 Hz, 2H), 7.53 – 7.46 

(m, 1H), 7.46 – 7.38 (m, 2H), 6.02 – 5.93 (m, 1H), 4.99 (dd, J = 9.6, 7.6 

Hz, 1H), 4.76 (t, J = 8.3 Hz, 1H), 4.36 – 4.22 (m, 2H), 3.14 – 2.96 (m, 2H), 2.53 – 2.44 (m, 1H), 

2.33 – 2.14 (m, 1H), 1.89 (ddd, J = 9.7, 8.0, 5.0 Hz, 2H), 1.35 – 1.29 (m, 3H). 

1H NMR (500 MHz, CDCl3) δ 7.82 – 7.77 (m, 2H), 7.52 – 7.46 (m, 1H), 7.45 – 7.39 (m, 2H), 

6.01 – 5.96 (m, 1H), 4.98 (dd, J = 9.6, 7.5 Hz, 1H), 4.81 – 4.68 (m, 1H), 4.28 (q, J = 7.1 Hz, 2H), 

3.10 – 2.95 (m, 2H), 2.49 (dddd, J = 17.2, 4.4, 2.9, 1.2 Hz, 1H), 2.31 – 2.19 (m, 1H), 1.97 – 1.80 

(m, 2H), 1.31 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 196.64, 170.15, 168.93, 157.09, 132.65, 131.60, 129.22, 128.10, 

127.77, 80.96, 62.26, 58.14, 35.41, 30.86, 27.55, 14.28. 

FTIR (AT-IR) 2359.53, 2340.23, 1729.8, 1637.97, 1577.29, 1448.88, 1394.9, 1300.99, 1245.96, 

1199.42, 1098.44, 1008.47, 981.15, 962.42, 904.15, 844.43, 790.7, 736.73, 707.82, 667.97, 635.45 

cm-1 

HRMS (TOF, ES+) calc’d for C18H19NO5 [M+H]+ 330.1336, found 330.1334 (ppm=0.60)  

 

 

 

 

O
NBz

O CO2Et
H

H



Copper–catalyzed oxidative cyclization of benzoylated diene iso-propyl ester 

 

Add MeSO3H (24 µL, 35.6 mg, 3.49 mmol, 0.5 equiv) to 346b (329 mg, 0.741 mmol) under argon 

in wet MeCN (35 mL) and begin cool to –35 °C. Sparge reaction with O2 and add 

Cu(TMEDA)2(BF4)2 (0.0349 mmol, 0.05 equiv) as a solution in MeCN (1 mL).  Note: 

Cu(TMEDA)2(BF4)2 made by dissolving Cu(BF4)2•xH2O (20 wt% Cu) (12 mg, 0.0.0371 mmol, 

0.05 equiv) and TMEDA (11 µL, 8.6 mg, 0.0742 mmol, 0.10 equiv) in MeCN (2 mL). Continue 

cooling to –45 °C. Stop O2 sparge after 10 minutes but continue stirring at –45 °C for 2h. Slowly 

allow reaction return to room temperature. Add acetic anhydride (0.21 mL, 229 mg, 40.48 mmol, 

3.0 equiv), stir 1 minute then add pyridine (60 µL, 58.6 mg, 6.75 mmol, 2 equiv) allow to stir under 

air overnight. Dilute with EtOAc (35 mL) wash with an aqueous solution (35 mL) composed of 

EDTA pH=9 buffer (0.7 mL), DI H2O (17.5mL) and brine (17.5mL). Wash organic with additional 

brine (5 mL). Extract combined aqueous layer with EtOAc (2x100mL). Dry combined organic 

layers over Na2SO4, filter and concentrate. Separate crude material on silica with 40% EtOAc in 

Hexanes. 156.7 mg total product isolated (0.456 mmol, 62% yield, 5:1 dr)  

1H NMR (500 MHz, CDCl3) δ 7.75 (d, J = 7.7 Hz, 2H), 7.53 – 7.47 (m, 1H), 7.46 – 7.39 (m, 2H), 

5.99 (dt, J = 2.2, 1.2 Hz, 1H), 5.51 (d, J = 20.8 Hz, 1H), 5.07 (p, J = 6.3 Hz, 1H), 4.60 (s, 1H), 3.12 

(d, J = 15.7 Hz, 1H), 3.00 – 2.81 (m, 1H), 2.55 – 2.40 (m, 1H), 2.28 (td, J = 16.4, 15.9, 4.9 Hz, 

1H), 2.21 – 2.04 (m, 1H), 1.86 (t, J = 13.9 Hz, 1H), 1.24 (d, J = 6.1 Hz, 6H). 

13C NMR (126 MHz, CDCl3) δ 196.87, 170.15, 167.72, 153.70, 132.56, 131.68, 128.81, 128.16, 

127.75, 78.69, 70.11, 54.66, 34.95, 31.35, 26.27, 21.84, 21.82. 

BzN
OTBS

CO2i-Pr

MeCN, rt; then –45°C to rt
(62%, 5:1 dr)

NBz
O

O

H

CO2i-Pr
H

346b 363b

1. MeSO3H; 
2. Cu(TMEDA)2(BF4)2 (5 mol%), O2
3. Ac2O(3 equiv), pyridine (2 equiv)



FTIR (AT-IR)	 2980.74, 2250.35, 1733.31, 1668.08, 1600.87, 1578.34, 1447.99, 1386.42, 

1374.01, 1312.85, 1253.98, 1200.97, 1143.54, 1103.75, 1018.30, 976.54, 899.45, 823.75, 788.51, 

728.2, 706.22, 646.73 cm-1 

HRMS (TOF, ES+) calc’d for C19H21NO5 [M+H]+ 344.1492, found 344.1494 (ppm=-0.44)  

 

Copper–catalyzed oxidative cyclization of acylated diene ethyl ester 

 

Add MeSO3H (18 µL, 26.1 mg, 0.272 mmol, 0.5 equiv) in MeCN (0.5 mL) to 346c (200 mg, 0.544 

mmol, 1.0 equiv) under argon in wet MeCN (26 mL) and begin cool to –35 °C. Sparge reaction 

with O2 and add Cu(TMEDA)2(BF4)2 (0.00.136 mmol, 0.05 equiv) as a solution in MeCN (0.5 

mL).  Note: Cu(TMEDA)2(BF4)2 made by dissolving Cu(BF4)2•xH2O (20 wt% Cu) (4.3 mg, 

0.0.0136 mmol, 0.05 equiv) and TMEDA (4 µL, 3.2 mg, 0.0272 mmol, 0.10 equiv) in MeCN (0.5 

mL). Continue cooling to –45 °C. Stop O2 sparge after 10 minutes but continue stirring at –45 °C 

for 2h. Slowly allow reaction return to room temperature. Add acetic anhydride (0.16 mL, 168 mg, 

1.632 mmol, 3.0 equiv), stir 1 minute then add pyridine (44 µL, 43 mg, 0.544 mmol, 1 equiv) allow 

to stir under air overnight. Dilute with EtOAc (20 mL) wash with an aqueous solution (35 mL) 

composed of EDTA pH=9 buffer (10 mL), DI H2O (5mL) and brine (5 mL). Extract combined 

aqueous with EOAc (10 mL) Wash combined organics with additional brine (20 mL). Dry 

combined organic layers over Na2SO4, filter and concentrate. Purify crude material by flash 

chromatography on silica with 100% Et2O then 75% to 100%EtOAc/Hexanes. 90 mg total product 

isolated (0.337 mmol, 62% yield, 13:1 dr)  

O
NAc

CO2EtO

H

H

OTBS
AcN

CO2Et
H

MeSO3H (0.5 equiv), Ar; then
Cu(TMEDA)2(BF4)2 (2.5 mol%), O2;

then Ac2O (3 equiv)
pyridine (1 equiv)

MeCN, –45 to 23 °C
62%, 13:1 dr

346c 363c



1H NMR (600 MHz, CDCl3) δ 6.01 (q, J = 1.5 Hz, 1H), 5.41 (dd, J = 7.2, 1.4 Hz, 1H), 4.68 (dd, 

J = 10.7, 5.1 Hz, 1H), 4.27 – 4.15 (m, 2H), 3.11 (ddt, J = 15.7, 1.5, 0.7 Hz, 1H), 2.84 (dddd, J = 

15.7, 7.2, 2.5, 1.6 Hz, 1H), 2.63 – 2.55 (m, 1H), 2.41 – 2.33 (m, 2H), 2.25 (s, 3H), 1.98 (dddd, J = 

16.2, 14.1, 9.0, 3.3 Hz, 1H), 1.26 (td, J = 7.1, 1.0 Hz, 4H). 

13C NMR (126 MHz, CDCl3) δ 196.79, 171.44, 168.28, 153.41, 127.93, 78.79, 62.19, 53.60, 

35.02, 31.50, 26.38, 20.30, 14.26. 

FTIR (AT-IR)	 2931.38, 2360.54, 1737.83, 1668.55, 1402.03, 1368.95, 1314.81, 1256.65, 

1198.38, 1026.43, 975.46, 945.41, 900.55, 725.65 cm-1 

HRMS (TOF, ES+) calc’d for C13H17NO5 [M+H]+ 268.1179, found 268.1180 (ppm=-0.19)  

 

Copper–catalyzed oxidative cyclization of chloroacylated diene ethyl ester 

 

Add MeSO3H (0.99 mL, 1.47 g, 15.25 mmol, 0.75 equiv) in MeCN (5 mL) to 346c (8.11 g, 20.17 

mmol, 1.0 equiv) under argon in wet MeCN (1.0 L) and begin cool to –35 °C. Sparge reaction with 

O2 and add Cu(TMEDA)2(BF4)2 (1.01 mmol, 0.05 equiv) as a solution in MeCN (5 mL).  Note: 

Cu(TMEDA)2(BF4)2 made by dissolving Cu(BF4)2•xH2O (20 wt% Cu) (320.9 mg, 0.101 mmol, 

0.05 equiv) and TMEDA (0.30 mL, 235 mg, 2.02 mmol, 0.10 equiv) in MeCN (5 mL). Continue 

cooling to –45 °C. Stop O2 sparge after 10 minutes but continue stirring at –45 °C for 2h. Slowly 

allow reaction return to room temperature overnight. Add acetic anhydride (5.75 mL, 6.23 g, 60.51 

mmol, 3.0 equiv), stir 1 minute then add pyridine (2.97  mL, 2.91 g, 36.87 mmol, 1.8 equiv) allow 

to stir under air overnight. Dilute with EtOAc (700 mL) wash twice with EDTA pH=9 buffer (100 

N

CO2i-Pr

MeCN, rt; then –45°C to rt
(59%, >13:1 dr)

N
O

O

H

CO2Et
H

346d 363d

1. MeSO3H; 
2. Cu(TMEDA)2(BF4)2 (5 mol%), O2
3. Ac2O(3 equiv), pyridine (2 equiv)

O
ClTBSO

O

Cl



mL), then brine (500 mL). Dry combined organic layers over Na2SO4, filter and concentrate. Purify 

crude material by flash chromatography on silica with 75% to 100%EtOAc/Hexanes. Syn-

diastereomer recover exclusively (3.6 g, 11.9 mmol, 59% yield, >13:1 dr)  

1H NMR (500 MHz, CDCl3) δ 6.00 (q, J = 1.4 Hz, 1H), 5.33 (dd, J = 7.3, 1.4 Hz, 1H), 4.83 – 4.78 

(m, 1H), 4.42 (d, J = 13.3 Hz, 1H), 4.21 (tt, J = 7.1, 3.7 Hz, 2H), 4.17 (d, J = 13.3 Hz, 1H), 3.13 

(ddt, J = 15.7, 1.5, 0.8 Hz, 1H), 2.88 (dddd, J = 15.7, 7.2, 2.5, 1.6 Hz, 1H), 2.61 – 2.52 (m, 1H), 

2.43 – 2.33 (m, 2H), 2.02 – 1.89 (m, 1H), 1.24 (t, J = 7.1 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 196.61, 167.61, 167.13, 152.49, 128.11, 79.24, 62.44, 54.24, 

40.77, 34.93, 31.25, 26.14, 14.22. 

FTIR (AT-IR) 2960.8 0, 2358.75, 1738.21, 1669.87, 1414.36, 1367.74, 1329.02, 1239.72, 

1189.30, 1094.68, 1024.45, 976.25, 955.89, 902.07, 858.34, 790.90, 767.92, 727.65, 667.80, 

646.77 cm-1 

HRMS (TOF, ES+) calc’d for C13H16ClNO5 [M+H]+ 302.0790, found 302.0789 (ppm=0.25) 

 

Deprotection of chloroacylated bicyclic tetrahydro-1,2-oxazine  

 

Add KHCO3 (49.8mg, 0.497 mmol, 1.0 equiv) and XX (150 mg, 0.497 mmol, 1 equiv) to dried 

EtOH (5mL). Add N-piperidyl thiocarboxamide (86 mg, 0.597 mmol, 1.0 equiv) to) and sparge 

reaction with argon for five minutes. Stir at ambient temperature for 14 hours. Quench with pH=7 

O
N

CO2EtO

H

H (1.2 equiv)
KHCO3 (1 equiv)

EtOH, 23 °C
53%

CH2Cl

O
O

NH

CO2EtO

H

H

H2N

S

N

363d 397



phosphate buffer:brine (1:1), Extract with EtOAc then four times with 10% i-PrOH CH2Cl2. Dry 

organic layer over Na2SO4, filter, and concentrate in vacuo to yield crude product. Purification by 

filtering through a florisil plug (75% EtOAc/Hexanes) followed by flash chromatography (silica, 

2%NEt3/5%EtOAc/50%CH2Cl2/Hexanes) provided 397 as a pale brown oil with an intractable 

impurity (31 mg, 0.138mmol, ~53% yield). 

1H NMR (400 MHz, CDCl3) δ 6.70 – 6.07 (m, 1H), 5.88 (dd, J = 2.7, 1.4 Hz, 1H), 5.83 (s, 1H), 

4.59 (dt, J = 10.8, 3.4 Hz, 1H), 4.21 (dddd, J = 17.9, 10.7, 7.2, 3.6 Hz, 2H), 3.81 (dd, J = 6.2, 1.9 

Hz, 1H), 3.74 (s, 2H), 3.03 – 2.86 (m, 2H), 2.47 (dddd, J = 16.7, 4.3, 2.8, 1.2 Hz, 1H), 2.31 (ddd, 

J = 16.7, 14.8, 5.0 Hz, 1H), 2.20 (dtt, J = 12.9, 5.1, 2.5 Hz, 1H), 1.77 (dddd, J = 15.4, 12.6, 10.8, 

4.6 Hz, 1H), 1.25 (td, J = 7.0, 2.3 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 197.81, 171.20, 156.80, 126.16, 76.32, 61.73, 59.30, 35.42, 31.42, 

26.80, 14.21. 

FTIR (AT-IR)	3291.5, 2978.95, 2360.16, 1704.04, 1667.76, 1564.22, 1417.99, 1367.73, 1327.17, 

1289.66, 1254.9, 1193.24, 1094.39, 1057.29, 1021.77, 981.68, 942.38, 888.76, 842.06, 772.03 cm-

1 

HRMS (TOF, ES+) calc’d for C11H15NO4 [M+H]+ 226.1074, found 226.1073 (ppm=0.37) 

Luche reduction of benzoylated bicyclic tetrahydro-1,2-oxazine 

 

Cool solution of XX (50 mg, 0.152 mmol, 1.00 equiv) and CeCl3•7H2O (84.8 mg, 0.228 mmol, 

1.50 equiv) in MeOH (5.0 mL) to –78 °C. Add a solution of NaBH4 (11.5 mg, 0.304 mg, 2.00 

equiv) in MeOH (2.5 mL) dropwise. After addition allow reaction to warm to ambient temperature 

and quench with pH=7 buffer (5.0 mL). Extract crude mixture with three times EtOAc. Dry organic 

NaBH4(2.0 equiv),
CeCl3(1.5 equiv)
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O
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phase over Na2SO4, filter, and concentrate in vacuo to yield  XX (51 mg, 0.152 mmol, >95% yield) 

as a white solid. 

1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 7.5 Hz, 2H), 7.54 – 7.45 (m, 1H), 7.45 – 7.35 (m, 

2H), 5.74 (t, J = 1.8 Hz, 1H), 5.52 (s, 1H), 4.36 – 4.20 (m, 3H), 2.94 (d, J = 14.5 Hz, 1H), 2.75 

(s, 1H), 2.06 (dd, J = 11.0, 5.0 Hz, 1H), 1.90 (s, 1H), 1.54 (d, J = 6.2 Hz, 1H), 1.41 – 1.31 (m, 

1H), 1.28 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) 169.75, 168.75, 132.91, 132.12, 131.20, 130.52, 128.84, 127.84, 

79.78, 66.61, 64.17, 61.74, 55.12, 31.28, 30.14, 24.79, 14.20 

FTIR (AT-IR): 3420.19, 2948.51, 2359.38, 2340.25, 1739.06, 1652.65, 1600.91, 1576.59, 

1447.96, 1405.11, 1367.49, 1331.48, 1267.29, 1193.98, 1147.61, 1029.11, 917.95, 866.62, 788.7, 

706.33, 667.96, 617.29 cm-1 

HRMS (TOF, ES+) calc’d for C18H21NO5 [M+H]+ 332.1492, found 332.1493 (ppm=-0.15) 

 

Diastereoselective epoxidation of benzoylated bicyclic tetrahydro-1,2-oxazine 

 

Substrate 363 (726.8mg, 2.207 mmol, 1 equiv) was dissolved in THF (37 mL) and pH=7 phosphate 

buffer (11 mL), reaction is kept dark, cooled to 0 °C. Cannulate suspension of CrCl3•3THF (33mg, 

0.088 mmol, 0.04 equiv) and NaHCO3 (556 mg, 6.620 mmol, 3.0 equiv) in THF (74 mL) and H2O 

(33 mL) dropwise. After 75 minutes, reaction is complete. Add 0.20M sodium thiosulfate and 

pH=7 phosphate buffer, Extract with CH2Cl2 3x (note: an emulsion forms, allow to settle). Wash 

organic layer with brine. Dry organics over Na2SO4 filter and concentrate. Separate crude material 

NaOCl (10 equiv)
NaHCO3(3 equiv)

CrCl3•3THF (4 mol%)
NBz

CO2Et

O

H

H

O
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CO2Et

O

H
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O

tBuOH:THF:H2O
0 °C, dark

(71% yield)
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on florisil (35g) with a gradient 20–50% EtOAc in Hexanes to provide 370 (540.7 mg, 1.56 mmol, 

71% yield) as a white solid 

1H NMR (500 MHz, CDCl3) δ 7.74 (d, J = 7.6 Hz, 2H), 7.55 – 7.49 (m, 1H), 7.48 – 7.40 (m, 

2H), 5.68 (s, 1H), 4.36 (s, 1H), 3.30 (s, 1H), 2.62 (dd, J = 13.5, 6.1 Hz, 1H), 2.36 (dt, J = 17.3, 

5.2 Hz, 1H), 2.22 (dd, J = 20.4, 15.0 Hz, 2H), 2.11 (d, J = 15.4 Hz, 1H), 1.79 (s, 1H), 1.28 (t, J = 

7.2 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 202.53, 170.07, 168.33, 131.70, 128.81, 128.17, 78.81, 62.40, 

60.80, 60.30, 55.39, 31.71, 30.86, 22.01, 14.29. 

FTIR(AT-IR) 2979.80, 2359.60, 1716.02, 1656.84, 1578.52, 1447.13, 1389.33, 1366.88, 1309.09, 

1257.56, 1178.77, 1092.65, 1026.42, 974.69, 920.18, 870.32, 788.06, 748.64, 707.41 cm-1 

HRMS (TOF, ES+) calc’d for C18H19NO6 [M+H]+ 346.1285, found 346.1291 (ppm=–1.69) 

Ref NC-VI-225 

 

Diastereoselective 1,2-reduction of tetrahydro-1,2-oxazine epoxy ketone 

 

To a solution of 370 (4.1 mg, 0.0119 mmol, 1.0 equiv) and CeCl3•7H2O (10.5 mg, 0.028 mmol, 

2.0 equiv) in MeOH (0.8 mL) was brought to –25 °C, stir 5 minutes. Add NaBH4 (6.9 mg, 0.182 

mmol, 15.0 equiv) in MeOH (0.4 mL) and allow mixture to slowly warm. Reaction complete at –

20 °C, quench with DI H2O (0.8 mL). Extract three times with Et2O (3×2.0 mL). Wash combined 

organics with brine and dry over Na2SO4, filter, and concentrate to yield crude product . Purify by 

NaBH4(15 equiv),
CeCl3(2 equiv)
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HO
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HO

MeOH, –25 °C
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flash chromatography (silica, 50%EtOAc/Hexanes) to yield 371 (3.0 mg, 0.0086 mmol, 73% yield) 

as a white solid.  

1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 7.6 Hz, 2H), 7.55 – 7.46 (m, 1H), 7.46 – 7.38 (m, 2H), 

5.54 (s, 1H), 4.38 – 4.23 (m, 2H), 4.14 – 4.05 (m, 1H), 3.94 (dt, J = 8.7, 5.7 Hz, 1H), 3.20 (s, 1H), 

2.51 (dd, J = 13.5, 6.2 Hz, 1H), 2.12 (dd, J = 13.5, 2.3 Hz, 1H), 1.86 (d, J = 6.3 Hz, 1H), 1.72 – 

1.63 (m, 1H), 1.49 (s, 1H), 1.46 – 1.36 (m, 1H), 1.33 (t, J = 7.1 Hz, 3H). 
13C NMR (101 MHz, CDCl3) δ 169.86, 169.01, 132.70, 131.52, 128.90, 128.09, 78.98, 65.86, 

65.00, 62.27, 56.12, 55.46, 31.01, 25.09, 20.81, 14.36. 

FTIR (AT-IR)	3433.47, 2932.85, 1736.83, 1644.41, 1577.8, 1447.82, 1391.49, 1367.35, 1310.52, 

1234.61, 1193.83, 1082.95, 1018.30, 918.35, 893.00, 871.28, 788.07, 707.48 cm-1 

HRMS (TOF, ES+) calc’d for C18H21NO6 [M+H]+ 348.1442, found 348.1438 (ppm=1.05) 

 

Wharton rearrangement of tetrahydro-1,2-oxazine epoxy ketone 

 

To a solution 370 (20 mg,  0.0579 mmol, 1 equiv) and benzoic acid (1.4 mg, 0.116 mmol, 0.20 

equiv) in MeCN(0.75 mL) add a solution of NH2NH2 (2.0 mg, 0.0608 mmol, 1.05 equiv) in 

MeCN(0.35 mL) stir at ambient temperature for 3h. Dilute in eluent solution (5% 

NEt3/45%EtOAc/50% Hexanes). Purification by elution through a NEt3-neutralized florisil plug 

to yield the 373 (17.5 mg, 0.0528 mmol, 91% yield) 

1H NMR (500 MHz, CDCl3) δ 7.73 (s, 2H), 7.50 – 7.44 (m, 1H), 7.43 – 7.37 (m, 2H), 5.91 (ddd, 

J = 9.9, 5.0, 2.2 Hz, 1H), 5.54 (ddt, J = 10.0, 3.4, 1.6 Hz, 1H), 5.42 (s, 1H), 4.24 – 4.12 (m, 2H), 
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3.93 (s, 1H), 2.62 (d, J = 13.5 Hz, 1H), 2.19 (dd, J = 13.2, 6.5 Hz, 1H), 2.08 (d, J = 18.9 Hz, 1H), 

1.94 (d, J = 3.0 Hz, 1H), 1.89 (d, J = 14.7 Hz, 2H), 1.71 (s, 1H), 1.26 (t, J = 7.1 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 169.89, 168.76, 133.17, 132.90, 131.18, 128.86, 128.40, 127.91, 

82.54, 64.29, 61.68, 53.74, 36.88, 21.64, 20.46, 14.26. 

FTIR (AT-IR)	 3408.37, 2932.03, 1732.70, 1633.99, 1577.31, 1447.64, 1402.33, 1367.67, 

1316.25, 1228.24, 1188.30, 1082.79, 1030.05, 995.14, 921.35, 871.17, 780.89, 732.50, 707.45, 

667.99 cm-1 

HRMS (TOF, ES+) calc’d for C18H21NO5 [M+H]+ 332.1492, found 332.1487 (ppm=1.65) 

 

Allylic bromination and halide displacement of tertiary allylic alcohol  

 

Suspend 373 (127.1 mg, 0.383 mmol, 1.0 equiv), NBS (75.1 mg, 0.422 mmol, 1.10 equiv), and 

lauroyl peroxide (3.0 mg, 0.0077 mmol, 0.02 equiv) in CCl4 (9.6 mL). Wash down sides of flask 

with hexanes (3 mL). Stir under mercury floodlamp illumination with fan cooling for one hour. 

Dilute mixture with 10% EtOAc/Hexanes (20 mL) and filter through celite. Vacuum transfer 

solvent mixture then azeotrope the resulting crude mixture from toluene to yield a mixture of 

allylic bromination products and trace starting material as a pale yellow foam. Suspend the crude 

mixture in MeCN (15 mL). Add DIPEA (0.27 mL, 198 mg, 1.53 mmol, 4.0 equiv) then AgBF4 

(112 mg, 0.421 equiv, 1.10 equiv) as a solution in MeCN (0.7 mL). Add 4 beads of activated 4Å 

MS. Stir in the dark at ambient temperature for 9 hours. Add additional AgBF4 (14.9 mg, 0.077 

mmol, 0.20 equiv) in MeCN (0.1 mL) and DIPEA (0.14mL, 99 mg, 0.76 mmol, 2.0 equiv) and 
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continue stirring 9h30m. Dilute in 20% EtOAc/Hexanes (20 mL) and filter through celite. Add 

NEt3 (1 mL) and concentrate crude on celite. Purify by flash chromatography (fluorosil, 0→60% 

EtOAc/Hexanes) to yield 372 (88.1 mg, 0.268 mmol, 70% yield) as a white solid. 

1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 7.6 Hz, 2H), 7.49 (ddt, J = 8.4, 6.6, 1.4 Hz, 1H), 7.45 

– 7.37 (m, 2H), 5.93 (dt, J = 9.9, 3.7 Hz, 1H), 5.78 – 5.59 (m, 2H), 4.33 – 4.28 (m, 1H), 4.25 (q, J 

= 7.1 Hz, 2H), 3.36 – 3.27 (m, 1H), 2.61 (dd, J = 13.3, 6.2 Hz, 1H), 2.43 – 2.30 (m, 1H), 2.26 (d, 

J = 13.3 Hz, 1H), 2.17 – 2.01 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 170.03, 168.86, 132.72, 131.43, 129.10, 128.85, 127.98, 122.17, 

79.33, 62.12, 57.05, 55.25, 54.63, 31.66, 27.13, 14.32. 

FTIR (AT-IR) 2981.11, 2361.34, 1736.53, 1655.94, 1578.36, 1447.47, 1388.17, 1317.21, 

1274.26, 1227.59, 1185.7, 1030.03, 926.32, 882.31, 787.32, 742.03, 708.43, 667.92  cm-1 

HRMS (TOF, ES+) calc’d for C18H19NO5 [M+H]+ 330.1336, found 330.1339 (ppm=–0.91) 

 

Desaturation of tetrahydro-1,2-oxazine epoxy ketone 

 

To a solution of substrate 370 (1.688 g, 4.89 mmol, 1.0 equiv) in DMSO(0.15M, 32.5 mL) add 

1,4-benzoquinone (660 mg, 6.11 mmol, 1.25 equiv), Pd(MeCN)4(BF)4 (325.7 mg, 0.733 mmol, 

0.15 equiv), and PIDA(394 mg, 1.22 mmol, 0.25 equiv). Heat to 50 °C, stir 96h. Cool to ambient 

temperature. Add 75 mL NaHCO3(aq), extract 4x175 mL EtOAc. Wash organic layer with 40 mL 

brine. Dry organic layer with Na2SO4, filter, and concentrate. Purify by flash chromatography 

(silica 175 g, 15%EtOAc/40%CH2Cl2/Hexanes) to yield 376 (1.12g, 3.26 mmol, 67% yield).  
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1H NMR (400 MHz, CDCl3) δ 7.79 – 7.69 (m, 2H), 7.58 – 7.50 (m, 1H), 7.49 – 7.41 (m, 2H), 6.30 

(s, 1H), 6.08 (dt, J = 10.6, 1.4 Hz, 1H), 5.65 (s, 1H), 4.72 (s, 1H), 4.34 – 4.12 (m, 3H), 3.53 (t, J = 

1.6 Hz, 1H), 2.70 (dd, J = 13.9, 6.2 Hz, 1H), 2.28 (d, J = 14.0 Hz, 1H), 1.27 (t, J = 7.1 Hz, 4H). 
13C NMR (101 MHz, CDCl3) δ 192.45, 170.22, 168.04, 136.07, 132.22, 131.90, 130.64, 128.71, 

128.27, 76.11, 62.50, 60.42, 59.24, 55.60, 29.61, 14.19. 

FTIR (AT-IR) 2982.21, 1737.29, 1690.76, 1661.42, 1600.80, 1579.13, 1447.34, 1390.80, 

1365.58, 1334.93, 1306.37, 1266.83, 1226.57, 1187.35, 1026.36, 947.14, 910.44, 859.39, 826.78, 

780.45, 729.61, 708.37, 647.95 cm-1 

HRMS (TOF, ES+) calc’d for C18H17NO6 [M+H]+ 344.1129, found 344.1127 (ppm=0.48) 

Ref NC-V-003, NC-V-211 

 

Unselective Luche reduction of tetrahydro-1,2-oxazine epoxy enone 

 

Cool 368 (140 mg, 0.408mg, 1.0 equiv) and CeCl3•7H2O (304mg, 0.816 mmol, 2.0 equiv) in 

MeOH (6.7 mL) to –20 °C. Add a solution of NaBH4 (30.9 mg, 0.816 mmol, 2.0 equiv) and stir 

for 30 minutes before raising the temperature to 0 °C. Add NaHCO3(aq) (9 mL). Extract with EtOAc 

four times. Wash combined organics with brine. Dry over Na2SO4, filter, and concentrate. 

Purification by flash chromatography (fine silica, 20% PhMe/40% Acetone/Hexanes) provided 

369a (63.3 mg, 0.183 mmol, 45% yield) and some mixed fractions which were subsequently 

purified on normal phase prep-HPLC (45% EtOAc/Hexanes) to provide additional 369a (27.0mg, 

0.078 mmol, 19% yield) and 369b (38.4 mg, 0.111 mmol, 27% yield).      
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369a(f2): 1H NMR (500 MHz, CDCl3) δ 7.74 (d, J = 7.6 Hz, 2H), 7.54 

– 7.48 (m, 1H), 7.46 – 7.39 (m, 2H), 5.79 (d, J = 10.3 Hz, 1H), 5.66 (s, 

1H), 5.38 (s, 1H), 4.47 (s, 1H), 4.40 (s, 1H), 4.32 – 4.18 (m, 2H), 3.59 

(t, J = 2.0 Hz, 1H), 2.66 – 2.53 (m, 1H), 2.24 (d, J = 13.7 Hz, 1H), 2.08 (s, 1H), 1.64 (s, 1H), 

1.29 (t, J = 7.1 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 170.09, 168.74, 133.50, 131.72, 128.88, 128.16, 119.84, 76.90, 

65.00, 62.29, 62.01, 56.89, 55.35, 30.65, 14.31. 

FTIR (AT-IR)	 3515.22, 2359.36, 2340.32, 1713.29, 1651.27, 1448.14, 1400.82, 1371.84, 

1300.75, 1271.34, 1237.79, 1198.4, 1086.26, 1044.77, 1015.91, 974.42, 917.96, 850.56, 808.77, 

791.48, 707.66, 668.00, 627.70 cm-1 

HRMS (TOF, ES+) calc’d for C18H19NO6 [M+H]+ 346.1285, found 346.1281 (ppm=1.20) 

369b(f1): 1H NMR (500 MHz, CDCl3) δ 7.74 (d, J = 7.6 Hz, 2H), 7.55 

– 7.47 (m, 1H), 7.46 – 7.40 (m, 2H), 5.96 (ddd, J = 9.6, 4.6, 2.0 Hz, 

1H), 5.55 (d, J = 74.0 Hz, 2H), 4.50 (s, 1H), 4.41 (s, 1H), 4.34 – 4.19 

(m, 2H), 3.37 (q, J = 1.6 Hz, 1H), 2.60 (dd, J = 13.6, 6.1 Hz, 1H), 2.16 (dd, J = 13.7, 1.9 Hz, 

1H), 1.93 (s, 1H), 1.31 (td, J = 7.1, 0.9 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 170.24, 168.80, 131.97, 131.75, 128.90, 128.18, 120.92, 76.79, 

63.26, 62.39, 60.50, 55.64, 53.93, 30.96, 14.32. 

FTIR (AT-IR)	3506.46, 2925.60, 2359.53, 2340.3, 1733.94, 1653.54, 1578.26, 1447.05, 1367.84, 

1298.39, 1233.21, 1189.33, 1025.82, 905.79, 867.34, 831.29, 790.72, 768.16, 730.21, 706.66, 

667.91 cm-1 

HRMS (TOF, ES+) calc’d for C18H19NO6 [M+H]+ 346.1285, found 346.1275 (ppm=1.20) 
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Diastereoselective epoxidation of tetrahydro-1,2-oxazine epoxy enone 

 

To chill a solution of substrate (1.1207g, 3.26 mmol, 1 equiv) in wet dioxane (13 mL dioxane, 

0.1mL DI H2O) to 0 °C. Add NaOCl (12.5 wt% in H2O) (3.62mL, 4.37g (243 mg NaOCl), 2.25 

equiv) Stir 5h at 0 °C. Dilute in 1:1 brine/DI H2O (65 mL). Extract with EtOAc 3x75mL. Dry 

organics over Na2SO4. Filter and concentrate. Take up crude in benzene, concentrate; take up 

again in hexanes and re-concentrate. Yields 371 (1.09g, 93% yield) as a white foam. Note: 371 

was not amenable to chromatographic purification due to instability and was used with no further 

purification. 

1H NMR (400 MHz, CDCl3) δ 7.78 – 7.69 (m, 2H), 7.56 – 7.49 (m, 1H), 7.49 – 7.40 (m, 2H), 5.53 

(s, 0H), 4.74 (s, 1H), 3.43 (d, J = 1.8 Hz, 1H), 3.40 (s, 1H), 3.39 – 3.33 (m, 1H), 2.63 (dd, J = 14.0, 

6.1 Hz, 1H), 2.11 (dd, J = 14.1, 1.8 Hz, 1H), 1.28 (t, J = 7.1 Hz, 4H). 

13C NMR (101 MHz, CDCl3) δ 197.03, 170.44, 167.70, 132.10, 131.96, 128.50, 128.32, 75.09, 

63.75, 62.60, 61.63, 56.77, 55.37, 54.25, 31.10, 14.14. 

FTIR (AT-IR) 1736.36, 1707.34, 1666.01, 1447.25, 1368.08, 1303.87, 1226.04, 1185.33, 

1022.17, 947.87, 912.99, 868.45, 788.53, 708.45 cm-1 

HRMS (TOF, ES+) calc’d for C18H17NO7 [M+H]+ 360.1078, found 360.1078 (ppm=–0.06) 
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Diastereoselective dihydroxylation of tetrahydro-1,2-oxazine epoxy enone 

 

Dissolve K2OsO2(OH)4 (1.5 mg, 0.00407 mmol, 0.05 equiv), NMO (14.1 mg, 0.120 mmol, 1.5 

equiv), and citric acid monohydrate (33.0 mg, 0.157 mmol, 1.95 equiv) in DI H2O (1.5 mL). Add 

t-BuOH (1.5 mL) to the aqueous solution to generate a pale a pale yellow solution. Add the 

osmium solution to 368 (27.6 mg, 0.0804 mmol, 1.0 equiv) in THF (0.9 mL). Sparge reaction 

mixture for 10 minutes and continue stirring under argon at ambient temperature for 2h20m. Add 

pH=7 phosphate buffer (1 mL) and brine (2 mL) and extract six times with EtOAc (6×3 mL). 

Dry combined organics over Na2SO4, filter, and concentrate to yield crude product. Take up 

crude material in MeCN (3 mL) and wash twice with pentanes (2×4 mL). Concentrate to yield 

372 with trace impurities (27.6 mg, 0.0731 mmol, ~90% yield) as a pale yellow oil. Note: 372 

was not amenable to chromatographic purification due to instability and was used with no further 

purification. 

1H NMR (400 MHz, CDCl3) δ 7.77 – 7.66 (m, 2H), 7.59 – 7.50 (m, 1H), 7.49 – 7.43 (m, 2H), 5.93 

– 5.30 (m, 1H), 4.51 (s, 1H), 4.29 – 4.19 (m, 2H), 4.12 (d, J = 3.7 Hz, 1H), 4.04 (s, 1H), 3.51 (d, J 

= 1.2 Hz, 1H), 2.63 (dd, J = 13.6, 6.0 Hz, 1H), 2.19 (dd, J = 13.7, 2.0 Hz, 1H), 1.28 (t, J = 7.1 Hz, 

3H). 

13C NMR (101 MHz, CDCl3) δ 170.29, 168.41, 132.16, 132.00, 128.78, 128.42, 79.78, 74.77, 

69.03, 69.01, 62.57, 58.35, 32.02, 30.19, 29.16, 22.83, 22.02, 14.35, 14.31, 14.27. 

NMO (1.50 equiv)
citric acid (1.95 equiv)
K2OsO2(OH)4(5 mol%)
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FTIR (AT-IR) 3447.39, 2981.48, 2361.33, 2341.29, 1734.63, 1653.82, 1600.95, 1578.07, 

1447.91, 1390.57, 1368.42, 1308.69, 1227.00, 1191.68, 1121.21, 1060.54, 1025.05, 954.00, 

910.67, 881.89, 861.12, 787.53, 728.04, 709.00, 667.94, 647.54 cm-1 

HRMS (TOF, ES+) calc’d for C18H19NO8 [M+H]+ 378.1183, found 377.1174 (ppm=2.49) 

 

Wharton rearrangement of tetrahydro-1,2-oxazine bis-epoxy ketone 

 

Cool to solution of benzoic acid (6.8 mg, 0.057 mmol, 0.20 equiv) in EtOAc (2mL) to 10 °C. 

Concurrently, add solutions of NH2NH2 (8.9 mg, 8.7µL, 0.278 mmol) in EtOAc (5 mL) and 379 

(100 mg, 0.278 mmol) in EtOAc (5 mL) dropwise via syringes to the cooled reaction flask over 

30 minutes. Rinse substrate syringe with EtOAc (1 mL). Bring reaction to ambient temperature 

and stir five minutes before adding triethylamine (1 mL). Filter through a neutralized florisil plug 

and rinse plug with (5% NEt3/EtOAc). Purification of that crude mixture by flash chromatography 

(florisil 5.0g, 5% NEt3/50%EtOAc/Hexanes) to yield a 3:2 mixture of 381 and 382 (31.4mg, 

0.091mmol, 33% yield) which were carried forward as a mixture. 382 could be isolated cleanly 

for characterization by flash chromatography (40%EtOAc/Hexanes). 

382: 1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 7.7 Hz, 2H), 7.56 – 7.47 (m, 1H), 7.46 – 7.36 (m, 

2H), 6.19 (dd, J = 9.8, 4.0 Hz, 1H), 6.13 – 6.02 (m, 1H), 5.66 (s, 1H), 4.30 (s, 1H), 4.24 (q, J = 7.1 

Hz, 2H), 3.92 (s, 1H), 3.41 (dt, J = 4.1, 1.3 Hz, 1H), 2.69 (dd, J = 13.3, 6.2 Hz, 1H), 2.39 – 2.22 

(m, 1H), 1.73 – 1.62 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H). 
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13C NMR (101 MHz, CDCl3) δ 170.16, 168.79, 136.71, 133.28, 131.70, 128.76, 128.19, 126.98, 

81.68, 64.57, 62.28, 59.83, 55.26, 54.45, 31.04, 14.34. 

FTIR (AT-IR) 3457.65, 2981.45, 2359.53, 2340.24, 1739.24, 1652.54, 1576.29, 1447.92, 

1394.23, 1317.61, 1274.82, 1267.49, 1230.14, 1189.56, 1028.04, 954.06, 867.43, 809.44, 788.73, 

763.78, 749.59, 708.28, 667.92 cm-1 

HRMS (TOF, ES+) alc’d for C18H19NO6 [M+H]+ 346.1285, found 346.1282 (ppm=0.91) 

 

Wharton rearrangement of tetrahydro-1,2-oxazine epoxy keto-diol 

 

Add 380 (39 mg, 0.103 mmol, 1.0 equiv) and BzOH (2.5 mg, 0.021 mmol, 0.20 equiv) in MeCN 

(4.2 mL). NH2NH2 (3.5 mg, 3.4 µL, 0.109 mmol, 1.05 equiv) in MeCN (1.0 mL). Stir 20 minutes 

at ambient temperature and then add pH=7 phosphate buffer. Extract three with EtOAc. Wash 

organic phase with brine. Dry over Na2SO4, filter, and concentrate to yield product (33 mg, 0.090 

mmol, ~85% yield). 

1H NMR (400 MHz, CDCl3) δ 7.68 (s, 2H), 7.54 – 7.46 (m, 1H), 7.42 (ddt, J = 8.4, 6.8, 1.2 Hz, 

2H), 5.64 (s, 2H), 5.33 (d, J = 23.4 Hz, 1H), 4.27 (s, 1H), 4.19 (qd, J = 7.1, 4.2 Hz, 2H), 4.02 (s, 

1H), 3.56 (s, 1H), 3.24 (d, J = 83.5 Hz, 1H), 2.59 (s, 1H), 2.24 (dd, J = 13.6, 6.7 Hz, 1H), 1.27 (t, 

J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 170.32, 168.57, 132.88, 131.56, 131.38, 129.24, 128.51, 128.26, 

82.87, 77.36, 68.54, 65.47, 61.96, 35.60, 14.29. 
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FTIR (AT-IR)	 3387.29, 2930.19, 1735.10, 1636.40, 1576.98, 1448.32, 1400.27, 1368.76, 

1323.20, 1226.31, 1193.94, 1129.64, 1066.18, 1022.40, 917.90, 833.76, 787.43, 707.14, 678.99, 

645.09 cm-1 

HRMS (TOF, ES+) calc’d for C18H21NO7 [M+H]+ 364.1391, found 364.1390 (ppm=0.22) 

 

Convergent silylation of Wharton rearrangement products 

 

Cool solution of 373 and 374 (31.6 mg, 0.0915 mmol) to –5 °C. Add triethylamine (93mg, 128 

µL, 0.915 mmol, 10 equiv) followed by TBSOTf (48.4 mg, 42 µL, 0.183 mmol, 2.0 equiv). Warm 

to 10 °C and stir 25 minutes. Add additional triethylamine (44 mg, 60 µL, 0.430 mmol,  4.7 equiv) 

followed by TBSOTf (23 mg, 20 µL, 0.087 mmol, 0.95 equiv). Quench excess TBSOTf with i-

PrOH (25 µL) and stir at ambient temperature for 5 minutes. Concentrate crude reaction and purify 

by flash chromatography (florisil 3.6g, 2% NEt3/5→15%EtOAc/Hexanes) provides XX (9.6mg, 

38% yield) 

1H NMR (400 MHz, CDCl3) δ 7.78 – 7.68 (m, 2H), 7.48 (d, J = 1.6 Hz, 1H), 7.44 – 7.38 (m, 2H), 

6.04 (ddd, J = 10.0, 3.6, 1.3 Hz, 1H), 5.77 (ddd, J = 10.0, 4.1, 1.1 Hz, 1H), 5.46 (s, 1H), 4.23 (d, J 

= 5.7 Hz, 2H), 4.16 (s, 1H), 4.08 (d, J = 3.8 Hz, 1H), 3.24 (dt, J = 3.6, 1.0 Hz, 1H), 2.45 (dd, J = 

13.8, 5.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H), 0.78 (s, 9H), -0.10 (d, J = 34.0 Hz, 6H).  
13C NMR (101 MHz, CDCl3) δ 169.81, 169.07, 134.70, 132.72, 131.30, 128.61, 128.04, 124.94, 

84.87, 66.65, 61.89, 58.77, 52.47, 30.67, 29.69, 25.75, 18.04, 14.19, -4.88, -4.92. 
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FTIR (AT-IR)	 2954.10, 2928.42, 2856.26, 2361.06, 2340.36, 1739.52, 1652.91, 1471.97, 

1447.94, 1389.33, 1315.95, 1253.02, 1226.52, 1188.91, 1094.5, 1027.62, 915.93, 878.84, 837.35, 

814.81, 778.37, 746.41, 706.37, 668.03, 654.57, 648.90, 632.41, 617.5, 608.61 cm-1 

HRMS (TOF, ES+) calc’d for C24H33NO6Si [M+H]+ 460.2150, found 460.2146 (ppm=0.85)  

 

1,2-reduction of tetrahydro-1,2-oxazine bis-epoxy ketone 

 

Chill a solution of XX (74 mg, 0.206 mmol, 1.0 equiv) in EtOH (0.3M, 6.9 ml) to 0 °C. Add 

CeCl3•7H2O (76.7 mg, 0.206 mmol, 1.0 equiv), stir two minutes. Add NaBH4 (11.7 mg, ) as a 

single portion stir at 0 °C for 30 minutes. Add EtOAc (5 mL) and brine (5mL), stir five minutes. 

Extract the crude mixture with EtOAc (3×5 mL). Dry over Na2SO4 and concentrate. Reconcentrate 

crude residue with benzene. Purify on by flash chromatography (florisil, 20–100% 

EtOAc/Hexanes) provides 377 as a white solid (57.5mg, 0.159 mmol, 77% yield).   

1H NMR (400 MHz, CDCl3) δ 7.75 (dt, J = 7.0, 1.4 Hz, 2H), 7.58 – 7.50 (m, 1H), 7.49 – 7.42 (m, 

2H), 5.52 (s, 1H), 4.55 (d, J = 10.1 Hz, 2H), 4.28 (qq, J = 7.3, 3.6 Hz, 2H), 3.22 (q, J = 1.6, 1.0 

Hz, 1H), 3.21 – 3.15 (m, 1H), 2.98 (s, 1H), 2.54 (dd, J = 13.8, 6.0 Hz, 1H), 2.41 (d, J = 9.3 Hz, 

1H), 1.99 (dd, J = 13.8, 1.9 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H). 
13C NMR (101 MHz, CDCl3) δ 170.51, 168.84, 132.27, 131.96, 128.69, 128.31, 75.25, 62.54, 

61.54, 60.48, 55.63(br), 53.24, 52.37, 49.41, 31.36, 14.21. 

FTIR (AT-IR) 3446.83, 2984.12, 2359.39, 2340.30, 1738.02, 1652.45, 1578.62, 1447.75, 

1367.96, 1232.41, 1191.59, 1048.24, 1019.26, 953.47, 864.87, 825.47, 788.76, 709.54, 667.93 
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cm–1 

HRMS (TOF, ES+) calc’d for C18H17NO7 [M+H]+ 360.0078, found 360.0077 (ppm=0.22) 

 

Recovery of bis-epoxy ketone through Stahl oxidation 

 

Dissolve substrate (41.6 mg, 0.115 mmol, 1.0 equiv) in wet MeCN (1.15 mL). Add 

Cu(MeCN)4OTf (4.4 mg, 0.0115 mmol, 0.10 equiv), 4,4’-methoxybipyridine (2.5 mg, 0.0115 

mmol 0.10 equiv), ABNO (0.3mg, 0.0022 mmol 0.020 equiv) and NMI (1.9mg, 1.9 µL, 0.0229 

mmol, 0.20 equiv). Stir in air 40 minutes. Dilute in pH=7 buffer, and extract crude mixture three 

times with EtOAc. Dry organic phase over Na2SO4, filter, and concentrate. Take up residue in 

PhMe and filter through celite to remove insoluble material. Concentrate to yield 379 (41.3 mg, 

0.114 mmol, >95% yield) as a pale yellow tacky oil. 

 

Schwartz reduction of N-benzoylated western fragment tetrahydro-1,2-oxazine 

 

To a stirred suspension of Cp2Zr(H)Cl (12.4 mg, 0.0320 mmol, 1.5 equiv) in THF(0.15 mL) add 

substrate 380 (14.7 mg, 0.0320 mmol, 1.0 equiv) in a steady stream as a solution in THF (1.75 

mL). Rinse substrate syringe with THF (3×0.15mL) Stir at ambient temperature for 10 minutes. 

Quench reaction with the rapid addition of a pH=7 phosphate buffer (0.50 mL). Extract aqueous 
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four times with EtOAc. Dry organics over Na2SO4. Filter and concentrate, purify crude product by 

flash chromatography (florisil 1.50 g, 10–60% EtOAc/Hexanes, +10% EtOAc/10 mL eluent). 

Concentrate and re–concentrate from dry toluene to yield 382 as a white solid (9.0 mg, 0.0253 

mmol, 79% yield). 

1H NMR (400 MHz, CDCl3) δ 6.41 (s, 1H), 6.06 (d, J = 3.8 Hz, 1H), 5.82 (dddd, J = 10.0, 5.0, 

1.3, 0.7 Hz, 1H), 4.34 – 4.16 (m, 2H), 4.15 (dt, J = 1.7, 0.8 Hz, 1H), 4.13 (ddd, J = 5.0, 1.9, 0.8 

Hz, 1H), 3.90 (ddd, J = 6.0, 2.8, 1.0 Hz, 1H), 3.21 (dt, J = 4.0, 1.2 Hz, 1H), 2.57 (dd, J = 13.4, 5.9 

Hz, 1H), 2.12 (dt, J = 13.4, 2.3 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H), 0.89 (s, 9H), 0.09 (d, J = 8.4 Hz, 

6H). 

13C NMR (126 MHz, CDCl3) δ 171.70, 133.48, 125.45, 81.96, 67.70, 61.78, 59.88, 59.68, 53.79, 

31.59, 26.08, 18.43, 14.41, -4.34. 

FTIR (AT-IR) 2928.00, 2855.59, 2361.23, 2339.00, 1734.81, 1472.07, 1462.93, 1388.10, 

1251.36, 1225.94, 1180.11, 1082.99, 1026.99, 1005.17, 931.05, 859.36, 836.96, 776.80, 739.28, 

667.95 cm-1 

HRMS (TOF, ES+) calc’d for C17H29NO5Si [M+H]+ 356.1888, found 356.1891 (ppm=-0.91) 

 

Ortho-iodonation of MOM-protected phenol 

 

Cool a solution of S2-10116 (2.51g, 12.64 mmol, 1.00 equiv ) and TMEDA (1.84 g, 2.36 mL, 15.80 

mmol, 1.25 equiv) in THF (45 mL) to –78 °C. Add freshly titrated n-BuLi (2.24 M in Hexanes, 

6.77 mL, 15.17 mmol, 1.20 equiv). Stir at –78 °C for 10 minutes then warm to 0 °C and stir 2h. 

OMOM
OMe

OMe

1. n-BuLi (1.20 equiv),
    TMEDA (1.25 equiv)
2. I2 (1.45 equiv)

(64% yield)S2-10

OMOM
OMe

OMe

I

392b

THF, º–78 to 0°C; 
then –78 °C to 0°C



Cool once more to –78 °C and cannulate I2 (4.65g, 18.33 mmol, 1.45 equiv) as a solution in THF 

(65 mL) dropwise into the reaction mixture. After addition is complete, continue stirring at  –78 

°C for 2h. Raise temperature to 0 °C and stir 30 minutes. Quench mixture with NaHCO3(aq) (13 

mL), stirring vigorously. Dilute with EtOAc (80 mL) wash organic layer with DI H2O (50 mL) 

and twice with Na2S2O3(sat) (2×50 mL) then brine (40 mL). Dry organics over Na2SO4. Filter and 

concentrate, purify crude product by flash chromatography (silica, 125 g, 15% EtOAc/Hexanes) 

to yield pure 385b (2.63g, 8.11 mmol, 64% yield) as a pale-yellow oil.  

1H NMR (500 MHz, CDCl3) δ 7.41 (d, J = 8.8 Hz, 1H), 6.47 (d, J = 8.8 Hz, 1H), 5.17 (s, 2H), 

3.82 (s, 3H), 3.80 (s, 3H), 3.64 (s, 3H). 

13C NMR (126 MHz, CDCl3) δ 154.47, 150.39, 142.32, 133.11, 109.91, 99.29, 81.39, 60.87, 

58.37, 56.16. 

FTIR (AT-IR) 2935.62, 2833.84, 2361.14, 1571.01, 1474.8, 1447.25, 1434.1, 1421.14, 1389.3, 

1288.37, 1218.22, 1156.21, 1083.61, 1063.49, 1002.39, 966.15, 905.55, 833.64, 792.64, 768.38, 

694.05 cm-1 

HRMS (TOF, ES+) calc’d for C10H13IO4 [M+H]+ 324.9931, found 324.9924 (ppm=2.24) 

 

Negishi cross-coupling of 384 with 2,3,4-trimethoxyiodobenzene 

 

Suspend Zn0 (596 mg, 9.12 mmol, 3.0 equiv) in DMF (3.0 mL) and add I2 (116 mg, 0.46 mmol, 

0.015 equiv) as a single portion. Stir at ambient temperature until solution is colorless. Add 384 
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(1.00 g, 3.04 mmol, 1.0 equiv) followed by an additional portion of I2 (116 mg, 0.46 mmol, 0.015 

equiv). An exotherm is observed, stir 15 minutes or until cooled. Add Pd2(dba)3 (69.6 mg, 0.076 

mmol, 0.025 equiv) and SPhos (62.4 mg, 0.15 mmol, 0.05 equiv) followed by 385a (1.16g. 3.95 

mmol, 1.3 equiv). Seal and stir at ambient temperature 48h. Purify by flash chromatography (silica, 

5→50% EtOAc/PhMe) by directly applying the crude mixture to column to provide 386a (589.5 

mg, 1.60 mmol, 52% yield) as an orange viscous oil.   

1H NMR (400 MHz, CDCl3) δ 6.77 (d, J = 8.5 Hz, 1H), 6.58 (d, J = 8.5 Hz, 1H), 5.25 (d, J = 7.9 

Hz, 1H), 4.41 (td, J = 7.8, 5.6 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.82 (s, 3H), 3.69 (s, 3H), 2.96 

(qd, J = 13.7, 6.7 Hz, 2H), 1.36 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 172.85, 155.33, 153.04, 152.23, 142.10, 125.04, 122.13, 107.26, 

79.62, 60.89, 60.75, 56.02, 54.60, 52.20, 32.52, 28.35. 

FTIR (AT-IR)	 3365.29, 2936.72, 1744.06, 1712.45, 1602.02, 1494.22, 1467.17, 1435.51, 

1417.74, 1391.30, 1365.18, 1276.05, 1199.34, 1162.53, 1096.71, 1045.69, 1014.85, 906.91, 

855.78, 795.36, 730.34 cm-1 

HRMS (TOF, ES+) calc’d for C10H13IO4 [M+H]+ 370.1860, found 370.1862 (ppm=-0.46) 

[a]D
23 +21.5° (c = 1.0, CHCl3).  

 

Negishi cross-coupling of 384 with 3,4-dimethoxy-2-(methoxymethoxy)iodobenzene 
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Suspend Zn0 (1.396 mg, 21.36 mmol, 3.0 equiv) in DMF (5.9 mL) and add I2 (271 mg, 1.07 mmol, 

0.015 equiv) as a single portion. Stir at ambient temperature until solution is colorless. Add 384 

(2.34 g, 7.12 mmol, 1.0 equiv) followed by an additional portion of I2 (271 mg, 1.07 mmol, 0.015 

equiv). An exotherm is observed, stir 15 minutes or until cooled. Add Pd2(dba)3 (163 mg, 0.178 

mmol, 0.025 equiv) and SPhos (146 mg, 0.356 mmol, 0.05 equiv) followed by 385b (3.00 g. 9.26 

mmol, 1.3 equiv). Seal and stir at ambient temperature 24h. Purify by flash chromatography (silica, 

10→15%EtOAc/20%CH2Cl2/Hexanes) by directly applying the crude mixture to column to 

provide impure product. Second purification with silica plug. Flush plug with 0→5%EtOAc/ 

CH2Cl2 to remove color impurities before flushing off the product with EtOAc. Provides 386b 

(2.44g (6 wt% biaryl), 5.74 mmol, 81% yield) as a thick oil with trace biaryl Wurtz coupling 

impurity (6 wt%). 

1H NMR (400 MHz, CDCl3) δ 6.79 (d, J = 8.5 Hz, 1H), 6.58 (d, J = 8.6 Hz, 1H), 5.48 (d, J = 8.1 

Hz, 1H), 5.10 (d, J = 1.0 Hz, 2H), 4.44 (td, J = 8.0, 5.9 Hz, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 3.67 (s, 

3H), 3.53 (s, 3H), 3.08 – 2.81 (m, 2H), 1.31 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 172.94, 155.44, 152.90, 150.02, 141.58, 125.48, 125.04, 122.62, 

107.81, 99.72, 79.51, 60.67, 57.53, 56.03, 54.60, 52.22, 32.29, 28.35. 

FTIR (AT-IR) 3365.74, 2935.22, 2838.00, 1744.76, 1714.13, 1602.67, 1496.11, 1459.01, 

1437.74, 1392.02, 1365.56, 1278.40, 1212.16, 1161.19, 1100.05, 1067.79, 983.03, 924.74, 795.66 

cm-1 

HRMS (TOF, ES+) calc’d for C10H13IO4 [M+H]+ 400.1966, found 400.1972 (ppm=-1.52) 

 [a]D
23 +25.1° (c = 1.0, CHCl3).  

 

Saponification of 2,3,4-trimethoxyphenylalanine 386a 



 

Chill 386a (200 mg, 0.541 mmol, 1.0 equiv) in THF (3 mL) and H2O (1.5 mL) to 0 °C. Add 

LiOH•H2O (113.3mg, 2.70 mmol. 5 equiv) stir for 4h50m allowing the reaction to warm to ambient 

temperature. Add NaH2PO4 (373 mg) dissolved in DI H2O (3 mL). Extract crude mixture twice 

with CHCl3. Acidify aqueous layer to pH=5 with 1M HCl(aq) extract with CHCl3 once. Further 

acidify the aqueous solution to pH=3 and extract twice with 10% i-PrOH/CHCl3. Dry organics 

over Na2SO4, filter and concentrate to yield pure 387a (137.7mg, 0.387 mmol, 72% yield) as a 

clear oil. 

1H NMR	(400 MHz, CDCl3) δ 6.85 (d, J = 8.5 Hz, 1H), 6.62 (d, J = 8.5 Hz, 1H), 5.44 (d, J = 7.1 

Hz, 1H), 4.38 (d, J = 6.8 Hz, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.84 (s, 3H), 3.23 – 2.79 (m, 2H), 

1.38 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 176.32, 156.23, 153.21, 152.15, 142.13, 125.25, 122.06, 107.48, 

80.36, 61.04, 60.88, 56.12, 55.04, 31.90, 28.42. 

FTIR (AT-IR)	 3342.19, 2976.23, 2932.13, 2361.42, 2340.28, 1716.10, 1602.88, 1495.73, 

1468.39, 1435.89, 1418.07, 1393.78, 1367.62, 1276.94, 1260.45, 1234.79, 1165.23, 1098.96, 

1049.02, 1017.44, 903.85, 851.00, 797.75, 764.67, 750.62, 684.65, 667.91, 643.91 cm-1 

HRMS (TOF, ES+) calc’d for C18H29NO8 [M+H]+ 400.1966, found 400.1960 (ppm=1.48) 

[a]D
23 +8.2° (c = 0.5, CHCl3).  

 

Saponification 3,4-dimethoxy-2-(methoxymethoxy)phenylalanine 386b 
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Cool 386b (132.7 mg, 0.332 mmol, 1.0 equiv) to 0°C stirring in THF (11 mL). Add solution of 

LiOH•H2O (70.0 mg, 1.661 mmol, 5.0 equiv) as a solution in DI H2O (2.0 mL). Allow reaction to 

warm to ambient temperature and stir 20h. Add DI H2O (5.0 mL) and extract mixture with 2:1 

Hexanes: CH2Cl2 (15 mL) and set aside. Lower of aqueous layer to pH=4 and extract twice with 

10% i-PrOH/CHCl3 (~30 mL). Concentrate crude and azeotrope with PhMe. Dissolve in minimal 

Et2O and crash out with Hexanes, remove solvent. Purify by flash chromatography (silica, 4.0 g, 

0.75%AcOH/19.25%Hexanes in EtOAc) 387b (105mg, 82% yield) was recovered as a tacky oil.   

1H NMR (400 MHz, CDCl3) δ 6.90 (d, J = 8.5 Hz, 1H), 6.66 (d, J = 8.6 Hz, 1H), 5.76 (s, 1H), 

5.19 (s, 2H), 4.42 (d, J = 7.2 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.58 (s, 3H), 3.12 (d, J = 7.1 Hz, 

2H), 1.38 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 176.72, 156.17, 153.01, 150.04, 141.57, 125.15, 122.54, 108.00, 

99.79, 80.11, 60.75, 57.63, 56.11, 54.94, 31.66, 28.40. 

FTIR (AT-IR)	 3330.56, 2975.53, 2935.51, 2837.19, 1713.56, 1603.46, 1496.44, 1458.64, 

1426.45, 1394.22, 1367.28, 1278.34, 1211.14, 1160.04, 1100.99, 1067.90, 983.76, 925.03. 902.54, 

852, 799.42, 667.97, 623.01l, 613.00, 605.77, 602.38 cm-1 

HRMS (TOF, ES+) calc’d for C18H27NO8 [M+H]+ 386.1809, found 386.1806 (ppm=0.89) 

[a]D
23 +23.5° (c = 1.0, CHCl3).  

 

Conversion to Fmoc-protected amino acid  

CO2MeBocHN

MOMO
OMe

OMe

CO2HBocHN

MOMO
OMe

OMe

LiOH
(5 equiv)

THF: H2O

(82% yield)393b 394b

H H



 

Bubble dried HCl(g), generated from NaCl(s) and H2SO4(conc), through a solution of 387b (166 mg, 

0.431 mmol, 1.0 equiv) in CH2Cl2 (17.3 mL) stirring vigorously at ambient temperature for 55 

minutes, reactions became cloudy. Concentrate mixture to a white powder in vacuo before diluting 

the crude intermediate in water (1.7 mL) and 1,4-dioxane (1.7 mL). Add NaHCO3 (145mg, 1.723 

mmol, 4.0 equiv) followed by Fmoc-OSu (145.4 mg, 0.431 mmol, 1.0 equiv). Stir at ambient 

temperature for 17h. Acidify with 1M HCl(aq) and extract the crude aqueous mixture three times 

CHCl3. Dry organic layer over Na2SO4. Filter and concentrate. Flushing crude intermediate 

through a silica plug (50% EtOAc/1% AcOH/Hexanes) provided as a white solid (154 mg, 0.333 

mmol). The intermediate was split, dissolve (76 mg, 0.164 mmol, 1.0 equiv) in DMF (0.5 mL). 

Add imidazole (67mg, 0.984 mmol, 6.0 equiv) and TBSCl (74 mg, 0.492 mmol, 3.0 equiv); wash 

down solids with additional DMF (0.6 mL) and stir at ambient temperature. Dilute with DI H2O 

(4.0 mL) extract with three times CH2Cl2 (3×10 mL). Wash combined organics with DI H2O and 

brine. Dry organic layer over Na2SO4. Filter, concentrate, azeotrope from PhMe then purify crude 

product by flash chromatography (silica, 1% AcOH/50% EtOAc/Hexanes) to yield impure 389. 

Take up in CHCl3 wash with DI H2O:brine (2:1) as a white solid. Dry organic layer over Na2SO4, 

filter, concentrate to yield a pure 389 (58 mg, 0.100 mmol, 47% yield, 3 steps) 

1H NMR (400 MHz, CDCl3) δ 7.73 (d, J = 7.5 Hz, 2H), 7.56 – 7.47 (m, 2H), 7.36 (tdd, J = 7.5, 

2.2, 1.1 Hz, 2H), 7.26 – 7.20 (m, 2H), 6.85 (d, J = 8.5 Hz, 1H), 6.49 (d, J = 8.5 Hz, 1H), 6.03 (d, 

J = 6.6 Hz, 1H), 4.45 – 4.36 (m, 1H), 4.36 – 4.22 (m, 2H), 4.12 (t, J = 7.0 Hz, 1H), 3.78 (s, 3H), 

3.70 (s, 3H), 3.10 (qd, J = 14.0, 7.2 Hz, 2H), 1.01 (s, 9H), 0.26 (s, 3H), 0.21 (s, 3H). 

BocHN CO2H

MOMO
OMe

OMe

1. HCl(xs), CH2Cl2 FmocHN CO2H

TBSO
OMe

OMe

2.Fmoc-OSu (1 equiv)
   NaHCO3 (4 equiv)

(47%, 3 steps)394b 396

2.TBSCl (3 equiv)
   imidazole (6 equiv)



13C NMR (101 MHz, CDCl3) δ 176.72, 156.61, 152.96, 147.72, 143.97, 143.90, 141.35, 141.33, 

140.13, 127.74, 127.09, 125.19, 125.14, 121.15, 120.03, 105.79, 67.09, 60.49, 56.37, 55.90, 

47.21, 31.91, 26.28, 18.84, -3.82, -4.02. 

FTIR (AT-IR)	2929.71, 2857.1, 1716.2, 1604.17, 1518.77, 1493.02, 1462.32, 1425.95, 1251.58, 

1101.83, 1042.85, 983.26, 908.33, 833.54, 782.87, 757.89, 731.04, 646.98, 634.01, 621.45, 610.72 

cm-1 

HRMS (TOF, ES+) calc’d for C32H39NO7Si [M+H]+ 578.2569, found 578.2560 (ppm=-1.56) 

[a]D
23 –9.7° (c = 1.0, CHCl3).  

 

C-H oxidation of western fragment to form a dihydro-1,2-oxazine 

 

Add Pb(OAc)4 (1.4 mg, 0.00309 mmol, 1.10 equiv) to solution of 382 (1.0mg, 0.0028 mmol, 1.0 

equiv) cooled in an ice bath. Remove ice bath and stir at ambient temperature for 5 minutes. Add 

ethylene glycol (10 µL) and stir 1 minute. Dilute with DI H2O (1 mL) and extract with CH2Cl2 

twice. Dry over Na2SO4, filter, and concentrate. Azeotrope from toluene to yield 395 (1.0mg, 

0.0028 mmol,  >90% yield) 

1H NMR (400 MHz, CDCl3)  δ 6.08 (dd, J = 10.2, 3.6 Hz, 1H), 5.92 (dd, J = 9.9, 4.5 Hz, 1H), 4.46 

(t, J = 3.7 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 4.04 (d, J = 3.0 Hz, 1H), 3.29 (d, J = 3.7 Hz, 1H), 

2.99 (d, J = 18.7 Hz, 1H), 2.59 (d, J = 18.7 Hz, 1H), 1.38 (t, J = 7.1 Hz, 3H), 0.90 (s, 9H), 0.13 (d, 

J = 16.6 Hz, 6H). 

NH
O

H

CO2Et
O

OTBS

H

N
O

H

CO2Et
O

OTBS

Pb(OAc)4
(1.1 equiv)

(>90% yield)

CH2Cl2

389 402



13C NMR (101 MHz, CDCl3) δ 162.46, 152.79, 134.39, 124.80, 78.55, 67.03, 62.63, 58.50, 53.39, 

29.85, 28.78, 25.99, 14.26, -4.42, -4.46. 

FTIR (AT-IR)	 2927.27, 2855.36, 1722.27, 1598.14, 1463.24, 1375.48, 1285.23, 1250.16, 

1177.33, 1100.85, 1005.97, 980.91, 915.69, 837.45, 777.06, 750.28, 695.41, 667.18 cm-1 

HRMS (TOF, ES+) calc’d for C17H27NO5Si [M+H]+ 354.1731, found 354.1733 (ppm=-0.49) 

 

Selective copper-mediated formation of chlorohydrin  

 

To a solution of substrate (1.0 mg, 0.00282 mmol, 1 equiv) in THF(0.2 mL) add solution Li2CuCl4 

[composed of LiCl (0.36mg, 0.00846 mmol, 3.0 equiv) and CuCl2 (0.57mg, 0.00423 mmol, 1.5 

equiv)] in THF (0.1mL). Stir mixture at ambient temperature for 70 minutes. Add pH=7 phosphate 

buffer (0.5 mL). Extract three times with EtOAc. Dry organic layer over Na2SO4, filter and 

concentrate in vacuo to yield 396 (1.0 mg, 0.00256 mmol, 91%) as a white solid.  

 1H NMR (600 MHz, CDCl3) δ 5.71 (ddd, J = 10.3, 2.5, 1.8 Hz, 1H), 5.59 (dt, J = 10.4, 2.5 Hz, 

1H), 4.80 (q, J = 2.4 Hz, 1H), 4.37 (qd, J = 7.1, 4.0 Hz, 2H), 4.19 (dq, J = 6.9, 2.5 Hz, 1H), 4.15 

(dd, J = 6.7, 2.2 Hz, 1H), 2.76 – 2.71 (m, 2H), 2.51 (d, J = 19.5 Hz, 1H), 1.38 (t, J = 7.1 Hz, 3H), 

0.90 (s, 9H), 0.15 (s, 3H), 0.08 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 160.28, 129.35, 127.32, 82.82, 68.01, 67.17, 63.02, 62.54, 29.85, 

28.64, 25.82, 14.30, -4.58, -5.00. 

N
O

H

CO2Et
O

OTBS
N

O
H

CO2Et
OH

OTBS

Li2CuCl4
(1.5 equiv)

Cl

THF

402
403



FTIR (AT-IR) 3428.5, 2948.98, 2881.42, 2361.23 ,2339.97, 1720.97, 1472.4, 1386.18, 1282.69, 

1250.2, 1114.29, 1071.89, 1015.57, 905.99, 876.79, 838.12, 801.94, 779.67, 667.89, 654.80, 

623.98, 617.77, 609.26 cm-1 

HRMS (TOF, ES+) calc’d for C17H28ClNO5Si [M+H]+ 390.1498, found 390.1509 (ppm=-2.81) 

 

2.17.4 CRYSTALLOGRAPHIC DATA OF 369b (a16027_a) 
 
X-ray quality crystals of 396b obtained layer diffusion between 1:1 CHCl3/Hexanes and 
Hexanes. 

 

Table 1.  Crystal data and structure refinement for a16027_a.cif. 
Identification code    a16027_a 
Empirical formula    C18 H19 N O6 
Formula weight     345.34 
Temperature     99.99 K 
Wavelength     0.71073 Å 
Crystal system     Triclinic 
Space group     P-1 
Unit cell dimensions   a = 9.4539(6) Å   a= 114.437(3)°. 
     b = 9.8703(7) Å   b= 105.326(3)°. 
     c = 10.6887(7) Å   g = 102.469(3)°. 
Volume     813.45(10) Å3 
Z     2 
Density (calculated)   1.410 Mg/m3 
Absorption coefficient   0.107 mm-1 
F(000)     364 
Crystal size    0.8 x 0.45 x 0.35 mm3 
Theta range for data collection  2.281 to 37.744°. 
Index ranges    -15<=h<=16, -16<=k<=16, -18<=l<=18 
Reflections collected   65383 
Independent reflections   8412 [R(int) = 0.0252] 
Completeness to theta = 26.000°  99.9 %  
Absorption correction   Semi-empirical from equivalents 
Max. and min. transmissio n  0.7474 and 0.7156 



Refinement method   Full-matrix least-squares on F2 
Data / restraints / parameters  8412 / 0 / 228 
Goodness-of-fit on F2   1.043 
Final R indices [I>2sigma(I)]  R1 = 0.0343, wR2 = 0.1005 
R indices (all data)   R1 = 0.0395, wR2 = 0.1046 
Extinction coefficient   n/a 
Largest diff. peak and hole   0.555 and -0.205 e.Å-3 
 
 Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 
103) for a16027_a.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
______________________________________________________________________________ 
  x   y   z   U(eq) 
_____________________________________________________________________________________________  
O(1)  6873(1)   5237(1)   993(1)   23(1) 
O(2)  4078(1)   7342(1)   4849(1)   21(1) 
O(3)  1513(1)   4450(1)   837(1)   21(1) 
O(4)  6198(1)   8195(1)   2623(1)   12(1) 
O(5)  10068(1)  8470(1)   3357(1)   20(1) 
O(6)  5780(1)   4128(1)   2137(1)   17(1) 
N(1)  7672(1)   8243(1)   3435(1)   13(1) 
C(1)  6678(1)   5329(1)   2092(1)   14(1) 
C(2)  7469(1)   6856(1)   3630(1)   14(1) 
C(3)  6542(1)   6982(1)   4627(1)   17(1) 
C(4)  5059(1)   7241(1)   4009(1)   14(1) 
C(5)  3483(1)   6000(1)   3339(1)   17(1) 
C(6)  2082(1)   5930(1)   2205(1)   18(1) 
C(7)  2411(1)   7354(1)   1984(1)   18(1) 
C(8)  3827(1)   8515(1)   2614(1)   17(1) 
C(9)  5306(1)   8516(1)   3564(1)   14(1) 
C(10)  8946(1)   8903(1)   3200(1)   14(1) 
C(11)  8956(1)   10245(1)  2885(1)   15(1) 
C(12)  9779(1)   10449(1)  2025(1)   20(1) 
C(13)  9905(1)   11734(1)  1767(1)   26(1) 
C(14)  9229(1)   12823(1)  2380(1)   27(1) 
C(15)  8441(1)   12645(1)  3270(1)   23(1) 
C(16)  8295(1)   11352(1)  3517(1)   17(1) 
C(17)  4949(1)   2613(1)   725(1)   22(1) 
C(18)  4116(1)   1415(1)   1064(1)   27(1) 
 
Table 3.   Bond lengths [Å] and angles [°] for  a16027_a 
_____________________________________________________  
O(1)-C(1)   1.2069(7) 
O(2)-C(4)   1.4424(7) 
O(2)-C(5)   1.4510(7) 
O(3)-H(3)   0.8400 
O(3)-C(6)   1.4277(8) 
O(4)-N(1)   1.4127(6) 
O(4)-C(9)   1.4561(6) 
O(5)-C(10)   1.2234(7) 
O(6)-C(1)   1.3270(7) 
O(6)-C(17)   1.4591(7) 
N(1)-C(2)   1.4480(7) 
N(1)-C(10)   1.3767(7) 
C(1)-C(2)   1.5316(7) 
C(2)-H(2)   1.0000 



C(2)-C(3)   1.5339(8) 
C(3)-H(3A)   0.9900 
C(3)-H(3B)   0.9900 
C(3)-C(4)   1.5075(8) 
C(4)-C(5)   1.4682(8) 
C(4)-C(9)   1.5140(8) 
C(5)-H(5)   1.0000 
C(5)-C(6)   1.5068(9) 
C(6)-H(6)   1.0000 
C(6)-C(7)   1.5011(8) 
C(7)-H(7)   0.9500 
C(7)-C(8)   1.3347(8) 
C(8)-H(8)   0.9500 
C(8)-C(9)   1.4944(8) 
C(9)-H(9)   1.0000 
C(10)-C(11)   1.4945(8) 
C(11)-C(12)   1.3977(8) 
C(11)-C(16)   1.3956(8) 
C(12)-H(12)   0.9500 
C(12)-C(13)   1.3932(10) 
C(13)-H(13)   0.9500 
C(13)-C(14)   1.3882(12) 
C(14)-H(14)   0.9500 
C(14)-C(15)   1.3950(10) 
C(15)-H(15)   0.9500 
C(15)-C(16)   1.3928(8) 
C(16)-H(16)   0.9500 
C(17)-H(17A)   0.9900 
C(17)-H(17B)   0.9900 
C(17)-C(18)   1.5017(10) 
C(18)-H(18A)   0.9800 
C(18)-H(18B)   0.9800 
C(18)-H(18C)   0.9800 
 
C(4)-O(2)-C(5)  60.99(3) 
C(6)-O(3)-H(3)  109.5 
N(1)-O(4)-C(9)  109.45(4) 
C(1)-O(6)-C(17)  116.14(5) 
O(4)-N(1)-C(2)  110.53(4) 
C(10)-N(1)-O(4)  116.60(4) 
C(10)-N(1)-C(2)  122.41(4) 
O(1)-C(1)-O(6)  124.83(5) 
O(1)-C(1)-C(2)  123.79(5) 
O(6)-C(1)-C(2)  111.38(4) 
N(1)-C(2)-C(1)  109.45(4) 
N(1)-C(2)-H(2)  108.5 
N(1)-C(2)-C(3)  107.27(4) 
C(1)-C(2)-H(2)  108.5 
C(1)-C(2)-C(3)  114.37(4) 
C(3)-C(2)-H(2)  108.5 
C(2)-C(3)-H(3A)  109.6 
C(2)-C(3)-H(3B)  109.6 
H(3A)-C(3)-H(3B) 108.1 
C(4)-C(3)-C(2)  110.42(4) 
C(4)-C(3)-H(3A)  109.6 
C(4)-C(3)-H(3B)  109.6 



O(2)-C(4)-C(3)  114.92(4) 
O(2)-C(4)-C(5)  59.80(4) 
O(2)-C(4)-C(9)  114.11(5) 
C(3)-C(4)-C(9)  114.18(4) 
C(5)-C(4)-C(3)  122.07(5) 
C(5)-C(4)-C(9)  119.51(5) 
O(2)-C(5)-C(4)  59.22(3) 
O(2)-C(5)-H(5)  115.7 
O(2)-C(5)-C(6)  115.76(5) 
C(4)-C(5)-H(5)  115.7 
C(4)-C(5)-C(6)  122.52(5) 
C(6)-C(5)-H(5)  115.7 
O(3)-C(6)-C(5)  109.05(5) 
O(3)-C(6)-H(6)  107.2 
O(3)-C(6)-C(7)  112.48(5) 
C(5)-C(6)-H(6)  107.2 
C(7)-C(6)-C(5)  113.46(5) 
C(7)-C(6)-H(6)  107.2 
C(6)-C(7)-H(7)  117.8 
C(8)-C(7)-C(6)  124.41(5) 
C(8)-C(7)-H(7)  117.8 
C(7)-C(8)-H(8)  117.9 
C(7)-C(8)-C(9)  124.22(5) 
C(9)-C(8)-H(8)  117.9 
O(4)-C(9)-C(4)  108.30(4) 
O(4)-C(9)-C(8)  104.16(4) 
O(4)-C(9)-H(9)  109.8 
C(4)-C(9)-H(9)  109.8 
C(8)-C(9)-C(4)  114.81(4) 
C(8)-C(9)-H(9)  109.8 
O(5)-C(10)-N(1)  120.20(5) 
O(5)-C(10)-C(11) 122.11(5) 
N(1)-C(10)-C(11) 117.49(4) 
C(12)-C(11)-C(10) 117.52(5) 
C(16)-C(11)-C(10) 122.35(5) 
C(16)-C(11)-C(12) 119.92(5) 
C(11)-C(12)-H(12) 120.0 
C(13)-C(12)-C(11) 120.05(6) 
C(13)-C(12)-H(12) 120.0 
C(12)-C(13)-H(13) 120.0 
C(14)-C(13)-C(12) 119.93(6) 
C(14)-C(13)-H(13) 120.0 
C(13)-C(14)-H(14) 119.9 
C(13)-C(14)-C(15) 120.18(6) 
C(15)-C(14)-H(14) 119.9 
C(14)-C(15)-H(15) 119.9 
C(16)-C(15)-C(14) 120.11(6) 
C(16)-C(15)-H(15) 119.9 
C(11)-C(16)-H(16) 120.1 
C(15)-C(16)-C(11) 119.79(5) 
C(15)-C(16)-H(16) 120.1 
O(6)-C(17)-H(17A) 110.4 
O(6)-C(17)-H(17B) 110.4 
O(6)-C(17)-C(18) 106.77(5) 
H(17A)-C(17)-H(17B) 108.6 
C(18)-C(17)-H(17A) 110.4 



C(18)-C(17)-H(17B) 110.4 
C(17)-C(18)-H(18A) 109.5 
C(17)-C(18)-H(18B) 109.5 
C(17)-C(18)-H(18C) 109.5 
H(18A)-C(18)-H(18B) 109.5 
H(18A)-C(18)-H(18C) 109.5 
H(18B)-C(18)-H(18C) 109.5 
_____________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
  
Table 4.   Anisotropic displacement parameters  (Å2x 103) for a16027_a.  The anisotropic 
displacement factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 
______________________________________________________________________________  
  U11  U22   U33  U23  U13  U12 
_____________________________________________________________________________________________  
O(1)  34(1)   20(1)  18(1)   9(1)  16(1)   9(1) 
O(2)  23(1)   22(1)  17(1)   6(1)  14(1)   4(1) 
O(3)  19(1)   17(1)  21(1)   8(1)  7(1)   0(1) 
O(4)  9(1)   14(1)  14(1)   6(1)  6(1)   5(1) 
O(5)  15(1)   29(1)  24(1)   15(1)  10(1)   13(1)  
O(6)  23(1)   12(1)  15(1)   7(1)  6(1)   5(1) 
N(1)  10(1)   14(1)  16(1)   8(1)  5(1)   4(1) 
C(1)  18(1)   13(1)  15(1)   8(1)  7(1)   8(1) 
C(2)  14(1)   15(1)  13(1)   7(1)  5(1)   5(1) 
C(3)  18(1)   19(1)  11(1)   7(1)  5(1)   5(1) 
C(4)  16(1)   14(1)  12(1)   5(1)  8(1)   4(1)  
C(5)  18(1)   15(1)  16(1)   8(1)  10(1)   3(1) 
C(6)  14(1)   16(1)  22(1)   9(1)  10(1)   3(1) 
C(7)  13(1)   18(1)  27(1)   12(1)  11(1)   7(1) 
C(8)  14(1)   14(1)  26(1)   11(1)  11(1)   7(1) 
C(9)  13(1)   12(1)  16(1)   5(1)  9(1)   4(1) 
C(10)  11(1)   17(1)  13(1)   7(1)  6(1)   5(1) 
C(11)  10(1)   18(1)  15(1)   9(1)  5(1)   3(1) 
C(12)  14(1)   28(1)  20(1)   13(1)  8(1)   4(1) 
C(13)  17(1)   34(1)  27(1)   21(1)  8(1)   2(1) 
C(14)  19(1)   27(1)  34(1)   23(1)  6(1)   1(1) 
C(15)  17(1)   19(1)  31(1)   16(1)  7(1)   4(1) 
C(16)  13(1)   17(1)  21(1)   10(1)  7(1)   4(1)  
C(17)  30(1)   13(1)  17(1)   5(1)  6(1)   6(1)  
C(18)  23(1)   18(1)  28(1)   11(1)  3(1)   0(1) 
_____________________________________________________________________________________________  
 
Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 103) 
for a16027_a. 
_________________________________________________________________  
  x   y   z   U(eq) 
_________________________________________________________________  
  
H(3)  2000  4558  310  31 
H(2)  8535  6899  4164  17 
H(3A)  6262  5987  4680  20 
H(3B)  7208  7887  5655  20 
H(5)  3460  4949  3261  20 
H(6)  1229  5920  2593  21 
H(7)  1553  7434  1352  22 



H(8)  3900  9397  2448  20 
H(9)  5908  9597  4480  17 
H(12)  10252  9711  1616  24 
H(13)  10453  11866  1172  31 
H(14)  9304  13692  2194  32 
H(15)  8003  13407  3708  27 
H(16)  7748  11224  4113  20 
H(17A)  5707  2261  308  27 
H(17B)  4178  2734  -14  27 
H(18A)  3545  373  142  40 
H(18B)  3366  1775  1470  40 
H(18C)  4892  1313  1801  40 
________________________________________________________________  
 
Table 6.  Torsion angles [°] for a16027_a. 
________________________________________________________________  
O(1)-C(1)-C(2)-N(1)  32.43(7) 
O(1)-C(1)-C(2)-C(3)  152.80(6) 
O(2)-C(4)-C(5)-C(6)  102.72(6) 
O(2)-C(4)-C(9)-O(4)  -175.31(4) 
O(2)-C(4)-C(9)-C(8)  -59.41(6) 
O(2)-C(5)-C(6)-O(3)  -172.59(4) 
O(2)-C(5)-C(6)-C(7)  61.20(6) 
O(3)-C(6)-C(7)-C(8)  -118.76(6) 
O(4)-N(1)-C(2)-C(1)  59.09(5) 
O(4)-N(1)-C(2)-C(3)  -65.52(5) 
O(4)-N(1)-C(10)-O(5)  -151.78(5) 
O(4)-N(1)-C(10)-C(11)  33.40(6) 
O(5)-C(10)-C(11)-C(12)  33.04(8) 
O(5)-C(10)-C(11)-C(16)  -141.58(6) 
O(6)-C(1)-C(2)-N(1)  -148.56(4) 
O(6)-C(1)-C(2)-C(3)  -28.19(6) 
N(1)-O(4)-C(9)-C(4)  -60.15(5) 
N(1)-O(4)-C(9)-C(8)  177.21(4) 
N(1)-C(2)-C(3)-C(4)  52.05(5) 
N(1)-C(10)-C(11)-C(12)  -152.25(5) 
N(1)-C(10)-C(11)-C(16)  33.14(7) 
C(1)-O(6)-C(17)-C(18)  175.96(5) 
C(1)-C(2)-C(3)-C(4)  -69.52(6) 
C(2)-N(1)-C(10)-O(5)  -10.28(8) 
C(2)-N(1)-C(10)-C(11)  174.90(4) 
C(2)-C(3)-C(4)-O(2)  178.71(4) 
C(2)-C(3)-C(4)-C(5)  110.02(5) 
C(2)-C(3)-C(4)-C(9)  -46.69(6) 
C(3)-C(4)-C(5)-O(2)  102.16(5) 
C(3)-C(4)-C(5)-C(6)  -155.13(5) 
C(3)-C(4)-C(9)-O(4)  49.71(6) 
C(3)-C(4)-C(9)-C(8)  165.61(4) 
C(4)-O(2)-C(5)-C(6)  -114.03(5) 
C(4)-C(5)-C(6)-O(3)  118.90(5) 
C(4)-C(5)-C(6)-C(7)  -7.31(8) 
C(5)-O(2)-C(4)-C(3)  -114.02(5) 
C(5)-O(2)-C(4)-C(9)  111.34(5) 
C(5)-C(4)-C(9)-O(4)  -107.64(5) 
C(5)-C(4)-C(9)-C(8)  8.26(7) 
C(5)-C(6)-C(7)-C(8)  5.62(8) 



C(6)-C(7)-C(8)-C(9)  3.49(9) 
C(7)-C(8)-C(9)-O(4)  107.72(6) 
C(7)-C(8)-C(9)-C(4)  -10.54(8) 
C(9)-O(4)-N(1)-C(2)  71.68(5) 
C(9)-O(4)-N(1)-C(10)  -142.45(4) 
C(9)-C(4)-C(5)-O(2)  -102.33(5) 
C(9)-C(4)-C(5)-C(6)  0.39(8) 
C(10)-N(1)-C(2)-C(1)  -84.44(6) 
C(10)-N(1)-C(2)-C(3)  150.94(5) 
C(10)-C(11)-C(12)-C(13)  -176.34(5) 
C(10)-C(11)-C(16)-C(15)  175.33(5) 
C(11)-C(12)-C(13)-C(14)  0.77(9) 
C(12)-C(11)-C(16)-C(15)  0.83(8) 
C(12)-C(13)-C(14)-C(15)  0.80(10) 
C(13)-C(14)-C(15)-C(16)  -1.55(10) 
C(14)-C(15)-C(16)-C(11)  0.73(9) 
C(16)-C(11)-C(12)-C(13)  -1.59(8) 
C(17)-O(6)-C(1)-O(1)  -1.75(8) 
C(17)-O(6)-C(1)-C(2)  179.25(5) 
________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
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Appendix 1 

 

Spectra Relevant to Chapter 2: 

A Synthetic Strategy Toward the Oxazinyl Natural Products Gliovirin and the Trichodermamides    
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Chapter 3 

Development of the First Catalytic Asymmetric Alkylation of an Oxime and its Application to the 

Synthesis of Enantioenriched Amines 

 

 

3.1 INTRODUCTION  

Amino acids and chiral amines are of great utility in the synthetic chemistry. They find application in 

many areas including building blocks for fine synthesis, as catalysts, ligands for transition metals, or as 

chemical probes in biological systems.1–3 Prominent examples of chiral amines in catalysis are the 

cinchona alkaloids and proline; however, these enantioenriched nitrogenous compounds are isolated from 

the chiral pool. Despite their great utility, nature favors the generation of a single enantiomer of these 

compounds; therefore, if the unnatural enantiomer is required it must be derived through synthetic means.4 

Chiral amines can be generated synthetically through a variety of tactics: chiral auxiliaries bound at 

nitrogen or otherwise appended to the substrate can undergo highly diastereoselective addition of 

organometallic nucleophiles (Scheme 3.1ab). In a similar vein, the use of stoichiometric chiral 

nucleophiles can generate similarly enantioenriched products with the added advantage that auxiliary no  
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Scheme 3.1. Examples of Strategies for the asymmetric synthesis of chiral amines 

 

longer needs to be cleaved. Alternatively, chiral amines can be generated through enantioselective 

catalysis of the imine, or tautomeric enamine, through hydrogenation (Scheme 3.1c).5 An enticing 

approach to the synthesis of non-canonical amino acids and other chiral amines is an asymmetric 1,2-

addition to an imine with a chiral catalyst or nucleophile.6 In the case of metal-based catalysis, it is critical 

to prevent irreversible coordination of the metal center and concurrent catalyst poisoning due to the highly 

Lewis basic products. The variety of applications for unnatural amino acids in organic chemistry have led 

to a focus upon their synthesis commonly achieved through a multi-step Strecker synthesis.7,8  Another 

common approach for their production is alkylation of benzophenone–derived Schiff bases in conjugation 

with a chiral phase transfer catalysts or chiral glycine–derived Schiff bases.9,10 Asymmetric addition to 

imines to form enantioenriched amines has been successfully realized with several nucleophiles.11–13 

Despite this work examples of asymmetric homopropargylation of imine electrophiles has been limited.  

The first example of an asymmetric homopropargylation of an imine was achieved through copper 

catalysis with a single example XX (Scheme3.2a); N-tosyl imines were later revisited as electrophiles in 

conjunction with silver catalysis establishing improved substrate scope and enantioselectivities (Scheme 

3.2d).14,15 The use of a stoichiometric chiral moiety has been found to be effective either through the attack 

of a chiral allenyl borane on a protected imine (Scheme 3.2b);16 or the 1,2–addition of propargylic 

nucleophiles to a chiral tert-butyl sulfinyl imine (Scheme 3.2c).17–21 Alkylation of a glycine–derived 

Schiff base, as previously alluded to can provide propargyl glycine derivatives either through the 

stiochiometric generation of a chiral complex or through the use of a chiral phase transfer catalyst.22  
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Scheme 3.2. Known examples of the asymmetric homopropargylation of imines 

 

Copper catalysis has been effectively engaged in the catalytic asymmetric homopropargylation of N- 

phosphinoyl imines23 as well as cyclic aldimines (Scheme 3.2ef).24 Most examples of asymmetric 

alkylation of imines demonstrate limited substrate scope with variable yields and rely on N-deprotection 

conditions that are strongly acidic or reducing. These restrictions limit their application to more sensitive 

substrates and lead to poor recovery of the desired free amine. 

Providing new catalytic systems to deliver alkynylated derivatives are of particular interest as they 

are highly derivatizable.25 Furthermore, amino acid derivatives such as propargyl glycine can be 

incorporated into proteins to later undergo click chemistry to either enrich a synthesized protein or tag it 

with a labelling reagent.26 Alkynylation has several challenges, over the related allylations and 

crotylations, as a well-defined cyclic transition state is less favored and allenylation is competitive.27 
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3.2 PREVIOUS WORK IN OXIME ALKYLATION  

Oximes are an intriguing substrate for an analogous asymmetric 1,2-addition. Not only could 

chiral amines be accessed from the alkylated products through the cleavage of the weak N-O bond (~35 

kcal•mol-1)28 but an a-hydroxylamine ester product could be used directly in a-ketoacid–hydroxylamine 

(KAHA) peptide coupling, pioneered by Bode and coworkers.29  

Previous examples of 1,2-additions to oximes are limited in both the racemic and asymmetric 

sense. Addition via alkyl radical30,31, boronate allylation32,33 and organometallic addition34 have been 

observed. To date, however, a stoichiometric amount of chiral information integrated into the nucleophile 

(Scheme 3.3a) or as an auxiliary appended to the substrate (Scheme 3.3b-e) are required in synthesis of 

enantioenriched hydroxylamines through alkylation. To the best of our knowledge, there are no current 

examples of asymmetric catalysis to generate an enantioenriched hydroxylamine. This challenging 

reactivity is not unanticipated as the mixing of the oxygen lone pair with p* of the C-N double bond 

lowers the electrophilicity of the substrate. Furthermore, once the product is formed, due to the alpha 

effect, the nitrogen lone pair can form a strong interaction with Lewis acids leading to catalyst poisoning 

or decomposition.35 

Scheme 3.3. Known methods to generate enantioenriched hydroxylamines 
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3.3 THE DEVELOPMENT AN ENANTIOSELECTIVE PROPARGYLATION OF AN OXIME 

The racemic propargylation of oxime ester proceed with the use of an allenyl zinc nucleophile as 

has been previously observed by in additions to N-alkyl imines (See Chaper 2.3).36 To develop the first 

example of a catalytic asymmetric addition to an oxime electrophile both Lewis acidic and 

transmetallative reaction manifolds were explored. A high–throughput screening procedure was devised 

using a phenethyl glyoxalate-derived oxime, filtration work-up, quantitative NMR to provide expedient 

analysis of enantioselectivity and yield. Initial studies using of chiral Lewis acids to activate the 

electrophile in conjunction with allenyl organometallic nucleophiles, such as stannanes and organozincs, 

can gave no appreciable enantioinduction. Transiently generating a chiral nucleophile through boronate 

ligand exchange, on the other hand, product 445a with appreciable enantioinduction albeit in trace yield 

(Table 3.1, entry 1).37 Further screens of chiral diols and additives were unable to improve reactivity but 

reflection upon the more extensively explored asymmetric addition of carbonyl-containing compounds 

suggested that copper catalysis could provide the turnover desired.24,38,39  

Table 3.1. Selected entries in the optimization of reaction conditions 

 

+

(2.0 equiv)
444a 424

(1.0 equiv)

catalyst (10 mol %)
THF, rt, 24 hRO2C H

N
OTBS

•
B(OR)2

RO2C

HN
OTBS

445a

B(OR)2 catalystentry yield (%) ee (%)
424a, Bgly

424a
424a
424a
424a
424a
424a
424a

424b, Bpin
424c, Bneo

3
2
7

70
11
24
30
50
6

85

66
63
72
30
80
82
95
92
62
96

1
2
3
4
5
6
7
8
9

10

3,3’-Br-BINOL
Cu(CO2i-Pr)2; BINAPa

 
Cu(MeCN)4BF4; T-BINAPa 
Cu(MeCN)4BF4; TADDOL-P-NMe2

a

Cu(MeCN)4BF4; DifluorPhosa

Cu(MeCN)4BF4; BTFM-GarPhosa

Cu(MeCN)4BF4; BTFM-GarPhos
Cu(BTFM-Garphos)(MeCN)2BF4 
Cu(BTFM-Garphos)(MeCN)2BF4
Cu(BTFM-Garphos)(MeCN)2BF4

a Li(OtBu) (9.5 mol%) added

R=CH2CH2Ph
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Encouragingly, a screen of copper–phosphine complexes with an allenyl boronate gave moderate 

enantioduction, albeit in trace yield (Table 3.1, entry 2). An extensive ligand screening effort identified

two families of ligands with contrasting reactivity: bis-phosphines (entry 3), which gave no turnover but 

higher enantioinduction, and phosphoramidates (entry 4), which gave higher turnover but low ee. 

Postulating that greater p-acidity of phosphoramidates imparted greater reactivity, electron-poor 

bisphosphines were screened.40 Gratifyingly, both commercially available electron-poor phosphines 

Difluorphos (entry 5) and BTFM-Garphos (entry 6) generated product with elevated ee. Significantly, 

BTFM-Garphos was the first bisphosphine ligand to achieve a turnover. In contrast to conventional metal-

catalyzed, boronate-mediated alkylations a series of control experiments demonstrated that catalytic base 

was not required to activate the boronate for transmetallation to the copper center. Indeed, upon exclusion 

of catalytic base both a slight improvement to yield was observed as well as strong enantioinduction 

(Table 3.1, entry 7). 

Figure 3.1. Catalyst decomplexation after ligand-metal prestir by 31P NMR, t=0, 2h, 4h, then 4h intervals 

 

At this point, the transformation was highly enantioselective but turnover remained low and efforts 

to further improve the yield through additive and ligand screening were stymied. In an effort to gain 
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greater insight into the alkylation it was monitored by NMR. The pre–catalyst is generated by pre–stirring 

the ligand and metal source for 10 minutes prior to the addition of the oxime electrophile and the boronate. 

When monitored by 31P NMR observed rapid decomplexation of the ligand from copper with 50% 

dissociation observed after eight hours and only trace catalyst present after 24 hours (Figure 3.1). 

Correspondent to this, 1H NMR showed a small induction time followed by a period of rapid product 

formation which slowed in rate as time progressed and active catalyst decreased in concentration. To 

improve the yield and eliminate the observed induction time, an isolated pre-complexed catalyst was used 

in place of a ligand–metal pre–stir and improved yield was observed with negligible erosion of ee (Table 

3.1, entry 8). 

Figure 3.2. Monitoring oxime alkylation by 1H NMR varying boronate linker with pre-complexed catalyst 

 

Finally, attention turned to the optimization of the boronate ester. The allenyl boronate was not 

completely consumed during the reaction; however, an excess of boronate provided improved robustness. 

The bulk of the boronate ester could affect both the rate of transmetallation as well as the rate of catalyst 

poisoning by limiting coordination of the Lewis basic hydroxylamine nitrogen to the copper center. To 
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probe this hypothesis, bulkier boronate esters were employed: while the pinacol ester demonstrated 

diminished reactivity and enantioinduction (entry 9, Table 3.1); gratifyingly, the neopentyl ester not only 

dramatically improved turnover but also provided a highly enantioenriched product (entry 10, Table 3.1). 

A comparison of the allenyl dioxaboralane and dioxaborinanes showed that the neopentyl ester improves 

both the initial rate of the reaction (Pgly, Pneo, Figure 3.2) as well as limiting off-pathway decomposition 

of the starting material (Sgly, Sneo). The half-life of active catalyst also lengthened from eight hours to 

14 hours when the neopentyl ester was employed (Cneo). 

The nature of this excellent reactivity was quite sensitive to the nature of the ester on the substrate, 

while linear alkyl esters gave excellent results, even moderate perturbations to more hindered esters, 

including benzyl, gave substantially poorer yields and selectivities. Subjection of amide substrates to the 

optimized conditions similarly led to depressed reactivity. Despite these limitations, the simplicity of the 

conditions employed in the homopropargylation of oxime ester 444a lend to easy scalability; the 

alkylation of 444b was scaled up to gram scale, retaining the desired reactivity and 88% of the electron 

poor phosphine ligand was recovered cleanly. 

Table 3.2. Selected substrates for asymmetric propargylation of oximes and Boc-imines 
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H
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Seeking to gain an understanding of the limitations of the system we found that the glyoxalate 

derived oxime 444 is a special substrate. The presence and proximity of a carbonyl in the oxime 

electrophile was critical to good reactivity. Both benzaldoxime 447 and 3-oximinopropanoate 448 (Table 

3.2) were completely unreactive to the optimized conditions. Furthermore, the addition of catalytic base 

to encourage the transfer of the allenyl fragment onto the copper center were ineffective at rescuing 

reactivity. Other glyoxalate–derived electrophiles were reactive as replacing the oxime moiety with an N-

aryl imine which reacted with good efficiency but a depressed enantioselectivity at room temperature 

(449, Table 3.2). Cooling the homopropargylation of imine 449 restored enantioselectivity comparable to 

the successful oxime electrophiles. Under the optimized conditions, substrates which lacked a Lewis basic 

moiety, such as N-aryl benzaldimine 450, showed non-trivial reactivity in contrast to less electrophilic 

benzaldoxime 447 yet with far lower enantioselectivity. To further establish the importance of further 

justified pre-coordination of the substrate was required for good reactivity. To this end we surveyed N-

boc imines as a possible alternative substrate class for propargylation as complementary method 

Hoveyda’s allenylation.41 While reactivity was restored for these substrates the enantioselectivities 

observed were not exceptional, however a solvent swap to toluene did provide a small improvement in 

that respect with little detriment to yield.  

During these studies, Cu(PPh3)2(acac) proved an effective catalyst for the racemic 

homopropargylation of these electrophiles. This achiral catalyst also reacted well when an allyl boronate 

456 was used in place of the allenyl boronate 424b to form 457 in high yield (entry 1, Scheme 3.4a). 

Unfortunately, this reactivity was not reflected when the newly developed asymmetric catalyst was used. 

Both dioxaborolane and dioxaborinane generated a low yield of the allylated product; however, in line 

with the homopropargylation, the neopentyl ester rescued reactivity to a degree albeit with negligible 

enantioselectivity (entry 3, Scheme 3.4a). This massive erosion in selectivity between the propargylation 

and allylation is likely due to differences bond angles in a transition states.  
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When a substituted allenyl boronate 458 was engaged under the optimized reaction conditions both the 

allene and propargylated products were observed in low yield, both with non-trivial enantioinduction 

(Condition B, Scheme3.4b). It is notable that the ratio of between alkyne and allene appears tied to the 

nature of the ligand. While triphenylphosphine favors formation of the alkyne 459a the electron–poor 

bisphosphine BTFM-Garphos favors formation of the allene 459b. This shift in product distribution is 

suggestive that an isomerization event generating these two products is dependent on the nature of the 

copper center.  

Scheme 3.4. Attempts to use other boronate esters in copper-catalyzed alkylations 

 

The patterns of reactivity along with combined with the NMR studies, informed a mechanistic 

hypothesis of this transformation. Initial loss of a labile nitrile ligand from the precatalyst 460 (Scheme 

3.5) would provide a site for transmetallation. NMR monitoring of the reaction suggests the formation of 

a reactive boron-ate complex, control experiments demonstrated that this was not a result of phosphine 

coordination to boron. Therefore, the Lewis basic oxime nitrogen is proposed to activate the boronate 

ester to form an activated complex 462 to facilitate transmetallation of the allenyl fragment onto the 

copper center 461 in an SN2’ fashion. The resulting propargylated organocuprate 463 can then equilibrate 
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with the allenyl isomer 465. Given the necessity of a Lewis basic moiety in close proximity the 

electrophilic carbon, it is therefore thought that exchange of the ancillary nitrile ligand with the carbonyl 

of the ester of the electrophile not only brings the allenyl fragment into close proximity with electrophilic 

carbon in a pre-organized fashion but also would inductive activates the substrate for alkylation. It is 

proposed, therefore, that the delivery of the nucleophilic fragment proceeds through a cyclic transition 

state to yield a propargylated B-N adduct that is hydrolyzed readily upon work-up. 

Scheme 3.5. Mechanistic hypothesis of the copper-catalyzed alkylation of an oxime 
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biological studies to tag proteins we were delighted to find that 470 was formed in high yield under typical 

Cu-catalyzed “click” reaction conditions. To further improves access other unnatural N-hydroxyamino 

ester we also found that 445b could undergo high-yielding Sonagashira couplings after N-acylation. 

Scheme 3.5. Elaboration of hydroxyamino esters 

 

 

3.5 CONCLUSIONS AND OUTLOOK 

In conclusion, the use of an electron–poor chiral bisphosphine resulted in the development of the 

first catalytic asymmetric alkylation of an oxime. While this reactivity was highly specialized to 

glyoxalate–derived oximes these simple conditions could also be applied to the homopropagylation of 

imines electrophiles with moderate enantioinduction. Furthermore, it is established that the propargylated 

products of the reactions can be elaborated both at the alkyne and at the nitrogen orthogonally.   

While other boronates were not amenable to the reaction conditions they demonstrated good 

reactivity when an achiral catalyst was used. This suggests that Cu-bisphosphine catalysis could be a 

general solution the asymmetric alkylation of oximes however further ligand development is needed.
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3.6 EXPERIMENTAL SECTION 

3.6.1 MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed under a nitrogen atmosphere using 

freshly dried solvents. Tetrahydrofuran (THF), methylene chloride CH2Cl2), acetonitrile (MeCN), 

dimethylformamide (DMF), benzene (PhH), diethyl ether (Et2O) and toluene (PhMe) were dried 

by passing through activated alumina columns. Unless otherwise stated, chemicals and reagents 

were used as received. Triethylamine (Et3N) was distilled over calcium hydride prior to use. All 

reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-

coated plates (0.25 mm) and were visualized by UV, p-anisaldehyde, vanillian, CAM or KMnO4 

staining. Flash column chromatography was performed either as described by Still et al.31 using 

silica gel (partical size 0.032-0.063) purchased from Silicycle. Optical rotations were measured on 

a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm. 1H and 13C NMR spectra 

were recorded on a Varian 400 MR (at 400 MHz and 101 MHz, respectively), or a Varian Inova 

500 (at 500 MHz and 126 MHz, respectively), and are reported relative to internal CHCl3 (1H, d = 

7.26), or DMSO (1H, d	= 2.50), and CDCl3 (13C, d = 77.0), or DMSO (13C, d =40.0). Data for 1H 

NMR spectra are reported as follows: chemical shift (d	ppm) (multiplicity, coupling constant (Hz), 

integration). Multiplicity and qualifier abbreviations are as follows: s =singlet, d = doublet, t = 

triplet, q = quartet, m = multiplet, br = broad, app = apparent. IR spectra were recorded on a Perkin 

Elmer Paragon 1000 spectrometer and are reported in frequency of absorption (cm.–1). HRMS 

were acquired using an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in 

electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), or mixed (MM) 

ionization mode. Analytical chiral HPLC was performed with an Agilent 1100 Series HPLC 

utilizing Chiralpak AD or Chiralcel OD-H columns (4.6 mm x 25 S7 cm) obtained from Daicel 
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Chemical Industries, Ltd with visualization at 254 nm. 

 

3.4.2 PREPERATIVE PROCEDURES AND SPECTROSCOPIC DATA 

 

Adapted from: OL, 2011, p.4020; Org Syn. 1981, 60,41. 

To freshly activated Mg0 (6.11g, 251.3mmol, 1.01 equiv), add HgCl2 (115mg, 0.425 mmol, 

0.2 mol%) and suspend in Et2O (50 mL). Propargyl bromide(29.79g, 250 mmol, 1.0 equiv) in 

PhMe (80 wt%, 27.8mL) was further diluted with additional Et2O (170 mL). A small amount of 

the propargyl bromide solution (10 mL) was added to the suspension of Mg0. Initiation was 

achieved through gentle heating of the resulting mixture. Cool in a salt/ice bath and add the 

remaining propargyl bromide solution as a slow, steady stream. After addition is complete, stir at 

ambient temperature for 1h. Cannulate the resulting Grignard solution, over 45 minute period, into 

a solution of freshly distilled trimethyl borate (26.0g, 27.9mL, 250 mmol, 1.0 equiv) in Et2O (250 

mL) cooled to –78 °C. After completion of Grignard addition, allow mixture to warm to ambient 

temperature. Cool the suspension once more to 0 °C and cannulate 3M HCl(aq) (250 mL, 3 equiv) 

dropwise into over 3h. Stir mixture until solids disappear, approximately 1h, and a further 20 

minutes at ambient temperature. Separate the organic layer and wash the aqueous layer with Et2O 

(3×150 mL); dry the combined organics over MgSO4. Decant dried organics into a 2L round 

bottom flask and wash the remaining solids with dry Et2O (100 mL). Concentrate solution under 

reduced pressure until the 500mL remain and backfill with argon. Add anhydrous MgSO4 (250g, 

3. neopentyl glycol (1 equiv), 
    MgSO4 (8.3 equiv)

•
BneoBr

(32% yield, 3 steps)

1. Mg0 (1.01 equiv),
    HgCl2 (0.2 mol%), 0 °C
2. B(OMe)3 (1 equiv), –78 °C;
    HCl (3 equiv), 0 °C

424bSI3-1
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2.08 mol, 8.31 equiv) and neopentyl glycol (26.04g, 250 mmol, 1.0 equiv). Rinse down solids with 

Et2O (50 mL) and stir under argon with an overhead stirrer for 40h. Filter off solids using a large 

swivel frit. Take the caked solids and rinse with Et2O (4×100 mL) through a packed sand filter. 

Recombine organic and remove solvent through a vacuum transfer. Add pentanes (400mL) to the 

remaining residue and cool to 0 °C. Filter off precipitated solids with a large swivel frit and remove 

pentane through a vacuum transfer. The remaining yellow oil is purified by kugelrohr distillation 

(90 °C/ 5.0 Torr → 110 °C/1.0 Torr) to yield a clear oil (12.61g, 83.0 mmol, 32% yield) 

1H NMR (400 MHz, CDCl3) δ 4.82 (t, J = 7.0 Hz, 1H), 4.61 (d, J = 7.0 Hz, 2H), 3.66 (s, 4H), 

0.98 (s, 6H). 

13C NMR (126 MHz, CDCl3) δ 217.90, 72.47, 69.77, 31.84, 21.82. 

11B NMR (128 MHz, CDCl3) δ 26.48. 

FTIR (AT-IR) 2961.46, 2886.72, 1934.21, 1477.56, 1414.40, 1377.85, 1327.80, 1256.69, 

1224.66, 1181.98, 1129.78, 812.31, 681.34, 667.05 cm-1 

 

Flame dry freshly activated Mg0 (802mg, 33.0 mmol, 1.10 equiv) and HgCl2 (81.4 mg, 0.30 mmol, 

1.0 mol %) under argon. Cool to 0 °C and add Et2O (3 mL) and stir 5 minutes. Add 1-bromo-2-

butyne (665mg, 0.44 mL, 5.0 mmol, 0.16 equiv) dropwise maintaining an internal temperature at 

5 °C. Stir vigorously to initiate Grignard formation. Cannulate the remainder of 1-bromo-2-butyne 

(3.33 g, 2.19 mL, 25.0 mmol, 0.84 equiv) dropwise as a solution in Et2O (20 mL) into the reaction. 

Remove cooling bath after addition of bromide is complete and stir mixture at ambient temperature 

3. neopentyl glycol (1 equiv), 
    MgSO4 (0.22 equiv)

•
BneoBr

(5.3% yield, 3 steps)

1. Mg0 (1.10 equiv),
    HgCl2 (1 mol%), 0 °C
2. B(OMe)3 (1 equiv), –78 °C;
    HCl (2 equiv), 0 °C

Me
Me

SI3-2 458
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for 4h30m. Cool mixture to –78 °C and add B(OMe)3 (3.12g, 3.35 mL, 30.0 mmol, 1.00 equiv). 

Stirred solution for 1h at –78 °C then raise the temperature to 0 °C for an additional 1h. Add 2M 

HCl (30 mL, 2.0 equiv) stir for 30 minutes. Separate organic layer and extract aqueous layer three 

times with Et2O (3×20 mL). Wash combined organic layer with brine and dry over Na2SO4. 

Concentrate crude mixture to ~30 mL under argon. Add anhydrous MgSO4 (800 mg, 6.6 mol, 0.22 

equiv) and neopentyl glycol (3.13 g, 30.0 mmol, 1.0 equiv) as a solution in Et2O (20 mL). Stir 

mixture at ambient temperature for 24h. Filter off solids and concentrate in vacuo to yield crude 

product. Purify by flash chromatography (silica, 5→50% Et2O/Hexanes) to yield a XX (265mg, 

1.60 mmol, 5.3 % yield) as a clear oil.   

1H NMR (500 MHz, CDCl3) δ 4.55 (d, J = 3.2 Hz, 2H), 3.66 (d, J = 0.7 Hz, 4H), 1.67 (t, J = 3.2 

Hz, 3H), 0.97 (d, J = 0.7 Hz, 6H). 

13C NMR (126 MHz, CDCl3) δ 214.88, 72.65, 69.94, 31.87, 21.95, 15.20. 

11B NMR (128 MHz, CDCl3) δ 26.97. 

FTIR (AT-IR) 2961.08, 2888.58, 1932.18, 1476.92, 1414.06, 1377.28, 1368.34, 1339.46, 

1304.51, 1252.74, 1221.90, 1204.31, 1130.36, 812.52, 703.27, 681.75, 624.42 cm-1 

 

3.4.3. Synthesis of Electrophile Substrates	

 

Combine glyoxylic acid monohydrate (3.00g, 32.59mmol, 1.0 equiv), hydroxylamine•HCl (2.29g, 

32.92, 1.01 equiv), p-toluenesulfonic acid monohydrate(930.2mg, 4.89mmol 0.15 equiv) and 

phenethyl alcohol (11.7mL, 11.9g, 3.0 equiv) in toluene (10 mL). Heat mixture with a Dean-Stark 
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trap to 50 °C and ramp to 120 °C over 80 min. Reflux overnight. Cool to ambient temperature, add 

EtOAc (100 mL). Wash organics layers with NaHCO3(aq) (100mL), then NH4Cl (20 mL), then 

pH=7 buffer (20 mL) and finally brine (40mL). Dry organics over Na2SO4. Purify by flash 

chromatography (silica, 300 g, 20→40% EtOAc/Hexanes) to yield S1 (2.92g, 15.1 mmol, 46% 

yield) as a pale liquid.  

1H NMR (400 MHz, CDCl3) δ 10.88 (s, 1H), 7.55 (d, J = 1.7 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.27 

– 7.17 (m, 3H), 4.45 (td, J = 7.2, 1.6 Hz, 2H), 3.06 – 2.94 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 162.44, 141.47, 137.10, 128.87, 128.59, 126.75, 66.15, 34.77. 

FTIR (AT-IR) 3322.11, 3028.17, 2359.63, 1721.19, 1622.35, 1497.30, 1453.99, 1306.73, 

1257.07, 1193.59, 1009.49, 917.54, 744.20, 697.56, 667.93 cm-1 

HRMS (TOF, ES+) calc’d for C10H11NO3 [M+H]+ 194.0812, found 194.0819(ppm=-3.76) 

 

Take up S1 (566.5 mg, 2.93 mmol, 1.0 equiv) in DMF (5 mL). Add imidazole (618.2 mg, 9.08 

mmol, 1.5 equiv) and TBSCl (663.2 mg, 4.40 mmol, 3.1 equiv) and stir at ambient temperature for 

24h. Dilute in 6:1 DI H2O:brine (26 mL) and extract with Et2O (19 mL). Wash organic layer with 

brine (3.5 mL). Dry over Na2SO4, filter, and concentrate to yield the crude product. Purify by flash 

chromatography (silica, 3→5% EtOAc/Hexanes) to yield pure 1a (795.1 mg, 2.59 mmol, 88% 

yield) 

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 1.2 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.26 – 7.19 (m, 

3H), 4.42 (td, J = 6.9, 1.3 Hz, 2H), 2.98 (t, J = 6.9 Hz, 2H), 0.97 (d, J = 1.7 Hz, 9H), 0.25 (d, J = 

1.7 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 162.24, 145.88, 137.57, 129.05, 128.52, 126.67, 65.78, 35.01, 

25.89, 18.14, -5.28. 
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FTIR (AT-IR) 2930.10, 2857.88, 1746.89, 1724.23, 1595.23, 1471.85, 1314.23, 1252.38, 

1182.26, 1012.32, 974.59, 834.85, 784.87, 748.45, 697.31 cm-1 

HRMS (TOF, ES+) calc’d for C16H25NO3Si [M+H]+ 308.1676, found 308.1676 (ppm=0.15) 

 

 

Charge a round bottom flask with glyoxylic acid monohydrate (20.0 g, 217 mmol 1.00 equiv), 

hydroxylamine hydrochloride (15.3 g, 220 mmol, 1.01 equiv), pTSA•H2O (3.12 g, 16 mmol, 7.6 

mol%) and ethanol (260 mL). Fit with a Socklett extractor charged with activated 4Å molecular 

sieves and a reflux condenser. Heat the mixture at 120°C for 9 hours. Cool reaction to 

room temperature. Concentrate in vacuo then dilute oil in Et2O (400 mL) and NaHCO3(sat) (240 

mL). Separate organic layer and wash organics with NH4Cl(sat) (100mL) followed by pH=7 buffer 

(100 mL). Test aqueous layer for product and re-extract with Et2O(150 mL), if necessary. Wash 

combined organics with brine(100 mL). Dry over Na2SO4, filter, and concentrate in vacuo to give 

clean S2 (20.9 g, 174 mmol, 82% yield) as a pale yellow oil. Physical and spectral properties were 

consistent with literature values.42  

 

 

Combine S2 (31.18g, 266 mmol), imidazole(55.76g, 819 mmol) and TBSCl (61.80g, 410 mmol) 

in DMF (210 mL). Stir at ambient temperature for 72h. Pour mixture into 6:1 DI:brine (2.1 L). 

Extract with Et2O (1.5L). Wash organic layer with brine(300 mL). Dry over Na2SO4, filter and 

EtO2C

N

H

OHNH2OH•HCl (1.01 equiv)
     pTSA (7.6 mol %),

 EtOH, 120 °CEtO2C OH

(82% yield)

OH

SI3-6SI3-5

444B
EtO2C

N

H

OTBSTBSCl (1.5 equiv)
imidazole (3.1 equiv)

(78% yield)
EtO2C

N

H

OH

DMF
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concentrate in vacuo to yield crude product. Purify by flash chromatography (silica, 3.5-4.5% 

Et2O/Hexanes) to provide 1b (47.8 g, 207 mmol, 78% yield) as a clear oil. 

1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 1.5 Hz, 1H), 4.27 (qd, J = 7.1, 1.4 Hz, 2H), 1.31 (td, 

J = 7.1, 1.5 Hz, 3H), 0.92 (d, J = 1.9 Hz, 9H), 0.21 (d, J = 1.7 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 162.41, 146.20, 61.42, 25.91, 18.18, 14.22, -5.23. 

FTIR (AT-IR) 2930.90, 2858.64, 2359.72, 1748.16, 1724.8, 1596.93, 1472.39, 1370.20, 1315.32, 

1253.03, 1190.11, 1035.38, 968.41, 835.09, 785.05, 690.07, 667.95 cm-1 

HRMS (TOF, ES+) calc’d for C20H21NO3Si [M+H]+ 232.1363, found 232.1365 (ppm=-0.66) 

 

 

Combine trans-b-hydromuconic acid (1.39g, 9.92 mmol, 1.0 equiv), phenethyl alcohol (2.65g, 

2.60 mL, 21.71 mmol, 2.2 equiv) and sulfuric acid (50 µL, 92mg, 0.94 mmol, 0.10 equiv) in 

benzene (50 mL). Heat to 100 °C with a Dean–Stark trap for 16h. Cool to ambient temperature 

and dilute with Et2O and wash with NaHCO3(aq), and then brine. Dry organics over MgSO4, filter, 

and concentrate in vacuo to yield diphenethyl (E)-hex-3-enedioate with trace impurities (2.75g, 

mmol, 79% yield) as a beige solid which was used in the next reaction without any further 

purification. An analytically pure sample could be obtained by solvation of S2 in minimal CH2Cl2 

to partially remove a color impurity. Partial concentration followed by trituration with pentanes 

provides a white solid.  

1H NMR (500 MHz, CDCl3) δ 7.33 – 7.28 (m, 4H), 7.26 – 7.19 (m, 6H), 5.69 – 5.59 (m, 2H), 

4.30 (t, J = 7.1 Hz, 4H), 3.12 – 3.02 (m, 4H), 2.94 (t, J = 7.1 Hz, 4H) 

O

O
Ph O

O
PhPhH, 100 °C

phenethyl alcohol
(2.2 equiv)

H2SO4 (0.10 equiv)HO2C
CO2H

(79% yield) SI3-8SI3-7
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13C NMR (126 MHz, CDCl3) δ 171.56, 137.82, 129.05, 128.62, 126.72, 126.03, 65.30, 37.99, 

35.19. 

FTIR (AT-IR)	3028.47, 1784.57, 1728.66, 1603.24, 1496.92, 1453.99, 1398.83, 1358.33, 

1154.71, 1086.89, 1030.78, 967.39, 921.34, 810.32, 749.84, 698.56 cm-1 

HRMS (TOF, ES+) calc’d for C22H24O4 [M+H]+ 353.1747, found 353.1739 (ppm=2.37) 

 

	

Sparge a solution of S2 (500mg, 1.42 mmol, 0.50 equiv) with O2 for five minutes. Cool to 

–78 °C. Sparge with O3, stirring at –78 °C for five minutes until a persisitent blue color is observed. 

Sparge with O2 for 10 minutes until the solution is colorless. Add dimethyl sulfide (1.00 mL, 0.84 

g, 13.5 mmol, 4.8 equiv) and sparge with argon for five minutes. Concentrate in vacuo to yield the 

crude aldehyde as a yellow oil (487 mg) which was immediately take up in CH2Cl2 (2 mL) before 

adding DI H2O (12 mL) followed by hydroxylamine hydrochloride (193.2mg, 2.78 mmol, 0.98 

equiv) and NaHCO3 (276 mg, 3.29, 1.15 equiv). Stir vigorously at ambient temperature 24h. 

Separate organic layer and wash aqueous with additional CH2Cl2 (5 mL). Wash combined organics 

with NaHCO3(sat) (2 mL) followed by brine (5 mL). Dry organics over Na2SO4, filter and 

concentrate in vacuo to yield crude oxime (386 mg) as a mixture of E/Z isomers. Dissolve the 

crude oxime in DMF (2.5 mL). Add imidazole (393 mg, 5.77 mmol, 2.0 equiv) and TBSCl (420 

mg, 2.79 mmol, 0.98 equiv). Stir at ambient temperature 16h. Add Et2O (40 mL) and 6:1 DI 

H2O/brine (30 mL) and separate organics. Extract aqueous layer with Et2O (5 mL). Wash combine 

organics with brine. Dry organics over Na2SO4, filter and concentrate in vacuo to yield crude 

O

O
Ph O

O
Ph

1. O3; then DMS
2. NH2OH•HCl, NaHCO3

H

N
OTBS

O

O
Ph3. TBSCl, imidazole

     DMF
(20%, 3 steps)SI3-8 448
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siloxime (496 mg) as a mixture of E/Z isomers. Purify by flash chromatography (4-10% 

Et2O/Hexanes) to yield 1d (180 mg, 0.560 mmol, 20% yield over three steps).  

1H NMR (500 MHz, CDCl3; major isomer designated by *, minor isomer designated by §) δ 7.58 

(t, J = 6.2 Hz, 1H§), 7.35 – 7.28 (m, 2H*, 2H§), 7.25 – 7.19 (m, 3H*, 3H§), 7.14 (t, J = 4.8 Hz, 

1H*), 4.34 (td, J = 7.1, 4.1 Hz, 2H*, 2H§), 3.42 (d, J = 4.8 Hz, 2H*), 3.25 (d, J = 6.2 Hz, 2H§), 

2.96 (td, J = 7.0, 2.6 Hz, 2H*, 2H§), 0.94 (s, 9H§), 0.93 (s, 9H*), 0.18 (s, 6H*), 0.17 (s, 9H§). 

 13C NMR (126 MHz, CDCl3) δ 169.51, 169.40, 148.56, 147.84, 137.61, 137.59, 128.98, 128.67, 

126.78, 65.71, 65.62, 35.42, 35.12, 31.46, 26.14, 26.06, 18.19, -5.18, -5.20. 

FTIR (AT-IR) 677.62, 698.10, 748.18, 782.57, 834.98, 916.93, 1165.67, 1250.38, 1340.16, 

1389.87, 1471.86, 1738.81, 2856.77, 2928.98 cm-1 

HRMS (TOF, ES+) calc’d for C17H27NO3Si [M+H]+ 322.1833, found 322.1839 (ppm=1.87) 

 

 

Dissolve phenyl aldoxime43 (1.21g, 10.00 mmol, 1.00 equiv), imidazole (2.11g, 31.00 mmol, 3.10 

equiv), and TBSCl (2.26g, 15.00 mmol, 1.50 equiv) and in DMF (10 mL) . Stir at ambient 

temperature for 16h. Dilute with Et2O, wash with organics with DI H2O:brine (6:1). Dry over 

Na2SO4, filter and concentrate in vacuo to yield crude product. Purification by flash 

chromatography (silica, 0→100% Et2O/Hexanes) to yield pure 1e (438 mg, 19% yield) as a clear 

oil. Physical and spectral properties were consistent with literature values.44 

 

Note: Synthesis of 1c and known imines electrophiles (12c-f) were made by literature 

procedures and their physical and spectral properties were consistent with literature values.45,46,41 

TBSCl (1.5 equiv),
imidazole (3.1 equiv)

Ph H

N
OTBS

(19% yield) 447
Ph H

N
OH

DMF

SI3-10
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3.4.4. Copper Catalyzed Reactions and Product Characterization  

General procedure A for the racemic copper–catalyzed alkylation of oxime ester 

 

 Stir Cu(acac)2 (5.7mg, 0.216 mmol, 0.10 equiv) and PPh3 (0.12 equiv) in THF or PhMe 

(1.08 mL, 0.2 M)  for 10 minutes at ambient temperature. Add 2c (65.7 mg, 0.432mmol, 2.0 equiv) 

followed by electrophile (0.22 mmol, 1.0 equiv). Seal under N2 and continue to stir at ambient 

temperature for 24h. Dilute with EtOAc (1 mL) and diethanolamine (0.2 mL) and stir 15 minutes. 

Dilute with DI H2O and extract with EtOAc (3x2 mL). Dry organic layer over Na2SO4, filter, and 

concentrate to yield crude product. Purify crude mixture by flash chromatography.  

 

General Procedure B for the asymmetric copper–catalyzed alkylation  

 

 In a N2-filled glovebox, dilute Cu(S-BTFMGarphos)(MeCN)2BF4 (28 mg, 0.020 mmol, 

0.10 equiv) with THF –or– PhMe (0.5 mL). Add electrophile (0.20 mmol) followed by 2c (60.8 

mg, 0.40 mmol, 2.0 equiv, 2 equiv) directly to the solution. Seal solution under N2 and stir at 

ambient temperature for 16h. Dilute with EtOAc (2 mL) and diethanolamine (80 µL) and stir 15 

minutes. Dilute with DI H2O (3.0 mL) and extract with EtOAc (3×4.0 mL). Dry organics over 

+

(2.0 equiv)
1 2

(1.0 equiv)
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Na2SO4, filter and concentrate in vacuo to yield crude product. 1H NMR yields with dimethyl 

terephthalate (10 mol%) as a standard. Purification by flash chromatography.  

 

Separatory Conditions and Characterization of Products 

445b: Prepared from 444a (61.5 mg, 0.200 mmol) using General 

Procedure B in THF. Yield by 1H NMR with internal standard (10 mol% 

dimethyl terephalate) Purification by flash chromatography (silica, 

2.5%Et2O/ 10%CH2Cl2/10%PhMe/Hexanes) to yield 444a (40.9 mg, 0.118 mmol, 59% yield) as 

a clear oil. The enantiomeric excess was determined to be 96% by chiral SFC analysis (AD, 2.5 

mL/min, 1% IPA in CO2, λ = 254 nm): tR(minor) = 6.148 min, tR(major) =5.116 min. 

1H NMR (400 MHz, CDCl3): δ 7.33 – 7.28 (m, 2H), 7.24 (ddt, J = 7.6, 1.2, 0.6 Hz, 4H), 4.47 – 

4.30 (m, 3H), 3.63 (t, J = 6.4 Hz, 1H), 2.98 (t, J = 7.1 Hz, 3H), 2.53 (tdd, J = 16.8, 6.4, 2.6 Hz, 

2H), 2.04 – 1.93 (m, 1H), 0.89 (d, J = 0.5 Hz, 11H), 0.11 (d, J = 3.2 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 171.71, 137.73, 129.01, 128.64, 126.73, 79.34, 70.98, 65.68, 

63.94, 35.19, 26.28, 19.41, 18.07, -5.38, -5.43. 

FTIR (AT-IR) 3309.43, 2928.68, 2856.23, 1739.08, 1497.68, 1471.5, 1389, 1345.74, 1279.25, 

1248.5, 1178.39, 1055.21, 974.31, 900.14, 833.73, 780.66, 747.8, 698.5, 644.51 cm-1 

HRMS (TOF, ES+) calc’d for C19H29NO3Si [M+H]+ 348.1989, found 348.1998 (ppm=-2.45) 

[a]D
23 –16.3 (c = 1.0, CHCl3).  

 

445b: Prepared from 444b (1.00 g, 4.322 mmol, 1.0 equiv), 424b (295 mg, 

1.944 mmol, 2.0 equiv) and freshly prepared Cu(S-

BTFMGarphos)(MeCN)2BF4 (0.432 mmol, 0.10 equiv) Note: Stir Cu(MeCN)4BF4 (135.9 mg, 

HN
OTBS

O

O
Ph

EtO2C

HN
OTBS
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0.432 mmol, 0.10 equiv) and S-BTFMGarphos (512.6 mg, 0.432 mmol, 0.10 equiv) in MeCN for 

10 minutes before concentrating in vacuo to a yield a white powder.  Using an appropriately scaled 

General Procedure 2 in THF (21.6 mL). Purification by flash chromatography (silica, 

2.5%Et2O/10%CH2Cl2/10%PhMe/Hexanes) provided  both product (1.01 g, 3.76 mmol, 87% 

yield) and recovered ligand (450 mg, 88% recovery) Note: Any product fractions contaminated 

with ligand were concentrated and triturated with cold pentanes, before an azeotrope with PhMe. 

The enantiomeric excess was determined after benzoylation to be 95% by chiral SFC analysis. 

1H NMR (400 MHz, CDCl3) δ 5.58 (s, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.60 (t, J = 6.4 Hz, 1H), 2.55 

(dt, J = 6.4, 3.0 Hz, 2H), 2.00 (t, J = 2.7 Hz, 1H), 1.27 (td, J = 7.1, 0.7 Hz, 3H), 0.86 (d, J = 1.0 

Hz, 9H), 0.08 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 171.77, 79.37, 70.86, 63.89, 61.25, 26.21, 19.37, 18.01, 14.34, -

5.43, -5.49. 

FTIR (AT-IR)	 3313.49, 2929.08, 2856.83, 2361.12, 2340.34, 1738.61, 1472.12, 1370.05, 

1342.99, 1248.41, 1215.41, 1186.14, 1054.34, 904.00, 834.61, 780.54, 667.96 cm–1 

HRMS (TOF, ES+) calc’d for C13H25NO3Si [M+H]+ 272.1676, found 272.1674 (ppm=0.91) 

[a]D
23 –18.0° (c = 1.0, CHCl3).  

 

SI3-9: Prepared from 449 (20.2 mg, 0.100 mmol) using a modified General 

Procedure 2 in THF at –78 °C for 36h using a 5mL Schlenk tube. Purification 

by flash chromatography (silica, 15%Et2O/10%CH2Cl2 /10%PhMe/Hexanes) to yield SI3-9 (11.3 

mg, 0.046 mmol, 46% yield) as a clear oil. The enantiomeric excess was determined to be 93% by 

chiral SFC analysis (AD-H, 2.5 mL/min, 8% IPA in CO2, λ = 254 nm): tR(minor) = 7.850 min, 

tR(major) = 7.138 min.  

EtO2C

NHPMP
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1H NMR (500 MHz, CDCl3) δ 6.82 – 6.70 (m, 2H), 6.71 – 6.56 (m, 2H), 4.28 – 4.18 (m, 2H), 4.16 

(t, J = 5.5 Hz, 1H), 3.74 (s, 3H), 2.75 (dd, J = 5.4, 2.7 Hz, 2H), 2.08 (t, J = 2.6 Hz, 1H), 1.27 (t, J 

= 7.1 Hz, 3H). 

13C NMR (126 MHz, CDCl3) δ 172.26, 153.20, 140.21, 115.85, 115.00, 78.99, 71.73, 61.64, 

56.46, 55.82, 23.07, 14.38. 

FTIR (AT-IR) 2878.46, 2359.83, 1734.61, 1512.59, 1214.47, 1035.14, 750.2, 667.76 cm-1 

HRMS (TOF, ES+) calc’d for C14H17NO3 [M+H]+ 248.1281, found 248.1280 (ppm=0.48) 

[a]D
23 +18.7° (c = 1.0, CHCl3). 

 

 SI3-10: Prepared from 450 (21.2 mg, 0.100 mmol) using General Procedure 2 in 

THF. Yield determined to be 38% by NMR (10 mol% dimethyl terephthalate). 

Physical and spectral properties were consistent with literature values.47 The enantiomeric excess 

was determined to be 56% by chiral SFC analysis (AS-H, 2.5 mL/min, 4% IPA in CO2, λ = 210 

nm): tR(minor) = 7.777 min, tR(major) = 8.391 min.  

 

SI3-11: Prepared from 450 (41.0 mg, 0.200 mmol) using General Procedure 2 in 

PhMe. Purification by flash chromatography (silica, 10%Et2O/10%CH2Cl2/ 

10%PhMe/ Hexanes) to yield SI3-11 (31.2 mg, 0.127 mmol, 64% yield) as a white solid. The 

enantiomeric excess was determined to be 85% by chiral SFC analysis (IC, 2.5 mL/min, 3% IPA 

in CO2, λ = 210 nm): tR(minor) = 8.278 min, tR(major) = 6.991 min.  

1H NMR (400 MHz, CDCl3) δ 7.39 – 7.23 (m, 5H), 5.16 (s, 1H), 5.00 – 4.50 (m, 1H), 2.85 – 2.55 

(m, 2H), 2.00 (t, J = 2.6 Hz, 1H), 1.43 (s, 9H). 

Ph

NHPMP

Ph

NHBoc
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13C NMR (101 MHz, CDCl3) δ 155.18, 141.10, 128.62, 127.69, 126.44, 80.07, 79.89, 71.50, 

52.65, 28.47, 26.53. 

FTIR (AT-IR):	 3298.44, 2977.06, 1693.35, 1495.09, 1454.71, 1391.08, 1365.46, 1246.52, 

1162.62, 1078.25, 1050.37, 1017.56, 951.85, 859.79, 753.00, 698.10, 632.69 cm-1 

HRMS (TOF, ES+) calc’d for C15H19NO2 [M+H]+ 246.1489, found 246.1486 (ppm=1.04) 

[a]D
23  –33.4° (c = 1.0, CHCl3) 

 

SI3-12: Prepared from 12c (47.1 mg, 0.200 mmol) using General Procedure 2 in 

PhMe. Purification by flash chromatography (silica, 7→15%Et2O/10% 

CH2Cl2/10%PhMe/ Hexanes) to yield 13c (39.5 mg, 0.143 mmol, 72% yield) as a white solid. The 

enantiomeric excess was determined to be 73% by chiral SFC analysis (AD-H, 2.5 mL/min, 2% 

IPA in CO2, λ = 210 nm): tR(minor) = 7.440 min, tR(major) = 7.012 min.  

1H NMR (400 MHz, CDCl3) δ 7.32 – 7.20 (m, 2H), 6.94 – 6.82 (m, 2H), 5.11 (s, 1H), 4.83 (s, 

1H), 3.79 (s, 3H), 2.70 (pd, J = 14.7, 13.2, 8.6 Hz, 2H), 2.00 (t, J = 2.6 Hz, 1H), 1.43 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 159.05, 155.15, 133.27, 127.60, 113.96, 80.29, 79.80, 71.38, 

55.34, 52.15, 28.46, 26.50. 

FTIR (AT-IR) 3294.27, 2976.11, 2930.51, 1695.09, 1613.30, 1512.19, 1391.26, 1365.93, 

1296.78, 1244.83, 1163.94, 1110.88, 1033.71, 862.18, 831.44, 779.23, 640.34 cm-1 

HRMS (TOF, ES+) calc’d for C16H21NO3 [M+H]+ 276.1594, found 276.1592 (ppm=0.80) 

[a]D
23 –37.7 (c = 1.0, CHCl3).  

 

SI3-13: Prepared from 12X (54.6mg, 0.200 mmol) using General 

Procedure 2 in PhMe. Purification by flash chromatography (silica, 

PMP

NHBoc

NHBoc

F3C
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10%Et2O/ 10%CH2Cl2/10%PhMe/ Hexanes) to yield 13X (41.0mg mg, 0.130 mmol, 65% yield) 

as a white solid.  The enantiomeric excess was determined by chiral SFC analysis to be 71% (AD-

H, 2.5 mL/min, 2% IPA in CO2, λ = 210 nm): tR(minor) = 5.322 min, tR(major) = 6.650 min.  

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.1 Hz, 2H), 7.46 (d, J = 8.1 Hz, 2H), 5.40 – 5.09 (m, 

1H), 5.08 – 4.79 (m, 1H), 2.86 – 2.53 (m, 2H), 2.04 (t, J = 2.6 Hz, 1H), 1.43 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 155.08, 145.26, 129.94 (q, J = 32.4 Hz), 126.81, 125.62 (q, J = 

3.7 Hz), 122.87, 80.32, 79.24, 72.21, 52.29, 28.45, 26.45. 

FTIR (AT-IR) 3312.68, 2979.57, 1694.52, 1620.25, 1498.22, 1422.19, 1367.11, 1323.46, 

1279.78, 1248.84, 1160.67, 1122.33, 1067.87, 1017.04, 840.57, 643.93 cm–1 

HRMS (TOF, ES+) calc’d for C16H18F3NO2 [M+H]+ 314.1362, found 314.1370 (ppm=–2.42) 

[a]D
23 –20.5° (c = 1.0, CHCl3).  

 

 SI3-14: Prepared from 12e (42.3 mg, 0.200 mmol) using General Procedure 2 

in PhMe. Purification by flash chromatography (silica, 10%Et2O/10%CH2Cl2/ 

10%PhMe/ Hexanes) to yield 13e (29.8mg mg, 0.119 mmol, 59% yield) as a white solid.  The 

enantiomeric excess was determined by chiral SFC analysis to be 76% (OD-H, 2.5 mL/min, 1% 

IPA in CO2, λ = 210 nm): tR(minor) = 11.423 min, tR(major) = 10.681 min.  

1H NMR (400 MHz, CDCl3) δ 7.33 (dd, J = 5.0, 3.0 Hz, 1H), 7.27 (dd, J = 2.8, 1.2 Hz, 1H), 7.12 

(dd, J = 5.0, 1.4 Hz, 1H), 5.11 (s, 1H), 5.03 (s, 1H), 2.78 (qdd, J = 16.8, 5.5, 2.7 Hz, 2H), 2.06 (t, 

J = 2.6 Hz, 1H), 1.49 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 155.14, 142.19, 126.42, 126.20, 121.46, 80.28, 79.94, 71.50, 

48.76, 28.49, 25.92. 

NHBoc

S
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FTIR (AT-IR) 3299.32, 2977.13, 2360.00, 1694.07, 1496.67, 1391.64, 1365.96, 1328.22, 

1246.99, 1162.16, 1051.38, 1019.27, 849.62, 781.82, 636.53 cm-1 

HRMS (TOF, ES+) calc’d for C13H17NO2S [M+H]+ 252.1053, found 252.1045 (ppm=3.08) 

[a]D
23 –32.0 (c = 1.0, CHCl3).  

S3C2-3 

 

SI3-15: Prepared from 12f (39.0 mg, 0.200 mmol) using General Procedure 2 

in THF. Purification by flash chromatography (silica, 5% Et2O/10% 

CH2Cl2/10% PhMe/Hexanes) to yield 13f (28.4 mg, 60% yield) as a clear oil. The enantiomeric 

excess was determined to be 60% by chiral SFC analysis (AD-H, 2.5 mL/min, 2% IPA in CO2, λ 

= 210 nm): tR(minor) = 5.895 min, tR(major) = 6.192 min  

1H NMR (400 MHz, CDCl3) δ 7.36 (dd, J = 1.8, 0.9 Hz, 1H), 6.32 (dd, J = 3.3, 1.8 Hz, 1H), 6.27 

(dt, J = 3.3, 0.9 Hz, 1H), 5.07 (s, 1H), 4.98 (s, 1H), 2.75 (dt, J = 5.5, 1.8 Hz, 2H), 1.99 (t, J = 2.6 

Hz, 1H), 1.46 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 155.05, 153.40, 142.17, 110.36, 106.64, 80.12, 79.81, 71.14, 47.42, 

28.48, 24.44. 

FTIR (AT-IR)	 3299.51, 2977.82, 2930.12, 1698.08, 1498.78, 1456.01, 1428.43, 1391.91, 

1366.51, 1336.32, 1247.83, 1162.69, 1076.41, 1050.52, 1009.24, 941.43, 910.82, 884.51, 865.88, 

811.90, 736.07, 642.95, 597.65 cm-1 

HRMS (TOF, ES+) calc’d for C13H17NO3 [M+H]+ 236.1281, found 236.1276 (ppm=-2.20) 

[a]D
23 –22.6° (c = 1.0, CHCl3). 

 

Racemic Copper catalyzed allylation of oxime ether 

NHBoc

O
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To a solution of 444a (15.4mg, 0.20 mmol, 1.0 equiv) in THF (0.15 mL) add 2a (16.3, 0.100 mmol, 

2.0 equiv) followed by [Cu(S-BTFMGarphos)(MeCN)2]BF4 (7.1mg, 0.0050 mmol, 0.10 equiv) or 

with Cu (acac)2 (0.0050 mmol, 0.10 equiv)and PPh3 (0.20 equiv). Rinse down catalyst with 

additional THF (0.10 mL). Stir racemic alkylation for 5h, asymmetric alkylation for 12h, at 

ambient temperature.  Add diethanolamine (20 µL) as a solution in EtOAc (0.5 mL). Stir 10 

minutes at ambient temperature. Add DI H2O (1.0 mL). Extract with crude mixture with EtOAc 

four times. Dry over Na2SO4, filter and concentrate in vacuo to yield crude product. Purify by flash 

chromatography (silica, 2.5%Et2O/10%CH2Cl2/10%PhMe/Hexanes) to yield 457 as a clear oil 

(60.6 mg, 0.186 mmol, 87% yield). Enantiomers were separated by	chiral SFC analysis (AD-H, 

2.5 mL/min, 2% IPA in CO2, λ = 210 nm): tR(minor) = 2.724 min, tR(major) = 4.528 min 

1H NMR (500 MHz, CDCl3) δ 7.34 – 7.29 (m, 2H), 7.26 – 7.21 (m, 3H), 5.70 (ddt, J = 17.1, 10.1, 

7.1 Hz, 1H), 5.47 (d, J = 8.1 Hz, 1H), 5.09 – 5.00 (m, 2H), 4.38 (t, J = 7.0 Hz, 2H), 3.53 (q, J = 7.6 

Hz, 1H), 2.97 (t, J = 7.0 Hz, 2H), 2.32 – 2.22 (m, 2H), 0.90 (s, 9H), 0.10 (d, J = 4.3 Hz, 6H). 

13C NMR (126 MHz, CDCl3) δ 173.64, 137.82, 133.16, 129.02, 128.60, 126.69, 118.01, 65.61, 

65.31, 35.25, 33.97, 26.35, 18.10, -5.34, -5.39. 

FTIR (AT-IR) 2955.32. 2928.25, 2855.86, 1738.49, 1641.92, 1497.53, 1471.50, 1462.13, 

1388.74, 1344.25, 1246.95, 1181.89, 1051.22, 992.86, 917.49, 833.26, 779.87, 747.64, 698.04, 

667.31 cm-1 

HRMS (TOF, ES+) calc’d for C19H31NO3Si [M+H]+ 349.2146, found 349. 2147 (ppm=-0.29) 

 
 

Copper catalyzed asymmetric alkylation with a substituted allene 

N
OTBS

H

NH
TBSO

O

O
Ph

O

O
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Follow general Procedure A with substituted 458 on a 0.100 mmol scale. To a solution of XX 

(15.4mg, 0.050 mmol, 1.0 equiv) in THF (0.15 mL) add boronateXX (16.3, 0.100 mmol, 2.0 equiv) 

followed by [Cu(S-BTFMGarphos)(MeCN)2]BF4 (7.1mg, 0.0050 mmol, 0.10 equiv) or with Cu 

(acac)2 and PPh3. Rinse down catalyst with an additional THF (0.10 mL). Stir racemic alkylation 

5h, asymmetric 12h.  Dilute with 20 µL diethanolamine  in 0.5 mL EtOAc. Stir 10 minutes at 

ambient temperature. Add 1 mL H2O. Extract with EtOAc four times. Dry over Na2SO4, filter and 

concentrate in vacuo to yield crude product. Yields by 1H NMR with an internal standard (dimethyl 

terephthalate, 10 mol %): S-BTFM-Garphos: 16% 7a, 27% 7b; PPh3: 54% 7a, 31% 7b  

Purification by flash chromatography gave 7a and 7b as a mixture of isomers (12.2mg, 34% yield 

total). Preparatory TLC (7.5% Et2O/Hexanes) provides clean samples of 7a and 7b for 

characterization.    

459a: The enantiomeric excess was determined to be 44% by chiral 

SFC analysis (AD-H (Column 2, 2.5 mL/min, 1% IPA in CO2, λ = 

254 nm): tR(minor) = 6.780 min, tR(major) = 5.451 min. 

1H NMR (400 MHz, CDCl3) δ 7.34 – 7.28 (m, 2H), 7.25 – 7.20 (m, 3H), 5.57 (d, J = 9.7 Hz, 1H), 

4.39 (td, J = 7.1, 2.1 Hz, 2H), 3.58 (q, J = 7.8, 7.3 Hz, 1H), 2.97 (t, J = 7.1 Hz, 2H), 2.54 – 2.38 

(m, 2H), 1.74 (t, J = 2.6 Hz, 3H), 0.89 (s, 9H), 0.10 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 172.28, 137.83, 129.03, 128.65, 126.73, 78.52, 73.86, 65.54, 

64.50, 35.27, 26.33, 19.85, 18.12, 3.66, -5.34, -5.41. 

RO2C H

N
OTBS

RO2C

HN
OTBS

(2 equiv)

•
Bneo

[Cu(S-BTFMGarphos)(MeCN)2]BF4
(10 mol%)

THF, 23 °C, R=CH2CH2Ph
NC-VI-194

RO2C

HN
OTBS

•+

16%, 44% ee 27%, 54% ee

Me
Me

Me
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FTIR (AT-IR) 2954.61, 2926.83, 2855.19, 2359.46, 2340.28, 1739.39, 1471.67, 1455.85, 

1387.70, 1360.88, 1275.45, 1248.56, 1176.62, 1052.00, 1008.32, 936.64, 835.23, 780.98, 764.44, 

749.28, 698.52, 667.93 cm-1 

HRMS (TOF, ES+) calc’d for C20H31NO3Si [M+H]+ 362.2146, found 362.2147 (ppm=-0.28) 

[a]D
23: –3.82° (c = 0.10, CHCl3).  

459b: The enantiomeric excess was determined to be 44% by chiral 

SFC analysis (AD-H(C2), 2.5 mL/min, 1% IPA in CO2, λ = 254 nm): 

tR(minor) = 4.884 min, tR(major) = 3.733 min. 

1H NMR (400 MHz, CDCl3) δ 7.33 – 7.27 (m, 2H), 7.25 – 7.20 (m, 3H), 5.56 (d, J = 12.0 Hz, 1H), 

4.77 – 4.62 (m, 2H), 4.38 (td, J = 7.1, 3.3 Hz, 2H), 3.87 (dt, J = 11.9, 2.3 Hz, 1H), 2.97 (td, J = 7.0, 

2.0 Hz, 2H), 1.73 (td, J = 3.2, 0.4 Hz, 3H), 0.89 (s, 9H), 0.10 (d, J = 7.1 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 206.62, 171.80, 137.88, 129.06, 128.62, 126.70, 94.32, 68.39, 

65.60, 35.27, 26.39, 18.16, 17.08, -5.32, -5.33. 

FTIR (AT-IR) 2954.34, 2927.61, 2855.65, 2359.52, 2340.26, 1957.65, 1742.48, 1497.43, 

1471.54, 1461.90, 1361.23, 1329.87, 1275.49, 1247.46, 1189.46, 1047.01, 999.42, 832.06, 780.37, 

764.60, 749.17, 698.20, 667.89 cm-1 

HRMS (TOF, ES+) calc’d for C20H31NO3Si [M+H]+ 362.2146, found 362.2146 (ppm=-0.01) 

[a]D
23: +1.345° (c = 0.11, CHCl3).  
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4. Synthesis of enantioenriched derivatives 

Formation of N-acetylpropargyl glycine by decarboxylative coupling  

 

To a solution of 3a (27.1 mg, 0.100 mmol, 1.0 equiv) in wet DMSO (1.0 mL) add oxalic acid 

(mg,  2.0 equiv) and pyruvic acid (mg, 4.0 equiv). Seal mixture under air and stir at 40 °C for 

18 hours. Cool to ambient temperature and dilute in pH=7 buffer (10 mL). Extract crude 

mixture with three times with EtOAc and twice with 10% i-PrOH/CH2Cl2. Dry organic layer 

over Na2SO4, filter and concentrate to yield crude product. Purification by flash 

chromatography (silica, 20→50% EtOAc/Hexanes) yields 9 (13.6mg, 0.741 mmol, 74% yield) 

as colorless crystals. 

1H NMR (400 MHz, CDCl3) δ 6.34 (d, J = 7.6 Hz, 1H), 4.72 (dt, J = 7.8, 4.6 Hz, 1H), 4.34 – 4.17 

(m, 2H), 2.83 – 2.71 (m, 2H), 2.06 (s, 3H), 2.02 (t, J = 2.6 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 170.51, 169.97, 78.60, 71.65, 62.13, 50.73, 23.29, 22.63, 14.28. 

FTIR (AT-IR) 3309.21, 3286.98, 1727.34, 1645.05, 1544.92, 1422.68, 1369.94, 1345.49, 

1278.11, 1228.63, 1192.86, 1133.72, 1055.73, 1026.11, 943.06, 911.25, 857.89, 703.64, 655.55, 

598.75 cm-1	

HRMS (TOF, ES+) calc’d for C9H13NO3 [M+H]+ 184.0968, found 184.0966 (ppm=-1.09) 

[a]D
23 +97.5° (c = 1.0, CHCl3).  

 

Copper-catalyzed “Click” chemistry with N-siloxy amine 

EtO2C

NHAc
oxalic acid (2 equiv)

pyruvic acid (4 equiv)

DMSO, 40 °C

(74 % yield)

EtO2C

NH
TBSO

445b 469
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Stir CuI (38.1 mg, 0.020 mmol, 0.20 equiv) and DIPEA (0.300 mmol, 3.0 equiv) in MeCN (1.0 

mL) for five minutes. Add 1b (27.1 mg, 0.100 mmol, 1.0 equiv) followed by benzyl azide (13.8 

mg, 14.5 mL, 0.100 mmol, 1.0 equiv). Stir at ambient temperature for 2h30m. Dilute in pH=7 

buffer (3.5 mL) and extract crude mixture four times EtOAc (4×5mL) taking care to allow 

time for the emulsion to clear. Dry combined organic over Na2SO4, filter through celite and 

concentrate to yield the crude product. Purification by flash chromatography (30→40% 

EtOAc/Hexanes) provides 11 (31.8 mg, 0.078 mmol, 78% yield) as a pale-yellow oil. 

1H NMR (400 MHz, CDCl3) δ 7.37 – 7.29 (m, 3H), 7.25 – 7.18 (m, 2H), 5.57 (s, 1H), 5.45 (d, J 

= 2.9 Hz, 2H), 4.19 – 4.01 (m, 2H), 3.72 (d, J = 7.1 Hz, 1H), 3.01 (dd, J = 15.0, 6.2 Hz, 1H), 

2.88 (dd, J = 15.0, 7.8 Hz, 1H), 1.15 (t, J = 7.1 Hz, 3H), 0.80 (s, 9H), -0.06 (d, J = 6.5 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 173.28, 144.06, 134.81, 129.21, 128.83, 128.20, 122.12, 65.26, 

61.06, 54.22, 26.21, 26.08, 18.00, 14.28, -5.41, -5.46. 

FTIR (AT-IR) 2928.52, 2855.45, 1734.08, 1461.97, 1361.75, 1335.81, 1247.76, 1216.08, 

1184.28, 1122.52, 1047.32, 939.38, 901.01, 833.97, 780.04, 721.51, 697.84, 666.92 cm-1 

HRMS (TOF, ES+) calc’d for C20H32N4O3Si [M+H]+ 405.2316, found 405.2318 (ppm=-0.39) 

[a]D
23 –12.5° (c = 1.0, CHCl3). 

 

Acylation of enantioenriched alkyne 

EtO2C

NH
TBSO NBn

N
N

BnN3 (1.0 equiv)
CuI (20 mol %)

DIPEA (2.0 equiv)

EtO2C

NH
TBSO

(78% yield)

MeCN

445b 470
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To a solution of 445b (534 mg, 1.97 mmol, 1.0 equiv) in MeCN (2.0 mL) add DIPEA (0.68 mL, 

508 mg, 3.93 mmol, 2 equiv) and benzoyl chloride (0.40 mL, 484mg, 3.44 mmol, 1.75 equiv) at 

ambient temperature. Heat mixture to 40 °C stirring vigorously 3h. Dilute in Et2O (25 mL) and 

wash organics with 2x with pH=7 phosphate buffer (20 mL), then brine (20 mL). Dry organic layer 

with Na2SO4. Filter and concentrate. Take up residue with in pentanes and cool solution to –20 °C 

and filter rapidly through celite. Concentrate crude material and purify on florisil (20% 

Et2O/Hexanes) to yield SI3-16 (492 mg, 1.31 mmol, 67% yield) as a colorless crystallizing oil.  

SFC analysis (IC, 5% i-PrOH in CO2) tR(major): 6.748 min; tR(minor): 8.324 min; 94% ee 

1H NMR (400 MHz, CDCl3) δ 7.76 – 7.65 (m, 2H), 7.53 – 7.35 (m, 3H), 4.65 (dd, J = 10.5, 4.5 

Hz, 1H), 4.21 (qdd, J = 10.7, 7.0, 3.6 Hz, 2H), 2.97 (ddd, J = 17.4, 10.6, 2.7 Hz, 1H), 2.89 – 2.70 

(m, 1H), 2.14 (t, J = 2.7 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H), 0.95 (s, 9H), 0.30 (s, 3H), 0.21 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 173.13, 168.28, 134.61, 131.05, 128.59, 128.48, 80.35, 71.70, 

63.97, 62.11, 26.18, 18.58, 14.31, -4.31, -4.51. 

FTIR (AT-IR)	 3310.03, 2929.56, 2857.22, 2359.18, 1744.02, 1694.62, 1472.02, 1446.93, 

1390.26, 1362.25, 1289.85, 1250.00, 1226.16, 1186.10, 1072.43, 1017.66, 964.62, 920.36, 831.69, 

809.32, 783.13, 748.13, 703.47, 674.24, 654.39 cm–1 

HRMS (TOF, ES+)  calc’d for C20H30NO4Si [M+H]+ 376.1939, found 376.1934 

[a]D
23 –89.9° (c=1.0, CHCl3) 

 

Sonagashira coupling of benzoylated alkyne  

EtO2C

NH
TBSO

EtO2C

NBz

(67% yield)

BzCl (1.2 equiv), 
NEt3 (3 equiv), 

DMAP (20 mol%)
TBSO

MeCN, 40 °C

445b SI3-16
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Add 4-iodotoluene (26.2 mg, 0.120 mmol, 1.20 equiv) to 3b (37.5 mg, 0.100 mmol, 1.00 equiv) 

in DMF (0.84 mL) followed by triethylamine (13 mg, 18 µL, 0.130 mmol, 1.30 equiv) and 

Pd(PPh3)4 (8.1 mg, 0.007 mmol, 0.07 equiv). Finally add CuI (2.6 mg, 0.014 mmol, 0.14 equiv). 

Seal and stir at ambient temperature 48h. Dilute with pH=7 buffer (8.5 mL) and filter off 

solids. Extract this mixture with EtOAc four times. Dry over Na2SO4, filter and concentrate 

in vacuo to yield crude 10. Purification by flash chromatography (silica, 10% 

EtOAc/Hexanes) yields 9 (39.4mg, 0.085 mmol, 85% yield) as a pale yellow oil.  

1H NMR (400 MHz, CDCl3) δ 7.77 – 7.68 (m, 2H), 7.47 – 7.40 (m, 1H), 7.39 – 7.31 (m, 4H), 7.17 

– 7.11 (m, 2H), 4.71 (dd, J = 11.0, 4.1 Hz, 1H), 4.34 – 4.11 (m, 2H), 3.19 (dd, J = 17.5, 11.1 Hz, 

1H), 2.96 (dd, J = 17.5, 4.1 Hz, 1H), 2.36 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H), 0.98 (s, 8H), 0.34 (s, 

3H), 0.25 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 173.23, 168.49, 138.33, 134.77, 131.53, 130.97, 129.29, 128.58, 

128.41, 120.32, 85.31, 83.72, 64.42, 62.05, 26.22, 21.61, 19.50, 18.88, 14.35, -4.31, -4.39. 

FTIR (AT-IR)	 2928.59, 2856.73, 1744.86, 1694.26, 1510.29, 1471.57, 1446.59, 1362.89, 

1250.43, 1183.24, 1021.70, 968.05, 919.34, 832.59, 814.99, 782.88, 749.82, 698.18, 677.26 cm-1 

HRMS (TOF, ES+) calc’d for C27H35NO4Si [M+H]+ 466.2408, found 466.2415 (ppm=-1.48) 

[a]D
23 +20.4°(c = 1.0, CHCl3).  

 

 

            

EtO2C

NH
TBSO

EtO2C

NBz

(85% yield)

TBSO
Me4-MePhI (1.20 equiv), 

NEt3 (1.3 equiv) 
   CuI (14 mol %)

SI3-16 471

Pd(PPh3)4 (7 mol%)
DMF
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3.6.4. SFC traces for racemic and enantioenriched products      
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3.6.5. X-ray crystallographic data of desilylated hydroxylamine  (p16469_b)       

Crystal was obtained in analogy to 3b-Bz with 2-Br-benzoyl chloride. Recrystallized from 

CHCl3/Hexanes. Layer diffusion between 1:1 CHCl3/Hexanes and Hexanes yielded X-ray 

quality crystals of the desilylated hydroxylamine. 

 

Table 1. Crystal data and structure refinement for final p16469_b. 
 

Identification code  p16469_b  
Empirical formula  C14 H14 Br N O4  
Formula weight  340.17  
Temperature  100(2) K  
Wavelength  0.71073 Å  

HN
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Crystal system  Monoclinic  
Space group  P1211  
Unit cell dimensions  a = 8.6346(7) Å α = 90°. 
 b = 5.6380(5) Å β = 103.728(3)° 
 c = 15.6510(13) Å γ  = 90° 
Volume  740.15(11) Å3  
 Z  2  
Density (calculated)  1.410 Mg/m3  
Absorption coefficient 0  2.788 mm-1  
F(000)  344  
Crystal size  0.23 × 0.15 × 0.07 mm3  
Theta range for data collection 2.428 to 45.369°  
Index ranges  -16<=h<=17, -11<=k<=11, -31<=l<=31  
Reflections collected  68030  
Independent reflections  12256 [R(int) = 0.0378]  
Completeness to theta = 25.000° 99.7 %  
Absorption correction  Semi-empirical from equivalents  
Max. and min. transmission 0.747 and 0.716  
Refinement method  Full-matrix least-squares on F2  
Data / restraints / parameters  12256/1/183  
Goodness-of-fit on F2 0.989  
Final R indices [I>2sigma(I)] R1 = 0.0241, wR2 = 0.0526  
R indices (all data) R1 = 0.0305, wR2 = 0.0541  
Extinction coefficient n/a  
Largest diff. peak and hole 0.526 and -0.838 e.Å-3  
   

 
Table 2. Atomic coordinates (×104) and equivalent isotropic displacement parameters (Å 2×103) 
for final p16469_b. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
 

 x y z Ueq 
Br1 0.15673(2) 0.20544(3) 0.66433(2) 0.02070(3) 
O1 0.86808(9) 0.26712(16) 0.92479(6) 0.01991(14) 
O2 0.80569(9) 0.56641(15) 0.82777(6) 0.01865(13) 
O3 0.54192(7) 0.19604(14) 0.73103(4) 0.01256(9) 
O4 0.492 0.0738 0.7396 0.019 
N1 0.43360(9) 0.76829(12) 0.77810(5) 0.01514(11) 
C1 0.50418(9) 0.38290(13) 0.78093(5) 0.00968(10) 
C2 0.77148(10) 0.39468(16) 0.87841(6) 0.01261(12) 
C3 0.59223(10) 0.38553(15) 0.87231(5) 0.00991(11) 
C4 0.5623 0.5331 0.9 0.012 
C5 0.55204(9) 0.17365(15) 0.92407(5) 0.01207(13) 
C6 0.5754 0.025 0.8959 0.014 
C7 0.6205 0.1778 0.9845 0.014 
C8 0.38480(10) 0.17397(16) 0.92825(6) 0.01385(14) 
C9 0.24845(11) 0.1758(2) 0.93395(7) 0.01919(18) 
C10 0.1407 0.1773 0.9384 0.023 
C11 0.43888(10) 0.58063(14) 0.73832(5) 0.00977(11) 
C12 0.37367(10) 0.56879(15) 0.64074(5) 0.01081(11) 
C13 0.25012(11) 0.42021(17) 0.59858(6) 0.01398(13) 
C14 0.18903(13) 0.4296(2) 0.50811(7) 0.01944(17) 

 
Table 3. Bond lengths [Å] and angles [°] for final p16469_b 
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C1–O2–C13 115.36(8) 
N1–O3–H3 109.5 
O3–N1–C2 114.95(6) 
C6–N1–O3 118.17(7) 
C6–N1–C2 122.50(7) 
O1–C1–O2 125.05(9) 
O1–C1–C2 124.28(8) 
O2–C1–C2   110.65(8) 
N1–C2–C1   110.34(7) 
N1–C2–H2 107.8 
N1–C2–C3  112.48(7) 
C1–C2–H2 107.8 
C3–C2–C1  110.31(7) 
C3–C2–H2 107.8 
C2–C3–H3A 109.2 
C2–C3–H3B 109.2 
H3A–C3–H3B 107.9 
C4–C3–C2   111.95(7) 

Br1–C8 1.8892(9) 
O1–C1 1.2052(12) 
O2–C1  1.3282(11) 
O2–C13 1.4559(13) 
O3–H3   0.8400 
O3–N1 1.3953(10) 
O4–C6  1.2340(11) 
N1–C2 1.4518(11) 
N1–C6  1.3517(11) 
C1–C2  1.5288(12) 
C2–H2 1.0000 
C2–C3 1.5287(11) 
C3–H3A 0.9900 
C3–H3B 0.9900 
C3–C4  1.4610(11) 
C4–C5  1.2017(12) 
C5–H5  0.9500 
C6–C7  1.4986(11) 
C7–C8  1.3932(13) 
C7–C12  1.3987(12) 
C8–C9 1.3899(14) 
C9–H9  0.9500 
C9–C10  1.3905(15) 
C10–H10  0.9500 
C10–C11 1.3858(16) 
C11–H11 0.9500 
C11–C12 1.3931(13) 
C12–H12 0.9500 
C13–H13A  0.9900 
C13–H13B 0.9900 
C13–C14  1.5054(17) 
C14–H14A  0.9800 
C14–H14B  0.9800 
C14–H14C 0.9800 
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C4–C3–H3A 109.2 
C4–C3–H3B 109.2 
C5–C4–C3 178.30(10) 
C4–C5–H5 180.0 
O4–C6–N1   121.28(8) 
O4–C6–C7   120.17(8) 
N1–C6–C7   118.55(7) 
C8–C7–C6   124.73(7) 
C8–C7–C12 118.27(8) 
C12–C7–C6 116.78(8) 
C7–C8–Br1 120.35(6) 
C9–C8–Br1  118.14(7) 
C9–C8–C7 121.49(9) 
C8–C9–H9 120.4 
C8–C9–C10 119.29(10) 
C10–C9–H9 120.4 
C9–C10–H10 119.8 
C11–C10–C9   120.33(9) 
C11–C10–H10 119.8 
C10–C11–H11 120.1 
C10–C11–C12 119.88(9) 
C12–C11–H11 120.1 
C7–C12–H12 119.6 
C11–C12–C7   120.70(9) 
C11–C12–H12 119.6 
O2–C13–H13A 110.3  
O2–C13–H13B  110.3 
O2–C13–C14  107.04(9) 
H13A–C13–H13B  108.6 
C14–C13–H13A  110.3 
C14–C13–H13B  110.3 
C13–C14–H14A  109.5 
C13–C14–H14B  109.5 
C13–C14–H14C  109.5 
H14A–C14–H14B  109.5 
H14A–C14–H14C  109.5 

Symmetry transformations used to generate equivalent atoms:  
 
Table 4. Anisotropic displacement parameters (Å2) for final p16469_b. The anisotropic 
displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b*U12] 

 U11 U22 U33 U23 U13 U12 
Br1 0.01666(4) 0.02574(5) 0.01784(4) 0.00477(4) 0.00036(3) -0.01092(4) 
O1 0.0128(2) 0.0248(4) 0.0218(3) 0.0102(3) 0.0035(2) 0.0027(2) 
O2 0.0128(2) 0.0203(3) 0.0226(3) 0.0095(3) 0.0035(2) -0.0029(2) 
O3 0.0179(2) 0.0080(2) 0.0122(2) -0.0020(2) 0.00421(17) 0.0012(2) 
O4 0.0234(3) 0.0083(2) 0.0131(2) -0.00124(19) 0.0030(2) 0.0014(2) 
N1 0.0128(2) 0.0076(2) 0.0080(2) -0.00085(18) 0.00111(19) 0.00054(19) 
C1 0.0118(3) 0.0137(3) 0.0119(3) 0.0014(2) 0.0019(2) -0.0021(2) 
C2 0.0109(3) 0.0099(3) 0.0084(3) 0.0002(2) 0.0013(2) -0.0013(2) 
C3 0.0123(3) 0.0127(4) 0.0108(3) 0.0025(2) 0.0019(2) -0.0012(2) 
C4 0.0139(3) 0.0153(4) 0.0119(3) 0.0031(2) 0.0024(2) -0.0019(2) 
C5 0.0148(3) 0.0245(5) 0.0180(3) 0.0066(3) 0.0035(3) -0.0002(3) 
C6 0.0115(3) 0.0083(3) 0.0095(3) 0.0004(2) 0.0023(2) 0.0000(2) 
C7 0.0129(3) 0.0101(3) 0.0092(3) 0.0010(2) 0.0023(2) -0.0001(2) 
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C8 0.0126(3) 0.0166(3) 0.0114(3) 0.0020(3) 0.0003(2) -0.0022(3) 
C9 0.0164(4) 0.0268(5) 0.0123(3) 0.0014(3) -0.0022(3) -0.0031(3) 
C10 0.0211(4) 0.0267(5) 0.0104(3) 0.0041(3) 0.0004(3) 0.0014(3) 
C11 0.0262(4) 0.0187(5) 0.0120(3) 0.0044(3) 0.0058(3) -0.0009(3) 
C12 0.0216(3) 0.0122(4) 0.0122(3) 0.0016(2) 0.0048(2) -0.0025(3) 
C13 0.0139(4) 0.0264(5) 0.0263(5) 0.0092(4) 0.0048(3) -0.0038(3) 
C14 0.0238(5) 0.0323(6) 0.0394(7) 0.0178(5) 0.0113(5) -0.0040(4) 
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Appendix 2 

 

Spectra Relevant to Chapter 3: 

Development of the First Catalytic Asymmetric Alkylation of an Oxime and its Application to the 

Synthesis of Enantioenriched Amines 
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